Science.gov

Sample records for temperature measurement device

  1. High temperature measuring device

    DOEpatents

    Tokarz, Richard D.

    1983-01-01

    A temperature measuring device for very high design temperatures (to 2,000.degree. C.). The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensionally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.

  2. Temperature measuring device

    SciTech Connect

    Lauf, R.J.; Bible, D.W.; Sohns, C.W.

    1999-10-19

    Systems and methods are described for a wireless instrumented silicon wafer that can measure temperatures at various points and transmit those temperature readings to an external receiver. The device has particular utility in the processing of semiconductor wafers, where it can be used to map thermal uniformity on hot plates, cold plates, spin bowl chucks, etc. without the inconvenience of wires or the inevitable thermal perturbations attendant with them.

  3. Temperature measuring device

    DOEpatents

    Lauf, Robert J.; Bible, Don W.; Sohns, Carl W.

    1999-01-01

    Systems and methods are described for a wireless instrumented silicon wafer that can measure temperatures at various points and transmit those temperature readings to an external receiver. The device has particular utility in the processing of semiconductor wafers, where it can be used to map thermal uniformity on hot plates, cold plates, spin bowl chucks, etc. without the inconvenience of wires or the inevitable thermal perturbations attendant with them.

  4. Ultrasonic temperature measuring device

    NASA Technical Reports Server (NTRS)

    Carnevale, E. H.; Lynnworth, L. C.

    1968-01-01

    Pulse echo ultrasonic system automatically determines the temperature in the core of a nuclear rocket engine by measuring the transit time of an acoustic pulse in a wire sensor. The measurement is based on the fact that the speed of sound in the sensor material is a function of temperature.

  5. High-temperature-measuring device

    DOEpatents

    Not Available

    1981-01-27

    A temperature measuring device for very high design temperatures (to 2000/sup 0/C) is described. The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensonally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.

  6. Noncontact temperature pattern measuring device

    NASA Technical Reports Server (NTRS)

    Elleman, D. D. (Inventor); Allen, J. L. (Inventor); Lee, M. C. (Inventor)

    1987-01-01

    This invention relates to a noncontact imagine pyrometer system for obtaining the true temperature image of a given substance in a contactless fashion without making assumptions about localized emissivity of the substance or the uniformity of the temperature distribution. Such a contactless temperature imaging system has particular application in the study and production of many materials where the physical contact required to make a conventional temperature measurement drastically effects or contaminates the physical process being observed. Two examples where accurate temperature profiles are of critical interest are: (1) the solid-liquid phase change interface in the production of electronic materials and (2) metastable materials in the undercooling region. The apparent novelty resides in the recognition that an active pyrometer system may be advantageously adapted to perform contactless temperature imaging so that an accurate temperature profile can be obtained.

  7. Noncontact temperature pattern measuring device

    NASA Technical Reports Server (NTRS)

    Elleman, Daniel D. (Inventor); Allen, James L. (Inventor); Lee, Mark C. (Inventor)

    1989-01-01

    Laser pyrometer techniques are utilized to accurately image a true temperature distribution on a given target without touching the target and without knowing the localized emissivity of the target. The pyrometer utilizes a very high definition laser beam and photodetector, both having a very narrow focus. The pyrometer is mounted in a mechanism designed to permit the pyrometer to be aimed and focused at precise localized points on the target surface. The pyrometer is swept over the surface area to be imaged, temperature measurements being taken at each point of focus.

  8. Miniature ingestible telemeter devices to measure deep-body temperature

    NASA Technical Reports Server (NTRS)

    Pope, J. M.; Fryer, T. B. (Inventor)

    1976-01-01

    A telemetry device comprised of a pill-size ingestible transmitter developed to obtain deep body temperature measurements of a human is described. The device has particular utility in the medical field where deep body temperatures provide an indication of general health.

  9. 46 CFR 154.1340 - Temperature measuring devices.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Temperature measuring devices. 154.1340 Section 154.1340 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Instrumentation § 154.1340...

  10. 46 CFR 154.1340 - Temperature measuring devices.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Temperature measuring devices. 154.1340 Section 154.1340 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Instrumentation § 154.1340...

  11. 46 CFR 154.1340 - Temperature measuring devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Temperature measuring devices. 154.1340 Section 154.1340 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Instrumentation § 154.1340...

  12. Thermal modeling and temperature measurements in optoelectronic waveguide devices

    NASA Astrophysics Data System (ADS)

    Allard, M.; Boudreau, Marcel G.; Masut, Remo A.

    1998-12-01

    Optoelectronic devices are particularly sensitive to temperature changes induced by light absorption and current flow. In order to study the thermal issues arising in the Mach-Zehnder optical modulator manufactured by Nortel, a non-linear finite-element thermal model of the device was constructed, which computes the internal temperature as a function of the applied voltage and optical power in the waveguide. An experimental technique was also developed, in which liquid crystals are used to measure the temperature on the device surface. The model predictions and the experimental results were found to agree well over wide ranges of optical power and voltage. The model and the technique have produced evidence of a thermal cross-talk between an integrated laser and the modulator: the peak internal temperature inside the modulator is higher in integrated devices than in the stand-alone configuration for identical voltage and optical power. Because of the desire to integrate multiple devices on a common substrate and the continuous increase of the optical powers in optical fiber systems, thermal issues will only become more important in future systems.

  13. Silicon device performance measurements to support temperature range enhancement

    NASA Technical Reports Server (NTRS)

    Bromstead, James; Weir, Bennett; Nelms, R. Mark; Johnson, R. Wayne; Askew, Ray

    1994-01-01

    Silicon based power devices can be used at 200 C. The device measurements made during this program show a predictable shift in device parameters with increasing temperature. No catastrophic or abrupt changes occurred in the parameters over the temperature range. As expected, the most dramatic change was the increase in leakage currents with increasing temperature. At 200 C the leakage current was in the milliAmp range but was still several orders of magnitude lower than the on-state current capabilities of the devices under test. This increase must be considered in the design of circuits using power transistors at elevated temperature. Three circuit topologies have been prototyped using MOSFET's and IGBT's. The circuits were designed using zero current or zero voltage switching techniques to eliminate or minimize hard switching of the power transistors. These circuits have functioned properly over the temperature range. One thousand hour life data have been collected for two power supplies with no failures and no significant change in operating efficiency. While additional reliability testing should be conducted, the feasibility of designing soft switched circuits for operation at 200 C has been successfully demonstrated.

  14. Thermoelectric temperature control device for vapor pressure measurements.

    PubMed

    Berg, Robert F

    2011-08-01

    The static method of measuring equilibrium vapor pressure requires locating the sample at the coldest part of the apparatus to avoid errors due to evaporation and recondensation elsewhere. This paper describes a device that can hold the sample 1 K below the temperature of the surrounding air without a liquid bath. It comprises a pair of thermoelectric elements and two thermometers attached to an insulated aluminum block. The device can operate as high as 200 °C while controlling the sample with a precision of 0.02 K; below 110 °C, the precision is 2 mK. Also described is a method to measure the small temperature offset due to heat flow between the sample and the surrounding aluminum block. The uncertainty due to the offset is small compared to the 6 mK uncertainty due to the thermometer. PMID:21895278

  15. Thermal measurement. Nanoscale temperature mapping in operating microelectronic devices.

    PubMed

    Mecklenburg, Matthew; Hubbard, William A; White, E R; Dhall, Rohan; Cronin, Stephen B; Aloni, Shaul; Regan, B C

    2015-02-01

    Modern microelectronic devices have nanoscale features that dissipate power nonuniformly, but fundamental physical limits frustrate efforts to detect the resulting temperature gradients. Contact thermometers disturb the temperature of a small system, while radiation thermometers struggle to beat the diffraction limit. Exploiting the same physics as Fahrenheit's glass-bulb thermometer, we mapped the thermal expansion of Joule-heated, 80-nanometer-thick aluminum wires by precisely measuring changes in density. With a scanning transmission electron microscope and electron energy loss spectroscopy, we quantified the local density via the energy of aluminum's bulk plasmon. Rescaling density to temperature yields maps with a statistical precision of 3 kelvin/hertz(-1/2), an accuracy of 10%, and nanometer-scale resolution. Many common metals and semiconductors have sufficiently sharp plasmon resonances to serve as their own thermometers. PMID:25657242

  16. Silicon device performance measurements to support temperature range enhancement

    NASA Technical Reports Server (NTRS)

    Bromstead, James; Weir, Bennett; Johnson, R. Wayne; Askew, Ray

    1991-01-01

    Semiconductor power devices are typically rated for operation below 150 C. Little data is known for power semiconductors over 150 C. In most cases, the device is derated to zero operating power at 175 C. At the high temperature end of the temperature range, the intrinsic carrier concentration increases to equal the doping concentration level and the silicon behaves as an intrinsic semiconductor. The increase in intrinsic carrier concentration results in a shift of the Fermi level toward mid-bandgap at elevated temperatures. This produces a shift in devices characteristics as a function of temperature. By increasing the doping concentration higher operating temperatures can be achieved. This technique was used to fabricate low power analog and digital devices in silicon with junction operating temperatures in excess of 300 C. Additional temperature effects include increased p-n junction leakage with increasing temperature, resulting in increased resistivity. The temperature dependency of physical properties results in variations in device characteristics. These must be quantified and understood in order to develop extended temperature range operation.

  17. 46 CFR 154.1340 - Temperature measuring devices.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY... level allowed under § 154.1844. (b) Each device required by paragraph (a) must have a readout at the...) Each device must show the temperature continuously or at regular intervals of one hour or less....

  18. 46 CFR 154.1340 - Temperature measuring devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY... level allowed under § 154.1844. (b) Each device required by paragraph (a) must have a readout at the...) Each device must show the temperature continuously or at regular intervals of one hour or less....

  19. Improvement of the operation rate of medical temperature measuring devices

    NASA Astrophysics Data System (ADS)

    Hotra, O.; Boyko, O.; Zyska, T.

    2014-08-01

    A method of reducing measuring time of temperature measurements of biological objects based on preheating the resistance temperature detector (RTD) up to the temperature close to the temperature to be measured, is proposed. It has been found that at the same measuring time, the preheating allows to decrease the measurement error by a factor of 5 to 45 over the temperature range of 35-41°С. The measurement time is reduced by 1.6-4 times over this range, keeping the same value of the measurement error.

  20. Device for self-verifying temperature measurement and control

    DOEpatents

    Watkins, Arthur D.; Cannon, Collins P.; Tolle, Charles R.

    2004-08-03

    A measuring instrument includes a first temperature sensor, a second temperature sensor and circuitry. The first and second temperature sensors each generate a signal indicative of the temperature of a medium being detected. The circuitry is configured to activate verification of temperature being sensed with the first sensor. According to one construction, the first temperature sensor comprises at least one thermocouple temperature sensor and the second temperature sensor comprises an optical temperature sensor, each sensor measuring temperature over the same range of temperature, but using a different physical phenomena. Also according to one construction, the circuitry comprises a computer configured to detect failure of one of the thermocouples by comparing temperature of the optical temperature sensor with each of the thermocouple temperature sensors. Even further, an output control signal is generated via a fuzzy inference machine and control apparatus.

  1. 46 CFR 154.1375 - Readout for temperature measuring device: Marking.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Readout for temperature measuring device: Marking. 154..., Construction and Equipment Instrumentation § 154.1375 Readout for temperature measuring device: Marking. Each readout under § 154.1340 for a device that measures temperature in a cargo tank must be marked with...

  2. Fiber - Optic Devices as Temperature Sensors for Temperature Measurements in AC Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Rablau, Corneliu; Lafrance, Joseph; Sala, Anca

    2007-10-01

    We report on the investigation of several fiber-optic devices as potential sensors for temperature measurements in AC magnetic fields. Common temperature sensors, such as thermocouples, thermistors or diodes, will create random and/or systematic errors when placed in a magnetic field. A DC magnetic field is susceptible to create a systematic offset to the measurement, while in an AC magnetic field of variable frequency random errors which cannot be corrected for can also be introduced. Fiber-Bragg-gratings and thin film filters have an inherent temperature dependence. Detrimental for their primary applications, the same dependence allows one to use such devices as temperature sensors. In an AC magnetic field, they present the advantage of being immune to electromagnetic interference. Moreover, for fiber-Bragg-gratings, the shape factor and small mass of the bare-fiber device make it convenient for temperature measurements on small samples. We studied several thin-film filters and fiber-Bragg-gratings and compared their temperature measurement capabilities in AC magnetic fields of 0 to 150 Gauss, 0 to 20 KHz to the results provided by off-the-shelf thermocouples and thermistor-based temperature measurement systems.

  3. Miniature bioelectric device accurately measures and telemeters temperature

    NASA Technical Reports Server (NTRS)

    Fryer, T. B.

    1966-01-01

    Miniature micropower solid-state circuit measures and telemeters the body temperature of laboratory animals over periods up to two years. The circuit employs a thermistor as a temperature sensing element and an fm transmitter. It is constructed from conventional discrete components or integrated circuits.

  4. Silicon device performance measurements to support temperature range enhancement

    NASA Technical Reports Server (NTRS)

    Johnson, R. Wayne; Askew, Ray; Bromstead, James; Weir, Bennett

    1991-01-01

    The results of the NPN bipolar transistor (BJT) (2N6023) breakdown voltage measurements were analyzed. Switching measurements were made on the NPN BJT, the insulated gate bipolar transistor (IGBT) (TA9796) and the N-channel metal oxide semiconductor field effect transistor (MOSFET) (RFH75N05E). Efforts were also made to build a H-bridge inverter. Also discussed are the plans that have been made to do life testing on the devices, to build an inductive switching test circuit and to build a dc/dc switched mode converter.

  5. 46 CFR 154.1375 - Readout for temperature measuring device: Marking.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Readout for temperature measuring device: Marking. 154.1375 Section 154.1375 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK..., Construction and Equipment Instrumentation § 154.1375 Readout for temperature measuring device: Marking....

  6. 46 CFR 154.1375 - Readout for temperature measuring device: Marking.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Readout for temperature measuring device: Marking. 154.1375 Section 154.1375 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK..., Construction and Equipment Instrumentation § 154.1375 Readout for temperature measuring device: Marking....

  7. Temperature measurement by IR camera of heated device to high temperature during a short time

    NASA Astrophysics Data System (ADS)

    Sonneck-Museux, Nathanaëlle; Vergé, Philippe; Judic, Jean-Pierre; Edard, Pierrick

    2015-04-01

    A device allowing heating a liquid to high temperatures during a very short time has been conceived in our laboratory. The goal of this survey is to find the suitable experimental configurations, so that tested material affected by the temperatures coved between 200 and 750°C. This study is achieved to the Solar Furnace of the DGA in Odeillo. The cavity containing the liquid is a thermocouple sleeve (capillary) in Inconel 600. Its extremity is closed tightly by a removable steel plug permitting the tightness after replenishment. An electromagnet associated to a generator of delay permit to make fall the whole after the solar irradiation in liquid nitrogen in order to stop the reaction of "deterioration" of the tested product. According to capillary dimensions and to heating time, the temperature measurement using a pyrometer is not possible. A second possibility is using thermocouple, but it is not easy to join this captor on Inconel 600. Using by infrared camera allows observing the presence or the absence of inflammation during the solar irradiation and the sleeve fall too. The measures of temperatures by thermocouple show a lot of variability. The measures comparison with those by infrared camera shows a phenomenon of "heat well". Several score of tests to the solar furnace have been achieved in different experimental configurations. Nine experimental configurations have been validated, for variable flux of 100 to 500W/cm². The observation by infrared camera permitted to validate the conceived system and to verify the homogeneity of the sleeve heated.

  8. 21 CFR 882.1570 - Powered direct-contact temperature measurement device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... differences in temperature between two points on the body. (b) Classification. Class II (performance standards). ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Powered direct-contact temperature measurement....1570 Powered direct-contact temperature measurement device. (a) Identification. A powered...

  9. 21 CFR 882.1570 - Powered direct-contact temperature measurement device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... differences in temperature between two points on the body. (b) Classification. Class II (performance standards). ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Powered direct-contact temperature measurement....1570 Powered direct-contact temperature measurement device. (a) Identification. A powered...

  10. 21 CFR 882.1570 - Powered direct-contact temperature measurement device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... differences in temperature between two points on the body. (b) Classification. Class II (performance standards). ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Powered direct-contact temperature measurement....1570 Powered direct-contact temperature measurement device. (a) Identification. A powered...

  11. 21 CFR 882.1570 - Powered direct-contact temperature measurement device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... differences in temperature between two points on the body. (b) Classification. Class II (performance standards). ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Powered direct-contact temperature measurement....1570 Powered direct-contact temperature measurement device. (a) Identification. A powered...

  12. 21 CFR 882.1570 - Powered direct-contact temperature measurement device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... differences in temperature between two points on the body. (b) Classification. Class II (performance standards). ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Powered direct-contact temperature measurement....1570 Powered direct-contact temperature measurement device. (a) Identification. A powered...

  13. Silicon device performance measurements to support temperature range enhancement

    NASA Technical Reports Server (NTRS)

    Bromstead, James; Weir, Bennett; Johnson, R. Wayne; Askew, Ray

    1992-01-01

    Testing of the metal oxide semiconductor (MOS)-controlled thyristor (MCT) has uncovered a failure mechanism at elevated temperature. The failure appears to be due to breakdown of the gate oxide. Further testing is underway to verify the failure mode. Higher current level inverters were built to demonstrate 200 C operation of the N-MOSFET's and insulated-gate-bipolar transistors (IGBT's) and for life testing. One MOSFET failed early in testing. The origin of this failure is being studied. No IGBT's have failed. A prototype 28-to-42 V converter was built and is being tested at room temperature. The control loop is being finalized. Temperature stable, high value (10 micro-F) capacitors appear to be the limiting factor in the design at this time. In this application, the efficiency will be lower for the IGBT version due to the large V sub(cesat) (3.5-4 V) compared to the input voltage of 28 V. The MOSFET version should have higher efficiency; however, the MOSFET does not appear to be as robust at 200 C. Both versions are built for comparison.

  14. [Development of electronic clinical device for concentrated measurement of body temperature].

    PubMed

    Zhang, Xu; Ouyang, Bin-lin

    2009-11-01

    An kind of device for concentrated measurement of body temperature which takes ATmega16 microcontroller as the core is designed according to the current situation of measuring body temperature in the hospitals of our country. Taking DS18B20 as the transducer, the device uses PTR8000 wireless communication module to realize the communication from multi-point to single-point. Meanwhile photoelectric detection and USB interfaces are added in the design. Clock chip PCF8563, voice chip ISD1820 and LCD screen I JM12864M are used to realize the functions such as timekeeping, playing voice and displaying and so on. PMID:20352913

  15. 46 CFR 154.1375 - Readout for temperature measuring device: Marking.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Readout for temperature measuring device: Marking. 154.1375 Section 154.1375 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Instrumentation...

  16. 46 CFR 154.1375 - Readout for temperature measuring device: Marking.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Readout for temperature measuring device: Marking. 154.1375 Section 154.1375 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Instrumentation...

  17. Low-Temperature Radiometric Measurements Using a Silver Halide Optical Fiber and Infrared Optical Devices

    NASA Astrophysics Data System (ADS)

    Lee, Bongsoo; Yoo, Wook Jae; Cho, Dong Hyun; Jang, Kyoung Won; Chung, Soon-Cheol; Tack, Gye-Rae

    2007-09-01

    In this study, we measured an infrared radiation which is transferred by a silver halide optical fiber from a heat source using a radiometer system for low-temperature measurements. To increase the amount of infrared radiation through the silver halide optical fiber and to the pyroelectric sensor, infrared optical devices used were an infrared focusing lens and a collimator. The relationship between the temperatures of a heat source and the measured radiometer signals were determined. The measurable temperature range of a fiber-optic temperature sensor using a pyroelectric sensor was from 298 to 333 K. It is expected that a noncontact low-temperature sensor using an infrared optical fiber can be developed for medical and industrial usages based on the results of this study.

  18. Surface-Temperature Measurement and Submicron Defect Isolation for Microelectronic Devices Using Thermoreflectance Microscopy

    NASA Astrophysics Data System (ADS)

    Ryu, Seon Young; Kim, Dong Uk; Kim, Jun Ki; Choi, Hae Young; Kim, Geon Hee; Chang, Ki Soo

    2015-06-01

    Thermal analysis of small defects becomes essential for understanding the influence of hotspots, which affect the device performance, such as the operating speed and reliability. In this paper, we demonstrate a CCD-based thermoreflectance microscopy (TRM) system as a noncontact thermal analysis technique especially for submicron defects on microelectronic devices. By employing a lock-in detection technique and temperature calibration process, the surface temperature distribution of a polysilicon microresistor and submicron defects that are not distinguishable in conventional optical microscope images can be quantitatively measured with high thermal (up to 13 mK) and spatial (670 nm) resolution. In addition, the accuracy of quantitative temperature measurement and small defect isolation by the TRM system is compared with that obtained from an infrared thermography (IRT) system.

  19. Emissivity Compensation Utilizing Radiance Distribution in Thermal Images for Temperature Measurement of Electronic Devices

    NASA Astrophysics Data System (ADS)

    Yamada, Yoshiro; Ishii, Juntaro

    2011-11-01

    Two novel techniques of compensating for unknown distributed emissivity in temperature measurement by thermal imagers are presented. For both techniques the reflected image of a planar auxiliary source is superimposed on the thermal image of the object. In the first, the true temperature of the object is obtained by treating it as a blackbody when the radiance distribution, corresponding to emissivity pattern of the object, disappears. In the second, the reflectance ratio at two areas in the thermal image is utilized to compensate for emissivity. In this paper, principle of the emissivity compensation and preliminary test results are presented, and the procedures and their capabilities are demonstrated. The features of the schemes, such as elimination of the size-of-source effect, are discussed. The method is expected to become powerful tools for temperature distribution measurements in various applications, most notably the monitoring of local heat generation in highly-integrated or power electronic devices.

  20. Magnetic relaxation measurement in immunoassay using high-transition-temperature superconducting quantum interference device system

    NASA Astrophysics Data System (ADS)

    Yang, H. C.; Yang, S. Y.; Fang, G. L.; Huang, W. H.; Liu, C. H.; Liao, S. H.; Horng, H. E.; Hong, Chin-Yih

    2006-06-01

    Due to their ultrahigh sensitivity to magnetic flux, superconducting quantum interference devices (SQUIDs) are able to detect biomagnetic signals. By labeling biotargets with magnetic nanoparticles, several groups have shown that SQUIDs are promising as quantitative probes of biotargets by measuring their magnetic properties. In this work, we describe the design and construction of a high-transition-temperature radio-frequency SQUID magnetometer system for measuring the magnetic relaxation of labeled avidin. We also describe the synthesis of magnetic nanoparticles coated with biotin for use in labeling the avidin. Furthermore, the specifications of the SQUID-based magnetically labeled immunoassay of avidin are explored.

  1. Temporal and Spatial Temperature Measurement in Insulator-Based Dielectrophoretic Devices

    PubMed Central

    2015-01-01

    Insulator-based dielectrophoresis is a relatively new analytical technique with a large potential for a number of applications, such as sorting, separation, purification, fractionation, and preconcentration. The application of insulator-based dielectrophoresis (iDEP) for biological samples, however, requires the precise control of the microenvironment with temporal and spatial resolution. Temperature variations during an iDEP experiment are a critical aspect in iDEP since Joule heating could lead to various detrimental effects hampering reproducibility. Additionally, Joule heating can potentially induce thermal flow and more importantly can degrade biomolecules and other biological species. Here, we investigate temperature variations in iDEP devices experimentally employing the thermosensitive dye Rhodamin B (RhB) and compare the measured results with numerical simulations. We performed the temperature measurement experiments at a relevant buffer conductivity range commonly used for iDEP applications under applied electric potentials. To this aim, we employed an in-channel measurement method and an alternative method employing a thin film located slightly below the iDEP channel. We found that the temperature does not deviate significantly from room temperature at 100 μS/cm up to 3000 V applied such as in protein iDEP experiments. At a conductivity of 300 μS/cm, such as previously used for mitochondria iDEP experiments at 3000 V, the temperature never exceeds 34 °C. This observation suggests that temperature effects for iDEP of proteins and mitochondria under these conditions are marginal. However, at larger conductivities (1 mS/cm) and only at 3000 V applied, temperature increases were significant, reaching a regime in which degradation is likely to occur. Moreover, the thin layer method resulted in lower temperature enhancement which was also confirmed with numerical simulations. We thus conclude that the thin film method is preferable providing closer agreement with numerical simulations and further since it does not depend on the iDEP channel material. Overall, our study provides a thorough comparison of two experimental techniques for direct temperature measurement, which can be adapted to a variety of iDEP applications in the future. The good agreement between simulation and experiment will also allow one to assess temperature variations for iDEP devices prior to experiments. PMID:24889741

  2. Device and method for self-verifying temperature measurement and control

    DOEpatents

    Watkins, Arthur D.; Cannon, Collins P.; Tolle, Charles R.

    2002-10-29

    A measuring instrument includes a first temperature sensor, a second temperature sensor and circuitry. The first and second temperature sensors each generate a signal indicative of the temperature of a medium being detected. The circuitry is configured to activate verification of temperature being sensed with the first sensor. According to one construction, the first temperature sensor comprises at least one thermocouple temperature sensor and the second temperature sensor comprises an optical temperature sensor, each sensor measuring temperature over the same range of temperature, but using a different physical phenomena. Also according to one construction, the circuitry comprises a computer configured to detect failure of one of the thermocouples by comparing temperature of the optical temperature sensor with each of the thermocouple temperature sensors. Even further, an output control signal is generated via a fuzzy inference machine and control apparatus.

  3. A robust and well shielded thermal conductivity device for low temperature measurements

    NASA Astrophysics Data System (ADS)

    Toews, W. H.; Hill, R. W.

    2014-04-01

    We present a compact mechanically robust thermal conductivity measurement apparatus for measurements at low temperatures (<1 K) and high magnetic fields on small high-purity single crystal samples. A high-conductivity copper box is used to enclose the sample and all the components. The box provides protection for the thermometers, heater, and most importantly the sample increasing the portability of the mount. In addition to physical protection, the copper box is also effective at shielding radio frequency electromagnetic interference and thermal radiation, which is essential for low temperature measurements. A printed circuit board in conjunction with a braided ribbon cable is used to organize the delicate wiring and provide mechanical robustness.

  4. A robust and well shielded thermal conductivity device for low temperature measurements

    SciTech Connect

    Toews, W. H.; Hill, R. W.

    2014-04-15

    We present a compact mechanically robust thermal conductivity measurement apparatus for measurements at low temperatures (<1 K) and high magnetic fields on small high-purity single crystal samples. A high-conductivity copper box is used to enclose the sample and all the components. The box provides protection for the thermometers, heater, and most importantly the sample increasing the portability of the mount. In addition to physical protection, the copper box is also effective at shielding radio frequency electromagnetic interference and thermal radiation, which is essential for low temperature measurements. A printed circuit board in conjunction with a braided ribbon cable is used to organize the delicate wiring and provide mechanical robustness.

  5. A robust and well shielded thermal conductivity device for low temperature measurements.

    PubMed

    Toews, W H; Hill, R W

    2014-04-01

    We present a compact mechanically robust thermal conductivity measurement apparatus for measurements at low temperatures (<1 K) and high magnetic fields on small high-purity single crystal samples. A high-conductivity copper box is used to enclose the sample and all the components. The box provides protection for the thermometers, heater, and most importantly the sample increasing the portability of the mount. In addition to physical protection, the copper box is also effective at shielding radio frequency electromagnetic interference and thermal radiation, which is essential for low temperature measurements. A printed circuit board in conjunction with a braided ribbon cable is used to organize the delicate wiring and provide mechanical robustness. PMID:24784624

  6. Contactless ultrasonic device to measure surface acoustic wave velocities versus temperature.

    PubMed

    Hubert, C; Nadal, M H; Ravel-Chapuis, G; Oltra, R

    2007-02-01

    A complete optical experimental setup for generating and detecting surface acoustic waves [Rayleigh waves (RWs)] in metals versus temperature up to the melting point is described. The RWs were excited by a pulsed Nd:YAG laser and detected by a high sensitivity subangstrom heterodyne interferometer. A special furnace was used to heat the sample using infrared radiation with a regulation of the sample temperature less than 0.1 K. First measurements on an aluminum alloy sample are presented to validate the setup. PMID:17578139

  7. Temperature differential detection device

    DOEpatents

    Girling, Peter M.

    1986-01-01

    A temperature differential detection device for detecting the temperature differential between predetermined portions of a container wall is disclosed as comprising a Wheatstone bridge circuit for detecting resistance imbalance with a first circuit branch having a first elongated wire element mounted in thermal contact with a predetermined portion of the container wall, a second circuit branch having a second elongated wire element mounted in thermal contact with a second predetermined portion of a container wall with the wire elements having a predetermined temperature-resistant coefficient, an indicator interconnected between the first and second branches remote from the container wall for detecting and indicating resistance imbalance between the first and second wire elements, and connector leads for electrically connecting the wire elements to the remote indicator in order to maintain the respective resistance value relationship between the first and second wire elements. The indicator is calibrated to indicate the detected resistance imbalance in terms of a temperature differential between the first and second wall portions.

  8. Temperature differential detection device

    DOEpatents

    Girling, P.M.

    1986-04-22

    A temperature differential detection device for detecting the temperature differential between predetermined portions of a container wall is disclosed as comprising a Wheatstone bridge circuit for detecting resistance imbalance with a first circuit branch having a first elongated wire element mounted in thermal contact with a predetermined portion of the container wall, a second circuit branch having a second elongated wire element mounted in thermal contact with a second predetermined portion of a container wall with the wire elements having a predetermined temperature-resistant coefficient, an indicator interconnected between the first and second branches remote from the container wall for detecting and indicating resistance imbalance between the first and second wire elements, and connector leads for electrically connecting the wire elements to the remote indicator in order to maintain the respective resistance value relationship between the first and second wire elements. The indicator is calibrated to indicate the detected resistance imbalance in terms of a temperature differential between the first and second wall portions. 2 figs.

  9. Pulse flux measuring device

    DOEpatents

    Riggan, William C.

    1985-01-01

    A device for measuring particle flux comprises first and second photodiode detectors for receiving flux from a source and first and second outputs for producing first and second signals representing the flux incident to the detectors. The device is capable of reducing the first output signal by a portion of the second output signal, thereby enhancing the accuracy of the device. Devices in accordance with the invention may measure distinct components of flux from a single source or fluxes from several sources.

  10. Human performance measuring device

    NASA Technical Reports Server (NTRS)

    Michael, J.; Scow, J.

    1970-01-01

    Complex coordinator, consisting of operator control console, recorder, subject display panel, and limb controls, measures human performance by testing perceptual and motor skills. Device measures psychophysiological functions in drug and environmental studies, and is applicable to early detection of psychophysiological body changes.

  11. High temperature superconductor micro-superconducting-quantum-interference-device magnetometer for magnetization measurement of a microscale magnet

    SciTech Connect

    Takeda, Keiji; Mori, Hatsumi; Yamaguchi, Akira; Ishimoto, Hidehiko; Nakamura, Takayoshi; Kuriki, Shinya; Hozumi, Toshiya; Ohkoshi, Shin-ichi

    2008-03-15

    We have developed a high temperature superconductor (HTS) micrometer-sized dc superconducting quantum interference device (SQUID) magnetometer for high field and high temperature operation. It was fabricated from YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} of 92 nm in thickness with photolithography techniques to have a hole of 4x9 {mu}m{sup 2} and 2 {mu}m wide grain boundary Josephson junctions. Combined with a three dimensional magnetic field coil system, the modulation patterns of critical current I{sub c} were observed for three different field directions. They were successfully used to measure the magnetic properties of a molecular ferrimagnetic microcrystal (23x17x13 {mu}m{sup 3}), [Mn{sub 2}(H{sub 2}O){sub 2}(CH{sub 3}COO)][W(CN){sub 8}]{center_dot}2H{sub 2}O. The magnetization curve was obtained in magnetic field up to 0.12 T between 30 and 70 K. This is the first to measure the anisotropy of hysteresis curve in the field above 0.1 T with an accuracy of 10{sup -12} J T{sup -1} (10{sup -9} emu) with a HTS micro-SQUID magnetometer.

  12. Solid state device for two-wire downhole temperature measurement as a function of current. Final performance technical report

    SciTech Connect

    Anderson, Roger; Anderson, David

    2002-01-15

    Several metals systems were reviewed for their potential to act as resistive temperature devices. Platinum metal was selected as the metal of choice. Platinum was plated onto 5 mil copper wire, and then subsequently coated with Accusol's proprietary ceramic coating. The copper was etched out in an attempt to make a pure platinum, high resistive, resistive-temperature device. The platinum plating on the wire cracked during processing, resulting in a discontinuous layer of platinum, and the element could not be formed in this way.

  13. Temperature measurement

    MedlinePlus

    ... body. Wait for 5 minutes before reading. Plastic strip thermometers change color to show the temperature. This method is the least accurate. Place the strip on the forehead and read it after 1 ...

  14. Temperature Measurement Aid

    NASA Technical Reports Server (NTRS)

    1979-01-01

    NASA's Ames Research Center has designed a simple but medically important device--one which holds temperature probes, called thermistors, to a person's skin without affecting the characteristics of the skin segment being measured. The device improves the accuracy of skin surface temperature measurements, valuable data in health evaluation. The need for such a device was recognized in the course of life science experiments at Ames. In earlier methods, the sensing head of the temperature probe was affixed to the patient's skin by tape or elastic bands. This created a heat variance which altered skin temperature readings. The Ames-developed thermistor holder is a plastic ring with tab extensions, shown in the upper photo on the chest, arm and leg of the patient undergoing examination. The ring holds the sensing head of the temperature probe and provides firm, constant pressure between the skin and the probe. The tabs help stabilize the ring and provide attachment points for the fastening tape or bands, which do not directly touch the sensor. With this new tool, it is possible to determine more accurately the physiological effects of strenuous exercise, particularly on the treadmill. The holder is commercially available from Yellow Springs Instrument Company, Inc., Yellow Springs, Ohio, which is producing the device under a NASA patent license.

  15. Inducer Hydrodynamic Load Measurement Devices

    NASA Technical Reports Server (NTRS)

    Skelley, Stephen E.; Zoladz, Thomas F.

    2002-01-01

    Marshall Space Flight Center (MSFC) has demonstrated two measurement devices for sensing and resolving the hydrodynamic loads on fluid machinery. The first - a derivative of the six component wind tunnel balance - senses the forces and moments on the rotating device through a weakened shaft section instrumented with a series of strain gauges. This "rotating balance" was designed to directly measure the steady and unsteady hydrodynamic loads on an inducer, thereby defining both the amplitude and frequency content associated with operating in various cavitation modes. The second device - a high frequency response pressure transducer surface mounted on a rotating component - was merely an extension of existing technology for application in water. MSFC has recently completed experimental evaluations of both the rotating balance and surface-mount transducers in a water test loop. The measurement bandwidth of the rotating balance was severely limited by the relative flexibility of the device itself, resulting in an unexpectedly low structural bending mode and invalidating the higher frequency response data. Despite these limitations, measurements confirmed that the integrated loads on the four-bladed inducer respond to both cavitation intensity and cavitation phenomena. Likewise, the surface-mount pressure transducers were subjected to a range of temperatures and flow conditions in a non-rotating environment to record bias shifts and transfer functions between the transducers and a reference device. The pressure transducer static performance was within manufacturer's specifications and dynamic response accurately followed that of the reference.

  16. Inducer Hydrodynamic Load Measurement Devices

    NASA Technical Reports Server (NTRS)

    Skelley, Stephen E.; Zoladz, Thomas F.; Turner, Jim (Technical Monitor)

    2002-01-01

    Marshall Space Flight Center (MSFC) has demonstrated two measurement devices for sensing and resolving the hydrodynamic loads on fluid machinery. The first - a derivative of the six-component wind tunnel balance - senses the forces and moments on the rotating device through a weakened shaft section instrumented with a series of strain gauges. This rotating balance was designed to directly measure the steady and unsteady hydrodynamic loads on an inducer, thereby defining both the amplitude and frequency content associated with operating in various cavitation modes. The second device - a high frequency response pressure transducer surface mounted on a rotating component - was merely an extension of existing technology for application in water. MSFC has recently completed experimental evaluations of both the rotating balance and surface-mount transducers in a water test loop. The measurement bandwidth of the rotating balance was severely limited by the relative flexibility of the device itself, resulting in an unexpectedly low structural bending mode and invalidating the higher-frequency response data. Despite these limitations, measurements confirmed that the integrated loads on the four-bladed inducer respond to both cavitation intensity and cavitation phenomena. Likewise, the surface-mount pressure transducers were subjected to a range of temperatures and flow conditions in a non-rotating environment to record bias shifts and transfer functions between the transducers and a reference device. The pressure transducer static performance was within manufacturer's specifications and dynamic response accurately followed that of the reference.

  17. Temperature dependence of polymer photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Nakazawa, Yuko

    One of many steps to develop a sustainable society is to reduce the use of fossil fuels by replacing them with renewable energy sources, such as solar energy. This dissertation concerns one of the most contemporary methods to harvest solar radiation and covert it to electricity, using thin polymer films. The photovoltaic devices in this study consisted of a thin layer of p-phenylenevinylene (PPV) based semiconducting polymer sandwiched between two metals (semi-transparent ITO and evaporated metal electrode). Two modified device structures were studied, an interfacial heterojunction device, which includes an additional layer of inorganic n-type semiconductor (Ti-oxides) and a bulk heterojunction device, which is formed by blending electron-attracting materials. Both modifications resulted in higher device performances under ambient conditions due to an increased number of dissociation sites. From studies of inorganic solar cells, it is well known that temperature has a large effect on device performance. However, there are only a few studies on organic Solar cells, concerning the temperature dependence. This thesis focuses on understanding the temperature dependent behaviors of polymer photovoltaic devices. Temperature dependence study allows us to examine how the device parameters such as short circuit current (Isc) and open circuit voltage (Voc) are affected by the material properties and the device architectures. The current-voltage relationships were measured in a temperature controlled OXFORD cryostat operating between 150K and 404K. From the dark current-voltage measurements, the field-independent hole mobility (mu0) was extracted, using a space charge limited current analysis. From the photocurrent-voltage measurements, the temperature dependence on Isc, Voc, and fill factor were studied. The temperature characteristics of Isc (T) were compared to that of mu0(T), and two different dependencies were obtained for different device architectures. The temperature dependence of Voc(T) were analyzed using the conventional diode equation developed for the inorganic solar cell studies. Our systematic temperature dependence studies allows us to decouple the effects of the material properties (i.e. mobility) from the effects of the device architectures, and to reexamine the device parameters, which governs the photovoltage generation in organic solar cells.

  18. Capacitance measuring device

    DOEpatents

    Andrews, W.H. Jr.

    1984-08-01

    A capacitance measuring circuit is provided in which an unknown capacitance is measured by comparing the charge stored in the unknown capacitor with that stored in a known capacitance. Equal and opposite voltages are repetitively simultaneously switched onto the capacitors through an electronic switch driven by a pulse generator to charge the capacitors during the ''on'' portion of the cycle. The stored charge is compared by summing discharge currents flowing through matched resistors at the input of a current sensor during the ''off'' portion of the switching cycle. The net current measured is thus proportional to the difference in value of the two capacitances. The circuit is capable of providing much needed accuracy and stability to a great variety of capacitance-based measurement devices at a relatively low cost.

  19. High temperature electronic gain device

    DOEpatents

    McCormick, J. Byron; Depp, Steven W.; Hamilton, Douglas J.; Kerwin, William J.

    1979-01-01

    An integrated thermionic device suitable for use in high temperature, high radiation environments. Cathode and control electrodes are deposited on a first substrate facing an anode on a second substrate. The substrates are sealed to a refractory wall and evacuated to form an integrated triode vacuum tube.

  20. Device for calorimetric measurement

    DOEpatents

    King, William P; Lee, Jungchul

    2015-01-13

    In one aspect, provided herein is a single crystal silicon microcalorimeter, for example useful for high temperature operation and long-term stability of calorimetric measurements. Microcalorimeters described herein include microcalorimeter embodiments having a suspended structure and comprising single crystal silicon. Also provided herein are methods for making calorimetric measurements, for example, on small quantities of materials or for determining the energy content of combustible material having an unknown composition.

  1. Thermography: a new measuring device for the determination of temperature distribution on chamber walls of coke ovens

    SciTech Connect

    Eisenhut, W.; Sarangi, B.

    1982-01-01

    It is particularly difficult to measure the heat distribution over chamber walls of coke ovens since the surfaces involved are not readily accessible, measurements have to be taken from outside through a door opening, and no more than two minutes are available for scanning both of the chamber walls before the doors have to be refitted. This paper describes infrared thermography and the adaptation of this technique to the specific task of temperature measurement of oven walls. An improved infrared camera is mounted on a mobile platform and passes in front of the open chamber at a preset speed. The camera continuously scans the temperatures towards the vertical chamber axis. The data is processed by computer which prints a thermal diagram. With this system it is possible to take all the measurements of an oven battery in one or two days. The measuring method could also be applied to other temperature measurements involved in the operation of coke oven batteries. (CKK)

  2. Measurement of temperature elevation in tissue for the optimum and safe use of scalpel-type ultrasonic surgery devices

    NASA Astrophysics Data System (ADS)

    Koch, C.; Nrnberger, H.; Reimann, H. P.

    2004-01-01

    Using temperature sensors of specific design, the temperature elevation during application of a Harmonic Scalpel was determined in liver tissue. The influence of different treatment techniques and application parameters on the heat produced was determined. The measurements can be used to assess the risk of harmful bioeffects and to optimise performance and treatment techniques with respect to minimum thermal load.

  3. Electronic measurement correction devices

    SciTech Connect

    Mahns, R.R.

    1984-04-01

    The electronics semi-conductor revolution has touched every industry and home in the nation. The gas industry is no exception. Sophisticated gas measurement instrumentation has been with us for several decades now, but only in the last 10 years or so has it really begun to boom. First marketed were the flow computers dedicated to orifice meter measurement; but with steadily decreasing manufacturing costs, electronic instrumentation is now moving into the area of base volume, pressure and temperature correction previously handled almost solely by mechanical integrating instruments. This paper takes a brief look at some of the features of the newcomers on the market and how they stack up against the old standby mechanical base volume/pressure/temperature correctors.

  4. A Comparison between Conductive and Infrared Devices for Measuring Mean Skin Temperature at Rest, during Exercise in the Heat, and Recovery

    PubMed Central

    Bach, Aaron J. E.; Stewart, Ian B.; Disher, Alice E.; Costello, Joseph T.

    2015-01-01

    Purpose Skin temperature assessment has historically been undertaken with conductive devices affixed to the skin. With the development of technology, infrared devices are increasingly utilised in the measurement of skin temperature. Therefore, our purpose was to evaluate the agreement between four skin temperature devices at rest, during exercise in the heat, and recovery. Methods Mean skin temperature (T-sk) was assessed in thirty healthy males during 30 min rest (24.0 ± 1.2°C, 56 ± 8%), 30 min cycle in the heat (38.0 ± 0.5°C, 41 ± 2%), and 45 min recovery (24.0 ± 1.3°C, 56 ± 9%). T-sk was assessed at four sites using two conductive devices (thermistors, iButtons) and two infrared devices (infrared thermometer, infrared camera). Results Bland–Altman plots demonstrated mean bias ± limits of agreement between the thermistors and iButtons as follows (rest, exercise, recovery): -0.01 ± 0.04, 0.26 ± 0.85, -0.37 ± 0.98°C; thermistors and infrared thermometer: 0.34 ± 0.44, -0.44 ± 1.23, -1.04 ± 1.75°C; thermistors and infrared camera (rest, recovery): 0.83 ± 0.77, 1.88 ± 1.87°C. Pairwise comparisons of T-sk found significant differences (p < 0.05) between thermistors and both infrared devices during resting conditions, and significant differences between the thermistors and all other devices tested during exercise in the heat and recovery. Conclusions These results indicate poor agreement between conductive and infrared devices at rest, during exercise in the heat, and subsequent recovery. Infrared devices may not be suitable for monitoring T-sk in the presence of, or following, metabolic and environmental induced heat stress. PMID:25659140

  5. Temperature monitoring device and thermocouple assembly therefor

    DOEpatents

    Grimm, Noel P.; Bauer, Frank I.; Bengel, Thomas G.; Kothmann, Richard E.; Mavretish, Robert S.; Miller, Phillip E.; Nath, Raymond J.; Salton, Robert B.

    1991-01-01

    A temperature monitoring device for measuring the temperature at a surface of a body, composed of: at least one first thermocouple and a second thermocouple; support members supporting the thermocouples for placing the first thermocouple in contact with the body surface and for maintaining the second thermocouple at a defined spacing from the body surface; and a calculating circuit connected to the thermocouples for receiving individual signals each representative of the temperature reading produced by a respective one of the first and second thermocouples and for producing a corrected temperature signal having a value which represents the temperature of the body surface and is a function of the difference between the temperature reading produced by the first thermocouple and a selected fraction of the temperature reading provided by the second thermocouple.

  6. Optical device for straightness measurement

    NASA Astrophysics Data System (ADS)

    Vekteris, Vladas; Jurevicius, Mindaugas; Turla, Vytautas

    2015-11-01

    The present paper describes the research of the optical device for two-dimensional straightness measurement of technological machines. Mathematical study of an optical device, operating on the phase principle and measuring transversal displacements of machine parts in two directions ( X and Y) during their linear longitudinal motion in a machine (alongside the Z axis), is presented. How to estimate the range of travel along the Z axis is analytically shown. At this range, the measurer gives correct measurements of transverse displacement. The necessary distance from the objective focus to the image plane was defined mathematically. The sample results of measuring the displacement of the table of a technological machine by using the optical device are presented in the paper. This optical device for non-contact straightness measurement can be used for measurement straightness in turning, milling, drilling, grinding machines and other technological machines, also in geodesy and cartography, and for moving accuracy testing of mechatronic devices, robotics and others.

  7. Measurements of ion temperature and flow of pulsed plasmas produced by a magnetized coaxial plasma gun device using an ion Doppler spectrometer

    NASA Astrophysics Data System (ADS)

    Kitagawa, Y.; Sakuma, I.; Iwamoto, D.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.

    2012-10-01

    It is important to know surface damage characteristics of plasma-facing component materials during transient heat and particle loads such as type I ELMs. A magnetized coaxial plasma gun (MCPG) device has been used as transient heat and particle source in ELM simulation experiments. Characteristics of pulsed plasmas produced by the MCPG device play an important role for the plasma material interaction. In this study, ion temperature and flow velocity of pulsed He plasmas were measured by an ion Doppler spectrometer (IDS). The IDS system consists of a light collection system including optical fibers, 1m-spectrometer and a 16 channel photomultiplier tube (PMT) detector. The IDS system measures the width and Doppler shift of HeII (468.58 nm) emission line with the time resolution of 1 μs. The Doppler broadened and shifted spectra were measured with 45 and 135 degree angles with respect to the plasmoid traveling direction. The observed emission line profile was represented by sum of two Gaussian components to determine the temperature and flow velocity. The minor component at around the wavelength of zero-velocity was produced by the stationary plasma. As the results, the ion velocity and temperature were 68 km/s and 19 eV, respectively. Thus, the He ion flow energy is 97 eV. The observed flow velocity agrees with that measured by a time of flight technique.

  8. Metal Resistivity Measuring Device

    DOEpatents

    Renken, Jr, C. J.; Myers, R. G.

    1960-12-20

    An eddy current device is designed for detecting discontinuities in metal samples. Alternate short and long duration pulses are inductively applied to a metal sample via the outer coil of a probe. The lorg pulses give a resultant signal from the metal sample responsive to probe-tosample spacing and discontinuities with the sample, and the short pulses give a resultant signal responsive only to probe-to-sample spacing. The inner coil of the probe detects the two resultant signals and transmits them to a separation network where the two signals are separated. The two separated signals are then transmitted to a compensation network where the detected signals due to the short pulses are used to compensate for variations due to probeto-sample spacing contained in the detected signals from the long pulses. Thus a resultant signal is obtained responsive to discontinuities within the sample and independent of probe-to- sample spacing.

  9. METAL RESISTIVITY MEASURING DEVICE

    DOEpatents

    Renken, J. Jr.; Myers, R.G.

    1960-12-20

    An eddy current device is offered for detecting discontinuities in metal samples. Alternate short and long duration pulses are inductively applied to a metal sample via the outer coil of a probe. The long pulses give a resultant signal from the metal sample responsive to probe-tosample spacing and discontinuities within the sample and the shont pulses give a resultant signal responsive only to probe -to-sample spacing. The inner coil of the probe detects the two resultant signals and transmits them to a separation network where the two signals are separated. The two separated signals are then transmitted to a compensation network where the detected signals due to the short pulses are used to compensate for variations due to probe-to-sample spacing contained in the detected signals from the long pulses. Thus, a resultant signal is obtained responsive to discontinuities within the sample and independent of probe-to- sample spacing.

  10. A new developed velocity of sound measurement device for characterization of multi-component gas mixtures under elevated temperatures and pressures

    NASA Astrophysics Data System (ADS)

    Seibel, C.; Suedmeyer, J.; Fieback, T. M.

    2014-07-01

    Inline process control by measurement of velocity of sound of fluids is a direct and comprehensive technique [J. D. N. Cheeke and Z. Wang, "Acoustic wave gas sensors," Sens. Actuators B 59, 146-153 (1999); J. W. Grate, S. J. Martin, and R. M. White, "Acoustic wave microsensors," Anal. Chem. 65, 1868 (1993)]. Depending on the varying conditions of measuring fluid(s), temperatures and pressures, it is a challenging task to find the best possible acoustic setup. Taking this background into account, a velocity of sound measurement device for temperatures up to 475 K and pressures up to 24 MPa was designed and assembled that is to be used for testing different resonator types. Two bulk acoustic wave resonators out of the commonly used lead zirconatetitanate compound (PZT) were tested at different test fluids under temperatures up to 423.15 K and pressures up to 24 MPa [S. Gebhardt, L. Seffner, F. Schlenkirch, and A. Schönecker, "PZT thick films for sensor and actuator applications," J. Eur. Ceram. Soc. 27, 4177-4180 (2007)]. Initially the pure gases methane, ethane, carbon dioxide, nitrogen, and helium were measured, followed by multi-component gas mixtures. Beside methane-based binary and ternary gas mixtures, a quaternary gas mixture comprising methane, ethane, carbon dioxide, and helium was analyzed. Results for all measurement fluids in a broad temperature and pressure range show a relative deviation to theoretical values derived from GERG-2008 smaller than 0.5%.

  11. Mirror Measurement Device

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A Small Business Innovation Research (SBIR) contract led to a commercially available instrument used to measure the shape profile of mirror surfaces in scientific instruments. Bauer Associates, Inc.'s Bauer Model 200 Profilometer is based upon a different measurement concept. The local curvature of the mirror's surface is measured at many points, and the collection of data is computer processed to yield the desired shape profile. (Earlier profilometers are based on the principle of interferometry.) The system is accurate and immune to problems like vibration and turbulence. Two profilometers are currently marketed, and a third will soon be commercialized.

  12. Optoelectronic device for hematocrit measurements

    NASA Astrophysics Data System (ADS)

    Pluta, M.; Milewska, D.; Mazikowski, A.

    2015-09-01

    An optoelectronic system for measurements of hematocrit level (HCT) in the whole human blood is presented. Proposed system integrates a dedicated optoelectronic sensor, a microcontroller and a small LCD display in a low cost, battery-powered, handheld device. Chosen method for determining blood hematocrit level is based on optical properties of whole blood in visible and NIR wavelength range. Measurements with the use of proposed system require blood samples (small drop in the range of microliters) which is placed in the micro cuvette. Then, absorption of the sample is measured at wavelengths of 570 nm and 880 nm. Prototype of the device was build and tested. Test results confirmed proper operation of the device with correct metrological parameters in application to HCT level measurements. Such a portable device can be used as a tool of bedside diagnosis, which becomes interesting alternative to full laboratory tests.

  13. Measurements and characterization - Device performance

    SciTech Connect

    Cook, G.

    2000-03-16

    This brochure presents the capabilities that the Measurements and Characterization Division has in device performance, in which a variety of spectral responsivity and current-versus-voltage techniques are used to measure the spectral dependence of PV cells and module conversion efficiencies, and to measure the output performance of cells and modules under simulated and natural light.

  14. Nanoscale temperature mapping in operating microelectronic devices

    DOE PAGESBeta

    Mecklenburg, Matthew; Hubbard, William A.; White, E. R.; Dhall, Rohan; Cronin, Stephen B.; Aloni, Shaul; Regan, B. C.

    2015-02-05

    We report that modern microelectronic devices have nanoscale features that dissipate power nonuniformly, but fundamental physical limits frustrate efforts to detect the resulting temperature gradients. Contact thermometers disturb the temperature of a small system, while radiation thermometers struggle to beat the diffraction limit. Exploiting the same physics as Fahrenheit’s glass-bulb thermometer, we mapped the thermal expansion of Joule-heated, 80-nanometer-thick aluminum wires by precisely measuring changes in density. With a scanning transmission electron microscope (STEM) and electron energy loss spectroscopy (EELS), we quantified the local density via the energy of aluminum’s bulk plasmon. Rescaling density to temperature yields maps with amore » statistical precision of 3 kelvin/hertz₋1/2, an accuracy of 10%, and nanometer-scale resolution. Lastly, many common metals and semiconductors have sufficiently sharp plasmon resonances to serve as their own thermometers.« less

  15. Nanoscale temperature mapping in operating microelectronic devices

    SciTech Connect

    Mecklenburg, Matthew; Hubbard, William A.; White, E. R.; Dhall, Rohan; Cronin, Stephen B.; Aloni, Shaul; Regan, B. C.

    2015-02-05

    We report that modern microelectronic devices have nanoscale features that dissipate power nonuniformly, but fundamental physical limits frustrate efforts to detect the resulting temperature gradients. Contact thermometers disturb the temperature of a small system, while radiation thermometers struggle to beat the diffraction limit. Exploiting the same physics as Fahrenheit’s glass-bulb thermometer, we mapped the thermal expansion of Joule-heated, 80-nanometer-thick aluminum wires by precisely measuring changes in density. With a scanning transmission electron microscope (STEM) and electron energy loss spectroscopy (EELS), we quantified the local density via the energy of aluminum’s bulk plasmon. Rescaling density to temperature yields maps with a statistical precision of 3 kelvin/hertz₋1/2, an accuracy of 10%, and nanometer-scale resolution. Lastly, many common metals and semiconductors have sufficiently sharp plasmon resonances to serve as their own thermometers.

  16. Angular displacement measuring device

    NASA Technical Reports Server (NTRS)

    Seegmiller, H. Lee B. (Inventor)

    1992-01-01

    A system for measuring the angular displacement of a point of interest on a structure, such as aircraft model within a wind tunnel, includes a source of polarized light located at the point of interest. A remote detector arrangement detects the orientation of the plane of the polarized light received from the source and compares this orientation with the initial orientation to determine the amount or rate of angular displacement of the point of interest. The detector arrangement comprises a rotating polarizing filter and a dual filter and light detector unit. The latter unit comprises an inner aligned filter and photodetector assembly which is disposed relative to the periphery of the polarizer so as to receive polarized light passing the polarizing filter and an outer aligned filter and photodetector assembly which receives the polarized light directly, i.e., without passing through the polarizing filter. The purpose of the unit is to compensate for the effects of dust, fog and the like. A polarization preserving optical fiber conducts polarized light from a remote laser source to the point of interest.

  17. Direct temperature mapping of nanoscale plasmonic devices.

    PubMed

    Desiatov, Boris; Goykhman, Ilya; Levy, Uriel

    2014-02-12

    Side by side with the great advantages of plasmonics in nanoscale light confinement, the inevitable ohmic loss results in significant joule heating in plasmonic devices. Therefore, understanding optical-induced heat generation and heat transport in integrated on-chip plasmonic devices is of major importance. Specifically, there is a need for in situ visualization of electromagnetic induced thermal energy distribution with high spatial resolution. This paper studies the heat distribution in silicon plasmonic nanotips. Light is coupled to the plasmonic nanotips from a silicon nanowaveguide that is integrated with the tip on chip. Heat is generated by light absorption in the metal surrounding the silicon nanotip. The steady-state thermal distribution is studied numerically and measured experimentally using the approach of scanning thermal microscopy. It is shown that following the nanoscale heat generation by a 10 mW light source within a silicon photonic waveguide the temperature in the region of the nanotip is increased by ∼ 15 °C compared with the ambient temperature. Furthermore, we also perform a numerical study of the dynamics of the heat transport. Given the nanoscale dimensions of the structure, significant heating is expected to occur within the time frame of picoseconds. The capability of measuring temperature distribution of plasmonic structures at the nanoscale is shown to be a powerful tool and may be used in future applications related to thermal plasmonic applications such as control heating of liquids, thermal photovoltaic, nanochemistry, medicine, heat-assisted magnetic memories, and nanolithography. PMID:24422562

  18. TIME-INTERVAL MEASURING DEVICE

    DOEpatents

    Gross, J.E.

    1958-04-15

    An electronic device for measuring the time interval between two control pulses is presented. The device incorporates part of a previous approach for time measurement, in that pulses from a constant-frequency oscillator are counted during the interval between the control pulses. To reduce the possible error in counting caused by the operation of the counter gating circuit at various points in the pulse cycle, the described device provides means for successively delaying the pulses for a fraction of the pulse period so that a final delay of one period is obtained and means for counting the pulses before and after each stage of delay during the time interval whereby a plurality of totals is obtained which may be averaged and multplied by the pulse period to obtain an accurate time- Interval measurement.

  19. Beta ray flux measuring device

    DOEpatents

    Impink, Jr., Albert J.; Goldstein, Norman P.

    1990-01-01

    A beta ray flux measuring device in an activated member in-core instrumentation system for pressurized water reactors. The device includes collector rings positioned about an axis in the reactor's pressure boundary. Activated members such as hydroballs are positioned within respective ones of the collector rings. A response characteristic such as the current from or charge on a collector ring indicates the beta ray flux from the corresponding hydroball and is therefore a measure of the relative nuclear power level in the region of the reactor core corresponding to the specific exposed hydroball within the collector ring.

  20. New diesel injection nozzle flow measuring device

    NASA Astrophysics Data System (ADS)

    Marčič, Milan

    2000-04-01

    A new measuring device has been developed for diesel injection nozzle testing, allowing measuring of the steady flow through injection nozzle and the injection rate. It can be best applied for measuring the low and high injection rates of the pintle and single hole nozzle. In steady flow measuring the fuel pressure at the inlet of the injection nozzle is 400 bar. The sensor of the measuring device measures the fuel charge, resulting from fuel rubbing in the fuel injection system, as well as from the temperature gradient in the sensor electrode. The electric charge is led to the charge amplifier, where it is converted into electric current and amplified. The amplifier can be used also to measure the mean injection rate value.

  1. Research on 3-D device for infrared temperature detection

    NASA Astrophysics Data System (ADS)

    Chen, Shuxin; Jiang, Shaohua; Hou, Jie; Chen, Shuwang

    2007-12-01

    In a certain field, it is important to measure temperature information in variable direction at the same time. However, there are few instruments to accomplish the function now. To implement the measure in 3 dimensions, an experimental table of temperature detection by infrared is designed. It is the integration of detection, control and monitor. The infrared device in the table can detect and measure temperature in real time, and the three dimension electric motional device can adjust the detection distance by the user. The mechanical bar for displacement is controlled by a circuit with the control button. The infrared temperature sensor is fixed on the bar, so it can move along with the bar controlled by the circuit. The method of temperature detection is untouched, so it can detect small object and its tiny variable temperature, which can not be detected by the thermometer or the electronic temperature sensor. In terms of the 3-D parallel motion control, the device can implement temperature measurement in variable directions. According to the results of the temperature values, the 3-D temperature distributed curve can be described. By using of the detection device, temperature of some special objects can be detected, such as the live anatomical animal, small sensor, nondestructive object, and so on.

  2. Thermophotovoltaic Cell Temperature Measurement Issues

    SciTech Connect

    Emery, K.; Moriarty, T.

    1998-11-13

    The power produced by photovoltaic devices changes with temperature, ranging from 0.1% to nearly 1% per degrees Celsius depending on the structure. The temperature across the surface of TPV cells will vary depending on the amount of absorbed power. Thus the temperature over a region of a wafer where there is no cell will be different from a region of the wafer containing a cell with an antireflection coating and back surface reflector. Vacuum hold-downs or back surface probes may result in local hot spots. Bonding a cell to a heat sink may not be practical in a research environment, and a temperature gradient between the heat sink and space-charge region will still exist. Procedures for determining the current versus voltage (I-V) characteristics at a given temperature are discussed. For continuous illumination measurement systems, the temperature of the heat sink or backside of the device can be directly measured. The temperature can also be inferred by placing the sample at a known temperature in the dark, and monitoring the open-circuit voltage (Voc) as a high-speed shutter is opened. The maximum Voc from this method corresponds to the temperature in the dark and the plate temperature can then be lowered until this maximum Voc is reached. The temperature can also be indirectly determined from the dark I-V characteristics, assuming negligible series resistance in the ideal case that the voltage in the dark at a given current and temperature corresponds to the Voc and short circuit voltage (Isc) at that temperature. A high-intensity flash simulator will produce negligible cell heating during the flash and therefore the cell temperature may be easily set before the flash.

  3. Device for measuring soft tissue interface pressures.

    PubMed

    Barbenel, J C; Sockalingham, S

    1990-11-01

    This paper describes the construction and performance of a simple pressure sensing device with a continuous electrical output. It was constructed utilizing a commercially available transducer, an electropneumatic sensor capsule and a 1 m long tube. The transducer used was a piezo-resistive pressure-sensitive device producing an output voltage proportional to the applied pressure. This low cost, high accuracy device is temperature compensated and shows good linearity and negligible hysteresis. The sensor cell has a good thickness-to-diameter ratio and is sufficiently flexible to conform to most contours of the body. The tubing that conveys the pressure transmitting fluid also serves as a means of keeping the transducer distant from the measuring site. The device showed a highly satisfactory performance under laboratory conditions and has proven to be robust and reliable when used for clinical studies. PMID:2266748

  4. Measuring Temperature Reading

    NASA Technical Reports Server (NTRS)

    2003-01-01

    There are two requirements for taking a measurement of something. The first is a tool for taking a measurement. The second is scale for making sense of the numbers of the measurement. For example, a ruler is often used to measure short lengths. It is the tool for measurement. On the ruler are one or more number scales with equally spaced numbers. These numbers can be compared with numbers from any other ruler that is accurately set to the same scale. Measuring length is far simpler than measuring temperature. While there is evidence of tools for measuring length at various times in human history, tools and scales for measuring temperature do not appear until more recent human history. Early thermometers, called thermoscopes, first appear in the 1500's. They were crude instruments that were not at all accurate. Most did not even have a number scale associated with them. This made them useless for most practical purposes. Gabriel Fahrenheit created the first accurate thermometer in 1714, and the Fahrenheit temperature scale followed it in 1724. The thermometer s accuracy was based on its use of mercury, a silver colored substance that remains liquid over a wide range of temperatures but expands or contracts in a standard, predictable way with changes in temperature. To set the scale, Fahrenheit created the coldest temperature that he could. He mixed equal parts of ice, water, and salt, and then used this as the zero point, 0 degrees, of his scale. He intended to make 30 degrees the freezing point of water and 90 degrees the temperature of the human body, but he had to later revise these temperatures to be 32 degrees and 96 degrees. In the final version of the scale, the temperature of the human body became 98.6 degrees. 19th century thermoscope

  5. High-temperature superconducting quantum interference device with cooled LC resonant circuit for measuring alternating magnetic fields with improved signal-to-noise ratio

    SciTech Connect

    Qiu Longqing; Zhang Yi; Krause, Hans-Joachim; Braginski, Alex I.; Usoskin, Alexander

    2007-05-15

    Certain applications of superconducting quantum interference devices (SQUIDs) require a magnetic field measurement only in a very narrow frequency range. In order to selectively improve the alternating-current (ac) magnetic field sensitivity of a high-temperature superconductor SQUID for a distinct frequency, a single-coil LC resonant circuit has been used. Within the liquid nitrogen bath, the coil surrounds the SQUID and couples to it inductively. Copper coils with different numbers of windings were used to cover the frequency range from <1 to nearly 100 kHz. A superconducting coil made of YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} tape conductor was also tested. With the LC circuit, the signal-to-noise ratio of measurements could be improved typically by one order of magnitude or more in a narrow frequency band around the resonance frequency exceeding a few kilohertz. The best attained equivalent magnetic field resolution was 2.5 fT/{radical}Hz at 88 kHz. The experimental findings are in good agreement with mathematical analysis of the circuit with copper coil.

  6. High temperature aqueous stress corrosion testing device

    DOEpatents

    Bornstein, A.N.; Indig, M.E.

    1975-12-01

    A description is given of a device for stressing tensile samples contained within a high temperature, high pressure aqueous environment, thereby permitting determination of stress corrosion susceptibility of materials in a simple way. The stressing device couples an external piston to an internal tensile sample via a pull rod, with stresses being applied to the sample by pressurizing the piston. The device contains a fitting/seal arrangement including Teflon and weld seals which allow sealing of the internal system pressure and the external piston pressure. The fitting/seal arrangement allows free movement of the pull rod and the piston.

  7. Noncontact Temperature Measurement

    NASA Technical Reports Server (NTRS)

    Lee, Mark C. (Editor)

    1988-01-01

    Noncontact temperature measurement has been identified as one of the eight advanced technology development (ATD) areas to support the effort of the Microgravity Science and Applications Division in developing six Space Station flight experiment facilities. This two-day workshop was an opportunity for all six disciplines to present their requirements on noncontact temperature measurement and to discuss state-of-the-art developments. Multi-color pyrometry, laser pyrometry and radiometric imaging techniques are addressed.

  8. Nuclear Temperature Measurements

    NASA Astrophysics Data System (ADS)

    Xu, Hong Ming

    1996-10-01

    A weak variation of temperature with excitation energy is one of the expected consequences of a low density phase transition in nuclear matter. Evidence for such behavior was first obtained via measurements of the maximum or ``limiting temperatures'' achieved in incomplete fusion measurements. Recent investigations of a ``caloric curve" of nuclear matter, via exclusive measurements of multifragmentation disintegrations, confirm these earlier observations and heighten interest in these observations as possible signatures of a phase transition. This talk will introduce and compare the various experimental methods that have been used to extract these temperatures. It will introduce theoretical models which predict constant or weakly varying temperatures and discuss whether they imply a low density phase transition.

  9. Versatile low-temperature atomic force microscope with in situ piezomotor controls, charge-coupled device vision, and tip-gated transport measurement capability

    NASA Astrophysics Data System (ADS)

    Lee, Jhinhwan; Chae, Jungseok; Kim, Chung Koo; Kim, Hyunjin; Oh, Seungeun; Kuk, Young

    2005-09-01

    A versatile cryogenic (5 K) ultrahigh-vacuum (UHV) atomic force microscope (AFM) with tip-gated transport measurement capability has been developed. Using high-resolution (<1.5μm) plan-view charge-coupled device (CCD) optics, and three planar piezomotors we achieved visually guided in situ alignments of a sample position with respect to the AFM tip, and the laser beam position with respect to the cantilever and the quadrant photodiode. We made optical fiber feedthroughs and a laser lens assembly to bring external laser light and CCD illuminating light onto the cantilever and the sample. A sample holder with an embedded temperature sensor and eight transport electrodes is detachably mounted on a piezotube scanner. The generic cantilever mount can be easily replaced with a tuning-fork mount or a piezoresistive cantilever mount for experiments where stray laser light should be avoided. To our knowledge, this is the first Dewar-immersion type cryogenic AFM with laser beam deflection sensing capability and high-resolution plan-view CCD optics.

  10. Nonvisual Adaptive Devices for Measuring Insulin.

    ERIC Educational Resources Information Center

    Cleary, M. E.; Hamilton, J. E.

    1993-01-01

    This article presents information on nonvisual adaptive devices for measuring insulin and offers some suggestions for rehabilitation professionals who instruct and supervise clients with diabetes and visual impairment in the use of these devices. (Author)

  11. Indirect Blood Pressure Measuring Device

    NASA Technical Reports Server (NTRS)

    Hum, L.; Cole, C. E.

    1973-01-01

    Design and performance of a blood pressure recording device for pediatric use are reported. A strain gage transducer with a copper-beryllium strip as force sensing element is used to monitor skin movements and to convert them into electrical signals proportional to those displacements. Experimental tests with this device in recording of force developed above the left femoral artery of a dog accurately produced a blood pressure curve.

  12. PV based solar insolation measuring device

    NASA Astrophysics Data System (ADS)

    Mahinder Singh, Balbir Singh; Zainal, Nor Athirah; Nor, Nursyarizal Mohd

    2012-09-01

    The aim of the project is to develop mathematical model of the relationship between incoming solar insolation and PV module output current and temperature. Solar insolation need to be measured in order to optimize the design of solar electricity generating system (SEGS). PV module sizing, battery sizing and also planning of auxiliary back up in order to avoid failure of electricity supply to the load is essential. A proper design of SEGS will lead to reliable and sustainable system to power electrical load. Output power of PV module fluctuates due to nature of solar insolation which varies according to time of the day and also the weather condition. The relationship between input power density of solar insolation and PV module output current and temperature is determined based on experimental design. Solar insolation data is collected by using pyranometer and output PV module current and temperature data are captured using suitable data acquisition system. Through this project, the equation of relationship between solar insolation and output current and temperature PV module is obtained and the equation is used to develop solar insolation measuring device and data logging system.

  13. Vacuum photoelectronic devices for measuring pulsed radiation

    NASA Astrophysics Data System (ADS)

    Berkovskii, A. G.; Veretennikov, A. I.; Kozlov, O. V.

    The design of these devices is discussed, and data are presented on their characteristics. These vacuum photoelectronic devices comprise photocells, photomultipliers, and electrooptical transducers designed for measuring pulsed radiation of nanosecond and subnanosecond duration. The fluctuation characteristics of the devices are examined, and their use in detectors of pulsed luminous and ionizing radiation is considered.

  14. A Portable, High Resolution, Surface Measurement Device

    NASA Technical Reports Server (NTRS)

    Ihlefeld, Curtis M.; Burns, Bradley M.; Youngquist, Robert C.

    2012-01-01

    A high resolution, portable, surface measurement device has been demonstrated to provide micron-resolution topographical plots. This device was specifically developed to allow in-situ measurements of defects on the Space Shuttle Orbiter windows, but is versatile enough to be used on a wide variety of surfaces. This paper discusses the choice of an optical sensor and then the decisions required to convert a lab bench optical measurement device into an ergonomic portable system. The necessary trade-offs between performance and portability are presented along with a description of the device developed to measure Orbiter window defects.

  15. Device Measures Angle Of Deployment

    NASA Technical Reports Server (NTRS)

    Jermakian, Joel B.

    1991-01-01

    Simple electromechanical device indicates angular position of unfolding panel during and after deployment. Resistance of potentiometer gradually increases as unfolding of solar panel about hinge moves wiper of potentiometer. At full deployment, panel pushes and opens normally closed switch. Designed for use on panel of solar photovoltaic cells in spacecraft, modified for use in other, similar position-indicating applications.

  16. Temperature and stiffness correction of SAW devices for wireless strain sensing

    NASA Astrophysics Data System (ADS)

    Oppenheim, Irving J.; Carey, Nicola S.; Chin, T.-L.; Zheng, Peng; Greve, David W.

    2011-04-01

    Surface acoustic wave (SAW) devices are solid-state components in which a wave propagates along the surface of a piezoelectric material. Changes in strain or temperature cause shifts in the acoustic wave speed and/or the path length, enabling SAW devices to act as sensors. We present experimental studies on lithium niobate SAW devices acting as passively-powered devices. Sensitivity, reproducibility, and linearity are excellent when measuring strain at constant temperature, but the devices are also sensitive to temperature changes. We show experimental results of strain measurement incorporating temperature compensation.

  17. Method and device for measuring fluid flow

    DOEpatents

    Atherton, Richard; Marinkovich, Phillip S.; Spadaro, Peter R.; Stout, J. Wilson

    1976-11-23

    This invention is a fluid flow measuring device for determining the coolant flow at the entrance to a specific nuclear reactor fuel region. The device comprises a plurality of venturis having the upstream inlet and throat pressure of each respectively manifolded together to provide one static pressure signal for each region monitored. The device provides accurate flow measurement with low pressure losses and uniform entrance and discharge flow distribution.

  18. Characteristics of III-V Semiconductor Devices at High Temperature

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Young, Paul G.; Taub, Susan R.; Alterovitz, Samuel A.

    1994-01-01

    This paper presents the development of III-V based pseudomorphic high electron mobility transistors (PHEMT's) designed to operate over the temperature range 77 to 473 K (-196 to 200 C). These devices have a pseudomorphic undoped InGaAs channel that is sandwiched between an AlGaAs spacer and a buffer layer; gate widths of 200, 400, 1600, and 3200 micrometers; and a gate length of 2 micrometers. Measurements were performed at both room temperature and 473 K (200 C) and show that the drain current decreases by 30 percent and the gate current increases to about 9 microns A (at a reverse bias of -1.5 V) at the higher temperature. These devices have a maximum DC power dissipation of about 4.5 W and a breakdown voltage of about 16 V.

  19. High temperature solder device for flat cables

    NASA Technical Reports Server (NTRS)

    Haehner, Carl L. (Inventor)

    1992-01-01

    A high temperature solder device for flat cables includes a microwelder, an anvil which acts as a heat sink and supports a flexible flat ribbon cable that is to be connected to a multiple pin connector. The microwelder is made from a modified commercially available resistance welding machine such as the Split Tip Electrode microwelder by Weltek, which consists of two separate electrode halves with a removable dielectric spacer in between. The microwelder is not used to weld the items together, but to provide a controlled compressive force on, and energy pulse to, a solder preform placed between a pin of the connector and a conductor of the flexible flat ribbon cable. When the microwelder is operated, an electric pulse will flow down one electrode, through the solder preform and back up the other electrode. This pulse of electrical energy will cause the solder preform to heat up and melt, joining the pin and conductor.

  20. [Development and application of new temperature control moxibustion device].

    PubMed

    Yang, Liu; Jiang, Hao; Wang, Lifang; Ma, Haili

    2015-07-01

    To develop a new temperature control moxibustion device so as to improve the clinical therapeutic effect of moxibustion. According to the thermal effect of moxibustion, with the designs such as the modern electronic equipment (temperature control system) adopted and in combination of smoke filtration device and oxygen mask device, a new temperature control moxibustion device was developed. The new temperature control moxibustion device may achieve the automatic regulation of temperature and distance and avoid the pollution and irritation of smoke and flavor, etc. As a result, the traditional moxibustion therapy can better play its efficacy and display its safety and convenience in practice. PMID:26521601

  1. Measuring High Gas Temperatures

    NASA Technical Reports Server (NTRS)

    Will, H. A.

    1984-01-01

    Program provides extrapolation calculations of high gas temperature based on theoretical heating curve of pulsed thermocouples. Program requires as input mach number, wall temperature, and total pressure in addition to thermocouple data. Tests indicate program extrapolates reasonably-accurate gas temperatures from pulsed-thermocouple data.

  2. Device and method for detecting sulfur dioxide at high temperatures

    DOEpatents

    West, David L. (Oak Ridge, TN); Montgomery, Frederick C. (Oak Ridge, TN); Armstrong, Timothy R. (Clinton, TN)

    2011-11-01

    The present invention relates to a method for selectively detecting and/or measuring gaseous SO.sub.2 at a temperature of at least 500.degree. C., the method involving: (i) providing a SO.sub.2-detecting device including an oxygen ion-conducting substrate having on its surface at least three electrodes comprising a first, second, and third electrode; (ii) driving a starting current of specified magnitude and temporal variation between the first and second electrodes; (iii) contacting the SO.sub.2-detecting device with the SO.sub.2-containing sample while maintaining the magnitude and any temporal variation of the starting current, wherein said SO.sub.2-containing sample causes a change in the electrical conductance of said device; and (iv) detecting the change in electrical conductance of the device based on measuring an electrical property related to or indicative of the conductance of the device between the first and third electrodes, or between the second and third electrodes, and detecting SO.sub.2 in the SO.sub.2-containing sample based on the measured change in electrical conductance.

  3. Nanoscopic voltage distribution of operating cascade laser devices in cryogenic temperature.

    PubMed

    Dhar, R S; Ban, D

    2016-06-01

    A nanoscopic exploratory measurement technique to measure voltage distribution across an operating semiconductor device in cryogenic temperature has been developed and established. The cross-section surface of the terahertz (THz) quantum cascade laser (QCL) has been measured that resolves the voltage distribution at nanometer scales. The electric field dissemination across the active region of the device has been attained under the device's lasing conditions at cryogenic temperature of 77 K. PMID:27197086

  4. Simple device measures solar radiation

    NASA Technical Reports Server (NTRS)

    Humphries, W. R.

    1977-01-01

    Simple inexpensive thermometer, insolated from surroundings by transparent glass or plastic encasement, measures intensities of solar radiation, or radiation from other sources such as furnaces or ovens. Unit can be further modified to accomplish readings from remote locations.

  5. Device measures fluid drag on test vehicles

    NASA Technical Reports Server (NTRS)

    Freeman, R.; Judd, J. H.; Leiss, A.

    1965-01-01

    Electromechanical drag balance device measures the aerodynamic drag force acting on a vehicle as it moves through the atmosphere and telemeters the data to a remote receiving station. This device is also used for testing the hydrodynamic drag characteristics of underwater vehicles.

  6. Measuring Soil Temperature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil temperature is a critical factor in the germination and early growth of many crops including corn, cotton, small grains, and vegetable crops. Soil temperature strongly influences the rate of critical biological reactions in the soil such as the rates of nitrification and microbial respiration. ...

  7. Line spectrum and ion temperature measurements from tungsten ions at low ionization stages in large helical device based on vacuum ultraviolet spectroscopy in wavelength range of 500–2200 Å

    SciTech Connect

    Oishi, T. Morita, S.; Goto, M.; Huang, X. L.; Zhang, H. M.

    2014-11-15

    Vacuum ultraviolet spectra of emissions released from tungsten ions at lower ionization stages were measured in the Large Helical Device (LHD) in the wavelength range of 500–2200 Å using a 3 m normal incidence spectrometer. Tungsten ions were distributed in the LHD plasma by injecting a pellet consisting of a small piece of tungsten metal and polyethylene tube. Many lines having different wavelengths from intrinsic impurity ions were observed just after the tungsten pellet injection. Doppler broadening of a tungsten candidate line was successfully measured and the ion temperature was obtained.

  8. Device for measuring the total concentration of oxygen in gases

    DOEpatents

    Isaacs, Hugh S.; Romano, Anthony J.

    1977-01-01

    This invention provides a CO equilibrium in a device for measuring the total concentration of oxygen impurities in a fluid stream. To this end, the CO equilibrium is produced in an electrochemical measuring cell by the interaction of a carbon element in the cell with the chemically combined and uncombined oxygen in the fluid stream at an elevated temperature.

  9. Electrolyte measurement device and measurement procedure

    DOEpatents

    Cooper, Kevin R. (Southern Pines, NC); Scribner, Louie L. (Southern Pines, NC)

    2010-01-26

    A method and apparatus for measuring the through-thickness resistance or conductance of a thin electrolyte is provided. The method and apparatus includes positioning a first source electrode on a first side of an electrolyte to be tested, positioning a second source electrode on a second side of the electrolyte, positioning a first sense electrode on the second side of the electrolyte, and positioning a second sense electrode on the first side of the electrolyte. current is then passed between the first and second source electrodes and the voltage between the first and second sense electrodes is measured.

  10. High temperature adsorption measurements

    SciTech Connect

    Bertani, R.; Parisi, L.; Perini, R.; Tarquini, B.

    1996-12-31

    Adsorption phenomena are a rich and rather new field of study in geothermal research, in particular at very high temperature. ENEL is interested in the exploitation of geothermal regions with super-heated steam, and it is important to understand the behavior of water-rock interaction. We have analyzed in the 170-200{degrees}C temperature range four samples of Monteverdi cuttings; the next experimental effort will be at 220{degrees}C and over in 1996. The first results of the 1995 runs are collected in this paper. We can highlight four main items: (1) At relative pressures over 0.6 the capillarity forces are very important. (2) There is no significant temperature effect. (3) Adsorbed water can be present, and it is able to multiply by a factor of 15 the estimated reserve of super-heated steam only. (4) Pores smaller than 15 {Angstrom} do not contribute to the adsorbed mass.

  11. High temperature adsorption measurements

    SciTech Connect

    Bertani, R.; Parisi, L.; Perini, R.; Tarquini, B.

    1996-01-24

    Adsorption phenomena are a rich and rather new field of study in geothermal research, in particular at very high temperature. ENEL is interested in the exploitation of geothermal regions with superheated steam, and it is important to understand the behavior of water-rock interaction. We have analyzed in the 170-200 °C temperature range four samples of Monteverdi cuttings; the next experimental effort will be at 220 °C and over in 1996. The first results of the 1995 runs are collected in this paper. We can highlight four main items: 1. At relative pressures over 0.6 the capillarity forces are very important. 2. There is no significant temperature effect. 3. Adsorbed water can be present, and it is able to multiply by a factor of 15 the estimated reserve of super-heated steam only. 4. Pores smaller than 15 Å do not contribute to the adsorbed mass.

  12. Going Places No Infrared Temperature Devices Have Gone Before

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Exergen's IRt/c is a self-powered sensor that matches a thermocouple within specified temperature ranges and provides a predictable and repeatable signal outside of this specified range. Possessing an extremely fast time constant, the infrared technology allows users to measure product temperature without touching the product. The IRt/c uses a device called a thermopile to measure temperature and generate current. Traditionally, these devices are not available in a size that would be compatible with the Exergen IRt/c, based on NASA s quarterinch specifications. After going through five circuit designs to find a thermopile that would suit the IRt/c design and match the signal needed for output, Exergen maintains that it developed a model that totaled just 20 percent of the volume of the previous smallest detector in the world. Following completion of the project with Glenn, Exergen continued development of the IRt/c for other customers, spinning off a new product line called the micro IRt/c. This latest development has broadened applications for industries that previously could not use infrared thermometers due to size constraints. The first commercial use of the micro IRt/c involved an original equipment manufacturer that makes laminating machinery consisting of heated rollers in very tight spots. Accurate temperature measurement for this application requires close proximity to the heated rollers. With the micro IRt/c s 50-millisecond time constant, the manufacturer is able to gain closer access to the intended temperature targets for exact readings, thereby increasing productivity and staying ahead of competition.In a separate application, the infrared temperature sensor is being utilized for avalanche warnings in Switzerland. The IRt/c is mounted about 5 meters above the ground to measure the snow cover throughout the mountainous regions of the country.

  13. Measuring Temperature: The Thermometer

    ERIC Educational Resources Information Center

    Chamoun, Mirvette

    2005-01-01

    The author discusses the historical development of the thermometer with the view of helping children understand the role that mathematics plays in society. A model thermometer that is divided into three sections, each displaying one of the three temperature scales used today (Fahrenheit, Celsius and Kelvin) is highlighted as a project to allow…

  14. Wireless device for monitoring the temperature - moisture regime in situ

    NASA Astrophysics Data System (ADS)

    Hudec, Ján; Štofanik, Vladimír; Vretenár, Viliam; Kubičár, Ľudovít

    2014-05-01

    This contribution presents the wireless device for monitoring the temperature - moisture regime in situ. For the monitoring so called moisture sensor is used. Principle of moisture sensor is based on measuring the thermal conductivity. Moisture sensor has cylindrical shape with about 20 mm diameter and 20 mm length. It is made of porous material identical to the monitored object. The thermal conductivity is measured by hot-ball method. Hot-ball method is patented invention of the Institute of Physic SAS. It utilizes a small ball, diameter up to 2 mm, in which sensing elements are incorporated. The ball produces heat spreading into surrounding material, in our case into body of the moisture sensor. Temperature of the ball is measured simultaneously. Then change of the temperature, in steady state, is inversely proportional to the thermal conductivity. Such moisture sensor is inserted into monitored wall. Thermophysical properties of porous material are function of moisture. Moisture sensors are calibrated for dry and water saturated state. Whole the system is primarily intended to do long-term monitoring. Design of a new electronic device was needed for this innovative method. It covers all needed operations for measurement. For example energizing hot-ball sensor, measuring its response, storing the measured data and wireless data transmission. The unit is able to set parameters of measurement via wireless access as well. This contribution also includes the description of construction and another features of the wireless measurement system dedicated for this task. Possibilities and functionality of the system is demonstrated by actual monitoring of the tower of St. Martin's Cathedral in Bratislava. Correlations with surrounding meteorological conditions are presented. Some of them can be also measured by our system, right in the monitoring place.

  15. Temperature correction in conductivity measurements

    USGS Publications Warehouse

    Smith, Stanford H.

    1962-01-01

    Electrical conductivity has been widely used in freshwater research but usual methods employed by limnologists for converting measurements to conductance at a given temperature have not given uniformly accurate results. The temperature coefficient used to adjust conductivity of natural waters to a given temperature varies depending on the kinds and concentrations of electrolytes, the temperature at the time of measurement, and the temperature to which measurements are being adjusted. The temperature coefficient was found to differ for various lake and stream waters, and showed seasonal changes. High precision can be obtained only by determining temperature coefficients for each water studied. Mean temperature coefficients are given for various temperature ranges that may be used where less precision is required.

  16. The Evolution of Quantum Measuring Devices

    NASA Astrophysics Data System (ADS)

    Roth, Yehuda

    2014-03-01

    A quantum measuring device is introduced through a projective operator of any complete set of states that span the Hilbert space. Consequently, even a "bizarre" basis such as a basis of states composed of superpositions between location states, is legitimate despite its incomprehensible interpretation of a particle located in some places simultaneously. The collapse scenario that lies in the essence of any quantum measuring device, suggests that measurement is actually an interpretation process that translate reality into the predefined concepts determined by the particular selection of the basis of states. The very fact that there are bases that contradict "common sense" suggests that our brain by serving as a measuring and interpreting "device", selects only unique measuring processes. We suggest a procedure of nonlinear recursive maps that dominant an evolution of states toward few selected bases of states.

  17. Air temperature measurement

    NASA Technical Reports Server (NTRS)

    Ballard, H. N.

    1978-01-01

    A coupled pair of identical film-mounted spherical bead thermistors serve as air temperature sensors aboard both Balloons 8-a and 8-b. The 8-a payload was reeled downward approximately 200 m beneath the balloon. The thermistor mounts were arranged in such a way so that when solar radiation was incident in a direction which was perpendicular to one film, then the direction of the incident solar ray was parallel to the second film. As the payload rotated during the flight (its rotation rate relative to the earth's magnetic field was sensed by a magnetometer), the temperature of each sensor varied depending on the orientation of the film surfaces with respect to the sun.

  18. Calibration of imaging luminance measuring devices (ILMD)

    NASA Astrophysics Data System (ADS)

    Liu, Liying; Zheng, Feng; Zhu, Lingxi; Li, Ye; Huan, Kewei; Shi, Xiaoguang

    2015-11-01

    A method of calibration of imaging luminance measuring devices has been studied. By the device-independent color space transformation, the color image by digital camera could be converted to the CIE's absolute color space lab. Then, the calibration model is fitted between ln(L/t) and luminance. At last, luminance image is obtained and the dynamic range of luminance image could be adjusted by shutter speed.

  19. 21 CFR 882.1560 - Skin potential measurement device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Skin potential measurement device. 882.1560... (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Diagnostic Devices § 882.1560 Skin potential measurement device. (a) Identification. A skin potential measurement device is a general diagnostic...

  20. 21 CFR 886.4280 - Intraocular pressure measuring device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Intraocular pressure measuring device. 886.4280... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4280 Intraocular pressure measuring device. (a) Identification. An intraocular pressure measuring device is a manual or AC-powered...

  1. 21 CFR 886.4280 - Intraocular pressure measuring device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Intraocular pressure measuring device. 886.4280... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4280 Intraocular pressure measuring device. (a) Identification. An intraocular pressure measuring device is a manual or AC-powered...

  2. 21 CFR 886.4280 - Intraocular pressure measuring device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Intraocular pressure measuring device. 886.4280... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4280 Intraocular pressure measuring device. (a) Identification. An intraocular pressure measuring device is a manual or AC-powered...

  3. 21 CFR 886.4280 - Intraocular pressure measuring device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Intraocular pressure measuring device. 886.4280... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4280 Intraocular pressure measuring device. (a) Identification. An intraocular pressure measuring device is a manual or AC-powered...

  4. Temperature Measurements in the Magnetic Measurement Facility

    SciTech Connect

    Wolf, Zachary

    2010-12-13

    Several key LCLS undulator parameter values depend strongly on temperature primarily because of the permanent magnet material the undulators are constructed with. The undulators will be tuned to have specific parameter values in the Magnetic Measurement Facility (MMF). Consequently, it is necessary for the temperature of the MMF to remain fairly constant. Requirements on undulator temperature have been established. When in use, the undulator temperature will be in the range 20.0 {+-} 0.2 C. In the MMF, the undulator tuning will be done at 20.0 {+-} 0.1 C. For special studies, the MMF temperature set point can be changed to a value between 18 C and 23 C with stability of {+-}0.1 C. In order to ensure that the MMF temperature requirements are met, the MMF must have a system to measure temperatures. The accuracy of the MMF temperature measurement system must be better than the {+-}0.1 C undulator tuning temperature tolerance, and is taken to be {+-}0.01 C. The temperature measurement system for the MMF is under construction. It is similar to a prototype system we built two years ago in the Sector 10 alignment lab at SLAC. At that time, our goal was to measure the lab temperature to {+-}0.1 C. The system has worked well for two years and has maintained its accuracy. For the MMF system, we propose better sensors and a more extensive calibration program to achieve the factor of 10 increase in accuracy. In this note we describe the measurement system under construction. We motivate our choice of system components and give an overview of the system. Most of the software for the system has been written and will be discussed. We discuss error sources in temperature measurements and show how these errors have been dealt with. The calibration system is described in detail. All the LCLS undulators must be tuned in the Magnetic Measurement Facility at the same temperature to within {+-}0.1 C. In order to ensure this, we are building a system to measure the temperature of the undulators to {+-}0.01 C. This note describes the temperature measurement system under construction.

  5. High-Sensitivity Temperature Measurement

    ERIC Educational Resources Information Center

    Leadstone, G. S.

    1978-01-01

    Describes a method of measuring small temperature differences that amount to a .01K, using an arrangement of a copper-constantan thermocouple, a microamplifier and a galvanometer, as an indirect way of measuring heat energy. (GA)

  6. An Innovative Flow-Measuring Device: Thermocouple Boundary Layer Rake

    NASA Technical Reports Server (NTRS)

    Hwang, Danny P.; Fralick, Gustave C.; Martin, Lisa C.; Wrbanek, John D.; Blaha, Charles A.

    2001-01-01

    An innovative flow-measuring device, a thermocouple boundary layer rake, was developed. The sensor detects the flow by using a thin-film thermocouple (TC) array to measure the temperature difference across a heater strip. The heater and TC arrays are microfabricated on a constant-thickness quartz strut with low heat conductivity. The device can measure the velocity profile well into the boundary layer, about 65 gm from the surface, which is almost four times closer to the surface than has been possible with the previously used total pressure tube.

  7. Acoustical Measurement Of Furnace Temperatures

    NASA Technical Reports Server (NTRS)

    Parthasarathy, Shakkottai; Venkateshan, Shakkottai P.

    1989-01-01

    Simple probes withstand severe conditions, yet give spatially-resolved temperature readings. Prototype acoustical system developed to measure temperatures from ambient to 1,800 degree F in such structures as large industrial lime kilns and recovery-boiler furnaces. Pulses of sound reflected from obstructions in sensing tube. Speed of sound and temperature in each segment deduced from travel times of pulses.

  8. Electromagnetic pulse-induced current measurement device

    NASA Astrophysics Data System (ADS)

    Gandhi, Om P.; Chen, Jin Y.

    1991-08-01

    To develop safety guidelines for exposure to high fields associated with an electromagnetic pulse (EMP), it is necessary to devise techniques that would measure the peak current induced in the human body. The main focus of this project was to design, fabricate, and test a portable, self-contained stand-on device that would measure and hold the peak current and the integrated change Q. The design specifications of the EMP-Induced Current Measurement Device are as follows: rise time of the current pulse, 5 ns; peak current, 20-600 A; charge Q, 0-20 microcoulombs. The device uses a stand-on parallel-plate bilayer sensor and fast high-frequency circuit that are well-shielded against spurious responses to high incident fields. Since the polarity of the incident peak electric field of the EMP may be either positive or negative, the induced peak current can also be positive or negative. Therefore, the device is designed to respond to either of these polarities and measure and hold both the peak current and the integrated charge which are simultaneously displayed on two separate 3-1/2 digit displays. The prototype device has been preliminarily tested with the EMP's generated at the Air Force Weapons Laboratory (ALECS facility) at Kirtland AFB, New Mexico.

  9. Constant-Frequency Pulsed Phase-Locked-Loop Measuring Device

    NASA Technical Reports Server (NTRS)

    Yost, William T.; Cantrell, John H.; Kushnick, Peter W.

    1992-01-01

    Constant-frequency pulsed phase-locked-loop measuring device is sensitive to small changes in phase velocity and easily automated. Based on use of fixed-frequency oscillator in measuring small changes in ultrasonic phase velocity when sample exposed to such changes in environment as changes in pressure and temperature. Automatically balances electrical phase shifts against acoustical phase shifts to obtain accurate measurements of acoustical phase shifts.

  10. Photothermal pyrometry for temperature measurement

    SciTech Connect

    Chen, G.; Borca-Tasciuc, T.

    1996-12-31

    Noncontact precision temperature measurement is desirable in many industrial processes. Two major factors limiting the accuracy of temperature measurement by the conventional radiation pyrometry are the ambient radiation and the surface emissivity variations. This work explores the potential of photothermal pyrometry for the temperature measurement of different materials. In this method, a laser is employed to create a small periodic temperature perturbation on the sample, which induces a modulation of the thermal emission signal from the sample. Under appropriate conditions, this modulated radiation signal is independent of the ambient radiation and can be utilized to obtain the temperature of the object. A criterion is established that determines the applicability of the photothermal pyrometry technique. Preliminary results are presented for temperature measurement of silicon and aluminum samples in radiation environment, and of an electrically heated metallic fine wire.

  11. Photocurrent measurements of pentacene-based devices

    NASA Astrophysics Data System (ADS)

    Masurkar, Amrita; Kymissis, Ioannis

    2015-09-01

    Photocurrent spectroscopy (PCS) and photocurrent microscopy (PCM) are powerful tools that can probe the underlying mechanisms of charge generation and transport in organic semiconductor devices. There has been significant progress in the use of these techniques, which has yielded a number of insights into the underlying materials and operation of the devices. Despite the potential for PCS and PCM to become standard tools, however, a consensus has not been reached on (1) its uses and (2) the underlying mechanisms which produce the photoresponse. This is particularly true for measurements of pentacene devices, as the energy dynamics of pentacene are complex. Accordingly, here we report the current body of PCS and PCM of pentacene devices, offer interpretations of the data, and discuss which questions remain unanswered. We have divided the reviewed work into four categories based on the goals of the study and the technique used: photocurrent spectroscopy, scanning photocurrent microscopy, mobility, and trap density-of-states.

  12. Experimental measurement-device-independent entanglement detection.

    PubMed

    Nawareg, Mohamed; Muhammad, Sadiq; Amselem, Elias; Bourennane, Mohamed

    2015-01-01

    Entanglement is one of the most puzzling features of quantum theory and of great importance for the new field of quantum information. The determination whether a given state is entangled or not is one of the most challenging open problems of the field. Here we report on the experimental demonstration of measurement-device-independent (MDI) entanglement detection using witness method for general two qubits photon polarization systems. In the MDI settings, there is no requirement to assume perfect implementations or neither to trust the measurement devices. This experimental demonstration can be generalized for the investigation of properties of quantum systems and for the realization of cryptography and communication protocols. PMID:25649664

  13. Experimental Measurement-Device-Independent Entanglement Detection

    NASA Astrophysics Data System (ADS)

    Nawareg, Mohamed; Muhammad, Sadiq; Amselem, Elias; Bourennane, Mohamed

    2015-02-01

    Entanglement is one of the most puzzling features of quantum theory and of great importance for the new field of quantum information. The determination whether a given state is entangled or not is one of the most challenging open problems of the field. Here we report on the experimental demonstration of measurement-device-independent (MDI) entanglement detection using witness method for general two qubits photon polarization systems. In the MDI settings, there is no requirement to assume perfect implementations or neither to trust the measurement devices. This experimental demonstration can be generalized for the investigation of properties of quantum systems and for the realization of cryptography and communication protocols.

  14. Experimental Measurement-Device-Independent Entanglement Detection

    PubMed Central

    Nawareg, Mohamed; Muhammad, Sadiq; Amselem, Elias; Bourennane, Mohamed

    2015-01-01

    Entanglement is one of the most puzzling features of quantum theory and of great importance for the new field of quantum information. The determination whether a given state is entangled or not is one of the most challenging open problems of the field. Here we report on the experimental demonstration of measurement-device-independent (MDI) entanglement detection using witness method for general two qubits photon polarization systems. In the MDI settings, there is no requirement to assume perfect implementations or neither to trust the measurement devices. This experimental demonstration can be generalized for the investigation of properties of quantum systems and for the realization of cryptography and communication protocols. PMID:25649664

  15. Wide temperature range electronic device with lead attachment

    NASA Technical Reports Server (NTRS)

    Farrell, R. (Inventor)

    1973-01-01

    A electronic device including lead attachment structure which permits operation of the devices over a wide temperature range is reported. The device comprises a core conductor having a thin coating of metal thereon whereby only a limited amount of coating material is available to form an alloy which bonds the core conductor to the device electrode, the electrode composition thus being affected only in the region adjacent to the lead.

  16. Presentation of a new BRDF measurement device

    NASA Astrophysics Data System (ADS)

    Serrot, Gerard; Bodilis, Madeleine; Briottet, Xavier; Cosnefroy, Helene

    1998-12-01

    The bi-directional reflectance distribution function (BRDF) plays a major role to evaluate or analyze signals reflected by Earth in the solar spectrum. A BRDF measurement device that covers a large spectral and directional domain was recently developed by ONERA/DOTA. It was designed to allow both laboratory and outside measurements. Its main characteristics are a spectral domain: 0.42-0.95 micrometers ; a geometrical domain: 0-60 degrees for zenith angle, 0-180 degrees for azimuth; a maximum target size for nadir measurements: 22 cm. For a given zenith angle of the source, the BRDF device needs about seven minutes to take measurements for a viewing zenith angle varying from 0-60 degrees and relative azimuth angle varying from 0-180 degrees. The performances, imperfections and properties of each component of the measurement chain are studied. A part of the work was devoted to characterize precisely the source, and particularly the spatial variability of the irradiance at the target level, the temporal stability and the spectral profile of the lamp. Some of these imperfections are modeled and taken into account in corrections of BRDF measurements. Concerning the sensor, a calibration in wavelength was done. Measurements of bi- directional reflectance of which is well known. A software was developed to convert all the raw data acquired automatically into BRDF values. To illustrate measurements taken by this device, some results are also presented here. They are taken over sand and short grass, for different wavelengths and geometrical conditions.

  17. Measurement-device-independent quantum key distribution.

    PubMed

    Lo, Hoi-Kwong; Curty, Marcos; Qi, Bing

    2012-03-30

    How to remove detector side channel attacks has been a notoriously hard problem in quantum cryptography. Here, we propose a simple solution to this problem--measurement-device-independent quantum key distribution (QKD). It not only removes all detector side channels, but also doubles the secure distance with conventional lasers. Our proposal can be implemented with standard optical components with low detection efficiency and highly lossy channels. In contrast to the previous solution of full device independent QKD, the realization of our idea does not require detectors of near unity detection efficiency in combination with a qubit amplifier (based on teleportation) or a quantum nondemolition measurement of the number of photons in a pulse. Furthermore, its key generation rate is many orders of magnitude higher than that based on full device independent QKD. The results show that long-distance quantum cryptography over say 200 km will remain secure even with seriously flawed detectors. PMID:22540686

  18. Noncontact true temperature measurement, 2

    NASA Technical Reports Server (NTRS)

    Lee, Mark C.; Allen, James L.

    1988-01-01

    A laser pyrometer was developed for acquiring the true temperature of a levitated sample. The reflectivity is measured by first expanding the laser beam to cover the entire cross-sectional surface of the diffuse target. The reflectivity calibration of this system is determined from the surface emissivity of a target with a blackbody cavity. The emissivity of the real target can then be calculated. The overall system constant is obtained by passively measuring the radiance of the blackbody cavity (emissivity = 1.0) at a known, arbitrary temperature. Since the photosensor used is highly linear over the entire operating temperature range, the true temperature of the target can then be computed. The latest results available from this on-going research indicate that true temperatures thus obtained are in very good quantitative agreement with thermocouple measured temperatures.

  19. Measuring ionizing radiation with a mobile device

    NASA Astrophysics Data System (ADS)

    Michelsburg, Matthias; Fehrenbach, Thomas; Puente León, Fernando

    2012-02-01

    In cases of nuclear disasters it is desirable to know one's personal exposure to radioactivity and the related health risk. Usually, Geiger-Mueller tubes are used to assess the situation. Equipping everyone with such a device in a short period of time is very expensive. We propose a method to detect ionizing radiation using the integrated camera of a mobile consumer device, e.g., a cell phone. In emergency cases, millions of existing mobile devices could then be used to monitor the exposure of its owners. In combination with internet access and GPS, measured data can be collected by a central server to get an overview of the situation. During a measurement, the CMOS sensor of a mobile device is shielded from surrounding light by an attachment in front of the lens or an internal shutter. The high-energy radiation produces free electrons on the sensor chip resulting in an image signal. By image analysis by means of the mobile device, signal components due to incident ionizing radiation are separated from the sensor noise. With radioactive sources present significant increases in detected pixels can be seen. Furthermore, the cell phone application can make a preliminary estimate on the collected dose of an individual and the associated health risks.

  20. Coherence measurement with digital micromirror device.

    PubMed

    Partanen, Henri; Turunen, Jari; Tervo, Jani

    2014-02-15

    We measure the complex-valued spatial coherence function of a multimode broad-area laser diode using Young's classical double slit experiment realized with a digital micromirror device. We use this data to construct the coherent modes of the beam and to simulate its propagation before and after the measurement plane. When comparing the results to directly measured intensity profiles, we find excellent correspondence to the extent that even small details of the beam can be predicted. We also consider the number of measurement points required to model the beam with sufficient accuracy. PMID:24562271

  1. Wireless sensor for temperature and humidity measurement

    NASA Astrophysics Data System (ADS)

    Drumea, Andrei; Svasta, Paul

    2010-11-01

    Temperature and humidity sensors have a broad range of applications, from heating and ventilation of houses to controlled drying of fruits, vegetables or meat in food industry. Modern sensors are integrated devices, usually MEMS, factory-calibrated and with digital output of measured parameters. They can have power down modes for reduced energy consumption. Such an integrated device allows the implementation of a battery powered wireless sensor when coupled with a low power microcontroller and a radio subsystem. A radio sensor can work independently or together with others in a radio network. Presented paper focuses mainly on measurement and construction aspects of sensors for temperature and humidity designed and implemented by authors; network aspects (communication between two or more sensors) are not analyzed.

  2. An evaluation of strain measuring devices for ceramic composites

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, John Z.; Bartolotta, Paul A.

    1991-01-01

    A series of tensile tests was conducted on SiC/reaction bonded silicon nitrides (RBSN) composites using different methods of strain measurement. The tests were used to find the optimum strain sensing device for use with continuous fiber reinforced ceramic matrix composites in ambient and high temperature environments. Bonded resistance gages were found to offer excellent performance for room temperature tests. The clip-on gage offers the same performance, but less time is required for mounting it to the specimen. Low contact force extensometers track the strain with acceptable results at high specimen temperatures. Silicon carbide rods with knife edges are preferred. The edges must be kept sharp. The strain measuring devices should be mounted on the flat side of the specimen. This is in contrast to mounting on the rough thickness side.

  3. An evaluation of strain measuring devices for ceramic composites

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, John Z.; Bartolotta, Paul A.

    1992-01-01

    A series of tensile tests were conducted on SiC/RBSN composites using different methods of strain measurement. The tests were used to find the optimum strain sensing device for use with continuous fiber reinforced ceramic matrix composites in ambient and high temperature environments. Bonded resistance strain gages were found to offer excellent performance for room temperature tests. The clip-on gage offers the same performance but significantly less time is required for mounting it to the specimen. Low contact force extensometers track the strain with acceptable results at high specimen temperatures. Silicon carbide rods with knife edges are preferred. The edges must be kept sharp. The strain measuring devices should be mounted on the flat side of the specimen. This is in contrast to mounting on the rough thickness side.

  4. Enhanced Magnetostrictively Transduced SAW Devices - Measurements & Applications

    NASA Astrophysics Data System (ADS)

    Woo, Noble C.

    2005-03-01

    Surface acoustic wave (SAW) transducers can be made with magnetic materials using magnetostriction as a means of electromechanical coupling. Unlike conventional piezoelectrically transduced SAW devices, the magnetically transduced SAWs do not require an exotic single-crystal substrate or high temperature processing, and therefore may be easily integrated into Si-based integrated circuits. These devices have many potential applications, biosensors being one of the most promising. When the substrate between a transmitter and a detector transducer is functionalized with specific bio-receptors, a binding event will affect propagation of the SAW wave that can be detected with simple electronics. In previous MTSAW devices, the magnetomechanical coupling was found to be poor, resulting in insufficient signal amplitude. To obtain better performance, we are studying the use of alternative magnetostrictive materials including an amorphous CoFeTaZr alloy, CoNbZr, and compositions in the Terfernol family (TbFe2, etc.). We are using combinatorial materials science (continuous composition spread approach) to identify optimum alloy compositions. The devices are also being redesigned to yield better performance.

  5. Integrated Emissivity And Temperature Measurement

    DOEpatents

    Poulsen, Peter

    2005-11-08

    A multi-channel spectrometer and a light source are used to measure both the emitted and the reflected light from a surface which is at an elevated temperature relative to its environment. In a first method, the temperature of the surface and emissivity in each wavelength is calculated from a knowledge of the spectrum and the measurement of the incident and reflected light. In the second method, the reflected light is measured from a reference surface having a known reflectivity and the same geometry as the surface of interest and the emitted and the reflected light are measured for the surface of interest. These measurements permit the computation of the emissivity in each channel of the spectrometer and the temperature of the surface of interest.

  6. Containerless high temperature property measurements

    NASA Technical Reports Server (NTRS)

    Nordine, Paul C.; Weber, J. K. Richard; Krishnan, Shankar; Anderson, Collin D.

    1991-01-01

    Containerless processing in the low gravity environment of space provides the opportunity to increase the temperature at which well controlled processing of and property measurements on materials is possible. This project was directed towards advancing containerless processing and property measurement techniques for application to materials research at high temperatures in space. Containerless high temperature material property studies include measurements of the vapor pressure, melting temperature, optical properties, and spectral emissivities of solid boron. The reaction of boron with nitrogen was also studied by laser polarimetric measurement of boron nitride film growth. The optical properties and spectral emissivities were measured for solid and liquid silicon, niobium, and zirconium; liquid aluminum and titanium; and liquid Ti-Al alloys of 5 to 60 atomic pct. titanium. Alternative means for noncontact temperature measurement in the absence of material emissivity data were evaluated. Also, the application of laser induced fluorescence for component activity measurements in electromagnetic levitated liquids was studied, along with the feasibility of a hybrid aerodynamic electromagnetic levitation technique.

  7. Precision of Four Acoustic Bone Measurement Devices

    NASA Technical Reports Server (NTRS)

    Miller, Christopher; Rianon, Nahid; Feiveson, Alan; Shackelford, Linda; LeBlanc, Adrian

    2000-01-01

    Though many studies have quantified the precision of various acoustic bone measurement devices, it is difficult to directly compare the results among the studies, because they used disparate subject pools, did not specify the estimation methodology, or did not use consistent definitions for various precision characteristics. In this study, we used a repeated measures design protocol to directly determine the precision characteristics of four acoustic bone measurement devices: the Mechanical Response Tissue Analyzer (MRTA), the UBA-575+, the SoundScan 2000 (S2000), and the Sahara Ultrasound Bone Analyzer. Ten men and ten women were scanned on all four devices by two different operators at five discrete time points: Week 1, Week 2, Week 3, Month 3 and Month 6. The percent coefficient of variation (%CV) and standardized coefficient of variation were computed for the following precision characteristics: interoperator effect, operator-subject interaction, short-term error variance, and long-term drift. The MRTA had high interoperator errors for its ulnar and tibial stiffness measures and a large long-term drift in its tibial stiffness measurement. The UBA-575+ exhibited large short-term error variances and long-term drift for all three of its measurements. The S2000's tibial speed of sound measurement showed a high short-term error variance and a significant operator-subject interaction but very good values (less than 1%) for the other precision characteristics. The Sahara seemed to have the best overall performance, but was hampered by a large %CV for short-term error variance in its broadband ultrasound attenuation measure.

  8. Precision of Four Acoustic Bone Measurement Devices

    NASA Technical Reports Server (NTRS)

    Miller, Christopher; Feiveson, Alan H.; Shackelford, Linda; Rianon, Nahida; LeBlanc, Adrian

    2000-01-01

    Though many studies have quantified the precision of various acoustic bone measurement devices, it is difficult to directly compare the results among the studies, because they used disparate subject pools, did not specify the estimation methodology, or did not use consistent definitions for various precision characteristics. In this study, we used a repeated measures design protocol to directly determine the precision characteristics of four acoustic bone measurement devices: the Mechanical Response Tissue Analyzer (MRTA), the UBA-575+, the SoundScan 2000 (S2000), and the Sahara Ultrasound Done Analyzer. Ten men and ten women were scanned on all four devices by two different operators at five discrete time points: Week 1, Week 2, Week 3, Month 3 and Month 6. The percent coefficient of variation (%CV) and standardized coefficient of variation were computed for the following precision characteristics: interoperator effect, operator-subject interaction, short-term error variance, and long-term drift, The MRTA had high interoperator errors for its ulnar and tibial stiffness measures and a large long-term drift in its tibial stiffness measurement. The UBA-575+ exhibited large short-term error variances and long-term drift for all three of its measurements. The S2000's tibial speed of sound measurement showed a high short-term error variance and a significant operator-subject interaction but very good values ( < 1%) for the other precision characteristics. The Sahara seemed to have the best overall performance, but was hampered by a large %CV for short-term error variance in its broadband ultrasound attenuation measure.

  9. 21 CFR 882.1550 - Nerve conduction velocity measurement device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nerve conduction velocity measurement device. 882... conduction velocity measurement device. (a) Identification. A nerve conduction velocity measurement device is a device which measures nerve conduction time by applying a stimulus, usually to a...

  10. 21 CFR 882.1550 - Nerve conduction velocity measurement device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nerve conduction velocity measurement device. 882... conduction velocity measurement device. (a) Identification. A nerve conduction velocity measurement device is a device which measures nerve conduction time by applying a stimulus, usually to a...

  11. 21 CFR 882.1550 - Nerve conduction velocity measurement device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nerve conduction velocity measurement device. 882... conduction velocity measurement device. (a) Identification. A nerve conduction velocity measurement device is a device which measures nerve conduction time by applying a stimulus, usually to a...

  12. Optimization of a fluidic temperature control device

    NASA Technical Reports Server (NTRS)

    Zabsky, J. M.; Rask, D. R.; Starr, J. B.

    1970-01-01

    Refinements are described to an existing fluidic temperature control system developed under a prior study which modulated temperature at the inlet to the liquid-cooled garment by using existing liquid supply and return lines to transmit signals to a fluidic controller located in the spacecraft. This earlier system produced a limited range of garment inlet temperatures, requiring some bypassing of flow around the suit to make the astronaut comfortable at rest conditions. Refinements were based on a flow visualization study of the key element in the fluidic controller: the fluidic mixing valve. The valve's mixing-ratio range was achieved by making five key changes: (1) geometrical changes to the valve; (2) attenuation of noise generated in proportional amplifier cascades; (3) elimination of vortices at the exit of the fluidic mixing valve; (4) reduction of internal heat transfer; and (5) flow balancing through venting. As a result, the refined system is capable of modulating garment inlet temperature from 45 F to 70 F with a single manual control valve in series with the garment. This control valve signals without changing or bypassing flow through the garment.

  13. 21 CFR 886.1450 - Corneal radius measuring device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Corneal radius measuring device. 886.1450 Section 886.1450 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1450 Corneal radius measuring device. (a) Identification. A corneal radius...

  14. Novel Electrical Measurement Techniques for Silicon Devices

    NASA Astrophysics Data System (ADS)

    Elhami Khorasani, Arash

    Semiconductor manufacturing economics necessitate the development of innovative device measurement techniques for quick assessment of products. Several novel electrical measurement techniques will be proposed for screening silicon device parameters. The studied parameters range from oxide reliability, and carrier lifetime in MOS capacitors to the power MOSFET reverse recovery. It will be shown that positive charge trapping is a dominant process when thick oxides are stressed through the ramped voltage test (RVT). Exploiting the physics behind positive charge generation/trapping at high electric fields, a fast I-V measurement technique is proposed that can be used to effectively distinguish the ultra-thick oxides' intrinsic quality at low electric fields. Next, two novel techniques will be presented for studying the carrier lifetime in MOS Capacitor devices. It will be shown that the deep-level transient spectroscopy (DLTS) can be applied to MOS test structures as a swift mean for screening the generation lifetime. Recombination lifetime will also be addressed by introducing the optically-excited MOS technique as a promising tool. The last part of this work is devoted to the reverse recovery behavior of the body diode of power MOSFETs. The correct interpretation of the LDMOS reverse recovery is challenging and requires special attention. A simple approach will be presented to extract meaningful lifetime values from the reverse recovery of LDMOS body-diodes exploiting their gate voltage and the magnitude of the reverse bias.

  15. Skin friction measuring device for aircraft

    NASA Technical Reports Server (NTRS)

    Montoya, L. C.; Bellman, D. R. (Inventor)

    1980-01-01

    A skin friction measuring device for measuring the resistance of an aerodynamic surface to an airstream is described. It was adapted to be mounted on an aircraft and is characterized by a friction plate adapted to be disposed in a flush relationship with the external surface of the aircraft and be displaced in response to skin friction drag. As an airstream is caused to flow over the surface, a potentiometer connected to the plate for providing an electrical output indicates the magnitude of the drag.

  16. Method for measuring surface temperature

    DOEpatents

    Baker, Gary A.; Baker, Sheila N.; McCleskey, T. Mark

    2009-07-28

    The present invention relates to a method for measuring a surface temperature using is a fluorescent temperature sensor or optical thermometer. The sensor includes a solution of 1,3-bis(1-pyrenyl)propane within a 1-butyl-1-1-methyl pyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid solvent. The 1,3-bis(1-pyrenyl)propane remains unassociated when in the ground state while in solution. When subjected to UV light, an excited state is produced that exists in equilibrium with an excimer. The position of the equilibrium between the two excited states is temperature dependent.

  17. Amorphous metallizations for high-temperature semiconductor device applications

    NASA Technical Reports Server (NTRS)

    Wiley, J. D.; Perepezko, J. H.; Nordman, J. E.; Kang-Jin, G.

    1981-01-01

    The initial results of work on a class of semiconductor metallizations which appear to hold promise as primary metallizations and diffusion barriers for high temperature device applications are presented. These metallizations consist of sputter-deposited films of high T sub g amorphous-metal alloys which (primarily because of the absence of grain boundaries) exhibit exceptionally good corrosion-resistance and low diffusion coefficients. Amorphous films of the alloys Ni-Nb, Ni-Mo, W-Si, and Mo-Si were deposited on Si, GaAs, GaP, and various insulating substrates. The films adhere extremely well to the substrates and remain amorphous during thermal cycling to at least 500 C. Rutherford backscattering and Auger electron spectroscopy measurements indicate atomic diffussivities in the 10 to the -19th power sq cm/S range at 450 C.

  18. Amorphous metallizations for high-temperature semiconductor device applications

    NASA Astrophysics Data System (ADS)

    Wiley, J. D.; Perepezko, J. H.; Nordman, J. E.; Kang-Jin, G.

    The initial results of work on a class of semiconductor metallizations which appear to hold promise as primary metallizations and diffusion barriers for high temperature device applications are presented. These metallizations consist of sputter-deposited films of high T sub g amorphous-metal alloys which (primarily because of the absence of grain boundaries) exhibit exceptionally good corrosion-resistance and low diffusion coefficients. Amorphous films of the alloys Ni-Nb, Ni-Mo, W-Si, and Mo-Si were deposited on Si, GaAs, GaP, and various insulating substrates. The films adhere extremely well to the substrates and remain amorphous during thermal cycling to at least 500 C. Rutherford backscattering and Auger electron spectroscopy measurements indicate atomic diffussivities in the 10 to the -19th power sq cm/S range at 450 C.

  19. Temperature Compensation for Ball Surface Acoustic Wave Devices and Sensor Using Frequency Dispersion

    NASA Astrophysics Data System (ADS)

    Nakatsukasa, Takuya; Akao, Shingo; Ohgi, Tsuneo; Nakaso, Noritaka; Abe, Takuji; Yamanaka, Kazushi

    2006-05-01

    We propose a new temperature compensation method for ball surface acoustic wave (SAW) devices using frequency dispersion. This method distinguishes the temperature effect independent of frequency and surface effects such as mass loading or elastic effects linearly dependent on frequency. After stating the principle of the method, we verify it by fabricating ball SAW devices with an interdigital transducer (IDT) that works at two frequencies, and apply them to the measurement of the coating of albumin on the surface of the device and on a hydrogen gas sensor with a surface-coated sensing film. Delay time measurements are carried out at two frequencies, and the difference in delay time is calculated to eliminate temperature-independent effects. Because the results clearly show surface effects without temperature disturbance, it is a difficult to realize sensors using ball SAW devices.

  20. Thin film materials and devices for resistive temperature sensing applications

    NASA Astrophysics Data System (ADS)

    Basantani, Hitesh A.

    Thin films of vanadium oxide (VOx) and hydrogenated amorphous silicon (a-Si:H) are the two dominant material systems used in resistive infrared radiation detectors (microbolometers) for sensing long wave infrared (LWIR) wavelengths in the 8--14 microm range. Typical thin films of VO x (x < 2) currently used in the bolometer industry have a magnitude of temperature coefficient of resistance (TCR) between 2%/K -- 3%/K. In contrast, thin films of hydrogenated germanium (SiGe:H) have |TCR| between 3%/K to 4%/K. Devices made from either of these materials have resulted in similar device performance with NETD ≈ 25 mK. The performance of the microbolometers is limited by the electronic noise, especially 1/f noise. Therefore, regardless of the choice of bolometer sensing material and read out circuitry, manufacturers are constantly striving to reduce 1/f noise while simultaneously increasing TCR to give better signal to noise ratios in their bolometers and ultimately, better image quality with more thermal information to the end user. In this work, thin films of VOx and hydrogenated germanium (Ge:H), having TCR values > 4 %/K are investigated as potential candidates for higher sensitivity next generation of microbolometers. Thin films of VO x were deposited by Biased Target Ion Beam Deposition (BTIBD) (˜85 nm thick). Electrical characterization of lateral resistor structures showed resistivity ranging from 104 O--cm to 2.1 x 104 O--cm, TCR varying from --4%/K to --5%/K, normalized Hooge parameter (alphaH/n) of 5 x 10 -21 to 5 x 10-18 cm3. Thin films of Ge:H were deposited by plasma enhanced chemical vapor deposition (PECVD) by incorporating an increasing amount of crystal fraction in the growing thin films. Thin films of Ge:H having a mixed phase, amorphous + nanocrystalline, having a |TCR| > 6 %/K were deposited with resistivity < 2,300 O--cm and a normalized Hooge's parameter 'alphaH/n' < 2 x 10-20 cm3. Higher TCR materials are desired, however, such materials have higher resistivity and therefore unacceptable large electrical resistance in a lateral resistor configuration. This work looks at an alternate bolometer device design which incorporates higher TCR materials in a vertically integrated configuration. Thin films of high TCR hydrogenated germanium (Ge:H, |TCR| > 6%/K) and vanadium oxide (VOx, TCR > 5%/K) were integrated in lateral and through film configuration. The electrical performance of the vertically integrated devices is compared with lateral resistance structures. It was confirmed experimentally that the device impedance was significantly lowered while maintaining the signal to noise ratio of the lateral resistor configuration. The vertically integrated devices allow higher device currents without any increase in self heating. These structures may help reduce integration time and may result in higher frame rate. Finally, one dimensional arrays were fabricated using both lateral and vertically integrated configurations and their performance was evaluated. It was found that the performance of the lateral devices was limited by noise floor of the measurement setup used. However, due to the lower impedance of the vertically integrated resistors, a higher signal and therefore higher signal to noise ratio could be obtained. These vertically integrated devices exhibited low RMS noise values of 12 mK.

  1. An unheated permeation device for calibrating atmospheric VOC measurements

    NASA Astrophysics Data System (ADS)

    Brito, J.; Zahn, A.

    2011-10-01

    The development of an unpowered permeation device for continuous calibration of in-situ instruments measuring atmospheric volatile organic compounds (VOCs) is described. Being lightweight and compact, and containing only negligible amounts of chemicals, the device is especially suited for field use such as on board aircraft. Its speciality is to maintain the permeation process in thermal equilibrium, so that the instantaneous permeation rate can be ascribed to a simple temperature measurement. This equilibrium state is maintained by a combination of three features: (i) a thin PTFE membrane as permeation medium which guarantees short stabilization times, (ii) a water bath as heat buffer, and (iii) a vacuum-panel based insulation, in which features (ii) and (iii) minimize temperature drifts to ~30 mK h-1 per Kelvin temperature difference to the environment. The respective uncertainty of the permeation rate due to thermal non-equilibrium is kept below 1%. An extensive theory part details the major permeation processes of gases through porous polymers, being Fick's diffusion, Knudsen flow, and viscous flow. Both the measured stabilization time and the measured temperature dependence of the permeation rate independently indicate that the permeation can be described by a viscous flow model, where diffusion of the gas molecules in large pores (having a diameter of >0.05 μm) dominates.

  2. Colloidal-gold electrosensor measuring device

    DOEpatents

    Wegner, S.; Harpold, M.A.; McCaffrey, T.M.; Morris, S.E.; Wojciechowski, M.; Zhao, J.; Henkens, R.W.; Naser, N.; O`Daly, J.P.

    1995-11-21

    The present invention provides a new device for use in measuring lead levels in biological and environmental samples. Using square wave coulometry and colloidal gold particles impregnated on carbon electrodes, the present invention provides a rapid, reliable, portable and inexpensive means of detecting low lead levels. The colloidal gold modified electrodes have microelectrode array characteristics and produce significantly higher stripping detection signals for lead than are produced at bulk gold electrode surfaces. The method is effective in determining levels of lead down to at least 5 {micro}g/dL in blood samples as small as 10 {micro}L. 9 figs.

  3. Colloidal-gold electrosensor measuring device

    DOEpatents

    Wegner, Steven; Harpold, Michael A.; McCaffrey, Terence M.; Morris, Susan E.; Wojciechowski, Marek; Zhao, Junguo; Henkens, Robert W.; Naser, Najih; O'Daly, John P.

    1995-01-01

    The present invention provides a new device for use in measuring lead levels in biological and environmental samples. Using square wave coulometry and colloidal gold particles impregnated on carbon electrodes, the present invention provides a rapid, reliable, portable and inexpensive means of detecting low lead levels. The colloidal gold modified electrodes have microelectrode array characteristics and produce significantly higher stripping detection signals for lead than are produced at bulk gold electrode surfaces. The method is effective in determining levels of lead down to at least 5 .mu.g/dL in blood samples as small as 10 .mu.L.

  4. Temperature dependence of magnetic losses in GMR and TMR devices

    NASA Astrophysics Data System (ADS)

    Haughey, Kevin; Stearrett, Ryan; Ozbay, Arif; Nowak, Edmund

    2012-02-01

    Thermally induced magnetization fluctuations in the free and reference magnetic layers of giant and tunneling magnetoresistance (GMR and TMR) spin valves (SV) devices typically give rise to a low-frequency 1/f power spectral density that has been related to local dissipative processes [1]. Understanding the origin of these magnetic losses is essential for increasing the magnetic field sensitivity of GMR and TMR sensors. The low-frequency magnetic losses can be parameterized through a loss angle, ɛ(T, H). ɛ(T) for the reference layer in our GMR SV is non-monotonic: first decreasing with increasing T, then exhibiting a minimum near 50K and what may be the onset of a plateau or peak near 300K. The peak and minimum shift to lower temperatures when the applied field is oriented perpendicular to the exchange pinning direction. Data for TMR devices show similar trends. The measurements will be described in the context of a model involving thermally activated kinetics and a field-dependent distribution of activation energies for the nanoscale magnetic fluctuators. [4pt] [1] Z. Diao et al., PRB 84, 094412 (2011)

  5. Development of an ultrasonic airflow measurement device for ducted air.

    PubMed

    Raine, Andrew B; Aslam, Nauman; Underwood, Christopher P; Danaher, Sean

    2015-01-01

    In this study, an in-duct ultrasonic airflow measurement device has been designed, developed and tested. The airflow measurement results for a small range of airflow velocities and temperatures show that the accuracy was better than 3.5% root mean square (RMS) when it was tested within a round or square duct compared to the in-line Venturi tube airflow meter used for reference. This proof of concept device has provided evidence that with further development it could be a low-cost alternative to pressure differential devices such as the orifice plate airflow meter for monitoring energy efficiency performance and reliability of ventilation systems. The design uses a number of techniques and design choices to provide solutions to lower the implementation cost of the device compared to traditional airflow meters. The design choices that were found to work well are the single sided transducer arrangement for a "V" shaped reflective path and the use of square wave transmitter pulses ending with the necessary 180° phase changed pulse train to suppress transducer ringing. The device is also designed so that it does not have to rely on high-speed analogue to digital converters (ADC) and intensive digital signal processing, so could be implemented using voltage comparators and low-cost microcontrollers. PMID:25954952

  6. Development of an Ultrasonic Airflow Measurement Device for Ducted Air

    PubMed Central

    Raine, Andrew B.; Aslam, Nauman; Underwood, Christopher P.; Danaher, Sean

    2015-01-01

    In this study, an in-duct ultrasonic airflow measurement device has been designed, developed and tested. The airflow measurement results for a small range of airflow velocities and temperatures show that the accuracy was better than 3.5% root mean square (RMS) when it was tested within a round or square duct compared to the in-line Venturi tube airflow meter used for reference. This proof of concept device has provided evidence that with further development it could be a low-cost alternative to pressure differential devices such as the orifice plate airflow meter for monitoring energy efficiency performance and reliability of ventilation systems. The design uses a number of techniques and design choices to provide solutions to lower the implementation cost of the device compared to traditional airflow meters. The design choices that were found to work well are the single sided transducer arrangement for a “V” shaped reflective path and the use of square wave transmitter pulses ending with the necessary 180° phase changed pulse train to suppress transducer ringing. The device is also designed so that it does not have to rely on high-speed analogue to digital converters (ADC) and intensive digital signal processing, so could be implemented using voltage comparators and low-cost microcontrollers. PMID:25954952

  7. Temperature measurement of contact resistance based on infrared detection

    NASA Astrophysics Data System (ADS)

    En, De; Feng, Jieyu

    2010-11-01

    For science and technology, the level of science and technology is determined by the measurement accuracy and efficiency to some extent. Contact resistance can not be ignored in precise measurement. Because the measured object is not directly contacted with infrared measurement device, there is no friction. Infrared measurement has the advantage of high sensitivity, fast response and so on. In this paper, the reasons for the temperature rising of the contact resistance and its harm and the importance of measuring the temperature of the contact resistance in precise measurement are analyzed firstly; then some theories of the infrared detection technology are introduced; finally, an infrared temperature measurement system based on SCM is designed.

  8. Electronic temperature in phonon-photon-phonon terahertz quantum cascade devices with high-operating temperature performance

    NASA Astrophysics Data System (ADS)

    Scamarcio, G.; Patimisco, P.; Santacroce, M. V.; Tempesta, P.; Spagnolo, V.; Vitiello, M. S.; Dupont, E.; Fathololoumi, S.; Laframboise, S. R.; Razavipour, S. G.; Wasilewski, Z.; Ban, D.; Liu, H. C.

    2013-01-01

    We report on the experimental measurement of active region lattice (TL) and electronic temperatures (Te) in terahertz quantum cascade devices based on the phonon-photon-phonon scheme, by means of microprobe band-to-band photoluminescence spectroscopy. Three mesa devices, differing for doping region and number of quantum wells composing the active region, have been investigated. With device on, under band alignment for lasing condition, we measured a difference (Te - TL) ~ 40 K much smaller than the typical value (Te - TL ~ 100 K) reported for resonantphonon THz QCLs.

  9. 21 CFR 886.1450 - Corneal radius measuring device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Corneal radius measuring device. 886.1450 Section 886.1450 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1450 Corneal radius measuring...

  10. Application of infrared thermography to room air temperature measurements

    SciTech Connect

    Hassani, V.A.; Stetz, M.

    1994-12-31

    An important problem in the design of ventilation systems is the evaluation of occupant comfort. Local velocity and temperature distributions are two major elements that affect human comfort. Air temperature measurements across a large field require either many measuring devices or translating a single device across the field of interest, both of which are expensive and/or time consuming. This study introduces a unique technique for rapid measurements of room air temperature distribution at any cross section of interest and shows that infrared thermography can be used with good accuracy for air temperature measurements as well as airflow pattern visualization. This technique utilizes a low-thermal-mass, porous, fiberglass screen in conjunction with an infrared camera. The screen is used as a radiation target sheet whose surface temperatures are detected by the infrared camera, and it is shown that those temperatures are within 1.6 C of the air temperatures.

  11. Current status of low-temperature radiator thermophotovoltaic devices

    SciTech Connect

    Charache, G.W.; Egley, J.L.; Danielson, L.R.; DePoy, D.M.; Baldasaro, P.F.; Campbell, B.C.; Hui, S.; Fraas, L.M.; Wojtczuk, S.J.

    1996-05-01

    The current performance status of low-temperature radiator (< 1,000 C) thermophotovoltaic (TPV) devices is presented. For low-temperature radiators, both power density and efficiency are equally important in designing an effective TPV system. Comparisons of 1 cm x 1 cm, 0.55 eV InGaAs and InGaAsSb voltaic devices are presented. Currently, InGaAs lattice-mismatched devices offer superior performance in comparison to InGaAsSb lattice-matched devices, due to the former`s long-term development for numerous optoelectronic applications. However, lattice-matched antimony-based quaternaries offer numerous potential advantages.

  12. Junction Temperature Measurement of IGBTs Using Short Circuit Current

    SciTech Connect

    Wang, Fei; Xu, Zhuxian; Ning, Puqi

    2012-01-01

    In this paper, a method is proposed to measure the junction temperatures of IGBT discrete devices and modules using short circuit current. Experimental results show that the short circuit current has good sensitivity, linearity and selectivity, which is suitable to be used as temperature sensitive electrical parameters (TSEP). Test circuit and hardware design are proposed for junction temperature measurement in single phase and three phase convertes. By connecting a temperature measurement unit to the converter and giving a short circuit pulse, the IGBT junction temperature can be measured.

  13. Verilog-A Device Models for Cryogenic Temperature Operation of Bulk Silicon CMOS Devices

    NASA Technical Reports Server (NTRS)

    Akturk, Akin; Potbhare, Siddharth; Goldsman, Neil; Holloway, Michael

    2012-01-01

    Verilog-A based cryogenic bulk CMOS (complementary metal oxide semiconductor) compact models are built for state-of-the-art silicon CMOS processes. These models accurately predict device operation at cryogenic temperatures down to 4 K. The models are compatible with commercial circuit simulators. The models extend the standard BSIM4 [Berkeley Short-channel IGFET (insulated-gate field-effect transistor ) Model] type compact models by re-parameterizing existing equations, as well as adding new equations that capture the physics of device operation at cryogenic temperatures. These models will allow circuit designers to create optimized, reliable, and robust circuits operating at cryogenic temperatures.

  14. High-Temperature Probe Station Developed to Characterize Microwave Devices Through 500 C

    NASA Technical Reports Server (NTRS)

    Downey, Alan N.; Schwartz, Zachary D.

    2004-01-01

    A photograph and a block diagram of the high-temperature probe station are shown. The system consists of the ceramic heater mounted on a NASA shuttle tile insulator, a direct current power supply, a personal-computer-based data acquisition and temperature controller, microwave probes, a microscope, and a network analyzer. The ability to perform microwave tests at high temperatures is becoming necessary. There is now a need for sensors and communication circuits that can operate at 500 C and above for aircraft engine development and monitoring during flight. To address this need, researchers have fabricated devices using wide bandgap semiconductors such as SiC with targeted operating temperatures of 500 to 600 C. However, the microwave properties of these devices often change drastically with temperature, so any designs that are intended to be used in such an environment must be characterized at high temperatures. For some reliability, lifetime, and direct-current testing, the device under test can be packaged and characterized in an oven. However, for RF and microwave measurements, it is usually not possible to establish a calibrated reference plane at the device terminals within a package. In addition, the characteristics of the package would vary over a 500 C temperature range, and this would have to be accounted for when the data were analyzed. A high temperature probe station allows circuits and devices to be characterized through on wafer measurements across a broad temperature range with known reference plane. The conventional, commercially available thermal wafer-probe stations that are used to evaluate microwave devices across a controlled temperature range have a typical upper limit of 200 C. Standalone thermal heating chucks are available with an extended upper temperature range of 300 to 400 C. To effectively characterize devices at temperatures up to and surpassing 500 C, Glenn researchers developed a custom probe station. In the past, custom probe stations have been developed to test devices under other extreme environments, such as cryogenic temperatures as low as 37 K. Similarly, this custom probe station was specifically modified for high-temperature use. It allows devices to be measured quickly and flexibly, without the use of wire bonds and test fixtures. The probe station is shown making scattering parameter measurements from 1 to 50 GHz with a Hewlett-Packard 8510C Network Analyzer. There is a half-wafer of silicon directly on top of the heater to provide a uniform heated platform for our sample. A quarter wafer of silicon carbide forms the substrate for our test circuit of several transmission lines.

  15. Diamond micro-Raman thermometers for accurate gate temperature measurements

    SciTech Connect

    Simon, Roland B.; Pomeroy, James W.; Kuball, Martin

    2014-05-26

    Determining the peak channel temperature in AlGaN/GaN high electron mobility transistors and other devices with high accuracy is an important and challenging issue. A surface-sensitive thermometric technique is demonstrated, utilizing Raman thermography and diamond microparticles to measure the gate temperature. This technique enhances peak channel temperature estimation, especially when it is applied in combination with standard micro-Raman thermography. Its application to other metal-covered areas of devices, such as field plates is demonstrated. Furthermore, this technique can be readily applied to other material/device systems.

  16. An unheated permeation device for calibrating atmospheric VOC measurements

    NASA Astrophysics Data System (ADS)

    Brito, J.; Zahn, A.

    2011-05-01

    The development of an unpowered permeation device for continuous calibration of in-situ instruments measuring atmospheric volatile organic compounds (VOCs) is described. Being lightweight and compact, and containing only negligible amounts of chemicals, the device is especially suited for field use such as onboard aircraft. Its speciality is to maintain the permeation process in thermal equilibrium, i.e. the instantaneous permeation rate can be ascribed via a simple temperature measurement. This equilibrium state is maintained by a combination of three features: (i) a thin PTFE membrane as permeation medium which guarantees short stabilization times, (ii) a water bath as heat buffer, and (iii) a vacuum-panel based insulation, in which features (ii) and (iii) minimize temperature drifts. The uncertainty of the permeation rate due to thermal non-equilibrium is kept below 1 %. An extensive theory part details the major permeation processes of gases through porous polymers, being Fick's diffusion, Knudsen flow, and viscous flow. Both the measured stabilization time and the measured temperature dependence of the permeation rate independently indicate that the permeation can be described by a viscous flow model, where diffusion of the gas molecules in large pores (having a diameter of >0.05 μm) dominates.

  17. Midinfrared Temperature Measurement Technique Developed

    NASA Technical Reports Server (NTRS)

    Santosuosso, George R.

    2003-01-01

    Infrared thermography is the measuring of the temperature of an object by examining the spectral quantities of light emission. The microgravity combustion experiment Solid Inflammability Boundary at Low-Speeds (SIBAL) calls for full-field temperature measurements of a thin sheet of cellulosic fuel as a flame front moves across the fuel, and infrared thermography is the only technique that can accomplish this task. The thermography is accomplished by imaging the fuel with a midinfrared camera that is sensitive in the 3.0- to 5.0-microns wavelength region in conjunction with a 3.7 - to 4.1-microns bandpass filter to eliminate unwanted infrared radiation from components other than the fuel.

  18. High-Temperature RF Probe Station For Device Characterization Through 500 deg C and 50 GHz

    NASA Technical Reports Server (NTRS)

    Schwartz, Zachary D.; Downey, Alan N.; Alterovitz, Samuel A.; Ponchak, George E.; Williams, W. D. (Technical Monitor)

    2003-01-01

    A high-temperature measurement system capable of performing on-wafer microwave testing of semiconductor devices has been developed. This high temperature probe station can characterize active and passive devices and circuits at temperatures ranging from room temperature to above 500 C. The heating system uses a ceramic heater mounted on an insulating block of NASA shuttle tile material. The temperature is adjusted by a graphical computer interface and is controlled by the software-based feedback loop. The system is used with a Hewlett-Packard 8510C Network Analyzer to measure scattering parameters over a frequency range of 1 to 50 GHz. The microwave probes, cables, and inspection microscope are all shielded to protect from heat damage. The high temperature probe station has been successfully used to characterize gold transmission lines on silicon carbide at temperatures up to 540 C.

  19. Diffraction grating-based sensing optofluidic device for measuring the refractive index of liquids.

    PubMed

    Calixto, Sergio; Bruce, Neil C; Rosete-Aguilar, Martha

    2016-01-11

    We describe a simple and versatile optical sensing device for measuring refractive index of liquids. The sensor consists of a sinusoidal relief grating in a glass cell. Device calibration is done by pouring in the cell different liquids of known refractive indices. Each time a liquid is poured first order intensity is measured. The fabrication process and testing of the prototype device is described. An application in the measurement of temperature is also presented. PMID:26832249

  20. 21 CFR 882.1540 - Galvanic skin response measurement device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Galvanic skin response measurement device. 882... Galvanic skin response measurement device. (a) Identification. A galvanic skin response measurement device... electrical resistance of the skin and the tissue path between two electrodes applied to the skin....

  1. 21 CFR 882.1550 - Nerve conduction velocity measurement device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nerve conduction velocity measurement device. 882.1550 Section 882.1550 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... conduction velocity measurement device. (a) Identification. A nerve conduction velocity measurement device...

  2. 21 CFR 882.1550 - Nerve conduction velocity measurement device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nerve conduction velocity measurement device. 882.1550 Section 882.1550 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... conduction velocity measurement device. (a) Identification. A nerve conduction velocity measurement device...

  3. Development of silicon carbide semiconductor devices for high temperature applications

    NASA Technical Reports Server (NTRS)

    Matus, Lawrence G.; Powell, J. Anthony; Petit, Jeremy B.

    1991-01-01

    The semiconducting properties of electronic grade silicon carbide crystals, such as wide energy bandgap, make it particularly attractive for high temperature applications. Applications for high temperature electronic devices include instrumentation for engines under development, engine control and condition monitoring systems, and power conditioning and control systems for space platforms and satellites. Discrete prototype SiC devices were fabricated and tested at elevated temperatures. Grown p-n junction diodes demonstrated very good rectification characteristics at 870 K. A depletion-mode metal-oxide-semiconductor field-effect transistor was also successfully fabricated and tested at 770 K. While optimization of SiC fabrication processes remain, it is believed that SiC is an enabling high temperature electronic technology.

  4. Ultrasonic device for measuring periodontal attachment levels

    NASA Astrophysics Data System (ADS)

    Lynch, J. E.; Hinders, M. K.

    2002-07-01

    Periodontal disease is manifested clinically by a degradation of the ligament that attaches the tooth to the bone. The most widely used diagnostic tool for assessment of periodontal diseases, measurement of periodontal attachment loss with a manual probe, may overestimate attachment loss by as much as 2 mm in untreated sites, while underestimating attachment loss by an even greater margin following treatment. Manual probing is also invasive, which causes patient discomfort. This work describes the development and testing of an ultrasonographic periodontal probe designed to replace manual probing. It uses a thin stream of water to project an ultrasonic beam into the periodontal pocket, and then measures echoes off features within the pocket. To do so, the ultrasonic beam must be narrowed from 2 (the diameter of the transducer) to 0.5 mm (the approximate width of the periodontal pocket at the gingival margin). The proper choice of transducer frequency, the proper method for controlling water flow from the probe, and a model for interpreting these echoes are also addressed. Initial results indicate that the device measures echoes from the hard tissue of the tooth surface, and that the periodontal attachment level can be inferred from these echoes.

  5. Cooling device featuring thermoelectric and diamond materials for temperature control of heat-dissipating devices

    NASA Technical Reports Server (NTRS)

    Vandersande, Ian W. (Inventor); Ewell, Richard (Inventor); Fleurial, Jean-Pierre (Inventor); Lyon, Hylan B. (Inventor)

    1998-01-01

    A cooling device for lowering the temperature of a heat-dissipating device. The cooling device includes a heat-conducting substrate (composed, e.g., of diamond or another high thermal conductivity material) disposed in thermal contact with the heat-dissipating device. During operation, heat flows from the heat-dissipating device into the heat-conducting substrate, where it is spread out over a relatively large area. A thermoelectric cooling material (e.g., a Bi.sub.2 Te.sub.3 -based film or other thermoelectric material) is placed in thermal contact with the heat-conducting substrate. Application of electrical power to the thermoelectric material drives the thermoelectric material to pump heat into a second heat-conducting substrate which, in turn, is attached to a heat sink.

  6. 21 CFR 864.6400 - Hematocrit measuring device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Hematocrit measuring device. 864.6400 Section 864.6400 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Manual Hematology Devices § 864.6400 Hematocrit...

  7. 21 CFR 864.6400 - Hematocrit measuring device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Hematocrit measuring device. 864.6400 Section 864.6400 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Manual Hematology Devices § 864.6400 Hematocrit...

  8. 21 CFR 864.6400 - Hematocrit measuring device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Hematocrit measuring device. 864.6400 Section 864.6400 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Manual Hematology Devices § 864.6400 Hematocrit...

  9. 21 CFR 864.6400 - Hematocrit measuring device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Hematocrit measuring device. 864.6400 Section 864.6400 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Manual Hematology Devices § 864.6400 Hematocrit...

  10. 21 CFR 864.6400 - Hematocrit measuring device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hematocrit measuring device. 864.6400 Section 864.6400 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Manual Hematology Devices § 864.6400 Hematocrit...

  11. 21 CFR 882.1560 - Skin potential measurement device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Skin potential measurement device. 882.1560 Section 882.1560 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Diagnostic Devices § 882.1560 Skin...

  12. 21 CFR 882.1560 - Skin potential measurement device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Skin potential measurement device. 882.1560 Section 882.1560 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Diagnostic Devices § 882.1560 Skin...

  13. 21 CFR 882.1560 - Skin potential measurement device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Skin potential measurement device. 882.1560 Section 882.1560 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Diagnostic Devices § 882.1560 Skin...

  14. 21 CFR 882.1560 - Skin potential measurement device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Skin potential measurement device. 882.1560 Section 882.1560 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Diagnostic Devices § 882.1560 Skin...

  15. Measurement of deep body temperature from the urine.

    PubMed

    Fox, R H; Brooke, O G; Collins, J C; Bailey, C S; Healey, F B

    1975-01-01

    1. The relation between urine and rectal temperatures has been studied under a variety of conditions by using the Uritemp bottle, which measures deep body temperature from the urine. 2. This device gives a reliable measurement of deep body temperature and has advantages over both rectal and oral techniques for many clinical applications. 3. The development of a new and more reliable device, the Uritemp meter, is described. Urine is voided through a specially designed and disposable unit, equipped with either a standard mercury-in-glass thermometer or any one of a range of commercially available electronic thermometers. Provision is made to collect a urine sample simultaneously if required. PMID:1167490

  16. Ultimate Diagnostics for the Measurement of Turbulence in Toroidal Devices

    NASA Astrophysics Data System (ADS)

    Park, H.; Mazzucato, E.; Hahm, T. S.; Lee, W. W.; Rewoldt, G.; Synakowski, E.; Domier, C. W.; Luhmann, N. C., Jr.

    1998-11-01

    Relentless efforts in plasma diagnostics concepts (E. Mazzucato, Rev. Sci. Instrum. 69, 1691 (1998), H. Hase, H. Hartfuss,12th HTPD conference, F-16, June 1998.) and technology (R.P. Hsia et al., Rev. Sci. Instrum. 68, 488 (1997).) R&D enable us to design a system capable of simultaneous 3-D imaging of the temperature and density turbulence spectrum in toroidal devices such as tokamak and stellarator. Measurement of multi-dimensional correlation between Te and ne turbulence is extremely important in understanding the current transport model. In this paper, the details of the concept design such as accessibility, machine parameters, detection system and relevant frequencies will be discussed for a various devices. Special attention will be given to obtain ω and k spectra with sufficient spatial resolution so that the results can be readily compared with remarkable visual results produced by gyro-kinetic (GK) and/or gyro-fluid (GF) simulations.

  17. Applications of a high temperature sessile drop device

    NASA Astrophysics Data System (ADS)

    Schwarz, B.; Worbs, P.; Eisenmenger-Sittner, C.

    2008-03-01

    The wettability of a liquid metal on a solid surface is of great technological interest for the industry (soldering, brazing, infiltration) as well as for fundamental research (diffusion, chemical reaction, intermetallic phases). The characterization of wetting is done by measuring the contact angle at the triple line of the liquid on the solid. A High Temperature Sessile Drop Device (HTSDD) was constructed and several applications were tested: (i) a wettability study of a copper-based brazing alloy (Cu-ABA) on TiNx coatings with different stoichiometries. The data derived from the HTSDD show that the reduction of the nitrogen content in the TiN coating reduces the time for reaching the final contact angle. Also for substoichiometric TiC a similar behaviour is predicted in literature. (ii) The liquid surface energy of molten metals can be estimated from the curvature of flattened droplets due to the influence of gravity. Two models were used for the calculation of the liquid surface energy of different liquid metals. (iii) From the droplet radius vs. time curves it is possible to distinguish between two different reactive wetting regimes the diffusion and the reaction controlled reactive wetting. The beginning of this research topic will be discussed.

  18. Organic Materials for Time-Temperature Integrator Devices.

    PubMed

    Cavallini, Massimiliano; Melucci, Manuela

    2015-08-12

    Time-temperature integrators (TTIs) are devices capable of recording the thermal history of a system. They have an enormous impact in the food and pharmaceutical industries. TTIs exploit several irreversible thermally activated transitions such as recrystallization, dewetting, smoothening, chemical decomposition, and polymorphic transitions, usually considered drawbacks for many technological applications. The aim of this article is to sensitize research groups working in organic synthesis and surface science toward TTI devices, enlarging the prospects of many new materials. We reviewed the principal applications highlighting the need and criticisms of TTIs, which offer a new opportunity for the development of many materials. PMID:26156082

  19. Advanced devices and systems for radiation measurements

    SciTech Connect

    Knoll, G.F.; Wehe, D.K.; He, Z.; Barrett, C.; Miyamoto, J.

    1996-06-01

    The authors` most recent work continues their long-standing efforts to develop semiconductor detectors based on the collection of only a single type of charge carrier. Their best results are an extension of the principle of coplanar electrodes first described by Paul Luke of Lawrence Berkeley Laboratory 18 months ago. This technique, described in past progress reports, has the effect of deriving an output signal from detectors that depends only on the motion of carriers close to one surface. Since nearly all of these carriers are of one type (electrons) that are attracted to that electrode, the net effect is to nearly eliminate the influence of hole motion on the properties of the output signal. The result is that the much better mobility of electrons in compound semiconductors materials such as CZT can now be exploited without the concurrent penalty of poor hole collection. They have also developed new techniques in conjunction with the coplanar electrode principle that extends the technique into a new dimension. By proper processing of signals from the opposite electrode (the cathode) from the coplanar surface, they are able to derive a signal that is a good indication of the depth of interaction at which the charge carriers were initially formed. They have been the first group to demonstrate this technique, and examples of separate pulse height spectra recorded at a variety of different depths of interaction are shown in several of the figures that follow. Obtaining depth information is one step in the direction of obtaining volumetric point-of-interaction information from the detector. If one could known the coordinates of each specific interaction, then corrections could be applied to account for the inhomogeneities that currently plague many room-temperature devices.

  20. Measurement-device-independent quantum coin tossing

    NASA Astrophysics Data System (ADS)

    Zhao, Liangyuan; Yin, Zhenqiang; Wang, Shuang; Chen, Wei; Chen, Hua; Guo, Guangcan; Han, Zhengfu

    2015-12-01

    Quantum coin tossing (QCT) is an important primitive of quantum cryptography and has received continuous interest. However, in practical QCT, Bob's detectors can be subjected to detector-side channel attacks launched by dishonest Alice, which will possibly make the protocol completely insecure. Here, we report a simple strategy of a detector-blinding attack based on a recent experiment. To remove all the detector side channels, we present a solution of measurement-device-independent QCT (MDI-QCT). This method is similar to the idea of MDI quantum key distribution (QKD). MDI-QCT is loss tolerant with single-photon sources and has the same bias as the original loss-tolerant QCT under a coherent attack. Moreover, it provides the potential advantage of doubling the secure distance for some special cases. Finally, MDI-QCT can also be modified to fit the weak coherent-state sources. Thus, based on the rapid development of practical MDI-QKD, our proposal can be implemented easily.

  1. Laser Pyrometer For Spot Temperature Measurements

    NASA Technical Reports Server (NTRS)

    Elleman, D. D.; Allen, J. L.; Lee, M. C.

    1988-01-01

    Laser pyrometer makes temperature map by scanning measuring spot across target. Scanning laser pyrometer passively measures radiation emitted by scanned spot on target and calibrated by similar passive measurement on blackbody of known temperature. Laser beam turned on for active measurements of reflectances of target spot and reflectance standard. From measurements, temperature of target spot inferred. Pyrometer useful for non-contact measurement of temperature distributions in processing of materials.

  2. 27 CFR 24.36 - Instruments and measuring devices.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Instruments and measuring... § 24.36 Instruments and measuring devices. All instruments and measuring devices required by this part to be furnished by the proprietor for the purpose of testing and measuring wine, spirits,...

  3. 27 CFR 24.36 - Instruments and measuring devices.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Instruments and measuring... § 24.36 Instruments and measuring devices. All instruments and measuring devices required by this part to be furnished by the proprietor for the purpose of testing and measuring wine, spirits,...

  4. Infrared Emissivity Measurements of Building and Civil Engineering Materials: A New Device for Measuring Emissivity

    NASA Astrophysics Data System (ADS)

    Monchau, Jean-Pierre; Marchetti, Mario; Ibos, Laurent; Dumoulin, Jean; Feuillet, Vincent; Candau, Yves

    2014-10-01

    The knowledge of the infrared emissivity of materials used in buildings and civil engineering structures is useful for two specific approaches. First, quantitative diagnosis of buildings or civil engineering infrastructures by infrared thermography requires emissivity values in the spectral bandwidth of the camera used for measurements, in order to obtain accurate surface temperatures; for instance, emissivity in the band III domain is required when using cameras with uncooled detectors (such as micro-bolometer arrays). Second, setting up accurate thermal balances by numerical modeling requires the total emissivity value for a large wavelength domain; this is, for instance, the case for computing the road surface temperature to predict ice occurrence. Furthermore, periodical surveys of emissivity variations due to aging or soiling of surfaces could be useful in many situations such as thermal mapping of roads or building insulation diagnosis. The use of portable emissivity measurement devices is required for that purpose. A device using an indirect measurement method was previously developed in our lab; the method uses measurement of the reflectivity from a modulated IR source and requires calibration with a highly reflective surface. However, that device uses a low-frequency, thermal modulation well adapted to laboratory measurements but unfit for fast and in situ measurements. Therefore, a new, portable system which retains the principle of an indirect measurement but uses a faster-frequency, mechanical modulation more appropriate to outdoor measurements was developed. Both devices allow measurements in the broad m to m) and narrow m to m) bands. Experiments were performed on a large number of materials commonly used in buildings and civil engineering structures. The final objective of this work is to build a database of emissivity of these materials. A comparison of laboratory and on-site measurements of emissivity values obtained in both spectral bands will be presented along with an estimation and an analysis of measurement uncertainties.

  5. Electrical Devices and Circuits for Low Temperature Space Applications

    NASA Technical Reports Server (NTRS)

    Patterson, R. L.; Hammond, A.; Dickman, J. E.; Gerber, S.; Overton, E.; Elbuluk, M.

    2003-01-01

    The environmental temperature in many NASA missions, such as deep space probes and outer planetary exploration, is significantly below the range for which conventional commercial-off-the-shelf electronics is designed. Presently, spacecraft operating in the cold environment of such deep space missions carry a large number of radioisotope or other heating units in order to maintain the surrounding temperature of the on-board electronics at approximately 20 C. Electronic devices and circuits capable of operation at cryogenic temperatures will not only tolerate the harsh environment of deep space but also will reduce system size and weight by eliminating or reducing the heating units and their associate structures; thereby reducing system development cost as well as launch costs. In addition, power electronic circuits designed for operation at low temperatures are expected to result in more efficient systems than those at room temperature. This improvement results from better behavior in the electrical and thermal properties of some semiconductor and dielectric materials at low temperatures. An on-going research and development program on low temperature electronics at the NASA Glenn Research Center focuses on the development of efficient electrical systems and circuits capable of surviving and exploiting the advantages of low temperature environments. An overview of the program will be presented in this paper. A description of the low temperature test facilities along with selected data obtained from in-house component testing will also be discussed. On-going research activities that are being performed in collaboration with various organizations will also be presented.

  6. On-chip temperature-compensated Love mode surface acoustic wave device for gravimetric sensing

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Flewitt, A. J.

    2014-11-01

    Love mode surface acoustic wave (SAW) sensors have been recognized as one of the most sensitive devices for gravimetric sensors in liquid environments such as bio sensors. Device operation is based upon measuring changes in the transmitted (S21) frequency and phase of the first-order Love wave resonance associated with the device upon on attachment of mass. However, temperature variations also cause a change in the first order S21 parameters. In this work, shallow grooved reflectors and a "dotted" single phase unidirectional interdigitated transducer (D-SPUDT) have been added to the basic SAW structure, which promote unidirectional Love wave propagation from the device's input interdigitated transducers. Not only does this enhance the first-order S21 signal but also it allows propagation of a third-order Love wave. The attenuation coefficient of the third-order wave is sufficiently great that, whilst there is a clear reflected S11 signal, the third-order wave does not propagate into the gravimetric sensing area of the device. As a result, whilst the third-order S11 signal is affected by temperature changes, it is unaffected by mass attachment in the sensing area. It is shown that this signal can be used to remove temperature effects from the first-order S21 signal in real time. This allows gravimetric sensing to take place in an environment without the need for any other temperature measurement or temperature control; this is a particular requirement of gravimetric biosensors.

  7. Compensated vibrating optical fiber pressure measuring device

    DOEpatents

    Fasching, George E.; Goff, David R.

    1987-01-01

    A microbending optical fiber is attached under tension to a diaphragm to se a differential pressure applied across the diaphragm which it causes it to deflect. The fiber is attached to the diaphragm so that one portion of the fiber, attached to a central portion of the diaphragm, undergoes a change in tension; proportional to the differential pressure applied to the diaphragm while a second portion attached at the periphery of the diaphragm remains at a reference tension. Both portions of the fiber are caused to vibrate at their natural frequencies. Light transmitted through the fiber is attenuated by both portions of the tensioned sections of the fiber by an amount which increases with the curvature of fiber bending so that the light signal is modulated by both portions of the fiber at separate frequencies. The modulated light signal is transduced into a electrical signal. The separate modulation signals are detected to generate separate signals having frequencies corresponding to the reference and measuring vibrating sections of the continuous fiber, respectively. A signal proportional to the difference between these signals is generated which is indicative of the measured pressure differential across the diaphragm. The reference portion of the fiber is used to compensate the pressure signal for zero and span changes resulting from ambient temperature and humidity effects upon the fiber and the transducer fixture.

  8. Temperature-dependent liquid metal flowrate control device

    DOEpatents

    Carlson, Roger D.

    1978-01-01

    A temperature-dependent liquid metal flowrate control device includes a magnet and a ferromagnetic member defining therebetween a flow path for liquid metal, the ferromagnetic member being formed of a material having a curie temperature at which a change in the flow rate of the liquid metal is desired. According to the preferred embodiment the magnet is a cylindrical rod magnet axially disposed within a cylindrical member formed of a curie material and having iron pole pieces at the ends. A cylindrical iron shunt and a thin wall stainless steel barrier are disposed in the annulus between magnet and curie material. Below the curie temperature flow between steel barrier and curie material is impeded and above the curie temperature flow impedance is reduced.

  9. Evaluation of Advanced COTS Passive Devices for Extreme Temperature Operation

    NASA Technical Reports Server (NTRS)

    Patterson, Richard; Hammoud, Ahmad; Dones, Keishla R.

    2009-01-01

    Electronic sensors and circuits are often exposed to extreme temperatures in many of NASA deep space and planetary surface exploration missions. Electronics capable of operation in harsh environments would be beneficial as they simplify overall system design, relax thermal management constraints, and meet operational requirements. For example, cryogenic operation of electronic parts will improve reliability, increase energy density, and extend the operational lifetimes of space-based electronic systems. Similarly, electronic parts that are able to withstand and operate efficiently in high temperature environments will negate the need for thermal control elements and their associated structures, thereby reducing system size and weight, enhancing its reliability, improving its efficiency, and reducing cost. Passive devices play a critical role in the design of almost all electronic circuitry. To address the needs of systems for extreme temperature operation, some of the advanced and most recently introduced commercial-off-the-shelf (COTS) passive devices, which included resistors and capacitors, were examined for operation under a wide temperature regime. The types of resistors investigated included high temperature precision film, general purpose metal oxide, and wirewound.

  10. Measurement of Device Parameters Using Image Recovery Techniques in Large-Scale IC Devices

    NASA Technical Reports Server (NTRS)

    Scheick, Leif; Edmonds, Larry

    2004-01-01

    Devices that respond to radiation on a cell level will produce histograms showing the relative frequency of cell damage as a function of damage. The measured distribution is the convolution of distributions from radiation responses, measurement noise, and manufacturing parameters. A method of extracting device characteristics and parameters from measured distributions via mathematical and image subtraction techniques is described.

  11. Assessment of SOI Devices and Circuits at Extreme Temperatures

    NASA Technical Reports Server (NTRS)

    Elbuluk, Malik; Hammoud, Ahmad; Patterson, Richard L.

    2007-01-01

    Electronics designed for use in future NASA space exploration missions are expected to encounter extreme temperatures and wide thermal swings. Such missions include planetary surface exploration, bases, rovers, landers, orbiters, and satellites. Electronics designed for such applications must, therefore, be able to withstand exposure to extreme temperatures and to perform properly for the duration of mission. The Low Temperature Electronics Program at the NASA Glenn Research Center focuses on research and development of electrical devices, circuits, and systems suitable for applications in deep space exploration missions and aerospace environment. Silicon-On-Insulator (SOI) technology has been under active consideration in the electronics industry for many years due to the advantages that it can provide in integrated circuit (IC) chips and computer processors. Faster switching, less power, radiationtolerance, reduced leakage, and high temp-erature capability are some of the benefits that are offered by using SOI-based devices. A few SOI circuits are available commercially. However, there is a noticeable interest in SOI technology for different applications. Very little data, however, exist on the performance of such circuits under cryogenic temperatures. In this work, the performance of SOI integrated circuits, evaluated under low temperature and thermal cycling, are reported. In particular, three examples of SOI circuits that have been tested for operation at low at temperatures are given. These circuits are SOI operational amplifiers, timers and power MOSFET drivers. The investigations were carried out to establish a baseline on the functionality and to determine suitability of these circuits for use in space exploration missions at cryogenic temperatures. The findings are useful to mission planners and circuit designers so that proper selection of electronic parts can be made, and risk assessment can be established for such circuits for use in space missions.

  12. Measurement of relative permittivity of LTCC ceramic at different temperatures

    NASA Astrophysics Data System (ADS)

    Tan, Qiulin; Kang, Hao; Qin, Li; Xiong, Jijun; Zhou, Zhaoying; Zhang, Wendong; Luo, Tao; Xue, Chenyang; Liu, Jun

    2014-03-01

    Devices based on LTCC (low-temperature co-fired ceramic) technology are more widely applied in high temperature environments, and the temperature-dependent properties of the LTCC material play an important role in measurements of the characteristics of these devices at high temperature. In this paper, the temperature-dependence of the relative permittivity of DuPont 951 LTCC ceramic is studied from room temperature to 500 °C. An expression for relative permittivity is obtained, which relates the relative permittivity to the resonant frequency, inductance, parasitic capacitance and electrode capacitance of the LTCC sample. Of these properties, the electrode capacitance is the most strongly temperature-dependent. The LTCC sample resonant frequency, inductance and parasitic capacitance were measured (from room temperature to 500 °C) with a high temperature measurement system comprising a muffle furnace and network analyzer. We found that the resonant frequency reduced and the inductance and parasitic capacitance increased slightly as the temperature increases. The relative permittivity can be calculated from experimental frequency, inductance and parasitic capacitance measurements. Calculating results show that the relative permittivity of DuPont 951 LTCC ceramic ceramic increases to 8.21 from room temperature to 500 °C.

  13. 27 CFR 25.42 - Testing of measuring devices.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... BUREAU, DEPARTMENT OF THE TREASURY LIQUORS BEER Measurement of Beer § 25.42 Testing of measuring devices... beer, the brewer shall periodically test the measuring device and adjust or repair it, if necessary... test; and (4) Corrective action taken, if necessary. (b) Requirements for beer meters. The...

  14. 27 CFR 25.42 - Testing of measuring devices.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL BEER Measurement of Beer § 25.42 Testing of measuring devices... beer, the brewer shall periodically test the measuring device and adjust or repair it, if necessary... test; and (4) Corrective action taken, if necessary. (b) Requirements for beer meters. The...

  15. 27 CFR 25.42 - Testing of measuring devices.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL BEER Measurement of Beer § 25.42 Testing of measuring devices... beer, the brewer shall periodically test the measuring device and adjust or repair it, if necessary... test; and (4) Corrective action taken, if necessary. (b) Requirements for beer meters. The...

  16. 27 CFR 25.42 - Testing of measuring devices.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... BUREAU, DEPARTMENT OF THE TREASURY LIQUORS BEER Measurement of Beer § 25.42 Testing of measuring devices... beer, the brewer shall periodically test the measuring device and adjust or repair it, if necessary... test; and (4) Corrective action taken, if necessary. (b) Requirements for beer meters. The...

  17. 27 CFR 25.42 - Testing of measuring devices.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... BUREAU, DEPARTMENT OF THE TREASURY LIQUORS BEER Measurement of Beer § 25.42 Testing of measuring devices... beer, the brewer shall periodically test the measuring device and adjust or repair it, if necessary... test; and (4) Corrective action taken, if necessary. (b) Requirements for beer meters. The...

  18. 21 CFR 882.1540 - Galvanic skin response measurement device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Galvanic skin response measurement device. 882.1540 Section 882.1540 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Galvanic skin response measurement device. (a) Identification. A galvanic skin response measurement...

  19. 21 CFR 882.1540 - Galvanic skin response measurement device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Galvanic skin response measurement device. 882.1540 Section 882.1540 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Galvanic skin response measurement device. (a) Identification. A galvanic skin response measurement...

  20. 21 CFR 882.1540 - Galvanic skin response measurement device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Galvanic skin response measurement device. 882.1540 Section 882.1540 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Galvanic skin response measurement device. (a) Identification. A galvanic skin response measurement...

  1. 21 CFR 882.1540 - Galvanic skin response measurement device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Galvanic skin response measurement device. 882.1540 Section 882.1540 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Galvanic skin response measurement device. (a) Identification. A galvanic skin response measurement...

  2. Infrared negative luminescent devices and higher operating temperature detectors

    NASA Astrophysics Data System (ADS)

    Nash, G. R.; Gordon, N. T.; Hall, D. J.; Ashby, M. K.; Little, J. C.; Masterton, G.; Hails, J. E.; Giess, J.; Haworth, L.; Emeny, M. T.; Ashley, T.

    2004-01-01

    Infrared LEDs and negative luminescent devices, where less light is emitted than in equilibrium, have been attracting an increasing amount of interest recently. They have a variety of applications, including as a ‘source’ of IR radiation for gas sensing; radiation shielding for, and non-uniformity correction of, high sensitivity staring infrared detectors; and dynamic infrared scene projection. Similarly, infrared (IR) detectors are used in arrays for thermal imaging and, discretely, in applications such as gas sensing. Multi-layer heterostructure epitaxy enables the growth of both types of device using designs in which the electronic processes can be precisely controlled and techniques such as carrier exclusion and extraction can be implemented. This enables detectors to be made which offer good performance at higher than normal operating temperatures, and efficient negative luminescent devices to be made which simulate a range of effective temperatures whilst operating uncooled. In both cases, however, additional performance benefits can be achieved by integrating optical concentrators around the diodes to reduce the volume of semiconductor material, and so minimise the thermally activated generation-recombination processes which compete with radiative mechanisms. The integrated concentrators are in the form of Winston cones, which can be formed using an iterative dry etch process involving methane/hydrogen and oxygen. We present results on negative luminescence in the mid- and long-IR wavebands, from devices made from indium antimonide and mercury cadmium telluride, where the aim is sizes greater than 1 cm×1 cm. We also discuss progress on, and the potential for, operating temperature and/or sensitivity improvement of detectors, where very high-performance imaging is anticipated from systems which require no mechanical cooling.

  3. Infrared Negative Luminescent Devices and Higher Operating Temperature Detectors

    NASA Astrophysics Data System (ADS)

    Ashley, Tim

    2003-03-01

    Infrared LEDs and negative luminescent devices, where less light is emitted than in equilibrium, have been attracting an increasing amount of interest recently. They have a variety of applications, including as a source' of IR radiation for gas sensing; radiation shielding for and non-uniformity correction of high sensitivity starring infrared detectors; and dynamic infrared scene projection. Similarly, IR detectors are used in arrays for thermal imaging and, discretely, in applications such as gas sensing. Multi-layer heterostructure epitaxy enables the growth of both types of device using designs in which the electronic processes can be precisely controlled and techniques such as carrier exclusion and extraction can be implemented. This enables detectors to be made which offer good performance at higher than normal operating temperatures, and efficient negative luminescent devices to be made which simulate a range of effective temperatures whilst operating uncooled. In both cases, however, additional performance benefits can be achieved by integrating optical concentrators around the diodes to reduce the volume of semiconductor material, and so minimise the thermally activated generation-recombination processes which compete with radiative mechanisms. The integrated concentrators are in the form of Winston cones, which can be formed using an iterative dry etch process involving methane/hydrogen and oxygen. We will present results on negative luminescence in the mid and long IR wavebands, from devices made from indium antimonide and mercury cadmium telluride, where the aim is sizes greater than 1cm x 1cm. We will also discuss progress on, and the potential for, operating temperature and/or sensitivity improvement of detectors, where very high performance imaging is anticipated from systems which require no mechanical cooling.

  4. Infrared negative luminescent devices and higher operating temperature detectors

    NASA Astrophysics Data System (ADS)

    Nash, Geoff R.; Gordon, Neil T.; Hall, David J.; Little, J. Chris; Masterton, G.; Hails, J. E.; Giess, J.; Haworth, L.; Emeny, Martin T.; Ashley, Tim

    2004-02-01

    Infrared LEDs and negative luminescent devices, where less light is emitted than in equilibrium, have been attracting an increasing amount of interest recently. They have a variety of applications, including as a ‘source" of IR radiation for gas sensing; radiation shielding for and non-uniformity correction of high sensitivity starring infrared detectors; and dynamic infrared scene projection. Similarly, IR detectors are used in arrays for thermal imaging and, discretely, in applications such as gas sensing. Multi-layer heterostructure epitaxy enables the growth of both types of device using designs in which the electronic processes can be precisely controlled and techniques such as carrier exclusion and extraction can be implemented. This enables detectors to be made which offer good performance at higher than normal operating temperatures, and efficient negative luminescent devices to be made which simulate a range of effective temperatures whilst operating uncooled. In both cases, however, additional performance benefits can be achieved by integrating optical concentrators around the diodes to reduce the volume of semiconductor material, and so minimise the thermally activated generation-recombination processes which compete with radiative mechanisms. The integrated concentrators are in the form of Winston cones, which can be formed using an iterative dry etch process involving methane/hydrogen and oxygen. We will present results on negative luminescence in the mid and long IR wavebands, from devices made from indium antimonide and mercury cadmium telluride, where the aim is sizes greater than 1cm x 1cm. We will also discuss progress on, and the potential for, operating temperature and/or sensitivity improvement of detectors, where very higher performance imaging is anticipated from systems which require no mechanical cooling.

  5. 121. Man with temperature probe aimed at armature measuring temperature ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    121. Man with temperature probe aimed at armature measuring temperature as armature heats up between the two electrodes. March 27, 1985 - Statue of Liberty, Liberty Island, Manhattan, New York County, NY

  6. Temperature and Strain Coefficient of Velocity for Langasite SAW Devices

    NASA Technical Reports Server (NTRS)

    Wilson, W. C.; Atkinson, G. M.

    2013-01-01

    Surface Acoustic Wave sensors on Langasite substrates are being investigated for aerospace applications. Characterization of the Langasite material properties must be performed before sensors can be installed in research vehicles. The coefficients of velocity for both strain and temperature have been determined. These values have also been used to perform temperature compensation of the strain measurements.

  7. Electron cyclotron beam measurement system in the Large Helical Device

    SciTech Connect

    Kamio, S. Takahashi, H.; Kubo, S.; Shimozuma, T.; Yoshimura, Y.; Igami, H.; Ito, S.; Kobayashi, S.; Mizuno, Y.; Okada, K.; Osakabe, M.; Mutoh, T.

    2014-11-15

    In order to evaluate the electron cyclotron (EC) heating power inside the Large Helical Device vacuum vessel and to investigate the physics of the interaction between the EC beam and the plasma, a direct measurement system for the EC beam transmitted through the plasma column was developed. The system consists of an EC beam target plate, which is made of isotropic graphite and faces against the EC beam through the plasma, and an IR camera for measuring the target plate temperature increase by the transmitted EC beam. This system is applicable to the high magnetic field (up to 2.75 T) and plasma density (up to 0.8 × 10{sup 19} m{sup −3}). This system successfully evaluated the transmitted EC beam profile and the refraction.

  8. Low temperature electroformation of TaOx-based resistive switching devices

    NASA Astrophysics Data System (ADS)

    Gala, Darshil K.; Sharma, Abhishek A.; Li, Dasheng; Goodwill, Jonathan M.; Bain, James A.; Skowronski, Marek

    2016-01-01

    Transport characteristics of TiN/Ta/TaOx/TiN resistive-switching crossbar devices with amorphous TaOx functional layer have been investigated at cryogenic temperatures. Quasi-DC I-V characteristics at 10 K show a negative differential resistance region followed by a rapid transition to the non-volatile formed state. Accounting for Joule heating, the device temperature at the point of switching was estimated at 150 K. Measurements of transient resistance at low stage temperatures revealed an abrupt drop of resistance delayed by a characteristic incubation time after the leading edge of the voltage pulse. The incubation time was a strong function of applied voltage but did not depend on temperature between 10 K and 100 K. This implies a very low activation energy of the threshold switching process at low temperatures. Both of these observations argue against the involvement of oxygen vacancy motion at the onset of the forming process.

  9. Temperature mapping of operating nanoscale devices by scanning probe thermometry.

    PubMed

    Menges, Fabian; Mensch, Philipp; Schmid, Heinz; Riel, Heike; Stemmer, Andreas; Gotsmann, Bernd

    2016-01-01

    Imaging temperature fields at the nanoscale is a central challenge in various areas of science and technology. Nanoscopic hotspots, such as those observed in integrated circuits or plasmonic nanostructures, can be used to modify the local properties of matter, govern physical processes, activate chemical reactions and trigger biological mechanisms in living organisms. The development of high-resolution thermometry techniques is essential for understanding local thermal non-equilibrium processes during the operation of numerous nanoscale devices. Here we present a technique to map temperature fields using a scanning thermal microscope. Our method permits the elimination of tip-sample contact-related artefacts, a major hurdle that so far has limited the use of scanning probe microscopy for nanoscale thermometry. We map local Peltier effects at the metal-semiconductor contacts to an indium arsenide nanowire and self-heating of a metal interconnect with 7 mK and sub-10 nm spatial temperature resolution. PMID:26936427

  10. Temperature mapping of operating nanoscale devices by scanning probe thermometry

    NASA Astrophysics Data System (ADS)

    Menges, Fabian; Mensch, Philipp; Schmid, Heinz; Riel, Heike; Stemmer, Andreas; Gotsmann, Bernd

    2016-03-01

    Imaging temperature fields at the nanoscale is a central challenge in various areas of science and technology. Nanoscopic hotspots, such as those observed in integrated circuits or plasmonic nanostructures, can be used to modify the local properties of matter, govern physical processes, activate chemical reactions and trigger biological mechanisms in living organisms. The development of high-resolution thermometry techniques is essential for understanding local thermal non-equilibrium processes during the operation of numerous nanoscale devices. Here we present a technique to map temperature fields using a scanning thermal microscope. Our method permits the elimination of tip-sample contact-related artefacts, a major hurdle that so far has limited the use of scanning probe microscopy for nanoscale thermometry. We map local Peltier effects at the metal-semiconductor contacts to an indium arsenide nanowire and self-heating of a metal interconnect with 7 mK and sub-10 nm spatial temperature resolution.

  11. Temperature mapping of operating nanoscale devices by scanning probe thermometry

    PubMed Central

    Menges, Fabian; Mensch, Philipp; Schmid, Heinz; Riel, Heike; Stemmer, Andreas; Gotsmann, Bernd

    2016-01-01

    Imaging temperature fields at the nanoscale is a central challenge in various areas of science and technology. Nanoscopic hotspots, such as those observed in integrated circuits or plasmonic nanostructures, can be used to modify the local properties of matter, govern physical processes, activate chemical reactions and trigger biological mechanisms in living organisms. The development of high-resolution thermometry techniques is essential for understanding local thermal non-equilibrium processes during the operation of numerous nanoscale devices. Here we present a technique to map temperature fields using a scanning thermal microscope. Our method permits the elimination of tip–sample contact-related artefacts, a major hurdle that so far has limited the use of scanning probe microscopy for nanoscale thermometry. We map local Peltier effects at the metal–semiconductor contacts to an indium arsenide nanowire and self-heating of a metal interconnect with 7 mK and sub-10 nm spatial temperature resolution. PMID:26936427

  12. Revisiting measurements of small scale temperature fluctuations

    NASA Astrophysics Data System (ADS)

    Gebauer, Christian; Bahri, Carla; Arwatz, Gilad; Fan, Yuyang; Hultmark, Marcus

    2013-11-01

    It is well known that high frequency temperature measurements are attenuated due to a non-flat frequency response. Based on the temperature correction model proposed by Arwatz et al. (under review), new experimental data is compared with existing measurements. Focus is laid on structure functions, probability density functions, and the behavior of small scale temperature fluctuations. Additionally, a new temperature sensor developed at Princeton University is utilized for further improvement of temperature measurements. The effect of temporal resolution on the temperature spectrum is investigated by comparing uncorrected data to corrected data and data acquired with the new fast response temperature sensor.

  13. Measuring Specific Heats at High Temperatures

    NASA Technical Reports Server (NTRS)

    Vandersande, Jan W.; Zoltan, Andrew; Wood, Charles

    1987-01-01

    Flash apparatus for measuring thermal diffusivities at temperatures from 300 to 1,000 degrees C modified; measures specific heats of samples to accuracy of 4 to 5 percent. Specific heat and thermal diffusivity of sample measured. Xenon flash emits pulse of radiation, absorbed by sputtered graphite coating on sample. Sample temperature measured with thermocouple, and temperature rise due to pulse measured by InSb detector.

  14. Development of a wireless blood pressure measuring device with smart mobile device.

    PubMed

    İlhan, İlhan; Yıldız, İbrahim; Kayrak, Mehmet

    2016-03-01

    Today, smart mobile devices (telephones and tablets) are very commonly used due to their powerful hardware and useful features. According to an eMarketer report, in 2014 there were 1.76 billion smartphone users (excluding users of tablets) in the world; it is predicted that this number will rise by 15.9% to 2.04 billion in 2015. It is thought that these devices can be used successfully in biomedical applications. A wireless blood pressure measuring device used together with a smart mobile device was developed in this study. By means of an interface developed for smart mobile devices with Android and iOS operating systems, a smart mobile device was used both as an indicator and as a control device. The cuff communicating with this device through Bluetooth was designed to measure blood pressure via the arm. A digital filter was used on the cuff instead of the traditional analog signal processing and filtering circuit. The newly developed blood pressure measuring device was tested on 18 patients and 20 healthy individuals of different ages under a physician's supervision. When the test results were compared with the measurements made using a sphygmomanometer, it was shown that an average 93.52% accuracy in sick individuals and 94.53% accuracy in healthy individuals could be achieved with the new device. PMID:26626086

  15. Device and method for measuring thermal conductivity of thin films

    NASA Technical Reports Server (NTRS)

    Amer, Tahani R. (Inventor); Subramanian, Chelakara (Inventor); Upchurch, Billy T. (Inventor); Alderfer, David W. (Inventor); Sealey, Bradley S. (Inventor); Burkett, Jr., Cecil G. (Inventor)

    2001-01-01

    A device and method are provided for measuring the thermal conductivity of rigid or flexible, homogeneous or heterogeneous, thin films between 50 .mu.m and 150 .mu.m thick with relative standard deviations of less than five percent. The specimen is sandwiched between like material, highly conductive upper and lower slabs. Each slab is instrumented with six thermocouples embedded within the slab and flush with their corresponding surfaces. A heat source heats the lower slab and a heat sink cools the upper slab. The heat sink also provides sufficient contact pressure onto the specimen. Testing is performed within a vacuum environment (bell-jar) between 10.sup.-3 to 10.sup.-6 Torr. An anti-radiant shield on the interior surface of the bell-jar is used to avoid radiation heat losses. Insulation is placed adjacent to the heat source and adjacent to the heat sink to prevent conduction losses. A temperature controlled water circulator circulates water from a constant temperature bath through the heat sink. Fourier's one-dimensional law of heat conduction is the governing equation. Data, including temperatures, are measured with a multi-channel data acquisition system. On-line computer processing is used for thermal conductivity calculations.

  16. Surface acoustic wave devices for wireless strain measurement

    NASA Astrophysics Data System (ADS)

    Chin, T.-L.; Zheng, Peng; Oppenheim, Irving J.; Greve, David W.

    2010-04-01

    Strain monitoring is a nondestructive inspection method that can reveal the redistribution of internal forces, or the presence of anomalous loadings, in structures. Surface acoustic wave (SAW) devices are small, robust, inexpensive solid-state components in which a wave propagates along the surface of a piezoelectric material, and such devices are used in large numbers commercially as delay devices and as filters. Changes in strain or temperature cause shifts in the acoustic wave speed, by which such SAW devices can also serve as sensors. We present analytical, FEM simulation, and experimental studies on SAW devices fabricated in our laboratory on lithium niobate wafers, with an inter-electrode spacing of 8 micrometers. We discuss the change in wave speed with temperature and with strain, we outline the influence of rotated cuts for the piezoelectric substrate, and we show results of laboratory sensing experiments. Moreover, an electrode on a SAW device can be terminated as an antenna and interrogated with a wireless RF probe to act as a passively-powered device, and we present laboratory results incorporating such wireless performance in our research investigation. We pattern one set of electrodes on the SAW device as a transducer connected to the antenna, and other sets of electrodes on the device acting as reflectors of the surface acoustic wave. At the RF frequencies used for SAW devices, it is realistic to use directional antennas on the probe unit to achieve reasonable stand-off distances.

  17. Apparatus Would Measure Temperatures Of Ball Bearings

    NASA Technical Reports Server (NTRS)

    Gibson, John C.; Fredricks, Thomas H.

    1995-01-01

    Rig for testing ball bearings under radial and axial loads and measuring surface temperatures undergoing development. Includes extensible thermocouples: by means of bellows as longitudinal positioners, thermocouples driven into contact with bearing balls to sense temperatures immediately after test run. Not necessary to disassemble rig or to section balls to obtain indirect indications of maximum temperatures reached. Thermocouple measurements indicate temperatures better than temperature-sensitive paints.

  18. Miniature wireless photoplethysmography devices: integration in garments and test measurements

    NASA Astrophysics Data System (ADS)

    Kviesis-Kipge, E.; Me??ika, V.; Rubenis, O.

    2012-06-01

    Wireless PPG devices were developed and embedded in everyday clothes (bandage, scarf, cycling glove and wrist strap) to monitor cardiovascular state of free-moving persons. The corresponding software for measurements also has been developed and tested in laboratory. Real-time measurements of PPG signals were taken in parallel with a professional ECG reference device, and high correlation was demonstrated.

  19. Suspension Device for Use with Low Temperature Refrigerator

    NASA Technical Reports Server (NTRS)

    Wegel, Donald C. (Inventor)

    2015-01-01

    A suspension device for use with a low temperature refrigeration system, such as an adiabatic demagnetization refrigerator is provided. A support ring is provided with three spring-loaded tension assemblies equally spaced about the periphery of the support ring. The tension assemblies each have a pulley, about which is entrained a band of material. Connected to this band is a ring that laterally supports a cylindrical salt pill. Undesired variations in the amount of slack in the band as the salt pill cools are compensated for by the spring loading of the tension assemblies.

  20. Quantum Effects in Nanoscale MOSFET Devices at Low Temperature

    NASA Astrophysics Data System (ADS)

    Day, Alexandra

    2014-03-01

    MOSFET transistors are a key component of virtually all modern electronic devices. Today's most advanced MOSFETs are small enough that quantum mechanical effects become relevant when considering their function and use. This project, completed at the National Institute of Standards and Technology as part of a Society of Physics Students internship, presents a first step in describing the theoretical behavior of nanoscale MOSFETs at low temperature. I acknowledge generous support from the Society of Physics Students and the National Institute of Standards and Technology.

  1. Improved system measures output energy of pyrotechnic devices

    NASA Technical Reports Server (NTRS)

    Shortly, E. M.

    1966-01-01

    System for measuring the output energy of pyrotechnic devices discharges the reaction products into a test chamber. It measures the radiant heat output from a pinhole aperture as well as internal pressure changes on a common time base.

  2. Measurement of turbine blade temperature using pyrometer

    NASA Astrophysics Data System (ADS)

    Cheng, H.; Du, C.

    1985-09-01

    This paper presents the study of application of a self-made turbine blade pyrometer to measuring rotating turbine blade temperatures in a bed testing aeroengine. The study includes the temperature measuring principle and the pyrometer system; installation and adjustment of the double ball-floating type configuration optical head which goes through four different high temperatures bulkheads; and measurement of three kinds of temperature (the average blade temperature Ta, the average peak blade temperature Tap, and the maximum peak blade temperature Tmp) for all rotor blades of the turbine first stage. The experimental data analysis reveals that the first attempt of application of this pyrometer is successful. The measurement errors in the temperature range of 550-1200 C are within + or - 1 percent of calculated blade temperatures.

  3. THERMAL COUPLE FOR MEASURING TEMPERATURE IN A REACTOR

    DOEpatents

    Kanne, W.

    1959-11-24

    A thermocouple device for measuring the temperature of a flowing fluid in a conduit within which is positioned a metallic rod is presented. A thermocouple junction is secured to the rod centrally, and thermal insulating support disks having a diameter greater than the rod are secured to the end portions of the rod and adapted to fit transversely in the conduit.

  4. MEMS Device Being Developed for Active Cooling and Temperature Control

    NASA Technical Reports Server (NTRS)

    Moran, Matthew E.

    2001-01-01

    High-capacity cooling options remain limited for many small-scale applications such as microelectronic components, miniature sensors, and microsystems. A microelectromechanical system (MEMS) is currently under development at the NASA Glenn Research Center to meet this need. It uses a thermodynamic cycle to provide cooling or heating directly to a thermally loaded surface. The device can be used strictly in the cooling mode, or it can be switched between cooling and heating modes in milliseconds for precise temperature control. Fabrication and assembly are accomplished by wet etching and wafer bonding techniques routinely used in the semiconductor processing industry. Benefits of the MEMS cooler include scalability to fractions of a millimeter, modularity for increased capacity and staging to low temperatures, simple interfaces and limited failure modes, and minimal induced vibration.

  5. Measurement of thermodynamic temperature of high temperature fixed points

    SciTech Connect

    Gavrilov, V. R.; Khlevnoy, B. B.; Otryaskin, D. A.; Grigorieva, I. A.; Samoylov, M. L.; Sapritsky, V. I.

    2013-09-11

    The paper is devoted to VNIIOFI's measurements of thermodynamic temperature of the high temperature fixed points Co-C, Pt-C and Re-C within the scope of the international project coordinated by the Consultative Committee for Thermometry working group 5 'Radiation Thermometry'. The melting temperatures of the fixed points were measured by a radiance mode radiation thermometer calibrated against a filter radiometer with known irradiance spectral responsivity via a high temperature black body. This paper describes the facility used for the measurements, the results and estimated uncertainties.

  6. Best practice in the measurement of body temperature.

    PubMed

    Davie, A; Amoore, J

    In the last two decades, there has been a significant change in the technology of clinical thermometry. Mercury-in-glass thermometers have been replaced with electronic devices that offer faster readings with minimal inconvenience to the patient. Each user should be aware of the characteristics and limitations of these devices to interpret correctly the temperature reading on the display. The article provides an insight into commonly used clinical thermometers, how they determine each temperature reading and, crucially, how users affect the measurement process. PMID:20695335

  7. High Density And High Temperature Plasmas In Large Helical Device

    NASA Astrophysics Data System (ADS)

    Komori, A.

    2010-07-01

    For the realization of the fusion reactor, it is necessary to confine high density and high temperature plasma for a time, which is well known as the Lawson criterion. To improve the plasma or confinement performance, vigorous experiments have been performed in the Large Helical Device (LHD) in National Institute for Fusion Science, which is the largest superconducting heliotron device with R = 3.9 m r = 0.6 m, Bt = 3 T. Recently a promising confinement regime called Super Dense Core (SDC) mode was discovered. An extremely high density core region with more than ~ 1 × 10^20 m-3 is obtained with the formation of an Internal Diffusion Barrier (IDB). The density gradient at the IDB (? = 0.6) is very high and the particle confinement in the core region is ~ 0.2 s. It is expected, for the future reactor, that the IDB-SDC mode has a possibility to achieve the self-ignition condition with lower temperature than expected before. The IDB-SDC mode is also favorable from the engineering point of view since one can moderate demands for heating devices and plasma facing components. In order to achieve the IDB-SDC mode, the central fuelling with the pellet injection and the low recycling condition are essential. A repetitive pellet injector was newly developed to continuously feed the particle source to the central region. For the recycling control, the effective divertor system should be employed to control the edge plasma. Conventional approaches to increase the temperature have also been tried in LHD. For the ion heating, the perpendicular neutral beam injection effectively increased the ion temperature more than 10 keV with the formation of the internal transport barrier (ITB). In the core region, the heat conductivity is improved to the neoclassical level, while no clear ITB for electron was seen. Another interesting phenomenon called "impurity hole" was observed inside the ITB. During the high ion temperature discharge, the im- purity density in the core region becomes low and its profile becomes hollow. The impurity atoms are pumped out, in spite of the negative electric field (ion root) inside the ITB. In the lecture, the mechanism of the impurity hole will also be discussed, together with the theoretical background and numerical results.

  8. Surface Temperature Measurement Using Hematite Coating

    NASA Technical Reports Server (NTRS)

    Bencic, Timothy J. (Inventor)

    2015-01-01

    Systems and methods that are capable of measuring temperature via spectrophotometry principles are discussed herein. These systems and methods are based on the temperature dependence of the reflection spectrum of hematite. Light reflected from these sensors can be measured to determine a temperature, based on changes in the reflection spectrum discussed herein.

  9. Pyrometric Gas and Surface Temperature Measurements

    NASA Technical Reports Server (NTRS)

    Fralick, Gustave; Ng, Daniel

    1999-01-01

    A multiwavelength pyrometer possessing advantages over the one- and two-wavelength designs is described. Results of its application to surface temperature measurements of ceramics is presented. Also described is a probe suitable for gas temperature measurements to temperatures > 2600 K. The design of the probe includes a multiwavelength pyrometer with fiber optic input.

  10. Measuring Poisson Ratios at Low Temperatures

    NASA Technical Reports Server (NTRS)

    Boozon, R. S.; Shepic, J. A.

    1987-01-01

    Simple extensometer ring measures bulges of specimens in compression. New method of measuring Poisson's ratio used on brittle ceramic materials at cryogenic temperatures. Extensometer ring encircles cylindrical specimen. Four strain gauges connected in fully active Wheatstone bridge self-temperature-compensating. Used at temperatures as low as liquid helium.

  11. [A simple measuring device for monitoring radiation in phototherapy].

    PubMed

    Eggert, P; Stick, C

    1984-04-01

    A simple low cost device is described for measuring the irradiation intensity used in phototherapy of hyperbilirubinemia in newborns. The spectral selectivity of the sensor is adapted to the most effective wavelength for phototherapy. The device can be calibrated in W/m2. A description of calibration is given. When fluorescent lamps adapted to phototherapy are used, the accuracy of the device can be compared to that of commercially manufactured units. The sensitivity is sufficient to measure differences of irradiance significant for the therapy. The device is suitable to quantify phototherapy of the newborn infant suffering from hyperbilirubinemia. PMID:6727897

  12. Micro-PIT/V --- Simultaneous temperature and velocity fields in microfluidic devices

    NASA Astrophysics Data System (ADS)

    Pottebaum, Tait

    2008-11-01

    The use of encapsulated thermochromic liquid crystals (TLC) for the simultaneous measurement of temperature and velocity fields in microfluidic devices has been demonstrated. Implementation of TLC thermometry at the micro-scale is significantly different than at the macro-scale due to the constraints on imaging and illumination configurations and the proximity of the measurements to interfaces and surfaces from which light will scatter. Unlike in micro-PIV, wavelength filtering (such as with fluorescent particles) cannot be used to remove undesired reflections, because the temperature information is carried by the particle color. Therefore, circular polarization filtering is used, exploiting the circular dichroism of TLC. Micro-PIT/V will enable new investigations into the physics of microfluidic devices involving temperature gradients, such as thermocapillary actuated devices and many ``lab-on-a-chip'' applications involving temperature sensitive chemical and biological processes. In addition, the design of operational devices can be improved by applying micro-PIT/V to the characterization of prototypes.

  13. Temperature measurement inside metallic cables using distributed temperature system

    NASA Astrophysics Data System (ADS)

    Jaros, Jakub; Papes, Martin; Liner, Andrej; Vasinek, Vladimir; Mach, Veleslav; Hruby, David; Kajnar, Tomas; Perecar, Frantisek

    2015-07-01

    Nowadays, metallic cables are produced so as to avoid the maximum allowable temperature of the cable by the normal operation and the maximum allowable temperature for short-circuit the exceeding the maximum allowable internal temperature. The temperature increase is an unwanted phenomena causing losses in the cable and its abrasion. Longterm overload can lead to damaging of the cable or to the risk of fire in extreme cases. In our work, we present the temperature distribution measurement inside the metallic cables using distributed temperature system. Within the cooperation with manufacturer of the metallic cables, optical fibers were implemented into these cables. The cables are double coated and the fibers are allocated between these coatings and also in the centre of the cable. Thus we are able to measure the temperature inside the cable and also on the surface temperature along the whole cable length with spatial resolution 1 m during the cable heating. This measurement method can be also used for short-circuit prediction and detection, because this phenomena is always accompanied with temperature increase. Distributed temperature systems are already successfully implemented in temperature measurements in industry environment, such as construction, sewer systems, caliducts etc. The main advantage of these systems is electromagnetic resistance, low application price and the possibility of monitoring several kilometers long distances.

  14. Devices for moisture measurement in natural gas

    SciTech Connect

    Kahmann, A.R.

    1984-04-01

    The Dew Point Tester incorporates a pressure-tight chamber to contain the gas or vapor test sample and valves for controlling gas flow. At one end of the chamber, a clear plastic window is installed to allow observation of the chamber's interior and mirror. The mirror is highly polished stainless steel and is attached at its center to a copper thermometer well. A chiller attached to the thermometer well controls expansion of refrigerant and the temperature of the mirror. The mirror's temperature is indicated by a thermometer whose bulb is located close to the mirror's back surface.

  15. Adiabatic temperature change from non-adiabatic measurements

    NASA Astrophysics Data System (ADS)

    Carvalho, A. Magnus G.; Salazar Mejía, C.; Ponte, C. A.; Silva, L. E. L.; Kaštil, J.; Kamarád, J.; Gomes, A. M.

    2016-03-01

    In this work, we present a methodology to obtain the adiabatic temperature change from non-adiabatic measurements, which combines a homemade calorimetric device (used to measure the temperature change of magnetic materials) and a thermodynamic model (that accounts for the energy losses). This model fits optimally the thermomagnetic responses of metallic gadolinium at different conditions. The results for gadolinium indicate that, with the combination of our experimental setup and thermodynamic model, we are able to determine the real adiabatic temperature change in any magnetic material at stable equilibrium, even far from adiabatic conditions.

  16. Device for spectral emissivity measurements of ceramics using a FT-IR spectrometer

    NASA Astrophysics Data System (ADS)

    Bauer, Wolfgang; Moldenhauer, Alexander

    2004-08-01

    Ceramic materials, in particular high temperature technical ceramics and refractories, are used in a wide range of temperature. Band and total emissivities of ceramics are needed for non-contact temperature measurements and for modeling of radiation heat transfer. If the spectral emissivities are known in a sufficient range of wavelength and temperature, the band and total emissivities for most applications can be calculated. At the University Duisburg-Essen an experimental setup for measuring of temperature-dependent spectral emissivities was modernized with a FT-IR-spectrometer. A remarkable quality improvement of the measurements could be reached. The spectral and temperature ranges of the measuring device are now 0.8 to 25 μm and 100 to 1200°C. In the paper a description of the measuring device will be given and selected examples of measuring possibilities of the spectrometer are shown. By the example of high temperature ceramics the obtained improvements of the device are presented for measured temperature-dependent spectral emissivities.

  17. Optical vibration measurement of mechatronics devices

    NASA Astrophysics Data System (ADS)

    Yanabe, Shigeo

    1993-09-01

    An optical vibration measuring system which enables to detect both linear and angular displacement of 25 nm and 5 prad was developed. The system is mainly composed of a He-Ne laser, a displacement detecting photo-diode and lenses, and has linear and angular displacement magnification mechanism using two different principles of optical lever. The system was applied to measure vibrational characteristics of magnetic head slider of hard disk drives and to measure stator teeth driving velocities of ultrasonic motor.

  18. A Compilation of Measurement Devices Compendia

    ERIC Educational Resources Information Center

    Redick, Ronald L.

    1975-01-01

    Some 30 compendia of evaluation measures now exist to supplement the Buro's Mental Measurements Yearbooks. This article gives bibliographic and descriptive information about the compendia, in order that evaluators can gain access to a wide range of instruments before deciding whether to construct their own. (Author)

  19. Concept for improved vacuum pressure measuring device

    NASA Technical Reports Server (NTRS)

    Medved, D. B.

    1969-01-01

    To measure vacuum pressures in the range of 5 times 10 to the minus 7 to 5 times 10 to the minus 16, a semiconductor resistor composed of sintered zinc oxide is used. Through the effect of surface absorbed gases on the resistance of the semiconductor material, very low pressures are measured.

  20. Test device for measuring permeability of a barrier material

    DOEpatents

    Reese, Matthew; Dameron, Arrelaine; Kempe, Michael

    2014-03-04

    A test device for measuring permeability of a barrier material. An exemplary device comprises a test card having a thin-film conductor-pattern formed thereon and an edge seal which seals the test card to the barrier material. Another exemplary embodiment is an electrical calcium test device comprising: a test card an impermeable spacer, an edge seal which seals the test card to the spacer and an edge seal which seals the spacer to the barrier material.

  1. Measurement of Assistive Device Use: Implications for Estimates of Device Use and Disability in Late Life

    ERIC Educational Resources Information Center

    Cornman, Jennifer C.; Freedman, Vicki A.; Agree, Emily M.

    2005-01-01

    Purpose: This study systematically reviews approaches that national surveys have used to measure the use of assistive devices and examines the implications of these different approaches for prevalence estimates of device use and disability in late life. Design and Methods: Cross-sectional data from six national surveys are used to compare rates of…

  2. Temperature Correction in Probe Measurements

    NASA Astrophysics Data System (ADS)

    Gutsev, S. A.

    2015-09-01

    This work is devoted to experimental investigations of a decaying plasma using Langmuir probes. The gas pressure, the discharge current, and the moment of afterglow were selected to obtain probe characteristics in collisionless, intermediate, and drifting regimes of motion of charged particles. The manner in which the shape of the volt- ampere characteristics changes on passage from the collisionless motion to diffusion motion has been shown. A detailed analysis has been made of the source of errors arising when orbital-motion formulas or the logarithmic-operation method are applied to processing of the probe curves. It has been shown that neglect of collisions of charged particles in the probe layer leads to an ion-density value overstated more than three times, an electron-temperature value overstated two times, and an ion temperature overstated three to nine times. A model of interaction of charged particles in the probe layer has been proposed for correction of the procedure of determining temperature. Such an approach makes it possible to determine the space-charge layer in the probe, and also the value of the self-consistent field. The use of the developed procedures gives good agreement between experimental and theoretical results.

  3. Design and development of 80 meters laser interferometric measurement standard device

    NASA Astrophysics Data System (ADS)

    Miao, Dongjing; Li, Jianshuang; He, Mingzhao; Deng, Xiangrui; Li, Lianfu

    2015-02-01

    A large-scale laser interferometric measurement standard device was designed and developed to improve the quantity transmission and calibration capabilities for linear measuring tools and large-scale high precision measurement instruments such as laser trackers, laser scanners and electronic total stations, etc. It consisted of an 80 meters granite guiding rail system, a length measuring system composed of three interferometers, a coarse-fine composite motion platform, environmental parameter (air pressure, temperature and humidity) automatic measuring system, and an image aiming system. The uncertainty of the standard device was analyzed, and a comparative experiment was made to determine the calibration capability of the built standard device. Experiment result indicated that the measurement uncertainty of this standard device to calibrate the other interferometers was better than 0.1μm + 1.0 × 10-7 L(k = 2).

  4. A device to investigate the delamination strength in laminates at room and cryogenic temperature.

    PubMed

    Zhang, Xingyi; Liu, Wei; Zhou, Jun; Zhou, You-He

    2014-12-01

    We construct an instrument to study the behavior of delamination strength in laminates which can be defined as the critical transverse stress at which an actual delamination occurs. The device allows the anvil measurements at room temperature or the liquid nitrogen temperature. For the electro-magnetic laminated materials (e.g., a superconducting YaBa2Cu3O(7-x) coated conductor which has a typical laminated structure), the delamination strength was measured while the properties of transport current were also recorded. Moreover, the influences of external magnetic field on the delamination strength were presented. PMID:25554334

  5. Probes For Measuring Changing Internal Temperatures

    NASA Technical Reports Server (NTRS)

    Hunt, S. B.; Durtschi, J.; Smith, D.; Maw, Joel; Sakaguchi, M.; Smart, L.; Blake, B.

    1995-01-01

    Improved thermocouple probes devised for measuring rapidly changing temperatures within layers of solid materials. In original application, layers in question are carbon-cloth phenolic liners in solid-rocket motor nozzles, and probes inserted in layers to various depths of order of 0.5 in. measure changing temperatures in layers during hot-fire tests. Probe concept adapted to measurements of temperatures inside various other layers, materials, and components, including material test specimens.

  6. Nanometer-scale temperature imaging for independent observation of Joule and Peltier effects in phase change memory devices.

    PubMed

    Grosse, Kyle L; Pop, Eric; King, William P

    2014-09-01

    This paper reports a technique for independent observation of nanometer-scale Joule heating and thermoelectric effects, using atomic force microscopy (AFM) based measurements of nanometer-scale temperature fields. When electrical current flows through nanoscale devices and contacts the temperature distribution is governed by both Joule and thermoelectric effects. When the device is driven by an electrical current that is both periodic and bipolar, the temperature rise due to the Joule effect is at a different harmonic than the temperature rise due to the Peltier effect. An AFM tip scanning over the device can simultaneously measure all of the relevant harmonic responses, such that the Joule effect and the Peltier effect can be independently measured. Here we demonstrate the efficacy of the technique by measuring Joule and Peltier effects in phase change memory devices. By comparing the observed temperature responses of these working devices, we measure the device thermopower, which is in the range of 30 ± 3 to 250 ± 10 μV K(-1). This technique could facilitate improved measurements of thermoelectric phenomena and properties at the nanometer-scale. PMID:25273761

  7. Nanometer-scale temperature imaging for independent observation of Joule and Peltier effects in phase change memory devices

    SciTech Connect

    Grosse, Kyle L.; Pop, Eric; King, William P.

    2014-09-15

    This paper reports a technique for independent observation of nanometer-scale Joule heating and thermoelectric effects, using atomic force microscopy (AFM) based measurements of nanometer-scale temperature fields. When electrical current flows through nanoscale devices and contacts the temperature distribution is governed by both Joule and thermoelectric effects. When the device is driven by an electrical current that is both periodic and bipolar, the temperature rise due to the Joule effect is at a different harmonic than the temperature rise due to the Peltier effect. An AFM tip scanning over the device can simultaneously measure all of the relevant harmonic responses, such that the Joule effect and the Peltier effect can be independently measured. Here we demonstrate the efficacy of the technique by measuring Joule and Peltier effects in phase change memory devices. By comparing the observed temperature responses of these working devices, we measure the device thermopower, which is in the range of 30 ± 3 to 250 ± 10 μV K{sup −1}. This technique could facilitate improved measurements of thermoelectric phenomena and properties at the nanometer-scale.

  8. Optical distance measurement device and method thereof

    DOEpatents

    Bowers, Mark W.

    2003-05-27

    A system and method of efficiently obtaining distance measurements of a target. A modulated optical beam may be used to determine the distance to the target. A first beam splitter may be used to split the optical beam and a second beam splitter may be used to recombine a reference beam with a return ranging beam. An optical mixing detector may be used in a receiver to efficiently detect distance measurement information.

  9. Finger temperature controller for non-invasive blood glucose measurement

    NASA Astrophysics Data System (ADS)

    Zhang, Xiqin; Ting, Choon Meng; Yeo, Joon Hock

    2010-11-01

    Blood glucose level is an important parameter for doctors to diagnose and treat diabetes. The Near-Infra-Red (NIR) spectroscopy method is the most promising approach and this involves measurement on the body skin. However it is noted that the skin temperature does fluctuate with the environmental and physiological conditions and we found that temperature has important influences on the glucose measurement. In-vitro and in-vivo investigations on the temperature influence on blood glucose measurement have been carried out. The in-vitro results show that water temperature has significant influence on water absorption. Since 90% of blood components are water, skin temperature of measurement site has significant influence on blood glucose measurement. Also the skin temperature is related to the blood volume, blood volume inside capillary vessels changes with skin temperature. In this paper the relationship of skin temperature and signal from the skin and inside tissue was studied at different finger temperatures. Our OGTT (oral glucose tolerance test) trials results show the laser signals follow the skin temperature trend and the correlation of signal and skin temperature is much stronger than the correlation of signal and glucose concentration. A finger heater device is designed to heat and maintain the skin temperature of measurement site. The heater is controlled by an electronic circuit according to the skin temperature sensed by a thermocouple that is put close to the measurement site. In vivo trials were carried out and the results show that the skin temperature significantly influences the signal fluctuations caused by pulsate blood and the average signal value.

  10. Evaluation of Measuring Devices Packaged With Prescription Oral Liquid Medications

    PubMed Central

    Johnson, Anthony

    2016-01-01

    OBJECTIVES: The US Food and Drug Administration industry guidelines for manufacturers of oral, over-the-counter, liquid medications recommend that these products be packaged with dosage-delivery devices. This study describes the prevalence of these devices and instructions packaged with prescription, oral, liquid medications. METHODS: This was a descriptive study of prescription oral-liquid medications dispensed during a 6-month period at a community pharmacy. Product information was obtained from the National Library of Medicine's DailyMed database and from the products themselves. Endpoints included provision of a measuring device, the type of device, the maximum dose measurable and intervals on the provided device, and inclusion of instructions to the pharmacist. RESULTS: A total of 382 liquid prescription medications were included in the study. Forty-nine of the 382 products (12.8%) were packaged with a measuring device. The most commonly provided device was a calibrated dropper (n = 18; 36.7%), followed by an oral syringe with a bottle adaptor (n = 9, 18.4%). Specific instructions on proper use of the provided measuring device were included with 20 products (40.8%). Among the products that did not provide a measuring device, only 70 of the 333 package inserts (21%) included instructions to the pharmacist regarding counseling the patient on proper administration. CONCLUSIONS: Packaging of prescription oral-liquid medications is inconsistent and leaves room for vast variability in patient or parent administration practices. In the future, patterns of actual dispensing practices among pharmacies and pharmacists would help determine the true incidence of dispensing of measuring devices. PMID:26997931

  11. Method and apparatus for optical temperature measurements

    DOEpatents

    Angel, S. Michael; Hirschfeld, Tomas B.

    1988-01-01

    A method and apparatus are provided for remotely monitoring temperature. Both method and apparatus employ a temperature probe material having an excitation-dependent emission line whose fluorescence intensity varies directly with temperature whenever excited by light having a first wavelength and whose fluorescence intensity varies inversely with temperature whenever excited by light having a second wavelength. Temperature is measured by alternatively illuminating the temperature probe material with light having the first wavelength and light having the second wavelength, monitoring the intensity of the successive emissions of the excitation-dependent emission line, and relating the intensity ratio of successive emissions to temperature.

  12. Method and apparatus for optical temperature measurements

    DOEpatents

    Angel, S.M.; Hirschfeld, T.B.

    1986-04-22

    A method and apparatus are provided for remotely monitoring temperature. Both method and apparatus employ a temperature probe material having an excitation-dependent emission line whose fluorescence intensity varies directly with temperature whenever excited by light having a first wavelength and whose fluorescence intensity varies inversely with temperature whenever excited by light having a second wavelength. Temperature is measured by alternatively illiminating the temperature probe material with light having the first wavelength and light having the second wavelength, monitoring the intensity of the successive emissions of the excitation-dependent emission line, and relating the intensity ratio of successive emissions to temperature. 3 figs.

  13. Highly Directional Room-Temperature Single Photon Device.

    PubMed

    Livneh, Nitzan; Harats, Moshe G; Istrati, Daniel; Eisenberg, Hagai S; Rapaport, Ronen

    2016-04-13

    One of the most important challenges in modern quantum optical applications is the demonstration of efficient, scalable, on-chip single photon sources, which can operate at room temperature. In this paper we demonstrate a room-temperature single photon source based on a single colloidal nanocrystal quantum dot positioned inside a circular bulls-eye shaped hybrid metal-dielectric nanoantenna. Experimental results show that 20% of the photons are emitted into a very low numerical aperture (NA < 0.25), a 20-fold improvement over a free-standing quantum dot, and with a probability of more than 70% for a single photon emission. With an NA = 0.65 more than 35% of the single photon emission is collected. The single photon purity is limited only by emission from the metal, an obstacle that can be bypassed with careful design and fabrication. The concept presented here can be extended to many other types of quantum emitters. Such a device paves a promising route for a high purity, high efficiency, on-chip single photon source operating at room temperature. PMID:26963878

  14. Video integrated measurement system. [Diagnostic display devices

    SciTech Connect

    Spector, B.; Eilbert, L.; Finando, S.; Fukuda, F.

    1982-06-01

    A Video Integrated Measurement (VIM) System is described which incorporates the use of various noninvasive diagnostic procedures (moire contourography, electromyography, posturometry, infrared thermography, etc.), used individually or in combination, for the evaluation of neuromusculoskeletal and other disorders and their management with biofeedback and other therapeutic procedures. The system provides for measuring individual diagnostic and therapeutic modes, or multiple modes by split screen superimposition, of real time (actual) images of the patient and idealized (ideal-normal) models on a video monitor, along with analog and digital data, graphics, color, and other transduced symbolic information. It is concluded that this system provides an innovative and efficient method by which the therapist and patient can interact in biofeedback training/learning processes and holds considerable promise for more effective measurement and treatment of a wide variety of physical and behavioral disorders.

  15. Proton irradiation of a swept charge device at cryogenic temperature and the subsequent annealing

    NASA Astrophysics Data System (ADS)

    Gow, J. P. D.; Smith, P. H.; Pool, P.; Hall, D. J.; Holland, A. D.; Murray, N. J.

    2015-01-01

    A number of studies have demonstrated that a room temperature proton irradiation may not be sufficient to provide an accurate estimation of the impact of the space radiation environment on detector performance. This is a result of the relationship between defect mobility and temperature, causing the performance to vary subject to the temperature history of the device from the point at which it was irradiated. Results measured using Charge Coupled Devices (CCD) irradiated at room temperature therefore tend to differ from those taken when the device was irradiated at a cryogenic temperature, more appropriate considering the operating conditions in space, impacting the prediction of in-flight performance. This paper describes the cryogenic irradiation, and subsequent annealing of an e2v technologies Swept Charge Device (SCD) CCD236 irradiated at -35.4°C with a 10 MeV equivalent proton fluence of 5.0 × 108 protons · cm-2. The CCD236 is a large area (4.4 cm2) X-ray detector that will be flown on-board the Chandrayaan-2 and Hard X-ray Modulation Telescope spacecraft, in the Chandrayaan-2 Large Area Soft X-ray Spectrometer and the Soft X-ray Detector respectively. The SCD is readout continually in order to benefit from intrinsic dither mode clocking, leading to suppression of the surface component of the dark current and allowing the detector to be operated at warmer temperatures than a conventional CCD. The SCD is therefore an excellent choice to test and demonstrate the variation in the impact of irradiation at cryogenic temperatures in comparison to a more typical room temperature irradiation.

  16. Optical Distance Measurement Device And Method Thereof

    DOEpatents

    Bowers, Mark W.

    2004-06-15

    A system and method of efficiently obtaining distance measurements of a target by scanning the target. An optical beam is provided by a light source and modulated by a frequency source. The modulated optical beam is transmitted to an acousto-optical deflector capable of changing the angle of the optical beam in a predetermined manner to produce an output for scanning the target. In operation, reflected or diffused light from the target may be received by a detector and transmitted to a controller configured to calculate the distance to the target as well as the measurement uncertainty in calculating the distance to the target.

  17. A low-temperature sample orienting device for single crystal spectroscopy at the SNS

    SciTech Connect

    Bruce, Douglas R; Gaulin, Bruce D.; Granroth, Garrett E; Roberts II, Charles K; Sherline, Todd E; Solomon, Landon M

    2010-01-01

    A low temperature sample orientation device providing three axes of rotation has been successfully built and is in testing for use on several spectrometers at the spallation neutron source (SNS). Sample rotation about the vertical ({omega}) axis of nearly 360{sup o} and out of plane tilts ({phi} and {nu}) of from -3.4{sup o} to 4.4{sup o} and from -2.8{sup o} to 3.5{sup o}, respectively, are possible. An off-the-shelf closed cycle refrigerator (CCR) is mounted on a room temperature sealed rotary flange providing {omega} rotations of the sample. Out-of-plane tilts are made possible by piezoelectric actuated angular positioning devices mounted on the low temperature head of the CCR. Novel encoding devices based on magnetoresistive sensors have been developed to measure the tilt stage angles. This combination facilitates single crystal investigations from room temperature to 3.1 K. Commissioning experiments of the rotating CCR for both powder and single crystal samples have been performed on the ARCS spectrometer at the SNS. For the powder sample this device was used to continuously rotate the sample and thus average out any partial orientation of the powder. The powder rings observed in S(Q) are presented. For the single crystal sample, the rotation was used to probe different regions of momentum transfer (Q-space). Laue patterns obtained from a single crystal sample at two rotation angles are presented.

  18. Method and apparatus for optical temperature measurement

    DOEpatents

    O'Rourke, Patrick E.; Livingston, Ronald R.; Prather, William S.

    1994-01-01

    A temperature probe and a method for using said probe for temperature measurements based on changes in light absorption by the probe. The probe comprises a first and a second optical fiber that carry light to and from the probe, and a temperature sensor material, the absorbance of which changes with temperature, through which the light is directed. Light is directed through the first optical fiber, passes through the temperature sensor material, and is transmitted by a second optical fiber from the material to a detector. Temperature-dependent and temperature-independent factors are derived from measurements of the transmitted light intensity. For each sensor material, the temperature T is a function of the ratio, R, of these factors. The temperature function f(R) is found by applying standard data analysis techniques to plots of T versus R at a series of known temperatures. For a sensor having a known temperature function f(R) and known characteristic and temperature-dependent factors, the temperature can be computed from a measurement of R. Suitable sensor materials include neodymium-doped boresilicate glass, accurate to .+-.0.5.degree. C. over an operating temperature range of about -196.degree. C. to 400.degree. C.; and a mixture of D.sub.2 O and H.sub.2 O, accurate to .+-.0.1.degree. C. over an operating range of about 5.degree. C. to 90.degree. C.

  19. Method and apparatus for optical temperature measurement

    DOEpatents

    O'Rourke, P.E.; Livingston, R.R.; Prather, W.S.

    1994-09-20

    A temperature probe and a method for using said probe for temperature measurements based on changes in light absorption by the probe are disclosed. The probe comprises a first and a second optical fiber that carry light to and from the probe, and a temperature sensor material, the absorbance of which changes with temperature, through which the light is directed. Light is directed through the first optical fiber, passes through the temperature sensor material, and is transmitted by a second optical fiber from the material to a detector. Temperature-dependent and temperature-independent factors are derived from measurements of the transmitted light intensity. For each sensor material, the temperature T is a function of the ratio, R, of these factors. The temperature function f(R) is found by applying standard data analysis techniques to plots of T versus R at a series of known temperatures. For a sensor having a known temperature function f(R) and known characteristic and temperature-dependent factors, the temperature can be computed from a measurement of R. Suitable sensor materials include neodymium-doped borosilicate glass, accurate to [+-]0.5 C over an operating temperature range of about [minus]196 C to 400 C; and a mixture of D[sub 2]O and H[sub 2]O, accurate to [+-]0.1 C over an operating range of about 5 C to 90 C. 13 figs.

  20. Implanted Blood-Pressure-Measuring Device

    NASA Technical Reports Server (NTRS)

    Fischell, Robert E.

    1988-01-01

    Arterial pressure compared with ambient bodily-fluid pressure. Implanted apparatus, capable of measuring blood pressure of patient, includes differential-pressure transducer connected to pressure sensor positioned in major artery. Electrical signal is function of differential pressure between blood-pressure sensor and reference-pressure sensor transmitted through skin of patient to recorder or indicator.

  1. An improved device to measure cottonseed strength

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During processing, seeds of cotton cultivars with fragile seeds often break and produce seed coat fragments that can cause processing problems at textile mills. A cottonseed shear tester, previously developed to measure cottonseed strength, was modified with enhancements to the drive system to provi...

  2. Dynamics of a finite temperature Bose gas in atomtronic devices

    NASA Astrophysics Data System (ADS)

    Colussi, Victor; Holland, Murray; Anderson, Dana Z.

    2014-05-01

    We investigate the problem of modeling atomtronic devices that utilize the nonequilibrium dynamics of a finite temperature Bose-condensed gas placed underneath an atom chip to mimic the properties of classical circuit elements. Our model consists of the full dynamics of the condensate and thermal cloud. The thermal cloud is treated semiclassically, in the spirit of the ZNG method (Zaremba, Nikuni and Griffin.) However, we develop a novel procedure to account for collisions between the condensate and thermal cloud which evaluates collision rates directly. We present the results of this model compared to two experiments: the atomtronic battery and transistor [arXiv:1208.3109v2]. Also presented are predictions for more complex circuit elements. This work is funded by the NSF Physics Frontier Center at JILA and by the Air Force Office of Scientific Research.

  3. Measuring Moduli Of Elasticity At High Temperatures

    NASA Technical Reports Server (NTRS)

    Wolfenden, Alan

    1993-01-01

    Shorter, squatter specimens and higher frequencies used in ultrasonic measurement technique. Improved version of piezo-electric ultrasonic composite oscillator technique used to measure moduli of elasticity of solid materials at high temperatures.

  4. 29. HAWSER DEVICE, DEVELOPED AT WES FOR MEASURING LONGITUDINAL AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. HAWSER DEVICE, DEVELOPED AT WES FOR MEASURING LONGITUDINAL AND TRANSVERSE STRESS OF BARGES IN CANAL LOCKS. - Waterways Experiment Station, Hydraulics Laboratory, Halls Ferry Road, 2 miles south of I-20, Vicksburg, Warren County, MS

  5. Apparatus for measuring semiconductor device resistance

    NASA Technical Reports Server (NTRS)

    Matzen, W. J. (Inventor)

    1980-01-01

    A test structure is described for enabling the accurate measurement of the resistance characteristics of a semiconductor material and includes one or more pairs of electrical terminals disposed on the surface of the material to enable measurements of the resistance encountered by currents passed between the terminals. A pair of terminals includes a first terminal extending in a closed path, such as a circle, around a second terminal, so that all currents flowing between the terminals flow along a region of known width and length. Two or more pairs of concentric terminals can be utilized, wherein the ratio of radii of each pair of terminals is the same as the ratio for all other pairs of terminals, to facilitate the calculation of the contact resistance between each terminal and the semiconductor surface, as well as the calculation of the resistance of the semiconductor material apart from the effect of the terminal to semiconductor contact resistances.

  6. Minimizing noise-temperature measurement errors

    NASA Technical Reports Server (NTRS)

    Stelzried, C. T.

    1992-01-01

    An analysis of noise-temperature measurement errors of low-noise amplifiers was performed. Results of this analysis can be used to optimize measurement schemes for minimum errors. For the cases evaluated, the effective noise temperature (Te) of a Ka-band maser can be measured most accurately by switching between an ambient and a 2-K cooled load without an isolation attenuator. A measurement accuracy of 0.3 K was obtained for this example.

  7. Non-intrusive temperature measurement using microscale visualization techniques

    NASA Astrophysics Data System (ADS)

    Chamarthy, Pramod; Garimella, Suresh V.; Wereley, Steven T.

    2009-07-01

    μPIV is a widely accepted tool for making accurate measurements in microscale flows. The particles that are used to seed the flow, due to their small size, undergo Brownian motion which adds a random noise component to the measurements. Brownian motion introduces an undesirable error in the velocity measurements, but also contains valuable temperature information. A PIV algorithm which detects both the location and broadening of the correlation peak can measure velocity as well as temperature simultaneously using the same set of images. The approach presented in this work eliminates the use of the calibration constant used in the literature (Hohreiter et al. in Meas Sci Technol 13(7):1072-1078, 2002), making the method system-independent, and reducing the uncertainty involved in the technique. The temperature in a stationary fluid was experimentally measured using this technique and compared to that obtained using the particle tracking thermometry method and a novel method, low image density PIV. The method of cross-correlation PIV was modified to measure the temperature of a moving fluid. A standard epi-fluorescence μPIV system was used for all the measurements. The experiments were conducted using spherical fluorescent polystyrene-latex particles suspended in water. Temperatures ranging from 20 to 80°C were measured. This method allows simultaneous non-intrusive temperature and velocity measurements in integrated cooling systems and lab-on-a-chip devices.

  8. Survey and Experimental Testing of Nongravimetric Mass Measurement Devices

    NASA Technical Reports Server (NTRS)

    Oakey, W. E.; Lorenz, R.

    1977-01-01

    Documentation presented describes the design, testing, and evaluation of an accelerated gravimetric balance, a low mass air bearing oscillator of the spring-mass type, and a centrifugal device for liquid mass measurement. A direct mass readout method was developed to replace the oscillation period readout method which required manual calculations to determine mass. A protoype 25 gram capacity micro mass measurement device was developed and tested.

  9. Experimental device for measuring the momentum of disperse granular materials

    SciTech Connect

    Watling, H.E.; Griffiths, S.K.

    1982-02-10

    An experimental device for measuring the time averaged momentum associated with a steady stream of a disperse granular material has been developed. The mathematical basis for the device is presented including a discussion of using the momentum measurement to compute the local mass or energy fluxes. The analysis considers both nonuniform particle mass and nonuniform velocities for the various constituents of an aggregate material. The results of calibration experiments conducted with a prototype transducer are shown with theoretical predictions of these results.

  10. Temperature measurement systems in wearable electronics

    NASA Astrophysics Data System (ADS)

    Walczak, S.; Gołebiowski, J.

    2014-08-01

    The aim of this paper is to present the concept of temperature measurement system, adapted to wearable electronics applications. Temperature is one of the most commonly monitored factor in smart textiles, especially in sportswear, medical and rescue products. Depending on the application, measured temperature could be used as an initial value of alert, heating, lifesaving or analysis system. The concept of the temperature measurement multi-point system, which consists of flexible screen-printed resistive sensors, placed on the T-shirt connected with the central unit and the power supply is elaborated in the paper.

  11. Quantitative shearography in axisymmetric gas temperature measurements

    NASA Astrophysics Data System (ADS)

    VanDerWege, Brad A.; O'Brien, Christopher J.; Hochgreb, Simone

    1999-06-01

    This paper describes the use of shearing interferometry (shearography) for the quantitative measurement of gas temperatures in axisymmetric systems in which vibration and shock are substantial, and measurement time is limited. The setup and principle of operation of the interferometer are described, as well as Fourier-transform-based fringe pattern analysis, Abel transform, and sensitivity of the phase lead to temperature calculation. A helium jet and a Bunsen burner flame are shown as verification of the diagnostic. The accuracy of the measured temperature profile is shown to be limited by the Abel transform and is critically dependent on the reference temperature used.

  12. High temperature hall effect measurement system design, measurement and analysis

    NASA Astrophysics Data System (ADS)

    Berkun, Isil

    A reliable knowledge of the transport properties of semiconductor materials is essential for the development and understanding of a number of electronic devices. In this thesis, the work on developing a Hall Effect measurement system with software based data acqui- sition and control for a temperature range of 300K-700K will be described. A system was developed for high temperature measurements of materials including single crystal diamond, poly-crystalline diamond, and thermoelectric compounds. An added capability for monitor- ing the current versus voltage behavior of the contacts was used for studying the influence of ohmic and non-ohmic contacts on Hall Effect measurements. The system has been primar- ily used for testing the transport properties of boron-doped single crystal diamond (SCD) deposited in a microwave plasma-assisted chemical vapor deposition (MPCVD) reactor [1]. Diamond has several outstanding properties that are of high interest for its development as an electronic material. These include a relatively wide band gap of 5.5 (eV), high thermal conductivity, high mobility, high saturation velocity, and a high breakdown voltage. For a temperature range of 300K-700K, IV curves, Hall mobilities and carrier concentrations are shown. Temperature dependent Hall effect measurements have shown carrier concentrations from below 1017cm --3 to approximately 1021 cm--3 with mobilities ranging from 763( cm2/V s) to 0.15(cm 2/V s) respectively. Simulation results have shown the effects of single and mixed carrier models, activation energies, effective mass and doping concentrations. These studies have been helpful in the development of single crystal diamond for diode applications. Reference materials of Ge and GaAs were used to test the Hall Effect system. The system was also used to characterize polycrystalline diamond deposited on glass for electrochemical applications, and Mg2(Si,Sn) compounds which are promising candidates of low-cost, light weight and non-toxic thermoelectric materials made from abundant elements and are suited for power generation application in the intermediate temperature range of (600 K - 800 K). In this work the thermoelectric materials were synthesized by a solid-state reac- tion using a molten-salt sealing method. The ingots produced were then powder processed, followed by pulsed electric sintering (PECS) densification. A set of Mg2.08Si0.4--x Sn0.6Sbx (0 ≤ x ≤ 0.072) compounds were investigated and a peak ZT of 1.50 was obtained at 716 K in Mg2.08Si 0.364Sn0.6Sb0.036 [2]. The high ZT value is related to a high electrical conductivity in these samples, which are possibly caused by a magnesium deficiency in the final prod- uct. Analysis of the measured results using LabVIEW and MATLAB developed programs showed good agreement with expected results and gave insight on mixed carrier dopant concentrations. [1] I. Berkun, S. N. Demlow, N. Suwanmonkha, T. P. Hogan, and T. A. Grotjohn, "Hall Effect Measurement System for Characterization of Doped Single Crystal Diamond," in MRS Proceedings, vol. 1511, Cambridge Univ Press, 2013. [2] P. Gao, I. Berkun, R. D. Schmidt, M. F. Luzenski, X. Lu, P. B. Sarac, E. D. Case, and T. P. Hogan, "Transport and Mechanical Properties of High-ZT Mg2. 08si0. 4- x Sn0. 6sb x Thermoelectric Materials," Journal of Electronic Materials, pp. 1--14, 2013.

  13. A Temperature-Monitoring Vaginal Ring for Measuring Adherence

    PubMed Central

    Boyd, Peter; Desjardins, Delphine; Kumar, Sandeep; Fetherston, Susan M.; Le-Grand, Roger; Dereuddre-Bosquet, Nathalie; Helgadóttir, Berglind; Bjarnason, Ásgeir; Narasimhan, Manjula; Malcolm, R. Karl

    2015-01-01

    Background Product adherence is a pivotal issue in the development of effective vaginal microbicides to reduce sexual transmission of HIV. To date, the six Phase III studies of vaginal gel products have relied primarily on self-reporting of adherence. Accurate and reliable methods for monitoring user adherence to microbicide-releasing vaginal rings have yet to be established. Methods A silicone elastomer vaginal ring prototype containing an embedded, miniature temperature logger has been developed and tested in vitro and in cynomolgus macaques for its potential to continuously monitor environmental temperature and accurately determine episodes of ring insertion and removal. Results In vitro studies demonstrated that DST nano-T temperature loggers encapsulated in medical grade silicone elastomer were able to accurately and continuously measure environmental temperature. The devices responded quickly to temperature changes despite being embedded in different thickness of silicone elastomer. Prototype vaginal rings measured higher temperatures compared with a subcutaneously implanted device, showed high sensitivity to diurnal fluctuations in vaginal temperature, and accurately detected periods of ring removal when tested in macaques. Conclusions Vaginal rings containing embedded temperature loggers may be useful in the assessment of product adherence in late-stage clinical trials. PMID:25965956

  14. Simple, accurate temperature-measuring instrument

    NASA Technical Reports Server (NTRS)

    Mc Fadin, L. W.

    1970-01-01

    Compact instrument, composed of integrated circuits and a temperature-sensitive platinum resistor, measures temperature over a wide dynamic range. Ultimate accuracy is limited by nonlinearity of the platinum resistor. With proper calibration and current regulation to within 0.01 percent, a measurement accuracy of 0.05 percent can be achieved.

  15. Emitted vibration measurement device and method

    NASA Technical Reports Server (NTRS)

    Gisler, G. L. (Inventor)

    1986-01-01

    This invention is directed to a method and apparatus for measuring emitted vibrational forces produced by a reaction wheel assembly due to imbalances, misalignment, bearing defects and the like. The apparatus includes a low mass carriage supported on a large mass base. The carriage is in the form of an octagonal frame having an opening which is adapted for receiving the reaction wheel assembly supported thereon by means of a mounting ring. The carriage is supported on the base by means of air bearings which support the carriage in a generally frictionless manner when supplied with compressed air from a source. A plurality of carriage brackets and a plurality of base blocks provided for physical coupling of the base and carriage. The sensing axes of the load cells are arranged generally parallel to the base and connected between the base and carriage such that all of the vibrational forces emitted by the reaction wheel assembly are effectively transmitted through the sensing axes of the load cells. In this manner, a highly reliable and accurate measurment of the vibrational forces of the reaction wheel assembly can be had. The output signals from the load cells are subjected to a dynamical analyzer which analyzes and identifies the rotor and spin bearing components which are causing the vibrational forces.

  16. LAND LASER:ALTERNATIVE MEASURING DEVICE RECORDS TILLAGE EFFECTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A device is described that enables the amount of above and below ground soil disruption from tillage components to be accurately measured. A laser-based distance measurement system is used to measure tilled soil profiles to determine differences in above and below ground disturbance. Data from an ...

  17. Liquid crystal quantitative temperature measurement technique

    NASA Astrophysics Data System (ADS)

    Lu, Wei; Wu, Zongshan

    2001-10-01

    Quantitative temperature measurement using wide band thermochromic liquid crystals is an “area” thermal measurement technique. This technique utilizes the feature that liquid crystal changes its reflex light color with variation of temperature and applies an image capturing and processing system to calibrate the characteristic curve of liquid crystal’s color-temperature. Afterwards, the technique uses this curve to measure the distribution of temperature on experimental model. In this paper, firstly, each part of quantitative temperature measurement system using liquid crystal is illustrated and discussed. Then the technique is employed in a long duration hypersonic wind tunnel, and the quantitative result of the heat transfer coefficient along laminar plate is obtained. Additionally, some qualitative results are also given. In the end, comparing the experimental results with reference enthalpy theoretical results, a conclusion of thermal measurement accuracy is drawn.

  18. Optical temperature measurements of silicon microbridge emitters.

    PubMed

    Shpak, Maksim; Sainiemi, Lauri; Ojanen, Maija; Kärhä, Petri; Heinonen, Martti; Franssila, Sami; Ikonen, Erkki

    2010-03-20

    Microbridges are miniature suspended structures fabricated in silicon. Passing a current through the microbridge can heat it up to the point of incandescence. A glowing microbridge can be used as a wideband light source. This study presents a method for optical measurement of the temperature of a microbridge. Spectroscopic measurements of microbridges are optically challenging, because the multilayer structures cause interference effects. To determine the temperature from the emitted spectrum, the emissivity was modeled with thin-film Fresnel equations. Temperatures of 500-1100 degrees C were obtained from the measured spectra at different levels of applied power. The range is limited by the sensitivity of the detectors at lower power levels and by the stability of the bridge at higher levels. Results of the optical measurements were compared with contact temperature measurements made with a microthermocouple in the same temperature range. The results of the two methods agree within 100 K. PMID:20300142

  19. 40 CFR 60.1815 - How do I monitor the temperature of flue gases at the inlet of my particulate matter control device?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false How do I monitor the temperature of... I monitor the temperature of flue gases at the inlet of my particulate matter control device? You must install, calibrate, maintain, and operate a device to continuously measure the temperature of...

  20. 40 CFR 60.1815 - How do I monitor the temperature of flue gases at the inlet of my particulate matter control device?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false How do I monitor the temperature of... I monitor the temperature of flue gases at the inlet of my particulate matter control device? You must install, calibrate, maintain, and operate a device to continuously measure the temperature of...

  1. 40 CFR 60.1815 - How do I monitor the temperature of flue gases at the inlet of my particulate matter control device?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false How do I monitor the temperature of... I monitor the temperature of flue gases at the inlet of my particulate matter control device? You must install, calibrate, maintain, and operate a device to continuously measure the temperature of...

  2. Temperature Sensitive Particle for Velocity and Temperature Measurement.

    NASA Astrophysics Data System (ADS)

    Someya, Satoshi; Okamoto, Koji; Iida, Masao

    2007-11-01

    Phosphorescence and fluorescence are often applied to measure the temperature and the concentration of oxygen. The intensity and the lifetime of phosphor depend on the temperature and the oxygen concentration, due to the quenching effect of the phosphor. The present study clarified the effects of temperature on the lifetime of phosphorescence of Porphyrins, Ru(bpy)3^2+ and the europium complex. The phosphorescence lifetime of oil solution / water solution / painted wall were measured with changing temperature and oxygen concentration. In addition, the optical property of the small particles incorporated with the europium complex was investigated in the oil/water. The lifetime was strongly affected by temperature. Then, the temperature sensitive particle (TSParticle) with metal complex was applied to measure temperature in Silicone oil (10cSt) two-dimensionally. Present study is the result of ?High speed three-dimensional direct measurement technology development for the evaluation of heat flux and flow of liquid metal? entrusted to the University of Tokyo by the Ministry of Education, Culture, Sports, Science and Technology of Japan(MEXT).

  3. Increased operational temperature of Cr2O3-based spintronic devices

    NASA Astrophysics Data System (ADS)

    Street, Michael; Echtenkamp, Will; Komesu, Takashi; Cao, Shi; Wang, Jian; Dowben, Peter; Binek, Christian

    Spintronic devices have been considered a promising path to revolutionizing the current data storage and memory technologies. This work is an effort to utilize voltage-controlled boundary magnetization of the magnetoelectric chromia (Cr2O3) to be implemented into a spintronic device. The electric switchable boundary magnetization of chromia can be used to voltage-control the magnetic states of an adjacent ferromagnetic layer. For this technique to be utilized in a spintronic device, the antiferromagnetic ordering temperature of chromia must be enhanced above the bulk value of TN = 307K. Previously, based on first principle calculations, boron doped chromia thin films were fabricated via pulsed laser deposition showing boundary magnetization at elevated temperatures. Measurements of the boundary magnetization were also corroborated by spin polarized inverse photoemission spectroscopy. Exchange bias of B-doped chromia was also investigated using magneto-optical Kerr effect, showing an increased blocking temperature from 307K. Further boundary magnetization measurements and spin polarized inverse photoemission measurements indicate the surface magnetization to an in-plane orientation from the standard perpendicular orientation. This project was supported by the SRC through CNFD, an SRC-NRI Center under Task ID (2398.001) and by C-SPIN, part of STARnet, sponsored by MARCO and DARPA (No. SRC 2381.001).

  4. A simple method for accurate temperature measurement.

    PubMed

    Grucza, R; Boruta, E

    1980-01-01

    A simple method, employing thermocouples, was developed for measurement of temperature with an accuracy of 0.05 degrees C. The method is based on the principle of a compensatory measurement of the thermocouple voltage, with application of an additional amplifier. The temperature level of the reference thermocouple was shifted from 0 degrees to 37 degrees C, using a compensating voltage. Within a smaller range (37 degrees -- 43 degrees C) the voltage of the measuring thermocouple was additionally amplified, which resulted in an increase in sensitivity and accuracy of the temperature measurement in animal tissues. The electronic circuit and calibration procedure are presented in detail. PMID:7446155

  5. Traceability and calibration in temperature measurement: a clinical necessity.

    PubMed

    Simpson, R; Machin, G; McEvoy, H; Rusby, R

    2006-01-01

    Patient temperature is a fundamental physiological measurement used primarily for observation and diagnosis, for example during surgery, intensive care, recuperation, or treatment. A variety of thermometers are used clinically and these can be separated into two categories, either contact (oral thermometers, rectal thermometers and temporal strips), or non-contact (ear thermometers, temporal thermometers and thermal imagers). To have the maximum confidence in the clinical performance of the temperature measurement instrument it is strongly desirable that the device be traceably calibrated to the International Temperature Scale of 1990 (ITS-90). Lack of traceable calibrations accredited to ISO17025 can lead to unreliability in temperature measurement and in some cases can have a deleterious effect on patient care. The National Physical Laboratory (NPL) maintains and disseminates the ITS-90 for contact and non-contact thermometry in the UK. The importance of accredited traceable calibrations and an outline of contact and non-contact thermometry standards are given here. PMID:16864232

  6. Ultraflexible, large-area, physiological temperature sensors for multipoint measurements

    PubMed Central

    Yokota, Tomoyuki; Inoue, Yusuke; Terakawa, Yuki; Reeder, Jonathan; Kaltenbrunner, Martin; Ware, Taylor; Yang, Kejia; Mabuchi, Kunihiko; Murakawa, Tomohiro; Sekino, Masaki; Voit, Walter; Sekitani, Tsuyoshi; Someya, Takao

    2015-01-01

    We report a fabrication method for flexible and printable thermal sensors based on composites of semicrystalline acrylate polymers and graphite with a high sensitivity of 20 mK and a high-speed response time of less than 100 ms. These devices exhibit large resistance changes near body temperature under physiological conditions with high repeatability (1,800 times). Device performance is largely unaffected by bending to radii below 700 µm, which allows for conformal application to the surface of living tissue. The sensing temperature can be tuned between 25 °C and 50 °C, which covers all relevant physiological temperatures. Furthermore, we demonstrate flexible active-matrix thermal sensors which can resolve spatial temperature gradients over a large area. With this flexible ultrasensitive temperature sensor we succeeded in the in vivo measurement of cyclic temperatures changes of 0.1 °C in a rat lung during breathing, without interference from constant tissue motion. This result conclusively shows that the lung of a warm-blooded animal maintains surprising temperature stability despite the large difference between core temperature and inhaled air temperature. PMID:26554008

  7. Ultraflexible, large-area, physiological temperature sensors for multipoint measurements.

    PubMed

    Yokota, Tomoyuki; Inoue, Yusuke; Terakawa, Yuki; Reeder, Jonathan; Kaltenbrunner, Martin; Ware, Taylor; Yang, Kejia; Mabuchi, Kunihiko; Murakawa, Tomohiro; Sekino, Masaki; Voit, Walter; Sekitani, Tsuyoshi; Someya, Takao

    2015-11-24

    We report a fabrication method for flexible and printable thermal sensors based on composites of semicrystalline acrylate polymers and graphite with a high sensitivity of 20 mK and a high-speed response time of less than 100 ms. These devices exhibit large resistance changes near body temperature under physiological conditions with high repeatability (1,800 times). Device performance is largely unaffected by bending to radii below 700 µm, which allows for conformal application to the surface of living tissue. The sensing temperature can be tuned between 25 °C and 50 °C, which covers all relevant physiological temperatures. Furthermore, we demonstrate flexible active-matrix thermal sensors which can resolve spatial temperature gradients over a large area. With this flexible ultrasensitive temperature sensor we succeeded in the in vivo measurement of cyclic temperatures changes of 0.1 °C in a rat lung during breathing, without interference from constant tissue motion. This result conclusively shows that the lung of a warm-blooded animal maintains surprising temperature stability despite the large difference between core temperature and inhaled air temperature. PMID:26554008

  8. Design, Qualification and Integration Testing of the High-Temperature Resistance Temperature Device for Stirling Power System

    NASA Technical Reports Server (NTRS)

    Chan, Jack; Hill, Dennis H.; Elisii, Remo; White, Jonathan R.; Lewandowski, Edward J.; Oriti, Salvatore M.

    2015-01-01

    The Advanced Stirling Radioisotope Generator (ASRG), developed from 2006 to 2013 under the joint sponsorship of the United States Department of Energy (DOE) and National Aeronautics and Space Administration (NASA) to provide a high-efficiency power system for future deep space missions, employed Sunpower Incorporated's Advanced Stirling Convertors (ASCs) with operating temperature up to 840 C. High-temperature operation was made possible by advanced heater head materials developed to increase reliability and thermal-to-mechanical conversion efficiency. During a mission, it is desirable to monitor the Stirling hot-end temperature as a measure of convertor health status and assist in making appropriate operating parameter adjustments to maintain the desired hot-end temperature as the radioisotope fuel decays. To facilitate these operations, a Resistance Temperature Device (RTD) that is capable of high-temperature, continuous long-life service was designed, developed and qualified for use in the ASRG. A thermal bridge was also implemented to reduce the RTD temperature exposure while still allowing an accurate projection of the ASC hot-end temperature. NASA integrated two flight-design RTDs on the ASCs and assembled into the high-fidelity Engineering Unit, the ASRG EU2, at Glenn Research Center (GRC) for extended operation and system characterization. This paper presents the design implementation and qualification of the RTD, and its performance characteristics and calibration in the ASRG EU2 testing.

  9. [Therapeutic errors and dose measuring devices].

    PubMed

    García-Tornel, S; Torrent, M L; Sentís, J; Estella, G; Estruch, M A

    1982-06-01

    In order to investigate the possibilities of therapeutical error in syrups administration, authors have measured the capacity of 158 home spoons (x +/- SD). They classified spoons in four groups: group I (table spoons), 49 units (11.65 +/- 2.10 cc); group II (tea spoons), 41 units (4.70+/-1.04 cc); group III (coffee spoons), 41 units (2.60 +/- 0.59 cc), and group IV (miscellaneous), 27 units. They have compared the first three groups with theoreticals values of 15, 5 and 2.5 cc, respectively, ensuring, in the first group, significant statistical differences. In this way, they analyzed information that paediatricians receive from "vademecums", which they usually consult and have studied two points: If syrup has a meter or not, and if it indicates drug concentration or not. Only a 18% of the syrups have a meter and about 88% of the drugs indicate their concentration (mg/cc). They conclude that to prevent errors of dosage, the pharmacological industry must include meters in their products. If they haven't the safest thing is to use syringes. PMID:7125401

  10. Nulling Infrared Radiometer for Measuring Temperature

    NASA Technical Reports Server (NTRS)

    Ryan, Robert

    2003-01-01

    A nulling, self-calibrating infrared radiometer is being developed for use in noncontact measurement of temperature in any of a variety of industrial and scientific applications. This instrument is expected to be especially well-suited to measurement of ambient or near-ambient temperature and, even more specifically, for measuring the surface temperature of a natural body of water. Although this radiometer would utilize the long-wavelength infrared (LWIR) portion of the spectrum (wavelengths of 8 to 12 m), its basic principle of operation could also be applied to other spectral bands (corresponding to other temperature ranges) in which the atmosphere is transparent and in which design requirements for sensitivity and temperature-measurement accuracy could be satisfied.

  11. Nulling Infrared Radiometer for Measuring Temperature

    NASA Technical Reports Server (NTRS)

    Ryan, Robert

    2002-01-01

    A nulling, self-calibrating infrared radiometer is being developed for use in noncontact measurement of temperature in any of a variety of industrial and scientific applications. This instrument is expected to be especially well-suited to measurement of ambient or near-ambient temperature and, even more specifically, for measuring the surface temperature of a natural body of water. Although this radiometer would utilize the long-wavelength infrared (LWIR) portion of the spectrum (wavelengths of 8 to 12 ?m), its basic principle of operation could also be applied to other spectral bands (corresponding to other temperature ranges) in which the atmosphere is transparent and in which design requirements for sensitivity and temperature-measurement accuracy could be satisfied.

  12. Nulling Infrared Radiometer for Measuring Temperature

    NASA Technical Reports Server (NTRS)

    Ryan, Robert

    2004-01-01

    A nulling, self-calibrating infrared radiometer is being developed for use in noncontact measurement of temperature in any of a variety of industrial and scientific applications. This instrument is expected to be especially well-suited to measurement of ambient or near-ambient temperature and, even more specifically, for measuring the surface temperature of a natural body of water. Although this radiometer would utilize the long-wavelength infrared (LWIR) portion of the spectrum (wavelengths of 8 to 12 m), its basic principle of operation could also be applied to other spectral bands (corresponding to other temperature ranges) in which the atmosphere is transparent and in which design requirements for sensitivity and temperature-measurement accuracy could be satisfied.

  13. In situ high-temperature characterization of AlN-based surface acoustic wave devices

    NASA Astrophysics Data System (ADS)

    Aubert, Thierry; Bardong, Jochen; Legrani, Ouarda; Elmazria, Omar; Badreddine Assouar, M.; Bruckner, Gudrun; Talbi, Abdelkrim

    2013-07-01

    We report on in situ electrical measurements of surface acoustic wave delay lines based on AlN/sapphire structure and iridium interdigital transducers between 20 °C and 1050 °C under vacuum conditions. The devices show a great potential for temperature sensing applications. Burnout is only observed after 60 h at 1050 °C and is mainly attributed to the agglomeration phenomena undergone by the Ir transducers. However, despite the vacuum conditions, a significant oxidation of the AlN film is observed, pointing out the limitation of the considered structure at least at such extreme temperatures. Original structures overcoming this limitation are then proposed and discussed.

  14. Study on a transient optical fiber high temperature measurement system

    NASA Astrophysics Data System (ADS)

    Cai, Lulu; Liu, Yusha; Wang, Yutian

    2009-07-01

    High temperature is one of the most important parameters in the fields of scientific research and industrial production. At present, thermocouple, thermo resistive and radiance thermometer are already technologically mature which can be adopted to measure the general temperature, but when it comes to the transient high temperature that changes pretty quickly in wretched conditions, those traditional pyrometers can not meet the requirements any more. In this paper, we designed a transient optical high temperature measurement system. First, design of the temperature measurement probe. The system took blackbody cavity sensor together with optical fiber to receive the measured signal, here, the integrated emissivity model of the blackbody cavity was established and the optimum structure parameters were confirmed. Secondly, design of the entire temperature measurement system. A contact-noncontact measurement method was applied, which is to make the blackbody cavity and the measured high-temperature source contact, the fiber probe and the blackbody cavity noncontact, as a result, the error caused by contact measurement is overcame and the precision is guaranteed at the same time. In addition, a fiber grating was introduced as the wavelength filter device which can realize the dynamic filter of narrow-band signals and reduce the impact of background light. Thirdly, signal processing. In this part, we applied labVIEW software and wavelet analysis method. All of the signal acquisition and processing were realized in the labVIEW environment. Through calling matlab in labVIEW, the signals from optical fiber detector were wavelet denoised and decomposed, thus the temperature information was extracted, and the temperature value was obtained. On basis of wavelet transformation, the paper adopted the 4dB wavelet with horizontal scale of 5 to realize the feature extraction and noise removal, parts of the signals before and after the wavelet noise removal were given and analyzed. Finally, the experimental result shows: the resolution is 1°C,the measurement range is 500~2000°C and the dynamic response time is 5s.In view of possessing a high precision and resolution, resisting high temperature and corrosion, and being able to realize the continuous measurement of the dynamic temperature, this transient optical fiber high temperature measurement system can be applied widely in the continuous temperature measurement of molten steel and heating furnace kiln temperature measurement and so many other fields of engineering technology.

  15. Novel High Temperature Materials for In-Situ Sensing Devices

    SciTech Connect

    Florian Solzbacher; Anil Virkar; Loren Rieth; Srinivasan Kannan; Xiaoxin Chen; Hannwelm Steinebach

    2009-12-31

    The overriding goal of this project was to develop gas sensor materials and systems compatible with operation at temperatures from 500 to 700 C. Gas sensors operating at these temperatures would be compatible with placement in fossil-energy exhaust streams close to the combustion chamber, and therefore have advantages for process regulation, and feedback for emissions controls. The three thrusts of our work included investigating thin film gas sensor materials based on metal oxide materials and electroceramic materials, and also development of microhotplate devices to support the gas sensing films. The metal oxide materials NiO, In{sub 2}O{sub 3}, and Ga{sub 2}O{sub 3} were investigated for their sensitivity to H{sub 2}, NO{sub x}, and CO{sub 2}, respectively, at high temperatures (T > 500 C), where the sensing properties of these materials have received little attention. New ground was broken in achieving excellent gas sensor responses (>10) for temperatures up to 600 C for NiO and In{sub 2}O{sub 3} materials. The gas sensitivity of these materials was decreasing as temperatures increased above 500 C, which indicates that achieving strong sensitivities with these materials at very high temperatures (T {ge} 650 C) will be a further challenge. The sensitivity, selectivity, stability, and reliability of these materials were investigated across a wide range of deposition conditions, temperatures, film thickness, as using surface active promoter materials. We also proposed to study the electroceramic materials BaZr{sub (1-x)}Y{sub x}O{sub (3-x/2)} and BaCe{sub (2-x)}Ca{sub x}S{sub (4-x/2)} for their ability to detect H{sub 2}O and H{sub 2}S, respectively. This report focuses on the properties and gas sensing characteristics of BaZr{sub (1-x)}Y{sub x}O{sub (3-x/2)} (Y-doped BaZrO{sub 3}), as significant difficulties were encounter in generating BaCe{sub (2-x)}Ca{sub x}S{sub (4-x/2)} sensors. Significant new results were achieved for Y-doped BaZrO{sub 3}, including sensitivities of more than 60 atm{sup -1} for H{sub 2}O vapor at 400 C. These results were achieved despite significant difficulties with a strong Ba deficiency in the deposited films, and difficulties with stress in the targets and films. Ultimately, these films achieved good sensitivity, selectivity, and reliability in our gas sensing tests. The final thrust of our project was to develop microhotpates. We proposed the use of SiC thin films for the heater of the microhotplate, but despite extensive efforts we were not able to secure a reliable source of SiC. An alternative microhotplate architecture using SiO{sub 2} and Si{sub 3}N{sub 4} suspended membrane structures, and a polysilicon heater were developed, which could be fabricate at commercial MEMs foundries. These microhotplates were fabricated at Microtechnology Services Frankfurt (MSF) in Germany. The fabricated heaters were able to achieve temperatures > 600 C using {approx} 0.25 W, and when combined with In{sub 2}O{sub 3} films demonstrated sensor systems with sensor responses up to 50 for 25 ppm NO{sub x}, and time constants of less than 10 s.

  16. Thermistor holder for skin-temperature measurements

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Williams, B. A.

    1974-01-01

    Sensing head of thermistor probe is supported in center area of plastic ring which has tabs so that it can be anchored in place by rubber bands or adhesive tapes. Device attaches probes to human subjects practically, reliably, and without affecting characteristics of skin segment being measured.

  17. [Temperature Measurement with Bluetooth under Android Platform].

    PubMed

    Wang, Shuai; Shen, Hao; Luo, Changze

    2015-03-01

    To realize the real-time transmission of temperature data and display using the platform of intelligent mobile phone and bluetooth. Application of Arduino Uno R3 in temperature data acquisition of digital temperature sensor DS18B20 acquisition, through the HC-05 bluetooth transmits the data to the intelligent smart phone Android system, realizes transmission of temperature data. Using Java language to write applications program under Android development environment, can achieve real-time temperature data display, storage and drawing temperature fluctuations drawn graphics. Temperature sensor is experimentally tested to meet the body temperature measurement precision and accuracy. This paper can provide a reference for other smart phone mobile medical product development. PMID:26524781

  18. How to measure reaction temperature in microwave-heated transformations.

    PubMed

    Kappe, C Oliver

    2013-06-21

    High-speed microwave chemistry has attracted considerable attention in the past two decades with new and innovative applications in organic and peptide synthesis, polymer chemistry, material sciences, nanotechnology and biochemical processes continuously being reported in the literature. In particular the introduction of benchtop single-mode microwave reactors just over ten years ago has revolutionized the way many scientists today perform reactions in the laboratory. Unfortunately, the accurate measurement of reaction temperature in these devices is far from being trivial and requires both a basic understanding of microwave dielectric heating effects and use of appropriate temperature monitoring devices. In this tutorial review frequently occurring problems in the determination of accurate reaction temperatures in single-mode microwave reactors are discussed. PMID:23443140

  19. Surface temperature measurement of turbine disks

    NASA Astrophysics Data System (ADS)

    Wu, Hongdao; Qu, Yuwu; Li, Xungguang; Du, Shengqin

    1993-01-01

    A new method of temperature measurement with a single-wire thermocouple - slip ring system is introduced to measure the surface temperature of the turbine disks in the turbojet engines, and the accuracy of this method is considered. In this case, the limited channels of the slip ring are fully utilized and the measured surface temperatures of the disk are actual and believable enough. The problems in its application, such as the installation of the thermocouples, the cooling of the slip ring, and the balance of the turbine rotor with this system, are discussed briefly.

  20. Solar absorber material reflectivity measurements at temperature

    SciTech Connect

    Bonometti, J.A.; Hawk, C.W.

    1999-07-01

    Assessment of absorber shell material properties at high operating temperatures is essential to the full understanding of the solar energy absorption process in a solar thermal rocket. A review of these properties, their application and a new experimental methodology to measure them at high temperatures is presented. The direct application for the research is absorber cavity development for a Solar Thermal Upper Stage (STUS). High temperature measurements, greater than 1,000 Kelvin, are difficult to obtain for incident radiation upon a solid surface that forms an absorber cavity in a solar thermal engine. The basic material properties determine the amount of solar energy that is absorbed, transmitted or reflected and are dependent upon the material's temperature. This investigation developed a new approach to evaluate the material properties (i.e., reflectivity, absorptive) of the absorber wall and experimentally determined them for rhenium and niobium sample coupons. The secular reflectivity was measured both at room temperature and at temperatures near 1,000 Kelvin over a range of angles from 0 to 90 degrees. The same experimental measurements were used to calculate the total reflectivity of the sample by integrating the recorded intensities over a hemisphere. The test methodology used the incident solar energy as the heating source while directly measuring the reflected light (an integrated value over all visible wavelengths). Temperature dependence on total reflectivity was found to follow an inverse power function of the material's temperature.

  1. Rotation angle system of bidirectional reflectance distribution function measurement device

    NASA Astrophysics Data System (ADS)

    Wu, Houping; Feng, Guojin; Zheng, Chundi; Li, Ping; Wang, Yu

    2015-10-01

    This article described the rotation angle system of the bidirectional reflectance distribution function (BRDF) measurement device. A high-precision multidimensional angle platform device is built. The rotation angle system uses two scanning rotational mechanical arms and a two-dimensional coaxial turntable mechanical structure, each rotational axis are driven by high-power motor and completed closed-loop control with high-precision encoder. Rotation of the motors can be automatically measured in accordance with point by the control software. The detecting arm can be rotated to measure any point in hemisphere space, the rotary range of light arm is +/- 90 °, the rotary range of sample stage is 360 ° and the angular resolution is 0.01°. The rotation angle system meets the absolute positioning hemisphere space requirements of BRDF device. The experimental result shows that the rotation angle system met the high-precision positioning requirements for the BRDF absolute measurement.

  2. Dynamic temperature measurements with embedded optical sensors.

    SciTech Connect

    Dolan, Daniel H.,; Seagle, Christopher T; Ao, Tommy

    2013-10-01

    This report summarizes LDRD project number 151365, %5CDynamic Temperature Measurements with Embedded Optical Sensors%22. The purpose of this project was to develop an optical sensor capable of detecting modest temperature states (<1000 K) with nanosecond time resolution, a recurring diagnostic need in dynamic compression experiments at the Sandia Z machine. Gold sensors were selected because the visible re ectance spectrum of gold varies strongly with temperature. A variety of static and dynamic measurements were performed to assess re ectance changes at di erent temperatures and pressures. Using a minimal optical model for gold, a plausible connection between static calibrations and dynamic measurements was found. With re nements to the model and diagnostic upgrades, embedded gold sensors seem capable of detecting minor (<50 K) temperature changes under dynamic compression.

  3. 21 CFR 886.1430 - Ophthalmic contact lens radius measuring device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ophthalmic contact lens radius measuring device... SERVICES (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1430 Ophthalmic contact lens radius measuring device. (a) Identification. An ophthalmic contact lens radius measuring device...

  4. Temperature dependence of the properties of DBR mirrors used in surface normal optoelectronic devices

    NASA Technical Reports Server (NTRS)

    Dudley, J. J.; Crawford, D. L.; Bowers, J. E.

    1992-01-01

    The variation in the center wavelength of distributed Bragg reflectors used in optoelectronic devices, such as surface emitting lasers and Fabry-Perot modulators, is measured as the temperature of the mirrors changes over the range 25 C to 105 C. An analytic expression for the shift in center wavelength with temperature is presented. The mirrors measured are made of InP/InGaAsP, GaAs/AlAs, and Si/SiN(x). The linear shifts in center wavelength are 0.110 +/- 0.003 nm/C, 0.087 +/- 0.003 nm/C, and 0.067 +/- 0.007 nm/C for the InP/InGaAsP, GaAs/AlAs, and Si/SiN mirrors, respectively. Based on these data, the change in penetration depth with temperature is calculated.

  5. Fast Internal Temperature Measurements in PBX9501

    NASA Astrophysics Data System (ADS)

    Smilowitz, Laura

    2005-07-01

    We have made spatially and temporally resolved temperature measurements internal to a thermal explosion in PBX9501. These measurements are made both by thermocouples with corrections applied to compensate for the thermocouple response time and with optical pyrometry. Our original goals were to test our kinetic model over a broader range of temperatures, to look for evidence of any late endotherms during final self heating, and to study the transition between ignition and ignition propagation. This meant we needed to be able to follow temperatures later into reaction (meaning further in time and closer to the ignition point). Our previous limit was 16ms prior to ignition limited only by the sampling rate on the logger. In order to sample faster, we switched to a direct voltage reading of the thermocouples and added fiber optic temperature measurements. In this talk, I will discuss our current capabilities for controlling and measuring the development of an ignition within a piece of heated PBX9501.

  6. A fluidic device for measuring constituent masses of a flowing binary gas mixture

    NASA Technical Reports Server (NTRS)

    Prokopius, P. R.

    1973-01-01

    A continuous reading mass flow device was developed to measure the component flow of a binary gas mixture. The basic components of the device are a fluidic humidity sensor and a specially designed flow calorimeter. These components provide readings of gas mixture ratio, mixture heat capacity, heat dissipated by the calorimeter and the gas temperature rise across the calorimeter. These parameter values, applied in the general definitions of specific heat capacity and the heat capacity of a gas mixture, produce calculated component flow rates of the mixture being metered. A test program was conducted to evaluate both the steady state and dynamic performance of the device.

  7. Photocurrent Measurements on a Quantum Cascade Laser Device by Fourier Transform Infrared Microscope

    NASA Astrophysics Data System (ADS)

    Enobio, Eli Christopher I.; Sato, Hiroki; Ohtani, Keita; Ohno, Yuzo; Ohno, Hideo

    2012-06-01

    Intersubband photocurrent in the InAs/AlSb mid-infrared quantum cascade laser (QCL) device is measured. To characterize subband energies in a fabricated and functioning QCL laser device, Fourier-transform infrared (FTIR) microscope is used to focus the probe light on the cleaved mirror of QCL. Photocurrent associated with intersubband transitions in the active layer are observed up to room temperature and the origin of peaks is identified by numerical simulation, which demonstrates the potential as a characterization tool for QCL devices.

  8. The anatomy of a pipe bomb explosion: the effect of explosive filler, container material and ambient temperature on device fragmentation.

    PubMed

    Bors, Dana; Cummins, Josh; Goodpaster, John

    2014-01-01

    Understanding the mechanical properties of different piping material under various conditions is important to predicting the behavior of pipe bombs. In this study, the effect of temperature on pipe bomb containers (i.e., PVC, black steel and galvanized steel) containing low explosive fillers (i.e., Pyrodex and double-base smokeless powder (DBSP)) was investigated. Measurements of fragment velocity and mass were compared for similar devices exploded in the spring (low/high temperature was 8°C/21°C) and winter (low/high temperature range was -9°C/-3°C). The explosions were captured using high speed filmography and fragment velocities were plotted as particle vector velocity maps (PVVM). The time that elapsed between the initiation of the winter devices containing double-base smokeless powder (DBSP) and the failure of their pipe containers ranged from 5.4 to 8.1 ms. The maximum fragment velocities for these devices ranged from 332 to 567 m/s. The steel devices ruptured and exploded more quickly than the PVC device. The steel devices also generated fragments with higher top speeds. Distributions of fragment masses were plotted as histograms and fragment weight distribution maps (FWDM). As expected, steel devices generated fewer, larger fragments than did the PVC devices. Comparison to devices exploded in the spring revealed several pieces of evidence for temperature effects on pipe bombs. For example, the mean fragment velocities for the winter devices were at or above those observed in the spring. The maximum fragment velocity was also higher for the winter steel devices. Although there were no significant differences in mean relative fragment mass, the fragment weight distribution maps (FWDMs) for two winter devices had anomalous slopes, where lower energy filler caused more severe fragmentation than higher energy filler. PMID:24378308

  9. Methods of Measurement for Semiconductor Materials, Process Control, and Devices

    NASA Technical Reports Server (NTRS)

    Bullis, W. M. (Editor)

    1973-01-01

    The development of methods of measurement for semiconductor materials, process control, and devices is reported. Significant accomplishments include: (1) Completion of an initial identification of the more important problems in process control for integrated circuit fabrication and assembly; (2) preparations for making silicon bulk resistivity wafer standards available to the industry; and (3) establishment of the relationship between carrier mobility and impurity density in silicon. Work is continuing on measurement of resistivity of semiconductor crystals; characterization of generation-recombination-trapping centers, including gold, in silicon; evaluation of wire bonds and die attachment; study of scanning electron microscopy for wafer inspection and test; measurement of thermal properties of semiconductor devices; determination of S-parameters and delay time in junction devices; and characterization of noise and conversion loss of microwave detector diodes.

  10. Measurement-device-independent entanglement-based quantum key distribution

    NASA Astrophysics Data System (ADS)

    Yang, Xiuqing; Wei, Kejin; Ma, Haiqiang; Sun, Shihai; Liu, Hongwei; Yin, Zhenqiang; Li, Zuohan; Lian, Shibin; Du, Yungang; Wu, Lingan

    2016-05-01

    We present a quantum key distribution protocol in a model in which the legitimate users gather statistics as in the measurement-device-independent entanglement witness to certify the sources and the measurement devices. We show that the task of measurement-device-independent quantum communication can be accomplished based on monogamy of entanglement, and it is fairly loss tolerate including source and detector flaws. We derive a tight bound for collective attacks on the Holevo information between the authorized parties and the eavesdropper. Then with this bound, the final secret key rate with the source flaws can be obtained. The results show that long-distance quantum cryptography over 144 km can be made secure using only standard threshold detectors.

  11. Sensorless battery temperature measurements based on electrochemical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Raijmakers, L. H. J.; Danilov, D. L.; van Lammeren, J. P. M.; Lammers, M. J. G.; Notten, P. H. L.

    2014-02-01

    A new method is proposed to measure the internal temperature of (Li-ion) batteries. Based on electrochemical impedance spectroscopy measurements, an intercept frequency (f0) can be determined which is exclusively related to the internal battery temperature. The intercept frequency is defined as the frequency at which the imaginary part of the impedance is zero (Zim = 0), i.e. where the phase shift between the battery current and voltage is absent. The advantage of the proposed method is twofold: (i) no hardware temperature sensors are required anymore to monitor the battery temperature and (ii) the method does not suffer from heat transfer delays. Mathematical analysis of the equivalent electrical-circuit, representing the battery performance, confirms that the intercept frequency decreases with rising temperatures. Impedance measurements on rechargeable Li-ion cells of various chemistries were conducted to verify the proposed method. These experiments reveal that the intercept frequency is clearly dependent on the temperature and does not depend on State-of-Charge (SoC) and aging. These impedance-based sensorless temperature measurements are therefore simple and convenient for application in a wide range of stationary, mobile and high-power devices, such as hybrid- and full electric vehicles.

  12. Development of a magnetic measurement device for thin ribbon samples

    NASA Astrophysics Data System (ADS)

    Sato, Yuta; Todaka, Takashi; Enokizono, Masato

    This paper presents a magnetic measurement device for thin ribbon samples, which are produced by rapid cooling technique. This device enables us to measure magnetic properties easily by only inserting a ribbon sample into a sample holder. The sample holder was made by bakelite to fix any width sample. A long solenoid coil was used to generate a uniform magnetic field and the sample holder was placed at the mid part of the solenoid. The magnetic field strength was measured using a shunt resistor and the magnetic flux density and magnetization in sample ribbons were evaluated by using search coils. The accuracy of measurement was verified with an amorphous metal ribbon sample. Next, we have measured magnetic properties of some magnetic shape memory alloys, which have different compositions. The measured results are compared and we clarified the effect of Sm contents on the magnetic properties.

  13. Large Conductance Switching in a Single-Molecule Device through Room Temperature Spin-Dependent Transport.

    PubMed

    Aragonès, Albert C; Aravena, Daniel; Cerdá, Jorge I; Acís-Castillo, Zulema; Li, Haipeng; Real, José Antonio; Sanz, Fausto; Hihath, Josh; Ruiz, Eliseo; Díez-Pérez, Ismael

    2016-01-13

    Controlling the spin of electrons in nanoscale electronic devices is one of the most promising topics aiming at developing devices with rapid and high density information storage capabilities. The interface magnetism or spinterface resulting from the interaction between a magnetic molecule and a metal surface, or vice versa, has become a key ingredient in creating nanoscale molecular devices with novel functionalities. Here, we present a single-molecule wire that displays large (>10000%) conductance switching by controlling the spin-dependent transport under ambient conditions (room temperature in a liquid cell). The molecular wire is built by trapping individual spin crossover Fe(II) complexes between one Au electrode and one ferromagnetic Ni electrode in an organic liquid medium. Large changes in the single-molecule conductance (>100-fold) are measured when the electrons flow from the Au electrode to either an α-up or a β-down spin-polarized Ni electrode. Our calculations show that the current flowing through such an interface appears to be strongly spin-polarized, thus resulting in the observed switching of the single-molecule wire conductance. The observation of such a high spin-dependent conductance switching in a single-molecule wire opens up a new door for the design and control of spin-polarized transport in nanoscale molecular devices at room temperature. PMID:26675052

  14. Low temperature thermal diffusivity measurements of gases by the mirage technique

    NASA Astrophysics Data System (ADS)

    Salazar, A.; Sánchez-Lavega, A.

    1999-01-01

    In this article a cryogenic mirage setup to perform thermal diffusivity measurements of gases in the temperature range 77-500 K is presented. The device was calibrated by measuring the temperature dependence of the thermal diffusivity of pure nitrogen and pure helium that have very different thermal properties. The ability of the device was demonstrated by measuring the thermal diffusivity of gas binary mixtures that fit very well the theoretical values obtained from the kinetic theory.

  15. Simultaneous Measurement of Temperature Dependent Thermophysical Properties

    NASA Astrophysics Data System (ADS)

    Czél, Balázs; Gróf, Gyula; Kiss, László

    2011-11-01

    A new evaluation method for a transient measurement of thermophysical properties is presented in this paper. The aim of the research was to couple a new automatic evaluation procedure to the BICOND thermophysical property measurement method to enhance the simultaneous determination of the temperature dependent thermal conductivity and volumetric heat capacity. The thermophysical properties of two different polymers were measured and compared with the literature data and with the measurement results that were done by well-known, traditional methods. The BICOND method involves a step-down cooling, recording the temperature histories of the inner and the outer surfaces of a hollow cylindrical sample and the thermophysical properties are evaluated from the solution of the corresponding inverse heat conduction using a genetic algorithm-based method (BIGEN) developed by the authors. The BIGEN is able to find the material properties with any kind of temperature dependency, that is illustrated through the measurement results of poly(tetrafluoroethylene) (PTFE) and polyamide (PA) samples.

  16. MRI 3D tissue temperature distribution measurement

    NASA Astrophysics Data System (ADS)

    Chen, Yichao; Gnyawali, Surya C.; Liu, Hong; Tesiram, Yasvir A.; Abbott, Andrew; Towner, Rheal A.; Chen, Wei R.

    2007-02-01

    A highly accurate, fast three-dimensional in vivo temperature mapping method is developed using MRI water photon chemical shift. It is important to have the precise temperature distribution information during laser-tissue thermal treatment. Several methods can be used for temperature measurement including thermal couple, optical fiber sensor, and MRI (magnetic resonance imaging) methods. MRI is the only feasible method for 3D in vivo, non-invasive temperature distribution measurement for laser-tissue interaction. The water proton chemical shift method is used in 3D MRI mapping. Varies MRI parameters, such as flip angle, TE, TR, spatial resolution, and temporal repetition, were optimized for the temperature mapping. The laser radiation of 805nm wavelength and a light-absorbing dye, indocyanine green (ICG) was used for temperature elevation. The measurement was conducted using gel phantom, chicken tissue and rats. The phantom system was constructed with a dye-enhanced spherical gel embedded in uniform gel phantom, simulating a tumor within normal tissue. The normal temperature elevation within ex vivo tissue such as chicken breast can reach up to 45-50 degree C with a power density of 1.3W/cm2 (with laser power of 3W and 1.7cm beam size). The temperature resolution is 0.37 degree C with a 0.2-mm spatial resolution and repetition rate of around 40 seconds. The external magnetic field drift effect is also evaluated.

  17. Experimental Measurement-Device-Independent Quantum Key Distribution

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Chen, Teng-Yun; Wang, Liu-Jun; Liang, Hao; Shentu, Guo-Liang; Wang, Jian; Cui, Ke; Yin, Hua-Lei; Liu, Nai-Le; Li, Li; Ma, Xiongfeng; Pelc, Jason S.; Fejer, M. M.; Peng, Cheng-Zhi; Zhang, Qiang; Pan, Jian-Wei

    2013-09-01

    Quantum key distribution is proven to offer unconditional security in communication between two remote users with ideal source and detection. Unfortunately, ideal devices never exist in practice and device imperfections have become the targets of various attacks. By developing up-conversion single-photon detectors with high efficiency and low noise, we faithfully demonstrate the measurement-device-independent quantum-key-distribution protocol, which is immune to all hacking strategies on detection. Meanwhile, we employ the decoy-state method to defend attacks on a nonideal source. By assuming a trusted source scenario, our practical system, which generates more than a 25 kbit secure key over a 50 km fiber link, serves as a stepping stone in the quest for unconditionally secure communications with realistic devices.

  18. Measurement-device-independent randomness from local entangled states

    NASA Astrophysics Data System (ADS)

    Chaturvedi, Anubhav; Banik, Manik

    2015-11-01

    Nonlocal correlations are useful for device-independent (DI) randomness certification (Pironio S. et al., Nature (London), 464 (2010) 1021). The advantage of this DI protocol over the conventional quantum protocol is that randomness can be certified even when experimental apparatuses are not trusted. Quantum entanglement is the necessary physical source for the nonlocal correlation required for such DI task. However, nonlocality and entanglement are distinct concepts. There exist entangled states which produce no nonlocal correlation and hence are not useful for the DI randomness certification task. Here we introduce the measurement-device-independent randomness certification task where one has trusted quantum state preparation devices but the mesurement devices are completely unspecified. Interestingly we show that there exist entangled states, with local description, that are a useful resource in such task but are useless in the corresponding DI scenario.

  19. MISSE 1 and 2 Tray Temperature Measurements

    NASA Technical Reports Server (NTRS)

    Harvey, Gale A.; Kinard, William H.

    2006-01-01

    The Materials International Space Station Experiment (MISSE 1 & 2) was deployed August 10,2001 and retrieved July 30,2005. This experiment is a co-operative endeavor by NASA-LaRC. NASA-GRC, NASA-MSFC, NASA-JSC, the Materials Laboratory at the Air Force Research Laboratory, and the Boeing Phantom Works. The objective of the experiment is to evaluate performance, stability, and long term survivability of materials and components planned for use by NASA and DOD on future LEO, synchronous orbit, and interplanetary space missions. Temperature is an important parameter in the evaluation of space environmental effects on materials. The MISSE 1 & 2 had autonomous temperature data loggers to measure the temperature of each of the four experiment trays. The MISSE tray-temperature data loggers have one external thermistor data channel, and a 12 bit digital converter. The MISSE experiment trays were exposed to the ISS space environment for nearly four times the nominal design lifetime for this experiment. Nevertheless, all of the data loggers provided useful temperature measurements of MISSE. The temperature measurement system has been discussed in a previous paper. This paper presents temperature measurements of MISSE payload experiment carriers (PECs) 1 and 2 experiment trays.

  20. Use of piezoelectric multicomponent force measuring devices in fluid mechanics

    NASA Technical Reports Server (NTRS)

    Richter, A.; Stefan, K.

    1979-01-01

    The characterisitics of piezoelectric multicomponent transducers are discussed, giving attention to the advantages of quartz over other materials. The main advantage of piezoelectric devices in aerodynamic studies is their ability to indicate rapid changes in the values of physical parameters. Problems in the accuracy of measurments by piezoelectric devices can be overcome by suitable design approaches. A practical example is given of how such can be utilized to measure rapid fluctuations of fluid forces exerted on a circular cylinder mounted in a water channel.

  1. Accurate measurement of LED lens surface temperature

    NASA Astrophysics Data System (ADS)

    Perera, Indika U.; Narendran, Nadarajah; Liu, Yi-wei

    2013-09-01

    Radiant power emitted by high power light-emitting diodes (LEDs) have been steadily increasing over the past decade. High radiation, especially short wavelength, can increase the temperature and negatively affect the primary lens performance of high-power LEDs. In this regards, assessment of lens temperature during operation is important. Past studies have shown large errors when thermocouples are used for measuring temperature in high radiant flux environments. Therefore, the objective of this study was to understand the problem in using thermocouples to measure LED lens surface temperature and to find a solution to improving the measurement accuracy. A laboratory study was conducted to better understand the issue. Results showed that most of the error is due to absorption of visible radiant energy by the thermocouple. In this study, the measurements made using an infrared (IR) thermal imaging system were used as the reference temperature because the IR imaging system is unaffected by radiant flux in the visible range. After studying the thermocouple wire metallurgy and its radiation absorption properties, a suitable material was identified to shield the thermocouple from visible radiation. Additionally, a silicone elastomer was used to maintain the thermal interface between the lens surface and the thermocouple junction bead. With these precautions, the lens temperature measurements made using the J-type thermocouple and the IR imaging system matched very well.

  2. Evaluation of advanced cooling therapy's esophageal cooling device for core temperature control.

    PubMed

    Naiman, Melissa; Shanley, Patrick; Garrett, Frank; Kulstad, Erik

    2016-05-01

    Managing core temperature is critical to patient outcomes in a wide range of clinical scenarios. Previous devices designed to perform temperature management required a trade-off between invasiveness and temperature modulation efficiency. The Esophageal Cooling Device, made by Advanced Cooling Therapy (Chicago, IL), was developed to optimize warming and cooling efficiency through an easy and low risk procedure that leverages heat transfer through convection and conduction. Clinical data from cardiac arrest, fever, and critical burn patients indicate that the Esophageal Cooling Device performs very well both in terms of temperature modulation (cooling rates of approximately 1.3°C/hour, warming of up to 0.5°C/hour) and maintaining temperature stability (variation around goal temperature ± 0.3°C). Physicians have reported that device performance is comparable to the performance of intravascular temperature management techniques and superior to the performance of surface devices, while avoiding the downsides associated with both. PMID:27043177

  3. Ways to measure body temperature in the field.

    PubMed

    Langer, Franz; Fietz, Joanna

    2014-05-01

    Body temperature (Tb) represents one of the key parameters in ecophysiological studies with focus on energy saving strategies. In this study we therefore comparatively evaluated the usefulness of two types of temperature-sensitive passive transponders (LifeChips and IPTT-300) and one data logger (iButton, DS1922L) mounted onto a collar to measure Tb in the field. First we tested the accuracy of all three devices in a water bath with water temperature ranging from 0 to 40°C. Second, we evaluated the usefulness of the LifeChips and the modified iButtons for measuring Tb of small heterothermic mammals under field conditions. For this work we subcutaneously implanted 14 male edible dormice (Glis glis) with transponders, and equipped another 14 males with data loggers to simultaneously record Tb and oxygen consumption with a portable oxygen analyzer (Oxbox). In one individual we recorded Tb with both devices and analyzed recorded Tb patterns. LifeChips are able to measure temperature within the smallest range from 25 to 40°C with an accuracy of 0.07±0.12°C. IPTT-300 transponders measured temperature between 10 and 40°C, but accuracy decreased considerably at values below 30°C, with maximal deviations of nearly 7°C. An individual calibration of each transponder is therefore needed, before using it at low Tbs. The accuracy of the data logger was comparatively good (0.12±0.25°C) and stable over the whole temperature range tested (0-40°C). In all three devices, the repeatability of measurements was high. LifeChip transponders as well as modified iButtons measured Tb reliably under field conditions. Simultaneous Tb-recordings in one edible dormouse with an implanted LifeChip and a collar-mounted iButton revealed that values of both measurements were closely correlated. Taken together, we conclude that implanted temperature-sensitive transponders represent an appropriate and largely non-invasive method to measure Tb also under field conditions. PMID:24802148

  4. Containerless measurements on liquids at high temperatures

    NASA Technical Reports Server (NTRS)

    Weber, Richard

    1993-01-01

    The application of containerless techniques for measurements of the thermophysical properties of high temperature liquids is reviewed. Recent results obtained in the materials research laboratories at Intersonics are also presented. Work to measure high temperature liquid properties is motivated by both the need for reliable property data for modeling of industrial processes involving molten materials and generation of data form basic modeling of materials behavior. The motivation for this work and examples of variations in thermophysical property values from the literature are presented. The variations may be attributed to changes in the specimen properties caused by chemical changes in the specimen and/or to measurement errors. The two methods used to achieve containerless conditions were aeroacoustic levitation and electromagnetic levitation. Their qualities are presented. The accompanying slides show the layout of levitation equipment and present examples of levitated metallic and ceramic specimens. Containerless techniques provide a high degree of control over specimen chemistry, nucleation and allow precise control of liquid composition to be achieved. Effects of minor additions can thus be measured in a systematic way. Operation in reduced gravity enables enhanced control of liquid motion which can allow measurement of liquid transport properties. Examples of nucleation control, the thermodynamics of oxide contamination removal, and control of the chromium content of liquid aluminum oxide by high temperature containerless processes are presented. The feasibility of measuring temperature, emissivity, liquidus temperature, enthalpy, surface tension, density, viscosity, and thermal diffusivity are discussed in the final section of the paper.

  5. RTbox: a device for highly accurate response time measurements.

    PubMed

    Li, Xiangrui; Liang, Zhen; Kleiner, Mario; Lu, Zhong-Lin

    2010-02-01

    Although computer keyboards and mice are frequently used in measuring response times (RTs), the accuracy of these measurements is quite low. Specialized RT collection devices must be used to obtain more accurate measurements. However, all the existing devices have some shortcomings. We have developed and implemented a new, commercially available device, the RTbox, for highly accurate RT measurements. The RTbox has its own microprocessor and high-resolution clock. It can record the identities and timing of button events with high accuracy, unaffected by potential timing uncertainty or biases during data transmission and processing in the host computer. It stores button events until the host computer chooses to retrieve them. The asynchronous storage greatly simplifies the design of user programs. The RTbox can also receive and record external signals as triggers and can measure RTs with respect to external events. The internal clock of the RTbox can be synchronized with the computer clock, so the device can be used without external triggers. A simple USB connection is sufficient to integrate the RTbox with any standard computer and operating system. PMID:20160301

  6. Low emissivity high-temperature tantalum thin film coatings for silicon devices

    SciTech Connect

    Rinnerbauer, Veronika; Senkevich, Jay J.; Joannopoulos, John D.; Soljacic, Marin; Celanovic, Ivan; Harl, Robert R.; Rogers, Bridget R.

    2013-01-01

    The authors study the use of thin ( ~230 nm ) tantalum (Ta) layers on silicon (Si) as a low emissivity (high reflectivity) coating for high-temperature Si devices. Such coatings are critical to reduce parasitic radiation loss, which is one of the dominant loss mechanisms at high temperatures (above 700 °C ). The key factors to achieve such a coating are low emissivity in the near infrared and superior thermal stability at high operating temperatures. The authors investigated the emissivity of Ta coatings deposited on Si with respect to deposition parameters, and annealing conditions, and temperature. The authors found that after annealing at temperatures ≥900 °C the emissivity in the near infrared ( 1–3 μm ) was reduced by a factor of 2 as compared to bare Si. In addition, the authors measured thermal emission at temperatures from 700 to 1000 °C , which is stable up to a heater temperature equal to the annealing temperature. Furthermore, Auger electron spectroscopy profiles of the coatings before and after annealing were taken to evaluate thermal stability. A thin (about 70 nm) Ta₂O₅ layer was found to act as an efficient diffusion barrier between the Si substrate and the Ta layer to prevent Si diffusion.

  7. Magnetic Resonance Flow Velocity and Temperature Mapping of a Shape Memory Polymer Foam Device

    SciTech Connect

    Small IV, W; Gjersing, E; Herberg, J L; Wilson, T S; Maitland, D J

    2008-10-29

    Interventional medical devices based on thermally responsive shape memory polymer (SMP) are under development to treat stroke victims. The goals of these catheter-delivered devices include re-establishing blood flow in occluded arteries and preventing aneurysm rupture. Because these devices alter the hemodynamics and dissipate thermal energy during the therapeutic procedure, a first step in the device development process is to investigate fluid velocity and temperature changes following device deployment. A laser-heated SMP foam device was deployed in a simplified in vitro vascular model. Magnetic resonance imaging (MRI) techniques were used to assess the fluid dynamics and thermal changes associated with device deployment. Spatial maps of the steady-state fluid velocity and temperature change inside and outside the laser-heated SMP foam device were acquired. Though non-physiological conditions were used in this initial study, the utility of MRI in the development of a thermally-activated SMP foam device has been demonstrated.

  8. 10 CFR 31.5 - Certain detecting, measuring, gauging, or controlling devices and certain devices for producing...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... devices and certain devices for producing light or an ionized atmosphere. 2 31.5 Section 31.5 Energy..., measuring, gauging, or controlling devices and certain devices for producing light or an ionized atmosphere... composition, or for producing light or an ionized atmosphere. (b)(1) The general license in paragraph (a)...

  9. 10 CFR 31.5 - Certain detecting, measuring, gauging, or controlling devices and certain devices for producing...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... devices and certain devices for producing light or an ionized atmosphere. 2 31.5 Section 31.5 Energy..., measuring, gauging, or controlling devices and certain devices for producing light or an ionized atmosphere... composition, or for producing light or an ionized atmosphere. (b)(1) The general license in paragraph (a)...

  10. 10 CFR 31.5 - Certain detecting, measuring, gauging, or controlling devices and certain devices for producing...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... devices and certain devices for producing light or an ionized atmosphere. 2 31.5 Section 31.5 Energy..., measuring, gauging, or controlling devices and certain devices for producing light or an ionized atmosphere... composition, or for producing light or an ionized atmosphere. (b)(1) The general license in paragraph (a)...

  11. 10 CFR 31.5 - Certain detecting, measuring, gauging, or controlling devices and certain devices for producing...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... devices and certain devices for producing light or an ionized atmosphere. 2 31.5 Section 31.5 Energy..., measuring, gauging, or controlling devices and certain devices for producing light or an ionized atmosphere... composition, or for producing light or an ionized atmosphere. (b)(1) The general license in paragraph (a)...

  12. 10 CFR 31.5 - Certain detecting, measuring, gauging, or controlling devices and certain devices for producing...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... devices and certain devices for producing light or an ionized atmosphere. 2 31.5 Section 31.5 Energy..., measuring, gauging, or controlling devices and certain devices for producing light or an ionized atmosphere... composition, or for producing light or an ionized atmosphere. (b)(1) The general license in paragraph (a)...

  13. A survey of gas-side fouling measuring devices

    NASA Technical Reports Server (NTRS)

    Marner, W. J.; Henslee, S. P.

    1984-01-01

    A survey of measuring devices or probes, which were used to investigate gas side fouling, was carried out. Five different types of measuring devices are identified and discussed including: heat flux meters, mass accumulation probes, optical devices, deposition probes, and acid condensation probes. A total of 32 different probes are described in detail and summarized in matrix or tabular form. The important considerations of combustion gas characterization and deposit analysis are also given a significant amount of attention. The results show that considerable work was done in the development of gas side fouling probes. However, it is clear that the design, construction, and testing of a durable, versatile probe - capable of monitoring on-line fouling resistances - remains a formidable task.

  14. Survey of gas-side fouling measuring devices

    SciTech Connect

    Marner, W.J.; Henslee, S.P.

    1984-03-01

    A survey of measuring devices or probes, which have been used to investigate gas-side fouling, has been carried out. Five different types of measuring devices are identified and discussed including: heat flux meters, mass accumulation probes, optical devices, deposition probes, and acid condensation probes. A total of 32 different probes are described in detail and summarized in matrix or tabular form. The important considerations of combustion gas characterization and deposit analysis are also given a significant amount of attention. The results of this study show that considerable work has been done in the development of gas-side fouling probes. However, it is clear that the design, construction, and testing of a durable versatile probe - capable of monitoring on-line fouling resistances - remains a formidable task.

  15. Application of a surface-acoustic-wave device for measurement of liquid flow rate.

    PubMed

    Joshi, S G; Jin, Y

    1990-01-01

    The use of a surface-acoustic-wave (SAW) device to measure the flow rate of liquids is described. A delay-line stabilized SAW oscillator heated to a suitable temperature above ambient is cooled by the flowing fluid. This results in a change in the oscillator frequency. The frequency of a 68-MHz oscillator operated at 9 degrees C above ambient is found to vary by more than 40 kHz for variation in water flow rate from 0 to 0.8 ml/min. Attractive features of this device include the ability to measure very low flow rates (less than 0.1 mul/min) and direct digital output. However, since this is a thermal type of flow sensor, the temperature of the fluid will be slightly elevated during its passage through the flow cell. The device should be useful in applications where low flow rates have to be monitored. PMID:18285065

  16. Floating Probe Assembly for Measuring Temperature of Water

    NASA Technical Reports Server (NTRS)

    Stewart, Randy; Ruffin, Clyde

    2002-01-01

    A floating apparatus denoted a temperature probe aquatic suspension system (TPASS) has been developed for measuring the temperature of an ocean, lake, or other natural body of water at predetermined depths. Prior instruments built for the same purpose were found to give inaccurate readings because the apparatuses themselves significantly affected the temperatures of the water in their vicinities. The design of the TPASS is intended to satisfy a requirement to minimize the perturbation of the temperatures to be measured. The TPASS includes a square-cross-section aluminum rod 28 in. (=71 cm) long with floats attached at both ends. Each float includes five polystyrene foam disks about 3/4 in.(=1.9 cm) thick and 2.5 in. (=6.4 cm) in diameter. The disks are stacked to form cylinders, bolted to the rod, and covered with hollow plastic sleeves. A metal sleeve is clamped to the middle of the aluminum rod, from whence it hangs down into the water. Temperature probes (which can be thermocouples, thermistors, or resistance temperature devices) are placed within the sleeve at the desired measurement depths. Wires from the temperature probes are routed to the input terminals of a data logger.

  17. Floating Probe Assembly for Measuring Temperature of Water

    NASA Technical Reports Server (NTRS)

    Selinsky, T.; Stewart, Randy; Ruffin, Clyde

    2002-01-01

    A floating apparatus denoted a temperature probe aquatic suspension system (TPASS) has been developed for measuring the temperature of an ocean, lake, or other natural body of water at predetermined depths. Prior instruments built for the same purpose were found to give inaccurate readings because the apparatuses themselves significantly affected the temperatures of the water in their vicinities. The design of the TPASS is intended to satisfy a requirement to minimize the perturbation of the temperatures to be measured. The TPASS includes a square-cross-section aluminum rod 28 in. (approx. = 71 cm) long with floats attached at both ends. Each float includes five polystyrene foam disks about 3/4 in. (approx. = 1.9 cm) thick and 2.5 in. (approx. = 6.4 cm) in diameter. The disks are stacked to form cylinders, bolted to the rod, and covered with hollow plastic sleeves. A metal sleeve is clamped to the middle of the aluminum rod, from whence it hangs down into the water. Temperature probes (which can be thermocouples, thermistors, or resistance temperature devices) are placed within the sleeve at the desired measurement depths. Wires from the temperature probes are routed to the input terminals of a data logger. This work was done by Randy

  18. Boron Arsenide and Boron Phosphide for High Temperature and Luminescent Devices. [semiconductor devices - crystal growth/crystal structure

    NASA Technical Reports Server (NTRS)

    Chu, T. L.

    1975-01-01

    The crystal growth of boron arsenide and boron phosphide in the form of bulk crystals and epitaxial layers on suitable substrates is discussed. The physical, chemical, and electrical properties of the crystals and epitaxial layers are examined. Bulk crystals of boron arsenide were prepared by the chemical transport technique, and their carrier concentration and Hall mobility were measured. The growth of boron arsenide crystals from high temperature solutions was attempted without success. Bulk crystals of boron phosphide were also prepared by chemical transport and solution growth techniques. Techniques required for the fabrication of boron phosphide devices such as junction shaping, diffusion, and contact formation were investigated. Alloying techniques were developed for the formation of low-resistance ohmic contacts to boron phosphide. Four types of boron phosphide devices were fabricated: (1) metal-insulator-boron phosphide structures, (2) Schottky barriers; (3) boron phosphide-silicon carbide heterojunctions; and (4) p-n homojunctions. Easily visible red electroluminescence was observed from both epitaxial and solution grown p-n junctions.

  19. A Microwave Radiometer for Internal Body Temperature Measurement

    NASA Astrophysics Data System (ADS)

    Scheeler, Robert Patterson

    This thesis presents the analysis and design of a microwave radiometer for internal body temperature measurements. There is currently no available method for non-invasive temperature measurement inside the human body. However, knowledge of both relative and absolute temperature variations over time is important to a number of medical applications. The research presented in this thesis details a proof-of-concept near-field microwave radiometer demonstrating relative thermometry of a multi-layer phantom. There are a number of technical challenges addressed in this thesis for radiometric determination of sub-degree temperature variations in the human body. A theoretical approach is developed for determining sensing depth from known complex layered tissues, which is defined as a figure of merit, and is shown to be dependent on frequency, electrical properties of the tissues, and the near-field probe. In order to obtain depth resolution, multiple frequency operation can be used, so multi-frequency probes are designed and demonstrated in this work. The choice of frequencies is determined not only by the tissue material properties, but also by the ever increasing radio interference in the environment. In this work, quiet bands allocated to radio astronomy are investigated. The radiometer and probe need to be compact to be wearable, and several advancements are made towards a fully wearable device: multi-frequency low-profile probes are designed and fabricated on a flexible substrate and the process of on-chip integration is demonstrated by a GaAs MMIC cold noise source for radiometer calibration. The implemented proof-of-concept device consists of two radiometers at 1.4 GHz and 2.7 GHz, designed with commercial inexpensive devices that can enable sufficient sensitivity. The device is tested on a phantom with two water layers whose temperatures are varied in a controlled manner, and focused on the human body temperature range. Measured results are discussed qualitatively as they relate to circadian rhythm monitoring. Finally, the thesis identifies future research that is required to make a practical wearable microwave thermometer for internal body temperature measurements.

  20. Valve torque measuring device based on strain gauge

    NASA Astrophysics Data System (ADS)

    Zhu, Qi-rong; Ni, Fan; Yang, Guo-biao; Li, Bin

    2010-08-01

    Start-stop torque is one of the key parameters of valve's capacity. In China, a torque spanner is used to measure the small-bore torque, but the accuracy is not very high. In the large-bore situation, the previous method can not be used to measure the torque, so the torque is determined by the design calculation result. Sometimes this result is far from the practical one, and the difference will impact the apolegamy of the actuating device of a valve. Some other methods, such as inductance type transducer valve torque sensor, strain gauge valve torque sensor, appeared. They both have the advantage of high accuracy, but their automatic level is low and their measuring equipments are complex. In this paper, a new style torque measuring device which is based on theory of mechanics of materials and measuring principle of strain gauge is designed. The maximal torque is 2000Nm. The measuring device is easy for installation, accurate on results, and is able to meet the actually online measuring demands.

  1. High-accuracy direct ZT and intrinsic properties measurement of thermoelectric couple devices.

    PubMed

    Kraemer, D; Chen, G

    2014-04-01

    Advances in thermoelectric materials in recent years have led to significant improvements in thermoelectric device performance and thus, give rise to many new potential applications. In order to optimize a thermoelectric device for specific applications and to accurately predict its performance ideally the material's figure of merit ZT as well as the individual intrinsic properties (Seebeck coefficient, electrical resistivity, and thermal conductivity) should be known with high accuracy. For that matter, we developed two experimental methods in which the first directly obtains the ZT and the second directly measures the individual intrinsic leg properties of the same p/n-type thermoelectric couple device. This has the advantage that all material properties are measured in the same sample direction after the thermoelectric legs have been mounted in the final device. Therefore, possible effects from crystal anisotropy and from the device fabrication process are accounted for. The Seebeck coefficients, electrical resistivities, and thermal conductivities are measured with differential methods to minimize measurement uncertainties to below 3%. The thermoelectric couple ZT is directly measured with a differential Harman method which is in excellent agreement with the calculated ZT from the individual leg properties. The errors in both the directly measured and calculated thermoelectric couple ZT are below 5% which is significantly lower than typical uncertainties using commercial methods. Thus, the developed technique is ideal for characterizing assembled couple devices and individual thermoelectric materials and enables accurate device optimization and performance predictions. We demonstrate the methods by measuring a p/n-type thermoelectric couple device assembled from commercial bulk thermoelectric Bi2Te3 elements in the temperature range of 30 °C-150 °C and discuss the performance of the couple thermoelectric generator in terms of its efficiency and materials' self-compatibility. PMID:24784659

  2. IN SITU FIELD PORTABLE FINE PARTICLE MEASURING DEVICE

    EPA Science Inventory

    The report describes the design, development, and testing of an in situ fine particle measuring device--the Fine Particle Stack Spectrometer System (FPSSS). It is a laser-fed optical system with detection by near-forward light scattering. Sample volume is established by a high-re...

  3. 21 CFR 886.1450 - Corneal radius measuring device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Corneal radius measuring device. 886.1450 Section 886.1450 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... small, hand held, single tube penscope or eye gauge magnifier. (b) Classification. Class I...

  4. Method and apparatus for measuring low currents in capacitance devices

    DOEpatents

    Kopp, M.K.; Manning, F.W.; Guerrant, G.C.

    1986-06-04

    A method and apparatus for measuring subnanoampere currents in capacitance devices is reported. The method is based on a comparison of the voltages developed across the capacitance device with that of a reference capacitor in which the current is adjusted by means of a variable current source to produce a stable voltage difference. The current varying means of the variable current source is calibrated to provide a read out of the measured current. Current gain may be provided by using a reference capacitor which is larger than the device capacitance with a corresponding increase in current supplied through the reference capacitor. The gain is then the ratio of the reference capacitance to the device capacitance. In one illustrated embodiment, the invention makes possible a new type of ionizing radiation dose-rate monitor where dose-rate is measured by discharging a reference capacitor with a variable current source at the same rate that radiation is discharging an ionization chamber. The invention eliminates high-megohm resistors and low current ammeters used in low-current measuring instruments.

  5. Method measuring oxygen tension and transport within subcutaneous devices.

    PubMed

    Weidling, John; Sameni, Sara; Lakey, Jonathan R T; Botvinick, Elliot

    2014-08-01

    Cellular therapies hold promise to replace the implantation of whole organs in the treatment of disease. For most cell types, in vivo viability depends on oxygen delivery to avoid the toxic effects of hypoxia. A promising approach is the in situ vascularization of implantable devices which can mediate hypoxia and improve both the lifetime and utility of implanted cells and tissues. Although mathematical models and bulk measurements of oxygenation in surrounding tissue have been used to estimate oxygenation within devices, such estimates are insufficient in determining if supplied oxygen is sufficient for the entire thickness of the implanted cells and tissues. We have developed a technique in which oxygen-sensitive microparticles (OSMs) are incorporated into the volume of subcutaneously implantable devices. Oxygen partial pressure within these devices can be measured directly in vivo by an optical probe placed on the skin surface. As validation, OSMs have been incorporated into alginate beads, commonly used as immunoisolation devices to encapsulate pancreatic islet cells. Alginate beads were implanted into the subcutaneous space of SpragueDawley rats. Oxygen transport through beads was characterized from dynamic OSM signals in response to changes in inhaled oxygen. Changes in oxygen dynamics over days demonstrate the utility of our technology. PMID:25162910

  6. Measurements of fluid viscosity using a miniature ball drop device

    NASA Astrophysics Data System (ADS)

    Tang, Jay X.

    2016-05-01

    This paper describes measurement of fluid viscosity using a small ball drop device. It requires as little as 100 μl of fluid. Each measurement can be performed in seconds. The experiment is designed to yield reliable viscosity values by operating at properly chosen tilt angles and with calibration using well-characterized Newtonian fluids such as mixtures of glycerol and water. It also yields dynamical viscosity of non-Newtonian fluids at moderate shear rates. The device is easy to assemble and it allows for the measurement of viscosity even when the fluid samples are too small to measure using most commercial viscometers or rheometers. Therefore, the technique is particularly useful in characterizing biological fluids such as solutions of proteins, DNA, and polymers frequently used in biomaterial applications.

  7. Turbine gas temperature measurement and control system

    NASA Technical Reports Server (NTRS)

    Webb, W. L.

    1973-01-01

    A fluidic Turbine Inlet Gas Temperature (TIGIT) Measurement and Control System was developed for use on a Pratt and Whitney Aircraft J58 engine. Based on engine operating requirements, criteria for high temperature materials selection, system design, and system performance were established. To minimize development and operational risk, the TIGT control system was designed to interface with an existing Exhaust Gas Temperature (EGT) Trim System and thereby modulate steady-state fuel flow to maintain a desired TIGT level. Extensive component and system testing was conducted including heated (2300F) vibration tests for the fluidic sensor and gas sampling probe, temperature and vibration tests on the system electronics, burner rig testing of the TIGT measurement system, and in excess of 100 hours of system testing on a J58 engine. (Modified author abstract)

  8. Laser weld penetration estimation using temperature measurements

    SciTech Connect

    Lankalapalli, K.N.; Tu, J.F.; Leong, K.H.; Gartner, M.

    1997-10-01

    Penetration depth is an important factor critical to the quality of a laser weld. This paper examines the feasibility of using temperature measurements on the bottom surface of the work-piece to estimate weld penetration. A three-dimensional analytical model relating penetration depth, weld bead width and welding speed to temperature distribution at the bottom surface of the workpiece is developed. Temperatures on the bottom surface of the workpiece are measured using infrared thermocouples located behind the laser beam. Experimental results from bead-on-plate welds on low carbon steel plates of varying thickness at different levels of laser power and speeds validate the model and show that the temperature on the bottom surface is a sensitive indicator of penetration depth. The proposed model is computationally efficient and is suitable for on-line process monitoring application.

  9. Device and method for the measurement of gas permeability through membranes

    DOEpatents

    Agarwal, Pradeep K.; Ackerman, John; Borgialli, Ron; Hamann, Jerry; Muknahalliptna, Suresh

    2006-08-08

    A device for the measuring membrane permeability in electrical/electrochemical/photo-electrochemical fields is provided. The device is a permeation cell and a tube mounted within the cell. An electrode is mounted at one end of the tube. A membrane is mounted within the cell wherein a corona is discharged from the electrode in a general direction toward the membrane thereby generating heated hydrogen atoms adjacent the membrane. A method for measuring the effects of temperature and pressure on membrane permeability and selectivity is also provided.

  10. Apparatus and method for high temperature viscosity and temperature measurements

    DOEpatents

    Balasubramaniam, Krishnan; Shah, Vimal; Costley, R. Daniel; Singh, Jagdish P.

    2001-01-01

    A probe for measuring the viscosity and/or temperature of high temperature liquids, such as molten metals, glass and similar materials comprises a rod which is an acoustical waveguide through which a transducer emits an ultrasonic signal through one end of the probe, and which is reflected from (a) a notch or slit or an interface between two materials of the probe and (b) from the other end of the probe which is in contact with the hot liquid or hot melt, and is detected by the same transducer at the signal emission end. To avoid the harmful effects of introducing a thermally conductive heat sink into the melt, the probe is made of relatively thermally insulative (non-heat-conductive) refractory material. The time between signal emission and reflection, and the amplitude of reflections, are compared against calibration curves to obtain temperature and viscosity values.

  11. Measuring devices for precision manufacturing and quality control

    NASA Astrophysics Data System (ADS)

    Wilhelm, J.; Jacoby, H. D.; Preuss, H. J.

    1980-12-01

    Various miniaturized and low cost transducers were developed for different applications in metrology, precision manufacturing and fabrication control. They comprise: (1) photoelectric linear transducer with micron step pression; (2) incremental and coded transducers; (3) concave mirror x-y transducer; (4) correlation systems for linear and speed measurements; (5) high resolution angle transducers; and (6) correlation optical sensor for distance measurement. Operation principles are explained and several applications are illustrated. Some of the devices are already available.

  12. Temperature measurement of sputtered metal dimers

    SciTech Connect

    Fayet, P.; Wolf, J.P.; Woeste, L.

    1986-05-15

    The temperatures of sputtered alkali-metal dimers have been measured using one- and two-photon ionization spectroscopy. They are estimated to be 1470 +- 300 K, 1025 +- 200 K, and 1000 +- 200 K for Cs/sub 2/, K/sub 2/, and Na/sub 2/, respectively. The vibrational and rotational temperatures are found to be very similar. No dependence of the dimer excitation is found, neither on target temperature nor on the primary-ion energy. The results are compared with some currently used models to explain cluster formation in sputtering experiments.

  13. Constant frequency pulsed phase-locked loop measuring device

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Kushnick, Peter W. (Inventor); Cantrell, John H. (Inventor)

    1993-01-01

    A measuring apparatus is presented that uses a fixed frequency oscillator to measure small changes in the phase velocity ultrasonic sound when a sample is exposed to environmental changes such as changes in pressure, temperature, etc. The invention automatically balances electrical phase shifts against the acoustical phase shifts in order to obtain an accurate measurement of electrical phase shifts.

  14. Research about the high precision temperature measurement

    NASA Astrophysics Data System (ADS)

    Lin, J.; Yu, J.; Zhu, X.; Zeng, Z.; Deng, Y.

    2012-12-01

    High precision temperature control system is one of most important support conditions for tunable birefringent filter.As the first step,we researched some high precision temperature measurement methods for it. Firstly, circuits with a 24 bit ADC as the sensor's reader were carefully designed; Secondly, an ARM porcessor is used as the centrol processing unit, it provides sufficient reading and procesing ability; Thirdly, three kinds of sensors, PT100, Dale 01T1002-5 thermistor, Wheatstone bridge(constructed by pure copper and manganin) as the senor of the temperature were tested respectively. The resolution of the measurement with these three kinds of sensors are all better than 0.001 that's enough for 0.01 stability temperature control. Comparatively, Dale 01T1002-5 thermistor could get the most accurate temperature of the key point, Wheatstone bridge could get the most accurate mean temperature of the whole layer, both of them will be used in our futrue temperature controll system.

  15. Assembly for electrical conductivity measurements in the piston cylinder device

    DOEpatents

    Watson, Heather Christine; Roberts, Jeffrey James

    2012-06-05

    An assembly apparatus for measurement of electrical conductivity or other properties of a sample in a piston cylinder device wherein pressure and heat are applied to the sample by the piston cylinder device. The assembly apparatus includes a body, a first electrode in the body, the first electrode operatively connected to the sample, a first electrical conductor connected to the first electrode, a washer constructed of a hard conducting material, the washer surrounding the first electrical conductor in the body, a second electrode in the body, the second electrode operatively connected to the sample, and a second electrical conductor connected to the second electrode.

  16. Two-temperature method for measuring emissivity

    USGS Publications Warehouse

    Watson, K.

    1992-01-01

    Spectral emissivity can be uniquely determined from radiance measurements if the object can be observed at two different temperatures. The advantage of this approach is that the spectral emissivity is determined without a priori assumptions about spectral shape. Because the different temperatures are obtained by observing the scene at two times in the diurnal cycle (optimally after midday and midnight), the method assumes that emissivity is temporally invariant. This is valid for rocks and dry soils, not well established for vegetation, and not true when changes in soil moisture occur between the measurements. Accurate image registration and satisfactory signal:noise are critical factors that limit extensive use of this method. ?? 1992.

  17. Non-contact temperature measurement requirements

    NASA Technical Reports Server (NTRS)

    Higgins, D. B.; Witherow, W. K.

    1989-01-01

    The Marshall Space Flight Center is involved with levitation experiments for Spacelab, Space Station, and drop tube/tower operations. These experiments have temperature measurement requirements, that of course must be non-contact in nature. The experiment modules involved are the Acoustic Levitator Furnace (ALF), and the Modular Electromagnetic Levitator (MEL). User requirements of the ALF and drop tube are presented. The center also has temperature measurement needs that are not microgravity experiment oriented, but rather are related to the propulsion system for the STS. This requirement will also be discussed.

  18. A Method of Measuring Piston Temperatures

    NASA Technical Reports Server (NTRS)

    Pinkel, Benjamin; Mangniello, Eugene J

    1940-01-01

    A method that makes use of thermocouples has been developed to measure the temperature of engine pistons operating at high speeds. The thermocouples installed on the moving piston are connected with a potentiometer outside the engine by means of pneumatically operated plungers, which make contact with the piston thermocouples for about 10 crankshaft degrees at the bottom of the piston stroke. The equipment is operated satisfactory at engine speeds of 2,400 r.p.m. and shows promise of successful operation at higher engine speeds. Measurements of piston temperatures in a liquid-cooled compression-ignition engine and in an air-cooled spark-ignition are presented.

  19. Dual neutron flux/temperature measurement sensor

    DOEpatents

    Mihalczo, J.T.; Simpson, M.L.; McElhaney, S.A.

    1994-10-04

    Simultaneous measurement of neutron flux and temperature is provided by a single sensor which includes a phosphor mixture having two principal constituents. The first constituent is a neutron sensitive 6LiF and the second is a rare-earth activated Y203 thermophosphor. The mixture is coated on the end of a fiber optic, while the opposite end of the fiber optic is coupled to a light detector. The detected light scintillations are quantified for neutron flux determination, and the decay is measured for temperature determination. 3 figs.

  20. Dual neutron flux/temperature measurement sensor

    DOEpatents

    Mihalczo, John T.; Simpson, Marc L.; McElhaney, Stephanie A.

    1994-01-01

    Simultaneous measurement of neutron flux and temperature is provided by a single sensor which includes a phosphor mixture having two principal constituents. The first constituent is a neutron sensitive 6LiF and the second is a rare-earth activated Y203 thermophosphor. The mixture is coated on the end of a fiber optic, while the opposite end of the fiber optic is coupled to a light detector. The detected light scintillations are quantified for neutron flux determination, and the decay is measured for temperature determination.

  1. NaOH-based high temperature heat-of-fusion thermal energy storage device

    NASA Technical Reports Server (NTRS)

    Cohen, B. M.; Rice, R. E.

    1978-01-01

    A material called Thermkeep, developed as a low-cost method for the storage of thermal energy for solar electric power generating systems is discussed. The storage device consists of an insulated cylinder containing Thermkeep in which coiled tubular heat exchangers are immersed. A one-tenth scale model of the design contains 25 heat-exchanger tubes and 1500 kg of Thermkeep. Its instrumentation includes thermocouples to measure internal Thermkeep temperatures, vessel surface, heated shroud surface, and pressure gauges to indicate heat-exchanger pressure drops. The test-circuit design is presented and experimental results are discussed.

  2. Wireless measurement of temperature using surface acoustic waves sensors.

    PubMed

    Reindl, Leonhard M; Shrena, Ismail M

    2004-11-01

    Surface acoustic wave (SAW) devices can be used as wireless sensor elements, called SAW transponders, for measuring physical quantities such as temperature that do not need any power supply and may be accessed wirelessly. A complete wireless sensor system consists of one or more such SAW transponders and a local radar transceiver. The SAW transponder receives an RF burst in the VHF/UHF band transmitted by the radar transceiver. The reader unit performs a radar measurement of the impulse response of the SAW transponder via a high-frequency electromagnetic radio link. A temperature variation changes the SAW velocity and thereby the response pattern of the SAW device. By analyzing the time delay between backscattered pulses with different time delays we get a rough estimation of the temperature of the SAW transponder. By using this information the ambiguity of +/-2pi in the phase differences between the pulses can be eliminated, which provides an overall and unambiguous temperature resolution of +/-0.2 degrees C. PMID:15600090

  3. Methods of measurement for semiconductor materials, process control, and devices

    NASA Technical Reports Server (NTRS)

    Bullis, W. M. (Editor)

    1972-01-01

    Significant accomplishments include development of a procedure to correct for the substantial differences of transistor delay time as measured with different instruments or with the same instrument at different frequencies; association of infrared response spectra of poor quality germanium gamma ray detectors with spectra of detectors fabricated from portions of a good crystal that had been degraded in known ways; and confirmation of the excellent quality and cosmetic appearance of ultrasonic bonds made with aluminum ribbon wire. Work is continuing on measurement of resistivity of semiconductor crystals; study of gold-doped silicon, development of the infrared response technique; evaluation of wire bonds and die attachment; and measurement of thermal properties of semiconductor devices, delay time and related carrier transport properties in junction devices, and noise properties of microwave diodes.

  4. Effective ultraviolet irradiance measurements from artificial tanning devices in Greece.

    PubMed

    Petri, Aspasia; Karabetsos, Efthymios

    2015-12-01

    Artificial tanning remains very popular worldwide, despite the International Agency for Research on Cancer classification of ultraviolet (UV) radiation from sunbeds as 'carcinogenic to humans'. Greek Atomic Energy Commission has initiated a surveillance action of the artificial tanning devices in Greece in order to record the effective irradiance levels from the sunbeds and to inform and synchronise the domestic artificial tanning business sector with the requirements of the European Standard EN 60335-2-27:2010. In this direction, in situ measurements of UV emissions from sunbeds in solaria businesses all over Greece were performed from October 2013 until July 2014, with a radiometer and a portable single-monochromator spectrophotometer. Analysis of the measurements' results revealed that effective irradiance in ∼60 % of the measured sunbeds exceeded the 0.3 W m(-2) limit value set by EN 60335-2-27:2010 and only 20 % of the devices could be categorised as UV type 3. PMID:25468991

  5. Resource-Efficient Measurement-Device-Independent Entanglement Witness

    NASA Astrophysics Data System (ADS)

    Verbanis, E.; Martin, A.; Rosset, D.; Lim, C. C. W.; Thew, R. T.; Zbinden, H.

    2016-05-01

    Imperfections in experimental measurement schemes can lead to falsely identifying, or over estimating, entanglement in a quantum system. A recent solution to this is to define schemes that are robust to measurement imperfections—measurement-device-independent entanglement witness (MDI-EW). This approach can be adapted to witness all entangled qubit states for a wide range of physical systems and does not depend on detection efficiencies or classical communication between devices. Here we extend the theory to remove the necessity of prior knowledge about the two-qubit states to be witnessed. Moreover, we tested this model via a novel experimental implementation for MDI-EW that significantly reduces the experimental complexity. By applying it to a bipartite Werner state, we demonstrate the robustness of this approach against noise by witnessing entanglement down to an entangled state fraction close to 0.4.

  6. Ion temperature fluctuation measurements using a retarding field analyzer.

    PubMed

    Nedzelskiy, I S; Silva, C; Duarte, P; Fernandes, H

    2011-04-01

    The retarding field analyzer (RFA) is a widely used diagnostic tool for the ion temperature measurement in the scrape-off-layer (SOL) of the thermonuclear plasma devices. However, the temporal resolution in the standard RFA application is restricted to the ms timescale. In this paper, a dc operation of the RFA is considered, which allows for the measurement of the plasma ion temperature fluctuations. The method is based on the relation for the RFA current-voltage (I-V) characteristic resulted from a common RFA model of shifted Maxwellian distribution of the analyzed ions, and the measurements of two points on the exponentially decaying region of the I-V characteristic with two differently dc biased RFA electrodes. The method has been tested and compared with conventional RFA measurements of the ion temperature in the tokamak ISTTOK SOL plasma. An ion temperature of T(i) = 17 eV is obtained near the limiter position. The agreement between the results of the two methods is within ∼25%. The amplitude of the ion temperature fluctuations is found to be around 5 eV at this location. The method has been validated by taking into account the effect of fluctuations in the plasma potential and the noise contamination, proving the reliability of the results obtained. Finally, constrains to the method application are discussed that include a negligible electron emission from the RFA grids and the restriction to operate in the exponentially decaying region of the I-V characteristic. PMID:21529006

  7. Analyzing the dynamics of brain circuits with temperature: design and implementation of a miniature thermoelectric device.

    PubMed

    Aronov, Dmitriy; Fee, Michale S

    2011-04-15

    Traditional lesion or inactivation methods are useful for determining if a given brain area is involved in the generation of a behavior, but not for determining if circuit dynamics in that area control the timing of the behavior. In contrast, localized mild cooling or heating of a brain area alters the speed of neuronal and circuit dynamics and can reveal the role of that area in the control of timing. It has been shown that miniaturized solid-state heat pumps based on the Peltier effect can be useful for analyzing brain dynamics in small freely behaving animals (Long and Fee, 2008). Here we present a theoretical analysis of these devices and a procedure for optimizing their design. We describe the construction and implementation of one device for cooling surface brain areas, such as cortex, and another device for cooling deep brain regions. We also present measurements of the magnitude and localization of the brain temperature changes produced by these two devices. PMID:21291909

  8. Ion temperature measurements in the Maryland Spheromak

    SciTech Connect

    Gauvreau, J.L.

    1992-12-31

    Initial spectroscopic data from MS showed evidence of ion heating as deduced from the line widths of different ion species. Detailed measurements of OIV spectral emission line profiles in space and time revealed that heating takes place at early time, before spheromak formation and is occurring within the current discharge. The measured ion temperature is several times the electron temperature and cannot be explained by classical (Spitzer) resistivity. Classically, ions are expected to have lower temperatures than the electrons and therefore, lower temperatures than observed. High ion temperatures have been observed in different RFP`s and Spheromaks but are usually associated with relaxation to the Taylor state and occur in the sustainment phase. During formation, the current delivered to start the discharge is not axisymmetric and as a consequence, X-points appear in the magnetic flux. A two dimensional analysis predicts that magnetic reconnection occurring at an X-point can give rise to high ion heating rates. A simple 0-dimensional calculation showed that within the first 20 {mu}s, a conversion of mass flow kinetic energy into ion temperature could take place due to viscosity.

  9. Material parameter measurements at high temperatures

    NASA Technical Reports Server (NTRS)

    Dominek, A.; Park, A.; Peters, L., Jr.

    1988-01-01

    Alternate fixtures of techniques for the measurement of the constitutive material parameters at elevated temperatures are presented. The technique utilizes scattered field data from material coated cylinders between parallel plates or material coated hemispheres over a finite size groundplane. The data acquisition is centered around the HP 8510B Network Analyzer. The parameters are then found from a numerical search algorithm using the Newton-Ralphson technique with the measured and calculated fields from these canonical scatters. Numerical and experimental results are shown.

  10. Microwave measurements of water vapor partial pressure at high temperatures

    SciTech Connect

    Latorre, V.R.

    1991-02-01

    One of the desired parameters in the Yucca Mountain Project is the capillary pressure of the rock comprising the repository. This parameter is related to the partial pressure of water vapor in the air when in equilibrium with the rock mass. Although there are a number of devices that will measure the relative humidity (directly related to the water vapor partial pressure), they generally will fail at temperatures on the order of 150C. Since thee author has observed borehole temperatures considerably in excess of this value in G-Tunnel at the Nevada Test Site (NTS), a different scheme is required to obtain the desired partial pressure data at higher temperatures. This chapter presents a microwave technique that has been developed to measure water vapor partial pressure in boreholes at temperatures up to 250C. The heart of the system is a microwave coaxial resonator whose resonant frequency is inversely proportional to the square root of the real part of the complex dielectric constant of the medium (air) filling the resonator. The real part of the dielectric constant of air is approximately equal to the square of the refractive index which, in turn, is proportional to the partial pressure of the water vapor in the air. Thus, a microwave resonant cavity can be used to measure changes in the relative humidity or partial pressure of water vapor in the air. Since this type of device is constructed of metal, it is able to withstand very high temperatures. The actual limitation is the temperature limit of the dielectric material in the cable connecting the resonator to its driving and monitoring equipment-an automatic network analyzer in our case. In the following sections, the theory of operation, design, construction, calibration and installation of the microwave diagnostics system is presented. The results and conclusions are also presented, along with suggestions for future work.

  11. Computer-aided monitoring and operation of continuous measuring devices.

    PubMed

    Rieger, L; Thomann, M; Joss, A; Gujer, W; Siegrist, H

    2004-01-01

    Extended studies of measuring and control systems in activated sludge plants at EAWAG revealed that the measuring devices remain the weakest point in control applications. To overcome this problem, a software package was developed which analyses and evaluates the residuals between a reference measurement and the sensor and collects the information in a database. The underlying monitoring concept is based on a two-step evaluation of the residuals by means of statistical evaluations using control charts with two different sets of criteria. The first step is a warning phase in which hints on probable errors trigger an increase in the monitoring frequency. In the second step, the alarm phase, the error hypothesis has to be validated and should allow immediate and targeted reactions from the operator. This procedure enables an optimized and flexible monitoring effort combined with an increased probability of early detection of systematic measuring errors. Beside the monitoring concept, information about the measuring device, the performed servicing actions and the responsibilities is stored. Statistical values for the quantitative characterization of the measuring system during operation will be given. They are needed to parameterise controllers or to guarantee the accuracy of the instrument in order to allow reliable calculations of effluent tax. In contrast to other concepts, not only is the measuring device examined under standard conditions, but so is the entire measuring chain from the liquid to be analysed to the value stored in the database of the supervisory system. The knowledge of the response time of the measuring system is then required in order to allow a comparison of the corresponding values. PMID:15685977

  12. Global trends of measured surface air temperature

    NASA Technical Reports Server (NTRS)

    Hansen, James; Lebedeff, Sergej

    1987-01-01

    The paper presents the results of surface air temperature measurements from available meteorological stations for the period of 1880-1985. It is shown that the network of meteorological stations is sufficient to yield reliable long-term, decadal, and interannual temperature changes for both the Northern Hemisphere and the Southern Hemisphere, despite the fact that most stations are located on the continents. The results indicate a global warming of about 0.5-0.7 C in the past century, with warming of similar magnitude in both hemispheres. A strong warming trend between 1965 and 1980 raised the global mean temperature in 1980 and 1981 to the highest level in the period of instrumental records. Selected graphs of the temperature change in each of the eight latitude zones are included.

  13. Dynamic gas temperature measurement system, volume 1

    NASA Technical Reports Server (NTRS)

    Elmore, D. L.; Robinson, W. W.; Watkins, W. B.

    1983-01-01

    A gas temperature measurement system with compensated frequency response of 1 kHz and capability to operate in the exhaust of a gas turbine engine combustor was developed. A review of available technologies which could attain this objective was done. The most promising method was identified as a two wire thermocouple, with a compensation method based on the responses of the two different diameter thermocouples to the fluctuating gas temperature field. In a detailed design of the probe, transient conduction effects were identified as significant. A compensation scheme was derived to include the effects of gas convection and wire conduction. The two wire thermocouple concept was tested in a laboratory burner exhaust to temperatures of about 3000 F and in a gas turbine engine to combustor exhaust temperatures of about 2400 F. Uncompensated and compensated waveforms and compensation spectra are presented.

  14. Calibrating X-ray Imaging Devices for Accurate Intensity Measurement

    SciTech Connect

    Haugh, M. J.

    2011-07-28

    The purpose of the project presented is to develop methods to accurately calibrate X-ray imaging devices. The approach was to develop X-ray source systems suitable for this endeavor and to develop methods to calibrate solid state detectors to measure source intensity. NSTec X-ray sources used for the absolute calibration of cameras are described, as well as the method of calibrating the source by calibrating the detectors. The work resulted in calibration measurements for several types of X-ray cameras. X-ray camera calibration measured efficiency and efficiency variation over the CCD. Camera types calibrated include: CCD, CID, back thinned (back illuminated), front illuminated.

  15. Universal measurement device for electronic watches and small clocks

    NASA Astrophysics Data System (ADS)

    Vermot, Michel

    The project and the device set up for performing automatic measurements are described. The system development involved: a specially designed acquisition card, a standard personal computer and specific management programs. It is designed as laboratory equipment and is able to perform most of measurements required by electronic watchmaking industry such as current/consumption measurements, frequency, torque, motor pulses generation. Versions meeting specific production testing needs at reasonable costs can be developed. For after sale servicing, it is possible to deliver a diskette giving all parameters needed for a specific movement, avoiding changes in hardware.

  16. Measuring electron temperature in the extended corona

    NASA Technical Reports Server (NTRS)

    Hassler, Donald M.; Gardner, L. D.; Kohl, John L.

    1992-01-01

    A technique for measuring electron temperature in the extended corona from the line profile of the electron scattered component of coronal H I Ly alpha produced by Thomson scattering of chromospheric Ly alpha emission is discussed. Because of the high thermal velocity of electrons at coronal temperatures (approximately 6800 km/s at T(sub e) = 1,500,000 K) the effect of nonthermal velocities and solar wind flows on the electron velocity distribution are negligible. However, the low electron mass which is responsible for the high thermal velocity also results in a very wide profile (approximately equal to 50 A). This wide profile, together with an intensity that is three orders of magnitude weaker than the resonantly scattered component of Ly alpha makes the direct measurement of T(sub e) a challenging observational problem. An evaluation of this technique based on simulated measurements is presented and the subsequent instrumental requirements necessary to make a meaningful determination of the electron temperature are discussed. Estimates of uncertainties in the measured electron temperature are related to critical instrument parameters such as grating stray light suppression.

  17. Integrated seal for high-temperature electrochemical device

    SciTech Connect

    Tucker, Michael C; Jacobson, Craig P

    2013-07-16

    The present invention provides electrochemical device structures having integrated seals, and methods of fabricating them. According to various embodiments the structures include a thin, supported electrolyte film with the electrolyte sealed to the support. The perimeter of the support is self-sealed during fabrication. The perimeter can then be independently sealed to a manifold or other device, e.g., via an external seal. According to various embodiments, the external seal does not contact the electrolyte, thereby eliminating the restrictions on the sealing method and materials imposed by sealing against the electrolyte.

  18. Scanned-Probe Measurements of Semiconductor Materials and Devices

    NASA Astrophysics Data System (ADS)

    Wetsel, Grover C.

    1997-03-01

    It is projected that fin de siecle microelectronics manufacturing techniques will be capable of producing integrated circuits with minimal lateral feature sizes of 0.15 μ m. The developing technology of quantum-effect-device-based nanoelectronics will involve lateral feature sizes of tens of nanometers or less. Measurement science is being challenged to develop characterization and metrology appropriate for such nanoscale structures. The challenge is principally being met with a battery of scanned probes: the predecessors and successors of the scanning-tunneling microscope. Scanned probes are widely used for measurement of dimensional and physical properties of component materials and nanoelectronic devices; in the semiconductor industry, they are expanding from research-and-development laboratories to manufacturing floors. In this paper, applications of scanned probes to physical measurements of semiconductor materials and devices will be illustrated. Examples will include: 1) electronic characterization of quantum heterostructures, 2) near-field-optical imaging and spectroscopy, 3) calibrated dynamic lateral-force measurements, and 4) photothermal location of subsurface alignment marks on semiconductor wafers.

  19. Experimental measurement-device-independent verification of quantum steering

    NASA Astrophysics Data System (ADS)

    Kocsis, Sacha; Hall, Michael J. W.; Bennet, Adam J.; Saunders, Dylan J.; Pryde, Geoff J.

    2015-01-01

    Bell non-locality between distant quantum systems—that is, joint correlations which violate a Bell inequality—can be verified without trusting the measurement devices used, nor those performing the measurements. This leads to unconditionally secure protocols for quantum information tasks such as cryptographic key distribution. However, complete verification of Bell non-locality requires high detection efficiencies, and is not robust to typical transmission losses over long distances. In contrast, quantum or Einstein-Podolsky-Rosen steering, a weaker form of quantum correlation, can be verified for arbitrarily low detection efficiencies and high losses. The cost is that current steering-verification protocols require complete trust in one of the measurement devices and its operator, allowing only one-sided secure key distribution. Here we present measurement-device-independent steering protocols that remove this need for trust, even when Bell non-locality is not present. We experimentally demonstrate this principle for singlet states and states that do not violate a Bell inequality.

  20. Fractional exhaled nitric oxide measurement with a handheld device.

    PubMed

    Magori, Erhard; Hiltawsky, Karsten; Fleischer, Maximilian; Simon, Elfriede; Pohle, Roland; von Sicard, Oliver; Tawil, Angelika

    2011-06-01

    A sensing system for fractional exhaled nitric oxide (FeNO) measurement is presented, which is characterized by a compact setup and a cost potential to be made available for the patient at home. The sensing is based on the work function measurement of a phthalocyanine-type sensing material, which is shown to be sufficiently sensitive for NO(2) in the ppb range. The transducer used to measure the work function is a field effect transistor with a suspended gate electrode. Selectivity is given with respect to other breath components including typically metabolic by-products. The measurement system includes breath treatments in a simple setup, which essentially are dehumidification and a quantitative conversion of NO to NO(2) with a conversion rate of approx. 95%, using a disposable oxidation catalyst. The accomplishment of the correct exhalation maneuver and feeding of the suited portion of exhaled air to the sensor is provided by breath sampling means. The sensor is not gas consuming. This allows us to fill the measurement chamber once, instead of establishing a gas flow for the measurement. This feature simplifies the device architecture. In this paper, we report on sensor characteristics, system architecture and measurement with artificial breath-gas as well as with human breath with the device. PMID:21646688

  1. The insertion device magnetic measurement facility: Prototype and operational procedures

    SciTech Connect

    Burkel, L.; Dejus, R.; Maines, J.; O'Brien, J.; Vasserman, I. . Advanced Photon Source Accelerator Systems Div.); Pfleuger, J. , Hamburg . Hamburger Synchrotronstrahlungslabor)

    1993-03-01

    This report is a description of the current status of the magnetic measurement facility and is a basic instructional manual for the operation of the facility and its components. Please refer to the appendices for more detailed information about specific components and procedures. The purpose of the magnetic measurement facility is to take accurate measurements of the magnetic field in the gay of the IDs in order to determine the effect of the ID on the stored particle beam and the emitted radiation. The facility will also play an important role when evaluating new ideas, novel devices, and inhouse prototypes as part of the ongoing research and development program at the APS. The measurements will be performed with both moving search coils and moving Hall probes. The IDs will be evaluated by computer modeling of the emitted radiation for any given (measured) magnetic field map. The quality of the magnetic field will be described in terms of integrated multipoles for the effect on Storage Ring performance and in terms of the derived trajectories for the emitted radiation. Before being installed on the Storage Ring, every device will be measured and characterized to assure that it is compatible with Storage Ring requirements and radiation specifications. The accuracy that the APS needs to achieve for magnetic measurements will be based on these specifications.

  2. Temperature measurements of shocked silica aerogel foam

    DOE PAGESBeta

    Falk, K.; McCoy, C. A.; Fryer, C. L.; Greeff, C. W.; Hungerford, A. L.; Montgomery, D. S.; Schmidt, D. W.; Sheppard, D. G.; Williams, J. R.; Boehly, T. R.; et al

    2014-09-12

    We present recent results of equation-of-state (EOS) measurements of shocked silica (SiO2) aerogel foam at the OMEGA laser facility. Silica aerogel is an important low-density pressure standard used in many high energy density experiments, including the novel technique of shock and release. Due to its many applications, it has been a heavily studied material and has a well-known Hugoniot curve. This work then complements the velocity and pressure measurements with additional temperature data providing the full EOS information within the warm dense matter regime for the temperature interval of 1–15 eV and shock velocities between 10 and 40 km/s correspondingmore » to shock pressures of 0.3–2 Mbar. The experimental results were compared with hydrodynamic simulations and EOS models. We found that the measured temperature was systematically lower than suggested by theoretical calculations. As a result, simulations provide a possible explanation that the emission measured by optical pyrometry comes from a radiative precursor rather than from the shock front, which could have important implications for such measurements.« less

  3. Temperature measurements of shocked silica aerogel foam

    SciTech Connect

    Falk, K.; McCoy, C. A.; Fryer, C. L.; Greeff, C. W.; Hungerford, A. L.; Montgomery, D. S.; Schmidt, D. W.; Sheppard, D. G.; Williams, J. R.; Boehly, T. R.; Benage, J. F.

    2014-09-12

    We present recent results of equation-of-state (EOS) measurements of shocked silica (SiO2) aerogel foam at the OMEGA laser facility. Silica aerogel is an important low-density pressure standard used in many high energy density experiments, including the novel technique of shock and release. Due to its many applications, it has been a heavily studied material and has a well-known Hugoniot curve. This work then complements the velocity and pressure measurements with additional temperature data providing the full EOS information within the warm dense matter regime for the temperature interval of 1–15 eV and shock velocities between 10 and 40 km/s corresponding to shock pressures of 0.3–2 Mbar. The experimental results were compared with hydrodynamic simulations and EOS models. We found that the measured temperature was systematically lower than suggested by theoretical calculations. As a result, simulations provide a possible explanation that the emission measured by optical pyrometry comes from a radiative precursor rather than from the shock front, which could have important implications for such measurements.

  4. Noncontact infrared temperature measurement using machine vision

    NASA Astrophysics Data System (ADS)

    Zhong, Fei; Shi, Tielin; He, Tao; Zhong, Yuning

    2006-11-01

    Temperature monitoring is a common requirement; the thermocouples can accurately control the temperature of rotating and moving heated object, without touching it. Uncoated metal heaters are difficult for infrared sensors to measure reliably, the reflected infrared signals can change after a heated object surface is clean, the smog is rareness after the clean heated object has been burnt, when the surface is dirty and smeary, the smog is so dense that the measurement result would be influenced. In order to measuring the metal heater accurately, the measurement noise can be reduced by the machine vision. The Self-Organizing Maps (SOM) is an efficient tool for image processing. It projects input space on prototypes of a low-dimensional regular grid. In this paper a new image process technique has been validated against U-matrix method based on Euclidean distances between input vectors and neurons weights combined with the distribution of the fixed lattices in the network. SOM, as an unsupervised neural networks, is applied to pattern recognition and image processing. By analyzing and processing of the noise signals of the image, the characteristic parameters which represent operating state of the heated object are extracted to construct characteristic vector and used to train SOM. The trained results can be used to modify the sensor testing value. A new image processing scheme based on the use of the organization property of Kohonen maps are presented in this paper, the image processing result can be correct the non-contact infrared temperature measurement.

  5. Temperature-dependence perturbations on LTP measurements

    NASA Astrophysics Data System (ADS)

    Sostero, Giovanni; Bianco, Anna; Zangrando, Marco; Cocco, Daniele

    2002-12-01

    The Long Trace Profiler (LTP) has proved to be one of the major metrological aids for the characterization of synchrotron radiation optics. Currently the optical components installed at the beamlines face higher and higher demands, requiring a precise calibration and control of the measuring conditions. One important parameter to be considered while scanning is the temperature drifts afflicting the measuring sessions. We will review our experiences about the influence of this parameter on the LTP ability in measuring very accurate optical surfaces. It is possible to discriminate at least four major sources of perturbations due to temperature changes: air turbulence, deformation in the optical train inside the LTP optics head, deformation of the optical surface under test (SUT) and deformation of the holders of the SUT itself. Some addresses on the curing of these perturbations can be obtained.

  6. SiC device development for high temperature sensor applications

    NASA Technical Reports Server (NTRS)

    Shor, J. S.; Goldstein, David; Kurtz, A. D.; Osgood, R. M.

    1992-01-01

    Progress made in the processing and characterization of 3C-SiC for high temperature sensor applications is reviewed. Piezoresistance properties of silicon carbide and the temperature coefficient of resistivity of n-type beta-SiC are presented. In addition, photoelectrical etching and dopant selective etch-stops in SiC and high temperature Ohmic contacts for n-type beta-SiC sensors are discussed.

  7. SiC device development for high temperature sensor applications

    NASA Astrophysics Data System (ADS)

    Shor, J. S.; Goldstein, David; Kurtz, A. D.; Osgood, R. M.

    1992-09-01

    Progress made in the processing and characterization of 3C-SiC for high temperature sensor applications is reviewed. Piezoresistance properties of silicon carbide and the temperature coefficient of resistivity of n-type beta-SiC are presented. In addition, photoelectrical etching and dopant selective etch-stops in SiC and high temperature Ohmic contacts for n-type beta-SiC sensors are discussed.

  8. Surface photovoltage measurements and finite element modeling of SAW devices.

    SciTech Connect

    Donnelly, Christine

    2012-03-01

    Over the course of a Summer 2011 internship with the MEMS department of Sandia National Laboratories, work was completed on two major projects. The first and main project of the summer involved taking surface photovoltage measurements for silicon samples, and using these measurements to determine surface recombination velocities and minority carrier diffusion lengths of the materials. The SPV method was used to fill gaps in the knowledge of material parameters that had not been determined successfully by other characterization methods. The second project involved creating a 2D finite element model of a surface acoustic wave device. A basic form of the model with the expected impedance response curve was completed, and the model is ready to be further developed for analysis of MEMS photonic resonator devices.

  9. Infrared thermography for true temperature measurement of the main board in personal computer

    NASA Astrophysics Data System (ADS)

    Yang, Jing; Behnia, Masud; Morrison, Graham

    2002-11-01

    This paper presents a way to measure the true temperature of the electronic devices without disturbing their normal operating conditions, which involved with estimating target emissivity, background temperature correctly and choosing infrared transparent material and its transmission estimation. The temperature distributions of the main board in personal computer were measured by the method presented here with infrared thermography in several different running conditions. The measurement errors and their possible remedies are also discussed.

  10. PIV as a temperature measurement tool

    NASA Astrophysics Data System (ADS)

    Oweis, Ghanem F.

    2015-11-01

    In particle image velocimetry (PIV), a camera records time-lapse snapshot images of the positions of particles embedded in a fluid, which faithfully trace the flow path. Cross correlating sequential particle image pairs results in 2D maps of the particle displacement and velocity fields. Here, the same PIV method is extended to temperature measurements in viscoelastic material. The motivation originates in a need for tissue temperature measurements in hyperthermia therapies such as laser ablation eye surgery and high intensity focused ultrasound (HIFU) tumor ablation. Micron sized particles are embedded in an optically clear tissue mimicking phantom, illuminated with a laser sheet, and imaged with a CCD camera. When the phantom is subjected to heating from a focused ultrasound beam, the particles remain stationary, but not their spatial distribution in the recorded images. The images manifest particle displacements commensurate with alterations in the temperature distribution from heating. The underlying principle behind the thermometric capability of PIV is discussed. Temperature changes can be detected with high sensitivity, and the method works best with spatially localized temperature distributions.

  11. High Accuracy Temperature Measurements Using RTDs with Current Loop Conditioning

    NASA Technical Reports Server (NTRS)

    Hill, Gerald M.

    1997-01-01

    To measure temperatures with a greater degree of accuracy than is possible with thermocouples, RTDs (Resistive Temperature Detectors) are typically used. Calibration standards use specialized high precision RTD probes with accuracies approaching 0.001 F. These are extremely delicate devices, and far too costly to be used in test facility instrumentation. Less costly sensors which are designed for aeronautical wind tunnel testing are available and can be readily adapted to probes, rakes, and test rigs. With proper signal conditioning of the sensor, temperature accuracies of 0.1 F is obtainable. For reasons that will be explored in this paper, the Anderson current loop is the preferred method used for signal conditioning. This scheme has been used in NASA Lewis Research Center's 9 x 15 Low Speed Wind Tunnel, and is detailed.

  12. Development of integrated high temperature sensor for simultaneous measurement of wall heat flux and temperature.

    PubMed

    Li, Long; Wang, Jing; Fan, Xuejun

    2012-07-01

    In this paper, an integrated water-cooled sensor has been developed to simultaneously measure the heat flux and temperature at the wall of a scramjet combustor. The upgrade sensor was designed based on the principle of Gardon heat-flux gauge with many improvements. The sensor was well calibrated by both conductive heating sources and blackbody cavity device. The effects of structural material and dimensions on the sensor's responses were examined. Both the experimental measurements and numerical simulation were conducted and showed that the new sensor has the maximum measure ability of heat flux of 400 W/cm(2) and stagnation temperatures up to 1920 K along with satisfactory response time. PMID:22852712

  13. Epidermal photonic devices for quantitative imaging of temperature and thermal transport characteristics of the skin.

    PubMed

    Gao, Li; Zhang, Yihui; Malyarchuk, Viktor; Jia, Lin; Jang, Kyung-In; Webb, R Chad; Fu, Haoran; Shi, Yan; Zhou, Guoyan; Shi, Luke; Shah, Deesha; Huang, Xian; Xu, Baoxing; Yu, Cunjiang; Huang, Yonggang; Rogers, John A

    2014-01-01

    Characterization of temperature and thermal transport properties of the skin can yield important information of relevance to both clinical medicine and basic research in skin physiology. Here we introduce an ultrathin, compliant skin-like, or 'epidermal', photonic device that combines colorimetric temperature indicators with wireless stretchable electronics for thermal measurements when softly laminated on the skin surface. The sensors exploit thermochromic liquid crystals patterned into large-scale, pixelated arrays on thin elastomeric substrates; the electronics provide means for controlled, local heating by radio frequency signals. Algorithms for extracting patterns of colour recorded from these devices with a digital camera and computational tools for relating the results to underlying thermal processes near the skin surface lend quantitative value to the resulting data. Application examples include non-invasive spatial mapping of skin temperature with milli-Kelvin precision (±50 mK) and sub-millimetre spatial resolution. Demonstrations in reactive hyperaemia assessments of blood flow and hydration analysis establish relevance to cardiovascular health and skin care, respectively. PMID:25234839

  14. Epidermal photonic devices for quantitative imaging of temperature and thermal transport characteristics of the skin

    NASA Astrophysics Data System (ADS)

    Gao, Li; Zhang, Yihui; Malyarchuk, Viktor; Jia, Lin; Jang, Kyung-In; Chad Webb, R.; Fu, Haoran; Shi, Yan; Zhou, Guoyan; Shi, Luke; Shah, Deesha; Huang, Xian; Xu, Baoxing; Yu, Cunjiang; Huang, Yonggang; Rogers, John A.

    2014-09-01

    Characterization of temperature and thermal transport properties of the skin can yield important information of relevance to both clinical medicine and basic research in skin physiology. Here we introduce an ultrathin, compliant skin-like, or ‘epidermal’, photonic device that combines colorimetric temperature indicators with wireless stretchable electronics for thermal measurements when softly laminated on the skin surface. The sensors exploit thermochromic liquid crystals patterned into large-scale, pixelated arrays on thin elastomeric substrates; the electronics provide means for controlled, local heating by radio frequency signals. Algorithms for extracting patterns of colour recorded from these devices with a digital camera and computational tools for relating the results to underlying thermal processes near the skin surface lend quantitative value to the resulting data. Application examples include non-invasive spatial mapping of skin temperature with milli-Kelvin precision (±50 mK) and sub-millimetre spatial resolution. Demonstrations in reactive hyperaemia assessments of blood flow and hydration analysis establish relevance to cardiovascular health and skin care, respectively.

  15. Measuring Thermal Conductivity at LH2 Temperatures

    NASA Technical Reports Server (NTRS)

    Selvidge, Shawn; Watwood, Michael C.

    2004-01-01

    For many years, the National Institute of Standards and Technology (NIST) produced reference materials for materials testing. One such reference material was intended for use with a guarded hot plate apparatus designed to meet the requirements of ASTM C177-97, "Standard Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded-Hot-Plate Apparatus." This apparatus can be used to test materials in various gaseous environments from atmospheric pressure to a vacuum. It allows the thermal transmission properties of insulating materials to be measured from just above ambient temperature down to temperatures below liquid hydrogen. However, NIST did not generate data below 77 K temperature for the reference material in question. This paper describes a test method used at NASA's Marshall Space Flight Center (MSFC) to optimize thermal conductivity measurements during the development of thermal protection systems. The test method extends the usability range of this reference material by generating data at temperatures lower than 77 K. Information provided by this test is discussed, as are the capabilities of the MSFC Hydrogen Test Facility, where advanced methods for materials testing are routinely developed and optimized in support of aerospace applications.

  16. Temperature measurement on and inside lamps

    NASA Astrophysics Data System (ADS)

    Wallin, Bo

    1994-03-01

    The use of thermography within the lamp manufacturing industry can improve the quality of many types of lamps ranging from normal incandescent lamps to highly specialized lamps for sports arenas, airports or small lamps for cars. There is a strong demand for more light for the same energy input. Specialized lamps for all possible purposes are developed. But it also forces the lamp manufacturers to utilize the available materials to their extremes. The exact control of the temperatures inside or on the lamp shell has therefore become increasingly necessary as temperatures in lamps can be rather extreme. In plasma lamps for example, the plasma can have a temperature of 6000 C, the bulb around 700 C and the electrodes inside the bulb can have temperatures in excess of 2000 C. Thermographic methods have shown their applicability for a large number of measurement cases. Some of these methods and measurement cases are described. As these applications put very special demands on the measurement equipment, these demands are explained in more detail.

  17. High temperature measurement of water vapor absorption

    NASA Technical Reports Server (NTRS)

    Keefer, Dennis; Lewis, J. W. L.; Eskridge, Richard

    1985-01-01

    An investigation was undertaken to measure the absorption coefficient, at a wavelength of 10.6 microns, for mixtures of water vapor and a diluent gas at high temperature and pressure. The experimental concept was to create the desired conditions of temperature and pressure in a laser absorption wave, similar to that which would be created in a laser propulsion system. A simplified numerical model was developed to predict the characteristics of the absorption wave and to estimate the laser intensity threshold for initiation. A non-intrusive method for temperature measurement utilizing optical laser-beam deflection (OLD) and optical spark breakdown produced by an excimer laser, was thoroughly investigated and found suitable for the non-equilibrium conditions expected in the wave. Experiments were performed to verify the temperature measurement technique, to screen possible materials for surface initiation of the laser absorption wave and to attempt to initiate an absorption wave using the 1.5 kW carbon dioxide laser. The OLD technique was proven for air and for argon, but spark breakdown could not be produced in helium. It was not possible to initiate a laser absorption wave in mixtures of water and helium or water and argon using the 1.5 kW laser, a result which was consistent with the model prediction.

  18. 21 CFR 886.1430 - Ophthalmic contact lens radius measuring device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ophthalmic contact lens radius measuring device. 886.1430 Section 886.1430 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1430 Ophthalmic contact lens radius measuring device....

  19. Permeameter for high-temperature magnetic measurements

    NASA Technical Reports Server (NTRS)

    Barranger, J. P.

    1972-01-01

    A permeameter is described that measures the magnetizing force and the corresponding magnetic induction up to 1000 C. The two symmetrical yokes are made of an alloy of 9 percent iron, 91 percent cobalt. A coil surrounding the specimen supplies a magnetizing force of up to 100 oersteds. The instrument uses the magnetic potentiometer principle to cancel the effects of the reluctance of the yoke and the joint gaps. Very close agreement was obtained at room temperature when compared to an MH type permeameter. The effect of temperature on the normal induction curves for the yoke material is also presented.

  20. INNOVATIVE INSTRUMENTATION AND ANALYSIS OF THE TEMPERATURE MEASUREMENT FOR HIGH TEMPERATURE GASIFICATION

    SciTech Connect

    Seong W. Lee

    2004-04-01

    The systematic tests of the gasifier simulator were conducted in this reporting period. In the systematic test, two (2) factors were considered as the experimental parameters, including air injection rate and water injection rate. Each experimental factor had two (2) levels, respectively. A special water-feeding device was designed and installed to the gasifier simulator. Analysis of Variances (ANOVA) was applied to the results of the systematic tests. The ANOVA shows that the air injection rate did have the significant impact to the temperature measurement in the gasifier simulator. The ANOVA also shows that the water injection rate did not have the significant impact to the temperature measurements in the gasifier simulator. The ANOVA analysis also proves that the thermocouple assembly we proposed was immune to the moisture environment, the temperature measurement remained accurate in moisture environment. Within this reporting period, the vibration application for cleaning purpose was explored. Both ultrasonic and sub-sonic vibrations were considered. A feasibility test was conducted to prove that the thermocouple vibration did not have the significant impact to the temperature measurements in the gasifier simulator. This feasibility test was a 2{sup 2} factorial design. Two factors including temperature levels and motor speeds were set to two levels respectively. The sub-sonic vibration tests were applied to the thermocouple to remove the concrete cover layer (used to simulate the solid condensate in gasifiers) on the thermocouple tip. It was found that both frequency and amplitude had significant impacts on removal performance of the concrete cover layer.

  1. Note: Zeeman splitting measurements in a high-temperature plasma

    SciTech Connect

    Golingo, R. P.; Shumlak, U.; Den Hartog, D. J.

    2010-12-15

    The Zeeman effect has been used for measurement of magnetic fields in low-temperature plasma, but the diagnostic technique is difficult to implement in a high-temperature plasma. This paper describes new instrumentation and methodology for simultaneous measurement of the entire Doppler-broadened left and right circularly polarized Zeeman spectra in high-temperature plasmas. Measurements are made using spectra emitted parallel to the magnetic field by carbon impurities in high-temperature plasma. The Doppler-broadened width is much larger than the magnitude of the Zeeman splitting, thus simultaneous recording of the two circularly polarized Zeeman line profiles is key to accurate measurement of the magnetic field in the ZaP Z-pinch plasma device. Spectral data are collected along multiple chords on both sides of the symmetry axis of the plasma. This enables determination of the location of the current axis of the Z-pinch and of lower-bound estimates of the local magnetic field at specific radial locations in the plasma.

  2. Accuracy analysis of the space shuttle solid rocket motor profile measuring device

    NASA Technical Reports Server (NTRS)

    Estler, W. Tyler

    1989-01-01

    The Profile Measuring Device (PMD) was developed at the George C. Marshall Space Flight Center following the loss of the Space Shuttle Challenger. It is a rotating gauge used to measure the absolute diameters of mating features of redesigned Solid Rocket Motor field joints. Diameter tolerance of these features are typically + or - 0.005 inches and it is required that the PMD absolute measurement uncertainty be within this tolerance. In this analysis, the absolute accuracy of these measurements were found to be + or - 0.00375 inches, worst case, with a potential accuracy of + or - 0.0021 inches achievable by improved temperature control.

  3. Using Temperature Fluctuation Measurements for Equilibrium Reconstruction and Dynamo Measurement

    NASA Astrophysics Data System (ADS)

    den Hartog, D. J.; Parke, E.; Anderson, J. K.; Johnson, C. A.

    2014-10-01

    The high-repetition-rate Thomson scattering system on MST, in combination with advanced Bayesian statistical methods, enables determination of tearing-mode-correlated temperature fluctuations as small as a few percent of the equilibrium temperature. Tearing mode rational surface locations are determined from the characteristic phase flip observed in temperature fluctuation structures, providing a strong constraint for equilibrium reconstruction. Recent experiments in neutral beam heated plasmas indicate an inward shift of the m = 1, n = 6 rational surface of approximately 1 cm relative to non-beam heated plasmas. The measured shift of the rational surface enables diagnosis of current redistribution and safety factor modification due to the fast ion population. Additionally, from the phase of correlated temperature fluctuations, the product < ?Te ?br > is determined. This term is part of < ?pe ?br > , the divergence of which is often called the kinetic dynamo. The kinetic dynamo emf depends on an imbalance of the radial transport of field-aligned current. Previous measurements of the density fluctuation term < ?ne ?br > suggest that the kinetic dynamo plays a role in the RFP dynamo process. These measurements of temperature-fluctuation-driven current transport indicate that both terms are needed for a complete picture of the kinetic dynamo. This work is supported by the U. S. Department of Energy and the National Science Foundation.

  4. High voltage design structure for high temperature superconducting device

    DOEpatents

    Tekletsadik, Kasegn D.

    2008-05-20

    In accordance with the present invention, modular corona shields are employed in a HTS device to reduce the electric field surrounding the HTS device. In a exemplary embodiment a fault current limiter module in the insulation region of a cryogenic cooling system has at least one fault current limiter set which employs a first corona shield disposed along the top portion of the fault current limiter set and is electrically coupled to the fault current limiter set. A second corona shield is disposed along the bottom portion of the fault current limiter set and is electrically coupled to the fault current limiter set. An insulation barrier is disposed within the insulation region along at least one side of the fault current limiter set. The first corona shield and the second corona shield act together to reduce the electric field surrounding the fault limiter set when voltage is applied to the fault limiter set.

  5. Recommendations for blood pressure measuring devices for office/clinic use in low resource settings.

    PubMed

    Parati, Gianfranco; Mendis, Shanthi; Abegunde, Dele; Asmar, Ronald; Mieke, Stephan; Murray, Alan; Shengelia, Bakuti; Steenvoorden, Gijs; Van Montfrans, Gert; O'Brien, Eoin

    2005-02-01

    This paper, which summarizes the conclusions of a WHO Expert meeting, is aimed at proposing indications to develop technical specifications for an accurate and affordable blood pressure measuring device for office/clinic use in low resource settings. Blood pressure measuring devices to be used in low resource settings should be accurate, affordable, and easily available worldwide. Given the serious inherent inaccuracy of the auscultatory technique, validated and affordable electronic devices, that have the option to select manual readings, seem to be a suitable solution for low resource settings. The agreement on the technical specifications for automated blood pressure measuring devices for office/clinic use in low resource settings included the following features: high accuracy, adoption of electronic transducers and solar batteries for power supply, standard rates of cuff inflation and deflation, adequate cuff size, digital display powered by solar batteries, facilities for adequate calibration, environmental requirements, no need of memory function, resistance to shock and temperature changes, and low cost. Availability of a device with these features should be accompanied by adequate training of health care personnel, who should guarantee implementation of the procedures recommended in recent European and American Guidelines for accurate blood pressure measurement. PMID:15687867

  6. Evaluation of the performance characteristics of radon and radon-daughter concentration measurement devices under controlled environmental conditions

    SciTech Connect

    Pearson, M.D.

    1989-04-01

    The Technical Measurements Center (TMC) conducted a study to expose 10 radon and 7 radon-daughter concentration measurement devices in the DOE/GJPO Radon/Radon-Daughter Environmental Chamber for a series of 24 controlled-environment tests. The tests evaluated the devices' response to temperature, relative humidity, dew point, condensation-nuclei concentration, radon-daughter/radon equilibrium ratio, and non-uniform radon and radon-daughter concentration. Devices were evaluated for linear response as a function of concentration. In addition to response to environmental parameters, the evaluation included determining the utility of the devices in providing reasonable assurance of compliance with the radon and radon-daughter concentration standards for DOE remedial action programs. This reasonable assurance criterion is based on a coefficient of variation of 25 percent for devices deployed for year-long measurements and a coefficient of variation of 18 percent for devices deployed for intermittent sampling. 39 refs., 65 figs., 33 tabs.

  7. Methods of measurement for semiconductor materials, process control, and devices

    NASA Technical Reports Server (NTRS)

    Bullis, W. M. (Editor)

    1972-01-01

    Activities directed toward the development of methods of measurement for semiconductor materials, process control, and devices are described. Topics investigated include: measurements of transistor delay time; application of the infrared response technique to the study of radiation-damaged, lithium-drifted silicon detectors; and identification of a condition that minimizes wire flexure and reduces the failure rate of wire bonds in transistors and integrated circuits under slow thermal cycling conditions. Supplementary data concerning staff, standards committee activities, technical services, and publications are included as appendixes.

  8. Device for measuring oxygen activity in liquid sodium

    DOEpatents

    Roy, P.; Young, R.S.

    1973-12-01

    A composite ceramic electrolyte in a configuration (such as a closed end tube or a plate) suitable to separate liquid sodium from a reference electrode with a high impedance voltmeter connected to measure EMF between the sodium and the reference electrode as a measure of oxygen activity in the sodium is described. The composite electrolyte consists of zirconiacalcia with a bonded layer of thoria-yttria. The device is used with a gaseous reference electrode on the zirconia-calcia side and liquid sodium on the thoria-yttria side of the electrolyte. (Official Gazette)

  9. Microwave radiometer for subsurface temperature measurement

    NASA Technical Reports Server (NTRS)

    Porter, R. A.; Bechis, K. P.

    1976-01-01

    A UHF radiometer, operating at a frequency of 800 MHz, was modified to provide an integral, three frequency voltage standing wave ratio (VSWR) circuit in the radio frequency (RF) head. The VSWR circuit provides readings of power transmission at the antenna-material interface with an accuracy of plus or minus 5 percent. The power transmission readings are numerically equal to the emissivity of the material under observation. Knowledge of material emissivity is useful in the interpretation of subsurface apparent temperatures obtained on phantom models of biological tissue. The emissivities of phantom models consisting of lean beefsteak were found to lie in the range 0.623 to 0.779, depending on moisture content. Radiometric measurements performed on instrumented phantoms showed that the radiometer was capable of sensing small temperature changes occurring at depths of at least 19 to 30 mm. This is consistent with previously generated data which showed that the radiometer could sense temperatures at a depth of 38 mm.

  10. Measuring Rocket Engine Temperatures with Hydrogen Raman Spectroscopy

    NASA Technical Reports Server (NTRS)

    Wehrmeyer, Joseph A.; Osborne, Robin J.; Trinh, Huu P.; Turner, James (Technical Monitor)

    2001-01-01

    Optically accessible, high pressure, hot fire test articles are available at NASA Marshall for use in development of advanced rocket engine propellant injectors. Single laser-pulse ultraviolet (UV) Raman spectroscopy has been used in the past in these devices for analysis of high pressure H2- and CH4-fueled combustion, but relies on an independent pressure measurement in order to provide temperature information. A variation of UV Raman (High Resolution Hydrogen Raman Spectroscopy) is under development and will allow temperature measurement without the need for an independent pressure measurement, useful for flows where local pressure may not be accurately known. The technique involves the use of a spectrometer with good spectral resolution, requiring a small entrance slit for the spectrometer. The H2 Raman spectrum, when created by a narrow linewidth laser source and obtained from a good spectral resolution spectrograph, has a spectral shape related to temperature. By best-fit matching an experimental spectrum to theoretical spectra at various temperatures, a temperature measurement is obtained. The spectral model accounts for collisional narrowing, collisional broadening, Doppler broadening, and collisional line shifting of each Raman line making up the H2 Stokes vibrational Q-branch spectrum. At pressures from atmospheric up to those associated with advanced preburner components (5500 psia), collisional broadening though present does not cause significant overlap of the Raman lines, allowing high resolution H2 Raman to be used for temperature measurements in plumes and in high pressure test articles. Experimental demonstrations of the technique are performed for rich H2-air flames at atmospheric pressure and for high pressure, 300 K H2-He mixtures. Spectrometer imaging quality is identified as being critical for successful implementation of technique.

  11. Improved Refractometer for Measuring Temperatures of Drops

    NASA Technical Reports Server (NTRS)

    Naqwi, Amir A.

    2004-01-01

    The Dual Rainbow refractometer is an enhanced version of the Rainbow refractometer, which is added to, and extends the capabilities of, a phase Doppler particle analyzer (PDPA). A PDPA utilizes pairs of laser beams to measure individual components of velocity and sizes of drops in a spray. The Rainbow-refractometer addition measures the temperatures of individual drops. The designs of prior versions of the Rainbow refractometer have required substantial modifications of PDPA transmitting optics, plus dedicated lasers as sources of illumination separate from, and in addition to, those needed for PDPA measurements. The enhancement embodied in the Dual Rainbow refractometer eliminates the need for a dedicated laser and confers other advantages as described below. A dedicated laser is no longer needed because the Dual Rainbow refractometer utilizes one of the pairs of laser beams already present in a PDPA. Hence, the design of the Dual Rainbow refractometer simplifies the task of upgrading PDPA hardware to enable measurement of temperature. Furthermore, in a PDPA/Dual Rainbow refractometer system, a single argon-ion laser with three main wavelengths can be used to measure the temperatures, sizes, and all three components of velocity (in contradistinction to only two components of velocity in a prior PDPA/Rainbow refractometer system). In order to enable the Dual Rainbow refractometer to utilize a pair of PDPA laser beams, it was necessary to (1) find a location for the refractometer receiver, such that the combined rainbow patterns of two laser beams amount to a pattern identical to that of a single beam, (2) adjust the polarization of the two beams to obtain the strongest rainbow pattern, and (3) find a location for the PDPA receiver to obtain a linear relationship between the measured phase shift and drop size.

  12. TEMPERATURE-MONITORING AND SAFETY-CONTROL DEVICE

    EPA Science Inventory

    A two channel (sensitive) temperature monitor is described, and a parts list and wiring diagram are given. This equipment can be used as a safety shut-off or alarm system, or both. The sensitivity is 0.3C.

  13. Thermoreflectance temperature measurement with millimeter wave

    SciTech Connect

    Pradere, C. Caumes, J.-P.; BenKhemis, S.; Palomo, E.; Batsale, J.-C.; Pernot, G.; Dilhaire, S.

    2014-06-15

    GigaHertz (GHz) thermoreflectance technique is developed to measure the transient temperature of metal and semiconductor materials located behind an opaque surface. The principle is based on the synchronous detection, using a commercial THz pyrometer, of a modulated millimeter wave (at 110 GHz) reflected by the sample hidden behind a shield layer. Measurements were performed on aluminum, copper, and silicon bulks hidden by a 5 cm thick Teflon plate. We report the first measurement of the thermoreflectance coefficient which exhibits a value 100 times higher at 2.8 mm radiation than those measured at visible wavelengths for both metallic and semiconductor materials. This giant thermoreflectance coefficient κ, close to 10{sup −3} K{sup −1} versus 10{sup −5} K{sup −1} for the visible domain, is very promising for future thermoreflectance applications.

  14. Coherence imaging for ion temperature and flow measurements in a low-temperature helicon plasma source

    NASA Astrophysics Data System (ADS)

    Lester, R.; Zhai, Y.; Corr, C.; Howard, J.

    2016-02-01

    This paper describes a coherence imaging system designed for spectroscopic Doppler measurements of ion light in a low-temperature (T e   <  10 eV) helicon-produced argon plasma. Observation of the very small Doppler broadening of the Ar II 488 nm emission line requires very high spectral resolution, or equivalently, very large interferometric optical path delay (comparable with the coherence length of the emission line). For these polarization interferometers, this can only be achieved using large thicknesses (100 mm) of birefringent crystal. This poses special design challenges including the application of field-widening techniques and the development of passive thermal stabilization of the optical phase offset. We discuss the measurement principles and the optical design of these systems and present measurements of the line-integrated emissivity, and ion flow and ion temperatures along with tomographic reconstructions of the local values, for a cylindrical low temperature helicon discharge in a linear magnetized device with downstream magnetic mirror. Key results reveal a hollow edge-peaked temperature profile (central temperature  ∼0.1 eV) and sheared rigid-body rotational flows and axial flows which are comparable with the ion thermal speed. The emission line brightness, ion temperature and azimuthal ion flows are all found to increase with increased mirror magnetic field strength.

  15. Measurement-device-independent quantum communication with an untrusted source

    NASA Astrophysics Data System (ADS)

    Xu, Feihu

    2015-07-01

    Measurement-device-independent quantum key distribution (MDI-QKD) can provide enhanced security compared to traditional QKD, and it constitutes an important framework for a quantum network with an untrusted network server. Still, a key assumption in MDI-QKD is that the sources are trusted. We propose here a MDI quantum network with a single untrusted source. We have derived a complete proof of the unconditional security of MDI-QKD with an untrusted source. Using simulations, we have considered various real-life imperfections in its implementation, and the simulation results show that MDI-QKD with an untrusted source provides a key generation rate that is close to the rate of initial MDI-QKD in the asymptotic setting. Our work proves the feasibility of the realization of a quantum network. The network users need only low-cost modulation devices, and they can share both an expensive detector and a complicated laser provided by an untrusted network server.

  16. Graphene, a material for high temperature devices – intrinsic carrier density, carrier drift velocity, and lattice energy

    PubMed Central

    Yin, Yan; Cheng, Zengguang; Wang, Li; Jin, Kuijuan; Wang, Wenzhong

    2014-01-01

    Heat has always been a killing matter for traditional semiconductor machines. The underlining physical reason is that the intrinsic carrier density of a device made from a traditional semiconductor material increases very fast with a rising temperature. Once reaching a temperature, the density surpasses the chemical doping or gating effect, any p-n junction or transistor made from the semiconductor will fail to function. Here, we measure the intrinsic Fermi level (|EF| = 2.93 kBT) or intrinsic carrier density (nin = 3.87 × 106 cm−2K−2·T2), carrier drift velocity, and G mode phonon energy of graphene devices and their temperature dependencies up to 2400 K. Our results show intrinsic carrier density of graphene is an order of magnitude less sensitive to temperature than those of Si or Ge, and reveal the great potentials of graphene as a material for high temperature devices. We also observe a linear decline of saturation drift velocity with increasing temperature, and identify the temperature coefficients of the intrinsic G mode phonon energy. Above knowledge is vital in understanding the physical phenomena of graphene under high power or high temperature. PMID:25044003

  17. A temperature microsensor for measuring laser-induced heating in gold nanorods.

    PubMed

    Pacardo, Dennis B; Neupane, Bhanu; Wang, Gufeng; Gu, Zhen; Walker, Glenn M; Ligler, Frances S

    2015-01-01

    Measuring temperature is an extensively explored field of analysis, but measuring a temperature change in a nanoparticle is a new challenge. Here, a microsensor is configured to measure temperature changes in gold nanorods in solution upon laser irradiation. The device consists of a silicon wafer coated with silicon nitride in which a microfabricated resistance temperature detector was embedded and attached to a digital multimeter. A polydimethylsiloxane mold served as a microcontainer for the sample attached on top of the silicon membrane. This enables laser irradiation of the gold nanorods and subsequent measurement of temperature changes. The results showed a temperature increase of 8 to 10 °C and good correlation with theoretical calculations and bulk sample direct temperature measurements. These results demonstrate the suitability of this simple temperature microsensor for determining laser-induced heating profiles of metallic nanomaterials; such measurements will be essential for optimizing therapeutic and catalytic applications. PMID:25303932

  18. A simple measuring device for laboratory indentation tests on cartilage.

    PubMed

    Koeller, Wolfgang; Kunow, Julius; Ostermeyer, Oliver; Stomberg, Peter; Boos, Carsten; Russlies, Martin

    2008-04-01

    Mechanical testing of articular cartilage and repair tissue enables judgment of their capacity in withstanding mechanical loading. In the past, different methods have been developed requiring a complex technical setup and extensive data analysis. Therefore, the aim of the present project was to build up a simple measuring apparatus for laboratory indentation tests. The device consists of an incremental optical displacement transducer with a sleeve bearing guided plunger and a spherical tip made of polished steel (radius: 0.75 or 1.5 mm), a sensitive load cell and a stiff frame. The indentation force results from the plunger's gravity plus the force of the spring inside the displacement transducer and levels at 0.170 N or 0.765 N. The displacement transducer is fixed to the frame via the load cell that enables one to detect the initial contact of the tip with the tissue. The load cell has a standard uncertainty of 2 mN and the displacement transducer of 1 microm. From indentation-creep tests, a "0.25-s elastic modulus" is calculated. Measurements on thin rubber sheets were carried out to determine the quality of the measuring device. Compression tests on cylinders made of these rubber sheets yielded control data, and a good agreement with the "0.25-s elastic modulus" was found. Indentation tests on cartilage at different sites of sheep femoral condyles yielded a very good repeatability of the measurement results (+/-7.5%). PMID:18979621

  19. Device for Measuring P- and S-Wave Velocities in Rock Samples under Crystal Conditions

    SciTech Connect

    Lassila, I.; Elbra, T.; Seppaenen, H.; Haapalainen, J.; Karppinen, T.; Pesonen, L. J.; Lehtiniemi, R.; Haeggstroem, E.; Kukkonen, I.

    2007-03-21

    An ultrasonic instrument capable of measuring seismic velocities (Vp and Vs) under crustal temperatures (20-300 deg. C) and pressures (0-300 MPa) is built. The results obtained with the device will be used to understand recent seismic reflection (FIRE) data from the Outokumpu area in Finland. Collectively, the data will be integrated to construct a new geological model of the Outokumpu formation.

  20. Determination of the physical properties of room temperature ionic liquids using a Love wave device.

    PubMed

    Ouali, F Fouzia; Doy, Nicola; McHale, Glen; Hardacre, Christopher; Ge, Rile; Allen, Ray W K; MacInnes, Jordan M; Newton, Michael I

    2011-09-01

    In this work, we have shown that a 100 MHz Love wave device can be used to determine whether room temperature ionic liquids (RTILs) are Newtonian fluids and have developed a technique that allows the determination of the density-viscosity product, ρη, of a Newtonian RTIL. In addition, a test for a Newtonian response was established by relating the phase change to insertion loss change. Five concentrations of a water-miscible RTIL and seven pure RTILs were measured. The changes in phase and insertion loss were found to vary linearly with the square root of the density-viscosity product for values up to (ρη)(1/2) ~ 10 kg m(-2) s(-1/2). The square root of the density-viscosity product was deduced from the changes in either phase or insertion loss using glycerol as a calibration liquid. In both cases, the deduced values of ρη agree well with those measured using viscosity and density meters. Miniaturization of the device, beyond that achievable with the lower-frequency quartz crystal microbalance approach, to measure smaller volumes is possible. The ability to fabricate Love wave and other surface acoustic wave sensors using planar metallization technologies gives potential for future integration into lab-on-a-chip analytical systems for characterizing ionic liquids. PMID:21786814

  1. Apparatus for gas sorption measurement with integrated gas composition measurement device and gas mixing

    SciTech Connect

    Micklash. II, Kenneth James; Dutton, Justin James; Kaye, Steven

    2014-06-03

    An apparatus for testing of multiple material samples includes a gas delivery control system operatively connectable to the multiple material samples and configured to provide gas to the multiple material samples. Both a gas composition measurement device and pressure measurement devices are included in the apparatus. The apparatus includes multiple selectively openable and closable valves and a series of conduits configured to selectively connect the multiple material samples individually to the gas composition device and the pressure measurement devices by operation of the valves. A mixing system is selectively connectable to the series of conduits and is operable to cause forced mixing of the gas within the series of conduits to achieve a predetermined uniformity of gas composition within the series of conduits and passages.

  2. A flux extraction device to measure the magnetic moment of large samples; application to bulk superconductors.

    PubMed

    Egan, R; Philippe, M; Wera, L; Fagnard, J F; Vanderheyden, B; Dennis, A; Shi, Y; Cardwell, D A; Vanderbemden, P

    2015-02-01

    We report the design and construction of a flux extraction device to measure the DC magnetic moment of large samples (i.e., several cm(3)) at cryogenic temperature. The signal is constructed by integrating the electromotive force generated by two coils wound in series-opposition that move around the sample. We show that an octupole expansion of the magnetic vector potential can be used conveniently to treat near-field effects for this geometrical configuration. The resulting expansion is tested for the case of a large, permanently magnetized, type-II superconducting sample. The dimensions of the sensing coils are determined in such a way that the measurement is influenced by the dipole magnetic moment of the sample and not by moments of higher order, within user-determined upper bounds. The device, which is able to measure magnetic moments in excess of 1 A m(2) (1000 emu), is validated by (i) a direct calibration experiment using a small coil driven by a known current and (ii) by comparison with the results of numerical calculations obtained previously using a flux measurement technique. The sensitivity of the device is demonstrated by the measurement of flux-creep relaxation of the magnetization in a large bulk superconductor sample at liquid nitrogen temperature (77 K). PMID:25725888

  3. A flux extraction device to measure the magnetic moment of large samples; application to bulk superconductors

    NASA Astrophysics Data System (ADS)

    Egan, R.; Philippe, M.; Wera, L.; Fagnard, J. F.; Vanderheyden, B.; Dennis, A.; Shi, Y.; Cardwell, D. A.; Vanderbemden, P.

    2015-02-01

    We report the design and construction of a flux extraction device to measure the DC magnetic moment of large samples (i.e., several cm3) at cryogenic temperature. The signal is constructed by integrating the electromotive force generated by two coils wound in series-opposition that move around the sample. We show that an octupole expansion of the magnetic vector potential can be used conveniently to treat near-field effects for this geometrical configuration. The resulting expansion is tested for the case of a large, permanently magnetized, type-II superconducting sample. The dimensions of the sensing coils are determined in such a way that the measurement is influenced by the dipole magnetic moment of the sample and not by moments of higher order, within user-determined upper bounds. The device, which is able to measure magnetic moments in excess of 1 A m2 (1000 emu), is validated by (i) a direct calibration experiment using a small coil driven by a known current and (ii) by comparison with the results of numerical calculations obtained previously using a flux measurement technique. The sensitivity of the device is demonstrated by the measurement of flux-creep relaxation of the magnetization in a large bulk superconductor sample at liquid nitrogen temperature (77 K).

  4. 40 CFR 60.1325 - How do I monitor the temperature of flue gases at the inlet of my particulate matter control device?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false How do I monitor the temperature of... June 6, 2001 Other Monitoring Requirements § 60.1325 How do I monitor the temperature of flue gases at... a device to continuously measure the temperature of the flue gas stream at the inlet of...

  5. 40 CFR 60.1325 - How do I monitor the temperature of flue gases at the inlet of my particulate matter control device?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false How do I monitor the temperature of... June 6, 2001 Other Monitoring Requirements § 60.1325 How do I monitor the temperature of flue gases at... a device to continuously measure the temperature of the flue gas stream at the inlet of...

  6. 40 CFR 60.1325 - How do I monitor the temperature of flue gases at the inlet of my particulate matter control device?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false How do I monitor the temperature of... June 6, 2001 Other Monitoring Requirements § 60.1325 How do I monitor the temperature of flue gases at... a device to continuously measure the temperature of the flue gas stream at the inlet of...

  7. Adaptive Blood Glucose Monitoring and Insulin Measurement Devices for Visually Impaired Persons.

    ERIC Educational Resources Information Center

    Petzinger, R. A.

    1993-01-01

    This article describes devices that people with visual impairments and diabetes can use to monitor blood glucose levels and measure insulin. A table lists devices, their manufacturers (including address and telephone number), and comments about the devices. (DB)

  8. Radial Profile Measurements of Plasma Parameters in the Central Cell of the Hanbit Mirror Device

    SciTech Connect

    Bak, J.G.; Lee, S.G.

    2005-01-15

    Radial profiles of plasma parameters (such as electron temperature, plasma density and floating potential) are measured in the central cell of the Hanbit mirror device. The different shaped profiles are obtained by varying the applied magnetic field in the experiment. Thus, the relation between values of plasma beta and the slope of the profile is qualitatively investigated by using measured data obtained at different magnetic fields. In addition, the characteristics of the magnetic fluctuations (less than few ten kHz) in the experiment are investigated. The experimental investigations from the measurements at different applied magnetic fields are presented.

  9. Modeling and Evaluation of Canted Coil Springs as High Temperature Seal Preloading Devices

    NASA Technical Reports Server (NTRS)

    Oswald, Jay J.; Mullen, Robert L.; Dunlap, Patrick H., Jr.; Steinetz, Bruce M.

    2004-01-01

    Future reusable launch vehicles will require advanced structural seals. This includes propulsion seals along edges and hinge lines in hypersonic engines, and control surface seals for movable flaps and elevons on proposed reentry vehicles. Seals must remain in sealing engagement with opposing surfaces, for multiple missions, even though the seal gap may be opening and closing due to thermal and structural loads. To meet this requirement either the seals themselves must be resilient or there must be a resilient structural element behind the seals. Case Western Reserve University is working with NASA s Glenn Research Center to develop more resilient high temperature seal components and preloading devices. Results are presented for a finite element analysis of a canted coil spring that is being considered as a high temperature seal preloading device. This type of spring is a leading candidate due to its ability to provide nearly constant force over a large deflection. The finite element analyses were verified by comparing them to experimental results of canted coil springs of three different stiffnesses, measured at Glenn Research Center. Once validated the parameterized model was combined with a scripting algorithm to assess the effects of key spring design variables (wire diameter, coils per inch, cant amplitude, eccentricity, and spring width) on spring stiffness and maximum Von Mises stress to aid in subsequent design.

  10. The display of portable infrared measuring temperature

    NASA Astrophysics Data System (ADS)

    Qian, Yitao; Gu, Guohua; Sui, Xiubao

    2014-11-01

    In recent years based on security, quality supervision, inspection and medical for the urgent need of infrared temperature measurement and infrared display technology, coupled with embedded system to achieve rapid development, which is widely used in the electronic products and the field of intelligent instruments and industrial control, this paper has designed a kind of more comprehensive, more efficient and more intuitive infrared thermometer. Unlike previous handheld infrared thermometer, we regard an embedded Linux system as the system, with its open source code, support most mainstream hardware platforms, unified peripheral interface and can be customized, to build an embedded infrared system that has provided strong system support; the pseudocolor techniques and Qt interface display technology make the image more colorful and the picture function more diverse; With ARM microprocessor as the display and temperature measuring platform, it costs reduction and reduce volume and power consumption; the FrameBuffer interface technology and multithreading technology realize the smooth real-time display. And ultimately the display size of real-time infrared image is 640 * 480 at a speed of 25 frames / sec. What is more, display is equipped with the menu option so that thermometer can be required to complete the operation through the button. The temperature display system aims at small volume, easy to use and flexible. I believe this thermometer will have a good application prospect.

  11. Uncertainty evaluation in transition temperature measurements

    SciTech Connect

    Brillaud, C.; Augendre, H.; Bethmont, M.

    1996-12-31

    The pressure vessel surveillance program is mainly based on the transition temperature change assessment, a change which is induced by neutron irradiation. Uncertainties in Charpy test measurements are well known; however, the authors are less familiar with uncertainties due to general procedures governing experiments, which can be significant and therefore must be taken into account. In fact, procedures specify neither the number of specimens needed to obtain a transition curve, nor the choice of test temperatures, nor the fitting method for the transition curve. A study has been conducted to determine the influence of the experimental procedure on the accuracy of transition temperature determination, and the initial results are presented in this paper. Two EDF laboratories performed Charpy tests on the surveillance program reference metal, using 8, 16, 24, 32 and 64 specimens to evaluate how the number of specimens affects the transition temperature. The influence of the scatter of mechanical properties has also been studied at two levels of irradiation. The authors have evaluated the effect of different sampling strategies and investigated a new fitting method, which is based on a simultaneous fitting of all curves with common constraints on parameters.

  12. EM susceptibility studies and measurements on electro explosive devices

    NASA Astrophysics Data System (ADS)

    Deb, G. K.; Mukherjee, M.

    Electroexplosive devices (EEDs) are susceptible to stray electromagnetic (EM) fields near high-power communications and radar transmitters. Experiments have been carried out to measure the exact susceptibility of EED resistive squibs in pulsed and continuous EM environments, respectively. The susceptibility test procedure consisted of individual measurements of direct current sensitivity (mA); impulse sensitivity; RF impedance measurements; and safety margin calculations. A stray energy monitor was used to evaluate the safe performance of a hybrid weapons system. It is found that the RF sensitivity of the squib was influenced by the transmission characteristics of the transmission line connected to it. RF absorption peaks were observed above the EED sensitivity threshold of 120 MHz. Methods of EMI control are discussed, including: low-pass pin filters; lossy line filters for all dc power line interconnections; and twisting and shielding of the wires.

  13. Surface acoustic wave devices on bulk ZnO crystals at low temperature

    NASA Astrophysics Data System (ADS)

    Magnusson, E. B.; Williams, B. H.; Manenti, R.; Nam, M.-S.; Nersisyan, A.; Peterer, M. J.; Ardavan, A.; Leek, P. J.

    2015-02-01

    Surface acoustic wave (SAW) devices based on thin films of ZnO are a well established technology. However, SAW devices on bulk ZnO crystals are not practical at room temperature due to the significant damping caused by finite electrical conductivity of the crystal. Here, by operating at low temperatures, we demonstrate effective SAW devices on the (0001) surface of bulk ZnO crystals, including a delay line operating at SAW wavelengths of ? = 4 and 6 ?m and a one-port resonator at a wavelength of ? = 1.6 ?m. We find that the SAW velocity is temperature dependent, reaching v ? 2.68 km/s at 10 mK. Our resonator reaches a maximum quality factor of Qi ? 1.5 105, demonstrating that bulk ZnO is highly viable for low temperature SAW applications. The performance of the devices is strongly correlated with the bulk conductivity, which quenches SAW transmission above 200 K.

  14. New simulation and measurement results on gateable DEPFET devices

    NASA Astrophysics Data System (ADS)

    Bhr, Alexander; Aschauer, Stefan; Hermenau, Katrin; Herrmann, Sven; Lechner, Peter H.; Lutz, Gerhard; Majewski, Petra; Miessner, Danilo; Porro, Matteo; Richter, Rainer H.; Schaller, Gerhard; Sandow, Christian; Schnecke, Martina; Schopper, Florian; Stefanescu, Alexander; Strder, Lothar; Treis, Johannes

    2012-07-01

    To improve the signal to noise level, devices for optical and x-ray astronomy use techniques to suppress background events. Well known examples are e.g. shutters or frame-store Charge Coupled Devices (CCDs). Based on the DEpleted P-channel Field Effect Transistor (DEPFET) principle a so-called Gatebale DEPFET detector can be built. Those devices combine the DEPFET principle with a fast built-in electronic shutter usable for optical and x-ray applications. The DEPFET itself is the basic cell of an active pixel sensor build on a fully depleted bulk. It combines internal amplification, readout on demand, analog storage of the signal charge and a low readout noise with full sensitivity over the whole bulk thickness. A Gatebale DEPFET has all these benefits and obviates the need for an external shutter. Two concepts of Gatebale DEPFET layouts providing a built-in shutter will be introduced. Furthermore proof of principle measurements for both concepts are presented. Using recently produced prototypes a shielding of the collection anode up to 1 10-4 was achieved. Predicted by simulations, an optimized geometry should result in values of 1 10-5 and better. With the switching electronic currently in use a timing evaluation of the shutter opening and closing resulted in rise and fall times of 100ns.

  15. Device accurately measures and records low gas-flow rates

    NASA Technical Reports Server (NTRS)

    Branum, L. W.

    1966-01-01

    Free-floating piston in a vertical column accurately measures and records low gas-flow rates. The system may be calibrated, using an adjustable flow-rate gas supply, a low pressure gage, and a sequence recorder. From the calibration rates, a nomograph may be made for easy reduction. Temperature correction may be added for further accuracy.

  16. Development of a portable photosynthesis rate measurement device

    NASA Astrophysics Data System (ADS)

    Wang, Junsheng; Xing, Da; Xu, Wenhai

    2006-09-01

    Photosynthesis is a very important chemical reaction in the plant, and its measurement plays critical role in the agriculture production and science research of plant. Delayed fluorescence (DF) in plants is an intrinsic label of efficiency of charge separation at P680 in photosystem II (PS II). In this paper, a portable photosynthesis rate measurement device by means of DF is proposed. It can achieve DF of plant with high sensitivity and signal-to-noise ratio basing on ultra-weak luminescence detection technique, and get photosynthesis rate by the corresponding relation between DF and photosynthesis rate. The device has its illumination power and can obtain all-weather measurement with less interference of the environment. Locale live survey can be realized by hermetic darkroom design and battery power supply. The system carries out data acquisition and processing by single-chip microcomputer control. The results show that this instrument has a lot of values such as low cost, high accuracy and good reliability and convenience.

  17. PARduino: A Simple Device Measuring and Logging Photosynthetically Active Radiation

    NASA Astrophysics Data System (ADS)

    Barnard, H. R.; Findley, M. C.

    2013-12-01

    Photosynthetically Active Radiation (PAR, 400 to 700 nm) is one of the primary controls of forest carbon and water relations. In complex terrain, PAR has high spatial-variability. Given the high cost of commercial datalogging equipment, spatially-distributed measurements of PAR have been typically modeled using geographic coordinates and terrain indices. Here, we present a design for a low cost, field-deployable device for measuring and logging PAR built around an Arduino microcontroller (we named it PARduino). PARduino provides for widely distributed sensor arrays and tests the feasibility of using hobbyist-grade electronics for collecting scientific data. PARduino components include a LiCor quantum sensor, EME Systems signal converter/amplifier, and Sparkfun's Arduino Pro Mini microcontroller. Additional components include a real time clock, a microSD flash memory card, and a custom printed circuit board (PCB). We selected the components with an eye towards ease of assembly. Everything can be connected to the PCB using through-hole soldering techniques. Since the device will be deployed in remote research plots that lack easy access to line power, battery life was also a consideration in the design. Extended deployment is possible because PARduino's software keeps it in a low-power sleep mode until ready to make a measurement. PARduino will be open-source hardware for use and improvement by others.

  18. Trial of a slant visual range measuring device

    NASA Astrophysics Data System (ADS)

    Streicher, Jurgen; Muenkel, C.; Borchardt, H.

    1993-10-01

    Each year fog at airports renders some landing operations either difficult or impossible. In such instances, visibility is the most important information for the pilot of a landing aircraft. Visibility may be constant, decreasing, or increasing with respect to the altitude; however, it is not possible to distinguish this with existing airport sensors. This paper describes a new technique for measuring slant visual range that makes use of a slant scanning device, an eye-safe laser radar. This device has been tested by the German Meteorological Service in Quickborn, Germany, over a period of one year. A comparison with commercial visibility sensors shows that it is possible to measure visibilities with the slant-looking laser radar in the range from 50 m up to 2000 m and to even distinguish inhomogenities like ground fog. Statistics of the Quickborn measurements show that the atmosphere in that region is not homogeneous in 38 percent of fog situations, which would at the present lead to a redistribution of the air traffic. The first installation of this instrument at the Hamburg airport is described.

  19. FFLS: an accurate linear device for measuring synergistic finger contractions.

    PubMed

    Kõiva, Risto; Hilsenbeck, Barbara; Castellini, Claudio

    2012-01-01

    After decades of theoretical study in physiology and neurology communities, the paradigm of muscle synergies is now being explored in rehabilitation robotics as a strategy to control mechanical artifacts with many degrees-of-freedom (DoF) in a simple yet effective and human-like way. In particular, muscle synergies during grasping and in graded-force tasks are of great interest for the control of dexterous hand prostheses. To this end, we have designed and tested a novel device to accurately and simultaneously measure fingertip forces. The device, called FFLS (Finger-Force Linear Sensor), measures the forces applied by the human fingertips in both directions (flexion and extension of index, middle, ring and little finger plus thumb rotation and abduction/adduction). It is suited for several different hand sizes, enforces high accuracy in the measurement and its signal is guaranteed to be linear in a high range of forces (100N in both directions for each finger). It outputs six analog voltages (±10V), suited for processing with a DAQ card. PMID:23365946

  20. Methods of measurement for semiconductor materials, process control, and devices

    NASA Technical Reports Server (NTRS)

    Bullis, W. M. (Editor)

    1971-01-01

    The development of methods of measurement for semiconductor materials, process control, and devices is discussed. The following subjects are also presented: (1) demonstration of the high sensitivity of the infrared response technique by the identification of gold in a germanium diode, (2) verification that transient thermal response is significantly more sensitive to the presence of voids in die attachment than steady-state thermal resistance, and (3) development of equipment for determining susceptibility of transistors to hot spot formation by the current-gain technique.

  1. Method and device for measuring single-shot transient signals

    DOEpatents

    Yin, Yan

    2004-05-18

    Methods, apparatus, and systems, including computer program products, implementing and using techniques for measuring multi-channel single-shot transient signals. A signal acquisition unit receives one or more single-shot pulses from a multi-channel source. An optical-fiber recirculating loop reproduces the one or more received single-shot optical pulses to form a first multi-channel pulse train for circulation in the recirculating loop, and a second multi-channel pulse train for display on a display device. The optical-fiber recirculating loop also optically amplifies the first circulating pulse train to compensate for signal losses and performs optical multi-channel noise filtration.

  2. Continuous-variable measurement-device-independent multipartite quantum communication

    NASA Astrophysics Data System (ADS)

    Wu, Yadong; Zhou, Jian; Gong, Xinbao; Guo, Ying; Zhang, Zhi-Ming; He, Guangqiang

    2016-02-01

    A continuous-variable measurement-device-independent multiparty quantum communication protocol is investigated in this paper. Utilizing the distributed continuous-variable Greenberger-Horne-Zeilinger state, this protocol can implement both quantum cryptographic conference and quantum secret sharing. We analyze the security of the protocol against both the entangling cloner attack and the coherent attack. The entangling cloner attack is a practical individual attack, and the coherent attack is the optimal attack Eve can implement. Simulation results show that the coherent attack can greatly reduce the secret key rate. Different kinds of entangled attacks are compared and we finally discuss the optimal coherent attacks.

  3. Alternative schemes for measurement-device-independent quantum key distribution

    NASA Astrophysics Data System (ADS)

    Ma, Xiongfeng; Razavi, Mohsen

    2012-12-01

    Practical schemes for measurement-device-independent quantum key distribution using phase and path or time encoding are presented. In addition to immunity to existing loopholes in detection systems, our setup employs simple encoding and decoding modules without relying on polarization maintenance or optical switches. Moreover, by employing a modified sifting technique to handle the dead-time limitations in single-photon detectors, our scheme can be run with only two single-photon detectors. With a phase-post-selection technique, a decoy-state variant of our scheme is also proposed, whose key generation rate scales linearly with the channel transmittance.

  4. Measurement of Thin Film Integrated Passive Devices on SiC through 500 C

    NASA Technical Reports Server (NTRS)

    Schwartz, Zachary D.; Ponchak, George E.; Alterovitz, Samuel A.; Downey, Alan N.; Chevalier, Christine T.

    2004-01-01

    Wireless communication in jet engines and high temperature industrial applications requires FD integrated circuits (RFICs) on wide bandgap semiconductors such as Silicon Carbide (SiC). In this paper, thin-film NiCr resistors, MIM capacitors, and spiral inductors are fabricated on a high purity semi-insulating 4H-SiC substrate. The devices are experimentally characterized through 50 GHz at temperatures of up to 500 C and the equivalent circuits are deembedded from the measured data. It is shown that the NiCr resistors are stable within 10% to 300 C while the capacitors have a value stable within 10% through 500 C.

  5. Instrument for Measuring Temperature of Water

    NASA Technical Reports Server (NTRS)

    Ryan, Robert; Nixon, Thomas; Pagnutti, Mary; Zanoni, Vicki

    2002-01-01

    A pseudo-Brewster angle infrared radiometer has been proposed for use in noncontact measurement of the surface temperature of a large body of water (e.g., a lake or ocean). This radiometer could be situated on a waterborne, airborne, or spaceborne platform. The design of the pseudo-Brewster angle radiometer would exploit the spectral emissivity and polarization characteristics of water to minimize errors attributable to the emissivity of water and to the reflection of downwelling (e.g., Solar and cloud-reflected) infrared radiation.

  6. Device for measuring hole elongation in a bolted joint

    NASA Technical Reports Server (NTRS)

    Wichorek, Gregory R. (Inventor)

    1987-01-01

    A device to determine the operable failure mode of mechanically fastened lightweight composite joints by measuring the hole elongation of a bolted joint is disclosed. The double-lap joint test apparatus comprises a stud, a test specimen having a hole, two load transfer plates, and linear displacement measuring instruments. The test specimen is sandwiched between the two load transfer plates and clamped together with the stud. Spacer washers are placed between the test specimen and each load transfer plate to provide a known, controllable area for the determination of clamping forces around the hole of the specimen attributable to bolt torque. The spacer washers also provide a gap for the mounting of reference angles on each side of the test specimen. Under tensile loading, elongation of the hole of the test specimen causes the stud to move away from the reference angles. This displacement is measured by the voltage output of two linear displacement measuring instruments that are attached to the stud and remain in contact with the reference angles throughout the tensile loading. The present invention obviates previous problems in obtaining specimen deformation measurements by monitoring the reference angles to the test specimen and the linear displacement measuring instruments to the stud.

  7. Characterization of structural defects in GST based nano-PCM devices through resistance drift measurements

    NASA Astrophysics Data System (ADS)

    Cinar, Ibrahim; Cogulu, Egecan; Gokce, Aisha; Stipe, Barry; Katine, Jordan; Aktas, Gulen; Ozatay, Ozhan

    2015-03-01

    Phase change memory (PCM) is a promising nonvolatile data storage technology with its high signal to noise ratio and superior scalability. Resistance drift in amorphous phase of the phase change material poses a crucial reliability problem, especially in multiple-bit-per cell PCM devices. The resistance of the amorphous phase uncontrollably increases with time after a reset operation which alters the read/write conditions of the device. Structural relaxation (SR) through a defect annihilation process is considered to be the underlying physical mechanism for resistance drift. Here, we report on our measurements of the resistance drift in a phase change memory device with a single layer Ge2Sb2Te5 (GST) material not only in the amorphous state but also in the intermediate resistance state in devices with square top contact geometry which enables us to assess the reliability of multiple-bit per cell PCM memory devices. Through an analysis of electrical measurements as a function of time and temperature for increasing annealing times, we estimate a rate of change in trap density for both amorphous and mixed phases of the GST material after a switching operation. Our study allows engineering the phase change materials and optimizing programing conditions for future PCM applications. TUBITAK under Contract Number 113F385, Bogazici University Research Fund, 12B03M1, and European Union FP7 Marie Curie International Re-integration Grant PCM-256281.

  8. Evaluation of non-contact infrared thermometry for measuring the temperature of pig carcasses in chillers.

    PubMed

    Metternick-Jones, S L; Skevington, S G

    1992-01-01

    An OPTEX Thermo Hunter infrared (IR) non-contact hand-held thermometer was examined to determine its suitability for measuring porcine carcass surface temperatures during chilling. The manufacturer claims that the unit has the capability of measuring a range of temperature between -50C and 500C, with a resolution of 01C. The device allows for an automatic determination and adjustment of unknown emissivities of objects to be measured. The stability of the device was tested in the laboratory at 4 and 18C and for accuracy against a known surface temperature. Tests were conducted in a commercial chiller to determined whether the device could detect temperature differences between carcasses, sites on one carcass and chillers. The results obtained were also examined for repeatability. The thermometer required a minimum initial stabilisation period of 120 min after which the results compared favourably with known surface temperatures. The chiller tests indicated that temperature differences could be detected between the various carcasses, sites on one carcass and chillers, and that the readings were reproducible. The device is best suited for determining temperature trends when overall accuracy is not essential. The device could also be useful in evaluating chiller performance. PMID:22059719

  9. Multilayer compressive seal for sealing in high temperature devices

    DOEpatents

    Chou, Yeong-Shyung; Stevenson, Jeffry W.

    2007-08-21

    A mica based compressive seal has been developed exhibiting superior thermal cycle stability when compared to other compressive seals known in the art. The seal is composed of compliant glass or metal interlayers and a sealing (gasket) member layer composed of mica that is infiltrated with a glass forming material, which effectively reduces leaks within the seal. The compressive seal shows approximately a 100-fold reduction in leak rates compared with previously developed hybrid seals after from 10 to about 40 thermal cycles under a compressive stress of from 50 psi to 100 psi at temperatures in the range from 600.degree. C. to about 850.degree. C.

  10. Apparatus for accurately measuring high temperatures

    DOEpatents

    Smith, D.D.

    The present invention is a thermometer used for measuring furnace temperatures in the range of about 1800/sup 0/ to 2700/sup 0/C. The thermometer comprises a broadband multicolor thermal radiation sensor positioned to be in optical alignment with the end of a blackbody sight tube extending into the furnace. A valve-shutter arrangement is positioned between the radiation sensor and the sight tube and a chamber for containing a charge of high pressure gas is positioned between the valve-shutter arrangement and the radiation sensor. A momentary opening of the valve shutter arrangement allows a pulse of the high gas to purge the sight tube of air-borne thermal radiation contaminants which permits the radiation sensor to accurately measure the thermal radiation emanating from the end of the sight tube.

  11. Design of a Device for Sky Light Polarization Measurements

    PubMed Central

    Wang, Yujie; Hu, Xiaoping; Lian, Junxiang; Zhang, Lilian; Xian, Zhiwen; Ma, Tao

    2014-01-01

    Sky polarization patterns can be used both as indicators of atmospheric turbidity and as a sun compass for navigation. The objective of this study is to improve the precision of sky light polarization measurements by optimal design of the device used. The central part of the system is composed of a Charge Coupled Device (CCD) camera; a fish-eye lens and a linear polarizer. Algorithms for estimating parameters of the polarized light based on three images are derived and the optimal alignments of the polarizer are analyzed. The least-squares estimation is introduced for sky light polarization pattern measurement. The polarization patterns of sky light are obtained using the designed system and they follow almost the same patterns of the single-scattering Rayleigh model. Deviations of polarization angles between observation and the theory are analyzed. The largest deviations occur near the sun and anti-sun directions. Ninety percent of the deviations are less than 5° and 40% percent of them are less than 1°. The deviations decrease evidently as the degree of polarization increases. It also shows that the polarization pattern of the cloudy sky is almost identical as in the blue sky. PMID:25196003

  12. Design of a device for sky light polarization measurements.

    PubMed

    Wang, Yujie; Hu, Xiaoping; Lian, Junxiang; Zhang, Lilian; Xian, Zhiwen; Ma, Tao

    2014-01-01

    Sky polarization patterns can be used both as indicators of atmospheric turbidity and as a sun compass for navigation. The objective of this study is to improve the precision of sky light polarization measurements by optimal design of the device used. The central part of the system is composed of a Charge Coupled Device (CCD) camera; a fish-eye lens and a linear polarizer. Algorithms for estimating parameters of the polarized light based on three images are derived and the optimal alignments of the polarizer are analyzed. The least-squares estimation is introduced for sky light polarization pattern measurement. The polarization patterns of sky light are obtained using the designed system and they follow almost the same patterns of the single-scattering Rayleigh model. Deviations of polarization angles between observation and the theory are analyzed. The largest deviations occur near the sun and anti-sun directions. Ninety percent of the deviations are less than 5° and 40% percent of them are less than 1°. The deviations decrease evidently as the degree of polarization increases. It also shows that the polarization pattern of the cloudy sky is almost identical as in the blue sky. PMID:25196003

  13. Development of a continuous aerosol mass concentration measurement device.

    PubMed

    Bémer, D; Thomas, D; Contal, P; Subra, I

    2003-08-01

    A dynamic aerosol mass concentration measurement device has been developed for personal sampling. Its principle consists in sampling the aerosol on a filter and monitoring the change of pressure drop over time (Delta P). Ensuring that the linearity of the Delta P = f(mass of particles per unit area of filter) relationship has been well established, the change of concentration can be deduced. The response of the system was validated in the laboratory with a 3.5 microm alumina aerosol (mass median diameter) generated inside a 1-m(3) ventilated enclosure. As the theory predicted that the mass sensitivity of the system would vary inversely with the square of the particle diameter, only sufficiently fine aerosols were able to be measured. The system was tested in the field in a mechanical workshop in the vicinity of an arc-welding station. The aerosol produced by welding is indeed particularly well-adapted due to the sub-micronic size of the particles. The device developed, despite this limitation, has numerous advantages over other techniques: robustness, compactness, reliability of calibration, and ease of use. PMID:12851007

  14. Description of a Portable Wireless Device for High-Frequency Body Temperature Acquisition and Analysis

    PubMed Central

    Cuesta-Frau, David; Varela, Manuel; Aboy, Mateo; Miró-Martínez, Pau

    2009-01-01

    We describe a device for dual channel body temperature monitoring. The device can operate as a real time monitor or as a data logger, and has Bluetooth capabilities to enable for wireless data download to the computer used for data analysis. The proposed device is capable of sampling temperature at a rate of 1 sample per minute with a resolution of 0.01 °C . The internal memory allows for stand-alone data logging of up to 10 days. The device has a battery life of 50 hours in continuous real-time mode. In addition to describing the proposed device in detail, we report the results of a statistical analysis conducted to assess its accuracy and reproducibility. PMID:22408473

  15. Optical techniques for measurement of high temperatures

    SciTech Connect

    Veligdan, J.T.

    1991-10-25

    The availability of instrumentation to measure the high outlet gas temperature of a particle bed reactor is a topic of some concern. There are a number of possible techniques with advantages and disadvantages. In order to provide some baseline choice of instrumentation, a review has been conducted of these various technologies. This report summarizes the results of this review for a group of technologies loosely defined as optical techniques (excluding optical pyrometry). The review has concentrated on a number of questions for each technology investigated. These are: (1) Description of the technology, (2) Anticipated sensitivity and accuracy, (3) Requirements for implementation, (4) Necessary development time and costs, (5) Advantages and disadvantages of the technology. Each of these areas was considered for a technology and a large number of technologies were considered in a review of the literature. Based upon this review it was found that a large number of methods exist to measure temperatures in excess of 2000 K. None of the methods found were ideal. Four methods, however, appeared to warrant further consideration: opto-mechanical expansion thermometry, surface Raman spectroscopy, gas-phase Raman spectroscopy and coherent anti-Stokes Raman spectroscopy (CARS). These techniques will be discussed further in this document.

  16. Optical techniques for measurement of high temperatures

    NASA Astrophysics Data System (ADS)

    Veligdan, J. T.

    1991-10-01

    The availability of instrumentation to measure the high outlet gas temperature of a particle bed reactor is a topic of some concern. There are a number of possible techniques with advantages and disadvantages. In order to provide some baseline choice of instrumentation, a review has been conducted of these various technologies. This report summarizes the results of this review for a group of technologies loosely defined as optical techniques (excluding optical pyrometry). The review has concentrated on a number of questions for each technology investigated. These are: (1) Description of the technology; (2) Anticipated sensitivity and accuracy; (3) Requirements for implementation; (4) Necessary development time and costs; and (5) Advantages and disadvantages of the technology. Each of these areas was considered for a technology and a large number of technologies were considered in a review of the literature. Based upon this review it was found that a large number of methods exist to measure temperatures in excess of 2000 K. None of the methods found were ideal. Four methods, however, appeared to warrant further consideration: opto-mechanical expansion thermometry, surface Raman spectroscopy, gas-phase Raman spectroscopy and coherent anti-Stokes Raman spectroscopy (CARS). These techniques will be discussed further in this document.

  17. Modeling of SiC Lateral Resonant Devices Over a Broad Temperature Range

    NASA Technical Reports Server (NTRS)

    DeAnna, Russell G.; Roy, Shuvo; Zorman, Christian A.; Mehregany, Mehran

    1999-01-01

    Finite-element analysis (FEA) modal results of 3C-SiC lateral resonant devices anchored to a Si substrate are presented as resonant frequency versus temperature. The suspended elements are etched from a 2 micron, 3C-SiC film grown at 1600 K on a 500 micron-thick, Si substrate. The analysis includes, temperature-dependent properties, shape change due to volume expansion with temperature, and thermal stress caused by differential thermal expansion of different materials. Two designs are considered: type I has anchor locations close to the geometric centroid and a small shuttle; type 11 has a large shuttle with anchors far from the centroid, The resonant frequency decreases approximately 3.5% over a 1000 K temperature increase for the type-I device, and behaves according to theory. The resonant frequency of the type-11 device decreases by 2% over the first 400 K, then rises slightly over the remaining 600 K. This device deviates from theory because of the high thermal stress induced in the beams. The thermal stress is caused by the differential thermal expansion of the suspended element relative to the substrate. The results show that the device geometry must be properly chosen if the resonant frequency of that device will be used to calculate the temperature coefficient of Young's modulus. These results apply only to resonators of one material on a substrate of a different material.

  18. High-temperature 434 Mhz surface acoustic wave devices based on GaPO4.

    PubMed

    Hamidon, Mohd Nizar; Skarda, Vlad; White, Neil M; Krispel, Ferdinand; Krempl, Peter; Binhack, Michael; Buff, Werner

    2006-12-01

    Research into surface acoustic wave (SAW) devices began in the early 1970s and led to the development of high performance, small size, and high reproducibility devices. Much research has now been done on the application of such devices to consumer electronics, process monitoring, and communication systems. The use of novel materials, such as gallium phosphate (GaPO4), extends the operating temperature of the elements. SAW devices based on this material operating at 434 MHz and up 800 degrees C, can be used for passive wireless sensor applications. Interdigital transducer (IDT) devices with platinum/zirconium metallization and 1.4 microm finger-gap ratio of 1:1 have been fabricated using direct write e-beam lithography and a lift-off process. The performance and long-term stability of these devices has been studied, and the results are reported in this paper. PMID:17186928

  19. Experimental measurement and mathematical calculation evaporator temperatures of closed loop thermosyphon

    NASA Astrophysics Data System (ADS)

    Nemec, Patrik; Malcho, Milan; Jandačka, Jozef

    2013-10-01

    The closed loop thermoshypon is device operate with working fluid phase change principle. It is a simple and reliable device providing heat transfer. This device utilizes the thermodynamic pressure difference and gravitation to circulate working fluid and has extremely high effective thermal conductivity. Usually is used to cooling of electronic components. The paper describes a design and construction of this device. As a working fluid was used fluorinert FC-72. Next the paper deal with dependences measurement of evaporator temperatures on waste heat of the electronic component and their verification by means of a mathematic calculation based on physical phenomena of boiling, condensation and heat transfer.

  20. Skin friction measurements in high temperature high speed flows

    NASA Technical Reports Server (NTRS)

    Schetz, J. A.; Diller, Thomas E.; Wicks, A. L.

    1992-01-01

    An experimental investigation was conducted to measure skin friction along the chamber walls of supersonic combustors. A direct force measurement device was used to simultaneously measure an axial and transverse component of the small tangential shear force passing over a non-intrusive floating element. The floating head is mounted to a stiff cantilever beam arrangement with deflection due to the flow on the order of 0.00254 mm (0.0001 in.). This allowed the instrument to be a non-nulling type. A second gauge was designed with active cooling of the floating sensor head to eliminate non-uniform temperature effects between the sensor head and the surrounding wall. Samples of measurements made in combustor test facilities at NASA Langley Research Center and at the General Applied Science Laboratory (GASL) are presented. Skin friction coefficients between 0.001 - 0.005 were measured dependent on the facility and measurement location. Analysis of the measurement uncertainties indicate an accuracy to within +/- 10-15 percent of the streamwise component.

  1. Simple uniaxial pressure device for ac-susceptibility measurements suitable for closed cycle refrigerator system.

    PubMed

    Arumugam, S; Manivannan, N; Murugeswari, A

    2007-06-01

    A simple design of the uniaxial pressure device for the measurement of ac-susceptibility at low temperatures using closed cycle refrigerator system is presented for the first time. This device consists of disc micrometer, spring holder attachment, uniaxial pressure cell, and the ac-susceptibility coil wound on stycast bobbin. It can work under pressure till 0.5 GPa and at the temperature range of 30-300 K. The performance of the system at ambient pressure is tested and calibrated with standard paramagnetic salts [Gd(2)O(3), Er(2)O(3), and Fe(NH(4)SO(4))(2)6H(2)O], Fe(3)O(4), Gd metal, Dy metal, superconductor (YBa(2)Cu(3)O(7)), manganite (La(1.85)Ba(0.15)MnO(3)), and spin glass material (Pr(0.8)Sr(0.2)MnO(3)). The performance of the uniaxial pressure device is demonstrated by investigating the uniaxial pressure dependence of La(1.85)Ba(0.15)MnO(3) single crystal with P||c axis. The Curie temperature (T(c)) decreases as a function of pressure with P||c axis (dT(c)dP(||c axis)=-11.65 KGPa) up to 46 MPa. The design is simple, is user friendly, and does not require pressure calibration. Measurement can even be made on thin and small size oriented crystals. The failure of the coil is remote under uniaxial pressure. The present setup can be used as a multipurpose uniaxial pressure device for the measurement of Hall effect and thermoelectric power with a small modification in the pressure cell. PMID:17614625

  2. Simple uniaxial pressure device for ac-susceptibility measurements suitable for closed cycle refrigerator system

    SciTech Connect

    Arumugam, S.; Manivannan, N.; Murugeswari, A.

    2007-06-15

    A simple design of the uniaxial pressure device for the measurement of ac-susceptibility at low temperatures using closed cycle refrigerator system is presented for the first time. This device consists of disc micrometer, spring holder attachment, uniaxial pressure cell, and the ac-susceptibility coil wound on stycast bobbin. It can work under pressure till 0.5 GPa and at the temperature range of 30-300 K. The performance of the system at ambient pressure is tested and calibrated with standard paramagnetic salts [Gd{sub 2}O{sub 3}, Er{sub 2}O{sub 3}, and Fe(NH{sub 4}SO{sub 4}){sub 2}6H{sub 2}O], Fe{sub 3}O{sub 4}, Gd metal, Dy metal, superconductor (YBa{sub 2}Cu{sub 3}O{sub 7}), manganite (La{sub 1.85}Ba{sub 0.15}MnO{sub 3}), and spin glass material (Pr{sub 0.8}Sr{sub 0.2}MnO{sub 3}). The performance of the uniaxial pressure device is demonstrated by investigating the uniaxial pressure dependence of La{sub 1.85}Ba{sub 0.15}MnO{sub 3} single crystal with P parallel c axis. The Curie temperature (T{sub c}) decreases as a function of pressure with P parallel c axis (dT{sub c}/dP{sub parallelcaxis}=-11.65 K/GPa) up to 46 MPa. The design is simple, is user friendly, and does not require pressure calibration. Measurement can even be made on thin and small size oriented crystals. The failure of the coil is remote under uniaxial pressure. The present setup can be used as a multipurpose uniaxial pressure device for the measurement of Hall effect and thermoelectric power with a small modification in the pressure cell.

  3. Temperature dependent EUV spectra of Gd, Tb and Dy ions observed in the Large Helical Device

    NASA Astrophysics Data System (ADS)

    Suzuki, C.; Koike, F.; Murakami, I.; Tamura, N.; Sudo, S.

    2015-07-01

    We have observed a number of different types of extreme ultraviolet (EUV) spectra from highly charged gadolinium (Gd), terbium (Tb) and dysprosium (Dy) ions in optically thin plasmas produced in the Large Helical Device at the National Institute for Fusion Science. Temporal changes in EUV spectra in the 6-9 nm region subsequent to the injections of solid pellets were measured by a grazing incidence spectrometer. The spectra rapidly change from discrete features into unresolved transition arrays (UTAs) following a drop in the electron temperature after the heating power is reduced. In particular, extremely narrowed UTA features, which comprise spectral lines of Ag-like, Pd-like and neighboring ion stages, are observed when the peak electron temperature is less than 0.45 keV due to the formation of hollow plasmas. Some discrete spectral lines of Cu-like and Ag-like ions have been identified in the high and low temperature plasmas, respectively, some of which are experimentally identified for the first time.

  4. Evaluation of spectrum measurement devices for operational use

    NASA Astrophysics Data System (ADS)

    Devine, Robert T.; Romero, Leonard L.; Gray, Devin W.; Seagraves, David T.; Olsher, Richard H.; Johnson, Jeff P.

    2002-01-01

    Several neutron spectrometers manufactured by Bubble Technology Industries (BTI) were tested and evaluated in a variety of neutron fields. Findings and conclusions are presented for the following BTI instruments: a modification of the Rotational Spectrometer (ROSPEC) that includes a thermal and epithermal capability, the Simple Scintillation Spectrometer that is used in conjunction with the ROSPEC to extend its high-energy range, and the MICROSPEC N-Probe which is capable of providing a crude spectrum over the energy range from thermal to 18 MeV. The main objective of these measurements was to determine the accuracy of both the energy spectrum and dose equivalent information generated by these devices. In addition, the dose response of the Wide-Energy Neutron Detection Instrument (WENDI-II) was measured in all neutron fields relative to a bare 252Cf calibration. The performance of the WENDI-II rem meter was compared to the dose information generated by the neutron spectrometers. The instruments were irradiated to bare 252Cf and 241AmBe sources, and in a series of moderated 252Cf fields using a standard D 2O sphere and a set of polyethylene spheres. The measured spectra were benchmarked with a set of detailed Monte Carlo calculations with the same energy bin structure as that of the instruments under test. These calculations allowed an absolute comparison to be made with the measurements on a bin by bin basis. The simulations included the effects of room return and source anisotropy.

  5. Instrument for Measuring Temperature of Water

    NASA Technical Reports Server (NTRS)

    Ryan, Robert; Nixon, Thomas; Pagnutti, Mary; Zanoni, Vicki

    2003-01-01

    A pseudo-Brewster-angle infrared radiometer has been proposed for use in noncontact measurement of the surface temperature of a large body of water (e.g., a lake or ocean). This radiometer could be situated on a waterborne, airborne, or spaceborne platform. The design of the pseudo-Brewster-angle radiometer would exploit the spectral-emissivity and polarization characteristics of water to minimize errors attributable to the emissivity of water and to the reflection of downwelling (e.g., Solar and cloud-reflected) infrared radiation. The relevant emissivity and polarization characteristics are the following: . The Brewster angle is the angle at which light polarized parallel to the plane of incidence on a purely dielectric material is not reflected. The pseudo-Brewster angle, defined for a lossy dielectric (somewhat electrically conductive) material, is the angle for which the reflectivity for parallel-polarized light is minimized. For pure water, the reflectivity for parallel-polarized light is only 2.2 x 10(exp -4) at its pseudo- Brewster angle of 51deg. The reflectivity remains near zero, several degrees off from the 51deg optimum, allowing this angle of incidence requirement to be easily achieved. . The wavelength range of interest for measuring water temperatures is 8 to 12 microns. The emissivity of water for parallel- polarized light at the pseudo-Brewster angle is greater than 0.999 in this wavelength range. The radiometer would be sensitive in the wavelength range of 8 to 12 microns, would be equipped with a polarizer to discriminate against infrared light polarized perpendicular to the plane of incidence, and would be aimed toward a body of water at the pseudo- Brewster angle (see figure). Because the infrared radiation entering the radiometer would be polarized parallel to the plane of incidence and because very little downwelling parallel-polarized radiation would be reflected into the radiometer on account of the pseudo-Brewster arrangement, the radiation received by the radiometer would consist almost entirely of thermal emission from the surface of the water. Because the emissivity of the water would be very close to 1, the water could be regarded as a close approximation of a blackbody for the purpose of computing its surface temperature from the radiometer measurements by use of the Planck radiation law.

  6. Device for accurately measuring mass flow of gases

    DOEpatents

    Hylton, J.O.; Remenyik, C.J.

    1994-08-09

    A device for measuring mass flow of gases which utilizes a substantially buoyant pressure vessel suspended within a fluid/liquid in an enclosure is disclosed. The pressure vessel is connected to a weighing device for continuously determining weight change of the vessel as a function of the amount of gas within the pressure vessel. In the preferred embodiment, this pressure vessel is formed from inner and outer right circular cylindrical hulls, with a volume between the hulls being vented to the atmosphere external the enclosure. The fluid/liquid, normally in the form of water typically with an added detergent, is contained within an enclosure with the fluid/liquid being at a level such that the pressure vessel is suspended beneath this level but above a bottom of the enclosure. The buoyant pressure vessel can be interconnected with selected valves to an auxiliary pressure vessel so that initial flow can be established to or from the auxiliary pressure vessel prior to flow to or from the buoyant pressure vessel. 5 figs.

  7. Device for accurately measuring mass flow of gases

    DOEpatents

    Hylton, James O.; Remenyik, Carl J.

    1994-01-01

    A device for measuring mass flow of gases which utilizes a substantially buoyant pressure vessel suspended within a fluid/liquid in an enclosure. The pressure vessel is connected to a weighing device for continuously determining weight change of the vessel as a function of the amount of gas within the pressure vessel. In the preferred embodiment, this pressure vessel is formed from inner and outer right circular cylindrical hulls, with a volume between the hulls being vented to the atmosphere external the enclosure. The fluid/liquid, normally in the form of water typically with an added detergent, is contained within an enclosure with the fluid/liquid being at a level such that the pressure vessel is suspended beneath this level but above a bottom of the enclosure. The buoyant pressure vessel can be interconnected with selected valves to an auxiliary pressure vessel so that initial flow can be established to or from the auxiliary pressure vessel prior to flow to or from the buoyant pressure vessel.

  8. A diffusive sampling device for measurement of ammonia in air

    NASA Astrophysics Data System (ADS)

    Yamada, Tomomi; Uchiyama, Shigehisa; Inaba, Yohei; Kunugita, Naoki; Nakagome, Hideki; Seto, Hiroshi

    2012-07-01

    A diffusive sampling device, the DSD-NH3, has been developed for measurement of ammonia in air. The DSD-NH3 comprises silica gel impregnated with phosphoric acid as the absorbent, a porous sintered polyethylene tube that acts as a diffusive membrane, and a small polypropylene syringe that is used for the elution of analytes from the absorbent. Silica gel impregnated with phosphoric acid is used as absorbent for the DSD-NH3; basic gases in ambient air, including ammonia, are trapped in the DSD-NH3 device by their reaction with phosphoric acid in the sampler to form their corresponding phosphoric acid salts. After collection, the DSD-NH3 samplers are eluted by water. Cations in the eluate, including ammonium ions, are analyzed by ion chromatography. A side-by-side comparison was made with active samplers, demonstrating good correlation (r2 = 0.996). The sampling rate (94.5 ml min-1) was determined from comparison with an active sampling method and sampling rates. The sampling rate is also calculated from the respective molecular weights according to a rule based on Graham's law. The theoretical sampling rate with the DSD-NH3 is 95.4 ml min-1 and agrees with the experimental value (94.5 ml min-1). Little influence of wind velocity on the sampler was observed. The relative standard deviations for ammonia concentrations were 4.7% with face velocity ranging 0-5.0 m/s.

  9. Device-independent quantum key distribution based on measurement inputs

    NASA Astrophysics Data System (ADS)

    Rahaman, Ramij; Parker, Matthew G.; Mironowicz, Piotr; Pawłowski, Marcin

    2015-12-01

    We provide an analysis of a family of device-independent quantum key distribution (QKD) protocols that has the following features. (a) The bits used for the secret key do not come from the results of the measurements on an entangled state but from the choices of settings. (b) Instead of a single security parameter (a violation of some Bell inequality) a set of them is used to estimate the level of trust in the secrecy of the key. The main advantage of these protocols is a smaller vulnerability to imperfect random number generators made possible by feature (a). We prove the security and the robustness of such protocols. We show that using our method it is possible to construct a QKD protocol which retains its security even if the source of randomness used by communicating parties is strongly biased. As a proof of principle, an explicit example of a protocol based on the Hardy's paradox is presented. Moreover, in the noiseless case, the protocol is secure in a natural way against any type of memory attack, and thus allows one to reuse the device in subsequent rounds. We also analyze the robustness of the protocol using semidefinite programming methods. Finally, we present a postprocessing method, and observe a paradoxical property that rejecting some random part of the private data can increase the key rate of the protocol.

  10. An ultrasonic device for source to skin surface distance measurement in patient setup

    SciTech Connect

    Feng Yuanming . E-mail: yfeng002@umaryland.edu; Allison, Ron; Hu Xinhua; Mota, Helvecio; Jenkins, Todd; Wolfe, Melodee L.; Sibata, Claudio

    2005-04-01

    Purpose: To develop an ultrasound-based source to skin surface distance (SSD) measurement technique and device for patient setup and test its feasibility and accuracy. Methods and materials: The ultrasonic SSD measurement device (USD) prototype consists of two main parts: a probe plate with an ultrasonic transducer in the center and a control unit that displays the SSD in millimeters. The probe plate can be slid into the block tray accessory slot of any treatment machine at the time of the SSD measurement. The probe plate contains an ultrasonic transducer as both the source and the detector for measuring the distance between the transducer and the target surfaces on the basis of an echo-detecting technique. The device was calibrated by a mechanical ruler with an accuracy of 0.01 mm and corrected by an offset of 601.7 mm, which is the distance from the radiation source to the ultrasonic transducer surface for the Siemens Primus linear accelerator (Linac). The ultrasound device provided digital readout with an accuracy of {+-}0.1 mm for a flat surface after calibration. The SSD measurement experiments were done with the USD, an optical distance indicator (ODI), and an AKTINA 53-104 Mechanical Front Pointer (FP) on a Siemens Primus Linac with a full-sized female phantom. Ten measurements were carried out at each gantry angle of 0 deg , 52 deg , 85 deg , 90 deg , and 227 deg for anatomic locations of head, thorax, breast, and pelvis, to obtain the average values and standard deviations. Results: The comparison study with the ODI and FP showed that the USD had an accuracy of less than {+-}1.0 mm and that USD measurements had the minimum standard deviations among the three methods; therefore, USD gave more consistent and accurate readouts for SSD measurement. When considering the FP as a reference, the USD yields smaller deviations than the ODI for all measured locations (less than {+-}2 mm). The variation of USD digital readout with a room temperature change of {+-}2 deg C is {+-}0.1 mm, which is sufficiently accurate for SSD measurement. Conclusions: The USD method has the following advantages. First, it decreases patient setup time by avoiding problems related to the blocking of the device by the patient or by the immobilization device. Second, it is more accurate than the other two methods currently used, as the test data show. Last, the digital readout eliminates the possibility of human reading error associated with the visual scales.

  11. Comparison of nickel silicide and aluminium ohmic contact metallizations for low-temperature quantum transport measurements

    PubMed Central

    2011-01-01

    We examine nickel silicide as a viable ohmic contact metallization for low-temperature, low-magnetic-field transport measurements of atomic-scale devices in silicon. In particular, we compare a nickel silicide metallization with aluminium, a common ohmic contact for silicon devices. Nickel silicide can be formed at the low temperatures (<400°C) required for maintaining atomic precision placement in donor-based devices, and it avoids the complications found with aluminium contacts which become superconducting at cryogenic measurement temperatures. Importantly, we show that the use of nickel silicide as an ohmic contact at low temperatures does not affect the thermal equilibration of carriers nor contribute to hysteresis in a magnetic field. PMID:21968083

  12. Memory-assisted measurement-device-independent quantum key distribution

    NASA Astrophysics Data System (ADS)

    Panayi, Christiana; Razavi, Mohsen; Ma, Xiongfeng; Lütkenhaus, Norbert

    2014-04-01

    A protocol with the potential of beating the existing distance records for conventional quantum key distribution (QKD) systems is proposed. It borrows ideas from quantum repeaters by using memories in the middle of the link, and that of measurement-device-independent QKD, which only requires optical source equipment at the user's end. For certain memories with short access times, our scheme allows a higher repetition rate than that of quantum repeaters with single-mode memories, thereby requiring lower coherence times. By accounting for various sources of nonideality, such as memory decoherence, dark counts, misalignment errors, and background noise, as well as timing issues with memories, we develop a mathematical framework within which we can compare QKD systems with and without memories. In particular, we show that with the state-of-the-art technology for quantum memories, it is potentially possible to devise memory-assisted QKD systems that, at certain distances of practical interest, outperform current QKD implementations.

  13. Long-distance measurement-device-independent multiparty quantum communication.

    PubMed

    Fu, Yao; Yin, Hua-Lei; Chen, Teng-Yun; Chen, Zeng-Bing

    2015-03-01

    The Greenberger-Horne-Zeilinger (GHZ) entanglement, originally introduced to uncover the extreme violation of local realism against quantum mechanics, is an important resource for multiparty quantum communication tasks. But the low intensity and fragility of the GHZ entanglement source in current conditions have made the practical applications of these multiparty tasks an experimental challenge. Here we propose a feasible scheme for practically distributing the postselected GHZ entanglement over a distance of more than 100 km for experimentally accessible parameter regimes. Combining the decoy-state and measurement-device-independent protocols for quantum key distribution, we anticipate that our proposal suggests an important avenue for practical multiparty quantum communication. PMID:25793788

  14. 21 CFR 864.5950 - Blood volume measuring device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... manual, semiautomated, or automated system that is used to calculate the red cell mass, plasma volume... (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Automated and Semi-Automated Hematology...

  15. 21 CFR 864.5950 - Blood volume measuring device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... manual, semiautomated, or automated system that is used to calculate the red cell mass, plasma volume... (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Automated and Semi-Automated Hematology...

  16. 21 CFR 864.5950 - Blood volume measuring device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... manual, semiautomated, or automated system that is used to calculate the red cell mass, plasma volume... (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Automated and Semi-Automated Hematology...

  17. 21 CFR 864.5950 - Blood volume measuring device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... manual, semiautomated, or automated system that is used to calculate the red cell mass, plasma volume... (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Automated and Semi-Automated Hematology...

  18. 21 CFR 864.5950 - Blood volume measuring device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... manual, semiautomated, or automated system that is used to calculate the red cell mass, plasma volume... (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Automated and Semi-Automated Hematology...

  19. Nonintrusive Measurement Of Temperature Of LED Junction

    NASA Technical Reports Server (NTRS)

    Leidecker, Henning; Powers, Charles

    1991-01-01

    Temperature inferred from spectrum of emitted light. Method of determining temperature of junction based on two relevant characteristics of LED. Gap between valence and conduction electron-energy bands in LED material decreases with increasing temperature, causing wavelength of emitted photon to increase with temperature. Other, as temperature increases, non-radiative processes dissipate more of input electrical energy as heat and less as photons in band-gap wavelenth region; optical and quantum efficiencies decrease with increasing temperature. In principal, either characteristic alone used to determine temperature. However, desirable to use both to obtain indication of uncertainty.

  20. Characterization of devices, circuits, and high-temperature superconductor transmission lines by electro-optic testing

    NASA Technical Reports Server (NTRS)

    Whitaker, John F.

    1991-01-01

    The development of a capability for testing transmission lines, devices, and circuits using the optically-based technique of electro-optics sampling was the goal of this project. Electro-optic network analysis of a high-speed device was demonstrated. The project involved research on all of the facets necessary in order to realize this result, including the discovery of the optimum electronic pulse source, development of an adequate test fixture, improvement of the electro-optic probe tip, and identification of a device which responded at high frequency but did not oscillate in the test fixture. In addition, during the process of investigating patterned high-critical-temperature superconductors, several non-contacting techniques for the determination of the transport properties of high T(sub c) films were developed and implemented. These are a transient, optical pump-probe, time-resolved reflectivity experiment, an impulsive-stimulated Raman scattering experiment, and a terahertz-beam coherent-spectroscopy experiment. The latter technique has enabled us to measure both the complex refractive index of an MgO substrate used for high-T(sub c) films and the complex conductivity of a YBa2Cu3O(7-x) sample. This information was acquired across an extremely wide frequency range: from the microwave to the submillimeter-wave regime. The experiments on the YBCO were conducted without patterning of, or contact to, the thin film. Thus, the need for the more difficult transmission-line experiments was eliminated. Progress in all of these areas was made and is documented in a number of papers. These papers may be found in the section listing the abstracts of the publications that were issued during the course of the research.