These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Temperature measuring device  

DOEpatents

Systems and methods are described for a wireless instrumented silicon wafer that can measure temperatures at various points and transmit those temperature readings to an external receiver. The device has particular utility in the processing of semiconductor wafers, where it can be used to map thermal uniformity on hot plates, cold plates, spin bowl chucks, etc. without the inconvenience of wires or the inevitable thermal perturbations attendant with them.

Lauf, Robert J. (Oak Ridge, TN); Bible, Don W. (Clinton, TN); Sohns, Carl W. (Oak Ridge, TN)

1999-01-01

2

Ultrasonic temperature measuring device  

NASA Technical Reports Server (NTRS)

Pulse echo ultrasonic system automatically determines the temperature in the core of a nuclear rocket engine by measuring the transit time of an acoustic pulse in a wire sensor. The measurement is based on the fact that the speed of sound in the sensor material is a function of temperature.

Carnevale, E. H.; Lynnworth, L. C.

1968-01-01

3

Water bath temperature control and temperature measurement devices for calorimetry  

Microsoft Academic Search

A low-cost water bath temperature control device, and an apparatus designed to monitor temperature variation from a null point both inside a precision calorimeter and in the surrounding bath, are described. Bath control to better than +or-0.002K in the 280-350K region can be achieved. Temperature variations in ranges between +or-2K and +or-0.02K can be measured to better than 5*10-2K and

J. D. B. Featherstone; N. A. Dickinson

1977-01-01

4

46 CFR 154.1340 - Temperature measuring devices.  

Code of Federal Regulations, 2010 CFR

...SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Instrumentation § 154.1340 Temperature measuring devices. (a) Each cargo tank must have devices that measure the...

2010-10-01

5

Miniature ingestible telemeter devices to measure deep-body temperature  

NASA Technical Reports Server (NTRS)

A telemetry device comprised of a pill-size ingestible transmitter developed to obtain deep body temperature measurements of a human is described. The device has particular utility in the medical field where deep body temperatures provide an indication of general health.

Pope, J. M.; Fryer, T. B. (inventors)

1976-01-01

6

21 CFR 882.1570 - Powered direct-contact temperature measurement device.  

Code of Federal Regulations, 2010 CFR

...2010-04-01 false Powered direct-contact temperature measurement device. 882...Devices § 882.1570 Powered direct-contact temperature measurement device. (a) Identification. A powered direct-contact temperature measurement device is...

2010-04-01

7

21 CFR 882.1570 - Powered direct-contact temperature measurement device.  

Code of Federal Regulations, 2013 CFR

...2013-04-01 false Powered direct-contact temperature measurement device. 882...Devices § 882.1570 Powered direct-contact temperature measurement device. (a) Identification. A powered direct-contact temperature measurement device is...

2013-04-01

8

21 CFR 882.1570 - Powered direct-contact temperature measurement device.  

Code of Federal Regulations, 2011 CFR

...2011-04-01 false Powered direct-contact temperature measurement device. 882...Devices § 882.1570 Powered direct-contact temperature measurement device. (a) Identification. A powered direct-contact temperature measurement device is...

2011-04-01

9

46 CFR 154.1375 - Readout for temperature measuring device: Marking.  

Code of Federal Regulations, 2012 CFR

...2012-10-01 false Readout for temperature measuring device: Marking. 154...Instrumentation § 154.1375 Readout for temperature measuring device: Marking. Each...154.1340 for a device that measures temperature in a cargo tank must be marked...

2012-10-01

10

46 CFR 154.1375 - Readout for temperature measuring device: Marking.  

Code of Federal Regulations, 2011 CFR

...2011-10-01 false Readout for temperature measuring device: Marking. 154...Instrumentation § 154.1375 Readout for temperature measuring device: Marking. Each...154.1340 for a device that measures temperature in a cargo tank must be marked...

2011-10-01

11

46 CFR 154.1375 - Readout for temperature measuring device: Marking.  

Code of Federal Regulations, 2013 CFR

...2013-10-01 false Readout for temperature measuring device: Marking. 154...Instrumentation § 154.1375 Readout for temperature measuring device: Marking. Each...154.1340 for a device that measures temperature in a cargo tank must be marked...

2013-10-01

12

46 CFR 154.1375 - Readout for temperature measuring device: Marking.  

Code of Federal Regulations, 2014 CFR

...2014-10-01 false Readout for temperature measuring device: Marking. 154...Instrumentation § 154.1375 Readout for temperature measuring device: Marking. Each...154.1340 for a device that measures temperature in a cargo tank must be marked...

2014-10-01

13

Silicon device performance measurements to support temperature range enhancement  

NASA Technical Reports Server (NTRS)

Silicon based power devices can be used at 200 C. The device measurements made during this program show a predictable shift in device parameters with increasing temperature. No catastrophic or abrupt changes occurred in the parameters over the temperature range. As expected, the most dramatic change was the increase in leakage currents with increasing temperature. At 200 C the leakage current was in the milliAmp range but was still several orders of magnitude lower than the on-state current capabilities of the devices under test. This increase must be considered in the design of circuits using power transistors at elevated temperature. Three circuit topologies have been prototyped using MOSFET's and IGBT's. The circuits were designed using zero current or zero voltage switching techniques to eliminate or minimize hard switching of the power transistors. These circuits have functioned properly over the temperature range. One thousand hour life data have been collected for two power supplies with no failures and no significant change in operating efficiency. While additional reliability testing should be conducted, the feasibility of designing soft switched circuits for operation at 200 C has been successfully demonstrated.

Bromstead, James; Weir, Bennett; Nelms, R. Mark; Johnson, R. Wayne; Askew, Ray

1994-01-01

14

Thermal measurement. Nanoscale temperature mapping in operating microelectronic devices.  

PubMed

Modern microelectronic devices have nanoscale features that dissipate power nonuniformly, but fundamental physical limits frustrate efforts to detect the resulting temperature gradients. Contact thermometers disturb the temperature of a small system, while radiation thermometers struggle to beat the diffraction limit. Exploiting the same physics as Fahrenheit's glass-bulb thermometer, we mapped the thermal expansion of Joule-heated, 80-nanometer-thick aluminum wires by precisely measuring changes in density. With a scanning transmission electron microscope and electron energy loss spectroscopy, we quantified the local density via the energy of aluminum's bulk plasmon. Rescaling density to temperature yields maps with a statistical precision of 3 kelvin/hertz(-1/2), an accuracy of 10%, and nanometer-scale resolution. Many common metals and semiconductors have sufficiently sharp plasmon resonances to serve as their own thermometers. PMID:25657242

Mecklenburg, Matthew; Hubbard, William A; White, E R; Dhall, Rohan; Cronin, Stephen B; Aloni, Shaul; Regan, B C

2015-02-01

15

Silicon device performance measurements to support temperature range enhancement  

NASA Technical Reports Server (NTRS)

Semiconductor power devices are typically rated for operation below 150 C. Little data is known for power semiconductors over 150 C. In most cases, the device is derated to zero operating power at 175 C. At the high temperature end of the temperature range, the intrinsic carrier concentration increases to equal the doping concentration level and the silicon behaves as an intrinsic semiconductor. The increase in intrinsic carrier concentration results in a shift of the Fermi level toward mid-bandgap at elevated temperatures. This produces a shift in devices characteristics as a function of temperature. By increasing the doping concentration higher operating temperatures can be achieved. This technique was used to fabricate low power analog and digital devices in silicon with junction operating temperatures in excess of 300 C. Additional temperature effects include increased p-n junction leakage with increasing temperature, resulting in increased resistivity. The temperature dependency of physical properties results in variations in device characteristics. These must be quantified and understood in order to develop extended temperature range operation.

Bromstead, James; Weir, Bennett; Johnson, R. Wayne; Askew, Ray

1991-01-01

16

Improvement of the operation rate of medical temperature measuring devices  

NASA Astrophysics Data System (ADS)

A method of reducing measuring time of temperature measurements of biological objects based on preheating the resistance temperature detector (RTD) up to the temperature close to the temperature to be measured, is proposed. It has been found that at the same measuring time, the preheating allows to decrease the measurement error by a factor of 5 to 45 over the temperature range of 35-41°?. The measurement time is reduced by 1.6-4 times over this range, keeping the same value of the measurement error.

Hotra, O.; Boyko, O.; Zyska, T.

2014-08-01

17

Device for self-verifying temperature measurement and control  

DOEpatents

A measuring instrument includes a first temperature sensor, a second temperature sensor and circuitry. The first and second temperature sensors each generate a signal indicative of the temperature of a medium being detected. The circuitry is configured to activate verification of temperature being sensed with the first sensor. According to one construction, the first temperature sensor comprises at least one thermocouple temperature sensor and the second temperature sensor comprises an optical temperature sensor, each sensor measuring temperature over the same range of temperature, but using a different physical phenomena. Also according to one construction, the circuitry comprises a computer configured to detect failure of one of the thermocouples by comparing temperature of the optical temperature sensor with each of the thermocouple temperature sensors. Even further, an output control signal is generated via a fuzzy inference machine and control apparatus.

Watkins, Arthur D.; Cannon, Collins P.; Tolle, Charles R.

2004-08-03

18

Silicon device performance measurements to support temperature range enhancement  

NASA Technical Reports Server (NTRS)

Characterization results of a MOS controlled thyristor (MCTA60P60) are presented. This device is rated for 60A and for an anode to cathode voltage of -600 V. As discussed in the last report, the MCT failed during 500 V leakage tests at 200 C. In contrast to the BJT (bipolar junction transistor), MOSFET, and IGBT (insulated gate bipolar transistor) devices tested, the breakdown voltage of the MCT decreases significantly with increasing temperature.

Bromstead, James; Weir, Bennett; Cosby, Melvin; Johnson, R. Wayne; Nelms, R. Mark; Askew, Ray

1992-01-01

19

Miniature bioelectric device accurately measures and telemeters temperature  

NASA Technical Reports Server (NTRS)

Miniature micropower solid-state circuit measures and telemeters the body temperature of laboratory animals over periods up to two years. The circuit employs a thermistor as a temperature sensing element and an fm transmitter. It is constructed from conventional discrete components or integrated circuits.

Fryer, T. B.

1966-01-01

20

Silicon device performance measurements to support temperature range enhancement  

NASA Technical Reports Server (NTRS)

The results of the NPN bipolar transistor (BJT) (2N6023) breakdown voltage measurements were analyzed. Switching measurements were made on the NPN BJT, the insulated gate bipolar transistor (IGBT) (TA9796) and the N-channel metal oxide semiconductor field effect transistor (MOSFET) (RFH75N05E). Efforts were also made to build a H-bridge inverter. Also discussed are the plans that have been made to do life testing on the devices, to build an inductive switching test circuit and to build a dc/dc switched mode converter.

Johnson, R. Wayne; Askew, Ray; Bromstead, James; Weir, Bennett

1991-01-01

21

46 CFR 154.1375 - Readout for temperature measuring device: Marking.  

Code of Federal Regulations, 2010 CFR

...SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Instrumentation § 154.1375 Readout for temperature measuring device: Marking. Each readout under § 154.1340...

2010-10-01

22

Use of a Temperature Gradient Measuring Device in Monitoring of Diabetic and Critically Ill Patients  

Microsoft Academic Search

A device realizing the simultaneous measure of the central body temperature (Tc), the superficial one (Ts) and their difference (Dt), was proposed for permanent energetic balance evaluation in humans. A program was elaborated to command the intravenous delivery of insulin by a pump depending on the value and trends of Dt. The use of this device for monitoring of decompensated

V. Coulic; V. Novikov; J. Devriendt; C. Gillet; A. Bodson; E. DeKoster

2007-01-01

23

Silicon device performance measurements to support temperature range enhancement  

NASA Astrophysics Data System (ADS)

Testing of the metal oxide semiconductor (MOS)-controlled thyristor (MCT) has uncovered a failure mechanism at elevated temperature. The failure appears to be due to breakdown of the gate oxide. Further testing is underway to verify the failure mode. Higher current level inverters were built to demonstrate 200 C operation of the N-MOSFET's and insulated-gate-bipolar transistors (IGBT's) and for life testing. One MOSFET failed early in testing. The origin of this failure is being studied. No IGBT's have failed. A prototype 28-to-42 V converter was built and is being tested at room temperature. The control loop is being finalized. Temperature stable, high value (10 micro-F) capacitors appear to be the limiting factor in the design at this time. In this application, the efficiency will be lower for the IGBT version due to the large V sub(cesat) (3.5-4 V) compared to the input voltage of 28 V. The MOSFET version should have higher efficiency; however, the MOSFET does not appear to be as robust at 200 C. Both versions are built for comparison.

Bromstead, James; Weir, Bennett; Johnson, R. Wayne; Askew, Ray

1992-05-01

24

Silicon device performance measurements to support temperature range enhancement  

NASA Technical Reports Server (NTRS)

Testing of the metal oxide semiconductor (MOS)-controlled thyristor (MCT) has uncovered a failure mechanism at elevated temperature. The failure appears to be due to breakdown of the gate oxide. Further testing is underway to verify the failure mode. Higher current level inverters were built to demonstrate 200 C operation of the N-MOSFET's and insulated-gate-bipolar transistors (IGBT's) and for life testing. One MOSFET failed early in testing. The origin of this failure is being studied. No IGBT's have failed. A prototype 28-to-42 V converter was built and is being tested at room temperature. The control loop is being finalized. Temperature stable, high value (10 micro-F) capacitors appear to be the limiting factor in the design at this time. In this application, the efficiency will be lower for the IGBT version due to the large V sub(cesat) (3.5-4 V) compared to the input voltage of 28 V. The MOSFET version should have higher efficiency; however, the MOSFET does not appear to be as robust at 200 C. Both versions are built for comparison.

Bromstead, James; Weir, Bennett; Johnson, R. Wayne; Askew, Ray

1992-01-01

25

A robust and well shielded thermal conductivity device for low temperature measurements  

SciTech Connect

We present a compact mechanically robust thermal conductivity measurement apparatus for measurements at low temperatures (<1 K) and high magnetic fields on small high-purity single crystal samples. A high-conductivity copper box is used to enclose the sample and all the components. The box provides protection for the thermometers, heater, and most importantly the sample increasing the portability of the mount. In addition to physical protection, the copper box is also effective at shielding radio frequency electromagnetic interference and thermal radiation, which is essential for low temperature measurements. A printed circuit board in conjunction with a braided ribbon cable is used to organize the delicate wiring and provide mechanical robustness.

Toews, W. H.; Hill, R. W. [GWPI and Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada)] [GWPI and Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada)

2014-04-15

26

New standards for devices used for the measurement of human body temperature.  

PubMed

Significant changes in recording of human body temperature have been taking place worldwide in recent years. The clinical thermometer introduced in the mid-19th century by Wunderlich has been replaced by digital thermometers or radiometer devices for recording tympanic membrane temperature. More recently the use of infrared thermal imaging for fever screening has become more widespread following the SARS infection, and particularly during the pandemic H1N1 outbreak. Important new standards that have now reached international acceptance will affect clinical and fever screening applications. This paper draws attention to these new standard documents. They are designed to improve the standardization of both performance and practical use of these key techniques in clinical medicine, especially necessary in a pandemic influenza situation. PMID:20397848

Ring, E F J; McEvoy, H; Jung, A; Zuber, J; Machin, G

2010-05-01

27

Temperature differential detection device  

DOEpatents

A temperature differential detection device for detecting the temperature differential between predetermined portions of a container wall is disclosed as comprising a Wheatstone bridge circuit for detecting resistance imbalance with a first circuit branch having a first elongated wire element mounted in thermal contact with a predetermined portion of the container wall, a second circuit branch having a second elongated wire element mounted in thermal contact with a second predetermined portion of a container wall with the wire elements having a predetermined temperature-resistant coefficient, an indicator interconnected between the first and second branches remote from the container wall for detecting and indicating resistance imbalance between the first and second wire elements, and connector leads for electrically connecting the wire elements to the remote indicator in order to maintain the respective resistance value relationship between the first and second wire elements. The indicator is calibrated to indicate the detected resistance imbalance in terms of a temperature differential between the first and second wall portions.

Girling, Peter M. (Allentown, PA)

1986-01-01

28

Temperature differential detection device  

DOEpatents

A temperature differential detection device for detecting the temperature differential between predetermined portions of a container wall is disclosed as comprising a Wheatstone bridge circuit for detecting resistance imbalance with a first circuit branch having a first elongated wire element mounted in thermal contact with a predetermined portion of the container wall, a second circuit branch having a second elongated wire element mounted in thermal contact with a second predetermined portion of a container wall with the wire elements having a predetermined temperature-resistant coefficient, an indicator interconnected between the first and second branches remote from the container wall for detecting and indicating resistance imbalance between the first and second wire elements, and connector leads for electrically connecting the wire elements to the remote indicator in order to maintain the respective resistance value relationship between the first and second wire elements. The indicator is calibrated to indicate the detected resistance imbalance in terms of a temperature differential between the first and second wall portions. 2 figs.

Girling, P.M.

1986-04-22

29

A robust and well shielded thermal conductivity device for low temperature measurements.  

PubMed

We present a compact mechanically robust thermal conductivity measurement apparatus for measurements at low temperatures (<1 K) and high magnetic fields on small high-purity single crystal samples. A high-conductivity copper box is used to enclose the sample and all the components. The box provides protection for the thermometers, heater, and most importantly the sample increasing the portability of the mount. In addition to physical protection, the copper box is also effective at shielding radio frequency electromagnetic interference and thermal radiation, which is essential for low temperature measurements. A printed circuit board in conjunction with a braided ribbon cable is used to organize the delicate wiring and provide mechanical robustness. PMID:24784624

Toews, W H; Hill, R W

2014-04-01

30

Pulse flux measuring device  

DOEpatents

A device for measuring particle flux comprises first and second photodiode detectors for receiving flux from a source and first and second outputs for producing first and second signals representing the flux incident to the detectors. The device is capable of reducing the first output signal by a portion of the second output signal, thereby enhancing the accuracy of the device. Devices in accordance with the invention may measure distinct components of flux from a single source or fluxes from several sources.

Riggan, William C. (Albuquerque, NM)

1985-01-01

31

Temperature measurement.  

PubMed

For many decades the measurement of body core temperature has been ubiquitously established in medical and non-medical applications, e.g., in hospitals, occupational medicine, sports medicine, military and other settings. However, there are still numerous challenges, such as the precise definition of the body core temperature, establishing the clinical importance of the measured temperature and the lack of a reliable, non-invasive and fast measurement method for body core temperature. After an introduction to the topic, the medical aspects from a user point of view are presented, i.e., the needs for temperature measurements, as well as possible measurement sites and clinical specifications and needs are highlighted. Subsequently, technical methods are presented which are used for temperature measurement. The analysis of the technical methods is divided into two sections: the first deals with the standard methods, which are currently used and the second describes methods, which are currently under development. Although temperature measurement appears very easy and is very common in daily use, it has many constraints, which are considered later. The need for further research is deduced from the above-mentioned sections and is finally followed by the conclusions section. PMID:21988157

Wartzek, Tobias; Mühlsteff, Jens; Imhoff, Michael

2011-10-01

32

Measuring Temperature  

NSDL National Science Digital Library

This is a lesson about measuring temperature. Learners will apply their knowledge of how temperature affects matter to understand how a thermometer works. They then read about the history of the thermometer and the temperature scales that make the information from the thermometer meaningful. The lesson models scientific inquiry using the 5E instructional model and includes teacher notes, prerequisite concepts, common misconceptions, student journal and reading. This is lesson 6 in the Astro-Venture Astronomy Unit. The lessons are designed for educators to use in conjunction with the Astro-Venture multimedia modules.

33

High critical temperature superconducting quantum interference device magnetometer with feedforward active noise control system for magnetocardiographic measurement in unshielded circumstances  

NASA Astrophysics Data System (ADS)

Magnetocardiographic (MCG) measurement in unshielded environment for practical use requires to suppress the environmental magnetic noise. We have designed the high critical temperature superconducting quantum interference device (High- Tc SQUID) magnetometer with feedforward active noise control (ANC) system to suppress the environmental magnetic noise. The compensatory system consisted of two SQUID magnetometers, a digital signal processor (DSP) and the coil wound around the input magnetometer. The DSP calculated the output data to minimize the environmental noise from the input and reference date and then the coil generated the magnetic field to cancel the environmental noise. This method achieved the effective noise attenuation below 100 Hz about 40 dB. MCG measurement in unshielded environment was also performed.

Mizukami, A.; Nishiura, H.; Sakuta, K.; Kobayashi, T.

2003-10-01

34

Contactless ultrasonic device to measure surface acoustic wave velocities versus temperature  

Microsoft Academic Search

A complete optical experimental setup for generating and detecting surface acoustic waves [Rayleigh waves (RWs)] in metals versus temperature up to the melting point is described. The RWs were excited by a pulsed Nd:YAG laser and detected by a high sensitivity subangstrom heterodyne interferometer. A special furnace was used to heat the sample using infrared radiation with a regulation of

C. Hubert; M.-H. Nadal; G. Ravel-Chapuis; R. Oltra

2007-01-01

35

Human performance measuring device  

NASA Technical Reports Server (NTRS)

Complex coordinator, consisting of operator control console, recorder, subject display panel, and limb controls, measures human performance by testing perceptual and motor skills. Device measures psychophysiological functions in drug and environmental studies, and is applicable to early detection of psychophysiological body changes.

Michael, J.; Scow, J.

1970-01-01

36

A temperature-controlled device for volumetric measurements of Helium adsorption in porous  

E-print Network

. On the other hand, if small steps are used, measurements errors accumulate, resulting in a large error at a regulated flowrate, small enough (typically 0.1 STP cc/min) to minimize the thermal perturbation. Due to this small value (2% of the range of our regulated flowmeter, Brooks 5850S), the flowrate had to be measured

Boyer, Edmond

37

Solid state device for two-wire downhole temperature measurement as a function of current. Final performance technical report  

SciTech Connect

Several metals systems were reviewed for their potential to act as resistive temperature devices. Platinum metal was selected as the metal of choice. Platinum was plated onto 5 mil copper wire, and then subsequently coated with Accusol's proprietary ceramic coating. The copper was etched out in an attempt to make a pure platinum, high resistive, resistive-temperature device. The platinum plating on the wire cracked during processing, resulting in a discontinuous layer of platinum, and the element could not be formed in this way.

Anderson, Roger; Anderson, David

2002-01-15

38

Inducer Hydrodynamic Load Measurement Devices  

NASA Technical Reports Server (NTRS)

Marshall Space Flight Center (MSFC) has demonstrated two measurement devices for sensing and resolving the hydrodynamic loads on fluid machinery. The first - a derivative of the six-component wind tunnel balance - senses the forces and moments on the rotating device through a weakened shaft section instrumented with a series of strain gauges. This rotating balance was designed to directly measure the steady and unsteady hydrodynamic loads on an inducer, thereby defining both the amplitude and frequency content associated with operating in various cavitation modes. The second device - a high frequency response pressure transducer surface mounted on a rotating component - was merely an extension of existing technology for application in water. MSFC has recently completed experimental evaluations of both the rotating balance and surface-mount transducers in a water test loop. The measurement bandwidth of the rotating balance was severely limited by the relative flexibility of the device itself, resulting in an unexpectedly low structural bending mode and invalidating the higher-frequency response data. Despite these limitations, measurements confirmed that the integrated loads on the four-bladed inducer respond to both cavitation intensity and cavitation phenomena. Likewise, the surface-mount pressure transducers were subjected to a range of temperatures and flow conditions in a non-rotating environment to record bias shifts and transfer functions between the transducers and a reference device. The pressure transducer static performance was within manufacturer's specifications and dynamic response accurately followed that of the reference.

Skelley, Stephen E.; Zoladz, Thomas F.; Turner, Jim (Technical Monitor)

2002-01-01

39

Inducer Hydrodynamic Load Measurement Devices  

NASA Technical Reports Server (NTRS)

Marshall Space Flight Center (MSFC) has demonstrated two measurement devices for sensing and resolving the hydrodynamic loads on fluid machinery. The first - a derivative of the six component wind tunnel balance - senses the forces and moments on the rotating device through a weakened shaft section instrumented with a series of strain gauges. This "rotating balance" was designed to directly measure the steady and unsteady hydrodynamic loads on an inducer, thereby defining both the amplitude and frequency content associated with operating in various cavitation modes. The second device - a high frequency response pressure transducer surface mounted on a rotating component - was merely an extension of existing technology for application in water. MSFC has recently completed experimental evaluations of both the rotating balance and surface-mount transducers in a water test loop. The measurement bandwidth of the rotating balance was severely limited by the relative flexibility of the device itself, resulting in an unexpectedly low structural bending mode and invalidating the higher frequency response data. Despite these limitations, measurements confirmed that the integrated loads on the four-bladed inducer respond to both cavitation intensity and cavitation phenomena. Likewise, the surface-mount pressure transducers were subjected to a range of temperatures and flow conditions in a non-rotating environment to record bias shifts and transfer functions between the transducers and a reference device. The pressure transducer static performance was within manufacturer's specifications and dynamic response accurately followed that of the reference.

Skelley, Stephen E.; Zoladz, Thomas F.

2002-01-01

40

High temperature electronic gain device  

DOEpatents

An integrated thermionic device suitable for use in high temperature, high radiation environments. Cathode and control electrodes are deposited on a first substrate facing an anode on a second substrate. The substrates are sealed to a refractory wall and evacuated to form an integrated triode vacuum tube.

McCormick, J. Byron (Los Alamos, NM); Depp, Steven W. (Los Alamos, NM); Hamilton, Douglas J. (Tucson, AZ); Kerwin, William J. (Tucson, AZ)

1979-01-01

41

Temperature measurement  

MedlinePLUS

... Academy of Pediatrics (AAP) recommends against using glass thermometers with mercury. The glass can break, and mercury is a poison. Electronic thermometers are most often recommended. The temperature is displayed ...

42

Capacitance measuring device  

DOEpatents

A capacitance measuring circuit is provided in which an unknown capacitance is measured by comparing the charge stored in the unknown capacitor with that stored in a known capacitance. Equal and opposite voltages are repetitively simultaneously switched onto the capacitors through an electronic switch driven by a pulse generator to charge the capacitors during the ''on'' portion of the cycle. The stored charge is compared by summing discharge currents flowing through matched resistors at the input of a current sensor during the ''off'' portion of the switching cycle. The net current measured is thus proportional to the difference in value of the two capacitances. The circuit is capable of providing much needed accuracy and stability to a great variety of capacitance-based measurement devices at a relatively low cost.

Andrews, W.H. Jr.

1984-08-01

43

A Comparison between Conductive and Infrared Devices for Measuring Mean Skin Temperature at Rest, during Exercise in the Heat, and Recovery  

PubMed Central

Purpose Skin temperature assessment has historically been undertaken with conductive devices affixed to the skin. With the development of technology, infrared devices are increasingly utilised in the measurement of skin temperature. Therefore, our purpose was to evaluate the agreement between four skin temperature devices at rest, during exercise in the heat, and recovery. Methods Mean skin temperature (T-sk) was assessed in thirty healthy males during 30 min rest (24.0 ± 1.2°C, 56 ± 8%), 30 min cycle in the heat (38.0 ± 0.5°C, 41 ± 2%), and 45 min recovery (24.0 ± 1.3°C, 56 ± 9%). T-sk was assessed at four sites using two conductive devices (thermistors, iButtons) and two infrared devices (infrared thermometer, infrared camera). Results Bland–Altman plots demonstrated mean bias ± limits of agreement between the thermistors and iButtons as follows (rest, exercise, recovery): -0.01 ± 0.04, 0.26 ± 0.85, -0.37 ± 0.98°C; thermistors and infrared thermometer: 0.34 ± 0.44, -0.44 ± 1.23, -1.04 ± 1.75°C; thermistors and infrared camera (rest, recovery): 0.83 ± 0.77, 1.88 ± 1.87°C. Pairwise comparisons of T-sk found significant differences (p < 0.05) between thermistors and both infrared devices during resting conditions, and significant differences between the thermistors and all other devices tested during exercise in the heat and recovery. Conclusions These results indicate poor agreement between conductive and infrared devices at rest, during exercise in the heat, and subsequent recovery. Infrared devices may not be suitable for monitoring T-sk in the presence of, or following, metabolic and environmental induced heat stress. PMID:25659140

Bach, Aaron J. E.; Stewart, Ian B.; Disher, Alice E.; Costello, Joseph T.

2015-01-01

44

Temperature monitoring device and thermocouple assembly therefor  

DOEpatents

A temperature monitoring device for measuring the temperature at a surface of a body, composed of: at least one first thermocouple and a second thermocouple; support members supporting the thermocouples for placing the first thermocouple in contact with the body surface and for maintaining the second thermocouple at a defined spacing from the body surface; and a calculating circuit connected to the thermocouples for receiving individual signals each representative of the temperature reading produced by a respective one of the first and second thermocouples and for producing a corrected temperature signal having a value which represents the temperature of the body surface and is a function of the difference between the temperature reading produced by the first thermocouple and a selected fraction of the temperature reading provided by the second thermocouple.

Grimm, Noel P. (Monroeville, PA); Bauer, Frank I. (Perry Township, Lawrence County, PA); Bengel, Thomas G. (Plum Boro, PA); Kothmann, Richard E. (Churchill Boro, PA); Mavretish, Robert S. (New Stanton, PA); Miller, Phillip E. (Greensburg, PA); Nath, Raymond J. (Murrysville, PA); Salton, Robert B. (Plum Boro, PA)

1991-01-01

45

A comparison of globe, wet and dry temperature and humidity measuring devices available for heat stress assessment  

Microsoft Academic Search

Various controlled and ambient tests were undertaken to evaluate the performance of a variety of digital heat stress monitors, psychrometers and simpler temperature\\/relative humidity data loggers that measure, or determine, such parameters as: dry-bulb, natural wet-bulb, psychrometric wet-bulb and globe temperatures. In this comparison, funded by the Deep Mining Research Consortium, it has been found that all the instruments can

S. Hardcastle; K. Butler

46

In-situ temperature-controllable shear flow device for neutron scattering measurement—An example of aligned bicellar mixtures  

NASA Astrophysics Data System (ADS)

We have designed and constructed a temperature-controllable shear flow cell for in-situ study on flow alignable systems. The device has been tested in the neutron diffraction and has the potential to be applied in the small angle neutron scattering configuration to characterize the nanostructures of the materials under flow. The required sample amount is as small as 1 ml. The shear rate on the sample is controlled by the flow rate produced by an external pump and can potentially vary from 0.11 to 3.8 × 105 s-1. Both unidirectional and oscillational flows are achievable by the setting of the pump. The instrument is validated by using a lipid bicellar mixture, which yields non-alignable nanodisc-like bicelles at low T and shear-alignable membranes at high T. Using the shear cell, the bicellar membranes can be aligned at 31 °C under the flow with a shear rate of 11.11 s-1. Multiple high-order Bragg peaks are observed and the full width at half maximum of the "rocking curve" around the Bragg's condition is found to be 3.5°-4.1°. It is noteworthy that a portion of the membranes remains aligned even after the flow stops. Detailed and comprehensive intensity correction for the rocking curve has been derived based on the finite rectangular sample geometry and the absorption of the neutrons as a function of sample angle [See supplementary material at http://dx.doi.org/10.1063/1.4908165 for the detailed derivation of the absorption correction]. The device offers a new capability to study the conformational or orientational anisotropy of the solvated macromolecules or aggregates induced by the hydrodynamic interaction in a flow field.

Xia, Yan; Li, Ming; Ku?erka, Norbert; Li, Shutao; Nieh, Mu-Ping

2015-02-01

47

In-situ temperature-controllable shear flow device for neutron scattering measurement-An example of aligned bicellar mixtures.  

PubMed

We have designed and constructed a temperature-controllable shear flow cell for in-situ study on flow alignable systems. The device has been tested in the neutron diffraction and has the potential to be applied in the small angle neutron scattering configuration to characterize the nanostructures of the materials under flow. The required sample amount is as small as 1 ml. The shear rate on the sample is controlled by the flow rate produced by an external pump and can potentially vary from 0.11 to 3.8 × 10(5) s(-1). Both unidirectional and oscillational flows are achievable by the setting of the pump. The instrument is validated by using a lipid bicellar mixture, which yields non-alignable nanodisc-like bicelles at low T and shear-alignable membranes at high T. Using the shear cell, the bicellar membranes can be aligned at 31 °C under the flow with a shear rate of 11.11 s(-1). Multiple high-order Bragg peaks are observed and the full width at half maximum of the "rocking curve" around the Bragg's condition is found to be 3.5°-4.1°. It is noteworthy that a portion of the membranes remains aligned even after the flow stops. Detailed and comprehensive intensity correction for the rocking curve has been derived based on the finite rectangular sample geometry and the absorption of the neutrons as a function of sample angle [See supplementary material at http://dx.doi.org/10.1063/1.4908165 for the detailed derivation of the absorption correction]. The device offers a new capability to study the conformational or orientational anisotropy of the solvated macromolecules or aggregates induced by the hydrodynamic interaction in a flow field. PMID:25725893

Xia, Yan; Li, Ming; Ku?erka, Norbert; Li, Shutao; Nieh, Mu-Ping

2015-02-01

48

On errors in thermal conductivity measurements of suspended and supported nanowires using micro-thermometer devices from low to high temperatures  

NASA Astrophysics Data System (ADS)

For micro-thermometer devices developed for thermal conductivity measurements of nanowires, it is found using finite element analysis that radiation heat transfer can cause nonlinear temperature profiles in the long supporting beams of the thermometers when the sample stage temperature is considerably higher or lower than room temperature. Although the nonlinearity alone does not introduce errors in the measured thermal conductance, it can cause errors in the measured temperature coefficient of resistance of the thermometers and needs to be minimized with additional radiation shields. For a design where the sample is supported on a silicon dioxide bridge between two micro-thermometers, the numerical analysis reveals that a two-dimensional temperature distribution can cause a 25% error in the sample thermal conductance obtained from a one-dimensional heat conduction analysis for a high-thermal-conductance thin film sample covering only the center part of the oxide bridge. This systematic error is reduced considerably for a low-thermal-conductance nanowire sample. However, care must be taken to ensure that the random uncertainties in the two measured thermal conductance values of the bridge with and without the nanowires are much smaller than the thermal conductance of the nanowires.

Moore, Arden L.; Shi, Li

2011-01-01

49

A new developed velocity of sound measurement device for characterization of multi-component gas mixtures under elevated temperatures and pressures  

NASA Astrophysics Data System (ADS)

Inline process control by measurement of velocity of sound of fluids is a direct and comprehensive technique [J. D. N. Cheeke and Z. Wang, "Acoustic wave gas sensors," Sens. Actuators B 59, 146-153 (1999); J. W. Grate, S. J. Martin, and R. M. White, "Acoustic wave microsensors," Anal. Chem. 65, 1868 (1993)]. Depending on the varying conditions of measuring fluid(s), temperatures and pressures, it is a challenging task to find the best possible acoustic setup. Taking this background into account, a velocity of sound measurement device for temperatures up to 475 K and pressures up to 24 MPa was designed and assembled that is to be used for testing different resonator types. Two bulk acoustic wave resonators out of the commonly used lead zirconatetitanate compound (PZT) were tested at different test fluids under temperatures up to 423.15 K and pressures up to 24 MPa [S. Gebhardt, L. Seffner, F. Schlenkirch, and A. Schönecker, "PZT thick films for sensor and actuator applications," J. Eur. Ceram. Soc. 27, 4177-4180 (2007)]. Initially the pure gases methane, ethane, carbon dioxide, nitrogen, and helium were measured, followed by multi-component gas mixtures. Beside methane-based binary and ternary gas mixtures, a quaternary gas mixture comprising methane, ethane, carbon dioxide, and helium was analyzed. Results for all measurement fluids in a broad temperature and pressure range show a relative deviation to theoretical values derived from GERG-2008 smaller than 0.5%.

Seibel, C.; Suedmeyer, J.; Fieback, T. M.

2014-07-01

50

Evaluation and improvement in the accuracy of a charge-coupled-device-based pyrometer for temperature field measurements of continuous casting billets.  

PubMed

This paper presents a radiometric high-temperature field measurement model based on a charge-coupled-device (CCD). According to the model, an intelligent CCD pyrometer with a digital signal processor as the core is developed and its non-uniformity correction algorithm for reducing the differences in accuracy between individual pixel sensors is established. By means of self-adaptive adjustment for the light-integration time, the dynamic range of the CCD is extended and its accuracy in low-temperature range is improved. The non-uniformity correction algorithm effectively reduces the accuracy differences between different pixel sensors. The performance of the system is evaluated through a blackbody furnace and an integrating sphere, the results of which show that the dynamic range of 400 K is obtained and the accuracy in low temperature range is increased by 7 times compared with the traditional method based on the fixed light-integration time. In addition, the differences of accuracy between the on-axis pixel and the most peripheral pixels are decreased from 19.1 K to 2.8 K. Therefore, this CCD pyrometer ensures that the measuring results of all pixels tend to be equal-accuracy distribution across the entire measuring ranges. This pyrometric system has been successfully applied to the temperature field measurements in continuous casting billets. PMID:23822369

Bai, Haicheng; Xie, Zhi; Zhang, Yuzhong; Hu, Zhenwei

2013-06-01

51

Device for measuring electric fields  

NASA Technical Reports Server (NTRS)

Measurement of low-intensity electric fields in space and in presence of weak magnetic fields is accomplished by utilizing a device which permits determination of the extent a beam of cesium ions is deflected by an electric field.

Levine, S. H.; Harrison, S. R.

1972-01-01

52

Mirror Measurement Device  

NASA Technical Reports Server (NTRS)

A Small Business Innovation Research (SBIR) contract led to a commercially available instrument used to measure the shape profile of mirror surfaces in scientific instruments. Bauer Associates, Inc.'s Bauer Model 200 Profilometer is based upon a different measurement concept. The local curvature of the mirror's surface is measured at many points, and the collection of data is computer processed to yield the desired shape profile. (Earlier profilometers are based on the principle of interferometry.) The system is accurate and immune to problems like vibration and turbulence. Two profilometers are currently marketed, and a third will soon be commercialized.

1992-01-01

53

Infrared temperature characterization of high power RF devices  

Microsoft Academic Search

Infrared microscopy measurement methodology has been refined to measure high power RF device temperatures accurately at high frequencies (1 GHz, 2+ GHz). Special difficulties due to translucent nature of Si are resolved. The methodology is applied to practical Si bipolar, Si LDMOS and GaAs RF power devices. Product thermal performance characterization method is established. Methodology is also applied in product

Mali Mahalingam; Eddie Mares

2001-01-01

54

???????????????????????????????????????????????????????????????????????????????? THE MEASUREMENT OF PLASMA ELECTRONS TEMPERATURE IN A SMALL PLASMA FOCUS DEVICE BY X-RAY DETECTION TECHNIQUE  

Microsoft Academic Search

??? ???????????????????????????????????????????????????? 3-4 ??????????? ????????????? ????????????????????????????????????????????????????? ????????????????????????????????????????? ????????????????????????????? ???????????????????????????????????????????????????????????????? ??????????????????????????????? ????????????????????????????????????????????????????????? ?????????????????????????????????????????????????????????????????? ? ????????????????????? ???? ??????? ???? ??????? ???? ??????????????? ????? ??????? ?????????????????????????? ?????????????????? ???????????????????????????????????????? ???????????????????????? ??? ???? ???????????????????????????? 5 ???? ???????????????????????????????????????????????????? ????????????????????????????????????????????????????????????????????????????????????????? ????????????? ??????????????????????????????? 1.5 keV ??? 10 keV Abstract: A small plasma focus device with a 3.3 kJ energy operating at 15 kV is a source of intense

Titisak Kulkoulprakar; Rattachat Mongkolnavin

55

TEMPERATURE SAFETY DEVICE FOR AQUATIC LABORATORY SYSTEMS  

EPA Science Inventory

The temperature safety device described here will protect aquatic organisms in experiments or in rearing and holding facilities by stopping water flow when set temperatures are exceeded. The device consists of switches constructed from aquarium heaters that are activated by exces...

56

Temperature controller for hyperthermia devices  

NASA Technical Reports Server (NTRS)

Temperature controller monitors and controls temperature in local region of tumor. Medical grade thermocouples are inserted in or near tumor, controller pulse modulates radio frequency diathermy power source to maintain temperature within 0.2 C. System may be extended to control diathermy of more than one tumor or patient.

Couch, R. H.; Hearn, C. P.; Williams, J. B.

1980-01-01

57

Edge turbulence measurements in toroidal fusion devices  

Microsoft Academic Search

This paper reviews measurements of edge plasma turbulence in toroidal magnetic fusion devices with an emphasis on recent results in tokamaks. The dominant feature of edge turbulence is a high level of broadband density fluctuations with a relative amplitude deltan\\/n ~ 5 100%, accompanied by large potential and electron temperature fluctuations. The frequency range of this turbulence is ~10 kHz

S. J. Zweben; J. A. Boedo; O. Grulke; C. Hidalgo; B. La Bombard; R. J. Maqueda; P. Scarin; J. L. Terry

2007-01-01

58

Angular displacement measuring device  

NASA Technical Reports Server (NTRS)

A system for measuring the angular displacement of a point of interest on a structure, such as aircraft model within a wind tunnel, includes a source of polarized light located at the point of interest. A remote detector arrangement detects the orientation of the plane of the polarized light received from the source and compares this orientation with the initial orientation to determine the amount or rate of angular displacement of the point of interest. The detector arrangement comprises a rotating polarizing filter and a dual filter and light detector unit. The latter unit comprises an inner aligned filter and photodetector assembly which is disposed relative to the periphery of the polarizer so as to receive polarized light passing the polarizing filter and an outer aligned filter and photodetector assembly which receives the polarized light directly, i.e., without passing through the polarizing filter. The purpose of the unit is to compensate for the effects of dust, fog and the like. A polarization preserving optical fiber conducts polarized light from a remote laser source to the point of interest.

Seegmiller, H. Lee B. (inventor)

1992-01-01

59

Beta ray flux measuring device  

DOEpatents

A beta ray flux measuring device in an activated member in-core instrumentation system for pressurized water reactors. The device includes collector rings positioned about an axis in the reactor's pressure boundary. Activated members such as hydroballs are positioned within respective ones of the collector rings. A response characteristic such as the current from or charge on a collector ring indicates the beta ray flux from the corresponding hydroball and is therefore a measure of the relative nuclear power level in the region of the reactor core corresponding to the specific exposed hydroball within the collector ring.

Impink, Jr., Albert J. (Murrysville, PA); Goldstein, Norman P. (Murrysville, PA)

1990-01-01

60

Devices and methods to measure H2 and CO2 concentrations in gases released from soils and low temperature fumaroles in volcanic areas  

NASA Astrophysics Data System (ADS)

Hydrogen solubility and diffusion have a great relevance to change the redox state of magmas, usually expressed by oxygen fugacity. This influences many chemical and physical properties, such as oxidation state of multivalent elements, kind and abundance of minerals and gas species. These processes change the phase ratios into the volcanic system and so the magma movement capability toward the earth surface and the eruptive dynamics. In past studies several authors (Carapezza et al., 1980; Sato et al., 1982; Sato and McGee, 1985; Wakita et al., 1980) proposed the application of the fuel cells in order to measure reducing capacity of volcanic gases. Their found some clear correlations between variation peaks and volcanic activity but a few reducing capacity changes showed no correlation with it. In this study we characterize a fuel cell device designed to measure hydrogen concentration in a gas mixture. We present test results obtained in laboratory and in field trip, carried out to verify the major interferences of others reducing gas species, commonly present in volcanic emissions, in the measurement carried out with a hydrogen fuel cell sensor. Tests were performed at controlled temperature ad pressure conditions and at air saturated pressure vapour in the cell cathode. A new device to measure simultaneously hydrogen (H2) and carbon dioxide (CO2) concentrations in soil and in low temperature fumaroles in volcanic areas was proposed. The H2-detector is a hydrogen fuel cell, whereas CO2 is measured using an I.R. spectrometer. To build a continuous monitoring station of volcanic activity both sensors were put in a case together with a data logger. Our device has 0.2 mV ppm-1 sensitivity, accuracy of ± 5 ppm and about 10 ppm resolution whit respect to the hydrogen concentration. These instrumental characteristics were obtained applying a 500 ohm resistor to the external circuit that represents the best compromise between sensitivity, resolution, instrumental response time, and linearity of signal. We determine the CO2 concentration in the gas mixture with an I.R. spectrometer that has a measuring range of 0-100% with accuracy of ± 2% of the range and response time of 10 seconds. The laboratory results confirm our hypothesis of interference between H2, H2S and CO in the full concentration range of contaminant species. Therefore, according to our studies, the assignment of the fuel cell signal output variations only to H2 variation of concentration as in past studies, without physical separation of different reducing species may be misleading. Continuous measurements and periodical measurement field trip were performed at Torre Del Filosofo site on the upper part of the Etna volcano from the end of July to the middle October 2008. In field applications, H2S was removed with a Pb(COOH)2 trap whereas CO interference was neglected because H2/CO ratios in volcanic gases are typically high. Field time-series measurements of H2 and CO2 in gases emitted by low temperature fumaroles at Torre del Filosofo site showed a close positive correlation between explosion activity and the major peaks in the hydrogen concentration.

di Martino, R. M. R.; Camarda, M.; Gurrieri, S.; Valenza, M.

2009-04-01

61

Device for measuring soft tissue interface pressures.  

PubMed

This paper describes the construction and performance of a simple pressure sensing device with a continuous electrical output. It was constructed utilizing a commercially available transducer, an electropneumatic sensor capsule and a 1 m long tube. The transducer used was a piezo-resistive pressure-sensitive device producing an output voltage proportional to the applied pressure. This low cost, high accuracy device is temperature compensated and shows good linearity and negligible hysteresis. The sensor cell has a good thickness-to-diameter ratio and is sufficiently flexible to conform to most contours of the body. The tubing that conveys the pressure transmitting fluid also serves as a means of keeping the transducer distant from the measuring site. The device showed a highly satisfactory performance under laboratory conditions and has proven to be robust and reliable when used for clinical studies. PMID:2266748

Barbenel, J C; Sockalingham, S

1990-11-01

62

Pressure measurements in magnetic-fusion devices  

SciTech Connect

Accurate pressure measurements are important in magnetic fusion devices for: (1) plasma diagnostic measurements of particle balance and ion temperature; (2) discharge cleaning optimization; (3) vacuum system performance; and (4) tritium accountability. This paper reviews the application, required accuracy, and suitable instrumentation for these measurements. Demonstrated uses of ionization-type and capacitance-diaphragm gauges for various pressure and gas-flow measurements in tokamaks are presented, with specific reference to the effects of magnetic fields on gauge performance and the problems associated with gauge calibration.

Dylla, H.F.

1981-11-01

63

Pulsed device measurements and applications  

Microsoft Academic Search

A pulsed measurement system can provide more than just isothermal characteristic data. An off-the-shelf system can determine rapidly the timing necessary for both pulsed-I-V and pulsed-S-parameter measurements to be isothermal and isodynamic. Instantaneous channel temperature may be determined. Thermal and charge-trapping effects can be separated and time constants measured. Full gain-derivative surfaces can be obtained far more efficiently than by

Jonathan Scott; James Grantley Rathmell; Anthony Parker; Mohamed Sayed

1996-01-01

64

Finger-Circumference-Measuring Device  

NASA Technical Reports Server (NTRS)

Easy-to-use device quickly measures circumference of finger (including thumb) on human hand. Includes polytetrafluoroethylene band 1/8 in. wide, bent into loop and attached to tab that slides on scale graduated in millimeters. Sliding tab preloaded with constant-force tension spring, which pulls tab toward closure of loop. Designed to facilitate measurements at various points along fingers to obtain data for studies of volumetric changes of fingers in microgravity. Also used in normal Earth gravity studies of growth and in assessment of diseases like arthritis.

Le, Suy

1995-01-01

65

Josephson device for voltage measurement  

NASA Astrophysics Data System (ADS)

This paper describes a new Josephson device with microwave integrated circuit for voltage standard. The circuit is essentially made of a resonator (Nb), the Josephson junction (Nb, NbOx, Pb-In) and a capacitive microstrip section (Pb-In) which ends the rf part; the dc connections are through Cauer Filters (Nb or Pb-In). A niobium film is deposited on the opposite side of the fused quartz substrate as a ground plane. The circuit is enclosed in a special package with outside dc and rf connections. The technology ensures very good cyclability and lifetime with storage at room temperature. In liquid helium (4.2 K) with a very weak rf power less than 0.5 milliwatts at the frequency resonance (11.5 GHz), 100 ? A high current steps were obtained near a polarization of 4.5 mV. These devices allows a precision of 1 × 10 -7 on the volt standard when used with a series-parallel divider of fixed value (ratio 225). The precise adjustment of the voltages is made by a slight drift of the rf frequency of the source, allowed by the high rf coupling factor of the device and the band width of its resonance.

Régent, A.; Villegier, J. C.; Angénieux, G.; Monllor, C.; Delahaye, F.

66

Measuring Temperature Reading  

NASA Technical Reports Server (NTRS)

There are two requirements for taking a measurement of something. The first is a tool for taking a measurement. The second is scale for making sense of the numbers of the measurement. For example, a ruler is often used to measure short lengths. It is the tool for measurement. On the ruler are one or more number scales with equally spaced numbers. These numbers can be compared with numbers from any other ruler that is accurately set to the same scale. Measuring length is far simpler than measuring temperature. While there is evidence of tools for measuring length at various times in human history, tools and scales for measuring temperature do not appear until more recent human history. Early thermometers, called thermoscopes, first appear in the 1500's. They were crude instruments that were not at all accurate. Most did not even have a number scale associated with them. This made them useless for most practical purposes. Gabriel Fahrenheit created the first accurate thermometer in 1714, and the Fahrenheit temperature scale followed it in 1724. The thermometer s accuracy was based on its use of mercury, a silver colored substance that remains liquid over a wide range of temperatures but expands or contracts in a standard, predictable way with changes in temperature. To set the scale, Fahrenheit created the coldest temperature that he could. He mixed equal parts of ice, water, and salt, and then used this as the zero point, 0 degrees, of his scale. He intended to make 30 degrees the freezing point of water and 90 degrees the temperature of the human body, but he had to later revise these temperatures to be 32 degrees and 96 degrees. In the final version of the scale, the temperature of the human body became 98.6 degrees. 19th century thermoscope

2003-01-01

67

Noncontact Temperature Measurement  

NASA Technical Reports Server (NTRS)

Noncontact temperature measurement has been identified as one of the eight advanced technology development (ATD) areas to support the effort of the Microgravity Science and Applications Division in developing six Space Station flight experiment facilities. This two-day workshop was an opportunity for all six disciplines to present their requirements on noncontact temperature measurement and to discuss state-of-the-art developments. Multi-color pyrometry, laser pyrometry and radiometric imaging techniques are addressed.

Lee, Mark C. (editor)

1988-01-01

68

METHODS OF MEASURING TEMPERATURE IN NUCLEAR REACTORS  

Microsoft Academic Search

The safe operation of high-power nuclear reactors depends upon the ; accurate measurement of temperatures of their components. Temperature ; measurement devices are affected by nuclear radiation, heat flux, and other ; conditions which exist in nuclear reactors. Thermocouples are used in reactors ; more than other methods because of their small size, remote output and relative ; insensitivity to

W. E. Jr

1963-01-01

69

Temperature standards, what and where: resources for effective temperature measurements  

SciTech Connect

Many standards have been published to describe devices, methods, and other topics. How they are developed and by whom are briefly described, and an attempt is made to extract most of those relating to temperature measurements. A directory of temperature standards and their sources is provided.

Johnston, W.W. Jr.

1982-01-01

70

Passive wireless strain and temperature sensors based on SAW devices  

Microsoft Academic Search

This work gives an overview of existing approaches to wireless strain and temperature measurements that employ passive sensors based on two types of SAW devices; reflective delay lines and one-port resonators. The performance of these two types of sensors is compared from the point of view of the achieved sensitivity, resolution, read range, interrogation time and power. A quantitative comparison

Victor Kalinin

2004-01-01

71

On quantum interferometric measurements of temperature  

E-print Network

We provide a detailed description of the interferometric thermometer, which is a device that estimates the temperature of a sample from measurements of the optical phase. For the first time, we rigorously analyze the operation of such a device by studying the interaction of the optical probe system with a heated sample. We find that this approach to thermometry is capable of measuring the temperature of a sample in the nK regime. Furthermore, we compare the theoretical precision of interferometric thermometers with the precision offered by the idealized pyrometers, which infer the temperature from a measurement of the total thermal radiation emitted by the sample.

Marcin Jarzyna; Marcin Zwierz

2014-12-17

72

Raman temperature measurement  

NASA Astrophysics Data System (ADS)

We are examining the experimental trade-offs for the use of the spontaneous Raman Stokes/anti-Stokes intensity ratio as a fundamental temperature measurement at static and dynamic extreme conditions. The trade-off space includes spatial resolution and temperature range versus vibrational frequency, as well as heating of the sample and nonlinear damage caused by the excitation laser. The experiments are being performed under a range of experimental conditions from nanoseconds to seconds and from cryogenic (77 K) to elevated (ca. 1000 K) temperatures. The results are being compared to calculations for transparent metal oxide and polymer materials, with the aim to demonstrate their potential as temperature reporters when used as thin windows on opaque materials.

Moore, D. S.; McGrane, S. D.

2014-05-01

73

A Portable, High Resolution, Surface Measurement Device  

NASA Technical Reports Server (NTRS)

A high resolution, portable, surface measurement device has been demonstrated to provide micron-resolution topographical plots. This device was specifically developed to allow in-situ measurements of defects on the Space Shuttle Orbiter windows, but is versatile enough to be used on a wide variety of surfaces. This paper discusses the choice of an optical sensor and then the decisions required to convert a lab bench optical measurement device into an ergonomic portable system. The necessary trade-offs between performance and portability are presented along with a description of the device developed to measure Orbiter window defects.

Ihlefeld, Curtis M.; Burns, Bradley M.; Youngquist, Robert C.

2012-01-01

74

Characteristics of III-V Semiconductor Devices at High Temperature  

NASA Technical Reports Server (NTRS)

This paper presents the development of III-V based pseudomorphic high electron mobility transistors (PHEMT's) designed to operate over the temperature range 77 to 473 K (-196 to 200 C). These devices have a pseudomorphic undoped InGaAs channel that is sandwiched between an AlGaAs spacer and a buffer layer; gate widths of 200, 400, 1600, and 3200 micrometers; and a gate length of 2 micrometers. Measurements were performed at both room temperature and 473 K (200 C) and show that the drain current decreases by 30 percent and the gate current increases to about 9 microns A (at a reverse bias of -1.5 V) at the higher temperature. These devices have a maximum DC power dissipation of about 4.5 W and a breakdown voltage of about 16 V.

Simons, Rainee N.; Young, Paul G.; Taub, Susan R.; Alterovitz, Samuel A.

1994-01-01

75

Device and method for detecting sulfur dioxide at high temperatures  

DOEpatents

The present invention relates to a method for selectively detecting and/or measuring gaseous SO.sub.2 at a temperature of at least 500.degree. C., the method involving: (i) providing a SO.sub.2-detecting device including an oxygen ion-conducting substrate having on its surface at least three electrodes comprising a first, second, and third electrode; (ii) driving a starting current of specified magnitude and temporal variation between the first and second electrodes; (iii) contacting the SO.sub.2-detecting device with the SO.sub.2-containing sample while maintaining the magnitude and any temporal variation of the starting current, wherein said SO.sub.2-containing sample causes a change in the electrical conductance of said device; and (iv) detecting the change in electrical conductance of the device based on measuring an electrical property related to or indicative of the conductance of the device between the first and third electrodes, or between the second and third electrodes, and detecting SO.sub.2 in the SO.sub.2-containing sample based on the measured change in electrical conductance.

West, David L. (Oak Ridge, TN); Montgomery, Frederick C. (Oak Ridge, TN); Armstrong, Timothy R. (Clinton, TN)

2011-11-01

76

Introducing Temperature Measurement  

NSDL National Science Digital Library

In this activity, students will learn how to read a Celsius-scale thermometer, associate weather conditions and seasons with Celsius temperature ranges, and keep a record of temperature. Students will read the Celsius temperature each day and discuss how given temperatures "feel". They record the temperature by using a string of beads and a chart.

77

High Voltage Cathode Temperature Measurement  

Microsoft Academic Search

The problem of making accurate measurement of temperature of a high voltage cathode in an emission microscope is discussed. Temperatures to 1300°C with voltages to 50 kV were measured within approximately ±5°C. Radiation sensing measurement schemes were dismissed, primarily on the basis of limited accuracy due to emissivity variations. In the developed system the entire temperature measurement and control system

R. L. Forgacs; B. A. Parafin; E. Eichen

1965-01-01

78

21 CFR 882.1540 - Galvanic skin response measurement device.  

Code of Federal Regulations, 2010 CFR

...2010-04-01 2010-04-01 false Galvanic skin response measurement device. 882.1540...Diagnostic Devices § 882.1540 Galvanic skin response measurement device. (a) Identification. A galvanic skin response measurement device is a...

2010-04-01

79

21 CFR 882.1560 - Skin potential measurement device.  

Code of Federal Regulations, 2010 CFR

...2010-04-01 2010-04-01 false Skin potential measurement device. 882.1560...Neurological Diagnostic Devices § 882.1560 Skin potential measurement device. (a) Identification. A skin potential measurement device is a...

2010-04-01

80

21 CFR 882.1560 - Skin potential measurement device.  

Code of Federal Regulations, 2011 CFR

...2011-04-01 2011-04-01 false Skin potential measurement device. 882.1560...Neurological Diagnostic Devices § 882.1560 Skin potential measurement device. (a) Identification. A skin potential measurement device is a...

2011-04-01

81

21 CFR 882.1540 - Galvanic skin response measurement device.  

Code of Federal Regulations, 2013 CFR

...2013-04-01 2013-04-01 false Galvanic skin response measurement device. 882.1540...Diagnostic Devices § 882.1540 Galvanic skin response measurement device. (a) Identification. A galvanic skin response measurement device is a...

2013-04-01

82

21 CFR 882.1540 - Galvanic skin response measurement device.  

Code of Federal Regulations, 2012 CFR

...2012-04-01 2012-04-01 false Galvanic skin response measurement device. 882.1540...Diagnostic Devices § 882.1540 Galvanic skin response measurement device. (a) Identification. A galvanic skin response measurement device is a...

2012-04-01

83

21 CFR 882.1560 - Skin potential measurement device.  

Code of Federal Regulations, 2012 CFR

...2012-04-01 2012-04-01 false Skin potential measurement device. 882.1560...Neurological Diagnostic Devices § 882.1560 Skin potential measurement device. (a) Identification. A skin potential measurement device is a...

2012-04-01

84

21 CFR 882.1540 - Galvanic skin response measurement device.  

Code of Federal Regulations, 2011 CFR

...2011-04-01 2011-04-01 false Galvanic skin response measurement device. 882.1540...Diagnostic Devices § 882.1540 Galvanic skin response measurement device. (a) Identification. A galvanic skin response measurement device is a...

2011-04-01

85

21 CFR 882.1560 - Skin potential measurement device.  

Code of Federal Regulations, 2013 CFR

...2013-04-01 2013-04-01 false Skin potential measurement device. 882.1560...Neurological Diagnostic Devices § 882.1560 Skin potential measurement device. (a) Identification. A skin potential measurement device is a...

2013-04-01

86

21 CFR 882.1540 - Galvanic skin response measurement device.  

Code of Federal Regulations, 2014 CFR

...2014-04-01 2014-04-01 false Galvanic skin response measurement device. 882.1540...Diagnostic Devices § 882.1540 Galvanic skin response measurement device. (a) Identification. A galvanic skin response measurement device is a...

2014-04-01

87

21 CFR 882.1560 - Skin potential measurement device.  

Code of Federal Regulations, 2014 CFR

...2014-04-01 2014-04-01 false Skin potential measurement device. 882.1560...Neurological Diagnostic Devices § 882.1560 Skin potential measurement device. (a) Identification. A skin potential measurement device is a...

2014-04-01

88

21 CFR 864.5950 - Blood volume measuring device.  

Code of Federal Regulations, 2012 CFR

...2012-04-01 2012-04-01 false Blood volume measuring device. 864.5950...Semi-Automated Hematology Devices § 864.5950 Blood volume measuring device. (a) Identification. A blood volume measuring device is a...

2012-04-01

89

21 CFR 864.5950 - Blood volume measuring device.  

Code of Federal Regulations, 2013 CFR

...2013-04-01 2013-04-01 false Blood volume measuring device. 864.5950...Semi-Automated Hematology Devices § 864.5950 Blood volume measuring device. (a) Identification. A blood volume measuring device is a...

2013-04-01

90

21 CFR 864.5950 - Blood volume measuring device.  

Code of Federal Regulations, 2014 CFR

...2014-04-01 2014-04-01 false Blood volume measuring device. 864.5950...Semi-Automated Hematology Devices § 864.5950 Blood volume measuring device. (a) Identification. A blood volume measuring device is a...

2014-04-01

91

21 CFR 864.5950 - Blood volume measuring device.  

Code of Federal Regulations, 2010 CFR

...2010-04-01 2010-04-01 false Blood volume measuring device. 864.5950...Semi-Automated Hematology Devices § 864.5950 Blood volume measuring device. (a) Identification. A blood volume measuring device is a...

2010-04-01

92

21 CFR 864.5950 - Blood volume measuring device.  

Code of Federal Regulations, 2011 CFR

...2011-04-01 2011-04-01 false Blood volume measuring device. 864.5950...Semi-Automated Hematology Devices § 864.5950 Blood volume measuring device. (a) Identification. A blood volume measuring device is a...

2011-04-01

93

Interoperability of wearable cuffless BP measuring devices.  

PubMed

While a traditional cuff-based Blood Pressure (BP) measuring device can only take a snap shot of BP, real-time and continuous measurement of BP without an occluding cuff is preferred which usually use the pulse transit time (PTT) in combination with other physiological parameters to estimate or track BP over a certain period of time after an initial calibration. This article discusses some perspectives of interoperability of wearable medical devices, based on IEEE P1708 draft standard that focuses on the objective performance evaluation of wearable cuffless BP measuring devices. The ISO/IEEE 11073 family of standards, supporting the plug-and play feature, is intended to enable medical devices to interconnect and interoperate with other medical devices and with computerized healthcare information systems in a manner suitable for the clinical environment. In this paper, the possible adoption of ISO/IEEE 11073 for the interoperability of wearable cuffless BP devices is proposed. In the consideration of the difference of the continuous and cuffless BP measuring methods from the conventional ones, the existing device specialization standards of ISO/IEEE 11073 cannot be directly followed when designing the cuffless BP device. Specifically, this paper discusses how the domain information model (DIM), in which vital sign information is abstracted as objects, is used to structure the information about the device and that generated from the device. Though attention should also be paid to adopt the communication standards for other parts for the communication system, applying communication standards that enable plug-and-play feature allows achieving the interoperability of different cuffless BP measuring devices with possible different configurations. PMID:25570223

Jing Liu; Yuan-Ting Zhang

2014-08-01

94

ALS insertion device block measurement and inspection  

SciTech Connect

The performance specifications for ALS insertion devices require detailed knowledge and strict control of the Nd-Fe-B permanent magnet blocks incorporated in these devices. This paper describes the measurement and inspection apparatus and the procedures designed to qualify and characterize these blocks. A detailed description of a new, automated Helmholtz coil facility for measurement of the three components of magnetic moment is included. Physical block inspection and magnetic moment measurement procedures are described. Together they provide a basis for qualifying blocks and for specifying placement of blocks within an insertion devices' magnetic structures. 1 ref., 4 figs.

Marks, S.; Carrieri, J.; Cook, C.; Hassenzahl, W.V.; Hoyer, E.; Plate, D.

1991-05-01

95

Line spectrum and ion temperature measurements from tungsten ions at low ionization stages in large helical device based on vacuum ultraviolet spectroscopy in wavelength range of 500–2200 Å  

SciTech Connect

Vacuum ultraviolet spectra of emissions released from tungsten ions at lower ionization stages were measured in the Large Helical Device (LHD) in the wavelength range of 500–2200 Å using a 3 m normal incidence spectrometer. Tungsten ions were distributed in the LHD plasma by injecting a pellet consisting of a small piece of tungsten metal and polyethylene tube. Many lines having different wavelengths from intrinsic impurity ions were observed just after the tungsten pellet injection. Doppler broadening of a tungsten candidate line was successfully measured and the ion temperature was obtained.

Oishi, T., E-mail: oishi@LHD.nifs.ac.jp; Morita, S.; Goto, M. [National Institute for Fusion Science, 322-6, Oroshi-cho, Toki 509-5292 (Japan); Department of Fusion Science, Graduate University for Advanced Studies, 322-6, Oroshi-cho, Toki 509-5292 (Japan); Huang, X. L.; Zhang, H. M. [Department of Fusion Science, Graduate University for Advanced Studies, 322-6, Oroshi-cho, Toki 509-5292 (Japan)

2014-11-15

96

Line spectrum and ion temperature measurements from tungsten ions at low ionization stages in large helical device based on vacuum ultraviolet spectroscopy in wavelength range of 500-2200 Å  

NASA Astrophysics Data System (ADS)

Vacuum ultraviolet spectra of emissions released from tungsten ions at lower ionization stages were measured in the Large Helical Device (LHD) in the wavelength range of 500-2200 Å using a 3 m normal incidence spectrometer. Tungsten ions were distributed in the LHD plasma by injecting a pellet consisting of a small piece of tungsten metal and polyethylene tube. Many lines having different wavelengths from intrinsic impurity ions were observed just after the tungsten pellet injection. Doppler broadening of a tungsten candidate line was successfully measured and the ion temperature was obtained.

Oishi, T.; Morita, S.; Huang, X. L.; Zhang, H. M.; Goto, M.

2014-11-01

97

PORTABLE DEVICE FOR MEASURING SEDIMENT RESUSPENSION  

EPA Science Inventory

A portable device for measuring sediment resuspension has been developed. he device consists of a cylindrical chamber inside of which a horizontal grid oscillates vertically. he sediments whose properties are to be determined are placed at the bottom of the chamber with water ove...

98

NEUTRON MEASURING DEVICE AND HEAT METER  

Microsoft Academic Search

A device and methods for measuring heat flow induced by nuclear ; reactions and consequently the intensity of the nuclear source causing the ; reaction are described. The neutron flux sensing device comprises in combination ; a thin layer of neutron sensitive material, a thermal resistance material, and a ; thermopile disposed around the thermal resistance material such that alternate

P. D. Wickersham; D. L. Rall; W. H. Giedt

1962-01-01

99

Wireless device for monitoring the temperature - moisture regime in situ  

NASA Astrophysics Data System (ADS)

This contribution presents the wireless device for monitoring the temperature - moisture regime in situ. For the monitoring so called moisture sensor is used. Principle of moisture sensor is based on measuring the thermal conductivity. Moisture sensor has cylindrical shape with about 20 mm diameter and 20 mm length. It is made of porous material identical to the monitored object. The thermal conductivity is measured by hot-ball method. Hot-ball method is patented invention of the Institute of Physic SAS. It utilizes a small ball, diameter up to 2 mm, in which sensing elements are incorporated. The ball produces heat spreading into surrounding material, in our case into body of the moisture sensor. Temperature of the ball is measured simultaneously. Then change of the temperature, in steady state, is inversely proportional to the thermal conductivity. Such moisture sensor is inserted into monitored wall. Thermophysical properties of porous material are function of moisture. Moisture sensors are calibrated for dry and water saturated state. Whole the system is primarily intended to do long-term monitoring. Design of a new electronic device was needed for this innovative method. It covers all needed operations for measurement. For example energizing hot-ball sensor, measuring its response, storing the measured data and wireless data transmission. The unit is able to set parameters of measurement via wireless access as well. This contribution also includes the description of construction and another features of the wireless measurement system dedicated for this task. Possibilities and functionality of the system is demonstrated by actual monitoring of the tower of St. Martin's Cathedral in Bratislava. Correlations with surrounding meteorological conditions are presented. Some of them can be also measured by our system, right in the monitoring place.

Hudec, Ján; Štofanik, Vladimír; Vretenár, Viliam; Kubi?ár, ?udovít

2014-05-01

100

Simple device measures solar radiation  

NASA Technical Reports Server (NTRS)

Simple inexpensive thermometer, insolated from surroundings by transparent glass or plastic encasement, measures intensities of solar radiation, or radiation from other sources such as furnaces or ovens. Unit can be further modified to accomplish readings from remote locations.

Humphries, W. R.

1977-01-01

101

Force Measurement Device for ARIANE 5 Payloads  

Microsoft Academic Search

ESTEC uses since 1991 a Force Measurement Device (FMD) for the measurement of dynamic mechanical forces and moments. This tool allows the determination of forces and moments applied to the test hardware at its interface to the test facilities during dynamic testing. Three forces and three moments are calculated from the measurements of eight tri-axial force links and used to

O. Brunner; R. Braeken

2004-01-01

102

DCM: device correlated metrology for overlay measurements  

NASA Astrophysics Data System (ADS)

One of the main issues with overlay error metrology accuracy is the bias between results based on overlay (OVL) targets and actual device overlay error. In this study, we introduce the concept of Device Correlated Metrology (DCM), which is a systematic approach to quantifying and overcoming the bias between target-based overlay results and device overlay issues. For systematically quantifying the bias components between target and device, we introduce a new hybrid target integrating an optical OVL target with a device mimicking CD-SEM (Critical Dimension - Scanning Electron Microscope) target. The hybrid OVL target is designed to accurately represent the process influence found on the real device. In the general case, the CD-SEM can measure the bias between target and device on the same layer at AEI (After Etch Inspection) for all layers, the OVL between layers at AEI for most cases and at ADI (After Develop Inspection) for limited cases such as DPL (Double Patterning Lithography). The results shown demonstrate that for the new process compatible hybrid targets the bias between target and device is small, of the order of CD-SEM measurement uncertainty. Direct OVL measurements by CD-SEM show excellent correlation with optical OVL measurements in certain conditions. This correlation helps verify the accuracy of the optical measurement results and is applicable for imaging based OVL metrology methods using AIM or AIMid OVL targets, and scatterometry-based overlay methods such as SCOL (Scatterometry OVL). Future plans include broadening the hybrid target design to better mimic each layer's process conditions such as pattern density. We are also designing hybrid targets for memory devices.

Chen, Charlie; Huang, George K. C.; Pai, Yuan Chi; Wu, Jimmy C. H.; Cheng, Yu Wei; Hsu, Simon C. C.; Yu, Chun Chi; Amir, Nuriel; Choi, Dongsub; Itzkovich, Tal; Tarshish-Shapir, Inna; Tien, David C.; Huang, Eros; Kuo, Kelly T. L.; Kato, Takeshi; Inoue, Osamu; Kawada, Hiroki; Okagawa, Yutaka; Huang, Luis; Hsu, Matthew; Su, Amei

2013-04-01

103

Transient (lightning) protection for electronic measurement devices  

SciTech Connect

Electronic measurement devices have become a major part of the oil and gas business today. All of these devices operate on an electrical voltage. Any voltage introduced into the system that is beyond the predetermined tolerance will cause degradation of performance or in some cases failure of the device. The extent of the damage depends upon the dielectric strength of the circuit in question and upon the available energy. As electronic measurement devices are further developed to incorporate more solid state circuitry and operate at lower voltage levels the more susceptible they become to transients. Along with transient protection, the user must also be concerned with intrinsic safety requirements of the device to be protected. The devices and techniques used to protect the equipment from transients do not, in all cases, guarantee the user certification for use in hazardous environments. As a note of reference, some of the techniques listed in this paper as examples would not be allowed in hazardous areas without the addition of other devices to further isolate or clamp the available energy to a safe level. In other words, as the industry moves forward to improve the overall accuracy of the measurement system and adds data availability via communication networks, the transient protection scheme must become more sophisticated.

Black, L.L. [Applied Automation/Hartmann & Braun, Bartlesville, OK (United States)

1995-12-01

104

Measuring Soil Temperature  

Technology Transfer Automated Retrieval System (TEKTRAN)

Soil temperature is a critical factor in the germination and early growth of many crops including corn, cotton, small grains, and vegetable crops. Soil temperature strongly influences the rate of critical biological reactions in the soil such as the rates of nitrification and microbial respiration. ...

105

An Innovative Flow-Measuring Device: Thermocouple Boundary Layer Rake  

NASA Technical Reports Server (NTRS)

An innovative flow-measuring device, a thermocouple boundary layer rake, was developed. The sensor detects the flow by using a thin-film thermocouple (TC) array to measure the temperature difference across a heater strip. The heater and TC arrays are microfabricated on a constant-thickness quartz strut with low heat conductivity. The device can measure the velocity profile well into the boundary layer, about 65 gm from the surface, which is almost four times closer to the surface than has been possible with the previously used total pressure tube.

Hwang, Danny P.; Fralick, Gustave C.; Martin, Lisa C.; Wrbanek, John D.; Blaha, Charles A.

2001-01-01

106

Low temperature mechanical properties of a flux-quantum force device  

Microsoft Academic Search

Force realization system and device We report the characterization of mechanical properties of a flux-quantum force device, which is designed and fabricated to trap superconducting flux quantums for generating pico-newton standard forces, at variable temperature. Using our scanning fiber imaging technique we micro-positioned an optic fiber onto the target position of the device and measured the device's vibration to obtain

J. H. Choi; Y. W. Kim; H. H. Choi; J. Kim; S. G. Lee

2010-01-01

107

A high temperature solar energy conversion device using optical waveguides  

Microsoft Academic Search

The properties of optical waveguides are used in the construction of a high temperature solar energy conversion device, in which loss of energy due to re-radiation into the atmosphere is minimized. A collector of the device is a bunch of optical waveguides transmitting electromagnetic waves with frequencies only above a certain cut-off frequency. The device also consists of a cavity

A. P. Patel

1984-01-01

108

High temperature adsorption measurements  

SciTech Connect

Adsorption phenomena are a rich and rather new field of study in geothermal research, in particular at very high temperature. ENEL is interested in the exploitation of geothermal regions with superheated steam, and it is important to understand the behavior of water-rock interaction. We have analyzed in the 170-200 °C temperature range four samples of Monteverdi cuttings; the next experimental effort will be at 220 °C and over in 1996. The first results of the 1995 runs are collected in this paper. We can highlight four main items: 1. At relative pressures over 0.6 the capillarity forces are very important. 2. There is no significant temperature effect. 3. Adsorbed water can be present, and it is able to multiply by a factor of 15 the estimated reserve of super-heated steam only. 4. Pores smaller than 15 Å do not contribute to the adsorbed mass.

Bertani, R.; Parisi, L.; Perini, R.; Tarquini, B.

1996-01-24

109

Measuring Temperature: The Thermometer  

ERIC Educational Resources Information Center

The author discusses the historical development of the thermometer with the view of helping children understand the role that mathematics plays in society. A model thermometer that is divided into three sections, each displaying one of the three temperature scales used today (Fahrenheit, Celsius and Kelvin) is highlighted as a project to allow…

Chamoun, Mirvette

2005-01-01

110

Temperature Measurements in the Magnetic Measurement Facility  

SciTech Connect

Several key LCLS undulator parameter values depend strongly on temperature primarily because of the permanent magnet material the undulators are constructed with. The undulators will be tuned to have specific parameter values in the Magnetic Measurement Facility (MMF). Consequently, it is necessary for the temperature of the MMF to remain fairly constant. Requirements on undulator temperature have been established. When in use, the undulator temperature will be in the range 20.0 {+-} 0.2 C. In the MMF, the undulator tuning will be done at 20.0 {+-} 0.1 C. For special studies, the MMF temperature set point can be changed to a value between 18 C and 23 C with stability of {+-}0.1 C. In order to ensure that the MMF temperature requirements are met, the MMF must have a system to measure temperatures. The accuracy of the MMF temperature measurement system must be better than the {+-}0.1 C undulator tuning temperature tolerance, and is taken to be {+-}0.01 C. The temperature measurement system for the MMF is under construction. It is similar to a prototype system we built two years ago in the Sector 10 alignment lab at SLAC. At that time, our goal was to measure the lab temperature to {+-}0.1 C. The system has worked well for two years and has maintained its accuracy. For the MMF system, we propose better sensors and a more extensive calibration program to achieve the factor of 10 increase in accuracy. In this note we describe the measurement system under construction. We motivate our choice of system components and give an overview of the system. Most of the software for the system has been written and will be discussed. We discuss error sources in temperature measurements and show how these errors have been dealt with. The calibration system is described in detail. All the LCLS undulators must be tuned in the Magnetic Measurement Facility at the same temperature to within {+-}0.1 C. In order to ensure this, we are building a system to measure the temperature of the undulators to {+-}0.01 C. This note describes the temperature measurement system under construction.

Wolf, Zachary

2010-12-13

111

Experimental Measurement-Device-Independent Entanglement Detection  

NASA Astrophysics Data System (ADS)

Entanglement is one of the most puzzling features of quantum theory and of great importance for the new field of quantum information. The determination whether a given state is entangled or not is one of the most challenging open problems of the field. Here we report on the experimental demonstration of measurement-device-independent (MDI) entanglement detection using witness method for general two qubits photon polarization systems. In the MDI settings, there is no requirement to assume perfect implementations or neither to trust the measurement devices. This experimental demonstration can be generalized for the investigation of properties of quantum systems and for the realization of cryptography and communication protocols.

Nawareg, Mohamed; Muhammad, Sadiq; Amselem, Elias; Bourennane, Mohamed

2015-02-01

112

Experimental measurement-device-independent entanglement detection.  

PubMed

Entanglement is one of the most puzzling features of quantum theory and of great importance for the new field of quantum information. The determination whether a given state is entangled or not is one of the most challenging open problems of the field. Here we report on the experimental demonstration of measurement-device-independent (MDI) entanglement detection using witness method for general two qubits photon polarization systems. In the MDI settings, there is no requirement to assume perfect implementations or neither to trust the measurement devices. This experimental demonstration can be generalized for the investigation of properties of quantum systems and for the realization of cryptography and communication protocols. PMID:25649664

Nawareg, Mohamed; Muhammad, Sadiq; Amselem, Elias; Bourennane, Mohamed

2015-01-01

113

Experimental Measurement-Device-Independent Entanglement Detection  

PubMed Central

Entanglement is one of the most puzzling features of quantum theory and of great importance for the new field of quantum information. The determination whether a given state is entangled or not is one of the most challenging open problems of the field. Here we report on the experimental demonstration of measurement-device-independent (MDI) entanglement detection using witness method for general two qubits photon polarization systems. In the MDI settings, there is no requirement to assume perfect implementations or neither to trust the measurement devices. This experimental demonstration can be generalized for the investigation of properties of quantum systems and for the realization of cryptography and communication protocols. PMID:25649664

Nawareg, Mohamed; Muhammad, Sadiq; Amselem, Elias; Bourennane, Mohamed

2015-01-01

114

Presentation of a new BRDF measurement device  

NASA Astrophysics Data System (ADS)

The bi-directional reflectance distribution function (BRDF) plays a major role to evaluate or analyze signals reflected by Earth in the solar spectrum. A BRDF measurement device that covers a large spectral and directional domain was recently developed by ONERA/DOTA. It was designed to allow both laboratory and outside measurements. Its main characteristics are a spectral domain: 0.42-0.95 micrometers ; a geometrical domain: 0-60 degrees for zenith angle, 0-180 degrees for azimuth; a maximum target size for nadir measurements: 22 cm. For a given zenith angle of the source, the BRDF device needs about seven minutes to take measurements for a viewing zenith angle varying from 0-60 degrees and relative azimuth angle varying from 0-180 degrees. The performances, imperfections and properties of each component of the measurement chain are studied. A part of the work was devoted to characterize precisely the source, and particularly the spatial variability of the irradiance at the target level, the temporal stability and the spectral profile of the lamp. Some of these imperfections are modeled and taken into account in corrections of BRDF measurements. Concerning the sensor, a calibration in wavelength was done. Measurements of bi- directional reflectance of which is well known. A software was developed to convert all the raw data acquired automatically into BRDF values. To illustrate measurements taken by this device, some results are also presented here. They are taken over sand and short grass, for different wavelengths and geometrical conditions.

Serrot, Gerard; Bodilis, Madeleine; Briottet, Xavier; Cosnefroy, Helene

1998-12-01

115

An evaluation of strain measuring devices for ceramic composites  

NASA Technical Reports Server (NTRS)

A series of tensile tests was conducted on SiC/reaction bonded silicon nitrides (RBSN) composites using different methods of strain measurement. The tests were used to find the optimum strain sensing device for use with continuous fiber reinforced ceramic matrix composites in ambient and high temperature environments. Bonded resistance gages were found to offer excellent performance for room temperature tests. The clip-on gage offers the same performance, but less time is required for mounting it to the specimen. Low contact force extensometers track the strain with acceptable results at high specimen temperatures. Silicon carbide rods with knife edges are preferred. The edges must be kept sharp. The strain measuring devices should be mounted on the flat side of the specimen. This is in contrast to mounting on the rough thickness side.

Gyekenyesi, John Z.; Bartolotta, Paul A.

1991-01-01

116

An evaluation of strain measuring devices for ceramic composites  

NASA Technical Reports Server (NTRS)

A series of tensile tests were conducted on SiC/RBSN composites using different methods of strain measurement. The tests were used to find the optimum strain sensing device for use with continuous fiber reinforced ceramic matrix composites in ambient and high temperature environments. Bonded resistance strain gages were found to offer excellent performance for room temperature tests. The clip-on gage offers the same performance but significantly less time is required for mounting it to the specimen. Low contact force extensometers track the strain with acceptable results at high specimen temperatures. Silicon carbide rods with knife edges are preferred. The edges must be kept sharp. The strain measuring devices should be mounted on the flat side of the specimen. This is in contrast to mounting on the rough thickness side.

Gyekenyesi, John Z.; Bartolotta, Paul A.

1992-01-01

117

A simple device for measuring anaerobic power  

Microsoft Academic Search

Having no funds to purchase sophisticated equipment to measure human anaerobic power, a simple cheaply made device was constructed based on the principle of the method introduced by Margaria et al (1966). This improvised apparatus consists of two contact pads each having a make and break provision of an electrical circuit with the help of leaf springs and can be

D. K. Kansal; S. K. Verma; L. S. Sidhu

1981-01-01

118

Coherence measurement with digital micromirror device.  

PubMed

We measure the complex-valued spatial coherence function of a multimode broad-area laser diode using Young's classical double slit experiment realized with a digital micromirror device. We use this data to construct the coherent modes of the beam and to simulate its propagation before and after the measurement plane. When comparing the results to directly measured intensity profiles, we find excellent correspondence to the extent that even small details of the beam can be predicted. We also consider the number of measurement points required to model the beam with sufficient accuracy. PMID:24562271

Partanen, Henri; Turunen, Jari; Tervo, Jani

2014-02-15

119

Variable-Temperature-Gradient Device for Solidification Research  

NASA Technical Reports Server (NTRS)

Device for research in solidification and crystal growth allows crystallization of melt observed as occurs. Temperature gradient across melt specimen increased or decreased rapidly while solidification front proceeds at constant speed across sample. Device moves sample at same speed, thereby holding position of liquid/solid interface stationary within field of optical microscope. Device, variabletemperature-gradient microscope stage, used to study crystal growth at constant rate while thermal driving force is varied.

Kaukler, W. F.

1985-01-01

120

Precision of Four Acoustic Bone Measurement Devices  

NASA Technical Reports Server (NTRS)

Though many studies have quantified the precision of various acoustic bone measurement devices, it is difficult to directly compare the results among the studies, because they used disparate subject pools, did not specify the estimation methodology, or did not use consistent definitions for various precision characteristics. In this study, we used a repeated measures design protocol to directly determine the precision characteristics of four acoustic bone measurement devices: the Mechanical Response Tissue Analyzer (MRTA), the UBA-575+, the SoundScan 2000 (S2000), and the Sahara Ultrasound Done Analyzer. Ten men and ten women were scanned on all four devices by two different operators at five discrete time points: Week 1, Week 2, Week 3, Month 3 and Month 6. The percent coefficient of variation (%CV) and standardized coefficient of variation were computed for the following precision characteristics: interoperator effect, operator-subject interaction, short-term error variance, and long-term drift, The MRTA had high interoperator errors for its ulnar and tibial stiffness measures and a large long-term drift in its tibial stiffness measurement. The UBA-575+ exhibited large short-term error variances and long-term drift for all three of its measurements. The S2000's tibial speed of sound measurement showed a high short-term error variance and a significant operator-subject interaction but very good values ( < 1%) for the other precision characteristics. The Sahara seemed to have the best overall performance, but was hampered by a large %CV for short-term error variance in its broadband ultrasound attenuation measure.

Miller, Christopher; Feiveson, Alan H.; Shackelford, Linda; Rianon, Nahida; LeBlanc, Adrian

2000-01-01

121

A novel measuring device for step gauge  

NASA Astrophysics Data System (ADS)

Combining laser interferometric comparator with high precision inductance sensor, a novel measuring device for step gauge was developed. A high precision laser interferometer system was used for a length standard; a zero-crossing trigger signal of inductance sensor output voltage was used for the aiming signal. In order to improve the measuring accuracy, several high precision sensors were installed to measure environmental parameters for compensating the laser wavelength according to the Edlén empirical equation. A rotating mechanism was designed. Two key problems, probe obstacle avoidance and aiming repeatability, were solved. Experimental analysis of the contact force and speed of influence on measuring probe repeatability, and a segmented control method of the movement speed was established. The experiment indicates that the system has a high accuracy of measurement, which can be used for contact measurement of other one dimension length standard.

Sun, Shuanghua; Shen, Xueping; Zou, Lingding; Gao, Hongtang; Ye, Xiaoyou

2014-08-01

122

Integrated Emissivity And Temperature Measurement  

DOEpatents

A multi-channel spectrometer and a light source are used to measure both the emitted and the reflected light from a surface which is at an elevated temperature relative to its environment. In a first method, the temperature of the surface and emissivity in each wavelength is calculated from a knowledge of the spectrum and the measurement of the incident and reflected light. In the second method, the reflected light is measured from a reference surface having a known reflectivity and the same geometry as the surface of interest and the emitted and the reflected light are measured for the surface of interest. These measurements permit the computation of the emissivity in each channel of the spectrometer and the temperature of the surface of interest.

Poulsen, Peter (Livermore, CA)

2005-11-08

123

Transport Measurement on Few-Molecules Devices  

NASA Astrophysics Data System (ADS)

Using a combination of electron beam lithography and electromigration techniques, gold electrodes with separation less than10 nm were fabricated with high yield (80oxidized, degenerately-doped Si substrates. We present initial transport measurements on few-molecule devices made using these electrodes. Molecules examined include those reported to exhibit negative differential resistance (NDR) in other experiments (J.Chen, et al., Appl.Phys.Lett. 77, 1224 (2000)). We discuss effects of gating and applied magnetic fields.

Yu, Lam; Natelson, Douglas; Price, David; Ciszek, Jake; Tour, James

2003-03-01

124

27 CFR 25.42 - Testing of measuring devices.  

Code of Federal Regulations, 2010 CFR

...TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS BEER Measurement of Beer § 25.42 Testing of measuring devices. (a...device such as a meter or gauge glass is used to measure beer, the brewer shall periodically test the...

2010-04-01

125

Device for Measuring Heat Capacities of Microcalorimeter Absorber Materials  

NASA Astrophysics Data System (ADS)

We are developing a device for measuring the heat capacity of candidate absorber materials for gamma-ray microcalorimeters with the goal of finding materials with low heat capacity and high stopping power to improve detector efficiency. To date, only Sn has been effective as an absorber, and speculation is that other materials suffer from anomalously high heat capacities at low temperatures. The key component of the measurement device is a 17 mm×17 mm low heat capacity silicon platform suspended by Kevlar fibers designed for accepting 1 g to 2 g samples, and whose heat capacity can be characterized prior to attaching a sample. The platform has a thin film Pd/Au heater deposited directly on the silicon, and a semiconducting thermometer bonded to the surface. The heat capacity is determined from C = G?, where G is the in-situ measured conductance and x is the measured temperature decay time from a step change in applied heat. For a platform without samples, decay periods on the order of 0.3 to 0.05 seconds were measured. With samples, decay periods of several seconds are projected, allowing good resolution of the heat capacities. Several thermometers were tested in an effort to find one with the optimum characteristics for measuring platform temperatures. These included a commercial thick-film Ruthenium-oxide surface-mount resistor, a germanium NTD, and a zirconium oxy-nitride thin-film thermometer.

Kotsubo, Vincent; Beall, James; Ullom, Joel

2009-12-01

126

High-Temperature Probe Station Developed to Characterize Microwave Devices Through 500 C  

NASA Technical Reports Server (NTRS)

A photograph and a block diagram of the high-temperature probe station are shown. The system consists of the ceramic heater mounted on a NASA shuttle tile insulator, a direct current power supply, a personal-computer-based data acquisition and temperature controller, microwave probes, a microscope, and a network analyzer. The ability to perform microwave tests at high temperatures is becoming necessary. There is now a need for sensors and communication circuits that can operate at 500 C and above for aircraft engine development and monitoring during flight. To address this need, researchers have fabricated devices using wide bandgap semiconductors such as SiC with targeted operating temperatures of 500 to 600 C. However, the microwave properties of these devices often change drastically with temperature, so any designs that are intended to be used in such an environment must be characterized at high temperatures. For some reliability, lifetime, and direct-current testing, the device under test can be packaged and characterized in an oven. However, for RF and microwave measurements, it is usually not possible to establish a calibrated reference plane at the device terminals within a package. In addition, the characteristics of the package would vary over a 500 C temperature range, and this would have to be accounted for when the data were analyzed. A high temperature probe station allows circuits and devices to be characterized through on wafer measurements across a broad temperature range with known reference plane. The conventional, commercially available thermal wafer-probe stations that are used to evaluate microwave devices across a controlled temperature range have a typical upper limit of 200 C. Standalone thermal heating chucks are available with an extended upper temperature range of 300 to 400 C. To effectively characterize devices at temperatures up to and surpassing 500 C, Glenn researchers developed a custom probe station. In the past, custom probe stations have been developed to test devices under other extreme environments, such as cryogenic temperatures as low as 37 K. Similarly, this custom probe station was specifically modified for high-temperature use. It allows devices to be measured quickly and flexibly, without the use of wire bonds and test fixtures. The probe station is shown making scattering parameter measurements from 1 to 50 GHz with a Hewlett-Packard 8510C Network Analyzer. There is a half-wafer of silicon directly on top of the heater to provide a uniform heated platform for our sample. A quarter wafer of silicon carbide forms the substrate for our test circuit of several transmission lines.

Downey, Alan N.; Schwartz, Zachary D.

2004-01-01

127

The effect of elevated temperature on latchup and bit errors in CMOS devices  

Microsoft Academic Search

Equipment for testing microcircuits at elevated temperatures for Single Event Phenomena (SEP) such as upset (SEU) and latchup (SEL) has been developed, and measurements on several device types have been performed. Very large changes in cross-section and threshold LET have been observed over the temperature range of 25 C to 120 C for SEU and SEL.

W. A. Kolasinski; R. Koga; E. Schnauss; J. Duffey

1986-01-01

128

Method for measuring surface temperature  

DOEpatents

The present invention relates to a method for measuring a surface temperature using is a fluorescent temperature sensor or optical thermometer. The sensor includes a solution of 1,3-bis(1-pyrenyl)propane within a 1-butyl-1-1-methyl pyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid solvent. The 1,3-bis(1-pyrenyl)propane remains unassociated when in the ground state while in solution. When subjected to UV light, an excited state is produced that exists in equilibrium with an excimer. The position of the equilibrium between the two excited states is temperature dependent.

Baker, Gary A. (Los Alamos, NM); Baker, Sheila N. (Los Alamos, NM); McCleskey, T. Mark (Los Alamos, NM)

2009-07-28

129

High-pressure, high-temperature opposed anvil device described  

Microsoft Academic Search

Static high-temperature, high-pressure technology is an important technique for researching solid state phase changes and synthesis of materials. At present, many kinds of devices are used for conducting different high-temperature, high-pressure experiments. The structure of the Bridgman type hard alloy opposed anvil is simple but it can withstand high pressure above 100kbar, and using internal heating method, the temperature can

Yi He; Songtao Wang; Zhicheng Qin; Yaoji Wang; Wenkui Wang

1985-01-01

130

High-Temperature RF Probe Station For Device Characterization Through 500 deg C and 50 GHz  

NASA Technical Reports Server (NTRS)

A high-temperature measurement system capable of performing on-wafer microwave testing of semiconductor devices has been developed. This high temperature probe station can characterize active and passive devices and circuits at temperatures ranging from room temperature to above 500 C. The heating system uses a ceramic heater mounted on an insulating block of NASA shuttle tile material. The temperature is adjusted by a graphical computer interface and is controlled by the software-based feedback loop. The system is used with a Hewlett-Packard 8510C Network Analyzer to measure scattering parameters over a frequency range of 1 to 50 GHz. The microwave probes, cables, and inspection microscope are all shielded to protect from heat damage. The high temperature probe station has been successfully used to characterize gold transmission lines on silicon carbide at temperatures up to 540 C.

Schwartz, Zachary D.; Downey, Alan N.; Alterovitz, Samuel A.; Ponchak, George E.; Williams, W. D. (Technical Monitor)

2003-01-01

131

Diamond micro-Raman thermometers for accurate gate temperature measurements  

SciTech Connect

Determining the peak channel temperature in AlGaN/GaN high electron mobility transistors and other devices with high accuracy is an important and challenging issue. A surface-sensitive thermometric technique is demonstrated, utilizing Raman thermography and diamond microparticles to measure the gate temperature. This technique enhances peak channel temperature estimation, especially when it is applied in combination with standard micro-Raman thermography. Its application to other metal-covered areas of devices, such as field plates is demonstrated. Furthermore, this technique can be readily applied to other material/device systems.

Simon, Roland B.; Pomeroy, James W.; Kuball, Martin [Center for Device Thermography and Reliability, H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom)

2014-05-26

132

Colloidal-gold electrosensor measuring device  

DOEpatents

The present invention provides a new device for use in measuring lead levels in biological and environmental samples. Using square wave coulometry and colloidal gold particles impregnated on carbon electrodes, the present invention provides a rapid, reliable, portable and inexpensive means of detecting low lead levels. The colloidal gold modified electrodes have microelectrode array characteristics and produce significantly higher stripping detection signals for lead than are produced at bulk gold electrode surfaces. The method is effective in determining levels of lead down to at least 5 {micro}g/dL in blood samples as small as 10 {micro}L. 9 figs.

Wegner, S.; Harpold, M.A.; McCaffrey, T.M.; Morris, S.E.; Wojciechowski, M.; Zhao, J.; Henkens, R.W.; Naser, N.; O`Daly, J.P.

1995-11-21

133

Colloidal-gold electrosensor measuring device  

DOEpatents

The present invention provides a new device for use in measuring lead levels in biological and environmental samples. Using square wave coulometry and colloidal gold particles impregnated on carbon electrodes, the present invention provides a rapid, reliable, portable and inexpensive means of detecting low lead levels. The colloidal gold modified electrodes have microelectrode array characteristics and produce significantly higher stripping detection signals for lead than are produced at bulk gold electrode surfaces. The method is effective in determining levels of lead down to at least 5 .mu.g/dL in blood samples as small as 10 .mu.L.

Wegner, Steven (Chapel Hill, NC); Harpold, Michael A. (Durham, NC); McCaffrey, Terence M. (Durham, NC); Morris, Susan E. (Chapel Hill, NC); Wojciechowski, Marek (Cary, NC); Zhao, Junguo (Chapel Hill, NC); Henkens, Robert W. (Durham, NC); Naser, Najih (Durham, NC); O'Daly, John P. (Carrboro, NC)

1995-01-01

134

Verilog-A Device Models for Cryogenic Temperature Operation of Bulk Silicon CMOS Devices  

NASA Technical Reports Server (NTRS)

Verilog-A based cryogenic bulk CMOS (complementary metal oxide semiconductor) compact models are built for state-of-the-art silicon CMOS processes. These models accurately predict device operation at cryogenic temperatures down to 4 K. The models are compatible with commercial circuit simulators. The models extend the standard BSIM4 [Berkeley Short-channel IGFET (insulated-gate field-effect transistor ) Model] type compact models by re-parameterizing existing equations, as well as adding new equations that capture the physics of device operation at cryogenic temperatures. These models will allow circuit designers to create optimized, reliable, and robust circuits operating at cryogenic temperatures.

Akturk, Akin; Potbhare, Siddharth; Goldsman, Neil; Holloway, Michael

2012-01-01

135

Statistical analysis of accelerated temperature aging of semiconductor devices  

NASA Astrophysics Data System (ADS)

A number of semiconductor devices taken from a distribution were operated at several elevated temperatures to induce failure in all devices within a reasonable time. Assuming general characteristics of the device failure probability density function (pdf) and its temperature dependence, the expected cumulative failure function (cff) for devices in normal operation were estimated based on statistical inference, taking the average probability of a random device (from the same distribution but operated at a normal temperature) failing as a function of time. A review of the mathematical formalism employed in semiconductor reliability discussions is included. Three failure pdf's at particular usefulness to this analysis--exponential, normal, and lognormal - are discussed. The cff, at times orders of magnitude loss then, at times comparable to the desired system useful, life (*10 to the 4th power to 10 to the 5th power hr) is considered. A review of accelerated temperature aging is presented, and the assumption concerning the general characteristics of the failure pdf, which are fundamental to this analysis, are emphasized.

Johnson, W. A.; Milles, M. F.

1981-05-01

136

Measurement-device-independent quantum cryptography  

E-print Network

In theory, quantum key distribution (QKD) provides information-theoretic security based on the laws of physics. Owing to the imperfections of real-life implementations, however, there is a big gap between the theory and practice of QKD, which has been recently exploited by several quantum hacking activities. To fill this gap, a novel approach, called measurement-device-independent QKD (mdiQKD), has been proposed. It can remove all side-channels from the measurement unit, arguably the most vulnerable part in QKD systems, thus offering a clear avenue towards secure QKD realisations. Here, we review the latest developments in the framework of mdiQKD, together with its assumptions, strengths and weaknesses.

Feihu Xu; Marcos Curty; Bing Qi; Hoi-Kwong Lo

2015-01-07

137

Low-Temperature Processes for MEMS Device Fabrication  

NASA Astrophysics Data System (ADS)

The high temperatures typical in semiconductor and conventional MEMS fabrication limit the material choices in MEMS structures. This paper reviews some of the low-temperature processes and techniques available for MEMS fabrication and describes some characteristics of these techniques and practical process examples. The techniques described are plasma-enhanced chemical vapour deposition, atomic layer deposition, reactive sputtering, vapour phase hydrofluoric acid etching of low-temperature oxides, and low-temperature wafer bonding. As a practical example of the use of these techniques, the basic characteristics of a MEMS switch and other devices fabricated at VTT are presented.

Kiihamäki, Jyrki; Kattelus, Hannu; Blomberg, Martti; Puurunen, Riikka; Laamanen, Mari; Pekko, Panu; Saarilahti, Jaakko; Ritala, Heini; Rissanen, Anna

138

Cooling device featuring thermoelectric and diamond materials for temperature control of heat-dissipating devices  

NASA Technical Reports Server (NTRS)

A cooling device for lowering the temperature of a heat-dissipating device. The cooling device includes a heat-conducting substrate (composed, e.g., of diamond or another high thermal conductivity material) disposed in thermal contact with the heat-dissipating device. During operation, heat flows from the heat-dissipating device into the heat-conducting substrate, where it is spread out over a relatively large area. A thermoelectric cooling material (e.g., a Bi.sub.2 Te.sub.3 -based film or other thermoelectric material) is placed in thermal contact with the heat-conducting substrate. Application of electrical power to the thermoelectric material drives the thermoelectric material to pump heat into a second heat-conducting substrate which, in turn, is attached to a heat sink.

Vandersande, Ian W. (Inventor); Ewell, Richard (Inventor); Fleurial, Jean-Pierre (Inventor); Lyon, Hylan B. (Inventor)

1998-01-01

139

Development of silicon carbide semiconductor devices for high temperature applications  

NASA Technical Reports Server (NTRS)

The semiconducting properties of electronic grade silicon carbide crystals, such as wide energy bandgap, make it particularly attractive for high temperature applications. Applications for high temperature electronic devices include instrumentation for engines under development, engine control and condition monitoring systems, and power conditioning and control systems for space platforms and satellites. Discrete prototype SiC devices were fabricated and tested at elevated temperatures. Grown p-n junction diodes demonstrated very good rectification characteristics at 870 K. A depletion-mode metal-oxide-semiconductor field-effect transistor was also successfully fabricated and tested at 770 K. While optimization of SiC fabrication processes remain, it is believed that SiC is an enabling high temperature electronic technology.

Matus, Lawrence G.; Powell, J. Anthony; Petit, Jeremy B.

1991-01-01

140

High Temperature Thermoelectric Device Concept Using Large Area PN Junctions  

NASA Astrophysics Data System (ADS)

A new high temperature thermoelectric device concept using large area nanostructured silicon p-type and n-type ( PN) junctions is presented. In contrast to conventional thermoelectric generators, where the n-type and p-type semiconductors are connected electrically in series and thermally in parallel, we experimentally demonstrate a device concept in which a large area PN junction made from highly doped densified silicon nanoparticles is subject to a temperature gradient parallel to the PN interface. In the proposed device concept, the electrical contacts are made at the cold side eliminating the hot side substrate and difficulties that go along with high temperature electrical contacts. This concept allows temperature gradients greater than 300 K to be experimentally applied with hot side temperatures larger than 800 K. Electronic properties of the PN junctions and power output characterizations are presented. A fundamental working principle is discussed using a particle network model with temperature and electric fields as variables, and which considers electrical conductivity and thermal conductivity according to Fourier's law, as well as Peltier and Seebeck effects.

Chavez, R.; Angst, S.; Hall, J.; Stoetzel, J.; Kessler, V.; Bitzer, L.; Maculewicz, F.; Benson, N.; Wiggers, H.; Wolf, D.; Schierning, G.; Schmechel, R.

2014-06-01

141

HIGH ACCURACY TEMPERATURE MEASUREMENTS USING RTD'S WITH CURRENT LOOP CONDITIONING  

Microsoft Academic Search

To measure temperatures with a greater degree of accuracy than is possible with thermocouples, RTD's (resistive temperature detectors) are typically used. Calibration standards use specialized high precision RTD probes with accuracies approaching 0.001 °F. These are extremely delicate devices, and far too costly to be used in test facility instrumentation. Less costly sensors which are designed for aeronautical wind tunnel

Gerald M. Hill

142

High-transition-temperature superconducting quantum interference devices  

Microsoft Academic Search

The advent of high-Tc superconductors gave great impetus to the development of thin-film superconducting quantum interference devices (SQUIDs) for operation at temperatures up to the boiling point of liquid nitrogen, 77 K. The spectral density of the white flux noise can be calculated analytically for rf SQUIDs and by computer simulation for dc SQUIDs; however, observed noise spectral densities are

D. Koelle; R. Kleiner; F. Ludwig; E. Dantsker; John Clarke

1999-01-01

143

Device for Ultra-High-Pressure High-Temperature Research  

Microsoft Academic Search

A new device has been developed for materials research at high pressures and high temperatures. The unit may be described as an extension of the Bridgman ``anvil,'' modified to permit internal heating. The principle of ``massive support'' is retained with pressure being achieved through the elasticity of multiple binding rings, rather than through the ``compressible'' gasket effect. The unit has

W. B. Wilson

1960-01-01

144

On-chip temperature-compensated Love mode surface acoustic wave device for gravimetric sensing  

NASA Astrophysics Data System (ADS)

Love mode surface acoustic wave (SAW) sensors have been recognized as one of the most sensitive devices for gravimetric sensors in liquid environments such as bio sensors. Device operation is based upon measuring changes in the transmitted (S21) frequency and phase of the first-order Love wave resonance associated with the device upon on attachment of mass. However, temperature variations also cause a change in the first order S21 parameters. In this work, shallow grooved reflectors and a "dotted" single phase unidirectional interdigitated transducer (D-SPUDT) have been added to the basic SAW structure, which promote unidirectional Love wave propagation from the device's input interdigitated transducers. Not only does this enhance the first-order S21 signal but also it allows propagation of a third-order Love wave. The attenuation coefficient of the third-order wave is sufficiently great that, whilst there is a clear reflected S11 signal, the third-order wave does not propagate into the gravimetric sensing area of the device. As a result, whilst the third-order S11 signal is affected by temperature changes, it is unaffected by mass attachment in the sensing area. It is shown that this signal can be used to remove temperature effects from the first-order S21 signal in real time. This allows gravimetric sensing to take place in an environment without the need for any other temperature measurement or temperature control; this is a particular requirement of gravimetric biosensors.

Liu, Q.; Flewitt, A. J.

2014-11-01

145

Infrared Emissivity Measurements of Building and Civil Engineering Materials: A New Device for Measuring Emissivity  

NASA Astrophysics Data System (ADS)

The knowledge of the infrared emissivity of materials used in buildings and civil engineering structures is useful for two specific approaches. First, quantitative diagnosis of buildings or civil engineering infrastructures by infrared thermography requires emissivity values in the spectral bandwidth of the camera used for measurements, in order to obtain accurate surface temperatures; for instance, emissivity in the band III domain is required when using cameras with uncooled detectors (such as micro-bolometer arrays). Second, setting up accurate thermal balances by numerical modeling requires the total emissivity value for a large wavelength domain; this is, for instance, the case for computing the road surface temperature to predict ice occurrence. Furthermore, periodical surveys of emissivity variations due to aging or soiling of surfaces could be useful in many situations such as thermal mapping of roads or building insulation diagnosis. The use of portable emissivity measurement devices is required for that purpose. A device using an indirect measurement method was previously developed in our lab; the method uses measurement of the reflectivity from a modulated IR source and requires calibration with a highly reflective surface. However, that device uses a low-frequency, thermal modulation well adapted to laboratory measurements but unfit for fast and in situ measurements. Therefore, a new, portable system which retains the principle of an indirect measurement but uses a faster-frequency, mechanical modulation more appropriate to outdoor measurements was developed. Both devices allow measurements in the broad m to m) and narrow m to m) bands. Experiments were performed on a large number of materials commonly used in buildings and civil engineering structures. The final objective of this work is to build a database of emissivity of these materials. A comparison of laboratory and on-site measurements of emissivity values obtained in both spectral bands will be presented along with an estimation and an analysis of measurement uncertainties.

Monchau, Jean-Pierre; Marchetti, Mario; Ibos, Laurent; Dumoulin, Jean; Feuillet, Vincent; Candau, Yves

2014-10-01

146

ORAL PRESENTATION ABSTRACT Design of an Electro-ocular and Temperature sensing device for the  

E-print Network

ORAL PRESENTATION ABSTRACT Design of an Electro-ocular and Temperature sensing device for the Non-computer interface (HCI) capability. The neurons and muscles of the eye store small electrical charges within their cells. The Electro-ocular gram is a method to measure this net electrical charge between the cornea

Haykin, Simon

147

Measurement of Device Parameters Using Image Recovery Techniques in Large-Scale IC Devices  

NASA Technical Reports Server (NTRS)

Devices that respond to radiation on a cell level will produce histograms showing the relative frequency of cell damage as a function of damage. The measured distribution is the convolution of distributions from radiation responses, measurement noise, and manufacturing parameters. A method of extracting device characteristics and parameters from measured distributions via mathematical and image subtraction techniques is described.

Scheick, Leif; Edmonds, Larry

2004-01-01

148

Advanced devices and systems for radiation measurements  

SciTech Connect

The authors` most recent work continues their long-standing efforts to develop semiconductor detectors based on the collection of only a single type of charge carrier. Their best results are an extension of the principle of coplanar electrodes first described by Paul Luke of Lawrence Berkeley Laboratory 18 months ago. This technique, described in past progress reports, has the effect of deriving an output signal from detectors that depends only on the motion of carriers close to one surface. Since nearly all of these carriers are of one type (electrons) that are attracted to that electrode, the net effect is to nearly eliminate the influence of hole motion on the properties of the output signal. The result is that the much better mobility of electrons in compound semiconductors materials such as CZT can now be exploited without the concurrent penalty of poor hole collection. They have also developed new techniques in conjunction with the coplanar electrode principle that extends the technique into a new dimension. By proper processing of signals from the opposite electrode (the cathode) from the coplanar surface, they are able to derive a signal that is a good indication of the depth of interaction at which the charge carriers were initially formed. They have been the first group to demonstrate this technique, and examples of separate pulse height spectra recorded at a variety of different depths of interaction are shown in several of the figures that follow. Obtaining depth information is one step in the direction of obtaining volumetric point-of-interaction information from the detector. If one could known the coordinates of each specific interaction, then corrections could be applied to account for the inhomogeneities that currently plague many room-temperature devices.

Knoll, G.F.; Wehe, D.K.; He, Z.; Barrett, C.; Miyamoto, J.

1996-06-01

149

Force Measurement Device for ARIANE 5 Payloads  

NASA Astrophysics Data System (ADS)

ESTEC uses since 1991 a Force Measurement Device (FMD) for the measurement of dynamic mechanical forces and moments. This tool allows the determination of forces and moments applied to the test hardware at its interface to the test facilities during dynamic testing. Three forces and three moments are calculated from the measurements of eight tri-axial force links and used to either characterize the dynamic mechanical behaviour of the test item and/or to control forces and moments during vibration testing (force limited vibration control). The current FMD is limited to test items with an interface diameter of up to about 1.2 m (adapter already available) and a mass compatible with ARIANE 4 payloads. The limitations of the current system come from the maximum of eight tri-axial force links and from the analogue technique of the Signal Processing Unit (SPU) that allows only a limited number of geometric configurations for the mechanical interface. Following the success of the FMD during former test campaigns, e.g. ROSETTA STM + FM, the need for a FMD, compatible with ARIANE 5 payloads has been established. Therefore ESA decided to develop a new FMD system. The system will include a digital real time SPU with 72 force input channels, corresponding to 24 tri-axes force sensors or 72 mono axial force sensors. The SPU design will allow extending the number of force input channels to 144. The set-up of the FMD will be done via a standard PC interface. The user will enter for each force sensor the location and the measurement direction in the reference coordinate system. Based on the geometrical information and the maximum forces and moments expected the PC will calculate the optimum range settings for the charge-amplifiers and the corresponding matrix with weighting factors which will allow to perform a fast calculation of the six output forces and moments from the 72 (or 144) input forces. The six output channels with forces and moments can then be connected either to the vibration control system or data acquisition system. The paper will present the status of the new FMD development, selection criteria for sensor and signal conditioners, trade offs performed for the various design options of the SPU and considerations about the mechanical interface design.

Brunner, O.; Braeken, R.

2004-08-01

150

Evaluation of Advanced COTS Passive Devices for Extreme Temperature Operation  

NASA Technical Reports Server (NTRS)

Electronic sensors and circuits are often exposed to extreme temperatures in many of NASA deep space and planetary surface exploration missions. Electronics capable of operation in harsh environments would be beneficial as they simplify overall system design, relax thermal management constraints, and meet operational requirements. For example, cryogenic operation of electronic parts will improve reliability, increase energy density, and extend the operational lifetimes of space-based electronic systems. Similarly, electronic parts that are able to withstand and operate efficiently in high temperature environments will negate the need for thermal control elements and their associated structures, thereby reducing system size and weight, enhancing its reliability, improving its efficiency, and reducing cost. Passive devices play a critical role in the design of almost all electronic circuitry. To address the needs of systems for extreme temperature operation, some of the advanced and most recently introduced commercial-off-the-shelf (COTS) passive devices, which included resistors and capacitors, were examined for operation under a wide temperature regime. The types of resistors investigated included high temperature precision film, general purpose metal oxide, and wirewound.

Patterson, Richard; Hammoud, Ahmad; Dones, Keishla R.

2009-01-01

151

Assessment of SOI Devices and Circuits at Extreme Temperatures  

NASA Technical Reports Server (NTRS)

Electronics designed for use in future NASA space exploration missions are expected to encounter extreme temperatures and wide thermal swings. Such missions include planetary surface exploration, bases, rovers, landers, orbiters, and satellites. Electronics designed for such applications must, therefore, be able to withstand exposure to extreme temperatures and to perform properly for the duration of mission. The Low Temperature Electronics Program at the NASA Glenn Research Center focuses on research and development of electrical devices, circuits, and systems suitable for applications in deep space exploration missions and aerospace environment. Silicon-On-Insulator (SOI) technology has been under active consideration in the electronics industry for many years due to the advantages that it can provide in integrated circuit (IC) chips and computer processors. Faster switching, less power, radiationtolerance, reduced leakage, and high temp-erature capability are some of the benefits that are offered by using SOI-based devices. A few SOI circuits are available commercially. However, there is a noticeable interest in SOI technology for different applications. Very little data, however, exist on the performance of such circuits under cryogenic temperatures. In this work, the performance of SOI integrated circuits, evaluated under low temperature and thermal cycling, are reported. In particular, three examples of SOI circuits that have been tested for operation at low at temperatures are given. These circuits are SOI operational amplifiers, timers and power MOSFET drivers. The investigations were carried out to establish a baseline on the functionality and to determine suitability of these circuits for use in space exploration missions at cryogenic temperatures. The findings are useful to mission planners and circuit designers so that proper selection of electronic parts can be made, and risk assessment can be established for such circuits for use in space missions.

Elbuluk, Malik; Hammoud, Ahmad; Patterson, Richard L.

2007-01-01

152

Ergonomic analysis of slip-resistance measurement devices  

Microsoft Academic Search

Several measurement devices and techniques have been developed during the past 50 years in an attempt to quantify the static and\\/or dynamic coefficient of friction (COF) of shoe and floor surface interfaces. Much of this work has been laboratory research with bulky equipment, but recently portable measurement devices have evolved to the extent that field measurements can be taken. Six

ROBERT O. ANDRES; DON B. CHAFFIN

1985-01-01

153

Portable ECG Measurement Device based on MSP430 MCU  

Microsoft Academic Search

We design a portable measurement device which can monitor electrocardiograph (ECG) and analyze arrhythmia. It is small, light, lower power, and consists of two parts: the main system and the sub. The device gets ECG signals by the electrode sticking to the chest skin. This make the device is suitable for monitoring in long time. 16-bits MCU-MSP430 is the most

Hong Ming; Zhang Yajun; Hu Xiaoping

2008-01-01

154

Simple microcalorimeter for measuring microgram samples at low temperatures  

NASA Astrophysics Data System (ADS)

An innovative microcalorimeter has been developed for measuring specific heat of very small microgram samples in the temperature range from 1.5 to 50 K and in magnetic fields up to 11 T. The device is built from a commercial sapphire temperature chip (Cernox), which is modified by means of standard microfabrication techniques and which is used as a sample holder, temperature sensor, and sample heater. Compared to existing microcalorimeters the simple design of our instrument allows a fabrication of the device in a few process steps by using facilities present in a standard laboratory clean room. As an illustrative example for the performance of our device, the specific heat of an underdoped (La1-xSrx)2CuO4 and CaRuO3 single crystal has been measured by means of the relaxation time method as well as the ac method.

Doettinger-Zech, S. G.; Uhl, M.; Sisson, D. L.; Kapitulnik, A.

2001-05-01

155

Compensated vibrating optical fiber pressure measuring device  

DOEpatents

A microbending optical fiber is attached under tension to a diaphragm to se a differential pressure applied across the diaphragm which it causes it to deflect. The fiber is attached to the diaphragm so that one portion of the fiber, attached to a central portion of the diaphragm, undergoes a change in tension; proportional to the differential pressure applied to the diaphragm while a second portion attached at the periphery of the diaphragm remains at a reference tension. Both portions of the fiber are caused to vibrate at their natural frequencies. Light transmitted through the fiber is attenuated by both portions of the tensioned sections of the fiber by an amount which increases with the curvature of fiber bending so that the light signal is modulated by both portions of the fiber at separate frequencies. The modulated light signal is transduced into a electrical signal. The separate modulation signals are detected to generate separate signals having frequencies corresponding to the reference and measuring vibrating sections of the continuous fiber, respectively. A signal proportional to the difference between these signals is generated which is indicative of the measured pressure differential across the diaphragm. The reference portion of the fiber is used to compensate the pressure signal for zero and span changes resulting from ambient temperature and humidity effects upon the fiber and the transducer fixture.

Fasching, George E. (Morgantown, WV); Goff, David R. (Christiansburg, VA)

1987-01-01

156

Electron cyclotron beam measurement system in the Large Helical Device  

SciTech Connect

In order to evaluate the electron cyclotron (EC) heating power inside the Large Helical Device vacuum vessel and to investigate the physics of the interaction between the EC beam and the plasma, a direct measurement system for the EC beam transmitted through the plasma column was developed. The system consists of an EC beam target plate, which is made of isotropic graphite and faces against the EC beam through the plasma, and an IR camera for measuring the target plate temperature increase by the transmitted EC beam. This system is applicable to the high magnetic field (up to 2.75 T) and plasma density (up to 0.8 × 10{sup 19} m{sup ?3}). This system successfully evaluated the transmitted EC beam profile and the refraction.

Kamio, S., E-mail: kamio@nifs.ac.jp; Takahashi, H.; Kubo, S.; Shimozuma, T.; Yoshimura, Y.; Igami, H.; Ito, S.; Kobayashi, S.; Mizuno, Y.; Okada, K.; Osakabe, M.; Mutoh, T. [National Institute for Fusion Science, Toki 509-5292 (Japan)

2014-11-15

157

Electron cyclotron beam measurement system in the Large Helical Device.  

PubMed

In order to evaluate the electron cyclotron (EC) heating power inside the Large Helical Device vacuum vessel and to investigate the physics of the interaction between the EC beam and the plasma, a direct measurement system for the EC beam transmitted through the plasma column was developed. The system consists of an EC beam target plate, which is made of isotropic graphite and faces against the EC beam through the plasma, and an IR camera for measuring the target plate temperature increase by the transmitted EC beam. This system is applicable to the high magnetic field (up to 2.75 T) and plasma density (up to 0.8 × 10(19) m(-3)). This system successfully evaluated the transmitted EC beam profile and the refraction. PMID:25430387

Kamio, S; Takahashi, H; Kubo, S; Shimozuma, T; Yoshimura, Y; Igami, H; Ito, S; Kobayashi, S; Mizuno, Y; Okada, K; Osakabe, M; Mutoh, T

2014-11-01

158

Temperature and Strain Coefficient of Velocity for Langasite SAW Devices  

NASA Technical Reports Server (NTRS)

Surface Acoustic Wave sensors on Langasite substrates are being investigated for aerospace applications. Characterization of the Langasite material properties must be performed before sensors can be installed in research vehicles. The coefficients of velocity for both strain and temperature have been determined. These values have also been used to perform temperature compensation of the strain measurements.

Wilson, W. C.; Atkinson, G. M.

2013-01-01

159

Graphene, a material for high temperature devices – intrinsic carrier density, carrier drift velocity, and lattice energy  

PubMed Central

Heat has always been a killing matter for traditional semiconductor machines. The underlining physical reason is that the intrinsic carrier density of a device made from a traditional semiconductor material increases very fast with a rising temperature. Once reaching a temperature, the density surpasses the chemical doping or gating effect, any p-n junction or transistor made from the semiconductor will fail to function. Here, we measure the intrinsic Fermi level (|EF| = 2.93?kBT) or intrinsic carrier density (nin = 3.87 × 106?cm?2K?2·T2), carrier drift velocity, and G mode phonon energy of graphene devices and their temperature dependencies up to 2400?K. Our results show intrinsic carrier density of graphene is an order of magnitude less sensitive to temperature than those of Si or Ge, and reveal the great potentials of graphene as a material for high temperature devices. We also observe a linear decline of saturation drift velocity with increasing temperature, and identify the temperature coefficients of the intrinsic G mode phonon energy. Above knowledge is vital in understanding the physical phenomena of graphene under high power or high temperature. PMID:25044003

Yin, Yan; Cheng, Zengguang; Wang, Li; Jin, Kuijuan; Wang, Wenzhong

2014-01-01

160

Graphene, a material for high temperature devices - intrinsic carrier density, carrier drift velocity, and lattice energy  

NASA Astrophysics Data System (ADS)

Heat has always been a killing matter for traditional semiconductor machines. The underlining physical reason is that the intrinsic carrier density of a device made from a traditional semiconductor material increases very fast with a rising temperature. Once reaching a temperature, the density surpasses the chemical doping or gating effect, any p-n junction or transistor made from the semiconductor will fail to function. Here, we measure the intrinsic Fermi level (|EF| = 2.93 kBT) or intrinsic carrier density (nin = 3.87 × 106 cm-2K-2.T2), carrier drift velocity, and G mode phonon energy of graphene devices and their temperature dependencies up to 2400 K. Our results show intrinsic carrier density of graphene is an order of magnitude less sensitive to temperature than those of Si or Ge, and reveal the great potentials of graphene as a material for high temperature devices. We also observe a linear decline of saturation drift velocity with increasing temperature, and identify the temperature coefficients of the intrinsic G mode phonon energy. Above knowledge is vital in understanding the physical phenomena of graphene under high power or high temperature.

Yin, Yan; Cheng, Zengguang; Wang, Li; Jin, Kuijuan; Wang, Wenzhong

2014-07-01

161

Large magnetoresistance at room-temperature in small molecular weight organic semiconductor sandwich devices  

E-print Network

We present an extensive study of a large, room temperature negative magnetoresistance (MR) effect in tris-(8-hydroxyquinoline) aluminum sandwich devices in weak magnetic fields. The effect is similar to that previously discovered in polymer devices. We characterize this effect and discuss its dependence on field direction, voltage, temperature, film thickness, and electrode materials. The MR effect reaches almost 10% at fields of approximately 10 mT at room temperature. The effect shows only a weak temperature dependence and is independent of the sign and direction of the magnetic field. Measuring the devices' current-voltage characteristics, we find that the current depends on the voltage through a power-law. We find that the magnetic field changes the prefactor of the power-law, whereas the exponent remains unaffected. We also studied the effect of the magnetic field on the electroluminescence (MEL) of the devices and analyze the relationship between MR and MEL. We find that the largest part of MEL is simply a consequence of a change in device current caused by the MR effect.

Ö. Mermer; G. Veeraraghavan; T. L. Francis; M. Wohlgenannt

2005-01-07

162

121. Man with temperature probe aimed at armature measuring temperature ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

121. Man with temperature probe aimed at armature measuring temperature as armature heats up between the two electrodes. March 27, 1985 - Statue of Liberty, Liberty Island, Manhattan, New York, New York County, NY

163

Gas-Temperature Measurement With Minimal Perturbation  

NASA Technical Reports Server (NTRS)

Method for measuring temperature of hot turbulent gases uses three heatflux calorimeters. One calorimeter measures radiative heat flux, while other two measure total heat flux (convective and radiative), at two different temperatures. Adapted for commercial uses in such operations as monitoring temperatures of flue gases, piped liquid or gaseous products, internal-combustion or jet engine exhausts.

Fu, T. S.; Quan, M.

1983-01-01

164

Device and method for measuring thermal conductivity of thin films  

NASA Technical Reports Server (NTRS)

A device and method are provided for measuring the thermal conductivity of rigid or flexible, homogeneous or heterogeneous, thin films between 50 .mu.m and 150 .mu.m thick with relative standard deviations of less than five percent. The specimen is sandwiched between like material, highly conductive upper and lower slabs. Each slab is instrumented with six thermocouples embedded within the slab and flush with their corresponding surfaces. A heat source heats the lower slab and a heat sink cools the upper slab. The heat sink also provides sufficient contact pressure onto the specimen. Testing is performed within a vacuum environment (bell-jar) between 10.sup.-3 to 10.sup.-6 Torr. An anti-radiant shield on the interior surface of the bell-jar is used to avoid radiation heat losses. Insulation is placed adjacent to the heat source and adjacent to the heat sink to prevent conduction losses. A temperature controlled water circulator circulates water from a constant temperature bath through the heat sink. Fourier's one-dimensional law of heat conduction is the governing equation. Data, including temperatures, are measured with a multi-channel data acquisition system. On-line computer processing is used for thermal conductivity calculations.

Amer, Tahani R. (Inventor); Subramanian, Chelakara (Inventor); Upchurch, Billy T. (Inventor); Alderfer, David W. (Inventor); Sealey, Bradley S. (Inventor); Burkett, Jr., Cecil G. (Inventor)

2001-01-01

165

Improved infrared temperature sensing system for mobile devices  

Microsoft Academic Search

An infrared (IR) temperature measurement system consists of not only a sensor module and electronics, but also an optomechanical system that guides IR radiation onto the sensor. The geometry and emissivity of the parts affects the reading, if the detector sees not only the target but parts of the measuring system itself. In normal industrial applications, the optics is designed

Kimmo Keranen; Jukka-Tapani Makinen; Pentti Korhonen; Eveliina Juntunen; V. Heikkinen; Jakke Makela

2008-01-01

166

Temperature Dependency of MOSFET Device Characteristics in 4H-and 6H-Silicon Carbide (SiC)  

E-print Network

Temperature Dependency of MOSFET Device Characteristics in 4H- and 6H-Silicon Carbide (SiC) Md Hasanuzzaman, Syed K. Islam, Leon M. Tolbert, Mohmmad T. Alam An analytical model for lateral MOSFET results with previously measured experimental data reported in [5]. MOSFET device behavior in 4H

Tolbert, Leon M.

167

Improved system measures output energy of pyrotechnic devices  

NASA Technical Reports Server (NTRS)

System for measuring the output energy of pyrotechnic devices discharges the reaction products into a test chamber. It measures the radiant heat output from a pinhole aperture as well as internal pressure changes on a common time base.

Shortly, E. M.

1966-01-01

168

Measuring Specific Heats at High Temperatures  

NASA Technical Reports Server (NTRS)

Flash apparatus for measuring thermal diffusivities at temperatures from 300 to 1,000 degrees C modified; measures specific heats of samples to accuracy of 4 to 5 percent. Specific heat and thermal diffusivity of sample measured. Xenon flash emits pulse of radiation, absorbed by sputtered graphite coating on sample. Sample temperature measured with thermocouple, and temperature rise due to pulse measured by InSb detector.

Vandersande, Jan W.; Zoltan, Andrew; Wood, Charles

1987-01-01

169

Nanometer-scale temperature imaging for independent observation of Joule and Peltier effects in phase change memory devices  

SciTech Connect

This paper reports a technique for independent observation of nanometer-scale Joule heating and thermoelectric effects, using atomic force microscopy (AFM) based measurements of nanometer-scale temperature fields. When electrical current flows through nanoscale devices and contacts the temperature distribution is governed by both Joule and thermoelectric effects. When the device is driven by an electrical current that is both periodic and bipolar, the temperature rise due to the Joule effect is at a different harmonic than the temperature rise due to the Peltier effect. An AFM tip scanning over the device can simultaneously measure all of the relevant harmonic responses, such that the Joule effect and the Peltier effect can be independently measured. Here we demonstrate the efficacy of the technique by measuring Joule and Peltier effects in phase change memory devices. By comparing the observed temperature responses of these working devices, we measure the device thermopower, which is in the range of 30 ± 3 to 250 ± 10 ?V K{sup ?1}. This technique could facilitate improved measurements of thermoelectric phenomena and properties at the nanometer-scale.

Grosse, Kyle L. [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Pop, Eric [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); King, William P., E-mail: wpk@illinois.edu [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Departments of Electrical and Computer Engineering and Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

2014-09-15

170

A Simple Flow Measuring Device for Farms  

E-print Network

can be constructed using metal or plywood and a short piece of PVC or metal pipe. When the flume PVC or metal pipe contracting both sides. The cross section of the device is thereby constricted using lengthwise half sections of PVC or metal pipe as shown in fig. 1 (top view). The side view of the flume

171

Development of crawler type device using new measuring system  

SciTech Connect

This paper reports the development and field application of a new device which examine shell to shell weld joints of RPV. In a BWR type nuclear power plant, there is narrow space around the Reactor Pressure Vessel (RPV) because RPV is enclosed by the Reactor Shield Wall (RSW) and thermal insulations. The developed device is characterized by a new position measuring system and magnet wheels for driving. The new position measuring system uses laser beam and ultrasonic wave. The magnet wheels make the device travel freely in the narrow space between RPV and insulation. This device is tested on mock-ups and applied examination of RPVs to verify field applicability.

Maruyama, T.; Sasaki, T.; Yagi, T. [Ishikawajima-Harima Heavy Industries Co., Ltd., Yokohama (Japan)

1995-08-01

172

High Density And High Temperature Plasmas In Large Helical Device  

NASA Astrophysics Data System (ADS)

For the realization of the fusion reactor, it is necessary to confine high density and high temperature plasma for a time, which is well known as the Lawson criterion. To improve the plasma or confinement performance, vigorous experiments have been performed in the Large Helical Device (LHD) in National Institute for Fusion Science, which is the largest superconducting heliotron device with R = 3.9 m r = 0.6 m, Bt = 3 T. Recently a promising confinement regime called Super Dense Core (SDC) mode was discovered. An extremely high density core region with more than ~ 1 × 10^20 m-3 is obtained with the formation of an Internal Diffusion Barrier (IDB). The density gradient at the IDB (? = 0.6) is very high and the particle confinement in the core region is ~ 0.2 s. It is expected, for the future reactor, that the IDB-SDC mode has a possibility to achieve the self-ignition condition with lower temperature than expected before. The IDB-SDC mode is also favorable from the engineering point of view since one can moderate demands for heating devices and plasma facing components. In order to achieve the IDB-SDC mode, the central fuelling with the pellet injection and the low recycling condition are essential. A repetitive pellet injector was newly developed to continuously feed the particle source to the central region. For the recycling control, the effective divertor system should be employed to control the edge plasma. Conventional approaches to increase the temperature have also been tried in LHD. For the ion heating, the perpendicular neutral beam injection effectively increased the ion temperature more than 10 keV with the formation of the internal transport barrier (ITB). In the core region, the heat conductivity is improved to the neoclassical level, while no clear ITB for electron was seen. Another interesting phenomenon called "impurity hole" was observed inside the ITB. During the high ion temperature discharge, the im- purity density in the core region becomes low and its profile becomes hollow. The impurity atoms are pumped out, in spite of the negative electric field (ion root) inside the ITB. In the lecture, the mechanism of the impurity hole will also be discussed, together with the theoretical background and numerical results.

Komori, A.

2010-07-01

173

Remote calibration of Resistance Temperature Devices (RTDs): Final report  

Microsoft Academic Search

Johnson noise power measuring techniques have been used to calibrate platinum resistance temperature detectors (RTDs) installed in an operating nuclear plant - Connecticut Yankee Atomic Power Company's Haddam Neck Nuclear Plant - achieving agreement with the dc calibration from better than 0.1% to as much as 1% (0.54 to 9.7°F) at the normal operating temperature of 585°F. Tests were also

T. V. Blalock; M. J. Roberts

1988-01-01

174

21 CFR 886.1430 - Ophthalmic contact lens radius measuring device.  

Code of Federal Regulations, 2014 CFR

...2014-04-01 false Ophthalmic contact lens radius measuring device. 886...Devices § 886.1430 Ophthalmic contact lens radius measuring device. (a) Identification. An ophthalmic contact lens radius measuring device is...

2014-04-01

175

21 CFR 886.1430 - Ophthalmic contact lens radius measuring device.  

Code of Federal Regulations, 2013 CFR

...2013-04-01 false Ophthalmic contact lens radius measuring device. 886...Devices § 886.1430 Ophthalmic contact lens radius measuring device. (a) Identification. An ophthalmic contact lens radius measuring device is...

2013-04-01

176

21 CFR 886.1430 - Ophthalmic contact lens radius measuring device.  

Code of Federal Regulations, 2012 CFR

...2012-04-01 false Ophthalmic contact lens radius measuring device. 886...Devices § 886.1430 Ophthalmic contact lens radius measuring device. (a) Identification. An ophthalmic contact lens radius measuring device is...

2012-04-01

177

Measurement of thermodynamic temperature of high temperature fixed points  

SciTech Connect

The paper is devoted to VNIIOFI's measurements of thermodynamic temperature of the high temperature fixed points Co-C, Pt-C and Re-C within the scope of the international project coordinated by the Consultative Committee for Thermometry working group 5 'Radiation Thermometry'. The melting temperatures of the fixed points were measured by a radiance mode radiation thermometer calibrated against a filter radiometer with known irradiance spectral responsivity via a high temperature black body. This paper describes the facility used for the measurements, the results and estimated uncertainties.

Gavrilov, V. R.; Khlevnoy, B. B.; Otryaskin, D. A.; Grigorieva, I. A.; Samoylov, M. L.; Sapritsky, V. I. [All-Russian Research Institute for Optical and Physical Measurements (VNIIOFI), 46 Ozernaya St., Moscow 119361 (Russian Federation)] [All-Russian Research Institute for Optical and Physical Measurements (VNIIOFI), 46 Ozernaya St., Moscow 119361 (Russian Federation)

2013-09-11

178

Surface Temperature Measurement Using Hematite Coating  

NASA Technical Reports Server (NTRS)

Systems and methods that are capable of measuring temperature via spectrophotometry principles are discussed herein. These systems and methods are based on the temperature dependence of the reflection spectrum of hematite. Light reflected from these sensors can be measured to determine a temperature, based on changes in the reflection spectrum discussed herein.

Bencic, Timothy J. (Inventor)

2015-01-01

179

Proton irradiation of a swept charge device at cryogenic temperature and the subsequent annealing  

NASA Astrophysics Data System (ADS)

A number of studies have demonstrated that a room temperature proton irradiation may not be sufficient to provide an accurate estimation of the impact of the space radiation environment on detector performance. This is a result of the relationship between defect mobility and temperature, causing the performance to vary subject to the temperature history of the device from the point at which it was irradiated. Results measured using Charge Coupled Devices (CCD) irradiated at room temperature therefore tend to differ from those taken when the device was irradiated at a cryogenic temperature, more appropriate considering the operating conditions in space, impacting the prediction of in-flight performance. This paper describes the cryogenic irradiation, and subsequent annealing of an e2v technologies Swept Charge Device (SCD) CCD236 irradiated at ?35.4°C with a 10 MeV equivalent proton fluence of 5.0 × 108 protons · cm?2. The CCD236 is a large area (4.4 cm2) X-ray detector that will be flown on-board the Chandrayaan-2 and Hard X-ray Modulation Telescope spacecraft, in the Chandrayaan-2 Large Area Soft X-ray Spectrometer and the Soft X-ray Detector respectively. The SCD is readout continually in order to benefit from intrinsic dither mode clocking, leading to suppression of the surface component of the dark current and allowing the detector to be operated at warmer temperatures than a conventional CCD. The SCD is therefore an excellent choice to test and demonstrate the variation in the impact of irradiation at cryogenic temperatures in comparison to a more typical room temperature irradiation.

Gow, J. P. D.; Smith, P. H.; Pool, P.; Hall, D. J.; Holland, A. D.; Murray, N. J.

2015-01-01

180

Temperature and Heat Transfer Measurements Cengiz Camci  

E-print Network

EAE077 Chapter 11 Temperature and Heat Transfer Measurements Cengiz Camci Turbomachinery Aero Resistive Temperature Transducers 2 3 Thermocouples 3 4 Bi-Metallic Temperature Sensors 7 5 Diode-Based Temperature Sensors 7 6 Liquid Crystal Thermometry 7 7 Infrared Thermometry and Pyrometer 9 8 Heat Transfer

Camci, Cengiz

181

Test device for measuring permeability of a barrier material  

DOEpatents

A test device for measuring permeability of a barrier material. An exemplary device comprises a test card having a thin-film conductor-pattern formed thereon and an edge seal which seals the test card to the barrier material. Another exemplary embodiment is an electrical calcium test device comprising: a test card an impermeable spacer, an edge seal which seals the test card to the spacer and an edge seal which seals the spacer to the barrier material.

Reese, Matthew; Dameron, Arrelaine; Kempe, Michael

2014-03-04

182

Pulsed-bias\\/Pulsed-RF Device Measurement System Requirements  

Microsoft Academic Search

We describe a pulsed-bias, pulsed-RF device measurement system with high bias power (6A\\/40V), high RF power capability (50W at 2GHz and lOW at 50GHz), and high resolution (16-bit). This system is intended to support both RF characterisation outside device continuous safe operating area (SOA), and data-acquisition for device modelling. The system is modular and flexible, offers very small duty cycles

Jonathan Scottt; Mohamed Sayed; Paul Schmitz; Anthony Parker

1994-01-01

183

Finger temperature controller for non-invasive blood glucose measurement  

NASA Astrophysics Data System (ADS)

Blood glucose level is an important parameter for doctors to diagnose and treat diabetes. The Near-Infra-Red (NIR) spectroscopy method is the most promising approach and this involves measurement on the body skin. However it is noted that the skin temperature does fluctuate with the environmental and physiological conditions and we found that temperature has important influences on the glucose measurement. In-vitro and in-vivo investigations on the temperature influence on blood glucose measurement have been carried out. The in-vitro results show that water temperature has significant influence on water absorption. Since 90% of blood components are water, skin temperature of measurement site has significant influence on blood glucose measurement. Also the skin temperature is related to the blood volume, blood volume inside capillary vessels changes with skin temperature. In this paper the relationship of skin temperature and signal from the skin and inside tissue was studied at different finger temperatures. Our OGTT (oral glucose tolerance test) trials results show the laser signals follow the skin temperature trend and the correlation of signal and skin temperature is much stronger than the correlation of signal and glucose concentration. A finger heater device is designed to heat and maintain the skin temperature of measurement site. The heater is controlled by an electronic circuit according to the skin temperature sensed by a thermocouple that is put close to the measurement site. In vivo trials were carried out and the results show that the skin temperature significantly influences the signal fluctuations caused by pulsate blood and the average signal value.

Zhang, Xiqin; Ting, Choon Meng; Yeo, Joon Hock

2010-11-01

184

Catalytic considerations in temperature measurement.  

NASA Technical Reports Server (NTRS)

Literature discussing catalytic activity in platinum group temperature sensors is surveyed. Methods for the determination and/or elimination of catalytic activity are reported. A particular application of the literature is discussed in which it is possible to infer that a shielded platinum total temperature probe does not experience significant catalytic activity in the wake of a supersonic hydrogen burner, while a bare iridium plus rhodium, iridium thermocouple does. It is concluded that catalytic data corrections are restricted and that it is preferable to coat the temperature sensor with a noncatalytic coating. Furthermore, the desirability of transparent coatings is discussed.

Ash, R. L.; Crossman, G. R.; Chitnis, R. V.

1972-01-01

185

International Workshop on Magnetic Measurements of Insertion Devices  

SciTech Connect

The International Workshop on Magnetic Measurements of Insertion Devices was held at the Advanced Photon Source, Argonne National Laboratory, on September 28--29, 1993. The workshop brought together scientists and engineers from Europe, Japan, and the United States to discuss the following topics: Special techniques for magnetic measurements of insertion devices, magnetic tolerances of the insertion devices for third generation synchrotron radiation sources, methods for and accuracy of the multipole moments measurements, magnetic sensors, among other topics. The workshop included thirteen presentations that are collected in this volume.

Not Available

1993-10-01

186

Quantum Walk as a Generalized Measuring Device  

NASA Astrophysics Data System (ADS)

We show that a one-dimensional discrete time quantum walk can be used to implement a generalized measurement in terms of a positive operator value measure (POVM) on a single qubit. More precisely, we show that for a single qubit any set of rank 1 and rank 2 POVM elements can be generated by a properly engineered quantum walk. In such a scenario the measurement of a particle at a position x=i corresponds to a measurement of a POVM element Ei on a qubit. Since the idea of quantum walks originates from the von Neumann model of measurement, in which the change of the position of the pointer depends on the state of the system that is being measured, we argue that von Neumann measurements can be naturally extended to POVMs if one includes the internal evolution of the system in the model.

Kurzy?ski, Pawe?; Wójcik, Antoni

2013-05-01

187

Devices for moisture measurement in natural gas  

SciTech Connect

The Dew Point Tester incorporates a pressure-tight chamber to contain the gas or vapor test sample and valves for controlling gas flow. At one end of the chamber, a clear plastic window is installed to allow observation of the chamber's interior and mirror. The mirror is highly polished stainless steel and is attached at its center to a copper thermometer well. A chiller attached to the thermometer well controls expansion of refrigerant and the temperature of the mirror. The mirror's temperature is indicated by a thermometer whose bulb is located close to the mirror's back surface.

Kahmann, A.R.

1984-04-01

188

A Compilation of Measurement Devices Compendia  

ERIC Educational Resources Information Center

Some 30 compendia of evaluation measures now exist to supplement the Buro's Mental Measurements Yearbooks. This article gives bibliographic and descriptive information about the compendia, in order that evaluators can gain access to a wide range of instruments before deciding whether to construct their own. (Author)

Redick, Ronald L.

1975-01-01

189

Hydrophone Measurements of Medical Ultrasound Devices  

Microsoft Academic Search

This paper deals with some of the methods, calculations, and problems associated with making hydrophone measurements in diagnostic ultrasound fields. The pressure and intensity variations found in these fields can be measured with hydrophones employing the piezopolymer polyvinylidene fluoride (PVDF), but the bandwidths encountered (>50 MHz), along with the small focal diameters achievable (=1 mm), can place great demands on

Gerald R. Harris

1986-01-01

190

Precise Measurement of Process Temperature Differences  

Microsoft Academic Search

Measurement of power in a nuclear reactor system is comparable to measurement of yield in a chemical plant or to measurement of throughput in a paper mill process. In most reactor systems power is determined by measurement of heat transferred to the coolant. In this study reactor coolant heat-rise was determined by the differential-temperature measuring circuitry of a power calculator

Kitchen

2003-01-01

191

33. BENTZEL TUBE. A CURRENT VELOCITY MEASURING DEVICE DEVELOPED AT ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

33. BENTZEL TUBE. A CURRENT VELOCITY MEASURING DEVICE DEVELOPED AT WES IN 1932 BY CARL E. BENTZEL. - Waterways Experiment Station, Hydraulics Laboratory, Halls Ferry Road, 2 miles south of I-20, Vicksburg, Warren County, MS

192

29. HAWSER DEVICE, DEVELOPED AT WES FOR MEASURING LONGITUDINAL AND ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

29. HAWSER DEVICE, DEVELOPED AT WES FOR MEASURING LONGITUDINAL AND TRANSVERSE STRESS OF BARGES IN CANAL LOCKS. - Waterways Experiment Station, Hydraulics Laboratory, Halls Ferry Road, 2 miles south of I-20, Vicksburg, Warren County, MS

193

Method and apparatus for optical temperature measurements  

DOEpatents

A method and apparatus are provided for remotely monitoring temperature. Both method and apparatus employ a temperature probe material having an excitation-dependent emission line whose fluorescence intensity varies directly with temperature whenever excited by light having a first wavelength and whose fluorescence intensity varies inversely with temperature whenever excited by light having a second wavelength. Temperature is measured by alternatively illuminating the temperature probe material with light having the first wavelength and light having the second wavelength, monitoring the intensity of the successive emissions of the excitation-dependent emission line, and relating the intensity ratio of successive emissions to temperature.

Angel, S. Michael (Livermore, CA); Hirschfeld, Tomas B. (Livermore, CA)

1988-01-01

194

Method and apparatus for optical temperature measurements  

DOEpatents

A method and apparatus are provided for remotely monitoring temperature. Both method and apparatus employ a temperature probe material having an excitation-dependent emission line whose fluorescence intensity varies directly with temperature whenever excited by light having a first wavelength and whose fluorescence intensity varies inversely with temperature whenever excited by light having a second wavelength. Temperature is measured by alternatively illiminating the temperature probe material with light having the first wavelength and light having the second wavelength, monitoring the intensity of the successive emissions of the excitation-dependent emission line, and relating the intensity ratio of successive emissions to temperature. 3 figs.

Angel, S.M.; Hirschfeld, T.B.

1986-04-22

195

Survey and Experimental Testing of Nongravimetric Mass Measurement Devices  

NASA Technical Reports Server (NTRS)

Documentation presented describes the design, testing, and evaluation of an accelerated gravimetric balance, a low mass air bearing oscillator of the spring-mass type, and a centrifugal device for liquid mass measurement. A direct mass readout method was developed to replace the oscillation period readout method which required manual calculations to determine mass. A protoype 25 gram capacity micro mass measurement device was developed and tested.

Oakey, W. E.; Lorenz, R.

1977-01-01

196

Creep measuring device for low melting point metals  

E-print Network

CREEP MEASURING DEVICE FOR LOW MELTING POINT METALS A Thesis MARC-EMMANUEL GILBERT PORTAL Submitted to the Graduate College of Texas AA;M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE May 1987... Major Subject: Nuclear Engineering CREEP MEASURING DEVICE FOR LOW MELTING POINT METALS A Thesis MARC-EMMANUEL GILBERT PORTAL Approved as to style and content by: K. L. Peddicord (Chairman of Committee) C. A. Erdman (Member) F. R. Best (Member...

Portal, Marc-Emmanuel Gilbert

1987-01-01

197

Optical distance measurement device and method thereof  

DOEpatents

A system and method of efficiently obtaining distance measurements of a target. A modulated optical beam may be used to determine the distance to the target. A first beam splitter may be used to split the optical beam and a second beam splitter may be used to recombine a reference beam with a return ranging beam. An optical mixing detector may be used in a receiver to efficiently detect distance measurement information.

Bowers, Mark W. (Patterson, CA)

2003-05-27

198

Method and apparatus for optical temperature measurement  

DOEpatents

A temperature probe and a method for using said probe for temperature measurements based on changes in light absorption by the probe are disclosed. The probe comprises a first and a second optical fiber that carry light to and from the probe, and a temperature sensor material, the absorbance of which changes with temperature, through which the light is directed. Light is directed through the first optical fiber, passes through the temperature sensor material, and is transmitted by a second optical fiber from the material to a detector. Temperature-dependent and temperature-independent factors are derived from measurements of the transmitted light intensity. For each sensor material, the temperature T is a function of the ratio, R, of these factors. The temperature function f(R) is found by applying standard data analysis techniques to plots of T versus R at a series of known temperatures. For a sensor having a known temperature function f(R) and known characteristic and temperature-dependent factors, the temperature can be computed from a measurement of R. Suitable sensor materials include neodymium-doped borosilicate glass, accurate to [+-]0.5 C over an operating temperature range of about [minus]196 C to 400 C; and a mixture of D[sub 2]O and H[sub 2]O, accurate to [+-]0.1 C over an operating range of about 5 C to 90 C. 13 figs.

O'Rourke, P.E.; Livingston, R.R.; Prather, W.S.

1994-09-20

199

High-frequency noise measurements in spin-valve devices  

NASA Astrophysics Data System (ADS)

High-frequency magnetic noise in magnetoresistive devices being developed for read-sensor and magnetic random access memory applications may present fundamental limitations on the performance of submicrometer magnetic devices. High-frequency magnetic noise (HFN) arises from intrinsic thermal fluctuations of the device magnetization. High-frequency noise spectroscopy provides a powerful tool to characterize the dynamics and response of small multilayer magnetic devices. In this study, the noise characteristics of micrometer-dimension spin valves have been investigated at frequencies in the range 0.1-6 GHz. At frequencies below this range 1/f noise dominates. HFN measurements, as a function of bias current and longitudinal magnetic field, are obtained for IrMn exchange-biased spin valves using a 50 GHz spectrum analyzer, low-noise amplifier, and a microwave probing system. The magnetic noise is obtained by taking the difference between the noise spectrum of the device in a saturated and unsaturated state. The data can be fit to simple models that predict the noise power to be proportional to the imaginary part of the free-layer magnetic susceptibility. There are some important differences between the high-frequency noise measurements and direct measurements of the device susceptibility (both at the device and wafer level). The noise measurements show a smaller damping parameter (a smaller ferromagnetic resonance linewidth) and additional features due to the presence of nonuniform modes.

Stutzke, N. A.; Burkett, S. L.; Russek, S. E.

2003-07-01

200

LAND LASER:ALTERNATIVE MEASURING DEVICE RECORDS TILLAGE EFFECTS  

Technology Transfer Automated Retrieval System (TEKTRAN)

A device is described that enables the amount of above and below ground soil disruption from tillage components to be accurately measured. A laser-based distance measurement system is used to measure tilled soil profiles to determine differences in above and below ground disturbance. Data from an ...

201

Measurement of the Mutual Interference Between Independent Bluetooth Devices  

Microsoft Academic Search

In this paper the field superposition of commercial Bluetooth transmitters is examined. The superposition is measured for miscellaneous analyzer filter bandwidths, transmitter combinations and numbers. Also the commonness of the collisions is measured. Finally the spatial field distributions of standalone and Bluetooth equipped devices are measured and will be presented and discussed.

Adrien Schoof; Jan Luiken Ter Haseborg

2007-01-01

202

Measurement of the Mutual Interference Between Independent Bluetooth Devices  

NASA Astrophysics Data System (ADS)

In this paper the field superposition of commercial Bluetooth transmitters is examined. The superposition is measured for miscellaneous analyzer filter bandwidths, transmitter combinations and numbers. Also the commonness of the collisions is measured. Finally the spatial field distributions of standalone and Bluetooth equipped devices are measured and will be presented and discussed.

Schoof, Adrien; Ter Haseborg, Jan Luiken

203

Experiences from measuring human mobility using Bluetooth inquiring devices  

Microsoft Academic Search

We present an analysis of human mobility measurements using Bluetooth devices. A number of data traces from such measurements have been made publicly available for the benefit of the research community. However, the limitations of the measurement approaches are in general not well known. We have been given access to the Intel Motes and to the software that was used

Erik Nordström; Christophe Diot; Richard Gass; Per Gunningberg

2007-01-01

204

Effects of chamber pressure variation on the grid temperature in an inertial electrostatic confinement device  

Microsoft Academic Search

Inertial electrostatic confinement fusion devices are compact sources of neutrons, protons, electrons, and x rays. Such sources have many applications. Improving the efficiency of the device also increases the applications of this device. Hence a thorough understanding of the operation of this device is needed. In this paper, we study the effect of chamber pressure on the temperature of the

S. Krupakar Murali; G. A. Emmert; J. F. Santarius; G. L. Kulcinski

2010-01-01

205

In situ high-temperature characterization of AlN-based surface acoustic wave devices  

NASA Astrophysics Data System (ADS)

We report on in situ electrical measurements of surface acoustic wave delay lines based on AlN/sapphire structure and iridium interdigital transducers between 20 °C and 1050 °C under vacuum conditions. The devices show a great potential for temperature sensing applications. Burnout is only observed after 60 h at 1050 °C and is mainly attributed to the agglomeration phenomena undergone by the Ir transducers. However, despite the vacuum conditions, a significant oxidation of the AlN film is observed, pointing out the limitation of the considered structure at least at such extreme temperatures. Original structures overcoming this limitation are then proposed and discussed.

Aubert, Thierry; Bardong, Jochen; Legrani, Ouarda; Elmazria, Omar; Badreddine Assouar, M.; Bruckner, Gudrun; Talbi, Abdelkrim

2013-07-01

206

Video integrated measurement system. [Diagnostic display devices  

SciTech Connect

A Video Integrated Measurement (VIM) System is described which incorporates the use of various noninvasive diagnostic procedures (moire contourography, electromyography, posturometry, infrared thermography, etc.), used individually or in combination, for the evaluation of neuromusculoskeletal and other disorders and their management with biofeedback and other therapeutic procedures. The system provides for measuring individual diagnostic and therapeutic modes, or multiple modes by split screen superimposition, of real time (actual) images of the patient and idealized (ideal-normal) models on a video monitor, along with analog and digital data, graphics, color, and other transduced symbolic information. It is concluded that this system provides an innovative and efficient method by which the therapist and patient can interact in biofeedback training/learning processes and holds considerable promise for more effective measurement and treatment of a wide variety of physical and behavioral disorders.

Spector, B.; Eilbert, L.; Finando, S.; Fukuda, F.

1982-06-01

207

MEASURING VARIATIONS IN TEMPERATURE AND PRESSURE  

E-print Network

MEASURING VARIATIONS IN TEMPERATURE AND PRESSURE A Balloon Experiment by: John Bertinetti and Chip Keating #12;Purpose of the Balloon Experiment Pressure and temperature vary with altitude: pressure;Pressure: P vs. h #12;Temperature: Exponential Curve Fit Note: this is a curve, not a line #12;Our pressure

California at Santa Cruz, University of

208

PHOTOGRAPHIC DEVICE FOR ACCURATELY MEASURING FISH  

E-print Network

WOODS HOLE, MASS. SPECIAL SCIENTIFIC REPORT- FISHERIES No. 228 UNITED STATES DEPARTMENT OF THE INTERIOR and Raymond A. Arzylowicz Fishery Aid Bureau of Commercial Fisheries Special Scientific Report- -Fisheries No was to develop a method of taking these measurements by means of photography. The advantages of photography over

209

An improved device to measure cottonseed strength  

Technology Transfer Automated Retrieval System (TEKTRAN)

During processing, seeds of cotton cultivars with fragile seeds often break and produce seed coat fragments that can cause processing problems at textile mills. A cottonseed shear tester, previously developed to measure cottonseed strength, was modified with enhancements to the drive system to provi...

210

A Tactile Stimulation Device for EEG Measurements in Clinical Use.  

PubMed

A tactile stimulation device for EEG measurements in clinical environments is proposed. The main purpose of the tactile stimulation device is to provide tactile stimulation to different parts of the body. To stimulate all four major types of mechanoreceptors, different stimulation patterns with frequencies in the range of 5-250 Hz have to be generated. The device provides two independent channels, delivers enough power to drive different types of electromagnetic transducers, is small and portable, and no expensive components are required to construct this device. The generated stimulation patterns are very stable, and deterministic control of the device is possible. To meet electrical safety requirements, the device was designed to be fully galvanically isolated. Leakage currents of the entire EEG measurement system including the tactile stimulation device were measured by the European Testing and Certifying Body for Medical Products Graz (Notified Body 0636). All measured currents were far below the maximum allowable currents defined in the safety standard EN 60601-1:2006 for medical electrical equipment. The successful operation of the tactile stimulation device was tested during an EEG experiment. The left and right wrist of one healthy subject were randomly stimulated with seven different frequencies. Steady-state somatosensory evoked potential (SSSEPs) could successfully be evoked and significant tuning curves at electrode positions contralateral to the stimulated wrist could be found. The device is ready to be used in clinical environment in a variety of applications to investigate the somatosensory system, in brain-computer interfaces (BCIs), or to provide tactile feedback. PMID:23864261

Pokorny, Christoph; Breitwieser, Christian; Muller-Putz, Gernot R

2013-07-01

211

The anatomy of a pipe bomb explosion: the effect of explosive filler, container material and ambient temperature on device fragmentation.  

PubMed

Understanding the mechanical properties of different piping material under various conditions is important to predicting the behavior of pipe bombs. In this study, the effect of temperature on pipe bomb containers (i.e., PVC, black steel and galvanized steel) containing low explosive fillers (i.e., Pyrodex and double-base smokeless powder (DBSP)) was investigated. Measurements of fragment velocity and mass were compared for similar devices exploded in the spring (low/high temperature was 8°C/21°C) and winter (low/high temperature range was -9°C/-3°C). The explosions were captured using high speed filmography and fragment velocities were plotted as particle vector velocity maps (PVVM). The time that elapsed between the initiation of the winter devices containing double-base smokeless powder (DBSP) and the failure of their pipe containers ranged from 5.4 to 8.1 ms. The maximum fragment velocities for these devices ranged from 332 to 567 m/s. The steel devices ruptured and exploded more quickly than the PVC device. The steel devices also generated fragments with higher top speeds. Distributions of fragment masses were plotted as histograms and fragment weight distribution maps (FWDM). As expected, steel devices generated fewer, larger fragments than did the PVC devices. Comparison to devices exploded in the spring revealed several pieces of evidence for temperature effects on pipe bombs. For example, the mean fragment velocities for the winter devices were at or above those observed in the spring. The maximum fragment velocity was also higher for the winter steel devices. Although there were no significant differences in mean relative fragment mass, the fragment weight distribution maps (FWDMs) for two winter devices had anomalous slopes, where lower energy filler caused more severe fragmentation than higher energy filler. PMID:24378308

Bors, Dana; Cummins, Josh; Goodpaster, John

2014-01-01

212

Achievement of a record electron temperature for a magnetic mirror device  

E-print Network

We demonstrate plasma discharges with extremely high temperature of bulk electrons at the large axially symmetric magnetic mirror device GDT (Budker Institute, Novosibirsk). According to Thomson scattering measurements, the on-axis electron temperature averaged over several sequential shots is 660 $\\pm$ 50 eV with peak values exceeding 900 eV in few shots. This corresponds to at least threefold increase as compared to previous experiments both at the GDT and at other comparable machines, thus demonstrating the maximum quasi-stationary (~1 ms) electron temperature achieved in open traps. The breakthrough is made possible with application of sophisticated electron cyclotron resonance heating in addition to standard heating by neutral beams. The reported increase of the electron temperature along with previous experiments, which demonstrated high-density plasma confinement with $\\beta\\approx$ 60%, provide a firm basis for extrapolating to fusion relevant applications of open magnetic systems.

Bagryansky, P A; Lizunov, A A; Maximov, V V; Prikhodko, V V; Shalashov, A G; Soldatkina, E I; Solomakhin, A L; Yakovlev, D V

2014-01-01

213

Emitted vibration measurement device and method  

NASA Technical Reports Server (NTRS)

This invention is directed to a method and apparatus for measuring emitted vibrational forces produced by a reaction wheel assembly due to imbalances, misalignment, bearing defects and the like. The apparatus includes a low mass carriage supported on a large mass base. The carriage is in the form of an octagonal frame having an opening which is adapted for receiving the reaction wheel assembly supported thereon by means of a mounting ring. The carriage is supported on the base by means of air bearings which support the carriage in a generally frictionless manner when supplied with compressed air from a source. A plurality of carriage brackets and a plurality of base blocks provided for physical coupling of the base and carriage. The sensing axes of the load cells are arranged generally parallel to the base and connected between the base and carriage such that all of the vibrational forces emitted by the reaction wheel assembly are effectively transmitted through the sensing axes of the load cells. In this manner, a highly reliable and accurate measurment of the vibrational forces of the reaction wheel assembly can be had. The output signals from the load cells are subjected to a dynamical analyzer which analyzes and identifies the rotor and spin bearing components which are causing the vibrational forces.

Gisler, G. L. (inventor)

1986-01-01

214

Measurement kernel design for compressive imaging under device constraints  

NASA Astrophysics Data System (ADS)

We look at the design of projective measurements for compressive imaging based upon image priors and device constraints. If one assumes that image patches from natural imagery can be modeled as a low rank manifold, we develop an optimality criterion for a measurement matrix based upon separating the canonical elements of the manifold prior. We then describe a stochastic search algorithm for finding the optimal measurements under device constraints based upon a subspace mismatch algorithm. The algorithm is then tested on a prototype compressive imaging device designed to collect an 8x4 array of projective measurements simultaneously. This work is based upon work supported by DARPA and the SPAWAR System Center Pacific under Contract No. N66001-11-C-4092. The views expressed are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government.

Shilling, Richard; Muise, Robert

2013-05-01

215

Nonintrusive temperature measurements on advanced turbomachinery components  

SciTech Connect

A nonintrusive, noncontacting method we developed for temperature measurements in hostile environments is well-suited for measurements on advanced turbine components. The method is not only superior to thermocouples in sufficiently difficult environments, but also is the only known method for making measurements in situations where no form of pyrometry works. We demonstrated the method, which uses laser-induced fluorescence of thermographic phosphors bonded to the component surfaces, on turbine blades and vanes in developmental turbine engines. The method is extendable to the much-higher temperatures expected inside advanced turbomachinery. Of particular note is the adaptability of the method to surface-temperature measurements on ceramics operating at high temperatures. In this temperature range, the ceramics become translucent, and surface emissivity becomes meaningless. We shall discuss the method, its advantages and limitations, recent test results on operating turbine engines, and the extension to ceramic components.

Noel, B.W. [Los Alamos National Lab., NM (United States); Turley, W.D.; Lewis, W. [EG and G Energy Measurements, Inc., Goleta, CA (United States)

1992-12-31

216

Nulling Infrared Radiometer for Measuring Temperature  

NASA Technical Reports Server (NTRS)

A nulling, self-calibrating infrared radiometer is being developed for use in noncontact measurement of temperature in any of a variety of industrial and scientific applications. This instrument is expected to be especially well-suited to measurement of ambient or near-ambient temperature and, even more specifically, for measuring the surface temperature of a natural body of water. Although this radiometer would utilize the long-wavelength infrared (LWIR) portion of the spectrum (wavelengths of 8 to 12 m), its basic principle of operation could also be applied to other spectral bands (corresponding to other temperature ranges) in which the atmosphere is transparent and in which design requirements for sensitivity and temperature-measurement accuracy could be satisfied.

Ryan, Robert

2003-01-01

217

Thermodynamic Temperature Measurements Traceable to Photometric Standards  

NASA Astrophysics Data System (ADS)

The replacement of ITS-90 temperature measurements by direct thermodynamic temperature measurements based on radiometric techniques in the temperature range above 1000 °C has been proposed by many national measurement laboratories. This article reports on work at NMIA to develop a simple and robust traceability scheme for thermodynamic temperature, based on the use of photometers and a Thermogage furnace with a graphite tube element modified to improve its temperature uniformity and emissivity. A simple luminance meter was constructed using a commercial photometer and pairs of precision apertures to view the rear of the blackbody cavity. This photometer was calibrated against NMIA reference illuminance lamps, and relative spectral responsivity measurements were used to determine the color-temperature correction between the lamps and the Thermogage blackbody. Thermodynamic temperature determinations made using various combinations of apertures and photometers showed a range of less than 0.2 °C at 1700 °C, consistent with the calculated uncertainty of 0.29 °C ( k = 2). ITS-90 measurements made by NMIA's LP5 and HTSP primary radiation thermometers with an uncertainty of 0.16 °C ( k = 2), are consistent with the thermodynamic measurements. It is suggested that routine thermodynamic temperature determinations can now be made with an effort comparable to that required to realize the ITS-90 above 1000 °C.

Ballico, Mark

2011-12-01

218

ADC's Insertion Devices and Magnetic Measurement Systems Capabilities  

NASA Astrophysics Data System (ADS)

In this paper Advance Design Consulting USA, Inc. (ADC) will discuss ADC's major improved capabilities for building Wiggler Insertion Devices, Undulator Planar Devices, Elliptical Polarizing Undulators (EPU), In-Vacuum Undulators (IVU), Cryogenically Cooled in-vacuum Undulators (CPMU), Super Conductive Undulator, and Insertion Device Magnetic Measurement Systems. ADC has designed, built and delivered Insertion Devices and Magnetic Measurement Systems to such facilities as MAX-lab (two EPUs, a Planar, and Measurement System), ALBA and ASP (Wigglers), BNL (CPMU), SSRF (two IVUs and a Measurement System), PAL (one IVU and Measurement System), NSRRC (one 4m EPU), and SRC (Planar and EPU). ADC's magnetic field measurement system is a sophisticated and sensitive machine for the measurement of magnetic fields in undulators (Planar and EPU), wigglers and in-vacuum ID units. The magnetic fields are measured using 3 axis hall-effect probes, mounted orthogonally, to a thin wand. The wand is mounted to a carriage that rides on vacuum air bearings. The base is granite. A flip coil is provided on two vertical towers with X, Y and Theta axes. Special software is provided to assist in homing, movement, and data collection and analysis.

Deyhim, A.; Kulesza, J.

2013-03-01

219

Measuring output power of Bluetooth devices in a reverberation chamber  

Microsoft Academic Search

In this paper we will present a setup to measure the total radiated power of a Bluetooth device in a reverberation chamber. The setup can even include the close environment of the module. The setup is a further development of setups for measuring radiation efficiency and radiated power of mobile phones in a reverberation chamber.

Andreas Wolfgang; Charlie Orlenius; P.-S. Kildal

2003-01-01

220

75 FR 11624 - Highway Safety Programs; Conforming Products List of Evidential Breath Alcohol Measurement Devices  

Federal Register 2010, 2011, 2012, 2013, 2014

...Conforming Products List of Evidential Breath Alcohol Measurement Devices AGENCY: National...Model Specifications for Evidential Breath Alcohol Measurement Devices (58 FR 48705...Standards for Devices to Measure Breath Alcohol (38 FR 30459). A Qualified...

2010-03-11

221

Measurement of ozone transmissivity at low temperatures  

NASA Technical Reports Server (NTRS)

Low temperature medium resolution measurements of the transmissivity of the ozone band have been made in the laboratory. The range of conditions under which the measurements were made are: -48 to -22 C, .0029 U .71 atmo.cm., 680 P 742 mmHg. The apparatus used is described briefly, measurement conditions are summarized and the resulting spectra are shown.

Bartman, F. L.; Loh, L. T.; Kuhn, W. R.

1976-01-01

222

Sensorless battery temperature measurements based on electrochemical impedance spectroscopy  

NASA Astrophysics Data System (ADS)

A new method is proposed to measure the internal temperature of (Li-ion) batteries. Based on electrochemical impedance spectroscopy measurements, an intercept frequency (f0) can be determined which is exclusively related to the internal battery temperature. The intercept frequency is defined as the frequency at which the imaginary part of the impedance is zero (Zim = 0), i.e. where the phase shift between the battery current and voltage is absent. The advantage of the proposed method is twofold: (i) no hardware temperature sensors are required anymore to monitor the battery temperature and (ii) the method does not suffer from heat transfer delays. Mathematical analysis of the equivalent electrical-circuit, representing the battery performance, confirms that the intercept frequency decreases with rising temperatures. Impedance measurements on rechargeable Li-ion cells of various chemistries were conducted to verify the proposed method. These experiments reveal that the intercept frequency is clearly dependent on the temperature and does not depend on State-of-Charge (SoC) and aging. These impedance-based sensorless temperature measurements are therefore simple and convenient for application in a wide range of stationary, mobile and high-power devices, such as hybrid- and full electric vehicles.

Raijmakers, L. H. J.; Danilov, D. L.; van Lammeren, J. P. M.; Lammers, M. J. G.; Notten, P. H. L.

2014-02-01

223

Magnetic Resonance Flow Velocity and Temperature Mapping of a Shape Memory Polymer Foam Device  

SciTech Connect

Interventional medical devices based on thermally responsive shape memory polymer (SMP) are under development to treat stroke victims. The goals of these catheter-delivered devices include re-establishing blood flow in occluded arteries and preventing aneurysm rupture. Because these devices alter the hemodynamics and dissipate thermal energy during the therapeutic procedure, a first step in the device development process is to investigate fluid velocity and temperature changes following device deployment. A laser-heated SMP foam device was deployed in a simplified in vitro vascular model. Magnetic resonance imaging (MRI) techniques were used to assess the fluid dynamics and thermal changes associated with device deployment. Spatial maps of the steady-state fluid velocity and temperature change inside and outside the laser-heated SMP foam device were acquired. Though non-physiological conditions were used in this initial study, the utility of MRI in the development of a thermally-activated SMP foam device has been demonstrated.

Small IV, W; Gjersing, E; Herberg, J L; Wilson, T S; Maitland, D J

2008-10-29

224

Dynamic temperature measurements with embedded optical sensors.  

SciTech Connect

This report summarizes LDRD project number 151365, %5CDynamic Temperature Measurements with Embedded Optical Sensors%22. The purpose of this project was to develop an optical sensor capable of detecting modest temperature states (<1000 K) with nanosecond time resolution, a recurring diagnostic need in dynamic compression experiments at the Sandia Z machine. Gold sensors were selected because the visible re ectance spectrum of gold varies strongly with temperature. A variety of static and dynamic measurements were performed to assess re ectance changes at di erent temperatures and pressures. Using a minimal optical model for gold, a plausible connection between static calibrations and dynamic measurements was found. With re nements to the model and diagnostic upgrades, embedded gold sensors seem capable of detecting minor (<50 K) temperature changes under dynamic compression.

Dolan, Daniel H.,; Seagle, Christopher T; Ao, Tommy

2013-10-01

225

Compact and high-efficiency device for Raman scattering measurement using optical fibers.  

PubMed

We describe the design and development of a high-efficiency optical measurement device for operation within the small bore of a high-power magnet at low temperature. For the high-efficiency measurement of light emitted from this small region, we designed a compact confocal optics with lens focusing and tilting systems, and used a piezodriven translation stage that allows micron-scale focus control of the sample position. We designed a measurement device that uses 10 m-long optical fibers in order to avoid the influence of mechanical vibration and magnetic field leakage of high-power magnets, and we also describe a technique for minimizing the fluorescence signal of optical fibers. The operation of the device was confirmed by Raman scattering measurements of monolayer graphene on quartz glass with a high signal-to-noise ratio. PMID:25430102

Mitsui, Tadashi

2014-11-01

226

Lidar measurements of stratospheric temperature during STOIC  

NASA Astrophysics Data System (ADS)

Measurements of stratospheric temperature and density were acquired by the NASA/GSFC lidar during the Stratospheric Ozone Intercomparison Campaign (STOIC) experiment at the Jet Propulsion Laboratory Table Mountain Facility (TMF) (34.4°N, 117.7°W) in July and August 1989. Lidar temperatures, obtained on 21 nights preceding and during this experiment, are compared with temperatures derived by radiosondes, datasondes, Stratospheric Aerosol and Gas Experiment (SAGE II) satellite experiment, and National Meteorological Center (NMC) analyses. Radiosondes were flown from the TMF site as well as from San Nicholas Island (33.2°N, 119.5°W) located about 225 km southwest of TMF. Datasondes were deployed from Super-Loki rockets also launched at San Nicholas Island. SAGE II satellite temperature measurements were made within 1000 km of the Table Mountain site. NMC temperature analyses derived from the NOAA satellite measurements were interpolated to coincide in space and time with the lidar measurements. The lidar temperatures, which were derived for altitudes between 30 and 65 km, were within 2-3 K of the temperatures measured by the other sensors in the altitude range 30-45 km. Between 30 and 35 km, lidar temperatures were about 2 K cooler than those obtained from the datasondes and the NMC analyses but were about 1-2 K warmer than those obtained from the radiosonde. These differences may be due to the time difference between the measurements as well as possible nonnegligible aerosol scattering near 30 km. Near and above the stratopause the temperature differences increased to 3-8 K. Lidar temperature profiles also show small-scale variations possibly caused by wave activity.

Ferrare, R. A.; McGee, T. J.; Whiteman, D.; Burris, J.; Owens, M.; Butler, J.; Barnes, R. A.; Schmidlin, F.; Komhyr, W.; Wang, P. H.; McCormick, M. P.; Miller, A. J.

1995-05-01

227

Temperature measurements in sliding elastohydrodynamic point contacts  

NASA Technical Reports Server (NTRS)

Techniques using the infrared radiation emitted by a sliding elastohydrodynamic (EHD) point contact to measure oil film and surface temperature are discussed. Temperature distributions in the EHD contact are presented for a naphthenic mineral oil at 1.04 GN/sq m (150,000 psi) Hertz pressure and several sliding velocities. Film temperatures as high as 360 C are reported at locations near the points of minimum film thickness in the contact side lobes.

Turchina, V.; Sanborn, D. M.; Winer, W. O.

1973-01-01

228

High-accuracy direct ZT and intrinsic properties measurement of thermoelectric couple devices.  

PubMed

Advances in thermoelectric materials in recent years have led to significant improvements in thermoelectric device performance and thus, give rise to many new potential applications. In order to optimize a thermoelectric device for specific applications and to accurately predict its performance ideally the material's figure of merit ZT as well as the individual intrinsic properties (Seebeck coefficient, electrical resistivity, and thermal conductivity) should be known with high accuracy. For that matter, we developed two experimental methods in which the first directly obtains the ZT and the second directly measures the individual intrinsic leg properties of the same p/n-type thermoelectric couple device. This has the advantage that all material properties are measured in the same sample direction after the thermoelectric legs have been mounted in the final device. Therefore, possible effects from crystal anisotropy and from the device fabrication process are accounted for. The Seebeck coefficients, electrical resistivities, and thermal conductivities are measured with differential methods to minimize measurement uncertainties to below 3%. The thermoelectric couple ZT is directly measured with a differential Harman method which is in excellent agreement with the calculated ZT from the individual leg properties. The errors in both the directly measured and calculated thermoelectric couple ZT are below 5% which is significantly lower than typical uncertainties using commercial methods. Thus, the developed technique is ideal for characterizing assembled couple devices and individual thermoelectric materials and enables accurate device optimization and performance predictions. We demonstrate the methods by measuring a p/n-type thermoelectric couple device assembled from commercial bulk thermoelectric Bi2Te3 elements in the temperature range of 30?°C-150?°C and discuss the performance of the couple thermoelectric generator in terms of its efficiency and materials' self-compatibility. PMID:24784659

Kraemer, D; Chen, G

2014-04-01

229

An Evaluation of Non-contact Temperature Measurements for Oxyacetylene Torch Testing of UltraHigh Temperature Ceramics  

Microsoft Academic Search

The feasibility of using noncontact measurement devices in oxy-acetylene torch ablation testing for UHTCs has been investigated. UHTCs are candidate materials for use in hypersonic and atmospheric re-entry vehicles for their oxidation resistance and thermal capabilities and an oxy-acetylene torch rig is being used to screen materials that show promise for these applications. Non-contact temperature measurement devices have been used

Justin Cotter

2011-01-01

230

Ways to measure body temperature in the field.  

PubMed

Body temperature (Tb) represents one of the key parameters in ecophysiological studies with focus on energy saving strategies. In this study we therefore comparatively evaluated the usefulness of two types of temperature-sensitive passive transponders (LifeChips and IPTT-300) and one data logger (iButton, DS1922L) mounted onto a collar to measure Tb in the field. First we tested the accuracy of all three devices in a water bath with water temperature ranging from 0 to 40°C. Second, we evaluated the usefulness of the LifeChips and the modified iButtons for measuring Tb of small heterothermic mammals under field conditions. For this work we subcutaneously implanted 14 male edible dormice (Glis glis) with transponders, and equipped another 14 males with data loggers to simultaneously record Tb and oxygen consumption with a portable oxygen analyzer (Oxbox). In one individual we recorded Tb with both devices and analyzed recorded Tb patterns. LifeChips are able to measure temperature within the smallest range from 25 to 40°C with an accuracy of 0.07±0.12°C. IPTT-300 transponders measured temperature between 10 and 40°C, but accuracy decreased considerably at values below 30°C, with maximal deviations of nearly 7°C. An individual calibration of each transponder is therefore needed, before using it at low Tbs. The accuracy of the data logger was comparatively good (0.12±0.25°C) and stable over the whole temperature range tested (0-40°C). In all three devices, the repeatability of measurements was high. LifeChip transponders as well as modified iButtons measured Tb reliably under field conditions. Simultaneous Tb-recordings in one edible dormouse with an implanted LifeChip and a collar-mounted iButton revealed that values of both measurements were closely correlated. Taken together, we conclude that implanted temperature-sensitive transponders represent an appropriate and largely non-invasive method to measure Tb also under field conditions. PMID:24802148

Langer, Franz; Fietz, Joanna

2014-05-01

231

Use of piezoelectric multicomponent force measuring devices in fluid mechanics  

NASA Technical Reports Server (NTRS)

The characterisitics of piezoelectric multicomponent transducers are discussed, giving attention to the advantages of quartz over other materials. The main advantage of piezoelectric devices in aerodynamic studies is their ability to indicate rapid changes in the values of physical parameters. Problems in the accuracy of measurments by piezoelectric devices can be overcome by suitable design approaches. A practical example is given of how such can be utilized to measure rapid fluctuations of fluid forces exerted on a circular cylinder mounted in a water channel.

Richter, A.; Stefan, K.

1979-01-01

232

Measurement of Moving Speed Using a Leaky Lamb Wave Device  

NASA Astrophysics Data System (ADS)

A technique for measuring the moving speed of a tested object is described using a leaky Lamb wave device composed of two interdigital transducers (IDTs). The IDT on a thin piezoelectric ceramic plate radiates as an ultrasound beam into a liquid and also operates as a detector of the ultrasound signal reflected from a moving medium, at a liquid-solid interface. The delayed output has a frequency shift via a Doppler effect, corresponding to the moving speed of the reflection object. Basic performances of the leaky Lamb wave device and the measured results of the moving speed of a metal disk are presented.

Fujita, Takeshi; Toda, Kohji

2001-09-01

233

Experimental Measurement-Device-Independent Quantum Key Distribution  

NASA Astrophysics Data System (ADS)

Quantum key distribution is proven to offer unconditional security in communication between two remote users with ideal source and detection. Unfortunately, ideal devices never exist in practice and device imperfections have become the targets of various attacks. By developing up-conversion single-photon detectors with high efficiency and low noise, we faithfully demonstrate the measurement-device-independent quantum-key-distribution protocol, which is immune to all hacking strategies on detection. Meanwhile, we employ the decoy-state method to defend attacks on a nonideal source. By assuming a trusted source scenario, our practical system, which generates more than a 25 kbit secure key over a 50 km fiber link, serves as a stepping stone in the quest for unconditionally secure communications with realistic devices.

Liu, Yang; Chen, Teng-Yun; Wang, Liu-Jun; Liang, Hao; Shentu, Guo-Liang; Wang, Jian; Cui, Ke; Yin, Hua-Lei; Liu, Nai-Le; Li, Li; Ma, Xiongfeng; Pelc, Jason S.; Fejer, M. M.; Peng, Cheng-Zhi; Zhang, Qiang; Pan, Jian-Wei

2013-09-01

234

Experimental measurement-device-independent quantum key distribution.  

PubMed

Quantum key distribution is proven to offer unconditional security in communication between two remote users with ideal source and detection. Unfortunately, ideal devices never exist in practice and device imperfections have become the targets of various attacks. By developing up-conversion single-photon detectors with high efficiency and low noise, we faithfully demonstrate the measurement-device-independent quantum-key-distribution protocol, which is immune to all hacking strategies on detection. Meanwhile, we employ the decoy-state method to defend attacks on a nonideal source. By assuming a trusted source scenario, our practical system, which generates more than a 25 kbit secure key over a 50 km fiber link, serves as a stepping stone in the quest for unconditionally secure communications with realistic devices. PMID:24116758

Liu, Yang; Chen, Teng-Yun; Wang, Liu-Jun; Liang, Hao; Shentu, Guo-Liang; Wang, Jian; Cui, Ke; Yin, Hua-Lei; Liu, Nai-Le; Li, Li; Ma, Xiongfeng; Pelc, Jason S; Fejer, M M; Peng, Cheng-Zhi; Zhang, Qiang; Pan, Jian-Wei

2013-09-27

235

Device and method for the measurement of gas permeability through membranes  

DOEpatents

A device for the measuring membrane permeability in electrical/electrochemical/photo-electrochemical fields is provided. The device is a permeation cell and a tube mounted within the cell. An electrode is mounted at one end of the tube. A membrane is mounted within the cell wherein a corona is discharged from the electrode in a general direction toward the membrane thereby generating heated hydrogen atoms adjacent the membrane. A method for measuring the effects of temperature and pressure on membrane permeability and selectivity is also provided.

Agarwal, Pradeep K.; Ackerman, John; Borgialli, Ron; Hamann, Jerry; Muknahalliptna, Suresh

2006-08-08

236

Temperature dependence of terahertz emission by an asymmetric intrinsic Josephson junction device  

NASA Astrophysics Data System (ADS)

This study investigates the effect of temperature on the emission frequency of an intrinsic Josephson junction terahertz (THz) electromagnetic wave source, which can be used for high-speed communications by THz carrier wave. The characteristic emission features of two device types (asymmetric and symmetric) and two bias regimes (low and high) were determined. The bias-dependent emission frequency was temperature dependent in the asymmetric device, most likely reflecting the temperature-dependent London penetration depth. The bias tunability of the emission frequency can be explained by device self-heating, which significantly and inhomogeneously raises the temperatures of the device from its bath temperature. These findings are consistent with previous studies of temperature distribution in these devices.

Kakeya, Itsuhiro; Hirayama, Nobuo; Omukai, Yuta; Suzuki, Minoru

2015-01-01

237

Floating Probe Assembly for Measuring Temperature of Water  

NASA Technical Reports Server (NTRS)

A floating apparatus denoted a temperature probe aquatic suspension system (TPASS) has been developed for measuring the temperature of an ocean, lake, or other natural body of water at predetermined depths. Prior instruments built for the same purpose were found to give inaccurate readings because the apparatuses themselves significantly affected the temperatures of the water in their vicinities. The design of the TPASS is intended to satisfy a requirement to minimize the perturbation of the temperatures to be measured. The TPASS includes a square-cross-section aluminum rod 28 in. (approx. = 71 cm) long with floats attached at both ends. Each float includes five polystyrene foam disks about 3/4 in. (approx. = 1.9 cm) thick and 2.5 in. (approx. = 6.4 cm) in diameter. The disks are stacked to form cylinders, bolted to the rod, and covered with hollow plastic sleeves. A metal sleeve is clamped to the middle of the aluminum rod, from whence it hangs down into the water. Temperature probes (which can be thermocouples, thermistors, or resistance temperature devices) are placed within the sleeve at the desired measurement depths. Wires from the temperature probes are routed to the input terminals of a data logger. This work was done by Randy

Selinsky, T.; Stewart, Randy; Ruffin, Clyde

2002-01-01

238

Floating Probe Assembly for Measuring Temperature of Water  

NASA Technical Reports Server (NTRS)

A floating apparatus denoted a temperature probe aquatic suspension system (TPASS) has been developed for measuring the temperature of an ocean, lake, or other natural body of water at predetermined depths. Prior instruments built for the same purpose were found to give inaccurate readings because the apparatuses themselves significantly affected the temperatures of the water in their vicinities. The design of the TPASS is intended to satisfy a requirement to minimize the perturbation of the temperatures to be measured. The TPASS includes a square-cross-section aluminum rod 28 in. (=71 cm) long with floats attached at both ends. Each float includes five polystyrene foam disks about 3/4 in.(=1.9 cm) thick and 2.5 in. (=6.4 cm) in diameter. The disks are stacked to form cylinders, bolted to the rod, and covered with hollow plastic sleeves. A metal sleeve is clamped to the middle of the aluminum rod, from whence it hangs down into the water. Temperature probes (which can be thermocouples, thermistors, or resistance temperature devices) are placed within the sleeve at the desired measurement depths. Wires from the temperature probes are routed to the input terminals of a data logger.

Stewart, Randy; Ruffin, Clyde

2002-01-01

239

Precision temperature gradient measurements on window glass  

NASA Technical Reports Server (NTRS)

Surface temperature gradients were measured with miniature thermocouples installed in a 58.5 cm (23-inch) square window. Test measurements at 25 locations were made under vacuum and with the window operating in radiant heat transfer mode. The analysis of thermocouple design and installation is presented along with a lead wire routing scheme to allow for both differential and absolute temperature measurements while using a minimum number of signal feedthru paths through the test chamber wall. Typical test data and operational precautions are presented along with the accuracy analysis for installation effects and measurement effects to support differential temperature measurement precision values of + or - 0.06 C RMS + or - 0.1 F RMS).

Mikk, G.; Petrie, W.

1977-01-01

240

Fast Inverter Loss and Temperature Simulation and Silicon Carbide Device Evaluation for Hybrid Electric Vehicle Drives  

Microsoft Academic Search

This paper presents an integrated framework for modelling inverter performance and evaluating power devices in hybrid electric vehicle drives. Based in MATLAB\\/Simulink, it uses a novel method of decoupling the device and inverter simulation to maintain high accuracy of power losses and devices temperatures, and achieve faster than real time inverter simulation. An illustration is given for a full hybrid

Angus Bryant; Graham Roberts; Alan Walker; Philip Mawby; Takashi Ueta; Tosifumi Nisijima; Kimimori Hamada

2008-01-01

241

A survey of gas-side fouling measuring devices  

NASA Technical Reports Server (NTRS)

A survey of measuring devices or probes, which were used to investigate gas side fouling, was carried out. Five different types of measuring devices are identified and discussed including: heat flux meters, mass accumulation probes, optical devices, deposition probes, and acid condensation probes. A total of 32 different probes are described in detail and summarized in matrix or tabular form. The important considerations of combustion gas characterization and deposit analysis are also given a significant amount of attention. The results show that considerable work was done in the development of gas side fouling probes. However, it is clear that the design, construction, and testing of a durable, versatile probe - capable of monitoring on-line fouling resistances - remains a formidable task.

Marner, W. J.; Henslee, S. P.

1984-01-01

242

MISSE 1 and 2 Tray Temperature Measurements  

NASA Technical Reports Server (NTRS)

The Materials International Space Station Experiment (MISSE 1 & 2) was deployed August 10,2001 and retrieved July 30,2005. This experiment is a co-operative endeavor by NASA-LaRC. NASA-GRC, NASA-MSFC, NASA-JSC, the Materials Laboratory at the Air Force Research Laboratory, and the Boeing Phantom Works. The objective of the experiment is to evaluate performance, stability, and long term survivability of materials and components planned for use by NASA and DOD on future LEO, synchronous orbit, and interplanetary space missions. Temperature is an important parameter in the evaluation of space environmental effects on materials. The MISSE 1 & 2 had autonomous temperature data loggers to measure the temperature of each of the four experiment trays. The MISSE tray-temperature data loggers have one external thermistor data channel, and a 12 bit digital converter. The MISSE experiment trays were exposed to the ISS space environment for nearly four times the nominal design lifetime for this experiment. Nevertheless, all of the data loggers provided useful temperature measurements of MISSE. The temperature measurement system has been discussed in a previous paper. This paper presents temperature measurements of MISSE payload experiment carriers (PECs) 1 and 2 experiment trays.

Harvey, Gale A.; Kinard, William H.

2006-01-01

243

NaOH-based high temperature heat-of-fusion thermal energy storage device  

NASA Technical Reports Server (NTRS)

A material called Thermkeep, developed as a low-cost method for the storage of thermal energy for solar electric power generating systems is discussed. The storage device consists of an insulated cylinder containing Thermkeep in which coiled tubular heat exchangers are immersed. A one-tenth scale model of the design contains 25 heat-exchanger tubes and 1500 kg of Thermkeep. Its instrumentation includes thermocouples to measure internal Thermkeep temperatures, vessel surface, heated shroud surface, and pressure gauges to indicate heat-exchanger pressure drops. The test-circuit design is presented and experimental results are discussed.

Cohen, B. M.; Rice, R. E.

1978-01-01

244

Mammography spectrum measurement using an x-ray diffraction device  

NASA Astrophysics Data System (ADS)

The use of a diffraction spectrometer developed by Deslattes for the determination of mammographic kV is extended to the measurement of accurate, relative x-ray spectra. Raw x-ray spectra (photon fluence versus energy) are determined by passing an x-ray beam through a bent quartz diffraction crystal, and the diffracted x-rays are detected by an x-ray intensifying screen coupled to a charge coupled device. Two nonlinear correction procedures, one operating on the energy axis and the other operating on the fluence axis, are described and performed on measured x-ray spectra. The corrected x-ray spectra are compared against tabulated x-ray spectra measured under nearly identical conditions. Results indicate that the current device is capable of producing accurate relative x-ray spectral measurements in the energy region from 12 keV to 40 keV, which represents most of the screen-film mammography energy range. Twelve keV is the low-energy cut-off, due to the design geometry of the device. The spectrometer was also used to determine the energy-dependent x-ray mass attenuation coefficients for aluminium, with excellent results in the 12-30 keV range. Additional utility of the device for accurately determining the attenuation characteristics of various normal and abnormal breast tissues and phantom substitutes is anticipated.

Boone, John M.; Yu, Tong; Seibert, Anthony

1998-09-01

245

Prototype of a slant visual range measuring device  

NASA Astrophysics Data System (ADS)

A prototype an eye-safe slant visual range measuring device consisting of a modified eye-safe cloud ceilograph is described. The system concept with a fast data system and a complex data handling program is presented. It is intended for airports.

Streicher, Juergen; Werner, Christian; Berghaus, Uwe; Gatz, Harald; Gelbke, Eberhard; Lisius, Andreas; Muenkel, Christoph

1988-08-01

246

Method and apparatus for measuring low currents in capacitance devices  

DOEpatents

A method and apparatus for measuring subnanoampere currents in capacitance devices is reported. The method is based on a comparison of the voltages developed across the capacitance device with that of a reference capacitor in which the current is adjusted by means of a variable current source to produce a stable voltage difference. The current varying means of the variable current source is calibrated to provide a read out of the measured current. Current gain may be provided by using a reference capacitor which is larger than the device capacitance with a corresponding increase in current supplied through the reference capacitor. The gain is then the ratio of the reference capacitance to the device capacitance. In one illustrated embodiment, the invention makes possible a new type of ionizing radiation dose-rate monitor where dose-rate is measured by discharging a reference capacitor with a variable current source at the same rate that radiation is discharging an ionization chamber. The invention eliminates high-megohm resistors and low current ammeters used in low-current measuring instruments.

Kopp, M.K.; Manning, F.W.; Guerrant, G.C.

1986-06-04

247

Device for Measuring the Acidity of Airborne Contaminants  

E-print Network

pollution; with 1.5 million of these deaths attributable to indoor air pollution. University of Florida researchers have developed this unique device providing a cutting-edge solution to monitoring airborne the water extraction process, which are often used in conventional pH measurement method. Due to no workup

Slatton, Clint

248

Blood damage measures for ventricular assist device modeling  

E-print Network

Blood damage measures for ventricular assist device modeling Dhruv Arora1, Marek Behr1 and Matteo challenge that needs to be addressed in the design phase of blood pumps is the elevated level of shear stress, and the hemolysis response of the red blood cells, which depends on both the dose and time

Natelson, Douglas

249

IN SITU FIELD PORTABLE FINE PARTICLE MEASURING DEVICE  

EPA Science Inventory

The report describes the design, development, and testing of an in situ fine particle measuring device--the Fine Particle Stack Spectrometer System (FPSSS). It is a laser-fed optical system with detection by near-forward light scattering. Sample volume is established by a high-re...

250

Graphene, a material for high temperature devices intrinsic carrier density, carrier  

E-print Network

Graphene, a material for high temperature devices ­ intrinsic carrier density, carrier drift 3.87 3 106 cm22 K22 ?T2 ), carrier drift velocity, and G mode phonon energy of graphene devices and their temperature dependencies up to 2400 K. Our results show intrinsic carrier density of graphene is an order

Wang, Wei Hua

251

Method measuring oxygen tension and transport within subcutaneous devices.  

PubMed

Cellular therapies hold promise to replace the implantation of whole organs in the treatment of disease. For most cell types, in vivo viability depends on oxygen delivery to avoid the toxic effects of hypoxia. A promising approach is the in situ vascularization of implantable devices which can mediate hypoxia and improve both the lifetime and utility of implanted cells and tissues. Although mathematical models and bulk measurements of oxygenation in surrounding tissue have been used to estimate oxygenation within devices, such estimates are insufficient in determining if supplied oxygen is sufficient for the entire thickness of the implanted cells and tissues. We have developed a technique in which oxygen-sensitive microparticles (OSMs) are incorporated into the volume of subcutaneously implantable devices. Oxygen partial pressure within these devices can be measured directly in vivo by an optical probe placed on the skin surface. As validation, OSMs have been incorporated into alginate beads, commonly used as immunoisolation devices to encapsulate pancreatic islet cells. Alginate beads were implanted into the subcutaneous space of Sprague–Dawley rats. Oxygen transport through beads was characterized from dynamic OSM signals in response to changes in inhaled oxygen. Changes in oxygen dynamics over days demonstrate the utility of our technology. PMID:25162910

Weidling, John; Sameni, Sara; Lakey, Jonathan R T; Botvinick, Elliot

2014-08-01

252

Constant frequency pulsed phase-locked loop measuring device  

NASA Technical Reports Server (NTRS)

A measuring apparatus is presented that uses a fixed frequency oscillator to measure small changes in the phase velocity ultrasonic sound when a sample is exposed to environmental changes such as changes in pressure, temperature, etc. The invention automatically balances electrical phase shifts against the acoustical phase shifts in order to obtain an accurate measurement of electrical phase shifts.

Yost, William T. (inventor); Kushnick, Peter W. (inventor); Cantrell, John H. (inventor)

1993-01-01

253

Methods for measuring acoustic power of an ultrasonic neurosurgical device.  

PubMed

Measurement of the acoustic power in high-energy ultrasonic devices is complex due to occurrence of the strong cavitation in front of the sonotrode tip. In our research we used three methods for characterization of our new ultrasonic probe for neuroendoscopic procedures. The first method is based on the electromechanical characterization of the device measuring the displacement of the sonotrode tip and input electrical impedance around excitation frequency with different amounts of the applied electrical power The second method is based on measuring the spatial pressure magnitude distribution of an ultrasound surgical device produced in an anechoic tank. The acoustic reciprocity principle is used to determinate the derived acoustic power of equivalent ultrasound sources at frequency components present in the spectrum of radiated ultrasonic waves. The third method is based on measuring the total absorbed acoustic power in the restricted volume of water using the calorimetric method. In the electromechanical characterization, calculated electroacoustic efficiency factor from equivalent electrical circuits is between 40-60%, the same as one obtained measuring the derived acoustic power in an anechoic tank when there is no cavitation. When cavitation activity is present in the front of the sonotrode tip the bubble cloud has a significant influence on the derived acoustic power and decreases electroacoustic efficiency. The measured output acoustic power using calorimetric method is greater then derived acoustic power, due to a large amount of heat energy released in the cavitation process. PMID:21648319

Petosi?, Antonio; Ivancevi?, Bojan; Svilar, Dragoljub; Stimac, Tihomir; Paladino, Josip; Oreskovi?, Darko; Jurjevi?, Ivana; Klarica, Marijan

2011-01-01

254

Assessment of body temperature measurement options.  

PubMed

Assessment of body temperature is important for decisions in nursing care, medical diagnosis, treatment and the need of laboratory tests. The definition of normal body temperature as 37°C was established in the middle of the 19th century. Since then the technical design and the accuracy of thermometers has been much improved. Knowledge of physical influence on the individual body temperature, such as thermoregulation and hormones, are still not taken into consideration in body temperature assessment. It is time for a change; the unadjusted mode should be used, without adjusting to another site and the same site of measurement should be used as far as possible. Peripheral sites, such as the axillary and the forehead site, are not recommended as an assessment of core body temperature in adults. Frail elderly individuals might have a low normal body temperature and therefore be at risk of being assessed as non-febrile. As the ear site is close to the hypothalamus and quickly responds to changes in the set point temperature, it is a preferable and recommendable site for measurement of body temperature. PMID:24037397

Sund-Levander, Märtha; Grodzinsky, Ewa

255

Assembly for electrical conductivity measurements in the piston cylinder device  

DOEpatents

An assembly apparatus for measurement of electrical conductivity or other properties of a sample in a piston cylinder device wherein pressure and heat are applied to the sample by the piston cylinder device. The assembly apparatus includes a body, a first electrode in the body, the first electrode operatively connected to the sample, a first electrical conductor connected to the first electrode, a washer constructed of a hard conducting material, the washer surrounding the first electrical conductor in the body, a second electrode in the body, the second electrode operatively connected to the sample, and a second electrical conductor connected to the second electrode.

Watson, Heather Christine (Dublin, CA); Roberts, Jeffrey James (Livermore, CA)

2012-06-05

256

40 CFR 90.309 - Engine intake air temperature measurement.  

Code of Federal Regulations, 2012 CFR

...2012-07-01 false Engine intake air temperature measurement. 90.309 Section 90...Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...cleaner, for most engines.) (b) The temperature measurements must be accurate to...

2012-07-01

257

40 CFR 90.309 - Engine intake air temperature measurement.  

Code of Federal Regulations, 2011 CFR

...2011-07-01 false Engine intake air temperature measurement. 90.309 Section 90...Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...cleaner, for most engines.) (b) The temperature measurements must be accurate to...

2011-07-01

258

40 CFR 90.309 - Engine intake air temperature measurement.  

Code of Federal Regulations, 2014 CFR

...2013-07-01 true Engine intake air temperature measurement. 90.309 Section 90...Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...cleaner, for most engines.) (b) The temperature measurements must be accurate to...

2014-07-01

259

40 CFR 90.309 - Engine intake air temperature measurement.  

Code of Federal Regulations, 2013 CFR

...2013-07-01 false Engine intake air temperature measurement. 90.309 Section 90...Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...cleaner, for most engines.) (b) The temperature measurements must be accurate to...

2013-07-01

260

40 CFR 90.309 - Engine intake air temperature measurement.  

Code of Federal Regulations, 2010 CFR

...2010-07-01 false Engine intake air temperature measurement. 90.309 Section 90...Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...cleaner, for most engines.) (b) The temperature measurements must be accurate to...

2010-07-01

261

Turbine gas temperature measurement and control system  

NASA Technical Reports Server (NTRS)

A fluidic Turbine Inlet Gas Temperature (TIGIT) Measurement and Control System was developed for use on a Pratt and Whitney Aircraft J58 engine. Based on engine operating requirements, criteria for high temperature materials selection, system design, and system performance were established. To minimize development and operational risk, the TIGT control system was designed to interface with an existing Exhaust Gas Temperature (EGT) Trim System and thereby modulate steady-state fuel flow to maintain a desired TIGT level. Extensive component and system testing was conducted including heated (2300F) vibration tests for the fluidic sensor and gas sampling probe, temperature and vibration tests on the system electronics, burner rig testing of the TIGT measurement system, and in excess of 100 hours of system testing on a J58 engine. (Modified author abstract)

Webb, W. L.

1973-01-01

262

Laser weld penetration estimation using temperature measurements  

SciTech Connect

Penetration depth is an important factor critical to the quality of a laser weld. This paper examines the feasibility of using temperature measurements on the bottom surface of the work-piece to estimate weld penetration. A three-dimensional analytical model relating penetration depth, weld bead width and welding speed to temperature distribution at the bottom surface of the workpiece is developed. Temperatures on the bottom surface of the workpiece are measured using infrared thermocouples located behind the laser beam. Experimental results from bead-on-plate welds on low carbon steel plates of varying thickness at different levels of laser power and speeds validate the model and show that the temperature on the bottom surface is a sensitive indicator of penetration depth. The proposed model is computationally efficient and is suitable for on-line process monitoring application.

Lankalapalli, K.N.; Tu, J.F. [Purdue Univ., West Lafayette, IN (United States). School of Industrial Engineering; Leong, K.H. [Argonne National Lab., IL (United States); Gartner, M. [Ford Motor Co., Livonia, MI (United States)

1997-10-01

263

Implementation of a Measurement-Device-Independent Entanglement Witness  

NASA Astrophysics Data System (ADS)

Entanglement, the essential resource in quantum information processing, should be witnessed in many tasks such as quantum computing and quantum communication. The conventional entanglement witness method, relying on an idealized implementation of measurements, could wrongly conclude a separable state to be entangled due to imperfect detections. Inspired by the idea of a time-shift attack, we construct an attack on the conventional entanglement witness process and demonstrate that a separable state can be falsely identified to be entangled. To close such detection loopholes, based on a recently proposed measurement-device-independent entanglement witness method, we design and experimentally demonstrate a measurement-device-independent entanglement witness for a variety of two-qubit states. By the new scheme, we show that an entanglement witness can be realized without detection loopholes.

Xu, Ping; Yuan, Xiao; Chen, Luo-Kan; Lu, He; Yao, Xing-Can; Ma, Xiongfeng; Chen, Yu-Ao; Pan, Jian-Wei

2014-04-01

264

Methods of measurement for semiconductor materials, process control, and devices  

NASA Technical Reports Server (NTRS)

Significant accomplishments include development of a procedure to correct for the substantial differences of transistor delay time as measured with different instruments or with the same instrument at different frequencies; association of infrared response spectra of poor quality germanium gamma ray detectors with spectra of detectors fabricated from portions of a good crystal that had been degraded in known ways; and confirmation of the excellent quality and cosmetic appearance of ultrasonic bonds made with aluminum ribbon wire. Work is continuing on measurement of resistivity of semiconductor crystals; study of gold-doped silicon, development of the infrared response technique; evaluation of wire bonds and die attachment; and measurement of thermal properties of semiconductor devices, delay time and related carrier transport properties in junction devices, and noise properties of microwave diodes.

Bullis, W. M. (editor)

1972-01-01

265

A device for automated phase space measurement of ion beams  

NASA Astrophysics Data System (ADS)

Equipment for automated phase-space measurements was developed at the VERA Lab. The measurement of the beam's intensity distribution, as well as its relative position with respect to the reference orbit is performed at two locations along the beam line. The device basically consists of moveable slits and a beam profile monitor, which are both coordinated and controlled by an embedded controller. The operating system of the controller is based on Linux with real-time extension. It controls the movement of the slits and records the data synchronized to the movement of the beam profile monitor. The data is sent via TCP/IP to the data acquisition system of VERA where visualization takes place. The duration of one phase space measurement is less than 10 s, which allows for using the device during routine beam tuning.

Lukas, J.; Priller, A.; Steier, P.

2007-06-01

266

EFFECTIVE ULTRAVIOLET IRRADIANCE MEASUREMENTS FROM ARTIFICIAL TANNING DEVICES IN GREECE.  

PubMed

Artificial tanning remains very popular worldwide, despite the International Agency for Research on Cancer classification of ultraviolet (UV) radiation from sunbeds as 'carcinogenic to humans'. Greek Atomic Energy Commission has initiated a surveillance action of the artificial tanning devices in Greece in order to record the effective irradiance levels from the sunbeds and to inform and synchronise the domestic artificial tanning business sector with the requirements of the European Standard EN 60335-2-27:2010. In this direction, in situ measurements of UV emissions from sunbeds in solaria businesses all over Greece were performed from October 2013 until July 2014, with a radiometer and a portable single-monochromator spectrophotometer. Analysis of the measurements' results revealed that effective irradiance in ?60 % of the measured sunbeds exceeded the 0.3 W m(-2) limit value set by EN 60335-2-27:2010 and only 20 % of the devices could be categorised as UV type 3. PMID:25468991

Petri, Aspasia; Karabetsos, Efthymios

2014-12-01

267

Implementation of a measurement-device-independent entanglement witness.  

PubMed

Entanglement, the essential resource in quantum information processing, should be witnessed in many tasks such as quantum computing and quantum communication. The conventional entanglement witness method, relying on an idealized implementation of measurements, could wrongly conclude a separable state to be entangled due to imperfect detections. Inspired by the idea of a time-shift attack, we construct an attack on the conventional entanglement witness process and demonstrate that a separable state can be falsely identified to be entangled. To close such detection loopholes, based on a recently proposed measurement-device-independent entanglement witness method, we design and experimentally demonstrate a measurement-device-independent entanglement witness for a variety of two-qubit states. By the new scheme, we show that an entanglement witness can be realized without detection loopholes. PMID:24765936

Xu, Ping; Yuan, Xiao; Chen, Luo-Kan; Lu, He; Yao, Xing-Can; Ma, Xiongfeng; Chen, Yu-Ao; Pan, Jian-Wei

2014-04-11

268

Experimental measurement-device-independent quantum key distribution  

E-print Network

Throughout history, every advance in encryption has been defeated by advances in hacking with severe consequences. Quantum cryptography holds the promise to end this battle by offering unconditional security when ideal single-photon sources and detectors are employed. Unfortunately, ideal devices never exist in practice and device imperfections have become the targets of various attacks. By developing up-conversion single-photon detectors with high efficiency and low noise, we build up a measurement-device-independent quantum key distribution (MDI-QKD) system, which is immune to all hacking strategies on detection. Meanwhile, we employ the decoy-state method to defeat attacks on non-ideal source. By closing the loopholes in both source and detection, our practical system, which generates more than 25 kbit secure key over a 50-km fiber link, provides an ultimate solution for communication security.

Yang Liu; Teng-Yun Chen; Liu-Jun Wang; Hao Liang; Guo-Liang Shentu; Jian Wang; Ke Cui; Hua-Lei Yin; Nai-Le Liu; Li Li; Xiongfeng Ma; Jason S. Pelc; M. M. Fejer; Qiang Zhang; Jian-Wei Pan

2012-09-27

269

Apparatus and method for high temperature viscosity and temperature measurements  

DOEpatents

A probe for measuring the viscosity and/or temperature of high temperature liquids, such as molten metals, glass and similar materials comprises a rod which is an acoustical waveguide through which a transducer emits an ultrasonic signal through one end of the probe, and which is reflected from (a) a notch or slit or an interface between two materials of the probe and (b) from the other end of the probe which is in contact with the hot liquid or hot melt, and is detected by the same transducer at the signal emission end. To avoid the harmful effects of introducing a thermally conductive heat sink into the melt, the probe is made of relatively thermally insulative (non-heat-conductive) refractory material. The time between signal emission and reflection, and the amplitude of reflections, are compared against calibration curves to obtain temperature and viscosity values.

Balasubramaniam, Krishnan (Mississippi State, MS); Shah, Vimal (Houston, TX); Costley, R. Daniel (Mississippi State, MS); Singh, Jagdish P. (Mississippi State, MS)

2001-01-01

270

Epidermal photonic devices for quantitative imaging of temperature and thermal transport characteristics of the skin  

NASA Astrophysics Data System (ADS)

Characterization of temperature and thermal transport properties of the skin can yield important information of relevance to both clinical medicine and basic research in skin physiology. Here we introduce an ultrathin, compliant skin-like, or ‘epidermal’, photonic device that combines colorimetric temperature indicators with wireless stretchable electronics for thermal measurements when softly laminated on the skin surface. The sensors exploit thermochromic liquid crystals patterned into large-scale, pixelated arrays on thin elastomeric substrates; the electronics provide means for controlled, local heating by radio frequency signals. Algorithms for extracting patterns of colour recorded from these devices with a digital camera and computational tools for relating the results to underlying thermal processes near the skin surface lend quantitative value to the resulting data. Application examples include non-invasive spatial mapping of skin temperature with milli-Kelvin precision (±50?mK) and sub-millimetre spatial resolution. Demonstrations in reactive hyperaemia assessments of blood flow and hydration analysis establish relevance to cardiovascular health and skin care, respectively.

Gao, Li; Zhang, Yihui; Malyarchuk, Viktor; Jia, Lin; Jang, Kyung-In; Chad Webb, R.; Fu, Haoran; Shi, Yan; Zhou, Guoyan; Shi, Luke; Shah, Deesha; Huang, Xian; Xu, Baoxing; Yu, Cunjiang; Huang, Yonggang; Rogers, John A.

2014-09-01

271

Epidermal photonic devices for quantitative imaging of temperature and thermal transport characteristics of the skin.  

PubMed

Characterization of temperature and thermal transport properties of the skin can yield important information of relevance to both clinical medicine and basic research in skin physiology. Here we introduce an ultrathin, compliant skin-like, or 'epidermal', photonic device that combines colorimetric temperature indicators with wireless stretchable electronics for thermal measurements when softly laminated on the skin surface. The sensors exploit thermochromic liquid crystals patterned into large-scale, pixelated arrays on thin elastomeric substrates; the electronics provide means for controlled, local heating by radio frequency signals. Algorithms for extracting patterns of colour recorded from these devices with a digital camera and computational tools for relating the results to underlying thermal processes near the skin surface lend quantitative value to the resulting data. Application examples include non-invasive spatial mapping of skin temperature with milli-Kelvin precision (±50?mK) and sub-millimetre spatial resolution. Demonstrations in reactive hyperaemia assessments of blood flow and hydration analysis establish relevance to cardiovascular health and skin care, respectively. PMID:25234839

Gao, Li; Zhang, Yihui; Malyarchuk, Viktor; Jia, Lin; Jang, Kyung-In; Webb, R Chad; Fu, Haoran; Shi, Yan; Zhou, Guoyan; Shi, Luke; Shah, Deesha; Huang, Xian; Xu, Baoxing; Yu, Cunjiang; Huang, Yonggang; Rogers, John A

2014-01-01

272

Accuracy analysis of the space shuttle solid rocket motor profile measuring device  

NASA Technical Reports Server (NTRS)

The Profile Measuring Device (PMD) was developed at the George C. Marshall Space Flight Center following the loss of the Space Shuttle Challenger. It is a rotating gauge used to measure the absolute diameters of mating features of redesigned Solid Rocket Motor field joints. Diameter tolerance of these features are typically + or - 0.005 inches and it is required that the PMD absolute measurement uncertainty be within this tolerance. In this analysis, the absolute accuracy of these measurements were found to be + or - 0.00375 inches, worst case, with a potential accuracy of + or - 0.0021 inches achievable by improved temperature control.

Estler, W. Tyler

1989-01-01

273

Dual neutron flux/temperature measurement sensor  

DOEpatents

Simultaneous measurement of neutron flux and temperature is provided by a single sensor which includes a phosphor mixture having two principal constituents. The first constituent is a neutron sensitive 6LiF and the second is a rare-earth activated Y203 thermophosphor. The mixture is coated on the end of a fiber optic, while the opposite end of the fiber optic is coupled to a light detector. The detected light scintillations are quantified for neutron flux determination, and the decay is measured for temperature determination.

Mihalczo, John T. (Oak Ridge, TN); Simpson, Marc L. (Knoxville, TN); McElhaney, Stephanie A. (Oak Ridge, TN)

1994-01-01

274

Dual neutron flux/temperature measurement sensor  

DOEpatents

Simultaneous measurement of neutron flux and temperature is provided by a single sensor which includes a phosphor mixture having two principal constituents. The first constituent is a neutron sensitive 6LiF and the second is a rare-earth activated Y203 thermophosphor. The mixture is coated on the end of a fiber optic, while the opposite end of the fiber optic is coupled to a light detector. The detected light scintillations are quantified for neutron flux determination, and the decay is measured for temperature determination. 3 figs.

Mihalczo, J.T.; Simpson, M.L.; McElhaney, S.A.

1994-10-04

275

Non-contact temperature measurement requirements  

NASA Technical Reports Server (NTRS)

The Marshall Space Flight Center is involved with levitation experiments for Spacelab, Space Station, and drop tube/tower operations. These experiments have temperature measurement requirements, that of course must be non-contact in nature. The experiment modules involved are the Acoustic Levitator Furnace (ALF), and the Modular Electromagnetic Levitator (MEL). User requirements of the ALF and drop tube are presented. The center also has temperature measurement needs that are not microgravity experiment oriented, but rather are related to the propulsion system for the STS. This requirement will also be discussed.

Higgins, D. B.; Witherow, W. K.

1989-01-01

276

Calibrating X-ray Imaging Devices for Accurate Intensity Measurement  

SciTech Connect

The purpose of the project presented is to develop methods to accurately calibrate X-ray imaging devices. The approach was to develop X-ray source systems suitable for this endeavor and to develop methods to calibrate solid state detectors to measure source intensity. NSTec X-ray sources used for the absolute calibration of cameras are described, as well as the method of calibrating the source by calibrating the detectors. The work resulted in calibration measurements for several types of X-ray cameras. X-ray camera calibration measured efficiency and efficiency variation over the CCD. Camera types calibrated include: CCD, CID, back thinned (back illuminated), front illuminated.

Haugh, M. J.

2011-07-28

277

Universal measurement device for electronic watches and small clocks  

NASA Astrophysics Data System (ADS)

The project and the device set up for performing automatic measurements are described. The system development involved: a specially designed acquisition card, a standard personal computer and specific management programs. It is designed as laboratory equipment and is able to perform most of measurements required by electronic watchmaking industry such as current/consumption measurements, frequency, torque, motor pulses generation. Versions meeting specific production testing needs at reasonable costs can be developed. For after sale servicing, it is possible to deliver a diskette giving all parameters needed for a specific movement, avoiding changes in hardware.

Vermot, Michel

278

Experimental measurement-device-independent verification of quantum steering  

NASA Astrophysics Data System (ADS)

Bell non-locality between distant quantum systems—that is, joint correlations which violate a Bell inequality—can be verified without trusting the measurement devices used, nor those performing the measurements. This leads to unconditionally secure protocols for quantum information tasks such as cryptographic key distribution. However, complete verification of Bell non-locality requires high detection efficiencies, and is not robust to typical transmission losses over long distances. In contrast, quantum or Einstein–Podolsky–Rosen steering, a weaker form of quantum correlation, can be verified for arbitrarily low detection efficiencies and high losses. The cost is that current steering-verification protocols require complete trust in one of the measurement devices and its operator, allowing only one-sided secure key distribution. Here we present measurement-device-independent steering protocols that remove this need for trust, even when Bell non-locality is not present. We experimentally demonstrate this principle for singlet states and states that do not violate a Bell inequality.

Kocsis, Sacha; Hall, Michael J. W.; Bennet, Adam J.; Saunders, Dylan J.; Pryde, Geoff J.

2015-01-01

279

Experimental measurement-device-independent verification of quantum steering.  

PubMed

Bell non-locality between distant quantum systems--that is, joint correlations which violate a Bell inequality--can be verified without trusting the measurement devices used, nor those performing the measurements. This leads to unconditionally secure protocols for quantum information tasks such as cryptographic key distribution. However, complete verification of Bell non-locality requires high detection efficiencies, and is not robust to typical transmission losses over long distances. In contrast, quantum or Einstein-Podolsky-Rosen steering, a weaker form of quantum correlation, can be verified for arbitrarily low detection efficiencies and high losses. The cost is that current steering-verification protocols require complete trust in one of the measurement devices and its operator, allowing only one-sided secure key distribution. Here we present measurement-device-independent steering protocols that remove this need for trust, even when Bell non-locality is not present. We experimentally demonstrate this principle for singlet states and states that do not violate a Bell inequality. PMID:25565297

Kocsis, Sacha; Hall, Michael J W; Bennet, Adam J; Saunders, Dylan J; Pryde, Geoff J

2015-01-01

280

Integrated seal for high-temperature electrochemical device  

DOEpatents

The present invention provides electrochemical device structures having integrated seals, and methods of fabricating them. According to various embodiments the structures include a thin, supported electrolyte film with the electrolyte sealed to the support. The perimeter of the support is self-sealed during fabrication. The perimeter can then be independently sealed to a manifold or other device, e.g., via an external seal. According to various embodiments, the external seal does not contact the electrolyte, thereby eliminating the restrictions on the sealing method and materials imposed by sealing against the electrolyte.

Tucker, Michael C; Jacobson, Craig P

2013-07-16

281

INNOVATIVE INSTRUMENTATION AND ANALYSIS OF THE TEMPERATURE MEASUREMENT FOR HIGH TEMPERATURE GASIFICATION  

SciTech Connect

The systematic tests of the gasifier simulator were conducted in this reporting period. In the systematic test, two (2) factors were considered as the experimental parameters, including air injection rate and water injection rate. Each experimental factor had two (2) levels, respectively. A special water-feeding device was designed and installed to the gasifier simulator. Analysis of Variances (ANOVA) was applied to the results of the systematic tests. The ANOVA shows that the air injection rate did have the significant impact to the temperature measurement in the gasifier simulator. The ANOVA also shows that the water injection rate did not have the significant impact to the temperature measurements in the gasifier simulator. The ANOVA analysis also proves that the thermocouple assembly we proposed was immune to the moisture environment, the temperature measurement remained accurate in moisture environment. Within this reporting period, the vibration application for cleaning purpose was explored. Both ultrasonic and sub-sonic vibrations were considered. A feasibility test was conducted to prove that the thermocouple vibration did not have the significant impact to the temperature measurements in the gasifier simulator. This feasibility test was a 2{sup 2} factorial design. Two factors including temperature levels and motor speeds were set to two levels respectively. The sub-sonic vibration tests were applied to the thermocouple to remove the concrete cover layer (used to simulate the solid condensate in gasifiers) on the thermocouple tip. It was found that both frequency and amplitude had significant impacts on removal performance of the concrete cover layer.

Seong W. Lee

2004-04-01

282

High Accuracy Temperature Measurements Using RTDs with Current Loop Conditioning  

NASA Technical Reports Server (NTRS)

To measure temperatures with a greater degree of accuracy than is possible with thermocouples, RTDs (Resistive Temperature Detectors) are typically used. Calibration standards use specialized high precision RTD probes with accuracies approaching 0.001 F. These are extremely delicate devices, and far too costly to be used in test facility instrumentation. Less costly sensors which are designed for aeronautical wind tunnel testing are available and can be readily adapted to probes, rakes, and test rigs. With proper signal conditioning of the sensor, temperature accuracies of 0.1 F is obtainable. For reasons that will be explored in this paper, the Anderson current loop is the preferred method used for signal conditioning. This scheme has been used in NASA Lewis Research Center's 9 x 15 Low Speed Wind Tunnel, and is detailed.

Hill, Gerald M.

1997-01-01

283

40 CFR 60.1815 - How do I monitor the temperature of flue gases at the inlet of my particulate matter control device?  

Code of Federal Regulations, 2012 CFR

...2012-07-01 false How do I monitor the temperature of flue gases at the inlet of my particulate... § 60.1815 How do I monitor the temperature of flue gases at the inlet of my particulate...a device to continuously measure the temperature of the flue gas stream at the inlet...

2012-07-01

284

40 CFR 60.1325 - How do I monitor the temperature of flue gases at the inlet of my particulate matter control device?  

Code of Federal Regulations, 2011 CFR

...2011-07-01 false How do I monitor the temperature of flue gases at the inlet of my particulate... § 60.1325 How do I monitor the temperature of flue gases at the inlet of my particulate...a device to continuously measure the temperature of the flue gas stream at the inlet...

2011-07-01

285

40 CFR 62.15270 - How do I monitor the temperature of flue gases at the inlet of my particulate matter control device?  

Code of Federal Regulations, 2013 CFR

...2013-07-01 false How do I monitor the temperature of flue gases at the inlet of my particulate... § 62.15270 How do I monitor the temperature of flue gases at the inlet of my particulate...a device to continuously measure the temperature of the flue gas stream at the inlet...

2013-07-01

286

40 CFR 60.1815 - How do I monitor the temperature of flue gases at the inlet of my particulate matter control device?  

Code of Federal Regulations, 2014 CFR

...2014-07-01 false How do I monitor the temperature of flue gases at the inlet of my particulate... § 60.1815 How do I monitor the temperature of flue gases at the inlet of my particulate...a device to continuously measure the temperature of the flue gas stream at the inlet...

2014-07-01

287

40 CFR 60.1815 - How do I monitor the temperature of flue gases at the inlet of my particulate matter control device?  

Code of Federal Regulations, 2011 CFR

...2011-07-01 false How do I monitor the temperature of flue gases at the inlet of my particulate... § 60.1815 How do I monitor the temperature of flue gases at the inlet of my particulate...a device to continuously measure the temperature of the flue gas stream at the inlet...

2011-07-01

288

40 CFR 62.15270 - How do I monitor the temperature of flue gases at the inlet of my particulate matter control device?  

Code of Federal Regulations, 2011 CFR

...2011-07-01 false How do I monitor the temperature of flue gases at the inlet of my particulate... § 62.15270 How do I monitor the temperature of flue gases at the inlet of my particulate...a device to continuously measure the temperature of the flue gas stream at the inlet...

2011-07-01

289

40 CFR 60.1325 - How do I monitor the temperature of flue gases at the inlet of my particulate matter control device?  

Code of Federal Regulations, 2013 CFR

...2013-07-01 false How do I monitor the temperature of flue gases at the inlet of my particulate... § 60.1325 How do I monitor the temperature of flue gases at the inlet of my particulate...a device to continuously measure the temperature of the flue gas stream at the inlet...

2013-07-01

290

40 CFR 60.1325 - How do I monitor the temperature of flue gases at the inlet of my particulate matter control device?  

Code of Federal Regulations, 2014 CFR

...2014-07-01 false How do I monitor the temperature of flue gases at the inlet of my particulate... § 60.1325 How do I monitor the temperature of flue gases at the inlet of my particulate...a device to continuously measure the temperature of the flue gas stream at the inlet...

2014-07-01

291

40 CFR 60.1815 - How do I monitor the temperature of flue gases at the inlet of my particulate matter control device?  

Code of Federal Regulations, 2013 CFR

...2013-07-01 false How do I monitor the temperature of flue gases at the inlet of my particulate... § 60.1815 How do I monitor the temperature of flue gases at the inlet of my particulate...a device to continuously measure the temperature of the flue gas stream at the inlet...

2013-07-01

292

40 CFR 62.15270 - How do I monitor the temperature of flue gases at the inlet of my particulate matter control device?  

Code of Federal Regulations, 2014 CFR

...2014-07-01 false How do I monitor the temperature of flue gases at the inlet of my particulate... § 62.15270 How do I monitor the temperature of flue gases at the inlet of my particulate...a device to continuously measure the temperature of the flue gas stream at the inlet...

2014-07-01

293

40 CFR 62.15270 - How do I monitor the temperature of flue gases at the inlet of my particulate matter control device?  

Code of Federal Regulations, 2012 CFR

...2012-07-01 false How do I monitor the temperature of flue gases at the inlet of my particulate... § 62.15270 How do I monitor the temperature of flue gases at the inlet of my particulate...a device to continuously measure the temperature of the flue gas stream at the inlet...

2012-07-01

294

40 CFR 60.1325 - How do I monitor the temperature of flue gases at the inlet of my particulate matter control device?  

Code of Federal Regulations, 2012 CFR

...2012-07-01 false How do I monitor the temperature of flue gases at the inlet of my particulate... § 60.1325 How do I monitor the temperature of flue gases at the inlet of my particulate...a device to continuously measure the temperature of the flue gas stream at the inlet...

2012-07-01

295

The insertion device magnetic measurement facility: Prototype and operational procedures  

SciTech Connect

This report is a description of the current status of the magnetic measurement facility and is a basic instructional manual for the operation of the facility and its components. Please refer to the appendices for more detailed information about specific components and procedures. The purpose of the magnetic measurement facility is to take accurate measurements of the magnetic field in the gay of the IDs in order to determine the effect of the ID on the stored particle beam and the emitted radiation. The facility will also play an important role when evaluating new ideas, novel devices, and inhouse prototypes as part of the ongoing research and development program at the APS. The measurements will be performed with both moving search coils and moving Hall probes. The IDs will be evaluated by computer modeling of the emitted radiation for any given (measured) magnetic field map. The quality of the magnetic field will be described in terms of integrated multipoles for the effect on Storage Ring performance and in terms of the derived trajectories for the emitted radiation. Before being installed on the Storage Ring, every device will be measured and characterized to assure that it is compatible with Storage Ring requirements and radiation specifications. The accuracy that the APS needs to achieve for magnetic measurements will be based on these specifications.

Burkel, L.; Dejus, R.; Maines, J.; O'Brien, J.; Vasserman, I. (Argonne National Lab., IL (United States). Advanced Photon Source Accelerator Systems Div.); Pfleuger, J. (Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Hamburger Synchrotronstrahlungslabor)

1993-03-01

296

Electron Temperature and Density Measurements in MRX  

Microsoft Academic Search

We present measurements of electron temperature, T_e, and density, n_e, during co- and counter-helicity reconnection and compact toroid formation in the Magnetic Reconnection Experiment (MRX). A triple Langmuir probe has been used to measure instantaneous T_e, n_e, and floating potential, V_f, in MRX discharges. Initial results from the probes show 5 < Te < 40 eV and 5×10^12 < ne

T. A. Carter; S. C. Hsu; H. Ji; M. Yamada

1996-01-01

297

Graphene, a material for high temperature devices--intrinsic carrier density, carrier drift velocity, and lattice energy.  

PubMed

Heat has always been a killing matter for traditional semiconductor machines. The underlining physical reason is that the intrinsic carrier density of a device made from a traditional semiconductor material increases very fast with a rising temperature. Once reaching a temperature, the density surpasses the chemical doping or gating effect, any p-n junction or transistor made from the semiconductor will fail to function. Here, we measure the intrinsic Fermi level (|EF| = 2.93 kBT) or intrinsic carrier density (nin = 3.87 × 10(6) cm(-2)K(-2)· T(2)), carrier drift velocity, and G mode phonon energy of graphene devices and their temperature dependencies up to 2400 K. Our results show intrinsic carrier density of graphene is an order of magnitude less sensitive to temperature than those of Si or Ge, and reveal the great potentials of graphene as a material for high temperature devices. We also observe a linear decline of saturation drift velocity with increasing temperature, and identify the temperature coefficients of the intrinsic G mode phonon energy. Above knowledge is vital in understanding the physical phenomena of graphene under high power or high temperature. PMID:25044003

Yin, Yan; Cheng, Zengguang; Wang, Li; Jin, Kuijuan; Wang, Wenzhong

2014-01-01

298

Ion temperature measurements in the Maryland Spheromak  

SciTech Connect

Initial spectroscopic data from MS showed evidence of ion heating as deduced from the line widths of different ion species. Detailed measurements of OIV spectral emission line profiles in space and time revealed that heating takes place at early time, before spheromak formation and is occurring within the current discharge. The measured ion temperature is several times the electron temperature and cannot be explained by classical (Spitzer) resistivity. Classically, ions are expected to have lower temperatures than the electrons and therefore, lower temperatures than observed. High ion temperatures have been observed in different RFP`s and Spheromaks but are usually associated with relaxation to the Taylor state and occur in the sustainment phase. During formation, the current delivered to start the discharge is not axisymmetric and as a consequence, X-points appear in the magnetic flux. A two dimensional analysis predicts that magnetic reconnection occurring at an X-point can give rise to high ion heating rates. A simple 0-dimensional calculation showed that within the first 20 {mu}s, a conversion of mass flow kinetic energy into ion temperature could take place due to viscosity.

Gauvreau, J.L.

1992-12-31

299

Note: Zeeman splitting measurements in a high-temperature plasma  

SciTech Connect

The Zeeman effect has been used for measurement of magnetic fields in low-temperature plasma, but the diagnostic technique is difficult to implement in a high-temperature plasma. This paper describes new instrumentation and methodology for simultaneous measurement of the entire Doppler-broadened left and right circularly polarized Zeeman spectra in high-temperature plasmas. Measurements are made using spectra emitted parallel to the magnetic field by carbon impurities in high-temperature plasma. The Doppler-broadened width is much larger than the magnitude of the Zeeman splitting, thus simultaneous recording of the two circularly polarized Zeeman line profiles is key to accurate measurement of the magnetic field in the ZaP Z-pinch plasma device. Spectral data are collected along multiple chords on both sides of the symmetry axis of the plasma. This enables determination of the location of the current axis of the Z-pinch and of lower-bound estimates of the local magnetic field at specific radial locations in the plasma.

Golingo, R. P.; Shumlak, U.; Den Hartog, D. J. [Aerospace and Energetics Research Program, University of Washington, Seattle, Washington 98195-2250 (United States)

2010-12-15

300

Surface photovoltage measurements and finite element modeling of SAW devices.  

SciTech Connect

Over the course of a Summer 2011 internship with the MEMS department of Sandia National Laboratories, work was completed on two major projects. The first and main project of the summer involved taking surface photovoltage measurements for silicon samples, and using these measurements to determine surface recombination velocities and minority carrier diffusion lengths of the materials. The SPV method was used to fill gaps in the knowledge of material parameters that had not been determined successfully by other characterization methods. The second project involved creating a 2D finite element model of a surface acoustic wave device. A basic form of the model with the expected impedance response curve was completed, and the model is ready to be further developed for analysis of MEMS photonic resonator devices.

Donnelly, Christine

2012-03-01

301

Measurement-Device-Independent Quantum Key Distribution over 200 km  

NASA Astrophysics Data System (ADS)

Measurement-device-independent quantum key distribution (MDIQKD) protocol is immune to all attacks on detection and guarantees the information-theoretical security even with imperfect single-photon detectors. Recently, several proof-of-principle demonstrations of MDIQKD have been achieved. Those experiments, although novel, are implemented through limited distance with a key rate less than 0.1 bit /s . Here, by developing a 75 MHz clock rate fully automatic and highly stable system and superconducting nanowire single-photon detectors with detection efficiencies of more than 40%, we extend the secure transmission distance of MDIQKD to 200 km and achieve a secure key rate 3 orders of magnitude higher. These results pave the way towards a quantum network with measurement-device-independent security.

Tang, Yan-Lin; Yin, Hua-Lei; Chen, Si-Jing; Liu, Yang; Zhang, Wei-Jun; Jiang, Xiao; Zhang, Lu; Wang, Jian; You, Li-Xing; Guan, Jian-Yu; Yang, Dong-Xu; Wang, Zhen; Liang, Hao; Zhang, Zhen; Zhou, Nan; Ma, Xiongfeng; Chen, Teng-Yun; Zhang, Qiang; Pan, Jian-Wei

2014-11-01

302

Measurement-device-independent quantum key distribution over 200 km  

E-print Network

Measurement-device-independent quantum key distribution (MDIQKD) protocol is immune to all attacks on detection and guarantees the information-theoretical security even with imperfect single photon detectors. Recently, several proof-of-principle demonstrations of MDIQKD have been achieved. Those experiments, although novel, are implemented through limited distance with a key rate less than 0.1 bps. Here, by developing a 75 MHz clock rate fully-automatic and highly-stable system, and superconducting nanowire single photon detectors with detection efficiencies more than 40%, we extend the secure transmission distance of MDIQKD to 200 km and achieve a secure key rate of three orders of magnitude higher. These results pave the way towards a quantum network with measurement-device-independent security.

Yan-Lin Tang; Hua-Lei Yin; Si-Jing Chen; Yang Liu; Wei-Jun Zhang; Xiao Jiang; Lu Zhang; Jian Wang; Li-Xing You; Jian-Yu Guan; Dong-Xu Yang; Zhen Wang; Hao Liang; Zhen Zhang; Nan Zhou; Xiongfeng Ma; Teng-Yun Chen; Qiang Zhang; Jian-Wei Pan

2014-07-30

303

Measurement-device-independent quantum key distribution over 200 km.  

PubMed

Measurement-device-independent quantum key distribution (MDIQKD) protocol is immune to all attacks on detection and guarantees the information-theoretical security even with imperfect single-photon detectors. Recently, several proof-of-principle demonstrations of MDIQKD have been achieved. Those experiments, although novel, are implemented through limited distance with a key rate less than 0.1??bit/s. Here, by developing a 75 MHz clock rate fully automatic and highly stable system and superconducting nanowire single-photon detectors with detection efficiencies of more than 40%, we extend the secure transmission distance of MDIQKD to 200 km and achieve a secure key rate 3 orders of magnitude higher. These results pave the way towards a quantum network with measurement-device-independent security. PMID:25415890

Tang, Yan-Lin; Yin, Hua-Lei; Chen, Si-Jing; Liu, Yang; Zhang, Wei-Jun; Jiang, Xiao; Zhang, Lu; Wang, Jian; You, Li-Xing; Guan, Jian-Yu; Yang, Dong-Xu; Wang, Zhen; Liang, Hao; Zhang, Zhen; Zhou, Nan; Ma, Xiongfeng; Chen, Teng-Yun; Zhang, Qiang; Pan, Jian-Wei

2014-11-01

304

Electro-Mechanical Properties of Metal-Insulator-Metal Device Fabricated on Polymer Substrate Using Low-Temperature Process  

NASA Astrophysics Data System (ADS)

High-performance metal-insulator-metal (MIM) devices on flexible polymer substrates were successfully fabricated without any defects such as cracks, delamination and blistering. This work examines the mechanical and electrical properties of MIM devices constructed using anodic Ta2O5 films. Using newly developed methods including stepped heating process and low-temperature post-annealing below 180°C, we obtained high-performances MIM devices on polymer substrates. Here, we propose the use of stacked bottom electrode and water barrier layer in order to enhance the ductility of the Ta electrode and to prevent blistering problems, respectively. Rutherford backscattering spectroscopy (RBS), auger electron spectroscopy (AES) and transmission electronic microscope (TEM) observations were performed for the structural investigation of the MIM devices on polymer substrates. Electrical measurements were also carried out for as-deposited and thermally treated MIM devices including Al/Ta/Ta2O5/Cr or Ti structures. They exhibit a low leakage current (below 10-7 A/cm2 at 2 MV) and reasonable breakdown voltage (5-7 MV/cm) with a uniformity of 92%. Finally, under low-temperature post-annealing conditions, The Current-Voltage (I-V) behaviors and conduction mechanisms of MIM devices on polymer substrates are discussed based on the results of electrical measurements, structural investigations and conduction band modeling.

Park, Sung Kyu; Han, Jeong In; Kim, Won Keun; Hong, Sung Jei; Kwak, Min Gi; Lee, Myung Jae; Chung, Kwan Soo

2002-02-01

305

Microwave electrothermal thruster chamber temperature measurements and energy exchange calculations  

NASA Astrophysics Data System (ADS)

The microwave electrothermal thruster (MET) uses microwave frequency energy to create and sustain a resonant cavity plasma to heat a propellant. It has been operated at a variety of power levels with several propellants. The performance potential of the device has not previously been ascertained because of complex physics involved in the microwave heating, the relatively low thrust of the device, and difficulty in using conventional diagnostics to study molecular plasmas. The objectives of this investigation were to measure heavy particle temperatures and to understand gas heating processes in the MET plasma chamber for representative molecular propellants, oxygen and nitrogen. These molecules have well known thermochemical and structural properties, and they are components of liquid-storable propellants. A 2.45 GHz aluminum cylindrical thruster with converging copper alloy nozzles was used. A spectroscopic system was used to collect light emitted through a window in the plasma chamber. A Schumann-Runge emission model was developed assuming anharmonically vibrating, non-rigid rotating oxygen molecules. The commercially available LIFBASE software was used to model ionized molecular nitrogen first negative system emission from nitrogen plasmas. Experimental data were compared to models using least squared difference summation schemes. Steady and repeatable plasmas were formed with oxygen, nitrogen, and ammonia for most operating conditions. Strong coupling between fluid dynamics and plasma geometry was observed for high flow rate nitrogen tests. Oxygen temperatures of 2,000 K were measured with no variation due to spatial location or pressure and a slight increase in temperature with specific absorbed power. Nitrogen temperatures of 5,500 K were measured with no variation due to location, pressure, or specific absorbed power. Thermochemical calculations show the relationship between equilibrium enthalpy addition, temperature, dissociation fraction, and specific impulse. Nitrogen was found to be an excellent choice as a propellant component while oxygen was found to be a poor choice.

Chianese, Silvio G.

2005-11-01

306

A temperature microsensor for measuring laser-induced heating in gold nanorods.  

PubMed

Measuring temperature is an extensively explored field of analysis, but measuring a temperature change in a nanoparticle is a new challenge. Here, a microsensor is configured to measure temperature changes in gold nanorods in solution upon laser irradiation. The device consists of a silicon wafer coated with silicon nitride in which a microfabricated resistance temperature detector was embedded and attached to a digital multimeter. A polydimethylsiloxane mold served as a microcontainer for the sample attached on top of the silicon membrane. This enables laser irradiation of the gold nanorods and subsequent measurement of temperature changes. The results showed a temperature increase of 8 to 10 °C and good correlation with theoretical calculations and bulk sample direct temperature measurements. These results demonstrate the suitability of this simple temperature microsensor for determining laser-induced heating profiles of metallic nanomaterials; such measurements will be essential for optimizing therapeutic and catalytic applications. PMID:25303932

Pacardo, Dennis B; Neupane, Bhanu; Wang, Gufeng; Gu, Zhen; Walker, Glenn M; Ligler, Frances S

2015-01-01

307

Laser plume temperature measurements in various gases  

SciTech Connect

Nd-YAG laser plume temperatures of 3000--5400K were measured on 304 stainless steel and 1100 Al in various gases using emission spectroscopy. Temperatures were higher in the reactive gases air, 02, and SF6, compared to inert gases. Ionic spectra were not observed, indicating that the plume primarily consists of hot vapors and does not contain a plasma, in contrast to CO/sub 2/ laser processing in which plasmas have been observed. The plume temperature remained constant with changes in laser power and with time during the duration of the laser pulse. Light emissions from the plume and from the cooling weld pool after the laser pulse was off were measured and correlated with melt depth. 7 refs.

Lewis, G.K.; Cremers, D.A.; Dixon, R.D.

1988-01-01

308

Positron Annihilation Measurements of High Temperature Superconductors  

NASA Astrophysics Data System (ADS)

The temperature dependence of positron annihilation parameters has been measured for basic YBCO, Dy-doped, and Pr-doped superconducting compounds. The physical properties, such as crystal structure, electrical resistance, and critical temperature, have been studied for all samples. In the basic YBCO and Dy-doped samples, the defect -related lifetime component tau_{2 } was approximately constant from room temperature to above the critical temperature and then showed a step -like decrease in the temperature range 90K { ~} 40K. No significant temperature dependence was found in the short- and long-lifetime components, tau_{1} and tau_{3}. The x-ray diffraction data showed that the crystal structure of these two samples was almost the same. These results indicated that the electronic structure changed below the critical temperature. No transition was observed in the Pr-doped YBCO sample. The advanced computer program "PFPOSFIT" for positron lifetime analysis was modified to run on the UNIX system of the University of Utah. The destruction of superconductivity with Pr doping may be due to mechanisms such as hole filling or hole localization of the charge carriers and may be related to the valence state of the Pr ion. One-parameter analyses like the positron mean lifetime parameter and the Doppler line shape parameter S also have been studied. It was found that a transition in Doppler line shape parameter S was associated with the superconducting transition temperature in basic YBCO, Dy -doped, and 0.5 Pr-doped samples, whereas no transition was observed in the nonsuperconducting Pr-doped sample. The Doppler results indicate that the average electron momentum at the annihilation sites increases as temperature is lowered across the superconducting transition range and that electronic structure change plays an important role in high temperature superconductivity.

Jung, Kang

1995-01-01

309

Dynamic gas temperature measurement system, volume 1  

NASA Technical Reports Server (NTRS)

A gas temperature measurement system with compensated frequency response of 1 kHz and capability to operate in the exhaust of a gas turbine engine combustor was developed. A review of available technologies which could attain this objective was done. The most promising method was identified as a two wire thermocouple, with a compensation method based on the responses of the two different diameter thermocouples to the fluctuating gas temperature field. In a detailed design of the probe, transient conduction effects were identified as significant. A compensation scheme was derived to include the effects of gas convection and wire conduction. The two wire thermocouple concept was tested in a laboratory burner exhaust to temperatures of about 3000 F and in a gas turbine engine to combustor exhaust temperatures of about 2400 F. Uncompensated and compensated waveforms and compensation spectra are presented.

Elmore, D. L.; Robinson, W. W.; Watkins, W. B.

1983-01-01

310

40 CFR 91.309 - Engine intake air temperature measurement.  

Code of Federal Regulations, 2012 CFR

...2012-07-01 false Engine intake air temperature measurement. 91.309 Section 91...Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within...

2012-07-01

311

40 CFR 89.325 - Engine intake air temperature measurement.  

Code of Federal Regulations, 2011 CFR

...2011-07-01 false Engine intake air temperature measurement. 89.325 Section 89...Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within...

2011-07-01

312

40 CFR 89.325 - Engine intake air temperature measurement.  

Code of Federal Regulations, 2014 CFR

...2013-07-01 true Engine intake air temperature measurement. 89.325 Section 89...Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within...

2014-07-01

313

40 CFR 91.309 - Engine intake air temperature measurement.  

Code of Federal Regulations, 2010 CFR

...2010-07-01 false Engine intake air temperature measurement. 91.309 Section 91...Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within...

2010-07-01

314

40 CFR 91.309 - Engine intake air temperature measurement.  

Code of Federal Regulations, 2014 CFR

...2013-07-01 true Engine intake air temperature measurement. 91.309 Section 91...Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within...

2014-07-01

315

40 CFR 89.325 - Engine intake air temperature measurement.  

Code of Federal Regulations, 2013 CFR

...2013-07-01 false Engine intake air temperature measurement. 89.325 Section 89...Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within...

2013-07-01

316

40 CFR 91.309 - Engine intake air temperature measurement.  

Code of Federal Regulations, 2013 CFR

...2013-07-01 false Engine intake air temperature measurement. 91.309 Section 91...Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within...

2013-07-01

317

40 CFR 89.325 - Engine intake air temperature measurement.  

Code of Federal Regulations, 2010 CFR

...2010-07-01 false Engine intake air temperature measurement. 89.325 Section 89...Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within...

2010-07-01

318

40 CFR 89.325 - Engine intake air temperature measurement.  

Code of Federal Regulations, 2012 CFR

...2012-07-01 false Engine intake air temperature measurement. 89.325 Section 89...Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within...

2012-07-01

319

40 CFR 91.309 - Engine intake air temperature measurement.  

Code of Federal Regulations, 2011 CFR

...2011-07-01 false Engine intake air temperature measurement. 91.309 Section 91...Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within...

2011-07-01

320

Measuring Rocket Engine Temperatures with Hydrogen Raman Spectroscopy  

NASA Technical Reports Server (NTRS)

Optically accessible, high pressure, hot fire test articles are available at NASA Marshall for use in development of advanced rocket engine propellant injectors. Single laser-pulse ultraviolet (UV) Raman spectroscopy has been used in the past in these devices for analysis of high pressure H2- and CH4-fueled combustion, but relies on an independent pressure measurement in order to provide temperature information. A variation of UV Raman (High Resolution Hydrogen Raman Spectroscopy) is under development and will allow temperature measurement without the need for an independent pressure measurement, useful for flows where local pressure may not be accurately known. The technique involves the use of a spectrometer with good spectral resolution, requiring a small entrance slit for the spectrometer. The H2 Raman spectrum, when created by a narrow linewidth laser source and obtained from a good spectral resolution spectrograph, has a spectral shape related to temperature. By best-fit matching an experimental spectrum to theoretical spectra at various temperatures, a temperature measurement is obtained. The spectral model accounts for collisional narrowing, collisional broadening, Doppler broadening, and collisional line shifting of each Raman line making up the H2 Stokes vibrational Q-branch spectrum. At pressures from atmospheric up to those associated with advanced preburner components (5500 psia), collisional broadening though present does not cause significant overlap of the Raman lines, allowing high resolution H2 Raman to be used for temperature measurements in plumes and in high pressure test articles. Experimental demonstrations of the technique are performed for rich H2-air flames at atmospheric pressure and for high pressure, 300 K H2-He mixtures. Spectrometer imaging quality is identified as being critical for successful implementation of technique.

Wehrmeyer, Joseph A.; Osborne, Robin J.; Trinh, Huu P.; Turner, James (Technical Monitor)

2001-01-01

321

High resolution low-temperature superconductivity superconducting quantum interference device microscope for imaging magnetic fields  

E-print Network

High resolution low-temperature superconductivity superconducting quantum interference device microscope for imaging magnetic fields of samples at room temperatures F. Baudenbacher,a) N. T. Peters, and J anchored to the liquid helium reservoir. A 25 m thick sapphire window separates the room temperature RT

Weiss, Benjamin P.

322

Temperature measurements of shocked silica aerogel foam  

NASA Astrophysics Data System (ADS)

We present recent results of equation-of-state (EOS) measurements of shocked silica (SiO2) aerogel foam at the OMEGA laser facility. Silica aerogel is an important low-density pressure standard used in many high energy density experiments, including the novel technique of shock and release. Due to its many applications, it has been a heavily studied material and has a well-known Hugoniot curve. This work then complements the velocity and pressure measurements with additional temperature data providing the full EOS information within the warm dense matter regime for the temperature interval of 1-15 eV and shock velocities between 10 and 40 km/s corresponding to shock pressures of 0.3-2 Mbar. The experimental results were compared with hydrodynamic simulations and EOS models. We found that the measured temperature was systematically lower than suggested by theoretical calculations. Simulations provide a possible explanation that the emission measured by optical pyrometry comes from a radiative precursor rather than from the shock front, which could have important implications for such measurements.

Falk, K.; McCoy, C. A.; Fryer, C. L.; Greeff, C. W.; Hungerford, A. L.; Montgomery, D. S.; Schmidt, D. W.; Sheppard, D. G.; Williams, J. R.; Boehly, T. R.; Benage, J. F.

2014-09-01

323

Temperature measurements of shocked silica aerogel foam.  

PubMed

We present recent results of equation-of-state (EOS) measurements of shocked silica (SiO_{2}) aerogel foam at the OMEGA laser facility. Silica aerogel is an important low-density pressure standard used in many high energy density experiments, including the novel technique of shock and release. Due to its many applications, it has been a heavily studied material and has a well-known Hugoniot curve. This work then complements the velocity and pressure measurements with additional temperature data providing the full EOS information within the warm dense matter regime for the temperature interval of 1-15 eV and shock velocities between 10 and 40 km/s corresponding to shock pressures of 0.3-2 Mbar. The experimental results were compared with hydrodynamic simulations and EOS models. We found that the measured temperature was systematically lower than suggested by theoretical calculations. Simulations provide a possible explanation that the emission measured by optical pyrometry comes from a radiative precursor rather than from the shock front, which could have important implications for such measurements. PMID:25314547

Falk, K; McCoy, C A; Fryer, C L; Greeff, C W; Hungerford, A L; Montgomery, D S; Schmidt, D W; Sheppard, D G; Williams, J R; Boehly, T R; Benage, J F

2014-09-01

324

ELECTRICAL DEVICES AND CIRCUITS FOR LOW TEMPERATURE SPACE APPLICATIONS  

Microsoft Academic Search

The environmental temperature in many NASA missions, such as deep space probes and outer planetary exploration, is significantly below the range for which conventional commercial-off-the-shelf electronics is designed. Presently, spacecraft operating in the cold en vironment of such deep space missions carry a large number of radioisotope or other heating units in order to maintain the surrounding temperature of the

R. L. Patterson; A. Hammoud; J. E. Dickman; S. Gerber; M. E. Elbuluk; E. Overton

325

A flux extraction device to measure the magnetic moment of large samples; application to bulk superconductors.  

PubMed

We report the design and construction of a flux extraction device to measure the DC magnetic moment of large samples (i.e., several cm(3)) at cryogenic temperature. The signal is constructed by integrating the electromotive force generated by two coils wound in series-opposition that move around the sample. We show that an octupole expansion of the magnetic vector potential can be used conveniently to treat near-field effects for this geometrical configuration. The resulting expansion is tested for the case of a large, permanently magnetized, type-II superconducting sample. The dimensions of the sensing coils are determined in such a way that the measurement is influenced by the dipole magnetic moment of the sample and not by moments of higher order, within user-determined upper bounds. The device, which is able to measure magnetic moments in excess of 1 A m(2) (1000 emu), is validated by (i) a direct calibration experiment using a small coil driven by a known current and (ii) by comparison with the results of numerical calculations obtained previously using a flux measurement technique. The sensitivity of the device is demonstrated by the measurement of flux-creep relaxation of the magnetization in a large bulk superconductor sample at liquid nitrogen temperature (77 K). PMID:25725888

Egan, R; Philippe, M; Wera, L; Fagnard, J F; Vanderheyden, B; Dennis, A; Shi, Y; Cardwell, D A; Vanderbemden, P

2015-02-01

326

A flux extraction device to measure the magnetic moment of large samples; application to bulk superconductors  

NASA Astrophysics Data System (ADS)

We report the design and construction of a flux extraction device to measure the DC magnetic moment of large samples (i.e., several cm3) at cryogenic temperature. The signal is constructed by integrating the electromotive force generated by two coils wound in series-opposition that move around the sample. We show that an octupole expansion of the magnetic vector potential can be used conveniently to treat near-field effects for this geometrical configuration. The resulting expansion is tested for the case of a large, permanently magnetized, type-II superconducting sample. The dimensions of the sensing coils are determined in such a way that the measurement is influenced by the dipole magnetic moment of the sample and not by moments of higher order, within user-determined upper bounds. The device, which is able to measure magnetic moments in excess of 1 A m2 (1000 emu), is validated by (i) a direct calibration experiment using a small coil driven by a known current and (ii) by comparison with the results of numerical calculations obtained previously using a flux measurement technique. The sensitivity of the device is demonstrated by the measurement of flux-creep relaxation of the magnetization in a large bulk superconductor sample at liquid nitrogen temperature (77 K).

Egan, R.; Philippe, M.; Wera, L.; Fagnard, J. F.; Vanderheyden, B.; Dennis, A.; Shi, Y.; Cardwell, D. A.; Vanderbemden, P.

2015-02-01

327

Methods of measurement for semiconductor materials, process control, and devices  

NASA Technical Reports Server (NTRS)

Activities directed toward the development of methods of measurement for semiconductor materials, process control, and devices are described. Topics investigated include: measurements of transistor delay time; application of the infrared response technique to the study of radiation-damaged, lithium-drifted silicon detectors; and identification of a condition that minimizes wire flexure and reduces the failure rate of wire bonds in transistors and integrated circuits under slow thermal cycling conditions. Supplementary data concerning staff, standards committee activities, technical services, and publications are included as appendixes.

Bullis, W. M. (editor)

1972-01-01

328

Adaptive Blood Glucose Monitoring and Insulin Measurement Devices for Visually Impaired Persons.  

ERIC Educational Resources Information Center

This article describes devices that people with visual impairments and diabetes can use to monitor blood glucose levels and measure insulin. A table lists devices, their manufacturers (including address and telephone number), and comments about the devices. (DB)

Petzinger, R. A.

1993-01-01

329

Measuring Thermal Conductivity at LH2 Temperatures  

NASA Technical Reports Server (NTRS)

For many years, the National Institute of Standards and Technology (NIST) produced reference materials for materials testing. One such reference material was intended for use with a guarded hot plate apparatus designed to meet the requirements of ASTM C177-97, "Standard Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded-Hot-Plate Apparatus." This apparatus can be used to test materials in various gaseous environments from atmospheric pressure to a vacuum. It allows the thermal transmission properties of insulating materials to be measured from just above ambient temperature down to temperatures below liquid hydrogen. However, NIST did not generate data below 77 K temperature for the reference material in question. This paper describes a test method used at NASA's Marshall Space Flight Center (MSFC) to optimize thermal conductivity measurements during the development of thermal protection systems. The test method extends the usability range of this reference material by generating data at temperatures lower than 77 K. Information provided by this test is discussed, as are the capabilities of the MSFC Hydrogen Test Facility, where advanced methods for materials testing are routinely developed and optimized in support of aerospace applications.

Selvidge, Shawn; Watwood, Michael C.

2004-01-01

330

Temperature measurement on and inside lamps  

SciTech Connect

The use of thermography within the lamp manufacturing industry can improve the quality of many types of lamps ranging from normal incandescent lamps to highly specialized lamps for sports arenas, airports or small lamps for cars. There is a strong demand for more light for the same energy input. Specialized lamps for all possible purposes are developed. But it also forces the lamp manufacturers to utilize the available materials to their extremes. The exact control of the temperatures inside or on the lamp shell has therefore become increasingly necessary as temperatures in lamps can be rather extreme. In plasma lamps for example, the plasma can have a temperature of 6,000 C, the bulk around 700 C and the electrodes inside the bulb can have temperatures in excess of 2,000 C. Thermographic methods have shown their applicability for a large number of measurement cases. Some of these methods and measurement cases are described. As these applications put very special demands on the measurement equipment, these demands are explained in more detail.

Wallin, B. [AGEMA Infrared Systems AB, Danderyd (Sweden)

1994-12-31

331

Headset Bluetooth and cell phone based continuous central body temperature measurement system.  

PubMed

The accurate measure of the central temperature is a very important physiologic indicator in several clinical applications, namely, in the characterization and diagnosis of sleep disorders. In this paper a simple system is described to continuously measure the body temperature at the ear. An electronic temperature sensor is coupled to the microphone of a common commercial auricular Bluetooth device that sends the temperature measurements to a mobile phone to which is paired. The measurements are stored at the mobile phone and periodically sent to a medical facility by email or SMS (short messaging service). PMID:21095713

Sanches, J Miguel; Pereira, Bruno; Paiva, Teresa

2010-01-01

332

An eye behavior measuring device for VR system  

NASA Astrophysics Data System (ADS)

This work presents an eye-tracking and pupil size-measuring device that interfaces with a computer for applications useful in psychometry, ophthalmology, physiology and virtual reality (VR) systems. This system utilizes a change-coupled device (CCD) camera, appropriate lenses, PC with frame grabber and a DSP unit with various types of VR equipment, i.e., HMD, simulator or LCD projection device. The digital signal processing unit is used to calculate the average brightness and contrast of the VR video image. A CCD camera with various attachments can be mounted on various VR systems to capture the human eye image for testing. An image capture card and a personal computer are used to analyze the test image. From the eye digital image, the computer obtains data on the pupil size and a trace of the tested eye. A pattern recognition computer program and five measurement parameters are used to distinguish the position of the pupil, calculate the pupil location coordinate and analyze the physical conditions of the user. These data can be plotted against the average brightness and contrast of the VR video image in real time. This information is shown on the screen of a personal computer and used for cross-link analysis. This eye-tracking interface can determine the position of a subject's pupil and map that position into a display point on a computer screen. The pupil size and location data versus the average brightness and contrast of a VR video image are computed in real time.

Lin, Chern-Sheng

2002-12-01

333

76 FR 81363 - Temperature-Indicating Devices; Thermally Processed Low-Acid Foods Packaged in Hermetically...  

Federal Register 2010, 2011, 2012, 2013, 2014

...foods packaged in hermetically sealed containers to allow for use of other temperature-indicating devices, in addition to mercury-in-glass thermometers, during processing. The final rule was published with one error. This document corrects that...

2011-12-28

334

Low emissivity high-temperature tantalum thin film coatings for silicon devices  

E-print Network

The authors study the use of thin ( ? 230?nm) tantalum (Ta) layers on silicon (Si) as a low emissivity (high reflectivity) coating for high-temperature Si devices. Such coatings are critical to reduce parasitic radiation ...

Rinnerbauer, Veronika

335

Surface acoustic wave devices on bulk ZnO crystals at low temperature  

NASA Astrophysics Data System (ADS)

Surface acoustic wave (SAW) devices based on thin films of ZnO are a well established technology. However, SAW devices on bulk ZnO crystals are not practical at room temperature due to the significant damping caused by finite electrical conductivity of the crystal. Here, by operating at low temperatures, we demonstrate effective SAW devices on the (0001) surface of bulk ZnO crystals, including a delay line operating at SAW wavelengths of ? = 4 and 6 ?m and a one-port resonator at a wavelength of ? = 1.6 ?m. We find that the SAW velocity is temperature dependent, reaching v ? 2.68 km/s at 10 mK. Our resonator reaches a maximum quality factor of Qi ? 1.5 × 105, demonstrating that bulk ZnO is highly viable for low temperature SAW applications. The performance of the devices is strongly correlated with the bulk conductivity, which quenches SAW transmission above 200 K.

Magnusson, E. B.; Williams, B. H.; Manenti, R.; Nam, M.-S.; Nersisyan, A.; Peterer, M. J.; Ardavan, A.; Leek, P. J.

2015-02-01

336

Apparatus for gas sorption measurement with integrated gas composition measurement device and gas mixing  

SciTech Connect

An apparatus for testing of multiple material samples includes a gas delivery control system operatively connectable to the multiple material samples and configured to provide gas to the multiple material samples. Both a gas composition measurement device and pressure measurement devices are included in the apparatus. The apparatus includes multiple selectively openable and closable valves and a series of conduits configured to selectively connect the multiple material samples individually to the gas composition device and the pressure measurement devices by operation of the valves. A mixing system is selectively connectable to the series of conduits and is operable to cause forced mixing of the gas within the series of conduits to achieve a predetermined uniformity of gas composition within the series of conduits and passages.

Micklash. II, Kenneth James; Dutton, Justin James; Kaye, Steven

2014-06-03

337

Microwave radiometer for subsurface temperature measurement  

NASA Technical Reports Server (NTRS)

A UHF radiometer, operating at a frequency of 800 MHz, was modified to provide an integral, three frequency voltage standing wave ratio (VSWR) circuit in the radio frequency (RF) head. The VSWR circuit provides readings of power transmission at the antenna-material interface with an accuracy of plus or minus 5 percent. The power transmission readings are numerically equal to the emissivity of the material under observation. Knowledge of material emissivity is useful in the interpretation of subsurface apparent temperatures obtained on phantom models of biological tissue. The emissivities of phantom models consisting of lean beefsteak were found to lie in the range 0.623 to 0.779, depending on moisture content. Radiometric measurements performed on instrumented phantoms showed that the radiometer was capable of sensing small temperature changes occurring at depths of at least 19 to 30 mm. This is consistent with previously generated data which showed that the radiometer could sense temperatures at a depth of 38 mm.

Porter, R. A.; Bechis, K. P.

1976-01-01

338

High-temperature superconducting thin-film-based electronic devices  

SciTech Connect

This the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project involved optimization of processing of Y123 and Tl-2212 thin films deposited on novel substrates for advanced electronic devices. The Y123 films are the basis for development of Josephson Junctions to be utilized in magnetic sensors. Microwave cavities based on the Tl-2212 films are the basis for subsequent applications as communication antennas and transmitters in satellites.

Wu, X.D; Finokoglu, A.; Hawley, M.; Jia, Q.; Mitchell, T.; Mueller, F.; Reagor, D.; Tesmer, J.

1996-09-01

339

A Fast Microfluidic Temperature Control Device for Studying Microtubule Dynamics in Fission Yeast  

PubMed Central

Recent development in soft lithography and microfluidics enables biologists to create tools to control the cellular microenvironment. One such control is the ability to quickly change the temperature of the cells. Genetic model organism such as fission yeast has been useful for studies of the cell cytoskeleton. In particular, the dynamic microtubule cytoskeleton responds to changes in temperature. In addition, there are temperature-sensitive mutations of cytoskeletal proteins. We describe here the fabrication and use of a microfluidic device to quickly and reversibly change cellular temperature between 2°C and 50°C. We demonstrate the use of this device while imaging at high-resolution microtubule dynamics in fission yeast. PMID:20719272

Velve-Casquillas, Guilhem; Costa, Judite; Carlier-Grynkorn, Frédérique; Mayeux, Adeline; Tran, Phong T.

2010-01-01

340

Thermoreflectance temperature measurement with millimeter wave  

SciTech Connect

GigaHertz (GHz) thermoreflectance technique is developed to measure the transient temperature of metal and semiconductor materials located behind an opaque surface. The principle is based on the synchronous detection, using a commercial THz pyrometer, of a modulated millimeter wave (at 110 GHz) reflected by the sample hidden behind a shield layer. Measurements were performed on aluminum, copper, and silicon bulks hidden by a 5 cm thick Teflon plate. We report the first measurement of the thermoreflectance coefficient which exhibits a value 100 times higher at 2.8 mm radiation than those measured at visible wavelengths for both metallic and semiconductor materials. This giant thermoreflectance coefficient ?, close to 10{sup ?3} K{sup ?1} versus 10{sup ?5} K{sup ?1} for the visible domain, is very promising for future thermoreflectance applications.

Pradere, C., E-mail: christophe.pradere@ensam.eu; Caumes, J.-P.; BenKhemis, S.; Palomo, E.; Batsale, J.-C. [I2M (Institut de Mécanique et d’Ingénierie de Bordeaux) UMR CNRS 5295, TREFLE Department, Esplanade des Arts et Métiers, F-33405 Talence Cedex (France); Pernot, G.; Dilhaire, S. [LOMA UMR 5798: CNRS-UB1, 351 Cours de la Libération, 33405 Talence Cedex (France)

2014-06-15

341

Infrared line cameras for industrial temperature measurement  

Microsoft Academic Search

The PYROLINE\\/MikroLine cameras provide continuous, non-contact measurement of linear tem- perature distributions. Operation in conjunction with the IR_LINE software provides data recording, real-time graphical analysis, process integration and camera-control capabilities. One system is based on pyroelectric line sensors with either 128 or 256 elements, operating at frame rates of 128 and 544 Hz respectively. Temperatures between 0 and 1300 °C

Peter Drögmöller; Günter Hofmann; Helmut Budzier; Thomas Reichardt; Manfred Zimmerhackl

342

Density measurements Viscosity measurements  

E-print Network

Density measurements Viscosity measurements Temperature measurements Pressure measurements Flow Ravelet Experimental methods for fluid flows: an introduction #12;Density measurements Viscosity viscosity temperature pressure flow rate velocity Sensor definition: it is a device which changes a physical

Ravelet, Florent

343

Room temperature negative differential resistance of a monolayer molecular rotor device  

NASA Astrophysics Data System (ADS)

An electrically driven molecular rotor device comprised of a monolayer of redox-active ligated copper compounds sandwiched between a gold electrode and a highly doped P+Si substrate was fabricated. Current-voltage spectroscopy revealed a temperature-dependent negative differential resistance (NDR) associated with the device. Time-dependent density functional theory suggests the source of the observed NDR to be redox-induced ligand rotation around the copper metal center, an explanation consistent with the proposed energy diagram of the device. An observed temperature dependence of the NDR behavior further supports this hypothesis.

Xue, Mei; Kabehie, Sanaz; Stieg, Adam Z.; Tkatchouk, Ekaterina; Benitez, Diego; Stephenson, Rachel M.; Goddard, William A.; Zink, Jeffrey I.; Wang, Kang L.

2009-08-01

344

Improved high-temperature device transport properties and off-state characteristics of AlGaN/GaN power devices with atomic layer deposition (ALD) HfAlO high-k dielectric  

NASA Astrophysics Data System (ADS)

The effect of the atomic layer deposition (ALD) HfAlO high-k dielectric on device transport properties and breakdown characteristics of an AlGaN/GaN metal-oxide-semiconductor hetero-junction field-effect transistor (MOS-HFET) was evaluated based on temperature-dependent measurements. It was found that the MOS-HFET device with a HfAlO gate dielectric shows high-channel mobility greater than the Schottky HFET device for the measured temperature range (25-150 °C). In the case of off-state breakdown characteristics, the MOS-HFET device greatly suppressed gate leakage currents for measured temperatures (25-200 °C) resulting in improvements in off-state breakdown characteristics. In contrast, large gate/drain leakage currents were observed for the Schottky HFET device at high temperature (>100 °C) resulting in about 200 V of breakdown voltage reduction. It was also found that the ALD HfAlO layer reduced surface leakage current by passivating the GaN surface effectively. Therefore, the MOS-HFET structure with the HfAlO gate dielectric is very attractive for GaN-based high-power and high-temperature device applications.

Lee, B.; Choi, Y. H.; Kirkpatrick, C.; Huang, A. Q.; Misra, V.

2013-07-01

345

Trial of a slant visual range measuring device  

NASA Astrophysics Data System (ADS)

Each year fog at airports renders some landing operations either difficult or impossible. In such instances, visibility is the most important information for the pilot of a landing aircraft. Visibility may be constant, decreasing, or increasing with respect to the altitude; however, it is not possible to distinguish this with existing airport sensors. This paper describes a new technique for measuring slant visual range that makes use of a slant scanning device, an eye-safe laser radar. This device has been tested by the German Meteorological Service in Quickborn, Germany, over a period of one year. A comparison with commercial visibility sensors shows that it is possible to measure visibilities with the slant-looking laser radar in the range from 50 m up to 2000 m and to even distinguish inhomogenities like ground fog. Statistics of the Quickborn measurements show that the atmosphere in that region is not homogeneous in 38 percent of fog situations, which would at the present lead to a redistribution of the air traffic. The first installation of this instrument at the Hamburg airport is described.

Streicher, Jurgen; Muenkel, C.; Borchardt, H.

1993-10-01

346

Development of a portable photosynthesis rate measurement device  

NASA Astrophysics Data System (ADS)

Photosynthesis is a very important chemical reaction in the plant, and its measurement plays critical role in the agriculture production and science research of plant. Delayed fluorescence (DF) in plants is an intrinsic label of efficiency of charge separation at P680 in photosystem II (PS II). In this paper, a portable photosynthesis rate measurement device by means of DF is proposed. It can achieve DF of plant with high sensitivity and signal-to-noise ratio basing on ultra-weak luminescence detection technique, and get photosynthesis rate by the corresponding relation between DF and photosynthesis rate. The device has its illumination power and can obtain all-weather measurement with less interference of the environment. Locale live survey can be realized by hermetic darkroom design and battery power supply. The system carries out data acquisition and processing by single-chip microcomputer control. The results show that this instrument has a lot of values such as low cost, high accuracy and good reliability and convenience.

Wang, Junsheng; Xing, Da; Xu, Wenhai

2006-09-01

347

PARduino: A Simple Device Measuring and Logging Photosynthetically Active Radiation  

NASA Astrophysics Data System (ADS)

Photosynthetically Active Radiation (PAR, 400 to 700 nm) is one of the primary controls of forest carbon and water relations. In complex terrain, PAR has high spatial-variability. Given the high cost of commercial datalogging equipment, spatially-distributed measurements of PAR have been typically modeled using geographic coordinates and terrain indices. Here, we present a design for a low cost, field-deployable device for measuring and logging PAR built around an Arduino microcontroller (we named it PARduino). PARduino provides for widely distributed sensor arrays and tests the feasibility of using hobbyist-grade electronics for collecting scientific data. PARduino components include a LiCor quantum sensor, EME Systems signal converter/amplifier, and Sparkfun's Arduino Pro Mini microcontroller. Additional components include a real time clock, a microSD flash memory card, and a custom printed circuit board (PCB). We selected the components with an eye towards ease of assembly. Everything can be connected to the PCB using through-hole soldering techniques. Since the device will be deployed in remote research plots that lack easy access to line power, battery life was also a consideration in the design. Extended deployment is possible because PARduino's software keeps it in a low-power sleep mode until ready to make a measurement. PARduino will be open-source hardware for use and improvement by others.

Barnard, H. R.; Findley, M. C.

2013-12-01

348

New simulation and measurement results on gateable DEPFET devices  

NASA Astrophysics Data System (ADS)

To improve the signal to noise level, devices for optical and x-ray astronomy use techniques to suppress background events. Well known examples are e.g. shutters or frame-store Charge Coupled Devices (CCDs). Based on the DEpleted P-channel Field Effect Transistor (DEPFET) principle a so-called Gatebale DEPFET detector can be built. Those devices combine the DEPFET principle with a fast built-in electronic shutter usable for optical and x-ray applications. The DEPFET itself is the basic cell of an active pixel sensor build on a fully depleted bulk. It combines internal amplification, readout on demand, analog storage of the signal charge and a low readout noise with full sensitivity over the whole bulk thickness. A Gatebale DEPFET has all these benefits and obviates the need for an external shutter. Two concepts of Gatebale DEPFET layouts providing a built-in shutter will be introduced. Furthermore proof of principle measurements for both concepts are presented. Using recently produced prototypes a shielding of the collection anode up to 1 • 10-4 was achieved. Predicted by simulations, an optimized geometry should result in values of 1 • 10-5 and better. With the switching electronic currently in use a timing evaluation of the shutter opening and closing resulted in rise and fall times of 100ns.

Bähr, Alexander; Aschauer, Stefan; Hermenau, Katrin; Herrmann, Sven; Lechner, Peter H.; Lutz, Gerhard; Majewski, Petra; Miessner, Danilo; Porro, Matteo; Richter, Rainer H.; Schaller, Gerhard; Sandow, Christian; Schnecke, Martina; Schopper, Florian; Stefanescu, Alexander; Strüder, Lothar; Treis, Johannes

2012-07-01

349

21 CFR 886.4280 - Intraocular pressure measuring device.  

Code of Federal Regulations, 2013 CFR

...devices. Accessories for the device may include calibrators or recorders. The device is intended for use in the diagnosis of glaucoma. (b) Classification. Class III. (c) Date PMA or notice of completion of PDP is required. As of May 28,...

2013-04-01

350

21 CFR 886.4280 - Intraocular pressure measuring device.  

Code of Federal Regulations, 2014 CFR

...devices. Accessories for the device may include calibrators or recorders. The device is intended for use in the diagnosis of glaucoma. (b) Classification. Class III. (c) Date PMA or notice of completion of PDP is required. As of May 28,...

2014-04-01

351

21 CFR 886.4280 - Intraocular pressure measuring device.  

Code of Federal Regulations, 2012 CFR

...devices. Accessories for the device may include calibrators or recorders. The device is intended for use in the diagnosis of glaucoma. (b) Classification. Class III. (c) Date PMA or notice of completion of PDP is required. As of May 28,...

2012-04-01

352

21 CFR 886.4280 - Intraocular pressure measuring device.  

Code of Federal Regulations, 2010 CFR

...devices. Accessories for the device may include calibrators or recorders. The device is intended for use in the diagnosis of glaucoma. (b) Classification. Class III. (c) Date PMA or notice of completion of PDP is required. As of May 28,...

2010-04-01

353

21 CFR 886.4280 - Intraocular pressure measuring device.  

Code of Federal Regulations, 2011 CFR

...devices. Accessories for the device may include calibrators or recorders. The device is intended for use in the diagnosis of glaucoma. (b) Classification. Class III. (c) Date PMA or notice of completion of PDP is required. As of May 28,...

2011-04-01

354

Method and device for measuring single-shot transient signals  

DOEpatents

Methods, apparatus, and systems, including computer program products, implementing and using techniques for measuring multi-channel single-shot transient signals. A signal acquisition unit receives one or more single-shot pulses from a multi-channel source. An optical-fiber recirculating loop reproduces the one or more received single-shot optical pulses to form a first multi-channel pulse train for circulation in the recirculating loop, and a second multi-channel pulse train for display on a display device. The optical-fiber recirculating loop also optically amplifies the first circulating pulse train to compensate for signal losses and performs optical multi-channel noise filtration.

Yin, Yan

2004-05-18

355

Long-Distance Measurement-Device-Independent Multiparty Quantum Communication  

NASA Astrophysics Data System (ADS)

The Greenberger-Horne-Zeilinger (GHZ) entanglement, originally introduced to uncover the extreme violation of local realism against quantum mechanics, is an important resource for multiparty quantum communication tasks. But the low intensity and fragility of the GHZ entanglement source in current conditions have made the practical applications of these multiparty tasks an experimental challenge. Here we propose a feasible scheme for practically distributing the postselected GHZ entanglement over a distance of more than 100 km for experimentally accessible parameter regimes. Combining the decoy-state and measurement-device-independent protocols for quantum key distribution, we anticipate that our proposal suggests an important avenue for practical multiparty quantum communication.

Fu, Yao; Yin, Hua-Lei; Chen, Teng-Yun; Chen, Zeng-Bing

2015-03-01

356

Long-distance measurement-device-independent multiparty quantum communication.  

PubMed

The Greenberger-Horne-Zeilinger (GHZ) entanglement, originally introduced to uncover the extreme violation of local realism against quantum mechanics, is an important resource for multiparty quantum communication tasks. But the low intensity and fragility of the GHZ entanglement source in current conditions have made the practical applications of these multiparty tasks an experimental challenge. Here we propose a feasible scheme for practically distributing the postselected GHZ entanglement over a distance of more than 100 km for experimentally accessible parameter regimes. Combining the decoy-state and measurement-device-independent protocols for quantum key distribution, we anticipate that our proposal suggests an important avenue for practical multiparty quantum communication. PMID:25793788

Fu, Yao; Yin, Hua-Lei; Chen, Teng-Yun; Chen, Zeng-Bing

2015-03-01

357

Methods of measurement for semiconductor materials, process control, and devices  

NASA Technical Reports Server (NTRS)

The development of methods of measurement for semiconductor materials, process control, and devices is discussed. The following subjects are also presented: (1) demonstration of the high sensitivity of the infrared response technique by the identification of gold in a germanium diode, (2) verification that transient thermal response is significantly more sensitive to the presence of voids in die attachment than steady-state thermal resistance, and (3) development of equipment for determining susceptibility of transistors to hot spot formation by the current-gain technique.

Bullis, W. M. (editor)

1971-01-01

358

Detection of gas hydrates by the measurement of instantaneous temperature  

E-print Network

methods used to measure sediment temperature were studied. A new method to detect hydrates was developed based on sediment temperature and its effectiveness was tested. This method involves the measurement of instantaneous temperature as a probe is pushed...

Dinakaran, Srikanth

1994-01-01

359

7 CFR 28.301 - Measurement: humidity; temperature.  

Code of Federal Regulations, 2012 CFR

...2012-01-01 false Measurement: humidity; temperature. 28.301 Section 28.301 Agriculture...28.301 Measurement: humidity; temperature. The length of staple of any...of the atmosphere of 65 percent and a temperature of 70...

2012-01-01

360

7 CFR 28.301 - Measurement: humidity; temperature.  

Code of Federal Regulations, 2010 CFR

...2010-01-01 false Measurement: humidity; temperature. 28.301 Section 28.301 Agriculture...28.301 Measurement: humidity; temperature. The length of staple of any...of the atmosphere of 65 percent and a temperature of 70°...

2010-01-01

361

7 CFR 28.301 - Measurement: humidity; temperature.  

Code of Federal Regulations, 2014 CFR

...2014-01-01 false Measurement: humidity; temperature. 28.301 Section 28.301 Agriculture...28.301 Measurement: humidity; temperature. The length of staple of any...of the atmosphere of 65 percent and a temperature of 70...

2014-01-01

362

7 CFR 28.301 - Measurement: humidity; temperature.  

Code of Federal Regulations, 2011 CFR

...2011-01-01 false Measurement: humidity; temperature. 28.301 Section 28.301 Agriculture...28.301 Measurement: humidity; temperature. The length of staple of any...of the atmosphere of 65 percent and a temperature of 70...

2011-01-01

363

7 CFR 28.301 - Measurement: humidity; temperature.  

Code of Federal Regulations, 2013 CFR

...2013-01-01 false Measurement: humidity; temperature. 28.301 Section 28.301 Agriculture...28.301 Measurement: humidity; temperature. The length of staple of any...of the atmosphere of 65 percent and a temperature of 70...

2013-01-01

364

Ion Flow and Temperature Measurements in Turbulent CSDX Plasmas  

NASA Astrophysics Data System (ADS)

Experiments in the Controlled Shear Decorrelation Experiment device have shown that an azimuthally symmetric, radially sheared plasma fluid flow arises spontaneously when the primarily axial magnetic field lines terminate on insulating boundaries. Theory suggests that the shear flow is sustained by the Reynolds stress generated by collisional drift turbulence. The measurements were based on Time Delay Estimation, which cannot distinguish between ion fluid velocities and wave phase velocities, and Mach probes, which are perturbative. We present measurements of the radial profiles of ion flows and temperatures as measured with laser induced florescence in argon. The measurements were obtained with a portable, high power (> 350 W), tunable diode laser-based system operating at 668.614 nm. Mode hop free tuning of the laser over 30 GHz permitted the measurement of the entire ion velocity distribution function in a single laser frequency scan. The absolute wavelength was simultaneously recorded for each laser frequency. We will report radial profiles of ion temperature and bulk flow for both turbulent and quiescent flow regimes.

McCarren, Dustin; Scime, Earl; Thakur, Saikat; Lee, Ty; Tynan, George

2011-11-01

365

Modeling of SiC Lateral Resonant Devices Over a Broad Temperature Range  

NASA Technical Reports Server (NTRS)

Finite-element analysis (FEA) modal results of 3C-SiC lateral resonant devices anchored to a Si substrate are presented as resonant frequency versus temperature. The suspended elements are etched from a 2 micron, 3C-SiC film grown at 1600 K on a 500 micron-thick, Si substrate. The analysis includes, temperature-dependent properties, shape change due to volume expansion with temperature, and thermal stress caused by differential thermal expansion of different materials. Two designs are considered: type I has anchor locations close to the geometric centroid and a small shuttle; type 11 has a large shuttle with anchors far from the centroid, The resonant frequency decreases approximately 3.5% over a 1000 K temperature increase for the type-I device, and behaves according to theory. The resonant frequency of the type-11 device decreases by 2% over the first 400 K, then rises slightly over the remaining 600 K. This device deviates from theory because of the high thermal stress induced in the beams. The thermal stress is caused by the differential thermal expansion of the suspended element relative to the substrate. The results show that the device geometry must be properly chosen if the resonant frequency of that device will be used to calculate the temperature coefficient of Young's modulus. These results apply only to resonators of one material on a substrate of a different material.

DeAnna, Russell G.; Roy, Shuvo; Zorman, Christian A.; Mehregany, Mehran

1999-01-01

366

Sea Surface Temperatures (SST): Significance and Measurement  

NASA Astrophysics Data System (ADS)

Oceans cover 71 percent of Earth's surface and control the global climate. Quoted global mean temperature values and trends, largely based on land thermometers, differ substantially -" mainly because of uncertainties about SST. The ongoing controversy about the relative importance of natural climate changes and Anthropogenic Global Warming (AGW) revolves mainly around disparities between temperature trends of the atmosphere and surface (in the tropics and SH, i.e. mostly SST). Accurate measurement of SST is difficult. Geographic coverage is poor and there are many different techniques, each with its own problems and uncertainties: Water temperatures from buckets and ship-engine inlets; fixed and floating buoys; air temperatures from shipboard and island stations; and remote sensing from satellites using IR and microwaves. As is evident, each technique refers to a different level below the air-water interface. Drifter buoys (at around 50 cm) measure temperatures in the euphotic layers that are generally warmer than the bulk mixed layer sampled by ships (typically around 10 m). The IR emission arises from a 10-micron-thick skin that interacts dynamically with the underlying "mixed layer." The microwave data depend also on emissivity and therefore on surface roughness and sea state. SST data derived from corals provide some support for instrumental data but are not conclusive. The majority of corals show a warming trend since 1979; others show cooling or are ambiguous. There are different ways of interpreting this result. Physical optics dictates that the downwelling IR radiation from atmospheric greenhouse gases is absorbed in the first instance within the skin. Only direct measurements can establish how much of this energy is shared with the bulk mixed layer (to which the usual SST values refer.). SST controls evaporation and therefore global precipitation. SST influences tropical cyclones and sea-level rise; but there is lively debate on those issues. Changes in SST are also responsible for changes in deep- ocean temperatures and ocean heat storage. But recent claims that an increase in heat storage is a "smoking gun" for AGW are without merit.

Singer, S. F.

2006-05-01

367

Temperature-Controlled FreeSurface Microfluidic Devices  

Microsoft Academic Search

Free-Surface MicroFluidics (FSMF) have recently received much attention for their applications especially their ability for airborne chemical detection [Piorek, 2007]. Surface tension is generally used for fluid transport through microchannels in FSMF; however, it is not simply controllable. Thus, evaporation can be utilized for the flow control. In the current study, temperature-controlled microvalves are developed to control the fluid flow

Meysam Barmi; Brian Piorek; Chrysafis Andreou; Carl Meinhart

2010-01-01

368

The display of portable infrared measuring temperature  

NASA Astrophysics Data System (ADS)

In recent years based on security, quality supervision, inspection and medical for the urgent need of infrared temperature measurement and infrared display technology, coupled with embedded system to achieve rapid development, which is widely used in the electronic products and the field of intelligent instruments and industrial control, this paper has designed a kind of more comprehensive, more efficient and more intuitive infrared thermometer. Unlike previous handheld infrared thermometer, we regard an embedded Linux system as the system, with its open source code, support most mainstream hardware platforms, unified peripheral interface and can be customized, to build an embedded infrared system that has provided strong system support; the pseudocolor techniques and Qt interface display technology make the image more colorful and the picture function more diverse; With ARM microprocessor as the display and temperature measuring platform, it costs reduction and reduce volume and power consumption; the FrameBuffer interface technology and multithreading technology realize the smooth real-time display. And ultimately the display size of real-time infrared image is 640 * 480 at a speed of 25 frames / sec. What is more, display is equipped with the menu option so that thermometer can be required to complete the operation through the button. The temperature display system aims at small volume, easy to use and flexible. I believe this thermometer will have a good application prospect.

Qian, Yitao; Gu, Guohua; Sui, Xiubao

2014-11-01

369

30 CFR 75.320 - Air quality detectors and measurement devices.  

Code of Federal Regulations, 2010 CFR

... 2010-07-01 false Air quality detectors and measurement devices. 75.320...Ventilation § 75.320 Air quality detectors and measurement devices. (a) Tests...a qualified person with MSHA approved detectors that are maintained in...

2010-07-01

370

Simple uniaxial pressure device for ac-susceptibility measurements suitable for closed cycle refrigerator system.  

PubMed

A simple design of the uniaxial pressure device for the measurement of ac-susceptibility at low temperatures using closed cycle refrigerator system is presented for the first time. This device consists of disc micrometer, spring holder attachment, uniaxial pressure cell, and the ac-susceptibility coil wound on stycast bobbin. It can work under pressure till 0.5 GPa and at the temperature range of 30-300 K. The performance of the system at ambient pressure is tested and calibrated with standard paramagnetic salts [Gd(2)O(3), Er(2)O(3), and Fe(NH(4)SO(4))(2)6H(2)O], Fe(3)O(4), Gd metal, Dy metal, superconductor (YBa(2)Cu(3)O(7)), manganite (La(1.85)Ba(0.15)MnO(3)), and spin glass material (Pr(0.8)Sr(0.2)MnO(3)). The performance of the uniaxial pressure device is demonstrated by investigating the uniaxial pressure dependence of La(1.85)Ba(0.15)MnO(3) single crystal with P||c axis. The Curie temperature (T(c)) decreases as a function of pressure with P||c axis (dT(c)dP(||c axis)=-11.65 KGPa) up to 46 MPa. The design is simple, is user friendly, and does not require pressure calibration. Measurement can even be made on thin and small size oriented crystals. The failure of the coil is remote under uniaxial pressure. The present setup can be used as a multipurpose uniaxial pressure device for the measurement of Hall effect and thermoelectric power with a small modification in the pressure cell. PMID:17614625

Arumugam, S; Manivannan, N; Murugeswari, A

2007-06-01

371

Progresses in cMUT device fabrication using low temperature processes  

NASA Astrophysics Data System (ADS)

In this paper, we present an original fabrication process of capacitive micromachined ultrasonic transducers (cMUTs) using a low temperature method for high frequency medical imaging applications. The process, which is limited to 400 °C, is based on surface micromachining. The material choices are adapted in order to respect the thermal specifications allowing monolithic integration. Thus, we have found alternative methods to replace the usual high temperature steps in cMUT elaboration. In this way, a nickel silicide layer, presenting good physical and electrical characteristics, is used as a bottom electrode. The membrane, silicon nitride, is deposited using a 200 °C PECVD process. Then, a metallic layer is chosen as a sacrificial layer, in order to achieve the cavity. For that, nickel has been chosen due to its low roughness and its high etching selectivity during the excavation. After their fabrication, the transducers have been tested to verify their functionality and, thus, to validate this low temperature process. Device physical properties have been determined by electrical and optical measurement in air. We evaluated resonance frequency, collapse voltage and electromechanical coupling coefficient in accordance with the simulation. Eventually, low charging effects and low initial deflections can predict good long-term use and ageing of the cMUTs.

Bahette, E.; Michaud, J. F.; Certon, D.; Gross, D.; Alquier, D.

2014-04-01

372

Comparison of nickel silicide and aluminium ohmic contact metallizations for low-temperature quantum transport measurements.  

PubMed

We examine nickel silicide as a viable ohmic contact metallization for low-temperature, low-magnetic-field transport measurements of atomic-scale devices in silicon. In particular, we compare a nickel silicide metallization with aluminium, a common ohmic contact for silicon devices. Nickel silicide can be formed at the low temperatures (<400°C) required for maintaining atomic precision placement in donor-based devices, and it avoids the complications found with aluminium contacts which become superconducting at cryogenic measurement temperatures. Importantly, we show that the use of nickel silicide as an ohmic contact at low temperatures does not affect the thermal equilibration of carriers nor contribute to hysteresis in a magnetic field. PMID:21968083

Polley, Craig M; Clarke, Warrick R; Simmons, Michelle Y

2011-01-01

373

An ultrasonic device for source to skin surface distance measurement in patient setup  

SciTech Connect

Purpose: To develop an ultrasound-based source to skin surface distance (SSD) measurement technique and device for patient setup and test its feasibility and accuracy. Methods and materials: The ultrasonic SSD measurement device (USD) prototype consists of two main parts: a probe plate with an ultrasonic transducer in the center and a control unit that displays the SSD in millimeters. The probe plate can be slid into the block tray accessory slot of any treatment machine at the time of the SSD measurement. The probe plate contains an ultrasonic transducer as both the source and the detector for measuring the distance between the transducer and the target surfaces on the basis of an echo-detecting technique. The device was calibrated by a mechanical ruler with an accuracy of 0.01 mm and corrected by an offset of 601.7 mm, which is the distance from the radiation source to the ultrasonic transducer surface for the Siemens Primus linear accelerator (Linac). The ultrasound device provided digital readout with an accuracy of {+-}0.1 mm for a flat surface after calibration. The SSD measurement experiments were done with the USD, an optical distance indicator (ODI), and an AKTINA 53-104 Mechanical Front Pointer (FP) on a Siemens Primus Linac with a full-sized female phantom. Ten measurements were carried out at each gantry angle of 0 deg , 52 deg , 85 deg , 90 deg , and 227 deg for anatomic locations of head, thorax, breast, and pelvis, to obtain the average values and standard deviations. Results: The comparison study with the ODI and FP showed that the USD had an accuracy of less than {+-}1.0 mm and that USD measurements had the minimum standard deviations among the three methods; therefore, USD gave more consistent and accurate readouts for SSD measurement. When considering the FP as a reference, the USD yields smaller deviations than the ODI for all measured locations (less than {+-}2 mm). The variation of USD digital readout with a room temperature change of {+-}2 deg C is {+-}0.1 mm, which is sufficiently accurate for SSD measurement. Conclusions: The USD method has the following advantages. First, it decreases patient setup time by avoiding problems related to the blocking of the device by the patient or by the immobilization device. Second, it is more accurate than the other two methods currently used, as the test data show. Last, the digital readout eliminates the possibility of human reading error associated with the visual scales.

Feng Yuanming [Department of Radiation Oncology, Brody School of Medicine, East Carolina University, Greenville, NC (United States)]. E-mail: yfeng002@umaryland.edu; Allison, Ron [Department of Radiation Oncology, Brody School of Medicine, East Carolina University, Greenville, NC (United States); Hu Xinhua [Department of Radiation Oncology, Brody School of Medicine, East Carolina University, Greenville, NC (United States); Mota, Helvecio [Department of Radiation Oncology, Brody School of Medicine, East Carolina University, Greenville, NC (United States); Jenkins, Todd [Department of Radiation Oncology, Brody School of Medicine, East Carolina University, Greenville, NC (United States); Wolfe, Melodee L. [Department of Radiation Oncology, Brody School of Medicine, East Carolina University, Greenville, NC (United States); Sibata, Claudio [Department of Radiation Oncology, Brody School of Medicine, East Carolina University, Greenville, NC (United States)

2005-04-01

374

Design of a Device for Sky Light Polarization Measurements  

PubMed Central

Sky polarization patterns can be used both as indicators of atmospheric turbidity and as a sun compass for navigation. The objective of this study is to improve the precision of sky light polarization measurements by optimal design of the device used. The central part of the system is composed of a Charge Coupled Device (CCD) camera; a fish-eye lens and a linear polarizer. Algorithms for estimating parameters of the polarized light based on three images are derived and the optimal alignments of the polarizer are analyzed. The least-squares estimation is introduced for sky light polarization pattern measurement. The polarization patterns of sky light are obtained using the designed system and they follow almost the same patterns of the single-scattering Rayleigh model. Deviations of polarization angles between observation and the theory are analyzed. The largest deviations occur near the sun and anti-sun directions. Ninety percent of the deviations are less than 5° and 40% percent of them are less than 1°. The deviations decrease evidently as the degree of polarization increases. It also shows that the polarization pattern of the cloudy sky is almost identical as in the blue sky. PMID:25196003

Wang, Yujie; Hu, Xiaoping; Lian, Junxiang; Zhang, Lilian; Xian, Zhiwen; Ma, Tao

2014-01-01

375

Development of a device to measure human sound localization.  

PubMed

Measurements of human sound discrimination and localization are important for basic empirical and clinical applications. After a short survey of other methods such as evoked potentials, the development of a new device to measure human sound localization is described and its use illustrated with some examples. Built from a polyacrylic hemisphere or--in a later version--from an orbicular aluminum frame, the apparatus uses multiple speakers to emit auditory stimuli. The patient sits in the middle of the perimeter and has to press a button when a sound is perceived. In addition, the participant has to identify the correct speaker as the source of the sound. With this method it is possible to map the auditory field. PMID:22185053

Eder, Reinhard; Scheel, Norman

2011-10-01

376

Modeling a measurement-device-independent quantum key distribution system  

E-print Network

We present a detailed description of a widely applicable mathematical model for quantum key distribution (QKD) systems implementing the measurement-device-independent (MDI) protocol. The model is tested by comparing its predictions with data taken using a proof-of-principle, time-bin qubit-based QKD system in a secure laboratory environment (i.e. in a setting in which eavesdropping can be excluded). The good agreement between the predictions and the experimental data allows the model to be used to optimize mean photon numbers per attenuated laser pulse, which are used to encode quantum bits. This in turn allows optimization of secret key rates of existing MDI-QKD systems, identification of rate-limiting components, and projection of future performance. In addition, we also performed measurements over deployed fiber, showing that our system's performance is not affected by environment-induced perturbations.

Philip Chan; Joshua A. Slater; Itzel Lucio-Martinez; Allison Rubenok; Wolfgang Tittel

2014-05-21

377

Modeling a measurement-device-independent quantum key distribution system.  

PubMed

We present a detailed description of a widely applicable mathematical model for quantum key distribution (QKD) systems implementing the measurement-device-independent (MDI) protocol. The model is tested by comparing its predictions with data taken using a proof-of-principle, time-bin qubit-based QKD system in a secure laboratory environment (i.e. in a setting in which eavesdropping can be excluded). The good agreement between the predictions and the experimental data allows the model to be used to optimize mean photon numbers per attenuated laser pulse, which are used to encode quantum bits. This in turn allows optimization of secret key rates of existing MDI-QKD systems, identification of rate-limiting components, and projection of future performance. In addition, we also performed measurements over deployed fiber, showing that our system's performance is not affected by environment-induced perturbations. PMID:24921468

Chan, P; Slater, J A; Lucio-Martinez, I; Rubenok, A; Tittel, W

2014-06-01

378

Multilayer compressive seal for sealing in high temperature devices  

DOEpatents

A mica based compressive seal has been developed exhibiting superior thermal cycle stability when compared to other compressive seals known in the art. The seal is composed of compliant glass or metal interlayers and a sealing (gasket) member layer composed of mica that is infiltrated with a glass forming material, which effectively reduces leaks within the seal. The compressive seal shows approximately a 100-fold reduction in leak rates compared with previously developed hybrid seals after from 10 to about 40 thermal cycles under a compressive stress of from 50 psi to 100 psi at temperatures in the range from 600.degree. C. to about 850.degree. C.

Chou, Yeong-Shyung (Richland, WA); Stevenson, Jeffry W. (Richland, WA)

2007-08-21

379

Skin friction measurements in high temperature high speed flows  

NASA Technical Reports Server (NTRS)

An experimental investigation was conducted to measure skin friction along the chamber walls of supersonic combustors. A direct force measurement device was used to simultaneously measure an axial and transverse component of the small tangential shear force passing over a non-intrusive floating element. The floating head is mounted to a stiff cantilever beam arrangement with deflection due to the flow on the order of 0.00254 mm (0.0001 in.). This allowed the instrument to be a non-nulling type. A second gauge was designed with active cooling of the floating sensor head to eliminate non-uniform temperature effects between the sensor head and the surrounding wall. Samples of measurements made in combustor test facilities at NASA Langley Research Center and at the General Applied Science Laboratory (GASL) are presented. Skin friction coefficients between 0.001 - 0.005 were measured dependent on the facility and measurement location. Analysis of the measurement uncertainties indicate an accuracy to within +/- 10-15 percent of the streamwise component.

Schetz, J. A.; Diller, Thomas E.; Wicks, A. L.

1992-01-01

380

77 FR 35745 - Highway Safety Programs; Conforming Products List of Screening Devices To Measure Alcohol in...  

Federal Register 2010, 2011, 2012, 2013, 2014

...Screening Devices To Measure Alcohol in Bodily Fluids AGENCY: National Highway Traffic Safety...Screening Devices to Measure Alcohol in Bodily Fluids dated, March 31, 2008 (73 FR 16956...Screening Devices to Measure Alcohol in Bodily Fluids (59 FR 39382). These...

2012-06-14

381

Gas thermometer for precision measurement of thermodynamic temperatures below 300/sup 0/K  

SciTech Connect

The authors discuss an apparatus for measuring thermodynamic temperatures of 3-300/sup 0/K by means of a constant-density gas thermometer. The main measuring device in the gas thermometer is a special mercury interference manometer. The flow cryostat for the range 2-300/sup 0/K is shown and the heat carriers are liquid or gaseous helium, hydrogen, and nitrogen. The thermodynamic temperatures measured by this thermometer have been transferred to several standard resistance thermometers made of platinum and rhodium-iron alloy. The gas thermometer examined here enables the measurement of temperatures on the thermodynamic scale with an error of not more than 1 mK.

Polunin, S.P.; Astrov, D.N.; Belyanskii, L.B.; Dedikov, Yu.A.; Zakharov, A.A.

1987-08-01

382

Ohmic contacts for high-temperature GaP devices  

E-print Network

at temperatures above 250 C. This thesis reports the results of a study for five n-type ohmic contacts: Au-Ge (12 wtX Ge)/Ni, Au-Sn (12 wtX Sn), Au-Sn (38 wtX Sn)/Ni, Au-Si (2 wtX Si), and Au-Te (2 wtX Te); and two p-type ohmic contacts: Au-Zn (1 wtX Zn...) and Au-Be (1 wtX Be). Scanning electron microscopy is used to show surface morphologies of each metal system considered. After prolonged aging, it is concluded that laser annealed Au-Ge (12 wtX Ge)/Ni and thermally annealed Au-Be (1 wtX Be) provide...

Van der Hoeven, Willem Bernard

1981-01-01

383

High resolution low-temperature superconductivity superconducting quantum interference device microscope for imaging magnetic fields of samples at room temperatures  

Microsoft Academic Search

We have developed a microscope to image weak magnetic fields using submillimeter pickup coils made from conventional low-temperature superconducting niobium wire coupled to the input circuit of a superconducting quantum interference device (SQUID). The pickup coil and the SQUID sensor are mounted in the vacuum space of the cryostat and are thermally anchored to the liquid helium reservoir. A 25

F. Baudenbacher; N. T. Peters; J. P. Wikswo

2002-01-01

384

Apparatus for accurately measuring high temperatures  

SciTech Connect

The present invention is a thermometer used for measuring furnace temperatures in the range of about 1800/sup 0/ to 2700/sup 0/ C. The thermometer comprises a broadband multicolor thermal radiation sensor positioned to be in optical alignment with the end of a blackbody sight tube extending into the furnace. A valve-shutter arrangement is positioned between the radiation sensor and the sight tube and a chamber for containing a charge of high pressure gas is positioned between the valve-shutter arrangement and the radiation sensor. A momentary opening of the valve shutter arrangement allows a pulse of the high gas to purge the sight tube of air-borne thermal radiation contaminants which permits the radiation sensor to accurately measure the thermal radiation emanating from the end of the sight tube.

Smith, D. D.

1985-06-25

385

Stage for texture measurements above room temperature in a Philips X'Pert Pro MPD diffractometer  

SciTech Connect

A special stage for texture measurements above room temperature was designed with the proper size and weight to be fitted onto the Eulerean cradle of the Philips X'Pert Pro MPD diffractometer. With such device, flat samples of 2x2 cm{sup 2} area can be analyzed at a nearly constant temperature with variations below {+-}4 deg. C in the range between ambient temperature and 200 deg. C.

Sobrero, Cesar E.; Castellani, Daniel; Bolmaro, Raul E.; Malarria, Jorge A. [Instituto de Fisica Rosario (CONICET) and Facultad de Ciencias Exactas Ingenieria y Agrimensura (UNR), Bv 27 de Febrero 210 Bis, Rosario (Argentina)

2009-11-15

386

Characterization of devices, circuits, and high-temperature superconductor transmission lines by electro-optic testing  

NASA Technical Reports Server (NTRS)

The development of a capability for testing transmission lines, devices, and circuits using the optically-based technique of electro-optics sampling was the goal of this project. Electro-optic network analysis of a high-speed device was demonstrated. The project involved research on all of the facets necessary in order to realize this result, including the discovery of the optimum electronic pulse source, development of an adequate test fixture, improvement of the electro-optic probe tip, and identification of a device which responded at high frequency but did not oscillate in the test fixture. In addition, during the process of investigating patterned high-critical-temperature superconductors, several non-contacting techniques for the determination of the transport properties of high T(sub c) films were developed and implemented. These are a transient, optical pump-probe, time-resolved reflectivity experiment, an impulsive-stimulated Raman scattering experiment, and a terahertz-beam coherent-spectroscopy experiment. The latter technique has enabled us to measure both the complex refractive index of an MgO substrate used for high-T(sub c) films and the complex conductivity of a YBa2Cu3O(7-x) sample. This information was acquired across an extremely wide frequency range: from the microwave to the submillimeter-wave regime. The experiments on the YBCO were conducted without patterning of, or contact to, the thin film. Thus, the need for the more difficult transmission-line experiments was eliminated. Progress in all of these areas was made and is documented in a number of papers. These papers may be found in the section listing the abstracts of the publications that were issued during the course of the research.

Whitaker, John F.

1991-01-01

387

Effects of chamber pressure variation on the grid temperature in an inertial electrostatic confinement device  

SciTech Connect

Inertial electrostatic confinement fusion devices are compact sources of neutrons, protons, electrons, and x rays. Such sources have many applications. Improving the efficiency of the device also increases the applications of this device. Hence a thorough understanding of the operation of this device is needed. In this paper, we study the effect of chamber pressure on the temperature of the cathode. Experimentally, the grid temperature decreases as the chamber pressure increases; numerical simulations suggest that this is caused by the reduction of the hot ion current to the cathode as the pressure increases for constant power supply current. Such an understanding further supports the conclusion that the asymmetric heating of the cathode can be decreased by homogenizing the ion flow around the cathode.

Murali, S. Krupakar [Lawrenceville Plasma Physics, 128 Lincoln Blvd., Middlesex, New Jersey 08846 (United States); Emmert, G. A.; Santarius, J. F.; Kulcinski, G. L. [Fusion Technology Institute, University of Wisconsin, 1500 Engineering Drive, Madison, Wisconsin 53706 (United States)

2010-10-15

388

Practical aspects of measurement-device-independent quantum key distribution  

NASA Astrophysics Data System (ADS)

A novel protocol, measurement-device-independent quantum key distribution (MDI-QKD), removes all attacks from the detection system, the most vulnerable part in QKD implementations. In this paper, we present an analysis for practical aspects of MDI-QKD. To evaluate its performance, we study various error sources by developing a general system model. We find that MDI-QKD is highly practical and thus can be easily implemented with standard optical devices. Moreover, we present a simple analytical method with only two (general) decoy states for the finite decoy-state analysis. This method can be used directly by experimentalists to demonstrate MDI-QKD. By combining the system model with the finite decoy-state method, we present a general framework for the optimal choice of the intensities of the signal and decoy states. Furthermore, we consider a common situation, namely asymmetric MDI-QKD, in which the two quantum channels have different transmittances. We investigate its properties and discuss how to optimize its performance. Our work is of interest not only to experiments demonstrating MDI-QKD but also to other non-QKD experiments involving quantum interference.

Xu, Feihu; Curty, Marcos; Qi, Bing; Lo, Hoi-Kwong

2013-11-01

389

Device for accurately measuring mass flow of gases  

DOEpatents

A device for measuring mass flow of gases which utilizes a substantially buoyant pressure vessel suspended within a fluid/liquid in an enclosure. The pressure vessel is connected to a weighing device for continuously determining weight change of the vessel as a function of the amount of gas within the pressure vessel. In the preferred embodiment, this pressure vessel is formed from inner and outer right circular cylindrical hulls, with a volume between the hulls being vented to the atmosphere external the enclosure. The fluid/liquid, normally in the form of water typically with an added detergent, is contained within an enclosure with the fluid/liquid being at a level such that the pressure vessel is suspended beneath this level but above a bottom of the enclosure. The buoyant pressure vessel can be interconnected with selected valves to an auxiliary pressure vessel so that initial flow can be established to or from the auxiliary pressure vessel prior to flow to or from the buoyant pressure vessel.

Hylton, James O. (Clinton, TN); Remenyik, Carl J. (Knoxville, TN)

1994-01-01

390

Device for accurately measuring mass flow of gases  

DOEpatents

A device for measuring mass flow of gases which utilizes a substantially buoyant pressure vessel suspended within a fluid/liquid in an enclosure is disclosed. The pressure vessel is connected to a weighing device for continuously determining weight change of the vessel as a function of the amount of gas within the pressure vessel. In the preferred embodiment, this pressure vessel is formed from inner and outer right circular cylindrical hulls, with a volume between the hulls being vented to the atmosphere external the enclosure. The fluid/liquid, normally in the form of water typically with an added detergent, is contained within an enclosure with the fluid/liquid being at a level such that the pressure vessel is suspended beneath this level but above a bottom of the enclosure. The buoyant pressure vessel can be interconnected with selected valves to an auxiliary pressure vessel so that initial flow can be established to or from the auxiliary pressure vessel prior to flow to or from the buoyant pressure vessel. 5 figs.

Hylton, J.O.; Remenyik, C.J.

1994-08-09

391

Silicon-On-Insulator (SOI) Devices and Mixed-Signal Circuits for Extreme Temperature Applications  

NASA Technical Reports Server (NTRS)

Electronic systems in planetary exploration missions and in aerospace applications are expected to encounter extreme temperatures and wide thermal swings in their operational environments. Electronics designed for such applications must, therefore, be able to withstand exposure to extreme temperatures and to perform properly for the duration of the missions. Electronic parts based on silicon-on-insulator (SOI) technology are known, based on device structure, to provide faster switching, consume less power, and offer better radiation-tolerance compared to their silicon counterparts. They also exhibit reduced current leakage and are often tailored for high temperature operation. However, little is known about their performance at low temperature. The performance of several SOI devices and mixed-signal circuits was determined under extreme temperatures, cold-restart, and thermal cycling. The investigations were carried out to establish a baseline on the functionality and to determine suitability of these devices for use in space exploration missions under extreme temperatures. The experimental results obtained on selected SOI devices are presented and discussed in this paper.

Patterson, Richard; Hammoud, Ahmad; Elbuluk, Malik

2008-01-01

392

Field Test of Measurement-Device-Independent Quantum Key Distribution  

E-print Network

A main type of obstacles of practical applications of quantum key distribution (QKD) network is various attacks on detection. Measurement-device-independent QKD (MDIQKD) protocol is immune to all these attacks and thus a strong candidate for network security. Recently, several proof-of-principle demonstrations of MDIQKD have been performed. Although novel, those experiments are implemented in the laboratory with secure key rates less than 0.1 bps. Besides, they need manual calibration frequently to maintain the system performance. These aspects render these demonstrations far from practicability. Thus, justification is extremely crucial for practical deployment into the field environment. Here, by developing an automatic feedback MDIQKD system operated at a high clock rate, we perform a field test via deployed fiber network of 30 km total length, achieving a 16.9 bps secure key rate. The result lays the foundation for a global quantum network which can shield from all the detection-side attacks.

Yan-Lin Tang; Hua-Lei Yin; Si-Jing Chen; Yang Liu; Wei-Jun Zhang; Xiao Jiang; Lu Zhang; Jian Wang; Li-Xing You; Jian-Yu Guan; Dong-Xu Yang; Zhen Wang; Hao Liang; Zhen Zhang; Nan Zhou; Xiongfeng Ma; Teng-Yun Chen; Qiang Zhang; Jian-Wei Pan

2014-08-11

393

Memory-assisted measurement-device-independent quantum key distribution  

E-print Network

A protocol with the potential of beating the existing distance records for conventional quantum key distribution (QKD) systems is proposed. It borrows ideas from quantum repeaters by using memories in the middle of the link, and that of measurement-device-independent QKD, which only requires optical source equipment at the user's end. For certain fast memories, our scheme allows a higher repetition rate than that of quantum repeaters, thereby requiring lower coherence times. By accounting for various sources of nonideality, such as memory decoherence, dark counts, misalignment errors, and background noise, as well as timing issues with memories, we develop a mathematical framework within which we can compare QKD systems with and without memories. In particular, we show that with the state-of-the-art technology for quantum memories, it is possible to devise memory-assisted QKD systems that, at certain distances of practical interest, outperform current QKD implementations.

Christiana Panayi; Mohsen Razavi; Xiongfeng Ma; Norbert Lütkenhaus

2014-06-19

394

Continuous-variable measurement-device-independent quantum key distribution  

NASA Astrophysics Data System (ADS)

We propose a continuous-variable measurement-device-independent quantum key distribution (CV-MDI QKD) protocol, in which detection is conducted by an untrusted third party. Our protocol can defend all detector side channels, which seriously threaten the security of a practical CV QKD system. Its security analysis against arbitrary collective attacks is derived based on the fact that the entanglement-based scheme of CV-MDI QKD is equivalent to the conventional CV QKD with coherent states and heterodyne detection. We find that the maximal total transmission distance is achieved by setting the untrusted third party close to one of the legitimate users. Furthermore, an alternate detection scheme, a special application of CV-MDI QKD, is proposed to enhance the security of the standard CV QKD system.

Li, Zhengyu; Zhang, Yi-Chen; Xu, Feihu; Peng, Xiang; Guo, Hong

2014-05-01

395

Measuring material relaxation and creep recovery in a microfluidic device.  

PubMed

We present a novel method of testing creep recovery in a microfluidic device. This method allows for the measurement of relaxation time of fluids at low strain. After applying a steady pressure-driven flow along a microchannel, the pressure is released and the fluid is allowed to relax and come to rest. Local strains are observed via the time-dependent velocity profiles and are fit to a general viscoelastic model to obtain the fluids' relaxation times. The use of polymeric solutions of various molecular weights allows for the observation of time scales for strains ranging from 0.01 to 10. Results are consistent with data obtained in a macroscopic rheometer and with a viscoelastic constitutive model. PMID:23525332

Koser, Alison E; Pan, Lichao; Keim, Nathan C; Arratia, Paulo E

2013-05-21

396

Spin-transfer switching of orthogonal spin-valve devices at cryogenic temperatures  

SciTech Connect

We present the quasi-static and dynamic switching characteristics of orthogonal spin-transfer devices incorporating an out-of-plane magnetized polarizing layer and an in-plane magnetized spin valve device at cryogenic temperatures. Switching at 12?K between parallel and anti-parallel spin-valve states is investigated for slowly varied current as well as for current pulses with durations as short as 200 ps. We demonstrate 100% switching probability with current pulses 0.6?ns in duration. We also present a switching probability diagram that summarizes device switching operation under a variety of pulse durations, amplitudes, and polarities.

Ye, L., E-mail: ly17@nyu.edu; Gopman, D. B.; Rehm, L.; Backes, D.; Wolf, G.; Kent, A. D. [Department of Physics, New York University, New York, New York 10003 (United States); Ohki, T. [Raytheon BBN Technologies, Cambridge, Massachusetts 02138 (United States); Kirichenko, A. F.; Vernik, I. V.; Mukhanov, O. A. [HYPRES, 175 Clearbrook Road, Elmsford, New York 10523 (United States)

2014-05-07

397

Instrument for Measuring Temperature of Water  

NASA Technical Reports Server (NTRS)

A pseudo-Brewster-angle infrared radiometer has been proposed for use in noncontact measurement of the surface temperature of a large body of water (e.g., a lake or ocean). This radiometer could be situated on a waterborne, airborne, or spaceborne platform. The design of the pseudo-Brewster-angle radiometer would exploit the spectral-emissivity and polarization characteristics of water to minimize errors attributable to the emissivity of water and to the reflection of downwelling (e.g., Solar and cloud-reflected) infrared radiation. The relevant emissivity and polarization characteristics are the following: . The Brewster angle is the angle at which light polarized parallel to the plane of incidence on a purely dielectric material is not reflected. The pseudo-Brewster angle, defined for a lossy dielectric (somewhat electrically conductive) material, is the angle for which the reflectivity for parallel-polarized light is minimized. For pure water, the reflectivity for parallel-polarized light is only 2.2 x 10(exp -4) at its pseudo- Brewster angle of 51deg. The reflectivity remains near zero, several degrees off from the 51deg optimum, allowing this angle of incidence requirement to be easily achieved. . The wavelength range of interest for measuring water temperatures is 8 to 12 microns. The emissivity of water for parallel- polarized light at the pseudo-Brewster angle is greater than 0.999 in this wavelength range. The radiometer would be sensitive in the wavelength range of 8 to 12 microns, would be equipped with a polarizer to discriminate against infrared light polarized perpendicular to the plane of incidence, and would be aimed toward a body of water at the pseudo- Brewster angle (see figure). Because the infrared radiation entering the radiometer would be polarized parallel to the plane of incidence and because very little downwelling parallel-polarized radiation would be reflected into the radiometer on account of the pseudo-Brewster arrangement, the radiation received by the radiometer would consist almost entirely of thermal emission from the surface of the water. Because the emissivity of the water would be very close to 1, the water could be regarded as a close approximation of a blackbody for the purpose of computing its surface temperature from the radiometer measurements by use of the Planck radiation law.

Ryan, Robert; Nixon, Thomas; Pagnutti, Mary; Zanoni, Vicki

2003-01-01

398

Results of Simulated Temperature Control Device Operations on In-Reservoir and Discharge Water Temperatures Using CE-QUAL-W2  

Microsoft Academic Search

A computer model of the operation of the Shasta Lake temperature control device (TCD) confirms the device's ability to maximize power production and simultaneously reduce summer discharge water temperatures. The TCD's in-reservoir thermal effects were consistent for a wide range of hydrologic conditions. Changes in the thermal structure were most pronounced in the hypolimnion, where summer water temperatures were about

R. Blair Hanna; Laurel Saito; John M. Bartholow; Jeff Sandelin

1999-01-01

399

Simultaneous directional bending and temperature measurement with overlapping long period grating and fiber Bragg grating structure  

NASA Astrophysics Data System (ADS)

A simple and compact device for simultaneous directional bending and temperature sensing is proposed and demonstrated. The device is constructed by overlapping a long period grating (LPG) on a fiber Bragg grating (FBG), and is capable of measuring the directional bending and the temperature at the same position. The LPG written with CO2 laser irradiation has a cross asymmetrical refractive modulation and the FBG is formed by UV laser exposure in the fiber core. The cross-sensitivity between measurement of the directional bending and of the temperature of an LPG is effectively eliminated by solving a matrix equation, by considering the temperature response characteristics of FBG. Experimental results show that the bending and temperature sensitivities are - 6.819 nm m-1 in a range from -2 to 2 m-1 and 10.25 pm °C-1, respectively.

Wang, Li; Zhang, Weigang; Geng, Pengcheng; Gao, Shecheng; Li, Jieliang; Bai, Zhiyong; Chen, Lei; Zhang, Shanshan; Liu, Yongji; Yan, Tieyi

2014-05-01

400

Temperature measurement of gas flow with high temperature and speed using thermal video system  

Microsoft Academic Search

Thermal imaging technique has been used to measure the temperature distribution of gas flow with high temperature and high speed generated in a high temperature wind-tunnel. FIrst, the silicon carbon sheath of thermocouple sensor was considered as a reverential body and its surface temperature was measured using a thermal-video system. The, the real temperature distribution of gas flow was calculated

Dezhong Zhu; Li Liao; Yuqin Gu

1999-01-01

401

Temperature, pressure measurements solve column operating problems  

SciTech Connect

Refinery process engineers use computer modeling to design, monitor, operate, and troubleshoot refinery units. Basic chemical engineering principles, coupled with these high-technology tools, offer the engineer opportunities to identify and fix process unit problems. Pressure, temperature, and composition profiles are fundamental process measurements. But these simple tools that identify system design and operating problems are often lost among the more sophisticated high-tech tools. The details of three operations will show how these basic chemical engineering tools can be used to identify and solve operating problems in refinery distillation columns. Case 1 is an overhead crude unit; the second is a deethanizer reboiler; and the third is a crude atmospheric column.

Golden, S.W. [Process Consulting Services Inc., Grapevine, TX (United States)

1995-12-25

402

Simulated limnological effects of the Shasta Lake temperature control device  

USGS Publications Warehouse

Population ecologists have devoted disproportionate attention to the estimation and study of birth and death rates and far less effort to rates of movement. Movement and fidelity to wintering areas have important ecological and evolutionary implications for avian populations. Previous inferences about movement among and fidelity to wintering areas have been restricted by limitations of data and methodology. We use multiple observation data from a large-scale capture-resighting study of Canada Geese in the Atlantic flyway to estimate probabilities of returning to previous wintering locations and moving to new locations. Mark-resight data from 28,849 Canada Geese (Branta canadensis) banded woth individually coded neck bands in the mid-Atlantic (New York, Pennsylvania, New Jersey), Chesapeake (Delaware, Maryland, Virginia), and Carolinas (North and South Carolina) were used to estimate movement and site-fidelity. Two three-sample mark-resight models were developed and programmed using SURVIV to estimate the probability of moving among or remaining within these three wintering regions. The model (MV2) that incorporated tradition' or memory of previous wintering regions fit the data better than the model (MV1) that assumes that a first-order Markov chain described movement among regions. Considerable levels of movement occured among regions of the Atlantic flyway. The annual probability of remaining in the same region for two successive winters, used as a measure of site fidelity, was 0.710 plus or minus 0.016 (estimated mean plus or minus SE, 0.889 plus or minus 0.006, and 0.562 plus or minus 0.025, for the mid-Atlantic, Chesapeake, and Carolinas, respectively. The estimated probability of moving between years corresponded to changes in winter harshness. In warm years, geese moved north and in cold years, they moved south. Geese had a high probability of moving to and remaining in the Chesapeake. Annual changes in the movement probabilities did not correspond to annual changes in the United States Fish and Wildlife midwinter survey. Considerable numbers of geese from the Carolinas appeared to be wintering in more northerly locations (short-stopped) in subsequent winters.

Bartholow, J.; Hanna, R.B.; Saito, L.; Lieberman, D.; Horn, M.

2001-01-01

403

Infrared thermal detector array using Eu(TTA)3-based temperature sensitive paint for optical readable thermal imaging device  

NASA Astrophysics Data System (ADS)

This paper presents the design and fabrication of an infrared (IR) thermal detector array made of Eu(TTA)3-based temperature sensitive paint (TSP). The TSP emits 610?nm visible luminescence depending on temperature, and works as an IR-to-visible converter. An optical readout system was designed to excite and observe the detector array using a 355?nm light-emitting diode (LED) and a charge-coupled-device (CCD) camera, respectively. The temperature coefficient of the TSP was measured to be ?1.58%?K?1, and thermal images of a 400?°C object were successfully obtained. The noise analysis showed that the noise-equivalent temperature difference (NETD) of the imaging system was about 4.5?K.

Wang, Min; Tsukamoto, Takashiro; Tanaka, Shuji

2015-03-01

404

Measurements of charge transfer efficiency in a proton-irradiated swept charge device  

NASA Astrophysics Data System (ADS)

Charged Coupled Devices (CCDs) have been successfully used in several low energy X-ray astronomical satellites over the past two decades. Their high energy resolution and high spatial resolution make them a perfect tool for low energy astronomy, such as observing the formation of galaxy clusters and the environment around black holes. The Low Energy X-ray Telescope (LE) group is developing a Swept Charge Device (SCD) for the Hard X-ray Modulation Telescope (HXMT) satellite. A SCD is a special low energy X-ray CCD, which can be read out a thousand times faster than traditional CCDs, simultaneously keeping excellent energy resolution. A test method for measuring the charge transfer efficiency (CTE) of a prototype SCD has been set up. Studies of the charge transfer inefficiency (CTI) with a proton-irradiated SCD have been performed at a range of operating temperatures. The SCD is irradiated by 3 × 108cm-2 10 MeV protons.

Wang, Yu-Sa; Yang, Yan-Ji; Chen, Yong; Liu, Xiao-Yan; Cui, Wei-Wei; Xu, Yu-Peng; Li, Cheng-Kui; Li, Mao-Shun; Han, Da-Wei; Chen, Tian-Xiang; Huo, Jia; Wang, Juan; Li, Wei; Hu, Wei; Zhang, Yi; Lu, Bo; Yin, Guo-He; Zhu, Yue; Zhang, Zi-Liang

2014-06-01

405

Device Performance  

SciTech Connect

In the Device Performance group, within the National Center for Photovoltaic's Measurements and Characterization Division, we measure the performance of PV cells and modules with respect to standard reporting conditions--defined as a reference temperature (25 C), total irradiance (1000 Wm-2), and spectral irradiance distribution (IEC standard 60904-3). Typically, these are ''global'' reference conditions, but we can measure with respect to any reference set. To determine device performance, we conduct two general categories of measurements: spectral responsivity (SR) and current versus voltage (I-V). We usually perform these measurements using standard procedures, but we develop new procedures when required by new technologies. We also serve as an independent facility for verifying device performance for the entire PV community. We help the PV community solve its special measurement problems, giving advice on solar simulation, instrumentation for I-V measurements, reference cells, measurement procedures, and anomalous results. And we collaborate with researchers to analyze devices and materials.

Not Available

2006-06-01

406

Nonintrusive Measurement Of Temperature Of LED Junction  

NASA Technical Reports Server (NTRS)

Temperature inferred from spectrum of emitted light. Method of determining temperature of junction based on two relevant characteristics of LED. Gap between valence and conduction electron-energy bands in LED material decreases with increasing temperature, causing wavelength of emitted photon to increase with temperature. Other, as temperature increases, non-radiative processes dissipate more of input electrical energy as heat and less as photons in band-gap wavelenth region; optical and quantum efficiencies decrease with increasing temperature. In principal, either characteristic alone used to determine temperature. However, desirable to use both to obtain indication of uncertainty.

Leidecker, Henning; Powers, Charles

1991-01-01

407

A linear, temperature compensated, high frequency salinity measuring device  

E-print Network

-?0 miaroomgere QC meter, 4 1/2 inch, $56 ohms cor?sncntor? fee0ing n shuntea. s. . ;e&18 co3, xu)n in series 'sitb, EL QC -. ~ic; o:-, :w~. t"r -. n. "L a Suit. ~&18 . - . Ctlfler. 8" w-tie i, . )1-, c. :1 in th"= tobe 5 . . ;hich ia a, lieae of 0 ELL '. y...' circuit was then used whose z esyonee mould. Cenetxi chiefly ui&on the ionic conductance of the solution. Vhe ciz cuit diagr:w~ t nrl constants az e ahozzn in Figure- X and Table X. 41) Xt consists chiefly o' a Cia~i oscillator Uith 5 te...

Kelly, Minton Jones

1951-01-01

408

Boron carbon nitride materials for tribological and high temperature device applications  

NASA Astrophysics Data System (ADS)

We have used ion (or neutral) and electron cyclotron resonance assisted physical vapor deposition to produce high quality BN/CN thin films on Si and sapphire substrates. We have already demonstrated deposition of films containing a high fraction of the metastable c-BN phase as determined by FTIR spectroscopy and transmission electron microscopy (TEM). Atomic force microscopy (AFM) measurements have shown our films to have an excellent rms roughness ~10.5 Å (which is better than the best CVD diamond thin films). Results from frictional force microscopy (FFM) from BN and BCN films show a direct correlation with surface N content. Preliminary results show friction properties superior to that of TiN (the standard in the thin film coatings industry). Hardness measurements on the same films yielded Knoop hardness (KH) values of ~3350 kg/mm2, close to that of ceramic c-BN (3500 kg/mm2). In this paper we will present our results on the synthesis of these materials and discuss their hardness and tribological properties. Finally, BN and CN samples have been subjected to laser experiments and preliminary results are encouraging as far as the application of these materials to high temperature, high power optoelectronic systems and solid state device fabrication.

Badi, N.; Tempez, A.; Starikov, D.; Zomorrodian, V.; Medelci, N.; Bensaoula, A.; Kulik, J.; Lee, S.; Perry, S. S.; Ageev, V. P.; Garnov, S. V.; Ugarov, M. V.; Klimentov, S. M.; Tokarev, V. N.; Waters, K.; Shultz, A.

1998-01-01

409

A Microwave Radiometer for Internal Body Temperature Measurement  

E-print Network

A Microwave Radiometer for Internal Body Temperature Measurement by Robert Patterson Scheeler B entitled: A Microwave Radiometer for Internal Body Temperature Measurement written by Robert Patterson mentioned discipline. #12;Scheeler, Robert Patterson (Ph.D., Electrical Engineering) A Microwave Radiometer

Popovic, Zoya

410

Quantum efficiency measurements in the swept charge device CCD236  

NASA Astrophysics Data System (ADS)

The e2v technologies plc. CCD236 is a Swept Charge Device (SCD) designed as a large area (20 mm × 20 mm) soft X-ray detector for spectroscopy in the range 0.8 keV to 10 keV. It benefits from improvements in design over the previous generation, the e2v CCD54, such as: a 4 times increased detector area, a reduction in split X-ray events due to the 100 ?m × 100 ?m `pixel' size, and improvements to radiation hardness. The CCD236 will be used in India's Chandrayaan-2 Large Soft X-ray Spectrometer (CLASS) instrument and China's Hard X-ray Modulation Telescope (HXMT). Measurements of the Quantum Efficiency (QE) have been obtained relative to a NIST calibrated photodiode over the energy range 0.2 keV to 1.9 keV, using the BESSY II X-ray synchrotron in Berlin. Two X-ray event counting methods are described and compared, and QE for soft X-ray interaction is reported. Uniformity of QE across the device is also investigated at energies between 0.52 keV and 1.5 keV in different areas of the detector. This work will enable the actual number of photons incident on the detectors to be calculated, thus ensuring that the CCD236 detectors provide valuable scientific data during use. By comparing the QE methods in this paper with the event processing techniques to be used with CLASS, an estimate of the instrument-specific QE for CLASS can be provided.

Smith, P. H.; Gow, J. P. D.; Murray, N. J.; Tutt, J. H.; Soman, M. R.; Holland, A. D.

2014-04-01

411

Trial of a slant visual range measuring device  

NASA Astrophysics Data System (ADS)

Each year, fog at airports renders some landing operations either difficult or impossible. The visibility that a pilot of a landing aircraft can expect is in that case the most important information. It could happen that the visibility versus the altitude is constantly decreasing or increasing. However, it is not possible to distinguish this with the existing sensors at an airport. If the visibility is decreasing with the altitude, one has the worst case - ground fog. The standard visibility sensor, the transmissometer, determines only the horizontal visual range, which will be underestimated in comparison with the real visibility a pilot has on his landing approach. Described here is a new technique to measure the slant visual range, making use of a slant scanning device - an eye-safe laser radar. A comparison with commercial visibility sensors shows that it is possible to measure visibilities with the slant looking laser radar in the range from 50 meters up to 2000 meters and even distinguish inhomogenities like ground fog.

Streicher, J.; Muenkel, C.; Borchardt, H.

1992-07-01

412

Trial of a slant visual range measuring device  

NASA Technical Reports Server (NTRS)

Each year, fog at airports renders some landing operations either difficult or impossible. The visibility that a pilot of a landing aircraft can expect is in that case the most important information. It could happen that the visibility versus the altitude is constantly decreasing or increasing. However, it is not possible to distinguish this with the existing sensors at an airport. If the visibility is decreasing with the altitude, one has the worst case - ground fog. The standard visibility sensor, the transmissometer, determines only the horizontal visual range, which will be underestimated in comparison with the real visibility a pilot has on his landing approach. Described here is a new technique to measure the slant visual range, making use of a slant scanning device - an eye-safe laser radar. A comparison with commercial visibility sensors shows that it is possible to measure visibilities with the slant looking laser radar in the range from 50 meters up to 2000 meters and even distinguish inhomogenities like ground fog.

Streicher, J.; Muenkel, C.; Borchardt, H.

1992-01-01

413

Probabilistic Design Optimization and Reliability Assessment of High Temperature Thermoelectric Devices  

SciTech Connect

Thermoelectric (TE) devices, subcomponents of which are made of brittle materials, generate an electrical potential when they are subjected to thermal gradients through their thickness. These devices are of significant interest for high temperature environments in transportation and industrial applications where waste heat can be used to generate electricity (also referred to as "waste heat recovery" or "energy harvesting"). TE devices become more efficient as larger thermal gradients are applied across them. This is accomplished by larger temperature differences across the TE's hot and cold junctions or the use of low thermal conductivity TE materials or both. However, a TE brittle material with a combination of poor strength, low thermal conductivity, and large coefficient of thermal expansion can translate into high probability of mechanical failure (low reliability) in the presence of a thermal gradient, thereby preventing its use as intended. Therefore, the objective of this work is to demonstrate the use of an established probabilistic design methodology developed for brittle structural components and corresponding design sensitivity analyses to optimize the reliability of an arbitrary TE device. This method can be used to guide TE material and design selection for optimum reliability. The mechanical reliability of a prototypical TE device is optimized from a structural ceramic perspective, using finite element analysis and the NASA CARES/Life integrated design code. Suggested geometric redesigns and material selection are identified to enhance the reliability of the TE device.

Jadaan, Osama M. [University of Wisconsin, Platteville; Wereszczak, Andrew A [ORNL

2008-01-01

414

Reexamination of thermal transport measurements of a low-thermal conductance nanowire with a suspended micro-device.  

PubMed

An increasingly used technique for measuring the thermal conductance of a nanowire is based on a suspended micro-device with built-in resistance thermometers. In the past, the technique has been limited to samples with thermal conductance larger than 1 × 10(-9) W/K because of temperature fluctuations in the sample environment and the presence of background heat transfer through residual gas molecules and radiation between the two thermometers. In addition, parasitic heat loss from the long supporting beams and asymmetry in the fabricated device results in two additional errors, which have been ignored in previous use of this method. To address these issues, we present a comprehensive measurement approach, where the device asymmetry is determined by conducting thermal measurements with two opposite heat flow directions along the nanowire, the background heat transfer is eliminated by measuring the differential heat transfer signal between the nanowire device and a reference device without a nanowire sample, and the parasitic heat loss from the supporting beams is obtained by measuring the average temperature rise of one of the beams. This technique is demonstrated on a nanofiber sample with a thermal conductance of 3.7 × 10(-10) W/K, against a background conductance of 8.2 × 10(-10) W/K at 320 K temperature. The results reveal the need to reduce the background thermal conductance in order to employ the micro-device to measure a nanowire sample with the thermal conductance less than 1 × 10(-10) W/K. PMID:24007092

Weathers, Annie; Bi, Kedong; Pettes, Michael T; Shi, Li

2013-08-01

415

Silver-indium joints produced at low temperature for high temperature devices  

Microsoft Academic Search

A two-step fluxless bonding process adopted to produce high temperature silver-indium joints (80 wt% silver and 20 wt% indium) at relatively low process temperature of 206°C has been developed. After annealing the joint continuously for 26 h at 145°C, its melting temperature increases to 765-780°C, as confirmed by a de-bonding test. The technique thus developed provides a viable alternative to

Ricky W. Chuang; Chin C. Lee

2002-01-01

416

Soil moisture inferences from thermal infrared measurements of vegetation temperatures  

NASA Technical Reports Server (NTRS)

Thermal infrared measurements of wheat (Triticum durum) canopy temperatures were used in a crop water stress index to infer root zone soil moisture. Results indicated that one time plant temperature measurement cannot produce precise estimates of root zone soil moisture due to complicating plant factors. Plant temperature measurements do yield useful qualitative information concerning soil moisture and plant condition.

Jackson, R. D. (principal investigator)

1981-01-01

417

Fixation Stability Measurement Using Two Types of Microperimetry Devices  

PubMed Central

Purpose We compared the fixation stability measurements obtained with two microperimeters, the Micro Perimeter 1 (MP-1) and the Spectral OCT/SLO (OCT/SLO), in subjects with and without maculopathies. Methods A total of 41 eyes with no known ocular diseases and 45 eyes with maculopathies were enrolled in the study. Both eyes of each participant had a 20-second fixation test using the MP-1 and OCT/SLO. The bivariate contour ellipse area (BCEA) was used for fixation stability evaluation. Results In the normal group, BCEA was 2.93 ± 0.32 log minarc2 on OCT/SLO and 2.89 ± 0.30 log minarc2 on MP-1. In the maculopathy group, BCEA was 3.05 ± 0.41 log minarc2 on OCT/SLO and 3.15 ± 0.46 log minarc2 on MP-1. There was no statistically significant difference between the BCEA measured by OCT/SLO and by MP-1 in both groups. A moderate correlation was found between the two devices (r = 0.45, P < 0.001). The sample size during the fixation test was 535.5 ± 14.6 pairs of coordinates in the normal group and 530.7 ± 14.9 pairs in the maculopathy group with MP-1, while it was 72.3 ± 6.9 and 59.9 ± 10.1, respectively, with OCT/SLO. This was due to different tracking frequencies between the two microperimeters. Conclusion Fixation stability assessment yields similar results using the OCT/SLO and MP-1. A major difference in sampling rate between the two microperimeters does not significantly affect BCEA measurements. Translational Relevance Fixation stability assessments are comparable and interchangeable between the OCT/SLO and the MP-1. PMID:25774329

Liu, Hongting; Bittencourt, Millena G.; Sophie, Raafay; Sepah, Yasir J.; Hanout, Mostafa; Rentiya, Zubir; Annam, Rachel; Scholl, Hendrik P. N.; Nguyen, Quan Dong

2015-01-01

418

Method and apparatus of cryogenic cooling for high temperature superconductor devices  

DOEpatents

A method and apparatus for providing cryogenic cooling to HTS devices, in particular those that are used in high-voltage electric power applications. The method involves pressurizing liquid cryogen to above one atmospheric pressure to improve its dielectric strength, while sub-cooling the liquid cryogen to below its saturation temperature in order to improve the performance of the HTS components of the device. An apparatus utilizing such a cooling method consists of a vessel that contains a pressurized gaseous cryogen region and a sub-cooled liquid cryogen bath, a liquid cryogen heating coupled with a gaseous cryogen venting scheme to maintain the pressure of the cryogen to a value in a range that corresponds to optimum dielectric strength of the liquid cryogen, and a cooling system that maintains the liquid cryogen at a temperature below its boiling point to improve the performance of HTS materials used in the device.

Yuan, Xing; Mine, Susumu

2005-02-15

419

Micromachined lab-on-a-tube sensors for simultaneous brain temperature and cerebral blood flow measurements.  

PubMed

This work describes the development of a micromachined lab-on-a-tube device for simultaneous measurement of brain temperature and regional cerebral blood flow. The device consists of two micromachined gold resistance temperature detectors with a 4-wire configuration. One is used as a temperature sensor and the other as a flow sensor. The temperature sensor operates with AC excitation current of 500 ?A and updates its outputs at a rate of 5 Hz. The flow sensor employs a periodic heating and cooling technique under constant-temperature mode and updates its outputs at a rate of 0.1 Hz. The temperature sensor is also used to compensate for temperature changes during the heating period of the flow sensor to improve the accuracy of flow measurements. To prevent thermal and electronic crosstalk between the sensors, the temperature sensor is located outside the "thermal influence" region of the flow sensor and the sensors are separated into two different layers with a thin-film Copper shield. We evaluated the sensors for accuracy, crosstalk and long-term drift in human blood-stained cerebrospinal fluid. These in vitro experiments showed that simultaneous temperature and flow measurements with a single lab-on-a-tube device are accurate and reliable over the course of 5 days. It has a resolution of 0.013 °C and 0.18 ml/100 g/min; and achieves an accuracy of 0.1 °C and 5 ml/100 g/min for temperature and flow sensors respectively. The prototype device and techniques developed here establish a foundation for a multi-sensor lab-on-a-tube, enabling versatile multimodality monitoring applications. PMID:22552801

Li, Chunyan; Wu, Pei-Ming; Hartings, Jed A; Wu, Zhizhen; Cheyuo, Cletus; Wang, Ping; LeDoux, David; Shutter, Lori A; Ramaswamy, Bharat Ram; Ahn, Chong H; Narayan, Raj K

2012-08-01

420

A Low-Temperature SU8 Based Wafer-Level Hermetic Packaging for MEMS Devices  

Microsoft Academic Search

We have developed a novel all SU-8 packaging method for microelectromechanical system (MEMS) devices. The process is low temperature and low cost and it allows for nonhermetic as well as hermetic packaging. The nonhermetic package can be applied to sensors. The process flow is based on a partial and a full exposure of SU-8 negative resist using two masks. The

Imed Zine-El-Abidine; Michal Okoniewski

2009-01-01

421

Silicon-on-insulator technology for high temperature metal oxide semiconductor devices and circuits  

Microsoft Academic Search

The high temperature characteristics of devices and circuits realized in complementary metal oxide semiconductor (CMOS) technology on silicon-on-insulator (SOI) substrates are compared with other materials, and it is demonstrated that CMOS on SOI is presently the most suitable process for the realization of electronic circuits operating at up to more than 300 °C.

Denis Flandre

1995-01-01

422

Conductance Fluctuation and Superconducting-to-Normal State Switching Measurements of Superconducting Graphene Devices  

NASA Astrophysics Data System (ADS)

We report on gate voltage dependent conductance fluctuations (CF) in superconducting graphene devices and compare measurements in the superconducting versus normal state at temperatures down to 20 mK. The CF arise from the averaged interference of charge carrier wave functions caused by scattering in the graphene. An enhancement in the magnitude of the average CF is expected when in the superconducting state due to Andreev reflections. We fabricate devices by contacting graphene with two parallel superconducting leads that are spaced a few hundred nanometers apart. The leads are a Pd/Al or Ti/Al bilayer with the thin Pd or Ti layer providing high transparency contact to graphene. Additionally, we report on our ongoing superconducting-to-normal state switching measurements in graphene Josephson junctions. The distribution of the stochastic switching current gives insight into the dynamics of the junction such as the phase particle escape mechanisms and dissipation processes. The use of graphene as the weak link allows novel control of the critical current, and thus the dynamics of the junction. By gathering switching data, we can study the modified Josephson washboard potential in these devices (J. G. Lambert, et al., IEEE Trans. in Appl. Supercond. 21, 734 (2011)).

Lambert, Joseph; Carabello, Steven; Ramos, Roberto

2013-03-01

423

Crowdsourcing urban air temperature measurements using smartphones  

NASA Astrophysics Data System (ADS)

Crowdsourced data from cell phone battery temperature sensors could be used to contribute to improved real-time, high-resolution air temperature estimates in urban areas, a new study shows. Temperature observations in cities are in some cases currently limited to a few weather stations, but there are millions of smartphone users in many cities. The batteries in cell phones have temperature sensors to avoid damage to the phone.

Balcerak, Ernie

2013-10-01

424

Discriminated measures of strain and temperature in metallic specimen with embedded superimposed  

E-print Network

simultaneously for structural health monitoring purpose. Long period grating (LPG) and fibre Bragg grating (FBG long and short fibre Bragg Gratings S´ebastien TRIOLLET1,2 , Laurent ROBERT2 , Emmanuel MARIN1 a superimposed fibre Bragg gratings device to measure, localize and discriminate strain and temperature effects

Boyer, Edmond

425

Measurement of surface temperature and emissivity of different materials by two-colour pyrometry.  

PubMed

An experimental investigation is performed to substantiate the capability of a charge coupled device camera to measure local temperature and emissivity of different materials heated to temperatures above 500 °C by two-colour pyrometric technique using colorimetric method. Materials investigated are Inconel 718 with pyromark (high temperature paint), Inconel 718, stainless steel SS 304 and SS 316. Centerline temperature and emissivity distribution is obtained for target plates maintained at constant temperature by AC heating while complete temperature and emissivity distribution is provided for plates heated by flame impingement. The obtained results are compared with a calibrated infrared camera and thermocouples and the temperature distribution is found to be in close agreement. These results pertain to partially oxidized metal alloys covered in this study. Deviation in the measurement of emissivity can be attributed to its dependence on wavelength range, oxidation, and sensitivity of the image detector. PMID:24387454

Raj, Vinay C; Prabhu, S V

2013-12-01

426

High-temperature archeointensity measurements from Mesopotamia  

NASA Astrophysics Data System (ADS)

We present new archeointensity results obtained from 127 potsherds and baked brick fragments dated from the last four millennia BC which were collected from different Syrian archeological excavations. High temperature magnetization measurements were carried out using a laboratory-built triaxial vibrating sample magnetometer (Triaxe), and ancient field intensity determinations were derived from the experimental procedure described by Le Goff and Gallet [Le Goff and Gallet. Earth Planet. Sci. Lett. 229 (2004) 31-43]. As some of the studied samples were previously analyzed using the classical Thellier and Thellier [Thellier and Thellier . Ann. Geophys. 15 (1959) 285-376] method revised by Coe [Coe. J. Geophys. Res. 72 (1967) 3247-3262], a comparison of the results is made from the two methods. The differences both at the fragment and site levels are mostly within ± 5%, which strengthens the validity of the experimental procedure developed for the Triaxe. The new data help to better constrain the geomagnetic field intensity variations in Mesopotamia during archeological times, with the probable occurrence of an archeomagnetic jerk around 2800-2600 BC.

Gallet, Yves; Le Goff, Maxime

2006-01-01

427

Imaging photorefractive optical vibration measurement method and device  

DOEpatents

A method and apparatus are disclosed for characterizing a vibrating image of an object of interest. The method includes providing a sensing media having a detection resolution within a limited bandwidth and providing an object of interest having a vibrating medium. Two or more wavefronts are provided, with at least one of the wavefronts being modulated by interacting the one wavefront with the vibrating medium of the object of interest. The another wavefront is modulated such that the difference frequency between the one wavefront and the another wavefront is within a response range of the sensing media. The modulated one wavefront and another wavefront are combined in association with the sensing media to interfere and produce simultaneous vibration measurements that are distributed over the object so as to provide an image of the vibrating medium. The image has an output intensity that is substantially linear with small physical variations within the vibrating medium. Furthermore, the method includes detecting the image. In one implementation, the apparatus comprises a vibration spectrum analyzer having an emitter, a modulator, sensing media and a detector configured so as to realize such method. According to another implementation, the apparatus comprises a vibration imaging device.

Telschow, Kenneth L. (Idaho Falls, ID); Deason, Vance A. (Idaho Falls, ID); Hale, Thomas C. (Los Alamos, NM)

2000-01-01

428

Measurements of Beam Coupling in the Marshall Magnetic Mirror Device  

NASA Technical Reports Server (NTRS)

Experimental investigations of the coupling of an electron beam into a magnetically confined plasma have been undertaken at the Marshall Space Flight Center using the Marshall Magnetic Mirror (M3) system. The M3 system is composed of the following: two magnet coils; a cylindrical vacuum vessel; microwave source; and electron beam source. The magnet coils, which form the magnetic mirror, have an inner diameter of 25.4 cm and an outer diameter of 50.8 cm. The coils are composed of 9 coil segments with 33 turns in each segment. Each coil segment is connected in series. To create the target plasma, a 2 kW microwave source (2.45 gHz) is coupled into the vacuum chamber via waveguide. The electron beam source is a hollow cathode device created by the EPL Corporation. The hollow cathode is capable of producing a 50 amp beam with a pulse length of 1 second. It is also capable of continuous operation at 5 amps. The hollow cathode is mounted on one end of the cylindrical vacuum vessel 24 cm outside of a magnet coil. A current sensor is placed in the hollow cathode keeper bias circuit to measure emission current.

Schneider, T. A.; Vaughn, J. A.; Carruth, M. R., Jr.; Edwards, D. L.; Heard, J. W.; Whitaker, Ann F. (Technical Monitor)

2001-01-01

429

Temperature and anisotropic-temperature relaxation measurements in cold, pure-electron plasmas  

E-print Network

Temperature and anisotropic-temperature relaxation measurements in cold, pure-electron plasmas B. R; accepted 3 January 1996 Plasma temperatures in the range 25 to 2 106 K have been measured using a cryogenic, ultra-high vacuum, pure-electron plasma trap. The rate at which the temperatures parallel

California at San Diego, University of

430

Measurement and structural invariance of the antisocial process screening device.  

PubMed

Despite increasing study of psychopathic traits in children and adolescents, evidence regarding the factor structure of these traits has been inconsistent across community, clinic-referred, and incarcerated samples. Empirical support exists for both 2-factor (Impulsivity-Conduct Problems and Callous-Unemotional) and 3-factor (Narcissism, Callous-Unemotional, and Impulsivity) models, and factorial invariance across various samples has not been either tested or supported in the extant literature. We conducted confirmatory factor analyses of the Antisocial Process Screening Device (APSD; Frick & Hare, 2001) in 838 nonreferred twin pairs (M = 10.57 years, SD = 3.19 years) and 251 clinic-referred children (M = 10.82 years, SD = 3.39 years). Factorial invariance was tested across zygosity (monozygotic vs. dizygotic twins), sex (males vs. females), and age (younger vs. older children, divided by median age of 10.37 years) in the community sample and across sample type in both the community and clinic-referred samples. Results suggested that the 3-factor model fit better than did the 2-factor model in both community and clinic-referred samples. Using the best fitting 3-factor model, full measurement and structural invariance were found across zygosity, sex, and age in the community sample. Full measurement and structural invariance were also found across sample type except for differences in factor means across samples, suggesting excellent psychometric properties of the APSD. These results strongly support the robustness of the 3-factor model of psychopathic traits in children as well as the generalizability of the APSD across samples. PMID:24274050

Dong, Lu; Wu, Hao; Waldman, Irwin D

2014-06-01

431

Precise measurements of radial temperature gradients in the laser-heated diamond anvil cell.  

PubMed

A new spectroradiometry system specialized for measuring two-dimensional temperature gradients for samples at high pressure in the laser heated diamond anvil cell has been designed and constructed at UCLA. Emitted light intensity from sample hotspots is imaged by a videocamera for real time monitoring, an imaging spectroradiometer for temperature measurement, and a high-dynamic-range camera that examines a magnified image of the two-dimensional intensity distribution of the heated spot, yielding precise measurements of temperature gradients. With this new system, most systematic errors in temperature measurement due to chromatic aberration are bypassed. We use this system to compare several different geometries of temperature measurement found in the literature, including scanning a pinhole aperture, and narrow-slit and wide-slit entrance apertures placed before the imaging spectrometer. We find that the most accurate way of measuring a temperature is to use the spectrometer to measure an average hotspot temperature and to use information from the imaging charge coupled device to calculate the temperature distribution to the hotspot. We investigate the effects of possible wavelength- and temperature-dependent emissivity, and evaluate their errors. We apply this technique to measure the anisotropy in temperature distribution of highly oriented graphite at room temperature and also at high pressures. A comparison between model and experiment demonstrates that this system is capable of measuring thermal diffusivity in anisotropic single crystals and is also capable of measuring relative thermal diffusivity at high pressures and temperatures among different materials. This shows the possibility of using this system to provide information about thermal diffusivity of materials at high pressure and temperature. PMID:18315322

Kavner, A; Nugent, C

2008-02-01

432

A micro-computer based system for high precision temperature measurement using Platinum RTD's  

Microsoft Academic Search

A micro-computer controlled system for 10 channel high precision temperature data acquisition has been developed. The temperature sensing elements are Platinum Resistance Thermometer Devices (RTD's). Probe construction, using standard, commercially available RTD elements is described and wiring and switching requirements for the 4-wire resistance measurements are noted. The system consists of a Digital Equipment Corp. MINC-11 Computer linked, via IEEE-488

W. T. Matthew

1982-01-01

433

Minimum resolvable temperature difference measurements on undersampled imagers  

Microsoft Academic Search

Minimum Resolvable Temperature Difference (MRTD) is the primary measurement of performance for infrared imaging systems. Where Modulation Transfer Function (MTF) is a measurement of resolution and three-dimensional noise (or noise equivalent temperature difference) is a measurement of sensitivity, MRTD combines both measurements into a test of observer visual acuity through the imager. MRTD has been incorrectly applied to undersampled thermal

Ronald G. Driggers; Van A. Hodgkin; Richard H. Vollmerhausen; Patrick O'Shea

2003-01-01

434

Assessment of a portable device for the quantitative measurement of ankle joint stiffness in spastic individuals  

E-print Network

Assessment of a portable device for the quantitative measurement of ankle joint stiffness-rater reliability. The device could easily distinguish between stiff and control ankle joints. A portable device can be a useful diagnostic tool to obtain reliable information of stiffness for the ankle joint. a b

Gorassini, Monica

435

Floating Probe Assembly for Measuring Temperature of Water  

NASA Technical Reports Server (NTRS)

A floating apparatus denoted a temperature probe aquatic suspension system (TPASS) has been developed for measuring the temperature of an ocean, lake, or other natural body of water at predetermined depths. These types of measurements are used in computer models to relate remotely sensed water-surface temperature to bulkwater temperature. Prior instruments built for the same purpose were found to give inaccurate readings because the apparatuses themselves significantly affected the temperatures of the water in their vicinities. The design of the TPASS is intended to satisfy a requirement to minimize the perturbation of the temperatures to be measured.

Stewart, Randy; Ruffin, Clyde

2003-01-01

436

Optical diagnostics for soot and temperature measurement in diesel engines  

Microsoft Academic Search

This paper reviews the optical techniques for in-cylinder combustion temperature measurement, particularly soot measurements in diesel engines. The review starts with the two-colour method for in-cylinder soot and combustion temperature measurement. The principle and implementation of the two-colour technique are described in detail. Both signal point and full-field temperature and soot measurements by the two-colour method are considered. In the

H. Zhao; N. Ladommatos

1998-01-01

437

Sea surface temperature measurements with AIRS  

NASA Technical Reports Server (NTRS)

The comparison of global sea surface skin temperature derived from cloud-free AIRS super window channel at 2616 cm-1 (sst2616) with the Real-Time Global Sea Surface Temperature for September 2002 shows surprisingly small standard deviation of 0.44K.

Aumann, H.

2003-01-01

438

Global trends of measured surface air temperature  

Microsoft Academic Search

We analyze surface air temperature data from available meteorological stations with principal focus on the period 1880-1985. The temperature changes at mid- and high latitude stations separated by less than 1000 km are shown to be highly correlated; at low latitudes the correlation falls off more rapidly with distance for nearby stations. We combine the station data in a way

James Hansen; Sergej Lebedeff

1987-01-01

439

Water temperature-influential factors, field measurement, and data presentation  

USGS Publications Warehouse

This manual contains suggested procedures for collecting and reporting of water-temperature data on streams, lakes and reservoirs, estuaries, and ground water. Among the topics discussed are the selection of equipment and measuring sites, objectives and accuracy of measurements, and data processing and presentation. Background information on the influence of temperature on water quality and the factors influencing water temperature are also presented.

Stevens, Herbert H.; Ficke, John F.; Smoot, George F.

1975-01-01

440

A Conductivity Device for Measuring Sulfur Dioxide in the Air  

ERIC Educational Resources Information Center

Described is a general electroconductivity device enabling students to determine sulfur dioxide concentration in a particular location, hopefully leading to a deeper understanding of the problem of air pollution. (DF)

Craig, James C.

1972-01-01

441

Ellipsometric method for the measurement of temperature and optical constants of incandescent transition metals  

NASA Technical Reports Server (NTRS)

The development of a unique noncontact temperature measurement device utilizing rotating analyzer ellipsometry is described. The technique circumvents the necessity of spectral emissivity estimation by direct measurement concomitant with radiance brightness. Simultaneous determinations of dielectric constants and refractive indices allow changes in the physical and chemical state of a heated surface to be monitored. The results of optical property measurements at 633 nm as functions of temperature between 1000 and 2500 K for eight transition metals including Hf, Ir, Mo, Nb, Pd, Pt, Ta, and V are presented together with preliminary results of oxidation studies on iridium.

Hansen, George P.; Krishnan, Shankar; Hauge, Robert H.; Margrave, John L.

1989-01-01

442

High Temperature Elastic Constants of Langatate from RUS Measurements up to 1100 degrees C  

SciTech Connect

This paper reports on the langatate (LGT) elastic constants measured from room temperature (25 C) to 1100 C using resonant ultrasound spectroscopy (RUS). The constants were extracted by fitting the resonant peaks with those calculated by Lagrangian mechanics at each temperature where the RUS measurements were taken. In addition, the RUS technique was used to extract the piezoelectric constants in the 25 C to 120 C temperature range. This work also publishes a set of temperature coefficients for the elastic constants up to 1100 C. For the measurements, six parallelepiped LGT samples were aligned, cut, ground, and polished at the University of Maine. The samples were aligned to two different crystal orientations, to increase the reliability of the constant fitting. The extraction of LGT elastic constants up to 1100 C presented in this paper represents a critical step towards the design and fabrication of LGT acoustic wave devices for high temperature and harsh environment applications.

Shyam, Amit [ORNL; Lara-Curzio, Edgar [ORNL

2008-01-01

443

Temperature dependency of MOSFET device characteristics in 4H-and 6H-silicon carbide (SiC)  

E-print Network

Temperature dependency of MOSFET device characteristics in 4H- and 6H-silicon carbide (SiC) Md for high power and high temperature device applications. An analytical model for a lateral MOSFET, and the drain and source contact region resistances. The MOSFET output characteristics and parameter values have

Tolbert, Leon M.

444

Titan's Surface Temperatures Measured by Cassini CIRS  

NASA Technical Reports Server (NTRS)

A large fraction of 19-micron thermal radiation from the surface of Titan reaches space through a spectral window of low atmospheric opacity. The emergent radiance, after removing the effect of the atmosphere, gives the brightness temperature of the surface. This atmospheric window is covered by the far-infrared channel of the Composite Infrared spectrometer1 (CIRS) on Cassini. In mapping Titan surface temperatures, CIRS is able to improve upon results of Voyager IRIS, by taking advantage of improved latitude coverage and a much larger dataset. Observations are from a wide range of emission angles and thereby provide constraints on the atmospheric opacity and radiance that are used to derive the surface temperature. CIRS finds an average equatorial surface brightness temperature of 93.7+/-0.6 K, virtually identical to the HASI temperature at the Huygens landing site. Mapping in latitude shows that the surface temperature decreases toward the poles by about 2 K in the south and 3 K in the north. This surface temperature distribution is consistent with the formation of lakes seen at high latitudes on Titan.

Jennings, Donald E.; Flasar, F. M.; Kundle, V. G.; Samuelson, R. E.; Pearl, J. C.; Nixon, C. A.; Carlson, R. C.; Mamoutkine, A. A.; Brasunas, J. C.; Guandique, E.; Arhterberg, R. K.; Bjoraker, G. L.; Romani, P. N.; Segura, M. E.; Albright, S. A.; Elliott, M. H.; Tingley, J. S.; Calcutt, S.; Coustenis, A.; Bezard, B.; Courtin, R.

2008-01-01

445

An intelligent instrument for measuring exhaust temperature of marine engine  

NASA Astrophysics Data System (ADS)

Exhaust temperature of the marine engine is commonly measured through thermocouple. Measure deviation will occur after using the thermocouple for some time due to nonlinearity of thermocouple itself, high temperature and chemical corrosion of measure point. Frequent replacement of thermocouple will increase the operating cost. This paper designs a new intelligent instrument for solving the above-mentioned problems of the marine engine temperature measurement, which combines the conventional thermocouple temperature measurement technology and SCM(single chip microcomputer). The reading of the thermocouple is simple and precise and the calibration can be made automatically and manually.

Ma, Nan-Qi; Su, Hua; Liu, Jun

2006-12-01

446

Measuring the atmosphere : temperature, pressure and ozone  

NSDL National Science Digital Library

How does altitude affect temperature and pressure? This page, part of an interactive laboratory series for grades 8-12, provides students with information for an interactive laboratory activity on the effects of altitude on temperature and pressure and the location of ozone in the atmosphere. The activity enables students to collect three sets of data on temperature, pressure, and ozone concentration as a gas-filled balloon equipped with data collection equipment rises through the atmosphere. Students determine how often and at what altitude to collect data. Questions about each graphed data set are provided. Copyright 2005 Eisenhower National Clearinghouse

University of Utah. Astrophysics Science Project Integrating Research and Education (ASPIRE)

2003-01-01

447

The evolution of atmospheric-pressure low-temperature plasma jets: jet current measurements  

Microsoft Academic Search

In this study, we report insights into the dynamics of atmospheric-pressure low-temperature plasma jets (APLTPJs). The plasma jet current was measured by a Pearson current monitor for different operating conditions. These jet current measurements confirmed a proposed photo-ionization model based on streamer theory. Our results are supported by intensified charged-couple device camera observations. It was found that a secondary discharge

Erdinc Karakas; Mehmet Arda Akman; Mounir Laroussi

2012-01-01

448

Turbine Blade Temperature Measurements Using Thin Film Temperature Sensors  

NASA Technical Reports Server (NTRS)

The development of thin film temperature sensors is discussed. The technology for sputtering 2 micron thin film platinum versus platinum 10 percent rhodium thermocouples on alumina forming coatings was improved and extended to applications on actual turbine blades. Good adherence was found to depend upon achieving a proper morphology of the alumina surface. Problems of adapting fabrication procedures to turbine blades were uncovered, and improvements were recommended. Testing at 1250 K at one atmosphere pressure was then extended to a higher Mach No. (0.5) in combustor flow for 60 hours and 71 thermal cycles. The mean time to failure was 47 hours accumulated during 1 hour exposures in the combustor. Calibration drift was about 0.1 percent per hour, attributable to oxidation of the rhodium in the thin films. An increase in film thickness and application of a protective overcoat are recommended to reduce drift in actual engine testing.

Grant, H. P.; Przybyszewski, J. S.; Claing, R. G.

1981-01-01

449

Temperature measurements on a HSLA-100 steel confinement vessel  

SciTech Connect

Temperature measurements have been made on HSLA-100 steel confinement vessel number 6-2-3-1. These measurements are intended to give a view of the vessel temperature response under conditions similar to operational conditions, starting from worst case. The vessel`s temperature must be above the minimum operating temperature when used to contain an explosive event to ensure that the vessel material has the desired crack arrest properties. Several series of temperature measurements have been conducted over 24 and 48 hour periods during February 1998. These tests were intended to demonstrate that after running the heaters in the environmental shelter for some time, (1) the vessel warms up to temperatures well above the minimum operating temperature, (2) that through-thickness temperature gradients are negligible, and (3) that the temperature differences from one part of the vessel to another are small.

Lohsen, R.A.

1998-05-07

450

A modified oxidation procedure for ion-implanted silicon carbide devices annealed at low temperatures  

NASA Astrophysics Data System (ADS)

There is recent evidence that the temperature at which implants in SiC are activated plays a determining role in the performance of some devices. One example is the dependence of the channel mobility of SiC metal-oxide-semiconductor field-effect transistors (MOSFETs) on the annealing temperature needed to activate source and drain implants. Another example is the dependence of surface roughness on anneal temperature. In both cases, there are definite advantages in using low processing temperatures for implant activation anneals. This paper considers low-temperature ion implantation processing of SiC electronic materials, and modifications to the gate oxidation step for SiC MOSFETs that may be required by the use of low-temperature activation annealing. The term 'low-temperature' is used to indicate annealing temperatures well below 1500 °C which are typically used for donor implant activation in SiC. The substitution of phosphorus for nitrogen in the fabrication of MOSFETs, while enabling low-temperature activation annealing, leads to excessive gate leakage currents. The cause of oxide leakage is discussed speculatively in terms of excess carbon on the SiC prior to gate oxidation. These assumptions form the premise for SiC MOSFET experiments fabricated with phosphorus-implanted source and drain regions, and a modified oxidation procedure. MOSFETs built using phosphorus implants annealed at 1200 °C and the modified oxidation procedure exhibit ID/ IG current ratios greater than 10 4, and channel mobilities in excess of 10 cm 2/V s. The device yield is greater than 90%.

Capano, M. A.

2001-12-01

451

Role of growth temperature on the frequency response characteristics of pentacene-based organic devices  

NASA Astrophysics Data System (ADS)

The ac frequency response characteristics (FRC) of organic thin film transistors and metal-insulator semiconductor diodes were highly improved by controlling the morphology and electrical characteristics of semiconducting pentacene films. The devices with films grown at 50 °C show much higher cutoff frequency and better frequency stability of flat-band voltage, as compared to those with films grown at other temperatures below or above. The improvement mainly originates from the maximum field effect carrier mobility of 0.78 cm2 V?1 s?1 and a small metal/organic contact resistance (Rc) obtained in the optimum thin film transistors. Our results indicate growth temperature precisely tunes the film microstructure and metal/semiconductor interface, which together determine the FRC of pentacene-based organic devices.

Shao, Yayun; Zhang, Yang; He, Wenqiang; Liu, Chuan; Minari, Takeo; Wu, Sujuan; Zeng, Min; Zhang, Zhang; Gao, Xingsen; Lu, Xubing; Liu, J.-M.

2015-03-01

452

An integrated device for magnetically-driven drug release and in situ quantitative measurements: Design, fabrication and testing  

NASA Astrophysics Data System (ADS)

We have developed a device capable of remote triggering and in situ quantification of therapeutic drugs, based on magnetically-responsive hydrogels of poly (N-isopropylacrylamide) and alginate (PNiPAAm). The heating efficiency of these hydrogels measured by their specific power absorption (SPA) values showed that the values between 100 and 300 W/g of the material were high enough to reach the lower critical solution temperature (LCST) of the polymeric matrix within few minutes. The drug release through application of AC magnetic fields could be controlled by time-modulated field pulses in order to deliver the desired amount of drug. Using B12 vitamin as a concept drug, the device was calibrated to measure amounts of drug released as small as 25(2)×10-9 g, demonstrating the potential of this device for very precise quantitative control of drug release.

Bruvera, I. J.; Hernández, R.; Mijangos, C.; Goya, G. F.

2015-03-01

453

A Low-Cost Thermistor Device for Measurements of Metabolic Heat in Yeast Cells in Suspension.  

ERIC Educational Resources Information Center

Provides illustrated directions for the construction and use of a low-cost thermistor device. Attached to a servo-type millivolt chart recorder, the device will record minute temperature changes and will simulate data obtained from an oxygen polarograph. Includes results of experiments with baker's yeast. (Author/CS)

Keeling, Richard P.

1980-01-01

454

An All Fiber White Light Interferometric Absolute Temperature Measurement System  

PubMed Central

Recently the author of this article proposed a new signal processing algorithm for an all fiber white light interferometer. In this article, an all fiber white light interferometric absolute temperature measurement system is presented using the previously proposed signal processing algorithm. Stability and absolute temperature measurement were demonstrated. These two tests demonstrated the feasibility of absolute temperature measurement with an accuracy of 0.015 fringe and 0.0005 fringe, respectively. A hysteresis test from 373K to 873K was also presented. Finally, robustness of the sensor system towards laser diode temperature drift, AFMZI temperature drift and PZT non-linearity was demonstrated.

Kim, Jeonggon Harrison

2008-01-01

455

A Study on the Body Insulators for the Bushing for HTS Devices at Cryogenic Temperature  

NASA Astrophysics Data System (ADS)

A bushing for high temperature superconducting devices (HTS bushing) is important because of applying high voltage to the cable or the winding of the transformer. It is cooled with liquid nitrogen (LN2) and is insulated with various insulators. For the development of the HTS bushing, it is necessary to know the fundamental characteristics of various insulators at cryogenic temperature. The electrical characteristics of the breakdown were studied under AC and impulse voltages. Also, the mechanical characteristics such as tensile strength in air and LN2 were studied. It was confirmed that GFRP is excellent not only electrical characteristics but also mechanical characteristics in LN2.

Kim, W. J.; Shin, H. S.; Kim, S. H.

456

Effects of nuclear radiation and elevated temperature storage on electroexplosive devices  

NASA Technical Reports Server (NTRS)

Aerospace type electroexplosive devices (EEDs) were subjected to nuclear radiation. Components and chemicals used in the EEDs were also included. The kind of radiation and total dosage administered were those which may be experienced in a space flight of 10 years duration, based on information available at this time. After irradiation, the items were stored in elevated constant-temperature ovens to accelerate early effects of the exposure to radiation. Periodically, samples were withdrawn for visual observation and testing. Significant changes occurred which were attributed to elevated-temperature storage and not radiation.

Menichelli, V. J.

1976-01-01

457

Note: low temperature superconductor superconducting quantum interference device system with wide pickup coil for detecting small metallic particles.  

PubMed

A one-channel low temperature superconductor superconducting quantum interference device system comprising a second-order axial gradiometer with a sensing area of 10 mm × 190 mm was developed. The gradiometer was mounted in a liquid-helium dewar (450-mm diameter; 975-mm length), with a gap of 12 mm between the pickup coil and the dewar-tail surface. The magnetic field sensitivity was measured to be 16 fT/Hz(1/2) in the white noise regime above 2 Hz. The system was used to measure stainless steel particles of different sizes passing through the sensing area. A 100-?m diameter SUS304 particle was readily detected passing at different positions underneath the large pickup coil by measuring its 1.3-pT magnetic field. Thus, the system was shown to be applicable to quality control of lamination sheet products such as lithium ion batteries. PMID:22852743

Kandori, Akihiko; Ogata, Kuniomi; Kawabata, Ryuzo; Tanimoto, Sayaka; Seki, Yusuke

2012-07-01

458

Note: Low temperature superconductor superconducting quantum interference device system with wide pickup coil for detecting small metallic particles  

NASA Astrophysics Data System (ADS)

A one-channel low temperature superconductor superconducting quantum interference device system comprising a second-order axial gradiometer with a sensing area of 10 mm × 190 mm was developed. The gradiometer was mounted in a liquid-helium dewar (450-mm diameter; 975-mm length), with a gap of 12 mm between the pickup coil and the dewar-tail surface. The magnetic field sensitivity was measured to be 16 fT/Hz1/2 in the white noise regime above 2 Hz. The system was used to measure stainless steel particles of different sizes passing through the sensing area. A 100-?m diameter SUS304 particle was readily detected passing at different positions underneath the large pickup coil by measuring its 1.3-pT magnetic field. Thus, the system was shown to be applicable to quality control of lamination sheet products such as lithium ion batteries.

Kandori, Akihiko; Ogata, Kuniomi; Kawabata, Ryuzo; Tanimoto, Sayaka; Seki, Yusuke

2012-07-01

459

[Welding arc temperature field measurements based on Boltzmann spectrometry].  

PubMed

Arc plasma, as non-uniform plasma, has complicated energy and mass transport processes in its internal, so plasma temperature measurement is of great significance. Compared with absolute spectral line intensity method and standard temperature method, Boltzmann plot measuring is more accurate and convenient. Based on the Boltzmann theory, the present paper calculates the temperature distribution of the plasma and analyzes the principle of lines selection by real time scanning the space of the TIG are measurements. PMID:23240385

Si, Hong; Hua, Xue-Ming; Zhang, Wang; Li, Fang; Xiao, Xiao

2012-09-01

460

REVIEW ARTICLE: Ultrasonic attenuation measurements in metals at low temperatures  

Microsoft Academic Search

The experimental techniques are reviewed for making ultrasonic measurements at frequencies from 10 MHz to 10 GHz in metals at temperatures down to 25 mK. The principles of attenuation measurements by the pulse-echo method and the electronic equipment for low temperature measurements are described. The theory and design of sample holders using nonresonant, re-entrant and helical cavities at ultralow temperatures

E. R. Dobbs; E. Hughes; N. S. Lawson; M. J. Lea; D. J. Meredith; W. E. Timms

1973-01-01

461

Measuring Device of Hob Helix Error Based on Single Chip Microcomputer  

Microsoft Academic Search

Device of measuring hob helix error based on single chip microcomputer is introduced. This kind of measuring device collects the displacement signal through the inductance sensor. The single chip microcomputer system gathers data, processes data, and displays the result by LED. This system can also communicate with computer in order to help testers to analysis the error curve.

Xiaolan Fan; Na Deng

2011-01-01

462

Active radiometer for self-calibrated furnace temperature measurements  

DOEpatents

Radiometer with a probe beam superimposed on its field-of-view for furnace temperature measurements. The radiometer includes a heterodyne millimeter/submillimeter-wave receiver including a millimeter/submillimeter-wave source for probing. The receiver is adapted to receive radiation from a surface whose temperature is to be measured. The radiation includes a surface emission portion and a surface reflection portion which includes the probe beam energy reflected from the surface. The surface emission portion is related to the surface temperature and the surface reflection portion is related to the emissivity of the surface. The simultaneous measurement of surface emissivity serves as a real time calibration of the temperature measurement.

Woskov, Paul P. (Bedford, MA); Cohn, Daniel R. (Chestnut Hill, MA); Titus, Charles H. (Newtown Square, PA); Wittle, J. Kenneth (Chester Springs, PA); Surma, Jeffrey E. (Kennewick, WA)

1996-01-01

463

Temperature-compensated strain measurement using FBG sensors embedded in composite laminates  

NASA Astrophysics Data System (ADS)

For accurate strain measurement by fiber Bragg grating (FBG) sensors, it is necessary to compensate the influence of temperature change. In this study two devices using FBG sensors have been developed for temperature-compensated strain measurement. They are named hybrid sensor and laminate sensor, respectively. The former consists of two different materials connected in series: carbon fiber reinforced plastic (CFRP) and glass fiber reinforced plastic (GFRP). Each material contains an FBG sensor with a different Bragg wavelength, and both ends of the device are glue to a structure. Using the difference of their Young's moduli and coefficients of thermal expansion (CTEs), both strain and temperature can be measured. The latter sensor is a laminate of two 90 degree(s) plies of CFRP and an epoxy plate, and an FBG sensor is embedded in the epoxy plate. When the temperature changes, the cross section of the optical fiber is deformed by the thermal residual stress. The deformation of the fiber causes the birefringence and widens the reflection spectrum. Since the temperature can be calculated from the spectrum width, which changes in proportion to the temperature, the accuracy of the strain measurement is improved. The usefulness of these sensors were experimentally confirmed.

Tanaka, Nobuhira; Okabe, Yoji; Takeda, Nobuo

2002-07-01

464

Forward voltage short-pulse technique for measuring high power laser array junction temperature  

NASA Technical Reports Server (NTRS)

The present invention relates to a method of measuring the temperature of the P-N junction within the light-emitting region of a quasi-continuous-wave or pulsed semiconductor laser diode device. A series of relatively short and low current monitor pulses are applied to the laser diode in the period between the main drive current pulses necessary to cause the semiconductor to lase. At the sufficiently low current level of the monitor pulses, the laser diode device does not lase and behaves similar to an electronic diode. The voltage across the laser diode resulting from each of these low current monitor pulses is measured with a high degree of precision. The junction temperature is then determined from the measured junction voltage using their known linear relationship.

Meadows, Byron L. (Inventor); Amzajerdian, Frazin (Inventor); Barnes, Bruce W. (Inventor); Baker, Nathaniel R. (Inventor)

2012-01-01

465