Science.gov

Sample records for temperature programmed desorption

  1. Temperature programmed desorption and infrared spectroscopic studies of thin water films on MgO(100)

    E-print Network

    Reisler, Hanna

    Temperature programmed desorption and infrared spectroscopic studies of thin water films on MgO(100 Abstract Thin water (D2O) films on MgO(100) surfaces have been studied. Water was deposited at 115 K solid to cubic ice is known to take place, and then re-cooling. Temperature programmed desorption traces

  2. Reduction Kinetics of Graphene Oxide Determined by Electrical Transport Measurements and Temperature Programmed Desorption

    E-print Network

    and Temperature Programmed Desorption Inhwa Jung, Daniel A. Field, Nicholas J. Clark, Yanwu Zhu, Dongxing Yang, Richard D. Piner, Sasha Stankovich,§ Dmitriy A. Dikin,§ Heike Geisler,| Carl A. Ventrice, Jr

  3. Analysis of molecular hydrogen formation on low-temperature surfaces in temperature programmed desorption experiments.

    PubMed

    Vidali, G; Pirronello, V; Li, L; Roser, J; Manicó, G; Congiu, E; Mehl, H; Lederhendler, A; Perets, H B; Brucato, J R; Biham, O

    2007-12-13

    The study of the formation of molecular hydrogen on low-temperature surfaces is of interest both because it enables the exploration of elementary steps in the heterogeneous catalysis of a simple molecule and because of its applications in astrochemistry. Here, we report results of experiments of molecular hydrogen formation on amorphous silicate surfaces using temperature-programmed desorption (TPD). In these experiments, beams of H and D atoms are irradiated on the surface of an amorphous silicate sample. The desorption rate of HD molecules is monitored using a mass spectrometer during a subsequent TPD run. The results are analyzed using rate equations, and the energy barriers of the processes leading to molecular hydrogen formation are obtained from the TPD data. We show that a model based on a single isotope provides the correct results for the activation energies for diffusion and desorption of H atoms. These results are used in order to evaluate the formation rate of H2 on dust grains under the actual conditions present in interstellar clouds. It is found that, under typical conditions in diffuse interstellar clouds, amorphous silicate grains are efficient catalysts of H2 formation when the grain temperatures are between 9 and 14 K. This temperature window is within the typical range of grain temperatures in diffuse clouds. It is thus concluded that amorphous silicates are good candidates to be efficient catalysts of H2 formation in diffuse clouds. PMID:17988107

  4. Temperature programmed desorption studies of water interactions with Apollo lunar samples 12001 and 72501

    NASA Astrophysics Data System (ADS)

    Poston, Michael J.; Grieves, Gregory A.; Aleksandrov, Alexandr B.; Hibbitts, Charles A.; Dyar, M. Darby; Orlando, Thomas M.

    2015-07-01

    The desorption activation energies for water molecules chemisorbed on Apollo lunar samples 72501 (highlands soil) and 12001 (mare soil) were determined by temperature programmed desorption experiments in ultra-high vacuum. A significant difference in both the energies and abundance of chemisorption sites was observed, with 72501 retaining up to 40 times more water (by mass) and with much stronger adsorption interactions, possibly approaching 1.5 eV. The dramatic difference between the samples may be due to differences in mineralogy and surface exposure age. The distribution function of water desorption activation energies for sample 72501 was used as an initial condition to simulate water persistence through a temperature profile matching the lunar day.

  5. Temperature-programmed desorption studies of the interactions of OD and CO with Pt(111)

    NASA Astrophysics Data System (ADS)

    Weibel, Michael A.; Backstrand, Kyle M.; Curtiss, Thomas J.

    2000-01-01

    Temperature-programmed desorption (TPD) measurements were made to probe the interactions of hydroxyl radicals (OD) with Pt(111). A pure, intense molecular beam of OD was prepared by filtering the effluent from a supersonic corona discharge D2O/He source through an electrostatic hexapole. The hexapole selectively transmitted only OD radicals in the |J?M>=|{3}/{2} {3}/{2} {3}/{2}> rotational state and eliminated any D2O, oxygen or hydrogen atoms, or other contaminants from the beam. Experiments were carried out by dosing the surface with OD at a surface temperature of TS=275 K. Oxide states formed were characterized by desorption temperatures of TS=700, 735, and 790 K. The 735 K feature is believed to correspond to a near-surface oxide (PtOx) as seen previously in O3/Pt(111) studies. CO titration experiments revealed three CO2 desorption features: dominant features at TS=340 K and TS=440 K, the latter being perhaps due to oxidation via the PtOx. Another set of experiments were carried out by dosing OD at a surface temperature of TS=150 K. Major D2O desorption features were observed at TS=210 K corresponding to the decomposition of an OD-intermediate layer and at TS=170 K corresponding to molecular water desorption. The O2 TPD spectra showed the same three features observed at the higher dosing temperature, however, in substantially different ratios. CO oxidation experiments also revealed new behavior. Five CO2 desorption features were detected: the dominant features near TS?300 K and at TS?440 K, a smaller feature at TS=650 K, and two minor features at TS?185 and 230 K. Others have seen the latter two features previously in O2/CO Pt(111) studies.

  6. CF3I on a silicon surface: Adsorption, temperature-programmed desorption, and electron-stimulated desorption

    NASA Astrophysics Data System (ADS)

    Sanabia, Jason E.; Moore, John H.; Tossell, John A.

    2002-06-01

    CF3I adsorption on a silicon surface and the effect of low-energy electron bombardment of a CF3I-covered silicon surface are relevant to plasma etching. Dissociative chemisorption of CF3I on Si(100) surface is observed at 370 K. Uptake measurements corroborated by work-function change measurements and temperature-programmed desorption (TPD) gives a sticking probability of at least 0.34plus-or-minus0.05. Molecular orbital calculations yield an adsorption energy greater than 3 eV for dissociative chemisorption of CF3X (X=F, Cl, Br, and I) on Si(100) (modeled by Si9H12) with X transferred to a silicon atom. We conclude that the variation in the sticking probability across the CF3X family is a consequence of the activation energy barrier for C-X bond cleavage. In TPD, SiF4 desorbs at 370 and 840 K, SiF3 radical at 770 K, and atomic iodine at 790 K. The parent CF3I does not desorb. Electron-stimulated desorption (ESD) yields F+, F- and a trace of I+. The threshold for the appearance of F+ is 20 eV and for F- is 29 eV. Dissociative ionization and dipolar dissociation are possible mechanisms for ESD of F+. Dipolar dissociation and harpooning are possible mechanisms for ESD of F-. There is evidence that iodine on the surface quenches the electronically excited states that lead to desorption of F-.

  7. Analyte separation utilizing temperature programmed desorption of a preconcentrator mesh

    DOEpatents

    Linker, Kevin L. (Albuquerque, NM); Bouchier, Frank A. (Albuquerque, NM); Theisen, Lisa (Albuquerque, NM); Arakaki, Lester H. (Edgewood, NM)

    2007-11-27

    A method and system for controllably releasing contaminants from a contaminated porous metallic mesh by thermally desorbing and releasing a selected subset of contaminants from a contaminated mesh by rapidly raising the mesh to a pre-determined temperature step or plateau that has been chosen beforehand to preferentially desorb a particular chemical specie of interest, but not others. By providing a sufficiently long delay or dwell period in-between heating pulses, and by selecting the optimum plateau temperatures, then different contaminant species can be controllably released in well-defined batches at different times to a chemical detector in gaseous communication with the mesh. For some detectors, such as an Ion Mobility Spectrometer (IMS), separating different species in time before they enter the IMS allows the detector to have an enhanced selectivity.

  8. Monte Carlo simulations of temperature-programmed and isothermal desorption from single-crystal surfaces

    SciTech Connect

    Lombardo, S.J. . Dept. of Chemical Engineering Lawrence Berkeley Lab., CA )

    1990-08-01

    The kinetics of temperature-programmed and isothermal desorption have been simulated with a Monte Carlo model. Included in the model are the elementary steps of adsorption, surface diffusion, and desorption. Interactions between adsorbates and the metal as well as interactions between the adsorbates are taken into account with the Bond-Order-Conservation-Morse-Potential method. The shape, number, and location of the TPD peaks predicted by the simulations is shown to be sensitive to the binding energy, coverage, and coordination of the adsorbates. In addition, the occurrence of lateral interactions between adsorbates is seen to strongly effect the distribution of adsorbates is seen to strongly effect the distribution of adsorbates on the surface. Temperature-programmed desorption spectra of a single type of adsorbate have been simulated for the following adsorbate-metal systems: CO on Pd(100); H{sub 2} on Mo(100); and H{sub 2} on Ni(111). The model predictions are in good agreement with experimental observation. TPD spectra have also been simulated for two species coadsorbed on a surface; the model predictions are in qualitative agreement with the experimental results for H{sub 2} coadsorbed with strongly bound atomic species on Mo(100) and Fe(100) surfaces as well as for CO and H{sub 2} coadsorbed on Ni(100) and Rh(100) surfaces. Finally, the desorption kinetics of CO from Pd(100) and Ni(100) in the presence of gas-phase CO have been examined. The effect of pressure is seen to lead to an increase in the rate of desorption relative to the rate observed in the absence of gas-phase CO. This increase arises as a consequence of higher coverages and therefore stronger lateral interactions between the adsorbed CO molecules.

  9. TEMPERATURE-PROGRAMMED DESORPTION: PRINCIPLES, INSTRUMENT DESIGN, AND DEMONSTRATION WITH NAALH4

    SciTech Connect

    Stowe, A; Ragaiy Zidan, R

    2006-11-07

    This article is a brief introduction to temperature-programmed desorption (TPD), an analytical technique devised to analyze, in this case, materials for their potential as hydrogen storage materials. The principles and requirements of TPD are explained and the different components of a generic TPD apparatus are described. The construction of a modified TPD instrument from commercially available components is reported together with the control and acquisition technique used to create a TPD spectrum. The chemical and instrumental parameters to be considered in a typical TPD experiment and the analytical utility of the technique are demonstrated by the dehydrogenation of titanium-doped NaAlH{sub 4} by means of thermally programmed desorption.

  10. Effects of surface coordination on the temperature-programmed desorption of oxalate from goethite

    SciTech Connect

    Boily, Jean F.; Szanyi, Janos; Felmy, Andrew R.

    2007-11-15

    The temperature-programmed desorption (TPD) of weakly-bound, hydrogen-bonded and metal-bonded oxalate complexes at the goethite surface was investigated in the 300-900 K range with concerted Fourier Transform Infrared (FTIR) measurements (TPD-FTIR). These reactions took place with the concomitant dehydroxylation reaction of goethite to hematite and decarbonation of bulk-occluded carbonate. The measurements revealed three important stages of desorption. Stage I (300-440 K) corresponds to the desorption of weakly-and/or un-bound oxalate molecules in the goethite powder with a thermal decomposition reaction pathway characteristic of oxalic acid. Stage II (440-520 K) corresponds to a thermally-driven dehydration of hydrogen-bonded surface complexes, leading to a partial desorption via oxalic acid thermal decomposition pathways and to a partial conversion to metal-bonded surface complexes. This latter mechanism led to the increase in FTIR bands characteristic of these complexes. Finally, Stage III (520-660 K) corresponds to the thermal decomposition of the metal-bonded oxalate complex, proceeding through a 2 electron reduction pathway.

  11. CO adsorption on Ce-Pt(111) studied with LEED, XPS, and temperature programmed desorption

    SciTech Connect

    Vermang, B.; Juel, M.; Raaen, S.

    2006-01-15

    CO adsorption on Ce-Pt(111) has been studied by temperature programmed desorption (TPD), low energy electron diffraction (LEED) and x-ray photoelectron spectroscopy (XPS). Thin layers (1 to 3 ML) of Ce on Pt(111) form upon annealing to 1000 K a surface alloy which most likely is Pt terminated. The CO overlayer structure on Ce-Pt(111) at saturation coverage is argued to be an intermediate between (2x2) and c(4x2) superstructures. This intermediate structure exhibits a c(4x2) LEED pattern in which some of the spots appear together as ordered triangles. The thermal desorption spectra for the Ce-Pt(111) surface alloy are shifted down by a temperature of about 120 K compared to the CO desorption of pure Pt(111), most likely due to a change in the d-band due to hybridization between Ce and Pt states, which results in a weakening of the resonant interaction between CO 5{sigma} and Pt 5d states.

  12. Characterization of early-stage coal oxidation by temperature-programmed desorption

    SciTech Connect

    Wei-Yin Chen; Guang Shi; Shaolong Wan

    2008-11-15

    To obtain representative temperature-programmed desorption (TPD) profiles of young oxidized chars up to 1650{degree}C with minimal reactor wall interferences, the chemistry and physics of four ceramic materials has been critically reviewed. A two-staged experimental apparatus is then uniquely designed to produce chars in an Al{sub 2}O{sub 3} flow reactor with 1-21% O{sub 2} followed by in situ TPD with a SiC tube. Comparison of TPD profiles of oxidized chars with those from pyrolyzed chars and ashes suggests early-stage char oxidation is profoundly influenced by oxygen from three sources: organic oxygen, mineral matters, and gas phase O{sub 2}. Young chars oxidized at 1000{degree}C with less than 0.3 s residence time shows CO desorption peaks during TPD at three distinct temperatures: 730, 1280, and 1560{degree}C. The peaks at 730{degree}C are mainly caused by incomplete devolatilization. The peaks at 1280{degree}C mainly represent desorption of stable surface oxides and incomplete devolatilization. Increasing the gas phase oxidants notably increases the amount of stable surface oxides. The broad peaks between 1400 and 1650{degree}C are attributed to the reactions of oxidants decomposed from minerals and carbon in the char or SiC tube. Gas-phase oxygen shifts these reactions to lower temperatures. Detailed oxygen balance based on the CO and CO{sub 2} yields and elemental compositions of both pyrolysis and oxidized chars reveals that oxygen uptakes are very high, +0.056 mg O per mg of carbon, in chars derived from bituminous coal, whereas lignite chars show negative oxygen uptake, -0.020 mg O per mg of carbon, in char. Indeed, lignite char seems to possess little amount of stable surface oxides other than those contributed by the minerals. The extensive emissions of CO from lignite chars during TPD seem to suggest that either O{sub 2} or minerals promotes the oxygen transfer on char surface and subsequent carbon oxidation. 85 refs., 5 figs., 4 tabs.

  13. Interactions of N-alcohols with self-assembled monolayer surfaces on nickel(111) studied by temperature-programmed desorption

    NASA Astrophysics Data System (ADS)

    Vogt, Andrew Dale

    1999-12-01

    The interactions of molecules with self-assembled monolayer (SAM) surfaces formed on nickel (111) as studied by temperature-programmed desorption (TPD) are discussed. First, the adsorption of 11-mercaptoundecanoic acid (HS(CH 2)10COOH), 11-mercaptoundecanol (HS(CH2) 11OH) and octadecyl mercaptan (HS(CH2)17CH 3) was characterized by X-ray photoelectron spectroscopy (XPS) and angle-dependent XPS (ADXPS). These long-chain functionalized n-alkanethiols adsorbed onto a clean nickel (111) single crystal via their sulfur atom and the alkyl chain and the carboxyl-, hydroxyl- and methyl-terminal groups were disposed away from the nickel surface. The basic concepts of XPS, AMPS and TPD are discussed. Second, TPD showed that the interactions of low-molecular-weight straight-chain alcohols (n- CxH2x+1 OH for x = 1 through 6) with the carboxyl-, hydroxyl- and methyl-terminated SAM surfaces exhibited an alcohol-coverage-dependent effect on the alcohol's desorption energy based on their respective sets of TPD spectra at different alcohol coverages and based on the desorption spectra's subsequent analysis for desorption energy. The threshold TPD method (TTPD) was used to determine the desorption energy as a function of coverage for all alcohol-substrate pairs. For these adsorbate-substrate systems the desorption energies (TTPD) were the lowest (10--25 kJ mol-1) for the lowest relative alcohol coverages and increased to a desorption energy of 40--60 kJ mol-1 that was invariant with relative coverage after reaching a monolayer. The constant desorption energy (TTPD) at high relative coverages suggests there might be a completely formed hydrogen bonding network between adsorbates on the surfaces at alcohol coverages near a monolayer. The Redhead method, the "complete analysis" and the TTPD method are discussed and compared.

  14. Processes for desorption from LiAlO sub 2 treated with H sub 2 as studied by temperature programmed desorption

    SciTech Connect

    Fischer, A.K.

    1990-01-01

    The energetics and kinetics of the evolution of H{sub 2}O and H{sub 2} from LiAlO{sub 2} are being studied by the temperature programmed desorption technique. The concentrations of H{sub 2}, H{sub 2}O, N{sub 2}, and O{sub 2} in a helium stream during a temperature ramp are measured simultaneously with a mass spectrometer. Blank experiments with an empty sample tube showed that square wave spikes of H{sub 2} introduced into the helium gas stream were severely distorted by reaction with the tube walls. The tube could be stabilized, however, by sufficiently prolonged heat treatment with H{sub 2} so that H{sub 2} peaks would not be distorted up to approximately 923 K(650{degree}C). The amount of H{sub 2}adsorption/desorption is small compared to the amount of H{sub 2}O adsorption/desorption. After prolonged treatment with helium containing 990 ppm H{sub 2} at 400{degree}C, H{sub 2}O evolution into the He-H{sub 2} stream was observed during 473 to 1023 K (200 to 750{degree}C) ramps at rates of 2 or 5.6 K/min. The different peak shapes reflecting this process were deconvoluted to show that they are composites of only 2 or 3 reproducible processes. The activation energies and pre-exponential terms was evaluated. The different behavior originates in the differences among different surface sites for adsorption. The interpretation of higher temperature peaks (above 873 K (650{degree}C)) must still consider the possibility of contributions from interactions with steel walls. It was found that H{sub 2} enhances evolution of N{sub 2} from the steel. 1 tab., 6 figs., 11 refs.

  15. Temperature programed desorption of C{sub 2}H{sub 4} from pure and graphite-covered Pt(111)

    SciTech Connect

    Vermang, B.; Juel, M.; Raaen, S.

    2007-11-15

    Ethylene adsorption on Pt(111) at 95 K was studied by temperature programed desorption (TPD), low energy electron diffraction (LEED), and x-ray photoelectron spectroscopy. Ethylene desorbs reversibly at 112 K and irreversibly at 255 and 280 K. It is generally accepted that annealing of ethylene adsorbed on Pt(111) to 300 K results in a dehydrogenation to ethylidyne through an ethylidene intermediate. This was observed by a hydrogen desorption peak at 300 K. Also, hydrogenation of the adsorbed ethylene was observed by a small ethane desorption peak at 300 K. Upon heating to 700 K, the ethylidyne species will further dehydrogenate to carbidic carbon species with hydrogen desorption peaks at 460 and 640 K. If the carbidic species is heated to higher temperatures (up to 1000 K), it will further dehydrogenate and form graphitic islands which will accumulate by Ostwald ripening in larger islands at the step edges of the surface. After annealing the sample to 1000 K, a statistically distributed 8x8 superstructure of these graphite islands is achieved, as interpreted from A pattern in the LEED data. The TPD results indicate that ethylene adsorption on Pt(111) results in the formation of graphitic islands upon heating to 1000 K, contrary to previous conjectures of formation of a full graphite monolayer.

  16. Interaction of D2 with H2O amorphous ice studied by temperature-programed desorption experiments

    NASA Astrophysics Data System (ADS)

    Amiaud, L.; Fillion, J. H.; Baouche, S.; Dulieu, F.; Momeni, A.; Lemaire, J. L.

    2006-03-01

    The gas-surface interaction of molecular hydrogen D2 with a thin film of porous amorphous solid water (ASW) grown at 10K by slow vapor deposition has been studied by temperature-programed-desorption (TPD) experiments. Molecular hydrogen diffuses rapidly into the porous network of the ice. The D2 desorption occurring between 10 and 30K is considered here as a good probe of the effective surface of ASW interacting with the gas. The desorption kinetics have been systematically measured at various coverages. A careful analysis based on the Arrhenius plot method has provided the D2 binding energies as a function of the coverage. Asymmetric and broad distributions of binding energies were found, with a maximum population peaking at low energy. We propose a model for the desorption kinetics that assumes a complete thermal equilibrium of the molecules with the ice film. The sample is characterized by a distribution of adsorption sites that are filled according to a Fermi-Dirac statistic law. The TPD curves can be simulated and fitted to provide the parameters describing the distribution of the molecules as a function of their binding energy. This approach contributes to a correct description of the interaction of molecular hydrogen with the surface of possibly porous grain mantles in the interstellar medium.

  17. Quantitative detection of trace explosive vapors by programmed temperature desorption gas chromatography-electron capture detector.

    PubMed

    Field, Christopher R; Lubrano, Adam; Woytowitz, Morgan; Giordano, Braden C; Rose-Pehrsson, Susan L

    2014-01-01

    The direct liquid deposition of solution standards onto sorbent-filled thermal desorption tubes is used for the quantitative analysis of trace explosive vapor samples. The direct liquid deposition method yields a higher fidelity between the analysis of vapor samples and the analysis of solution standards than using separate injection methods for vapors and solutions, i.e., samples collected on vapor collection tubes and standards prepared in solution vials. Additionally, the method can account for instrumentation losses, which makes it ideal for minimizing variability and quantitative trace chemical detection. Gas chromatography with an electron capture detector is an instrumentation configuration sensitive to nitro-energetics, such as TNT and RDX, due to their relatively high electron affinity. However, vapor quantitation of these compounds is difficult without viable vapor standards. Thus, we eliminate the requirement for vapor standards by combining the sensitivity of the instrumentation with a direct liquid deposition protocol to analyze trace explosive vapor samples. PMID:25145416

  18. Interaction between Water Molecules and Zinc Sulfide Nanoparticles Studied by Temperature-Programmed Desorption and Molecular Dynamics Simulations.

    SciTech Connect

    Zhang, Hengzon; Rustad, James R.; Banfield, Jillian F.

    2007-05-23

    The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. We have investigated the bonding of water molecules to the surfaces of ZnS nanoparticles (2-3 nm sphalerite) using temperature-programmed desorption (TPD). The activation energy for water desorption was derived as a function of the surface coverage through kinetic modeling of the experimental TPD curves. The binding energy of water equals the activation energy of desorption if it is assumed that the activation energy for adsorption is nearly zero. Molecular dynamics (MD) simulations of water adsorption on 3 and 5 nm sphalerite nanoparticles provided insights into the adsorption process and water binding at the atomic level. Water binds with the ZnS nanoparticle surface mainly via formation of Zn-O bonds. As compared with bulk ZnS crystals, ZnS nanoparticles can adsorb more water molecules per unit surface area due to the greatly increased curvature, which increases the distance between adjacent adsorbed molecules. Results from both TPD and MD show that the water binding energy increases with decreasing the water surface coverage. We attribute the increase in binding energy with decreasing surface water coverage to the increasing degree of surface under-coordination as removal of water molecules proceeds. MD also suggests that the water binding energy increases with decreasing particle size due to the further distance and hence lower interaction between adsorbed water molecules on highly curved smaller particle surfaces. Results also show that the binding energy, and thus the strength of interaction of water, is highest in isolated nanoparticles, lower in nanoparticle aggregates, and lowest in bulk crystals. Given that water binding is driven by surface energy reduction, we attribute the decreased binding energy for aggregated as compared to isolated particles to the decrease in surface energy that occurs as the result of inter-particle interactions.

  19. Dosimeter-Type NOx Sensing Properties of KMnO4 and Its Electrical Conductivity during Temperature Programmed Desorption

    PubMed Central

    Gro?, Andrea; Kremling, Michael; Marr, Isabella; Kubinski, David J.; Visser, Jacobus H.; Tuller, Harry L.; Moos, Ralf

    2013-01-01

    An impedimetric NOx dosimeter based on the NOx sorption material KMnO4 is proposed. In addition to its application as a low level NOx dosimeter, KMnO4 shows potential as a precious metal free lean NOx trap material (LNT) for NOx storage catalysts (NSC) enabling electrical in-situ diagnostics. With this dosimeter, low levels of NO and NO2 exposure can be detected electrically as instantaneous values at 380 °C by progressive NOx accumulation in the KMnO4 based sensitive layer. The linear NOx sensing characteristics are recovered periodically by heating to 650 °C or switching to rich atmospheres. Further insight into the NOx sorption-dependent conductivity of the KMnO4-based material is obtained by the novel eTPD method that combines electrical characterization with classical temperature programmed desorption (TPD). The NOx loading amount increases proportionally to the NOx exposure time at sorption temperature. The cumulated NOx exposure, as well as the corresponding NOx loading state, can be detected linearly by electrical means in two modes: (1) time-continuously during the sorption interval including NOx concentration information from the signal derivative or (2) during the short-term thermal NOx release. PMID:23549366

  20. UV-Raman spectroscopy, X-ray photoelectron spectroscopy, and temperature programmed desorption studies of model and bulk heterogeneous catalysts

    SciTech Connect

    Tewell, Craig R.

    2002-08-19

    X-ray photoelectron spectroscopy (XPS) and Temperature Programmed Desorption (TPD) have been used to investigate the surface structure of model heterogeneous catalysts in ultra-high vacuum (UHV). UV-Raman spectroscopy has been used to probe the structure of bulk model catalysts in ambient and reaction conditions. The structural information obtained through UV-Raman spectroscopy has been correlated with both the UHV surface analysis and reaction results. The present day propylene and ethylene polymerization catalysts (Ziegler-Natta catalysts) are prepared by deposition of TiCl{sub 4} and a Al(Et){sub 3} co-catalyst on a microporous Mg-ethoxide support that is prepared from MgCl{sub 2} and ethanol. A model thin film catalyst is prepared by depositing metallic Mg on a Au foil in a UHV chamber in a background of TiCl{sub 4} in the gas phase. XPS results indicate that the Mg is completely oxidized to MgCl{sub 2} by TiCl{sub 4} resulting in a thin film of MgCl{sub 2}/TiCl{sub x}, where x = 2, 3, and 4. To prepare an active catalyst, the thin film of MgCl{sub 2}/TiCl{sub x} on Au foil is enclosed in a high pressure cell contained within the UHV chamber and exposed to {approx}1 Torr of Al(Et){sub 3}.

  1. Temperature-programmed desorption of hydrogen from platinum particles on {gamma}-Al{sub 2}O{sub 3}: Evidence of platinum-catalyzed dehydroxylation of {gamma}-Al{sub 2}O{sub 3}

    SciTech Connect

    Alexeev, O.; Kim, D.W.; Gates, B.C.; Graham, G.W.; Shelef, M.

    1999-07-01

    Samples of Pt on {gamma}-Al{sub 2}O{sub 3} were prepared by reduction in H{sub 2} at 400 C of [PtCl{sub 2}(PhCN){sub 2}], adsorbed intact from n-pentane solution onto {gamma}-Al{sub 2}O{sub 3} powder that had been partially dehydroxylated under vacuum at 400 C. The Pt dispersion was determined to be about 0.58 by standard methods, namely, chemisorption of hydrogen, of oxygen, and of CO, titration of chemisorbed oxygen with hydrogen, and extended X-ray absorption fine structure (EXAFS) spectroscopy. The supported Pt particles were resistant to sintering in the presence of O{sub 2} at temperatures up to 400 C, as shown by chemisorption and EXAFS data, but the latter indicated that a combination of O{sub 2} and H{sub 2} treatments at 200--400 C led to changes in particle morphology. The samples were investigated by temperature-programmed desorption (TPD) of preadsorbed hydrogen; a TPD peak centered at 120 C represents hydrogen adsorbed on Pt and confirms the value of 0.58 for the dispersion. TPD of preadsorbed H{sub 2} gave evidence of a second desorption peak, at 580 C, which was always accompanied by desorption of water at the same temperature; its presence was found to depend chiefly on the sample reduction temperature and evacuation time (it was absent when there was no Pt on the {gamma}-Al{sub 2}O{sub 3}). The desorption of H{sub 2} or D{sub 2} that had been adsorbed on Pt/{gamma}-Al{sub 2}O{sub 3} reduced with D{sub 2} or H{sub 2}, respectively, shows that hydrogen species desorbed at about 580 C originate from water (hydroxyl) species as a result of Pt-catalyzed decomposition.

  2. Temperature-programmed decomposition desorption of mercury species over activated carbon sorbents for mercury removal from coal-derived fuel gas

    SciTech Connect

    M. Azhar Uddin; Masaki Ozaki; Eiji Sasaoka; Shengji Wu

    2009-09-15

    The mercury (Hg{sup 0}) removal process for coal-derived fuel gas in the integrated gasification combined cycle (IGCC) process will be one of the important issues for the development of a clean and highly efficient coal power generation system. Recently, iron-based sorbents, such as iron oxide (Fe{sub 2}O{sub 3}), supported iron oxides on TiO{sub 2}, and iron sulfides, were proposed as active mercury sorbents. The H{sub 2}S is one of the main impurity compounds in coal-derived fuel gas; therefore, H{sub 2}S injection is not necessary in this system. HCl is also another impurity in coal-derived fuel gas. In this study, the contribution of HCl to the mercury removal from coal-derived fuel gas by a commercial activated carbon (AC) was studied using a temperature-programmed decomposition desorption (TPDD) technique. The TPDD technique was applied to understand the decomposition characteristics of the mercury species on the sorbents. The Hg{sup 0}-removal experiments were carried out in a laboratory-scale fixed-bed reactor at 80-300{sup o}C using simulated fuel gas and a commercial AC, and the TPDD experiments were carried out in a U-tube reactor in an inert carrier gas (He or N{sub 2}) after mercury removal. The following results were obtained from this study: (1) HCl contributed to the mercury removal from the coal-derived fuel gas by the AC. (2) The mercury species captured on the AC in the HCl{sup -} and H{sub 2}S-presence system was more stable than that of the H{sub 2}S-presence system. (3) The stability of the mercury surface species formed on the AC in the H{sub 2}S-absence and HCl-presence system was similar to that of mercury chloride (HgClx) species. 25 refs., 12 figs., 1 tab.

  3. A study of the reactions of ethanol on CeO{sub 2} and Pd/CeO{sub 2} by steady state reactions, temperature programmed desorption, and in situ FT-IR

    SciTech Connect

    Yee, A.; Morrison, S.J.; Idriss, H.

    1999-09-10

    The reaction of ethanol on unreduced and H{sub 2}-reduced CeO{sub 2} and 1 wt% Pd/CeO{sub 2} has been investigated by steady state reactions, temperature programmed desorption (TPD), and in situ Fourier transform infrared (FT-IR) spectroscopy. Steady state reactions have shown a zero reaction order dependency for diatomic oxygen at and above 20%, while the addition of Pd to CeO{sub 2} decreases the apparent activation energy of the reaction from 75 kJ/mol on CeO{sub 2} alone to 40 kJ/mol (Pd/CeO{sub 2}). TPD experiments following ethanol adsorption on both CeO{sub 2} and Pd/CeO{sub 2} have shown desorption profiles corresponding to unreacted ethanol and various reaction and decomposition products (acetaldehyde, acetone, CO, CO{sub 2}, and methane). Ethanol conversion to reaction products was increased by the addition of Pd, from 15 to 30% on CeO{sub 2} and H{sub 2}-reduced CeO{sub 2}, to 71 and 63% on Pd/CeO{sub 2} and H{sub 2}-reduced Pd/CeO{sub 2}, respectively.

  4. Development of ultralow energy (1–10 eV) ion scattering spectrometry coupled with reflection absorption infrared spectroscopy and temperature programmed desorption for the investigation of molecular solids

    SciTech Connect

    Bag, Soumabha; Bhuin, Radha Gobinda; Methikkalam, Rabin Rajan J.; Pradeep, T.; Kephart, Luke; Walker, Jeff; Kuchta, Kevin; Martin, Dave; Wei, Jian

    2014-01-15

    Extremely surface specific information, limited to the first atomic layer of molecular surfaces, is essential to understand the chemistry and physics in upper atmospheric and interstellar environments. Ultra low energy ion scattering in the 1–10 eV window with mass selected ions can reveal extremely surface specific information which when coupled with reflection absorption infrared (RAIR) and temperature programmed desorption (TPD) spectroscopies, diverse chemical and physical properties of molecular species at surfaces could be derived. These experiments have to be performed at cryogenic temperatures and at ultra high vacuum conditions without the possibility of collisions of neutrals and background deposition in view of the poor ion intensities and consequent need for longer exposure times. Here we combine a highly optimized low energy ion optical system designed for such studies coupled with RAIR and TPD and its initial characterization. Despite the ultralow collision energies and long ion path lengths employed, the ion intensities at 1 eV have been significant to collect a scattered ion spectrum of 1000 counts/s for mass selected CH{sub 2}{sup +}.

  5. The influence of the potassium promoter on the kinetics and thermodynamics of CO adsorption on a bulk iron catalyst applied in Fischer-Tropsch synthesis: a quantitative adsorption calorimetry, temperature-programmed desorption, and surface hydrogenation study.

    PubMed

    Graf, Barbara; Muhler, Martin

    2011-03-01

    The adsorption of carbon monoxide on an either unpromoted or potassium-promoted bulk iron catalyst was investigated at 303 K and 613 K by means of pulse chemisorption, adsorption calorimetry, temperature-programmed desorption and temperature-programmed surface reaction in hydrogen. CO was found to adsorb mainly molecularly in the absence of H(2) at 303 K, whereas the presence of H(2) induced CO dissociation at higher temperatures leading to the formation of CH(4) and H(2)O. The hydrogenation of atomic oxygen chemisorbed on metallic iron was found to occur faster than the hydrogenation of atomically adsorbed carbon. At 613 K CO adsorption occurred only dissociatively followed by recombinative CO(2) formation according to C(ads) + 2O(ads)? CO(2(g)). The presence of the potassium promoter on the catalyst surface led to an increasing strength of the Fe-C bond both at 303 K and 613 K: the initial differential heat of molecular CO adsorption on the pure iron catalyst at 303 K amounted to 102 kJ mol(-1), whereas it increased to 110 kJ mol(-1) on the potassium-promoted sample, and the initial differential heat of dissociative CO adsorption on the unpromoted iron catalyst at 613 K amounted to 165 kJ mol(-1), which increased to 225 kJ mol(-1) in the presence of potassium. The calorimetric CO adsorption experiments also reveal a change of the energetic distribution of the CO adsorption sites present on the catalyst surface induced by the potassium promoter, which was found to block a fraction of the CO adsorption sites. PMID:21170422

  6. Acidity and basicity of hydrotalcite derived mixed Mg-Al oxides studied by test reaction of MBOH conversion and temperature programmed desorption of NH{sub 3} and CO{sub 2}

    SciTech Connect

    Kustrowski, Piotr; Chmielarz, Lucjan; Bozek, Ewa; Sawalha, Murad; Roessner, Frank

    2004-02-02

    Mg-Al hydrotalcites intercalated with five different interlayer anions--CO{sub 3}{sup 2-}, SO{sub 4}{sup 2-}, Cl{sup -}, HPO{sub 4}{sup 2-} or terephthalate--were synthesized by either the coprecipitation or ion-exchange method. The structure of the as-synthesized samples and the presence of intended anions in the interlayer gallery of hydrotalcites were determined by X-ray diffraction and FTIR spectroscopy. On calcination at 600 deg. C the materials were transformed into mixed metal oxides. The kind of the counterbalancing anions present in the parent hydrotalcite influences strongly textural parameters of the obtained Mg-Al oxides. Both temperature-programmed desorption of NH{sub 3} and CO{sub 2}, and test reaction of 2-methyl-3-butyn-2-ol (MBOH) conversion were used to determine the acidity and basicity of the samples. The hydrotalcite derived mixed Mg-Al oxides showed the presence of Broensted and Lewis acid and base sites. However, the strong basic character of the solids caused that acetone and acetylene were observed as the major products of MBOH conversion.

  7. Growth of an Ultrathin Zirconia Film on Pt3Zr Examined by High-Resolution X-ray Photoelectron Spectroscopy, Temperature-Programmed Desorption, Scanning Tunneling Microscopy, and Density Functional Theory

    PubMed Central

    2014-01-01

    Ultrathin (?3 Å) zirconium oxide films were grown on a single-crystalline Pt3Zr(0001) substrate by oxidation in 1 × 10–7 mbar of O2 at 673 K, followed by annealing at temperatures up to 1023 K. The ZrO2 films are intended to serve as model supports for reforming catalysts and fuel cell anodes. The atomic and electronic structure and composition of the ZrO2 films were determined by synchrotron-based high-resolution X-ray photoelectron spectroscopy (HR-XPS) (including depth profiling), low-energy electron diffraction (LEED), scanning tunneling microscopy (STM), and density functional theory (DFT) calculations. Oxidation mainly leads to ultrathin trilayer (O–Zr–O) films on the alloy; only a small area fraction (10–15%) is covered by ZrO2 clusters (thickness ?0.5–10 nm). The amount of clusters decreases with increasing annealing temperature. Temperature-programmed desorption (TPD) of CO was utilized to confirm complete coverage of the Pt3Zr substrate by ZrO2, that is, formation of a closed oxide overlayer. Experiments and DFT calculations show that the core level shifts of Zr in the trilayer ZrO2 films are between those of metallic Zr and thick (bulklike) ZrO2. Therefore, the assignment of such XPS core level shifts to substoichiometric ZrOx is not necessarily correct, because these XPS signals may equally well arise from ultrathin ZrO2 films or metal/ZrO2 interfaces. Furthermore, our results indicate that the common approach of calculating core level shifts by DFT including final-state effects should be taken with care for thicker insulating films, clusters, and bulk insulators. PMID:25688293

  8. Probing the interaction of hydrogen chloride with low-temperature water ice surfaces using thermal and electron-stimulated desorption.

    PubMed

    Olanrewaju, Babajide O; Herring-Captain, Janine; Grieves, Gregory A; Aleksandrov, Alex; Orlando, Thomas M

    2011-06-16

    The interaction and autoionization of HCl on low-temperature (80-140 K) water ice surfaces has been studied using low-energy (5-250 eV) electron-stimulated desorption (ESD) and temperature programmed desorption (TPD). There is a reduction of H(+) and H(2)(+) and a concomitant increase in H(+)(H(2)O)(n=1-7) ESD yields due to the presence of submonolayer quantities of HCl. These changes are consistent with HCl induced reduction of dangling bonds required for H(+) and H(2)(+) ESD and increased hole localization necessary for H(+)(H(2)O)(n=1-7) ESD. For low coverages, this can involve nonactivated autoionization of HCl, even at temperatures as low as 80 K; well below those typical of polar stratospheric cloud particles. The uptake and autoionization of HCl is supported by TPD studies which show that for HCl doses ?0.5 ± 0.2 ML (ML = monolayer) at 110 K, desorption of HCl begins at 115 K and peaks at 180 K. The former is associated with adsorption of a small amount of molecular HCl and is strongly dependent on the annealing history of the ice. The latter peak at 180 K is commensurate with desorption of HCl via recombinative desorption of solvated separated ion pairs. The activation energy for second-order desorption of HCl initially in the ionized state is 43 ± 2 kJ/mol. This is close to the zero-order activation energy for ice desorption. PMID:21548613

  9. Threshold character of temperatures on deuterium desorption from the Mg-Zr composite

    NASA Astrophysics Data System (ADS)

    Neklyudov, I. M.; Morozov, O. M.; Kulish, V. G.; Zhurba, V. I.; Lomino, N. S.; Ovcharenko, V. D.; Kuprin, O. S.

    2011-06-01

    The plasma evaporation-sputtering method was used to manufacture composite materials of the Mg-Zr system. The ion-implanted deuterium desorption temperature variations depending on the component concentrations were studied. It has been established that the introduction of a Zr impurity to magnesium leads to the significant decrease of the deuterium desorption temperature (~400K) as compared to the release from Mg samples. A step-like form of the curve of the deuterium desorption temperature testifies to presence of two various structural conditions at composite Mg-Zr depending on the relation of components. The hydrogen desorption data obtained using Mg-Zr composites can be used for the further invrstigations into the hydrogen storage materials containing chemical elements with a low solubility in the alloy components.

  10. Catalysis Letters Vol. 76, No. 12, 2001 35 Second order isothermal desorption kinetics

    E-print Network

    Asscher, Micha

    Catalysis Letters Vol. 76, No. 1­2, 2001 35 Second order isothermal desorption kinetics Y. Lilach desorption; second order kinetics; recombinative desorption 1. Introduction Temperature-programmed desorption species, and for obtaining their desorption kinetics. Comprehensive reviews on the subject exist

  11. Reversibility, Dopant Desorption, and Tunneling in the Temperature-Dependent Conductivity of Type-Separated, Conductive Carbon Nanotube Networks

    SciTech Connect

    Barnes, T. M.; Blackburn, J. L.; van de Lagemaat, J.; Coutts, T. J.; Heben, M. J.

    2008-09-01

    We present a comprehensive study of the effects of doping and temperature on the conductivity of single-walled carbon nanotube (SWNT) networks. We investigated nearly type-pure networks as well as networks comprising precisely tuned mixtures of metallic and semiconducting tubes. Networks were studied in their as-produced state and after treatments with nitric acid, thionyl chloride, and hydrazine to explore the effects of both intentional and adventitious doping. For intentionally and adventitiously doped networks, the sheet resistance (R{sub s}) exhibits an irreversible increase with temperature above {approx}350 K. Dopant desorption is shown to be the main cause of this increase and the observed hysteresis in the temperature-dependent resistivity. Both thermal and chemical dedoping produced networks free of hysteresis. Temperature-programmed desorption data showed that dopants are most strongly bound to the metallic tubes and that networks consisting of metallic tubes exhibit the best thermal stability. At temperatures below the dopant desorption threshold, conductivity in the networks is primarily controlled by thermally assisted tunneling through barriers at the intertube or interbundle junctions.

  12. Desorption of cadmium from goethite: effects of pH, temperature and aging.

    PubMed

    Mustafa, Ghulam; Kookana, Rai S; Singh, Balwant

    2006-07-01

    Cadmium is perhaps environmentally the most significant heavy metal in soils. Bioavailability, remobilization and fate of Cd entering in soils are usually controlled by adsorption-desorption reactions on Fe oxides. Adsorption of Cd on soil colloids including Fe oxides has been extensively studied but Cd desorption from such soil minerals has received relatively little attention. Some factors that affect Cd adsorption on goethite include pH, temperature, aging, type of index cations, Cd concentrations, solution ionic strength and presence of organic and inorganic ions. This research was conducted to study the influence of pH, temperature and aging on Cd desorption from goethite. Batch experiments were conducted to evaluate Cd desorption from goethite with 0.01 M Ca(NO3)2. In these experiments Cd desorption was observed at 20, 40 and 70 degrees C in combination with aging for 16 h, 30, 90 and 180 d from goethite that adsorbed Cd from solutions containing initial Cd concentrations of 20, 80 and 180 microM. Following the adsorption step Cd desorption was measured by 15 successive desorptions after aging at various temperatures. At the lowest amount of initially adsorbed Cd and equilibrium pH 5.5, cumulative Cd desorption decreased from 71% to 17% with aging from 16 h to 180 d and the corresponding decrease at equilibrium pH 6.0 was from 32% to 3%. There was a substantial decrease in Cd desorption with increasing equilibration temperature. For example, in goethite with the lowest amount of initial adsorption at equilibrium pH 5.5, cumulative Cd desorption decreased from 71% to 31% with increase in temperature from 20 to 70 degrees C, even after 16 h. Dissolution of Cd adsorbed goethite in 1M HCl, after 15 successive desorptions with 0.01 M Ca(NO3)2, indicated that approximately 60% of the Cd was surface adsorbed. Overall, dissolution kinetics data revealed that 23% to 88% Cd could not be desorbed, which could possibly be diffused into the cracks and got entrapped in goethite crystals. At elevated temperature increased equilibrium solution pH favoured the formation of CaCO3 and CdCO3 which reasonably decreased Cd desorption. Cadmium speciation showed the formation of calcite and otavite minerals at 40 and 70 degrees C due to increase in pH (>9.5) during aging. X-ray diffraction analysis (XRD) of these samples also revealed the formation of CaCO3 at elevated temperatures with aging. While mechanisms such as Cd diffusion and/or entrapment into fissures and cracks in goethite structure with increase in temperature and aging are possible. PMID:16330070

  13. EFFECTS OF TEMPERATURE ON TRICHLOROETHYLENE DESORPTION FROM SILICA GEL AND NATURAL SEDIMENTS. 2. KINETICS. (R822626)

    EPA Science Inventory

    Isothermal desorption rates were measured at 15, 30, and 60 src="/ncer/pubs/images/deg.gif">C for trichloroethylene (TCE) on a silica gel,
    an aquifer sediment, a soil, a sand fraction, and a clay and silt fraction, all
    at 100% relative humidity. Temperature-st...

  14. CHARACTERISTICS OF MERCURY DESORPTION FROM SORBENTS AT ELEVATED TEMPERATURES. (R822721C697)

    EPA Science Inventory

    This study investigated the dynamic desorption characteristics of mercury during the thermal treatment of mercury-loaded sorbents at elevated temperatures under fixed-bed operations. Experiments were carried out in a 25.4 mm ID quartz bed enclosed in an electric furnace. ...

  15. SUPERFUND TREATABILITY CLEARINGHOUSE: LOW TEMPERATURE TREATMENT OF CERCLA SOILS AND DEBRIS USING THE IT LABORATORY SCALE THERMAL DESORPTION FURNACES

    EPA Science Inventory

    This study report on laboratory experiments on low temperature treatment of soils using thermal desorption. The purpose of the study was to determine if thermal desorption could remove volatile and semi-volatile contaminants from a synthetically prepared soil spiked with pre...

  16. Variable Temperature Infrared Spectroscopy Investigations of Benzoic Acid Desorption from Sodium and Calcium Montmorillonite Clays.

    PubMed

    Nickels, Tara M; Ingram, Audrey L; Maraoulaite, Dalia K; White, Robert L

    2015-12-01

    Processes involved in thermal desorption of benzoic acid from sodium and calcium montmorillonite clays are investigated by using variable temperature diffuse reflection Fourier transform infrared spectroscopy (DRIFTS). By monitoring the temperature dependence of infrared absorbance bands while heating samples, subtle changes in molecular vibrations are detected and employed to characterize specific benzoic acid adsorption sites. Abrupt changes in benzoic acid adsorption site properties occur for both clay samples at about 125 °C. Difference spectra absorbance band frequency variations indicate that adsorbed benzoic acid interacts with interlayer cations through water bridges and that these interactions can be disrupted by the presence of organic anions, in particular, benzoate. PMID:26647147

  17. Isothermal-desorption-rate measurements in the vicinity of the Curie temperature for H2 chemisorbed on nickel films

    NASA Technical Reports Server (NTRS)

    Shanabarger, M. R.

    1979-01-01

    Measurements of the isothermal desorption rate of H2 chemisorbed onto polycrystalline nickel films made for temperatures spanning the Curie temperature of the nickel film are presented. Desorption kinetics were followed by measuring the decay of the change in resistance of the nickel film brought about by hydrogen chemisorption after gas-phase H2 had been rapidly evacuated. The desorption rate is found to undergo an anomalous decrease in the vicinity of the Curie temperature, accompanied by an increase in the desorption activation energy and the equilibrium constant for the chemisorbed hydrogen. The results are interpreted in terms of anomalous variations in rate constants for the formation of the precursor molecular adsorbed state and the chemisorbed atomic state due to the phase transition in the nickel. The changes in rate constants are also considered to be in qualitative agreement with theoretical predictions based on a spin coupling between the adatom and the magnetic substrate.

  18. Finite-Temperature Hydrogen Adsorption/Desorption Thermodynamics Driven by Soft Vibration Modes

    SciTech Connect

    Woo, Sung-Jae; Lee, Eui-Sup; Yoon, Mina; Yong-Hyun, Kim

    2013-01-01

    It is widely accepted that room-temperature hydrogen storage on nanostructured or porous materials requires enhanced dihydrogen adsorption. In this work we reveal that room-temperature hydrogen storage is possible not only by the enhanced adsorption, but also by making use of the vibrational free energy from soft vibration modes. These modes exist for example in the case of metallo-porphyrin-incorporated graphenes (M-PIGs) with out-of-plane ( buckled ) metal centers. There, the in-plane potential surfaces are flat because of multiple-orbital-coupling between hydrogen molecules and the buckled-metal centers. This study investigates the finite-temperature adsorption/desorption thermodynamics of hydrogen molecules adsorbed on M-PIGs by employing first-principles total energy and vibrational spectrum calculations. Our results suggest that the current design strategy for room-temperature hydrogen storage materials should be modified by explicitly taking finite-temperature vibration thermodynamics into account.

  19. Threshold character of temperatures on deuterium thermal desorption in Mg-V composite grown atom-by-atom

    NASA Astrophysics Data System (ADS)

    Neklyudov, I. M.; Morozov, O. M.; Kulish, V. G.; Zhurba, V. I.; Galitskiy, A. G.; Lomino, N. S.; Kuprin, A. S.; Ovcharenko, V. D.; Reshetnyak, E. N.

    2012-08-01

    The plasma evaporation-sputtering method was applied to make composite materials of the Mg-V system. The ion-implanted deuterium desorption temperature variations as a function of the component concentration were studied. It has been established that, by introducing vanadium into magnesium, the deuterium desorption temperature can be appreciably decreased (to 300-330 K) in comparison with the case of deuterium desorption from magnesium (~800 K). A step-like form of the curve of deuterium desorption temperature evidences on the presence of two different structure states of the Mg-V system depending on the ratio of components. The deuterium temperature decrease can be caused by filamentary inclusions formed, in the process of composite making and annealing, by the insoluble component (vanadium) atoms providing the deuterium diffusion from the sample at a lower temperature (channels for deuterium diffusion through the surface barrier). A necessary high diffusion mobility of deuterium is provided by the amorphous state of Mg83+xVx samples. The deuterium desorption data obtained on the example of Mg-V and Mg-Zr composites provide support for further research into hydrogen storage materials containing low-soluble chemical elements in the alloy components.

  20. Kinetics of desorption of KCL from polyvinyl alcohol-borate hydrogel in aqueous-alcoholic solvents at different temperatures

    NASA Astrophysics Data System (ADS)

    Saeed, Rehana; Abdeen, Zain Ul

    2015-11-01

    Desorption kinetics of adsorbed KCl from Polyvinyl alcohol borate hydrogel was studied by conductivity method in aqueous system and aqueous binary solvent system using 50% aqueous-methanol, aqueous- ethanol and aqueous-propanol at different temperature ranging from 293 to 313 K. Desorption process follows pseudo first order and intra particle diffusion kinetics was analyzed on the basis of linear regression coefficient R 2 and chi square test ?2 values. The process of desorption of KCl from hydrogel was favorable in aqueous system, the study reveals the fact that the polarity of solvent influenced the kinetics of desorption, on decrement of polarity of solvent rate, rate constant and intra particle rate constant decreases. Based on intra particle kinetic equation fitting it was concluded that desorption was initiated by removal of ions from surface of hydrogel later on ions interacted inside the cross linked unit was also become free. Temperature enhances the rate, rate constant and intra particle rate constant. Thermodynamic parameters attributed towards the fact that the process of desorption of KCl from hydrogel is non-spontaneous in nature.

  1. Effect of temperature on the desorption and decomposition of mustard from activated carbon

    SciTech Connect

    Karwacki, C.J.; Buchanan, J.H.; Mahle, J.J.; Buettner, L.C.; Wagner, G.W.

    1999-12-07

    Experimental data are reported for the desorption of bis-2-chloroethyl sulfide, (a sulfur mustard or HD) and its decomposition products from activated coconut shell carbon (CSC). The results show that under equilibrium conditions changes in the HD partial pressure are affected primarily by its loading and temperature of the adsorbent. The partial pressure of adsorbed HD is found to increase by about a decade for each 25 C increase in temperature for CSC containing 0.01--0.1 g/g HD. Adsorption equilibria of HD appear to be little affected by coadsorbed water. Although complicated by its decomposition, the distribution of adsorbed HD (of known amount) appears to occupy pores of similar energy whether dry or in the presence of adsorbed water. On dry CSC adsorbed HD appears stable, while in the presence of water its decomposition is marked by hydrolysis at low temperature and thermal decomposition at elevated temperatures. The principal volatile products desorbed are 1,4-thioxane, 2-chloroethyl vinyl sulfide and 1,4-dithiane, with the latter favoring elevated temperatures.

  2. Thermal desorption of ammonia from crystalline forsterite surfaces

    NASA Astrophysics Data System (ADS)

    Suhasaria, T.; Thrower, J. D.; Zacharias, H.

    2015-12-01

    The thermal desorption of ammonia (NH3) from single crystal forsterite (010) has been investigated using temperature-programmed desorption. The effect of defects on the desorption process has been probed by the use of a rough cut forsterite surface prepared from the cleaved forsterite sample. Several approaches have been used to extract the desorption energy and pre-exponential factor describing the desorption kinetics. In the sub-monolayer coverage regime, the NH3 desorption shows a broad distribution of desorption energies, indicating the presence of different adsorption sites, which results in an apparent coverage-dependent desorption energy. This distribution is sensitive to the surface roughness with the cut forsterite surface displaying a significantly broader distribution of desorption energies compared to the cleaved forsterite surface. The cut forsterite surface exhibits sites with desorption energies up to 62.5 kJ mol-1 in comparison to a desorption energy of up to 58.0 kJ mol-1 for the cleaved surface. Multilayer desorption is independent of the nature of the forsterite surface used, with a desorption energy of (25.8 ± 0.9) kJ mol-1. On astrophysically relevant heating time-scales, the presence of a coverage-dependent desorption energy distribution results in a lengthening of the NH3 desorption time-scale by 5.9 × 104 yr compared to that expected for a single desorption energy. In addition, the presence of a larger number of high-energy adsorption sites on the rougher cut forsterite surface leads to a further lengthening of ca. 7000 yr.

  3. Desorption Kinetics of Methanol, Ethanol, and Water from Graphene

    SciTech Connect

    Smith, R. Scott; Matthiesen, Jesper; Kay, Bruce D.

    2014-09-18

    The desorption kinetics of methanol, ethanol, and water from graphene covered Pt(111) are investigated. The temperature programmed desorption (TPD) spectra for both methanol and ethanol have well-resolved first, second, third, and multilayer layer desorption peaks. The alignment of the leading edges is consistent with zero-order desorption kinetics from all layers. In contrast, for water the first and second layers are not resolved. At low water coverages (< 1 ML) the initial desorption leading edges are aligned but then fall out of alignment at higher temperatures. For thicker water layers (10 to 100 ML), the desorption leading edges are in alignment throughout the desorption of the film. The coverage dependence of the desorption behavoir suggests that at low water coverages the non-alignment of the desorption leading edges is due to water dewetting from the graphene substrate. Kinetic simulations reveal that the experimental results are consistent with zero-order desorption. The simulations also show that fractional order desorption kinetics would be readily apparent in the experimental TPD spectra.

  4. Thermal desorption of ammonia from crystalline forsterite surfaces

    E-print Network

    Suhasaria, T; Zacharias, H

    2015-01-01

    The thermal desorption of ammonia (NH$_3$) from single crystal forsterite (010) has been investigated using temperature-programmed desorption. The effect of defects on the desorption process has been probed by the use of a rough cut forsterite surface prepared from the cleaved forsterite sample. Several approaches have been used to extract the desorption energy and pre-exponential factor describing the desorption kinetics. In the sub-monolayer coverage regime, the NH$_3$ desorption shows a broad distribution of desorption energies, indicating the presence of different adsorption sites, which results in an apparent coverage-dependent desorption energy. This distribution is sensitive to the surface roughness with the cut forsterite surface displaying a significantly broader distribution of desorption energies compared to the cleaved forsterite surface. The cut forsterite surface exhibits sites with desorption energies up to 62.5 kJ mol$^{-1} $ in comparison to a desorption energy of up to 58.0 kJ mol$^{-1} $ fo...

  5. EFFECTS OF TEMPERATURE ON TRICHLOROETHYLENE DESORPTION FROM SILICA GEL AND NATURAL SEDIMENTS. 1. ISOTHERMS. (R822626)

    EPA Science Inventory

    Aqueous phase isotherms were calculated from vapor phase desorption isotherms
    measured at 15, 30, and 60 C for
    trichloroethylene on a silica gel, an aquifer sediment, a soil, a sand fraction,
    and a clay and silt fraction, all at...

  6. Desorption kinetics from a surface derived from direct imaging of the adsorbate layer

    NASA Astrophysics Data System (ADS)

    Günther, S.; Mente?, T. O.; Niño, M. A.; Locatelli, A.; Böcklein, S.; Wintterlin, J.

    2014-05-01

    There are numerous indications that adsorbed particles on a surface do not desorb statistically, but that their spatial distribution is important. Evidence almost exclusively comes from temperature-programmed desorption, the standard method for measuring desorption rates. However, this method, as a kinetics experiment, cannot uniquely prove an atomic mechanism. Here we report a low-energy electron microscopy investigation in which a surface is microscopically imaged while simultaneously temperature-programmed desorption is recorded. The data show that during desorption of oxygen molecules from a silver single crystal surface, islands of oxygen atoms are present. By correlating the microscopy and the kinetics data, a model is derived that includes the shapes of the islands and assumes that the oxygen molecules desorb from the island edges. The model quantitatively reproduces the complex desorption kinetics, confirming that desorption is affected by islands and that the often used mean-field treatment is inappropriate.

  7. Low-Temperature Desorption of N2O from NO on Rutile TiO2(110)-1x1

    SciTech Connect

    Kim, Boseong; Li, Zhenjun; Kay, Bruce D.; Dohnalek, Zdenek; Kim, Yu Kwon

    2014-05-08

    We find that NO dosed on rutile TiO2(110)-1×1 at substrate temperatures as low as 50 K readily reacts to produce N2O which desorbs promptly from the surface leaving an oxygen adatom behind. The desorption rate of N2O reaches a maximum value after 1 – 2 sec at an NO flux of 1.2 ×1014 NO/cm2?sec and then decreases rapidly as the initially clean, reduced TiO2(110) surface with ~5% oxygen vacancies (VO’s) becomes covered with oxygen adatoms and unreacted NO. The maximum desorption rate is also found to increase as the substrate temperature is raised up to about 100 K. Interestingly, the N2O desorption during the low-temperature (LT) NO dose is strongly suppressed when molecular oxygen is predosed, whereas it persists on the surface with VO’s passivated by surface hydroxyls. Our results show that the surface charge, not the VO sites, plays a dominant role in the LT N2O desorption induced by a facile NO reduction at such low temperatures.

  8. CO and N$_2$ desorption energies from water ice

    E-print Network

    Fayolle, Edith C; Loomis, Ryan; Bergner, Jennifer; Graninger, Dawn M; Rajappan, Mahesh; Öberg, Karin I

    2015-01-01

    The relative desorption energies of CO and N$_2$ are key to interpretations of observed interstellar CO and N$_2$ abundance patterns, including the well-documented CO and N$_2$H$^+$ anti-correlations in disks, protostars and molecular cloud cores. Based on laboratory experiments on pure CO and N$_2$ ice desorption, the difference between CO and N$_2$ desorption energies is small; the N$_2$-to-CO desorption energy ratio is 0.93$\\pm$0.03. Interstellar ices are not pure, however, and in this study we explore the effect of water ice on the desorption energy ratio of the two molecules. We present temperature programmed desorption experiments of different coverages of $^{13}$CO and $^{15}$N$_2$ on porous and compact amorphous water ices and, for reference, of pure ices. In all experiments, $^{15}$N$_2$ desorption begins a few degrees before the onset of $^{13}$CO desorption. The $^{15}$N$_2$ and $^{13}$CO energy barriers are 770 and 866 K for the pure ices, 1034-1143 K and 1155-1298 K for different sub-monolayer co...

  9. Application of a diffusion-desorption rate equation model in astrochemistry.

    PubMed

    He, Jiao; Vidali, Gianfranco

    2014-01-01

    Desorption and diffusion are two of the most important processes on interstellar grain surfaces; knowledge of them is critical for the understanding of chemical reaction networks in the interstellar medium (ISM). However, a lack of information on desorption and diffusion is preventing further progress in astrochemistry. To obtain desorption energy distributions of molecules from the surfaces of ISM-related materials, one usually carries out adsorption-desorption temperature programmed desorption (TPD) experiments, and uses rate equation models to extract desorption energy distributions. However, the often-used rate equation models fail to adequately take into account diffusion processes and thus are only valid in situations where adsorption is strongly localized. As adsorption-desorption experiments show that adsorbate molecules tend to occupy deep adsorption sites before occupying shallow ones, a diffusion process must be involved. Thus, it is necessary to include a diffusion term in the model that takes into account the morphology of the surface as obtained from analyses of TPD experiments. We take the experimental data of CO desorption from the MgO(100) surface and of D2 desorption from amorphous solid water ice as examples to show how a diffusion-desorption rate equation model explains the redistribution of adsorbate molecules among different adsorption sites. We extract distributions of desorption energies and diffusion energy barriers from TPD profiles. These examples are contrasted with a system where adsorption is strongly localized--HD from an amorphous silicate surface. Suggestions for experimental investigations are provided. PMID:25302396

  10. Desorption of Hg(II) and Sb(V) on extracellular polymeric substances: effects of pH, EDTA, Ca(II) and temperature shocks.

    PubMed

    Zhang, Daoyong; Lee, Duu-Jong; Pan, Xiangliang

    2013-01-01

    Extracellular polymeric substances (EPS) existed ubiquitously in biological systems affect the mobility and availability of heavy metals in the environments. The adsorption-desorption behaviors of Hg(II) and Sb(V) on EPS were investigated. The sorption rates follow Sb(V) > Hg(II), and the desorption rates follow reverse order. Applications of ethylene diamine tetraacetic acid (EDTA), Ca(II) and pH shocks affect desorption rates and desorbed quantities of Hg(II) from EPS-Hg complex. Temperature shock minimally affects the desorption rate of Hg(II). Conversely, the EPS-Sb complex is stable subjected to EDTA, Ca(II), temperature or pH shocks. The excitation-emission matrix (EEM) fluorescence spectroscopy and fast-Fourier (FT-IR) analysis showed that Hg(II) and Sb(V) principally interacted with polysaccharides and protein-like compounds in the EPS, respectively. The EPS-Hg complex presents a time bomb that may release high levels of Hg(II) in short time period under environmental shocks. PMID:23247408

  11. Waste/Rock Interactions Technology Program: the status of radionuclide sorption-desorption studies performed by the WRIT program

    SciTech Connect

    Serne, R.J.; Relyea, J.F.

    1982-04-01

    The most credible means for radionuclides disposed as solid wastes in deep-geologic repositories to reach the biosphere is through dissolution of the solid waste and subsequent radionuclide transport by circulating ground water. Thus safety assessment activities must consider the physicochemical interactions between radionculides present in ground water with package components, rocks and sediments since these processes can significantly delay or constrain the mass transport of radionuclides in comparison to ground-water movement. This paper focuses on interactions between dissolved radiouclides in ground water and rocks and sediments away from the near-field repository. The primary mechanism discussed is adsorption-desorption, which has been studied using two approaches. Empirical studies of adsorption-desorption rely on distribution coefficient measurements while mechanism studies strive to identify, differentiate and quantify the processes that control nuclide retardation.

  12. Oxygen sorption and desorption properties of selected lanthanum manganites and lanthanum ferrite manganites.

    PubMed

    Nielsen, Jimmi; Skou, Eivind M; Jacobsen, Torben

    2015-06-01

    Temperature-programmed desorption (TPD) with a carrier gas was used to study the oxygen sorption and desorption properties of oxidation catalysts and solid-oxide fuel cell (SOFC) cathode materials (La(0.85) Sr(0.15)0.95 MnO(3+?) (LSM) and La(0.60) Sr(0.40) Fe(0.80) Mn(0.20) O(3-?) (LSFM). The powders were characterized by X-ray diffractometry, atomic force microscopy (AFM), and BET surface adsorption. Sorbed oxygen could be distinguished from oxygen originating from stoichiometry changes. The results indicated that there is one main site for oxygen sorption/desorption. The amount of sorbed oxygen was monitored over time at different temperatures. Furthermore, through data analysis it was shown that the desorption peak associated with oxygen sorption is described well by second-order desorption kinetics. This indicates that oxygen molecules dissociate upon adsorption and that the rate-determining step for the desorption reaction is a recombination of monatomic oxygen. Typical problems with re-adsorption in this kind of TPD setup were revealed to be insignificant by using simulations. Finally, different key parameters of sorption and desorption were determined, such as desorption activation energies, density of sorption sites, and adsorption and desorption reaction order. PMID:25784205

  13. Probing Electron Transfer Dynamics at MgO Surfaces by Mg-Atom Desorption

    SciTech Connect

    Joly, Alan G.; Henyk, Matthias; Beck, Kenneth M.; Trevisanutto, P. E.; Sushko, Petr V.; Hess, Wayne P.; Shluger, Alexander L.

    2006-08-14

    Desorption of a weakly bound adsorbate from a porous solid was studied for the case of N2 on amorphous solid water (ASW). Porous ASW films of different thickness were grown on Pt(111) by ballistic deposition. N2 adsorption and desorption kinetics were monitored mass-spectrometrically. Temperature programmed desorption spectra show that with the increasing film thickness, the N2 desorption peak systematically shifts to higher temperatures. The results are explained and quantitatively reproduced by a simple model, which assumes that the N2 transport within the film is faster than the depletion rate to vacuum. The local coverage at the pore mouth determines the desorption rate. For thick ASW films (>1 ?m), the assumption of the fast equilibration within the film is shown to be no longer valid due to diffusion limitations. The mechanisms of the adsorbate transport are discussed.

  14. Water desorption from nanostructured graphite surfaces.

    PubMed

    Clemens, Anna; Hellberg, Lars; Grönbeck, Henrik; Chakarov, Dinko

    2013-12-21

    Water interaction with nanostructured graphite surfaces is strongly dependent on the surface morphology. In this work, temperature programmed desorption (TPD) in combination with quadrupole mass spectrometry (QMS) has been used to study water ice desorption from a nanostructured graphite surface. This model surface was fabricated by hole-mask colloidal lithography (HCL) along with oxygen plasma etching and consists of a rough carbon surface covered by well defined structures of highly oriented pyrolytic graphite (HOPG). The results are compared with those from pristine HOPG and a rough (oxygen plasma etched) carbon surface without graphite nanostructures. The samples were characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The TPD experiments were conducted for H2O coverages obtained after exposures between 0.2 and 55 langmuir (L) and reveal a complex desorption behaviour. The spectra from the nanostructured surface show additional, coverage dependent desorption peaks. They are assigned to water bound in two-dimensional (2D) and three-dimensional (3D) hydrogen-bonded networks, defect-bound water, and to water intercalated into the graphite structures. The intercalation is more pronounced for the nanostructured graphite surface in comparison to HOPG surfaces because of a higher concentration of intersheet openings. From the TPD spectra, the desorption energies for water bound in 2D and 3D (multilayer) networks were determined to be 0.32 ± 0.06 and 0.41 ± 0.03 eV per molecule, respectively. An upper limit for the desorption energy for defect-bound water was estimated to be 1 eV per molecule. PMID:24018989

  15. Ultra high vacuum high precision low background setup with temperature control for thermal desorption mass spectroscopy (TDA-MS) of hydrogen in metals.

    PubMed

    Merzlikin, Sergiy V; Borodin, S; Vogel, D; Rohwerder, M

    2015-05-01

    In this work, a newly developed UHV-based high precision low background setup for hydrogen thermal desorption analysis (TDA) of metallic samples is presented. Using an infrared heating with a low thermal capacity enables a precise control of the temperature and rapid cool down of the measurement chamber. This novel TDA-set up is superior in sensitivity to almost every standard hydrogen analyzer available commercially due to the special design of the measurement chamber, resulting in a very low hydrogen background. No effects of background drift characteristic as for carrier gas based TDA instruments were observed, ensuring linearity and reproducibility of the analysis. This setup will prove to be valuable for detailed investigations of hydrogen trapping sites in steels and other alloys. With a determined limit of detection of 5.9×10(-3)µg g(-1) hydrogen the developed instrument is able to determine extremely low hydrogen amounts even at very low hydrogen desorption rates. This work clearly demonstrates the great potential of ultra-high vacuum thermal desorption mass spectroscopy instrumentation. PMID:25702992

  16. Waste Isolation Safety Assessment Program. Task 4. Third Contractor Information Meeting. [Adsorption-desorption on geological media

    SciTech Connect

    Not Available

    1980-06-01

    The study subject of this meeting was the adsorption and desorption of radionuclides on geologic media under repository conditions. This volume contans eight papers. Separate abstracts were prepared for all eight papers. (DLC)

  17. Hydrogen absorption and desorption kinetics in fullerite C60 single crystals. Low-temperature micromechanical and structural characteristics of the interstitial solid solution C60(H2)x

    NASA Astrophysics Data System (ADS)

    Fomenko, L. S.; Lubenets, S. V.; Natsik, V. D.; Stetsenko, Yu. E.; Yagotintsev, K. A.; Strzhemechny, M. A.; Prokhvatilov, A. I.; Osipyan, Yu. A.; Izotov, A. N.; Sidorov, N. S.

    2008-01-01

    The microhardness HV and lattice parameter a of C60 single crystals are measured at room temperature as functions of the hydrogen saturation time t for several values of the saturation temperature (250, 300, and 350°C) at a fixed hydrogen pressure p =30atm. According to the measurements of HV and a, the kinetics of hydrogen absorption is described by a simple exponential law with a single, temperature-dependent characteristic time. In highly saturated samples the microhardness is 4 times greater than for the initial C60 crystal, while the lattice parameter is 0.2% larger. The temperature dependence of the microhardness HV and lattice parameter a of C60(H2)x crystals is investigated in the temperature interval 77-300K. The introduction of hydrogen lowers the temperature of the fcc-sc phase transition, and the transition becomes strongly broadened in temperature. The dependence of the microhardness of the saturated sample on the hold time in air at room temperature is described by the sum of two exponentials with different characteristic times. Kinetics of this kind is presumably due to two processes: desorption of hydrogen from the sample, which causes a decrease of the microhardness, and a simultaneous penetration of gaseous impurities into the sample from the surrounding air, which is accompanied by hardening. The influence of the H2 molecules on the characteristic of the intermolecular interaction in fullerite C60 is discussed and the intercalation-induced processes of dislocation slip and microfracture.

  18. Hydrogen desorption from hydrogen fluoride and remote hydrogen plasma cleaned silicon carbide (0001) surfaces

    SciTech Connect

    King, Sean W. Tanaka, Satoru; Davis, Robert F.; Nemanich, Robert J.

    2015-09-15

    Due to the extreme chemical inertness of silicon carbide (SiC), in-situ thermal desorption is commonly utilized as a means to remove surface contamination prior to initiating critical semiconductor processing steps such as epitaxy, gate dielectric formation, and contact metallization. In-situ thermal desorption and silicon sublimation has also recently become a popular method for epitaxial growth of mono and few layer graphene. Accordingly, numerous thermal desorption experiments of various processed silicon carbide surfaces have been performed, but have ignored the presence of hydrogen, which is ubiquitous throughout semiconductor processing. In this regard, the authors have performed a combined temperature programmed desorption (TPD) and x-ray photoelectron spectroscopy (XPS) investigation of the desorption of molecular hydrogen (H{sub 2}) and various other oxygen, carbon, and fluorine related species from ex-situ aqueous hydrogen fluoride (HF) and in-situ remote hydrogen plasma cleaned 6H-SiC (0001) surfaces. Using XPS, the authors observed that temperatures on the order of 700–1000?°C are needed to fully desorb C-H, C-O and Si-O species from these surfaces. However, using TPD, the authors observed H{sub 2} desorption at both lower temperatures (200–550?°C) as well as higher temperatures (>700?°C). The low temperature H{sub 2} desorption was deconvoluted into multiple desorption states that, based on similarities to H{sub 2} desorption from Si (111), were attributed to silicon mono, di, and trihydride surface species as well as hydrogen trapped by subsurface defects, steps, or dopants. The higher temperature H{sub 2} desorption was similarly attributed to H{sub 2} evolved from surface O-H groups at ?750?°C as well as the liberation of H{sub 2} during Si-O desorption at temperatures >800?°C. These results indicate that while ex-situ aqueous HF processed 6H-SiC (0001) surfaces annealed at <700?°C remain terminated by some surface C–O and Si–O bonding, they may still exhibit significant chemical reactivity due to the creation of surface dangling bonds resulting from H{sub 2} desorption from previously undetected silicon hydride and surface hydroxide species.

  19. Ultraviolet laser desorption of indole

    NASA Astrophysics Data System (ADS)

    Elam, Jeffrey W.; Levy, Donald H.

    1997-06-01

    Ultraviolet laser desorption from a thick, 120 K indole film was studied. Using a 2660 Å, 10 ns desorption laser at 75 mJ/cm2, 2.0 monolayers of indole are removed per shot. Indole0 is the only neutral species desorbed and it has an internal temperature Ti=210 K and a translational temperature Tt=3400 K. The velocity distribution is non-Boltzmann and the angular distribution is bimodal and forward peaked with major component proportional to cos7(?). No evidence of "jetlike" structure in the desorbed plume is found: Different regions of the plume are at the same internal temperature and both internally hot and cold molecules have identical angle velocity distributions. While existing collisional models cannot account for the details of these distributions, they suggest that 2-7 collisions per molecule occur following desorption producing minor vibrational cooling (<10%). Laser desorbed indole+ is observed at a concentration of ˜10-5 that of indole0 with an angle velocity distribution similar to that of indole0. We show that indole+ results from resonant two photon ionization of indole0 by the desorption laser and that desorption laser heating of the plume occurs at 2660 Å.

  20. Atomic oxygen diffusion on and desorption from amorphous silicate surfaces.

    PubMed

    He, Jiao; Jing, Dapeng; Vidali, Gianfranco

    2014-02-28

    Surface reactions involving atomic oxygen have attracted much attention in astrophysics and astrochemistry, but two of the most fundamental surface processes, desorption and diffusion, are not well understood. We studied diffusion and desorption of atomic oxygen on or from amorphous silicate surfaces under simulated interstellar conditions using a radio-frequency dissociated oxygen beam. Temperature programmed desorption (TPD) experiments were performed to study the formation of ozone from reaction of atomic and molecular oxygen deposited on the surface of a silicate. It is found that atomic oxygen begins to diffuse significantly between 40 K and 50 K. A rate equation model was used to study the surface kinetics involved in ozone formation experiments. The value of atomic oxygen desorption energy has been determined to be 152 ± 20 meV (1764 ± 232 K). The newly found atomic oxygen desorption energy, which is much higher than the well-accepted value, might explain the discrepancy in abundance of molecular oxygen in space between observations and chemical models. PMID:24434834

  1. Kinetic compensation effect in thermal desorption

    NASA Astrophysics Data System (ADS)

    Zuniga-Hansen, Nayeli; Silbert, Leonardo E.; Calbi, Mercedes

    The parameters which characterize the rates of many thermally activated processes are often extracted using the Arrhenius equation. A series of closely related thermally activated processes exhibit systematic variations in the energies of activation, Ea, and preexponential factor, ?, in response to a perturbation, which leads to the concept of `kinetic compensation', such that the different parameters in the Arrhenius equation balance each other out thereby leading to an implicitly assumed constant rate. However, the compensation effect has not been generally demonstrated and its origins are not completely understood. Using kinetic Monte Carlo simulations on a model interface, we explore how site-adsorbate and adsorbate-adsorbate interactions, and surface structural changes influence surface coverage and the kinetic parameters during a typical temperature programmed desorption process. We find that the concept of the compensation effect for interacting species breaks down and the time characterizing desorption increases with increasing interaction strength due to an increase in the effective activation energy. At the `molecular' level the changes are the result of enhanced site correlations with increasing adsorbate interaction strength suppressing the onset of desorption.

  2. Characterization of Biochar using Temperature Programmed Oxidation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biochar from the fast pyrolysis of biomass was characterized by Temperature Programmed Oxidation. This technique can be used to assess the oxidative reactivity of carbonaceous solids where higher temperature reactivity indicates greater structural order. The samples examined include soy and barley...

  3. The release of trapped gases from amorphous solid water films. II. ``Bottom-up'' induced desorption pathways

    NASA Astrophysics Data System (ADS)

    Alan May, R.; Scott Smith, R.; Kay, Bruce D.

    2013-03-01

    In this (Paper II) and the preceding companion paper (Paper I; R. May, R. Smith, and B. Kay, J. Chem. Phys. 138, 104501 (2013), 10.1063/1.4793311), we investigate the mechanisms for the release of trapped gases from underneath amorphous solid water (ASW) films. In Paper I, we focused on the low coverage regime where the release mechanism is controlled by crystallization-induced cracks formed in the ASW overlayer. In that regime, the results were largely independent of the particular gas underlayer. Here in Paper II, we focus on the high coverage regime where new desorption pathways become accessible prior to ASW crystallization. In contrast to the results for the low coverage regime (Paper I), the release mechanism is a function of the multilayer thickness and composition, displaying dramatically different behavior between Ar, Kr, Xe, CH4, N2, O2, and CO. Two primary desorption pathways are observed. The first occurs between 100 and 150 K and manifests itself as sharp, extremely narrow desorption peaks. Temperature programmed desorption is utilized to show that these abrupt desorption bursts are due to pressure induced structural failure of the ASW overlayer. The second pathway occurs at low temperature (typically <100 K) where broad desorption peaks are observed. Desorption through this pathway is attributed to diffusion through pores formed during ASW deposition. The extent of desorption and the line shape of the low temperature desorption peak are dependent on the substrate on which the gas underlayer is deposited. Angle dependent ballistic deposition of ASW is used to vary the porosity of the overlayer and strongly supports the hypothesis that the low temperature desorption pathway is due to porosity that is templated into the ASW overlayer by the underlayer during deposition.

  4. The Release of Trapped Gases from Amorphous Solid Water Films: II. “Bottom-Up” Induced Desorption Pathways

    SciTech Connect

    May, Robert A.; Smith, R. Scott; Kay, Bruce D.

    2013-03-14

    In this (Paper II) and the preceding companion paper (Paper I) we investigate the mechanisms for the release of trapped gases from underneath of amorphous solid water (ASW) films. In Paper I, we focused on the low coverage (pressure) regime where the release mechanism is controlled by crystallization-induced cracks formed in the ASW overlayer. In that regime the results were largely independent of the particular gas underlayer. Here in Paper II, we focus on the high coverage (pressure) regime where new desorption pathways become accessible prior to ASW crystallization. In contrast to the results for the low coverage regime (Paper I), the release mechanism is a function of the multilayer thickness and composition, displaying dramatically different behavior between Ar, Kr, Xe, CH4, N2, O2, and CO. Two primary desorption pathways are observed. The first occurs between 100 and 150 K and manifests itself as sharp, extremely narrow desorption peaks. Temperature programmed desorption is utilized to show that abrupt desorption bursts are due to pressure induced structural failure of the ASW overlyaer. The second pathway occurs at low temperature (typically <100 K) where broad desorption peaks are observed. Desorption through this pathway is attributed to diffusion through pores and connected pathways formed during ASW deposition. The extent of desorption and the lineshape of the low temperature desorption peak are dependent on the substrate on which the gas underlayer is deposited. Angle dependent ballistic deposition of the ASW is used vary the porosity of overlayer and confirm that the low temperature desorption pathway is due to porosity that is inherent in the ASW overlayer during deposition.

  5. Desorption of a two-state system: Laser probing of gallium atom spin-orbit states from silicon (100)

    NASA Astrophysics Data System (ADS)

    Carleton, Karen L.; Bourguignon, Bernard; Leone, Stephen R.

    The interactions of gallium atom spin-orbit states with silicon (100) surfaces are studied by temperature programmed desorption (TPD) using laser-induced fluorescence detection. State-resolved sticking coefficients are measured and are found to be unity for both spin-orbit states ( 2P{1}/{2}, 2P{3}/{2}, ?E = 2.5 kcal mol-1, 10.5 kJ mol-1) up to surface temperatures of 1000 K. A Redhead analysis of the state-specific TPD spectra yields essentially identical energies and pre-exponential factors for both spin-orbit states. A statistical branching ratio is observed between the 2P {1}/{2} and 2P {3}/{2} Ga states at the peak of the TPD curves. These results may be accounted for by a rapid interconversion between the two states during the desorption. Since the spin-orbit splitting in this case is small, a rapid interconversion may be anticipated; however, modeling the desorption kinetics yields important features for the desorption of a two-state system. The model shows that the Redhead analysis is not adequate to measure the desorption kinetic parameters of the individual states. The TPD spectra of the two states differ only very slightly because their shape is mainly controlled by the overall rate of desorption for the sum of the two channels. The population ratio between the states allows a direct comparison of the desorption energetics of the two channels. Errors of 5-10 kcal mol -1 can occur in a determination of the desorption energy of a hypothetical, slowly desorbing state if the presence of a rapid desorption channel is ignored. The model can be generalized to describe any multiple channel surface process, including multi-state desorption of the competition between desorption and diffusion into the bulk. These results are of interest in the epitaxial growth of GaAs on Si(100).

  6. ENGINEERING BULLETIN: THERMAL DESORPTION TREATMENT

    EPA Science Inventory

    Thermal desorption is an EX SITU means to physically separate volatile and some semivolatile contaminants from soil, sediments, sludge, and filter cakes by heating them at temperatures high enough to volatilize the organic contaminants. or wastes containing up to 10 percent organ...

  7. ENGINEERING BULLETIN: THERMAL DESORPTION TREATMENT.

    EPA Science Inventory

    Thermal desorption is an EX SITU means to physically separate volatile and some semivolatile contaminants from soil, sediments, sludge, and filter cakes by heating them at temperatures high enough to volatilize the organic contaminants. For wastes containing up to 10 percent orga...

  8. Dimensionality changes in the solid phase at room temperature: 2D ? 1D ? 3D evolution induced by ammonia sorption-desorption on zinc phosphates.

    PubMed

    Amghouz, Zakariae; Ramajo, Beatriz; Khainakov, Sergei A; da Silva, Iván; Castro, Germán R; García, José R; García-Granda, Santiago

    2014-06-28

    Two-dimensional zinc phosphate NH4Zn2(PO4)(HPO4) (), via ammonia vapor interaction at room temperature, transforms to a one-dimensional novel compound NH4Zn(NH3)PO4 (). By ammonia desorption (in air at room temperature) transforms to NH4ZnPO4 () with a well-known ABW-zeolitic topology. The crystal structure of was solved ab initio using synchrotron powder X-ray diffraction data (monoclinic, P21/a, a = 16.5227(2) Å, b = 6.21780(8) Å, c = 5.24317(6) Å, ? = 91.000(2)°, Z = 4). The structures of three compounds include extra-framework ammonium cations to the 4-fold coordinated zinc (ZnO4 tetrahedra for and , and ZnO3N tetrahedra for ) and phosphorus (PO4 tetrahedra) with bi-, mono- or three-dimensional linkages, respectively for , or . To our knowledge, the process described here constitutes the first example of dimensionality change in the solid phase promoted by a solid-gas interaction at room temperature in metal phosphates. PMID:24829098

  9. In?uence of temperature and atmosphere on polychlorinated dibenzo-p-dioxins and dibenzofurans desorption from waste incineration fly ash.

    PubMed

    Yang, Jie; Yan, Mi; Li, Xiaodong; Chen, Tong; Lu, Shengyong; Yan, Jianhua; Buekens, Alfons

    2015-01-01

    A fly ash sample was heated for 1?h to 200°C, 300°C and 400°C, in order to study the influence of temperature and gas phase composition on the removal of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) from fly ash derived from municipal solid waste incineration. The tests were conducted by treating a fixed bed of fly ash both in an inert (nitrogen) and in a reducing (nitrogen+hydrogen) gas flow in a horizontal bench-scale quartz tubular reactor, heated by a surrounding tubular furnace. The results indicate that most of the PCDD/Fs in fly ash were removed by thermal treatment, especially when the temperature was higher than 300°C: the PCDD/Fs' removal efficiency attained up to 96%. PCDD/Fs dechlorination and destruction were much more important than PCDD/Fs desorption, under either inert or reducing atmosphere. At 200°C and 300°C, the experiments with reducing atmosphere yielded slightly better results than those in nitrogen; yet, this tendency was reversed at 400°C. In general, both treatment modes can fully meet the requirements regarding the concentration of dioxins in fly ash to be sent for landfill in China. PMID:25241904

  10. Effects of Varied pH, Growth Rate and Temperature using Controlled fermentation and Batch culture on Matrix Assisted Laser Desorption/Ionization Whole Cell Protein Fingerprints.

    SciTech Connect

    Wunschel, David S.; Hill, Eric A.; Mclean, Jeffrey S.; Jarman, Kristin H.; Gorby, Yuri A.; Valentine, Nancy B.; Wahl, Karen L.

    2005-09-01

    Rapid identification of microorganisms using matrix assisted laser desorption/ionization (MALDI) is a rapidly growing area of research due to the minimal sample preparation, speed of analysis and broad applicability of the technique. This approach relies on protein markers to identify microorganisms. Therefore, variations in culture conditions that affect protein expression may limit the ability of MALDI-MS to correctly identify an organism. We have expanded our efforts to investigate the effects of culture conditions on MALDI-MS protein signatures to examine the effects of pH, growth rate and temperature. Continuous cultures maintained in bioreactors were used to maintain specific growth rates and pH for E. coli HB 101. Despite measurable morphological differences between growth conditions, the MALDI-MS data associated each culture with the appropriate library entry (E. coli HB 101 generated using batch culture on a LB media), independent of pH or growth rate. The lone exception was for a biofilm sample collected from one of the reactors which had no appreciable degree of association with the correct library entry. Within the data set for planktonic organisms, variations in growth rate created the largest variation between fingerprints. The effect of varying growth temperature on Y. enterocolitica was also examined. While the anticipated effects on phenotype were observed, the MALDI-MS technique provided the proper identification.

  11. Program predicts reservoir temperature and geothermal gradient

    SciTech Connect

    Kutasov, I.M.

    1992-06-01

    This paper reports that a Fortran computer program has been developed to determine static formation temperatures (SFT) and geothermal gradient (GG). A minimum of input data (only two shut-in temperature logs) is required to obtain the values of SFT and GG. Modeling of primary oil production and designing enhanced oil recovery (EOR) projects requires knowing the undisturbed (static) reservoir temperature. Furthermore, the bottom hole circulating temperature (BHCT) is an important factor affecting a cement's thickening time, rheological properties, compressive strength, development, and set time. To estimate the values of BHCT, the geothermal gradient should be determined with accuracy. Recently we obtained an approximate analytical solution which describes the shut-in temperature behavior.

  12. Interfacial chemistry of a perfluoropolyether lubricant studied by X-ray photoelectron spectroscopy and temperature desorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Herrera-Fierro, Pilar; Jones, William R., Jr.; Pepper, Stephen V.

    1993-01-01

    The interfacial chemistry of Fomblin Z25, a commercial perfluoropolyether used as lubricant for space applications was studied with different metallic surfaces: 440C steel, gold, and aluminum. Thin layers of Fomblin Z25 were evaporated onto the oxide-free substrates, and the interfacial chemistry was studied using XPS and TDS. The reactions were induced by heating the substrate and by rubbing the substrate with a steel ball. Gold was found to be completely unreactive towards Fomblin at any temperature. Reaction at room temperature was observed only in the case of the aluminum substrate, the most reactive towards Fomblin Z25 of the substrates studied. It was necessary to heat the 440C steel substrate to 190 C to induce decomposition of the fluid. The degradation of the fluid was indicated by the formation of a debris layer at the interface. This debris layer, composed of inorganic and organic reaction products, when completely formed, passivated the surface from further attack to the Fromblin on top. The tribologically induced reactions on 440C steel formed a debris layer of similar chemical characteristics to the thermally induced layer. In all cases, the degradation reaction resulted in preferential consumption of the difluoroformyl carbon (-OCF2O-).

  13. Monte Carlo evaluation of thermal desorption rates

    SciTech Connect

    Adams, J.E.; Doll, J.D.

    1981-05-01

    The recently reported method for computing thermal desorption rates via a Monte Carlo evaluation of the appropriate transition state theory expression (J. E. Adams and J. D. Doll, J. Chem. Phys. 74, 1467 (1980)) is extended, by the use of importance sampling, so as to generate the complete temperature dependence in a single calculation. We also describe a straightforward means of calculating the activation energy for the desorption process within the same Monte Carlo framework. The result obtained in this way represents, for the case of a simple desorptive event, an upper bound to the true value.

  14. Segregation of O2 and CO on the surface of dust grains determines the desorption energy of O2

    NASA Astrophysics Data System (ADS)

    Noble, J. A.; Diana, S.; Dulieu, F.

    2015-12-01

    Selective depletion towards pre-stellar cores is still not understood. The exchange between the solid and gas phases is central to this mystery. The aim of this paper is to show that the thermal desorption of O2 and CO from a submonolayer mixture is greatly affected by the composition of the initial surface population. We have performed thermally programmed desorption (TPD) experiments on various submonolayer mixtures of O2 and CO. Pure O2 and CO exhibit almost the same desorption behaviour, but their desorption differs strongly when mixed. Pure O2 is slightly less volatile than CO, while in mixtures, O2 desorbs earlier than CO. We analyse our data using a desorption law linking competition for binding sites with desorption, based on the assumption that the binding energy distribution of both molecules is the same. We apply Fermi-Dirac statistics in order to calculate the adsorption site population distribution, and derive the desorbing fluxes. Despite its simplicity, the model reproduces the observed desorption profiles, indicating that competition for adsorption sites is the reason for lower temperature O2 desorption. CO molecules push-out or `dislodge' O2 molecules from the most favourable binding sites, ultimately forcing their early desorption. It is crucial to consider the surface coverage of dust grains in any description of desorption. Competition for access to binding sites results in some important discrepancies between similar kinds of molecules, such as CO and O2. This is an important phenomenon to be investigated in order to develop a better understanding of the apparently selective depletion observed in dark molecular clouds.

  15. Desorption and sublimation kinetics for fluorinated aluminum nitride surfaces

    SciTech Connect

    King, Sean W. Davis, Robert F.; Nemanich, Robert J.

    2014-09-01

    The adsorption and desorption of halogen and other gaseous species from surfaces is a key fundamental process for both wet chemical and dry plasma etch and clean processes utilized in nanoelectronic fabrication processes. Therefore, to increase the fundamental understanding of these processes with regard to aluminum nitride (AlN) surfaces, temperature programmed desorption (TPD) and x-ray photoelectron spectroscopy (XPS) have been utilized to investigate the desorption kinetics of water (H{sub 2}O), fluorine (F{sub 2}), hydrogen (H{sub 2}), hydrogen fluoride (HF), and other related species from aluminum nitride thin film surfaces treated with an aqueous solution of buffered hydrogen fluoride (BHF) diluted in methanol (CH{sub 3}OH). Pre-TPD XPS measurements of the CH{sub 3}OH:BHF treated AlN surfaces showed the presence of a variety of Al-F, N-F, Al-O, Al-OH, C-H, and C-O surfaces species in addition to Al-N bonding from the AlN thin film. The primary species observed desorbing from these same surfaces during TPD measurements included H{sub 2}, H{sub 2}O, HF, F{sub 2}, and CH{sub 3}OH with some evidence for nitrogen (N{sub 2}) and ammonia (NH{sub 3}) desorption as well. For H{sub 2}O, two desorption peaks with second order kinetics were observed at 195 and 460?°C with activation energies (E{sub d}) of 51?±?3 and 87?±?5?kJ/mol, respectively. Desorption of HF similarly exhibited second order kinetics with a peak temperature of 475?°C and E{sub d} of 110?±?5?kJ/mol. The TPD spectra for F{sub 2} exhibited two peaks at 485 and 585?°C with second order kinetics and E{sub d} of 62?±?3 and 270?±?10?kJ/mol, respectively. These values are in excellent agreement with previous E{sub d} measurements for desorption of H{sub 2}O from SiO{sub 2} and AlF{sub x} from AlN surfaces, respectively. The F{sub 2} desorption is therefore attributed to fragmentation of AlF{sub x} species in the mass spectrometer ionizer. H{sub 2} desorption exhibited an additional high temperature peak at 910?°C with E{sub d}?=?370?±?10?kJ/mol that is consistent with both the dehydrogenation of surface AlOH species and H{sub 2} assisted sublimation of AlN. Similarly, N{sub 2} exhibited a similar higher temperature desorption peak with E{sub d}?=?535?±?40?kJ/mol that is consistent with the activation energy for direct sublimation of AlN.

  16. Effect of Rh particle size on CO desorption from Rh/alumina model catalysts

    NASA Astrophysics Data System (ADS)

    Belton, David N.; Schmieg, Steven J.

    1988-08-01

    The adsorption of CO on small Rh particles on oxidized Al(100) was studied using temperature programmed desorption (TPD) and Auger electron spectroscopy (AES). The desorption data for CO were obtained for two {Rh}/{Al 2O 3} samples as well as for Rh(111). The supported Rh model catalysts were prepared from thermal decomposition of [Rh(CO 2Cl] 2 on an oxidized Al(100) substrate. By varying the substrate temperature and the amount of deposited Rh, samples were prepared with average Rh particles sizes of 20 and 70 Å. TPD data from the 70 Å Rh particles were similar to that from Rh(111), with a major peak at 500 K and a shoulder at 400 K for a saturation CO exposure. TPD from the small particles was very different from Rh(111) and the larger particles, showing a single broad peak centered at 415 K. The data show a particle size effect for the desorption on CO from supported Rh. Redhead analysis of the data for first-order desorption gave an activation energy of 30 kcal/mol for all of the samples at low CO coverages. A more detailed analysis using peak widths and peak temperatures was also performed. These calculations gave a very low activation energy, 19.8 kcal/mol, and preexponential, 1×10 8{cm2}/{s} for the small particles. These very low values were interpreted to mean that multiple desorption states, mobile precursors, or coverage dependent activation energies were affecting the data from the small particles. Calculations of first-order desorption rates showed that desorption states different than those on Rh(111) are the dominant species on the small particles at high CO coverages.

  17. Nuclear-Spin Temperature of Water Molecules Thermally Desorbed from Ice: A Laboratory Study

    NASA Astrophysics Data System (ADS)

    Hama, T.; Watanabe, N.; Kouchi, A.

    2012-05-01

    The present study reports experimental measurements of nuclear-spin states and rotational temperatures of thermally desorbed H2O molecules from water ice by combining temperature-programmed desorption and resonance-enhanced multiphoton ionization.

  18. Temperature measurements during the CAMP program. [Cold Arctic Mesopause Program

    NASA Technical Reports Server (NTRS)

    Philbrick, C. R.; Barnett, J.; Gerndt, R.; Offermann, D.; Pendleton, W. R., Jr.; Schlyter, P.; Witt, G.; Schmidlin, J. F.

    1984-01-01

    The Cold Arctic Mesopause Program (CAMP) was conducted at ESRANGE, Sweden, in July/August 1982. During the time period of several weeks, the temperature was monitored by ground-based OH emission spectrometers and by satellite radiance measurements. Rocket launchings occurred on the nights of 3/4 and 11/12 August. On 3/4 August, seven rocket payloads were launched during a period of noctilucent cloud sighting over ESRANGE. The presence of the NLC was confirmed by several rocket-borne photometer profiles. The temperature measurements showed that the temperature profiles in the stratosphere and lower mesosphere were near the expected values of high latitude summer models. A large amplitude wave structure with three temperature minima of 139K, 114K and 111K were observed at altitudes between 83 and 94 km. The temperature minimum at 83 km was the location of the observed NLC. The temperature minima caused by the growth of the gravity wave amplitude in the highly stable mesosphere provide the regions for the growth of particles by nucleation to optical scattering size, as well as regions where the nuclei for condensation can be formed through ion chemistry paths.

  19. Rapid screening of pharmaceutical drugs using thermal desorption - SALDI mass spectrometry

    NASA Astrophysics Data System (ADS)

    Grechnikov, A. A.; Kubasov, A. E.; Georgieva, V. B.; Borodkov, A. S.; Nikiforov, S. M.; Simanovsky, Ya O.; Alimpiev, S. S.

    2012-12-01

    A novel approach to the rapid screening of pharmaceutical drugs by surface assisted laser desorption-ionization (SALDI) mass spectrometry with the rotating ball interface coupled with temperature programmed thermal desorption has been developed. Analytes were thermally desorbed and deposited onto the surface of amorphous silicon substrate attached to the rotating ball. The ball was rotated and the deposited analytes were analyzed using SALDI. The effectiveness of coupling SALDI mass spectrometry with thermal desorption was evaluated by the direct and rapid analysis of tablets containing lidocaine, diphenhydramine and propranolol without any sample pretreatment. The overall duration of the screening procedure was 30÷40 sec. Real urine samples were studied for drug analysis. It is shown that with simple preparation steps, urine samples can be quantitatively analyzed using the proposed technique with the detection limits in the range of 0.2÷0.5 ng/ml.

  20. Effects of conformational isomerism on the desorption kinetics of n-alkanes from graphite

    E-print Network

    Gellman, Andrew J.

    Effects of conformational isomerism on the desorption kinetics of n-alkanes from graphite Kris R-alkane with the minimum free energy at the desorption temperature. These results reveal that conformational isomerism

  1. The NASA high temperature superconductivity program

    NASA Technical Reports Server (NTRS)

    Sokoloski, Martin M.; Romanofsky, Robert R.

    1990-01-01

    It has been recognized from the onset that high temperature superconductivity held great promise for major advances across a broad range of NASA interests. The current effort is organized around four key areas: communications and data, sensors and cryogenics, propulsion and power, and space materials technology. Recently, laser ablated YBa2Cu3O(7-x) films on LaAIO produced far superior RF characteristics when compared to metallic films on the same substrate. This achievement has enabled a number of unique microwave device applications, such as low insertion loss phase shifters and high Q filters. Melt texturing and melt quenched techniques are being used to produce bulk materials with optimized magnetic properties. These yttrium enriched materials possess enhanced flux pinning characteristics and will lead to prototype cryocooler bearings. Significant progress has also occurred in bolometer and current lead technology. Studies are being conducted to evaluate the effect of high temperature superconducting materials on the performance and life of high power magneto-plasma-dynamic thrusters. Extended studies were also performed to evaluate the benefit of superconducting magnetic energy storage for LEO space station, lunar and Mars mission applications. The project direction and level of effort of the program are also described.

  2. The NASA high temperature superconductivity program

    NASA Astrophysics Data System (ADS)

    Sokoloski, Martin M.; Romanofsky, Robert R.

    1990-04-01

    It has been recognized from the onset that high temperature superconductivity held great promise for major advances across a broad range of NASA interests. The current effort is organized around four key areas: communications and data, sensors and cryogenics, propulsion and power, and space materials technology. Recently, laser ablated YBa2Cu3O(7-x) films on LaAIO produced far superior RF characteristics when compared to metallic films on the same substrate. This achievement has enabled a number of unique microwave device applications, such as low insertion loss phase shifters and high Q filters. Melt texturing and melt quenched techniques are being used to produce bulk materials with optimized magnetic properties. These yttrium enriched materials possess enhanced flux pinning characteristics and will lead to prototype cryocooler bearings. Significant progress has also occurred in bolometer and current lead technology. Studies are being conducted to evaluate the effect of high temperature superconducting materials on the performance and life of high power magneto-plasma-dynamic thrusters. Extended studies were also performed to evaluate the benefit of superconducting magnetic energy storage for LEO space station, lunar and Mars mission applications. The project direction and level of effort of the program are also described.

  3. THERMAL DESORPTION...NOW YOU'RE COOKIN'

    EPA Science Inventory

    Thermal desorption includes a number of ex situ processes that use either direct or indirect heat exchange to heat a waste material to volatilize organic materials. hermal desorption systems typically operate at soil treatment temperatures in the range of 400 to 600 degrees F to ...

  4. Desorption of water from distinct step types on a curved silver crystal.

    PubMed

    Janlamool, Jakrapan; Bashlakov, Dima; Berg, Otto; Praserthdam, Piyasan; Jongsomjit, Bunjerd; Juurlink, Ludo B F

    2014-01-01

    We have investigated the adsorption of H2O onto the A and B type steps on an Ag single crystal by temperature programmed desorption. For this study, we have used a curved crystal exposing a continuous range of surface structures ranging from [5(111) × (100)] via (111) to [5(111) × (110)]. LEED and STM studies verify that the curvature of our sample results predominantly from monoatomic steps. The sample thus provides a continuous array of step densities for both step types. Desorption probed by spatially-resolved TPD of multilayers of H2O shows no dependence on the exact substrate structure and thus confirms the absence of thermal gradients during temperature ramps. In the submonolayer regime, we observe a small and linear dependence of the desorption temperature on the A and B step density. We argue that such small differences are only observable by means of a single curved crystal, which thus establishes new experimental benchmarks for theoretical calculation of chemically accurate binding energies. We propose an origin of the observed behavior based on a "two state" desorption model. PMID:25068782

  5. DESORPTION OF SORBATES FROM MST, MMST, AND CST UNDER VARIOUS CONDITIONS

    SciTech Connect

    Taylor-Pashow, K.; Hobbs, D.

    2011-06-10

    The Small Column Ion Exchange (SCIX) Program (formerly referred to as the Modular Salt Processing (MSP) Project) seeks to deploy equipment to remove the {sup 134,137}Cs, {sup 90}Sr, and alpha-emitting radionuclides (principally {sup 238,239,240}Pu and {sup 237}Np) from the high level waste salt solutions. The equipment is installed within a high level waste tank to take advantage of the shielding provided by the waste tank. The process will involve adding monosodium titanate (MST) to the waste tank (i.e., Tank 41H) to sorb the Sr and select actinides, removing the MST and entrained sludge with in-riser rotary microfilters, and subsequently using ion-exchange columns containing crystalline silicotitanate (CST) to remove the Cs. After being loaded with Cs, the CST will be ground to reduce the particle size and then transferred into another waste tank (e.g., Tank 40H). The MST and sludge solids stream will be transported to a sludge batch preparation tank (i.e., Tank 42H or Tank 51H) once the SCIX batch is processed. Both streams, MST/solids and CST, will ultimately be transported into and vitrified inside the Defense Waste Processing Facility (DWPF). A series of experiments were performed to examine desorption from monosodium titanate (MST), modified monosodium titanate (mMST), and crystalline silicotitanate (CST) under various conditions. The first two experiments examined desorption from MST and CST under two different sludge treatment processes, aluminum dissolution and sludge washing. Desorption of all sorbates was observed to varying degrees under the aluminum dissolution conditions. The extent of desorption ranged from < 3% to about 50% after 4 weeks, with Pu exhibiting the lowest desorption. At the end of the experiment, the temperature was reduced from 65 C to 25 C and the tests monitored for an additional two weeks. After reducing the temperature, partial resorption of the sorbates was observed with both MST and CST. Under the sludge washing conditions, no desorption of sorbates was observed with MST; however, some additional sorption did occur. For CST, a small amount of Cs leached from the material during the first day of testing, but no further leaching was observed over the remaining test period. The final test was designed to examine the possibility of desorption from both MST and mMST upon increasing the solid to liquid phase ratio. The results of these tests indicated some desorption of Pu from MST within the first two weeks after changing the phase ratio, then resorption of some of the leached Pu over the remaining 4 weeks of the experiment. No desorption of any sorbates was observed for mMST under these conditions.

  6. Evaluation of biochars by temperature programmed oxidation/mass spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biochar from the thermochemical conversion of biomass was evaluated by Temperature Programmed Oxidation (TPO) coupled with mass spectroscopy. This technique can be used to assess the oxidative reactivity of carbonaceous solids where higher temperature reactivity indicates greater structural order. ...

  7. Silicone rod extraction followed by liquid desorption-large volume injection-programmable temperature vaporiser-gas chromatography-mass spectrometry for trace analysis of priority organic pollutants in environmental water samples.

    PubMed

    Delgado, Alejandra; Posada-Ureta, Oscar; Olivares, Maitane; Vallejo, Asier; Etxebarria, Nestor

    2013-12-15

    In this study a priority organic pollutants usually found in environmental water samples were considered to accomplish two extraction and analysis approaches. Among those compounds organochlorine compounds, pesticides, phthalates, phenols and residues of pharmaceutical and personal care products were included. The extraction and analysis steps were based on silicone rod extraction (SR) followed by liquid desorption in combination with large volume injection-programmable temperature vaporiser (LVI-PTV) and gas chromatography-mass spectrometry (GC-MS). Variables affecting the analytical response as a function of the programmable temperature vaporiser (PTV) parameters were firstly optimised following an experimental design approach. The SR extraction and desorption conditions were assessed afterwards, including matrix modification, time extraction, and stripping solvent composition. Subsequently, the possibility of performing membrane enclosed sorptive coating extraction (MESCO) as a modified extraction approach was also evaluated. The optimised method showed low method detection limits (3-35 ng L(-1)), acceptable accuracy (78-114%) and precision values (<13%) for most of the studied analytes regardless of the aqueous matrix. Finally, the developed approach was successfully applied to the determination of target analytes in aqueous environmental matrices including estuarine and wastewater samples. PMID:24209370

  8. Correlation between the processes of water desorption and tritium release from Li4SiO4 ceramic pebbles

    NASA Astrophysics Data System (ADS)

    Ran, Guangming; Xiao, Chengjian; Chen, Xiaojun; Gong, Yu; Kang, Chunmei; Wang, Xiaolin

    2015-11-01

    The correlation between water desorption and tritium release from Li4SiO4 pebbles was studied by temperature programmed desorption. The released water and tritium from irradiated samples were monitored simultaneously. The main peak for tritium release from the irradiated samples that were exposed to air for more than a month, was shifted from 500 to about 250 °C, as compared to that from the unexposed samples. The peak temperatures for water desorption and tritium release overlapped very well, suggesting a strong correlation between the two processes. Accordingly, a two-step mechanism, involving isotope exchange between the tritium trapped on the grain surface and the surface hydroxyls (-OH), and subsequent desorption of tritiated water through recombination of the -OH/-OT groups, was proposed to explain the tritium release behavior for the air-exposed samples. It is believed that the formation and desorption of surface hydroxyl groups at 200-300 °C can affect the behavior of tritium release from Li4SiO4 significantly.

  9. The desorption purge time and thermal stability of 1,3-butadiene in a charcoal sampling tube 

    E-print Network

    Xie, Jianghua

    1997-01-01

    desorption process. Two major variables, which affect the desorption purge time when organic compounds are desorbed from a charcoal tube by thermal means, are the temperature and carrier gas flow rate. In this study, a modified gas chromatograph apparatus...

  10. Summary of Jimsonde temperature profiles. Part 2: Programs, data comments

    NASA Technical Reports Server (NTRS)

    Willett, J. A.

    1981-01-01

    Natural environment criteria are established and interpreted for aeronautical vehicle design and engineering operations. Data summaries, computer formats, frequency distributions, and composite listings of the temperature profiles acquisition program are included.

  11. The first layer of water on Rh(111): Microscopic structure and desorption kinetics

    SciTech Connect

    Beniya, Atsushi; Yamamoto, Susumu; Mukai, Kozo; Yamashita, Yoshiyuki; Yoshinobu, Jun

    2006-08-07

    The adsorption states and growth process of the first water (D{sub 2}O) layer on Rh(111) were investigated using infrared reflection absorption spectroscopy, temperature programed desorption, and spot-profile-analysis low energy electron diffraction. Water molecules wet the Rh(111) surface intact. At the early stage of first layer growth, a ({radical}3x{radical}3)R30 deg. commensurate water layer grows where 'up' and 'down' species coexist; the up and down species represent water molecules which have free OD, pointing to a vacuum and the substrate, respectively. The up domain was a flatter structure than an icelike bilayer. Water desorption from Rh(111) was a half-order process. The activation energy and the preexponential factor of desorption are estimated to be 60 kJ/mol and 4.8x10{sup 16} ML{sup 1/}2/s at submonolayer coverage, respectively. With an increase in water coverage, the flat up domain becomes a zigzag layer, like an ice bilayer. At the saturation coverage, the amount of down species is 1.3 times larger than that of the up species. In addition, the activation energy and the preexponential factor of desorption decrease to 51 kJ/mol and 1.3x10{sup 14} ML{sup 1/2}/s, respectively.

  12. Program for an improved hypersonic temperature-sensing probe

    NASA Technical Reports Server (NTRS)

    Reilly, Richard J.

    1993-01-01

    Under a NASA Dryden-sponsored contract in the mid 1960s, temperatures of up to 2200 C were successfully measured using a fluid oscillator. The current program, although limited in scope, explores the problem areas which must be solved if this technique is to be extended to 10,000 R. The potential for measuring extremely high temperatures, using fluid oscillator techniques, stems from the fact that the measuring element is the fluid itself. The containing structure of the oscillator need not be brought to equilibrium temperature with with the fluid for temperature measurement, provided that a suitable calibration can be arranged. This program concentrated on review of high-temperature material developments since the original program was completed. Other areas of limited study included related pressure instrumentation requirements, dissociation, rarefied gas effects, and analysis of sensor time response.

  13. Temperature lowering program for homogeneous doping in flux growth

    NASA Astrophysics Data System (ADS)

    Qiwei, Wang; Shouquan, Jia

    1989-10-01

    Based on the mass conservation law and the Burton-Prim-Slichter equation, the temperature program for homogeneous doping in flux growth by slow cooling was derived. The effect of various factors, such as initial supersaturation, solution volume, growth kinetic coefficient and degree of mixing in the solution on growth rate, crystal size and temperature program is discussed in detail. Theoretical analysis shows that there is a critical crystal size above which homogeneous doping is impossible.

  14. FINAL REPORT. HIGH TEMPERATURE CONDENSED PHASE MASS SPECTROMETRIC ANALYSIS PROGRAM

    EPA Science Inventory

    This project was funded by the EM Science Program for the development of an integrated mass spectrometric analysis system capable of analyzing materials from room up to high temperatures, with the practical upper temperature limit to be experimentally determined. A primary object...

  15. Mercury compounds characterization by thermal desorption.

    PubMed

    Rumayor, M; Diaz-Somoano, M; Lopez-Anton, M A; Martinez-Tarazona, M R

    2013-09-30

    The ability to accurately determine metal mercury content and identify different mercury species in solid samples is essential for developing remediation and control strategies. The aim of the present study is to characterize mercury compounds based on thermal desorption. For this purpose a series of samples was prepared and the operational parameters-heating velocity, carrier gas-were optimized. Fifteen commercial mercury compounds were analyzed for use as fingerprints. The results of the study show that the identification of mercury species by the method of thermal desorption is possible. The temperature of desorption increased according to the following order HgI2desorption curve shows that recoveries of 79-104% for HgS can be estimated. The proposed method represents a significant step forward in direct mercury analysis in solid samples. PMID:23953477

  16. Calcium lignosulfonate adsorption and desorption on Berea sandstone.

    PubMed

    Grigg, Reid B; Bai, Baojun

    2004-11-01

    This paper describes adsorption and desorption studies carried out with calcium lignosulfonate (CLS) on Berea sandstone. Circulation experiments were performed to determine CLS adsorption isotherms and the effects of CLS concentration, temperature, salinity, brine hardness, and injection rate on adsorption density. Flow-through experiments were performed to assess the reversibility of CLS adsorption and the influence of postflush rate, brine concentration, brine hardness, brine pH, and temperature on the desorption process. Results indicate that CLS adsorption isotherms on Berea sandstone follow the Freundlich isotherm law. The results presented in this paper on the effects of CLS adsorption and desorption on Berea sandstone show that: (1) increasing CLS concentration and salinity increases CLS adsorption density; (2) increasing temperature will decrease adsorption density; (3) increasing injection rate of CLS solution will slightly decrease CLS adsorption density; (4) postflush rate and salinity of brine have a large impact on the CLS desorption process; (5) the adsorption and desorption process are not completely reversible; and (5) temperature and pH of the postflush brine have little effect on desorption. PMID:15380409

  17. NASA's high-temperature engine materials program for civil aeronautics

    NASA Technical Reports Server (NTRS)

    Gray, Hugh R.; Ginty, Carol A.

    1992-01-01

    The Advanced High-Temperature Engine Materials Technology Program is described in terms of its research initiatives and its goal of developing propulsion systems for civil aeronautics with low levels of noise, pollution, and fuel consumption. The program emphasizes the analysis and implementation of structural materials such as polymer-matrix composites in fans, casings, and engine-control systems. Also investigated in the program are intermetallic- and metal-matrix composites for uses in compressors and turbine disks as well as ceramic-matrix composites for extremely high-temperature applications such as turbine vanes.

  18. Desorption Dynamics, Internal Energies and Imaging of Organic Molecules from Surfaces with Laser Desorption and Vacuum Ultraviolet (VUV) Photoionization

    SciTech Connect

    Kostko, Oleg; Takahashi, Lynelle K.; Ahmed, Musahid

    2011-04-05

    There is enormous interest in visualizing the chemical composition of organic material that comprises our world. A convenient method to obtain molecular information with high spatial resolution is imaging mass spectrometry. However, the internal energy deposited within molecules upon transfer to the gas phase from a surface can lead to increased fragmentation and to complications in analysis of mass spectra. Here it is shown that in laser desorption with postionization by tunable vacuum ultraviolet (VUV) radiation, the internal energy gained during laser desorption leads to minimal fragmentation of DNA bases. The internal temperature of laser-desorbed triacontane molecules approaches 670 K, whereas the internal temperature of thymine is 800 K. A synchrotron-based VUV postionization technique for determining translational temperatures reveals that biomolecules have translational temperatures in the range of 216-346 K. The observed low translational temperatures, as well as their decrease with increased desorption laser power is explained by collisional cooling. An example of imaging mass spectrometry on an organic polymer, using laser desorption VUV postionization shows 5 mu m feature details while using a 30 mu m laser spot size and 7 ns duration. Applications of laser desorption postionization to the analysis of cellulose, lignin and humic acids are briefly discussed.

  19. USGS Coal Desorption Equipment and a Spreadsheet for Analysis of Lost and Total Gas from Canister Desorption Measurements

    USGS Publications Warehouse

    Barker, Charles E.; Dallegge, Todd A.; Clark, Arthur C.

    2002-01-01

    We have updated a simple polyvinyl chloride plastic canister design by adding internal headspace temperature measurement, and redesigned it so it is made with mostly off-the-shelf components for ease of construction. Using self-closing quick connects, this basic canister is mated to a zero-head manometer to make a simple coalbed methane desorption system that is easily transported in small aircraft to remote localities. This equipment is used to gather timed measurements of pressure, volume and temperature data that are corrected to standard pressure and temperature (STP) and graphically analyzed using an Excel(tm)-based spreadsheet. Used together these elements form an effective, practical canister desorption method.

  20. Desorption of Mercury(II) on Kaolinite in the Presence of Oxalate or Cysteine

    SciTech Connect

    Senevirathna, W. U.; Zhang, Hong; Gu, Baohua

    2011-01-01

    Sorption and desorption of Hg(II) on clay minerals can impact the biogeochemical cycle and bio- uptake of Hg in aquatic systems. We studied the desorption of Hg(II) on kaolinite in the presence of oxalate or cysteine, representing the ligands with carboxylic and thiol groups of different affinities for Hg(II). The effects of pH (3, 5, 7), ligand concentration (0.25, 1.0 mM), and temperature (15, 25, 35 C) on the Hg(II) desorption were investigated through desorption kinetics. Our study showed that the Hg(II) desorption was pH-dependant. In the absence of any organic ligand, >90% of the previously adsorbed Hg(II) desorbed at pH 3 within 2 h, compared to <10% at pH 7. Similar results were observed in the presence of oxalate, showing that it hardly affected the Hg(II) desorption. Cysteine inhibited the Hg(II) desorption significantly at all the pH tested, especially in the first 80 min with the desorption less than 20%, but it appeared to enhance the Hg(II) desorption afterwards. The effect of ligand concentration on the Hg(II) desorption was small, especially in the presence of oxalate. The effect of temperature on the desorption was nearly insignificant. The effect of the organic acids on the Hg(II) sorption and desorption is explained by the formation of the ternary surface complexes involving the mineral, ligand, and Hg(II). The competition for Hg(II) between the cysteine molecules adsorbed on the particles and in the solution probably can also affect the Hg(II) desorption.

  1. Desorption of hydrogen trapped in carbon and graphite

    NASA Astrophysics Data System (ADS)

    Atsumi, H.; Takemura, Y.; Miyabe, T.; Konishi, T.; Tanabe, T.; Shikama, T.

    2013-11-01

    Thermal desorption behavior of deuterium (D2) from isotropic graphites and a carbon fiber carbon composite (CFC) charged with D2 gas has been investigated to obtain information concerning hydrogen recycling and tritium inventory in fusion experimental devices as well as a futuristic fusion reactor. After thermal desorption experiments were conducted at temperatures up to 1740 K, a desorption peak at approximately 1600 K (peak 4) was discovered. This is in addition to the previously known peak at approximately 1300 K (peak 3). Peak 3 can be attributed to the release of deuterium controlled by the diffusion process in a graphite filler grain and peak 4 can be attributed to the detrapping of deuterium released from an interstitial cluster loop edge site. Activation energies of peaks 3 and 4 are estimated to be 3.48 and 6.93 eV, respectively. TDS spectra of D2 from graphite and CFCs had previously not been thoroughly investigated. A desorption peak at approximately 1600 K was discovered in the TDS spectra for all samples heated with a linear ramp rate of 0.1 K/s. For an isotropic graphite, ISO-880U, four desorption peaks were recognized in the TDS spectra at approximately 660 K, 900 K, 1300 K, and 1600 K. These peaks were named as peaks 1, 2, 3, and 4 in order of increasing temperature. Major desorption peaks (i.e., peaks 3 and 4) were analyzed and discussed in detail. The temperature of peak 3 was dependent on the size of a graphite filler grain. The desorption process is suggested to be controlled by deuterium diffusion within the filler grain with a strong influence of trapping sites, where the migration takes place as a sequence of detrapping and retrapping. The desorption for peak 4 can be ascribed to the detrapping reaction from an interstitial cluster loop edge site. Activation energies were estimated from the peak shift by varying the heating rate of TDS to be 3.48 and 6.93 eV for peaks 3 and 4, respectively. Theoretical desorption curves for peaks 3 and 4 with the above mentioned activation energies were narrower than those for the experimental desorption curve. The observed peak broadening can be attributed to the effects of grain size and activation energy distributions.

  2. Ion Desorption Stability in Superconducting High Energy Physics Proton Colliders

    SciTech Connect

    Turner, W.C.

    1995-05-29

    In this paper we extend our previous analysis of cold beam tube vacuum in a superconducting proton collider to include ion desorption in addition to thermal desorption and synchrotron radiation induced photodesorption. The new ion desorption terms introduce the possibility of vacuum instability. This is similar to the classical room temperature case but now modified by the inclusion of ion desorption coefficients for cryosorbed (physisorbed) molecules which can greatly exceed the coefficients for tightly bound molecules. The sojourn time concept for physisorbed H{sub 2} is generalized to include photodesorption and ion desorption as well as the usually considered thermal desorption. The ion desorption rate is density dependent and divergent so at the onset of instability the sojourn time goes to zero. Experimental data are used to evaluate the H{sub 2} sojourn time for the conditions of the Large Hadron Collider (LHC) and the situation is found to be stable. The sojourn time is dominated by photodesorption for surface density s(H{sub 2}) less than a monolayer and by thermal deposition for s(H{sub 2}) greater than a monolayer. For a few percent of a monolayer, characteristic of a beam screen, the photodesorption rate exceeds ion desorption rate by more than two orders of magnitude. The photodesorption rate corresponds to a sojourn time of approximately 100 sec. The paper next turns to the evaluation of stability margins and inclusion of gases heavier than H{sub 2} (CO, CO{sub 2} and CH{sub 4}), where ion desorption introduces coupling between molecular species. Stability conditions are worked out for a simple cold beam tube, a cold beam tube pumped from the ends and a cold beam tube with a co-axial perforated beam screen. In each case a simple inequality for stability of a single component is replaced by a determinant that must be greater than zero for a gas mixture. The connection with the general theory of feedback stability is made and it is shown that the gains of the diagonal uncoupled feedback loops are first order in the ion desorption coefficients whereas the gains of the off diagonal coupled feedback loops are second and higher order. For this reason it turns out that in practical cases stability is dominated by the uncoupled diagonal elements and the inverse of the largest first order closed loop gain is a useful estimate of the margin of stability. In contrast to the case of a simple cold beam tube, the stability condition for a beam screen does not contain the desorption coefficient for physisorbed molecules, even when the screen temperature is low enough that there is a finite surface density of them on the screen surface. Consequently there does not appear to be any particular advantage to operating the beam screen at high enough temperature to avoid physisorption. Numerical estimates of ion desorption stability are given for a number of cases relevant to LHC and all of the ones likely to be encountered were found to be stable. The most important case, a I % transparency beam screen at {approx}4.2 K, was found to have a stability safety margin of approximately thirty determined by ion desorption of CO. Ion desorption of H{sub 2} is about a factor of eighty less stringent than CO. For these estimates the beam tube surface was assumed to be solvent cleaned but otherwise untreated, for example by a very high temperature vacuum bakeout or by glow discharge cleaning.

  3. Adsorption, Desorption, and Displacement Kinetics of H2O and CO2 on Forsterite, Mg2SiO4(011)

    SciTech Connect

    Smith, R. Scott; Li, Zhenjun; Dohnalek, Zdenek; Kay, Bruce D.

    2014-12-18

    We have examined the adsorbate-substrate interaction kinetics of CO2 and H2O on a natural forsterite crystal surface, Mg2SiO4(011), with 10-15% of substitutional Fe2+. We use temperature programmed desorption (TPD) and molecular beam techniques to determine the adsorption, desorption, and displacement kinetics for H2O and CO2. Neither CO2 nor H2O has distinct sub-monolayer desorption peaks but instead both have a broad continuous desorption feature that evolve smoothly into multilayer desorption. Inversion of the monolayer coverage spectra for both molecules reveals that the corresponding binding energies for H2O are greater than that for CO2 on all sites. The relative strength of these interactions is the dominant factor in the competitive adsorption/displacement kinetics. In experiments where the two adsorbates are co-dosed, H2O always binds to the highest energy binding sites available and displaces CO2. The onset of CO2 displacement by H2O occurs between 65 and 75 K.

  4. Adsorption and desorption of HCl on ice

    SciTech Connect

    Isakson, M.J.; Sitz, G.O.

    1999-04-01

    It is now generally accepted that chemical reactions occurring on the surface of ice particles in polar stratospheric clouds (PSC`s) play a crucial role in the catalytic cycle of chlorine responsible for the ozone destruction. Pulsed molecular beam and mass spectrometric techniques are used to study the adsorption of hydrogen chloride on thin ice films at temperatures from 100 to 170 K. The adsorption and desorption of HCl from an ice surface is relevant to the polar stratosphere where it is thought that chlorine atoms are liberated from reservoir species such as HCl by heterogeneous reactions occurring on the surface of polar stratospheric clouds. The authors have measured the sticking coefficient for HCl at an incident translational energy of 0.09 eV on thin film ice surfaces using a modified version of the reflectivity technique of King and Wells. By modeling the HCl partial pressure versus time waveforms for surface temperatures of 100--125 K, they obtain a sticking coefficient of 0.91 {+-} 0.06. The model incorporates first-order HCl desorption and a loss term also first order in HCl. Fitted kinetic parameters are E{sub des} = 28 kJ/mol, {nu}{sub des} = 2 {times} 10{sup 14} s{sup {minus}1} for desorption and E{sub loss} = 21 kJ/mol, {nu}{sub loss} = 4 {times} 10{sup 11} s{sup {minus}1} for the loss. The loss may be associated with the onset of water diffusion on the ice surface and subsequent ionization or hydration of the HCl. The measured waveforms are inconsistent with diffusion of HCl into the bulk. The apparent reflectivity decreases substantially in the temperature range of 126 to 140 K. This decrease cannot be attributed to an increase in sticking coefficient, a phase change in the ice, or the formation of the hexahydrate state of HCl.

  5. Kinetic modeling of the adsorption and desorption of CO2 on ?-Fe2O3.

    PubMed

    Breyer, Christine; Reichert, Dirk; Seidel, Juergen; Hüttl, Regina; Mertens, Florian; Kureti, Sven

    2015-10-28

    The present paper addresses the interaction of CO2 with polycrystalline ?-Fe2O3 revealing considerable catalytic activity in CO oxidation to yield CO2. The mechanism of adsorption and desorption of CO2 was investigated by diffuse reflectance infrared fourier transform spectroscopy (DRIFTS), while the kinetics was examined by temperature-programmed desorption (CO2-TPD). For numeric modeling as well as simulation of the surface coverage, an elementary kinetic mean field model was constructed using Arrhenius-based rate expressions. The kinetic parameters of desorption were taken from fitting calculations (A2 = 3.01 × 10(5) mol (m(2) s)(-1), E2(0) = 112.8 kJ mol(-1), ?2 = 70.2 kJ mol(-1)), whereas the adsorption was considered to be non-activated and the pre-exponential factor was estimated from kinetic gas theory (A1 = 0.0192 m s(-1), E1 = 0 kJ mol(-1)). For model validation, predicted and experimental CO2-TPD profiles were compared and thermodynamic consistency was evaluated by using differential scanning calorimetry (?adsH(250 °C) = -129 kJ mol(-1)) as well as literature data. PMID:26411579

  6. HYDROGEN AND ITS DESORPTION IN RHIC.

    SciTech Connect

    HSEUH,H.C.

    2002-11-11

    Hydrogen is the dominating gas specie in room temperature, ultrahigh vacuum systems of particle accelerators and storage rings, such as the Relativistic Heavy Ion Collider (RHIC) at Brookhaven. Rapid pressure increase of a few decades in hydrogen and other residual gases was observed during RHIC's recent high intensity gold and proton runs. The type and magnitude of the pressure increase were analyzed and compared with vacuum conditioning, beam intensity, number of bunches and bunch spacing. Most of these pressure increases were found to be consistent with those induced by beam loss and/or electron stimulated desorption from electron multipacting.

  7. Modelling of field desorption of monocrystal nanotip

    NASA Astrophysics Data System (ADS)

    Nikiforov, K. A.; Krasnova, A. A.

    2015-11-01

    Mathematical and computer model of field desorption process from metal nanocrystal tip is proposed. The radius of curvature on the top of the emitter is about 50 lattice parameters. The model includes initial calculation of intersection between the crystal lattice and emitter shape for bcc and fcc crystal structures. Arbitrary axisymmetric shapes (figures of rotation) can be used for the emitter model. The algorithm for allocation of atoms being desorbed at given time step is based on an analysis of geometric environment with specified local electric field. Polyhedron nanostructured shape of emitter is obtained as result of evaporation. Computer program realization (Matlab stand alone application) is presented.

  8. Defect annealing and thermal desorption of deuterium in low dose HFIR neutron-irradiated tungsten

    SciTech Connect

    Masashi Shimada; M. Hara; T. Otsuka; Y. Oya; Y. Hatano

    2014-05-01

    Accurately estimating tritium retention in plasma facing components (PFCs) and minimizing its uncertainty are key safety issues for licensing future fusion power reactors. D-T fusion reactions produce 14.1 MeV neutrons that activate PFCs and create radiation defects throughout the bulk of the material of these components. Recent studies show that tritium migrates and is trapped in bulk (>> 10 µm) tungsten beyond the detection range of nuclear reaction analysis technique [1-2], and thermal desorption spectroscopy (TDS) technique becomes the only established diagnostic that can reveal hydrogen isotope behavior in in bulk (>> 10 µm) tungsten. Radiation damage and its recovery mechanisms in neutron-irradiated tungsten are still poorly understood, and neutron-irradiation data of tungsten is very limited. In this paper, systematic investigations with repeated plasma exposures and thermal desorption are performed to study defect annealing and thermal desorption of deuterium in low dose neutron-irradiated tungsten. Three tungsten samples (99.99 at. % purity from A.L.M.T. Co., Japan) irradiated at High Flux Isotope Reactor at Oak Ridge National Laboratory were exposed to high flux (ion flux of (0.5-1.0)x1022 m-2s-1 and ion fluence of 1x1026 m-2) deuterium plasma at three different temperatures (100, 200, and 500 °C) in Tritium Plasma Experiment at Idaho National Laboratory. Subsequently, thermal desorption spectroscopy (TDS) was performed with a ramp rate of 10 °C/min up to 900 °C, and the samples were annealed at 900 °C for 0.5 hour. These procedures were repeated three (for 100 and 200 °C samples) and four (for 500 °C sample) times to uncover damage recovery mechanisms and its effects on deuterium behavior. The results show that deuterium retention decreases approximately 90, 75, and 66 % for 100, 200, and 500 °C, respectively after each annealing. When subjected to the same TDS recipe, the desorption temperature shifts from 800 °C to 600 °C after 1st annealing for the sample exposed to TPE at 500 °C. Tritium Migration Analysis Program (TMAP) analysis reveals that the detrapping energy decreases from 1.8 eV to 1.4 eV, indicating the changes in trapping mechanisms. This paper also summarizes deuterium behavior studies in HFIR neutron-irradiated tungsten under US-Japan TITAN program.

  9. Adsorption and desorption kinetics of alkanethiols on gold(100) and silver(111)

    NASA Astrophysics Data System (ADS)

    Yu, Yan

    The work reported here is concerned with the adsorption and desorption kinetics of short chain-length alkanethiols and hydrogen sulfide on the Au(100) and Ag(111) substrates. A combination of temperature programmed desorption/reaction (TPD/R), low energy electron diffraction (LEED), Auger electron spectroscopy (AES) and molecular beam (MB) methods were used in a UHV system. This study has given insight in to the kinetic mechanism of thiol self-assembled monolayers (SAMs) formation. Similar adsorption and desorption kinetics were observed for methanethiol, ethanethiol, propanethiol, butanethiol, and pentanethiol on Au(100). The TPD/R results clearly show that these short chain-length alkanethiols adsorbs into both a chemisorbed and a physisorbed state. A detail study was performed for butanethiol on the Au(100) substrate. Desorption of physisorbed butanethiol occurs molecularly at ˜38 K. By contrast, desorption of the chemisorbed butanethiolate species occurs with decomposition at ˜500 K to yield primarily 1-butene; the thiol sulfur remained adsorbed on the surface and either desorbed or possibly dissolved into the bulk of the gold sample at above 700 K. The substrate temperature dependence of the chemisorption process suggests a precursor mechanism for the chemisorption kinetics. The TPD results also show that chemisorption does not occur on a very clean and ordered Au(100)-(5x20) surface at 100 K, and that low coverages of pre-adsorbed sulfur atoms facilitate the chemisorption process, suggesting a defect-mediated precursor mechanism. Precursor-mediated adsorption kinetics were observed for the adsorption of H2S on the Au(100)-(5x20) and Ag(111) between 80 and 100 K, while Langmuir adsorption kinetics were observed for the adsorption of H 2S on the sulfide covered Au(100)-(1x1)-SH and Ag(111). The TPD/R of H2S from Au(100)-(1x1)-SH showed additional features at higher temperatures which were associated with the disproportionation of chemisorbed HS(ad). Those features were not observed for H2S from sulfide Ag(111).

  10. Atomic Oxygen Desorption from an Amorphous Silicate Surface

    NASA Astrophysics Data System (ADS)

    He, Jiao; Vidali, Gianfranco

    2014-06-01

    Oxygen is the third most abundant element in space. How oxygen-containing molecules form in space, and whether they form through gas-phase or grain-surface reactions, depends largely on the availability of atomic oxygen in gas-phase versus on surfaces of dust grains. The relative abundance of O in gas-phase versus on grain surfaces is determined by the residence time, or equivalently, desorption energy, of atomic oxygen on grain surfaces. Though important in astrochemical modeling, experimental investigations of atomic oxygen desorption from grain surfaces are lacking in the literature. In most astrochemical models, the O desorption energy value has been taken to be 800 K, which is a guessed value without experimental support. Based on this value, the predicted molecular oxygen abundance in space is at least 2 orders of magnitude higher than what space observations have found. This long running discrepancy of molecular oxygen abundance could be resolved if the O desorption energy is twice as the widely used value (Melnick, G., Tolls, V., et al. 2012, Astrophys. J., 752, 26). We performed TPD (thermal programmed desorption) experiments to study the ozone formation process via O+O2 on an amorphous silicate surface that emulates interstellar conditions. A rate equation model was used to characterize the surface kinetics of both atomic and molecular oxygen. The O desorption energy was extracted from rate equation simulations that best fit the TPD data. The value was found to be 1764±232 K, which agrees with what Melnick et al. proposed. We suggest that the newly found value for the O desorption energy should be used in astrochemical modeling. This work is supported by NSF, Astronomy & Astrophysics Division (Grants No. 0908108 and 1311958), and NASA (Grant No. NNX12AF38G). We thank Dr. J.Brucato of the Astrophysical Observatory of Arcetri for providing the samples used in these experiments.

  11. Moisture diffusivity in rice components during absorption and desorption

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Moisture diffusivity values of different rice kernel components namely, endosperm, bran and husks are required to solve mathematical models describing absorption and desorption processes. In addition to the rice variety and temperature, the moisture diffusivity also depends on its instantaneous mois...

  12. Cooled High-temperature Radial Turbine Program 2

    NASA Technical Reports Server (NTRS)

    Snyder, Philip H.

    1991-01-01

    The objective of this program was the design and fabrication of a air-cooled high-temperature radial turbine (HTRT) intended for experimental evaluation in a warm turbine test facility at the LeRC. The rotor and vane were designed to be tested as a scaled version (rotor diameter of 14.4 inches diameter) of a 8.021 inch diameter rotor designed to be capable of operating with a rotor inlet temperature (RIT) of 2300 F, a nominal mass flow of 4.56 lbm/sec, a work level of equal or greater than 187 Btu/lbm, and efficiency of 86 percent or greater. The rotor was also evaluated to determine it's feasibility to operate at 2500 F RIT. The rotor design conformed to the rotor blade flow path specified by NASA for compatibility with their test equipment. Fabrication was accomplished on three rotors, a bladeless rotor, a solid rotor, and an air-cooled rotor.

  13. High temperature static strain gage alloy development program

    NASA Technical Reports Server (NTRS)

    Hulse, C. O.; Bailey, R. S.; Lemkey, F. D.

    1985-01-01

    The literature, applicable theory and finally an experimental program were used to identify new candidate alloy systems for use as the electrical resistance elements in static strain gages up to 1250K. The program goals were 50 hours of use in the environment of a test stand gas turbine engine with measurement accuracies equal to or better than 10 percent of full scale for strains up to + or - 2000 microstrain. As part of this effort, a computerized electrical resistance measurement system was constructed for use at temperatures between 300K and 1250K and heating and cooling rates of 250K/min and 10K/min. The two best alloys were an iron-chromium-aluminum alloy and a palladium base alloy. Although significant progress was made, it was concluded that a considerable additional effort would be needed to fully optimize and evaluate these candidate systems.

  14. Method of enhancing selective isotope desorption from metals

    DOEpatents

    Knize, Randall J. (Plainsboro, NJ); Cecchi, Joseph L. (Lawrenceville, NJ)

    1984-01-01

    A method of enhancing the thermal desorption of a first isotope of a diatomic gas from a metal comprises the steps of (a) establishing a partial pressure of a second isotope of the diatomic gas in vicinity of the metal; heating the metal to a temperature such that the first isotope is desorbed from the metal; and reducing the partial pressure of the desorbed first isotope while maintaining the partial pressure of the second isotope substantially constant. The method is especially useful for enhancing the desorption of tritium from the Zr-Al getter in a plasma confinement device.

  15. Multiyear Program Plan for the High Temperature Materials Laboratory

    SciTech Connect

    Arvid E. Pasto

    2000-03-17

    Recently, the U.S. Department of Energy's (DOE) Office of Heavy Vehicle Technologies (OHVT) prepared a Technology Roadmap describing the challenges facing development of higher fuel efficiency, less polluting sport utility vehicles, vans, and commercial trucks. Based on this roadmap, a multiyear program plan (MYPP) was also developed, in which approaches to solving the numerous challenges are enumerated. Additional planning has been performed by DOE and national laboratory staff, on approaches to solving the numerous challenges faced by heavy vehicle system improvements. Workshops and planning documents have been developed concerning advanced aerodynamics, frictional and other parasitic losses, and thermal management. Similarly, the Heavy Vehicle Propulsion Materials Program has developed its own multiyear program plan. The High Temperature Materials Laboratory, a major user facility sponsored by OHVT, has now developed its program plan, described herein. Information was gathered via participation in the development of OHVT's overall Technology Roadmap and MYPP, through personal contacts within the materials-user community, and from attendance at conferences and expositions. Major materials issues for the heavy vehicle industry currently center on trying to increase efficiency of (diesel) engines while at the same time reducing emissions (particularly NO{sub x} and particulates). These requirements dictate the use of increasingly stronger, higher-temperature capable and more corrosion-resistant materials of construction, as well as advanced catalysts, particulate traps, and other pollution-control devices. Exhaust gas recirculation (EGR) is a technique which will certainly be applied to diesel engines in the near future, and its use represents a formidable challenge, as will be described later. Energy-efficient, low cost materials processing methods and surface treatments to improve wear, fracture, and corrosion resistance are also required.

  16. Space exploration with a solar sail coated by materials that undergo thermal desorption

    NASA Astrophysics Data System (ADS)

    Kezerashvili, Roman Ya.

    2015-12-01

    For extrasolar space exploration it is suggested to use space environmental effects such as solar radiation heating to accelerate a solar sail coated by materials that undergo thermal desorption at a particular temperature. The developed approach allows the perihelion of the solar sail orbits to be determined based on the temperature requirement for the solar sail materials. Our study shows that the temperature of a solar sail increases as r - 2 / 5 when the heliocentric distance r decreases. The proposed sail has two coats of the materials that undergo desorption at different solar sail temperatures depending on the heliocentric distance. The first desorption occurs at the Earth orbit and provides the thrust needed to propel the solar sail toward the Sun. When the solar sail approaches the Sun, its temperature increases, and the second coat undergoes desorption at the perihelion of the heliocentric escape orbit. This provides a second thrust and boosts the solar sail to its escape velocity.

  17. Tunneling effects in the kinetics of helium and hydrogen isotopes desorption from single-walled carbon nanotube bundles

    NASA Astrophysics Data System (ADS)

    Danilchenko, B. A.; Yaskovets, I. I.; Uvarova, I. Y.; Dolbin, A. V.; Esel'son, V. B.; Basnukaeva, R. M.; Vinnikov, N. A.

    2014-04-01

    The kinetics of desorption both helium isotopes and molecules of hydrogen and deuterium from open-ended or ?-irradiated single-walled carbon nanotube bundles was investigated in temperature range of 10-300 K. The gases desorption rates obey the Arrhenius law at high temperatures, deviate from it with temperature reduction and become constant at low temperatures. These results indicate the quantum nature of gas outflow from carbon nanotube bundles. We had deduced the crossover temperature below which the quantum corrections to the effective activation energy of desorption become significant. This temperature follows linear dependence against the inverse mass of gas molecule and is consistent with theoretical prediction.

  18. Tunneling effects in the kinetics of helium and hydrogen isotopes desorption from single-walled carbon nanotube bundles

    SciTech Connect

    Danilchenko, B. A. Yaskovets, I. I.; Uvarova, I. Y.; Dolbin, A. V.; Esel'son, V. B.; Basnukaeva, R. M.; Vinnikov, N. A.

    2014-04-28

    The kinetics of desorption both helium isotopes and molecules of hydrogen and deuterium from open-ended or ?-irradiated single-walled carbon nanotube bundles was investigated in temperature range of 10–300?K. The gases desorption rates obey the Arrhenius law at high temperatures, deviate from it with temperature reduction and become constant at low temperatures. These results indicate the quantum nature of gas outflow from carbon nanotube bundles. We had deduced the crossover temperature below which the quantum corrections to the effective activation energy of desorption become significant. This temperature follows linear dependence against the inverse mass of gas molecule and is consistent with theoretical prediction.

  19. Erbium hydride thermal desorption : controlling kinetics.

    SciTech Connect

    Ferrizz, Robert Matthew

    2007-08-01

    Thermal desorption spectroscopy (TDS) is used to study the decomposition kinetics of erbium hydride thin films. The TDS results presented in this report show that hydride film processing parameters directly impact thermal stability. Issues to be addressed include desorption kinetics for dihydrides and trihydrides, and the effect of film growth parameters, loading parameters, and substrate selection on desorption kinetics.

  20. Changes induced on the surfaces of small Pd clusters by the thermal desorption of CO

    NASA Technical Reports Server (NTRS)

    Doering, D. L.; Poppa, H.; Dickinson, J. T.

    1980-01-01

    The stability and adsorption/desorption properties of supported Pd crystallites less than 5 nm in size were studied by Auger electron spectroscopy and repeated flash thermal desorption of CO. The Pd particles were grown epitaxially on heat-treated, UHV-cleaved mica at a substrate temperature of 300 C and a Pd impingement flux of 10 to the 13th atoms/sq cm s. Auger analysis allowed in situ measurement of relative particle dispersion and contamination, while FTD monitored the CO desorption properties. The results show that significant changes in the adsorption properties can be detected. Changes in the Pd Auger signal and the desorption spectrum during the first few thermal cycles are due to particle coalescence and facetting and the rate of this change is dependent on the temperature and duration of the desorption. Significant reductions in the amplitude of the desorptions peak occur during successive CO desorptions which are attributed to increases of surface carbon, induced by the desorption of CO. The contamination process could be reversed by heat treatment in oxygen or hydrogen

  1. [Desorption behaviors of 4-nitrophenol on hyper-cross-linked polymer resin NDA-701].

    PubMed

    Hong, Chang-hong; Huang, Ben-sheng; Qiu, Jing; Zhang, Wei-ming

    2011-05-01

    Desorption behaviors of loaded 4-nitrophenol (4-NP) on hyper-cross-linked polymer resin NDA-701 were studied. The molar ratio of NaOH and 4-NP desorbed (M(NAOH/4-NP)) selection experiments were carried out at two different reaction temperature(303 K and 333 K). Desorption kinetics characteristic of4-NP on NDA-701 in the batch and fixed-bed mode were examined at different reaction temperature and M(NaOH/4-NP) values. The results showed that optimal M(NaOH/4-NP) values were 1.2 and 100% 4-NP could be desorbed from NDA-701 at two different temperature. When the M(NaOH/4-NP) was lower than 1.2, the desorption efficiency increases with the increase of temperature, but the function of temperature decrease with increasing of M(NaH/4-NP) values for desorption ratio. The information indicated that desorption thermodynamic characteristic of NDA-701 was controlled by M(NaOH/4-NP) values. Desorption kinetics in the alkaline system can be well described by pseudo-second-order kinetic model, and desorption rate is increased with the increase of desorption temperatures, the k2 value increase from 0.010 g x (mmol x min)(-1) to 0.035 g x (mmol x min)(-1) when desorption temperature increase from 303 K to 333 K. Nevertheless, higher M(NaOH/4-NP) values could not promote desorption rate if only M(NaOH/4-NP) value was larger than the optimal molar ratio of NaOH and 4-NP. When M(NaOH/4-NP) values increase from 1.2 to 5.0, the k2 value increase from 0.038 g x (mmol x min)(-1) to 0.044 g x (mmol x min)(-1) merely at 333 K. the results indicated that desorption kinetic characteristic of NDA-701 was controlled by temperature. NDA-701 can be completely recovered using 2 times Bed Volume of 2% NaOH solution at the temperature of 333 K, comparing with field application, implying that more energy and cost can be saved in comparison with the actual desorption process in the industry. PMID:21780596

  2. Adsorption, Desorption, and Displacement Kinetics of H2O and CO2 on TiO2(110)

    SciTech Connect

    Smith, R. Scott; Li, Zhenjun; Chen, Long; Dohnalek, Zdenek; Kay, Bruce D.

    2014-07-17

    The adsorption, desorption, and displacement kinetics of H2O and CO2 on TiO2(110) are investigated using temperature programmed desorption (TPD) and molecular beam techniques. The TPD spectra for both H2O and CO2 have well-resolved peaks corresponding to desorption from bridge-bonded oxygen (BBO), Ti, and oxygen vacancies (VO) sites in order of increasing peak temperature. Analysis of the saturated monolayer peak for both species reveals that the corresponding adsorption energies on all sites are greater for H2O and for CO2. Sequential dosing of H2O and CO2 reveals that, independent of the dose order, H2O molecules will displace CO2 in order to occupy the highest energy binding sites available. Isothermal experiments show that the displacement of CO2 by H2O occurs between 75 and 80 K. Further analysis shows that a ratio of 4 H2O to 3 CO2 molecules is needed to displace CO2 from the TiO2(110) surface.

  3. Progress in BNL High-Temperature Hydrogen Combustion Research Program

    SciTech Connect

    Ciccarelli, G.; Ginsberg, T.; Boccio, J.; Curtiss, J.; Economos, C.; Jahelka, J.; Sato, K.

    1992-01-01

    The objectives of the BNL High-Temperature Hydrogen Combustion Research Program are discussed. The experimental facilities are described and two sets of preliminary experiments are presented. Chemical reaction time experiments have been performed to determine the length of time reactive mixtures of interest can be kept at temperature before reaction in the absence of ignition sources consumes the reactants. Preliminary observations are presented for temperatures in the range 588K--700K. Detonation experiments are described in which detonation cell width is measured as a measure of mixture sensitivity to detonation. Preliminary experiments are described which are being carried out to establish data reproducibility with previous measurements in the literature and to test out and refine experimental methods. Intensive studies of hydrogen combustion phenomena were carried out during the 1980s. Much of this effort was driven by issues related to nuclear reactor safety. The high-speed'' combustion phenomena of flame acceleration, deflagration-to-detonation transition, direct initiation of detonation, detonation propagation, limits of detonation in tubes and channels, transmission of detonations from confined to unconfined geometry and other related phenomena were studied using a variety of gaseous fuel-oxidant systems, including hydrogen-steam-air systems of interest in reactor safety studies. Several reviews are available which document this work [Lee, 1989; Berman, 1986].

  4. Progress in BNL High-Temperature Hydrogen Combustion Research Program

    SciTech Connect

    Ciccarelli, G.; Ginsberg, T.; Boccio, J.; Curtiss, J.; Economos, C.; Jahelka, J.; Sato, K.

    1992-12-31

    The objectives of the BNL High-Temperature Hydrogen Combustion Research Program are discussed. The experimental facilities are described and two sets of preliminary experiments are presented. Chemical reaction time experiments have been performed to determine the length of time reactive mixtures of interest can be kept at temperature before reaction in the absence of ignition sources consumes the reactants. Preliminary observations are presented for temperatures in the range 588K--700K. Detonation experiments are described in which detonation cell width is measured as a measure of mixture sensitivity to detonation. Preliminary experiments are described which are being carried out to establish data reproducibility with previous measurements in the literature and to test out and refine experimental methods. Intensive studies of hydrogen combustion phenomena were carried out during the 1980s. Much of this effort was driven by issues related to nuclear reactor safety. The ``high-speed`` combustion phenomena of flame acceleration, deflagration-to-detonation transition, direct initiation of detonation, detonation propagation, limits of detonation in tubes and channels, transmission of detonations from confined to unconfined geometry and other related phenomena were studied using a variety of gaseous fuel-oxidant systems, including hydrogen-steam-air systems of interest in reactor safety studies. Several reviews are available which document this work [Lee, 1989; Berman, 1986].

  5. DEUTERIUM, TRITIUM, AND HELIUM DESORPTION FROM AGED TITANIUM TRITIDES. PART II.

    SciTech Connect

    Shanahan, K; Jeffrey Holder, J

    2006-08-17

    Six new samples of tritium-aged bulk titanium have been examined by thermal desorption and isotope exchange chemistry. The discovery of a lower temperature hydrogen desorption state in these materials, previously reported, has been confirmed in one of the new samples. The helium release of the samples shows the more severe effects obtained from longer aging periods, i.e. higher initial He/M ratios. Several of the more aged samples were spontaneously releasing helium. Part I discussed the new results on the new lower temperature hydrogen desorption state found in one more extensively studied sample. Part II will discuss the hydrogen/helium release behavior of the remaining samples.

  6. A study of the kinetics of isothermal nicotine desorption from silicon dioxide

    NASA Astrophysics Data System (ADS)

    Adnadjevic, Borivoj; Lazarevic, Natasa; Jovanovic, Jelena

    2010-12-01

    The isothermal kinetics of nicotine desorption from silicon dioxide (SiO 2) was investigated. The isothermal thermogravimetric curves of nicotine at temperatures of 115 °C, 130 °C and 152 °C were recorded. The kinetic parameters ( Ea, ln A) of desorption of nicotine were calculated using various methods (stationary point, model constants and differential isoconversion method). By applying the "model-fitting" method, it was found that the kinetic model of nicotine desorption from silicon dioxide was a phase boundary controlled reaction (contracting volume). The values of the kinetic parameters, Ea,? and ln A?, complexly change with changing degree of desorption and a compensation effect exists. A new mechanism of activation for the desorption of the absorbed molecules of nicotine was suggested in agreement with model of selective energy transfer.

  7. OTEC gas-desorption studies

    SciTech Connect

    Chen, F.C.; Golshani, A.

    1981-01-01

    OTEC gas desorption studies were initiated with the goal of mitigating these effects and were carried out in four areas: (1) vacuum deaeration in a packed column, (2) deaeration in a barometric water intake system, (3) noncondensibles disposal through hydraulic air compression, and (4) OTEC deaeration subsystems' analysis. Laboratory experiments to date have completed the vacuum deaeration test of three different kinds of packings, barometric intake deaeration experiments, and a series of hydraulic air compression tests. Preliminary analyses based on the experimental data have shown that, as compared to the previous baseline study, reduction both in deaerator cost and pumping power can be realized with a combination of barometric intake and packed column deaeration. The design and operation of the gas desorption test loop, experimental and computer simulation results obtained, and an analysis of OTEC deaeration subsystem design based on the test results and their implication on OTEC open-cycle power systems are presented.

  8. Effect of carboxylic and thiol ligands (oxalate, cysteine) on the kinetics of desorption of Hg(II) from kaolinite

    SciTech Connect

    Senevirathna, W. U.; Zhang, Hong; Gu, Baohua

    2010-01-01

    Sorption and desorption of Hg(II) on clay minerals can impact the biogeochemical cycle and bio-uptake of Hg in the environment. We studied the kinetics of the desorption of Hg(II) from kaolinite as affected by oxalate and cysteine, representing the ligands with carboxylic and thiol groups of different affinities for Hg(II). The effects of pH (3, 5, and 7), ligand concentration (0.25 and 1.0 mM), and temperature (15 C, 25 C, and 35 C) on the Hg(II) desorption were investigated through desorption kinetics. Our study showed that the Hg(II) desorption was pH dependent. In the absence of any organic ligand, >90% of the previously adsorbed Hg(II) desorbed at pH 3 within 2 h, compared to <10% at pH 7. Similar results were observed in the presence of oxalate, showing that it hardly affected the Hg(II) desorption. Cysteine inhibited the Hg(II) desorption significantly at all the pH tested, especially in the first 80 min with the desorption less than 20%, but the inhibition of the desorption appeared to be less prominent afterwards. The effect of the ligand concentration on the Hg(II) desorption was small, especially in the presence of oxalate. The effect of temperature on the Hg(II) desorption was nearly insignificant. The effect of the organic acids on the Hg(II) sorption and desorption is explained by the formation of the ternary surface complexes involving the mineral, ligand, and Hg(II). The competition for Hg(II) between the cysteine molecules adsorbed on the particle surfaces and in the solution phase probably can also affect the Hg(II) desorption.

  9. Thermal Desorption of Sodium Atoms from Thin SiO2 Films

    NASA Astrophysics Data System (ADS)

    Yakshinskiy, B. V.; Madey, T. E.; Ageev, V. N.

    The adsorption and thermal desorption of Na from thin SiO2 films have been studied. X-ray photoelectron spectroscopy (XPS), angle-resolved XPS (ARXPS), low energy ion scattering (LEIS), temperature-programmed desorption (TPD), low energy electron diffraction (LEED) and work function measurements have been used to characterize the growth mechanism and properties of stoichiometric SiO2 films deposited onto a Re (0001) substrate. Upon deposition of Na onto SiO2 at 250 K, the first monolayer of Na exhibits ionic character, and evidence of metallic Na (plasmon features in XPS) is observed for higher coverages. TPD spectra for Na from SiO2 include a monolayer peak at ~700 K, and the multilayer peak due to sublimation of bulk Na at ~330 K. Penetration of Na into SiO2 can be induced by heating, or by He ion bombardment of a Na/SiO2 layer. The sticking probability for Na on SiO2 is ~0.5 at 250 K, and it decreases at higher substrate temperatures.

  10. Candida guilliermondii and other species of candida misidentified as Candida famata: assessment by vitek 2, DNA sequencing analysis, and matrix-assisted laser desorption ionization-time of flight mass spectrometry in two global antifungal surveillance programs.

    PubMed

    Castanheira, Mariana; Woosley, Leah N; Diekema, Daniel J; Jones, Ronald N; Pfaller, Michael A

    2013-01-01

    Candida famata (teleomorph Debaryomyces hansenii) has been described as a medically relevant yeast, and this species has been included in many commercial identification systems that are currently used in clinical laboratories. Among 53 strains collected during the SENTRY and ARTEMIS surveillance programs and previously identified as C. famata (includes all submitted strains with this identification) by a variety of commercial methods (Vitek, MicroScan, API, and AuxaColor), DNA sequencing methods demonstrated that 19 strains were C. guilliermondii, 14 were C. parapsilosis, 5 were C. lusitaniae, 4 were C. albicans, and 3 were C. tropicalis, and five isolates belonged to other Candida species (two C. fermentati and one each C. intermedia, C. pelliculosa, and Pichia fabianni). Additionally, three misidentified C. famata strains were correctly identified as Kodomaea ohmeri, Debaryomyces nepalensis, and Debaryomyces fabryi using intergenic transcribed spacer (ITS) and/or intergenic spacer (IGS) sequencing. The Vitek 2 system identified three isolates with high confidence to be C. famata and another 15 with low confidence between C. famata and C. guilliermondii or C. parapsilosis, displaying only 56.6% agreement with DNA sequencing results. Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) results displayed 81.1% agreement with DNA sequencing. One strain each of C. metapsilosis, C. fermentati, and C. intermedia demonstrated a low score for identification (<2.0) in the MALDI Biotyper. K. ohmeri, D. nepalensis, and D. fabryi identified by DNA sequencing in this study were not in the current database for the MALDI Biotyper. These results suggest that the occurrence of C. famata in fungal infections is much lower than previously appreciated and that commercial systems do not produce accurate identifications except for the newly introduced MALDI-TOF instruments. PMID:23100350

  11. Air separation with temperature and pressure swing

    DOEpatents

    Cassano, Anthony A. (Allentown, PA)

    1986-01-01

    A chemical absorbent air separation process is set forth which uses a temperature swing absorption-desorption cycle in combination with a pressure swing wherein the pressure is elevated in the desorption stage of the process.

  12. Low-Temperature Geothermal Resources, Geothermal Technologies Program (GTP) (Fact Sheet)

    SciTech Connect

    Not Available

    2010-05-01

    This document highlights the applications of low-temperature geothermal resources and the potential for future uses as well as current Geothermal Technologies Program-funded projects related to low-temperature resources.

  13. Chemical desorption and diffusive dust chemistry

    NASA Astrophysics Data System (ADS)

    Dulieu, Francois; Pirronello, Valerio; Minissale, Marco; Congiu, Emanuele; Baouche, Saoud; Chaabouni, Henda; Moudens, Audrey; Accolla, Mario; Cazaux, Stephanie; Manicò, Giulio

    In molecular clouds, gaseous species can accrete efficiently on the cold surfaces of dust grains. As for radical-radical reactions, the surface of the grains acts as a third body, and changes dramatically the efficiency of the reactions (i.e., H2 formation), or lowers considerably the barrier to formation (i.e., H2O synthesis) in comparison with gas phase reaction processes. These properties make dust grains efficient catalytic templates. However, the chemical role of dust grains depends on the diffusive properties of the reactive partners. Over the last years, we have developed experimental tools and methods to explore the chemistry occurring on cold (6-50K) surfaces. We have obtained some hints about the diffusivity of H on amorphous ice, and studied in detail the diffusion of O atoms. The latter species appears to have a hopping rate in the range 0.01-100 hops/sec. The diffusion rate of O atoms is dependent on the surface morphology and on the surface temperature. The diffusion law is compatible with a diffusion dominated by quantum tunnelling rather than classical thermal hopping. Using H, O, N atoms and, indirectly, OH and HCO radicals, we have begun to explore many chemical reactive networks. In this presentation, I will focus on the formation of H2O and CO2, and will propose many possible formation routes to obtain these chemical traps. The molecules formed on surfaces have a certain probability of desorbing upon their formation. This non-thermal desorption mechanism, or chemical desorption, has been proposed to explain why some molecules can be detected in the gas phase of those region where they were believed to be part of the icy mantles covering dust grains. We have shown that this process can be very efficient, but is very sensitive to the substrate and the surroundings of the reaction site, is dependent on the kind of molecule formed and its chemical pathway. In my presentation I will present how the surface coverage and the type of reaction can play a major role in the chemical desorption process. I will discuss of possible key parameters that rule this process.

  14. Isothermal measurement and thermal desorption using SAW devices

    NASA Astrophysics Data System (ADS)

    Martin, S. J.; Ricco, A. J.; Zipperian, T. E.

    The conventional implementation of surface acoustic wave (SAW) devices is departed from as gas sensors to describe how they may be used to measure adsorption isotherms and to perform thermal desorption spectroscopy. Adsorption isotherms are measurements, made at constant temperature, of surface coverage as a function of gas or vapor partial pressure for the species of interest. It was shown that by incorporating a heater as an integral part of a SAW device, a sensor can be constructed which is capable of measuring thermal desorption spectra. A greater spread in the temperatures at which molecules are desorbed, and thus greater discrimination between species, could be obtained by using coatings which form stronger chemical bonds rather than relying on physisorption.

  15. Organic solvent desorption from two tegafur polymorphs.

    PubMed

    Bobrovs, Raitis; Acti?š, Andris

    2013-11-30

    Desorption behavior of 8 different solvents from ? and ? tegafur (5-fluoro-1-(tetrahydro-2-furyl)uracil) has been studied in this work. Solvent desorption from samples stored at 95% and 50% relative solvent vapor pressure was studied in isothermal conditions at 30 °C. The results of this study demonstrated that: solvent desorption rate did not differ significantly for both phases; solvent desorption in all cases occurred faster from samples with the largest particle size; and solvent desorption in most cases occurred in two steps. Structure differences and their surface properties were not of great importance on the solvent desorption rates because the main factor affecting desorption rate was sample particle size and sample morphology. Inspection of the structure packing showed that solvent desorption rate and amount of solvent adsorbed were mainly affected by surface molecule arrangement and ability to form short contacts between solvent molecule electron donor groups and freely accessible tegafur tetrahydrofuran group hydrogens, as well as between solvents molecule proton donor groups and fluorouracil ring carbonyl and fluoro groups. Solvent desorption rates of acetone, acetonitrile, ethyl acetate and tetrahydrofuran multilayers from ? and ? tegafur were approximately 30 times higher than those of solvent monolayers. Scanning electron micrographs showed that sample storage in solvent vapor atmosphere promotes small tegafur particles recrystallization to larger particles. PMID:24060368

  16. Tritium release and trapping in austenitic stainless steels: Role of microstructure and desorption anneal

    SciTech Connect

    Chene, J.

    2008-07-15

    The behavior of hydrogen and its isotopes in materials is a major concern in future nuclear systems both for the predictive analysis of the role of H, D, T in the environmental degradation of structural materials, for the confinement and inventory of tritium, and for the management of tritiated wastes. This study is focused on the characterization of the effect of the alloy microstructure, of desorption anneal and of oxide films on the tritium behavior (desorption kinetics, trapping, residual concentration) in various austenitic stainless steels. Different techniques (high temperature extraction of hydrogen, beta counting of tritium in massive samples) were used to study: the tritium absorption and desorption in several stainless steels, the role of the annealing conditions (temperature/time) on the tritium residual concentration and desorption flow, and the role of microstructural defects and of oxide films on the diffusion and trapping of tritium. (authors)

  17. The Generation of Surface-bound Exospheres via Electron-Stimulated Desorption (and Related Phenomena): Results from Apollo samples and Hermian Regolith Simulants

    NASA Astrophysics Data System (ADS)

    Bennett, C.; Poston, M.; McLain, J. L.; Orlando, T. M.

    2014-12-01

    The generation of surface-bound exospheres present around the Moon, Mercury and other airless rocky bodies are produced primarily by the interaction of micrometeoroid impacts and charged particles from the solar wind, and magnetospheres with those surfaces. While the study of the interactions of both micrometeoroids and ion sputtering are well investigated, the contributions arising from energetic electron interactions are typically less-well established. Observations from the Fast Imaging Plasma Spectrometer (FIPS), taken < 400 km from the surface, have shown a plasma cusp with energetic heavy ions (i.e. Na+- and O+-groups) for which the source has not been determined. However, the precipitation of keV electrons onto the surfaces of Mercury has recently been inferred from measurements using the X-Ray Spectrometer (XRS) instrument onboard the MESSENGER spacecraft observations of the night-side of Mercury. A newly developed global kinetic transport model suggests that electron-stimulated desorption (ESD), and possibly light ion stimulated desorption (ISD), can directly yield ions that can be transported and dynamically accelerated to the plasma cusp regions observed by FIPS. In addition, keV electrons and ions from the solar wind and Earth's magnetosphere frequently bombard with the lunar surface. Here, we present some of the most recent results from our ongoing work studying the effects of photon-stimulated desorption (PSD), ion-stimulated desorption (ISD) and implantation, as well as electron-stimulated desorption (ESD). Apollo samples collected from both the lunar highland and Mare regions, as well as simulants of the Mercury Regolith have been investigated. The temperature- (100-600 K) and energy-dependence (threshold - 2 keV) of ESD time-of-flight (ToF) results will be presented for these materials along with some preliminary results from our group based on photon-desorption studies of water on lunar material, temperature-programmed desorption (TPD) studies of water covered regolith and dusts, as well as the effects of ion implantation/sputtering using keV H+ ions on ESD-ToF results. The implications of these results in the context of current observations will be discussed.

  18. On gas desorption from the tokamak first wall during edge localized modes

    SciTech Connect

    Marenkov, E. D.; Smirnov, R. D.; Krasheninnikov, S. I.

    2013-11-15

    The effect of gas desorption from the tokamak first wall on the pedestal recovery in the H-mode after an edge-localized-mode burst is considered. Results of FACE code simulations of hydrogen desorption from a beryllium wall are presented. It is found that the wall has a significant effect on plasma processes only at sufficiently low temperatures (of about 400 K), which agrees with qualitative estimates obtained earlier in the zero-dimensional approximation.

  19. Adsorption, Desorption, and Clustering H20 on Pt (111)

    SciTech Connect

    Daschbach, John L.; Peden, Brandon M.; Smith, R. Scott; Kay, Bruce D.

    2004-01-15

    The adsorption, desorption, and clustering behavior of H20 on Pt(111) has been investigated by specular He scattering. The data show that water adsorbed on a clean Pt(111) surface undergoes a transition from a random to a clustered structure near 60 K. The initial helium scattering cross sections as a function of temperature are found to be insensitive to H20 flux over a range of 0.005 ML/s to 0.55 ML/s indicating the clustering process is more complex than simple surface diffusion. The coarsening process of an initially random distribution of water deposited at 25 K is found to occur over a broad temperature range, 60 K< T <140 K, during thermal annealing. The desorption kinetics for submonolayer water are determined to be zero-order for surface coverages greater than 0.05 ML and temperatures between 150 K and 174 K. The zero-order desorption kinetics are consistent with a two-dimensional two-phase coexistence between H2O condensed phase and a 2-gas phase on the Pt surface

  20. Simple sample transfer technique by internally expanded desorptive flow for needle trap devices.

    PubMed

    Eom, In-Yong; Pawliszyn, Janusz

    2008-07-01

    Needle trap devices (NTDs) are improving in simplicity and usefulness for sampling volatile organic compounds (VOCs) since their first introduction in early 2000s. Three different sample transfer methods have been reported for NTDs to date. All methods use thermal desorption and simultaneously provide desorptive flow to transfer desorbed VOCs into a GC separation column. For NTDs having 'side holes', GC carrier gas enters a 'side hole' and passes through sorbent particles to carry desorbed VOCs, while for NTD not having a 'side hole', clean air as desorptive flow can be provided through a needle head by a air tight syringe to sweep out desorbed VOCs or water vapor has been reported recently to be used as desorptive flow. We report here a new simple sample transfer technique for NTDs, in which no side holes and an external desorptive flow are required. When an NTD enriched by a mixture of benzene, toluene, ethylbenzene, and xylene (BTEX) or n-alkane mixture (C6-C15) is exposed to the hot zone of GC injector, the expanding air above the packed sorbent transfers the desorbed compounds from the sorbent to the GC column. This internal air expansion results in clean and sharp desorption profiles for BTEX and n-alkane mixture with no carryover. The effect of desorption temperature, desorption time, and overhead volumes was studied. Decane having vapor pressure of approximately 1 Torr at 20 degrees C showed approximately 1% carryover at the moderate thermal desorption condition (0.5 min at 250 degrees C). PMID:18563760

  1. Energetic particle induced desorption of water vapor cryo-condensate

    SciTech Connect

    Menon, M.M.; Owen, L.W.; Simpkins, J.E.; Uckan, T.; Mioduszewski, P.K.

    1990-01-01

    An in-vessel cryo-condensation pump is being designed for the Advanced Divertor configuration of the DIII-D tokamak. To assess the importance of possible desorption of water vapor from the cryogenic surfaces of the pump due to impingement of energetic particles from the plasma, a 77 K surface on which a thin layer of water vapor was condensed was exposed to a tenuous plasma (density = 2 {times} 10{sup 10} cm{sup {minus}3}, electron temperature = 3 eV). Significant desorption of the condensate occurred, suggesting that impingement of energeticparticles (10 eV) at flux levels of {approximately}10{sup 16} cm{sup 2}s{sup {minus}1} on cryogenic surfaces could potentially induce impurity problems in the tokamak plasma. A pumping configuration is presented in which this problem is minimized without sacrificing the pumping speed.

  2. Hydrogen absorption-desorption properties of U 2Ti

    NASA Astrophysics Data System (ADS)

    Takuya, Yamamoto; Satoru, Tanaka; Michio, Yamawaki

    1990-02-01

    Hydrogen absorption-desorption properties of U 2Ti intermetallic compound was examined over the temperature range of 298 to 973 K and at hydrogen pressures below 10 5 Pa. It absorbs hydrogen up to 7.6 atoms per F.U. (formula unit) by two step reactions and hence each desorption isotherm is separated into two plateau regions. In the first plateau, a newly-found ternary hydride is formed, where the hydrogen concentration, cH, reaches 2.4 H atoms/F.U. In the second plateau, UH 3 is formed and cH reaches 7.6 H atoms/F.U. The specimen is disintegrated into fine powder in the second plateau, while in the first plateau the ternary hydride which was identified to be UTi 2H x, ( x = 4.8 to 6.2) showed high durability against powdering. It is predicted that UTi 2 can be suitable material for tritium storage.

  3. The desorption of toluene from a montmorillonite clay adsorbent in a rotary kiln environment

    SciTech Connect

    Owens, W.D.; Silcox, G.D.; Lighty, J.S.; Xiao Xue Deng; Pershing, D.W. ); Cundy, V.A.; Leger, C.B.; Jakway, A.L. )

    1992-05-01

    The vaporization of toluene from pre-dried, 3 mm montmorillonite clay particles was studied in a 130 kW pilot-scale rotary kiln with inside dimensions of 0.61 by 0.61 meters. Vaporization rates were obtained with a toluene weight fraction of 0.25 percent as a function of kiln fill fractions from 3 to 8 percent, rotation rates from 0.1 to 0.9 rpm, and kiln wall temperatures from 189 to 793 C. Toluene desorption rates were obtained from gas-phase measurements and interpreted using a desorption model that incorporates the slumping frequency of the solids, the fill fraction of the kiln, the diffusion of toluene in the bed, and the rate of particle desorption using an Arrhenius-type expression that is a function of bed temperature and average bed concentration. The model included three adjustable desorption parameters which were obtained by fitting the experimental data at one set of conditions with a least squares technique. Solid and kiln-wall temperatures were continuously recorded and used in the model at predicting the effects of fill fraction and rotation rate over a range of temperatures. A methodology for predicting full-scale performance was developed. Full-scale toluene desorption predictions were completed for different operating temperatures.

  4. Material evaluation program, high-temperature nitriding environment

    NASA Technical Reports Server (NTRS)

    Marcy, R. D.

    1973-01-01

    Results of a program conducted to evaluate materials for construction of a space shuttle hydrazine monopropellant gas generator are presented. The program was designed to select those materials that maintain the properties of strength and ductility after exposure to an 1800 F nitriding environment for 1000 hours.

  5. Dosimeter-Type NO[subscript x] Sensing Properties of KMnO[subscript 4] and Its Electrical Conductivity during Temperature Programmed Desorption

    E-print Network

    Groß, Andrea

    An impedimetric NO[subscript x] dosimeter based on the NO[subscript x] sorption material KMnO[subscript 4] is proposed. In addition to its application as a low level NO[subscript x] dosimeter, KMnO[subscript 4] shows ...

  6. Desorption induced by multiple electronic transitions

    NASA Astrophysics Data System (ADS)

    Misewich, J. A.; Heinz, T. F.; Newns, D. M.

    1992-06-01

    A new mechanism is introduced to describe desorption from surfaces under conditions of strong electronic excitation. When repetitive excitations occur within the relaxation time for the adsorbate-surface vibration, the process of desorption induced by multiple electronic transitions may provide an enhancement of orders of magnitude over a single-excitation mechanism. This generalization of the classic Menzel-Gomer-Redhead picture encompasses within one formalism both single-excitation processes and a thermal limit. The mechanism may be operative in desorption by femtosecond laser pulses.

  7. Oregon Low-Temperature-Resource Assessment Program. Final technical report

    SciTech Connect

    Priest, G.R.; Black, G.L.; Woller, N.M.

    1981-01-01

    Numerous low-temperature hydrothermal systems are available for exploitation throughout the Cascades and eastern Oregon. All of these areas have heat flow significantly higher than crustal averages and many thermal aquifers. In northeastern Oregon, low temperature geothermal resources are controlled by regional stratigraphic aquifers of the Columbia River Basalt Group at shallow depths and possibly by faults at greater depths. In southeastern Oregon most hydrothermal systems are of higher temperature than those of northeastern Oregon and are controlled by high-angle fault zones and layered volcanic aquifers. The Cascades have very high heat flow but few large population centers. Direct use potential in the Cascades is therefore limited, except possibly in the cities of Oakridge and Ashland, where load may be great enough to stimulate development. Absence of large population centers also inhibits initial low temperature geothermal development in eastern Oregon. It may be that uses for the abundant low temperature geothermal resources of the state will have to be found which do not require large nearby population centers. One promising use is generation of electricity from freon-based biphase electrical generators. These generators will be installed on wells at Vale and Lakeview in the summer of 1982 to evaluate their potential use on geothermal waters with temperatures as low as 80/sup 0/C (176/sup 0/F).

  8. Temperature-programmed microwave-assisted synthesis of SBA-15 ordered mesoporous silica.

    PubMed

    Celer, Ewa B; Jaroniec, Mietek

    2006-11-01

    The currently available microwave technology permits the development and implementation of a temperature-programmed microwave-assisted synthesis (TPMS) of ordered mesoporous silicas (OMSs). Unlike in previously reported syntheses of OMSs, in which only the final hydrothermal treatment was carried out under microwave irradiation, this work takes advantage of the existing capabilities of modern microwave systems to program the temperature and time for the entire synthesis of these materials. To demonstrate the flexibility of the proposed microwave-assisted synthesis, besides programming two consecutive steps involving initial stirring of the gel at a lower temperature and static hydrothermal treatment at a higher temperature, we explored the possibility of temperature programming of the latter step. A major advantage of microwave technology is the feasibility of temperature and time programming, which has been demonstrated by the synthesis of one of the most popular OMSs, SBA-15, over an unprecedented range of temperatures from 40 to 200 degrees C. Since the synthesis of OMSs has not yet been explored and reported at temperatures exceeding 150 degrees C, this work is focused on the SBA-15 samples prepared at higher temperatures (such as 160, 180, and even 200 degrees C). These SBA-15 samples show better thermal stability than those synthesized at commonly used temperatures either under conventional or microwave conditions. Moreover, a partial decomposition of the template during high-temperature microwave-assisted syntheses does not compromise the formation of well-ordered SBA-15 materials. This study shows that the simplicity and capability of temperature and time programming in TPMS allows one not only to tune the adsorption and structural properties of OMSs but also to easily screen a wide range of conditions in order to optimize and scale-up their preparation as well as to significantly reduce the time of synthesis from days to hours. PMID:17076515

  9. Interaction of Acetone with Single Wall Carbon Nanotubes at Cryogenic Temperatures: A Combined Temperature Programmed

    E-print Network

    Borguet, Eric

    Interaction of Acetone with Single Wall Carbon Nanotubes at Cryogenic Temperatures: A Combined. Introduction Carbon materials are of interest for fundamental science and technological applications.1 After

  10. Thermal desorption of PCB-contaminated soil with sodium hydroxide.

    PubMed

    Liu, Jie; Qi, Zhifu; Zhao, Zhonghua; Li, Xiaodong; Buekens, Alfons; Yan, Jianhua; Ni, Mingjiang

    2015-12-01

    The thermal desorption was combined with sodium hydroxide to remediate polychlorinated biphenyl (PCB)-contaminated soil. The experiments were conducted at different temperatures ranging from 300 to 600 °C with three NaOH contents of 0.1, 0.5, and 1 %. The results showed that thermal desorption was effective for PCB removal, destruction, and detoxication, and the presence of NaOH enhanced the process by significant dechlorination. After treatment with 0.1 % NaOH, the removal efficiency (RE) increased from 84.8 % at 300 °C to 98.0 % at 600 °C, corresponding to 72.7 and 91.7 % of destruction efficiency (DE). With 1 % NaOH content treated at 600 °C, the RE and DE were 99.0 and 93.6 %, respectively. The effect of NaOH content on PCB removal was significant, especially at lower temperature, yet it weakened under higher temperature. The interaction between NaOH content and temperature influenced the PCB composition. The higher temperature with the help of NaOH effectively increased the RE and DE of 12 dioxin-like PCBs (based on WHO-TEQ). PMID:26263886

  11. Enhanced thermal desorption -- Facile removal of PCBs from contaminated soils

    SciTech Connect

    Krabbenhoft, H.O.; Webb, J.L.; Gascoyne, D.G.

    1995-12-31

    The use of certain organic and inorganic materials, when admixed with soils contaminated with polychlorinated biphenyls (PCBs), greatly facilitates the removal of the PCBs by means of an ex situ thermal desorption process. Thus, for example, heating a soil (with an initial PCB concentration of {approximately}700 ppm A-1260) from 25 C to 300 C over a 30-minute period provided remediated soil with a residual PCB level of 53 ppm (92.4% PCB removal). When the experiment was repeated using a sweep of steam (corresponding to a water delivery rate of 1.0 mL/min), the residual PCB level was 10 ppm (98.6% PCB removal). And when steam was passed through the soil admixed with 5% sodium formate, the residual PCB level was only 0.9 ppm (99.9% PCB removal). Several other additives (such as sodium acetate, ammonium carbamate, formic acid) have been shown to be efficacious for enhanced PCB removal via thermal desorption. A design of experiments study was carried out to optimize the process parameters of temperature, time, additive level, and steam flow. A logarithmic transformation of the data afforded a mathematical model (correlation coefficient 0.96) that allows one to employ the enhanced thermal desorption process in a cost-effective manner to remediate contaminated soil (with an initial PCB level of {approximately}8,000 ppm A-1260) such that residual PCB levels of {<=}2 ppm (99.98% PCB removal) are routinely achieved.

  12. Plasma Desorption Mass Spectrometry: Coming of Age.

    ERIC Educational Resources Information Center

    Cotter, Robert J.

    1988-01-01

    Discusses the history and development of Plasma Desorption Mass Spectrometry to determine molecular weights and structures of proteins and polymers. Outlines theory, instrumentation, and sample preparation commonly used. Gives several examples of resulting spectra. (ML)

  13. Low-temperature resource assessment program. Final report

    SciTech Connect

    Lienau, P.J.; Ross, H.

    1996-02-01

    The US Department of Energy - Geothermal Division (DOE/GD) recently sponsored the Low-Temperature Resource Assessment project to update the inventory of the nation`s low- and moderate-temperature geothermal resources and to encourage development of these resources. A database of 8,977 thermal wells and springs that are in the temperature range of 20{degrees}C to 150{degrees}C has been compiled for ten western states, an impressive increase of 82% compared to the previous assessments. The database includes location, descriptive data, physical parameters, water chemistry and references for sources of data. Computer-generated maps are also available for each state. State Teams have identified 48 high-priority areas for near-term comprehensive resource studies and development. Resources with temperatures greater than 50{degrees}C located within 8 km of a population center were identified for 271 collocated cities. Geothermal energy cost evaluation software has been developed to quickly identify the cost of geothermally supplied heat to these areas in a fashion similar to that used for conventionally fueled heat sources.

  14. High Temperature Materials Laboratory User Program: 19th Annual Report, October 1, 2005 - September 30, 2006

    SciTech Connect

    Pasto, Arvid

    2007-08-01

    Annual Report contains overview of the High Temperature Materials Laboratory User Program and includes selected highlights of user activities for FY2006. Report is submitted to individuals within sponsoring DOE agency and to other interested individuals.

  15. 1992--1993 low-temperature geothermal assessment program, Colorada

    SciTech Connect

    Cappa, J.A.; Hemborg, H.T.

    1995-01-01

    Previous assessments of Colorado`s low-temperature geothermal resources were completed by the Colorado Geological Survey in 1920 and in the mid- to late-1970s. The purpose of the 1992--1993 low-temperature geothermal resource assessment is to update the earlier physical, geochemical, and utilization data and compile computerized databases of the location, chemistry, and general information of the low-temperature geothermal resources in Colorado. The main sources of the data included published data from the Colorado Geological Survey, the US Geological Survey WATSTOR database, and the files of the State Division of Water Resources. The staff of the Colorado Geological Survey in 1992 and 1993 visited most of the known geothermal sources that were recorded as having temperatures greater than 30{degrees}C. Physical measurements of the conductivity, pH, temperature, flow rate, and notes on the current geothermal source utilization were taken. Ten new geochemical analyses were completed on selected geothermal sites. The results of the compilation and field investigations are compiled into the four enclosed Quattro Pro 4 databases. For the purposes of this report a geothermal area is defined as a broad area, usually less than 3 sq mi in size, that may have several wells or springs. A geothermal site is an individual well or spring within a geothermal area. The 1992-1993 assessment reports that there are 93 geothermal areas in the Colorado, up from the 56 reported in 1978; there are 157 geothermal sites up from the 125 reported in 1978; and a total of 382 geochemical analyses are compiled, up from the 236 reported in 1978. Six geothermal areas are recommended for further investigation: Trimble Hot Springs, Orvis Hot Springs, an area southeast of Pagosa Springs, the eastern San Luis Valley, Rico and Dunton area, and Cottonwood Hot Springs.

  16. Photon-stimulated desorption as a substantial source of sodium in the lunar atmosphere.

    PubMed

    Yakshinskiy, B V; Madey, T E

    1999-08-12

    Mercury and the Moon both have tenuous atmospheres that contain atomic sodium and potassium. These chemicals must be continuously resupplied, as neither body can retain the atoms for more than a few hours. The mechanisms proposed to explain the resupply include sputtering of the surface by the solar wind, micrometeorite impacts, thermal desorption and photon-stimulated desorption. But there are few data and no general agreement about which processes dominate. Here we report laboratory studies of photon-stimulated desorption of sodium from surfaces that simulate lunar silicates. We find that bombardment of such surfaces at temperatures of approximately 250 K by ultraviolet photons (wavelength lambda < 300 nm) causes very efficient desorption of sodium atoms, induced by electronic excitations rather than by thermal processes or momentum transfer. The flux at the lunar surface of ultraviolet photons from the Sun is sufficient to ensure that photon-stimulated desorption of sodium contributes substantially to the Moon's atmosphere. On Mercury, solar heating of the surface implies that thermal desorption will also be an important source of atmospheric sodium. PMID:10458159

  17. Film growth, adsorption and desorption kinetics of indigo on SiO2

    NASA Astrophysics Data System (ADS)

    Scherwitzl, Boris; Resel, Roland; Winkler, Adolf

    2014-05-01

    Organic dyes have recently been discovered as promising semiconducting materials, attributable to the formation of hydrogen bonds. In this work, the adsorption and desorption behavior, as well as thin film growth was studied in detail for indigo molecules on silicon dioxide with different substrate treatments. The material was evaporated onto the substrate by means of physical vapor deposition under ultra-high vacuum conditions and was subsequently studied by Thermal Desorption Spectroscopy (TDS), Auger Electron Spectroscopy, X-Ray Diffraction, and Atomic Force Microscopy. TDS revealed initially adsorbed molecules to be strongly bonded on a sputter cleaned surface. After further deposition a formation of dimers is suggested, which de-stabilizes the bonding mechanism to the substrate and leads to a weakly bonded adsorbate. The dimers are highly mobile on the surface until they get incorporated into energetically favourable three-dimensional islands in a dewetting process. The stronger bonding of molecules within those islands could be shown by a higher desorption temperature. On a carbon contaminated surface no strongly bonded molecules appeared initially, weakly bonded monomers rather rearrange into islands at a surface coverage that is equivalent to one third of a monolayer of flat-lying molecules. The sticking coefficient was found to be unity on both substrates. The desorption energies from carbon covered silicon dioxide calculated to 1.67 ± 0.05 eV for multilayer desorption from the islands and 0.84 ± 0.05 eV for monolayer desorption. Corresponding values for desorption from a sputter cleaned surface are 1.53 ± 0.05 eV for multilayer and 0.83 ± 0.05 eV for monolayer desorption.

  18. Film growth, adsorption and desorption kinetics of indigo on SiO{sub 2}

    SciTech Connect

    Scherwitzl, Boris Resel, Roland; Winkler, Adolf

    2014-05-14

    Organic dyes have recently been discovered as promising semiconducting materials, attributable to the formation of hydrogen bonds. In this work, the adsorption and desorption behavior, as well as thin film growth was studied in detail for indigo molecules on silicon dioxide with different substrate treatments. The material was evaporated onto the substrate by means of physical vapor deposition under ultra-high vacuum conditions and was subsequently studied by Thermal Desorption Spectroscopy (TDS), Auger Electron Spectroscopy, X-Ray Diffraction, and Atomic Force Microscopy. TDS revealed initially adsorbed molecules to be strongly bonded on a sputter cleaned surface. After further deposition a formation of dimers is suggested, which de-stabilizes the bonding mechanism to the substrate and leads to a weakly bonded adsorbate. The dimers are highly mobile on the surface until they get incorporated into energetically favourable three-dimensional islands in a dewetting process. The stronger bonding of molecules within those islands could be shown by a higher desorption temperature. On a carbon contaminated surface no strongly bonded molecules appeared initially, weakly bonded monomers rather rearrange into islands at a surface coverage that is equivalent to one third of a monolayer of flat-lying molecules. The sticking coefficient was found to be unity on both substrates. The desorption energies from carbon covered silicon dioxide calculated to 1.67 ± 0.05 eV for multilayer desorption from the islands and 0.84 ± 0.05 eV for monolayer desorption. Corresponding values for desorption from a sputter cleaned surface are 1.53 ± 0.05 eV for multilayer and 0.83 ± 0.05 eV for monolayer desorption.

  19. Laboratory study of sticking and desorption of H2 and its significance in the chemical evolution of dense interstellar medium

    NASA Astrophysics Data System (ADS)

    Acharyya, K.

    2014-09-01

    The temperature-programmed desorption spectra of H2 is recorded under ultrahigh vacuum conditions on an olivine substrate with more than 90 per cent forsterite content for different coverage and temperatures. Then, using an empirical kinetic model, binding energy of H2 on the substrate is found to be 480 ± 10 K (41.36 ± 0.86 meV). Lower limit of sticking coefficient is estimated by comparing gas load at room temperature and at low temperature, which varies between 0.82 and 0.25 for temperatures between 7 and 14 K. Using a gas-grain chemical network, it is found out that a steady state is reached around after 50 yr at 10 K and both the steady-state abundance and time required to attend steady state is a strong function of temperature. Then, this model is used to check the effect of sticking of H2 on the grain surface chemistry. It is found that for H2O, CH4, NH3 and HCN, abundance due to reaction pathways involving H2 is within 1 per cent, when compared with the abundance achieved considering most dominant pathways. Thus, neglecting sticking of H2 will not change overall abundance of these molecules. For carbon chain molecules, it was found that the reaction pathways with H2 may be important and could contribute significantly to account for the observed abundances. Since, sticking of H2 is temperature sensitive, increase in temperature will reduce the effect of these reactions.

  20. Diurnal Soil Temperature Effects within the Globe[R] Program Dataset

    ERIC Educational Resources Information Center

    Witter, Jason D.; Spongberg, Alison L.; Czajkowski, Kevin P.

    2007-01-01

    Long-term collection of soil temperature with depth is important when studying climate change. The international program GLOBE[R] provides an excellent opportunity to collect such data, although currently endorsed temperature collection protocols need to be refined. To enhance data quality, protocol-based methodology and automated data logging,…

  1. Computer program simplifies transient and steady-state temperature prediction for complex body shapes

    NASA Technical Reports Server (NTRS)

    Giebler, K. N.

    1966-01-01

    Computer program evaluates heat transfer modes and calculates either the transient or steady-state temperature distributions throughout an object of complex shape when heat sources are applied to specified points on the object. It uses an electrothermal model to simulate the conductance, heat capacity, and temperature potential of the object.

  2. Quantitative analysis of desorption and decomposition kinetics of formic acid on Cu(111): The importance of hydrogen bonding between adsorbed species.

    PubMed

    Shiozawa, Yuichiro; Koitaya, Takanori; Mukai, Kozo; Yoshimoto, Shinya; Yoshinobu, Jun

    2015-12-21

    Quantitative analysis of desorption and decomposition kinetics of formic acid (HCOOH) on Cu(111) was performed by temperature programmed desorption (TPD), X-ray photoelectron spectroscopy, and time-resolved infrared reflection absorption spectroscopy. The activation energy for desorption is estimated to be 53-75 kJ/mol by the threshold TPD method as a function of coverage. Vibrational spectra of the first layer HCOOH at 155.3 K show that adsorbed molecules form a polymeric structure via the hydrogen bonding network. Adsorbed HCOOH molecules are dissociated gradually into monodentate formate species. The activation energy for the dissociation into monodentate formate species is estimated to be 65.0 kJ/mol at a submonolayer coverage (0.26 molecules/surface Cu atom). The hydrogen bonding between adsorbed HCOOH species plays an important role in the stabilization of HCOOH on Cu(111). The monodentate formate species are stabilized at higher coverages, because of the lack of vacant sites for the bidentate formation. PMID:26696070

  3. Programming Enhancements for Low Temperature Thermal Decomposition Workstation

    SciTech Connect

    Igou, R.E.

    1998-10-01

    This report describes a new control-and-measurement system design for the Oak Ridge Y-12 Plant's Low Temperature Thermal Decomposition (LTTD) process. The new design addresses problems with system reliability stemming from equipment obsolescence and addresses specific functional improvements that plant production personnel have identified, as required. The new design will also support new measurement techniques, which the Y-12 Development Division has identified for future operations. The new techniques will function in concert with the original technique so that process data consistency is maintained.

  4. Fortran computer programs to plot and process aquifer pressure and temperature data

    USGS Publications Warehouse

    Czarnecki, J.B.

    1983-01-01

    Two FORTRAN computer programs have been written to process water-well temperature and pressure data recorded automatically by a datalogger on magnetic tape. These programs process the data into tabular and graphical form. Both programs are presented with documentation. Sample plots of temperature versus time, water levels versus time, aquifer pressure versus log time , log drawdown versus log 1/time, and log drawdown versus log time/radius squared are presented and are obtained using standard CALCOM directives. Drawdown plots may be used directly to obtain aquifer transmissivities and storage coefficients as well as leakance coefficients. (USGS)

  5. Thermal desorption of PCBs from contaminated soil with copper dichloride.

    PubMed

    Liu, Jie; Qi, Zhifu; Li, Xiaodong; Chen, Tong; Buekens, Alfons; Yan, Jianhua; Ni, Mingjiang

    2015-12-01

    Copper dichloride is an important catalyst both in the dechlorination of chlorinated aromatic compounds and the formation of PCDD/Fs. The effect of copper dichloride on polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs), and polychlorinated dibenzofurans (PCDFs) was studied in treated soil and off gas after thermal desorption of PCB-contaminated soil at 300, 400, 500, 600 °C. The presence of copper dichloride clearly enhances thermal desorption by promoting PCBs removal, destruction, and dechlorination. After thermal treatment at 600 °C for 1 h, the removal efficiency and destruction efficiency for PCBs reached 98.1 and 93.9 %, respectively. Compared with the positive influence on PCBs, copper dichloride catalyzed large amount of PCDFs formation at 300 °C, with the concentration ratio of 2.35. The effect of CuCl2 on PCDFs formation weakened with the rising temperature since PCDFs destruction became dominant under higher temperature. Different from PCDFs, PCDDs concentration in treated soil and off gas decreased continuously with the increasing temperature. PMID:26233752

  6. A thermal desorption spectroscopy study of hydrogen trapping in polycrystalline ?-uranium

    SciTech Connect

    Lillard, R. S.; Forsyth, R. T.

    2015-03-14

    The kinetics of hydrogen desorption from polycrystalline ?-uranium (?-U) was examined using thermal desorption spectroscopy (TDS). The goal was to identify the major trap sites for hydrogen and their associated trap energies. In polycrystalline ?-U six TDS adsorption peaks were observed at temperatures of 521 K, 556 K, 607 K, 681 K, 793 K and 905 K. In addition, the desorption was determined to be second order based on peak shape. The position of the first three peaks was consistent with desorption from UH3. To identify the trap site corresponding to the high temperature peaks the data were compared to a plastically deformed sample and a high purity single crystal sample. The plastically deformed sample allowed the identification of trapping at dislocations while the single crystal sample allow for the identification of high angle boundaries and impurities. Thus, with respect to the desorption energy associated with each peak, values between 12.9 and 26.5 kJ/mole were measured.

  7. A thermal desorption spectroscopy study of hydrogen trapping in polycrystalline ?-uranium

    DOE PAGESBeta

    Lillard, R. S.; Forsyth, R. T.

    2015-03-14

    The kinetics of hydrogen desorption from polycrystalline ?-uranium (?-U) was examined using thermal desorption spectroscopy (TDS). The goal was to identify the major trap sites for hydrogen and their associated trap energies. In polycrystalline ?-U six TDS adsorption peaks were observed at temperatures of 521 K, 556 K, 607 K, 681 K, 793 K and 905 K. In addition, the desorption was determined to be second order based on peak shape. The position of the first three peaks was consistent with desorption from UH3. To identify the trap site corresponding to the high temperature peaks the data were compared tomore »a plastically deformed sample and a high purity single crystal sample. The plastically deformed sample allowed the identification of trapping at dislocations while the single crystal sample allow for the identification of high angle boundaries and impurities. Thus, with respect to the desorption energy associated with each peak, values between 12.9 and 26.5 kJ/mole were measured.« less

  8. Flight summaries and temperature climatology at airliner cruise altitudes from GASP (Global Atmospheric Sampling Program) data

    NASA Technical Reports Server (NTRS)

    Nastrom, G. D.; Jasperson, W. H.

    1983-01-01

    Temperature data obtained by the Global Atmospheric Sampling Program (GASP) during the period March 1975 to July 1979 are compiled to form flight summaries of static air temperature and a geographic temperature climatology. The flight summaries include the height and location of the coldest observed temperature and the mean flight level, temperature and the standard deviation of temperature for each flight as well as for flight segments. These summaries are ordered by route and month. The temperature climatology was computed for all statistically independent temperture data for each flight. The grid used consists of 5 deg latitude, 30 deg longitude and 2000 feet vertical resolution from FL270 to FL430 for each month of the year. The number of statistically independent observations, their mean, standard deviation and the empirical 98, 50, 16, 2 and .3 probability percentiles are presented.

  9. THERMTRAJ: A FORTRAN program to compute the trajectory and gas film temperatures of zero pressure balloons

    NASA Technical Reports Server (NTRS)

    Horn, W. J.; Carlson, L. A.

    1983-01-01

    A FORTRAN computer program called THERMTRAJ is presented which can be used to compute the trajectory of high altitude scientific zero pressure balloons from launch through all subsequent phases of the balloon flight. In addition, balloon gas and film temperatures can be computed at every point of the flight. The program has the ability to account for ballasting, changes in cloud cover, variable atmospheric temperature profiles, and both unconditional valving and scheduled valving of the balloon gas. The program was verified for an extensive range of balloon sizes (from 0.5 to 41.47 million cubic feet). Instructions on program usage, listing of the program source deck, input data and printed and plotted output for a verification case are included.

  10. Determination of five booster biocides in seawater by stir bar sorptive extraction-thermal desorption-gas chromatography-mass spectrometry.

    PubMed

    Giráldez, I; Chaguaceda, E; Bujalance, M; Morales, E

    2013-01-01

    Stir bar sorptive extraction (SBSE) and thermal desorption (TD)-gas chromatography-mass spectrometry (GC-MS) have been optimized for the determination of five organic booster biocides (Chlorothalonil, Dichlofluanid, Sea-Nine 211, Irgarol 1051 and TCMTB) in seawater samples. The parameters affecting the desorption and absorption steps were investigated using 10 mL seawater samples. The optimised conditions consisted of an addition of 0.2 g mL(-1) KCl to the sample, which was extracted with 10mm length, 0.5mm film thickness stir bars coated with polydimethylsiloxane (PDMS), and stirred at 900 rpm for 90 min at room temperature (25 °C) in a vial. Desorption was carried out at 280 °C for 5 min under 50 mL min(-1) of helium flow in the splitless mode while maintaining a cryotrapping temperature of 20 °C in the programmed-temperature vaporization (PTV) injector of the GC-MS system. Finally, the PTV injector was ramped to a temperature of 280 °C and the analytes were separated in the GC and detected by MS using the selected-ion monitoring (SIM) mode. The detection limits of booster biocides were found to be in the range of 0.005-0.9 ?g L(-1). The regression coefficients were higher than 0.999 for all analytes. The average recovery was higher than 72% (R.S.D.: 7-15%). All these figures of merit were established running samples in triplicate. This simple, accurate, sensitive and selective analytical method may be used for the determination of trace amounts of booster biocides in water samples from marinas. PMID:23246091

  11. High temperature thermocouple development program, part A and part B

    NASA Technical Reports Server (NTRS)

    Toenshoff, D. A.; Zysk, E. D.; Fleischner, P. L.

    1972-01-01

    The problem of extending the useful life of thermocouples intended for in-core and out-of-core thermionic applications in a vacuum environment at temperatures up to 2273 K for periods of time up to 10,000 hours was investigated. Many factors that may influence this useful life were examined, and a basic probe design was developed. With a few modifications, twenty-three thermocouple assemblies were fabricated. Generally the finished thermocouple consisted of solid doped W-3% Re and W-25% Re wires and high purity and high density BeO insulators, and was sheathed in a high purity tantalum tube. In a few probes, stranded thermocouple wires were substituted; commercial grade BeO was used; and in two cases, CVD W-22% Re tubing was used. Each of the components was made of the highest purity materials available; was subjected to special cleaning steps, and was assembled in a class 10,000 clean room. Pertinent physical and chemical properties were determined on each of the components. Special processing techniques were used in the fabrication of the high purity (99.95%), high density (over 95% of theoretical) BeO.

  12. Desorption of Ag from Grain Boundaries in Ag Film on Br and H-Passivated Si(111) Surfaces

    SciTech Connect

    Roy, Anupam; Batabyal, R.; Mahato, J. C.; Dev, B. N.; Sundaravel, B.

    2011-07-15

    Growth of Ag film on Br- and H-passivated Si(111) surfaces was examined by Rutherford backscattering spectrometry (RBS), scanning electron microscopy (SEM) and photoemission electron microscopy (PEEM) techniques. The phenomenon of thermal grooving was observed after annealing at higher temperatures. Hierarchical desorption of Ag from the grain boundaries produce a fractal structure of Ag-depleted regions. Hierarchical desorption may be used for nanopatterning of the layer.

  13. Adsorption-Desorption Kinetics of Soft Particles

    NASA Astrophysics Data System (ADS)

    Osberg, Brendan; Nuebler, Johannes; Gerland, Ulrich

    2015-08-01

    Adsorption-desorption processes are ubiquitous in physics, chemistry, and biology. Models usually assume hard particles, but within the realm of soft matter physics the adsorbing particles are compressible. A minimal 1D model reveals that softness fundamentally changes the kinetics: Below the desorption time scale, a logarithmic increase of the particle density replaces the usual Rényi jamming plateau, and the subsequent relaxation to equilibrium can be nonmonotonic and much faster than for hard particles. These effects will impact the kinetics of self-assembly and reaction-diffusion processes.

  14. Film growth, adsorption and desorption kinetics of indigo on SiO2

    PubMed Central

    Scherwitzl, Boris; Resel, Roland; Winkler, Adolf

    2015-01-01

    Organic dyes have recently been discovered as promising semiconducting materials, attributable to the formation of hydrogen bonds. In this work, the adsorption and desorption behavior, as well as thin film growth was studied in detail for indigo molecules on silicon dioxide with different substrate treatments. The material was evaporated onto the substrate by means of physical vapor deposition under ultra-high vacuum conditions and was subsequently studied by Thermal Desorption Spectroscopy (TDS), Auger Electron Spectroscopy, X-Ray Diffraction, and Atomic Force Microscopy. TDS revealed initially adsorbed molecules to be strongly bonded on a sputter cleaned surface. After further deposition a formation of dimers is suggested, which de-stabilizes the bonding mechanism to the substrate and leads to a weakly bonded adsorbate. The dimers are highly mobile on the surface until they get incorporated into energetically favourable three-dimensional islands in a dewetting process. The stronger bonding of molecules within those islands could be shown by a higher desorption temperature. On a carbon contaminated surface no strongly bonded molecules appeared initially, weakly bonded monomers rather rearrange into islands at a surface coverage that is equivalent to one third of a monolayer of flat-lying molecules. The sticking coefficient was found to be unity on both substrates. The desorption energies from carbon covered silicon dioxide calculated to 1.67 ± 0.05 eV for multilayer desorption from the islands and 0.84 ± 0.05 eV for monolayer des orption. Corresponding values for desorption from a sputter cleaned surface are 1.53 ± 0.05 eV for multilayer and 0.83 ± 0.05 eV for monolayer desorption. PMID:24832297

  15. DEMONSTRATION BULLETIN: X*TRAX MODEL 200 THERMAL DESORPTION SYSTEMS - CHEMICAL WASTE MANAGEMENT, INC.

    EPA Science Inventory

    The X*TRAX™ Mode! 200 Thermal Desorption System developed by Chemical Waste Management, Inc. (CWM), is a low-temperature process designed to separate organic contaminants from soils, sludges, and other solid media. The X*TRAX™ Model 200 is fully transportable and consists of thre...

  16. QUANTUM-STATE RESOLVED PRODUCTS VIA VACUUM ULTRAVIOLET PHOTOSTIMULATED DESORPTION FROM GEOLOIC CALCITE

    EPA Science Inventory

    We report the results of a photostimulated desorption (PSD) study of neutral CO products from room temperature geologic calcite utilizing fluences <300 microJ/cm2 of 157-nm excimer laser radiation. At this wavelength, we are coincident with an intense absorption peak such that m...

  17. Novel devices for solvent delivery and temperature programming designed for capillary liquid chromatography.

    PubMed

    Coutinho, Lincoln Figueira Marins; Nazario, Carlos Eduardo Domingues; Monteiro, Alessandra Maffei; Lanças, Fernando Mauro

    2014-08-01

    Analyses in chromatographic systems able to save mobile and stationary phases without reducing efficiency and resolution are of current interest. These advantages regarding savings have challenged us to develop a system dedicated to miniaturized liquid chromatography. This paper reports on the development of a high-pressure syringe-type pump, an oven able to perform isothermal and temperature programming and a software program to control these chromatographic devices. The experimental results show that the miniaturized system can generate reproducible and accurate temperature and flow rate. The system was applied to the separation of statins and tetracylines and showed excellent performance. PMID:24838528

  18. Determination of surface coverage of catalysts: Temperature programmed experiments on platinum and iridium sponge catalysts after low temperature ammonia oxidation

    SciTech Connect

    Broek, A.C.M. van den; Grondelle, J. van; Santen, R.A. van

    1999-07-25

    The activity of iridium and platinum sponge catalysts was studied in the low temperature gas phase oxidation of ammonia with oxygen. Under the reaction conditions used, iridium was found to be more active and more selective to nitrogen than platinum. Furthermore it was established from activity measurements that both catalysts lose activity as a function of time on stream due to inhibition of the surface by reaction intermediates. The used catalysts were studied by XPS and temperature programmed techniques. It was found that the surface of the catalysts had a high coverage of NH and OH and some additional NH{sub 2}. It seems most likely that the reaction mechanism proceeds through a stepwise dehydrogenation of the ammonia molecule. It appears that the last dehydrogenation step (NH by OH to N and water) is the rate determining step. The high selectivity of iridium to nitrogen can be explained by the higher activity of iridium in dissociating NO.

  19. Phosphorus adsorption and desorption properties of lunar simulants 

    E-print Network

    Sutter, Brad

    1995-01-01

    efficient phosphorus (P) fertilizer rate that would provide optimal crop growth in Minnesota Basalt Lunar Simulant (MBLS) and Lunar Glass Simulant (LGS). To achieve this objective, simulant P adsorption, desorption and kinetic desorption Q/I relationships...

  20. APPLICATION OF THERMAL DESORPTION TECHNOLOGIES TO HAZARDOUS WASTE SITES

    EPA Science Inventory

    Thermal desorption is a separation process frequently used to remediate many Superfund sites. Thermal desorption technologies are recommended and used because of (1) the wide range of organic contaminants effectively treated, (2) availability and mobility of commercial systems, ...

  1. Adsorption, initial growth and desorption kinetics of p-quaterphenyl on polycrystalline gold surfaces

    NASA Astrophysics Data System (ADS)

    Müllegger, S.; Stranik, O.; Zojer, E.; Winkler, A.

    2004-01-01

    Thermal desorption spectroscopy (TDS) and X-ray photoelectron spectroscopy (XPS) have been applied to investigate the kinetics of adsorption, layer growth and desorption of p-quaterphenyl (P4P) on polycrystalline gold surfaces. Two different desorption peaks resulting from a monolayer (wetting layer) and a multilayer can be observed. The multilayer predominantly grows in form of a continuous film at 93 K, whereas at room temperature needle-like island growth is observed. A rearrangement (island formation) of the continuous multilayer takes place during heating prior to desorption. The influence of carbon on the adsorption/desorption kinetics of the monolayer has been studied in detail. On the clean surface some amount of adsorbed P4P dissociates and hydrogen is released at about 650 and 820 K, respectively. No dissociation of P4P takes place on the carbon-covered surface. The intact P4P molecules of the monolayer desorb in form of two broad peaks around 420 and 600 K, the multilayer desorbs with zero order above 350 K. Quantitative measurements with a quartz microbalance yield a mean thickness of 0.27 nm for the monolayer, suggesting that the P4P molecules are lying flat on the surface, for both the clean and the carbon-covered surface.

  2. Relationships in adiabatic desorption of organic substances by steam in recuperation processes

    SciTech Connect

    Ustinov, E.A.; Kisarov, V.M.; Plachenov, T.G.; Seballo, A.A.

    1985-09-01

    The authors determine the main distinctive features of the dynamics of solvent desorption by steam, as a basis for subsequent attempts at a quantitative description of this stage and of the recuperation process as a whole. An analysis of the proposed model has shown that in the steam desorption of organic substances that are immiscible with water, four zones move through the bed; these include zones of water condensation, solvent concentration, and drying. It has been shown that, as a consequence of the decrease in flow velocity due to water condensation, concentration of the solvent takes place within a narrow zone, in which part of the substance being desorbed may exist in the form of a normal liquid. In the desorption of C/sub 5/-C/sub 6/ hydrocarbons, benzene, and toluene, the experimentally determined temperatures in this zone coincide with the calculated boiling points of their liquid binary mixtures with water.

  3. Competitive Sorption and Desorption of Chlorinated Organic Solvents (DNAPLs) in Engineered Natural Organic Matter

    SciTech Connect

    Tang, Jixin; Weber, Walter J., Jr.

    2004-03-31

    The effects of artificially accelerated geochemical condensation and maturation of natural organic matter on the sorption and desorption of trichloroethylene (TCE) and tetrachloroethylene (PCE) were studied. The sorption and desorption of TCE in the presence and absence of the competing PCE and 1,2-dichlorobenzene (DCB) were also examined. A sphagnum peat comprising geologically young organic matter was artificially ''aged'' using superheated water, thus increasing the aromaticity and the degree of condensation of its associated organic matter. The sorption of all solutes tested were increased remarkably and their respective desorptions reduced, by the aged peat. The sorption capacities and isotherm nonlinearities of the peat for both TCE and PCE were found to increase as treatment temperature increased. In the competitive sorption studies, both PCE and DCB were found to depress TCE sorption, with PCE having greater effects than DCB, presumably because the molecular structure o f the former is more similar to that of TCE.

  4. Adsorption and desorption studies of lysozyme by Fe3O4-polymer nanocomposite via fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Koc, Kenan; Alveroglu, Esra

    2015-06-01

    The work have been undertaken in this study is to synthesis and characterize Fe3O4-polymer nanocomposites which are having different morphological properties. Also, investigation of the adsorption and desorption behaviour of lysozyme onto Fe3O4-polymer nanocomposites have been studied. Fe3O4 nanoparticles, synthesized by in situ in polyacrylamide hydrogels, show super-paramagnetic behaviour and saturation magnetization of composite material have been tuned by changing the hydrogel conformation. Adsorption and desorption studies of lysozyme were followed by using pure water at room temperature via fluorescence measurements. Fluorescence measurements showed that, the composite materials adsorbed lysozyme molecules less than 20 s and higher monomer concentration of composite materials cause faster adsorption. Besides, structure of lysozyme molecules were not changed during the adsorption and desorption. As a result Fe3O4-polymer nanocomposites could be used for drug delivery, protein separation and PAAm gels could be used for synthesis of magnetic composites with varying magnetic properties.

  5. A microsystems enabled field desorption source.

    SciTech Connect

    Hertz, Kristin L.; Resnick, Paul James; Schwoebel, Paul R.; Holland, Christopher E.; Chichester, David L.

    2010-07-01

    Technologies that have been developed for microelectromechanical systems (MEMS) have been applied to the fabrication of field desorption arrays. These techniques include the use of thick films for enhanced dielectric stand-off, as well as an integrated gate electrode. The increased complexity of MEMS fabrication provides enhanced design flexibility over traditional methods.

  6. Indaziflam sorption-desorption in diverse soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Indaziflam is a new preemergence-herbicide active ingredient, classified as a member of the new chemical class “alkylazine”. There is no published information on its fate and behavior in soil. This study is aimed at characterizing the adsorption and desorption of indaziflam in soils with different p...

  7. Quantum theory of laser-stimulated desorption

    NASA Technical Reports Server (NTRS)

    Slutsky, M. S.; George, T. F.

    1978-01-01

    A quantum theory of laser-stimulated desorption (LSDE) is presented and critically analyzed. It is shown how LSDE depends on laser-pulse characteristics and surface-lattice dynamics. Predictions of the theory for a Debye model of the lattice dynamics are compared to recent experimental results.

  8. AISI/DOE Advanced Process Control Program Vol. 6 of 6: Temperature Measurement of Galvanneal Steel

    SciTech Connect

    S.W. Allison; D.L. Beshears; W.W. Manges

    1999-06-30

    This report describes the successful completion of the development of an accurate in-process measurement instrument for galvanneal steel surface temperatures. This achievement results from a joint research effort that is a part of the American Iron and Steel Institute's (AISI) Advanced Process Control Program, a collaboration between the U.S> Department of Energy and fifteen North American Steelmakers. This three-year project entitled ''Temperature Measurement of Galvanneal Steel'' uses phosphor thermography, and outgrowth of Uranium enrichment research at Oak Ridge facilities. Temperature is the controlling factor regarding the distribution of iron and zinc in the galvanneal strip coating, which in turn determines the desired product properties

  9. Thermal desorption of CH4 retained in CO2 ice

    E-print Network

    R. Luna; C. Millan; M. Domingo; M. A. Satorre

    2008-01-21

    CO2 ices are known to exist in different astrophysical environments. In spite of this, its physical properties (structure, density, refractive index) have not been as widely studied as those of water ice. It would be of great value to study the adsorption properties of this ice in conditions related to astrophysical environments. In this paper, we explore the possibility that CO2 traps relevant molecules in astrophysical environments at temperatures higher than expected from their characteristic sublimation point. To fulfil this aim we have carried out desorption experiments under High Vacuum conditions based on a Quartz Crystal Microbalance and additionally monitored with a Quadrupole Mass Spectrometer. From our results, the presence of CH4 in the solid phase above the sublimation temperature in some astrophysical scenarios could be explained by the presence of several retaining mechanisms related to the structure of CO2 ice.

  10. Method of enhancing selective isotope desorption from metals

    DOEpatents

    Knize, R.J.; Cecchi, J.L.

    1983-07-26

    This invention relates generally to the field of gas desorption from metals; and, more particularly, to a method of enhancing the selective desorption of a particular isotope of a gas from metals. Enhanced selective desorption is especially useful in the operation of fusion devices.

  11. Desorption of intrinsic cesium from smectite: inhibitive effects of clay particle organization on cesium desorption.

    PubMed

    Fukushi, Keisuke; Sakai, Haruka; Itono, Taeko; Tamura, Akihiro; Arai, Shoji

    2014-09-16

    Fine clay particles have functioned as transport media for radiocesium in terrestrial environments after nuclear accidents. Because radiocesium is expected to be retained in clay minerals by a cation-exchange reaction, ascertaining trace cesium desorption behavior in response to changing solution conditions is crucially important. This study systematically investigated the desorption behavior of intrinsic Cs (13 nmol/g) in well-characterized Na-montmorillonite in electrolyte solutions (NaCl, KCl, CaCl2, and MgCl2) under widely differing cation concentrations (0.2 mM to 0.2 M). Batch desorption experiments demonstrated that Cs(+) desorption was inhibited significantly in the presence of the environmental relevant concentrations of Ca(2+) and Mg(2+) (>0.5 mM) and high concentrations of K(+). The order of ability for Cs desorption was Na(+) = K(+) > Ca(2+) = Mg(2+) at the highest cation concentration (0.2 M), which is opposite to the theoretical prediction based on the cation-exchange selectivity. Laser diffraction grain-size analyses revealed that the inhibition of Cs(+) desorption coincided with the increase of the clay tactoid size. Results suggest that radiocesium in the dispersed fine clay particles adheres on the solid phase when the organization of swelling clay particles occurs because of changes in solution conditions caused by both natural processes and artificial treatments. PMID:25144123

  12. Determination of the Arrhenius Activation Energy Using a Temperature-Programmed Flow Reactor.

    ERIC Educational Resources Information Center

    Chan, Kit-ha C.; Tse, R. S.

    1984-01-01

    Describes a novel method for the determination of the Arrhenius activation energy, without prejudging the validity of the Arrhenius equation or the concept of activation energy. The method involves use of a temperature-programed flow reactor connected to a concentration detector. (JN)

  13. Testing program for concrete at temperatures to 894/sup 0/K. [LMFBR

    SciTech Connect

    Naus, D.J.; Oland, C.B.; Robinson, G.C.

    1981-01-01

    A test program was conducted to define the variations in mechanical properties of a limestone aggregate concrete and a lightweight insulating concrete exposed to elevated temperatures. Four test series were conducted: (1) unconfined compression; (2) shear; (3) rebar bond; and (4) sustained loading (creep). Tests results are presented.

  14. Records of Temperature and Heat (ROTAH) IBM Programs for Fuel Calculations

    SciTech Connect

    Gray, P.L.

    2002-10-30

    This document describes the Records of Temperature and Heat (ROTAH) programs (one each for single and two-piece fuel elements) and the equations used in them. This code was the ultimate goal of the series and was used to calculate the operating conditions within a fuel assembly.

  15. Advanced High Temperature Polymer Matrix Composites for Gas Turbine Engines Program Expansion

    NASA Technical Reports Server (NTRS)

    Hanley, David; Carella, John

    1999-01-01

    This document, submitted by AlliedSignal Engines (AE), a division of AlliedSignal Aerospace Company, presents the program final report for the Advanced High Temperature Polymer Matrix Composites for Gas Turbine Engines Program Expansion in compliance with data requirements in the statement of work, Contract No. NAS3-97003. This document includes: 1 -Technical Summary: a) Component Design, b) Manufacturing Process Selection, c) Vendor Selection, and d) Testing Validation: 2-Program Conclusion and Perspective. Also, see the Appendix at the back of this report. This report covers the program accomplishments from December 1, 1996, to August 24, 1998. The Advanced High Temperature PMC's for Gas Turbine Engines Program Expansion was a one year long, five task technical effort aimed at designing, fabricating and testing a turbine engine component using NASA's high temperature resin system AMB-21. The fiber material chosen was graphite T650-35, 3K, 8HS with UC-309 sizing. The first four tasks included component design and manufacturing, process selection, vendor selection, component fabrication and validation testing. The final task involved monthly financial and technical reports.

  16. THE HIGH-TEMPERATURE ELECTROLYSIS PROGRAM AT THE IDAHO NATIONAL LABORATORY: OBSERVATIONS ON PERFORMANCE DEGRADATION

    SciTech Connect

    J. E. O'Brien; C. M. Stoots; J. S. Herring; K. G. Condie; G. K. Housley

    2009-06-01

    This paper presents an overview of the high-temperature electrolysis research and development program at the Idaho National Laboratory, with selected observations of electrolysis cell degradation at the single-cell, small stack and large facility scales. The objective of the INL program is to address the technical and scale-up issues associated with the implementation of solid-oxide electrolysis cell technology for hydrogen production from steam. In the envisioned application, high-temperature electrolysis would be coupled to an advanced nuclear reactor for efficient large-scale non-fossil non-greenhouse-gas hydrogen production. The program supports a broad range of activities including small bench-scale experiments, larger scale technology demonstrations, detailed computational fluid dynamic modeling, and system modeling. A summary of the current status of these activities and future plans will be provided, with a focus on the problem of cell and stack degradation.

  17. Computer Program for Calculation of a Gas Temperature Profile by Infrared Emission: Absorption Spectroscopy

    NASA Technical Reports Server (NTRS)

    Buchele, D. R.

    1977-01-01

    A computer program to calculate the temperature profile of a flame or hot gas was presented in detail. Emphasis was on profiles found in jet engine or rocket engine exhaust streams containing H2O or CO2 radiating gases. The temperature profile was assumed axisymmetric with an assumed functional form controlled by two variable parameters. The parameters were calculated using measurements of gas radiation at two wavelengths in the infrared. The program also gave some information on the pressure profile. A method of selection of wavelengths was given that is likely to lead to an accurate determination of the parameters. The program is written in FORTRAN IV language and runs in less than 60 seconds on a Univac 1100 computer.

  18. On factors controlling activity of submonolayer bimetallic catalysts: Nitrogen desorption

    NASA Astrophysics Data System (ADS)

    Guo, Wei; Vlachos, Dionisios G.

    2014-01-01

    We model N2 desorption on submonolayer bimetallic surfaces consisting of Co clusters on Pt(111) via first-principles density functional theory-based kinetic Monte Carlo simulations. We find that submonolayer structures are essential to rationalize the high activity of these bimetallics in ammonia decomposition. We show that the N2 desorption temperature on Co/Pt(111) is about 100 K higher than that on Ni/Pt(111), despite Co/Pt(111) binding N weaker at low N coverages. Co/Pt(111) has substantially different lateral interactions than single metals and Ni/Pt. The lateral interactions are rationalized with the d-band center theory. The activity of bimetallic catalysts is the result of heterogeneity of binding energies and reaction barriers among sites, and the most active site can differ on various bimetallics. Our results are in excellent agreement with experimental data and demonstrate for the first time that the zero-coverage descriptor, used until now, for catalyst activity is inadequate due not only to lacking lateral interactions but importantly to presence of multiple sites and a complex interplay of thermodynamics (binding energies, occupation) and kinetics (association barriers) on those sites.

  19. On factors controlling activity of submonolayer bimetallic catalysts: Nitrogen desorption

    SciTech Connect

    Guo, Wei; Vlachos, Dionisios G.

    2014-01-07

    We model N{sub 2} desorption on submonolayer bimetallic surfaces consisting of Co clusters on Pt(111) via first-principles density functional theory-based kinetic Monte Carlo simulations. We find that submonolayer structures are essential to rationalize the high activity of these bimetallics in ammonia decomposition. We show that the N{sub 2} desorption temperature on Co/Pt(111) is about 100 K higher than that on Ni/Pt(111), despite Co/Pt(111) binding N weaker at low N coverages. Co/Pt(111) has substantially different lateral interactions than single metals and Ni/Pt. The lateral interactions are rationalized with the d-band center theory. The activity of bimetallic catalysts is the result of heterogeneity of binding energies and reaction barriers among sites, and the most active site can differ on various bimetallics. Our results are in excellent agreement with experimental data and demonstrate for the first time that the zero-coverage descriptor, used until now, for catalyst activity is inadequate due not only to lacking lateral interactions but importantly to presence of multiple sites and a complex interplay of thermodynamics (binding energies, occupation) and kinetics (association barriers) on those sites.

  20. MEASUREMENT OF VOCS DESORBED FROM BUILDING MATERIALS--A HIGH TEMPERATURE DYNAMIC CHAMBER METHOD

    EPA Science Inventory

    Mass balance is a commonly used approach for characterizing the source and sink behavior of building materials. Because the traditional sink test methods evaluate the adsorption and desorption of volatile organic compounds (VOC) at ambient temperatures, the desorption process is...

  1. Adsorption and desorption of contaminants

    SciTech Connect

    Palumbo, A.V.; Strong-Gunderson, J.M.; DeFlaun, M.; Ensley, B.

    1994-02-01

    The microbial remediation of sites Contaminated with organics is well documented, however, there are some significant problems that remain to be solved in the areas of contaminants sorbed to soils and non-aqueous phase liquid (NAPL) contamination. Methods of in situ bioremediation techniques employ either the stimulation of indigenous populations by nutrient addition, or the addition of prepared bacterial cultures to the subsurface environment. Problems of contaminant sorption and NAPL`s are related in that both encompass reduced contaminant bioavailability. Non-aqueous phase liquids have been identified as a priority area for research in the In situ Program due to their presence at DOE sites and the lack of adequate technology to effectively treat this contamination. Bioremediation technologies developed as a result of this project are easily transferred to industry.

  2. Thermal desorption study of physical forces at the PTFE surface

    NASA Technical Reports Server (NTRS)

    Wheeler, D. R.; Pepper, S. V.

    1985-01-01

    Thermal desorption spectroscopy (TDS) of the polytetrafluoroethylene (PTFE) surface was successfully employed to study the possibile role of physical forces in the enhancement of metal-PTFE adhesion by radiation. The thermal desorption spectra were analyzed without assumptions to yield the activation energy for desorption over a range of xenon coverage from less than 0.1 monolayer to more than 100 monolayers. For multilayer coverage, the desorption is zero-order with an activation energy equal to the sublimation energy of xenon. For submonolayer coverages, the order for desorption from the unirradiated PTFE surface is 0.73 and the activation energy for desorption is between 3.32 and 3.36 kcal/mol; less than the xenon sublimation energy. The effect of irradiation is to increase the activation energy for desorption to as high as 4 kcal/mol at low coverage.

  3. Statistical physics modeling of hydrogen desorption from LaNi4.75Fe0.25: Stereographic and energetic interpretations

    NASA Astrophysics Data System (ADS)

    Wjihi, Sarra; Dhaou, Houcine; Yahia, Manel Ben; Knani, Salah; Jemni, Abdelmajid; Lamine, Abdelmottaleb Ben

    2015-12-01

    Statistical physics treatment is used to study the desorption of hydrogen on LaNi4.75Fe0.25, in order to obtain new physicochemical interpretations at the molecular level. Experimental desorption isotherms of hydrogen on LaNi4.75Fe0.25 are fitted at three temperatures (293 K, 303 K and 313 K), using a monolayer desorption model. Six parameters of the model are fitted, namely the number of molecules per site n? and n?, the receptor site densities N?M and N?M, and the energetic parameters P? and P?. The behaviors of these parameters are discussed in relationship with desorption process. A dynamic study of the ? and ? phases in the desorption process was then carried out. Finally, the different thermodynamical potential functions are derived by statistical physics calculations from our adopted model.

  4. Trapping and desorption of complex organic molecules in water at 20 K.

    PubMed

    Burke, Daren J; Puletti, Fabrizio; Woods, Paul M; Viti, Serena; Slater, Ben; Brown, Wendy A

    2015-10-28

    The formation, chemical, and thermal processing of complex organic molecules (COMs) is currently a topic of much interest in interstellar chemistry. The isomers glycolaldehyde, methyl formate, and acetic acid are particularly important because of their role as pre-biotic species. It is becoming increasingly clear that many COMs are formed within interstellar ices which are dominated by water. Hence, the interaction of these species with water ice is crucially important in dictating their behaviour. Here, we present the first detailed comparative study of the adsorption and thermal processing of glycolaldehyde, methyl formate, and acetic acid adsorbed on and in water ices at astrophysically relevant temperatures (20 K). We show that the functional group of the isomer dictates the strength of interaction with water ice, and hence the resulting desorption and trapping behaviour. Furthermore, the strength of this interaction directly affects the crystallization of water, which in turn affects the desorption behaviour. Our detailed coverage and composition dependent data allow us to categorize the desorption behaviour of the three isomers on the basis of the strength of intermolecular and intramolecular interactions, as well as the natural sublimation temperature of the molecule. This categorization is extended to other C, H, and O containing molecules in order to predict and describe the desorption behaviour of COMs from interstellar ices. PMID:26520540

  5. Trapping and desorption of complex organic molecules in water at 20 K

    NASA Astrophysics Data System (ADS)

    Burke, Daren J.; Puletti, Fabrizio; Woods, Paul M.; Viti, Serena; Slater, Ben; Brown, Wendy A.

    2015-10-01

    The formation, chemical, and thermal processing of complex organic molecules (COMs) is currently a topic of much interest in interstellar chemistry. The isomers glycolaldehyde, methyl formate, and acetic acid are particularly important because of their role as pre-biotic species. It is becoming increasingly clear that many COMs are formed within interstellar ices which are dominated by water. Hence, the interaction of these species with water ice is crucially important in dictating their behaviour. Here, we present the first detailed comparative study of the adsorption and thermal processing of glycolaldehyde, methyl formate, and acetic acid adsorbed on and in water ices at astrophysically relevant temperatures (20 K). We show that the functional group of the isomer dictates the strength of interaction with water ice, and hence the resulting desorption and trapping behaviour. Furthermore, the strength of this interaction directly affects the crystallization of water, which in turn affects the desorption behaviour. Our detailed coverage and composition dependent data allow us to categorize the desorption behaviour of the three isomers on the basis of the strength of intermolecular and intramolecular interactions, as well as the natural sublimation temperature of the molecule. This categorization is extended to other C, H, and O containing molecules in order to predict and describe the desorption behaviour of COMs from interstellar ices.

  6. Sample Desorption/Onization From Mesoporous Silica

    DOEpatents

    Iyer, Srinivas (Los Alamos, NM); Dattelbaum, Andrew M. (Los Alamos, NM)

    2005-10-25

    Mesoporous silica is shown to be a sample holder for laser desorption/ionization of mass spectrometry. Supported mesoporous silica was prepared by coating an ethanolic silicate solution having a removable surfactant onto a substrate to produce a self-assembled, ordered, nanocomposite silica thin film. The surfactant was chosen to provide a desired pore size between about 1 nanometer diameter and 50 nanometers diameter. Removal of the surfactant resulted in a mesoporous silica thin film on the substrate. Samples having a molecular weight below 1000, such as C.sub.60 and tryptophan, were adsorbed onto and into the mesoporous silica thin film sample holder and analyzed using laser desorption/ionization mass spectrometry.

  7. Plutonium sorption and desorption behavior on bentonite.

    PubMed

    Begg, James D; Zavarin, Mavrik; Tumey, Scott J; Kersting, Annie B

    2015-03-01

    Understanding plutonium (Pu) sorption to, and desorption from, mineral phases is key to understanding its subsurface transport. In this work we study Pu(IV) sorption to industrial grade FEBEX bentonite over the concentration range 10(-7)-10(-16) M to determine if sorption at typical environmental concentrations (?10(-12) M) is the same as sorption at Pu concentrations used in most laboratory experiments (10(-7)-10(-11) M). Pu(IV) sorption was broadly linear over the 10(-7)-10(-16) M concentration range during the 120 d experimental period; however, it took up to 100 d to reach sorption equilibrium. At concentrations ?10(-8) M, sorption was likely affected by additional Pu(IV) precipitation/polymerization reactions. The extent of sorption was similar to that previously reported for Pu(IV) sorption to SWy-1 Na-montmorillonite over a narrower range of Pu concentrations (10(-11)-10(-7) M). Sorption experiments with FEBEX bentonite and Pu(V) were also performed across a concentration range of 10(-11)-10(-7) M and over a 10 month period which allowed us to estimate the slow apparent rates of Pu(V) reduction on a smectite-rich clay. Finally, a flow cell experiment with Pu(IV) loaded on FEBEX bentonite demonstrated continued desorption of Pu over a 12 day flow period. Comparison with a desorption experiment performed with SWy-1 montmorillonite showed a strong similarity and suggested the importance of montorillonite phases in controlling Pu sorption/desorption reactions on FEBEX bentonite. PMID:25574607

  8. History of desorption induced by electronic transitions

    NASA Astrophysics Data System (ADS)

    Madey, Theodore E.

    1994-01-01

    Desorption induced by electronic transitions (DIET) encompasses electron- and photon-stimulated desorption (ESD and PSD) of atoms, molecules and ions from surfaces. In this paper, we focus on the key experimental and theoretical developments that have led to a fundamental understanding of DIET processes. We emphasize the effects of ionizing radiation, i.e., electrons and photons with energies ? 10 eV. The first DIET studies were occasioned mainly by the observation of anomalous peaks in mass spectrometers and spurious signals in ionization gauges. These observations were followed in the early 1960's by systematic studies of Redhead, and Menzel and Gomer, who independently proposed a Franck-Condon excitation model for electron-stimulated desorption of ions and neutrals from surfaces. In the years after this seminal work, ESD and PSD developed as fields of active interest to surface scientists. In addition to providing insights into the fundamental mechanisms linking atomic motion and electronic energy dissipation at surfaces, DIET investigations are continuing to impact upon radiation damage processes in areas as diverse as X-ray optics, semiconductor electronics, surface analysis and synthesis of molecules in interplanetary space.

  9. Ambient pressure laser desorption and laser-induced acoustic desorption ion mobility spectrometry detection of explosives.

    PubMed

    Ehlert, Sven; Walte, Andreas; Zimmermann, Ralf

    2013-11-19

    The development of fast, mobile, and sensitive detection systems for security-relevant substances is of enormous importance. Because of the low vapor pressures of explosives and improvised explosive devices, adequate sampling procedures are crucial. Ion mobility spectrometers (IMSs) are fast and sensitive instruments that are used as detection systems for explosives. Ambient pressure laser desorption (APLD) and ambient pressure laser-induced acoustic desorption (AP-LIAD) are new tools suitable to evaporate explosives in order to detect them in the vapor phase. Indeed, the most important advantage of APLD or AP-LIAD is the capability to sample directly from the surface of interest without any transfer of the analyte to other surfaces such as wipe pads. A much more gentle desorption, compared to classical thermal-based desorption, is possible with laser-based desorption using very short laser pulses. With this approach the analyte molecules are evaporated in a very fast process, comparable to a shock wave. The thermal intake is reduced considerably. The functionality of APLD and AP-LIAD techniques combined with a hand-held IMS system is shown for a wide range of common explosives such as EGDN (ethylene glycol dinitrate), urea nitrate, PETN (pentaerythritol tetranitrate), HMTD (hexamethylene triperoxide diamine), RDX (hexogen), tetryl (2,4,6-trinitrophenylmethylnitramine), and TNT (trinitrotoluene). Detection limits down to the low nanogram range are obtained. The successful combination of IMS detection and APLD/AP-LIAD sampling is shown. PMID:24116702

  10. Final report of comprehensive testing program for concrete at elevated temperatures

    SciTech Connect

    Oland, C.B.; Naus, D.J.; Robinson, G.C.

    1980-10-01

    The objective of this program was to define the variations in physical (thermal) and mechanical (strength) properties of limestone aggregate concrete and lightweight insulating concrete exposed to elevated temperatures that could occur as a result of a postulated large sodium spill in a lined LMFBR equipment cell. To meet this objective, five test series were conducted: (1) unconfined compression, (2) shear, (3) rebar bond, (4) sustained loading (creep), and (5) thermal properties. Mechanical property results are presented for concretes subjected to temperature up to 621{sup 0}C (1150{sup 0}F).

  11. Dynamic gas temperature measurement system. Volume 2: Operation and program manual

    NASA Technical Reports Server (NTRS)

    Purpura, P. T.

    1983-01-01

    The hot section technology (HOST) dynamic gas temperature measurement system computer program acquires data from two type B thermocouples of different diameters. The analysis method determines the in situ value of an aerodynamic parameter T, containing the heat transfer coefficient from the transfer function of the two thermocouples. This aerodynamic parameter is used to compute a fequency response spectrum and compensate the dynamic portion of the signal of the smaller thermocouple. The calculations for the aerodynamic parameter and the data compensation technique are discussed. Compensated data are presented in either the time or frequency domain, time domain data as dynamic temperature vs time, or frequency domain data.

  12. Further development of the dynamic gas temperature measurement system. Volume 2: Computer program user's manual

    NASA Technical Reports Server (NTRS)

    Stocks, Dana R.

    1986-01-01

    The Dynamic Gas Temperature Measurement System compensation software accepts digitized data from two different diameter thermocouples and computes a compensated frequency response spectrum for one of the thermocouples. Detailed discussions of the physical system, analytical model, and computer software are presented in this volume and in Volume 1 of this report under Task 3. Computer program software restrictions and test cases are also presented. Compensated and uncompensated data may be presented in either the time or frequency domain. Time domain data are presented as instantaneous temperature vs time. Frequency domain data may be presented in several forms such as power spectral density vs frequency.

  13. In situ thermal desorption of soils impacted with chlorinated solvents

    SciTech Connect

    Vinegar, H.J.; Stegemeier, G.L.; Carl, F.G.; Stevenson, J.D.; Dudley, R.J.

    1999-07-01

    In situ thermal desorption (ISTD) has been demonstrated to remove high concentrations of chlorinated solvents such as PCE and TCE even from tight clay soils. ISTD applies heat and vacuum simultaneously to subsurface soils using thermal blankets for shallow contaminants (less than 2 ft depth) and thermal wells for deeper contamination. The ISTD process possesses a high removal efficiency because the narrow range of soil thermal conductivities provides excellent sweep efficiency and because its high operating temperature increases soil permeabilities and achieves complete displacement efficiency of contaminants in the gas phase. The first full scale commercial application of the ISTD well technology is described in detail for a site in Portland, Indiana, where silty clay soil was impacted with chlorinated solvents.

  14. High-temperature turbine technology program. Turbine subsystem design report: Low-Btu gas

    SciTech Connect

    Horner, M.W.

    1980-12-01

    The objective of the US Department of Energy High-Temperature Turbine Technology (DOE-HTTT) program is to bring to technology readiness a high-temperature (2600/sup 0/F to 3000/sup 0/F firing temperature) turbine within a 6- to 10-year duration, Phase II has addressed the performance of component design and technology testing in critical areas to confirm the design concepts identified in the earlier Phase I program. Based on the testing and support studies completed under Phase II, this report describes the updated turbine subsystem design for a coal-derived gas fuel (low-Btu gas) operation at 2600/sup 0/F turbine firing temperature. A commercial IGCC plant configuration would contain four gas turbines. These gas turbines utilize an existing axial flow compressor from the GE product line MS6001 machine. A complete description of the Primary Reference Design-Overall Plant Design Description has been developed and has been documented. Trends in overall plant performance improvement at higher pressure ratio and higher firing temperature are shown. It should be noted that the effect of pressure ratio on efficiency is significally enhanced at higher firing temperatures. It is shown that any improvement in overall plant thermal efficiency reflects about the same level of gain in Cost of Electricity (COE). The IGCC concepts are shown to be competitive in both performance and cost at current and near-term gas turbine firing temperatures of 1985/sup 0/F to 2100/sup 0/F. The savings that can be accumulated over a thirty-year plant life for a water-cooled gas turbine in an IGCC plant as compared to a state-of-the-art coal-fired steam plant are estimated. A total of $500 million over the life of a 1000 MW plant is projected. Also, this IGCC power plant has significant environmental advantages over equivalent coal-fired steam power plants.

  15. Concerted Thermal-Plus-Electronic Nonlocal Desorption of Chlorobenzene from Si(111)-7 × 7 in the STM.

    PubMed

    Pan, Tian Luo; Sloan, Peter A; Palmer, Richard E

    2014-10-16

    The rate of desorption of chemisorbed chlorobenzene molecules from the Si(111)-7 × 7 surface, induced by nonlocal charge injection from an STM tip, depends on the surface temperature. Between 260 and 313 K, we find an Arrhenius thermal activation energy of 450 ± 170 meV, consistent with the binding energy of physisorbed chlorobenzene on the same surface. Injected electrons excite the chlorobenzene molecule from the chemisorption state to an intermediate physisorption state, followed by thermal desorption. We find a second thermal activation energy of 21 ± 4 meV in the lower temperature region between 77 and 260 K, assigned to surface phonon excitation. PMID:26278608

  16. Low-Energy Photodesorption and Electron-Stimulated Desorption Mechanisms in Semiconductors.

    NASA Astrophysics Data System (ADS)

    Ekwelundu, Emmanuel Chikelue

    1988-12-01

    The aim of this research is to investigate low energy photodesorption and electron stimulated desorption mechanisms in semiconductors. Silicon, gallium arsenide and cadmium sulfide single crystals were used as representative semiconductors because their band gaps cut across both narrow and wide band gap semiconductors. Their clean surfaces were exposed to different doses of the following gases: O_2, NO, CO, CO_2 and SO_2 at room temperature but under different adsorption conditions. At low 10 ^{-10} torr pressure, the surfaces were irradiated with low energy (also low flux) photons and electrons. The desorbing species from the sample surfaces were monitored by a quadrupole mass spectrometer. CO, CO_2, NO, SO and SO _2 were observed to photodesorb when irradiated with photons. The desorption threshold energies were found to coincide with electron excitations from surface states within the band gap of the semiconductors to conduction band states; followed by thresholds corresponding to excitations across the direct gap. In GaAs and CdS, additional threshold could be traced to excitations from the high electron density of states within the valence band. The photodesorption signal at any wavelength greater than the threshold was found to be proportional to the incident photon flux, supporting a quantum mechanism for the observed photodesorption. The calculated quantum efficiency (yield) of 10^ {-5} to 10^{-4} molecules/photon is consistent with the value for semiconductors. CO^+, CO_2 ^+, C^+, O ^+, SO^+, S ^+, SO^+ and SO _2^+ were observed to desorb when the surfaces were irradiated with electrons in the energy range 0-200 eV. The desorption threshold energies were found to coincide approximately with electron excitations from the core levels of the semiconductors. From the core levels excited, it was possible to define in GaAs and CdS which of the desorbing species was bonded to which atom. The total desorption cross section for the desorbing species was found to be ~10 ^{-18} cm^2. A photodesorption mechanism was postulated for semiconductors which incorporated the photogeneration of holes in both the surface and valence band states, drift of the holes to the surface and the resultant annihilation of the surface localized bonds between the adsorbate and the semiconductor leading to desorption. For Electron Stimulated Desorption (ESD) from GaAs and CdS, our results could be explained using the Auger Stimulated Desorption (ASD) model. This is an extension of Knotek-Feibelman model to covalent and non-maximal valency systems. Our ESD results from silicon shows Menzel-Gomer -Redhead (MGR) and ASD models as the competitive desorption models.

  17. Operable Unit 7-13/14 in situ thermal desorption treatability study work plan

    SciTech Connect

    Shaw, P.; Nickelson, D.; Hyde, R.

    1999-05-01

    This Work Plan provides technical details for conducting a treatability study that will evaluate the application of in situ thermal desorption (ISTD) to landfill waste at the Subsurface Disposal Area (SDA) at the Idaho National Engineering and Environmental Laboratory (INEEL). ISTD is a form of thermally enhanced vapor vacuum extraction that heats contaminated soil and waste underground to raise its temperature and thereby vaporize and destroy most organics. An aboveground vapor vacuum collection and treatment system then destroys or absorbs the remaining organics and vents carbon dioxide and water to the atmosphere. The technology is a byproduct of an advanced oil-well thermal extraction program. The purpose of the ISTD treatability study is to fill performance-based data gaps relative to off-gas system performance, administrative feasibility, effects of the treatment on radioactive contaminants, worker safety during mobilization and demobilization, and effects of landfill type waste on the process (time to remediate, subsidence potential, underground fires, etc.). By performing this treatability study, uncertainties associated with ISTD as a selected remedy will be reduced, providing a better foundation of remedial recommendations and ultimate selection of remedial actions for the SDA.

  18. On the coverage dependence of Arrhenius parameters in thermal desorption of interacting adsorbates

    NASA Astrophysics Data System (ADS)

    Zuniga-Hansen, Nayeli; Silbert, Leonardo E.; Calbi, M. Mercedes

    2014-03-01

    In temperature programmed desorption (TPD) the ``compensation effect'' is a linear relationship between the activation energy, Ea, and the preexponential factor, ?n, of the Arrhenius equation. From the Arrhenius plot ln -?/? ? vs. 1/T, we can extract the activation energy and the preexponential factor to test the validity of linearity. A linear relationship has been demonstrated to be valid when the kinetic parameters are independent of the surface coverage. In the presence of adsorbate-adsorbate interactions this analysis fails because the second order effects come into play. The compensation effect arises from the assumption that the second order terms in the derivative of the plot sum to zero. Some authors refer to this as a ``forced'' compensation effect and show that it can yield misleading results. Therefore this effect has not been completely understood. We use kinetic Monte Carlo simulations on ordered and disordered surface configurations to investigate the coverage dependence of the kinetic parameters to verify whether the compensation effect provides reliable information for our system, we do this over a range of binding and interaction energies.

  19. Sorption/Desorption Interactions of Plutonium with Montmorillonite

    NASA Astrophysics Data System (ADS)

    Begg, J.; Zavarin, M.; Zhao, P.; Kersting, A. B.

    2012-12-01

    Plutonium (Pu) release to the environment through nuclear weapon development and the nuclear fuel cycle is an unfortunate legacy of the nuclear age. In part due to public health concerns over the risk of Pu contamination of drinking water, predicting the behavior of Pu in both surface and sub-surface water is a topic of continued interest. Typically it was assumed that Pu mobility in groundwater would be severely restricted, as laboratory adsorption studies commonly show that naturally occurring minerals can effectively remove plutonium from solution. However, evidence for the transport of Pu over significant distances at field sites highlights a relative lack of understanding of the fundamental processes controlling plutonium behavior in natural systems. At several field locations, enhanced mobility is due to Pu association with colloidal particles that serve to increase the transport of sorbed contaminants (Kersting et al., 1999; Santschi et al., 2002, Novikov et al., 2006). The ability for mineral colloids to transport Pu is in part controlled by its oxidation state and the rate of plutonium adsorption to, and desorption from, the mineral surface. Previously we have investigated the adsorption affinity of Pu for montmorillonite colloids, finding affinities to be similar over a wide range of Pu concentrations. In the present study we examine the stability of adsorbed Pu on the mineral surface. Pu(IV) at an initial concentration of 10-10 M was pre-equilibrated with montmorillonite in a background electrolyte at pH values of 4, 6 and 8. Following equilibration, aliquots of the suspensions were placed in a flow cell and Pu-free background electrolyte at the relevant pH was passed through the system. Flow rates were varied in order to investigate the kinetics of desorption and hence gain a mechanistic understanding of the desorption process. The flow cell experiments demonstrate that desorption of Pu from the montmorillonite surface cannot be modeled as a simple first order process. Furthermore, a pH dependence was observed, with less desorbed at pH 4 compared to pH 8. We suggest the pH dependence is likely controlled by reoxidation of Pu(IV) to Pu(V) and aqueous speciation. We will present models used to describe desorption behavior and discuss the implications for Pu transport. References: Kersting, A.B.; Efurd, D.W.; Finnegan, D.L.; Rokop, D.J.; Smith, D.K.; Thompson J.L. (1999) Migration of plutonium in groundwater at the Nevada Test Site, Nature, 397, 56-59. Novikov A.P.; Kalmykov, S.N.; Utsunomiya, S.; Ewing, R.C.; Horreard, F.; Merkulov, A.; Clark, S.B.; Tkachev, V.V.; Myasoedov, B.F. (2006) Colloid transport of plutonium in the far-field of the Mayak Production Association, Russia, Science, 314, 638-641. Santschi, P.H.; Roberts, K.; Guo, L. (2002) The organic nature of colloidal actinides transported in surface water environments. Environ. Sci. Technol., 36, 3711-3719. This work was funded by U. S. DOE Office of Biological & Environmental Sciences, Subsurface Biogeochemistry Research Program, and performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Security, LLC under Contract DE-AC52-07NA27344. LLNL-ABS-570161

  20. Improved micromachined column design and fluidic interconnects for programmed high-temperature gas chromatography separations.

    PubMed

    Gaddes, David; Westland, Jessica; Dorman, Frank L; Tadigadapa, Srinivas

    2014-07-01

    This work focuses on the development and experimental evaluation of micromachined chromatographic columns for use in a commercial gas chromatography (GC) system. A vespel/graphite ferrule based compression sealing technique is presented using which leak-proof fluidic interconnection between the inlet tubing and the microchannel was achieved. This sealing technique enabled separation at temperatures up to 350°C on a ?GC column. This paper reports the first high-temperature separations in microfabricated chromatographic columns at these temperatures. A 2m microfabricated column using a double Archimedean spiral design with a square cross-section of 100?m×100?m has been developed using silicon microfabrication techniques. The microfabricated column was benchmarked against a 2m 100?m diameter commercial column and the performance between the two columns was evaluated in tests performed under identical conditions. High temperature separations of simulated distillation (ASTM2887) and polycyclic aromatic hydrocarbons (EPA8310) were performed using the ?GC column in temperature programmed mode. The demonstrated ?GC column along with the high temperature fixture offers one more solution toward potentially realizing a portable ?GC device for the detection of semi-volatile environmental pollutants and explosives without the thermal limitations reported to date with ?GC columns using epoxy based interconnect technology. PMID:24866564

  1. Temperature-programmed elimination of tritium in coal labeled by tritiated gaseous hydrogen

    SciTech Connect

    Eika W. Qian; T. Horio; I. Putu Sutrisna

    2009-03-15

    The hydrogen exchange of an Argonne Pocahontas No. 3 (POC) coal with tritiated gaseous hydrogen in the presence of a Pt/Al{sub 2}O{sub 3} catalyst was carried out using a fixed-bed reactor at a temperature range of 200-250{sup o}C. Then, the tritiated coal sample was re-exchanged with hydrogen in a gaseous hydrogen atmosphere at different raising temperature rates. The changes in radioactivity of tritium releasing from the tritium-labeled coal sample in the temperature-programmed elimination (TPE) of tritium was monitored by a radioanalyzer in situ. The release profile of tritium was fit using three Gaussian distribution functions in TPE. On the basis of the waveform analysis, the amounts and activation energies of the hydrogen exchange for every type of exchangeable hydrogen were estimated. The values of exchange activation energies are 8.8 {+-} 0.5, 10.7 {+-} 0.5, and 16.3 {+-} 0.5 kcal/mol for three types of exchangeable hydrogen, respectively. The amount of type-I hydrogen was independent of the exchange reaction temperature. In contrast to this, the amount of types II and III of exchangeable hydrogen increased with an increasing exchange temperature, suggesting that the amount of types II and III of hydrogen in the coal is dependent upon the exchange temperature. 35 refs., 8 figs., 5 tabs.

  2. Testing program for determining the mechanical properties of concrete to temperatures of 621/sup 0/C

    SciTech Connect

    Oland, C.B.; Naus, D.J.; Robinson, G.C.

    1980-01-01

    Concrete temperatures in a Liquid Metal Fast Breeder Reactor (LMFBR) in excess of normal code limits can result from postulated large sodium spills in equipment cells. Elevated temperature concrete property data which may have application for providing a basis for the design and evaluation of such postulated accident conditions is limited. Data thus needed to be developed commensurate with LMFBR plant applications for critical physical and mechanical concrete properties under prototypic thermal accident conditions. A test program was conducted to define the variations in physical and mechanical properties of a limestone aggregate concrete and a lightweight insulating concrete exposed to elevated temperatures. Five test series were conducted: unconfined compression, shear, rebar bond, sustained loading (creep), and thermal properties. Testing procedures for determining the mechanical properties of concrete from ambient to 621/sup 0/C (1150/sup 0/F) are described. Ther thermal properties tests are discussed in a separate paper which is also being presented at this conference.

  3. Status of the INL high-temperature electrolysis research program –experimental and modeling

    SciTech Connect

    J. E. O'Brien; C. M. Stoots; M. G. McKellar; E. A. Harvego; K. G. Condie; G. K. Housley; J. S. Herring; J. J. Hartvigsen

    2009-04-01

    This paper provides a status update on the high-temperature electrolysis (HTE) research and development program at the Idaho National Laboratory (INL), with an overview of recent large-scale system modeling results and the status of the experimental program. System analysis results have been obtained using the commercial code UniSim, augmented with a custom high-temperature electrolyzer module. The process flow diagrams for the system simulations include an advanced nuclear reactor as a source of high-temperature process heat, a power cycle and a coupled steam electrolysis loop. Several reactor types and power cycles have been considered, over a range of reactor coolant outlet temperatures. In terms of experimental research, the INL has recently completed an Integrated Laboratory Scale (ILS) HTE test at the 15 kW level. The initial hydrogen production rate for the ILS test was in excess of 5000 liters per hour. Details of the ILS design and operation will be presented. Current small-scale experimental research is focused on improving the degradation characteristics of the electrolysis cells and stacks. Small-scale testing ranges from single cells to multiple-cell stacks. The INL is currently in the process of testing several state-of-the-art anode-supported cells and is working to broaden its relationship with industry in order to improve the long-term performance of the cells.

  4. Measurements and analysis of water adsorption and desorption

    SciTech Connect

    Monazam, E.R.; Shadle, L.J.; Schroeder, K.

    1996-02-01

    An investigation was carried out on the adsorption and desorption of moisture in chars of low rank coal. Equilibrium moisture sorptions of dry and moist chars were measured at room temperature and relative humidity of 30% and 80%. Based on these measurements, a novel mathematical model was developed to predict both the rate and the level of hydration for coals and chars. The formulation uses a shrinking core model which required only the measurement of the adsorbing material`s equilibrium moisture content at different temperatures and humidities. The model was validated against experimental and literature data. It accurately and reliably predicted both the rate and extent of hydration and dehydration for coals and char. Using this model, the effects of varying temperatures, relative humidities, and size of the particles and coal pile were simulated. The sensitivity study demonstrated that, as expected, relative humidity and temperature had strong effects on both the rate of hydration and-the equilibrium moisture of coal or char. The particle size dramatically influenced the rate of hydration, but had no affect on the equilibrium moisture content. This model can be used effectively to simulate the impact of moisture on drying, storage, and spontaneous combustion of coals and coal-derived chars.

  5. The effect of selective desorption mechanisms during interstellar ice formation

    E-print Network

    Kalvans, Juris

    2015-01-01

    Major components of ices on interstellar grains in molecular clouds - water and carbon oxides - occur at various optical depths. This implies that selective desorption mechanisms are at work. An astrochemical model of a contracting low-mass molecular cloud core is presented. Ice was treated as consisting of the surface and three subsurface layers (sublayers). Photodesorption, reactive desorption, and indirect reactive desorption were investigated. The latter manifests itself through desorption from H+H reaction on grains. Desorption of shallow subsurface species was included. Modeling results suggest the existence of a "photon-dominated ice" during the early phases of core contraction. Subsurface ice is chemically processed by interstellar photons, which produces complex organic molecules. Desorption from the subsurface layer results in high COM gas-phase abundances at Av = 2.4...10mag. This may contribute towards an explanation for COM observations in dark cores. It was found that photodesorption mostly gove...

  6. Double DCO+ Rings Reveal CO Ice Desorption in the Outer Disk Around IM Lup

    NASA Astrophysics Data System (ADS)

    Öberg, Karin I.; Furuya, Kenji; Loomis, Ryan; Aikawa, Yuri; Andrews, Sean M.; Qi, Chunhua; van Dishoeck, Ewine F.; Wilner, David J.

    2015-09-01

    In a protoplanetary disk, a combination of thermal and non-thermal desorption processes regulate where volatiles are liberated from icy grain mantles into the gas phase. Non-thermal desorption should result in volatile-enriched gas in disk-regions where complete freeze-out is otherwise expected. We present Atacama Large Millimeter/Submillimeter Array observations of the disk around the young star IM Lup in 1.4 mm continuum, C18O 2-1, H13CO+ 3-2 and DCO+ 3-2 emission at ˜0.?5 resolution. The images of these dust and gas tracers are clearly resolved. The DCO+ line exhibits a striking pair of concentric rings of emission that peak at radii of ˜0.?6 and 2? (˜90 and 300 AU, respectively). Based on disk chemistry model comparison, the inner DCO+ ring is associated with the balance of CO freeze-out and thermal desorption due to a radial decrease in disk temperature. The outer DCO+ ring is explained by non-thermal desorption of CO ice in the low-column-density outer disk, repopulating the disk midplane with cold CO gas. The CO gas then reacts with abundant H2D+ to form the observed DCO+ outer ring. These observations demonstrate that spatially resolved DCO+ emission can be used to trace otherwise hidden cold gas reservoirs in the outmost disk regions, opening a new window onto their chemistry and kinematics.

  7. Double DCO+ rings reveal CO ice desorption in the outer disk around IM Lup

    E-print Network

    Oberg, Karin I; Loomis, Ryan; Aikawa, Yuri; Andrews, Sean M; Qi, Chunhua; van Dishoeck, Ewine F; Wilner, David J

    2015-01-01

    In a protoplanetary disk, a combination of thermal and non-thermal desorption processes regulate where volatiles are liberated from icy grain mantles into the gas phase. Non-thermal desorption should result in volatile-enriched gas in disk-regions where complete freeze-out is otherwise expected. We present ALMA observations of the disk around the young star IM Lup in 1.4 mm continuum, C18O 2-1, H13CO+ 3-2 and DCO+ 3-2 emission at ~0".5 resolution. The images of these dust and gas tracers are clearly resolved. The DCO+ line exhibits a striking pair of concentric rings of emission that peak at radii of ~0".6 and 2" (~90 and 300 AU, respectively). Based on disk chemistry model comparison, the inner DCO+ ring is associated with the balance of CO freeze-out and thermal desorption due to a radial decrease in disk temperature. The outer DCO+ ring is explained by non-thermal desorption of CO ice in the low-column-density outer disk, repopulating the disk midplane with cold CO gas. The CO gas then reacts with abundant...

  8. Optimizing the relationship between chromatographic efficiency and retention times in temperature-programmed gas chromatography.

    PubMed

    Mjøs, Svein A; Waktola, Habtewold D

    2015-09-01

    A methodology that can maximise the chromatographic efficiency that can be achieved within a defined time frame in temperature-programmed gas chromatography is described. The efficiency can be defined as the inverse of peak widths measured in retention index units. This parameter can be described by a model similar to the van Deemter equation, which is expanded to account for the effect of the temperature rate in addition to the effect of carrier gas velocity. The model of efficiency is found by response surface methodology, where the temperature rates and the carrier gas velocities are systematically varied in the experiments. A second model that accurately explains the retention time of the last eluting compound can be found from the same experiments, and optimal conditions are found by combining the two models. The methodology has been evaluated with four capillary columns and three carrier gases, using fatty acid methyl esters as analytes. All experiments showed that there is a fairly linear decrease in efficiency with increasing temperature rates. At any temperature rate, optimal velocity is only marginally higher than the velocity that maximises chromatographic efficiency, since the carrier gas velocity has a limited effect on the retention times. PMID:26105965

  9. Sticking and desorption of hydrogen on graphite: A comparative study of different models

    PubMed Central

    Lepetit, Bruno; Lemoine, Didier; Medina, Zuleika; Jackson, Bret

    2011-01-01

    We study the physisorption of atomic hydrogen on graphitic surfaces with four different quantum mechanical methods: perturbation and effective Hamiltonian theories, close coupling wavepacket, and reduced density matrix propagation methods. Corrugation is included in the modeling of the surface. Sticking is a fast process which is well described by all methods. Sticking probabilities are of the order of a few percent in the collision energy range 0–25 meV, but are enhanced for collision energies close to those of diffraction resonances. Sticking also increases with surface temperature. Desorption is a slow process which involves multiphonon processes. We show, however, how to correct the close coupling wavepacket method to account for such phenomena and obtain correct time constants for initial state decay. Desorption time constants are in the range of 20–50 ps for a surface temperature of 300 K. PMID:21428654

  10. General solution of the diffusion equation: application to formaldehyde sterilization and desorption of polymers.

    PubMed

    Hennebert, P

    1987-09-01

    A general solution of the diffusion equation for gas in polymers is developed by a numerical method. This solution allows diffusion to be calculated in all cases, by gas desorption after an incomplete adsorption, which is not the case for analytical solutions. When the analytical solutions are valid, both types of solution give identical results. The effect of equivalent sterilization treatment at different temperatures and gas concentrations on formaldehyde residuals in 9 polymers is calculated. High temperature gives lower residual content. Short sterilization times at high gas concentration produce a higher residual content at the end of the adsorption and a lower residual content during desorption than longer sterilization times with lower gas concentration. This is due to sharper gradients of diffusant in the polymer. PMID:3676420

  11. Plasma desorption mass spectrometry of organics at low temperatures 

    E-print Network

    Shirey, Eldon Lynn

    1993-01-01

    to the structural features of the volatile hydrocarbons. Both the yield and number of deprotonated molecular ions changed with these structural features. The dominant molecular ion varied from (M-H)+ in saturated compounds to (M+H)+ in aromatic compounds. H...

  12. Gas absorption/desorption temperature-differential engine

    NASA Technical Reports Server (NTRS)

    Miller, C. G.

    1981-01-01

    Continuously operating compressor system converts 90 percent of gas-turbine plant energy to electricity. Conventional plants work in batch mode, operating at 40 percent efficiency. Compressor uses metal hydride matrix on outside of rotating drum to generate working gas, hydrogen. Rolling valve seals allow continuous work. During operation, gas is absorbed, releasing heat, and desorbed with heat gain. System conserves nuclear and fossil fuels, reducing powerplant capital and operating costs.

  13. Field desorption of Na and Cs from graphene on iridium

    NASA Astrophysics Data System (ADS)

    Bernatskii, D. P.; Pavlov, V. G.

    2015-08-01

    Field electron and desorption microscopy has been used to study specific features of the field desorption of sodium and cesium ions adsorbed on the surface of iridium with graphene. It was found that adsorbed sodium atoms most strongly reduce the work function on graphene islands situated over densely packed faces of iridium. A strong electric field qualitatively similarly affects the sodium and cesium desorption processes from a field emitter to give two desorption phases and has no noticeable effect on the disintegration of the graphene layer.

  14. High-temperature turbine technology program hot-gas path development test. Part II. Testing

    SciTech Connect

    Horner, M.W.

    1982-03-01

    This topical report of the US Department of Energy High-Temperature Turbine Technology (DOE-HTTT) Phase II program presents the results of testing full-scale water-cooled first-stage and second-stage turbine nozzles at design temperature and pressure to verify that the designs are adequate for operation in a full-scale turbine environment. Low-cycle fatigue life of the nozzles was demonstrated by subjecting cascade assemblies to several hundred simulated startup/shutdown turbine cycles. This testing was accomplished in the Hot-Gas Path Development Test Stand (HGPDTS), which is capable of evaluating full-scale combustion and turbine nozzle components. A three-throat cascade of the first-stage turbine nozzle was successfully tested at a nozzle inlet gas temperature of 2630/sup 0/F and a nozzle inlet pressure of 11.3 atmospheres. In addition to steady-state operation at the design firing temperature, the nozzle cascade was exposed to a simulated startup/shutdown turbine cycle by varying the firing temperature. A total of 42 h at the design point and 617 thermal cycles were accumulated during the test periods. First-stage nozzle test results show that measured metal and coolant temperatures correspond well to the predicted design values. This nozzle design has been shown to be fully satisfactory for the application (2600/sup 0/F), with growth capability to 3000/sup 0/F firing temperature. A post-test metallurgical examination of sectioned portions of the tested nozzles shows a totally bonded structure, confirming the test results and attesting to the successful performance of water-cooled composite nozzle hardware.

  15. Water in a Polymeric Electrolyte Membrane: Sorption/Desorption and Freezing phenomena

    E-print Network

    Marie Plazanet; Francesco Sacchetti; Caterina Petrillo; Bruno Deme; Paolo Bartolini; Renato Torre

    2013-12-17

    Nafion is a perfluorosulfonated polymer, widely used in Proton Exchange Membrane Fuel Cells. This polymer adopts a complex structural organisation resulting from the microsegregation between hydrophobic backbones and hydrophilic sulfonic acid groups. Upon hydration appear water-filled channels and cavities, in which are released the acidic protons to form a solution of hydronium ions in water embedded in the polymer matrix. Below 273 K, a phenomenon of water sorption/desorption occurs, whose origin is still an open question. Performing neutron diffraction, we monitored the quantity of ice formed during the sorption/desorption as a function of temperature down to 180 K. Upon cooling, we observe that ice forms outside of the membrane and crystallises in the hexagonal Ih form. Simultaneously, the membrane shrinks and dehydrate, leading to an increase of the hydronium ions concentration inside the matrix. Reversibly, the ice melts and the membrane re-hydrate upon heating. A model of solution, whose freezing point varies with the hydronium concentration, is proposed to calculate the quantity of ice formed as a function of temperature. The quantitative agreement between the model and experimental data explains the smooth and reversible behavior observed during the sorption or desorption of water, pointing out the origin of the phenomena. The proposed picture reconciles both confinement and entropic effects. Other examples of water filled electrolyte nano-structures are eventually discussed, in the context of clarifying the conditions for water transport at low temperature.

  16. Lead Research and Development Activity for DOE's High Temperature, Low Relative Humidity Membrane Program (Topic 2)

    SciTech Connect

    James Fenton, PhD; Darlene Slattery, PhD; Nahid Mohajeri, PhD

    2012-09-05

    The Department of Energy’s High Temperature, Low Relative Humidity Membrane Program was begun in 2006 with the Florida Solar Energy Center (FSEC) as the lead organization. During the first three years of the program, FSEC was tasked with developing non-Nafion® proton exchange membranes with improved conductivity for fuel cells. Additionally, FSEC was responsible for developing protocols for the measurement of in-plane conductivity, providing conductivity measurements for the other funded teams, developing a method for through-plane conductivity and organizing and holding semiannual meetings of the High Temperature Membrane Working Group (HTMWG). The FSEC membrane research focused on the development of supported poly[perfluorosulfonic acid] (PFSA) – Teflon membranes and a hydrocarbon membrane, sulfonated poly(ether ether ketone). The fourth generation of the PFSA membrane (designated FSEC-4) came close to, but did not meet, the Go/No-Go milestone of 0.1 S/cm at 50% relative humidity at 120 °C. In-plane conductivity of membranes provided by the funded teams was measured and reported to the teams and DOE. Late in the third year of the program, DOE used this data and other factors to decide upon the teams to continue in the program. The teams that continued provided promising membranes to FSEC for development of membrane electrode assemblies (MEAs) that could be tested in an operating fuel cell. FSEC worked closely with each team to provide customized support. A logic flow chart was developed and discussed before MEA fabrication or any testing began. Of the five teams supported, by the end of the project, membranes from two of the teams were easily manufactured into MEAs and successfully characterized for performance. One of these teams exceeded performance targets, while the other requires further optimization. An additional team developed a membrane that shows great promise for significantly reducing membrane costs and increasing membrane lifetime.

  17. Effects of breeder feeding restriction programs and incubation temperatures on progeny footpad development.

    PubMed

    Da Costa, M J; Oviedo-Rondón, E O; Wineland, M J; Wilson, J; Montiel, E

    2014-08-01

    Footpad dermatitis begins early in life, and there is evidence of individual susceptibility. An experiment was conducted to evaluate the carryover effects of breeder feed restriction programs and incubation temperatures (TEM) on progeny footpad development at hatch, and 7 and 22 d. Cobb 500 fast feathering breeders were subjected to 2 dietary feed restriction programs during rearing: skip-a-day (SAD) and every-day feeding (EDF). At 60 wk of age, eggs from each group were collected and incubated according to 2 TEM, standard (S) eggshell temperature (38.1°C) and early-low late-high (LH). This second profile had low (36.9°C) eggshell temperature for the first 3 d, and standard temperature until the last 3 d when eggs were subjected to elevated (38.9°C) eggshell temperature. At hatch, 15 chicks from each treatment combination were sampled to obtain footpads for histological analysis. Seventy-two chicks per treatment were placed in 48 cages (6/cage), and raised to 22 d. At 7 and 22 d, 1 and 2 chickens, respectively, were sampled for footpads. The BW and group feed intake were recorded to obtain BW gain and feed conversion ratio at 7 and 21 d. Histological analysis assessed thickness and total area of stratus corneum (SC), epidermis, and dermis, and total papillae height. Data were analyzed as randomized complete block design in a 2 × 2 factorial arrangement of treatments. There was a negative effect of LH TEM on performance at both ages. An interaction effect on SC area and papillae height was observed at hatch. Additionally, SAD treatment increased thickness and area of footpad dermis. At 7 d, the SC parameters of the SAD progeny were increased. Epidermis thickness was affected by treatment interaction. Furthermore, LH TEM decreased epidermis thickness and dermis area. At 22 d, interaction effects were observed in thickness and area of SC and epidermis. Incubation S TEM increased thickness and area of dermis. It was concluded that breeder feed restriction programs and incubation TEM profiles may have carryover effects on histomorphological traits of footpads. PMID:24894526

  18. Thermal desorption of petroleum contaminants from soils and sand using a continuous feed lab scale rotary kiln

    SciTech Connect

    Chern, Hsien-Tsung S.; Bozzelli, J.W.

    1996-10-01

    A continuous feed rotary kiln was designed and constructed to study thermal desorption of petroleum hydrocarbon contaminants from soil and/or sand matrices. Desorption studies on sand were run on 1-dodecene, 1-hexadecene, naphthalene, and anthracene. Results show that desorption rates are effected most by temperature. Residence time is second in importance. Temperatures required for complete removal (98%) of the specific organics including multi ring aromatics range from 100-250{degrees}C. A matrix for optimized parameterization with a reasonable number of experiments was set up for studies on petroleum hydrocarbon contaminated soils from sites. Parameters included temperature, residence time, purge flow, kiln angle, rotation and soil feed. Parameters were varied to try and quantitate effects and determine optimum conditions. Temperature, residence time and purge gas velocity in this order were found to be the most important parameters in the desorption process. The effluent from the kiln was sampled and analyzed to determine the mass balance for carbon. Most of the carbon recovery ranged from 45-115%.

  19. Laser desorption lamp ionization source for ion trap mass spectrometry

    E-print Network

    Zare, Richard N.

    Laser desorption lamp ionization source for ion trap mass spectrometry Qinghao Wu and Richard N. Zare* A two-step laser desorption lamp ionization source coupled to an ion trap mass spectrometer (LDLI-ITMS) has been constructed and characterized. The pulsed infrared (IR) output of an Nd:YAG laser (1064 nm

  20. Conceptual design for a full-scale VAC*TRAX vacuum thermal desorption unit. Final report, September 1992--December 1995

    SciTech Connect

    Palmer, C.R.

    1996-04-01

    Rust Federal Services is pleased to present this topical report on the results of our Phase II conceptual design work of the PRDA VAC*TRAX{sup SM} mobile vacuum thermal desorption technology demonstration program. Through the present Phase II conceptual design activities, Rust has developed an equipment design and permitting strategy that retains the flexibility of a mobile treatment system with the long term value and ease of access of a central facility. The process is designed to remove volatile matter from solid matrices by thermal desorption. The system is also designed with superior emission controls, making it an ideal system for the treatment of radioactive wastes.

  1. Modeling Organic Contaminant Desorption from Municipal Solid Waste Components

    NASA Astrophysics Data System (ADS)

    Knappe, D. R.; Wu, B.; Barlaz, M. A.

    2002-12-01

    Approximately 25% of the sites on the National Priority List (NPL) of Superfund are municipal landfills that accepted hazardous waste. Unlined landfills typically result in groundwater contamination, and priority pollutants such as alkylbenzenes are often present. To select cost-effective risk management alternatives, better information on factors controlling the fate of hydrophobic organic contaminants (HOCs) in landfills is required. The objectives of this study were (1) to investigate the effects of HOC aging time, anaerobic sorbent decomposition, and leachate composition on HOC desorption rates, and (2) to simulate HOC desorption rates from polymers and biopolymer composites with suitable diffusion models. Experiments were conducted with individual components of municipal solid waste (MSW) including polyvinyl chloride (PVC), high-density polyethylene (HDPE), newsprint, office paper, and model food and yard waste (rabbit food). Each of the biopolymer composites (office paper, newsprint, rabbit food) was tested in both fresh and anaerobically decomposed form. To determine the effects of aging on alkylbenzene desorption rates, batch desorption tests were performed after sorbents were exposed to toluene for 30 and 250 days in flame-sealed ampules. Desorption tests showed that alkylbenzene desorption rates varied greatly among MSW components (PVC slowest, fresh rabbit food and newsprint fastest). Furthermore, desorption rates decreased as aging time increased. A single-parameter polymer diffusion model successfully described PVC and HDPE desorption data, but it failed to simulate desorption rate data for biopolymer composites. For biopolymer composites, a three-parameter biphasic polymer diffusion model was employed, which successfully simulated both the initial rapid and the subsequent slow desorption of toluene. Toluene desorption rates from MSW mixtures were predicted for typical MSW compositions in the years 1960 and 1997. For the older MSW mixture, which had a low plastics content, the model predicted that 50% of the initially sorbed toluene desorbed over a period of 5.8 days. In contrast, the model predicted that 50% of the initially sorbed toluene desorbed over a period of 4 years for the newer MSW mixture. These results suggest that toluene desorption rates from old MSW mixtures exceed methanogenic toluene degradation rates (toluene half-lives of about 30 to 100 days have been reported for methanogenic systems) and thus imply that biodegradation kinetics control the rate at which sorbed toluene is mineralized in old landfills. For newer MSW mixtures with a larger plastics content, toluene desorption rates are substantially slower; therefore, toluene desorption kinetics likely control the rate at which sorbed toluene can be mineralized in new landfills.

  2. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction. Final report

    SciTech Connect

    Chunshan Song; Schobert, H.H.; Parfitt, D.P.

    1997-11-01

    Development of new catalysts is a promising approach to more efficient coal liquefaction. It has been recognized that dispersed catalysts are superior to supported catalysts for primary liquefaction of coals, because the control of initial coal dissolution or depolymerization requires intimate contact between the catalyst and coal. This research is a fundamental and exploratory study on catalytic coal liquefaction, with the emphasis on exploring novel bimetallic dispersed catalysts for coal liquefaction and the effectiveness of temperature-programmed liquefaction using dispersed catalysts. The primary objective of this research was to explore novel bimetallic dispersed catalysts from organometallic molecular precursors, that could be used in low concentrations but exhibit relatively high activity for efficient hydroliquefaction of coals under temperature-programmed conditions. We have synthesized and tested various catalyst precursors in liquefaction of subbituminous and bituminous coals and in model compound studies to examine how do the composition and structure of the catalytic precursors affect their effectiveness for coal liquefaction under different reaction conditions, and how do these factors affect their catalytic functions for hydrogenation of polyaromatic hydrocarbons, for cleavage of C-C bonds in polycyclic systems such as 4-(1-naphthylmethyl)bibenzyl, for hydrogenolysis of C-O bond such as that in dinaphthylether, for hydrodeoxygenation of phenolic compounds and other oxygen-containing compounds such as xanthene, and for hydrodesulfurization of polycyclic sulfur compounds such as dibenzothiophene. The novel bimetallic and monometallic precursors synthesized and tested in this project include various Mo- and Fe-based compounds.

  3. A hot hole-programmed and low-temperature-formed SONOS flash memory

    PubMed Central

    2013-01-01

    In this study, a high-performance TixZrySizO flash memory is demonstrated using a sol–gel spin-coating method and formed under a low annealing temperature. The high-efficiency charge storage layer is formed by depositing a well-mixed solution of titanium tetrachloride, silicon tetrachloride, and zirconium tetrachloride, followed by 60 s of annealing at 600°C. The flash memory exhibits a noteworthy hot hole trapping characteristic and excellent electrical properties regarding memory window, program/erase speeds, and charge retention. At only 6-V operation, the program/erase speeds can be as fast as 120:5.2 ?s with a 2-V shift, and the memory window can be up to 8 V. The retention times are extrapolated to 106 s with only 5% (at 85°C) and 10% (at 125°C) charge loss. The barrier height of the TixZrySizO film is demonstrated to be 1.15 eV for hole trapping, through the extraction of the Poole-Frenkel current. The excellent performance of the memory is attributed to high trapping sites of the low-temperature-annealed, high-? sol–gel film. PMID:23899050

  4. Generation IV Reactors Integrated Materials Technology Program Plan: Focus on Very High Temperature Reactor Materials

    SciTech Connect

    Corwin, William R; Burchell, Timothy D; Katoh, Yutai; McGreevy, Timothy E; Nanstad, Randy K; Ren, Weiju; Snead, Lance Lewis; Wilson, Dane F

    2008-08-01

    Since 2002, the Department of Energy's (DOE's) Generation IV Nuclear Energy Systems (Gen IV) Program has addressed the research and development (R&D) necessary to support next-generation nuclear energy systems. The six most promising systems identified for next-generation nuclear energy are described within this roadmap. Two employ a thermal neutron spectrum with coolants and temperatures that enable hydrogen or electricity production with high efficiency (the Supercritical Water Reactor-SCWR and the Very High Temperature Reactor-VHTR). Three employ a fast neutron spectrum to enable more effective management of actinides through recycling of most components in the discharged fuel (the Gas-cooled Fast Reactor-GFR, the Lead-cooled Fast Reactor-LFR, and the Sodium-cooled Fast Reactor-SFR). The Molten Salt Reactor (MSR) employs a circulating liquid fuel mixture that offers considerable flexibility for recycling actinides and may provide an alternative to accelerator-driven systems. At the inception of DOE's Gen IV program, it was decided to significantly pursue five of the six concepts identified in the Gen IV roadmap to determine which of them was most appropriate to meet the needs of future U.S. nuclear power generation. In particular, evaluation of the highly efficient thermal SCWR and VHTR reactors was initiated primarily for energy production, and evaluation of the three fast reactor concepts, SFR, LFR, and GFR, was begun to assess viability for both energy production and their potential contribution to closing the fuel cycle. Within the Gen IV Program itself, only the VHTR class of reactors was selected for continued development. Hence, this document will address the multiple activities under the Gen IV program that contribute to the development of the VHTR. A few major technologies have been recognized by DOE as necessary to enable the deployment of the next generation of advanced nuclear reactors, including the development and qualification of the structural materials needed to ensure their safe and reliable operation. The focus of this document will be the overall range of DOE's structural materials research activities being conducted to support VHTR development. By far, the largest portion of material's R&D supporting VHTR development is that being performed directly as part of the Next-Generation Nuclear Plant (NGNP) Project. Supplementary VHTR materials R&D being performed in the DOE program, including university and international research programs and that being performed under direct contracts with the American Society for Mechanical Engineers (ASME) Boiler and Pressure Vessel Code, will also be described. Specific areas of high-priority materials research that will be needed to deploy the NGNP and provide a basis for subsequent VHTRs are described, including the following: (1) Graphite: (a) Extensive unirradiated materials characterization and assessment of irradiation effects on properties must be performed to qualify new grades of graphite for nuclear service, including thermo-physical and mechanical properties and their changes, statistical variations from billot-to-billot and lot-to-lot, creep, and especially, irradiation creep. (b) Predictive models, as well as codification of the requirements and design methods for graphite core supports, must be developed to provide a basis for licensing. (2) Ceramics: Both fibrous and load-bearing ceramics must be qualified for environmental and radiation service as insulating materials. (3) Ceramic Composites: Carbon-carbon and SiC-SiC composites must be qualified for specialized usage in selected high-temperature components, such as core stabilizers, control rods, and insulating covers and ducting. This will require development of component-specific designs and fabrication processes, materials characterization, assessment of environmental and irradiation effects, and establishment of codes and standards for materials testing and design requirements. (4) Pressure Vessel Steels: (a) Qualification of short-term, high-temperature properties of light water rea

  5. Integrated field emission array for ion desorption

    DOEpatents

    Resnick, Paul J; Hertz, Kristin L; Holland, Christopher; Chichester, David; Schwoebel, Paul

    2013-09-17

    An integrated field emission array for ion desorption includes an electrically conductive substrate; a dielectric layer lying over the electrically conductive substrate comprising a plurality of laterally separated cavities extending through the dielectric layer; a like plurality of conically-shaped emitter tips on posts, each emitter tip/post disposed concentrically within a laterally separated cavity and electrically contacting the substrate; and a gate electrode structure lying over the dielectric layer, including a like plurality of circular gate apertures, each gate aperture disposed concentrically above an emitter tip/post to provide a like plurality of annular gate electrodes and wherein the lower edge of each annular gate electrode proximate the like emitter tip/post is rounded. Also disclosed herein are methods for fabricating an integrated field emission array.

  6. Enhanced desorption of persistent organic pollutants from microplastics under simulated physiological conditions.

    PubMed

    Bakir, Adil; Rowland, Steven J; Thompson, Richard C

    2014-02-01

    Microplastics have the potential to uptake and release persistent organic pollutants (POPs); however, subsequent transfer to marine organisms is poorly understood. Some models estimating transfer of sorbed contaminants to organisms neglect the role of gut surfactants under differing physiological conditions in the gut (varying pH and temperature), examined here. We investigated the potential for polyvinylchloride (PVC) and polyethylene (PE) to sorb and desorb (14)C-DDT, (14)C-phenanthrene (Phe), (14)C-perfluorooctanoic acid (PFOA) and (14)C-di-2-ethylhexyl phthalate (DEHP). Desorption rates of POPs were quantified in seawater and under simulated gut conditions. Influence of pH and temperature was examined in order to represent cold and warm blooded organisms. Desorption rates were faster with gut surfactant, with a further substantial increase under conditions simulating warm blooded organisms. Desorption under gut conditions could be up to 30 times greater than in seawater alone. Of the POP/plastic combinations examined Phe with PE gave the highest potential for transport to organisms. PMID:24212067

  7. Optical breathing of nano-porous antireflective coatings through adsorption and desorption of water

    PubMed Central

    Nielsen, Karsten H.; Kittel, Thomas; Wondraczek, Katrin; Wondraczek, Lothar

    2014-01-01

    We report on the direct consequences of reversible water adsorption on the optical performance of silica-based nanoporous antireflective (AR) coatings as they are applied on glass in photovoltaic and solar thermal energy conversion systems. In situ UV-VIS transmission spectroscopy and path length measurements through high-resolution interferometric microscopy were conducted on model films during exposure to different levels of humidity and temperature. We show that water adsorption in the pores of the film results in a notable increase of the effective refractive index of the coating. As a consequence, the AR effect is strongly reduced. The temperature regime in which the major part of the water can be driven-out rapidly lies in the range of 55°C and 135°C. Such thermal desorption was found to increase the overall transmission of a coated glass by ~ 1%-point. As the activation energy of isothermal desorption, we find a value of about 18?kJ/mol. Within the experimental range of our data, the sorption and desorption process is fully reversible, resulting in optical breathing of the film. Nanoporous AR films with closed pore structure or high hydrophobicity may be of advantage for maintaining AR performance under air exposure. PMID:25307536

  8. High-speed thermo-microscope for imaging thermal desorption phenomena

    NASA Astrophysics Data System (ADS)

    Staymates, Matthew; Gillen, Greg

    2012-07-01

    In this work, we describe a thermo-microscope imaging system that can be used to visualize atmospheric pressure thermal desorption phenomena at high heating rates and frame rates. This versatile and portable instrument is useful for studying events during rapid heating of organic particles on the microscopic scale. The system consists of a zoom lens coupled to a high-speed video camera that is focused on the surface of an aluminum nitride heating element. We leverage high-speed videography with oblique incidence microscopy along with forward and back-scattered illumination to capture vivid images of thermal desorption events during rapid heating of chemical compounds. In a typical experiment, particles of the material of interest are rapidly heated beyond their boiling point while the camera captures images at several thousand frames/s. A data acquisition system, along with an embedded thermocouple and infrared pyrometer are used to measure the temperature of the heater surface. We demonstrate that, while a typical thermocouple lacks the response time to accurately measure temperature ramps that approach 150 °C/s, it is possible to calibrate the system by using a combination of infrared pyrometry, melting point standards, and a thermocouple. Several examples of high explosives undergoing rapid thermal desorption are also presented.

  9. Non-isothermal and isothermal hydrogen desorption kinetics of zirconium hydride

    NASA Astrophysics Data System (ADS)

    Ma, Mingwang; Xiang, Wei; Tang, Binghua; Liang, Li; Wang, Lei; Tan, Xiaohua

    2015-12-01

    Thermal desorption behaviors of zirconium hydride powder under non-isothermal and isothermal heat treatment conditions were studied using simultaneous TG-TDS. The phase transformation sequences were established by correlating the observed peaks of H2 release and mass loss. The origins of the peaks or shoulders in the TDS spectra were described as the equilibrium hydrogen pressures of a number of consecutive phase regions that decomposition reaction passed through. Effect of held temperature on the isothermal desorption behavior was taken into consideration, which was shown to be essential for the phase transformation sequence during ZrH2 decomposition. The zirconium monohydride ?ZrH was observed at ambient conditions, which has been supposed to be metastable for a long time.

  10. Effect of Titanium Doping of Al(111) Surfaces on Alane Formation Mobility, and Desorption

    SciTech Connect

    Chopra I. S.; Graetz J.; Chaudhuri, S.; Veyan, J.-F.; Chabal, Y. J.

    2011-07-05

    Alanes are critical intermediates in hydrogen storage reactions for mass transport during the formation of complex metal hydrides. Titanium has been shown to promote hydrogen desorption and hydrogenation, but its role as a catalyst is not clear. Combining surface infrared (IR) spectroscopy and density functional theory (DFT), the role of Ti is explored during the interaction of atomic hydrogen with Ti-doped Al(111) surfaces. Titanium is found to reduce the formation of large alanes, due to a decrease of hydrogen mobility and to trapping of small alanes on Ti sites, thus hindering oligomerization. For high doping levels ({approx}0.27 ML Ti) on Al(111), only chemisorbed AlH{sub 3} is observed on Ti sites, with no evidence for large alanes. Titanium also dramatically lowers the desorption temperature of large alanes from 290 to 190 K, due to a more restricted translational motion of these alanes.

  11. Hydrogen absorption-desorption properties of UZr sub 0 sub . sub 2 sub 9 alloy

    E-print Network

    Shuai Mao Bing; WangZhenHong; Zhang Yi Tao

    2001-01-01

    Hydrogen absorption-desorption properties of UZr sub 0 sub . sub 2 sub 9 alloy are investigated in detail at hydrogen pressures up to 0.4 MPa and over the temperature range of 300 to 723 K. It absorbs hydrogen up to 2.3 H atoms per F.U. (formula unit) by only one-step reaction and hence each desorption isotherm has a single plateau over nearly the whole hydrogen composition range. The enthalpy and entropy changes of the dissociation reaction are of -78.9 kJ centre dot mol sup - sup 1 H sub 2 and 205.3 J centre dot(K centre dot mol H sub 2) sup - sup 1 , respectively. The alloy shows high durability against powdering upon hydrogenation and may have good heat conductivity. It is predicted that UZr sub 0 sub . sub 2 sub 9 alloy may be a suitable material for tritium treatment and storage

  12. Slow desorption of volatile organic compounds from soil: evidence of desorption step limitations.

    PubMed

    Raihala, T S; Wang, Y; Jackman, A P

    1999-03-19

    Transient adsorption and desorption of 1,2 dichloroethane and toluene on dry Yolo silt loam soil were studied by continuously measuring the composition of the effluent from a soil-packed chromatography column with a mass spectrometer. After obtaining complete breakthrough at approximately 30% relative saturation of one chemical in nitrogen, pure nitrogen feed was initiated and maintained for several hours. Of the material adsorbed at breakthrough, 9.7% of the 1,2 dichloroethane and 14.2% of the toluene were highly resistant to desorption and remained sorbed on the soil even after 5 h of nitrogen flow. When a second chemical with a higher adsorption affinity was introduced into the soil column (water following toluene or toluene following 1,2 dichloroethane), the majority of the first chemical was quickly desorbed and began leaving the soil column before breakthrough of the second chemical. Conversely, when a second chemical with a smaller adsorption affinity was introduced into the soil column, only a small amount of the first chemical was displaced and began leaving the soil column after breakthrough of the second chemical. The results of this study indicate that the desorption step itself may be the rate-limiting step for sorbate which remains after prolonged exposure to sorbate-free gas. PMID:10337401

  13. Role of deuterium desorption kinetics on the thermionic emission properties of polycrystalline diamond films with respect to kinetic isotope effects

    SciTech Connect

    Paxton, W. F. Howell, M.; Kang, W. P.; Davidson, J. L.; Brooks, M. M.; Tolk, N.

    2014-06-21

    The desorption kinetics of deuterium from polycrystalline chemical vapor deposited diamond films were characterized by monitoring the isothermal thermionic emission current behavior. The reaction was observed to follow a first-order trend as evidenced by the decay rate of the thermionic emission current over time which is in agreement with previously reported studies. However, an Arrhenius plot of the reaction rates at each tested temperature did not exhibit the typical linear behavior which appears to contradict past observations of the hydrogen (or deuterium) desorption reaction from diamond. This observed deviation from linearity, specifically at lower temperatures, has been attributed to non-classical processes. Though no known previous studies reported similar deviations, a reanalysis of the data obtained in the present study was performed to account for tunneling which appeared to add merit to this hypothesis. Additional investigations were performed by reevaluating previously reported data involving the desorption of hydrogen (as opposed to deuterium) from diamond which further indicated this reaction to be dominated by tunneling at the temperatures tested in this study (<775?°C). An activation energy of 3.19?eV and a pre-exponential constant of 2.3 × 10{sup 12} s{sup ?1} were determined for the desorption reaction of deuterium from diamond which is in agreement with previously reported studies.

  14. Trace level detection of explosives in solution using leidenfrost phenomenon assisted thermal desorption ambient mass spectrometry.

    PubMed

    Saha, Subhrakanti; Mandal, Mridul Kanti; Chen, Lee Chuin; Ninomiya, Satoshi; Shida, Yasuo; Hiraoka, Kenzo

    2013-01-01

    The present paper demonstrates the detection of explosives in solution using thermal desorption technique at a temperature higher than Leidenfrost temperature of the solvent in combination with low temperature plasma (LTP) ionization. Leidenfrost temperature of a solvent is the temperature above which the solvent droplet starts levitation instead of splashing when placed on a hot metallic surface. During this desorption process, slow and gentle solvent evaporation takes place, which leads to the pre-concentration of less-volatile explosive molecules in the droplet and the explosive molecules are released at the last moment of droplet evaporation. The limits of detection for explosives studied by using this thermal desorption LTP ionization method varied in a range of 1 to 10 parts per billion (ppb) using a droplet volume of 20??L (absolute sample amount 90-630?fmol). As LTP ionization method was applied and ion-molecule reactions took place in ambient atmosphere, various ion-molecule adduct species like [M+NO2](-), [M+NO3](-), [M+HCO3](-), [M+HCO4](-) were generated together with [M-H](-) peak. Each peak was unambiguously identified using 'Exactive Orbitrap' mass spectrometer in negative ionization mode within 3?ppm deviation compared to its exact mass. This newly developed technique was successfully applied to detect four explosives contained in the pond water and soil sample with minor sample pre-treatment and the explosives were detected with ppb levels. The present method is simple, rapid and can detect trace levels of explosives with high specificity from solutions. PMID:24349927

  15. Trace Level Detection of Explosives in Solution Using Leidenfrost Phenomenon Assisted Thermal Desorption Ambient Mass Spectrometry

    PubMed Central

    Saha, Subhrakanti; Mandal, Mridul Kanti; Chen, Lee Chuin; Ninomiya, Satoshi; Shida, Yasuo; Hiraoka, Kenzo

    2013-01-01

    The present paper demonstrates the detection of explosives in solution using thermal desorption technique at a temperature higher than Leidenfrost temperature of the solvent in combination with low temperature plasma (LTP) ionization. Leidenfrost temperature of a solvent is the temperature above which the solvent droplet starts levitation instead of splashing when placed on a hot metallic surface. During this desorption process, slow and gentle solvent evaporation takes place, which leads to the pre-concentration of less-volatile explosive molecules in the droplet and the explosive molecules are released at the last moment of droplet evaporation. The limits of detection for explosives studied by using this thermal desorption LTP ionization method varied in a range of 1 to 10 parts per billion (ppb) using a droplet volume of 20??L (absolute sample amount 90–630?fmol). As LTP ionization method was applied and ion–molecule reactions took place in ambient atmosphere, various ion–molecule adduct species like [M+NO2]?, [M+NO3]?, [M+HCO3]?, [M+HCO4]? were generated together with [M?H]? peak. Each peak was unambiguously identified using ‘Exactive Orbitrap’ mass spectrometer in negative ionization mode within 3?ppm deviation compared to its exact mass. This newly developed technique was successfully applied to detect four explosives contained in the pond water and soil sample with minor sample pre-treatment and the explosives were detected with ppb levels. The present method is simple, rapid and can detect trace levels of explosives with high specificity from solutions. PMID:24349927

  16. Thermal inactivation kinetics of Bacillus stearothermophilus spores using a linear temperature program.

    PubMed

    Leontidis, S; Fernández, A; Rodrigo, C; Fernández, P S; Magraner, L; Martínez, A

    1999-08-01

    A systematic study of the inactivation kinetics of Bacillus stearothermophilus spores was carried out in nonisothermic heating conditions using a linear temperature increase program and analyzing the experimental data by means of a one-step nonlinear regression. The D and z values estimated are close to those obtained in isothermic conditions and estimated by using a two-step model, first D values are calculated, and then in the second step a z value is deduced (D(121 degrees C) = 3.08 and 4.38 min, respectively, and z = 7 and 7.9 degrees C, respectively). No convergence problems were observed when using the one-step nonlinear regression proposed. The results indicated that the methodology applied in this study can be used to obtain kinetic data for bacterial spores, which could mean a significant reduction in the amount of experimental work employed to generate these data. PMID:10456754

  17. MAGMIX: a basic program to calculate viscosities of interacting magmas of differing composition, temperature, and water content

    USGS Publications Warehouse

    Frost, T.P.; Lindsay, J.R.

    1988-01-01

    MAGMIX is a BASIC program designed to predict viscosities at thermal equilibrium of interacting magmas of differing compositions, initial temperatures, crystallinities, crystal sizes, and water content for any mixing proportion between end members. From the viscosities of the end members at thermal equilibrium, it is possible to predict the styles of magma interaction expected for different initial conditions. The program is designed for modeling the type of magma interaction between hypersthenenormative magmas at upper crustal conditions. Utilization of the program to model magma interaction at pressures higher than 200 MPa would require modification of the program to account for the effects of pressure on heat of fusion and magma density. ?? 1988.

  18. Temperature-programmed retention indices for gas chromatography-mass spectroscopy analysis of plant essential oils.

    PubMed

    Zhao, Chen-Xi; Liang, Yi-Zeng; Fang, Hong-Zhuang; Li, Xiao-Ning

    2005-11-25

    A total of 95 volatile compounds from the essential oil in buds of Syringa oblata Lindl (lilac) were identified by gas chromatography-mass spectrometry (GC-MS) combined with heuristic evolving latent projections (HELP) and moving subwindow searching (MSS). The identified compounds are mainly aliphatic, terpenes and aromatic compounds. Their temperature-programmed retention indices (PTRIs) on HP-5MS and DB-35MS at three heating rates of 2, 4 and 6 degrees C/min from 80 to 290 degrees C were obtained, which showed that aliphatic compounds give nearly constant PTRIs and PTRIs of terpenoids do not vary much at different heating rates. But PTRIs of aromatic compounds exhibit relatively large temperature dependence. PTRIs vary much more on DB-35MS than those on HP-5MS according to the compound types. In general, differences of PTRIs between the two columns increase from aliphatic compounds to terpenoids to polycyclic aromatic compounds. The PTRIs in different heating rates were used as cross-references in the identification of components in the essential oil. When they were used in analysis of essential oil from flowers of lilac, good results were obtained. These PTRIs would be a part of our PTRI database being constructed on components from plant essential oils. The results also showed that efficiency and reliability were improved greatly when chemometric method and PTRIs were used as assistants of GC-MS in identification of chemical components in plant essential oils. PMID:16289121

  19. High temperature experiments on a 4 tons UF6 container TENERIFE program

    SciTech Connect

    Casselman, C.; Duret, B.; Seiler, J.M.; Ringot, C.; Warniez, P.

    1991-12-31

    The paper presents an experimental program (called TENERIFE) whose aim is to investigate the behaviour of a cylinder containing UF{sub 6} when exposed to a high temperature fire for model validation. Taking into account the experiments performed in the past, the modelization needs further information in order to be able to predict the behaviour of a real size cylinder when engulfed in a 800{degrees}C fire, as specified in the regulation. The main unknowns are related to (1) the UF{sub 6} behaviour beyond the critical point, (2) the relationship between temperature field and internal pressure and (3) the equivalent conductivity of the solid UF{sub 6}. In order to investigate these phenomena in a representative way it is foreseen to perform experiments with a cylinder of real diameter, but reduced length, containing 4 tons of UF{sub 6}. This cylinder will be placed in an electrically heated furnace. A confinement vessel prevents any dispersion of UF{sub 6}. The heat flux delivered by the furnace will be calibrated by specific tests. The cylinder will be changed for each test.

  20. Adsorption and Desorption of Nickel(II) Ions from Aqueous Solution by a Lignocellulose/Montmorillonite Nanocomposite

    PubMed Central

    Zhang, Xiaotao; Wang, Ximing

    2015-01-01

    A new and inexpensive lignocellulose/montmorillonite (LNC/MMT) nanocomposite was prepared by a chemical intercalation of LNC into MMT and was subsequently investigated as an adsorbent in batch systems for the adsorption-desorption of Ni(II) ions in an aqueous solution. The optimum conditions for the Ni(II) ion adsorption capacity of the LNC/MMT nanocomposite were studied in detail by varying parameters such as the initial Ni(II) concentration, the solution pH value, the adsorption temperature and time. The results indicated that the maximum adsorption capacity of Ni(II) reached 94.86 mg/g at an initial Ni(II) concentration of 0.0032 mol/L, a solution pH of 6.8, an adsorption temperature of 70°C, and adsorption time of 40 min. The represented adsorption kinetics model exhibited good agreement between the experimental data and the pseudo-second-order kinetic model. The Langmuir isotherm equation best fit the experimental data. The structure of the LNC/MMT nanocomposite was characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM), whereas the adsorption mechanism was discussed in combination with the results obtained from scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and Fourier-transform infrared spectroscopy analyses (FTIR). The desorption capacity of the LNC/MMT nanocomposite depended on parameters such as HNO3 concentration, desorption temperature, and desorption time. The satisfactory desorption capacity of 81.34 mg/g was obtained at a HNO3 concentration, desorption temperature, and desorption time of 0.2 mol/L, 60 ºC, and 30 min, respectively. The regeneration studies showed that the adsorption capacity of the LNC/MMT nanocomposite was consistent for five cycles without any appreciable loss in the batch process and confirmed that the LNC/MMT nanocomposite was reusable. The overall study revealed that the LNC/MMT nanocomposite functioned as an effective adsorbent in the detoxification of Ni(II)-contaminated wastewater. PMID:25647398

  1. Adsorption and desorption of nickel(II) ions from aqueous solution by a lignocellulose/montmorillonite nanocomposite.

    PubMed

    Zhang, Xiaotao; Wang, Ximing

    2015-01-01

    A new and inexpensive lignocellulose/montmorillonite (LNC/MMT) nanocomposite was prepared by a chemical intercalation of LNC into MMT and was subsequently investigated as an adsorbent in batch systems for the adsorption-desorption of Ni(II) ions in an aqueous solution. The optimum conditions for the Ni(II) ion adsorption capacity of the LNC/MMT nanocomposite were studied in detail by varying parameters such as the initial Ni(II) concentration, the solution pH value, the adsorption temperature and time. The results indicated that the maximum adsorption capacity of Ni(II) reached 94.86 mg/g at an initial Ni(II) concentration of 0.0032 mol/L, a solution pH of 6.8, an adsorption temperature of 70°C, and adsorption time of 40 min. The represented adsorption kinetics model exhibited good agreement between the experimental data and the pseudo-second-order kinetic model. The Langmuir isotherm equation best fit the experimental data. The structure of the LNC/MMT nanocomposite was characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM), whereas the adsorption mechanism was discussed in combination with the results obtained from scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and Fourier-transform infrared spectroscopy analyses (FTIR). The desorption capacity of the LNC/MMT nanocomposite depended on parameters such as HNO3 concentration, desorption temperature, and desorption time. The satisfactory desorption capacity of 81.34 mg/g was obtained at a HNO3 concentration, desorption temperature, and desorption time of 0.2 mol/L, 60 ºC, and 30 min, respectively. The regeneration studies showed that the adsorption capacity of the LNC/MMT nanocomposite was consistent for five cycles without any appreciable loss in the batch process and confirmed that the LNC/MMT nanocomposite was reusable. The overall study revealed that the LNC/MMT nanocomposite functioned as an effective adsorbent in the detoxification of Ni(II)-contaminated wastewater. PMID:25647398

  2. Temperature-programmed electrospray-differential mobility analysis for characterization of ligated nanoparticles in complex media.

    PubMed

    Tsai, De-Hao; DelRio, Frank W; Pettibone, John M; Lin, Pin-Ann; Tan, Jiaojie; Zachariah, Michael R; Hackley, Vincent A

    2013-09-10

    An electrospray-differential mobility analyzer (ES-DMA) was operated with an aerosol flow-mode, temperature-programmed approach to enhance its ability to characterize the particle size distributions (PSDs) of nanoscale particles (NPs) in the presence of adsorbed and free ligands. Titanium dioxide NPs (TiO2-NPs) stabilized by citric acid (CA) or bovine serum albumin (BSA) were utilized as representative systems. Transmission electron microscopy (TEM) and inductively coupled plasma mass spectrometry were used to provide visual information and elemental-based PSDs, respectively. Results show that the interference resulting from electrospray-dried nonvolatile salt residual nanoscale particles (S-NPs) could be effectively reduced using the thermal treatment process: PSDs were accurately measured at temperatures above 200 °C for CA-stabilized TiO2-NPs and above 400 °C for BSA-stabilized TiO2-NPs. Moreover, TEM confirmed the volumetric shrinkage of S-NPs due to thermal treatment and also showed that the primary structure of TiO2-NPs was relatively stable over the temperature range studied (i.e., below 700 °C). Conversely, the shape factor for TiO2-NPs decreased after treatment above 500 °C, possibly due to a change in the secondary (aggregate) structure. S-NPs from BSA-stabilized TiO2-NPs exhibited higher global activation energies toward induced volumetric shrinkage than those of CA-stabilized TiO2-NPs, suggesting that activation energy is dependent on ligand size. This prototype study demonstrates the efficacy of using ES-DMA coupled with thermal treatment for characterizing the physical state of NPs, even in a complex medium (e.g., containing plasma proteins) and in the presence of particle agglomerates induced by interaction with binding ligands. PMID:23937656

  3. Mercury speciation during in situ thermal desorption in soil.

    PubMed

    Park, Chang Min; Katz, Lynn E; Liljestrand, Howard M

    2015-12-30

    Metallic mercury (Hg(0)) and its compounds are highly mobile and toxic environmental pollutants at trace level. In situ thermal desorption (ISTD) is one of the soil remediation processes applying heat and vacuum simultaneously. Knowledge of thermodynamic mercury speciation is imperative to understand the fate and transport of mercury during thermal remediation and operate the treatment processes in a cost-effective manner. Hence, speciation model for inorganic mercury was developed over a range of environmental conditions to identify distribution of dissolved mercury species and potential transformations of mercury at near source environment. Simulation of phase transitions for metallic mercury, mercury(II) chloride and mercury sulfide with temperature increase showed that complete vaporization of metallic mercury and mercury(II) chloride were achieved below the boiling point of water. The effect of soil compositions on mercury removal was also evaluated to better understand thermal remediation process. Higher vapor pressures expected both from soil pore water and inorganic carbonate minerals in soil as well as creation of permeability were significant for complete vaporization and removal of mercury. PMID:26275352

  4. Effects of H{sub 2}O and H{sub 2}O{sub 2} on thermal desorption of tritium from stainless steel

    SciTech Connect

    Quinlan, M. J.; Shmayda, W. T.; Lim, S.; Salnikov, S.; Chambers, Z.; Pollock, E.; Schroeder, W. U.

    2008-07-15

    Tritiated stainless steel was subjected to thermal desorption at various temperatures, different temperature profiles, and in the presence of different helium carrier gas additives. In all cases the identities of the desorbing tritiated species were characterized as either water-soluble or insoluble. The samples were found to contain 1.1 mCi{+-}0.4 mCi. Approximately ninety-five percent of this activity was released in molecular water-soluble form. Additives of H{sub 2}O or H{sub 2}O{sub 2} to dry helium carrier gas increase the desorption rate and lower the maximum temperature to which the sample must be heated, in order to remove the bulk of the tritium. The measurements validate a method of decontamination of tritiated steel and suggest a technique that can be used to further explore the mechanisms of desorption from tritiated metals. (authors)

  5. Hydrogen adsorption and desorption with 3D silicon nanotube-network and film-network structures: Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Li, Ming; Huang, Xiaobo; Kang, Zhan

    2015-08-01

    Hydrogen is clean, sustainable, and renewable, thus is viewed as promising energy carrier. However, its industrial utilization is greatly hampered by the lack of effective hydrogen storage and release method. Carbon nanotubes (CNTs) were viewed as one of the potential hydrogen containers, but it has been proved that pure CNTs cannot attain the desired target capacity of hydrogen storage. In this paper, we present a numerical study on the material-driven and structure-driven hydrogen adsorption of 3D silicon networks and propose a deformation-driven hydrogen desorption approach based on molecular simulations. Two types of 3D nanostructures, silicon nanotube-network (Si-NN) and silicon film-network (Si-FN), are first investigated in terms of hydrogen adsorption and desorption capacity with grand canonical Monte Carlo simulations. It is revealed that the hydrogen storage capacity is determined by the lithium doping ratio and geometrical parameters, and the maximum hydrogen uptake can be achieved by a 3D nanostructure with optimal configuration and doping ratio obtained through design optimization technique. For hydrogen desorption, a mechanical-deformation-driven-hydrogen-release approach is proposed. Compared with temperature/pressure change-induced hydrogen desorption method, the proposed approach is so effective that nearly complete hydrogen desorption can be achieved by Si-FN nanostructures under sufficient compression but without structural failure observed. The approach is also reversible since the mechanical deformation in Si-FN nanostructures can be elastically recovered, which suggests a good reusability. This study may shed light on the mechanism of hydrogen adsorption and desorption and thus provide useful guidance toward engineering design of microstructural hydrogen (or other gas) adsorption materials.

  6. Zero-Headspace Coal-Core Gas Desorption Canister, Revised Desorption Data Analysis Spreadsheets and a Dry Canister Heating System

    USGS Publications Warehouse

    Barker, Charles E.; Dallegge, Todd A.

    2005-01-01

    Coal desorption techniques typically use the U.S. Bureau of Mines (USBM) canister-desorption method as described by Diamond and Levine (1981), Close and Erwin (1989), Ryan and Dawson (1993), McLennan and others (1994), Mavor and Nelson (1997) and Diamond and Schatzel (1998). However, the coal desorption canister designs historically used with this method have an inherent flaw that allows a significant gas-filled headspace bubble to remain in the canister that later has to be compensated for by correcting the measured desorbed gas volume with a mathematical headspace volume correction (McLennan and others, 1994; Mavor and Nelson, 1997).

  7. Hydrogen desorption from ball milled MgH2 catalyzed with Fe

    NASA Astrophysics Data System (ADS)

    Bassetti, A.; Bonetti, E.; Pasquini, L.; Montone, A.; Grbovic, J.; Vittori Antisari, M.

    2005-01-01

    In order to obtain faster hydrogen sorption kinetics, MgH2-Fe nanocomposites were prepared by high-energy ball milling. The MgH2 decomposition was studied in samples obtained by changing in a systematic way both the catalyst amount and the degree of microstructural refinement. To this purpose, blends containing increasing Fe concentration have been ball milled in processing conditions able to impart different amount of structural defects. The resulting samples have been characterized by X-ray diffraction to investigate the microstructural features and the phase composition, while the powder morphology and the degree of catalyst dispersion were analyzed by scanning electron microscopy. Differential scanning calorimetry was carried out to characterize the hydrogen desorption behavior of these nanocomposites. Experimental results clearly show that the characteristics of the desorption process are dominated, among other factors, by the morphology of the catalyst dispersion, which in turns depends on the processing conditions and blend composition. In order to achieve low desorption temperatures the homogeneous catalyst dispersion in micron-size particles throughout the structure is required. This condition can be achieved by suitable tuning of the milling conditions and of the catalyst amount.

  8. Desorption Kinetics of Water from Poly(methyl methacrylate)

    NASA Astrophysics Data System (ADS)

    Howard, Patrick; Familo, Brian; Kane, Thorin; Netusil, Ross; Romano, Marie; St. Leger, John; Jones, Paul; Ilie, Carolina C.; Condensed Matter Group Team

    2014-03-01

    Understanding the surface behaviors of polymers has many applications in modern medicine and engineering. In this experiment, we are analyzing the thermal desorption of water from poly(methyl methacrylate), polyethylene, and other polymers. Crystalline polymer films are being prepared using a Langmuir-Blodgett method from a water subphase, as well as by a spin coating technique. The organized, crystalline Langmuir-Blodgett films are different in structure from the more disorganized spin-coated films. The thermal desorption spectra from both techniques will be compared to show the effects of the way polymer films are obtained. Arrhenius analysis on the desorption spectra yields desorption activation energies for these polymers. The purpose of this analysis is to provide insight into the dipole interactions between the water and polymer molecules.

  9. Molecular beam-thermal hydrogen desorption from palladium

    SciTech Connect

    Lobo, R. F. M.; Berardo, F. M. V.; Ribeiro, J. H. F.

    2010-04-15

    Among the most efficient techniques for hydrogen desorption monitoring, thermal desorption mass spectrometry is a very sensitive one, but in certain cases can give rise to uptake misleading results due to residual hydrogen partial pressure background variations. In this work one develops a novel thermal desorption variant based on the effusive molecular beam technique that represents a significant improvement in the accurate determination of hydrogen mass absorbed on a solid sample. The enhancement in the signal-to-noise ratio for trace hydrogen is on the order of 20%, and no previous calibration with a chemical standard is required. The kinetic information obtained from the hydrogen desorption mass spectra (at a constant heating rate of 1 deg. C/min) accounts for the consistency of the technique.

  10. Methyl arsenic adsorption and desorption behavior on iron oxides 

    E-print Network

    Lafferty, Brandon James

    2005-08-29

    been conducted regarding interactions of the methyl-arsenic forms. The objective of this study was to compare the adsorption and desorption behavior of methylarsonate (MMAsV), methylarsonous acid (MMAsIII), dimethylarsinate (DMAsV), dimethylarsinous...

  11. Hydrogen Desorption and Adsorption Measurements on Graphite Nanofibers

    NASA Technical Reports Server (NTRS)

    Ahn, C. C.; Ye, Y.; Ratnakumar, B. V.; Witham, C. K.; Bowman, R. C., Jr.; Fultz, B.

    1998-01-01

    Graphite nanofibers were synthesized and their hydrogen desorption and adsorption properties are reported for 77 and 300 K. Catalysts were made by several different methods including chemical routes, mechanical alloying and gas condensation.

  12. Laser desorption mass spectrometry for biomolecule detection and its applications

    NASA Astrophysics Data System (ADS)

    Winston Chen, C. H.; Sammartano, L. J.; Isola, N. R.; Allman, S. L.

    2001-08-01

    During the past few years, we developed and used laser desorption mass spectrometry for biomolecule detections. Matrix-assisted laser desorption/ionization (MALDI) was successfully used to detect DNA fragments with the size larger than 3000 base pairs. It was also successfully used to sequence DNA with both enzymatic and chemical degradation methods to produce DNA ladders. We also developed MALDI with fragmentation for direct DNA sequencing for short DNA probes. Since laser desorption mass spectrometry for DNA detection has the advantages of fast speed and no need of labeling, it has a great potential for molecular diagnosis for disease and person identification by DNA fingerprinting. We applied laser desorption mass spectrometry to succeed in the diagnosis of cystic fibrosis and several other nerve degenerative diseases such as Huntington's disease. We also succeeded in demonstrating DNA typing for forensic applications.

  13. Salt Tolerance of Desorption Electrospray Ionization (DESI)

    SciTech Connect

    Jackson, Ayanna U.; Talaty, Nari; Cooks, R G; Van Berkel, Gary J

    2007-01-01

    Suppression of ion intensity in the presence of high salt matrices is common in most mass spectrometry ionization techniques. Desorption electrospray ionization (DESI) is an ionization method that exhibits salt tolerance, and this is investigated. DESI analysis was performed on three different drug mixtures in the presence of 0, 0.2, 2, 5, 10, and 20% NaCl:KCl weight by volume from seven different surfaces. At physiological concentrations individual drugs in each mixture were observed with each surface. Collision-induced dissociation (CID) was used to provide additional confirmation for select compounds. Multiple stage experiments, to MS5, were performed for select compounds. Even in the absence of added salt, the benzodiazepine containing mixture yielded sodium and potassium adducts of carbamazepine which masked the ions of interest. These adducts were eliminated by adding 0.1% 7M ammonium acetate to the standard methanol:water (1:1) spray solvent. Comparison of the salt tolerance of DESI with that of electrospray ionization (ESI) demonstrated much better signal/noise characteristics for DESI in this study. The salt tolerance of DESI was also studied by performing limit of detection and dynamic range experiments. Even at a salt concentration significantly above physiological concentrations, select surfaces were effective in providing spectra that allowed the ready identification of the compounds of interest. The already high salt tolerance of DESI can be optimized further by appropriate choices of surface and spray solution.

  14. High-Temperature Gas-Cooled Reactor Technology Development Program: Annual progress report for period ending December 31, 1987

    SciTech Connect

    Jones, J.E.,Jr.; Kasten, P.R.; Rittenhouse, P.L.; Sanders, J.P.

    1989-03-01

    The High-Temperature Gas-Cooled Reactor (HTGR) Program being carried out under the US Department of Energy (DOE) continues to emphasize the development of modular high-temperature gas-cooled reactors (MHTGRs) possessing a high degree of inherent safety. The emphasis at this time is to develop the preliminary design of the reference MHTGR and to develop the associated technology base and licensing infrastructure in support of future reactor deployment. A longer-term objective is to realize the full high-temperature potential of HTGRs in gas turbine and high-temperature, process-heat applications. This document summarizes the activities of the HTGR Technology Development Program for the period ending December 31, 1987.

  15. FORTRAN program for calculating coolant flow and metal temperatures of a full-coverage-film-cooled vane or blade

    NASA Technical Reports Server (NTRS)

    Meitner, P. L.

    1978-01-01

    A computer program that calculates the coolant flow and the metal temperatures of a full-coverage-film-cooled vane or blade was developed. The analysis was based on compressible, one-dimensional fluid flow and on one-dimensional heat transfer and treats the vane or blade shell as a porous wall. The calculated temperatures are average values for the shell outer-surface area associated with each film-cooling hole row. A thermal-barrier coating may be specified on the shell outer surface, and centrifugal effects can be included for blade calculations. The program is written in FORTRAN 4 and is operational on a UNIVAC 1100/42 computer. The method of analysis, the program input, the program output, and two sample problems are provided.

  16. Effect of temperature on lubrication with biobased oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Temperature is an important parameter affecting the performance of lubricant ingredients. It affects such important tribological characteristics as viscosity, film thickness, adsorption, desorption, friction, and wear. Temperature also promotes oxidation, polymerization, and degradation which nega...

  17. High-temperature gas-cooled reactor technology development program. Annual progress report for period ending December 31, 1982

    SciTech Connect

    Kasten, P.R.; Rittenhouse, P.L.; Bartine, D.E.; Sanders, J.P.

    1983-06-01

    During 1982 the High-Temperature Gas-Cooled Reactor (HTGR) Technology Program at Oak Ridge National Laboratory (ORNL) continued to develop experimental data required for the design and licensing of cogeneration HTGRs. The program involves fuels and materials development (including metals, graphite, ceramic, and concrete materials), HTGR chemistry studies, structural component development and testing, reactor physics and shielding studies, performance testing of the reactor core support structure, and HTGR application and evaluation studies.

  18. Uranium and Neptunium Desorption from Yucca Mountain Alluvium

    SciTech Connect

    C.D. Scism; P.W. Reimus; M. Ding; S.J. Chipera

    2006-03-16

    Uranium and neptunium were used as reactive tracers in long-term laboratory desorption studies using saturated alluvium collected from south of Yucca Mountain, Nevada. The objective of these long-term experiments is to make detailed observations of the desorption behavior of uranium and neptunium to provide Yucca Mountain with technical bases for a more realistic and potentially less conservative approach to predicting the transport of adsorbing radionuclides in the saturated alluvium. This paper describes several long-term desorption experiments using a flow-through experimental method and groundwater and alluvium obtained from boreholes along a potential groundwater flow path from the proposed repository site. In the long term desorption experiments, the percentages of uranium and neptunium sorbed as a function of time after different durations of sorption was determined. In addition, the desorbed activity as a function of time was fit using a multi-site, multi-rate model to demonstrate that different desorption rate constants ranging over several orders of magnitude exist for the desorption of uranium from Yucca Mountain saturated alluvium. This information will be used to support the development of a conceptual model that ultimately results in effective K{sub d} values much larger than those currently in use for predicting radionuclide transport at Yucca Mountain.

  19. Desorption of a methamphetamine surrogate from wallboard under remediation conditions

    NASA Astrophysics Data System (ADS)

    Poppendieck, Dustin; Morrison, Glenn; Corsi, Richard

    2015-04-01

    Thousands of homes in the United States are found to be contaminated with methamphetamine each year. Buildings used to produce illicit methamphetamine are typically remediated by removing soft furnishings and stained materials, cleaning and sometimes encapsulating surfaces using paint. Methamphetamine that has penetrated into paint films, wood and other permanent materials can be slowly released back into the building air over time, exposing future occupants and re-contaminating furnishings. The objective of this study was to determine the efficacy of two wallboard remediation techniques for homes contaminated with methamphetamine: 1) enhancing desorption by elevating temperature and relative humidity while ventilating the interior space, and 2) painting over affected wallboard to seal the methamphetamine in place. The emission of a methamphetamine surrogate, N-isopropylbenzylamine (NIBA), from pre-dosed wallboard chambers over 20 days at 32 °C and two values of relative humidity were studied. Emission rates from wallboard after 15 days at 32 °C ranged from 35 to 1400 ?g h-1 m-2. Less than 22% of the NIBA was removed from the chambers over three weeks. Results indicate that elevating temperatures during remediation and latex painting of impacted wallboard will not significantly reduce freebase methamphetamine emissions from wallboard. Raising the relative humidity from 27% to 49% increased the emission rates by a factor of 1.4. A steady-state model of a typical home using the emission rates from this study and typical residential building parameters and conditions shows that adult inhalation reference doses for methamphetamine will be reached when approximately 1 g of methamphetamine is present in the wallboard of a house.

  20. Optical laser-induced CO desorption from Ru(0001) monitored with a free-electron X-ray laser: DFT prediction and X-ray confirmation of a precursor state

    NASA Astrophysics Data System (ADS)

    Öberg, H.; Gladh, J.; Dell'Angela, M.; Anniyev, T.; Beye, M.; Coffee, R.; Föhlisch, A.; Katayama, T.; Kaya, S.; LaRue, J.; Møgelhøj, A.; Nordlund, D.; Ogasawara, H.; Schlotter, W. F.; Sellberg, J. A.; Sorgenfrei, F.; Turner, J. J.; Wolf, M.; Wurth, W.; Öström, H.; Nilsson, A.; Nørskov, J. K.; Pettersson, L. G. M.

    2015-10-01

    We present density functional theory modeling of time-resolved optical pump/X-ray spectroscopic probe data of CO desorption from Ru(0001). The BEEF van der Waals functional predicts a weakly bound state as a precursor to desorption. The optical pump leads to a near-instantaneous (< 100 fs) increase of the electronic temperature to nearly 7000 K. The temperature evolution and energy transfer between electrons, substrate phonons and adsorbate is described by the two-temperature model and found to equilibrate on a timescale of a few picoseconds to an elevated local temperature of ~ 2000 K. Estimating the free energy based on the computed potential of mean force along the desorption path, we find an entropic barrier to desorption (and by time-reversal also to adsorption). This entropic barrier separates the chemisorbed and precursor states, and becomes significant at the elevated temperature of the experiment (~ 1.4 eV at 2000 K). Experimental pump-probe X-ray absorption/X-ray emission spectroscopy indicates population of a precursor state to desorption upon laser-excitation of the system (Dell'Angela et al., 2013). Computing spectra along the desorption path confirms the picture of a weakly bound transient state arising from ultrafast heating of the metal substrate.

  1. Research and development program for non-linear structural modeling with advanced time-temperature dependent constitutive relationships

    NASA Technical Reports Server (NTRS)

    Walker, K. P.

    1981-01-01

    Results of a 20-month research and development program for nonlinear structural modeling with advanced time-temperature constitutive relationships are reported. The program included: (1) the evaluation of a number of viscoplastic constitutive models in the published literature; (2) incorporation of three of the most appropriate constitutive models into the MARC nonlinear finite element program; (3) calibration of the three constitutive models against experimental data using Hastelloy-X material; and (4) application of the most appropriate constitutive model to a three dimensional finite element analysis of a cylindrical combustor liner louver test specimen to establish the capability of the viscoplastic model to predict component structural response.

  2. Thermal desorption of CO and H2 from degassed 304 and 347 stainless steel

    NASA Technical Reports Server (NTRS)

    Rezaie-Serej, S.; Outlaw, R. A.

    1994-01-01

    Thermal desorption spectroscopy (TDS), along with Auger electron spectroscopy, was used to study the desorption of H2 and CO from baked 304 and 347 stainless-steel samples exposed only to residual gases. Both 347 and 304 samples gave identical TDS spectra. The spectra for CO contained a sharp leading peak centered in the temperature range 410-440C and an exponentially increasing part for temperatures higher than 500C, with a small peak around 600C appearing as a shoulder. The leading peak followed a second-order desorption behavior with an activation energy of 28+/-2 kcal/mol, suggesting that the rate-limiting step for this peak is most likely a surface reaction that produces the CO molecules in the surface layer. The amount of desorbed CO corresponding to this peak was approximately 0.5X10(exp 14) molecules/cm(exp 2) . The exponentially rising part of the CO spectrum appeared to originate from a bulk diffusion process. The TDS spectrum for H2 consisted of a main peak centered also in the temperature range 410-440C, with two small peaks appearing as shoulders at approximately 500 and 650C. The main peak in this case also displayed a second-order behavior with an activation energy of 14+/-2 kcal/mol. The amount of desorbed H2, approximately 1.9X 10(exp 15) molecules/cm(exp 2) , appeared to be independent of the concentration of hydrogen in the bulk, indicating that the majority of the desorbed H2 originated from the surface layer.

  3. Application of ASTM E-1559 Apparatus to Study H2O Desorption

    NASA Technical Reports Server (NTRS)

    Woronowicz, Michael; Perry, Radford, III; Meadows, George A.

    2015-01-01

    The NASA James Webb Space Telescope project identified a need to measure water vapor desorption from cryogenic surfaces in order to validate predictions of spacecraft design performance. A review of available scientific literature indicated no such measurements had been reported below 131 K. Contamination control personnel at NASA Goddard Space Flight Center recognized the possibility they readily possessed the means to collect these measurements at lower temperatures using an existing apparatus commonly employed for making outgassing observations. This presentation will relate how the ASTM E-1559 Molekit apparatus was used without physical modification to measure water vapor sublimation down to 120 K and compare this data to existing equilibrium vapor pressure models.

  4. Surface diffusion of hydrogen on Ru(001) studied using laser-induced thermal desorption

    NASA Astrophysics Data System (ADS)

    Mak, C. H.; Brand, J. L.; Deckert, A. A.; George, S. M.

    1986-08-01

    The surface diffusion coefficient for hydrogen on Ru(001) at low coverage was measured using laser-induced thermal desorption techniques. In the temperature range between 260 and 330 K, the diffusion coefficients displayed Arrhenius behavior with an activation barrier Ediff=4.0±0.5 kcal and a preexponential factor D0=6.3×10-4 cm2/s. Agreement between the experimental and theoretical parameters suggests that hydrogen diffuses on the surface by moving from a threefold site to a neighboring threefold site via a twofold site. Surface contaminants such as carbon and oxygen were observed to produce dramatic effects on the hydrogen surface diffusion rate.

  5. Real-time detection of hydrogen absorption and desorption in metallic palladium using vibrating wire method

    NASA Astrophysics Data System (ADS)

    Inagaki, Yuji; Nishimura, Atsuki; Yokooji, Honoka; Takata, Hiroki; Kawae, Tatsuya

    2015-09-01

    A vibrating wire (VW) method was applied to investigate the hydrogen absorption and desorption properties of palladium. At room temperature, a considerable shift in resonance frequency was successfully observed in VW spectra under H2 gas exposure. The shift is reversible in the initial stage of the exposure and is attributed to changes in the density and Young’s modulus of the VW sensor. Irreversibility of the shift because of embrittlement is detected after a sufficient exposure time. H absorption is slowed down enormously at T = 200 K owing to suppression of the thermal activation process.

  6. Desorption of chemisorbed Carbon on Mo(1 0 0) by noble gas ion sputtering: Validation of ground test measurements of ion engine lifetimes

    NASA Astrophysics Data System (ADS)

    Ho, Chih-Sung; Banerjee, Santanu; Koel, Bruce E.; Duchemin, Olivier B.; Polk, James E.

    2006-02-01

    We report desorption cross section measurements for one monolayer of chemisorbed carbon on a Mo(1 0 0) surface induced by sputtering with noble gas ions (Ne +, Ar +, Xe +) at different incident angles, ion energies, and substrate temperatures. Desorption cross sections were determined by using low-energy ion scattering (LEIS) to monitor the increase of the signal from the Mo substrate. A monolayer of p(1 × 1) carbon adatoms on the Mo(1 0 0) surface was created by dosing ethylene (C 2H 4) to the substrate at 800 K, and characterized by Auger electron spectroscopy (AES) and low energy electron diffraction (LEED). We find that the carbon desorption cross section increases with increasing mass and energy of the impinging ions, and there is a maximum value for the desorption cross section at an incident angle for the ions of 30° from the surface plane. The desorption cross section also increases up to a substrate temperature of 300 °C. Values for the carbon desorption cross section for carbon adatoms on Mo(1 0 0) by 400-eV Xe + ion sputtering are about 2 × 10 -15 cm 2, which is one order of magnitude higher than those for bulk carbon samples. This information is particularly important for evaluation of ion-engine lifetimes from ground-test measurements in which contaminant carbon is deposited on Mo accelerator grids, potentially altering the sputtering rate of the Mo. Our measurements show that monolayer amounts of carbon on Mo have desorption cross sections that are two orders of magnitude higher than estimates of what would be required to reduce the Mo erosion rate, and thus ground-test measurements can be used with confidence to predict ion-engine wear in space, from this perspective.

  7. Flash desorption/mass spectrometry for the analysis of less- and nonvolatile samples using a linearly driven heated metal filament.

    PubMed

    Usmanov, Dilshadbek T; Ninomiya, Satoshi; Hiraoka, Kenzo

    2013-11-01

    In this paper, the important issue of the desorption of less- and nonvolatile compounds with minimal sample decomposition in ambient mass spectrometry is approached using ambient flash desorption mass spectrometry. The preheated stainless steel filament was driven down and up along the vertical axis in 0.3 s. At the lowest position, it touched the surface of the sample with an invasion depth of 0.1 mm in 50 ms (flash heating) and was removed from the surface (fast cooling). The heating rate corresponds to ~10(4) °C/s at the filament temperature of 500 °C. The desorbed gaseous molecules were ionized by using a dielectric barrier discharge ion source, and the produced ions were detected by a time-of-flight (TOF) mass spectrometer. Less-volatile samples, such as pharmaceutical tablets, narcotics, explosives, and C60 gave molecular and protonated molecule ions as major ions with thermal decomposition minimally suppressed. For synthetic polymers (PMMA, PLA, and PS), the mass spectra reflected their backbone structures because of the suppression of the sequential thermal decompositions of the primary products. The present technique appears to be suitable for high-throughput qualitative analyses of many types of solid samples in the range from a few ng to 10 ?g with minimal sample consumption. Some contribution from tribodesorption in addition to thermal desorption was suggested for the desorption processes. Figure ? PMID:23982934

  8. Flash Desorption/Mass Spectrometry for the Analysis of Less- and Nonvolatile Samples Using a Linearly Driven Heated Metal Filament

    NASA Astrophysics Data System (ADS)

    Usmanov, Dilshadbek T.; Ninomiya, Satoshi; Hiraoka, Kenzo

    2013-11-01

    In this paper, the important issue of the desorption of less- and nonvolatile compounds with minimal sample decomposition in ambient mass spectrometry is approached using ambient flash desorption mass spectrometry. The preheated stainless steel filament was driven down and up along the vertical axis in 0.3 s. At the lowest position, it touched the surface of the sample with an invasion depth of 0.1 mm in 50 ms (flash heating) and was removed from the surface (fast cooling). The heating rate corresponds to ~104 °C/s at the filament temperature of 500 °C. The desorbed gaseous molecules were ionized by using a dielectric barrier discharge ion source, and the produced ions were detected by a time-of-flight (TOF) mass spectrometer. Less-volatile samples, such as pharmaceutical tablets, narcotics, explosives, and C60 gave molecular and protonated molecule ions as major ions with thermal decomposition minimally suppressed. For synthetic polymers (PMMA, PLA, and PS), the mass spectra reflected their backbone structures because of the suppression of the sequential thermal decompositions of the primary products. The present technique appears to be suitable for high-throughput qualitative analyses of many types of solid samples in the range from a few ng to 10 ?g with minimal sample consumption. Some contribution from tribodesorption in addition to thermal desorption was suggested for the desorption processes. [Figure not available: see fulltext.

  9. Research and development program for the development of advanced time-temperature dependent constitutive relationships. Volume 1: Theoretical discussion

    NASA Technical Reports Server (NTRS)

    Cassenti, B. N.

    1983-01-01

    The results of a 10-month research and development program for the development of advanced time-temperature constitutive relationships are presented. The program included (1) the effect of rate of change of temperature, (2) the development of a term to include time independent effects, and (3) improvements in computational efficiency. It was shown that rate of change of temperature could have a substantial effect on the predicted material response. A modification to include time-independent effects, applicable to many viscoplastic constitutive theories, was shown to reduce to classical plasticity. The computation time can be reduced by a factor of two if self-adaptive integration is used when compared to an integration using ordinary forward differences. During the course of the investigation, it was demonstrated that the most important single factor affecting the theoretical accuracy was the choice of material parameters.

  10. Real-time studies of gallium adsorption and desorption kinetics on sapphire (0001) by grazing incidence small-angle x-ray scattering and x-ray fluorescence

    SciTech Connect

    Wang Yiyi; Oezcan, Ahmet S.; Ludwig, Karl F.; Bhattacharyya, Anirban

    2008-05-15

    Gallium adsorption and desorption on c-plane sapphire has been studied by real-time grazing incidence small-angle x-ray scattering and x-ray fluorescence as a function of substrate temperature (680-740 deg. C) and Ga flux. The x-ray techniques monitor the surface morphology evolution and amount of Ga on the surface. During deposition, nanodroplets of liquid Ga are observed to form on the surface and coarsen. The growth of droplet size during continuous deposition follows dynamical scaling, in agreement with expectations from theory and simulations which include deposition-induced droplet coalescence. However, observation of continued droplet distance scale coarsening during desorption points to the necessity of including further physical processes in the modeling. The desorption rate at different substrate temperatures gives the activation energy of Ga desorption as 2.7 eV, comparable to measured activation energies for desorption from Ga droplets on other substrates and to the Ga heat of vaporization.

  11. Real-Time Studies of Gallium Adsorption and Desorption Kinetics by Grazing-Incidence Small-Angle X-ray Scattering and X-ray Fluorescence

    SciTech Connect

    Wang, Y.; Ozcan, A; Ludwig, K; Bhattacharyya, A

    2008-01-01

    Gallium adsorption and desorption on c-plane sapphire has been studied by real-time grazing incidence small-angle x-ray scattering and x-ray fluorescence as a function of substrate temperature (680-740 C) and Ga flux. The x-ray techniques monitor the surface morphology evolution and amount of Ga on the surface. During deposition, nanodroplets of liquid Ga are observed to form on the surface and coarsen. The growth of droplet size during continuous deposition follows dynamical scaling, in agreement with expectations from theory and simulations which include deposition-induced droplet coalescence. However, observation of continued droplet distance scale coarsening during desorption points to the necessity of including further physical processes in the modeling. The desorption rate at different substrate temperatures gives the activation energy of Ga desorption as 2.7 eV, comparable to measured activation energies for desorption from Ga droplets on other substrates and to the Ga heat of vaporization.

  12. Influence of surface coverage on the chemical desorption process

    SciTech Connect

    Minissale, M.; Dulieu, F.

    2014-07-07

    In cold astrophysical environments, some molecules are observed in the gas phase whereas they should have been depleted, frozen on dust grains. In order to solve this problem, astrochemists have proposed that a fraction of molecules synthesized on the surface of dust grains could desorb just after their formation. Recently the chemical desorption process has been demonstrated experimentally, but the key parameters at play have not yet been fully understood. In this article, we propose a new procedure to analyze the ratio of di-oxygen and ozone synthesized after O atoms adsorption on oxidized graphite. We demonstrate that the chemical desorption efficiency of the two reaction paths (O+O and O+O{sub 2}) is different by one order of magnitude. We show the importance of the surface coverage: for the O+O reaction, the chemical desorption efficiency is close to 80% at zero coverage and tends to zero at one monolayer coverage. The coverage dependence of O+O chemical desorption is proved by varying the amount of pre-adsorbed N{sub 2} on the substrate from 0 to 1.5 ML. Finally, we discuss the relevance of the different physical parameters that could play a role in the chemical desorption process: binding energy, enthalpy of formation, and energy transfer from the new molecule to the surface or to other adsorbates.

  13. Computer program for afterheat temperature distribution for mobile nuclear power plant

    NASA Technical Reports Server (NTRS)

    Parker, W. G.; Vanbibber, L. E.

    1972-01-01

    ESATA computer program was developed to analyze thermal safety aspects of post-impacted mobile nuclear power plants. Program is written in FORTRAN 4 and designed for IBM 7094/7044 direct coupled system.

  14. High-temperature performance prediction of iron ore fines and the ore-blending programming problem in sintering

    NASA Astrophysics Data System (ADS)

    Yan, Bing-ji; Zhang, Jian-liang; Guo, Hong-wei; Chen, Ling-kun; Li, Wei

    2014-08-01

    The high-temperature performance of iron ore fines is an important factor in optimizing ore blending in sintering. However, the application of linear regression analysis and the linear combination method in most other studies always leads to a large deviation from the desired results. In this study, the fuzzy membership functions of the assimilation ability temperature and the liquid fluidity were proposed based on the fuzzy mathematics theory to construct a model for predicting the high-temperature performance of mixed iron ore. Comparisons of the prediction model and experimental results were presented. The results illustrate that the prediction model is more accurate and effective than previously developed models. In addition, fuzzy constraints for the high-temperature performance of iron ore in this research make the results of ore blending more comparable. A solution for the quantitative calculation as well as the programming of fuzzy constraints is also introduced.

  15. High Temperature Turbine Technology Program: Phase II. Technology test and support studies. Technical progress report, July 1-September 30, 1981

    SciTech Connect

    Not Available

    1981-11-01

    The status of work performed on the High Temperature Turbine Technology Program, Phase II Technology Test and Support Studies during the third quarter of 1981, July 1-September 30, 1981 is reported. Testing of the Turbine Spool Technology Rig (TSTR) was initiated. Performance calibrations were performed at several turbine stator throat area settings, followed by steady-state operation at 2600/sup 0/F turbine inlet temperature with fly ash particulates injected into the hot gas stream at the primary zone of the combustor. After approximately 36-1/2 hours of test time, a labyrinth seal on the turbine vane cooling air impeller failed, causing foreign object damage to a number of turbine blades. The test has been interrupted to repair blades, to make changes ot the impeller seal arrangement to preclude future failures and to ensure adequate sealing at the failure location. Observations of the turbine indicate minimal effects from the high temperature and gas stream contaminants. The development status of both the low Btu gas fuel cooled combustor and high temperature, low emissions coal-derived liquid-fueled combustor are reviewed. Both of these programs are in the component fabrication phase leading to test evaluation during the fourth quarter. Control systems status and descriptions for the above items are given. The anaytical studies to support the TSTR and combustor programs are described. Extended time oxidation testing of Nichrome V-Cb material porous mesh for transpiration air cooled turbine airfoils is continuing; furnace exposure time is now over 3000 h.

  16. Surfkin: A program to solve transient and steady state heterogeneous reaction kinetics

    SciTech Connect

    COLTRIN,MICHAEL E.; WIXOM,RYAN R.; DANDY,DAVID S.

    2000-05-01

    Heterogeneous chemical reactions occurring at a gas/surface interface are fundamental in a variety of important applications, such as combustion, catalysis, chemical vapor deposition and plasma processing. Detailed simulation of these processes may involve complex, coupled fluid flow, heat transfer, gas-phase chemistry, in addition to heterogeneous reaction chemistry. This report documents the Surfkin program, which simulates the kinetics of heterogeneous chemical reactions. The program is designed for use with the Chemkin and Surface Chemkin (heterogeneous chemistry) programs. It calculates time-dependent or steady state surface site fractions and bulk-species production/destruction rates. The surface temperature may be specified as a function of time to simulate a temperature-programmed desorption experiment, for example. This report serves as a user's manual for the program, explaining the required input and format of the output. Two detailed example problems are included to further illustrate the use of this program.

  17. Laser-Induced Acoustic Desorption of Natural and Functionalized Biochromophores

    PubMed Central

    2015-01-01

    Laser-induced acoustic desorption (LIAD) has recently been established as a tool for analytical chemistry. It is capable of launching intact, neutral, or low charged molecules into a high vacuum environment. This makes it ideally suited to mass spectrometry. LIAD can be used with fragile biomolecules and very massive compounds alike. Here, we apply LIAD time-of-flight mass spectrometry (TOF-MS) to the natural biochromophores chlorophyll, hemin, bilirubin, and biliverdin and to high mass fluoroalkyl-functionalized porphyrins. We characterize the variation in the molecular fragmentation patterns as a function of the desorption and the VUV postionization laser intensity. We find that LIAD can produce molecular beams an order of magnitude slower than matrix-assisted laser desorption (MALD), although this depends on the substrate material. Using titanium foils we observe a most probable velocity of 20 m/s for functionalized molecules with a mass m = 10?000 Da. PMID:25946522

  18. Desorption mass spectrometry for nonvolatile compounds using an ultrasonic cutter.

    PubMed

    Habib, Ahsan; Ninomiya, Satoshi; Chen, Lee Chuin; Usmanov, Dilshadbek T; Hiraoka, Kenzo

    2014-07-01

    In this work, desorption of nonvolatile analytes induced by friction was studied. The nonvolatile compounds deposited on the perfluoroalkoxy substrate were gently touched by an ultrasonic cutter oscillating with a frequency of 40 kHz. The desorbed molecules were ionized by a dielectric barrier discharge (DBD) ion source. Efficient desorption of samples such as drugs, pharmaceuticals, amino acids, and explosives was observed. The limits of detection for these compounds were about 1 ng. Many compounds were detected in their protonated forms without undergoing significant fragmentation. When the DBD was off, no ions for the neutral samples could be detected, meaning that only desorption along with little ionization took place by the present technique. PMID:24833356

  19. Sorption and desorption of sulfentrazone in Brazilian soils.

    PubMed

    Passos, Ana Beatriz R J; Freitas, Marco Antonio M; Torres, Lívia G; Silva, Antonio A; Queiroz, Maria Eliana L R; Lima, Cláudio F

    2013-01-01

    This study was undertaken to obtain information about the behavior of sulfentrazone in soil by evaluating the sorption and desorption of the herbicide in different Brazilian soils. Batch equilibrium method was used and the samples were analyzed by high performance liquid chromatography. Based on the results obtained from the values of Freundlich constants (Kf), we determined the order of sorption (Haplic Planosol < Red-Yellow Latosol < Red Argisol < Humic Cambisol < Regolitic Neosol) and desorption (Regolitic Neosol < Red Argisol < Humic Cambisol < Haplic Planosol < Red-Yellow Latosol) of sulfentrazone in the soils. The process of pesticide sorption in soils was dependent on the levels of organic matter and clay, while desorption was influenced by the organic matter content and soil pH. Thus, the use of sulfentrazone in soils with low clay content and organic matter (low sorption) increases the probability of contaminating future crops. PMID:23638891

  20. Dispersive micro solid-phase extraction for the rapid analysis of synthetic polycyclic musks using thermal desorption gas chromatography-mass spectrometry.

    PubMed

    Chung, Wu-Hsun; Tzing, Shin-Hwa; Ding, Wang-Hsien

    2013-09-13

    A simple and solvent-free method for the rapid analysis of five synthetic polycyclic musks in water samples is described. The method involves the use of dispersive micro solid-phase extraction (D-?-SPE) coupled with direct thermal desorption (TD) gas chromatography-mass spectrometry (GC-MS) operating in the selected-ion-storage (SIS) mode. The parameters affecting the extraction efficiency of the target analytes from water sample and the thermal desorption conditions in the GC injection-port were optimized using a central composite design method. The optimal extraction conditions involved immersing 3.2mg of a typical octadecyl (C18) bonded silica adsorbent (i.e., ENVI-18) in a 10mL water sample. After extraction by vigorously shaking for 1.0min, the adsorbents were collected and dried on a filter. The adsorbents were transferred to a micro-vial, which was directly inserted into GC temperature-programmed injector, and the extracted target analytes were then thermally desorbed in the GC injection-port at 337°C for 3.8min. The limits of quantitation (LOQs) were determined to be 1.2-3.0ng/L. Precision, as indicated by relative standard deviations (RSDs), was less than 9% for both intra- and inter-day analysis. Accuracy, expressed as the mean extraction recovery, was between 74 and 90%. A preliminary analysis of the river water samples revealed that galaxolide (HHCB) and tonalide (AHTN) were the two most common synthetic polycyclic musks present. Using a standard addition method, their concentrations were determined to in the range from 11 to 140ng/L. PMID:23932027

  1. Adsorption and desorption of noble gases on activated charcoal: II. sup 222 Rn studies in a monolayer and packed bed

    SciTech Connect

    Scarpitta, S.C.; Harley, N.H. )

    1990-10-01

    The adsorptive and desorptive characteristics of canisters containing a petroleum-based charcoal were investigated under controlled conditions of temperature, relative humidity, and Rn concentration. Charcoals exposed in a monolayer and packed bed during exposure intervals of 1-7 d demonstrate that Rn adsorption and desorption are dependent on bed depth and the amount of water adsorbed. Changes in the adsorptive and desorptive properties of the charcoal occurred near the break-point where the pores became occluded by water vapor that condenses in the entrance capillaries. Radon-222 adsorption is decreased by an order of magnitude as the amount of adsorbed water exceeds the break-point of the charcoal. The reduction in pore surface due to adsorbed water results in a marked increase in the rate of Rn loss from exposed canisters, accounting for reduced adsorption. The apparent desorption time-constant for a 2-cm bed of loose Witco 6 x 10 mesh charcoal containing 0.220-0.365 kg H{sub 2}O kg-1 is typically between 2-8 h. The apparent desorption time-constant for an equivalent packed bed containing a water vapor content of 0.026-0.060 kg H{sub 2}O kg-1, which is below the break-point of the charcoal, is about 15-30 h. Conventional charcoal canisters, if exposed in the fully-opened configuration, can achieve the break-point in less than 4 d at 70% humidity. The use of a diffusion barrier would allow for longer exposure times until the break-point of the charcoal is achieved.

  2. FORTRAN 77 programs for conductive cooling of dikes with temperature-dependent thermal properties and heat of crystallization

    USGS Publications Warehouse

    Delaney, P.T.

    1988-01-01

    Temperature histories obtained from transient heat-conduction theory are applicable to most dikes despite potential complicating effects related to magma flow during emplacement, groundwater circulation, and metamorphic reaction during cooling. Here. machine-independent FORTRAN 77 programs are presented to calculate temperatures in and around dikes as they cool conductively. Analytical solutions can treat thermal-property contrasts between the dike and host rocks, but cannot address the release of magmatic heat of crystallization after the early stages of cooling or the appreciable temperature dependence of thermal conductivity and diffusivity displayed by most rock types. Numerical solutions can incorporate these additional factors. The heat of crystallization can raise the initial temperature at the dike contact, ??c1, about 100??C above that which would be estimated if it were neglected, and can decrease the rate at which the front of solidified magma moves to the dike center by a factor of as much as three. Thermal conductivity and diffusivity of rocks increase with decreasing temperature and, at low temperatures, these properties increase more if the rocks are saturated with water. Models that treat these temperature dependencies yield estimates of ??c1 that are as much as 75??C beneath those which would be predicted if they were neglected. ?? 1988.

  3. Explosive desorption of icy grain mantles in dense clouds

    NASA Technical Reports Server (NTRS)

    Schutte, W. A.; Greenberg, J. M.

    1991-01-01

    The cycling of the condensible material in dense clouds between the gas phase and the icy grain mantles is investigated. In the model studied, desorption of the ice occurs due to grain mantle explosions when photochemically stored energy is released after transient heating by a cosmic ray particle. It is shown that, depending on the grain size distribution in dense clouds, explosive desorption can maintain up to about eight percent of the carbon in the form of CO in the gas phase at typical cloud densities.

  4. Desorption kinetics of arsenate from kaolinite as influenced by pH.

    PubMed

    Quaghebeur, M; Rate, A; Rengel, Z; Hinz, C

    2005-01-01

    Arsenic is highly toxic and therefore represents a potential threat to the environment and human health. The mobility and bioavailability of arsenic in soil is mostly controlled by adsorption and desorption reactions. Even though adsorption and traditional batch desorption experiments provide information about the environmental fate of As, the equilibrium conditions imposed in these studies would usually not be reached in the natural environment. Flow-through desorption techniques, where the desorbed species are removed from the substrate, can therefore be used to provide information about the rate and mechanisms of As desorption. The effect of pH on As adsorption reactions is relatively well understood; however, desorption of As and the effect of pH on As desorption remain unexplored. Desorption of As(V) (the most dominant arsenic species in aerated soils) was therefore investigated using batch and flow-through desorption experiments. Traditional batch desorption experiments underestimated the desorption rate of As(V) from kaolinite. The pH had a large effect on the amount of As(V) desorbed from kaolinite, with both an increase and a decrease in pH (from the initial pH 6.4) enhancing As(V) desorption. Modeling desorption over time revealed that the pH can influence As(V) desorption over extended periods of time. PMID:15758100

  5. Spreading of lithium on a stainless steel surface at room temperature

    NASA Astrophysics Data System (ADS)

    Skinner, C. H.; Capece, A. M.; Roszell, J. P.; Koel, B. E.

    2016-01-01

    Lithium conditioned plasma facing surfaces have lowered recycling and enhanced plasma performance on many fusion devices and liquid lithium plasma facing components are under consideration for future machines. A key factor in the performance of liquid lithium components is the wetting by lithium of its container. We have observed the surface spreading of lithium from a mm-scale particle to adjacent stainless steel surfaces using a scanning Auger microprobe that has elemental discrimination. The spreading of lithium occurred at room temperature (when lithium is a solid) from one location at a speed of 0.62 ?m/day under ultrahigh vacuum conditions. Separate experiments using temperature programmed desorption (TPD) investigated bonding energetics between monolayer-scale films of lithium and stainless steel. While multilayer lithium desorption from stainless steel begins to occur just above 500 K (Edes = 1.54 eV), sub-monolayer Li desorption occurred in a TPD peak at 942 K (Edes = 2.52 eV) indicating more energetically favorable lithium-stainless steel bonding (in the absence of an oxidation layer) than lithium-lithium bonding.

  6. Multivariate analysis of progressive thermal desorption coupled gas chromatography-mass spectrometry.

    SciTech Connect

    Van Benthem, Mark Hilary; Mowry, Curtis Dale; Kotula, Paul Gabriel; Borek, Theodore Thaddeus, III

    2010-09-01

    Thermal decomposition of poly dimethyl siloxane compounds, Sylgard{reg_sign} 184 and 186, were examined using thermal desorption coupled gas chromatography-mass spectrometry (TD/GC-MS) and multivariate analysis. This work describes a method of producing multiway data using a stepped thermal desorption. The technique involves sequentially heating a sample of the material of interest with subsequent analysis in a commercial GC/MS system. The decomposition chromatograms were analyzed using multivariate analysis tools including principal component analysis (PCA), factor rotation employing the varimax criterion, and multivariate curve resolution. The results of the analysis show seven components related to offgassing of various fractions of siloxanes that vary as a function of temperature. Thermal desorption coupled with gas chromatography-mass spectrometry (TD/GC-MS) is a powerful analytical technique for analyzing chemical mixtures. It has great potential in numerous analytic areas including materials analysis, sports medicine, in the detection of designer drugs; and biological research for metabolomics. Data analysis is complicated, far from automated and can result in high false positive or false negative rates. We have demonstrated a step-wise TD/GC-MS technique that removes more volatile compounds from a sample before extracting the less volatile compounds. This creates an additional dimension of separation before the GC column, while simultaneously generating three-way data. Sandia's proven multivariate analysis methods, when applied to these data, have several advantages over current commercial options. It also has demonstrated potential for success in finding and enabling identification of trace compounds. Several challenges remain, however, including understanding the sources of noise in the data, outlier detection, improving the data pretreatment and analysis methods, developing a software tool for ease of use by the chemist, and demonstrating our belief that this multivariate analysis will enable superior differentiation capabilities. In addition, noise and system artifacts challenge the analysis of GC-MS data collected on lower cost equipment, ubiquitous in commercial laboratories. This research has the potential to affect many areas of analytical chemistry including materials analysis, medical testing, and environmental surveillance. It could also provide a method to measure adsorption parameters for chemical interactions on various surfaces by measuring desorption as a function of temperature for mixtures. We have presented results of a novel method for examining offgas products of a common PDMS material. Our method involves utilizing a stepped TD/GC-MS data acquisition scheme that may be almost totally automated, coupled with multivariate analysis schemes. This method of data generation and analysis can be applied to a number of materials aging and thermal degradation studies.

  7. Soft cluster-induced desorption and ionization of biomolecules—Influence of surface load and morphology on desorption efficiency

    NASA Astrophysics Data System (ADS)

    Baur, M.; Lee, B.-J.; Gebhardt, C. R.; Dürr, M.

    2011-12-01

    Neutral cluster-induced desorption and ionization of oligopeptides both from ?m-thick films as well as from surfaces prepared with submonolayer surface concentration of biomolecules was investigated by means of mass spectrometry. Highest signal intensity was observed from thick films indicating efficient desorption from bulk-like material. In the submonolayer regime, the ion signal of the desorbed biomolecules was found to depend nonlinearly on the amount of substance of the wet-chemically applied biomolecules; the observation is correlated to the formation of aggregates of biomolecules on the surface.

  8. Aging Effects on the Kinetics of Cesium Desorption from Vermiculite And Contaminated Soil

    E-print Network

    Sparks, Donald L.

    Aging Effects on the Kinetics of Cesium Desorption from Vermiculite And Contaminated Soil A. M), it is important to determine how aging affects 137 Cs desorption. This study uses a batch technique to measure 0

  9. USING METHANOL-WATER SYSTEMS TO INVESTIGATE PHENANTHRENE SORPTION-DESORPTION ON SEDIMENT

    EPA Science Inventory

    Sorption isotherm nonlinearity, sorption-desorption hysteresis, slow desorption kinetics, and other nonideal phenomena have been attributed to the differing sorptive characteristics of the natural organic matter (NOM) polymers associated with soils and sediments. A conceptualizat...

  10. A study of the formation of cluster ions from metal acetates using plasma desorption mass spectrometry 

    E-print Network

    Mendez Silvagnoli, Winston Reinaldo

    1995-01-01

    A novel application of desorption/ionization methods of mass spectrometry, e. g. plasma desorption mass spectrometry (PDMS), is the analysis of both the composition and structure of solid materials in one experiment. Cluster ions emitted from...

  11. Thermal Desorption Kinetics of Volatiles on Silicate ``Smokes:'' Analog to Micrometeoric Impact Vapor Condensates

    NASA Astrophysics Data System (ADS)

    McLain, J. L.; Sarantos, M.; Johnson, N. M.; Keller, J. W.; Nuth, J. A.; Farrell, W. M.

    2015-11-01

    Laboratory measurements of the thermal desorption kinetics of Ar, H2O and other common lunar volatiles on silicate smokes will be presented, with a focus on comparing the desorption energies and surface chemistry with other regolith analogs.

  12. Physisorption and desorption of H2, HD and D2 on amorphous solid water ice. Effect on mixing isotopologue on statistical population of adsorption sites.

    PubMed

    Amiaud, Lionel; Fillion, Jean-Hugues; Dulieu, François; Momeni, Anouchah; Lemaire, Jean-Louis

    2015-11-28

    We study the adsorption and desorption of three isotopologues of molecular hydrogen mixed on 10 ML of porous amorphous water ice (ASW) deposited at 10 K. Thermally programmed desorption (TPD) of H2, D2 and HD adsorbed at 10 K have been performed with different mixings. Various coverages of H2, HD and D2 have been explored and a model taking into account all species adsorbed on the surface is presented in detail. The model we propose allows to extract the parameters required to fully reproduce the desorption of H2, HD and D2 for various coverages and mixtures in the sub-monolayer regime. The model is based on a statistical description of the process in a grand-canonical ensemble where adsorbed molecules are described following a Fermi-Dirac distribution. PMID:26503710

  13. Techniques for improving the accuracy of cryogenic temperature measurement in ground test programs

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Fabik, Richard H.

    1993-01-01

    The performance of a sensor is often evaluated by determining to what degree of accuracy a measurement can be made using this sensor. The absolute accuracy of a sensor is an important parameter considered when choosing the type of sensor to use in research experiments. Tests were performed to improve the accuracy of cryogenic temperature measurements by calibration of the temperature sensors when installed in their experimental operating environment. The calibration information was then used to correct for temperature sensor measurement errors by adjusting the data acquisition system software. This paper describes a method to improve the accuracy of cryogenic temperature measurements using corrections in the data acquisition system software such that the uncertainty of an individual temperature sensor is improved from plus or minus 0.90 deg R to plus or minus 0.20 deg R over a specified range.

  14. Thesis for Doctor of Philosophy Hydrogen Desorption in Steels

    E-print Network

    Cambridge, University of

    Thesis for Doctor of Philosophy Hydrogen Desorption in Steels Song, Eun Ju (Song, Eun Ju) Computational Metallurgy Graduate Institute of Ferrous Technology Pohang University of Science and Technology- orption analysis with gas chromatography (Ryu, 2012). . . 9 2.5 The trap occupancy as a function

  15. LASER DESORPTION IONIZATION OF SIZE RESOLVED LIQUID MICRODROPLETS. (R823980)

    EPA Science Inventory

    Mass spectra of single micrometer-size glycerol droplets containing organic and inorganic analytes were obtained by on-line laser desorption ionization. Aerosol droplets entered the mass spectrometer through an inlet where they were detected by light scattering of a continuous la...

  16. SITE TECHNOLOGY CAPSULE: CLEAN BERKSHIRES, INC. THERMAL DESORPTION SYSTEM

    EPA Science Inventory

    The thermal desorption process devised by Clean Berkshires, Inc., works by vaporizing the organic contaminants from the soil with heat, isolating the contaminant! in a gas stream, and then destroying them in a high efficiency afterburner. The processed solids are either replaced ...

  17. One-dimensional steam flow in porous media under desorption

    SciTech Connect

    Cuong Phu Nghiem; Ramey, Henry J., Jr.

    1991-01-01

    Performance forecasting for a hypothetical field with Geysers greywacke rock is performed to demonstrate the importance of desorption effect, the actual adsorption isotherm was found to be well approximated by the Langmuir equation. Results obtained suggest that adsorption is the dominant mechanism for steam in geothermal reservoirs.

  18. SOFT LASER DESORPTION IONIZATION -MALDI, DIOS AND NANOSTRUCTURES

    E-print Network

    Vertes, Akos

    Chapter 20 SOFT LASER DESORPTION IONIZATION - MALDI, DIOS AND NANOSTRUCTURES Akos Veites Department on and the method of rapid heating was proposed to minimize the latter (Beuhler, et al., 1974). Lasers with respect to the ultimate size of the biomolecules (m/z Laser Ablation and its

  19. Desorption of Arsenic from Drinking Water Distribution System Solids

    EPA Science Inventory

    Given the limited knowledge regarding the soluble release of arsenic from DWDS solids, the objectives of this research were to: 1) investigate the effect of pH on the dissolution/desorption of arsenic from DWDS solids, and 2) examine the effect of orthophosphate on the soluble re...

  20. Quantitative matrix-assisted laser desorption/ionization mass spectrometry

    PubMed Central

    Roder, Heinrich; Hunsucker, Stephen W.

    2008-01-01

    This review summarizes the essential characteristics of matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry (TOF MS), especially as they relate to its applications in quantitative analysis. Approaches to quantification by MALDI-TOF MS are presented and published applications are critically reviewed. PMID:19106161

  1. Kinetics of nitric oxide desorption from carbonaceous surfaces

    E-print Network

    Truong, Thanh N.

    2002 Abstract We carried out a molecular modeling study of an important reaction in the combustion combustion is a technological issue because it is not mitigated by aerodynamic methods [4]. Then, success on the mechanism and kinetics of CO desorption from carbonyl and semiquinone carbon­oxygen complexes [7,8]. Our pre

  2. DEMONSTRATION BULLETIN: THERMAL DESORPTION SYSTEM - CLEAN BERKSHIRES, INC.

    EPA Science Inventory

    A thermal desorption system (TDS) has been developed by Clean Berkshires, Inc. (CBI), Lanesboro, Massachusetts for ex-situ treatment of soils and other media contaminated with organic pollutants. The TDS uses heat as both a physical separation mechanism and as a means to destro...

  3. Adsorption, desorption, and stabilization of arsenic on aluminum substituted ferrihydrite 

    E-print Network

    Masue, Yoko

    2006-04-12

    systems were evaluated by studying their mineralogy, stability, and As adsorption and desorption behavior. The broad XRD peaks revealed that Al was substituted into the ferrihydrite structure and that this was the only major product up to about a 2:8 Al...

  4. INITIAL SCREENING OF THERMAL DESORPTION FOR SOIL REMEDIATION

    EPA Science Inventory

    The purpose of this paper is to present procedures for collecting and evaluating key data that affect the potential application of thermal desorption for a specific site. hese data are defined as "critical success factors". he screening procedure can be used to perform an initial...

  5. Sorption-desorption of indaziflam in selected agricultural soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sorption and desorption of indaziflam in 6 soils from Brazil and 3 soils from the USA, with different physical chemical properties, were investigated using the batch equilibration method. Sorption kinetics demonstrated that soil-solution equilibrium was attained in a 24-h period. The Freundlich equa...

  6. Dynamic Monte Carlo description of thermal desorption processes

    NASA Astrophysics Data System (ADS)

    Weinketz, Sieghard

    1994-07-01

    The applicability of the dynamic Monte Carlo method of Fichthorn and Weinberg, in which the time evolution of a system is described in terms of the absolute number of different microscopic possible events and their associated transition rates, is discussed for the case of thermal desorption simulations. It is shown that the definition of the time increment at each successful event leads naturally to the macroscopic differential equation of desorption, in the case of simple first- and second-order processes in which the only possible events are desorption and diffusion. This equivalence is numerically demonstrated for a second-order case. In the sequence, the equivalence of this method with the Monte Carlo method of Sales and Zgrablich for more complex desorption processes, allowing for lateral interactions between adsorbates, is shown, even though the dynamic Monte Carlo method does not bear their limitation of a rapid surface diffusion condition, thus being able to describe a more complex ``kinetics'' of surface reactive processes, and therefore be applied to a wider class of phenomena, such as surface catalysis.

  7. Thermal desorption behavior of helium in aged titanium tritide films

    NASA Astrophysics Data System (ADS)

    Cheng, G. J.; Shi, L. Q.; Zhou, X. S.; Liang, J. H.; Wang, W. D.; Long, X. G.; Yang, B. F.; Peng, S. M.

    2015-11-01

    The desorption behavior of helium in TiT(1.5?1.8)-x3Hex film samples (x = 0.0022-0.22) was investigated by thermal desorption technique in vacuum condition in this paper. The thermal helium desorption spectrometry (THDS) of aging titanium tritide films prepared by electron beam evaporation revealed that, depending on the decayed 3He concentration in the samples, there are more than four states of helium existing in the films. The divided four zones in THDS based on helium states represent respectively: (1) the mobile single helium atoms with low activation energy in all aging samples resulted from the interstitial sites or dissociated from interstitial clusters, loops and dislocations, (2) helium bubbles inside the grain lattices, (3) helium bubbles in the grain boundaries and interconnected networks of dislocations in the helium concentration of 3Hegen/Ti > 0.0094, and (4) helium bubbles near or linked to the film surface by interconnected channel for later aging stage with 3Hegen/Ti > 0.18. The proportion of helium desorption in each zone was estimated, and dissociated energies of helium for different trapping states were given.

  8. The fate of the (reactive) primary ion: Sputtering and desorption

    NASA Astrophysics Data System (ADS)

    Vandervorst, W.; Janssens, T.; Huyghebaert, C.; Berghmans, B.

    2008-12-01

    Accurate modeling of the enhancement of the ionization probabilities of secondary ions (positive and negative) by the presence of reactive species requires a precise determination of their concentration at the outermost surface and thus a fundamental understanding of their incorporation and release processes. In the present paper we discuss these processes for oxygen, cesium and cluster ion bombardment with a special emphasis on their importance at (very) low bombardment energies. At these energies the sputtering processes becomes very small and deposition instead of erosion is predicted while for some species such as oxygen and cesium, an additional process, i.e. desorption, becomes more important thereby enabling a stationary state without deposition. The desorption process is a property of the primary ion and element specific and can be predicted based on the sputter yields and heat of sublimation. For those species/conditions where desorption is not operational (such as for C 60-beams), depth profiling at very low energies and with low sputter yields (<1) will not be possible and accumulation of the primary ion (thin film growth) is observed. The absence of deposition under oxygen, cesium and (SF 5) n-bombardment and the positive impact of oxygen flooding on C 60 bombardment can all be explained when the desorption mechanism is included in the balance equation.

  9. Dust as interstellar catalyst. I. Quantifying the chemical desorption process

    NASA Astrophysics Data System (ADS)

    Minissale, M.; Dulieu, F.; Cazaux, S.; Hocuk, S.

    2016-01-01

    Context. The presence of dust in the interstellar medium has profound consequences on the chemical composition of regions where stars are forming. Recent observations show that many species formed onto dust are populating the gas phase, especially in cold environments where UV- and cosmic-ray-induced photons do not account for such processes. Aims: The aim of this paper is to understand and quantify the process that releases solid species into the gas phase, the so-called chemical desorption process, so that an explicit formula can be derived that can be included in astrochemical models. Methods: We present a collection of experimental results of more than ten reactive systems. For each reaction, different substrates such as oxidized graphite and compact amorphous water ice were used. We derived a formula for reproducing the efficiencies of the chemical desorption process that considers the equipartition of the energy of newly formed products, followed by classical bounce on the surface. In part II of this study we extend these results to astrophysical conditions. Results: The equipartition of energy correctly describes the chemical desorption process on bare surfaces. On icy surfaces, the chemical desorption process is much less efficient, and a better description of the interaction with the surface is still needed. Conclusions: We show that the mechanism that directly transforms solid species into gas phase species is efficient for many reactions.

  10. Matrix-assisted Laser Desorption of *Peptidesin Transmission Geometry

    E-print Network

    Vertes, Akos

    ~~~_ Matrix-assisted Laser Desorption of *Peptidesin Transmission Geometry Akos Vertes* Laszlo, Francc The possibility of performing matrix-assisted laser &sorption experiments in trknsmission geometry large molecules. Because of the clearlv demonstrated matrix-assisted laser ionization in a homogeneous

  11. Desorption electrospray ionization mass spectrometry of intact bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Desorption electrospray ionization (DESI) mass spectrometry (MS) was used to differentiate 7 bacterial species based on their measured DESI-mass spectral profile. Both Gram positive and Gram negative bacteria were tested and included Escherichia coli, Staphyloccocus aureus, Enterococcus sp., Bordete...

  12. Sorption and desorption characteristics of a packed bed of clay-CaCl{sub 2} desiccant particles

    SciTech Connect

    Tretiak, C.S.; Abdallah, N. Ben

    2009-10-15

    Desiccants can be used in conjunction with solar energy to provide a viable alternative to traditional air conditioning techniques. A desiccant consisting of clay and calcium chloride was developed and tested using multiple sorption and desorption cycles. During sorption, inlet air temperatures from 23 to 36 C with corresponding relative humidities of 42-66% were tested. Additionally, superficial air velocities from 0.17 to 0.85 m/s were tested. During desorption, inlet air temperatures from 50 to 57 C and superficial air velocities of approximately 0.30 and 0.60 m/s were tested. A regression equation was determined for the mass of water sorbed by the clay-CaCl2 desiccant with a R{sup 2} value of 0.917. The desorption data was regressed to an exponential function and significant k-values were determined. An equation for pressure drop through the desiccant was determined and compared to existing models. The desiccant was found to perform well during the repeated test cycles though small masses of desiccant were lost due to surface disintegration of the desiccant spheres. (author)

  13. Adsorption and desorption of S on and off Si(001) studied by ab initio density functional theory

    NASA Astrophysics Data System (ADS)

    ?akmak, M.; Srivastava, G. P.

    1998-12-01

    We present detailed ab initio density functional calculations of equilibrium atomic geometry, electronic states, and chemical bonding for the adsorption of elemental S on Si(001). Following recently reported room temperature low-energy electron diffraction, Auger electron spectroscopy, thermal desorption spectroscopy, and work function measurements by Papageorgopoulos et al. [Phys. Rev. B 55, 4435 (1997)], three different adsorption models have been studied: hemisulfide (2×1) structure, monosulfide (1×1) structure, and disulfide (1×1) structure. For hemisulfide and monosulfide structures, the calculated location of S above the Si(001) surface is in excellent agreement with the experiment. An analysis of surface free energy suggests that, in the allowed range of S chemical potential, the monosulfide structure is more stable than the hemisulfide and disulfide structures. A signature of desorption of the SiS unit is obtained from the study of the disulfide structure.

  14. Analysis and optimization of carbon nanotubes and graphene sensors based on adsorption-desorption kinetics

    NASA Astrophysics Data System (ADS)

    Liang, Sang-Zi; Chen, Gugang; Harutyunyan, Avetik R.; Cole, Milton W.; Sofo, Jorge O.

    2013-12-01

    Single-walled carbon nanotubes mats and graphene have shown great potential as gas sensors. We analyze NO adsorption/sensing experiments with the kinetic Langmuir model adapted to include adsorption sites from which the molecule does not desorb. The model reproduces the available experimental data. Its fitting parameters provide information on the microscopic phenomena governing adsorption, and variation of these parameters allows the optimization of the sensitivity, detection limit, and time response of the sensors. The result reveals an optimal operating temperature before thermal desorption becomes dominant at high temperature, the potential improvement of selectivity by tuning the gate voltage in a field effect transistor configuration, and quantifies the benefits of reducing the density of defects in the sensing materials.

  15. Quantifying Desorption of Saturated Hydrocarbons from Silicon with Quantum Calculations and Scanning Tunneling Microscopy

    E-print Network

    Seideman, Tamar

    function, such as current-driven molecular machines [9], switches, or rectifiers [11]. Previous work hasQuantifying Desorption of Saturated Hydrocarbons from Silicon with Quantum Calculations hydrocarbon on silicon, desorption is observed at bias magnitudes as low as 2.5 V, albeit the desorption

  16. Transient Adsorption and Desorption in Micrometer Scale Matthias K. Gobbert,a,

    E-print Network

    Gobbert, Matthias K.

    Transient Adsorption and Desorption in Micrometer Scale Features Matthias K. Gobbert,a, *,z Samuel such as those found in integrated circuit fabrication. We focus on the adsorption and desorption of one species no adjustable parameters; the assumptions are detailed. Adsorption and desorption reactions and rates

  17. Simultaneous desorption behavior of M borohydrides and Mg2FeH6 reactive hydride composites (M = Mg, then Li, Na, K, Ca)

    NASA Astrophysics Data System (ADS)

    Chaudhary, Anna-Lisa; Li, Guanqiao; Matsuo, Motoaki; Orimo, Shin-ichi; Deledda, Stefano; Sørby, Magnus H.; Hauback, Bjørn C.; Pistidda, Claudio; Klassen, Thomas; Dornheim, Martin

    2015-08-01

    Combinations of complex metal borohydrides ball milled with the transition metal complex hydride, Mg2FeH6, are analysed and compared. Initially, the Reactive Hydride Composite (RHC) of Mg2+ cation mixtures of Mg2FeH6 and ?-Mg(BH4)2 is combined in a range of molar ratios and heated to a maximum of 450 °C. For the molar ratio of 6 Mg2FeH6 + Mg(BH4)2, simultaneous desorption of the two hydrides occurred, which resulted in a single event of hydrogen release. This single step desorption occurred at temperatures between those of Mg2FeH6 and ?-Mg(BH4)2. Keeping this anionic ratio constant, the desorption behavior of four other borohydrides, Li-, Na-, K-, and Ca-borohydrides was studied by using materials ball milled with Mg2FeH6 applying the same milling parameters. The mixtures containing Mg-, Li-, and Ca-borohydrides also released hydrogen in a single event. The Mass Spectrometry (MS) results show a double step reaction within a narrow temperature range for both the Na- and K-borohydride mixtures. This phenomenon, observed for the RHC systems at the same anionic ratio with all five light metal borohydride mixtures, can be described as simultaneous hydrogen desorption within a narrow temperature range centered around 300 °C.

  18. EFFECTS OF TEMPERATURE AND PRESSURE ON PARTICLE COLLECTION MECHANISMS: EXPERIMENTAL PROGRAM

    EPA Science Inventory

    The report gives results of a theoretical and experimental investigation of the effects of high temperatures and high pressures (HTPs) on fundamental particle collection mechanisms. It gives experimental results of inertial impaction, cyclone separation, Brownian diffusion, and e...

  19. Adsorption, Desorption, Dissoziation und Rekombination von SO2 an einer Palladium(111)-Oberfläche

    NASA Astrophysics Data System (ADS)

    Kölzer, J. G.; Wassmuth, H.-W.

    Die Adsorption, Desorption sowie Zerfalls- uud Aufbaureaktionen von SO2 an Pd(1 1 1) wurden mit LEED, AES, Thermischer Desorptions-Massenspektrometrie und Molekularstrahlstreuung im Temperaturbereich 160-1200 K untersucht. Bei 160 K adsorbiert SO2 molekular und ungeordnet; die Precursor-gesteuerte Adsorption mit einem Anfangshaftkoeffizienten s0 = 1 führt bei Sättigung zu einem Bedeckungsgrad SO2 0,3. Beim Hochheizen der Adschicht desorbiert ausschließlich SO2, und zwar im -Peak (Tmax = 240 K) direkt aus dem Zustand (SO2)ad und im ?-Peak (Tmax = 330-370 K) als Produkt der Rekombination von (SO)ad und Oad. Ein großer Teil des bei der SO2-Dissoziation freiwerdenden Sauerstoffs wird in den Subsurface-Bereich inkorporiert, so daß eine atomare S-Bedeckung mit S = 1/7 zurückbleibt, die eine () +/- 19,1°-Überstruktur ausbildet. Diese Struktur wird auch nach Hochheizen einer bei 320 K hergestellten (2 × 2)-SO-Sättigungsbedeckung mit SO = 0,5 sowie nach SO2-Exposition bei T > 500 K beobachtet, wo sie Bedeckungsgraden S von 3/7 und 2/7 entspricht. Weiterhin wurden der Vergiftungseffekt durch adsorbierten Schwefel auf die dissoziative Adsorption von Sauerstoff und die S-Oxidation durch Hochheizen einer OS-Koadsorptionsphase untersucht. Insgesamt wurden folgende reaktionskinetische Parameter (Aktivierungsenergien und Vorfaktoren) bestimmt: [Normal View 6K | Magnified View 15K].Translated AbstractAdsorption, Desorption, Dissociation and Recombination of SO2 on a Palladium (111) SurfaceThe adsorption, desorption as well as decomposition- and recombination-reactions of SO2 on Pd(1 1 1) were studied for temperatures T = 160-1200 K using LEED, AES, thermal desorption-mass-spectrometry and molecular beam techniques. At 160 K SO2 adsorption with an initial sticking coefficient s0 = 1 is molecular and non-ordered; it is characterized by a precursor state and leads to a saturation coverage SO2 0,3. Heating up the adlayer SO2 is the only desorption product, namely directly from (SO2)ad in the ?-peak (Tmax = 240 K) and as the product of recombination of (SO)ad and Oad in the ?-peak (Tmax = 330-370 K). A great part of the oxygen originating from SO2-dissociation is incorporated into the subsurface region, resulting in an atomic S-adlayer with S = 1/7 which exhibits a () R +/- 19,1°-superstructure. This structure is also observed, if a 320 K-SO2-exposure induced (2 × 2)-SO saturation layer with SO = 0,5 is heated up or if SO, is exposed at T > 500 K, where it corresponds to S, values of 3/7 and 2/7, respectively. Furthermore the poisoning effect of adsorbed sulfur on the dissociative O2,-adsorption and the oxidation of sulfur by heating up an OS-coadsorption layer were studied. As a result the following kinetic parameters (activation energies and frequency factors) were determined: [Normal View 6K | Magnified View 14K].

  20. Adsorption and desorption of Cd(II) onto titanate nanotubes and efficient regeneration of tubular structures.

    PubMed

    Wang, Ting; Liu, Wen; Xu, Nan; Ni, Jinren

    2013-04-15

    Efficient regeneration of desorbed titanate nanotubes (TNTs) was investigated with cycled Cd(II) adsorption and desorption processes. After desorption of Cd (II) from TNTs using 0.1M HNO3, regeneration could be simply achieved with only 0.2M NaOH at ambient temperature, i.e. 2% of the NaOH needed for virgin TNTs preparation at 130°C. The regenerated TNTs displayed similar adsorption capacity of Cd(II) even after six recycles, while significant reduction could be detected for desorbed TNTs without regeneration. The virgin TNTs, absorbed TNTs, desorbed TNTs and regenerated TNTs were systematically characterized. As results, the ion-exchange mechanism with Na(+) in TNTs was convinced with obvious change of -TiO(ONa)2 by FTIR spectroscopy. The easy recovery of the damaged tubular structures proved by TEM and XRD was ascribed to asymmetric distribution of H(+) and Na(+) on the surface side and interlayer region of TNTs. More importantly, the cost-effective regeneration was found possibly related to complex form of TNTs-OCd(+)OH(-) onto the adsorbed TNTs, which was identified with help of X-ray photoelectron spectroscopy, and further indicated due to high relevance to an unexpected mole ratio of 1:1 between exchanged Na(+) and absorbed Cd(II). PMID:23500417

  1. Analysis of organic compounds in water by direct adsorption and thermal desorption. [Dissertation

    SciTech Connect

    Ryan, J.P. Jr.

    1980-03-01

    An instrument was designed and constructed that makes it possible to thermally desorb organic compounds from wet adsorption traps to a gas chromatograph in an efficient and reproducible manner. Based on this device, a method of analyzing organics in water was developed that is rapid, sensitive, and of broader scope than previously published methods. The system was applied to the analysis of compounds with a wide range of volatilities. Temperature and flow parameters were investigated and specific procedures for quantitation were established. Real samples, including tap water and well water, were also analyzed with this system. Depending on the analysis requirements, the thermal desorption instrument can be used with either packed column or high resolution open-tubular column gas chromatography. The construction plans of normal and high-resolution systems are presented along with chromatograms and data produced by each. Finally, an improved thermal desorption instrument is described. Modifications to the basic system, including splitless injection onto a capillary column, automation, dual cryogenic trapping, reduction of scale, and effluent splitting to dual detection are discussed at length as they relate to the improved instrument.

  2. Molecular Surface Sampling and Chemical Imaging using Proximal Probe Thermal Desorption/Secondary Ionization Mass Spectrometry

    SciTech Connect

    Ovchinnikova, Olga S; Kertesz, Vilmos; Van Berkel, Gary J

    2011-01-01

    Proximal probe thermal desorption/secondary ionization mass spectrometry was studied and applied to molecular surface sampling and chemical imaging using printed patterns on photopaper as test substrates. With the use of a circular cross section proximal probe with a tip diameter of 50 m and fixed temperature (350 C), the influence of probe-to-surface distance, lane scan spacing, and surface scan speed on signal quality and spatial resolution were studied and optimized. As a compromise between signal amplitude, signal reproducibility, and data acquisition time, a surface scan speed of 100 m/s, probe-to-paper surface distance of 5 m, and lane spacing of 10 m were used for imaging. Under those conditions the proximal probe thermal desorption/secondary ionization mass spectrometry method was able to achieve a spatial resolution of about 50 m as determined by the ability to distinguish surface patterns of known dimensions that were printed on the paper substrate. It is expected that spatial resolution and chemical image quality could be further improved by using probes of smaller cross section size and by incorporating a means to maintain a fixed optimal probe-to-surface distance real time, continuously adapting to the changing topography of the surface during a lane scan.

  3. Diffusion barriers in the kinetics of water vapor adsorption/desorption on activated carbons

    SciTech Connect

    Harding, A.W.; Foley, N.J.; Thomas, K.M.; Norman, P.R.; Francis, D.C.

    1998-07-07

    The adsorption of water vapor on a highly microporous coconut-shell-derived carbon and a mesoporous wood-derived carbon was studied. These carbons were chosen as they had markedly different porous structures. The adsorption and desorption characteristics of water vapor on the activated carbons were investigated over the relative pressure range p/p{degree} = 0--0.9 for temperatures in the range 285--313 K in a static water vapor system. The adsorption isotherms were analyzed using the Dubinin-Serpinski equation, and this provided an assessment of the polarity of the carbons. The kinetics of water vapor adsorption and desorption were studied with different amounts of preadsorbed water for set changes in pressure relative to the saturated vapor pressure (p/p{degree}). The adsorption kinetics for each relative pressure step were compared and used to calculate the activation energies for the vapor pressure increments. The kinetic results are discussed in relation to their relative position on the equilibrium isotherm and the adsorption mechanism of water vapor on activated carbons.

  4. Light-induced atomic desorption in cells with different PDMS coatings

    NASA Astrophysics Data System (ADS)

    Tsvetkov, S.; Gateva, S.; Taslakov, M.; Mariotti, E.; Cartaleva, S.

    2014-05-01

    Light-induced atomic desorption (LIAD) is a non-thermal process in which atoms adsorbed at a surface are released under illumination. It is applied mostly to implementing optical dispensers in the cases when high atomic density at low temperature is needed - for example, for loading atomic devices as atomic magnetometers, atomic clocks, magneto-optical traps and their miniaturization. However, as the desorption depends on the atom-surface interaction, it can also be used for optical characterization and manipulation of alkali metal nanoparticles. The paper describes an experimental investigation of the shape of the transmission spectra and their dependence on the illuminating blue-light power in PDMS coated cells prepared with two different concentrations of PDMS in ether. A comparison is conducted with the LIAD effect in SC-77 coated and in uncoated cells. All measurements are performed on the Rb D2 line in vacuum. The potential is discussed for application of these dependences to analyzing the quality of the coating surface and its optimization.

  5. Visualization and Measurement of Adsorption/Desorption Process of Ethanol in Activated Carbon Adsorber

    NASA Astrophysics Data System (ADS)

    Asano, Hitoshi; Murata, Kenta; Takenaka, Nobuyuki; Saito, Yasushi

    Adsorption refrigerator is one of the efficient tools for waste heat recovery, because the system is driven by heat at relative low temperature. However, the coefficient of performance is low due to its batch operation and the heat capacity of the adsorber. In order to improve the performance, it is important to optimize the configuration to minimize the amount of driving heat, and to clarify adsorption/desorption phenomena in transient conditions. Neutron radiography was applied to visualize and measure the adsorption amount distribution in an adsorber. The visualization experiments had been performed at the neutron radiography facility of E-2 port of Kyoto University Research Reactor. Activated carbon and ethanol were used as the adsorbent and refrigerant. From the acquired radiographs, adsorption amount was quantitatively measured by applying the umbra method using a checkered neutron absorber with boron powder. Then, transient adsorption and desorption processes of a rectangular adsorber with 84 mm in width, 50 mm in height and 20 mm in depth were visualized. As the result, the effect of fins in the adsorbent layer on the adsorption amount distribution was clearly visualized.

  6. Comparison of three plasma sources for ambient desorption/ionization mass spectrometry.

    PubMed

    McKay, Kirsty; Salter, Tara L; Bowfield, Andrew; Walsh, James L; Gilmore, Ian S; Bradley, James W

    2014-09-01

    Plasma-based desorption/ionization sources are an important ionization technique for ambient surface analysis mass spectrometry. In this paper, we compare and contrast three competing plasma based desorption/ionization sources: a radio-frequency (rf) plasma needle, a dielectric barrier plasma jet, and a low-temperature plasma probe. The ambient composition of the three sources and their effectiveness at analyzing a range of pharmaceuticals and polymers were assessed. Results show that the background mass spectrum of each source was dominated by air species, with the rf needle producing a richer ion spectrum consisting mainly of ionized water clusters. It was also seen that each source produced different ion fragments of the analytes under investigation: this is thought to be due to different substrate heating, different ion transport mechanisms, and different electric field orientations. The rf needle was found to fragment the analytes least and as a result it was able to detect larger polymer ions than the other sources. PMID:24894843

  7. Energy audit of three energy-conserving devices in a steel industry demonstration program. Task III. GTE high temperature recuperation

    SciTech Connect

    Holden, F.C.; Hoffman, A.O.; Lownie, H.W.

    1983-06-01

    The Office of Industrial Programs of the Department of Energy has undertaken a program to demonstrate to industry the benefits of installing various energy-conserving devices and equipment. This report presents results on one of those systems, a high-temperature ceramic recuperator designed and manufactured by Sylvania Chemical and Metallurgical Division, GTE Products Corporation of Towanda, Pennsylvania. The ceramic cross-flow recuperator unit recovers waste heat from the hot combustion gases and delivers preheated air to high-temperature burners of various manufacture. Of the 38 host site installations included in the program, sufficient operating data were obtained from 28 sites to evaluate the benefits in terms of energy and economic savings that can be achieved. Performance and cost data are analyzed and presented for those 28 installations, which covered a variety of applications, sizes, and industry types. Except for 5 sites where unusual operating or data-collection problems were encountered, the improvements in performance of the recuperated furnaces equalled or exceeded estimates; the average of the total fuel savings for these 23 sites was 44.0 percent, some portion of which resulted from furnace improvements other than recuperation. Payback times were calculated for both total costs and for recuperator-related costs, using a cumulative annual after-tax cash flow method which includes tax investment credits, estimates of general and fuel-price inflation, and maintenance costs.

  8. Preliminary design of an alternate high-temperature turbine. A topical report for Phase II of the High-Temperature-Turbine Technology Program

    SciTech Connect

    Strough, R.I.

    1981-08-01

    The feasibility of designing a convectively air-cooled turbine to operate in the environment of a 3000/sup 0/F combustor exit temperature with maximum turbine airfoil metal temperatures held to 1500/sup 0/F was established. The United Technologies-Kraftwerk Union V84.3 gas turbine design was used as the basic configuration for the design of the 3000/sup 0/F turbine. Turbine cooling requirements were determined based on the use of the modified V84.3 type silo combustor with a pattern factor of 0.1. The convective air-cooling technology levels in terms of cooling effectiveness required to satisfy the airfoil cooling requirements were identified. Cooling schemes and fabrication technologies required are discussed. Turbine airfoil cooling technology levels required for the 3000/sup 0/F engine were selected. The performance of the 3000/sup 0/F convectively air-cooled gas turbine in simple and combined cycle was calculated. The 3000/sup 0/F gas turbine combined-cycle system provides an increase in power of 61% and a decrease in heat rate of 10% compared to a similar system with a combustor exit temperature of 2210/sup 0/F and the same airflow. The development of a successful 3000/sup 0/F convectively air-cooled turbine can be accomplished with a reasonable design and fabrication development effort on the cooled turbine airfoils. Use of the convectively air-cooled turbine provides the transfer of technology from extensive aircraft engines developed programs and operating experience to industrial gas turbines. It eliminates the requirement for large investments in alternate cooling techniques tailored specifically for industrial engines which offer no additional benefits.

  9. Optimisation of temperature-programmed gas chromatographic separation of organochloride pesticides by response surface methodology.

    PubMed

    D'Archivio, Angelo Antonio; Maggi, Maria Anna; Marinelli, Cristina; Ruggieri, Fabrizio; Stecca, Fabrizio

    2015-12-01

    A response surface methodology (RSM) approach is applied to optimise the temperature-programme gas-chromatographic separation of 16 organochloride pesticides, including 12 compounds identified as highly toxic chemicals by the Stockholm Convention on Persistent Organic Pollutants. A three-parameter relationship describing both linear and curve temperature programmes is derived adapting a model previously used in literature to describe concentration gradients in liquid chromatography with binary eluents. To investigate the influence of the three temperature profile descriptors (the starting temperature, the gradient duration and a shape parameter), a three-level full-factorial design of experiments is used to identify suitable combinations of the above variables spanning over a useful domain. Resolutions of adjacent peaks are the responses modelled by RSM using two alternative methods: a multi-layer artificial network (ANN) and usual polynomial regression. The proposed ANN-based approach permits to model simultaneously the resolutions of all the consecutive analyte pairs as a function of the temperature profile descriptors. Four critical pairs giving partially overlapped peaks are identified and multiresponse optimisation is carried out by analysing the surface plot of a global resolution defined as the average of the resolutions of the critical pairs. Descriptive/predictive performance and applicability of the ANN and polynomial RSM methods are compared and discussed. PMID:26559619

  10. 13th TOPICAL CONFERENCE ON HIGH TEMPERATURE PLASMA DIAGNOSTICS SCIENTIFIC PROGRAM

    SciTech Connect

    C. BARNES

    2000-07-01

    Electron cyclotron emission (ECE) has been employed as a standard electron temperature profile diagnostic on many tokamaks and stellarators, but most magnetically confined plasma devices cannot take advantage of standard ECE diagnostics to measure temperature. They are either overdense, operating at high density relative to the magnetic field (e.g. {omega}{sub pe} >> {Omega}{sub ce} in a spherical torus) or they have insufficient density and temperature to reach the blackbody condition ({tau} > 2). Electron Bernstein waves (EBWs) are electrostatic waves which can propagate in overdense plasmas and have a high optical thickness at the electron cyclotron resonance layers, as a result of their large K{sub i}. This talk reports on measurements of EBW emission on the CDX-U spherical torus, where B{sub 0} {approx} 2 kG, {approx} 10{sup 13} cm{sup -3} and T{sub e} {approx} 10 - 200 eV. Results will be presented for both direct detection of EBWs and for mode-converted EBW emission. The EBW emission was absolutely calibrated and compared to the electron temperature profile measured by a multi-point Thomson scattering diagnostic. Depending on the plasma conditions, the mode-converted EBW radiation temperature was found to be {le} T{sub e} and the emission source was determined to be radially localized at the electron cyclotron resonance layer. A Langmuir triple probe was employed to measure changes in edge density profile in the vicinity of the upper hybrid resonance where the mode conversion of the EBWs is expected to occur. Changes in the mode conversion efficiency may explain the observation of mode-converted EBW radiation temperatures below T{sub e}. Initial results suggest EBW emission and EBW heating are viable concepts for plasmas where {omega}{sub pe} >> {Omega}{sub ce}.

  11. Integrated optical waveguides: refractive-index profile control by temperature and electric-field programming.

    PubMed

    Kapila, D; Plawsky, J L

    1995-12-01

    Ion exchange is often used to manufacture integrated optical waveguides in glasses and crystals. The manufacture of low-loss, compact, integrated optical waveguides can be achieved by varying the processing conditions (the temperature and the electric field) during the ion exchange. We have simulated the formation of waveguides in glass with a molten salt silver ion-exchange technique and have shown that, by simply linearly varying the temperature and electric field during processing of waveguides, one can tailor the refractive-index profiles to produce low-loss parabolic and hyperbolic secant dopant profiles or any other generic dopant profile. PMID:21068898

  12. Oxidation of Nitric Oxide on Gas-Phase Cerium Oxide Clusters via Reactant Adsorption and Product Desorption Processes.

    PubMed

    Nagata, Toshiaki; Miyajima, Ken; Mafuné, Fumitaka

    2015-10-15

    The reactivity of cerium oxide cluster cations, CenO2n+x(+) (n = 2-9, x = -1 to +2), with NO was investigated using gas-phase temperature-programmed desorption (TPD) combined with mass spectrometry. Target clusters were prepared in the gas phase via the laser ablation of a cerium oxide rod in the presence of oxygen, which was diluted using helium as a carrier gas. NO adsorbed onto stoichiometric and oxygen-rich clusters of CenO2n+x(+) (x = 0-2), forming CenO2n+x(NO)(+) (x = 0-2) species. Gas-phase TPD was measured for the NO-adsorbed clusters, revealing that CenO2n(NO)(+) released NO2 at 600-900 K, forming CenO2n-1(+). Therefore, the overall reaction was the oxidation of NO by the CenO2n(+) clusters, which was explained in terms of a Langmuir-Hinshelwood type reaction. An activation barrier existed between the initial complex (CenO2n(NO)(+)) and the final oxidation products (CenO2n-1(+) + NO2). To determine the nature of the intermediates and the activation barrier, TPD was also performed on CenO2n-1(NO2)(+), which had been prepared through the adsorption of NO2 on CenO2n-1(+) for comparison. The activation barrier was associated with the release of NO2 from the intermediate complex (CenO2n-1(+)-NO2 ? CenO2n-1(+) + NO2) rather than the structural rearrangement that formed NO2 in the other intermediate complex (CenO2n(+)-NO ? CenO2n-1(+)-NO2). PMID:26394781

  13. Results of an interlaboratory fatigue test program conducted on alloy 800H at room and elevated temperatures

    NASA Technical Reports Server (NTRS)

    Ellis, J. R.

    1985-01-01

    The experimental approach adopted for low cycle fatigue tests of alloy 800H involved the use of electrohydraulic test systems, hour glass geometry specimens, diametral extensometers, and axial strain computers. Attempts to identify possible problem areas were complicated by the lack of reliable data for the heat of Alloy 800H under investigation. The method adopted was to generate definitive test data in an Interlaboratory Fatigue Test Program. The laboratories participating in the program were Argonne National Laboratory, Battelle Columbus, Mar-Test, and NASA Lewis. Fatigue tests were conducted on both solid and turbular specimens at temperatures of 20, 593, and 760 C and strain ranges of 2.0, 1.0, and 0.5 percent. The subject test method can, under certain circumstances, produce fatigue data which are serious in error. This approach subsequently was abandoned at General Atomic Company in favor of parallel gage length specimens and axial extensiometers.

  14. Results of an interlaboratory fatigue test program conducted on alloy 800H at room and elevated temperatures

    NASA Technical Reports Server (NTRS)

    Ellis, J. R.

    1987-01-01

    The experimental approach adopted for low cycle fatigue tests of alloy 800H involved the use of electrohydraulic test systems, hour glass geometry specimens, diametral extensometers, and axial strain computers. Attempts to identify possible problem areas were complicated by the lack of reliable data for the heat of Alloy 800H under investigation. The method adopted was to generate definitive test data in an Interlaboratory Fatigue Test Program. The laboratories participating in the program were Argonne National Laboratory, Battelle Columbus, Mar-Test, and NASA Lewis. Fatigue tests were conducted on both solid and turbular specimens at temperatures of 20, 593, and 760 C and strain ranges of 2.0, 1.0, and 0.5 percent. The subject test method can, under certain circumstances, produce fatigue data which are serious in error. This approach subsequently was abandoned at General Atomic Company in favor of parallel gage length specimens and axial extensometers.

  15. Assessment of the high temperature fission chamber technology for the French fast reactor program

    SciTech Connect

    Jammes, C.; Filliatre, P.; Geslot, B.; Domenech, T.; Normand, S.

    2011-07-01

    High temperature fission chambers are key instruments for the control and protection of the sodium-cooled fast reactor. First, the developments of those neutron detectors, which are carried out either in France or abroad are reviewed. Second, the French realizations are assessed with the use of the technology readiness levels in order to identify tracks of improvement. (authors)

  16. Temperature Control with Two Parallel Small Loop Heat Pipes for GLM Program

    NASA Technical Reports Server (NTRS)

    Khrustalev, Dmitry; Stouffer, Chuck; Ku, Jentung; Hamilton, Jon; Anderson, Mark

    2014-01-01

    The concept of temperature control of an electronic component using a single Loop Heat Pipe (LHP) is well established for Aerospace applications. Using two LHPs is often desirable for redundancy/reliability reasons or for increasing the overall heat source-sink thermal conductance. This effort elaborates on temperature controlling operation of a thermal system that includes two small ammonia LHPs thermally coupled together at the evaporator end as well as at the condenser end and operating "in parallel". A transient model of the LHP system was developed on the Thermal Desktop (TradeMark) platform to understand some fundamental details of such parallel operation of the two LHPs. Extensive thermal-vacuum testing was conducted with two thermally coupled LHPs operating simultaneously as well as with only one LHP operating at a time. This paper outlines the temperature control procedures for two LHPs operating simultaneously with widely varying sink temperatures. The test data obtained during the thermal-vacuum testing, with both LHPs running simultaneously in comparison with only one LHP operating at a time, are presented with detailed explanations.

  17. Controlling particulates, temperature, and tritium in an inert glovebox for a weapons program

    SciTech Connect

    Purson, J.D.; Powers, D.; Walthers, C.; Navarro, C.; Newman, E.; Romero, J.; Jenkins, R.

    1996-07-01

    A glovebox is described in which several environmental parameters are controlled and monitored. Included in these are particulate, tritium, water vapor, oxygen and temperature. The paper details the design rationale and process and describes the glovebox, presently in use for neutron generator production.

  18. EPA AND ERDA HIGH-TEMPERATURE/HIGH-PRESSURE PARTICULATE CONTROL PROGRAMS

    EPA Science Inventory

    The report describes and compares current projects sponsored by EPA and the U.S. Energy Research and Development Administration (ERDA), relating to the control of particulate matter in fuel gas streams at high temperatures (1000 to 2000F) and high pressures (5 atm and greater). T...

  19. A mass spectrometric system for analyzing thermal desorption spectra of ion-implanted argon and cesium in tungsten. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Wood, G. M., Jr.

    1974-01-01

    A mass spectrometric system for determining the characteristics of materials used in instrumental development and aerospace applications was developed. The desorption spectra of cesium that was ion-implanted into polycrystalline tungsten and the effects on the spectra of bombardment of the tungsten by low energy (70 eV) electrons were investigated. Work function changes were measured by the retarding potential diode method. Flash desorption characteristics were observed and gas-reaction mechanisms of the surface of heated metal filaments were studied. Desorption spectra were measured by linearly increasing the sample temperature at a selected rate, the temperature cycling being generated from a ramp-driven dc power supply, with the mass spectrometer tuned to a mass number of interest. Results of the study indicate an anomolous desorption mechanism following an electron bombardment of the sample surface. The enhanced spectra are a function of the post-bombardment time and energy and are suggestive of an increased concentration of cesium atoms, up to 10 or more angstroms below the surface.

  20. From Laser Desorption to Laser Ablation of Biopolymers

    NASA Astrophysics Data System (ADS)

    Franz, Hillenkamp

    1998-03-01

    For selected indications laser ablation and cutting of biological tissues is clinical practice. Preferentially lasers with emission wavelengths in the far UV and the mid IR are used, for which tissue absorption is very high. Morphologically the ablation sites look surprisingly similar for the two wavelength ranges, despite of the very different prim y putative interaction mechanisms. Ablation depth as a function of fluence follows a sigmoidal curve. Even factors below the nominal ablation threshold superficial layers of material get removed from the surface. This is the fluence range for Matrix-Assisted Laser Desorption/Ionization (MALDI). Evidence will be presented which suggest that strong similarities exist between the desorption and ablation processes both for UV- as well as for IR-wavelengths.

  1. Spatially resolved thermal desorption/ionization coupled with mass spectrometry

    DOEpatents

    Jesse, Stephen; Van Berkel, Gary J; Ovchinnikova, Olga S

    2013-02-26

    A system and method for sub-micron analysis of a chemical composition of a specimen are described. The method includes providing a specimen for evaluation and a thermal desorption probe, thermally desorbing an analyte from a target site of said specimen using the thermally active tip to form a gaseous analyte, ionizing the gaseous analyte to form an ionized analyte, and analyzing a chemical composition of the ionized analyte. The thermally desorbing step can include heating said thermally active tip to above 200.degree. C., and positioning the target site and the thermally active tip such that the heating step forms the gaseous analyte. The thermal desorption probe can include a thermally active tip extending from a cantilever body and an apex of the thermally active tip can have a radius of 250 nm or less.

  2. Tissue Imaging Using Nanospray Desorption Electrospray Ionization Mass Spectrometry

    SciTech Connect

    Laskin, Julia; Heath, Brandi S.; Roach, Patrick J.; Cazares, Lisa H.; Semmes, O. John

    2012-01-03

    We present the first results showing the ambient imaging of biological samples in their native environment using nanospray desorption ionization (nanoDESI) mass spectrometry. NanoDESI is an ambient pressure ionization technique that enables precise control of ionization of molecules from substrates. We demonstrate highly sensitive and robust analysis of tissue samples with high spatial resolution (<12 {mu}m) without sample preparation, which will be essential for applications in clinical diagnostics, drug discovery, molecular biology, and biochemistry.

  3. Increasing ion sorption and desorption rates of conductive electrodes

    DOEpatents

    DePaoli, David William; Kiggans, Jr., James O; Tsouris, Costas; Bourcier, William; Campbell, Robert; Mayes, Richard T

    2014-12-30

    An electrolyte system includes a reactor having a pair of electrodes that may sorb ions from an electrolyte. The electrolyte system also includes at least one power supply in electrical communication with the reactor. The at least one power supply may supply a DC signal and an AC signal to the pair of electrodes during sorption of the ions. In addition, the power supply may supply only the AC signal to the pair of electrodes during desorption of the ions.

  4. Study on adsorption and desorption of ammonia on graphene.

    PubMed

    Zhang, Zhengwei; Zhang, Xinfang; Luo, Wei; Yang, Hang; He, Yanlan; Liu, Yixing; Zhang, Xueao; Peng, Gang

    2015-12-01

    The gas sensor based on pristine graphene with conductance type was studied theoretically and experimentally. The time response of conductance measurements showed a quickly and largely increased conductivity when the sensor was exposed to ammonia gas produced by a bubble system of ammonia water. However, the desorption process in vacuum took more than 1 h which indicated that there was a larger number of transferred carriers and a strong adsorption force between ammonia and graphene. The desorption time could be greatly shortened down to about 2 min by adding the flow of water-vapor-enriched air at the beginning of the recovery stage which had been confirmed as a rapid and high-efficiency desorption process. Moreover, the optimum geometries, adsorption energies, and the charge transfer number of the composite systems were studied with first-principle calculations. However, the theoretical results showed that the adsorption energy between NH3 and graphene was too small to fit for the experimental phenomenon, and there were few charges transferred between graphene and NH3 molecules, which was completely different from the experiment measurement. The adsorption energy between NH4 and graphene increased stage by stage which showed NH4 was a strong donor. The calculation suggested that H2O molecule could help a quick desorption of NH4 from graphene by converting NH4 to NH3 or (NH3)n(H2O)m groups, which was consistent with the experimental results. This study demonstrates that the ammonia gas produced by a bubble system of ammonia water is mainly ammonium groups of NH3 and NH4, and the NH4 moleculars are ideal candidates for the molecular doping of graphene while the interaction between graphene and the NH3 moleculars is weak. PMID:26377212

  5. Kinetics of Mercury(II) Adsorption and Desorption on Soil

    E-print Network

    Sparks, Donald L.

    Kinetics of Mercury(II) Adsorption and Desorption on Soil Y U J U N Y I N , H E R B E R T E . A L L of Delaware, Newark, Delaware 19716 D O N A L D L . S P A R K S Department of Plant and Soil Sciences kinetics of Hg(II) on four soils at pH 6 were investigated to discern the mechanisms controlling

  6. Study on adsorption and desorption of ammonia on graphene

    NASA Astrophysics Data System (ADS)

    Zhang, Zhengwei; Zhang, Xinfang; Luo, Wei; Yang, Hang; He, Yanlan; Liu, Yixing; Zhang, Xueao; Peng, Gang

    2015-09-01

    The gas sensor based on pristine graphene with conductance type was studied theoretically and experimentally. The time response of conductance measurements showed a quickly and largely increased conductivity when the sensor was exposed to ammonia gas produced by a bubble system of ammonia water. However, the desorption process in vacuum took more than 1 h which indicated that there was a larger number of transferred carriers and a strong adsorption force between ammonia and graphene. The desorption time could be greatly shortened down to about 2 min by adding the flow of water-vapor-enriched air at the beginning of the recovery stage which had been confirmed as a rapid and high-efficiency desorption process. Moreover, the optimum geometries, adsorption energies, and the charge transfer number of the composite systems were studied with first-principle calculations. However, the theoretical results showed that the adsorption energy between NH3 and graphene was too small to fit for the experimental phenomenon, and there were few charges transferred between graphene and NH3 molecules, which was completely different from the experiment measurement. The adsorption energy between NH4 and graphene increased stage by stage which showed NH4 was a strong donor. The calculation suggested that H2O molecule could help a quick desorption of NH4 from graphene by converting NH4 to NH3 or (NH3)n(H2O)m groups, which was consistent with the experimental results. This study demonstrates that the ammonia gas produced by a bubble system of ammonia water is mainly ammonium groups of NH3 and NH4, and the NH4 moleculars are ideal candidates for the molecular doping of graphene while the interaction between graphene and the NH3 moleculars is weak.

  7. Evaluation of a low-temperature steam and formaldehyde sterilizer.

    PubMed

    Kanemitsu, K; Kunishima, H; Imasaka, T; Ishikawa, S; Harigae, H; Yamato, S; Hirayama, Y; Kaku, M

    2003-09-01

    We evaluated a low-temperature steam and formaldehyde (LTSF) sterilizer based on the draft European Standard prEN 14180. Microbiological tests were conducted on small and full loads using process challenge devices in five programs (P1-P5). With small loads all tests showed no growth of Bacillus stearothermophilus (ATCC7953) spores. However, positive cultures were observed with full-load tests using P5 (sterilization temperature, 50 degrees C). Our data indicated that the load influenced the efficacy of the LTSF sterilizer. Desorption tests were conducted to determine residual formaldehyde in indicator strips. The mean concentrations of formaldehyde in P1-P5 were 31.9, 56.3, 54.9, 82.2 and 180.6 microg, respectively, which are below the limits allowed by the draft Standard. Our results indicate that the LTSF sterilizer is useful for sterilization because of its excellent efficacy, short handling time, and safety. PMID:14505609

  8. Analysis of airborne pesticides from different chemical classes adsorbed on Radiello® Tenax® passive tubes by thermal-desorption-GC/MS.

    PubMed

    Raeppel, Caroline; Fabritius, Marie; Nief, Marie; Appenzeller, Brice M R; Briand, Olivier; Tuduri, Ludovic; Millet, Maurice

    2015-02-01

    An analytical methodology using automatic thermal desorption (ATD) and GC/MS was developed for the determination of 28 pesticides of different chemical classes (dichlobenil, carbofuran, trifluralin, clopyralid, carbaryl, flazasulfuron, mecoprop-P, dicamba, 2,4-MCPA, dichlorprop, 2,4-D, triclopyr, cyprodinil, bromoxynil, fluroxypyr, oxadiazon, myclobutanil, buprofezin, picloram, trinexapac-p-ethyl, ioxynil, diflufenican, tebuconazole, bifenthrin, isoxaben, alphacypermethrin, fenoxaprop and tau-fluvalinate) commonly used in nonagricultural areas in atmospheric samples. This methodology was developed to evaluate the indoor and outdoor atmospheric contamination by nonagricultural pesticides. Pesticides were sampled passive sampling tubes containing Tenax® adsorbent. Since most of these pesticides are polar (clopyralid, mecoprop-P, dicamba, 2,4-MCPA, dichlorprop, 2,4-D, triclopyr, bromoxynil, fluroxypyr, picloram, trinexapac-p-ethyl and ioxynil), a derivatisation step is required. For this purpose, a silylation step using N-(t-butyldimethylsilyl)-N-methyltrifluoroacetamide (MtBSTFA) was added before thermal desorption. This agent was chosen since it delivers very specific ions on electronic impact (m/z?=?M-57). This method was established with special consideration for optimal thermal desorption conditions (desorption temperature, desorb flow and duration; trap heating duration and flow; outlet split), linear ranges, limits of quantification and detection which varied from 0.005 to 10 ng and from 0.001 to 2.5 ng, respectively, for an uncertainty varied from 8 to 30 %. The method was applied in situ to the analysis of passive tubes exposed during herbicide application to an industrial site in east of France. PMID:25205153

  9. Current driven desorption of Hydrogen from Graphene: Resonant Lifetimes

    NASA Astrophysics Data System (ADS)

    Pal, Partha; Seideman, Tamar

    2013-03-01

    Since the last decade, graphene has attracted lot of attention within the scientific community owing to its enormous potential for applications in nanoelectronics. In an effort to open up a finite direct band gap, functionalizing the material with hydrogen atoms has been performed successfully. Subsequently, the hydrogen atoms can be made to desorb from the graphene surface by different techniques, one of the most promising being by the application of an external bias driven inelastic current between STM tip and the substrate containing the graphene. As a first step towards a theoretical description of this current driven desorption process, we determine the resonant lifetimes of the energy levels closest to the Fermi energy as a function of distance between the hydrogen atom and graphene. Preliminary results indicate that the resonance lifetimes are greater than those obtained for molecules adsorbed on metal surfaces thus opening up the possibility of a fully quantum mechanical description of the current driven excitation and the desorption dynamics. This work will corner the physical/chemical laws of nature that guides this reversible adsorption/desorption process.

  10. Adsorption and Desorption of Nitrogen and Water Vapor by clay

    NASA Astrophysics Data System (ADS)

    Cui, Deshan; Chen, Qiong; Xiang, Wei; Huang, Wei

    2015-04-01

    Adsorption and desorption of nitrogen and water vapor by clay has a significant impact on unsaturated soil physical and mechanical properties. In order to study the adsorption and desorption characteristics of nitrogen and water vapor by montmorillonite, kaolin and sliding zone soils, the Autosorb-iQ specific surface area and pore size analyzer instrument of United State was taken to carry out the analysis test. The adsorption and desorption of nitrogen at 77K and water vapor at 293K on clay sample were conducted. The theories of BET, FHH and hydration energy were taken to calculate the specific surface, surface fractal dimension and adsorption energy. The results show that the calculated specific surface of water vapor by clay is bigger than nitrogen adsorption test because clay can adsorb more water vapor molecule than nitrogen. Smaller and polar water vapor molecule can access the micropore and then adsorb on the mineral surface and mineral intralayer, which make the mineral surface cations hydrate and the mineral surface smoother. Bigger and nonpolar nitrogen molecule can not enter into the micropore as water vapor molecule and has weak interaction with clay surface.

  11. Adsorption, aggregation, and desorption of proteins on smectite particles.

    PubMed

    Kolman, Krzysztof; Makowski, Marcin M; Golriz, Ali A; Kappl, Michael; Pig?owski, Jacek; Butt, Hans-Jürgen; Kiersnowski, Adam

    2014-10-01

    We report on adsorption of lysozyme (LYS), ovalbumin (OVA), or ovotransferrin (OVT) on particles of a synthetic smectite (synthetic layered aluminosilicate). In our approach we used atomic force microscopy (AFM) and quartz crystal microbalance (QCM) to study the protein-smectite systems in water solutions at pH ranging from 4 to 9. The AFM provided insights into the adhesion forces of protein molecules to the smectite particles, while the QCM measurements yielded information about the amounts of the adsorbed proteins, changes in their structure, and conditions of desorption. The binding of the proteins to the smectite surface was driven mainly by electrostatic interactions, and hence properties of the adsorbed layers were controlled by pH. At high pH values a change in orientation of the adsorbed LYS molecules and a collapse or desorption of OVA layer were observed. Lowering pH to the value ? 4 caused LYS to desorb and swelling the adsorbed OVA. The stability of OVT-smectite complexes was found the lowest. OVT revealed a tendency to desorb from the smectite surface at all investigated pH. The minimum desorption rate was observed at pH close to the isoelectric point of the protein, which suggests that nonspecific interactions between OVT and smectite particles significantly contribute to the stability of these complexes. PMID:25216210

  12. The desorptivity model of bulk soil-water evaporation

    NASA Technical Reports Server (NTRS)

    Clapp, R. B.

    1983-01-01

    Available models of bulk evaporation from a bare-surfaced soil are difficult to apply to field conditions where evaporation is complicated by two main factors: rate-limiting climatic conditions and redistribution of soil moisture following infiltration. Both factors are included in the "desorptivity model', wherein the evaporation rate during the second stage (the soil-limiting stage) of evaporation is related to the desorptivity parameter, A. Analytical approximations for A are presented. The approximations are independent of the surface soil moisture. However, calculations using the approximations indicate that both soil texture and soil moisture content at depth significantly affect A. Because the moisture content at depth decreases in time during redistribution, it follows that the A parameter also changes with time. Consequently, a method to calculate a representative value of A was developed. When applied to field data, the desorptivity model estimated cumulative evaporation well. The model is easy to calculate, but its usefulness is limited because it requires an independent estimate of the time of transition between the first and second stages of evaporation. The model shows that bulk evaporation after the transition to the second stage is largely independent of climatic conditions.

  13. Laser desorption lamp ionization source for ion trap mass spectrometry.

    PubMed

    Wu, Qinghao; Zare, Richard N

    2015-01-01

    A two-step laser desorption lamp ionization source coupled to an ion trap mass spectrometer (LDLI-ITMS) has been constructed and characterized. The pulsed infrared (IR) output of an Nd:YAG laser (1064?nm) is directed to a target inside a chamber evacuated to ~15?Pa causing desorption of molecules from the target's surface. The desorbed molecules are ionized by a vacuum ultraviolet (VUV) lamp (filled with xenon, major wavelength at 148?nm). The resulting ions are stored and detected in a three-dimensional quadrupole ion trap modified from a Finnigan Mat LCQ mass spectrometer operated at a pressure of ? 0.004?Pa. The limit of detection for desorbed coronene molecules is 1.5?pmol, which is about two orders of magnitude more sensitive than laser desorption laser ionization mass spectrometry using a fluorine excimer laser (157?nm) as the ionization source. The mass spectrum of four standard aromatic compounds (pyrene, coronene, rubrene and 1,4,8,11,15,18,22,25-octabutoxy-29H,31H-phthalocyanine (OPC)) shows that parent ions dominate. By increasing the infrared laser power, this instrument is capable of detecting inorganic compounds. PMID:25601688

  14. Ambient aerodynamic desorption/ionization method for microparticle mass measurement.

    PubMed

    Xiong, Caiqiao; Zhou, Xiaoyu; Wang, Jianing; Zhang, Ning; Peng, Wen-Ping; Chang, Huan-Cheng; Nie, Zongxiu

    2013-05-01

    An ambient desorption/ionization method, named aerodynamic desorption (AD), was proposed for the in situ rapid mass measurement of microparticles. The AD method exploited the discontinuous atmospheric pressure interface (DAPI) to generate a pulsed airflow, which was used to desorb the microparticles under atmospheric pressure. Various microparticles, e.g., bacteria, cell, polystyrene, synthetic diamond, and silica particles, with different size and surface component were successfully desorbed. Similar to that in the conventional laser-induced acoustic desorption (LIAD) method, these microparticles were desorbed as precharged ions in the AD process and the charge number was largely relevant to the particle size. However, compared with LIAD, the sensitivity of the AD method was higher. A lower concentration of particles was required for the analysis. In addition, the construction and sampling process of AD source were much simpler. All types of liquid, solid, or/and gaseous samples can be directly sampled under ambient condition. As a demonstration of this AD method, the in situ mass analysis of red blood cells (RBCs) and E. coli bacteria were carried out using a homemade ambient AD mass spectrometer consisting of AD source, QIT mass analyzer, and charge detector. Their mass and mass distributions were obtained successfully. PMID:23534443

  15. A Computer Program for the Computation of Running Gear Temperatures Using Green's Function

    NASA Technical Reports Server (NTRS)

    Koshigoe, S.; Murdock, J. W.; Akin, L. S.; Townsend, D. P.

    1996-01-01

    A new technique has been developed to study two dimensional heat transfer problems in gears. This technique consists of transforming the heat equation into a line integral equation with the use of Green's theorem. The equation is then expressed in terms of eigenfunctions that satisfy the Helmholtz equation, and their corresponding eigenvalues for an arbitrarily shaped region of interest. The eigenfunction are obtalned by solving an intergral equation. Once the eigenfunctions are found, the temperature is expanded in terms of the eigenfunctions with unknown time dependent coefficients that can be solved by using Runge Kutta methods. The time integration is extremely efficient. Therefore, any changes in the time dependent coefficients or source terms in the boundary conditions do not impose a great computational burden on the user. The method is demonstrated by applying it to a sample gear tooth. Temperature histories at representative surface locatons are given.

  16. New Computer Programs Using Diurnal Temperature Time Series to Determine Streambed Percolation Velocities

    NASA Astrophysics Data System (ADS)

    Chen, W.; Chen, J.; Lu, W.; Huang, C.

    2012-12-01

    Streambed percolation is one of the most important routes for groundwater recharge. Among many methods, using diurnal temperature in the streambed to determine percolation velocity is one the most frequently used methods. Several numerical codes, VS2DH, SUTRA, and TOUGH2, have been developed primarily for 2D or 3D heat transport simulation and also for use in streambed percolation velocity calculation, but, with great complexity. This research simplifies percolation velocity calculation by developing new computer codes that solve the 1D heat transfer equation. Using diurnal temperature data, percolation velocity can be determined easily to each day of the monitoring period. More percolation velocity data will enable more understanding for the river/groundwater interaction. This work also conducts a field test for studying streambed percolation in the Choshui stream, Central Taiwan. The data show the average percolation velocity at approximately 6.8×10-6 m/s.

  17. State-coupled low temperature geothermal resource assessment program, fiscal year 1982. Final Technical Report

    SciTech Connect

    Icerman, Larry

    1983-08-01

    This report summarizes the results of low-temperature geothermal energy resource assessment efforts in New Mexico during the period from June 15, 1981 through September 30, 1983, under the sponsorship of the US Department of Energy (Contract DE-AS07-78ID01717). The report is divided into four chapters which correspond to the tasks delineated in the contract. Chapter 5 is a brief summary of the tasks performed under this contract during the period October 1, 1978, through June 30, 1983. This work extends the knowledge of low-temperature geothermal reservoirs with the potential for direct heating applications in New Mexico. The research effort focused on compiling basic geothermal data throughout selected areas in New Mexico in a format suitable for direct transfer to the US Geological Survey for inclusion in the GEOTHERM data file and to the National Oceanic and Atmospheric Administration for use with New Mexico geothermal resources maps.

  18. Summary Report on FY12 Small-Scale Test Activities High Temperature Electrolysis Program

    SciTech Connect

    James O'Brien

    2012-09-01

    This report provides a description of the apparatus and the single cell testing results performed at Idaho National Laboratory during January–August 2012. It is an addendum to the Small-Scale Test Report issued in January 2012. The primary program objectives during this time period were associated with design, assembly, and operation of two large experiments: a pressurized test, and a 4 kW test. Consequently, the activities described in this report represent a much smaller effort.

  19. Computer program MCAP-TOSS calculates steady-state fluid dynamics of coolant in parallel channels and temperature distribution in surrounding heat-generating solid

    NASA Technical Reports Server (NTRS)

    Lee, A. Y.

    1967-01-01

    Computer program calculates the steady state fluid distribution, temperature rise, and pressure drop of a coolant, the material temperature distribution of a heat generating solid, and the heat flux distributions at the fluid-solid interfaces. It performs the necessary iterations automatically within the computer, in one machine run.

  20. Development of Designer Diamond Anvils for High Pressure-High-Temperature Experiments in Support of the Stockpile Stewardship Program

    SciTech Connect

    Yogesh K. Vohra

    2005-05-12

    The focus of this program at the University of Alabama at Birmingham (UAB) is to develop the next generation of designer diamond anvils that can perform simultaneous joule heating and temperature profile measurements in a diamond anvil cell. A series of tungsten-rhenium thermocouples will be fabricated onto to the anvil and encapsulated by a chemical vapor deposited diamond layer to allow for a complete temperature profile measurement across the anvil. The tip of the diamond anvil will be engineered to reduce the thermal conductivity so that the tungsten-heating coils can be deposited on top of this layer. Several different approaches will be investigated to engineer the tip of the diamond anvil for reduction in thermal conductivity (a) isotopic mixture of 12C and 13C in the diamond layer, (b) doping of diamond with impurities (nitrogen and/or boron), and (c) growing diamond in a higher concentration of methane in hydrogen plasma. Under this academic alliance with Lawrence Livermore National Laboratory (LLNL), PI and his graduate students will use the lithographic and diamond polishing facility at LLNL. This proposed next generation of designer diamond anvils will allow multi-tasking capability with the ability to measure electrical, magnetic, structural and thermal data on actinide materials with unparallel sensitivity in support of the stockpile stewardship program.

  1. Multiscale Studies of U(VI) Desorption From Contaminated Sediments

    NASA Astrophysics Data System (ADS)

    Curtis, G. P.; Hay, M. B.; Kohler, M.; Johnson, K. J.; Davis, J. A.

    2009-12-01

    The migration of U(VI) in groundwater is controlled by both the adsorption and desorption from mineral surfaces as well as the heterogeneous distribution of reactive surfaces and hydraulic conductivity in an aquifer. These complex processes were investigated in both laboratory studies using sediments collected from a uranium contaminated aquifer located near Naturita, CO and in tracer test studies conducted at this field site. Batch experimental results described in a companion study indicate that at microscopic scales, U(VI) desorption is limited by slow mass transfer processes that occur on the time scale of approximately a month. These slow desorption rates decreased with increasing particle size suggesting a diffusive mechanism that was simulated using a multi-rate mass transfer (MRMT) model. Reactive transport simulations using the batch-derived MRMT model were applied to both laboratory column experiments and to small-scale tracer tests. The laboratory experiments used contaminated sediments that were collected at the field site and were leached with a U(VI)-free synthetic groundwater that had partial pressures of CO2 equal to 0.0003 or 0.02 atm. Both the observed tailing and the rebound of U(VI) concentrations during flow interruption events were reproduced by the model simulations. U(VI) desorption was also investigated in two small-scale tracer tests that were conducted at the field site. Desorption of U(VI) was studied by injecting uncontaminated groundwater with a NaBr tracer into the aquifer, using both forced- and natural-gradient experiments to vary rates of groundwater flow. The low concentration of U(VI) in the injected water caused both an initial decrease followed by a gradual rebound in U(VI) concentrations at several downgradient multilevel observation. The decrease and rebound in U(VI) concentrations were affected by numerous chemical and physical factors, including fluid mixing, desorption of U(VI) and experimentally-induced temporal changes in the chemical concentrations of U(VI), alkalinity, Ca and Na. Successful application of a one-dimensional MRMT model to the observed Br concentrations required that an additional immobile zone be added to the laboratory scale MRMT model to account for the heterogeneity in the field. In cases where the Br observations could be matched by the revised MRMT model, the U(VI) concentrations in the tracer tests could be predicted from the updated nonreactive transport model and batch geochemical model. However, Br breakthrough curves at several locations were highly nonideal and could not be reproduced by a one dimensional model. Two dimensional simulations are being conducted in these cases to evaluate the applicability of the MRMT model to describe U(VI) desorption under highly heterogeneous conditions.

  2. Adsorption, Desorption, and Dissociation of Benzene on TiO2(110) and Pd/TiO2(110)

    SciTech Connect

    Zhou, Jing; Dag, Sefa; Senanayake, Sanjaya D; Hathorn, Bryan C; Kalinin, Sergei V; Meunier, Vincent; Mullins, David R; Overbury, Steven {Steve} H; Baddorf, Arthur P

    2006-01-01

    Adsorption and reaction of benzene molecules on clean TiO{sub 2}(110) and on TiO{sub 2}(110) with deposited Pd nanoparticles are investigated using a combination of scanning tunneling microscopy (STM), temperature-programmed desorption, and first-principles calculations. Above {approx}50 K, the one-dimensional motion of benzene between bridging oxygen rows is shown to be too fast for STM imaging. At 40 K benzene molecules form chains on top of titanium rows, with calculations indicating every other benzene is rotated 30{sup o}. Both experimental and theoretical studies find no dissociative reactivity of benzene on the clean TiO{sub 2}(110) surface, due to little hybridization between TiO{sub 2} and benzene electronic states. After deposition of Pd nanoparticles, molecular benzene is observed with STM both on the substrate and adjacent to metallic particles. Upon heating to 800 K, benzene fully breaks down into its atomic constituents in a multistep decomposition process.

  3. A low-power pressure-and temperature-programmed separation system for a micro gas chromatograph.

    SciTech Connect

    Sacks, Richard D. (University of Michigan, Ann Arbor, MI); Robinson, Alex Lockwood (Advanced Sensor Technologies, Albuquerque, NM); Lambertus, Gordon R. (University of Michigan, Ann Arbor, MI); Potkay, Joseph A. (University of Michigan, Ann Arbor, MI); Wise, Kensall D. (University of Michigan, Ann Arbor, MI)

    2006-10-01

    This thesis presents the theory, design, fabrication and testing of the microvalves and columns necessary in a pressure- and temperature-programmed micro gas chromatograph ({micro}GC). Two microcolumn designs are investigated: a bonded Si-glass column having a rectangular cross section and a vapor-deposited silicon oxynitride (Sion) column having a roughly circular cross section. Both microcolumns contain integrated heaters and sensors for rapid, controlled heating. The 3.2 cm x 3.2 cm, 3 m-long silicon-glass column, coated with a non-polar polydimethylsiloxane (PDMS) stationary phase, separates 30 volatile organic compounds (VOCs) in less than 6 min. This is the most efficient micromachined column reported to date, producing greater than 4000 plates/m. The 2.7 mm x 1.4 mm Sion column eliminates the glass sealing plate and silicon substrate using deposited dielectrics and is the lowest power and fastest GC column reported to date; it requires only 11 mW to raise the column temperature by 100 C and has a response time of 11s and natural temperature ramp rate of 580 C/min. A 1 m-long PDMS-coated Sion microcolumn separates 10 VOCs in 52s. A system-based design approach was used for both columns.

  4. DNASynth: A Computer Program for Assembly of Artificial Gene Parts in Decreasing Temperature

    PubMed Central

    Nowak, Robert M.; Wojtowicz-Krawiec, Anna; Plucienniczak, Andrzej

    2015-01-01

    Artificial gene synthesis requires consideration of nucleotide sequence development as well as long DNA molecule assembly protocols. The nucleotide sequence of the molecule must meet many conditions including particular preferences of the host organism for certain codons, avoidance of specific regulatory subsequences, and a lack of secondary structures that inhibit expression. The chemical synthesis of DNA molecule has limitations in terms of strand length; thus, the creation of artificial genes requires the assembly of long DNA molecules from shorter fragments. In the approach presented, the algorithm and the computer program address both tasks: developing the optimal nucleotide sequence to encode a given peptide for a given host organism and determining the long DNA assembly protocol. These tasks are closely connected; a change in codon usage may lead to changes in the optimal assembly protocol, and the lack of a simple assembly protocol may be addressed by changing the nucleotide sequence. The computer program presented in this study was tested with real data from an experiment in a wet biological laboratory to synthesize a peptide. The benefit of the presented algorithm and its application is the shorter time, compared to polymerase cycling assembly, needed to produce a ready synthetic gene. PMID:25629047

  5. Heavy-ion irradiation defect accumulation in ZrN characterized by TEM, GIXRD, nanoindentation, and helium desorption

    NASA Astrophysics Data System (ADS)

    Egeland, G. W.; Valdez, J. A.; Maloy, S. A.; McClellan, K. J.; Sickafus, K. E.; Bond, G. M.

    2013-04-01

    A study on zirconium nitride was performed to assess the effect of radiation damage by heavy ions at cryogenic and elevated temperatures. Cross-sectional transmission electron microscopy, grazing incidence X-ray diffraction, nanoindentation, and helium desorption studies were used to assess the damage and its effects. Xenon and krypton were used as heavy ions at 300 keV to displacement damage as high as 200 dpa. Implants were cryogenic, 350 °C, 580 °C, and 800 °C. Amorphization was not observed at low temperatures nor was bubble formation observed at elevated temperatures, however, defect migration was observed at elevated temperatures. Nanoindenter results showed the onset of defect saturation. Helium release studies were performed to show the effect of increasing damage by Xe to 40 dpa.

  6. Ion desorption efficiency and internal energy transfer in carbon-based surface-assisted laser desorption/ionization mass spectrometry: desorption mechanism(s) and the design of SALDI substrates.

    PubMed

    Tang, Ho-Wai; Ng, Kwan-Ming; Lu, Wei; Che, Chi-Ming

    2009-06-15

    Ion desorption efficiency and internal energy transfer were probed and correlated in carbon-based surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) using benzylpyridinium (BP) salt as the thermometer chemical. In a SALDI-MS experiment with a N(2) laser (at 337 nm) used as the excitation light source and with multiwalled carbon nanotubes (CNT), buckminsterfullerene (C(60)), nanoporous graphitic carbon (PGC), non-porous graphite particles (G), highly oriented pyrolytic graphite (HOPG), or nanodiamonds (ND) as the SALDI substrate, both the desorption efficiency in terms of ion intensity of BP and the extent of internal energy transfer to the ions are dependent on the type and size of the carbon substrates. The desorption efficiency (CNT approximately C(60) > PGC > G > HOPG > ND) in general exhibits an opposite trend to the extent of internal energy transfer (CNT < C(60) approximately PGC < G approximately HOPG < ND), suggesting that increasing the extent of internal energy transfer in the SALDI process may not enhance the ion desorption efficiency. This phenomenon cannot be explained by a thermal desorption mechanism, and a non-thermal desorption mechanism is proposed to be involved in the SALDI process. The morphological change of the substrates after the laser irradiation and the high initial velocities of BP ions (1100-1400 ms(-1)) desorbed from the various carbon substrates suggest that phase transition/destruction of substrates is involved in the desorption process. Weaker bonding/interaction and/or a lower melting point of the carbon substrates favor the phase transition/destruction of the SALDI substrates upon laser irradiation, consequently affecting the ion desorption efficiency. PMID:19449861

  7. Surface Chemistry of 2-Propanol on TiO2(110): Low and High Temperature Dehydration, Isotope Effects, and Influence of Local Surface Structure

    SciTech Connect

    Bondarchuk, Olexsandr; Kim, Yu Kwon; White, J. M.; Kim, Jooho; Kay, Bruce D.; Dohnalek, Zdenek

    2007-07-26

    Dosed on rutile TiO2(110) at 100 K, the thermal chemistry of 2-propanol in three forms—C3H7OH, C3D7OD and C3H7OD—was characterized using temperature programmed desorption. Only 2-propanol, propene and water desorb with no evidence for acetone. The propene forms and desorbs by two paths, a heretofore unreported low temperature path extending from 300 to 450 K and, concerning with prior work, a high temperature path peaking between 565 and 575 K. Both paths exhibit isotope effects. The high temperature path is interpreted in terms of decomposition of 2-propoxy species located on bridging oxygen atom rows. The low temperature path is attributed to 2-propanol dehydration on under-coordinated Ti4+ ions of the Ti4+ rows. The low temperature path characteristics vary with the long range order and bridge-bonded oxygen atom vacancy concentration.

  8. High low-temperature CO oxidation activity of platinum oxide prepared by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Johánek, V.; Václav?, M.; Matolínová, I.; Khalakhan, I.; Haviar, S.; Matolín, V.

    2015-08-01

    CO oxidation on platinum oxide deposited by magnetron sputtering on flat (Si) and highly porous (multi-walled carbon nanotubes, MWCNT) substrates were examined using X-ray photoelectron spectroscopy, scanning tunneling microscopy, temperature-programmed desorption and temperature-programmed reaction in both UHV and ambient pressure conditions. Platinum in the freshly deposited thin film is present entirely in the 4+ oxidation state. The intrinsic CO oxidation capability of such catalyst proved to be significantly higher under approx. 480 K than that of pure platinum, presumably due to the interplay between metallic and cationic platinum entities, and the reaction yield can be further enhanced by increasing effective surface area when MWCNT is used as a support. The thermo-chemical stability of the platinum oxide, however, has its limitations as the thin film can be gradually thermally reduced to metallic platinum (with small residuum of stable Pt2+ species) and this process is further facilitated in the presence of reducing CO atmosphere.

  9. Helium retention and thermal desorption from defects in Fe9Cr binary alloys

    NASA Astrophysics Data System (ADS)

    Zhu, T.; Cao, X. Z.; Jin, S. X.; Wu, J. P.; Gong, Y. H.; Lu, E. Y.; Wang, B. Y.; Yu, R. S.; Wei, L.

    2015-11-01

    In order to study the fundamental processes of helium retention and thermal desorption from the structural material of future fusion reactors, thermal desorption measurements were performed to investigate helium trapping from defects in binary Fe9Cr model alloys irradiated by 3 keV and 0.2 keV He ions. Interstitial type dislocation loops, vacancies and vacancy clusters were produced by irradiation with 3 keV helium ions, which acted as the sink trapped the helium atoms. Helium thermal desorption peaks from dislocations, helium-vacancies were obtained by thermal desorption spectroscopy at ?540 °C, in the range from 205 °C to 478 °C, respectively. Simple first order dissociation kinetics are used to estimate the activation energies associated with the desorption groups. A sharp desorption peak was observed at ?865 °C due to the BCC-FCC phase transformation for specimens under all examined implantation conditions.

  10. High-temperature-staged fluidized-bed combustion (HITS), bench scale experimental test program conducted during 1980. Final report

    SciTech Connect

    Anderson, R E; Jassowski, D M; Newton, R A; Rudnicki, M L

    1981-04-01

    An experimental program was conducted to evaluate the process feasibility of the first stage of the HITS two-stage coal combustion system. Tests were run in a small (12-in. ID) fluidized bed facility at the Energy Engineering Laboratory, Aerojet Energy Conversion Company, Sacramento, California. The first stage reactor was run with low (0.70%) and high (4.06%) sulfur coals with ash fusion temperatures of 2450/sup 0/ and 2220/sup 0/F, respectively. Limestone was used to scavenge the sulfur. The produced low-Btu gas was burned in a combustor. Bed temperature and inlet gas percent oxygen were varied in the course of testing. Key results are summarized as follows: the process was stable and readily controllable, and generated a free-flowing char product using coals with low (2220/sup 0/F) and high (2450/sup 0/F) ash fusion temperatures at bed temperatures of at least 1700/sup 0/ and 1800/sup 0/F, respectively; the gaseous product was found to have a total heating value of about 120 Btu/SCF at 1350/sup 0/F, and the practicality of cleaning the hot product gas and delivering it to the combustor was demonstrated; sulfur capture efficiencies above 80% were demonstrated for both low and high sulfur coals with a calcium/sulfur mole ratio of approximately two; gasification rates of about 5,000 SCF/ft/sup 2/-hr were obtained for coal input rates ranging from 40 to 135 lbm/hr, as required to maintain the desired bed temperatures; and the gaseous product yielded combustion temperatures in excess of 3000/sup 0/F when burned with preheated (900/sup 0/F) air. The above test results support the promise of the HITS system to provide a practical means of converting high sulfur coal to a clean gas for industrial applications. Sulfur capture, gas heating value, and gas production rate are all in the range required for an effective system. Planning is underway for additional testing of the system in the 12-in. fluid bed facility, including demonstration of the second stage char burnup reactor.

  11. Influence of Specific Surface Area of Powder on Hydrogen Desorption Kinetics for Metal Hydrides

    E-print Network

    Drozdov, I V

    2014-01-01

    The observable results for desorption kinetics by powder of metal hydride on the example of mangesium hydride are reproduced with the model formulated in terms of specific surface of powder. A volumetric measurement of hydrogen desorption process is evaluated on an example of wet ball milled magnesium hydride, and can be applied generally for any metal hydride. The exact solution of the model reproduces the shape of experimental curves for desorption process providing a satisfying agreement with experimental data.

  12. Multiple sample characterization of coals and other substances by controlled-atmosphere programmed temperature oxidation

    DOEpatents

    LaCount, Robert B. (403 Arbor Ct., Waynesburg, PA 15370)

    1993-01-01

    A furnace with two hot zones holds multiple analysis tubes. Each tube has a separable sample-packing section positioned in the first hot zone and a catalyst-packing section positioned in the second hot zone. A mass flow controller is connected to an inlet of each sample tube, and gas is supplied to the mass flow controller. Oxygen is supplied through a mass flow controller to each tube to either or both of an inlet of the first tube and an intermediate portion between the tube sections to intermingle with and oxidize the entrained gases evolved from the sample. Oxidation of those gases is completed in the catalyst in each second tube section. A thermocouple within a sample reduces furnace temperature when an exothermic condition is sensed within the sample. Oxidized gases flow from outlets of the tubes to individual gas cells. The cells are sequentially aligned with an infrared detector, which senses the composition and quantities of the gas components. Each elongated cell is tapered inward toward the center from cell windows at the ends. Volume is reduced from a conventional cell, while permitting maximum interaction of gas with the light beam. Reduced volume and angulation of the cell inlets provide rapid purgings of the cell, providing shorter cycles between detections. For coal and other high molecular weight samples, from 50% to 100% oxygen is introduced to the tubes.

  13. Development of Designer Diamond Technology for High Pressure High Temperature Experiments in Support of Stockpile Stewardship Program

    SciTech Connect

    Vohra, Yogesh, K.

    2009-10-28

    The role of nitrogen in the fabrication of designer diamond was systematically investigated by adding controlled amount of nitrogen in hydrogen/methane/oxygen plasma. This has led to a successful recipe for reproducible fabrication of designer diamond anvils for high-pressure high-temperature research in support of stockpile stewardship program. In the three-year support period, several designer diamonds fabricated with this new growth chemistry were utilized in high-pressure experiments at UAB and Lawrence Livermore National Laboratory. The designer diamond anvils were utilized in high-pressure studies on heavy rare earth metals, high pressure melting studies on metals, and electrical resistance measurements on iron-based layered superconductors under high pressures. The growth chemistry developed under NNSA support can be adapted for commercial production of designer diamonds.

  14. Reactions of CFCs with aluminum oxide surfaces at stratospheric temperatures

    SciTech Connect

    Robinson, G.N.; Dai, Q.; Freedman, A.

    1996-10-01

    Approximately 30 wt % of the exhaust emitted by the Space Shuttle`s solid-propellant rocket motors is composed of micron and submicron sized aluminum oxide particles. In order to assess the impact of these particles on stratospheric chemistry, we have investigated the reactions of several chlorofluorcarbons (CFCs) on {alpha}- and {gamma}-aluminum oxide powders at temperatures from 80-400 K. Using a combination of molecular beam dosing under UHV conditions, FTIR and X-ray photoelectron spectroscopy, and temperature programmed desorption (TPD), we conclude that CFCs dissociatively chemisorb on dehydroxylated alumina surfaces at temperatures as low as 130 K. A number of temperature-dependent absorption features are observed in the infrared spectra which can be attributed to carbonate species. TPD spectra indicate that CO{sub 2} desorbs from CFC-dosed alumina at temperatures below 370 K. X-ray photoelectron spectra reveal the presence of inorganic halides at temperatures as low As 150 K. The relative reactivities of the CFCs with alumina surfaces at stratospheric temperatures ({approximately}200 K) reflect differences in the initial sticking probabilities of the molecules and in the energetics of the dissociative chemisorption process.

  15. Catalytic membrane program novation: High temperature catalytic membrane reactors. Final report

    SciTech Connect

    Kleiner, R.N.

    1998-08-28

    The original objective was to develop an energy-efficient hydrocarbon dehydrogenation process based on catalytic membrane reactors. Golden Technologies determined that the goals of this contract would be best served by novating the contract to an end user or other interested party which is better informed on the economic justification aspects of petrochemical refining processes to carry out the remaining work. In light of the Chevron results, the program objective was broadened to include development of inorganic membranes for applications in the chemical industry. The proposed membrane technologies shall offer the potential to improve chemical production processes via conversion increase and energy savings. The objective of this subcontract is to seek a party that would serve as a prime contractor to carry out the remaining tasks on the agreement and bring the agreement to a successful conclusion. Four tasks were defined to select the prime contractor. They were (1) prepare a request for proposal, (2) solicit companies as potential prime contractors as well as team members, (3) discuss modifications requested by the potential prime contractors, and (4) obtain, review and rank the proposals. The accomplishments on the tasks is described in detail in the following sections.

  16. Scavenging of BHCs and DDTs from soil by thermal desorption and solvent washing.

    PubMed

    Gao, Yan Fei; Yang, Hong; Zhan, Xin Hua; Zhou, Li Xiang

    2013-03-01

    Intensive remediation of abandoned former organochlorine pesticides (OCPs) manufacturing areas is necessary because the central and surrounding soils contaminated by OCPs are harmful to crop production and food safety. Organochlorine and its residues are persistent in environments and difficult to remove from contaminated soils due to their low solubility and higher sorption to the soils. We performed a comprehensive study on the remediation of OCPs-contaminated soils using thermal desorption technique and solvent washing approaches. The tested soil was thermally treated at 225, 325, 400, and 500 °C for 10, 20, 30, 45, 60, and 90 min, respectively. In addition, we tested soil washing with several organic solvents including n-alcohols and surfactants. The optimal ratio of soil/solvent was tested, and the recycling of used ethanol was investigated. Finally, activities of polyphenol oxidase (PPO), urease (URE), alkaline phosphatase, acid phosphatase (ACP), and invertase (INV) were assayed in the treated soils. The tested soil was thermally treated at 500 °C for 30 min, and the concentration of contaminants in soil was decreased from 3,115.77 to 0.33 mg kg(-1). The thermal desorption in soil was governed by the first-order kinetics model. For the chemical washing experiment, ethanol showed a higher efficiency than any other solvent. Using a 1:20 ratio of soil/solvent, the maximum removal of OCPs was achieved within 15 min. Under this condition, approximately 87 % of OCPs was removed from the soils. More than 90 % of ethanol in the spent wash fluid could be recovered. Activities of some enzymes in soils were increased after ethanol treatment. But ALP, ACP, and INV activities were decreased and PPO and URE showed slightly higher activities following remediation by thermal treatment. Both heating temperature and time were the key factors for thermal desorption of OCPs. The n-alcohol solvent showed higher removal of OCPs from soils than surfactants. The highly efficient removal of OCPs from soil was achieved using ethanol. More than 90 % of ethanol could be recovered and be reused following distillation. This study provides a cost-effective and highly efficient way to remediate the OCPs-contaminated soils. PMID:22661262

  17. Adsorption/desorption properties of vacuum materials for the 6 GeV synchrotron

    SciTech Connect

    Krauss, A.R.

    1985-01-01

    Considerable attention must be paid to the vacuum and adsorption/desorption properties of all materials installed inside the vacuum envelope if the design goals of the 6 GeV synchrotron are to be met. Unfortunately, the data is very sparse in several key areas. Additionally, some procedures normally associated with good vacuum practice, such as air baking, may prove to be totally unsuitable on the basis of desorption properties. We present here a brief discussion of the adsorption, outgassing, electron-stimulated desorption (ESD), and photon-stimulated desorption (PSD) properties of vacuum materials as they relate to the design of a 6 GeV synchrotron.

  18. Desorption-induced structural changes of metal/Si(111) surfaces: kinetic Monte Carlo simulations.

    PubMed

    Kocán, Pavel; Sobotík, Pavel; Ošt'ádal, Ivan

    2013-08-01

    We used a configuration-based kinetic Monte Carlo model to explain important features related to formation of the (?3×?3)R30° mosaic of metal and semiconductor atoms on the Si(111) surface. Using first-order desorption processes, we simulate the surprising zero-order desorption spectra, reported in some cases of metal desorption from the Si(111) surface. We show that the mechanism responsible for the zerolike order of desorption is the enhanced desorption from disordered areas. Formation of the ?3×?3 mosaic with properties of a strongly frustrated antiferromagnetic Ising model is simulated by a configuration-sensitive desorption. For substitution of desorbed metal atoms by Si adatoms, fast diffusion of the adatoms on top of a 1×1 layer is proposed as the most probable. Simulations of desorption-induced structural transitions provide us a link between underlying atomistic processes and the observed evolving morphologies with resultant macroscopic desorption fluxes. An effect of the desorption sensitivity on a configuration of neighboring atoms is emphasized. PMID:24032845

  19. Dynamic fuel retention in tokamak wall materials: An in situ laboratory study of deuterium release from polycrystalline tungsten at room temperature

    NASA Astrophysics Data System (ADS)

    Bisson, R.; Markelj, S.; Mourey, O.; Ghiorghiu, F.; Achkasov, K.; Layet, J.-M.; Roubin, P.; Cartry, G.; Grisolia, C.; Angot, T.

    2015-12-01

    Retention of deuterium ion implanted in polycrystalline tungsten samples is studied in situ in an ultra-high vacuum apparatus equipped with a low-flux ion source and a high sensitivity thermo-desorption setup. Retention as a function of ion fluence was measured in the 1017-1021 D+·m-2 range. By combining this new fluence range with the literature in situ experimental data, we evidence the existence of a retention ? fluence0.645±0.025 relationship which describes deuterium retention behavior on polycrystalline tungsten on 8 orders of magnitude of fluence. Evolution of deuterium retention as a function of the sample storage time in vacuum at room temperature was followed. A loss of 50% of the retained deuterium is observed when the storage time is increased from 2 h to 135 h. The role of the surface and of natural bulk defects on the deuterium retention/release in polycrystalline tungsten is discussed in light of the behavior of the single desorption peak obtained with Temperature Programmed Desorption.

  20. ANALYSIS OF ESTUARINE TRACER-GAS TRANSPORT AND DESORPTION.

    USGS Publications Warehouse

    Bales, Jerad D.; Holley, Edward R.

    1987-01-01

    The riverine tracer-gas technique provides a direct, reach-averaged measure of gas exchange, is fairly simple to implement, and is widely accepted for determining reaeration-rate coefficients in rivers. The method, however, is not directly applicable to flows having vertical density gradients. Consequently, studies were undertaken to develop and evaluate methods for obtaining surface-exchange coefficients from estuarine tracer-gas data. Reasonable estimates of the desorption coefficient (within 50 percent of the correct value) were obtained when an analytical solution of the transport equation was compared with data from a numerically simulated continuous release of tracer gas.

  1. Desorption electrospray ionization imaging of small organics on mineral surfaces.

    PubMed

    Bennett, Rachel V; Fernández, Facundo M

    2015-01-01

    Desorption electrospray ionization (DESI)-mass spectrometry facilitates the ambient chemical analysis of a variety of surfaces. Here we describe the protocol for using DESI imaging to measure the distributions of small prebiotically relevant molecules on granite surfaces. Granites that contain a variety of juxtaposed mineral species were reacted with formamide in order to study the role of local mineral environment on the production of purines and pyrimidines. The mass spectrometry imaging (MSI) methods described here can also be applied to the surface analysis of rock samples involved in other applications such as petroleum or environmental chemistries. PMID:25361668

  2. Experimental background due to particle induced gas desorption in RHIC

    SciTech Connect

    Zhang,S.Y.; Trbojevic, D.

    2008-08-10

    Beam-gas collision created experimental background, i.e., singles, has affected heavy ion and polarized proton operations in Relativistic Heavy Ion Collider at Brookhaven National Laboratory. The gas molecules in interaction region are mainly caused by the electron induced gas desorption. and the electrons are produced from the beam induced electron multipacting, or called electron cloud. The background has a dependence on the usual electron cloud related parameters, such as the bunch intensity, bunch spacing, and the solenoid field. With the RHIC upgrade plan, the experimental background may become a luminosity limiting factor. Mitigations are discussed.

  3. Evidence for a surface exciton in KBr via laser desorption

    SciTech Connect

    Beck, Kenneth M.; Joly, Alan G.; Hess, Wayne P.

    2001-03-15

    We demonstrate that direct photoexcitation of the single crystal KBr surface leads to desorption of hyperthermal neutral bromine atoms. We have produced separately the hyperthermal and the near-thermal components of neutral halogen emission from an alkali halide. The source of hyperthermal bromine emission is attributed to decay of a surface exciton excited at photon energies below that of the bulk exciton. We argue that the frequently observed near-thermal component is derived from excitation within the bulk crystal. Our experimental data provide strong support to a theoretical excitonic emission model previously described in the literature.

  4. Evidence for a Surface Exciton in KBr via Laser Desorption

    SciTech Connect

    Beck, Kenneth M. ); Joly, Alan G. ); Hess, Wayne P. )

    2001-01-01

    We demonstrate that direct photoexcitation of the KBr surface exciton leads to desorption of hyperthermal neutral bromine atoms. We have for the first time produced separately the hyperthermal and the near-thermal components of neutral halogen emission from an alkali halide. The source of hyperthermal bromine emission is attributed to decay of a surface exciton excited at photon energies below that of the bulk exciton. We further demonstrate that the frequently observed near-thermal component is derived from excitation within the bulk crystal. Our experimental data provides strong support to a theoretical emission model previously described in the literature.

  5. Sequential desorption energy of hydrogen from nickel clusters

    NASA Astrophysics Data System (ADS)

    Deepika, R., Kamal Raj.; Kumar, T. J. Dhilip; Kumar, Rakesh

    2015-06-01

    We report reversible Hydrogen adsorption on Nickel clusters, which act as a catalyst for solid state storage of Hydrogen on a substrate. First-principles technique is employed to investigate the maximum number of chemically adsorbed Hydrogen molecules on Nickel cluster. We observe a maximum of four Hydrogen molecules adsorbed per Nickel atom, but the average Hydrogen molecules adsorbed per Nickel atom decrease with cluster size. The dissociative chemisorption energy per Hydrogen molecule and sequential desorption energy per Hydrogen atom on Nickel cluster is found to decrease with number of adsorbed Hydrogen molecules, which on optimization may help in economical storage and regeneration of Hydrogen as a clean energy carrier.

  6. Correlation of Chemisorption and Electronic Effects for Metal Oxide Interfaces: Transducing Principles for Temperature Programmed Gas Microsensors (Final Report)

    SciTech Connect

    S. Semancik; R. E. Cavicchi; D. L. DeVoe; T. J. McAvoy |

    2001-12-21

    This Final Report describes efforts and results for a 3-year DoE/OST-EMSP project centered at NIST. The multidisciplinary project investigated scientific and technical concepts critical for developing tunable, MEMS-based, gas and vapor microsensors that could be applied for monitoring the types of multiple analytes (and differing backgrounds) encountered at DoE waste sites. Micromachined ''microhotplate'' arrays were used as platforms for fabricating conductometric sensor prototypes, and as microscale research tools. Efficient microarray techniques were developed for locally depositing and then performance evaluating thin oxide films, in order to correlate gas sensing characteristics with properties including composition, microstructure, thickness and surface modification. This approach produced temperature-dependent databases on the sensitivities of sensing materials to varied analytes (in air) which enable application-specific tuning of microsensor arrays. Mechanistic studies on adsorb ate transient phenomena were conducted to better understand the ways in which rapid temperature programming schedules can be used to produce unique response signatures and increase information density in microsensor signals. Chemometric and neural network analyses were also employed in our studies for recognition and quantification of target analytes.

  7. High Temperature Turbine Technology Program: Phase II. Technology test and support studies. Technical progress report, July 1-September 30, 1980

    SciTech Connect

    Not Available

    1980-10-01

    Work performed on the High Temperature Turbine Technology Program, Phase II-Technology Test and Support Studies during the period from 1 July 1980 through 30 September 1980 is summarized. Objectives of the program elements as well as technical progress and problems during this Phase II quarterly reporting period are presented. Planned progress during the next quarterly reporting period is also defined. Inspection results including static flow bench testing of blades and vanes following the final 300 h of teest of the LP Rig Engine with hot gas stream particulates are described. Modifications to the distillate fueled 60/sup 0/ combustor sector rig to improve the exit radial profile in the outer portion are described along with subsequent tests to evaluate the effectiveness of the modifications. Testing of the synthesized LBG-fueled 60/sup 0/ combustor sector rig was continued to evaluate the effect of burner inlet conditions and fuel loading variation on combustion performance. Modifications for redistribution of primary zone air flow are defined. Initial testing of the TSTR stator vane cascade using distillate fuel is described and modifications defined to improve stator vane cooling are presented. Initial motoring of the Turbine Spool Technology Rig and partial disassembly of the rig for anticipated combustor and blading modifications to improve vane and blade cooling are discussed. Supporting Material and Process investigations are described. The single spool reference turbine subsystem aerodynamic/thermodynamic evaluations of the turbine and combustor sections and design of these sections are presented and discussed.

  8. Person-portable gas chromatography: rapid temperature program operation through resistive heating of columns with inherently low thermal mass properties.

    PubMed

    Smith, Philip A

    2012-10-26

    As open tubular gas chromatography was becoming widely adopted, the potential to rapidly heat and cool the low thermal mass of an open tubular fused silica column was recognized. Numerous resistive column heating approaches were subsequently described and demonstrated, often with a common objective to focus heating efforts on the column alone, rather than on a large convection oven. Low thermal mass column bundles have been commercially available for about ten years, where insulated wires in close proximity to a coiled open tubular capillary column provide resistive heating. Before this, person-portable gas chromatographs either operated isothermally at relatively low temperatures or at ambient temperature to lessen power demands, but several person-portable gas chromatography-mass spectrometry (GC-MS) instruments capable of temperature program operation have become available in the past ten years based on this heating method. When low thermal mass heated zones are used, and with a direct GC-MS interface, analysis times of less than 5 min are possible for target compounds having a wide range of volatilities. Previous capabilities in transportable and person-portable gas chromatography instrumentation are reviewed to demonstrate the scale of advancement made possible by the adoption of open tubular columns and low power heating techniques now becoming routinely available. Microcomachined columns which are usually etched in a silicon wafer represent a radical break from the traditional fused silica open tubular column design, and increasing efforts to use this column construction approach are also examined. The developments discussed have introduced the potential to rapidly analyze compounds with a wide volatility range in the field to protect deployed military forces, the health of workers, and the health of the general public. PMID:22770386

  9. Quinoline partitioning in subsurface materials: adsorption, desorption, and solute competition

    SciTech Connect

    Felice, L.J.; Zachara, J.M.; Schmidt, R.L.

    1984-03-01

    The adsorption/desorption behavior of quinoline, a basic N-heterocycle common to energy-derived liquid and solid waste, was evaluated at low solution concentration (0.066 ..mu..g/ml-12.9 ..mu..g/ml) on nine subsoil materials. The subsoils were low in organic carbon and varied in pH, texture, and chemical properties. Adsorption was studied under nitrogen using 0.01 M CaCl/sub 2/ as an electrolyte. The adsorption isotherms were curvilinear and were adequately represented by the Freundlich equation. Adsorption was high (> 95%) in acidic subsoils (pH < 6) and low in basic subsoils (pH > 7). Quinoline sorption did not correlate with subsoil organic carbon content, surface area, or clay content. However, desorption was significantly more reversible in the basic subsoil. Quinoline sorption on a basic subsoil was uneffected by the presence of pyridine. Pyridine reduced quinoline sorption on an acidic subsoil, with the greatest effect occurring at low quinoline concentrations.

  10. Laser Desorption VUV Postionization MS Imaging of a Cocultured Biofilm

    PubMed Central

    Bhardwaj, Chhavi; Moore, Jerry F.; Cui, Yang; Gasper, Gerald L.; Bernstein, Hans C.; Carlson, Ross P.; Hanley, Luke

    2012-01-01

    Laser desorption postionization mass spectrometry (LDPI-MS) imaging is demonstrated with a 10.5 eV photon energy source for analysis and imaging of small endogenous molecules within intact biofilms. Biofilm consortia comprised of a synthetic Escherichia coli K12 coculture engineered for syntrophic metabolite exchange are grown on membranes, then used to test LDPI-MS analysis and imaging. Both E. coli strains displayed many similar peaks in LDPI-MS up to m/z 650, although some observed differences in peak intensities were consistent with the appearance of byproducts preferentially expressed by one strain. The relatively low mass resolution and accuracy of this specific LDPI-MS instrument prevented definitive assignment of species to peaks, but strategies are discussed to overcome this shortcoming. The results are also discussed in terms of desorption and ionization issues related to the use of 10.5 eV single photon ionization, with control experiments providing additional mechanistic information. Finally, 10.5 eV LDPI-MS was able to collect ion images from intact, electrically insulating biofilms at ~100 ?m spatial resolution. Spatial resolution of ~20 ?m was possible, although a relatively long acquisition time resulted from the 10 Hz repetition rate of the single photon ionization source. PMID:23052888

  11. Characterization of polymer decomposition products by laser desorption mass spectrometry

    NASA Technical Reports Server (NTRS)

    Pallix, Joan B.; Lincoln, Kenneth A.; Miglionico, Charles J.; Roybal, Robert E.; Stein, Charles; Shively, Jon H.

    1993-01-01

    Laser desorption mass spectrometry has been used to characterize the ash-like substances formed on the surfaces of polymer matrix composites (PMC's) during exposure on LDEF. In an effort to minimize fragmentation, material was removed from the sample surfaces by laser desorption and desorbed neutrals were ionized by electron impact. Ions were detected in a time-of-flight mass analyzer which allows the entire mass spectrum to be collected for each laser shot. The method is ideal for these studies because only a small amount of ash is available for analysis. Three sets of samples were studied including C/polysulfone, C/polyimide and C/phenolic. Each set contains leading and trailing edge LDEF samples and their respective controls. In each case, the mass spectrum of the ash shows a number of high mass peaks which can be assigned to fragments of the associated polymer. These high mass peaks are not observed in the spectra of the control samples. In general, the results indicate that the ash is formed from decomposition of the polymer matrix.

  12. Desorption of biocides from renders modified with acrylate and silicone.

    PubMed

    Styszko, Katarzyna; Bollmann, Ulla E; Wangler, Timothy P; Bester, Kai

    2014-01-01

    Biocides are used in the building industry to prevent algal, bacterial and fungal growth on polymericrenders and thus to protect buildings. However, these biocides are leached into the environment. To better understand this leaching, the sorption/desorption of biocides in polymeric renders was assessed. In this study the desorption constants of cybutryn, carbendazim, iodocarb, isoproturon, diuron, dichloro-N-octylisothiazolinone and tebuconazole towards acrylate and silicone based renders were assessed at different pH values. At pH 9.5 (porewater) the constants for an acrylate based render varied between 8 (isoproturon) and 9634 (iodocarb) and 3750 (dichloro-N-octylisothiazolinone), respectively. The values changed drastically with pH value. The results for the silicone based renders were in a similar range and usually the compounds with high sorption constants for one polymer also had high values for the other polymer. Comparison of the octanol water partitioning constants (Kow) with the render/water partitioning constants (Kd) revealed similarities, but no strong correlation. Adding higher amounts of polymer to the render material changed the equilibria for dichloro-N-octylisothiazolinone, tebuconazole, cybutryn, carbendazim but not for isoproturon and diuron. PMID:24059976

  13. Laser Desorption of Explosives Traces with Low Vapors Pressure

    NASA Astrophysics Data System (ADS)

    Akmalov, A. E.; Chistyakov, A. A.; Kotkovskii, G. E.

    In this work comparison of the desorption effectiveness of picosecond and nanosecond laser sources (? = 266, 532 nm) were carried out to investigate the possibility of creating a non-contact sampling device for detectors of explosives on the principles of ion mobility spectrometry (IMS) and field asymmetric ion mobility spectrometry (FAIMS). The results of mass spectrometric studies of TNT (2,4,6-Trinitrotoluene), HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine), RDX (1,3,5-Trinitro-1,3,5-triazacyclohexane) laser desorption from a quartz substrate are presented. It is shown that the most effective laser source is a Nd:YAG3+ laser (? = 266 nm; E = 1 mJ; ? = 5-10 ns; q = 108 W/cm2). The typical desorbed mass is 2 ng for RDX, 4-6 ng for TNT and 0.02 ng HMX per single laser pulse. The results obtained make it possible to create a non-contact portable laser sampling device operating in frequency mode with high efficiency.

  14. Auger decay mechanism in photon-stimulated desorption of ions from surfaces

    SciTech Connect

    Parks, C.C.

    1983-11-01

    Photon-stimulated desorption (PSD) of positive ions was studied with synchrotron radiation using an angle-integrating time-of-flight mass spectrometer. Ion yields as functions of photon energy near core levels were measured from condensed gases, alkali fluorides, and other alkali and alkaline earth halides. These results are compared to bulk photoabsorption measurements with emphasis on understanding fundamental desorption mechanisms. The applicability of the Auger decay mechanism, in which ion desorption is strictly proportional to surface absorption, is discussed in detail. The Auger decay model is developed in detail to describe Na/sup +/ and F/sup +/ desorption from NaF following Na(1s) excitation. The major decay pathways of the Na(1s) hole leading to desorption are described and equations for the energetics of ion desorption are developed. Ion desorption spectra of H/sup +/, Li/sup +/, and F/sup +/ are compared to bulk photoabsorption near the F(2s) and Li(1s) edges of LiF. A strong photon beam exposure dependence of ion yields from alkali fluorides is revealed, which may indicate the predominance of metal ion desorption from defect sites. The large role of indirect mechanisms in ion desorption condensed N/sub 2/-O/sub 2/ multilayers is demonstrated and discussed. Ion desorption spectra from several alkali halides and alkaline earth halides are compared to bulk photoabsorption spectra. Relative ion yields from BaF/sub 2/ and a series of alkali halides are discussed in terms of desorption mechanisms.

  15. Mercury Sorption and Desorption on Gold: A Comparative Analysis of Surface Acoustic Wave and Quartz Crystal Microbalance-Based Sensors.

    PubMed

    Kabir, K M Mohibul; Sabri, Ylias M; Esmaielzadeh Kandjani, Ahmad; Matthews, Glenn I; Field, Matthew; Jones, Lathe A; Nafady, Ayman; Ippolito, Samuel J; Bhargava, Suresh K

    2015-08-01

    Microelectromechanical sensors based on surface acoustic wave (SAW) and quartz crystal microbalance (QCM) transducers possess substantial potential as online elemental mercury (Hg(0)) vapor detectors in industrial stack effluents. In this study, a comparison of SAW- and QCM-based sensors is performed for the detection of low concentrations of Hg(0) vapor (ranging from 24 to 365 ppbv). Experimental measurements and finite element method (FEM) simulations allow the comparison of these sensors with regard to their sensitivity, sorption and desorption characteristics, and response time following Hg(0) vapor exposure at various operating temperatures ranging from 35 to 75 °C. Both of the sensors were fabricated on quartz substrates (ST and AT cut quartz for SAW and QCM devices, respectively) and employed thin gold (Au) layers as the electrodes. The SAW-based sensor exhibited up to ?111 and ?39 times higher response magnitudes than did the QCM-based sensor at 35 and 55 °C, respectively, when exposed to Hg(0) vapor concentrations ranging from 24 to 365 ppbv. The Hg(0) sorption and desorption calibration curves of both sensors were found to fit well with the Langmuir extension isotherm at different operating temperatures. Furthermore, the Hg(0) sorption and desorption rate demonstrated by the SAW-based sensor was found to decrease as the operating temperature increased, while the opposite trend was observed for the QCM-based sensor. However, the SAW-based sensor reached the maximum Hg(0) sorption rate faster than the QCM-based sensor regardless of operating temperature, whereas both sensors showed similar response times (t90) at various temperatures. Additionally, the sorption rate data was utilized in this study in order to obtain a faster response time from the sensor upon exposure to Hg(0) vapor. Furthermore, comparative analysis of the developed sensors' selectivity showed that the SAW-based sensor had a higher overall selectivity (90%) than did the QCM counterpart (84%) while Hg(0) vapor was measured in the presence of ammonia (NH3), humidity, and a number of volatile organic compounds at the chosen operating temperature of 55 °C. PMID:26169072

  16. Laser Desorption Single-Photon Ionization of Asphaltenes: Mass Range, Compound Sensitivity, and Matrix Effects

    E-print Network

    Zare, Richard N.

    Laser Desorption Single-Photon Ionization of Asphaltenes: Mass Range, Compound Sensitivity and flow assurance. Laser desorption single-photon ionization mass spectrometry (LDSPI-MS) has emerged, such as their molecular mass distribution and dominant molecular architecture.1,6-11 Laser mass spectrometry, including

  17. Use of a Stirred-Flow Reactor to Study Pb Adsorption and Desorption Reactions on Soil

    E-print Network

    Sparks, Donald L.

    Use of a Stirred-Flow Reactor to Study Pb Adsorption and Desorption Reactions on Soil D. G. Strawn We investigated the adsorption and desorption behavior of Pb from a soil (pH=5.5, I=0.05) using a stirred-flow reactor. In addition we studied the effects of soil organic matter (SOM) on adsorption

  18. Kinetics and Mechanisms of Pb(II) Sorption and Desorption at the

    E-print Network

    Sparks, Donald L.

    , months, or years (1-4). In addition, researchers often neglect desorption reactions, assuming in the environment is highly dependent on sorption and desorption reactions on solid surfaces. In this study Pb in 76% of the total sorption occurring within 15 min, followed by a slow continuous sorption reaction

  19. Statespecific study of hydrogen desorption from Si(100)(21): Comparison of disilane and hydrogen adsorption

    E-print Network

    Statespecific study of hydrogen desorption from Si(100)(2×1): Comparison of disilane and hydrogen injection of liquid droplets into low pressure plasmas J. Vac. Sci. Technol. A 27, 342 (2009) Experimental://avspublications.org/jvsta/about/rights_and_permissions #12;State-specific study of hydrogen desorption from Si(1 OO)~(2 X 1): Comparison of disilane

  20. Influence of soil properties on heavy metal sequestration by biochar amendment: 2. copper desorption isotherms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Contaminant desorption constrains the long-term effectiveness of remediation technologies, and is strongly influenced by dynamic non-equilibrium states of environmental and biological media. Information is currently lacking in the influence of biochar and activated carbon amendments on desorption of...

  1. Effects of methamidophos and glyphosate on copper sorption-desorption behavior in soils.

    PubMed

    Yu, Ying; Zhou, Qixing; He, Zhenli

    2005-05-01

    A batch-equilibration technique was employed to study the impact of two organophosphorus pesticides methamidophos (MDP) and glyphosate (GPS) on copper (Cu2+) sorption-desorption for phaeozem and burozem collected from Northeastern China. The addition of the two pesticides decreased Cu2+ sorption, increased Cu2+ desorption and prolonged the equilibrium time of Cu2+ sorption-desorption. But GPS appeared to exert a stronger influence on Cu2+ sorption-desorption due to its stronger complexion with Cu2+. When MDP was added, Cu2+ sorption-desorption was linearly correlated with MDP treatment concentrations. But in the presence of GPS, Cu2+ sorption first underwent a rapid decrease period, and then slowly tended towards a steady period. The reverse pattern could be found for Cu2+ desorption in the presence of GPS. Without pesticides and with the existence of MDP, Cu2+ sorption-desorption kinetics was well conformed to two-constant equation and Elovich equation. But that was not the case for Cu2+ desorption kinetics in the presence of GPS although its sorption could be also described by these two equations. PMID:16089331

  2. Soil Aggregate Size Affects Phosphorus Desorption from Highly Weathered Soils and Plant Growth

    E-print Network

    van Kessel, Chris

    Soil Aggregate Size Affects Phosphorus Desorption from Highly Weathered Soils and Plant Growth X of P around soil aggregates (Gunary et al., 1964; Linquist etfrom soil, understanding P desorption from soils may improve the precision of P diagnosis and fertilization recommendations. Many al., 1997

  3. Femtosecond Near-Infrared Laser Desorption of Multilayer Benzene on Pt{111}: A Molecular Newton's Cradle?

    E-print Network

    Levis, Robert J.

    Femtosecond Near-Infrared Laser Desorption of Multilayer Benzene on Pt{111}: A Molecular Newton desorption of multilayers of benzene adsorbed on Pt{111} are reported as a function of laser intensity, which by a thermally assisted DIET excitation in the chemisorbed layer, and followed by energy transfer from the Pt-benzene

  4. Discovery of spontaneous deformation of Pd metal during hydrogen absorption/desorption cycles

    PubMed Central

    Yamazaki, Toshimitsu; Sato, Masaharu; Itoh, Satoshi

    2009-01-01

    A drastic deformation was observed in Pd metal of various shapes after hydrogen absorption and desorption cycles at 150 °C at a gas pressure of 1–5 MPa. All of the phenomena observed indicate that some strong internal force is induced spontaneously during hydrogen absorption/desorption cycles to produce a collective deformation so as to minimize the surface. PMID:19444010

  5. Light-Induced Atomic Desorption for loading a Sodium Magneto-Optical Trap

    E-print Network

    Telles, Gustavo; Gibbs, Matthew; Raman, Chandra

    2009-01-01

    We report studies of photon-stimulated desorption (PSD), also known as light-induced atomic desorption (LIAD), of sodium atoms from a vacuum cell glass surface used for loading a magneto-optical trap (MOT). Fluorescence detection was used to record the trapped atom number, which can be used for monitoring the desorption rate. We observed a steep wavelength dependence of the desorption process near a photoelectric threshold of $2.7\\unit{eV}$ photon energy, a result significant for estimations of sodium vapor density in the lunar atmosphere. Our data fit well to a simple model for the loading of the MOT dependent only on the sodium desorption rate and residual gas density. Up to $3.7 \\times 10^7$ Na atoms were confined under ultra-high vacuum conditions, creating promising loading conditions for a vapor cell based atomic Bose-Einstein condensate of sodium.

  6. Characterizing the role of desorption in gas production from Devonian shales

    SciTech Connect

    Lane, H.S.; Watson, A.T. ); Lancaster, D.E. )

    1991-01-01

    Previous investigators suggest that more than one half of the gas stored in the Devonian Shales may exist in an adsorbed state. However, adsorption is considered to be an unconventional mode of gas storage and is not often accounted for in conventional reservoir engineering analysis. This article examines the role that desorption may play in gas production from Devonian Shale reservoirs. The results suggest that accounting from gas desorption can have a significant effect on production forecasts and estimates of gas reserves. A methodology is presented for detecting the presence of gas desorption and for estimating the parameters that describe the desorption process from Devonian Shale production data. The accuracy of these parameter estimates and the effects of stimulating the desorption mechanisms are also examined.

  7. Atmospheric pressure matrix-assisted laser desorption ionization as a plume diagnostic tool in laser evaporation methods

    E-print Network

    Vertes, Akos

    Atmospheric pressure matrix-assisted laser desorption ionization as a plume diagnostic tool introduced analytical method, atmospheric pressure matrix-assisted laser desorption ionization (AP- MALDI write; Atmospheric pressure MALDI; Laser evaporation; Plume diagnostics 1. Introduction Diagnostics

  8. Efficient Methods to Generate Reproducible Mass Spectra in Matrix-Assisted Laser Desorption Ionization of Peptides

    NASA Astrophysics Data System (ADS)

    Ahn, Sung Hee; Park, Kyung Man; Bae, Yong Jin; Kim, Myung Soo

    2013-06-01

    In our previous matrix-assisted laser desorption ionization (MALDI) studies of peptides, we found that their mass spectra were virtually determined by the effective temperature in the early matrix plume, Tearly, when samples were rather homogeneous. This empirical rule allowed acquisition of quantitatively reproducible spectra. A difficulty in utilizing this rule was the complicated spectral treatment needed to get Tearly. In this work, we found another empirical rule that the total number of particles hitting the detector, or TIC, was a good measure of the spectral temperature and, hence, selection of spectra with the same TIC resulted in reproducible spectra. We also succeeded in obtaining reproducible spectra throughout a measurement by controlling TIC near a preset value through feedback adjustment of laser pulse energy. Both TIC selection and TIC control substantially reduced the shot-to-shot spectral variation in a spot, spot-to-spot variation in a sample, and even sample-to-sample variation in MALDI using ?-cyano-4-hydroxycinnamic acid or 2,5-dihydroxybenzoic acid as matrix. Based on the utilization of acquired data, TIC control was more efficient than TIC selection by an order of magnitude. Both techniques produced calibration curves with excellent linearity, suggesting their utility in quantification of peptides.

  9. Light-induced atomic desorption for miniaturization of magneto-optical sensors

    NASA Astrophysics Data System (ADS)

    Gateva, S.; Taslakov, M.; Sarova, V.; Mariotti, E.; Cartaleva, S.

    2013-03-01

    An investigation of the influence of light-induced atomic desorption (LIAD) on the transmission spectra from point of view of LIAD application for miniaturization of magneto-optical sensors and anti-relaxation coatings diagnostics is reported. With reduction of the dimensions of the cells, the amplitude of the signals decreases and it can be compensated by increasing the atomic density with temperature using special high temperature anti-relaxation coatings, or by LIAD. LIAD is a non-thermal process in which atoms adsorbed at a surface are released under illumination. It is investigated in various papers and has different applications - vapor density stabilization, MOT loading, surface nanostructuring etc. In this work the dependence of the shape of the absorption spectra on the laser power and blue light power is measured and analysis of the influence of different factors is done. All measurements are performed on the Rb D2 line in 3 different vacuum cells (uncoated, paraffin coated and SC-77 coated) with a 460 nm light emitting diode illumination. The good knowledge of the factors influencing the alkali atom spectra will be useful not only for the development of new alloptical sensors, but for study atom-dielectric surface interactions and development of new all-optical methods for surface and coating diagnostics.

  10. Bench- and pilot-scale thermal desorption treatability studies on pesticide-contaminated soils from Rocky Mountain Arsenal

    SciTech Connect

    Swanstrom, C.P.; Besmer, M.

    1995-03-09

    Thermal desorption is being considered as a potential remediation technology for pesticide-contaminated soils at the Rocky Mountain Arsenal (RMA) in Denver, Colorado. From 1988 through 1992, numerous laboratory- and bench-scale indirect-heated thermal desorption (IHTD) treatability studies have been performed on various soil medium groups from the arsenal. RMA has contracted Argonne National Laboratory to conduct a pilot-scale direct-fired thermal desorption (DFTD) treatability study on pesticide-contaminated RMA soil. The purpose of this treatability study is to evaluate the overall effectiveness of the DFTD technology on contaminated RMA soils and to provide data upon which future conceptual design assumptions and cost estimates for a full-scale system can be made. The equipment used in the DFTD treatability study is of large enough scale to provide good full-scale design parameters and operating conditions. The study will also provide valuable-emissions and materials-handling data. Specifically this program will determine if DFTD can achieve reductions in soil contamination below the RMA preliminary remediation goals (PRGs), define system operating conditions for achieving the PRGs, and determine the fate of arsenic and other hazardous metals at these operating conditions. This paper intends to compare existing data from a bench-scale IHTD treatability study using equipment operated in the batch mode to new data from a pilot-scale DFTD operated in a parallel-flow continuous mode. Delays due to materials-handling problems and permit issues have delayed the start of the pilot-scale DFTD testing. The first pilot-scale test is scheduled for the flat week in January 1995. The available data will be presented March 9, 1995, at the Seventh Annual Gulf Coast Environmental Conference in Houston, Texas.

  11. Laser desorption ionization of stilbenes in crystalline sponge.

    PubMed

    Ohara, Kazuaki; Nakai, Ayaka; Yamaguchi, Kentaro

    2015-01-01

    The laser desorption (LD) ionization of three stilbenes in the nano porous metal-organic frameworks called "crystalline sponge" is demonstrated. The analyte position in the pore and the interaction between the analyte and the framework that functions as a matrix are discussed based on the results of single- crystal X-ray analysis. It is confirmed that the analyte/ligand ratio of 1:2 is sufficient for the analyte ionization. This method makes it possible to visualize hot spots on a target plate to be irradiated. That the sample requirement is dramatically reduced to the order of femtomoles is also an advantage. The relationship between laser interaction, analyte position in the pore, and analyte/ligand ratio is discussed as a new ionization field to elucidate the molecular structure of the analyte by LD ionization mass spectrometry. PMID:26307722

  12. Ionization Mechanism of Matrix-Assisted Laser Desorption/Ionization

    NASA Astrophysics Data System (ADS)

    Lu, I.-Chung; Lee, Chuping; Lee, Yuan-Tseh; Ni, Chi-Kung

    2015-07-01

    In past studies, mistakes in determining the ionization mechanism in matrix-assisted laser desorption/ionization (MALDI) were made because an inappropriate ion-to-neutral ratio was used. The ion-to-neutral ratio of the analyte differs substantially from that of the matrix in MALDI. However, these ratios were not carefully distinguished in previous studies. We begin by describing the properties of ion-to-neutral ratios and reviews early experimental measurements. A discussion of the errors committed in previous theoretical studies and a comparison of recent experimental measurements follow. We then describe a thermal proton transfer model and demonstrate how the model appropriately describes ion-to-neutral ratios and the total ion intensity. Arguments raised to challenge thermal ionization are then discussed. We demonstrate how none of the arguments are valid before concluding that thermal proton transfer must play a crucial role in the ionization process of MALDI.

  13. N-heptane adsorption and desorption in mesoporous materials

    NASA Astrophysics Data System (ADS)

    Zaleski, R.; Gorgol, M.; B?azewicz, A.; Kierys, A.; Goworek, J.

    2015-06-01

    Positron Annihilation Lifetime Spectroscopy (PALS) was used for an in situ monitoring of adsorption and desorption processes. The disordered and ordered porous silica as well as the porous polymer were used as adsorbents, while an adsorbate in all the cases was n-heptane. The lifetimes and particularly the intensities of the ortho-positronium(o-Ps) components depend strongly on the adsorbate pressure. The analysis of these dependencies allows us to identify several processes, which are taking place during sorption. At low pressure, an island-like growth of the first layers of the adsorbate on the silica, in a contrary to a swelling of the polymer, is observed. A size of the pores, which remain empty, is estimated at the subsequent stages of the adsorbate condensation and evaporation. The adsorbate thrusting into micropores is deduced at p/p0 > 0.6 whilst the mesopores are still not completely filled.

  14. Laser desorption mass spectrometry for DNA analysis and sequencing

    SciTech Connect

    Chen, C.H.; Taranenko, N.I.; Tang, K.; Allman, S.L.

    1995-03-01

    Laser desorption mass spectrometry has been considered as a potential new method for fast DNA sequencing. Our approach is to use matrix-assisted laser desorption to produce parent ions of DNA segments and a time-of-flight mass spectrometer to identify the sizes of DNA segments. Thus, the approach is similar to gel electrophoresis sequencing using Sanger`s enzymatic method. However, gel, radioactive tagging, and dye labeling are not required. In addition, the sequencing process can possibly be finished within a few hundred microseconds instead of hours and days. In order to use mass spectrometry for fast DNA sequencing, the following three criteria need to be satisfied. They are (1) detection of large DNA segments, (2) sensitivity reaching the femtomole region, and (3) mass resolution good enough to separate DNA segments of a single nucleotide difference. It has been very difficult to detect large DNA segments by mass spectrometry before due to the fragile chemical properties of DNA and low detection sensitivity of DNA ions. We discovered several new matrices to increase the production of DNA ions. By innovative design of a mass spectrometer, we can increase the ion energy up to 45 KeV to enhance the detection sensitivity. Recently, we succeeded in detecting a DNA segment with 500 nucleotides. The sensitivity was 100 femtomole. Thus, we have fulfilled two key criteria for using mass spectrometry for fast DNA sequencing. The major effort in the near future is to improve the resolution. Different approaches are being pursued. When high resolution of mass spectrometry can be achieved and automation of sample preparation is developed, the sequencing speed to reach 500 megabases per year can be feasible.

  15. Multistage Reactive Transmission-Mode Desorption Electrospray Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Peters, Kevin C.; Comi, Troy J.; Perry, Richard H.

    2015-09-01

    Elucidating reaction mechanisms is important for advancing many areas of science such as catalyst development. It is often difficult to probe fast reactions at ambient conditions with high temporal resolution. In addition, systems involving reagents that cross-react require analytical methods that can minimize interaction time and specify their order of introduction into the reacting system. Here, we explore the utility of transmission mode desorption electrospray ionization (TM-DESI) for reaction monitoring by directing a microdroplet spray towards a series of meshes with micrometer-sized openings coated with reagents, an approach we call multistage reactive TM-DESI (TM n -DESI, where n refers to the number of meshes; n = 2 in this report). Various stages of the reaction are initiated at each mesh surface, generating intermediates and products in microdroplet reaction vessels traveling towards the mass spectrometer. Using this method, we investigated the reactivity of iron porphyrin catalytic hydroxylation of propranolol and other substrates. Our experimental results indicate that TM n -DESI provides the ability to spatially separate reagents and control their order of introduction into the reacting system, thereby minimizing unwanted reactions that lead to catalyst deactivation and degradation products. In addition, comparison with DESI-MS analyses (the Zare and Latour laboratories published results suggesting accessible reaction times <1 ms) of the reduction of dichlorophenolindophenol by L-ascorbic acid suggest that TM 1 -DESI can access reaction times less than 1 ms. Multiple meshes allow sequential stages of desorption/ionization per MS scan, increasing the number of analytes and reactions that can be characterized in a single experiment.

  16. Multistage Reactive Transmission-Mode Desorption Electrospray Ionization Mass Spectrometry.

    PubMed

    Peters, Kevin C; Comi, Troy J; Perry, Richard H

    2015-09-01

    Elucidating reaction mechanisms is important for advancing many areas of science such as catalyst development. It is often difficult to probe fast reactions at ambient conditions with high temporal resolution. In addition, systems involving reagents that cross-react require analytical methods that can minimize interaction time and specify their order of introduction into the reacting system. Here, we explore the utility of transmission mode desorption electrospray ionization (TM-DESI) for reaction monitoring by directing a microdroplet spray towards a series of meshes with micrometer-sized openings coated with reagents, an approach we call multistage reactive TM-DESI (TM (n) -DESI, where n refers to the number of meshes; n?=?2 in this report). Various stages of the reaction are initiated at each mesh surface, generating intermediates and products in microdroplet reaction vessels traveling towards the mass spectrometer. Using this method, we investigated the reactivity of iron porphyrin catalytic hydroxylation of propranolol and other substrates. Our experimental results indicate that TM (n) -DESI provides the ability to spatially separate reagents and control their order of introduction into the reacting system, thereby minimizing unwanted reactions that lead to catalyst deactivation and degradation products. In addition, comparison with DESI-MS analyses (the Zare and Latour laboratories published results suggesting accessible reaction times <1 ms) of the reduction of dichlorophenolindophenol by L-ascorbic acid suggest that TM (1) -DESI can access reaction times less than 1 ms. Multiple meshes allow sequential stages of desorption/ionization per MS scan, increasing the number of analytes and reactions that can be characterized in a single experiment. PMID:26091888

  17. Kinetics of Potassium Desorption in Soil using Miscible Displacement1 D. L. SPARKS, L. W. ZELAZNY, AND D. C. MARTENSZ

    E-print Network

    Sparks, Donald L.

    Kinetics of Potassium Desorption in Soil using Miscible Displacement1 D. L. SPARKS, L. W. ZELAZNY clay minerals present in the soils. Potassium desorption conformed to first-order kinetics. Ap- parent. Martens. 1980. Kinetics of potassium desorption in soil using miscible displacement. Soil Sci. Soc. Am. J

  18. Adsorption-Desorption Kinetics of Atrazine on Vermiculite Using a Stirred-flow Technique. L. TANG* and D. L.

    E-print Network

    Sparks, Donald L.

    Adsorption-Desorption Kinetics of Atrazine on Vermiculite Using a Stirred-flow Technique. L. TANG* and D. L. SPARKS, Univ. of Delaware. The rates of atrazine adsorption-desorption on a Llano-vermiculite were measured using a stirred-low technique. Both adsorption and desorption followed a two

  19. DESORPTION OF 2,3,7,8,-TCDD FROM SOILS INTO WATER/METHANOL AND METHANOL LIQUID PHASES

    EPA Science Inventory

    The kinetics of 2,3,7,8-TCDD sorption and desorption were investigated. Results are presented for two different soils. The experimental data suggest that the sorption process appears to be much more rapid than the desorption process. Desorption was attempted with methanol as an e...

  20. Programs

    Cancer.gov

    The Biorepositories and Biospecimen Research Branch is responsible for the direction and management of several programs. These include the Biospecimen Research Network, the NCI Best Practices for Biospecimen Resources, the Cancer Human Biobank (caHUB) and the Biospecimen Pre-Analytical Variables Program. Each program has specific goals and targeted outcomes which lend themselves to supporting the mission and vision of the Branch as well as the other NCI and NIH initiatives. More information about each program can be found on their respective pages.

  1. Influence of soil properties on heavy metal sequestration by biochar amendment: 2. Copper desorption isotherms.

    PubMed

    Uchimiya, Minori; Klasson, K Thomas; Wartelle, Lynda H; Lima, Isabel M

    2011-03-01

    Contaminant desorption constrains the long-term effectiveness of remediation technologies, and is strongly influenced by dynamic non-equilibrium states of environmental and biological media. Information is currently lacking in the influence of biochar and activated carbon amendments on desorption of heavy metal contaminants from soil components. In this study, copper sorption-desorption isotherms were obtained for clay-rich, alkaline San Joaquin soil with significant heavy metal sorption capacity, and eroded, acidic Norfolk sandy loam soil having low capacity to retain copper. Acidic pecan shell-derived activated carbon and basic broiler litter biochar were employed in desorption experiments designed to address both leaching by rainfall and toxicity characteristics. For desorption in synthetic rain water, broiler litter biochar amendment diminished sorption-desorption hysteresis. In acetate buffer (pH 4.9), significant copper leaching was observed, unless acidic activated carbon (pH(pzc)=3.07) was present. Trends observed in soluble phosphorus and zinc concentrations for sorption and desorption equilibria suggested acid dissolution of particulate phases that can result in a concurrent release of copper and other sorbed elements. In contrast, sulfur and potassium became depleted as a result of supernatant replacements only when amended carbon (broiler litter biochar) or soil (San Joaquin) contained appreciable amounts. A positive correlation was observed between the equilibrium aluminum concentration and initial copper concentration in soils amended with acidic activated carbon but not basic biochar, suggesting the importance of cation exchange mechanism, while dissolution of aluminum oxides cannot be ruled out. PMID:21190718

  2. Long-term kinetics of uranyl desorption from sediments under advective conditions

    NASA Astrophysics Data System (ADS)

    Shang, Jianying; Liu, Chongxuan; Wang, Zheming; Zachara, John

    2014-02-01

    Long-term (>4 months) column experiments were performed to investigate the kinetics of uranyl (U(VI)) desorption in sediments collected from the Integrated Field Research Challenge site at the U.S. Department of Energy Hanford 300 Area. The experimental results were used to evaluate alternative multirate surface complexation reaction (MRSCR) approaches to describe the short and long-term kinetics of U(VI) desorption under flow conditions. The surface complexation reaction (SCR) stoichiometry and equilibrium constants and multirate parameters in the MRSCR models were independently characterized in batch and stirred flow-cell reactors. MRSCR models that were either additively constructed using the MRSCRs for individual size fractions, or composite in nature, could effectively describe short-term U(VI) desorption under flow conditions. The long-term desorption results, however, revealed that using the labile U concentration measured by carbonate extraction underestimated desorbable U(VI) and the long-term rate of U(VI) desorption. This study also found that the gravel size fraction (2-8 mm), which is typically treated as nonreactive in modeling U(VI) reactive transport because of low external surface area, can have an important effect on the U(VI) desorption in the sediment. This study demonstrates an approach to effectively extrapolate U(VI) desorption kinetics for field-scale application and identifies important parameters and uncertainties affecting model predictions.

  3. System and method of infrared matrix-assisted laser desorption/ionization mass spectrometry in polyacrylamide gels

    DOEpatents

    Haglund, Jr., Richard F.; Ermer, David R.; Baltz-Knorr, Michelle Lee

    2004-11-30

    A system and method for desorption and ionization of analytes in an ablation medium. In one embodiment, the method includes the steps of preparing a sample having analytes in a medium including at least one component, freezing the sample at a sufficiently low temperature so that at least part of the sample has a phase transition, and irradiating the frozen sample with short-pulse radiation to cause medium ablation and desorption and ionization of the analytes. The method further includes the steps of selecting a resonant vibrational mode of at least one component of the medium and selecting an energy source tuned to emit radiation substantially at the wavelength of the selected resonant vibrational mode. The medium is an electrophoresis medium having polyacrylamide. In one embodiment, the energy source is a laser, where the laser can be a free electron laser tunable to generate short-pulse radiation. Alternatively, the laser can be a solid state laser tunable to generate short-pulse radiation. The laser can emit light at various ranges of wavelength.

  4. A small paramagnetic platinum cluster in an NaY zeolite: characterization and hydrogen adsorption and desorption.

    PubMed

    Liu, X; Dilger, H; Eichel, R A; Kunstmann, J; Roduner, E

    2006-02-01

    A well-defined cluster containing 12 equivalent platinum atoms was prepared by ion exchange of an NaY zeolite, followed by hydrogen reduction. It was characterized by electron paramagnetic resonance (EPR) spectroscopy, hyperfine sublevel correlation (HYSCORE), and theoretical calculations. Combing the results of the experiments with density functional calculations, the likely structure of this cluster is icosahedral Pt13Hm, possibly with a low positive charge. The adsorbed H/D on the Pt cluster surface can be exchanged reversibly at room temperature. From H/D desorption experiments, an H2 binding energy of 1.36 eV is derived, in reasonable agreement with the calculated value but clearly larger than that for a (111) Pt single-crystal surface, revealing a finite size effect. While the hydrogen-covered cluster should clearly be regarded as a molecule, it is conceivable that the cluster adopts metallic character upon hydrogen desorption. It is likely that up to m=30 H atoms bind to this cluster with 12 surface atoms, which has important implications for the determination of the dispersion of small Pt catalyst particles by hydrogen chemisorption. Calculations as well as experiments give evidence of an interesting magnetic behavior with high-spin states playing a prominent role. There are strong indications that a reservoir of EPR silent but structurally similar clusters exists which can partly be converted to EPR visible species by H/D exchange or by gas adsorption. PMID:16471777

  5. A new technique for Auger analysis of surface species subject to electron-induced desorption

    NASA Technical Reports Server (NTRS)

    Pepper, S. V.

    1973-01-01

    A method is presented to observe surface species subject to electron-induced desorption by Auger electron spectroscopy. The surface to be examined is moved under the electron beam at constant velocity, establishing a time independent condition and eliminating the time response of the electron spectrometer as a limiting factor. The dependence of the Auger signal on the surface velocity, incident electron current, beam diameter, and desorption cross section are analyzed. The method is illustrated by the Auger analysis of PTFE, in which the fluorine is removed by electron induced desorption.

  6. Adsorption-desorption characteristics of cadmium in variable charge soils.

    PubMed

    He, Zhen-Li; Xu, Hai-Ping; Zhu, Ying-Mei; Yang, Xiao-E; Chen, Guo-Chao

    2005-01-01

    Cadmium (Cd) has received considerable attention because of its association with various human health problems. The behavior of adsorption-desorption of Cd at contaminated levels in two variable charge soils were investigated. The red soil (RAR) developed on the Arenaceous rock (clayey, mixed siliceous thermic typic Dystrochrept) adsorbed more Cd2+ than the red soil (REQ) derived from the Quaternary red earths (clayey, kaolinitic thermic plinthite Aquult). The characteristics of Cd adsorption could be described by the Freundlich equation (r2 = 0.997 and 0.989, respectively, for the RAR and REQ) and the simple Langmuir adsorption equation (r2 = 0.985 and 0.977, respectively, for the RAR and REQ). The maximum adsorption values (Xm) that were obtained from the simple Langmuir model were 36.23 mmol Cd2+ kg(-1) soil and 31.15 mmol Cd2+ kg(-1) soil, respectively for the RAR and REQ. Adsorption of Cd2+ decreased soil pH by 1.28 unit for the RAR soil and 1.23 unit for the REQ soil at the highest loading. The distribution coefficient (kd) of Cd in the soil decreased exponentially with increasing Cd2+ loading. The adsorption of cadmium in the two variable charge soils was characterized by a rapid process that lasted approximately 15 min, followed by a slower but longer period. 85.5% and 79.4% of the added Cd were adsorbed within two hours by the RAR and REQ soil, respectively. More Cd2+ was adsorbed at 10 degrees C than at 25 degrees C or 40 degrees C. After five successive desorptions with 0.01 mol L(-1) NaNO3 solution, 53.3% of the total adsorbed Cd2+ in the RAR soil was desorbed and the corresponding value of the REQ soil was 46.5%, indicating that the RAR soil had a lower affinity for Cd2+ than the REQ soil at the same Cd2+ loading. PMID:15792301

  7. Laser desorption time-of-flight mass spectrometry of ultraviolet photo-processed ices

    NASA Astrophysics Data System (ADS)

    Paardekooper, D. M.; Bossa, J.-B.; Isokoski, K.; Linnartz, H.

    2014-10-01

    A new ultra-high vacuum experiment is described that allows studying photo-induced chemical processes in interstellar ice analogues. MATRI2CES - a Mass Analytical Tool to study Reactions in Interstellar ICES applies a new concept by combining laser desorption and time-of-flight mass spectrometry with the ultimate goal to characterize in situ and in real time the solid state evolution of organic compounds upon UV photolysis for astronomically relevant ice mixtures and temperatures. The performance of the experimental setup is demonstrated by the kinetic analysis of the different photoproducts of pure methane (CH4) ice at 20 K. A quantitative approach provides formation yields of several new species with up to four carbon atoms. Convincing evidence is found for the formation of even larger species. Typical mass resolutions obtained range from M/?M ˜320 to ˜400 for CH4 and argon, respectively. Additional tests show that the typical detection limit (in monolayers) is ?0.02 ML, substantially more sensitive than the regular techniques used to investigate chemical processes in interstellar ices.

  8. Effect of biosurfactants on crude oil desorption and mobilization in a soil system.

    PubMed

    Kuyukina, Maria S; Ivshina, Irena B; Makarov, Sergey O; Litvinenko, Ludmila V; Cunningham, Colin J; Philp, James C

    2005-02-01

    Microbially produced biosurfactants were studied to enhance crude oil desorption and mobilization in model soil column systems. The ability of biosurfactants from Rhodococcus ruber to remove the oil from the soil core was 1.4-2.3 times greater than that of a synthetic surfactant of suitable properties, Tween 60. Biosurfactant-enhanced oil mobilization was temperature-related, and it was slower at 15 degrees C than at 22-28 degrees C. Mathematical modelling using a one-dimensional filtration model was applied to simulate the process of oil penetration through a soil column in the presence of (bio)surfactants. A strong positive correlation (R(2)=0.99) was found between surfactant penetration through oil-contaminated soil and oil removal activity. Biosurfactant was less adsorbed to soil components than synthetic surfactant, thus rapidly penetrating through the soil column and effectively removing 65-82% of crude oil. Chemical analysis showed that crude oil removed by biosurfactant contained a lower proportion of high-molecular-weight paraffins and asphaltenes, the most nonbiodegradable compounds, compared to initial oil composition. This result suggests that oil mobilized by biosurfactants could be easily biodegraded by soil bacteria. Rhodococcus biosurfactants can be used for in situ remediation of oil-contaminated soils. PMID:15661276

  9. Activated recombinative desorption: a potential component in mechanisms of spacecraft glow

    SciTech Connect

    Cross, J.B.

    1985-01-01

    The concept of activated recombination of atomic species on surfaces is capable of explaining the production of vibrationally and translationally excited desorbed molecular species. Equilibrium statistical mechanics predicts that the molecular quantum state distributions of desorbing molecules is a function of only the surface temperature when the adsorption probability is unity and independent of initial collision conditions. In most cases though the adsorption probability is dependent upon initial conditions such as collision energy or internal quantum state distribution of impinging molecules. From detailed balance, such dynamical behavior is reflected in the internal quantum state distribution of the desorbing molecule. A number of surface-atom recombination systems demonstrate this ''nonthermal'' behavior: H/sub 2/-Cu,N/sub 2/-Fe,CO/sub 2/-Pt, etc. It is proposed that this concept, activated recombinative desorption, may offer a common thread in proposed mechanisms of spacecraft glow. Ground-based experiments are proposed which will complement flight investigations probing the mechanism of the glow phenomenon. Using molecular beam techniques and equipment available at Los Alamos, which includes a high translational energy O-atom beam source, mass spectrometric detection of desorbed species, chemiluminescent/laser induced fluorescence detection of electronic and rovibrationally excited reaction products, and Auger detection of surface adsorbed reaction products, we propose a fundamental study of the gas-surface chemistry underlying the glow process. This would lead to the development of materials that could alter the spectral intensity and wave length distribution of the glow.

  10. Laser desorption time-of-flight mass spectrometry of ultraviolet photo-processed ices

    SciTech Connect

    Paardekooper, D. M. Bossa, J.-B.; Isokoski, K.; Linnartz, H.

    2014-10-01

    A new ultra-high vacuum experiment is described that allows studying photo-induced chemical processes in interstellar ice analogues. MATRI²CES - a Mass Analytical Tool to study Reactions in Interstellar ICES applies a new concept by combining laser desorption and time-of-flight mass spectrometry with the ultimate goal to characterize in situ and in real time the solid state evolution of organic compounds upon UV photolysis for astronomically relevant ice mixtures and temperatures. The performance of the experimental setup is demonstrated by the kinetic analysis of the different photoproducts of pure methane (CH?) ice at 20 K. A quantitative approach provides formation yields of several new species with up to four carbon atoms. Convincing evidence is found for the formation of even larger species. Typical mass resolutions obtained range from M/?M ~320 to ~400 for CH? and argon, respectively. Additional tests show that the typical detection limit (in monolayers) is ?0.02 ML, substantially more sensitive than the regular techniques used to investigate chemical processes in interstellar ices.

  11. Light desorption from an yttrium neutralizer for Rb and Fr magneto-optical trap loading.

    PubMed

    Coppolaro, V; Papi, N; Khanbekyan, A; Marinelli, C; Mariotti, E; Marmugi, L; Moi, L; Corradi, L; Dainelli, A; Arikawa, H; Ishikawa, T; Sakemi, Y; Calabrese, R; Mazzocca, G; Tomassetti, L; Ricci, L

    2014-10-01

    We present here the first evidence of photodesorption induced by low-intensity non-resonant light from an yttrium thin foil, which works as a neutralizer for Rb and Fr ions beam. Neutral atoms are suddenly ejected from the metal surface in a pulsed regime upon illumination with a broadband flash light and then released in the free volume of a pyrex cells. Here atoms are captured by a Magneto-Optical Trap (MOT), which is effectively loaded by the photodesorption. Loading times of the order of the flash rise time are measured. Desorption is also obtained in the continuous regime, by exploiting CW visible illumination of the metallic neutralizer surface. We demonstrate that at lower CW light intensities vacuum conditions are not perturbed by the photodesorption and hence the MOT dynamics remains unaffected, while the trap population increases thanks to the incoming desorbed atoms flux. Even with the Y foil at room temperature and hence with no trapped atoms, upon visible illumination, the number of trapped atoms reaches 10(5). The experimental data are then analyzed by means of an analytical rate equation model, which allows the analysis of this phenomenon and its dynamics and allows the determination of critical experimental parameters and the test of the procedure in the framework of radioactive Francium trapping. In this view, together with an extensive investigation of the phenomenon with (85)Rb, the first demonstration of the photodesorption-aided loading of a (210)Fr MOT is shown. PMID:25296799

  12. Light desorption from an yttrium neutralizer for Rb and Fr magneto-optical trap loading

    NASA Astrophysics Data System (ADS)

    Coppolaro, V.; Papi, N.; Khanbekyan, A.; Marinelli, C.; Mariotti, E.; Marmugi, L.; Moi, L.; Corradi, L.; Dainelli, A.; Arikawa, H.; Ishikawa, T.; Sakemi, Y.; Calabrese, R.; Mazzocca, G.; Tomassetti, L.; Ricci, L.

    2014-10-01

    We present here the first evidence of photodesorption induced by low-intensity non-resonant light from an yttrium thin foil, which works as a neutralizer for Rb and Fr ions beam. Neutral atoms are suddenly ejected from the metal surface in a pulsed regime upon illumination with a broadband flash light and then released in the free volume of a pyrex cells. Here atoms are captured by a Magneto-Optical Trap (MOT), which is effectively loaded by the photodesorption. Loading times of the order of the flash rise time are measured. Desorption is also obtained in the continuous regime, by exploiting CW visible illumination of the metallic neutralizer surface. We demonstrate that at lower CW light intensities vacuum conditions are not perturbed by the photodesorption and hence the MOT dynamics remains unaffected, while the trap population increases thanks to the incoming desorbed atoms flux. Even with the Y foil at room temperature and hence with no trapped atoms, upon visible illumination, the number of trapped atoms reaches 105. The experimental data are then analyzed by means of an analytical rate equation model, which allows the analysis of this phenomenon and its dynamics and allows the determination of critical experimental parameters and the test of the procedure in the framework of radioactive Francium trapping. In this view, together with an extensive investigation of the phenomenon with 85Rb, the first demonstration of the photodesorption-aided loading of a 210Fr MOT is shown.

  13. Measuring Water Content and Desorption Isotherms in Soil Simulants Under Martian Conditions

    NASA Astrophysics Data System (ADS)

    Hudson, T.; Aharonson, O.; Schorghofer, N.; Hecht, M. H.; Bridges, N.; Green, J. R.

    2003-12-01

    Theoretical predictions as well as recent spacecraft observations indicate that large quantities of ice is present in the high latitudes upper decimeters to meters of the Martian regolith. At shallower depths and warmer locations small amounts of H2O, either adsorbed or free, may be present transiently. We seek to simulate Mars surface conditions and to observe the effects of temperature cycling (diurnal and seasonal scale) on the water content profiles of several soil simulants. To model the upper Martian regolith, we begin by using crushed JSC Mars-1 palagonite with particles in the 50 micron to sub-micron size range. Spheres of pure silica in the 10 to 40 mm range may also be used to study the effects of grain surface morphology and composition. Simulants with various water contents are brought to Mars pressures and monitored. A line source heat-pulse probe is being prepared to monitor water content profiles in real-time and to be calibrated against water content samples measured with thermogravimetric (TG) analysis. Initial experiments will allow us to monitor water content; more refined investigations will permit the determination of desorption isotherms.

  14. Thermal desorption gas chromatography with mass spectrometry study of outgassing from polymethacrylimide foam (Rohacell®).

    PubMed

    Carrasco-Correa, Enrique J; Herrero-Martínez, José M; Consuegra, Lina; Ramis-Ramos, Guillermo; Sanz, Rafael Mata; Martínez, Benito Gimeno; Esbert, Vicente E Boria; García-Baquero, David Raboso

    2015-09-01

    Polymethacrylimide foams are used as light structural materials in outer-space devices; however, the foam closed cells contain volatile compounds that are outgassed even at low temperatures. These compounds ignite as plasmas under outer-space radiation and the intense radio-frequency fields used in communications. Since plasmas may cause spacecraft fatal events, the conditions in which they are ignited should be investigated. Therefore, qualitative and quantitative knowledge about polymethacrylimide foam outgassing should be established. Using thermogravimetric analysis, weight losses reached 3% at ca. 200°C. Thermal desorption gas chromatography with mass spectrometry detection was used to study the offgassed compounds. Using successive 4 min heating cycles at 125°C, each one corresponding to an injection, significant amounts of nitrogen (25.3%), water (2.6%), isobutylene (11.3%), tert-butanol (2.9%), 1-propanol (11.9%), hexane (25.3%), propyl methacrylate (1.4%), higher hydrocarbons (11.3%), fatty acids (2.2%) and their esters (1.3%), and other compounds were outgassed. Other compounds were observed during the main stage of thermal destruction (220-280°C). A similar study at 175°C revealed the extreme difficulty in fully outgassing polar compounds from polymethacrylimide foams by baking and showed the different compositions of the offgassed atmosphere that can be expected in the long term. PMID:26106018

  15. Programs

    Cancer.gov

    NCI's Office of Cancer Clinical Proteomics Research (OCCPR) works with the Small Business Innovation Research Program to help small business to develop and commercialize novel proteomic technologies and products to prevent, diagnose, and treat cancer.

  16. Combined Atomic Force Microscope-Based Topographical Imaging and Nanometer Scale Resolved Proximal Probe Thermal Desorption/Electrospray Ionization-Mass Spectrometry

    SciTech Connect

    Ovchinnikova, Olga S; Nikiforov, Maxim; Bradshaw, James A; Jesse, Stephen; Van Berkel, Gary J

    2011-01-01

    Nanometer scale proximal probe thermal desorption/electrospray ionization mass spectrometry (TD/ESI-MS) was demonstrated for molecular surface sampling of caffeine from a thin film using a 30 nm diameter nano-thermal analysis (nano-TA) probe tip in an atomic force microscope (AFM) coupled via a vapor transfer line and ESI interface to a MS detection platform. Using a probe temperature of 350 C and a spot sampling time of 30 s, conical desorption craters 250 nm in diameter and 100 nm deep were created as shown through subsequent topographical imaging of the surface within the same system. Automated sampling of a 5 x 2 array of spots, with 2 m spacing between spots, and real time selective detection of the desorbed caffeine using tandem mass spectrometry was also demonstrated. Estimated from the crater volume (~2x106 nm3), only about 10 amol (2 fg) of caffeine was liberated from each thermal desorption crater in the thin film. These results illustrate a relatively simple experimental setup and means to acquire in automated fashion sub-micrometer scale spatial sampling resolution and mass spectral detection of materials amenable to TD. The ability to achieve MS-based chemical imaging with 250 nm scale spatial resolution with this system is anticipated.

  17. Synthesis of divinylbenzene polymer/Fe?O? hybrid monolithic column for enrichment and online thermal desorption of methylmercury in real samples.

    PubMed

    Ma, Renren; Cao, Fangfang; Liu, Baizhan; Hu, Huan; Gan, Wuer

    2015-06-01

    A novel method of divinylbenzene polymer (DVB)/Fe3O4 hybrid monolithic column solid phase extraction and on line thermal desorption was developed to analyze methylmercury (MeHg) in water and fish samples. The monolithic column was prepared by in situ polymerization in silica tube and its heating characteristic was studied in detail. Special accent was put on the study of parameters influencing adsorption and desorption of MeHg, such as pH, flow rate of sample solution, temperature of desorption and flow rate of carrier. Under optimum conditions, the detection limit and relative standard deviation of MeHg were 0.09 ng L(-1) and 2.6% (10 ng L(-1), N=11), respectively. Recoveries of MeHg were never less than 96%. Standard reference material GBW10029 was analyzed for validation of the methodology. This method was successfully applied to the determination of MeHg in water and fish samples. PMID:25863382

  18. The effect of solvent on matrix-assisted laser desorption ionization mass spectrometry 

    E-print Network

    Campo, Karen Kay

    1996-01-01

    Since its introduction in 1988, matrix-assisted laser desorption/ionization mass spectrometry (MALDI) has developed into a useful analytical tool in the biological field. The work presented here focuses on the effect of solvent on MALDI ion yields...

  19. Modeling Zn Adsorption and Desorption to Soils Zhenqing Shi1,2

    E-print Network

    Sparks, Donald L.

    Environmental Soil Chemistry Research Group, Department of Plant and Soil Sciences, University of Delaware/desorption reaction is controlled by two groups of sites, one fast and another slow. The kinetic equations for Zn

  20. Isomeric differentiation of polycyclic aromatic hydrocarbons using silver nitrate reactive desorption electrospray ionization

    E-print Network

    Zare, Richard N.

    Isomeric differentiation of polycyclic aromatic hydrocarbons using silver nitrate reactive hydrocarbons (PAHs) are nonpolar and difficult to detect by desorption electrospray ionization. We present. Polycyclic aromatic hydrocarbons (PAHs) are one of the most prevalent forms of aquatic environmental

  1. CHARACTERIZATION OF CRYPTOSPORIDIUM PARVUM BY MATRIX-ASSISTED LASER DESORPTION -- IONIZATION TIME OF FLIGHT MASS SPECTROMETRY

    EPA Science Inventory

    Matrix assisted laser desorption/ionization (MALDI) mass spectrometry was used to investigate whole and freeze thawed Cryptosporidium parvum oocysts. Whole oocysts revealed some mass spectral features. Reproducible patterns of spectral markers and increased sensitivity were obtai...

  2. Effects of Material Moisture Adsorption and Desorption on Building Cooling Loads 

    E-print Network

    Fairey, P.; Kosar, D.

    1988-01-01

    Moisture adsorption and desorption (MAD) by internal building materials and furnishings can be significant in buildings. For many building cooling strategies, MAD may have overriding effects on building cooling loads. For example, natural...

  3. METAL INTERACTIONS AT SULFIDE MINERAL SURFACES. PART 2. ADSORPTION AND DESORPTION OF LANTHANUM

    EPA Science Inventory

    Batch-type adsorption experiments with four sulfide minerals (chalcocite, galena, pyrite, and sphalerite) were used to investigate the adsorption and desorption behavior of lanthanum (III) in the presence of ethylenediaminetetraacetic acid (EDTA), a model humic substance. Linear ...

  4. A new technique for Auger analysis of surface species subject to electron-induced desorption.

    NASA Technical Reports Server (NTRS)

    Pepper, S. V.

    1973-01-01

    A method is presented to observe surface species subject to electron-induced desorption by Auger electron spectroscopy. The surface to be examined is moved under the electron beam at constant velocity, establishing a time-independent condition and eliminating the time response of the electron spectrometer as a limiting factor. The dependence of the Auger signal on the sample velocity, incident electron current, beam diameter, and desorption cross section is analyzed. It is shown that it is advantageous to analyze the moving sample with a high beam current, in contrast to the usual practice of using a low beam current to minimize desorption from a stationary sample. The method is illustrated by the analysis of a friction transfer film of PTFE, in which the fluorine is removed by electron-induced desorption. The method is relevant to surface studies in the field of lubrication and catalysis.

  5. EFFECTS OF BIOSOLIDS ON SORPTION AND DESORPTION BEHAVIOR OF CADMIUM IN BIOSOLIDS-AMENDED SOILS

    EPA Science Inventory

    Cadmium sorption and desorption experiments were conducted on different fractions of soils amended with different biosolids with varying chemical properties and unamended soil (control). Biosolids addition increased the slope of the Cd sorption isotherms compared to the control s...

  6. Development and application of a specially designed heating system for temperature-programmed high-performance liquid chromatography using subcritical water as the mobile phase.

    PubMed

    Teutenberg, T; Goetze, H-J; Tuerk, J; Ploeger, J; Kiffmeyer, T K; Schmidt, K G; Kohorst, W gr; Rohe, T; Jansen, H-D; Weber, H

    2006-05-01

    A specially designed heating system for temperature-programmed HPLC was developed based on experimental measurements of eluent temperature inside a stainless steel capillary using a very thin thermocouple. The heating system can be operated at temperatures up to 225 degrees C and consists of a preheating, a column heating and a cooling unit. Fast cycle times after a temperature gradient can be realized by an internal silicone oil bath which cools down the preheating and column heating unit. Long-term thermal stability of a polybutadiene-coated zirconium dioxide column has been evaluated using a tubular oven in which the column was placed. The packing material was stable after 50h of operation at 185 degrees C. A mixture containing four steroids was separated at ambient conditions using a mobile phase of 25% acetonitrile:75% deionized water and a mobile phase of pure deionized water at 185 degrees C using the specially designed heating system and the PBD column. Analysis time could be drastically reduced from 17 min at ambient conditions and a flow rate of 1 mL/min to only 1.2 min at 185 degrees C and a flow rate of 5 mL/min. At these extreme conditions, no thermal mismatch was observed and peaks were not distorted, thus underlining the performance of the developed heating system. Temperature programming was performed by separating cytostatic and antibiotic drugs with a temperature gradient using only water as the mobile phase. In contrast to an isocratic elution of this mixture at room temperature, overall analysis time could be reduced two-fold from 20 to 10 min. PMID:16530210

  7. Laboratory constraints on ice formation, restructuring and desorption

    NASA Astrophysics Data System (ADS)

    Oberg, Karin I.

    2015-08-01

    In cold and dense interstellar and circumstellar environments, where stars and planets form, interstellar dust grains become enveloped in icy mantles due to rapid freeze-out of gas-phase species and an active grain surface and ice chemistry. These icy mantles constitute the major reservoir of volatile material, apart from H2, during planet formation. The composition and desorption properties of interstellar ices will therefore regulate the volatile and perhaps elemental composition of forming planets and planetesimals. In this talk I will review recent key experiments on how these ices form, how they structurally and chemically evolve due to interactions with heat and UV photons, and under which conditions ices desorb, releasing all or some of the volatile reseroirs back into the gas-phase. Together these experiments address thresholds for ice formation at the edges of clouds and disks observed with e.g. the Spitzer Space Telecope, the changing ice morphplogies at different stages of star formation seen by Spitzer and ISO, the locations of snow lines in protoplanetary disks, verified by ALMA, and many other observations on the distribution of volatiles during star and planet formation. With the advent of ALMA and the approaching arrival of JWST follows order-of-magitude increases in precision of direct and indirect ice observations. I will also discuss what laboratory experiments will be needed to address this new generation of astrophysical data.

  8. Kinetics of surfactant desorption at an air-solution interface.

    PubMed

    Morgan, C E; Breward, C J W; Griffiths, I M; Howell, P D; Penfold, J; Thomas, R K; Tucker, I; Petkov, J T; Webster, J R P

    2012-12-18

    The kinetics of re-equilibration of the anionic surfactant sodium dodecylbenzene sulfonate at the air-solution interface have been studied using neutron reflectivity. The experimental arrangement incorporates a novel flow cell in which the subphase can be exchanged (diluted) using a laminar flow while the surface region remains unaltered. The rate of the re-equilibration is relatively slow and occurs over many tens of minutes, which is comparable with the dilution time scale of approximately 10-30 min. A detailed mathematical model, in which the rate of the desorption is determined by transport through a near-surface diffusion layer into a diluted bulk solution below, is developed and provides a good description of the time-dependent adsorption data. A key parameter of the model is the ratio of the depth of the diffusion layer, H(c), to the depth of the fluid, H(f), and we find that this is related to the reduced Péclet number, Pe*, for the system, via H(c)/H(f) = C/Pe*(1/2). Although from a highly idealized experimental arrangement, the results provide an important insight into the "rinse mechanism", which is applicable to a wide variety of domestic and industrial circumstances. PMID:23167573

  9. Laser desorption mass spectrometry for fast DNA analysis

    SciTech Connect

    Chen, C.H.; Ch`ang, L.Y.; Taranenko, N.I.; Allman, S.L.; Tang, K.; Matteson, K.J.

    1995-09-01

    During the past few years, major effort has been directed toward developing mass spectrometry to measure biopolymers because of the great potential benefit to biomedical research. Hellenkamp and his co-workers were the first to report that large polypeptide molecules can be ionized and detected without significant fragmentation when a greater number of nicotinic acid molecules are used as a matrix. This method is now well known as matrix-assisted laser desorption/ionization (MALDI). Since then, various groups have reported measurements of very large proteins by MALDI. Reliable protein analysis by MALDI is more or less well established. However, the application of MALDI to nucleic acids analysis has been found to be much more difficult. Most research on the measurement of nucleic acid by MALDI were stimulated by the Human Genome Project. Up to now, the only method for reliable routine analysis of nucleic acid is gel electrophoresis. Different sizes of nucleic acids can be separated in gel medium when a high electric field is applied to the gel. However, the time needed to separate different sizes of DNA segments usually takes from several minutes to several hours. If MALDI can be successfully used for nucleic acids analysis, the analysis time can be reduced to less than I millisecond. In addition, no tagging with radioactive materials or chemical dyes is needed. In this work, we will review recent progress related to MALDI for DNA analysis.

  10. Light-induced atomic desorption under different types of illumination

    NASA Astrophysics Data System (ADS)

    Taslakov, M.; Tsvetkov, S.; Gateva, S.

    2014-05-01

    We studied the light-induced atomic desorption (LIAD) at different geometries and homogeneities of cell illumination. An original system for homogeneous illumination of the cells was developed and the Rb D2 line absorption spectra in several uncoated and coated cells were compared without illumination, with single-side illumination and with homogeneous illumination. The transmission as a function of the illumination intensity and the tuning direction was measured. The absorption coefficients with and without illumination of the stem were compared. The system developed for homogeneous illumination increases the efficiency of the LIAD, enables the investigation of LIAD without lateral diffusion, prevents cluster formation and reduces the influence of the stem. A good knowledge of the factors influencing the alkali atom spectra will be useful not only for the development of new LIAD-loaded atomic devices and their miniaturization, but also for the study of atom-dielectric surface interactions and the development of new all-optical methods for surface and coating diagnostics.

  11. Thermal desorption treatability test conducted with VAC*TRAX Unit

    SciTech Connect

    1996-01-01

    In 1992, Congress passed the Federal Facilities Compliance Act, requiring the U.S. Department of Energy (DOE) to treat and dispose of its mixed waste in accordance with Resource Conservation and Recovery Act (RCRA) treatment standards. In response to the need for mixed-waste treatment capacity, where off-site commercial treatment facilities do not exist or cannot be used, the DOE Albuquerque Operations Office (DOE-AL) organized a Treatment Selection Team to match mixed waste with treatment options and develop a strategy for treatment of mixed waste. DOE-AL manages nine sites with mixed-waste inventories. The Treatment Selection Team determined a need to develop mobile treatment units (MTUs) to treat waste at the sites where the wastes are generated. Treatment processes used for mixed wastes must remove the hazardous component (i.e., meet RCRA treatment standards) and contain the radioactive component in a form that will protect the worker, public, and environment. On the basis of the recommendations of the Treatment Selection Team, DOE-AL assigned projects to the sites to bring mixed-waste treatment capacity on-line. The three technologies assigned to the DOE Grand Junction Projects Office (DOE-GJPO) include thermal desorption (TD), evaporative oxidation, and waste water evaporation.

  12. Solvent jet desorption capillary photoionization-mass spectrometry.

    PubMed

    Haapala, Markus; Teppo, Jaakko; Ollikainen, Elisa; Kiiski, Iiro; Vaikkinen, Anu; Kauppila, Tiina J; Kostiainen, Risto

    2015-03-17

    A new ambient mass spectrometry method, solvent jet desorption capillary photoionization (DCPI), is described. The method uses a solvent jet generated by a coaxial nebulizer operated at ambient conditions with nitrogen as nebulizer gas. The solvent jet is directed onto a sample surface, from which analytes are extracted into the solvent and ejected from the surface in secondary droplets formed in collisions between the jet and the sample surface. The secondary droplets are directed into the heated capillary photoionization (CPI) device, where the droplets are vaporized and the gaseous analytes are ionized by 10 eV photons generated by a vacuum ultraviolet (VUV) krypton discharge lamp. As the CPI device is directly connected to the extended capillary inlet of the MS, high ion transfer efficiency to the vacuum of MS is achieved. The solvent jet DCPI provides several advantages: high sensitivity for nonpolar and polar compounds with limit of detection down to low fmol levels, capability of analyzing small and large molecules, and good spatial resolution (250 ?m). Two ionization mechanisms are involved in DCPI: atmospheric pressure photoionization, capable of ionizing polar and nonpolar compounds, and solvent assisted inlet ionization capable of ionizing larger molecules like peptides. The feasibility of DCPI was successfully tested in the analysis of polar and nonpolar compounds in sage leaves and chili pepper. PMID:25715054

  13. Laser desorption mass spectrometry for point mutation detection

    SciTech Connect

    Taranenko, N.I.; Chung, C.N.; Zhu, Y.F.

    1996-10-01

    A point mutation can be associated with the pathogenesis of inherited or acquired diseases. Laser desorption mass spectrometry coupled with allele specific polymerase chain reaction (PCR) was first used for point mutation detection. G551D is one of several mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene present in 1-3% of the mutant CFTR alleles in most European populations. In this work, two different approaches were pursued to detect G551D point mutation in the cystic fibrosis gene. The strategy is to amplify the desired region of DNA template by PCR using two primers that overlap one base at the site of the point mutation and which vary in size. If the two primers based on the normal sequence match the target DNA sequence, a normal PCR product will be produced. However, if the alternately sized primers that match the mutant sequence recognize the target DNA, an abnormal PCR product will be produced. Thus, the mass spectrometer can be used to identify patients that are homozygous normal, heterozygous for a mutation or homozygous abnormal at a mutation site. Another approach to identify similar mutations is the use of sequence specific restriction enzymes which respond to changes in the DNA sequence. Mass spectrometry is used to detect the length of the restriction fragments generated by digestion of a PCR generated target fragment. 21 refs., 10 figs., 2 tabs.

  14. Laser desorption mass spectrometry for point mutation detection

    SciTech Connect

    Taranenko, N.I.; Chung, C.N.; Zhu, Y.F.

    1996-12-31

    A point mutation can be associated with the pathogenesis of inherited or acquired diseases. Laser desorption mass spectrometry coupled with allele specific polymerase chain reaction (PCR) was first used for point mutation detection. G551D is one of several mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene present in 1-3% of the mutant CFTR alleles in most European populations. In this work, two different approaches were pursued to detect G551D point mutation in the cystic fibrosis gene. The strategy is to amplify the desired region of DNA template by PCR using two primers that overlap one base at the site of the point mutation and which vary in size. If the two primers based on the normal sequence match the target DNA sequence, a normal PCR product will be produced. However, if the alternately sized primers that match the mutant sequence recognize the target DNA, an abnormal PCR product will be produced. Thus, the mass spectrometer can be used to identify patients that are homozygous normal, heterozygous for a mutation or homozygous abnormal at a mutation site. Another approach to identify similar mutations is the use of sequence specific restriction enzymes which respond to changes in the DNA sequence. Mass spectrometry is used to detect the length of the restriction fragments by digestion of a PCR generated target fragment. 21 refs., 10 figs., 2 tabs.

  15. Ultrafast desorption of colloidal particles from fluid interfaces

    PubMed Central

    Poulichet, Vincent; Garbin, Valeria

    2015-01-01

    The self-assembly of solid particles at fluid–fluid interfaces is widely exploited to stabilize emulsions and foams, and in materials synthesis. The self-assembly mechanism is very robust owing to the large capillary energy associated with particle adsorption, of the order of millions of times the thermal energy for micrometer-sized colloids. The microstructure of the interfacial colloid monolayer can also favor stability, for instance in the case of particle-stabilized bubbles, which can be indefinitely stable against dissolution due to jamming of the colloid monolayer. As a result, significant challenges arise when destabilization and particle removal are a requirement. Here we demonstrate ultrafast desorption of colloid monolayers from the interface of particle-stabilized bubbles. We drive the bubbles into periodic compression–expansion using ultrasound waves, causing significant deformation and microstructural changes in the particle monolayer. Using high-speed microscopy we uncover different particle expulsion scenarios depending on the mode of bubble deformation, including highly directional patterns of particle release during shape oscillations. Complete removal of colloid monolayers from bubbles is achieved in under a millisecond. Our method should find a broad range of applications, from nanoparticle recycling in sustainable processes to programmable particle delivery in lab-on-a-chip applications. PMID:25922529

  16. Development and validation of personal monitoring methods for low levels of acrylonitrile in workplace atmosphere. II. Thermal desorption and field validation

    SciTech Connect

    Borders, R.A.; Gluck, S.J.; Sowle, W.F.; Melcher, R.G.

    1986-03-01

    Thermal desorption is a more sensitive alternative to solvent desorption for the determination of acrylonitrile in air. A dual-bed collection tube (Tenax GC and Carbosieve B) was developed for collecting and concentrating low levels of acrylonitrile. Two thermal desorption techniques were evaluated for the recovery of acrylonitrile collected on the dual-bed tubes over a concentration range from 0.05 to 5 ppm. A commercially-available system, the Century Programmable Thermal Desorption Unit, was easy to operate, allowed for multiple injections of the sample and had a recovery of 82 +/- 12% (RSD). Sampled were stored for up to two months without affecting the recovery and there was not an observable effect from humidity or from the presence of other organic compounds. This system was found to have limitations at acrylonitrile concentrations above 1 ppm. A field validation study tested the sampling and analytical methods developed for monitoring low levels of acrylonitrile in the workplace. Three methods employing Pittsburgh Coconut-Base activated charcoal, Ambersorb XE-348 and Tenax-GC and Carbosieve B sampling mediums were validated for concentrations ranging from 0.05 to 5 ppm and confirmed in the field from 0.02 to 3 ppm in tests conducted at plant sites. These field studies were run over varying humidity and temperature conditions. The overall absolute recoveries and relative standard deviations found for these methods found during the field trials are 90 +/- 18% for charcoal; 85 +/- 11% for Ambersorb XE-348; and 90 +/- 19% for the Century dual-bed sorbent. These values were in quite good agreement with the 91 +/- 10%, 88 +/- 8%, and 82 +/- 12% determined in laboratory studies.

  17. Kinetic desorption and sorption of U(VI) during reactive transport in a contaminated Hanford sediment.

    PubMed

    Qafoku, Nikolla P; Zachara, John M; Liu, Chongxuan; Gassman, Paul L; Qafoku, Odeta S; Smith, Steven C

    2005-05-01

    Column experiments were conducted to investigate U(VI) desorption and sorption kinetics in a sand-textured, U(VI)-contaminated (22.7 micromol kg(-1)) capillary fringe sediment from the U.S. Department of Energy (DOE) Hanford site. Saturated column experiments were performed under mildly alkaline conditions representative of the Hanford site where uranyl-carbonate and calcium-uranyl-carbonate complexes dominate aqueous speciation. A U(VI)-free solution was used to study contaminant U(VI) desorption in columns where different flow rates were applied. Sorbed, contaminant U(VI) was partially labile (11.8%), and extended leaching times and water volumes were required for complete desorption of the labile fraction. Uranium-(VI) sorption was studied after the desorption of labile, contaminant U(VI) using different U(VI) concentrations in the leaching solution. Strong kinetic effects were observed for both U(VI) sorption and desorption, with half-life ranging from 8.5 to 48.5 h for sorption and from 39.3 to 150 h for desorption. Although U(VI) is semi-mobile in mildly alkaline, subsurface environments, we observed substantial U(VI) adsorption, significant retardation during transport, and atypical breakthrough curves with extended tailing. A distributed rate model was applied to describe the effluent data and to allow comparisons between the desorption rate of contaminant U(VI) with the rate of shortterm U(VI) sorption. Desorption was the slower process. We speculate that the kinetic behavior results from transport or chemical phenomena within the phyllosilicate-dominated fine fraction present in the sediment. Our results suggest that U(VI) release and transport in the vadose zone and aquifer system from which the sediment was obtained are kinetically controlled. PMID:15926566

  18. Heavy-ion-induced desorption of organic molecules studied with Langmuir-Blodgett multilayer systems (DE)

    SciTech Connect

    Schmidt, R.; Schoppmann, C.; Brandl, D.; Ostrowski, A.; Voit, H. ); Johannsmann, D.; Knoll, W. )

    1991-07-01

    Heavy-ion-induced desorption has been studied with samples consisting of Langmuir-Blodgett films made from Cd salts of fatty acids. The experiments confirm the result of previous works that heavy ions drill a crater into the sample surface. The explicit dependence of the crater depth on the electronic energy loss could be determined from the experiments. The craters exhibit the shape of a symmetric cone as obtained from a desorption model applied to the experimental data.

  19. Cross sections for x-ray photoelectron-induced desorption of hydrogen ions from metal surfaces

    SciTech Connect

    Kinney, J.H.; Siekhaus, W.J.; Anderson, R.A.

    1985-09-20

    We have measured the cross sections for x-ray photoelectron-induced desorption of hydrogen ions from beryllium, carbon, aluminum, tantalum, and gold surfaces. This report describes the results of the cross-section measurements, and discusses a time-of-flight technique that allows the determination of ionic-desorption cross sections as small as 10/sup -25/ cm/sup 2/ per photoelectron. 19 refs., 7 figs.

  20. Desorptive behavior of pentachlorophenol (PCP) and phenanthrene in soil-water systems

    SciTech Connect

    Fall, C.; Chaouki, J.; Chavarie, C.

    2000-04-01

    Recent investigations have prompted the need for a better understanding of the complete desorptive behavior of hydrophobic organic compounds in soils. The present study evaluated the irreversibilities associated with the desorption of pentachlorophenol (PCP) and phenanthrene from different types of soils. The study also examined the influence of solid-liquid ratio of the current batch desorption tests, specifically the completeness and accuracy of data gathered for establishing isotherms. Results demonstrated that the desorption of PCP and phenanthrene from contaminated soils can lead to three different types of behavior: complete reversibility, partial reversibility, or total irreversibility. The equilibrium adsorption constant (K{sub d}) is identified as a key parameter that indirectly sets the extent of hysteresis during the reverse process of desorption. According to the data, irreversibility occurs more in soils with a large adsorption capacity, that is, when K{sub d} is approximately 50 mL/g or more in the case of the phenanthrene- and PCP-soil systems evaluated. Furthermore, to facilitate the desorption experiments overall, the study proposes selection criteria for the solid-liquid ratio of batch tests to allow for variations in the adsorption capacity of each soil.

  1. Electrothermal adsorption and desorption of volatile organic compounds on activated carbon fiber cloth.

    PubMed

    Son, H K; Sivakumar, S; Rood, M J; Kim, B J

    2016-01-15

    Adsorption is an effective means to selectively remove volatile organic compounds (VOCs) from industrial gas streams and is particularly of use for gas streams that exhibit highly variable daily concentrations of VOCs. Adsorption of such gas streams by activated carbon fiber cloths (ACFCs) and subsequent controlled desorption can provide gas streams of well-defined concentration that can then be more efficiently treated by biofiltration than streams exhibiting large variability in concentration. In this study, we passed VOC-containing gas through an ACFC vessel for adsorption and then desorption in a concentration-controlled manner via electrothermal heating. Set-point concentrations (40-900ppmv) and superficial gas velocity (6.3-9.9m/s) were controlled by a data acquisition and control system. The results of the average VOC desorption, desorption factor and VOC in-and-out ratio were calculated and compared for various gas set-point concentrations and superficial gas velocities. Our results reveal that desorption is strongly dependent on the set-point concentration and that the VOC desorption rate can be successfully equalized and controlled via an electrothermal adsorption system. PMID:26342148

  2. Kinetics of tetracycline, oxytetracycline, and chlortetracycline adsorption and desorption on two acid soils.

    PubMed

    Fernández-Calviño, David; Bermúdez-Couso, Alipio; Arias-Estévez, Manuel; Nóvoa-Muñoz, Juan Carlos; Fernández-Sanjurjo, Maria J; Álvarez-Rodríguez, Esperanza; Núñez-Delgado, Avelino

    2015-01-01

    The purpose of this work was to quantify retention/release of tetracycline, oxytetracycline, and chlortetracycline on two soils, paying attention to sorption kinetics and to implications of the adsorption/desorption processes on transfer of these pollutants to the various environmental compartments. We used the stirred flow chamber (SFC) procedure to achieve this goal. All three antibiotics showed high affinity for both soils, with greater adsorption intensity for soil 1, the one with the highest organic matter and Al and Fe oxides contents. Desorption was always <15%, exhibiting strong hysteresis in the adsorption/desorption processes. Adsorption was adequately modeled using a pseudo first-order equation with just one type of adsorption sites, whereas desorption was better adjusted considering both fast and slow sorption sites. The adsorption maximum (qmax) followed the sequence tetracycline?>?oxytetracycline?>?chlortetracycline in soil 1, with similar values for the three antibiotics and the sequence tetracycline?>?chlortetracycline?>?oxytetracycline in soil 2. The desorption sequences were oxytetracycline?>?tetracycline?>?chlortetracycline in soil 1 and oxytetracycline?>?chlortetracycline?>?tetracycline in soil 2. In conclusion, the SFC technique has yielded new kinetic data regarding tetracycline, oxytetracycline, and chlortetracycline adsorption/desorption on soils, indicating that it can be used to shed further light on the retention and transport processes affecting antibiotics on soils and other media, thus increasing knowledge on the behavior and evolution of these pharmaceutical residues in the environment. PMID:25081007

  3. Kinetic Desorption and Sorption of U(VI) During Reactive Transport in a Contaminated Hanford Sediment

    SciTech Connect

    Qafoku, Nik; Zachara, John M.; Liu, Chongxuan; Gassman, Paul L.; Qafoku, Odeta; Smith, Steven C.

    2005-05-12

    Column experiments were conducted to investigate U(VI) desorption and sorption kinetics in a sand-textured, contaminated (22.7 µmol kg-1) capillary fringe sediment that had experienced long-term exposure to U(VI). The clay fraction mineralogy of the sediment was dominated by montmorillonite, muscovite, vermiculite, and chlorite. Saturated column experiments were performed under mildly alkaline/calcareous conditions representative of the Hanford site where uranyl–carbonate and calcium–uranyl–carbonate complexes dominate aqueous speciation. A U(VI) free solution was used to study U(VI) desorption in columns where different flow rates were applied. Uranium(VI) sorption was studied after the desorption of labile contaminant U(VI) using different U(VI) concentrations in the leaching solution. Strong kinetic behavior was observed for both U(VI) desorption and sorption. Although U(VI) is semi–mobile in mildly alkaline, calcareous subsurface environments, our results showed substantial U(VI) sorption, significant retardation during transport, and atypical breakthrough curves with extended tailing. A distributed rate model was applied to describe the effluent data and to allow comparisons between the desorption rate of contaminant U(VI) with the rate of short-term U(VI) sorption. Desorption was the slower process. Our results suggest that U(VI) release and transport in the vadose zone and aquifer system from which the sediment was obtained are kinetically controlled.

  4. Enhanced durability of high-temperature desulfurization sorbents for moving-bed applications. Option 2 Program: Development and testing of zinc titanate sorbents

    SciTech Connect

    Ayala, R.E.

    1993-04-01

    One of the most advantageous configurations of the integrated gasification combined cycle (IGCC) power system is coupling it with a hot gas cleanup for the more efficient production of electric power in an environmentally acceptable manner. In conventional gasification cleanup systems, closely heat exchangers are necessary to cool down the fuel gases for cleaning, sometimes as low as 200--300{degree}F, and to reheat the gases prior to injection into the turbine. The result is significant losses in efficiency for the overall power cycle. High-temperature coal gas cleanup in the IGCC system can be operated near 1000{degree}F or higher, i.e., at conditions compatible with the gasifier and turbine components, resulting is a more efficient overall system. GE is developing a moving-bed, high-temperature desulfurization system for IGCC power systems in which mixed-metal oxides are currently being used as desulfurization sorbents. The objective of this contract is to identify and test fabrication methods and sorbent chemical compositions that enhance the long-term chemical reactivity and mechanical durability of zinc ferrite and other novel sorbents for moving-bed, high-temperature desulfurization of coal-derived gases. Zinc ferrite was studied under the base program of this contract. In the next phase of this program novel sorbents, particularly zinc titanate-based sorbents, are being studied under the remaining optional programs. This topical report summarizes only the work performed under the Option 2 program. In the course of carrying out the program, more than 25 zinc titanate formulations have been prepared and characterized to identify formulations exhibiting enhanced properties over the baseline zinc titanate formulation selected by the US Department of Energy.

  5. Desorption of dimethylformamide from Zn4O(C8H4O4)3 framework

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Hu, Yun Hang

    2011-02-01

    Both dimethylformamide (DMF) and diethylformamide (DEF) are important solvents for the synthesis of Zn4O(C8H4O4)3 framework (MOF-5). It is generally recognized that DMF molecules can be completely displaced by CH2Cl2 during the synthesis of MOF-5. Herein, however, it was found that the DMF molecules inside the pores of the MOF-5 framework cannot be displaced by CH2Cl2. The desorption of the DMF molecules from the pores, which requires a temperature of 100 °C or above, is the first order with activation energy of 56.38 kJ/mol. In contrast, DEF molecules can be completely displaced by CH2Cl2 during the synthesis of MOF-5, because DEF molecules cannot penetrate into the pores of the MOF-5 paste.

  6. Novel simple process for tocopherols selective recovery from vegetable oils by adsorption and desorption with an anion-exchange resin.

    PubMed

    Hiromori, Kousuke; Shibasaki-Kitakawa, Naomi; Nakashima, Kazunori; Yonemoto, Toshikuni

    2016-03-01

    A novel and simple low-temperature process was used to recover tocopherols from a deodorizer distillate, which is a by-product of edible oil refining. The process consists of three operations: the esterification of free fatty acids with a cation-exchange resin catalyst, the adsorption of tocopherols onto an anion-exchange resin, and tocopherol desorption from the resin. No degradation of tocopherols occurred during these processes. In the tocopherol-rich fraction, no impurities such as sterols or glycerides were present. These impurities are commonly found in the product of the conventional process. This novel process improves the overall recovery ratio and the mass fraction of the product (75.9% and 51.0wt%) compared with those in the conventional process (50% and 35wt%). PMID:26471519

  7. The 136 MHz/400 MHz earth station antenna-noise temperature prediction program documentation for RAE-B

    NASA Technical Reports Server (NTRS)

    Chin, M.

    1972-01-01

    A simulation study to determine the 136 MHz and 400 MHz noise temperature of the ground network antennas which will track the RAE-B satellite during data transmission periods is described. Since the noise temperature of the antenna effectively sets the signal-to-noise ratio (SNR) of the received signal, a knowledge of SNR will be helpful in locating the optimum time windows for data transmission during low-noise periods. Antenna-noise temperatures at 136 MHz and 400 MHz will be predicted for selected earth-based ground stations which will support RAE-B. The antenna-noise temperature predictions will include the effects of galactic-brightness temperature, the sun, and the brightest radio stars. Predictions will cover the ten-month period from March 1, 1973 to December 31, 1973. The RAE-B mission will be expecially susceptible to SNR degradation during the two eclipses of the Sun occurring in this period.

  8. Determination of 1-chloro-4-[2,2,2-trichloro-1-(4-chlorophenyl)ethyl]benzene and related compounds in marine pore water by automated thermal desorption-gas chromatography/mass spectrometry using disposable optical fiber.

    PubMed

    Eganhouse, Robert P; DiFilippo, Erica L

    2015-10-01

    A method is described for determination of ten DDT-related compounds in marine pore water based on equilibrium solid-phase microextraction (SPME) using commercial polydimethylsiloxane-coated optical fiber with analysis by automated thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS). Thermally cleaned fiber was directly exposed to sediments and allowed to reach equilibrium under static conditions at the in situ field temperature. Following removal, fibers were rinsed, dried and cut into appropriate lengths for storage in leak-tight containers at -20°C. Analysis by TD-GC/MS under full scan (FS) and selected ion monitoring (SIM) modes was then performed. Pore-water method detection limits in FS and SIM modes were estimated at 0.05-2.4ng/L and 0.7-16pg/L, respectively. Precision of the method, including contributions from fiber handling, was less than 10%. Analysis of independently prepared solutions containing eight DDT compounds yielded concentrations that were within 6.9±5.5% and 0.1±14% of the actual concentrations in FS and SIM modes, respectively. The use of optical fiber with automated analysis allows for studies at high temporal and/or spatial resolution as well as for monitoring programs over large spatial and/or long temporal scales with adequate sample replication. This greatly enhances the flexibility of the technique and improves the ability to meet quality control objectives at significantly lower cost. PMID:26346188

  9. Program

    Cancer.gov

    Through the DCIDE program, the developer of a promising diagnostic agent or probe will be given access to the pre-clinical development resources of the National Cancer Institute in a manner that is intended to remove the most common barriers between laboratory discoveries and IND status.

  10. Single Component Sorption-Desorption Test Experimental Design Approach Discussions

    SciTech Connect

    Phil WInston

    2011-09-01

    A task was identified within the fission-product-transport work package to develop a path forward for doing testing to determine behavior of volatile fission products behavior and to engage members of the NGNP community to advise and dissent on the approach. The following document is a summary of the discussions and the specific approaches suggested for components of the testing. Included in the summary isare the minutes of the conference call that was held with INL and external interested parties to elicit comments on the approaches brought forward by the INL participants. The conclusion was that an initial non-radioactive, single component test will be useful to establish the limits of currently available chemical detection methods, and to evaluated source-dispersion uniformity. In parallel, development of a real-time low-concentration monitoring method is believed to be useful in detecting rapid dispersion as well as desorption phenomena. Ultimately, the test cycle is expected to progress to the use of radio-traced species, simply because this method will allow the lowest possible detection limits. The consensus of the conference call was that there is no need for an in-core test because the duct and heat exchanger surfaces that will be the sorption target will be outside the main neutron flux and will not be affected by irradiation. Participants in the discussion and contributors to the INL approach were Jeffrey Berg, Pattrick Calderoni, Gary Groenewold, Paul Humrickhouse, Brad Merrill, and Phil Winston. Participants from outside the INL included David Hanson of General Atomics, Todd Allen, Tyler Gerczak, and Izabela Szlufarska of the University of Wisconsin, Gary Was, of the University of Michigan, Sudarshan Loyalka and Tushar Ghosh of the University of Missouri, and Robert Morris of Oak Ridge National Laboratory.

  11. Development of stir-bar sorptive extraction-thermal desorption-gas chromatography-mass spectrometry for the analysis of musks in vegetables and amended soils.

    PubMed

    Aguirre, Josu; Bizkarguenaga, Ekhiñe; Iparraguirre, Arantza; Fernández, Luis Ángel; Zuloaga, Olatz; Prieto, Ailette

    2014-02-17

    The aim of this study was to develop a sensitive and environment-friendly method based on stir-bar sorptive extraction (SBSE) followed by thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) to determine 8 synthetic musks (musk ambrette, musk ketone, celestolide, tonalide, galaxolide, phantolide, traseolide, and cashmeran) in vegetables (lettuce, carrot, and pepper) and amended soil samples. In a first step sorptive extraction was studied both in the headspace (HSSE) and in the immerse mode (SBSE). The best results were obtained in the immersion mode which was further studied. The influence of the main factors: methanol (20%) and NaCl addition (0%), extraction temperature (40°C) and time (180 min), extraction solvent volume (9 mL) and stirring rate (600 rpm) on the efficiency of SBSE was evaluated by means of experimental designs. In the case of TD, desorption time (10 min), desorption temperature (300°C), cryo-focusing temperature (-30°C), vent flow (75 mL/min) and vent pressure (7.2 psi) were studied using both a fractioned factorial design and a central composite design (CCD). The method was validated in terms of apparent recoveries (AR%), method detection limits (MDLs) and precision at two different concentration levels. Although quantification using instrumental calibration rendered odd results in most of the cases, satisfactory recoveries (74-126%) were obtained in the case of matrix-matched calibration approach for all of the analytes and matrices studied at the two concentration levels evaluated. MDLs in the range of 0.01-0.8 ng/g and 0.01-1.1 ng/g were obtained for vegetables and amended soil samples, respectively. RSD values within 1-23% were obtained for all the analytes and matrices. Finally, the method was applied to the determination of musks in vegetable and amended soil samples. PMID:24491767

  12. Coupling Desorption Electrospray Ionization with Ion Mobility/Mass Spectrometry for Analysis of Protein Structure: Evidence for Desorption of Folded and Denatured States

    E-print Network

    Clemmer, David E.

    of Protein Structure: Evidence for Desorption of Folded and Denatured States Sunnie Myung, Justin M. Wiseman is exposed to a spray that favors "denatured" structures (49:49:2 water:methanol:acetic acid)]. The results to vary, depending upon the extent to which the protein is denatured in solution and on the mildness

  13. Regeneration of field-spent activated carbon catalysts for low-temperature selective catalytic reduction of NOx with NH3

    SciTech Connect

    Jeon, Jong Ki; Kim, Hyeonjoo; Park, Young-Kwon; Peden, Charles HF; Kim, Do Heui

    2011-10-15

    In the process of producing liquid crystal displays (LCD), the emitted NOx is removed over an activated carbon catalyst by using selective catalytic reduction (SCR) with NH3 at low temperature. However, the catalyst rapidly deactivates primarily due to the deposition of boron discharged from the process onto the catalyst. Therefore, this study is aimed at developing an optimal regeneration process to remove boron from field-spent carbon catalysts. The spent carbon catalysts were regenerated by washing with a surfactant followed by drying and calcination. The physicochemical properties before and after the regeneration were investigated by using elemental analysis, TG/DTG (thermogravimetric/differential thermogravimetric) analysis, N2 adsorption-desorption and NH3 TPD (temperature programmed desorption). Spent carbon catalysts demonstrated a drastic decrease in DeNOx activity mainly due to heavy deposition of boron. Boron was accumulated to depths of about 50 {mu}m inside the granule surface of the activated carbons, as evidenced by cross-sectional SEM-EDX analysis. However, catalyst activity and surface area were significantly recovered by removing boron in the regeneration process, and the highest NOx conversions were obtained after washing with a non-ionic surfactant in H2O at 70 C, followed by treatment with N2 at 550 C.

  14. State-coupled low-temperature geothermal-resource assessment program, Fiscal Year 1979. Final technical report

    SciTech Connect

    Icerman, L.; Starkey, A.; Trentman, N.

    1980-10-01

    The results of low-temperature geothermal energy resource assessment efforts in New Mexico during the period from 1 October 1978 to 30 June 1980 are summarized. The results of the efforts to extend the inventory of geothermal energy resources in New Mexico to low-temperature geothermal reservoirs with the potential for direct heating applications are given. These efforts focused on compiling basic geothermal data and new hydrology and temperature gradient data throughout New Mexico in a format suitable for direct transfer to the US Geological Survey and the National Oceanic and Atmospheric Administration for inclusion in the GEOTHERM data file and for preparation of New Mexico low-temperature geothermal resources maps. The results of geothermal reservoir confirmation studies are presented. (MHR)

  15. Gas-cooled reactor programs: high-temperature gas-cooled reactor technology development program. Annual progress report for period ending December 31, 1981

    SciTech Connect

    Not Available

    1982-06-01

    Information is presented concerning HTGR chemistry; fueled graphite development; irradiation services for General Atomic Company; prestressed concrete pressure vessel development; HTGR structural materials; graphite development; high-temperature reactor physics studies; shielding studies; component flow test loop studies; core support performance test; and application and project assessments.

  16. Effects and Mechanisms of Mechanical Activation on Hydrogen Sorption/ Desorption of Nanoscale Lithium Nitrides

    SciTech Connect

    Shaw, Leon, L.; Yang, Gary, Z.; Crosby, Kyle; Wwan, Xufei. Zhong, Yang; Markmaitree, Tippawan; Osborn, William; Hu, Jianzhi; Kwak, Ja Hun

    2012-04-26

    The objective of this project is to investigate and develop novel, mechanically activated, nanoscale Li3N-based and LiBH4-based materials that are able to store and release {approx}10 wt% hydrogen at temperatures near 100 C with a plateau hydrogen pressure of less than 10 bar. Four (4) material systems have been investigated in the course of this project in order to achieve the project objective. These 4 systems are (i) LiNH2+LiH, (ii) LiNH2+MgH2, (iii) LiBH4, and (iv) LiBH4+MgH2. The key findings we have obtained from these 4 systems are summarized below. *The thermodynamic driving forces for LiNH2+LiH and LiBH4 systems are not adequate to enable H2 release at temperatures < 100 C. *Hydrogen release in the solid state for all of the four systems is controlled by diffusion, and thus is a slow process. *LiNH2+MgH2 and LiBH4+MgH2 systems, although possessing proper thermodynamic driving forces to allow for H2 release at temperatures < 100 C, have sluggish reaction kinetics because of their diffusion-controlled rate-limiting steps. *Reducing particles to the nanometer length scale (< 50 nm) can improve the thermodynamic driving force to enable H2 release at near ambient temperature, while simultaneously enhancing the reaction kinetics as well as changing the diffusion-controlled rate-limiting step to gas desorption-controlled rate-limiting step. This phenomenon has been demonstrated with LiBH4 and offers the hope that further work along this direction will make one of the material systems, i.e., LiBH4, LiBH4+MgH2 and LiNH2+MgH2, possess the desired thermodynamic properties and rapid H2 uptake/release kinetics for on-board applications. Many of the findings and knowledge gained from this project have been published in archival refereed journal articles [1-15] and are accessible by general public. Thus, to avoid a bulky final report, the key findings and knowledge gained from this project will be succinctly summarized, particularly for those findings and knowledge available in the public domain. However, for those findings and knowledge that have not been published yet, more detailed information will be provided. The report will be divided into 4 major sections based on the material systems investigated.

  17. Long-term Kinetics of Uranyl Desorption from Sediments Under Advective Conditions

    SciTech Connect

    Shang, Jianying; Liu, Chongxuan; Wang, Zheming; Zachara, John M.

    2014-02-15

    Long-term (> 4 months) column experiments were performed to investigate the kinetics of uranyl (U(VI)) desorption in sediments collected from the Integrated Field Research Challenge (IFRC) site at the US Department of Energy (DOE) Hanford 300 Area. The experimental results were used to evaluate alternative multi-rate surface complexation reaction (SCR) approaches to describe the short- and long-term kinetics of U(VI) desorption under flow conditions. The SCR stoichiometry, equilibrium constants, and multi-rate parameters were independently characterized in batch and stirred flow-cell reactors. Multi-rate SCR models that were either additively constructed using the SCRs for individual size fractions (e.g., Shang et al., 2011), or composite in nature could effectively describe short-term U(VI) desorption under flow conditions. The long-term desorption results, however, revealed that using a labile U concentration measured by carbonate extraction under-estimated desorbable U(VI) and the long-term rate of U(VI) desorption. An alternative modeling approach using total U as the desorbable U(VI) concentration was proposed to overcome this difficulty. This study also found that the gravel size fraction (2-8 mm), which is typically treated as non-reactive in modeling U(VI) reactive transport because of low external surface area, can have an important effect on the U(VI) desorption in the sediment. This study demonstrates an approach to effectively extrapolate U(VI) desorption kinetics for field-scale application, and identifies important parameters and uncertainties affecting model predictions.

  18. Surface and Particle-Size Effects on Hydrogen Desorption from Catalyst-Doped MgH2

    SciTech Connect

    Reich, J.M.; Wang, Lin-Lin; Johnson, Duane D.

    2012-09-04

    With their high capacity, light-metal hydrides like MgH2 remain under scrutiny as reversible H-storage materials, especially to develop control of H-desorption properties by decreasing size (ball-milling) and/or adding catalysts. By employing density functional theory and simulated annealing, we study initial H2 desorption from semi-infinite stepped rutile (110) surface and Mg31H62 nanoclusters, with(out) transition-metal catalyst dopants (Ti or Fe). While Mg31H62 structures are disordered (amorphous), the semi-infinite surfaces and nanoclusters have similar single, double, and triple H-to-metal bond configurations that yield similar H-desorption energies. Hence, there is no size effect on desorption energetics with reduction in sample size, but dopants do reduce the H-desorption energy. All desorption energies are endothermic, in contrast to a recent report.

  19. Methods for Processing and Summarizing Time-Series Temperature Data Collected as Part of the National Water-Quality Assessment Program Studies on the Effects of Urbanization on Stream Ecosystems

    USGS Publications Warehouse

    Cuffney, Thomas F.; Brightbill, Robin A.

    2008-01-01

    Temperature data and summary statistics are presented for 256 sites in 9 metropolitan areas as part of the U.S. Geological Survey National Water-Quality Assessment Program studies of the effects of urbanization on stream ecosystems. The computer program (GRAN) that was developed to derive uniform data granularity and calculate temperature statistics (means, standard deviations, rates of change, degree days) is described, as are the methods used to estimate missing daily mean temperatures, degree days (annual and summer periods), and 7-day running averages of daily mean temperatures.

  20. Desorption of Hydrogen from Si(111) by Resonant Excitation of the Si-H Vibrational Stretch Mode

    SciTech Connect

    Liu, Zhiheng; Feldman, Leonard C.; Tolk, Norman; Zhang, Zhenyu; Cohen, Philip I

    2006-01-01

    Past efforts to achieve selective bond scission by vibrational excitation have been thwarted by energy thermalization. Here we report resonant photodesorption of hydrogen from a Si(111) surface using tunable infrared radiation. The wavelength dependence of the desorption yield peaks at 0.26 electron volt: the energy of the Si-H vibrational stretch mode. The desorption yield is quadratic in the infrared intensity. A strong H/D isotope effect rules out thermal desorption mechanisms, and electronic effects are not applicable in this low-energy regime. A molecular mechanism accounting for the desorption event remains elusive.