Science.gov

Sample records for tepid supergiants chemical

  1. Cool giants and supergiants as probes of the chemical evolution of the Milky Way

    NASA Astrophysics Data System (ADS)

    Origlia, Livia

    2015-08-01

    Evolved, cool giant and supergiant stars are among the brightest populations in any stellar system and easily observable out to large distances, especially at infrared wavelengths.These stars also dominate the integrated light of star clusters in a wide range of ages, making them powerful tracers of stellar populations in more distant galaxies.The current generation of medium-high resolution spectrographs in the optical and near IR with high throughput has allowed to get accurate abundances of the most important metals in giants and supergiants, also in high reddened environments like the inner Galaxy disk and bulge and the Galactic center.In this talk I will review some of the most important results obtained so far in tracing the chemical evolution of the inner Galaxy and future perspectives with the next generation of telescopes and instrumentation.

  2. Post-Red Supergiants

    NASA Astrophysics Data System (ADS)

    Oudmaijer, R. D.; Davies, B.; de Wit, W.-J.; Patel, M.

    2009-09-01

    The yellow hypergiants are found in a stage between the massive Red Supergiants and the Wolf-Rayet stars. This paper addresses current issues concerning the evolution of massive stars, concentrating on the transitional post-Red Supergiant phase. Few yellow hypergiants are known and even fewer show direct evidence for having evolved off the Red Supergiant branch. Indeed, only two such rare objects with clear evidence for having evolved off of a previous mass losing phase are known, IRC +10420 and HD 179821. We will review their properties, discuss recent results employing near-infrared interferometry, integral field spectroscopy and polarimetry. Finally, their real-time evolution is discussed.

  3. Post-Red Supergiants

    E-print Network

    Rene Oudmaijer; Ben Davies; Willem-Jan de Wit; Mitesh Patel

    2008-01-15

    The yellow hypergiants are found in a stage between the massive Red Supergiants and the Wolf-Rayet stars. This review addresses current issues concerning the evolution of massive stars, concentrating on the transitional post-Red Supergiant phase. Few yellow hypergiants are known and even fewer show direct evidence for having evolved off the Red Supergiant branch. Indeed, only two such rare objects with clear evidence for having gone through of a previous mass losing phase are known, IRC +10420 and HD 179821. We will review their properties and present recent results employing near-infrared interferometry, integral field spectroscopy and polarimetry. Finally, their real-time evolution is discussed.

  4. Post-Red Supergiants

    E-print Network

    Oudmaijer, Rene; de Wit, Willem-Jan; Patel, Mitesh

    2008-01-01

    The yellow hypergiants are found in a stage between the massive Red Supergiants and the Wolf-Rayet stars. This review addresses current issues concerning the evolution of massive stars, concentrating on the transitional post-Red Supergiant phase. Few yellow hypergiants are known and even fewer show direct evidence for having evolved off the Red Supergiant branch. Indeed, only two such rare objects with clear evidence for having gone through of a previous mass losing phase are known, IRC +10420 and HD 179821. We will review their properties and present recent results employing near-infrared interferometry, integral field spectroscopy and polarimetry. Finally, their real-time evolution is discussed.

  5. The Winds of B Supergiants

    NASA Technical Reports Server (NTRS)

    Fullerton, A. W.; Massa, D. L.; Prinja, R. K.; Owocki, S. P.; Cranmer, S. R.

    1998-01-01

    This report summarizes the progress of the work conducted under the program "The Winds of B Supergiants," conducted by Raytheon STX Corporation. The report consists of a journal article "Wind variability in B supergiants III. Corotating spiral structures in the stellar wind of HD 64760." The first step in the project was the analysis of the 1996 time series of 2 B supergiants and an O star. These data were analyzed and reported on at the ESO workshop, "Cyclical Variability in Stellar Winds."

  6. Secular resonant dressed orbital diffusion II : application to an isolated self similar tepid galactic disc

    E-print Network

    Fouvry, Jean-Baptiste

    2015-01-01

    The main orbital signatures of the secular evolution of an isolated self-gravitating stellar Mestel disc are recovered using a dressed Fokker-Planck formalism in angle-action variables. The shot-noise-driven formation of narrow ridges of resonant orbits is recovered in the WKB limit of tightly wound transient spirals, for a tepid Toomre-stable tapered disc. The relative effect of the bulge, the halo, the disc temperature and the spectral properties of the shot noise are investigated in turn. For such galactic discs all elements seem to impact the locus and direction of the ridge. For instance, when the halo mass is decreased, we observe a transition between a regime of heating in the inner regions of the disc through the inner Lindblad resonance to a regime of radial migration of quasi-circular orbits via the corotation resonance in the outer part of the disc. The dressed secular formalism captures both the nature of collisionless systems (via their natural frequencies and susceptibility), and their nurture v...

  7. Secular resonant dressed orbital diffusion - II. Application to an isolated self-similar tepid galactic disc

    NASA Astrophysics Data System (ADS)

    Fouvry, Jean-Baptiste; Pichon, Christophe

    2015-05-01

    The main orbital signatures of the secular evolution of an isolated self-gravitating stellar Mestel disc are recovered using a dressed Fokker-Planck formalism in angle-action variables. The shot-noise-driven formation of narrow ridges of resonant orbits is recovered in the WKB limit of tightly wound transient spirals, for a tepid Toomre-stable tapered disc. The relative effect of the bulge, the halo, the disc temperature and the spectral properties of the shot noise are investigated in turn. For such galactic discs all elements seem to impact the locus and direction of the ridge. For instance, when the halo mass is decreased, we observe a transition between a regime of heating in the inner regions of the disc through the inner Lindblad resonance to a regime of radial migration of quasi-circular orbits via the corotation resonance in the outer part of the disc. The dressed secular formalism captures both the nature of collisionless systems (via their natural frequencies and susceptibility), and their nurture via the structure of the external perturbing power spectrum. Hence it provides the ideal framework in which to study their long-term evolution.

  8. Model atmospheres and spectroscopy of red supergiants

    NASA Astrophysics Data System (ADS)

    Bergemann, Maria

    2015-08-01

    Cool red supergiants are among the most complex and fascinating stars in the Universe. They can be observed to enormous distances allowing us to study the key property of their host galaxies - chemical abundances. I will review different aspects of spectroscopic diagnosis of giants and show how these impact science done with Galactic and extra-galactic observations. I will also assess the of potential of the planned instruments to provide different stellar information with new generations of models, such as the quality and families of chemical abundances in stars.

  9. Red Supergiants as Cosmic Abundance Probes

    NASA Astrophysics Data System (ADS)

    Davies, B.; Kudritzki, R.-P.; Bergemann, M.; Evans, C.; Gazak, Z.; Lardo, C.; Patrick, L.; Plez, B.; Bastian, N.

    2015-09-01

    By studying a galaxy's present-day chemical abundances, we are effectively looking at its star-forming history. Cosmological simulations of galaxy evolution make predictions about the relative metal contents of galaxies as a function of their stellar mass, a trend known as the mass-metallicity relation. These predictions can be tested with observations of nearby galaxies. However, providing reliable, accurate abundance measurements at extragalactic distances is extremely challenging. In this project, we have developed a technique to extract abundance information from individual red supergiant stars at megaparsec distances. We are currently exploiting this technique using the unique capabilities of KMOS on the VLT.

  10. The $^{13}$Carbon footprint of B[e] supergiants

    E-print Network

    Liermann, A; Schnurr, O; Fernandes, M Borges

    2010-01-01

    We report on the first detection of $^{13}$C enhancement in two B[e] supergiants in the Large Magellanic Cloud. Stellar evolution models predict the surface abundance in $^{13}$C to strongly increase during main-sequence and post-main sequence evolution of massive stars. However, direct identification of chemically processed material on the surface of B[e] supergiants is hampered by their dense, disk-forming winds, hiding the stars. Recent theoretical computations predict the detectability of enhanced $^{13}$C via the molecular emission in $^{13}$CO arising in the circumstellar disks of B[e] supergiants. To test this potential method and to unambiguously identify a post-main sequence B[e]SG by its $^{13}$CO emission, we have obtained high-quality $K$-band spectra of two known B[e] supergiants in the Large Magellanic Cloud, using the Very Large Telescope's Spectrograph for INtegral Field Observation in the Near-Infrared (VLT/SINFONI). Both stars clearly show the $^{13}$CO band emission, whose strength implies ...

  11. Atmospheres, magnetism, mass loss of red supergiant stars

    NASA Astrophysics Data System (ADS)

    Josselin, E.; Lambert, J.; Aurière, M.; Petit, P.; Ryde, N.

    2015-10-01

    Red supergiant stars (RSGs) are not only a key evolutionary stage of massive stars participating in the chemical evolution of galaxies, they also represent a fantastic and challenging laboratory of (magneto-)hydrodynamics. We present recent results and on-going research on mass loss, atmospheres, and polarimetric studies of RSGs that reveal a magnetic field of unknown origin. We discuss the potential interplay between these different processes.

  12. Secular diffusion in discrete self-gravitating tepid discs II: accounting for swing amplification via the matrix method

    E-print Network

    Fouvry, Jean-Baptiste; Magorrian, John; Chavanis, Pierre-Henri

    2015-01-01

    The secular evolution of an infinitely thin tepid isolated galactic disc made of a finite number of particles is investigated using the inhomogeneous Balescu-Lenard equation expressed in terms of angle-action variables. The matrix method is implemented numerically in order to model the induced gravitational polarization. Special care is taken to account for the amplification of potential fluctuations of mutually resonant orbits and the unwinding of the induced swing amplified transients. Quantitative comparisons with ${N-}$body simulations yield consistent scalings with the number of particles and with the self-gravity of the disc: the fewer particles and the colder the disc, the faster the secular evolution. Secular evolution is driven by resonances, but does not depend on the initial phases of the disc. For a Mestel disc with ${Q \\sim 1.5}$, the polarization cloud around each star boosts up its secular effect by a factor of the order of a thousand or more, promoting accordingly the dynamical relevance of se...

  13. Secular diffusion in discrete self-gravitating tepid discs. I. Analytic solution in the tightly wound limit

    NASA Astrophysics Data System (ADS)

    Fouvry, J. B.; Pichon, C.; Chavanis, P. H.

    2015-09-01

    The secular evolution of an infinitely thin tepid isolated galactic disc made of a finite number of particles is described using the inhomogeneous Balescu-Lenard equation. Assuming that only tightly wound transient spirals are present in the disc, a WKB approximation provides a simple and tractable quadrature for the corresponding drift and diffusion coefficients. It provides insight into the physical processes at work during the secular diffusion of a self-gravitating discrete disc and makes quantitative predictions on the initial variations of the distribution function in action space. When applied to the secular evolution of an isolated stationary self-gravitating Mestel disc, this formalism predicts the initial importance of the corotation resonance in the inner regions of the disc leading to a regime involving radial migration and heating. It predicts in particular the formation of a ridge-like feature in action space, in agreement with simulations, but over-estimates the timescale involved in its appearance. Swing amplification is likely needed to resolve this discrepancy. In astrophysics, the inhomogeneous Balescu-Lenard equation and its WKB limit may also describe the secular diffusion of giant molecular clouds in galactic discs, the secular migration and segregation of planetesimals in proto-planetary discs, or even the long-term evolution of population of stars within the Galactic centre. Appendices are available in electronic form at http://www.aanda.org

  14. Open clusters rich in red supergiants

    NASA Astrophysics Data System (ADS)

    Negueruela, Ignacio

    2015-08-01

    In the past few years, several clusters containing large numbers of red supergiants have been discovered. These clusters are amongst the most massive young clusters known in the Milky Way, with stellar masses reaching a few tens of thousands of solar masses. They have provided us, for the first time, with large homogeneous samples of red supergiants of a given age. These large populations make them, despite heavy extinction along their sightlines, powerful laboratories to understand the evolutionary status of red supergiants. While some of the clusters, such as the eponymous RSGC1, are so obscured that their members are only observable in the near-IR, at least van der Bergh-Hagen 222 is observable even in the U band, allowing for an excellent characterisation of cluster and stellar properties. The information gleaned so far from these clusters gives strong support to the idea that late-M type supergiants represent a separate class, characterised by very heavy mass loss. It also shows that the spectral-type distribution of red supergiants in the Milky Way is very strongly peaked towards M1, while providing strong hints about the possible evolutionary sequence of red supergiants. In addition, the clusters of red supergiants represent ideal tools to study metallicity in the inner regions of the Milky Way.

  15. The Winds of B Supergiants

    NASA Technical Reports Server (NTRS)

    Massa, D.; Oliversen, R. (Technical Monitor)

    2002-01-01

    We present the most suitable data sets available in the International Ultraviolet Explorer (IUE) archive for the study of time-dependent stellar winds in early B supergiants. The UV line profile variability in 11 B0 to B3 stars is analyzed, compared and discussed, based on 16 separate data sets comprising over 600 homogeneously reduced high-resolution spectrograms. The targets include 'normal' stars with moderate rotation rates and examples of rapid rotators. A gallery of grey-scale images (dynamic spectra) is presented, which demonstrates the richness and range of wind variability and highlights different structures in the winds of these stars. This work emphasises the suitability of B supergiants for wind studies, under-pinned by the fact that they exhibit unsaturated wind lines for a wide range of ionization. The wind activity of B supergiants is substantial and has highly varied characteristics. The variability evident in individual stars is classified and described in terms of discrete absorption components, spontaneous absorption, bowed structures, recurrence, and ionization variability and stratification. Similar structures can occur in stars of different fundamental parameters, but also different structures may occur in the same star at a given epoch. We discuss the physical phenomena that may be associated with the spectral signatures, and highlight the challenges that these phenomena present to theoretical studies of time-dependent outflows in massive stars. In addition, SEI line-synthesis modelling of the UV wind lines is used to provide further information about the state of the winds in our program stars. Typically the range, implied by the line profile variability, in the product of mass-loss rate and ion fraction (M (dot) q(sub i)) is a factor of approximately 1.5, when integrated between 0.2 and 0.9 v infinity; it can however be several times larger over localized velocity regions. At a given effective temperature the mean relative ion ratios can differ by a factor of 5. The general excess in predicted (forward-scattered) emission in the low velocity regime is discussed in terms of structured outflows. Mean ion fractions are estimated over the B0 to B1 spectral classes, and trends in the ionic ratios as a function of wind velocity are described. The low values obtained for the ion fractions of UV resonance lines may reflect the role of clumping in the wind.

  16. The Winds of B Supergiants

    NASA Technical Reports Server (NTRS)

    Massa, Derck; West, D. (Technical Monitor)

    2002-01-01

    We present the most suitable data sets available in the International Ultraviolet Explorer (IUE) archive for the study of time-dependent stellar winds in early B supergiants. The UV line profile variability in 11 B0 to B3 stars is analyzed, compared and discussed, based on 16 separate data sets comprising over 600 homogeneously reduced high-resolution spectrograms. The targets include 'normal' stars with moderate rotation rates and examples of rapid rotators. A gallery of grey-scale images (dynamic spectra) is presented, which demonstrates the richness and range of wind variability and highlights different structures in the winds of these stars. This work emphasizes the suitability of B supergiants for wind studies, under-pinned by the fact that they exhibit unsaturated wind lines for a wide range of ionization. The wind activity of B supergiants is substantial and has highly varied characteristics. The variability evident in individual stars is classified and described in terms of discrete absorption components, spontaneous absorption, bowed structures, recurrence, and ionization variability and stratification. Similar structures can occur in stars of different fundamental parameters but also different structures may occur in the same star at a given epoch. We discuss the physical phenomena that may be associated with the spectral signatures, and highlight the challenges that these phenomena present to theoretical studies of time-dependent outflows in massive stars. In addition, SEI line-synthesis modelling of the UV wind lines is used to provide further information about the state of the winds in our program stars. Typically the range, implied by the line profile variability, in the product of mass-loss rate and ion fraction (M qi) is a factor of approximately 1.5, when integrated between 0.2 and 0.9 v infinity; it it can however be several times larger over localized velocity regions. At a given effective temperature the mean relative ion ratios can differ by a factor of 5. The general excess in predicted (forward-scattered) emission in the low velocity regime is discussed in turns of structured outflows. Mean ion fractions are estimated over the B0 to B1 spectral classes, and trends in the ionic ratios as a function of wind velocity are described. The low values obtained for the ion fractions of UV resonance lines may reflect the role of clumping in the wind.

  17. Secular diffusion in discrete self-gravitating tepid discs II. Accounting for swing amplification via the matrix method

    NASA Astrophysics Data System (ADS)

    Fouvry, J. B.; Pichon, C.; Magorrian, J.; Chavanis, P. H.

    2015-12-01

    The secular evolution of an infinitely thin tepid isolated galactic disc made of a finite number of particles is investigated using the inhomogeneous Balescu-Lenard equation expressed in terms of angle-action variables. The matrix method is implemented numerically in order to model the induced gravitational polarisation. Special care is taken to account for the amplification of potential fluctuations of mutually resonant orbits and the unwinding of the induced swing amplified transients. Quantitative comparisons with N-body simulations yield consistent scalings with the number of particles and with the self-gravity of the disc: the fewer the particles and the colder the disc, the faster the secular evolution. Secular evolution is driven by resonances, but does not depend on the initial phases of the disc. For a Mestel disc with Q ~ 1.5, the polarisation cloud around each star boosts its secular effect by a factor of a thousand or more, accordingly promoting the dynamical relevance of self-induced collisional secular evolution. The position and shape of the induced resonant ridge are found to be in very good agreement with the prediction of the Balescu-Lenard equation, which scales with the square of the susceptibility of the disc. In astrophysics, the inhomogeneous Balescu-Lenard equation may describe the secular diffusion of giant molecular clouds in galactic discs, the secular migration and segregation of planetesimals in proto-planetary discs, or even the long-term evolution of population of stars within the Galactic centre. It could be used as a valuable check of the accuracy of N-body integrators on secular timescales. Appendices are available in electronic form at http://www.aanda.orgA copy of the linear matrix response code is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/584/A129

  18. Hybrid atmospheres and winds in supergiant stars

    NASA Technical Reports Server (NTRS)

    Hartmann, L.; Dupree, A. K.; Raymond, J. C.

    1980-01-01

    Ultraviolet spectra showing evidence for hybrid chromospheres and winds are found in the supergiant Alpha Aqr (G2 Ib) and Beta Aqr (G0 Ib). Characteristics of both solar-type transition regions and the cool chromospheric regions typical of later supergiants such as Lambda Vel (K5 Ib) are present. This suggests a gradual transition between activity and winds analogous to solar conditions and the cool, massive winds of luminous late-type stars.

  19. Red supergiants as type II supernova progenitors

    NASA Astrophysics Data System (ADS)

    Negueruela, Ignacio; Dorda, Ricardo; González-Fernández, Carlos; Marco, Amparo

    2015-08-01

    Recent searches for supernova IIp progenitors in external galaxies have led to the identification of red objects with magnitudes and colours indicative of red supergiants, in most cases implying quite low luminosities and hence masses well below 10Msol. Stellar models, on the other hand, do not predict explosions from objects below 9 Msol. What does our knowledge of local red supergiants tells us about the expected properties of such objects?We have carried out a comprehensive spectroscopic and photometric study of a sample of hundreds of red supergiants in the Milky Way and both Magellanic Clouds. We have explored correlations between different parameters and the position of stars in the HR diagrams of open clusters. At solar metallicty, there is strong evidence for a phase of very heavy mass loss at the end of the red supergiant phase, but the existence of such a phase is still not confirmed at SMC metallicities. Objects of ~ 7Msol, on the other hand, become very dusty in the SMC, and appear as very luminous Miras.Among Milky Way clusters, we find a surprising lack of objects readily identifiable as the expected 7 to 10 Msol red supergiants or AGB stars. We are carrying out an open cluster survey aimed at filling this region of the HR diagram with reliable data. Finally, we will discuss the implications of all this findings for the expected properties of supernova progenitors, as it looks unlikely that typical red supergiants may explode without undergoing further evolution.

  20. THE TEMPERATURES OF RED SUPERGIANTS

    SciTech Connect

    Davies, Ben; Kudritzki, Rolf-Peter; Gazak, Zach; Plez, Bertrand; Trager, Scott; Lancon, Ariane; Bergemann, Maria; Evans, Chris; Chiavassa, Andrea

    2013-04-10

    We present a re-appraisal of the temperatures of red supergiants (RSGs) using their optical and near-infrared spectral energy distributions (SEDs). We have obtained data of a sample of RSGs in the Magellanic Clouds using VLT+XSHOOTER, and we fit MARCS model atmospheres to different regions of the spectra, deriving effective temperatures for each star from (1) the TiO bands, (2) line-free continuum regions of the SEDs, and (3) the integrated fluxes. We show that the temperatures derived from fits to the TiO bands are systematically lower than the other two methods by several hundred kelvin. The TiO fits also dramatically overpredict the flux in the near-IR, and imply extinctions which are anomalously low compared to neighboring stars. In contrast, the SED temperatures provide good fits to the fluxes at all wavelengths other than the TiO bands, are in agreement with the temperatures from the flux integration method, and imply extinctions consistent with nearby stars. After considering a number of ways to reconcile this discrepancy, we conclude that three-dimensional effects (i.e., granulation) are the most likely cause, as they affect the temperature structure in the upper layers where the TiO lines form. The continuum, however, which forms at much deeper layers, is apparently more robust to such effects. We therefore conclude that RSG temperatures are much warmer than previously thought. We discuss the implications of this result for stellar evolution and supernova progenitors, and provide relations to determine the bolometric luminosities of RSGs from single-band photometry.

  1. Amplitude Variations in Pulsating Yellow Supergiants

    E-print Network

    Percy, John R

    2014-01-01

    It was recently discovered that the amplitudes of pulsating red giants and supergiants vary significantly on time scales of 20-30 pulsation periods. Here, we analyze the amplitude variability in 29 pulsating yellow supergiants (5 RVa, 4 RVb, 9 SRd, 7 long-period Cepheid, and 4 yellow hypergiant stars), using visual observations from the AAVSO International Database, and Fourier and wavelet analysis using the AAVSO's VSTAR package. We find that these stars vary in amplitude by factors of up to 10 or more (but more typically 3-5), on a mean time scale (L) of 33 +/- 4 pulsation periods (P). Each of the five sub-types shows this same behavior, which is very similar to that of the pulsating red giants, for which the median L/P was 31. For the RVb stars, the lengths of the cycles of amplitude variability are the same as the long secondary periods, to within the uncertainty of each.

  2. Amplitude Variations in Pulsating Yellow Supergiants

    NASA Astrophysics Data System (ADS)

    Percy, J. R.; Kim, R. Y. H.

    2014-12-01

    It was recently discovered that the amplitudes of pulsating red giants and supergiants vary significantly on time scales of 20-30 pulsation periods. Here, we analyze the amplitude variability in 29 pulsating yellow supergiants (5 RVa, 4 RVb, 9 SRd, 7 long-period Cepheid, and 4 yellow hypergiant stars), using visual observations from the AAVSO International Database, and Fourier and wavelet analysis using the AAVSO’s VSTAR package. We find that these stars vary in amplitude by factors of up to 10 or more (but more typically 3-5), on a mean time scale (L) of 33 ± 4 pulsation periods (P). Each of the five sub-types shows this same behavior, which is very similar to that of the pulsating red giants, for which the median L/P was 31. For the RVb stars, the lengths of the cycles of amplitude variability are the same as the long secondary periods, to within the uncertainty of each.

  3. Optical Interferometry of Giants and Supergiants

    NASA Astrophysics Data System (ADS)

    Kloppenborg, Brian; van Belle, Gerard

    Over the last several decades optical interferometers have made substantial gains in ability, evolving from simple two-telescope arrays with 10-m baselines that primarily measured the angular diameters of stars, to four- to six-telescope arrays with 300-m baselines that are capable of imaging objects at high spatial resolution (0.3 milli-arcseconds) and high spectral resolution (R ˜ 30, 000). This chapter highlights how optical interferometers have been used during the last three decades to study single and binary systems containing giant and supergiant stars. It reviews diameter measurements and astrometry for single and binary stars, discusses the asymmetric mass-loss processes seen in asymptotic giant-branch stars, shows how resolving stellar disks is helping to solve long-standing problems related to carbon stars, and summarizes some of the state-of-the-art techniques that are now being used to image spots and convective cells on supergiants.

  4. A homogeneous survey of red supergiants

    NASA Astrophysics Data System (ADS)

    Marco, Amparo; Dorda, Ricardo; González-Fernández, Carlos; Negueruela, Ignacio

    2015-08-01

    We have carried out a comprehensive homogeneous spectroscopic and photometric study of a sample of a few hundred red supergiants in the Milky Way, the Large Magellanic Cloud and the Small Magellanic Cloud. Our results show that global trends can be derived for many spectroscopic features independently of metallicity. The intensity of atomic Ti lines is directly correlated to spectral type, suggesting a real temperature change in the photospheric temperature. We find that the shape of the spectral energy distribution stops being directly related to surface temperature around mid-K spectral types, and becomes strongly correlated to mass loss. The distribution of spectral types is markedly different for the subset of red supergiants above a given luminosity cut, giving very strong hints of a separate evolutionary phase.

  5. Fossil dust shells around luminous supergiants

    NASA Technical Reports Server (NTRS)

    Stothers, R.

    1975-01-01

    The observed frequency with which infrared excesses appear in F, G, and K supergiants of luminosity class Ia supports the idea that these excesses arise in a 'fossil' circumstellar dust shell that was formed during a prior M-super-giant phase of evolution. The required leftward evolution of the star on the H-R diagram would then imply that the Ledoux, rather than the Schwarzschild, criterion for convective mixing is the correct criterion to use in stellar evolution calculations.

  6. Spectral Effects of Pulsations in Blue Supergiants

    NASA Astrophysics Data System (ADS)

    Tomi?, S.; Kraus, M.; Oksala, M. E.

    2015-01-01

    We have been spectroscopically monitoring a number of blue supergiants, focusing on several strategic photospheric and wind lines. Our aim is to detect line profile variability, and to determine its origin. Here, we present preliminary results for ? Leo and ? Ori. We conduct an asteroseismic analysis of Hei ?6678. We find in each star multiple periods raging from hours to several days. In addition, we observe strong, night to night variability in H?.

  7. RED SUPERGIANT STARS AS COSMIC ABUNDANCE PROBES. II. NLTE EFFECTS IN J-BAND SILICON LINES

    SciTech Connect

    Bergemann, Maria; Kudritzki, Rolf-Peter; Wuerl, Matthias; Plez, Bertrand; Davies, Ben; Gazak, Zach E-mail: Matthias.Wuerl@physik.uni-muenchen.de E-mail: zgazak@ifa.hawaii.edu E-mail: bdavies@ast.cam.ac.uk

    2013-02-20

    Medium-resolution J-band spectroscopy of individual red supergiant stars is a promising tool to investigate the chemical composition of the young stellar population in star-forming galaxies. As a continuation of recent work on iron and titanium, detailed non-LTE (NLTE) calculations are presented to investigate the influence of NLTE on the formation of silicon lines in the J-band spectra of red supergiants. Substantial effects are found resulting in significantly stronger absorption lines of neutral silicon in NLTE. As a consequence, silicon abundances determined in NLTE are significantly smaller than in local thermodynamic equilibrium (LTE) with the NLTE abundance corrections varying smoothly between -0.4 dex and -0.1 dex for effective temperatures between 3400 K and 4400 K. The effects are largest at low metallicity. The physical reasons behind the NLTE effects and the consequences for extragalactic J-band abundance studies are discussed.

  8. The Supergiants in the Andromeda and Triangulum Galaxies

    NASA Astrophysics Data System (ADS)

    Zhang, Huawei; Huang, Yang; Liu, Xiaowei; Luo, Ali; Wu, Zhenyu; Yuan, Haibo; Xiang, Maosheng; Chen, Bingqiu

    2015-08-01

    We present systematic identifications of supergiant in M31/M33 by using LAMOST spectroscopic survey. Radial velocities of nearly 1200 individual photometric candidates were derived from the spectra observed by LAMOST in its past three years spectroscopic survey. By comparing the radial velocities of the targets and those expected from M31/M33's rotation curves, we identify 113 supergiant members of M31 and 106 supergiant members of M33. So far, this is the largest supergiant sample of M31/M33 with spectra covered the full optical range (e.g. 3700Åsupergiant members and thus to constrain the stellar evolution model of massive stars.

  9. Long term variability of B supergiant winds

    NASA Technical Reports Server (NTRS)

    Massa, Derck L.

    1995-01-01

    The object of this observing proposal was to sample wind variability in B supergiants on a daily basis over a period of several days in order to determine the time scale with which density variability occurs in their winds. Three stars were selected for this project: 69 Cyg (B0 Ib), HD 164402 (B0 Ib), and HD 47240 (B1 Ib). Three grey scale representations of the Si IV lambda lambda 1400 doublet in each star are attached. In these figures, time (in days) increases upward, and the wavelength (in terms of velocity relative to the rest wavelength of the violet component of the doublet) is the abscissa. The spectra are normalized by a minimum absorption (maximum flux) template, so that all changes appear as absorptions. As a result of these observations, we can now state with some certainty that typical B supergiants develop significant wind inhomogeneities with recurrence times of a few days, and that some of these events show signs of strong temporal coherence.

  10. YELLOW SUPERGIANTS IN THE ANDROMEDA GALAXY (M31)

    SciTech Connect

    Drout, Maria R.; Massey, Philip; Meynet, Georges; Tokarz, Susan; Caldwell, Nelson E-mail: Phil.Massey@lowell.ed E-mail: tokarz@cfa.harvard.ed

    2009-09-20

    The yellow supergiant content of nearby galaxies can provide a critical test of stellar evolution theory, bridging the gap between the hot, massive stars and the cool red supergiants. But, this region of the color-magnitude diagram is dominated by foreground contamination, requiring membership to somehow be determined. Fortunately, the large negative systemic velocity of M31, coupled to its high rotation rate, provides the means for separating the contaminating foreground dwarfs from the bona fide yellow supergiants within M31. We obtained radial velocities of {approx}2900 individual targets within the correct color-magnitude range corresponding to masses of 12 M{sub sun} and higher. A comparison of these velocities to those expected from M31's rotation curve reveals 54 rank-1 (near certain) and 66 rank-2 (probable) yellow supergiant members, indicating a foreground contamination >= 96%. We expect some modest contamination from Milky Way halo giants among the remainder, particularly for the rank-2 candidates, and indeed follow-up spectroscopy of a small sample eliminates four rank 2's while confirming five others. We find excellent agreement between the location of yellow supergiants in the H-R diagram and that predicted by the latest Geneva evolutionary tracks that include rotation. However, the relative number of yellow supergiants seen as a function of mass varies from that predicted by the models by a factor of >10, in the sense that more high-mass yellow supergiants are predicted than those are actually observed. Comparing the total number (16) of >20 M{sub sun} yellow supergiants with the estimated number (24,800) of unevolved O stars indicates that the duration of the yellow supergiant phase is {approx}3000 years. This is consistent with what the 12 M{sub sun} and 15 M{sub sun} evolutionary tracks predict, but disagrees with the 20,000-80,000 year timescales predicted by the models for higher masses.

  11. Red supergiants as the progenitors of type IIp supernovae

    NASA Astrophysics Data System (ADS)

    Maund, Justyn

    2015-08-01

    The direct observation of the progenitors of supernovae has provided important tests for our understanding of the late stages of massive star evolution and how these stars will eventually explode at the ends of their lives. There has been major success in the identification of red supergiants as the progenitors of hydrogen rich Type II supernovae. Here I will review the latest results from efforts to identify red supergiant progenitors prior toexplosion, and the relationship between the properties of these stars and the general population of red supergiants.

  12. Disk winds of B[e] supergiants

    E-print Network

    F. -J. Zickgraf

    1998-12-02

    The class of B[e] supergiants is characterized by a two-component stellar wind consisting of a normal hot star wind in the polar zone and a slow and dense disk-like wind in the equatorial region. The properties of the disk wind are discussed using satellite UV spectra of stars seen edge-on, i.e. through the equatorial disk. These observations show that the disk winds are extremely slow, 50-90 km/s, i.e. a factor of about 10 slower than expected from the spectral types. Optical emission lines provide a further means to study the disk wind. This is discussed for line profiles of forbidden lines formed in the disk.

  13. Supernova Shock Breakout from a Red Supergiant

    E-print Network

    Schawinski, Kevin; Wolf, Christian; Podsiadlowski, Philipp; Sullivan, Mark; Steenbrugge, Katrien C; Bell, Tony; Roeser, Hermann-Josef; Walker, Emma; Astier, Pierre; Balam, Dave; Balland, Christophe; Basa, Stephane; Carlberg, Ray; Conley, Alex; Fouchez, Dominque; Guy, Julien; Hardin, Delphine; Hook, Isobel; Howell, Andy; Pain, Reynald; Perrett, Kathy; Pritchet, Chris; Regnault, Nicolas; Yi, Sukyoung K

    2008-01-01

    Massive stars undergo a violent death when the supply of nuclear fuel in their cores is exhausted, resulting in a catastrophic `core-collapse' supernova. Such events are usually detected long after the star has exploded. Here we report the first detection of the radiative precursor from a supernova shock before it has reached the surface of a star followed by the initial expansion of the star at the beginning of the explosion. Theoretical models of the ultraviolet light curve show that the progenitor was a red supergiant, as expected for this type of supernova. These observations provide a promising and novel way to probe the physics of core-collapse supernovae and the internal structures of their progenitors.

  14. Supernova Shock Breakout from a Red Supergiant

    E-print Network

    Kevin Schawinski; Stephen Justham; Christian Wolf; Philipp Podsiadlowski; Mark Sullivan; Katrien C. Steenbrugge; Tony Bell; Hermann-Josef Roeser; Emma Walker; Pierre Astier; Dave Balam; Christophe Balland; Ray Carlberg; Alex Conley; Dominque Fouchez; Julien Guy; Delphine Hardin; Isobel Hook; Andy Howell; Reynald Pain; Kathy Perrett; Chris Pritchet; Nicolas Regnault; Sukyoung K. Yi

    2008-07-11

    Massive stars undergo a violent death when the supply of nuclear fuel in their cores is exhausted, resulting in a catastrophic "core-collapse" supernova. Such events are usually only detected at least a few days after the star has exploded. Observations of the supernova SNLS-04D2dc with the Galaxy Evolution Explorer space telescope reveal a radiative precursor from the supernova shock before the shock reached the surface of the star and show the initial expansion of the star at the beginning of the explosion. Theoretical models of the ultraviolet light curve confirm that the progenitor was a red supergiant, as expected for this type of supernova. These observations provide a way to probe the physics of core-collapse supernovae and the internal structures of their progenitor stars

  15. Hunting for exploding red supergiant stars

    NASA Astrophysics Data System (ADS)

    Messineo, Maria; Menten, Karl M.; Figer, Donald F.; Ivanov, Valentin D.; Zhu, Qingfeng; Kudritzki, Rolf-Peter; Davies, Ben; Clark, J. Simon; Rich, Michael; Chen, Rosie; Trombley, Christine; MacKenty, John W.; Habing, Harm; Churchwell, Edward

    2015-08-01

    Red supergiants (RSGs) are among the brightest Galactic stars at infrared wavelengths. They lose mass at high-rates and, eventually, explode as supernovae, enriching the interstellar medium. I would like to present results on our ongoing searches for candidate obscured-far-luminous late-type stars, which are based on 2MASS, UKIDSS, and GLIMPSE data, on extinction-free colors(Messineo et al. 2012, A&A, 537) and on the analysis of the extinction curve along a given line-of-sight with clump stars. Messineo et al. (2014, A&A, 571, 43) spectroscopically confirmed two clusters of red supergiants, one on the Sagittarius-Carina spiral arm at a distance of ~7 kpc, and another on the Scutum-Crux arm at a distance of ~4 kpc; while Messineo et al. (2014, A&A, 569, 20) have, found several RSGs in the core of SNRs W41 and within the area covered by the SNR G22.7-0.2 in the GMC G23.3-0.3. SNR G22.7-0.2 appears to be most likely a type II SNR.Messineo , M.; Menten, K. M.; Churchwell, E.; Habing, H. 2012A&A...537A..10MMessineo, Maria; Zhu, Qingfeng; Ivanov, Valentin D.; Figer, Donald F.; Davies, Ben; Menten, Karl M.; Kudritzki, Rolf P.; Chen, C.-H. Rosie 2014A&A...571A..43MMessineo, Maria; Menten, Karl M.; Figer, Donald F.; Davies, Ben; Clark, J. Simon; Ivanov, Valentin D.; Kudritzki, Rolf-Peter; Rich, R. Michael; MacKenty, John W.; Trombley, Christine; 2014A&A...569A..20M

  16. Supergiant halos as an integral record of natural pionic radioactivity

    E-print Network

    D. B. Ion; Reveica Ion-Mihai; M. L. Ion; Adriana I. Sandru

    2004-01-09

    In this paper an unified interpretation of the supergiant halos (SGH), discovered by Grady, Walker and Laemmlein, is discussed. So, it is proved that SGH`s can be considered as integral records of the nuclear pionic radioactivity.

  17. Red Supergiants as Cosmic Abundance Probes: The Magellanic Clouds

    E-print Network

    Davies, Ben; Gazak, Zach; Plez, Bertrand; Bergemann, Maria; Evans, Chris; Patrick, Lee

    2015-01-01

    Red Supergiants (RSGs) are cool (~4000K), highly luminous stars (L - 10^5 Lsun), and are among the brightest near-infrared (NIR) sources in star-forming galaxies. This makes them powerful probes of the properties of their host galaxies, such as kinematics and chemical abundances. We have developed a technique whereby metallicities of RSGs may be extracted from a narrow spectral window around 1{\\mu}m from only moderate resolution data. The method is therefore extremely efficient, allowing stars at large distances to be studied, and so has tremendous potential for extragalactic abundance work. Here, we present an abundance study of the Large and Small Magellanic Clouds (LMC and SMC respectively) using samples of 9-10 RSGs in each. We find average abundances for the two galaxies of [Z]LMC = -0.37 +/- 0.14 and [Z]SMC = -0.53 +/- 0.16 (with respect to a Solar metallicity of Zsun=0.012). These values are consistent with other studies of young stars in these galaxies, and though our result for the SMC may appear hig...

  18. X-ray Variability in the Hot Supergiant zgr Orionis.

    PubMed

    Berghöfer, T W; Schmitt, J H

    1994-09-16

    Hot massive stars represent only a small fraction of the stellar population of the galaxy, but their enormous luminosities make them visible over large distances. Therefore, they are ideal standard candles, used to determine distances of near galaxies. Their mass loss due to supersonic winds driven by radiation pressure contributes significantly to the interstellar medium and thus to the chemical evolution of galaxies. All hot stars are soft x-ray sources; in contrast to the sun with its highly variable x-ray flux, long time scale x-ray variability is not common among hot stars. An analysis is presented here of an unusual increase in x-ray flux observed with the roentgen observatory satellite during a period of 2 days for the hot supergiant zeta Orionis, the only episode of x-ray variability that has been found in a hot star. These observations provide the most direct evidence so far for the scenario of shock-heated gas in the winds of hot stars. PMID:17770897

  19. Wind Variability in Intermediate Luminosity B Supergiants

    NASA Technical Reports Server (NTRS)

    Massa, Derck

    1996-01-01

    This study used the unique spectroscopic diagnostics of intermediate luminosity B supergiants to determine the ubiquity and nature of wind variability. Specifically, (1) A detailed analysis of HD 64760 demonstrated massive ejections into its wind, provided the first clear demonstration of a 'photospheric connection' and ionization shifts in a stellar wind; (2) The international 'IUE MEGA campaign' obtained unprecedented temporal coverage of wind variability in rapidly rotating stars and demonstrated regularly repeating wind features originating in the photosphere; (3) A detailed analysis of wind variability in the rapidly rotating B1 Ib, gamma Ara demonstrated a two component wind with distinctly different mean states at different epochs; (4) A follow-on campaign to the MEGA project to study slowly rotating stars was organized and deemed a key project by ESA/NASA, and will obtain 30 days of IUE observations in May-June 1996; and (5) A global survey of archival IUE time series identified recurring spectroscopic signatures, identified with different physical phenomena. Items 4 and 5 above are still in progress and will be completed this summer in collaboration with Raman Prinja at University College, London.

  20. A Runaway Red Supergiant in M31

    NASA Astrophysics Data System (ADS)

    Evans, Kate Anne; Massey, Philip

    2015-11-01

    A significant percentage of OB stars are runaways, so we can expect a similar percentage of their evolved descendants to also be runaways. However, recognizing such stars presents its own set of challenges, as these older, more evolved stars will have drifted farther from their birthplace, and thus their velocities might not be obviously peculiar. Several Galactic red supergiants (RSGs) have been described as likely runaways based on the existence of bow shocks, including Betelgeuse. Here we announce the discovery of a runaway RSG in M31 based on a 300 km s?1 discrepancy with M31's kinematics. The star is found about 21? (4.6 kpc) from the plane of the disk, but this separation is consistent with its velocity and likely age (?10 Myr). The star, J004330.06+405258.4, is an M2 I, with MV = ?5.7, {log}L/{L}? = 4.76, an effective temperature of 3700 K, and an inferred mass of 12–15M?. The star may be a high-mass analog of the hypervelocity stars, given that its peculiar space velocity is probably 400–450 km s?1, comparable to the escape speed from M31's disk. Observations reported here were obtained at the MMT Observatory, a joint facility of the University of Arizona and the Smithsonian Institution. This paper uses data products produced by the OIR Telescope Data Center, supported by the Smithsonian Astrophysical Observatory.

  1. A Runaway Red Supergiant in M31

    NASA Astrophysics Data System (ADS)

    Evans, Kate Anne; Massey, Philip

    2016-01-01

    A significant percentage of OB stars are runaways, so we should expect a similar percentage of their evolved descendants to also be runaways. However, recognizing such stars presents its own set of challenges, as these older, more evolved stars will have drifted further from their birthplace, and thus their velocities might not be obviously peculiar. Several Galactic red supergiants (RSGs) have been described as likely runaways, based upon the existence of bow shocks, including Betelgeuse. Here we announce the discovery of a runaway RSG in M31, based upon a 300 km s-1 discrepancy with M31's kinematics. The star is found about 21? (4.6 kpc) from the plane of the disk, but this separation is consistent with its velocity and likely age (?10 Myr). The star, J004330.06+405258.4, is an M2 I, with MV=-5.7, log L/L?=4.76, an effective temperature of 3700 K, and an inferred mass of 12-15 M?. The star may be a high-mass analog of the hypervelocity stars, given that its peculiar space velocity is probably 400-450 km s-1, comparable to the escape speed from M31's disk. K. A. E.'s work was supported by the NSF's Research Experience for Undergraduates program through AST-1461200, and P. M.'s was partially supported by the NSF through AST-1008020 and through Lowell Observatory.

  2. Another cluster of red supergiants close to RSGC1

    NASA Astrophysics Data System (ADS)

    Negueruela, I.; González-Fernández, C.; Marco, A.; Clark, J. S.; Martínez-Núñez, S.

    2010-04-01

    Context. Recent studies have revealed massive star clusters in a region of the Milky Way close to the tip of the Long Bar. These clusters are heavily obscured and are characterised by a population of red supergiants. Aims: We analyse a previously unreported concentration of bright red stars ~16' away from the cluster RSGC1 Methods: We utilised near IR photometry to identify candidate red supergiants and then K-band spectroscopy of a sample to characterise their properties. Results: We find a compact clump of eight red supergiants and five other candidates at some distance, one of which is spectroscopically confirmed as a red supergiant. These objects must form an open cluster, which we name Alicante 8. Because of the high reddening and strong field contamination, the cluster sequence is not clearly seen in 2MASS or UKIDSS near-IR photometry. From the analysis of the red supergiants, we infer an extinction AKS = 1.9 and an age close to 20 Myr. Conclusions: Though this cluster is smaller than the three known previously, its properties still suggest a mass in excess of 10 000 M?. Its discovery corroborates the hypothesis that star formation in this region has happened on a wide scale between ~10 and ~20 Myr ago.

  3. GIANO-TNG spectroscopy of red supergiants in the young star cluster RSGC3

    E-print Network

    Origlia, L; Sanna, N; Mucciarelli, A; Dalessandro, E; Scuderi, S; Baffa, C; Biliotti, V; Carbonaro, L; Falcini, G; Giani, E; Iuzzolino, M; Massi, F; Sozzi, M; Tozzi, A; Ghedina, A; Ghinassi, F; Lodi, M; Harutyunyan, A; Pedani, M

    2015-01-01

    The Scutum complex in the inner disk of the Galaxy has a number of young star clusters dominated by red supergiants that are heavily obscured by dust extinction and observable only at infrared wavelengths. These clusters are important tracers of the recent star formation and chemical enrichment history in the inner Galaxy. During the technical commissioning and as a first science verification of the GIANO spectrograph at the Telescopio Nazionale Galileo, we secured high-resolution (R=50,000) near-infrared spectra of five red supergiants in the young Scutum cluster RSGC3. Taking advantage of the full YJHK spectral coverage of GIANO in a single exposure, we were able to measure several tens of atomic and molecular lines that were suitable for determining chemical abundances. By means of spectral synthesis and line equivalent width measurements, we obtained abundances of Fe and iron-peak elements such as Ni, Cr, and Cu, alpha (O, Mg, Si, Ca, Ti), other light elements (C, N, F, Na, Al, and Sc), and some s-process...

  4. Core Hydrogen Burning Red Supergiants in the Young Globular Clusters

    NASA Astrophysics Data System (ADS)

    Szecsi, Dorottya; Mackey, Jonathan; Langer, Norbert

    2015-08-01

    The first stellar generation in galactic globular clusters contained massive low metallicity stars. We modelled the evolution of this massive stellar population and found that such stars with masses 100-600 Msun evolve into red supergiants. These red supergiants are particularly interesting because they spend not only the helium burning phase but even the last few hundres tousands of years of the core hydrogen burning phase on the RSG branch. Due to the presence of hot massive stars at the same time, we show that the RSG wind is trapped into photoionization confined shells. We simulate the shell formation around such red supergiants and find them to become gravitationally unstable. We propose a scenario in which these shells are responsible for the formation of the second generation low mass stars in globular clusters with anomalous surface abundances.

  5. Red Supergiants as Cosmic Abundance Probes: The Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Davies, Ben; Kudritzki, Rolf-Peter; Gazak, Zach; Plez, Bertrand; Bergemann, Maria; Evans, Chris; Patrick, Lee

    2015-06-01

    Red Supergiants (RSGs) are cool (˜4000 K), highly luminous stars (L˜ {{10}5} L? ), and are among the brightest near-IR sources in star-forming galaxies. This makes them powerful probes of the properties of their host galaxies, such as kinematics and chemical abundances. We have developed a technique whereby metallicities of RSGs may be extracted from a narrow spectral window around 1 ?m from only moderate resolution data. The method is therefore extremely efficient, allowing stars at large distances to be studied, and so has tremendous potential for extragalactic abundance work. Here, we present an abundance study of the Large and Small Magellanic Clouds (LMC and SMC respectively) using samples of 9-10 RSGs in each. We find average abundances for the two galaxies of {{[Z]}LMC}=-0.37+/- 0.14 and {{[Z]}SMC}=-0.53+/- 0.16 (with respect to a solar metallicity of {{Z}? }=0.012). These values are consistent with other studies of young stars in these galaxies, and though our result for the SMC may appear high it is consistent with recent studies of hot stars which find 0.5-0.8 dex below solar. Our best-fit temperatures are on the whole consistent with those from fits to the optical-infrared spectral energy distributions, which is remarkable considering the narrow spectral range being studied. Combined with our recent study of RSGs in the Galactic cluster Per OB1, these results indicate that this technique performs well over a range of metallicities, paving the way for forthcoming studies of more distant galaxies beyond the Local Group.

  6. The 13Carbon footprint of B[e] supergiants

    NASA Astrophysics Data System (ADS)

    Liermann, A.; Kraus, M.; Schnurr, O.; Fernandes, M. Borges

    2010-10-01

    We report on the first detection of 13C enhancement in two B[e] supergiants (B[e]SGs) in the Large Magellanic Cloud. Stellar evolution models predict the surface abundance in 13C to strongly increase during main-sequence and post-main-sequence evolution of massive stars. However, direct identification of chemically processed material on the surface of B[e]SGs is hampered by their dense, disc-forming winds, hiding the stars. Recent theoretical computations predict the detectability of enhanced 13C via the molecular emission in 13CO arising in the circumstellar discs of B[e]SGs. To test this potential method and to unambiguously identify a post-main-sequence B[e] SG by its 13CO emission, we have obtained high-quality K-band spectra of two known B[e] SGs in the Large Magellanic Cloud, using the Very Large Telescope's Spectrograph for INtegral Field Observation in the Near-Infrared (VLT/SINFONI). Both stars clearly show the 13CO band emission, whose strength implies a strong enhancement of 13C, in agreement with theoretical predictions. This first ever direct confirmation of the evolved nature of B[e]SGs thus paves the way to the first identification of a Galactic B[e]SG. Based on observations collected with the ESO VLT Paranal Observatory under programme 384.D-1078(A). E-mail: liermann@mpifr-bonn.mpg.de (AL); kraus@sunstel.asu.cas.cz (MK); oschnurr@aip.de (OS); borges@on.br (MBF)

  7. Wind emission of OB supergiants and the influence of clumping

    E-print Network

    Michaela Kraus; Jiri Kubat; Jiri Krticka

    2007-08-06

    The influence of the wind to the total continuum of OB supergiants is discussed. For wind velocity distributions with \\beta > 1.0, the wind can have strong influence to the total continuum emission, even at optical wavelengths. Comparing the continuum emission of clumped and unclumped winds, especially for stars with high \\beta values, delivers flux differences of up to 30% with maximum in the near-IR. Continuum observations at these wavelengths are therefore an ideal tool to discriminate between clumped and unclumped winds of OB supergiants.

  8. Spectroscopic studies of yellow supergiants in the open cluster NGC 129

    NASA Astrophysics Data System (ADS)

    Usenko, I. A.

    2015-09-01

    Spectroscopic studies of three yellow supergiants in the open cluster NGC 129, the classical Cepheid DL Cas, SAO 21450, and SAO 21482, have been performed on the basis of high-resolution spectra. For the two nonvariable cluster supergiants, the atmospheric parameters and chemical composition have been determined for the first time. SAO 21450 ( T eff = 6541 ± 16 K, log g = 2.00, V t = 4.20 km s-1) has nearly solar abundances of the key elements in the evolution of yellow supergiants (CNO, Na, Mg, and Al), while SAO 21482 ( T eff = 4506 ± 50 K, log g = 1.10, V t = 9.90 km s-1) exhibits an overabundance of carbon ([C/H] = +0.34 dex) and aluminum and nearly solar N, O, Na, and Mg abundances. The abundances of the key elements in the Cepheid DL Cas are typical for an object that has passed the first dredge-up: a C underabundance, N and Na overabundances, and nearly solar O, Mg, and Al abundances. In all objects, the abundances of iron [Fe/H] = -0.01 dex, ?-elements, Fe-peak elements, and r- and s-process elements are virtually identical and nearly solar. The radial velocities of SAO 21482 measured from metal absorption lines have confirmed its membership in NGC 129. The knifelike shape of the H ? and H ? line profiles in SAO 21482 and the asymmetry of the Mg Ib 5183.618 Å line in SAO 21482 and DL Cas as well as the absorption lines of neutral atoms and ions of metals in the Cepheid suggest the existence of extended gaseous envelopes around them. The positions of the objects on the T eff- L diagram among the tracks of evolutionary masses for the objects show the following: (1) the primary component of SAO 21450 has a mass of 6.6 M ? and approaches the blue edge of the Cepheid instability strip (CIS) for the first time, while its companion of possible spectral type B5 V has a mass of 4.8 M ?; (2) DL Cas is on the path of its CIS with a mass of 5.8 M ? and has lost ~1.5 M ? after the first dredge-up; (3) SAO 21482 with a mass of no more than 7.3 M ? has passed the red edge of the CIS and probably enters the asymptotic giant branch. The theoretical CNO abundance estimates based on evolutionary tracks approximately coincide with the observed ones, while the age estimates for the supergiants are close to the mean cluster age, (7.6 ± 0.4) × 107 yr.

  9. Magnetic Braking of Stellar Cores in Red Giants and Supergiants

    NASA Astrophysics Data System (ADS)

    Maeder, André; Meynet, Georges

    2014-10-01

    Magnetic configurations, stable on the long term, appear to exist in various evolutionary phases, from main-sequence stars to white dwarfs and neutron stars. The large-scale ordered nature of these fields, often approximately dipolar, and their scaling according to the flux conservation scenario favor a fossil field model. We make some first estimates of the magnetic coupling between the stellar cores and the outer layers in red giants and supergiants. Analytical expressions of the truncation radius of the field coupling are established for a convective envelope and for a rotating radiative zone with horizontal turbulence. The timescales of the internal exchanges of angular momentum are considered. Numerical estimates are made on the basis of recent model grids. The direct magnetic coupling of the core to the extended convective envelope of red giants and supergiants appears unlikely. However, we find that the intermediate radiative zone is fully coupled to the core during the He-burning and later phases. This coupling is able to produce a strong spin down of the core of red giants and supergiants, also leading to relatively slowly rotating stellar remnants such as white dwarfs and pulsars. Some angular momentum is also transferred to the outer convective envelope of red giants and supergiants during the He-burning phase and later.

  10. Magnetic braking of stellar cores in red giants and supergiants

    SciTech Connect

    Maeder, André; Meynet, Georges E-mail: georges.meynet@unige.ch

    2014-10-01

    Magnetic configurations, stable on the long term, appear to exist in various evolutionary phases, from main-sequence stars to white dwarfs and neutron stars. The large-scale ordered nature of these fields, often approximately dipolar, and their scaling according to the flux conservation scenario favor a fossil field model. We make some first estimates of the magnetic coupling between the stellar cores and the outer layers in red giants and supergiants. Analytical expressions of the truncation radius of the field coupling are established for a convective envelope and for a rotating radiative zone with horizontal turbulence. The timescales of the internal exchanges of angular momentum are considered. Numerical estimates are made on the basis of recent model grids. The direct magnetic coupling of the core to the extended convective envelope of red giants and supergiants appears unlikely. However, we find that the intermediate radiative zone is fully coupled to the core during the He-burning and later phases. This coupling is able to produce a strong spin down of the core of red giants and supergiants, also leading to relatively slowly rotating stellar remnants such as white dwarfs and pulsars. Some angular momentum is also transferred to the outer convective envelope of red giants and supergiants during the He-burning phase and later.

  11. Evolution of blue supergiants and ? Cygni variables: puzzling CNO surface abundances

    NASA Astrophysics Data System (ADS)

    Saio, Hideyuki; Georgy, Cyril; Meynet, Georges

    2013-08-01

    A massive star can enter the blue supergiant region either by evolving directly from the main sequence, or by evolving from a previous red supergiant stage. The fractions of the blue supergiants with different histories depend on the internal mixing and mass loss during the red supergiant stage. We study the possibility of using diagnostics based on stellar pulsation to discriminate blue supergiants with different evolution histories. For this purpose, we have studied the pulsation property of massive star models calculated with the Geneva stellar evolution code, for initial masses ranging from 8 to 50 M?, with a solar metallicity of Z = 0.014. We have found that radial pulsations are excited in the blue supergiant region only in models that had been red supergiants previously. This might provide us with a useful means of diagnosing the history of evolution of each blue supergiant. At a given effective temperature, many more non-radial pulsations are excited in the model after the red supergiant stage than in the model evolving towards the red supergiant. We discuss the properties of radial and non-radial pulsations in blue supergiants, and we compare predicted periods with the period ranges observed in some ? Cygni variables in the Galaxy and NGC 300. We have found that blue supergiant models after the red supergiant stage roughly agree with observed period ranges, in most cases. However, we are left with the puzzle that the predicted surface N/C and N/O ratios seem to be too high compared with those of Deneb and Rigel.

  12. GIANO-TNG spectroscopy of red supergiants in the young star cluster RSGC3

    NASA Astrophysics Data System (ADS)

    Origlia, L.; Oliva, E.; Sanna, N.; Mucciarelli, A.; Dalessandro, E.; Scuderi, S.; Baffa, C.; Biliotti, V.; Carbonaro, L.; Falcini, G.; Giani, E.; Iuzzolino, M.; Massi, F.; Sozzi, M.; Tozzi, A.; Ghedina, A.; Ghinassi, F.; Lodi, M.; Harutyunyan, A.; Pedani, M.

    2016-01-01

    Aims: The Scutum complex in the inner disk of the Galaxy has a number of young star clusters dominated by red supergiants that are heavily obscured by dust extinction and observable only at infrared wavelengths. These clusters are important tracers of the recent star formation and chemical enrichment history in the inner Galaxy. Methods: During the technical commissioning and as a first science verification of the GIANO spectrograph at the Telescopio Nazionale Galileo, we secured high-resolution (R ? 50 000) near-infrared spectra of five red supergiants in the young Scutum cluster RSGC3. Results: Taking advantage of the full YJHK spectral coverage of GIANO in a single exposure, we were able to measure several tens of atomic and molecular lines that were suitable for determining chemical abundances. By means of spectral synthesis and line equivalent width measurements, we obtained abundances of Fe and iron-peak elements such as Ni, Cr, and Cu, alpha (O, Mg, Si, Ca, Ti), other light elements (C, N, F, Na, Al, and Sc), and some s-process elements (Y, Sr). We found average half-solar iron abundances and solar-scaled [X/Fe] abundance patterns for most of the elements, consistent with a thin-disk chemistry. We found depletion of [C/Fe] and enhancement of [N/Fe], consistent with standard CN burning, and low 12C /13C abundance ratios (between 9 and 11), which require extra-mixing processes in the stellar interiors during the post-main sequence evolution. We also found local standard of rest VLSR = 106 km s-1 and heliocentric Vhel = 90 km s-1 radial velocities with a dispersion of 2.3 km s-1. Conclusions: The inferred radial velocities, abundances, and abundance patterns of RSGC3 are very similar to those previously measured in the other two young clusters of the Scutum complex, RSGC1 and RSGC2, suggesting a common kinematics and chemistry within the Scutum complex.

  13. On the Dynamic Stability of Cool Supergiant Atmospheres

    E-print Network

    Lobel, A

    2001-01-01

    We have developed a new formalism to compute the thermodynamic coefficient Gamma1 in the theory of stellar and atmospheric stability. We generalize the classical derivation of the first adiabatic index, which is based on the assumption of thermal ionization and equilibrium between gas and radiation temperature, towards an expression which incorporates photo-ionization due to radiation with a temperature T_rad different from the local kinetic gas temperature.Our formalism considers the important non-LTE conditions in the extended atmospheres of supergiant stars. An application to the Kurucz grid of cool supergiant atmospheres demonstrates that models with T_rad =~ T_eff between 6500 K and 7500 K become most unstable against dynamic perturbations, according to Ledoux' stability integral . This results from Gamma1 and acquiring very low values, below 4/3, throughout the entire stellar atmosphere, which causes very high gas compression ratios around these effective temperatures. Based on detailed NLTE-calculatio...

  14. Revisiting the Red Supergiant Progenitors of Core-Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Van Dyk, Schuyler Dana

    2015-08-01

    I will present a reanalysis of the properties of the red supergiant (RSG) progenitors of several extragalactic core-collapse, Type II-Plateau supernovae, including SN 2012aw, SN 2013ej, SN 2004et, and SN 2008bk. The observed spectral energy distributions (SEDs) for these stars, from the optical to the infrared, are compared with model SEDs for Galactic RSGs, as well as with the observed SEDs of analogous RSGs in Local Group galaxies. As a result, new estimates of the stellar temperatures and luminosities for the progenitors are obtained, and through comparison with recent massive stellar evolutionary tracks, new inferences are made for the progenitors’ initial masses. I will place these in the context of the RSG SN progenitor mass spectrum and of the so-called “red supergiant problem.”

  15. Yellow Hypergiants as Dynamically Unstable Post-Red-supergiant Stars

    NASA Technical Reports Server (NTRS)

    Stothers, Richard B.; Chin, Chao-wen; Hansen, James E. (Technical Monitor)

    2001-01-01

    According to recent theoretical studies, the majority of single stars more massive than 30 solar mass successfully evolve into red supergiants, but then lose most of their hydrogen envelopes and metamorphose into hot blue remnants. While they are cool, they become dynamically unstable as a result of high radiation pressure and partial ionization of the gases in their outer layers. It is shown here that these unstable red-supergiant models repeatedly shrink and re-expand on a thermal time scale when perturbed by heavy bursts of mass loss. Consequently, they fill up the domain of yellow hypergiants on the Hertzsprung-Russell diagram and display very fast rates of evolution there, as observed.

  16. Unveiling the evolutionary phase of B[e] supergiants

    NASA Astrophysics Data System (ADS)

    Muratore, M. F.; Kraus, M.; Liermann, A.; Schnurr, O.; Cidale, L. S.; Arias, M. L.

    We obtained medium resolution K-band spectra for two B[e] supergiants and one yellow hypergiant (YHG) in the Large Magellanic Cloud (LMC) and found that the spectra of all three stars show enhanced 13CO band emis- sion, in agreement with theoretical predictions for evolved massive stars. Our preliminary results for the two B[e]SGs seem to indicate that one is a pre-RSG star while the other is in a post-RSG phase.

  17. Hydrogen neutral outflowing disks of B[e] supergiants

    E-print Network

    M. Kraus; M. Borges Fernandes; F. X. de Araujo

    2007-02-14

    The [O I] line emission of the LMC B[e] supergiant R126 is modeled with an outflowing disk scenario. We find that hydrogen in the disk must be ionized by less than 0.1%, meaning that the disk material is predominantly neutral. The free-free emission is calculated from the polar wind, and the minimum density contrast between disk and polar wind is found to be ~10.

  18. On the Dynamic Stability of Cool Supergiant Atmospheres

    E-print Network

    A. Lobel

    2001-06-28

    We have developed a new formalism to compute the thermodynamic coefficient Gamma1 in the theory of stellar and atmospheric stability. We generalize the classical derivation of the first adiabatic index, which is based on the assumption of thermal ionization and equilibrium between gas and radiation temperature, towards an expression which incorporates photo-ionization due to radiation with a temperature T_rad different from the local kinetic gas temperature.Our formalism considers the important non-LTE conditions in the extended atmospheres of supergiant stars. An application to the Kurucz grid of cool supergiant atmospheres demonstrates that models with T_rad =~ T_eff between 6500 K and 7500 K become most unstable against dynamic perturbations, according to Ledoux' stability integral . This results from Gamma1 and acquiring very low values, below 4/3, throughout the entire stellar atmosphere, which causes very high gas compression ratios around these effective temperatures. Based on detailed NLTE-calculations, we discuss atmospheric instability of pulsating massive yellow supergiants, like the hypergiant rho Cas (Ia+), which exist in the extension of the Cepheid instability strip, near the Eddington luminosity limit.

  19. UV emission from he M1 supergiant TV Gem

    NASA Technical Reports Server (NTRS)

    Michalitsianos, A. G.; Kafatos, M.

    1982-01-01

    Low and high dispersion ultraviolet spectra were obtained of the M1 supergiant TV Gem with IUE. Previous IUE observations of this late type supergiant revealed unexpected UV continuum emission, perhaps arising from an early B companion. Low resolution spectra obtained approximately one year apart suggest that the strong Si III in combination perhaps with O I at wavelengths approximately 1300 A varies considerably with time. Large variation in the column density is required to explain these changes. Sporadic mass expulsion with mass loss rates dM/dt approximately 0.00001 solar mass yr minus 1st power from the M supergiant could lead to a dense circumstellar wind near the hot early companion, and thus could account for these observed variations in equivalent width. The high resolution spectrum in the 2000 to 3200 A wavelength range is characterized by narrow absorption lines primarily due to Fe II, Mn II and Mg II (h and k), which are skewed in profile with an extended red wing. This profile structure is tentatively attributed to interstellar absorption and an intervening differentially moving cloud in the direction of Gem OB1, of which TV Gem is a known association member.

  20. B[e] supergiants: What is their evolutionary status?

    E-print Network

    N. Langer; A. Heger

    1997-11-25

    In this paper, we investigate the evolutionary status of B[e]~stars from the point of view of stellar evolution theory. We try to answer to the question of how massive hot supergiants --- i.e. evolved stars --- can be capable of producing a circumstellar disk. We find and discuss three possibilities: very massive evolved main sequence stars close to critical rotation due to their proximity to their Eddington-limit, blue supergiants which have just left the red supergiant branch, and single star merger remnants of a close binary system. While the latter process seems to be required to understand the properties of the spectroscopic binary R4 in the LMC, the other two scenarios may be capable of explaining the distribution of the B[e] stars in the HR~diagram. The three scenarios make different predictions about the duration of the B[e]~phase, the time integrated disk mass and the stellar properties during the B[e]~phase, which may ultimately allow to distinguish them observationally.

  1. Luminosities for two yellow supergiants - Nonvariables and the instability strip

    NASA Technical Reports Server (NTRS)

    Evans, Nancy R.

    1993-01-01

    The luminosities for two yellow supergiants HD 183864 and Psi And = HD 223047 are determined from the IUE spectra of their hot companions. The absolute magnitudes of HD 183864 and HD 223047 are -2.3 and -2.1 mag, respectively, and their companions have spectral types of A0.0 V and B8.8 V. The companion of Psi And is compatible with the orbital motion tentatively detected by speckle interferometric observations. The supergiant luminosities are combined with the Cepheid luminosities determined in the same way, and also the variables and nonvariables from Schmidt's studies of open clusters. As found by Schmidt, the variable and nonvariable supergiants have almost no overlap in the HR diagram. The combined sample defines the locus of the helium burning blue loops of evolutionary tracks. Because no nonvariables are found to the blue of fainter Cepheids, the observed blue edge of the Cepheid region may be partly determined by the blue loops rather than by the region of pulsational instability.

  2. Evolution of blue supergiants and \\alpha Cygni variables; Puzzling CNO surface abundances

    E-print Network

    Saio, Hideyuki; Meynet, Georges

    2013-01-01

    A massive star can enter the blue supergiant region either evolving directly from the main-sequence, or evolving from a previous red supergiant stage. The fractions of the blue supergiants having different histories depend on the internal mixing and mass-loss during the red supergiant stage. We study the possibility to use diagnostics based on stellar pulsation to discriminate blue supergiants having different evolution histories. For this purpose we have studied the pulsation property of massive star models calculated with the Geneva stellar evolution code for initial masses ranging from 8 to 50 M$_\\odot$ with a solar metallicity of $Z=0.014$. We have found that radial pulsations are excited in the blue-supergiant region only in the models that had been red-supergiants before. This would provide us with a useful mean to diagnose the history of evolution of each blue-supergiant. At a given effective temperature, much more nonradial pulsations are excited in the model after the red-supergiant stage than in the...

  3. Spectroscopic Study of HD 179821 (IRAS 19114+0002): Proto-Planetary Nebula or Supergiant?

    NASA Technical Reports Server (NTRS)

    Reddy, B. E.; Hrivnak, Bruce J.

    1999-01-01

    A detailed chemical composition analysis of the bright post-AGB candidate HD 179821 (IRAS 19114 + 0002) is presented. The LTE analysis, based on high-resolution (R approximately equal 50,000) and high-quality (S/N approximately equal 300) spectra, yields atmospheric parameters T(sub eff) = 6750 K, log g = 0.5, and xi(sub t) = 5.25 km/s. The elemental abundance results of HD 179821 are found to be [Fe/H] = -0.1, [C/Fe] = +0.2, [N/Fe] = +1.3, [O/Fe] = +0.2, [alpha-process/Fe] = +0.5, and [s-process/Fe] = +0.4. These values clearly differ from the elemental abundances of Population I F supergiants. The C, N, and O abundances and the total CNO abundance value relative to Fe, [C+N+O/Fe] = +0.5, indicate that the photosphere of HD 179821 is contaminated with both the H- and He-burning products of the AGB phase. The evidence for He burning through the 3.alpha process and deep AGB mixing also comes from the observed overabundances of s-process elements. Remarkably, the abundance of the element Na is found to be very large, [Na/Fe] = +0.9. The ratio O/C = 2.6 indicates that the atmosphere is oxygen rich. The results of this abundance study support the argument that HD 179821 is a proto-planetary nebula,. probably with an intermediate-mass progenitor. However, the strength of the O I triplet lines at 7774 A and the distance derived from the interstellar Na I D1 and D2 components imply that the star is a luminous object (M(sub bol) approximately -8.9 +/- 1) and thus a massive supergiant. Thus, while this study contributes important new observational results for this star, an unambiguous determination of its evolutionary status has yet to be achieved.

  4. Disk Tracing for B[e] Supergiants in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Maravelias, G.; Kraus, M.; Aret, A.

    2015-12-01

    B[e] supergiants are evolved massive stars with a complex circumstellar environment. A number of important emission features probe the structure and the kinematics of the circumstellar material. In our survey of Magellanic Cloud B[e] supergiants we focus on the [OI] and [CaII] emission lines, which we identified in four more objects.

  5. The blue supergiant MN18 and its bipolar circumstellar nebula

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.; Kniazev, A. Y.; Bestenlehner, J. M.; Bodensteiner, J.; Langer, N.; Greiner, J.; Grebel, E. K.; Berdnikov, L. N.; Beletsky, Y.

    2015-11-01

    We report the results of spectrophotometric observations of the massive star MN18 revealed via discovery of a bipolar nebula around it with the Spitzer Space Telescope. Using the optical spectrum obtained with the Southern African Large Telescope, we classify this star as B1 Ia. The evolved status of MN18 is supported by the detection of nitrogen overabundance in the nebula, which implies that it is composed of processed material ejected by the star. We analysed the spectrum of MN18 by using the code CMFGEN, obtaining a stellar effective temperature of ?21 kK. The star is highly reddened, E(B - V) ? 2 mag. Adopting an absolute visual magnitude of MV = -6.8 ± 0.5 (typical of B1 supergiants), MN18 has a luminosity of log L/L? ? 5.42 ± 0.30, a mass-loss rate of ?(2.8-4.5) × 10- 7 M? yr- 1, and resides at a distance of ?5.6^{+1.5} _{-1.2} kpc. We discuss the origin of the nebula around MN18 and compare it with similar nebulae produced by other blue supergiants in the Galaxy (Sher 25, HD 168625, [SBW2007] 1) and the Large Magellanic Cloud (Sk-69°202). The nitrogen abundances in these nebulae imply that blue supergiants can produce them from the main-sequence stage up to the pre-supernova stage. We also present a K-band spectrum of the candidate luminous blue variable MN56 (encircled by a ring-like nebula) and report the discovery of an OB star at ?17 arcsec from MN18. The possible membership of MN18 and the OB star of the star cluster Lynga 3 is discussed.

  6. THE YELLOW AND RED SUPERGIANTS OF M33

    SciTech Connect

    Drout, Maria R.; Massey, Philip; Meynet, Georges E-mail: phil.massey@lowell.edu

    2012-05-10

    Yellow and red supergiants are evolved massive stars whose numbers and locations on the Hertzsprung-Russell (H-R) diagram can provide a stringent test for models of massive star evolution. Previous studies have found large discrepancies between the relative number of yellow supergiants (YSGs) observed as a function of mass and those predicted by evolutionary models, while a disagreement between the predicted and observed locations of red supergiants (RSGs) on the H-R diagram was only recently resolved. Here, we extend these studies by examining the YSG and RSG populations of M33. Unfortunately, identifying these stars is difficult as this portion of the color-magnitude diagram is heavily contaminated by foreground dwarfs. We identify the RSGs through a combination of radial velocities and a two-color surface gravity discriminant, and after re-characterizing the rotation curve of M33 with our newly selected RSGs, we identify the YSGs through a combination of radial velocities and the strength of the O I {lambda}7774 triplet. We examine {approx}1300 spectra in total and identify 121 YSGs (a sample that is unbiased in luminosity above log (L/L{sub Sun }) {approx} 4.8) and 189 RSGs. After placing these objects on the H-R diagram, we find that the latest generation of Geneva evolutionary tracks shows excellent agreement with the observed locations of our RSGs and YSGs, the observed relative number of YSGs with mass, and the observed RSG upper mass limit. These models therefore represent a drastic improvement over previous generations.

  7. Magnetic main sequence stars as progenitors of blue supergiants

    NASA Astrophysics Data System (ADS)

    Petermann, I.; Castro, N.; Langer, N.

    2015-01-01

    Blue supergiants (BSGs) to the right the main sequence band in the HR diagram can not be reproduced by standard stellar evolution calculations. We investigate whether a reduced convective core mass due to strong internal magnetic fields during the main sequence might be able to recover this population of stars. We perform calculations with a reduced mass of the hydrogen burning convective core of stars in the mass range 3-30 M ? in a parametric way, which indeed lead to BSGs. It is expected that these BSGs would still show large scale magnetic fields in the order of 10 G.

  8. Blue supergiants as descendants of magnetic main sequence stars

    NASA Astrophysics Data System (ADS)

    Petermann, I.; Langer, N.; Castro, N.; Fossati, L.

    2015-12-01

    About 10% of the massive main sequence stars have recently been found to host a strong, large scale magnetic field. Both, the origin and the evolutionary consequences of these fields are largely unknown. We argue that these fields may be sufficiently strong in the deep interior of the stars to suppress convection near the outer edge of their convective core. We performed parametrised stellar evolution calculations and assumed a reduced size of the convective core for stars in the mass range 16M? to 28M? from the zero age main sequence until core carbon depletion. We find that such models avoid the coolest part of the main sequence band, which is usually filled by evolutionary models that include convective core overshooting. Furthermore, our "magnetic" models populate the blue supergiant region during core helium burning, i.e., the post-main sequence gap left by ordinary single star models, and some of them end their life in a position near that of the progenitor of Supernova 1987A in the Hertzsprung-Russell diagram. Further effects include a strongly reduced luminosity during the red supergiant stage, and downward shift of the limiting initial mass for white dwarf and neutron star formation.

  9. A new survey of cool supergiants in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    González-Fernández, Carlos; Dorda, Ricardo; Negueruela, Ignacio; Marco, Amparo

    2015-06-01

    Aims: In this study we conduct a pilot program aimed at the red supergiant population of the Magellanic Clouds. We intend to extend the current known sample to the unexplored low end of the brightness distribution of these stars, building a more representative dataset with which to extrapolate their behaviour to other Galactic and extra-galactic environments. Methods: We select candidates using only near infrared photometry, and with medium resolution multi-object spectroscopy, we perform spectral classification and derive their line-of-sight velocities, confirming the nature of the candidates and their membership in the clouds. Results: Around two hundred new red supergiants have been detected, hinting at a yet to be observed large population. Using near- and mid-infrared photometry we study the brightness distribution of these stars, the onset of mass-loss, and the effect of dust in their atmospheres. Based on this sample, new a priori classification criteria are investigated, combining mid- and near-infrared photometry to improve the observational efficiency of similar programs to this. The catalogue of observed sources is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/578/A3

  10. YELLOW AND RED SUPERGIANTS IN THE LARGE MAGELLANIC CLOUD

    SciTech Connect

    Neugent, Kathryn F.; Massey, Philip; Skiff, Brian; Meynet, Georges E-mail: phil.massey@lowell.edu E-mail: georges.meynet@unige.ch

    2012-04-20

    Due to their transitionary nature, yellow supergiants (YSGs) provide a critical challenge for evolutionary modeling. Previous studies within M31 and the Small Magellanic Cloud show that the Geneva evolutionary models do a poor job at predicting the lifetimes of these short-lived stars. Here, we extend this study to the Large Magellanic Cloud (LMC) while also investigating the galaxy's red supergiant (RSG) content. This task is complicated by contamination by Galactic foreground stars that color and magnitude criteria alone cannot weed out. Therefore, we use proper-motions and the LMC's large systemic radial velocity ({approx}278 km s{sup -1}) to separate out these foreground dwarfs. After observing nearly 2000 stars, we identified 317 probable YSGs, 6 possible YSGs, and 505 probable RSGs. Foreground contamination of our YSG sample was {approx}80%, while that of the RSG sample was only 3%. By placing the YSGs on the Hertzsprung-Russell diagram and comparing them against the evolutionary tracks, we find that new Geneva evolutionary models do an exemplary job at predicting both the locations and the lifetimes of these transitory objects.

  11. Clump Accretion in Supergiant Fast X-Ray Transients

    NASA Astrophysics Data System (ADS)

    Chase, Eve; Raymer, E.; Blondin, J. M.

    2014-01-01

    Supergiant Fast X-Ray Transients (SFXTs) are a subclass of High-Mass X-Ray Binaries that consist of a neutron star and OB supergiant donor star. These systems display short, bright x-ray flares lasting a few minutes to a few hours with luminosities reaching 1036 erg/s, several orders of magnitude larger than the quiescent luminosities of 1032 erg/s. The clumpy wind hypothesis has been proposed as a possible mechanism for these transient flares; in this model, a portion of the stellar wind from the donor star forms into clumps and is accreted onto the neutron star, inducing flares. We use high-resolution 3D hydrodynamic simulations to test the clumpy wind hypothesis, tracking the mass and angular momentum accretion rates to infer properties of the resulting x-ray flare and secular evolution of the neutron star rotation. Our results are significantly different from the predictions of Hoyle-Lyttleton Accretion (HLA) theory, which assume steady, laminar, axisymmetric flow. For example, an off-axis clump initiated with an impact parameter greater than the clump radius (for which HLA predicts no effect) produces a small spike in mass accretion and induces a long period of disk-like flow that dramatically reduces the accretion rate below the steady HLA value. The result is a brief, weak flare with a net decrease in total accreted mass compared with steady wind accretion accompanied by a substantial accretion of angular momentum.

  12. On the atmospheric structure and fundamental parameters of red supergiants

    NASA Astrophysics Data System (ADS)

    Wittkowski, M.; Arroyo-Torres, B.; Marcaide, J. M.; Abellan, F. J.; Chiavassa, A.; Freytag, B.; Scholz, M.; Wood, P. R.; Hauschildt, P. H.

    2015-01-01

    We present near-infrared spectro-interferometric studies of red supergiant (RSG) stars using the VLTI/AMBER instrument, which are compared to previously obtained similar observations of AGB stars. Our observations indicate spatially extended atmospheric molecular layers of water vapor and CO, similar as previously observed for Mira stars. Data of VY~CMa indicate that the molecular layers are asymmetric, possibly clumpy. Thanks to the spectro-interferometric capabilities of the VLTI/AMBER instrument, we can isolate continuum bandpasses, estimate fundamental parameters of our sources, locate them in the HR diagram, and compare their positions to recent evolutionary tracks. For the example of VY CMa, this puts it close to evolutionary tracks of initial mass 25-32 M ?. Comparisons of our data to hydrostatic model atmospheres, 3d simulations of convection, and 1d dynamic model atmospheres based on self-excited pulsation models indicate that none of these models can presently explain the observed atmospheric extensions for RSGs. The mechanism that levitates the atmospheres of red supergiant is thus a currently unsolved problem.

  13. Spectroscopic studies of four southern-hemisphere G-K supergiants: HD 192876 (?1 Cap), HD 194215 (HR 7801), HD 206834 (c Cap), and HD 222574 (104 Aqr)

    NASA Astrophysics Data System (ADS)

    Usenko, I. A.; Kniazev, A. Yu.; Berdnikov, L. N.; Kravtsov, V. V.

    2015-11-01

    We have studied the high-resolution spectra taken with the 1.9-m telescope of the South African Astronomical Observatory for four supergiants that are deemed to be nonvariable and to lie beyond the red edge of the Cepheid instability strip (CIS): HD 192876, HD 194215, HD 206834, and HD 222574. The atmospheric parameters, reddenings, luminosities, distances, radii, and chemical composition have been determined for these stars. Based on these results, we have ascertained thatHD194215 is not a mainsequence star but an ordinary supergiant. All objects exhibit a nearly solar metallicity. The abundances of carbon and oxygen in HD 194215 and HD 206834 are nearly solar, while they are underabundant in HD 192876 and HD 222574. The abundances of sodium, magnesium, and aluminum are different for all objects, while those of the remaining elements are nearly solar. For HD 206834, the measured radial velocity exceeds its previously known values by a factor of 3, while the asymmetric knifelike profiles of the Ha and Hß absorption lines suggest the existence of an extended envelope around the star. Similar profiles of hydrogen absorption lines and strong lines of some metals with low lower-level excitation potentials have also been revealed in the spectrum of HD 222574. The positions of the supergiants on the effective temperature-luminosity diagram in comparison with the evolutionary tracks of the stars have shown their masses to lie within the range 3.4-4.3 M ?. HD 194215 and HD 206834 have crossed the CIS for the first time, with the latter object being near the stage of transformation into a red supergiant. HD 192876 and HD 222574 have already passed the first dredge-up and probably move from right to left, crossing the CIS for the second time. The position of HD 222574 near the red CIS edge is probably attributable to its Cepheid-like brightness and radial velocity variations.

  14. YELLOW SUPERGIANTS IN THE SMALL MAGELLANIC CLOUD: PUTTING CURRENT EVOLUTIONARY THEORY TO THE TEST

    SciTech Connect

    Neugent, Kathryn F.; Massey, Philip; Skiff, Brian; Drout, Maria R.; Meynet, Georges; Olsen, Knut A. G. E-mail: phil.massey@lowell.ed E-mail: maria-drout@uiowa.ed E-mail: kolsen@noao.ed

    2010-08-20

    The yellow supergiant content of nearby galaxies provides a critical test of massive star evolutionary theory. While these stars are the brightest in a galaxy, they are difficult to identify because a large number of foreground Milky Way stars have similar colors and magnitudes. We previously conducted a census of yellow supergiants within M31 and found that the evolutionary tracks predict a yellow supergiant duration an order of magnitude longer than we observed. Here we turn our attention to the Small Magellanic Cloud (SMC), where the metallicity is 10x lower than that of M31, which is important as metallicity strongly affects massive star evolution. The SMC's large radial velocity ({approx}160 km s{sup -1}) allows us to separate members from foreground stars. Observations of {approx}500 candidates yielded 176 near-certain SMC supergiants, 16 possible SMC supergiants, along with 306 foreground stars, and provide good relative numbers of yellow supergiants down to 12 M {sub sun}. Of the 176 near-certain SMC supergiants, the kinematics predicted by the Besancon model of the Milky Way suggest a foreground contamination of {<=}4%. After placing the SMC supergiants on the Hertzsprung-Russell diagram (HRD) and comparing our results to the Geneva evolutionary tracks, we find results similar to those of the M31 study: while the locations of the stars on the HRD match the locations of evolutionary tracks well, the models overpredict the yellow supergiant lifetime by a factor of 10. Uncertainties about the mass-loss rates on the main sequence thus cannot be the primary problem with the models.

  15. Detection of a red supergiant progenitor star of a type II-plateau supernova.

    PubMed

    Smartt, Stephen J; Maund, Justyn R; Hendry, Margaret A; Tout, Christopher A; Gilmore, Gerard F; Mattila, Seppo; Benn, Chris R

    2004-01-23

    We present the discovery of a red supergiant star that exploded as supernova 2003gd in the nearby spiral galaxy M74. The Hubble Space Telescope (HST) and the Gemini Telescope imaged this galaxy 6 to 9 months before the supernova explosion, and subsequent HST images confirm the positional coincidence of the supernova with a single resolved star that is a red supergiant of 8(+4)(-2) solar masses. This confirms both stellar evolution models and supernova theories predicting that cool red supergiants are the immediate progenitor stars of type II-plateau supernovae. PMID:14739452

  16. Mass Loss of Red Supergiants: A Key Ingredient for the Final Evolution of Massive Stars

    NASA Astrophysics Data System (ADS)

    Georgy, C.; Ekström, S.

    2015-12-01

    Mass-loss rates during the red supergiant phase are very poorly constrained from an observational or theoretical point of view. However, they can be very high, and make a massive star lose a lot of mass during this phase, influencing considerably the final evolution of the star: will it end as a red supergiant? Will it evolve bluewards by removing its hydrogen-rich envelope? In this paper, we briefly summarise the effects of this mass loss and of the related uncertainties, particularly on the population of blue supergiant stars.

  17. Identification of Red Supergiants in the Magellanic Clouds.

    NASA Astrophysics Data System (ADS)

    Barandi, Brian Allan; Massey, Philip; Levesque, Emily M.

    2015-01-01

    The number and characteristics of red supergiants (RSGs) in the low metallicity environment of the Large and Small Magellanic Clouds (LMC, SMC) provide tests of stellar evolutionary tracks for massive stars. One complication is identifying Magellanic members due to the contamination of foreground stars in the Milky Way. We used the colors and magnitudes from the 2MASS survey to identify RSG candidates in the LMC and SMC, and used the Anglo Australian Telescope coupled with the AAOmega spectrograph to take spectra of 325 LMC and 423 SMC RSG candidates. Using the Ca II triplet, we measured the radial velocity of each candidate by cross correlation and assigned membership. Methods along with physical properties of each star will be presented. We gratefully acknowledge support by the National Science Foundation through the REU program at Lowell Observatory and Northern Arizona University (AST-1004107) and through PM's grant AST-1008020.

  18. Spectroscopic Analysis of the Supergiant Star HD 54605

    NASA Astrophysics Data System (ADS)

    Peña, L.; Rosenzweig, P.; Guzmán, E.; Hearnshaw, J.

    2009-05-01

    The main purpose of the present study is to analyze a high resolution spectrum of the supergiant star HD 54605, obtained in the year 2003, with a CCD coupled with the spectrograph HERCULES, attached to the 1m reflector telescope of Mt. John Observatory of the University of Canterbury (New Zealand). This spectrum covers the region ?? ? 4505-7080Å, with R = 41000 and a dispersion of ? 2Å/mm. According to previous spectroscopic observations, of low dispersion, the radial velocity of this star showed that it does not vary in periods of time relatively short. Until the present, we have identified five hundred photospheric lines, from which, with no doubt, we will obtain a satisfactory result that will give an important contribution to the database of the values of the radial velocity of HD 54605. We observe that H?, shows a relatively wide and deep profile and is in complete absorption.

  19. Variability and mass loss in IA O-B-A supergiants

    NASA Technical Reports Server (NTRS)

    Schild, R. E.; Garrison, R. F.; Hiltner, W. A.

    1983-01-01

    Recently completed catalogs of MK spectral types and UBV photometry of 1227 OB stars in the southern Milky Way have been analyzed to investigate brightness and color variability among the Ia supergiants. It is found that brightness variability is common among the O9-B1 supergiants with typical amplitudes about 0.1 and time scales longer than a week and shorter than 1000 days. Among the A supergiants fluctuations in U-B color are found on similar time scales and with amplitude about 0.1. For many early Ia supergiants there is a poor correlation between Balmer jump and spectral type, as had been known previously. An attempt to correlate the Balmer jump deficiency with mass loss rate yielded uncertain results.

  20. The energy distributions of B supergiants in the Large Magellanic Cloud

    NASA Technical Reports Server (NTRS)

    Fitzpatrick, Edward L.

    1986-01-01

    It is shown that line-blanketed, LTE, plane-parallel model atmosphere calculations provide excellent fits to the ultraviolet-through-visual energy distributions of B supergiants in the Large Magellanic Cloud. The models were computed using Kurucz's (1979) ATLAS atmosphere program, but with lower gravities than were contained in Kurucz's published model grid. The ultraviolet continua of low gravity stars are found to be sensitive to changes in temperature and gravity. Measurements of Teff and log g for ten LMC B supergiants from model atmosphere fits to the energy distributions yield estimates of their radii, luminosities, and masses. Model atmosphere fits suggest that the late B supergiants have significantly lower masses than the earlier B types of the same luminosity, contrary to stellar evolution theory which predicts that B supergiants are in a post-core hydrogen burning phase and should evolve very quickly and at essentially constant mass.

  1. The wind momentum-luminosity relationship of galactic A- and B-supergiants

    NASA Astrophysics Data System (ADS)

    Kudritzki, R. P.; Puls, J.; Lennon, D. J.; Venn, K. A.; Reetz, J.; Najarro, F.; McCarthy, J. K.; Herrero, A.

    1999-10-01

    The Balmer lines of four A Ia-supergiants (spectral type A0 to A3) and fourteen B Ia and Ib-supergiants (spectral type B0 to B3) in the solar neighbourhood are analyzed by means of NLTE unified model atmospheres to determine the properties of their stellar winds, in particular their wind momenta. As in previous work for O-stars (Puls et al. \\cite{pul96}) a tight relationship between stellar wind momentum and luminosity (``WLR'') is found. However, the WLR varies as function of spectral type. Wind momenta are strongest for O-supergiants, then decrease from early B (B0 and B1) to mid B (B1.5 to B3) spectral types and become stronger again for A-supergiants. The slope of the WLR appears to be steeper for A- and mid B-supergiants than for O-supergiants. The spectral type dependence is interpreted as an effect of ionization changing the effective number and the line strength distribution function of spectral lines absorbing photon momentum around the stellar flux maximum. This interpretation needs to be confirmed by theoretical calculations for radiation driven winds. The ``Pistol-Star'' in the Galactic Centre, an extreme mid B-hypergiant recently identified as one of the most luminous stars (Figer et al. \\cite{fig99}) is found to coincide with the extrapolation of the mid B-supergiant WLR towards higher luminosities. However, the wind momentum of the Luminous Blue Variable P Cygni, a mid B-supergiant with extremely strong mass-loss, is 1.2 dex higher than the WLR of the ``normal'' supergiants. This significant difference is explained in terms of the well-known stellar wind bi-stability of supergiants very close to the Eddinton-limit in this particular range of effective temperatures. A-supergiants in M31 observed with HIRES at the Keck telescope have wind momenta compatible with their galactic counterparts. The potential of the WLR as a new, independent extragalactic distance indicator is discussed. It is concluded that with ten to twenty objects, photometry with HST and medium resolution spectroscopy with 8m-telescopes from the ground distance moduli can be obtained with an accuracy of about 0fm1 out to the Virgo and Fornax clusters of galaxies.

  2. Discovery of SiO band emission from Galactic B[e] supergiants

    E-print Network

    Kraus, Michaela; Cidale, Lydia; Arias, Maria Laura; Torres, Andrea; Fernandes, Marcelo Borges

    2015-01-01

    B[e] supergiants (B[e]SGs) are evolved massive stars in a short-lived transition phase. During this phase, these objects eject large amounts of material, which accumulates in a circumstellar disk-like structure. The expelled material is typically dense and cool, providing the cradle for molecule and dust condensation and for a rich, ongoing chemistry. Very little is known about the chemical composition of these disks, beyond the emission from dust and CO revolving around the star on Keplerian orbits. As massive stars preserve an oxygen-rich surface composition throughout their life, other oxygen-based molecules can be expected to form. As SiO is the second most stable oxygen compound, we initiated an observing campaign to search for first-overtone SiO emission bands. We obtained high-resolution near-infrared L-band spectra for a sample of Galactic B[e]SGs with reported CO band emission. We clearly detect emission from the SiO first-overtone bands in CPD-52 9243 and indications for faint emission in HD 62623, ...

  3. Supergiant fast X-ray transients as an under-luminous class of supergiant X-ray binaries

    NASA Astrophysics Data System (ADS)

    Bozzo, E.; Romano, P.; Ducci, L.; Bernardini, F.; Falanga, M.

    2015-02-01

    The usage of cumulative luminosity distributions, constructed thanks to the long-term observations available through wide field hard X-ray imagers, has been recently exploited to study the averaged high energy emission (>17 keV) from supergiant fast X-ray transients (SFXTs) and classical Supergiant High Mass X-ray Binaries (SgXBs). Here, we take advantage of the long term monitorings now available with Swift/XRT to construct for the first time the cumulative luminosity distributions of a number of SFXTs and the classical SgXB IGR J18027-2016 in the soft X-ray domain with a high sensitivity focusing X-ray telescope (0.3-10 keV). By complementing previous results obtained in the hard X-rays, we found that classical SgXBs are characterized by cumulative distributions with a single knee around ? 1036-1037 erg s-1, while SFXTs are found to be systematically sub-luminous and their distributions are shifted at significantly lower luminosities (a factor of ? 10-100). As the luminosity states in which these sources spend most of their time are typically below the sensitivity limit of large field of view hard X-ray imagers, we conclude that soft X-ray monitorings carried out with high sensitivity telescopes are particularly crucial to reconstruct the complete profile of the SFXT cumulative luminosity distributions. The difference between the cumulative luminosity distributions of classical SgXBs and SFXTs is interpreted in terms of accretion from a structured wind in the former sources and the presence of magnetic/centrifugal gates or a quasi-spherical settling accretion regime in the latter.

  4. Time Series Analysis of the A0 Supergiant HR 1040

    NASA Astrophysics Data System (ADS)

    Corliss, David J.

    A time series analysis of spectroscopic and photometric observables of the A0Ia supergiant HR 1040 has been performed. The data, obtained from 1993 through 2007, include 152 spectroscopic observations from the Ritter Observatory and 269 Stromgren photometric observations from the Four College Automated Photoelectric Telescope (FCAPT). A number of spectroscopic and photometric features have been analyzed and compared, including Wlambda, radial velocities and Stromgren photometric indices. Typical of late B- and early A-type supergiants, HR 1040 has a highly variable stellar wind including High Velocity Absorption (HVA) events. The star was found to have an active phase with large variation in the physical characteristics of the wind and with the potential for HVAs. During the active phase, correlation between the H-alpha absorption equivalent width and blue-edge radial velocity was observed. If an HVA was present, the active phase was found to begin before the onset of the HVA and continue after the end of the event by as much as several weeks. This active phase alternated with a more common quiescent phase marked by little variability and equivalent width - radial velocity correlation and no HVAs. The active phase and HVAs were found to exhibit important connections to photospheric activity. Increases in H-alpha absorption and blue-edge radial velocity at the onset of HVAs was preceded by correlated increases in Si II Wlambda and second moment, with the atmospheric changes indicated by the H-alpha line lagging the photospheric changes seen in Si II by an interval of 13 to 23 days. The observed HVAs were found to be preceded by Si II radial velocity oscillations by an interval of 19 to 42 days. The equivalent width and second moment of the photospheric Si II lambdalambda6347, 6371 lines were found to be highly variable and strongly correlated throughout the two active phases when an HVA is observed but not during the quiescent phase or in the one active phase where no HVA was seen. The Si II Wlambda and second moment showed a short-lived increase during the first few weeks of an HVA and then quickly dropped back to quiescent phase levels. Time series cluster analysis of the two HVAs observed on HR 1040, in addition to three HVAs in alpha Orionis, identified four distinct stages in the development of these events. Possible factors contributing to HVA are discussed, including gas ejection and microturbulence at the photosphere, as well as co-rotation interaction regions (CIR) in the wind. HR 1040 exhibits a broad emission feature near Halpha commonly found in late B- and early A-type supergiants. The broad emission in HR 1040 was found to be variable and not correlated to photospheric or wind observables associated with the active phase. Some indication was found that this feature is limited to a wavelength range of 6532 A to 6597 A. While the wavelength range extends roughly the same amount to either side of H-alpha line center, an asymmetry in the flux of the broad emission is observed, with a local maximum in the flux varying between 6555 A to 6564 A. If this asymmetry is real and not an instrumental effect, it argues against a photospheric origin for this broad emission feature as it would require radial velocities up to -300 km/s, well in excess of the terminal wind speed.

  5. Recognition of Distant Supergiants among Faint Red Stars in the Galactic Plane

    NASA Astrophysics Data System (ADS)

    MacConnell, Darrell J.; Wing, R. F.; Costa, E.

    2011-05-01

    Surveys along the Galactic plane at red and infrared wavelengths -- e.g. several objective-prism surveys in the photographic infrared, and the recent Spitzer/GLIMPSE survey in the 3-8? region -- record large numbers of faint red stars. Some of these sources must be distant, heavily-reddened supergiants in remote spiral arms, and they would be valuable tracers if their distances could be estimated. Measurement of a TiO band and a color index -- show that the majority of the detected faint, red sources are stars of type M, reddened to different degrees. It is more difficult to distinguish bona fide supergiants from the more common giants (which are also likely to be reddened, but are not confined to spiral arms), and to obtain the luminosity classes needed for the determination of individual distances. We have developed two methods, one using slit spectroscopy and the other narrow-band photometry, for determining the luminosities of reddened M stars. Both methods depend primarily on the measurement of CN absorption in the 0.8? region, often in the face of much stronger TiO bands. The spectroscopic method involves flattening the digital spectra and comparing program stars to standards of the same TiO strength to judge the amount of CN present. The narrow-band method involves fitting a blackbody curve to the calibrated photometry and defining a reddening-free CN index. This CN absorption is measurable in all giants and supergiants of types K and M and is stronger in supergiants. In fact, young, massive supergiants of classes Ia and Iab, which should be excellent spiral-arm tracers, can be distinguished from supergiants of class Ib, which may be older. We illustrate our procedures and apply them to a sample of GLIMPSE sources. We show that our methods give consistent results and can be used to identify distant supergiants among GLIMPSE sources.

  6. Spitzer Observations Of The Supergiant Shell Region In IC 2574

    E-print Network

    Cannon, J M; Bendo, G J; Calzetti, D; Dale, D A; Draine, B T; Engelbracht, C W; Gordon, K D; Helou, G; Kennicutt, R C; Murphy, E J; Thornley, M D; Armus, L; Hollenbach, D J; Leitherer, C; Regan, M W; Roussel, H; Sheth, K; Cannon, John M.; Walter, Fabian; Bendo, George J.; Calzetti, Daniela; Dale, Daniel A.; Draine, Bruce T.; Engelbracht, Charles W.; Gordon, Karl D.; Helou, George; Kennicutt, Robert C.; Murphy, Eric J.; Thornley, Michele D.; Armus, Lee; Hollenbach, David J.; Leitherer, Claus; Regan, Michael W.; Roussel, Helene; Sheth, Kartik

    2005-01-01

    We present spatially resolved Spitzer imaging of the supergiant shell region of the M81 group dwarf galaxy IC 2574 obtained as part of the Spitzer Infrared Nearby Galaxies Survey. This region harbors one of the best nearby examples of a kinematically distinct HI shell, with an associated remnant stellar cluster; the shell is initiating sequential star formation as it interacts with the surrounding interstellar medium. This region dominates the infrared luminosity of IC 2574 and is spatially resolved in all Spitzer imaging bands. We study the differences in dust temperature as a function of local environment and compare local star formation rates as inferred from H Alpha and total infrared luminosities. We find that the strong H Alpha sources are associated with regions of warm dust; however, the most luminous infrared and H Alpha sources are not necessarilyco-spatial. The coolest dust is found in the regions farthest from the rim of the shell; these regions show the best agreement between star formation rates...

  7. The spin-up of contracting red supergiants

    E-print Network

    Alexander Heger; Norbert Langer

    1998-03-02

    We report on a mechanism which may lead to a spin-up of the surface of a rotating single star leaving the Hayashi line, which is much stronger than the spin-up expected from the mere contraction of the star. By analyzing rigidly rotating, convective stellar envelopes, we qualitatively work out the mechanism through which these envelopes may be spun up or down by mass loss through their lower or upper boundary, respectively. We find that the first case describes the situation in retreating convective envelopes, which tend to retain most of the angular momentum while becoming less massive, thereby increasing the specific angular momentum in the convection zone and thus in the layers close to the stellar surface. We explore the spin-up mechanism quantitatively in a stellar evolution calculation of a rotating 12 M_sun star, which is found to be spun up to critical rotation after leaving the red supergiant branch. We discuss implications of this spin-up for the circumstellar matter around several types of stars, i.e., post-AGB stars, B[e] stars, pre-main sequence stars, and, in particular, the progenitor of Supernova 1987A.

  8. H? spectropolarimetry of the B[e] supergiant GG Carinae

    NASA Astrophysics Data System (ADS)

    Pereyra, A.; de Araújo, F. X.; Magalhães, A. M.; Borges Fernandes, M.; Domiciano de Souza, A.

    2009-12-01

    Aims. We study the geometry of the circumstellar environment of the B[e] supergiant star GG Car. Methods: We present observations acquired using the IAGPOL imaging polarimeter in combination with the Eucalyptus-IFU spectrograph to obtain spectropolarimetric measurements of GG Car across H? at two epochs. Polarization effects along the emission line are analysed using the Q-U diagram. In particular, the polarization position angle (PA) obtained using the line effect is able to constrain the symmetry axis of the disk/envelope. Results: By analysing the fluxes, GG Car shows an increase in its double-peaked H? line emission relative to the continuum within the interval of our measurements (~43 days). The depolarization line effect around H? is evident in the Q-U diagram for both epochs, confirming that light from the system is intrinsically polarized. A rotation of the PA along H? is also observed, indicating a counter-clockwise rotating disk. The intrinsic PA calculated using the line effect (~85°) is consistent between our two epochs, suggesting a clearly defined symmetry axis of the disk. Based on observations obtained at the Observatório do Pico dos Dias, LNA/MCT, Itajubá, Brazil.

  9. Spitzer Observations Of The Supergiant Shell Region In IC 2574

    E-print Network

    John M. Cannon; Fabian Walter; George J. Bendo; Daniela Calzetti; Daniel A. Dale; Bruce T. Draine; Charles W. Engelbracht; Karl D. Gordon; George Helou; Robert C. Kennicutt, Jr.; Eric J. Murphy; Michele D. Thornley; Lee Armus; David J. Hollenbach; Claus Leitherer; Michael W. Regan; Helene Roussel; Kartik Sheth

    2005-08-01

    We present spatially resolved Spitzer imaging of the supergiant shell region of the M81 group dwarf galaxy IC 2574 obtained as part of the Spitzer Infrared Nearby Galaxies Survey. This region harbors one of the best nearby examples of a kinematically distinct HI shell, with an associated remnant stellar cluster; the shell is initiating sequential star formation as it interacts with the surrounding interstellar medium. This region dominates the infrared luminosity of IC 2574 and is spatially resolved in all Spitzer imaging bands. We study the differences in dust temperature as a function of local environment and compare local star formation rates as inferred from H Alpha and total infrared luminosities. We find that the strong H Alpha sources are associated with regions of warm dust; however, the most luminous infrared and H Alpha sources are not necessarilyco-spatial. The coolest dust is found in the regions farthest from the rim of the shell; these regions show the best agreement between star formation rates derived from H Alpha and from total infrared luminosities (although discrepancies at the factor of 3-4 level still exist). There is considerable variation in the radio-far infrared correlation in different regions surrounding the shell. The low dust content of the region may influence the scatter seen in these relations; these data demonstrate that the expanding shell is dramatically affecting its surroundings by triggering star formation and altering the dust temperature.

  10. Supernovae from yellow, blue supergiants: origin and consequences for stellar evolution

    NASA Astrophysics Data System (ADS)

    Meynet, Georges; Georgy, Cyril; Saio, Hideyuki; Kudritzki, Rolf-Peter; Groh, Jose

    2015-08-01

    A few core collapse supernovae progenitors have been found to be yellow or blue supergiants. We shall discuss possible scenarios involving single and close binary evolution allowing to explain this kind of core collapse supernova progenitors. According to stellar models for both single and close binaries, blue supergiants, at the end of their nuclear lifetimes and thus progenitors of core collapse supernovae, present very different characteristics for what concerns their surface compositions, rotational surface velocities and pulsational properties with respect to blue supergiants in their core helium burning phase. We discuss how the small observed scatter of the flux-weighted gravity-luminosity (FWGL) relation of blue supergiants constrains the evolution of massive stars after the Main-Sequence phase and the nature of the progenitors of supernovae in the mass range between 12 and 40 solar masses. The present day observed surface abundances of blue supergiants, of their pulsational properties, as well as the small scatter of the FWGL relation provide strong constraints on both internal mixing and mass loss in massive stars and therefore on the end point of their evolution.

  11. CO thermal emissions and mass loss of red-supergiants beyond the Milky Way

    NASA Astrophysics Data System (ADS)

    Matsuura, Mikako; Sargent, Benjamin; Yates, J.; Swinyard, B.; Royer, P.; Boyer, M.; Barlow, M. J.; Meixner, Margaret; Katrien Els Decin, Leen; Khouri, T.; van Loon, J.; Woods, P.

    2015-08-01

    It is crucial for understanding stellar evolution to study how red-supergiants lose their mass. Although mass loss of red-supergiants has been well studied in the Milky Way, it is poorly studied beyond the Milky Way. Particularly, galaxies have wide range of metallicities, and the key question is how metallicity affects dust formation in red-supergiants, hence, how dust-driven mass-loss could be affected by the metallicity. Theory predicted that mass loss rate is lower at low metallicity. Testing this hypothesis, we observed CO thermal emission lines in red-supergiants in the Large Magellanic Cloud, using the Herschel Space Observatory. These are the first detections of rotational CO lines from red-supergiants beyond the Milky Way. Although the metallicity of the Large Magellanic Cloud is about the half of the solar metallicity, no obvious metallicity effect was found on the gas mass-loss rate. The key parameter for the mass-loss rate is the luminosity of the star.

  12. Revealing the Complex Dynamics of the Atmospheres of Red Supergiants with the Very Large Telescope Interferometer

    NASA Astrophysics Data System (ADS)

    Ohnaka, K.; Weigelt, G.; Hofmann, K.-H.; Schertl, D.

    2015-12-01

    Massive stars lose a significant fraction of their initial mass when they evolve to red supergiants before they end their life in supernova explosions. The mass loss greatly affects their final fate. However, the mass loss from these dying supergiants is not yet understood well. Here we present our efforts to spatially resolve the dynamics of the atmospheres of red supergiants with the Very Large Telescope Interferometer (VLTI) and the AMBER instrument to clarify the physical mechanism behind the mass loss. The VLTI/AMBER's combination of milliarcsecond spatial resolution and high spectral resolution allows us to spatially resolve stellar atmospheres and extract the dynamical information at each position over the star and the atmosphere — just like observations of the Sun.

  13. Visual and infrared observations of late-type supergiants in the southern sky

    NASA Technical Reports Server (NTRS)

    Humphreys, R. M.; Ney, E. P.

    1974-01-01

    Spectral types and photometry ranging from 0.4 to 18 microns are given for 54 late-type stars, including 21 supergiants. The infrared observations of the supergiants confirm the dependence of the strength of the 10-micron silicate emission feature on the spectral type and luminosity class of the star. The long-wavelength data are also used to determine the interstellar extinction by fitting an appropriate blackbody to the infrared observations. The deviation from the blackbody at the shorter wavelengths is then attributed to interstellar absorption and absorption by TiO. This method is particularly useful when the short-wavelength photometry is contaminated by a close companion. The M supergiant AH Sco has excess radiation between 1.5 and 8 microns similar to the NML Tauri-type infrared stars. This excess energy resembles free-free emission.

  14. Accurate luminosities for F-G supergiants from FeII/FeI line depth ratios

    NASA Astrophysics Data System (ADS)

    Kovtyukh, V. V.; Chekhonadskikh, F. A.; Luck, R. E.; Soubiran, C.; Yasinskaya, M. P.; Belik, S. I.

    2010-11-01

    Luminous FG supergiants can be used as extragalactic distance indicators. In order to fully exploit the properties of these bright stars, we must first learn how to measure their luminosities. Based primarily on classical Cepheids and supergiants in clusters and OB associations, we have derived 80 empirical relations connecting the line depth ratios of FeII/FeI lines with the absolute magnitudes Mv and the effective temperatures Teff. These relations have been applied to estimate the absolute magnitudes of 98 FG supergiants with an error of +/-0.26mag. The application range of our calibrations is spectral types F2-G8 and luminosity classes I and II (absolute magnitudes Mv, -0.5 to -8 mag). A comparison of our Mv determinations with values from the literature shows good agreement.

  15. The nature of the ionised nebula surrounding the red supergiant W26

    NASA Astrophysics Data System (ADS)

    Wesson, Roger

    2015-08-01

    The red supergiant W26 in the massive star cluster Westerlund 1 is surrounded by a compact ionised nebula. This is unique among RSGs, and the excitation mechanism of the nebula is not yet known - it may be ionised by an unseen compact companion, or by a nearby blue supergiant. We present new observations of the nebula: high resolution spatially resolved spectra taken with FLAMES at the VLT show that the nebula is a ring, with velocities consistent with that expected for red supergiant ejecta, and ruling out the possibility of a Luminous Blue Variable-type eruption preceding the RSG phase as the origin of the nebula. A triangular patch of nebulosity outside the ring appears to be associated with W26, and may be material stripped from the expanding ring by the cumulative cluster wind and radiation field.

  16. Seven years with the Swift Supergiant Fast X-ray Transients project

    NASA Astrophysics Data System (ADS)

    Romano, P.

    2015-09-01

    Supergiant Fast X-ray Transients (SFXTs) are HMXBs with OB supergiant companions. I review the results of the Swift SFXT project, which since 2007 has been exploiting Swift's capabilities in a systematic study of SFXTs and supergiant X-ray binaries (SGXBs) by combining follow-ups of outbursts, when detailed broad-band spectroscopy is possible, with long-term monitoring campaigns, when the out-of-outburst fainter states can be observed. This strategy has led us to measure their duty cycles as a function of luminosity, to extract their differential luminosity distributions in the soft X-ray domain, and to compare, with unprecedented detail, the X-ray variability in these different classes of sources. I also discuss the "seventh year crisis", the challenges that the recent Swift observations are making to the prevailing models attempting to explain the SFXT behavior.

  17. DISCOVERY OF THE FIRST B[e] SUPERGIANTS IN M 31

    SciTech Connect

    Kraus, M.; Oksala, M. E.; Cidale, L. S.; Arias, M. L.; Borges Fernandes, M.

    2014-01-01

    B[e] supergiants (B[e]SGs) are transitional objects in the post-main sequence evolution of massive stars. The small number of B[e]SGs known so far in the Galaxy and the Magellanic Clouds indicates that this evolutionary phase is short. Nevertheless, the strong aspherical mass loss occurring during this phase, which leads to the formation of rings or disk-like structures, and the similarity to possible progenitors of SN1987 A emphasize the importance of B[e]SGs for the dynamics of the interstellar medium as well as stellar and galactic chemical evolution. The number of objects and their mass-loss behavior at different metallicities are essential ingredients for accurate predictions from stellar and galactic evolution calculations. However, B[e]SGs are not easily identified, as they share many characteristics with luminous blue variables (LBVs) in their quiescent (hot) phase. We present medium-resolution near-infrared K-band spectra for four stars in M 31, which have been assigned a hot LBV (candidate) status. Applying diagnostics that were recently developed to distinguish B[e]SGs from hot LBVs, we classify two of the objects as bonafide LBVs; one of them currently in outburst. In addition, we firmly classify the two stars 2MASS J00441709+4119273 and 2MASS J00452257+4150346 as the first B[e]SGs in M 31 based on strong CO band emission detected in their spectra, and infrared colors typical for this class of stars.

  18. Discovery of SiO Band Emission from Galactic B[e] Supergiants

    NASA Astrophysics Data System (ADS)

    Kraus, M.; Oksala, M. E.; Cidale, L. S.; Arias, M. L.; Torres, A. F.; Borges Fernandes, M.

    2015-02-01

    B[e] supergiants (B[e]SGs) are evolved massive stars in a short-lived transition phase. During this phase, these objects eject large amounts of material, which accumulate in a circumstellar disk-like structure. The expelled material is typically dense and cool, providing the cradle for molecule and dust condensation and for a rich, ongoing chemistry. Very little is known about the chemical composition of these disks, beyond the emission from dust and CO revolving around the star on Keplerian orbits. As massive stars preserve an oxygen-rich surface composition throughout their life, other oxygen-based molecules can be expected to form. As SiO is the second most stable oxygen compound, we initiated an observing campaign to search for first-overtone SiO emission bands. We obtained high-resolution near-infrared L-band spectra for a sample of Galactic B[e]SGs with reported CO band emission. We clearly detect emission from the SiO first-overtone bands in CPD-52 9243 and indications for faint emission in HD 62623, HD 327083, and CPD-57 2874. From model fits, we find that in all these stars the SiO bands are rotationally broadened with a velocity lower than observed in the CO band forming regions, suggesting that SiO forms at larger distances from the star. Hence, searching for and analyzing these bands is crucial for studying the structure and kinematics of circumstellar disks, because they trace complementary regions to the CO band formation zone. Moreover, since SiO molecules are the building blocks for silicate dust, their study might provide insight in the early stage of dust formation. Based on observations collected with the ESO VLT Paranal Observatory under program 093.D-0248(A).

  19. On the Explosion Geometry of Red Supergiant Stars

    NASA Astrophysics Data System (ADS)

    Leonard, Douglas Christopher; Dessart, Luc; Pignata, Giuliano; Hillier, D. John; Williams, George Grant; Smith, Paul S.; Khandrika, Harish; Bilinski, Christopher; Duong, Nhieu; Flatland, Kelsi; Gonzalez, Luis; Hoffman, Jennifer L.; Horst, Chuck; Huk, Leah; Milne, Peter; Rachubo, Alisa A.; Smith, Nathan

    2015-08-01

    From progenitor studies, type II-Plateau supernovae (SNe II-P) have been decisively and uniquely determined to arise from isolated red supergiant (RSG) stars with initial masses ranging from 8 to 16 solar masses (Smartt 2009), establishing the most homogeneous -- and well understood -- progenitor class of any type of core-collapse supernova. However, we must admit a fundamental truth: We do not know how these stars explode. A basic discriminant among proposed explosion models is explosion geometry, since some models predict severe distortions from spherical symmetry. A primary method to gain such geometric information is through spectropolarimetry of the expanding (but, unresolved) atmosphere, with higher degrees of linear polarization generally demanding larger departures from spherical symmetry. Initially, as a class, SNe II-P were found to be only weakly polarized at the early epochs observed, suggesting a nearly spherical explosion for RSG stars. However, late-time observations of SN 2004dj captured a dramatic spike in polarization at just the moment the "inner core" of the ejecta was first revealed in this SN II-P (i.e., at the "drop" off of the photometric plateau; Leonard et al. 2006). This raised the possibility that the explosion of RSGs might be driven by a strongly non-spherical mechanism, with the evidence for the asphericity cloaked at early times by the massive, opaque, quasi-spherical hydrogen envelope. In this presentation we shall describe the continuing work on the explosion geometry of RSGs being carried out by the SuperNova SpectroPOLarimetry project (SNSPOL), with a particular focus on SN 2013ej -- an SN II-P that exhibited remarkably high polarization just days after the explosion (Leonard et al. 2013), and for which twelve epochs of spectropolarimetry trace an intriguing tale about its geometry deep into the nebular phase. We acknowledge support from NSF grants AST-1009571 and AST-1210311, under which part of this research was carried out.

  20. Accurate fundamental parameters for A-, F- and G-type Supergiants in the solar neighbourhood

    NASA Astrophysics Data System (ADS)

    Lyubimkov, Leonid S.; Lambert, David L.; Rostopchin, Sergey I.; Rachkovskaya, Tamara M.; Poklad, Dmitry B.

    2010-02-01

    The following parameters are determined for 63 Galactic supergiants in the solar neighbourhood: effective temperature Teff; surface gravity logg iron abundance log?(Fe) microturbulent parameter Vt; mass M/Msolar age t and distance d. A significant improvement in the accuracy of the determination of logg, and all parameters dependent on it, is obtained through application of van Leeuwen rereduction of the Hipparcos parallaxes. The typical error in the logg values is now +/-0.06dex for supergiants with distances d < 300 pc and +/-0.12dex for supergiants with d between 300 and 700 pc; the mean error in Teff for these stars is +/-120K. For supergiants with d > 700 pc, parallaxes are uncertain or unmeasurable, so typical errors in their logg values are 0.2-0.3dex. A new Teff scale for A5-G5 stars of luminosity classes Ib-II is presented. Spectral subtypes and luminosity classes of several stars are corrected. Combining the Teff and logg with evolutionary tracks, stellar masses and ages are determined; a majority of the sample has masses between 4 and 15Msolar and, hence, their progenitors were early to middle B-type main-sequence stars. Using FeII lines, which are insensitive to departures from local thermodynamic equilibrium, the microturbulent parameter Vt and the iron abundance log?(Fe) are determined from high-resolution spectra. The parameter Vt is correlated with gravity: Vt increases with decreasing logg. The mean iron abundance for the 48 supergiants with distances d < 700 pc is log?(Fe) = 7.48 +/- 0.09, a value close to the solar value of 7.45 +/- 0.05, and thus the local supergiants and the Sun have the same metallicity.

  1. Proper motions of supergiant fast X-ray transients: a key to their origins and implications

    NASA Astrophysics Data System (ADS)

    Maccarone, Thomas

    I will discuss the measurements of high proper motions for several supergiant fast X-ray transients. These proper motions show that the systems have high space velocities, well in excess of those of normal supergiant X-ray binaries. The high space velocities are likely connected to the high eccentricities proposed to cause the sporadic X-ray emission of these systems. High space velocities also imply that either the neutron stars in some of these systems formed with natal kick velocities much larger than any known pulsar, or, more likely, that a substantial amount of mass was lost in the supernova that formed the neutron star.

  2. The galatic and LMC extreme line supergiants compared: IUE observations of the Henize-Carlson and Zoo star samples of massive supergiants. [Large Magellanic cloud (LMC)

    NASA Technical Reports Server (NTRS)

    Shore, S. N.; Sanduleak, N.; Brown, D. N.; Sonneborn, G.; Bopp, B. W.; Robinson, C. R.

    1988-01-01

    The Henize-Carlson sample of galactic massive supergiants, and a comparison between the Galactic and LMC samples are discussed. Several of the stars, notably He3-395 and S 127/LMC, have very similar shell characteristics. There appears to be little difference, other than luminosity, between the LMC and Galactic samples. One star, He3-1482, was detected with the Very Large Array at 6 cm. The UV data is combined with IRAS and optical information.

  3. RAPIDLY ACCRETING SUPERGIANT PROTOSTARS: EMBRYOS OF SUPERMASSIVE BLACK HOLES?

    SciTech Connect

    Hosokawa, Takashi; Yorke, Harold W.; Omukai, Kazuyuki E-mail: hosokwtk@gmail.com

    2012-09-01

    Direct collapse of supermassive stars (SMSs) is a possible pathway for generating supermassive black holes in the early universe. It is expected that an SMS could form via very rapid mass accretion with M-dot{sub *} {approx} 0.1-1 M{sub Sun} yr{sup -1} during the gravitational collapse of an atomic-cooling primordial gas cloud. In this paper, we study how stars would evolve under such extreme rapid mass accretion, focusing on the early evolution until the stellar mass reaches 10{sup 3} M{sub Sun }. To this end, we numerically calculate the detailed interior structure of accreting stars with primordial element abundances. Our results show that for accretion rates higher than 10{sup -2} M{sub Sun} yr{sup -1}, stellar evolution is qualitatively different from that expected at lower rates. While accreting at these high rates, the star always has a radius exceeding 100 R{sub Sun }, which increases monotonically with the stellar mass. The mass-radius relation for stellar masses exceeding {approx}100 M{sub Sun} follows the same track with R{sub *}{proportional_to}M {sup 1/2}{sub *} in all cases with accretion rates {approx}> 10{sup -2} M{sub Sun} yr{sup -1}; at a stellar mass of 10{sup 3} M{sub Sun }, the radius is {approx_equal} 7000 R{sub Sun} ({approx_equal} 30 AU). With higher accretion rates, the onset of hydrogen burning is shifted toward higher stellar masses. In particular, for accretion rates exceeding M-dot{sub *}{approx}>0.1 M{sub Sun} yr{sup -1}, there is no significant hydrogen burning even after 10{sup 3} M{sub Sun} have accreted onto the protostar. Such 'supergiant' protostars have effective temperatures as low as T{sub eff} {approx_equal} 5000 K throughout their evolution and because they hardly emit ionizing photons, they do not create an H II region or significantly heat their immediate surroundings. Thus, radiative feedback is unable to hinder the growth of rapidly accreting stars to masses in excess of 10{sup 3} M{sub Sun} as long as material is accreted at rates M-dot{sub *}{approx}>10{sup -2} M{sub Sun} yr{sup -1}.

  4. RED SUPERGIANTS IN THE ANDROMEDA GALAXY (M31)

    SciTech Connect

    Massey, Philip; Silva, David R.; Olsen, Knut A. G.; Levesque, Emily M.; Plez, Bertrand; Clayton, Geoffrey C.; Meynet, Georges; Maeder, Andre E-mail: dsilva@noao.ed E-mail: emsque@ifa.hawaii.ed E-mail: gclayton@fenway.phys.lsu.ed E-mail: andre.maeder@unige.c

    2009-09-20

    Red supergiants (RSGs) are a short-lived stage in the evolution of moderately massive stars (10-25 M{sub sun}), and as such their location in the H-R diagram provides an exacting test of stellar evolutionary models. Since massive star evolution is strongly affected by the amount of mass loss a star suffers, and since the mass-loss rates depend upon metallicity, it is highly desirable to study the physical properties of these stars in galaxies of various metallicities. Here we identify a sample of RSGs in M31, the most metal-rich of the Local Group galaxies. We determine the physical properties of these stars using both moderate resolution spectroscopy and broadband V - K photometry. We find that on average the RSGs of our sample are variable in V by 0.5 mag, smaller but comparable to the 0.9 mag found for Magellanic Cloud (MC) RSGs. No such variability is seen at K, also in accord with what we know of Galactic and MC RSGs. We find that there is a saturation effect in the model TiO band strengths with metallicities higher than solar. The physical properties we derive for the RSGs from our analysis with stellar atmosphere models agree well with the current evolutionary tracks, a truly remarkable achievement given the complex physics involved in each. We do not confirm an earlier result that the upper luminosities of RSGs depend upon metallicity; instead, the most luminous RSGs have log L/L{sub sun}{approx}5.2-5.3, broadly consistent but slightly larger than that recently observed by Smartt et al. as the upper luminosity limit to Type II-P supernovae, believed to have come from RSGs. We find that, on average, the RSGs are considerably more reddened than O and B stars, suggesting that circumstellar dust is adding a significant amount of extra extinction, {approx}0.5 mag, on average. This is in accord with our earlier findings on Milky Way and Magellanic Cloud stars. Finally, we call attention to a peculiar star whose spectrum appears to be heavily veiled, possibly due to scattering by an expanding dust shell.

  5. CNO abundances in the quintuplet cluster M supergiant 5-7

    NASA Technical Reports Server (NTRS)

    Ramirez, S. V.; Sellgren, K.; Blum, R.; Terndrup, D. M.

    2002-01-01

    We present and analyze infrared spectra of the supergiant VR 5-7, in the Quintuplet cluster 30 pc from the Galactic center. Within the uncertainties, the [C/H],[N/H], and [O/H] abundances in this star are equal of Ori, a star which exhibits mixing of CNO processed elements, but distinct from the abundance patterns in IRS 7.

  6. X-ray Spectroscopy of O Supergiant Winds: Shock Physics, Clumping, and Mass-Loss Rates

    E-print Network

    Cohen, David

    X-ray Spectroscopy of O Supergiant Winds: Shock Physics, Clumping, and Mass-Loss Rates David Cohen-ray emission: wind shocks 1. X-ray constraints on the shocked wind plasma 2. X-ray absorption as a mass. Adiabatic shocks Open questions: very dense winds (WR stars); low density winds (B stars); magnetic OB stars

  7. THE THIRD SIGNATURE OF GRANULATION IN BRIGHT-GIANT AND SUPERGIANT STARS

    SciTech Connect

    Gray, David F.; Pugh, Teznie

    2012-04-15

    We investigated third-signature granulation plots for 18 bright giants and supergiants and one giant of spectral classes G0 to M3. These plots reveal the net granulation velocities, averaged over the stellar disk, as a function of depth. Supergiants show significant differences from the 'standard' shape seen for lower-luminosity stars. Most notable is a striking reversal of slope seen for three of the nine supergiants, i.e., stronger lines are more blueshifted than weaker lines, opposite the solar case. Changes in the third-signature plot of {alpha} Sco (M1.5 Iab) with time imply granulation cells that penetrate only the lower portion of the photosphere. For those stars showing the standard shape, we derive scaling factors relative to the Sun that serve as a first-order measure of the strength of the granulation relative to the Sun. For G-type stars, the third-signature scale of the bright giants and supergiants is approximately 1.5 times as strong as in dwarfs, but for K stars, there in no discernible difference between higher-luminosity stars and dwarfs. Classical macroturbulence, a measure of the velocity dispersion of the granulation, increases with the third-signature-plot scale factors, but at different rates for different luminosity classes.

  8. Pionic Supergiant Radiohalos as Integral Record of Pion Emission During Nuclear Fission

    E-print Network

    D. B. Ion; Reveica Ion-Mihai; M. L. Ion

    2011-08-18

    In this paper we presented a short review of radioactive halos as from the perspective of their interpretation as integral record in time of different kind of known or unknown radioactivities. A special attention is paid for the unified interpretation of the supergiant halos (SGH), discovered by Grady, Walker and Laemlein, as integral record of pion emission during fission.

  9. Water vapor on supergiants. The 12 micron TEXES spectra of mu Cephei

    E-print Network

    N. Ryde; M. J. Richter; G. M. Harper; K. Eriksson; D. L. Lambert

    2006-03-15

    Several recent papers have argued for warm, semi-detached, molecular layers surrounding red giant and supergiant stars, a concept known as a MOLsphere. Spectroscopic and interferometric analyses have often corroborated this general picture. Here, we present high-resolution spectroscopic data of pure rotational lines of water vapor at 12 microns for the supergiant mu Cephei. This star has often been used to test the concept of molecular layers around supergiants. Given the prediction of an isothermal, optically thick water-vapor layer in Local Thermodynamic Equilibrium around the star (MOLsphere), we expected the 12 micron lines to be in emission or at least in absorption but filled in by emission from the molecular layer around the star. Our data, however, show the contrary; we find definite absorption. Thus, our data do not easily fit into the suggested isothermal MOLsphere scenario. The 12 micron lines, therefore, put new, strong constraints on the MOLsphere concept and on the nature of water seen in signatures across the spectra of early M supergiants. We also find that the absorption is even stronger than that calculated from a standard, spherically symmetric model photosphere without any surrounding layers. A cool model photosphere, representing cool outer layers is, however, able to reproduce the lines, but this model does not account for water vapor emission at 6 microns. Thus, a unified model for water vapor on mu Cephei appears to be lacking. It does seem necessary to model the underlying photospheres of these supergiants in their whole complexity. The strong water vapor lines clearly reveal inadequacies of classical model atmospheres.

  10. Non-LTE Line-blanketed Stellar Wind Atmosphere Models for the A-supergiant Deneb

    NASA Astrophysics Data System (ADS)

    Aufdenberg, J. P.; Hauschildt, P. H.; Baron, E.

    1999-12-01

    We present non-LTE metal line-blanketed stellar wind atmosphere models and synthetic spectra for comparison with the spectral energy distribution of the A-supergiant Deneb from UV to radio wavelengths. Deneb is alone among A-supergiants in having both a precisely measured angular diameter from the Navy Prototype Optical Interferometer (Nordgren, T. et al., 1999, priv. comm.) and a positive detection at centimeter wavelengths with the Very Large Array (Howarth, I., 1999, priv. comm.). These recent measurements together with our wind atmosphere models considerably improve constraints on Deneb's fundamental stellar and wind parameters. Using the precise angular diameter we are able to use the Barnes-Evans relationship to constrain the reddening toward Deneb independent of any assumptions about its intrinsic colors. Our models treat the hydrostatic inner atmosphere and the extended expanding outer atmosphere as a unified structure and the radiative transfer is solved in the co-moving frame. We present synthetic radio spectra for the partially ionized winds of A-supergiants over a range of mass-loss rates and we find that the standard assumptions regarding the radio spectra of warm supergiants break down for A-supergiants. By simultaneously fitting the UV, optical, IR and radio spectrophotometry we are able to constrain the mass-loss rate and temperature distribution throughout the extended atmosphere. Stability of the deep hydrostatic layers against outward acceleration provides a lower limit on gravitational acceleration in these layers. This work was supported in part by an Arizona State University NASA Space Grant Fellowship and CNRS, NSF, and NASA grants to the University of Georgia. Some calculations were performed on the IBM SP and the SGI Origin 2000 of the UGA UCNS and on the IBM SP at SDSC and on the Cray T3E of the NERSC.

  11. Discovery of the First B[e] Supergiants in M 31

    NASA Astrophysics Data System (ADS)

    Kraus, M.; Cidale, L. S.; Arias, M. L.; Oksala, M. E.; Borges Fernandes, M.

    2014-01-01

    B[e] supergiants (B[e]SGs) are transitional objects in the post-main sequence evolution of massive stars. The small number of B[e]SGs known so far in the Galaxy and the Magellanic Clouds indicates that this evolutionary phase is short. Nevertheless, the strong aspherical mass loss occurring during this phase, which leads to the formation of rings or disk-like structures, and the similarity to possible progenitors of SN1987 A emphasize the importance of B[e]SGs for the dynamics of the interstellar medium as well as stellar and galactic chemical evolution. The number of objects and their mass-loss behavior at different metallicities are essential ingredients for accurate predictions from stellar and galactic evolution calculations. However, B[e]SGs are not easily identified, as they share many characteristics with luminous blue variables (LBVs) in their quiescent (hot) phase. We present medium-resolution near-infrared K-band spectra for four stars in M 31, which have been assigned a hot LBV (candidate) status. Applying diagnostics that were recently developed to distinguish B[e]SGs from hot LBVs, we classify two of the objects as bonafide LBVs; one of them currently in outburst. In addition, we firmly classify the two stars 2MASS J00441709+4119273 and 2MASS J00452257+4150346 as the first B[e]SGs in M 31 based on strong CO band emission detected in their spectra, and infrared colors typical for this class of stars. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência, Tecnologia e Inovação (Brazil) and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina), under program ID GN-2013B-Q-10.

  12. Herschel/HIFI View on Massive Evolved Stars: the HIFISTARS sample of Supergiant and Yellow Hypergiant envelopes

    NASA Astrophysics Data System (ADS)

    Teyssier, D.; Marston, A.; Alcolea, J.; Bujarrabal, V.; Hifistars Consortium

    2011-05-01

    We present the first results of one the HIFISTARS (Bujarrabal et al. 2010, see also Decin et al., this conference) sub-programmes dedicated to the study of the physico-chemical conditions and the mass-loss history in Red Supergiants and Yellow Hypergiants. Such sources are the most massive and luminous stars in the pathway of stellar evolution, and as such are fast-lived and characterised by very intense winds and mass-loss rates. These conditions and the large size of their envelope contribute to a particularly rich chemistry. At the end of their evolution, Super/Hyergiant stars are expected to die hard and form black holes or neutron stars after a supernova. The HIFISTARS' sample of evolved massive stars considers three Red Supergiants (NML Cyg, Betelgeuse, and VY CMa) and two Yellow Hypergiants (IRC+10420 and AFGL2343), in a handful of submm and FIR CO/13CO lines, as well as several water, HCN, SiO, SO, SO2, and other bonus lines collected over the whole HIFI frequency ranges. While most of the CO, the OH line at 1835 GHz, and both ortho- and para- ground-state water lines are detected in all targets, there is a clear difference for the less-abundant N-bearing, Si-bearing and S-bearing species. The various water lines covered by the survey are also relatively un-evenly represented from one source to another, with some of the transitions showing up as masers. The observed lines feature complex and distinct profiles, indicative of the strong and asymmetric wings at play for some of the transitions. Of the four sources observed so far (all but AFGL2343), VY CMa clearly stands out as an exceptional object, with most lines 2-10x stronger than any other Super/Hypergiants, and revealing in particular an extremely rich water chemistry observed nowhere in the other sources of the sample (Alcolea et al., in preparation, see also Menten et al., this conference).

  13. The convection of close red supergiant stars observed with near-infrared interferometry

    E-print Network

    Montargès, Miguel; Perrin, Guy; Chiavassa, Andrea; Aurière, Michel

    2015-01-01

    Our team has obtained observations of the photosphere of the two closest red supergiant stars Betelgeuse ($\\alpha$ Ori) and Antares ($\\alpha$ Sco) using near infrared interferometry. We have been monitoring the photosphere of Betelgeuse with the VLTI/PIONIER instrument for three years. On Antares, we obtained an unprecedented sampling of the visibility function. These data allow us to probe the convective photosphere of massive evolved stars.

  14. The Convection of Close Red Supergiant Stars Observed With Near-Infrared Interferometry

    NASA Astrophysics Data System (ADS)

    Montargès, M.; Kervella, P.; Perrin, G.; Chiavassa, A.; Aurière, M.

    2015-12-01

    Our team has obtained observations of the photosphere of the two closest red supergiant stars Betelgeuse (? Ori) and Antares (? Sco) using near infrared interferometry. We have been monitoring the photosphere of Betelgeuse with the VLTI/PIONIER instrument for three years. On Antares, we obtained an unprecedented sampling of the visibility function. These data allow us to probe the convective photosphere of massive evolved stars.

  15. Mass fluxes for O-type supergiants with metallicity Z = Z?/5

    NASA Astrophysics Data System (ADS)

    Lucy, L. B.

    2015-10-01

    A code used previously to predict O-star mass fluxes as a function of metallicity is used to compute a grid of models with the metallicity of the Small Magellanic Cloud (SMC). These models allow mass-loss rates to be derived by interpolation for all O-type supergiants in the SMC, with the possible exception of extremely massive stars close to the Eddington limit.

  16. A transient supergiant X-ray binary in IC 10: An extragalactic SFXT?

    SciTech Connect

    Laycock, Silas; Cappallo, Rigel; Oram, Kathleen; Balchunas, Andrew

    2014-07-01

    We report the discovery of a large amplitude (factor of ?100) X-ray transient (IC 10 X-2, CXOU J002020.99+591758.6) in the nearby dwarf starburst galaxy IC 10 during our Chandra monitoring project. Based on the X-ray timing and spectral properties, and an optical counterpart observed with Gemini, the system is a high-mass X-ray binary consisting of a luminous blue supergiant and a neutron star. The highest measured luminosity of the source was 1.8 × 10{sup 37} erg s{sup –1}during an outburst in 2003. Observations before, during, and after a second outburst in 2010 constrain the outburst duration to be less than 3 months (with no lower limit). The X-ray spectrum is a hard power law (? = 0.3) with fitted column density (N{sub H} = 6.3 × 10{sup 21} atom cm{sup –2}), consistent with the established absorption to sources in IC 10. The optical spectrum shows hydrogen Balmer lines strongly in emission at the correct blueshift (-340 km s{sup –1}) for IC 10. The N III triplet emission feature is seen, accompanied by He II [4686] weakly in emission. Together these features classify the star as a luminous blue supergiant of the OBN subclass, characterized by enhanced nitrogen abundance. Emission lines of He I are seen, at similar strength to H?. A complex of Fe II permitted and forbidden emission lines are seen, as in B[e] stars. The system closely resembles galactic supergiant fast X-ray transients, in terms of its hard spectrum, variability amplitude, and blue supergiant primary.

  17. An observational evaluation of magnetic confinement in the winds of BA supergiants

    NASA Astrophysics Data System (ADS)

    Shultz, M.; Wade, G. A.; Petit, V.; Grunhut, J.; Neiner, C.; Hanes, D.; MiMeS Collaboration

    2014-02-01

    Magnetic wind confinement has been proposed as one explanation for the complex wind structures of supergiant stars of spectral types B and A. Observational investigation of this hypothesis was undertaken using high-resolution (?/?? ˜ 65 000) circular polarization (Stokes V) spectra of six late B- and early A-type supergiants (? Ori, B8Iae; 4 Lac, B9Iab; ? Leo, A0Ib; HR1040, A0Ib; ? Cyg, A2Iae; ? Cep, A2Iab), obtained with the instruments ESPaDOnS and Narval at the Canada-France-Hawaii Telescope and the Bernard Lyot Telescope. Least-squares deconvolution (LSD) analysis of the Stokes V spectra of all stars yields no evidence of a magnetic field, with best longitudinal field 1? error bars ranging from ˜0.5 to ˜4.5 G for most stars. Spectrum synthesis analysis of the LSD profiles using Bayesian inference yields an upper limit with 95.4 per cent credibility on the polar strength of the (undetected) surface dipole fields of individual stars ranging from 3 to 30 G. These results strongly suggest that magnetic wind confinement due to organized dipolar magnetic fields is not the origin of the wind variability of BA supergiant stars. Upper limits for magnetic spots may also be inconsistent with magnetic wind confinement in the limit of large spot size and filling factor, depending on the adopted wind parameters. Therefore, if magnetic spots are responsible for the wind variability of BA supergiant stars, they likely occupy a small fraction of the photosphere.

  18. Mass fluxes for O-type supergiants with metallicity Z = Z_{\\sun}/5

    E-print Network

    Lucy, L B

    2015-01-01

    A code used previously to predict O-star mass fluxes as a function of metallicity is used to compute a grid of models with the metallicity of the Small Magellanic Cloud (SMC). These models allow mass-loss rates to be derived by interpolation for all O-type supergiants in the SMC, with the possible exception of extremely massive stars close to the Eddington limit.

  19. Gas kinematics and the structure of extragalactic giant and supergiant H II regions

    NASA Astrophysics Data System (ADS)

    Gallagher, J. S.; Hunter, D. A.

    1983-11-01

    We examine the hypothesis of Terlevich and Melnick that velocity widths of emission lines in luminous H II regions reflect the gravitationally bound state of these systems. Observational data to test this concept are taken from our homogeneous sets of flux calibrated H? images and high-resolution echelle Hoc intensity line velocity profiles for nearby irregular galaxies. Giant H II regions with diameters in the range 50-500 pc show well-known supersonic gas velocities, but no convincing evidence is found to associate these motions with gravitational binding of the H II complexes. Large-scale gas flows induced by embedded OB stellar populations provide a more plausible explanation for observed velocity line widths in the giant H II regions. Supergiant H II complexes with diameters of more than 500 pc have some features which are consistent with self-gravitating models and are in any case kinematically distinct from more common giant H II regions. Since supergiant H II complexes extend over significant fractions of their parent galaxies, observed velocities in the ionized gas are likely to be substantially influenced by kinematic properties of the galaxian environment. It thus is unlikely that pressure supported, bound self-gravitating models can provide a complete explanation for the gas kinematics of supergiant H II regions.

  20. Interacting supernovae from photoionization-confined shells around red supergiant stars.

    PubMed

    Mackey, Jonathan; Mohamed, Shazrene; Gvaramadze, Vasilii V; Kotak, Rubina; Langer, Norbert; Meyer, Dominique M-A; Moriya, Takashi J; Neilson, Hilding R

    2014-08-21

    Betelgeuse, a nearby red supergiant, is a fast-moving star with a powerful stellar wind that drives a bow shock into its surroundings. This picture has been challenged by the discovery of a dense and almost static shell that is three times closer to the star than the bow shock and has been decelerated by some external force. The two physically distinct structures cannot both be formed by the hydrodynamic interaction of the wind with the interstellar medium. Here we report that a model in which Betelgeuse's wind is photoionized by radiation from external sources can explain the static shell without requiring a new understanding of the bow shock. Pressure from the photoionized wind generates a standing shock in the neutral part of the wind and forms an almost static, photoionization-confined shell. Other red supergiants should have much more massive shells than Betelgeuse, because the photoionization-confined shell traps up to 35 per cent of all mass lost during the red supergiant phase, confining this gas close to the star until it explodes. After the supernova explosion, massive shells dramatically affect the supernova light curve, providing a natural explanation for the many supernovae that have signatures of circumstellar interaction. PMID:25119040

  1. Chemical complexity in the winds of the oxygen-rich supergiant star VY Canis Majoris

    E-print Network

    Ziurys, Lucy M.

    Telescope images12 (Fig. 1). Molecular line observations trace a shell expanding at a velocity of ,40 km s21 of Astronomy/Steward Observatory, 3 Arizona Radio Observatory, University of Arizona, 933 North Cherry Avenue

  2. The eccentric short-period orbit of the supergiant fast X-ray transient HD 74194 (=LM Vel)

    E-print Network

    Gamen, R; Walborn, N R; Morrell, N I; Arias, J I; Apellániz, J Maíz; Sota, A; Alfaro, E J

    2015-01-01

    Aims. We present the first orbital solution for the O-type supergiant star HD 74194, which is the optical counterpart of the supergiant fast X-ray transient IGR J08408-4503. Methods. We measured the radial velocities in the optical spectrum of HD 74194, and we determined the orbital solution for the first time. We also analysed the complex H{\\alpha} profile. Results. HD 74194 is a binary system composed of an O-type supergiant and a compact object in a short-period ($P=9.5436\\pm0.0002$ d) and high-eccentricity ($e=0.63\\pm0.03$) orbit. The equivalent width of the H{\\alpha} line is not modulated entirely with the orbital period, but seems to vary in a superorbital period ($P=285\\pm10$ d) nearly 30 times longer than the orbital one.

  3. The eccentric short-period orbit of the supergiant fast X-ray transient HD 74194 (=LM Vel)

    NASA Astrophysics Data System (ADS)

    Gamen, R.; Barbà, R. H.; Walborn, N. R.; Morrell, N. I.; Arias, J. I.; Maíz Apellániz, J.; Sota, A.; Alfaro, E. J.

    2015-11-01

    Aims. We present the first orbital solution for the O-type supergiant star HD 74194, which is the optical counterpart of the supergiant fast X-ray transient IGR J08408-4503. Methods. We measured the radial velocities in the optical spectrum of HD 74194, and we determined the orbital solution for the first time. We also analysed the complex H? profle. Results. HD 74194 is a binary system composed of an O-type supergiant and a compact object in a short-period (P=9.5436 ± 0.0002 d) and high-eccentricity (e=0.63 ± 0.03) orbit. The equivalent width of the H? line is not modulated entirely with the orbital period, but seems to vary in a superorbital period (P=285 ± 10 d) nearly 30 times longer than the orbital one. Table 3 is available in electronic form at http://www.aanda.org/10.1051/0004-6361/201527140/olm

  4. Global-scale 3-D RMHD Simulations of Red-Supergiant Convective Envelopes

    NASA Astrophysics Data System (ADS)

    Augustson, Kyle C.; Jiang, Yanfei; Cantiello, Matteo

    2015-08-01

    The radiative magnetohydrodynamic CSS code is used to simulate 3-D spherical segments of the convective regions of two red-supergiants of differing masses. Much as in the recent work of Y. Jiang (2015), it is found that the density inversion characteristic of 1-D stellar evolution calculations can instead become monotonically decreasing in 3-D. In particular, it vanishes when the Fe-bump region of the convection zone is optically thick. However, the density inversion can remain, though is temporally intermittent, when that region is sufficiently optically thin. The effects of curvature and magnetism on the large-scale convective cells are also assessed.

  5. Pulsation and Mass Loss Across the HR Diagram: From OB stars to Cepheids to Red Supergiants

    E-print Network

    Neilson, Hilding R

    2013-01-01

    Both pulsation and mass loss are commonly observed in stars and are important ingredients for understanding stellar evolution and structure, especially for massive stars. There is a growing body of evidence that pulsation can also drive and enhance mass loss in massive stars and that pulsation-driven mass loss is important for stellar evolution. In this review, I will discuss recent advances in understanding pulsation driven mass loss in massive main sequence stars, classical Cepheids and red supergiants and present some challenges remaining.

  6. Microwave continuum measurements and estimates of mass loss rates for cool giants and supergiants

    NASA Technical Reports Server (NTRS)

    Drake, S. A.; Linsky, J. L.

    1986-01-01

    Attention is given to the results of a sensitive, 6-cm radio continuum survey conducted with the NRAO VLA of 39 of the nearest single cool giants and supergiants of G0-M5 spectral types; the survey was conducted in order to obtain accurate measurements of the mass loss rates of ionized gas for a representative sample of such stars, in order to furnish constraints for, and a better understanding of, the total mass loss rates. The inferred angular diameters for the cool giant sources are noted to be twice as large as photospheric angular diameters, implying that these stars are surrounded by extended chromospheres containing warm partially ionized gas.

  7. Discovery of the orbital period in the supergiant fast X-ray transient IGR J17544-2619

    E-print Network

    Clark, D J; Bird, A J; McBride, V A; Scaringi, S; Dean, A J

    2009-01-01

    The supergiant fast X-ray transient (SFXT) system IGR J17544-2619 has displayed many large outbursts in the past and is considered an archetypal example of SFXTs. A search of the INTEGRAL/ISGRI data archive from MJD 52698-54354 has revealed 11 outbursts and timing analysis of the light curve identifies a period of 4.926$\\pm$0.001 days which we interpret as the orbital period of the system. We find that large outbursts occasionally occur outside of periastron and place an upper limit for the radius of the supergiant of <23R$_{\\sun}$.

  8. Herschel/HIFI observations of red supergiants and yellow hypergiants: I. Molecular inventory

    E-print Network

    Teyssier, D; Marston, A P; Bujarrabal, V; Alcolea, J; Cernicharo, J; Decin, L; Dominik, C; Justtanont, K; de Koter, A; Melnick, G; Menten, K M; Neufeld, D A; Olofsson, H; Planesas, P; Schmidt, M; Soria-Ruiz, R; Schoeier, F L; Szczerba, R; Waters, L B F M

    2012-01-01

    Red supergiant stars (RSGs) and yellow hypergiant stars (YHGs) are believed to be the high-mass counterparts of stars in the AGB and early post-AGB phases. We study the mass-loss in the post main-sequence evolution of massive stars, through the properties of their envelopes in the intermediate and warm gas layers. These are the regions where the acceleration of the gas takes place and the most recent mass-loss episodes can be seen. We used the HIFI instrument on-board the Herschel Space Observatory to observe sub-mm and FIR transitions of CO, water, and their isotopologues in a sample of two RSGs (NML Cyg and Betelgeuse) and two YHGs (IRC+10420 and AFGL 2343) stars. We present an inventory of the detected lines and analyse the information revealed by their spectral profiles. On the basis of the results presented in an earlier study, we model the CO and 13CO emission in IRC+10420 and compare it to a set of lines ranging from the mm, to the FIR. Red supergiants have stronger high-excitation lines than the YHGs,...

  9. The red supergiant and supernova rate problems: implications for core-collapse supernova physics

    NASA Astrophysics Data System (ADS)

    Horiuchi, S.; Nakamura, K.; Takiwaki, T.; Kotake, K.; Tanaka, M.

    2014-11-01

    Mapping supernovae to their progenitors is fundamental to understanding the collapse of massive stars. We investigate the red supergiant problem, which concerns why red supergiants with masses ˜16-30 M? have not been identified as progenitors of Type IIP supernovae, and the supernova rate problem, which concerns why the observed cosmic supernova rate is smaller than the observed cosmic star formation rate. We find key physics to solving these in the compactness parameter, which characterizes the density structure of the progenitor. If massive stars with compactness above ?2.5 ˜ 0.2 fail to produce canonical supernovae, (i) stars in the mass range 16-30 M? populate an island of stars that have high ?2.5 and do not produce canonical supernovae, and (ii) the fraction of such stars is consistent with the missing fraction of supernovae relative to star formation. We support this scenario with a series of two- and three-dimensional radiation hydrodynamics core-collapse simulations. Using more than 300 progenitors covering initial masses 10.8-75 M? and three initial metallicities, we show that high compactness is conducive to failed explosions. We then argue that a critical compactness of ˜0.2 as the divide between successful and failed explosions is consistent with state-of-the-art three-dimensional core-collapse simulations. Our study implies that numerical simulations of core collapse need not produce robust explosions in a significant fraction of compact massive star initial conditions.

  10. Spectroscopic and Photometric Variability in the A0 Supergiant HR 1040

    NASA Astrophysics Data System (ADS)

    Corliss, David J.; Morrison, Nancy D.; Adelman, Saul J.

    2015-12-01

    A time-series analysis of spectroscopic and photometric observables of the A0 Ia supergiant HR 1040 has been performed, including equivalent widths, radial velocities, and Strömgren photometric indices. The data, obtained from 1993 through 2007, include 152 spectroscopic observations from the Ritter Observatory 1 m telescope and 269 Strömgren photometric observations from the Four College Automated Photoelectric Telescope. Typical of late B- and early A-type supergiants, HR 1040 has a highly variable H? profile. The star was found to have an intermittent active phase marked by correlation between the H? absorption equivalent width and blue-edge radial velocity and by photospheric connections observed in correlations to equivalent width, second moment and radial velocity in Si ii ??6347, 6371. High-velocity absorption (HVA) events were observed only during this active phase. HVA events in the wind were preceded by photospheric activity, including Si ii radial velocity oscillations 19–42 days prior to onset of an HVA event and correlated increases in Si ii W? and second moment from 13 to 23 days before the start of the HVA event. While increases in various line equivalent widths in the wind prior to HVA events have been reported in the past in other stars, our finding of precursors in enhanced radial velocity variations in the wind and at the photosphere is a new result.

  11. Abundance analysis of the supergiant stars HD 80057 and HD 80404 based on their UVES Spectra

    E-print Network

    Tanr?verdi, Taner

    2015-01-01

    This study presents elemental abundances of the early A-type supergiant HD 80057 and the late A-type supergiant HD80404. High resolution and high signal-to-noise ratio spectra published by the UVES Paranal Observatory Project (Bagnulo et al., 2003) were analysed to compute their elemental abundances using ATLAS9 (Kurucz, 1993, 2005; Sbordone et al., 2004). In our analysis we assumed local thermodynamic equilibrium. The atmospheric parameters of HD 80057 used in this study are from Firnstein & Przybilla (2012), and that of HD80404 are derived from spectral energy distribution, ionization equilibria of Cr I/II and Fe I/II, and the fits to the wings of Balmer lines and Paschen lines as Teff = 7700 +/- 150 K and log g=1.60 +/- 0.15 (in cgs). The microturbulent velocities of HD 80057 and HD 80404 have been determined as 4.3 +/- 0.1 and 2.2 +/- 0.7 km s^-1 . The rotational velocities are 15 +/-1 and 7 +/- 2 km s^-1 and their macroturbulence velocities are 24 +/-2 and 2+/-1 km s^-1 . We have given the abundances...

  12. X-RAY PHOTOIONIZED BUBBLE IN THE WIND OF VELA X-1 PULSAR SUPERGIANT COMPANION

    SciTech Connect

    Krticka, Jiri; Skalicky, Jan; Kubat, Jiri

    2012-10-01

    Vela X-1 is the archetype of high-mass X-ray binaries (HMXBs), composed of a neutron star and a massive B supergiant. The supergiant is a source of a strong radiatively driven stellar wind. The neutron star sweeps up this wind and creates a huge amount of X-rays as a result of energy release during the process of wind accretion. Here, we provide detailed NLTE models of the Vela X-1 envelope. We study how the X-rays photoionize the wind and destroy the ions responsible for the wind acceleration. The resulting decrease of the radiative force explains the observed reduction of the wind terminal velocity in a direction to the neutron star. The X-rays create a distinct photoionized region around the neutron star filled with a stagnating flow. The existence of such photoionized bubbles is a general property of HMXBs. We unveil a new principle governing these complex objects, according to which there is an upper limit to the X-ray luminosity the compact star can have without suspending the wind due to inefficient line driving.

  13. DOUBLE BOW SHOCKS AROUND YOUNG, RUNAWAY RED SUPERGIANTS: APPLICATION TO BETELGEUSE

    SciTech Connect

    Mackey, Jonathan; Mohamed, Shazrene; Neilson, Hilding R.; Langer, Norbert; Meyer, Dominique M.-A.

    2012-05-20

    A significant fraction of massive stars are moving supersonically through the interstellar medium (ISM), either due to disruption of a binary system or ejection from their parent star cluster. The interaction of their wind with the ISM produces a bow shock. In late evolutionary stages these stars may undergo rapid transitions from red to blue and vice versa on the Hertzsprung-Russell diagram, with accompanying rapid changes to their stellar winds and bow shocks. Recent three-dimensional simulations of the bow shock produced by the nearby runaway red supergiant (RSG) Betelgeuse, under the assumption of a constant wind, indicate that the bow shock is very young (<30, 000 years old), hence Betelgeuse may have only recently become an RSG. To test this possibility, we have calculated stellar evolution models for single stars which match the observed properties of Betelgeuse in the RSG phase. The resulting evolving stellar wind is incorporated into two-dimensional hydrodynamic simulations in which we model a runaway blue supergiant (BSG) as it undergoes the transition to an RSG near the end of its life. We find that the collapsing BSG wind bubble induces a bow shock-shaped inner shell around the RSG wind that resembles Betelgeuse's bow shock, and has a similar mass. Surrounding this is the larger-scale retreating bow shock generated by the now defunct BSG wind's interaction with the ISM. We suggest that this outer shell could explain the bar feature located (at least in projection) just in front of Betelgeuse's bow shock.

  14. Red Supergiant Stars as Supernova Progenitors - the X-ray Perspective

    NASA Astrophysics Data System (ADS)

    Dwarkadas, Vikram

    2015-08-01

    Red Supergiants (RSGs) have for decades been assumed to be the progenitors of Type IIP supernovae (SNe). They are expected to have dense winds with mass-loss rates up to 10-4 solar masses/year. We have analysed all available X-ray lightcurves of all SNe, including Type IIP SNe. The IIP SNe have the lowest X-ray luminosities among all classes, which is surprising given the high mass-loss rate winds expected from their red supergiant progenitors, and therefore the high density medium into which IIP SNe are expected to expand into. We show that the low X-ray luminosity sets a limit on the mass-loss rate of the progenitor star which can collapse to become a RSG, which is about 10-5 solar masses/year. This in turn can be used to set a limit on the initial mass of a RSG star which can become a Type IIP progenitor. This initial mass limit is about 19 solar masses. This is consistent with that obtained via direct optical progenitor identification, which find that most optically identified progenitors of Type IIP SNe are RSGs with masses less than about 17 solar masses. We discuss the implications of this result for stellar evolution, theorize on the fate of RSG stars with initial mass greater than 19 solar masses, and what type of SNe they will produce at the end of their lifetime.

  15. Study of the extinction law in M31 and selection of red supergiants

    NASA Astrophysics Data System (ADS)

    Nedialkov, Petko; Veltchev, Todor

    2015-01-01

    An average value of the total-to-selective-extinction ratio R_{V}=3.8 ± 0.4 in M31 is obtained by means of two independent methods and by use of the analytical formula of Cardelli, Clayton & Mathis (1989). This result differs from previous determinations as well from the `standard' value 3.1 for the Milky Way. The derived individual extinctions for blue and red luminous stars from the catalogue of Magnier et al. (1992) are in good agreement with recent estimates for several OB associations in M31 and thus the issue about the assumed optical opacity of the spiral disk still remains open. The presented list of 113 red supergiant candidates in M31 with their extinctions and luminosities contains 60 new objects of this type which are not identified in other publications. It is supplemented with further 290 stars dereddened on the base of results for their closest neighbors. The luminosity function of all red supergiant candidates and the percentage of those with progenitors over 20 M_{?} suggests that the evolution of massive stars in M31 resembles that in other Local Group galaxies.

  16. SOFIA-EXES: Probing the Thermal Structure of M Supergiant Wind Acceleration Zones

    NASA Astrophysics Data System (ADS)

    Harper, Graham M.; O'Gorman, Eamon; Guinan, Edward F.; EXES Instrument Team, EXES Science Team

    2016-01-01

    There is no standard model for mass loss from cool evolved stars, particularly for non-pulsating giants and supergiants. For the early-M supergiants, radiation pressure, convective ejections, magnetic fields, and Alfven waves have all been put forward as potential mass loss mechanisms. A potential discriminator between these ideas is the thermal structure resulting from the heating-cooling balance in the acceleration zone - the most important region to study mass loss physics.We present mid-IR [Fe II] emission line profiles of Betelgeuse and Antares obtained with NASA-DLR SOFIA-EXES and NASA IRTF-TEXES that were obtained as part of a GO program (Harper: Cycle 2-0004) and EXES instrument commissioning observations. The intra-term transitions sample a range of excitation conditions, Texc=540K, 3,400K, and 11,700K, i.e., from the warm chromospheric plasma, that also emits in the cm-radio and ultraviolet, to the cold inner circumstellar envelope. The spectrally-resolved profiles, when combined with VLA cm-radio observations, provide new constraints on the temperature and flow velocity in the outflow accelerating region. The semi-empirical energy balance can be used to test theoretical predictions of wind heating.

  17. Molecular Abundances in the Circumstellar Envelope of Oxygen-Rich Supergiant VY Canis Majoris

    NASA Astrophysics Data System (ADS)

    Edwards, Jessica L.; Ziurys, Lucy

    2014-06-01

    A complete set of molecular abundances have been established for the Oxygen-rich circumstellar envelope (CSE) surrounding the supergiant star VY Canis Majoris (VY CMa). These data were obtained from The Arizona Radio Observatory (ARO) 1-mm spectral line survey of this object using the ARO Sub-millimeter Telescope (SMT), as well as complimentary transitions taken with the ARO 12-meter. The non-LTE radiative transfer code ESCAPADE has been used to obtain the molecular abundances and distributions in VY CMa, including modeling of the various asymmetric outflow geometries in this source. For example, SO and SO2 were determined to arise from five distinct outflows, four of which are asymmetric with respect to the central star. Abundances of these two sulfur-bearing molecules range from 3 x 10-8 - 2.5 x 10-7 for the various outflows. Similar results will be presented for molecules like CS, SiS, HCN, and SiO, as well as more exotic species like NS, PO, AlO, and AlOH. The molecular abundances between the various outflows will be compared and implications for supergiant chemistry will be discussed.

  18. Luminous and Variable Stars in M31 and M33. I. The Warm Hypergiants and Post-Red Supergiant Evolution

    NASA Astrophysics Data System (ADS)

    Humphreys, Roberta M.; Davidson, K.; Grammer, S.; Martin, J. C.; Weis, K.

    2013-06-01

    The progenitors of the Type IIP supernovae have an apparent upper mass limit of ~ 20 solar masses suggesting that the most massive red supergiants evolve to warmer temperatures before their terminal explosion. But very few post-red supergiants are known. We have identified a small group of luminous stars in M31 and M33 that are candidates for post-red supergiant evolution. These stars have A -- F-type supergiant absorption line spectra and strong hydrogen emission, hence the warm hypergiant name. Their spectra are also distinguished by the Ca II triplet and [Ca II] doublet in emission formed in a low density circumstellar environment. They all have significant near- and mid-infrared excess radiation due to free-free emission and thermal emission from dust. We discuss their wind parameters and mass loss rates which range from a few times 10^-6 to 10^-4 solar masses per year. On an HR Diagram, these stars will overlap the region of the LBVs at maximum light, however the warm hypergiants are not LBVs. Their winds are not optically thick and they have no significant variability. We suggest, howvwr, that the warm hypergiants may be the progenitors of the ``less luminous'' LBVs such as R71 and even SN1987A.

  19. Luminous and Variable Stars in M31 and M33. I. The Warm Hypergiants and Post-Red Supergiant Evolution

    E-print Network

    Humphreys, Roberta M; Grammer, Skyler; Kneeland, Nathan; Martin, John C; Weis, Kerstin; Burggraf, Birgitta

    2013-01-01

    The progenitors of Type IIP supernovae have an apparent upper limit to their initial masses of about 20 solar masses, suggesting that the most massive red supergiants evolve to warmer temperatures before their terminal explosion. But very few post-red supergiants are known. We have identified a small group of luminous stars in M31 and M33 that are candidates for post-red supergiant evolution. These stars have A -- F-type supergiant absorption line spectra and strong hydrogen emission. Their spectra are also distinguished by the Ca II triplet and [Ca II] doublet in emission formed in a low density circumstellar environment. They all have significant near- and mid-infrared excess radiation due to free-free emission and thermal emission from dust. We estimate the amount of mass they have shed and discuss their wind parameters and mass loss rates which range from a few times$ 10^-6 to 10^-4 solar masses/yr. On an HR Diagram, these stars will overlap the region of the LBVs at maximum light, however the warm hyperg...

  20. Discovery of a red supergiant counterpart to RX~J004722.4-252051, a ULX in NGC 253

    E-print Network

    Heida, M; Jonker, P G; Servillat, M; Repetto, S; Roberts, T P; Walton, D J; Moon, D -S; Harrison, F A

    2015-01-01

    We present two epochs of near-infrared spectroscopy of the candidate red supergiant counterpart to RX~J004722.4-252051, a ULX in NGC 253. We measure radial velocities of the object and its approximate spectral type by cross-correlating our spectra with those of known red supergiants. Our VLT/X-shooter spectrum is best matched by that of early M-type supergiants, confirming the red supergiant nature of the candidate counterpart. The radial velocity of the spectrum, taken on 2014, August 23, is $417 \\pm 4$ km/s. This is consistent with the radial velocity measured in our spectrum taken with Magellan/MMIRS on 2013, June 28, of $410 \\pm 70$ km/s, although the large error on the latter implies that a radial velocity shift expected for a black hole of tens of $M_\\odot$ can easily be hidden. Using nebular emission lines we find that the radial velocity due to the rotation of NGC 253 is 351 $\\pm$ 4 km/s at the position of the ULX. Thus the radial velocity of the counterpart confirms that the source is located in NGC ...

  1. IUE observations of the Henize-Carlson sample of peculiar emission line supergiants: The galactic analogs of the Magellanic Zoo

    NASA Technical Reports Server (NTRS)

    Shore, Steven N.; Brown, Douglas N.; Sanduleak, N.

    1986-01-01

    Some 15 stars from the Carlson-Henize survey of southern peculiar emission line stars were studied. From both the optical and UV spectra, they appear to be galactic counterparts of the most extreme early-type emission line supergiants of the Magellanic Clouds.

  2. WHERE DO CARBON-CARBON BONDS ORIGINATE? THE PECULIAR CHEMISTRY OF THE OXYGEN-RICH SUPERGIANT VY CANIS MAJORIS

    E-print Network

    Ziurys, Lucy M.

    of Chemistry, De- partment of Astronomy, Arizona Radio Observatory, and Steward Observatory, University line survey of the envelope of the O-rich supergiant VY Canis Majoris using the Arizona Radio Observatory's 12m facility and Submillimeter Telescope (SMT) at 3, 2, and 1 mm. VY Canis Majoris is a massive

  3. Measurements of chromospheric densities and geometrical extensions of late-type giant and super-giant stars

    NASA Technical Reports Server (NTRS)

    Wing, R. F.; Carpenter, K. G.; Stencel, R. E.; Linsky, J. L.

    1983-01-01

    The density sensitivity of the emission lines within the UV 0.01 multiplet of C II near 2325 A was examined in additional late type giants and supergiants with deep LWR high dispersion exposures. The new data support the original contention based on these lines that noncoronal red giants possess geometrically extended chromospheres.

  4. LUMINOUS AND VARIABLE STARS IN M31 AND M33. I. THE WARM HYPERGIANTS AND POST-RED SUPERGIANT EVOLUTION

    SciTech Connect

    Humphreys, Roberta M.; Davidson, Kris; Grammer, Skyler; Kneeland, Nathan; Martin, John C.; Weis, Kerstin; Burggraf, Birgitta

    2013-08-10

    The progenitors of Type IIP supernovae (SNe) have an apparent upper limit to their initial masses of about 20 M{sub Sun }, suggesting that the most massive red supergiants evolve to warmer temperatures before their terminal explosion. But very few post-red supergiants are known. We have identified a small group of luminous stars in M31 and M33 that are candidates for post-red supergiant evolution. These stars have A-F-type supergiant absorption line spectra and strong hydrogen emission. Their spectra are also distinguished by the Ca II triplet and [Ca II] doublet in emission formed in a low-density circumstellar environment. They all have significant near- and mid-infrared excess radiation due to free-free emission and thermal emission from dust. We estimate the amount of mass they have shed and discuss their wind parameters and mass loss rates, which range from a few Multiplication-Sign 10{sup -6} to 10{sup -4} M{sub Sun} yr{sup -1}. On an H-R diagram, these stars will overlap the region of the luminous blue variables (LBVs) at maximum light; however, the warm hypergiants are not LBVs. Their non-spherical winds are not optically thick, and they have not exhibited any significant variability. We suggest, however, that the warm hypergiants may be the progenitors of the ''less luminous'' LBVs such as R71 and even SN1987A.

  5. Interplay between pulsations and mass loss in the blue supergiant 55 Cygnus = HD 198 478

    NASA Astrophysics Data System (ADS)

    Kraus, M.; Haucke, M.; Cidale, L. S.; Venero, R. O. J.; Nickeler, D. H.; Németh, P.; Niemczura, E.; Tomi?, S.; Aret, A.; Kubát, J.; Kubátová, B.; Oksala, M. E.; Curé, M.; Kami?ski, K.; Dimitrov, W.; Fagas, M.; Poli?ska, M.

    2015-09-01

    Context. Blue supergiant stars are known to display photometric and spectroscopic variability that is suggested to be linked to stellar pulsations. Pulsational activity in massive stars strongly depends on the star's evolutionary stage and is assumed to be connected with mass-loss episodes, the appearance of macroturbulent line broadening, and the formation of clumps in the wind. Aims: To investigate a possible interplay between pulsations and mass-loss, we carried out an observational campaign of the supergiant 55 Cyg over a period of five years to search for photospheric activity and cyclic mass-loss variability in the stellar wind. Methods: We modeled the H, He i, Si ii, and Si iii lines using the nonlocal thermal equilibrium atmosphere code FASTWIND and derived the photospheric and wind parameters. In addition, we searched for variability in the intensity and radial velocity of photospheric lines and performed a moment analysis of the line profiles to derive frequencies and amplitudes of the variations. Results: The H? line varies with time in both intensity and shape, displaying various types of profiles: P Cygni, pure emission, almost complete absence, and double or multiple peaked. The star undergoes episodes of variable mass-loss rates that change by a factor of 1.7-2 on different timescales. We also observe changes in the ionization rate of Si ii and determine a multiperiodic oscillation in the He i absorption lines, with periods ranging from a few hours to 22.5 days. Conclusions: We interpret the photospheric line variations in terms of oscillations in p-, g-, and strange modes. We suggest that these pulsations can lead to phases of enhanced mass loss. Furthermore, they can mislead the determination of the stellar rotation. We classify the star as a post-red supergiant, belonging to the group of ? Cyg variables. Based on observations taken with the Perek 2m telescope at Ond?ejov Observatory, Czech Republic, and the Poznan Spectroscopic Telescope 2 at the Winer Observatory in Arizona, USA.Tables 1 and 2, Figs. 3 to 7 are available in electronic form at http://www.aanda.org

  6. VLT detection of a red supergiant progenitor of the type IIP supernova 2008bk

    E-print Network

    S. Mattila; S. J. Smartt; J. J. Eldridge; J. R. Maund; R. M. Crockett; I. J. Danziger

    2008-10-08

    We report the identification of a source coincident with the position of the nearby type II-P supernova (SN) 2008bk in high quality optical and near-infrared pre-explosion images from the ESO Very Large Telescope (VLT). The SN position in the optical and near-infrared pre-explosion images is identified to within about +-70 and +-40 mas, respectively, using post-explosion Ks-band images obtained with the NAOS CONICA adaptive optics system on the VLT. The pre-explosion source detected in four different bands is precisely coincident with SN 2008bk and is consistent with being dominated by a single point source. We determine the nature of the point source using the STARS stellar evolutionary models and find that its colours and luminosity are consistent with the source being a red supergiant progenitor of SN 2008bk with an initial mass of 8.5 +- 1.0 Msun.

  7. Detection of Rotational CO Emission From the Red-supergiants in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Matsuura, M.; Sargent, B.; Swinyard, B.; Yates, J. A.; Royer, P.; Barlow, M. J.; Boyer, M. L.; Decin, L.; Khouri, T.; Meixner, M.; van Loon, J. Th.; Woods, P. M.

    2015-12-01

    It is yet well understood how mass-loss rates from evolved stars depend on metallicities. With a half of the solar metallicity and the distance of only 50 kpc, the evolved stars of the Large Magellanic Cloud (LMC) are an ideal target for studying mass loss at low metallicity. We have obtained spectra of red-supergiants in the LMC, using the Hershel Space Observatory, detecting CO thermal lines fro J=6-5 up to 15-14 lines. Modelling CO lines with non-LTE Radiative transfer code suggests that CO lines intensities can be well explained with high gas-to-dust ratio, with no obvious reduction in mass-loss rate at the LMC. We conclude that the luminosities of the stars are dominant factors on mass-loss rates, rather than the metallicity.

  8. Pulsating red giants and supergiants as probes of galaxy formation and evolution

    NASA Astrophysics Data System (ADS)

    Theodorus van Loon, Jacco; Javadi, Atefeh; Khosroshahi, Habib; Rezaei, Sara; Golshan, Roya; Saberi, Maryam

    2015-08-01

    We have developed new techniques to use pulsating red giant and supergiants stars to reconstruct the star formation history of galaxies over cosmological time, as well as using them to map the dust production across their host galaxies. We describe the large programme on the Local Group spiral galaxy Triangulum (M33), which we have monitored at near-infrared wavelengths for several years using the United Kingdom InfraRed Telescope in Hawai'i. We outline the methodology and present the results for the central square kiloparsec (Javadi et al. 2011a,b, 2013) and - fresh from the press - the disc of M33 (Javadi et al. 2015, and in preparation). We also describe the results from our application of this new technique to other nearby galaxies: the Magellanic Clouds (published in Rezaei et al. 2014), the dwarf galaxies NGC 147 and 185 (Golshan et al. in preparation), and Centaurus A.

  9. The early-type strong emission-line supergiants of the Magellanic Clouds - A spectroscopic zoology

    NASA Technical Reports Server (NTRS)

    Shore, S. N.; Sanduleak, N.

    1984-01-01

    The results of a spectroscopic survey of 21 early-type extreme emission line supergiants of the Large and Small Magellanic Clouds using IUE and optical spectra are presented. The combined observations are discussed and the literature on each star in the sample is summarized. The classification procedures and the methods by which effective temperatures, bolometric magnitudes, and reddenings were assigned are discussed. The derived reddening values are given along with some results concerning anomalous reddening among the sample stars. The derived mass, luminosity, and radius for each star are presented, and the ultraviolet emission lines are described. Mass-loss rates are derived and discussed, and the implications of these observations for the evolution of the most massive stars in the Local Group are addressed.

  10. The early-type strong emission-line supergiants of the Magellanic Clouds - A spectroscopic zoology

    NASA Astrophysics Data System (ADS)

    Shore, S. N.; Sanduleak, N.

    1984-05-01

    The results of a spectroscopic survey of 21 early-type extreme emission line supergiants of the Large and Small Magellanic Clouds using IUE and optical spectra are presented. The combined observations are discussed and the literature on each star in the sample is summarized. The classification procedures and the methods by which effective temperatures, bolometric magnitudes, and reddenings were assigned are discussed. The derived reddening values are given along with some results concerning anomalous reddening among the sample stars. The derived mass, luminosity, and radius for each star are presented, and the ultraviolet emission lines are described. Mass-loss rates are derived and discussed, and the implications of these observations for the evolution of the most massive stars in the Local Group are addressed.

  11. Microvariability of line profiles in the spectra of OB stars: III. The supergiant ? LEO

    NASA Astrophysics Data System (ADS)

    Kholtygin, A. F.; Fabrika, S. N.; Burlakova, T. E.; Valyavin, G. G.; Chuntonov, G. A.; Kudryavtsev, D. O.; Kang, D.; Yushkin, M. V.; Galazutdinov, G. A.

    2007-11-01

    We observed the bright supergiant ? Leo (B1 lab) in January-February 2004 using the 6-m telescope of the Special Astrophysical Observatory (Russia) and the 1.8-m telescope of the Bohyunsan Optical Astronomy Observatory (South Korea). 47 spectra with high time resolution (4-10 min), signal-to-noise ratios 300-1000, and spectral resolutions 45 000-60 000 were obtained. We detected variability in the HeI, SiII, SiIII, and NII line profiles, which may be due to rotational modulation of the profiles and photospheric pulsations of ? Leo. The possible influence of the stellar magnetic field on the line-profile variations is discussed.

  12. Ultraviolet spectral morphology of the O stars. IV - The OB supergiant sequence

    NASA Technical Reports Server (NTRS)

    Walborn, Nolan R.; Nichols-Bohlin, Joy

    1987-01-01

    An atlas of 25 O3-B8 supergiant spectra in the wavelength ranges 1320-1580 A and 1620-1880 A is presented, based on high-resolution data from the IUE archives. The remarkably detailed relationship between the stellar-wind profiles and the optical spectral classifications throughout this sequence is emphasized. For instance, the (Si IV)/(C IV) ratio reverses between O4 and O6.5; and the B0, B0.5, and B0.7 Ia wind characteristics are each qualitatively unique and distinct from one another. The systematic behavior of nine stellar-wind features with ionization potentials ranging from 114 to 19 eV is summarized as a function of advancing spectral type.

  13. The Swift Supergiant Fast X-Ray Transients Project:. [A Review, New Results and Future Perspectives

    NASA Technical Reports Server (NTRS)

    Romano, P.; Mangano, V.; Ducci, L.; Esposito, P.; Vercellone, S.; Bocchino, F.; Burrows, D. N.; Kennea, J. A.; Krimm, H. A.; Gehrels, N.; Farinelli, R.; Ceccobello, C.

    2013-01-01

    We present a review of the Supergiant Fast X-ray Transients (SFXT) Project, a systematic investigation of the properties of SFXTs with a strategy that combines Swift monitoring programs with outburst follow-up observations. This strategy has quickly tripled the available sets of broad-band data of SFXT outbursts, and gathered a wealth of out-of-outburst data, which have led us to a broad-band spectral characterization, an assessment of the fraction of the time these sources spend in each phase, and their duty cycle of inactivity. We present some new observational results obtained through our outburst follow-ups, as fitting examples of the exceptional capabilities of Swift in catching bright flares and monitor them panchromatically.

  14. OBSERVATIONAL EVIDENCE FOR A CORRELATION BETWEEN MACROTURBULENT BROADENING AND LINE-PROFILE VARIATIONS IN OB SUPERGIANTS

    SciTech Connect

    Simon-Diaz, S.; Herrero, A.; Castro, N.; Uytterhoeven, K.; Puls, J.

    2010-09-10

    The spectra of O and B supergiants (Sgs) are known to be affected by a significant form of extra line broadening (usually referred to as macroturbulence) in addition to that produced by stellar rotation. Recent analyses of high-resolution spectra have shown that the interpretation of this line broadening as a consequence of large-scale turbulent motions would imply highly supersonic velocity fields in photospheric regions, making this scenario quite improbable. Stellar oscillations have been proposed as a likely alternative explanation. As part of a long-term observational project, we are investigating the macroturbulent broadening in O and B Sgs and its possible connection with spectroscopic variability phenomena and stellar oscillations. In this Letter, we present the first encouraging results of our project, namely, firm observational evidence for a strong correlation between the extra broadening and photospheric line-profile variations in a sample of 13 Sgs with spectral types ranging from O9.5 to B8.

  15. Properties of Supergiant Fast X-Ray Transients as Observed by Swift

    NASA Technical Reports Server (NTRS)

    Romano, P.; Vercellone, S.; Krimm, H. A.; Esposito, P.; Cusumano, C.; LaParola, V.; Mangano, V.; Kennea, J. A.; Burrows, D. N.; Pagani, C.; Gehrels, N.

    2011-01-01

    We present the most recent results from our investigation on Supergiant Fast X-ray Transients, a class of High-Mass X-ray Binaries, with a possible counterpart in the gamma-ray energy band. Since 2007 Swift has contributed to this new field by detecting outbursts from these fast transients with the BAT and by following them for days with the XRT. Thus, we demonstrated that while the brightest phase of the outburst only lasts a few hours, further activity is observed at lower fluxes for a remarkably longer time, up to weeks. Furthermore, we have performed several campaigns of intense monitoring with the XRT, assessing the fraction of the time these sources spend in each phase, and their duty cycle of inactivity.

  16. Impact of mass-loss on the evolution and pre-supernova properties of red supergiants

    NASA Astrophysics Data System (ADS)

    Meynet, G.; Chomienne, V.; Ekström, S.; Georgy, C.; Granada, A.; Groh, J.; Maeder, A.; Eggenberger, P.; Levesque, E.; Massey, P.

    2015-03-01

    Context. The post-main-sequence evolution of massive stars is very sensitive to many parameters of the stellar models. Key parameters are the mixing processes, the metallicity, the mass-loss rate, and the effect of a close companion. Aims: We study the change in the red supergiant (RSG) lifetimes, the tracks in the Hertzsprung-Russel diagram (HRD), the positions in this diagram of the pre-supernova progenitor and the structure of the stars at that time for various mass-loss rates during the RSG phase and for two different initial rotation velocities. Methods: Stellar models were computed with the Geneva code for initial masses between 9 and 25 M? at solar metallicity (Z = 0.014) with 10 times and 25 times the standard mass-loss rates during the RSG phase, with and without rotation. Results: The surface abundances of RSGs are much more sensitive to rotation than to the mass-loss rates during that phase. A change of the RSG mass-loss rate has a strong impact on the RSG lifetimes and in turn on the luminosity function of RSGs. An observed RSG is associated with a model of higher initial mass when models with an enhanced RSG mass-loss rate are used to deduce that mass. At solar metallicity, models with an enhanced mass-loss rate produce significant changes in the populations of blue, yellow, and RSGs. When extended blue loops or blueward excursions are produced by enhanced mass-loss, the models predict that a majority of blue (yellow) supergiants are post-RSG objects. These post-RSG stars are predicted to show much lower surface rotational velocities than similar blue supergiants on their first crossing of the HR gap. Enhanced mass-loss rates during the RSG phase have little impact on the Wolf-Rayet populations. The position in the HRD of the end point of the evolution depends on the mass of the hydrogen envelope. More precisely, whenever at the pre-supernova stage the H-rich envelope contains more than about 5% of the initial mass, the star is a RSG, and whenever the H-rich envelope contains less than 1% of the total mass, the star is a blue supergiant. For intermediate situations, intermediate colors and effective temperatures are obtained. Yellow progenitors for core-collapse supernovae can be explained by models with an enhanced mass-loss rate, while the red progenitors are better fitted by models with the standard mass-loss rate. Tracks of the enhanced mass loss rates models are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/575/A60

  17. Young red supergiants and the near infrared light appearance of disk galaxies

    E-print Network

    James E. Rhoads

    1997-10-17

    Disk galaxies often show prominent nonaxisymmetric features at near-infrared wavelengths. Such features may indicate variations in the surface density of stellar mass, contributions from young red supergiants in star forming regions, or substantial dust obscuration. To distinguish among these possibilities, we have searched for spatial variations in the 2.3 micron photometric CO index within the disks of three nearby galaxies (NGC 278, NGC 2649, & NGC 5713). This index measures the strength of the absorption bands of molecular CO in stellar atmospheres, and is strong in cool, low surface-gravity stars, reaching the largest values for red supergiants. We observe significant spatial CO index variations in two galaxies (NGC 278 & NGC 5713), indicating that the dominant stellar population in the near-infrared is not everywhere the same. Central CO index peaks are present in two galaxies; these could be due to either metallicity gradients or recent star formation activity. In addition, significant azimuthal CO index variations are seen in NGC 278. Because strong azimuthal metallicity gradients are physically implausible in disk galaxies, these features are most naturally explained by the presence of a young stellar population. The fraction of 2 micron light due to young stellar populations in star forming regions can be calculated from our data. Overall, young stellar populations can contribute ~3% of a (normal) galaxy's near infrared flux. Locally, this fraction may rise to ~33%. Thus, young stars do not dominate the total near infrared flux, but can be locally dominant in star forming regions, and can bias estimates of spiral arm amplitude or other nonaxisymmetric structures in galaxies' mass distributions.

  18. The type IIb supernova 2013df and its cool supergiant progenitor

    SciTech Connect

    Van Dyk, Schuyler D.; Cenko, S. Bradley; Foley, Ryan J.; Miller, Adam A.; Smith, Nathan; Lee, William H.; Ben-Ami, Sagi; Gal-Yam, Avishay

    2014-02-01

    We have obtained early-time photometry and spectroscopy of supernova (SN) 2013df in NGC 4414. The SN is clearly of Type IIb, with notable similarities to SN 1993J. From its luminosity at secondary maximum light, it appears that less {sup 56}Ni (? 0.06 M {sub ?}) was synthesized in the SN 2013df explosion than was the case for the SNe IIb 1993J, 2008ax, and 2011dh. Based on a comparison of the light curves, the SN 2013df progenitor must have been more extended in radius prior to explosion than the progenitor of SN 1993J. The total extinction for SN 2013df is estimated to be A{sub V} = 0.30 mag. The metallicity at the SN location is likely to be solar. We have conducted Hubble Space Telescope (HST) Target of Opportunity observations of the SN with the Wide Field Camera 3, and from a precise comparison of these new observations to archival HST observations of the host galaxy obtained 14 yr prior to explosion, we have identified the progenitor of SN 2013df to be a yellow supergiant, somewhat hotter than a red supergiant progenitor for a normal Type II-Plateau SN. From its observed spectral energy distribution, assuming that the light is dominated by one star, the progenitor had effective temperature T {sub eff} = 4250 ± 100 K and a bolometric luminosity L {sub bol} = 10{sup 4.94±0.06} L {sub ?}. This leads to an effective radius R {sub eff} = 545 ± 65 R {sub ?}. The star likely had an initial mass in the range of 13-17 M {sub ?}; however, if it was a member of an interacting binary system, detailed modeling of the system is required to estimate this mass more accurately. The progenitor star of SN 2013df appears to have been relatively similar to the progenitor of SN 1993J.

  19. Identification of red supergiants in nearby galaxies with mid-IR photometry

    NASA Astrophysics Data System (ADS)

    Britavskiy, N. E.; Bonanos, A. Z.; Mehner, A.; García-Álvarez, D.; Prieto, J. L.; Morrell, N. I.

    2014-02-01

    Context. The role of episodic mass loss in massive-star evolution is one of the most important open questions of current stellar evolution theory. Episodic mass loss produces dust and therefore causes evolved massive stars to be very luminous in the mid-infrared and dim at optical wavelengths. Aims: We aim to increase the number of investigated luminous mid-IR sources to shed light on the late stages of these objects. To achieve this we employed mid-IR selection criteria to identity dusty evolved massive stars in two nearby galaxies. Methods: The method is based on mid-IR colors, using 3.6 ?m and 4.5 ?m photometry from archival Spitzer Space Telescope images of nearby galaxies and J-band photometry from 2MASS. We applied our criteria to two nearby star-forming dwarf irregular galaxies, Sextans A and IC 1613, selecting eight targets, which we followed-up with spectroscopy. Results: Our spectral classification and analysis yielded the discovery of two M-type supergiants in IC 1613, three K-type supergiants and one candidate F-type giant in Sextans A, and two foreground M giants. We show that the proposed criteria provide an independent way for identifying dusty evolved massive stars that can be extended to all nearby galaxies with available Spitzer/IRAC images at 3.6 ?m and 4.5 ?m. Based on observations made with the Gran Telescopio Canarias (GTC), installed in the Spanish Observatorio de El Roque de Los Muchachos of the Instituto de Astrofísica de Canarias, on the island of La Palma, and the 2.5 m du Pont telescope in operation at Las Campanas Observatory, Chile.Spectra are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/562/A75

  20. The Type IIb Supernova 2013df and its Cool Supergiant Progenitor

    NASA Technical Reports Server (NTRS)

    VanDyk, Schuyler D.; Zeng, Weikang; Fox, Ori D.; Cenko, S. Bradley; Clubb, Kelsey I.; Filippenko, Alexei; Foley, Ryan J.; Miller, Adam A.; Smith, Nathan; Kelly, Patrick L.; Lee, William H.; Ben-Ami, Sagi; Gal-Yam, Avishay

    2014-01-01

    We have obtained early-time photometry and spectroscopy of supernova (SN) 2013df in NGC 4414. The SN is clearly of Type II b, with notable similarities to SN 1993J. From its luminosity at secondary maximum light, it appears that less Ni-56 (is approximately less than 0.06M) was synthesized in the SN 2013df explosion than was the case for the SNe II b 1993J, 2008ax, and 2011dh. Based on a comparison of the light curves, the SN 2013df progenitor must have been more extended in radius prior to explosion than the progenitor of SN 1993J. The total extinction for SN 2013dfis estimated to be A(sub V) = 0.30 mag. The metallicity at the SN location is likely to be solar. We have conducted Hubble Space Telescope(HST) Target of Opportunity observations of the SN with the Wide Field Camera 3, and from a precise comparison of these new observations to archival HST observations of the host galaxy obtained 14 yr prior to explosion, we have identified the progenitor of SN 2013df to be a yellow supergiant, somewhat hotter than a red supergiant progenitor for a normal Type II-Plateau SN. From its observed spectral energy distribution, assuming that the light is dominated by one star, the progenitor had effective temperature T(sub eff) = 4250+/-100 K and a bolometric luminosity L(sub bol) =10(exp 4.94+/-0.06) Solar Luminosity. This leads to an effective radius Reff = 545+/-65 Solar Radius. The star likely had an initial mass in the range of 13-17Solar Mass; however, if it was a member of an interacting binary system, detailed modeling of the system is required to estimate this mass more accurately. The progenitor star of SN 2013df appears to have been relatively similar to the progenitor of SN 1993J.

  1. Spectroscopic and Photometric Variability in the A0 Supergiant HR 1040

    NASA Astrophysics Data System (ADS)

    Corliss, David; Morrison, N. D.; Adelman, S. J.

    2014-01-01

    A longitudinal time series analysis of spectroscopic and photometric variability of the A0Ia supergiant HR 1040 has been performed, including equivalent widths, radial velocities and Strömgren photometric indices. The data, obtained from 1993 through 2007, include 152 spectroscopic observations from the Ritter Observatory and 269 Strömgren photometric observations from the Four College Automated Photoelectric Telescope (FCAPT). Typical of late B- and early A-type supergiants, HR 1040 has a highly variable stellar wind. The star was found to have an intermittent active phase marked by correlation between the H? absorption equivalent width and blue-edge radial velocity and photospheric connections observed in correlations to equivalent widths, second moment and radial velocity in the Si II ??6347, 6371 lines. Variable H? emission components were also studied, along with nearby weak absorption lines Mg II ? 6546 and C II ?? 6578, 6583. High-velocity absorption (HVA) events were observed only during this active phase. HVA events in the wind were preceded by photospheric activity, including Si II radial velocity oscillations similar in form to a Morlet wavelet 19 to 42 days prior to onset of an HVA and correlated increases in Si II equivalent width and second moment from 13 to 23 days before the start of the HVA. In the photometric data, the y magnitude is found to be strongly correlated the Si II observables, indicating a possible relationship between photometric changes and the variable microturbulence. While increases in various line equivalent widths in the wind prior to HVA events have been reported in the past in other stars, our finding of precursors in radial velocity variations in the wind and at the photosphere and intervals of increased photospheric microturbulence is a new result.

  2. THE RED SUPERGIANT PROGENITOR OF SUPERNOVA 2012aw (PTF12bvh) IN MESSIER 95

    SciTech Connect

    Van Dyk, Schuyler D.; and others

    2012-09-10

    We report on the direct detection and characterization of the probable red supergiant (RSG) progenitor of the intermediate-luminosity Type II-Plateau (II-P) supernova (SN) 2012aw in the nearby (10.0 Mpc) spiral galaxy Messier 95 (M95; NGC 3351). We have identified the star in both Hubble Space Telescope images of the host galaxy, obtained 17-18 yr prior to the explosion, and near-infrared ground-based images, obtained 6-12 yr prior to the SN. The luminous supergiant showed evidence for substantial circumstellar dust, manifested as excess line-of-sight extinction. The effective total-to-selective ratio of extinction to the star was R'{sub V} Almost-Equal-To 4.35, which is significantly different from that of diffuse interstellar dust (i.e., R{sub V} = 3.1), and the total extinction to the star was therefore, on average, A{sub V} Almost-Equal-To 3.1 mag. We find that the observed spectral energy distribution for the progenitor star is consistent with an effective temperature of 3600 K (spectral type M3), and that the star therefore had a bolometric magnitude of -8.29. Through comparison with recent theoretical massive-star evolutionary tracks we can infer that the RSG progenitor had an initial mass 15 {approx}< M{sub ini}(M{sub Sun }) < 20. Interpolating by eye between the available tracks, we surmise that the star had initial mass {approx}17-18 M{sub Sun }. The circumstellar dust around the progenitor must have been destroyed in the explosion, as the visual extinction to the SN is found to be low (A{sub V} = 0.24 mag with R{sub V} = 3.1).

  3. Tests of two convection theories for red giant and red supergiant envelopes

    NASA Technical Reports Server (NTRS)

    Stothers, Richard B.; Chin, Chao-Wen

    1995-01-01

    Two theories of stellar envelope convection are considered here in the context of red giants and red supergiants of intermediate to high mass: Boehm-Vitense's standard mixing-length theory (MLT) and Canuto & Mazzitelli's new theory incorporating the full spectrum of turbulence (FST). Both theories assume incompressible convection. Two formulations of the convective mixing length are also evaluated: l proportional to the local pressure scale height (H(sub P)) and l proportional to the distance from the upper boundary of the convection zone (z). Applications to test both theories are made by calculating stellar evolutionary sequences into the red zone (z). Applications to test both theories are made by calculating stellar evolutionary sequences into the red phase of core helium burning. Since the theoretically predicted effective temperatures for cool stars are known to be sensitive to the assigned value of the mixing length, this quantity has been individually calibrated for each evolutionary sequence. The calibration is done in a composite Hertzsprung-Russell diagram for the red giant and red supergiant members of well-observed Galactic open clusters. The MLT model requires the constant of proportionality for the convective mixing length to vary by a small but statistically significant amount with stellar mass, whereas the FST model succeeds in all cases with the mixing lenghth simply set equal to z. The structure of the deep stellar interior, however, remains very nearly unaffected by the choices of convection theory and mixing lenghth. Inside the convective envelope itself, a density inversion always occurs, but is somewhat smaller for the convectively more efficient MLT model. On physical grounds the FST model is preferable, and seems to alleviate the problem of finding the proper mixing length.

  4. Quantitative spectroscopy of blue supergiants in metal-poor dwarf galaxy NGC 3109

    SciTech Connect

    Hosek, Matthew W. Jr.; Kudritzki, Rolf-Peter; Bresolin, Fabio; Urbaneja, Miguel A.; Przybilla, Norbert; Evans, Christopher J.; Pietrzy?ski, Grzegorz; Gieren, Wolfgang; Carraro, Giovanni E-mail: kud@ifa.hawaii.edu E-mail: Miguel.Urbaneja-Perez@uibk.ac.at E-mail: chris.evans@stfc.ac.uk E-mail: wgieren@astro-udec.cl

    2014-04-20

    We present a quantitative analysis of the low-resolution (?4.5 Å) spectra of 12 late-B and early-A blue supergiants (BSGs) in the metal-poor dwarf galaxy NGC 3109. A modified method of analysis is presented which does not require use of the Balmer jump as an independent T {sub eff} indicator, as used in previous studies. We determine stellar effective temperatures, gravities, metallicities, reddening, and luminosities, and combine our sample with the early-B-type BSGs analyzed by Evans et al. to derive the distance to NGC 3109 using the flux-weighted gravity-luminosity relation (FGLR). Using primarily Fe-group elements, we find an average metallicity of [ Z-bar ] = –0.67 ± 0.13, and no evidence of a metallicity gradient in the galaxy. Our metallicities are higher than those found by Evans et al. based on the oxygen abundances of early-B supergiants ([ Z-bar ] = –0.93 ± 0.07), suggesting a low ?/Fe ratio for the galaxy. We adjust the position of NGC 3109 on the BSG-determined galaxy mass-metallicity relation accordingly and compare it to metallicity studies of H II regions in star-forming galaxies. We derive an FGLR distance modulus of 25.55 ± 0.09 (1.27 Mpc) that compares well with Cepheid and tip of the red giant branch distances. The FGLR itself is consistent with those found in other galaxies, demonstrating the reliability of this method as a measure of extragalactic distances.

  5. TEXES OBSERVATIONS OF M SUPERGIANTS: DYNAMICS AND THERMODYNAMICS OF WIND ACCELERATION

    SciTech Connect

    Harper, Graham M.; Richter, Matthew J.; Ryde, Nils; Brown, Alexander; Brown, Joanna; Greathouse, Thomas K.; Strong, Shadrian

    2009-08-20

    We have detected [Fe II] 17.94 {mu}m and 24.52 {mu}m emission from a sample of M supergiants ({mu} Cep, {alpha} Sco, {alpha} Ori, CE Tau, AD Per, and {alpha} Her) using the Texas Echelon Cross Echelle Spectrograph on NASA's Infrared Telescope Facility. These low opacity emission lines are resolved at R {approx_equal} 50, 000 and provide new diagnostics of the dynamics and thermodynamics of the stellar wind acceleration zone. The [Fe II] lines, from the first excited term (a {sup 4} F), are sensitive to the warm plasma where energy is deposited into the extended atmosphere to form the chromosphere and wind outflow. These diagnostics complement previous Kuiper Airborne Observatory and Infrared Space Observatory observations which were sensitive to the cooler and more extended circumstellar envelopes. The turbulent velocities of V{sub turb} {approx_equal} 12-13 km s{sup -1} observed in the [Fe II] a {sup 4} F forbidden lines are found to be a common property of our sample, and are less than that derived from the hotter chromospheric C II] 2325 A lines observed in {alpha} Ori, where V{sub turb} {approx_equal} 17-19 km s{sup -1}. For the first time, we have dynamically resolved the motions of the dominant cool atmospheric component discovered in {alpha} Ori from multiwavelength radio interferometry by Lim et al. Surprisingly, the emission centroids are quite Gaussian and at rest with respect to the M supergiants. These constraints combined with model calculations of the infrared emission line fluxes for {alpha} Ori imply that the warm material has a low outflow velocity and is located close to the star. We have also detected narrow [Fe I] 24.04 {mu}m emission that confirms Fe II is the dominant ionization state in {alpha} Ori's extended atmosphere.

  6. The ring nebula around the blue supergiant SBW1: pre-explosion snapshot of an SN 1987A twin

    NASA Astrophysics Data System (ADS)

    Smith, Nathan; Arnett, W. David; Bally, John; Ginsburg, Adam; Filippenko, Alexei V.

    2013-02-01

    SBW1 is a B-type supergiant surrounded by a ring nebula that is a nearby twin of SN 1987A's progenitor and its circumstellar ring. We present images and spectra of SBW1 obtained with the Hubble Space Telescope (HST), the Spitzer Space Telescope and Gemini South. HST images of SBW1 do not exhibit long Rayleigh-Taylor (RT) fingers, which are presumed to cause the `hotspots' in the SN 1987A ring when impacted by the blast wave, but instead show a geometrically thin (?R/R ? 0.05) clumpy ring. The radial mass distribution and size scales of inhomogeneities in SBW1's ring closely resemble those in the SN 1987A ring, but the more complete disc expected to reside at the base of the RT fingers is absent in SBW1. This structure may explain why portions of the SN 1987A ring between the hotspots have not yet brightened, more than 15 years after the first hotspots appeared. The model we suggest does not require a fast wind colliding with a previous red supergiant wind, because a slowly expanding equatorial ring may be ejected by a rotating blue supergiant star or in a close binary system. More surprisingly, high-resolution images of SBW1 also reveal diffuse emission filling the interior of the ring seen in H? and in thermal-infrared (IR) emission; ˜190 K dust dominates the 8-20 ?m luminosity (but contains only 10-5 M? of dust). Cooler (˜85 K) dust resides in the equatorial ring itself (and has a dust mass of at least 5 × 10-3 M?). Diffuse emission extends inward to ˜1 arcsec from the central star, where a paucity of H? and IR emission suggests an inner hole excavated by the B-supergiant wind. We propose that diffuse emission inside the ring arises from an ionized flow of material photoevaporated from the dense ring, and its pressure prevents the B-supergiant wind from advancing in the equatorial plane. This inner emission could correspond to a structure hypothesized to reside around Sk-69°202 that was never directly detected. If this interpretation is correct, it would suggest that photoionization can play an important dynamical role in shaping the ring nebula, and we speculate that this might help explain the origin of the polar rings around SN 1987A. In effect, the photoevaporative flow shields the outer bipolar nebula at low latitudes, whereas the blue supergiant wind expands freely out the poles and clears away the polar caps of the nebula; the polar rings reside at the intersection of these two zones.

  7. Line-depth Ratios in H-band Spectra to Determine Effective Temperatures of G- and K-type Giants and Supergiants

    NASA Astrophysics Data System (ADS)

    Fukue, Kei; Matsunaga, Noriyuki; Yamamoto, Ryo; Kondo, Sohei; Kobayashi, Naoto; Ikeda, Yuji; Hamano, Satoshi; Yasui, Chikako; Arasaki, Takayuki; Tsujimoto, Takuji; Bono, Giuseppe; Inno, Laura

    2015-10-01

    The stellar effective temperature is the fundamental parameter of stellar atmospheres. It characterizes the spectra and plays an essential role in chemical abundance analysis. Previous optical studies have shown that line-depth ratios (LDRs) are good indicators of the effective temperature. Essentially, the ratios of absorption lines with different excitation potentials can be used as temperature scales. The most important advantage of LDRs is their robustness against interstellar reddening and extinction. Furthermore, the scales are constructed and calibrated empirically by observables. Although this method is well-established for optical spectra, we require infrared high-resolution spectroscopy to access the most obscured stars in the Galactic disk and thereby understand the Milky Way’s structure and evolution in the innermost region. This study newly derives the temperature scales from the LDRs in infrared spectra. We explored LDRs in the high-resolution H-band spectra (1.4-1.8 ?m) of well-known stars in the solar neighborhood obtained with Subaru/infrared camera and spectrograph. We found nine pairs of absorption lines whose LDRs allow us to determine the temperatures of G- and K-type giants/supergiants to an accuracy of ˜60 K. Checking the dependency of our scales on stellar parameters, we found that our developed temperature scales may slightly bias the estimates for low-metal stars, [Fe/H] < -0.3 dex.

  8. Discovery of H2O maser emission from the red supergiant IRAS04553-6825 in the Large Magellanic Cloud

    E-print Network

    Jacco Th. van Loon; Peter te Lintel Hekkert; Valentin Bujarrabal; Albert A. Zijlstra; Lars-Ake Nyman

    1998-06-15

    We report the detection of 22 GHz H2O maser emission from the red supergiant IRAS04553-6825 in the Large Magellanic Cloud. It is the first known source of circumstellar H2O maser emission outside the Milky Way. The measured flux density is comparable to that expected from scaling the galactic red supergiant NML Cyg. The peak velocity agrees with the SiO maser peak velocity. A near-infrared spectrum indicates that IRAS04553-6825 has a typical LMC metallicity. We argue that, possibly as a result of the low metallicity, the H2O emission probably occurs near or within the dust formation radius, rather than further out as appears to be the case in NML Cyg and galactic OH/IR stars.

  9. Luminous and Variable Stars in M31 and M33. I. The Warm Hypergiants and Post-red Supergiant Evolution

    NASA Astrophysics Data System (ADS)

    Humphreys, Roberta M.; Davidson, Kris; Grammer, Skyler; Kneeland, Nathan; Martin, John C.; Weis, Kerstin; Burggraf, Birgitta

    2013-08-01

    The progenitors of Type IIP supernovae (SNe) have an apparent upper limit to their initial masses of about 20 M ?, suggesting that the most massive red supergiants evolve to warmer temperatures before their terminal explosion. But very few post-red supergiants are known. We have identified a small group of luminous stars in M31 and M33 that are candidates for post-red supergiant evolution. These stars have A-F-type supergiant absorption line spectra and strong hydrogen emission. Their spectra are also distinguished by the Ca II triplet and [Ca II] doublet in emission formed in a low-density circumstellar environment. They all have significant near- and mid-infrared excess radiation due to free-free emission and thermal emission from dust. We estimate the amount of mass they have shed and discuss their wind parameters and mass loss rates, which range from a few × 10-6 to 10-4 M ? yr-1. On an H-R diagram, these stars will overlap the region of the luminous blue variables (LBVs) at maximum light; however, the warm hypergiants are not LBVs. Their non-spherical winds are not optically thick, and they have not exhibited any significant variability. We suggest, however, that the warm hypergiants may be the progenitors of the "less luminous" LBVs such as R71 and even SN1987A. Based on observations with the Multiple Mirror Telescope, a joint facility of the Smithsonian Institution and the University of Arizona and on observations obtained with the Large Binocular Telescope (LBT), an international collaboration among institutions in the United States, Italy, and Germany. LBT Corporation partners are: The University of Arizona on behalf of the Arizona University system; Istituto Nazionale di Astrofisica, Italy; LBT Beteiligungsgesellschaft, Germany, representing the Max-Planck Society, the Astrophysical Institute Potsdam, and Heidelberg University; The Ohio State University, and The Research Corporation, on behalf of The University of Notre Dame, University of Minnesota, and University of Virginia.

  10. Discovery of a red supergiant counterpart to RX J004722.4-252051, a ULX in NGC 253

    NASA Astrophysics Data System (ADS)

    Heida, M.; Torres, M. A. P.; Jonker, P. G.; Servillat, M.; Repetto, S.; Roberts, T. P.; Walton, D. J.; Moon, D.-S.; Harrison, F. A.

    2015-11-01

    We present two epochs of near-infrared spectroscopy of the candidate red supergiant counterpart to RX J004722.4-252051, a ULX in NGC 253. We measure radial velocities of the object and its approximate spectral type by cross-correlating our spectra with those of known red supergiants. Our VLT/X-shooter spectrum is best matched by that of early M-type supergiants, confirming the red supergiant nature of the candidate counterpart. The radial velocity of the spectrum, taken on 2014 August 23, is 417 ± 4 km s-1. This is consistent with the radial velocity measured in our spectrum taken with Magellan/MMIRS on 2013 June 28, of 410 ± 70 km s-1, although the large error on the latter implies that a radial velocity shift expected for a black hole of tens of M? can easily be hidden. Using nebular emission lines we find that the radial velocity due to the rotation of NGC 253 is 351 ± 4 km s-1 at the position of the ULX. Thus the radial velocity of the counterpart confirms that the source is located in NGC 253, but also shows an offset with respect to the local bulk motion of the galaxy of 66 ± 6 km s-1. We argue that the most likely origin for this displacement lies either in a SN kick, requiring a system containing a ? 50 M? black hole, and/or in orbital radial velocity variations in the ULX binary system, requiring a ? 100 M? black hole. We therefore conclude that RX J004722.4-252051 is a strong candidate for a ULX containing a massive stellar black hole.

  11. INTEGRAL Long-Term Monitoring of the Supergiant Fast X-Ray Transient XTE J1739-302

    NASA Technical Reports Server (NTRS)

    Blay, P.; Martinez-Nunez, S.; Negueruela, I.; Pottschmidt, K.; Smith, D. M.; Torrejon, J. M.; Reig, P.; Kretschmar, P.; Kreykenbohm, I.

    2008-01-01

    Context. In the past few years, a new class of High Mass X-Ray Binaries (HMXRB) has been claimed to exist, the Supergiant Fast X-ray Transients (SFXT). These are X-ray binary systems with a compact companion orbiting a supergiant star which show very short and bright outbursts in a series of activity periods overimposed on longer quiescent periods. Only very recently the first attempts to model the behaviour of these sources have been published, some of them within the framework of accretion from clumpy stellar winds. Aims. Our goal is to analyze the properties of XTE J1739-302/IGR J17391-3021 within the context of the clumpy structure of the supergiant wind. Methods. We have used INTEGRAL and RXTE/PCA observations in order to obtain broad band (1 - 200 keV) spectra and light curves of XTE J1739-302 and investigate its X-ray spectrum and temporal variability. Results. We have found that XTE J1739-302 follows a much more complex behaviour than expected. Far from presenting a regular variability pattern, XTE J1739-302 shows periods of high, intermediate, and low flaring activity.

  12. Core collapse supernovae from blue supergiant progenitors : The evolutionary history of SN 1987A

    NASA Astrophysics Data System (ADS)

    Menon, Athira

    2015-08-01

    SN 1987A is historically one of the most remarkable supernova explosions to be seen from Earth. Due to the proximity of its location in the LMC, it remains the most well-studied object outside the solar system. It was also the only supernova whose progenitor was observed prior to its explosion.SN 1987A however, was a unique and enigmatic core collapse supernova. It was the first Type II supernova to have been observed to have exploded while its progenitor was a blue supergiant (BSG). Until then Type II supernovae were expected to originate from explosions of red supergiants (RSGs). A spectacular triple-ring nebula structure, rich in helium and nitrogen, was observed around the remnant, indicating a recent RSG phase before becoming a BSG. Even today it is not entirely understood what the evolutionary history may have been to cause a BSG to explode. The most commonly accepted hypothesis for its origin is the merger of a massive binary star system.An evolutionary scenario for such a binary system, was proposed by Podsiadlowski (1992) (P92). Through SPH simulations of the merger and the stellar evolution of the post-merger remnant, Ivanova & Podsiadlowski (2002) and (2003) (I&M) could successfully obtain the RSG to BSG transition of the progenitor.The aim of the present work is to produce the evolutionary history of the progenitor of SN 1987A and its explosion. We construct our models based on the results of P92 and I&M. Here, the secondary (less massive) star is accreted on the primary, while being simultaneously mixed in its envelope over a period of 100 years. The merged star is evolved until the onset of core collapse. For this work we use the 1-dimensional, implicit, hydrodynamical stellar evolution code, KEPLER. A large parameter space is explored, consisting of primary (16-20 Ms) and secondary masses (5-8 Ms), mixing boundaries, and accreting timescales. Those models whose end states match the observed properties of the progenitor of SN 1987A are exploded. The nuclear yields and light curve of the explosion are then compared with the observed data of SN 1987A.

  13. The quest for blue supergiants : The evolution of the progenitor of SN 1987A

    NASA Astrophysics Data System (ADS)

    Menon, Athira; Heger, Alexander

    2015-08-01

    SN 1987A is historically one of the most remarkable supernova explosions to be seen from Earth. Due to the proximity of its location in the LMC, it remains the most well-studied object outside the solar system. It was also the only supernova whose progenitor was observed prior to its explosion.SN 1987A however, was a unique and enigmatic core collapse supernova. It was the first Type II supernova to have been observed to have exploded while its progenitor was a blue supergiant (BSG). Until then Type II supernovae were expected to originate from explosions of red supergiants (RSGs). A spectacular triple-ring nebula structure, rich in helium and nitrogen, was observed around the remnant, indicating a recent RSG phase before becoming a BSG. Even today it is not entirely understood what the evolutionary history may have been to cause a BSG to explode. The most commonly accepted hypothesis for its origin is the merger of a massive binary star system.An evolutionary scenario for such a binary system, was proposed by Podsiadlowski (1992) (P92). Through SPH simulations of the merger and the stellar evolution of the post-merger remnant, Ivanova & Podsiadlowski (2002) and (2003) (I&M) could successfully obtain the RSG to BSG transition of the progenitor.The aim of the present work is to produce the evolutionary history of the progenitor of SN 1987A and its explosion. We construct our models based on the results of P92 and I&M. Here, the secondary (less massive) star is accreted on the primary, while being simultaneously mixed in its envelope over a period of 100 years. The merged star is evolved until the onset of core collapse. For this work we use the 1-dimensional, implicit, hydrodynamical stellar evolution code, KEPLER. A large parameter space is explored, consisting of primary (16-20 Ms) and secondary masses (5-8 Ms), mixing boundaries, and accreting timescales. Those models whose end states match the observed properties of the progenitor of SN 1987A are exploded. The nuclear yields and light curve of the explosion are then compared with the observed data of SN 1987A.

  14. An HST COS 'SNAPSHOT' spectrum of the K supergiant ? Vel (K4Ib-II)

    SciTech Connect

    Carpenter, Kenneth G.; Harper, Graham M.; Kober, Gladys; Nielsen, Krister E.; Wahlgren, Glenn M.

    2014-10-10

    We present a far-ultraviolet spectrum of the K4 Ib-II supergiant ? Vel obtained with the Hubble Space Telescope's Cosmic Origins Spectrograph (COS) as a part of the SNAPshot program 'SNAPing coronal iron' (GO 11687). The observation covers a wavelength region (1326-1467 Å) not previously recorded for ? Vel at a spectral resolving power of R ? 20,000 and displays strong emission and absorption features, superposed on a bright chromospheric continuum. Fluorescent excitation is responsible for much of the observed emission, mainly powered by strong H I Ly? and the O I (UV 2) triplet emission near ?1304. The molecular CO and H{sub 2} fluorescences are weaker than in the early-K giant ? Boo while the Fe II and Cr II lines, also pumped by H I Ly?, are stronger in ? Vel. This pattern of relative line strengths between the two stars is explained by the lower iron-group element abundance in ? Boo, which weakens that star's Fe II and Cr II emission without reducing the molecular fluorescences. The ? Vel spectrum shows fluorescent Fe II, Cr II, and H{sub 2} emission similar to that observed in the M supergiant ? Ori, but more numerous well-defined narrow emissions from CO. The additional CO emissions are visible in the spectrum of ? Vel since that star does not have the cool, opaque circumstellar shells that surround ? Ori and produce broad circumstellar CO (A-X) band absorptions that hide those emissions in the cooler star. The presence of Si IV emission in ? Vel indicates a ?8 × 10{sup 4} K plasma that is mixed into the cooler chromosphere. Evidence of the stellar wind is seen in the C II ??1334,1335 lines and in the blueshifted Fe II and Ni II wind absorption lines. Line modeling using Sobolev with Exact Integration for the C II lines indicates a larger terminal velocity (?45 versus ?30 km s{sup –1}) and turbulence (?27 versus <21 km s{sup –1}) with a more quickly accelerating wind (? = 0.35 versus 0.7) at the time of this COS observation in 2010 than derived from Goddard High Resolution Spectrograph data obtained in 1994. The Fe II and Ni II absorptions are blueshifted by 7.6 km s{sup –1} relative to the chromospheric emission, suggesting formation in lower levels of the accelerating wind and their widths indicate a higher turbulence in the ? Vel wind compared to ? Ori.

  15. Probing the mass-loss history of AGB and red supergiant stars from CO rotational line profiles. II. CO line survey of evolved stars: derivation of mass-loss rate formulae

    NASA Astrophysics Data System (ADS)

    De Beck, E.; Decin, L.; de Koter, A.; Justtanont, K.; Verhoelst, T.; Kemper, F.; Menten, K. M.

    2010-11-01

    Context. The evolution of intermediate and low-mass stars on the asymptotic giant branch is dominated by their strong dust-driven winds. More massive stars evolve into red supergiants with a similar envelope structure and strong wind. These stellar winds are a prime source for the chemical enrichment of the interstellar medium. Aims: We aim to (1) set up simple and general analytical expressions to estimate mass-loss rates of evolved stars, and (2) from those calculate estimates for the mass-loss rates of the asymptotic giant branch, red supergiant, and yellow hypergiant stars in our galactic sample. Methods: The rotationally excited lines of carbon monoxide (CO) are a classic and very robust diagnostic in the study of circumstellar envelopes. When sampling different layers of the circumstellar envelope, observations of these molecular lines lead to detailed profiles of kinetic temperature, expansion velocity, and density. A state-of-the-art, nonlocal thermal equilibrium, and co-moving frame radiative transfer code that predicts CO line intensities in the circumstellar envelopes of late-type stars is used in deriving relations between stellar and molecular-line parameters, on the one hand, and mass-loss rate, on the other. These expressions are applied to our extensive CO data set to estimate the mass-loss rates of 47 sample stars. Results: We present analytical expressions for estimating the mass-loss rates of evolved stellar objects for 8 rotational transitions of the CO molecule and thencompare our results to those of previous studies. Our expressions account for line saturation and resolving of the envelope, thereby allowing accurate determination of very high mass-loss rates. We argue that, for estimates based on a single rotational line, the CO(2-1) transition provides the most reliable mass-loss rate. The mass-loss rates calculated for the asympotic giant branch stars range from 4 × 10-8 M? yr-1 up to 8 × 10-5 M? yr-1. For red supergiants they reach values between 2 × 10-7 M? yr-1 and 3 × 10-4 M? yr-1. The estimates for the set of CO transitions allow time variability to be identified in the mass-loss rate. Possible mass-loss-rate variability is traced for 7 of the sample stars. We find a clear relation between the pulsation periods of the asympotic giant branch stars and their derived mass-loss rates, with a levelling off at ~3 × 10-5 M? yr-1 for periods exceeding 850 days. Conclusions: Appendices are only available in electronic form at http://www.aanda.org

  16. The open cluster Pismis 11 and the very luminous blue supergiant HD 80077

    E-print Network

    Marco, Amparo

    2008-01-01

    (Abridged) The very luminous blue supergiant HD 80077 has been claimed to be a member of the young open cluster Pismis 11, and hence a hypergiant. We obtained UBVRI photometry of the cluster field and low-resolution spectroscopy of a number of putative members. We derive spectral types from the spectra and determine that the reddening in this direction is standard. We then carry out a careful photometric analysis that allows us to determine individual reddening values, deriving unreddened parameters that are used for the main sequence fit. We identify 43 likely members of Pismis 11. We study the variation of extinction across the face of the cluster and find some dispersion, with a trend to higher values in the immediate neighbourhood of HD 80077. We estimate a distance of 3.6 kpc for the cluster. If HD 80077 is a member, it has M_bolstars in the Galaxy. Several early type stars in the vicinity of Pismis~11 fit well the cluster sequence and are likely to...

  17. The cool supergiant population of the massive young star cluster RSGC1

    E-print Network

    Davies, Ben; Law, Casey J; Kudritzki, Rolf-Peter; Najarro, Francisco; Herrero, Artemio; MacKenty, John W

    2007-01-01

    We present new high-resolution near-IR spectroscopy and OH maser observations to investigate the population of cool luminous stars of the young massive Galactic cluster RSGC1. Using the 2.293\\micron CO-bandhead feature, we make high-precision radial velocity measurements of 16 of the 17 candidate Red Supergiants (RSGs) identified by Figer et al. We show that F16 and F17 are foreground stars, while we confirm that the rest are indeed physically-associated RSGs. We determine that Star F15, also associated with the cluster, is a Yellow Hypergiant based on its luminosity and spectroscopic similarity to $\\rho$ Cas. Using the cluster's radial velocity, we have derived the kinematic distance to the cluster and revisited the stars' temperatures and luminosities. We find a larger spread of luminosities than in the discovery paper, consistent with a cluster age 30% older than previously thought (12$\\pm$2Myr), and a total initial mass of $(3\\pm1) \\times 10^{4}$\\msun. The spatial coincidence of the OH maser with F13, com...

  18. Neutral and ionized gas around the post-Red Supergiant IRC+10420 at au size scales

    E-print Network

    Oudmaijer, Rene

    2012-01-01

    IRC +10420 is one of the few known massive stars in rapid transition from the Red Supergiant phase to the Wolf-Rayet or Luminous Blue Variable phase. The star has an ionised wind and using the Br gamma hydrogen recombination emission we assess the mass-loss on spatial scales of order 1 au. We present new VLT Interferometer AMBER data which are combined with all other AMBER data in the literature. The final dataset covers a position angle range of 180 degrees and baselines up to 110 meters. The spectrally dispersed visibilities, differential phases and line flux are conjointly analyzed and modelled. We also present AMBER/FINITO observations which cover a larger wavelength range and allow us to observe the Na I doublet at 2.2 micron. The data are complemented by X-Shooter data, which provide a higher spectral resolution view. The Brackett gamma line and the Na I doublet are both spatially resolved. After correcting the AMBER data for the fact that the lines are not spectrally resolved, we find that Br gamma tra...

  19. The cool supergiant population of the massive young star cluster RSGC1

    E-print Network

    Ben Davies; Don F. Figer; Casey J. Law; Rolf-Peter Kudritzki; Francisco Najarro; Artemio Herrero; John W. MacKenty

    2007-11-29

    We present new high-resolution near-IR spectroscopy and OH maser observations to investigate the population of cool luminous stars of the young massive Galactic cluster RSGC1. Using the 2.293\\micron CO-bandhead feature, we make high-precision radial velocity measurements of 16 of the 17 candidate Red Supergiants (RSGs) identified by Figer et al. We show that F16 and F17 are foreground stars, while we confirm that the rest are indeed physically-associated RSGs. We determine that Star F15, also associated with the cluster, is a Yellow Hypergiant based on its luminosity and spectroscopic similarity to $\\rho$ Cas. Using the cluster's radial velocity, we have derived the kinematic distance to the cluster and revisited the stars' temperatures and luminosities. We find a larger spread of luminosities than in the discovery paper, consistent with a cluster age 30% older than previously thought (12$\\pm$2Myr), and a total initial mass of $(3\\pm1) \\times 10^{4}$\\msun. The spatial coincidence of the OH maser with F13, combined with similar radial velocities, is compelling evidence that the two are related. Combining our results with recent SiO and H$_2$O maser observations, we find that those stars with maser emission are the most luminous in the cluster. From this we suggest that the maser-active phase is associated with the end of the RSG stage, when the luminosity-mass ratios are at their highest.

  20. X-ray, UV and optical analysis of supergiants: $\\epsilon$ Ori

    E-print Network

    Puebla, Raul E; Zsargó, Janos; Cohen, David H; Leutenegger, Maurice A

    2015-01-01

    We present a multi-wavelength (X-ray to optical) analysis, based on non-local thermodynamic equilibrium photospheric+wind models, of the B0 Ia-supergiant: $\\epsilon$~Ori. The aim is to test the consistency of physical parameters, such as the mass-loss rate and CNO abundances, derived from different spectral bands. The derived mass-loss rate is $\\dot{M}/\\sqrt{f_\\infty}\\sim$1.6$\\times$10$^{-6}$ M$_\\odot$ yr$^{-1}$ where $f_\\infty$ is the volume filling factor. However, the S IV $\\lambda\\lambda$1062,1073 profiles are too strong in the models; to fit the observed profiles it is necessary to use $f_\\infty<$0.01. This value is a factor of 5 to 10 lower than inferred from other diagnostics, and implies $\\dot{M} \\lesssim1 \\times 10^{-7}$ M$_\\odot$ yr$^{-1}$. The discrepancy could be related to porosity-vorosity effects or a problem with the ionization of sulfur in the wind. To fit the UV profiles of N V and O VI it was necessary to include emission from an interclump medium with a density contrast ($\\rho_{cl}/\\rho...

  1. Quantitative spectroscopic J-band study of red supergiants in Perseus OB-1

    SciTech Connect

    Gazak, J. Zachary; Kudritzki, Rolf; Davies, Ben; Bergemann, Maria; Plez, Bertrand

    2014-06-10

    We demonstrate how the metallicities of red supergiant (RSG) stars can be measured from quantitative spectroscopy down to resolutions of ?3000 in the J-band. We have obtained high resolution spectra on a sample of the RSG population of h and ? Persei, a double cluster in the solar neighborhood. We show that careful application of the MARCS model atmospheres returns measurements of Z consistent with solar metallicity. Using two grids of synthetic spectra–one in pure LTE and one with non-LTE (NLTE) calculations for the most important diagnostic lines–we measure Z = +0.04 ± 0.10 (LTE) and Z = –0.04 ± 0.08 (NLTE) for the sample of eleven RSGs in the cluster. We degrade the spectral resolution of our observations and find that those values remain consistent down to resolutions of less than ?/?? of 3000. Using measurements of effective temperatures we compare our results with stellar evolution theory and find good agreement. We construct a synthetic cluster spectrum and find that analyzing this composite spectrum with single-star RSG models returns an accurate metallicity. We conclude that the RSGs make ideal targets in the near infrared for measuring the metallicities of star forming galaxies out to 7-10 Mpc and up to 10 times farther by observing the integrated light of unresolved super star clusters.

  2. Investigation of atmosphere nonstationarity in the supergiant 55Cyg. I. Temporal line profile variability

    NASA Astrophysics Data System (ADS)

    Rzaev, A. Kh.

    2012-07-01

    The CCD spectra taken with echelle spectrographs of the 2-m telescope of the Shemakha Astrophysical Observatory of the National Academy of Sciences of Azerbaijan and the 1-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences are used to study the line profile variations in the spectrum of the hot supergiant 55Cyg. The variability of the radial velocity and profiles of the lines of heavy elements is shown to be due to radial pulsation type motions. The corresponding variations for He I lines are due to nonradial pulsations. In the case of the H ? and H ? lines the pattern and behavior of variations differ for different observing periods. The variability of these lines is mostly due to the photometric and positional variability of the absorption and emission components of their profiles. The profiles of these lines show additional emission components, which move from the blue toward the red line wing. Such a behavior is indicative of the clumpy structure of the stellar envelope.

  3. Ejecting the envelope of red supergiant stars with jets launched by an inspiralling neutron star

    NASA Astrophysics Data System (ADS)

    Papish, Oded; Soker, Noam; Bukay, Inbal

    2015-05-01

    We study the properties of jets launched by a neutron star (NS) spiralling inside the envelope and core of a red supergiant (RSG). We propose that Thorne-?ytkow objects (TZO) are unlikely to be formed via common envelope (CE) evolution if accretion on to the NS can exceed the Eddington rate with much of the accretion energy directed into jets that subsequently dissipate within the giant envelope. We use the jet-feedback mechanism, where energy deposited by the jets drives the ejection of the entire envelope and part of the core, and find a very strong interaction of the jets with the core material at late phases of the CE evolution. Following our results, we speculate on two rare processes that might take place in the evolution of massive stars. (1) Recent studies have claimed that the peculiar abundances of the HV2112 RSG star can be explained if this star is a TZO. We instead speculate that the rich-calcium envelope comes from a supernova (SN) explosion of a stellar companion that was only slightly more massive than HV2112, such that during its explosion HV2112 was already a giant that intercepted a relatively large fraction of the SN ejecta. (2) We raise the possibility that strong r-process nucleosynthesis, where elements with high atomic weight of A ? 130 are formed, occurs inside the jets that are launched by the NS inside the core of the RSG star.

  4. Quantitative Spectroscopic J-band study of Red Supergiants in Perseus OB-1

    NASA Astrophysics Data System (ADS)

    Gazak, J. Zachary; Davies, Ben; Kudritzki, Rolf; Bergemann, Maria; Plez, Bertrand

    2014-06-01

    We demonstrate how the metallicities of red supergiant (RSG) stars can be measured from quantitative spectroscopy down to resolutions of ?3000 in the J-band. We have obtained high resolution spectra on a sample of the RSG population of h and ? Persei, a double cluster in the solar neighborhood. We show that careful application of the MARCS model atmospheres returns measurements of Z consistent with solar metallicity. Using two grids of synthetic spectra-one in pure LTE and one with non-LTE (NLTE) calculations for the most important diagnostic lines-we measure Z = +0.04 ± 0.10 (LTE) and Z = -0.04 ± 0.08 (NLTE) for the sample of eleven RSGs in the cluster. We degrade the spectral resolution of our observations and find that those values remain consistent down to resolutions of less than ?/?? of 3000. Using measurements of effective temperatures we compare our results with stellar evolution theory and find good agreement. We construct a synthetic cluster spectrum and find that analyzing this composite spectrum with single-star RSG models returns an accurate metallicity. We conclude that the RSGs make ideal targets in the near infrared for measuring the metallicities of star forming galaxies out to 7-10 Mpc and up to 10 times farther by observing the integrated light of unresolved super star clusters. Based in part on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  5. THE ULTRA-LONG GAMMA-RAY BURST 111209A: THE COLLAPSE OF A BLUE SUPERGIANT?

    SciTech Connect

    Gendre, B.; Cutini, S.; D'Elia, V.; Stratta, G.; Atteia, J. L.; Klotz, A.; Basa, S.; Boeer, M.; Coward, D. M.; Howell, E. J; Piro, L.

    2013-03-20

    We present optical, X-ray and gamma-ray observations of GRB 111209A, observed at a redshift of z = 0.677. We show that this event was active in its prompt phase for about 25000 s, making it the longest burst ever observed. This rare event could have been detected up to z {approx} 1.4 in gamma-rays. Compared to other long gamma-ray bursts (GRBs), GRB 111209A is a clear outlier in the energy-fluence and duration plane. The high-energy prompt emission shows no sign of a strong blackbody component, the signature of a tidal disruption event, or a supernova shock breakout. Given the extreme longevity of this event, and lack of any significant observed supernova signature, we propose that GRB 111209A resulted from the core-collapse of a low-metallicity blue supergiant star. This scenario is favored because of the necessity to supply enough mass to the central engine over a duration of thousands of seconds. Hence, we suggest that GRB 111209A could have more in common with population III stellar explosions, rather than those associated with normal long GRBs.

  6. Identification of red supergiants in the Local Group with mid-IR photometry

    NASA Astrophysics Data System (ADS)

    Britavskiy, Nikolay; Bonanos, Alceste; Mehner, Andrea

    2015-08-01

    Star forming dwarf irregular (dIrr) galaxies serve as ideal laboratories for investigating the evolution and mass loss phenomenon of red supergiants (RSGs) within the context of different metallicities of host galaxies. Also, RSGs may be used for abundance determinations in dIrrs. The extremely low number of spectroscopically confirmed RSGs in external galaxies makes the identification of new RSGs statistically significant. We present a systematic survey of RSGs and luminous blue variables (LBVs) with the goal to complete the census of these objects in the Local Group. Using the fact that RSGs and LBVs are bright in mid-infrared colors due to dust, we propose and apply a technique that allows us to select dusty massive stars based on their [3.6] and [4.5] Spitzer photometry (Britavskiy et al. 2014). We present the results of our spectroscopic follow-up of luminous infrared sources in 7 nearby dIrrs (Phoenix, Pegasus, Sextans A, Sextans B, WLM, IC 10 and IC 1613) based on VLT/FORS2 and GTC/OSIRIS observations. In total we have observed ?100 targets, among which we have so far identified 16 RSGs and 2 new emission line objects in these galaxies. Moreover, using the newly discovered RSGs, we have revised the mid-IR and optical photometric selection criteria for this type of objects, which can be applied to other galaxies of the Local Group and beyond.

  7. High spatial resolution monitoring of the activity of BA supergiant winds

    E-print Network

    Chesneau, Olivier; Kaufer, A; Mourard, D; Stahl, O; Prinja, R; Owocki, S

    2010-01-01

    There are currently two optical interferometry recombiners that can provide spectral resolutions better than 10000, AMBER/VLTI operating in the H-K bands, and VEGA/CHARA, recently commissioned, operating in the visible. These instruments are well suited to study the wind activity of the brightest AB supergiants in our vicinity, in lines such as H$\\alpha$ or BrGamma. We present here the first observations of this kind, performed on Rigel (B8Ia) and Deneb (A2Ia). Rigel was monitored by AMBER in two campaigns, in 2006-2007 and 2009-2010, and observed in 2009 by VEGA; whereas Deneb was monitored in 2008-2009 by VEGA. The extension of the Halpha and BrGamma line forming regions were accurately measured and compared with CMFGEN models of both stars. Moreover, clear signs of activity were observed in the differential visibility and phases. These pioneer observations are still limited, but show the path for a better understanding of the spatial structure and temporal evolution of localized ejections using optical int...

  8. Interferometric Measurements Of The A-type Supergiant Deneb With The CHARA Array

    NASA Astrophysics Data System (ADS)

    Aufdenberg, Jason P.; Mérand, A.; Ridgway, S. T.; Coudé du Foresto, V.; Kervella, P.; Berger, D.; Sturmann, J.; Sturmann, L.; ten Brummelaar, T. A.; Turner, N. H.; McAlister, H. A.

    2006-06-01

    We have obtained precise interferometric measurements of the A-type supergiant Deneb (A2Ia) at the Center for High Angular Resolution Astronomy (CHARA) Array in the infrared K' band (1.94 to 2.34 microns) using the Fiber Linked Unit for Optical Recombination (FLUOR). Our observations were obtained over 20 nights in 2004 and 2005 with five telescope pairs E2-W2, W2-S2, W1-E2, E1-W1, and S1-W2. The projected baselines span 106 to 312 meters and sample the first and second lobes of Deneb's visibility curve. Our preliminary analysis reveals that the amplitude of the second lobe of the visibility curve is weaker than that predicted by a spherical hydrostatic model atmosphere.We also find that Deneb's angular diameter varies with position angle at the level of a few percent. We will present these data and discuss our analysis using a unified expanding model atmosphere and a rotationally distorted model atmosphere.This work was performed in part under contract with the Jet Propulsion Laboratory (JPL) funded by NASA through the Michelson Fellowship Program. JPL is managed for NASA by the California Institute of Technology. The CHARA Array is operated by the Center for High Angular Resolution Astronomy, Georgia State University, Atlanta, GA. Additional support comes from the National Science Foundation, the Keck Foundation and the Packard Foundation.

  9. High spatial resolution monitoring of the activity of BA supergiant winds

    NASA Astrophysics Data System (ADS)

    Chesneau, Olivier; Dessart, Luc; Kaufer, Andreas; Mourard, Denis; Stahl, Otmar; Prinja, Raman K.; Owocki, Stan P.

    2011-07-01

    There are currently two optical interferometry recombiners that can provide spectral resolutions better than 10000, AMBER/VLTI operating in the H-K bands, and VEGA/CHARA, recently commissioned, operating in the visible. These instruments are well suited to study the wind activity of the brightest AB supergiants in our vicinity, in lines such as H? or Br?. We present here the first observations of this kind, performed on Rigel (B8Ia) and Deneb (A2Ia). Rigel was monitored by AMBER in two campaigns, in 2006-2007 and 2009-2010, and observed in 2009 by VEGA; whereas Deneb was monitored in 2008-2009 by VEGA. The extension of the H? and Br? line forming regions were accurately measured and compared with CMFGEN models of both stars. Moreover, clear signs of activity were observed in the differential visibility and phases. These pioneer observations are still limited, but show the path for a better understanding of the spatial structure and temporal evolution of localized ejections using optical interferometry.

  10. Type IIP supernova 2008in: the explosion of a normal red supergiant

    E-print Network

    Utrobin, V P

    2013-01-01

    The explosion energy and the ejecta mass of a type IIP supernova make up the basis for the theory of explosion mechanism. So far, these parameters have only been determined for seven events. Type IIP supernova 2008in is another well-observed event for which a detailed hydrodynamic modeling can be used to derive the supernova parameters. Hydrodynamic modeling was employed to describe the bolometric light curve and the expansion velocities at the photosphere level. A time-dependent model for hydrogen ionization and excitation was applied to model the Halpha and Hbeta line profiles. We found an ejecta mass of 13.6 Msun, an explosion energy of 5.05x10^50 erg, a presupernova radius of 570 Rsun, and a radioactive Ni-56 mass of 0.015 Msun. The estimated progenitor mass is 15.5 Msun. We uncovered a problem of the Halpha and Hbeta description at the early phase, which cannot be resolved within a spherically symmetric model. The presupernova of SN 2008in was a normal red supergiant with the minimum mass of the progenit...

  11. X-RAY EMISSION FROM THE SUPERGIANT SHELL IN IC 2574

    SciTech Connect

    Yukita, Mihoko; Swartz, Douglas A.

    2012-05-01

    The M81 group member dwarf galaxy IC 2574 hosts a supergiant shell of current and recent star formation activity surrounding a 1000 Multiplication-Sign 500 pc hole in the ambient H I gas distribution. Chandra X-ray Observatory imaging observations reveal a luminous, L{sub X} {approx} 6.5 Multiplication-Sign 10{sup 38} erg s{sup -1} in the 0.3-8.0 keV band, point-like source within the hole but offset from its center and fainter diffuse emission extending throughout and beyond the hole. The star formation history at the location of the point source indicates a burst of star formation beginning {approx}25 Myr ago and currently weakening and there is a young nearby star cluster, at least 5 Myr old, bracketing the likely age of the X-ray source at between 5 and {approx}25 Myr. The source is thus likely a bright high-mass X-ray binary-either a neutron star or black hole accreting from an early B star undergoing thermal-timescale mass transfer through Roche lobe overflow. The properties of the residual diffuse X-ray emission are consistent with those expected from hot gas associated with the recent star formation activity in the region.

  12. IUE observations of a luminous M supergiant that exhibits intense continuum in the far ultraviolet

    NASA Technical Reports Server (NTRS)

    Michalitsianos, A. G.; Kafatos, M.; Hobbs, R. W.

    1980-01-01

    Observations of the late type M supergiant TV Gem (M1Iab) reveal strong UV continuum between 1200 A and 3200 A. The continuum is essentially featureless with the exception of a number of broad absorption features in the short wavelength spectra range. An absorption feature centered around 1400 A could be due to Si IV absorption found typically in spectra of middle B type stars. UV emission from this star is unexpected because earlier ground-based observations give no indication of a possible association with an early companion or circumstellar ionized nebulosity. A B9 or A1 III - IV type star approximately 2to 3 magnitudes fainter than the M star could explain the level of UV continuum observed, but a fully self consistent explanation that includes the B-V color index of TV Gem is not as yet possible. The continuum flux dependence with wavelength in the UV spectral range could be attributed to a high energy source such as an accretion disc. It is suggested TV Gem is a good candidate for HEAO-2 (Einstein) satellite observations because a high energy object in close proximity to the M star would likely be a source of soft X-ray emission.

  13. TEXES Observations of M Supergiants: Dynamics and Thermodynamics of Wind Acceleration

    E-print Network

    Harper, G M; Ryde, N; Brown, A; Brown, J; Greathouse, T K; Strong, S

    2009-01-01

    We have detected [Fe II] 17.94 um and 24.52 um emission from a sample of M supergiants using TEXES on the IRTF. These low opacity emission lines are resolved at R = 50, 000 and provide new diagnostics of the dynamics and thermodynamics of the stellar wind acceleration zone. The [Fe II] lines, from the first excited term, are sensitive to the warm plasma where energy is deposited into the extended atmosphere to form the chromosphere and wind outflow. These diagnostics complement previous KAO and ISO observations which were sensitive to the cooler and more extended circumstellar envelopes. The turbulent velocities, Vturb is about 12 to 13 km/s, observed in the [Fe II] forbidden lines are found to be a common property of our sample, and are less than that derived from the hotter chromospheric C II] 2325 Angstrom lines observed in alpha Ori, where Vturb is about 17 to 19 km/s. For the first time, we have dynamically resolved the motions of the dominant cool atmospheric component discovered in alpha Ori from multi...

  14. SPECTRAL TYPES OF RED SUPERGIANTS IN NGC 6822 AND THE WOLF-LUNDMARK-MELOTTE GALAXY

    SciTech Connect

    Levesque, Emily M.; Massey, Philip

    2012-07-15

    We present moderate-resolution spectroscopic observations of red supergiants (RSGs) in the low-metallicity Local Group galaxies NGC 6822 (Z = 0.4 Z{sub Sun} ) and Wolf-Lundmark-Melotte (WLM; Z = 0.1 Z{sub Sun} ). By combining these observations with reduction techniques for multislit data reduction and flux calibration, we are able to analyze spectroscopic data of 16 RSGs in NGC 6822 and spectrophotometric data of 11 RSGs in WLM. Using these observations, we determine spectral types for these massive stars, comparing them to Milky Way and Magellanic Cloud RSGs and thus extending observational evidence of the abundance-dependent shift of RSG spectral types to lower metallicities. In addition, we have uncovered two RSGs with unusually late spectral types (J000158.14-152332.2 in WLM, with a spectral type of M3 I, and J194453.46-144552.6 in NGC 6822, with a spectral type of M4.5 I) and a third RSG (J194449.96-144333.5 in NGC 6822) whose spectral type has varied from an M2.5 in 1997 to a K5 in 2008. All three of these stars could potentially be members of a recently discovered class of extreme RSG variables.

  15. Herschel/HIFI observations of red supergiants and yellow hypergiants. I. Molecular inventory

    NASA Astrophysics Data System (ADS)

    Teyssier, D.; Quintana-Lacaci, G.; Marston, A. P.; Bujarrabal, V.; Alcolea, J.; Cernicharo, J.; Decin, L.; Dominik, C.; Justtanont, K.; de Koter, A.; Melnick, G.; Menten, K. M.; Neufeld, D. A.; Olofsson, H.; Planesas, P.; Schmidt, M.; Soria-Ruiz, R.; Schöier, F. L.; Szczerba, R.; Waters, L. B. F. M.

    2012-09-01

    Context. Red supergiant stars (RSGs) and yellow hypergiant stars (YHGs) are believed to be the high-mass counterparts of stars in the asymptotic giant branch (AGB) and early post-AGB phases. As such, they are scarcer and the properties and evolution of their envelopes are still poorly understood. Aims: We study the mass-loss in the post main-sequence evolution of massive stars, through the properties of their envelopes in the intermediate and warm gas layers. These are the regions where the acceleration of the gas takes place and the most recent mass-loss episodes can be seen. Methods: We used the HIFI instrument on-board the Herschel Space Observatory to observe sub-millimetre and far-infrared (FIR) transitions of CO, water, and their isotopologues in a sample of two RSGs (NML Cyg and Betelgeuse) and two YHGs (IRC+10420 and AFGL 2343) stars. We present an inventory of the detected lines and analyse the information revealed by their spectral profiles. A comparison of the line intensity and shape in various transitions is used to qualitatively derive a picture of the envelope physical structure. On the basis of the results presented in an earlier study, we model the CO and 13CO emission in IRC+10420 and compare it to a set of lines ranging from the millimetre to the FIR. Results: Red supergiants have stronger high-excitation lines than the YHGs, indicating that they harbour dense and hot inner shells contributing to these transitions. Consequently, these high-J lines in RSGs originate from acceleration layers that have not yet reached the circumstellar terminal velocity and have narrower profiles than their flat-topped lower-J counterparts. The YHGs tend to lack this inner component, in line with the picture of detached, hollow envelopes derived from studies at longer wavelengths. NH3 is only detected in two sources (NML Cyg and IRC+10420), which are also observed to be the strongest water-line emitters of the studied sample. In contrast, OH is detected in all sources and does not seem to correlate with the water line intensities. We show that the IRC+10420 model derived solely from millimetre low-J CO transitions is capable of reproducing the high-J transitions when the temperature in the inner shell is simply lowered by about 30%. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Appendix A is available in electronic form at http://www.aanda.orgFITS files of the spectra are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/545/A99

  16. The flux-weighted gravity-luminosity relationship of blue supergiant stars as a constraint for stellar evolution

    NASA Astrophysics Data System (ADS)

    Meynet, Georges; Kudritzki, Rolf-Peter; Georgy, Cyril

    2015-09-01

    Context. The flux-weighted gravity-luminosity relationship (FGLR) of blue supergiant stars (BSG) links their absolute magnitude to the spectroscopically determined flux-weighted gravity log g/T_text{eff ^4}. BSG are the brightest stars in the universe at visual light and the application of the FGLR has become a powerful tool for determining extragalactic distances. Aims: Observationally, the FGLR is a tight relationship with only small scatter. It is, therefore, ideal for using as a constraint for stellar evolution models. The goal of this work is to investigate whether stellar evolution can reproduce the observed FGLR and to develop an improved foundation for the FGLR as an extragalactic distance indicator. Methods: We used different grids of stellar models for initial masses between 9 and 40 M? and for metallicities between Z = 0.002 and 0.014, with and without rotation, which were computed with various mass loss rates during the red supergiant phase. For each of these models, we discuss the details of post-main sequence evolution and construct theoretical FGLRs by means of population synthesis models that we then compare with the observed FGLR. Results: In general, the stellar evolution model FGLRs agree reasonably well with the observed one. There are, however, differences between the models, in particular with regard to the shape and width (scatter) in the flux-weighted gravity-luminosity plane. The best agreement is obtained with models that include the effects of rotation and assume that the large majority, if not all, of the observed BSG evolve toward the red supergiant phase and that only a few are evolving back from this stage. The effects of metallicity on the shape and scatter of the FGLR are small. Conclusions: The shape, scatter, and metallicity dependence of the observed FGLR are explained well by stellar evolution models. This provides a solid theoretical foundation for using this relationship as a robust extragalactic distance indicator.

  17. X-ray observation of the shocked red supergiant wind of Cassiopeia A

    SciTech Connect

    Lee, Jae-Joon; Park, Sangwook; Hughes, John P.; Slane, Patrick O.

    2014-07-01

    Cas A is a Galactic supernova remnant whose supernova explosion is observed to be of Type IIb from spectroscopy of its light echo. Having its SN type known, observational constraints on the mass-loss history of Cas A's progenitor can provide crucial information on the final fate of massive stars. In this paper, we study X-ray characteristics of the shocked ambient gas in Cas A using the 1 Ms observation carried out with the Chandra X-Ray Observatory and try to constrain the mass-loss history of the progenitor star. We identify thermal emission from the shocked ambient gas along the outer boundary of the remnant. Comparison of measured radial variations of spectroscopic parameters of the shocked ambient gas to the self-similar solutions of Chevalier show that Cas A is expanding into a circumstellar wind rather than into a uniform medium. We estimate a wind density n {sub H} ? 0.9 ± 0.3 cm{sup –3} at the current outer radius of the remnant (?3 pc), which we interpret as a dense slow wind from a red supergiant (RSG) star. Our results suggest that the progenitor star of Cas A had an initial mass around 16 M {sub ?}, and its mass before the explosion was about 5 M {sub ?}, with uncertainties of several tens of percent. Furthermore, the results suggest that, among the mass lost from the progenitor star (?11 M {sub ?}), a significant amount (more than 6 M {sub ?}) could have been via its RSG wind.

  18. A NEW DISTANCE TO M33 USING BLUE SUPERGIANTS AND THE FGLR METHOD

    SciTech Connect

    U, Vivian; Urbaneja, Miguel A.; Kudritzki, Rolf-Peter; Jacobs, Bradley A.; Bresolin, Fabio; Przybilla, Norbert E-mail: urbaneja@ifa.hawaii.ed E-mail: bjacobs@ifa.hawaii.ed E-mail: przybilla@sternwarte.uni-erlangen.d

    2009-10-20

    The quantitative spectral analysis of medium resolution optical spectra of A and B supergiants obtained with DEIMOS and ESI at the Keck Telescopes is used to determine a distance modulus of 24.93 +- 0.11 mag (968 +- 50 kpc) for the Triangulum Galaxy M33. The analysis yields stellar effective temperatures, gravities, interstellar reddening, and extinction, the combination of which provides a distance estimate via the flux-weighted gravity-luminosity relationship (FGLR). This result is based on an FGLR calibration that is continually being polished. An average reddening of (E(B - V)) approx 0.08 mag is found, with a large variation ranging from 0.01 to 0.16 mag, however, demonstrating the importance of accurate individual reddening measurements for stellar distance indicators in galaxies with evident signatures of interstellar absorption. The large-distance modulus found is in good agreement with recent work on eclipsing binaries, planetary nebulae, long-period variables, RR Lyrae stars, and also with Hubble Space Telescope (HST) observations of Cepheids, if reasonable reddening assumptions are made for the Cepheids. Since distances based on the tip of the red giant branch (TRGB) method found in the literature give conflicting results, we have used HST Advanced Camera for Surveys V- and I-band images of outer regions of M33 to determine a TRGB distance of 24.84 +- 0.10 mag, in basic agreement with the FGLR result. We have also determined stellar metallicities and discussed the metallicity gradient in the disk of M33. We find metallicity of Z {sub sun} at the center and 0.3 Z {sub sun} in the outskirts at a distance of one isophotal radius. The average logarithmic metallicity gradient is -0.07 +- 0.01 dex kpc{sup -1}. However, there is a large scatter around this average value, very similar to what has been found for the H II regions in M33.

  19. The open cluster Pismis 11 and the very luminous blue supergiant HD 80077

    E-print Network

    Amparo Marco; Ignacio Negueruela

    2008-11-29

    (Abridged) The very luminous blue supergiant HD 80077 has been claimed to be a member of the young open cluster Pismis 11, and hence a hypergiant. We obtained UBVRI photometry of the cluster field and low-resolution spectroscopy of a number of putative members. We derive spectral types from the spectra and determine that the reddening in this direction is standard. We then carry out a careful photometric analysis that allows us to determine individual reddening values, deriving unreddened parameters that are used for the main sequence fit. We identify 43 likely members of Pismis 11. We study the variation of extinction across the face of the cluster and find some dispersion, with a trend to higher values in the immediate neighbourhood of HD 80077. We estimate a distance of 3.6 kpc for the cluster. If HD 80077 is a member, it has M_bolstars in the Galaxy. Several early type stars in the vicinity of Pismis~11 fit well the cluster sequence and are likely to represent an extended population at the same distance. About 18 arcmin to the North of Pismis 11, we find a small concentration of stars, which form a clear sequence. We identify this group as a previously uncatalogued open cluster, which we provisionally call Alicante 5. The distance to Alicante 5 is also 3.6 kpc, suggesting that these two clusters and neighbouring early-type stars form a small association. Based on its proper motion, HD 80077 is not a runaway star and may be a member of the cluster. If this is the case, it would be one of the brightest stars in the Galaxy.

  20. Dense molecular clumps associated with the Large Magellanic Cloud supergiant shells LMC 4 and LMC 5

    SciTech Connect

    Fujii, Kosuke; Mizuno, Norikazu; Minamidani, Tetsuhiro; Onishi, Toshikazu; Muraoka, Kazuyuki; Kawamura, Akiko; Muller, Erik; Tatematsu, Ken'ichi; Hasegawa, Tetsuo; Miura, Rie E.; Ezawa, Hajime; Dawson, Joanne; Tosaki, Tomoka; Sakai, Takeshi; Tsukagoshi, Takashi; Tanaka, Kunihiko; Fukui, Yasuo

    2014-12-01

    We investigate the effects of supergiant shells (SGSs) and their interaction on dense molecular clumps by observing the Large Magellanic Cloud (LMC) star-forming regions N48 and N49, which are located between two SGSs, LMC 4 and LMC 5. {sup 12}CO (J = 3-2, 1-0) and {sup 13}CO(J = 1-0) observations with the ASTE and Mopra telescopes have been carried out toward these regions. A clumpy distribution of dense molecular clumps is revealed with 7 pc spatial resolution. Large velocity gradient analysis shows that the molecular hydrogen densities (n(H{sub 2})) of the clumps are distributed from low to high density (10{sup 3}-10{sup 5} cm{sup –3}) and their kinetic temperatures (T {sub kin}) are typically high (greater than 50 K). These clumps seem to be in the early stages of star formation, as also indicated from the distribution of H?, young stellar object candidates, and IR emission. We found that the N48 region is located in the high column density H I envelope at the interface of the two SGSs and the star formation is relatively evolved, whereas the N49 region is associated with LMC 5 alone and the star formation is quiet. The clumps in the N48 region typically show high n(H{sub 2}) and T {sub kin}, which are as dense and warm as the clumps in LMC massive cluster-forming areas (30 Dor, N159). These results suggest that the large-scale structure of the SGSs, especially the interaction of two SGSs, works efficiently on the formation of dense molecular clumps and stars.

  1. New spectroscopic and polarimetric observations of the A0 supergiant HD 92207

    NASA Astrophysics Data System (ADS)

    Hubrig, S.; Kholtygin, A. F.; Schöller, M.; Anderson, R. I.; Saesen, S.; González, J. F.; Ilyin, I.; Briquet, M.

    2015-02-01

    Our recent search for the presence of a magnetic field in the bright early A-type supergiant HD 92207 using FORS 2 in spectropolarimetric mode revealed the presence of a longitudinal magnetic field of the order of a few hundred Gauss. However, the definite confirmation of the magnetic nature of this object remained pending due to the detection of short-term spectral variability probably affecting the position of line profiles in left- and right-hand polarized spectra. We present new magnetic field measurements of HD 92207 obtained on three different epochs in 2013 and 2014 using FORS 2 in spectropolarimetric mode. A 3? detection of the mean longitudinal magnetic field using the entire spectrum, _all=104±34 G, was achieved in observations obtained in 2014 January. At this epoch, the position of the spectral lines appeared stable. Our analysis of spectral line shapes recorded in opposite circularly polarized light, i.e. in light with opposite sense of rotation, reveals that line profiles in the light polarized in a certain direction appear slightly split. The mechanism causing such a behaviour in the circularly polarized light is currently unknown. Trying to settle the issue of short-term variability, we searched for changes in the spectral line profiles on a time scale of 8-10 min using HARPS polarimetric spectra and on a time scale of 3-4 min using time series obtained with the CORALIE spectrograph. No significant variability was detected on these time scales during the epochs studied. Based on observations collected with the CORALIE echelle spectrograph mounted on the 1.2-m Swiss telescope at La Silla Observatory, data obtained at the European Southern Observatory (ESO Prg. 092.D-0209(A), and data obtained from the ESO Science Archive Facility under request MSCHOELLER 102067).

  2. Exploring jet-launching conditions for supergiant fast X-ray transients

    NASA Astrophysics Data System (ADS)

    García, Federico; Aguilera, Deborah N.; Romero, Gustavo E.

    2014-05-01

    Context. In the magneto-centrifugal mechanism for jet formation, accreting neutron stars are assumed to produce relativistic jets only if their surface magnetic field is weak enough (B ~ 108 G). However, the most common manifestation of neutron stars are pulsars, whose magnetic field distribution peaks at B ~ 1012 G. If the neutron star magnetic field has at least this strength at birth, it must decay considerably before jets can be launched in binary systems. Aims: We study the magnetic field evolution of a neutron star that accretes matter from the wind of a high-mass stellar companion so that we can constrain the accretion rate and the impurities in the crust, which are necessary conditions for jet formation. Methods: We solved the induction equation for the diffusion and convection of the neutron star magnetic field confined to the crust, assuming spherical accretion in a simpliflied one-dimensional treatment. We incorporated state-of-the-art microphysics, including consistent thermal evolution profiles, and assumed two different neutron star cooling scenarios based on the superfluidity conditions at the core. Results: We find that in this scenario, magnetic field decay at long timescales is governed mainly by the accretion rate, while the impurity content and thermal evolution of the neutron star play a secondary role. For accretion rates ? ? 10-10 M? yr-1, surface magnetic fields can decay up to four orders of magnitude in ~107 yr, which is the timescale imposed by the evolution of the high-mass stellar companion in these systems. Based on these results, we discuss the possibility of transient jet-launching in strong wind-accreting high-mass binary systems like supergiant fast X-ray transients.

  3. THE PHYSICAL PROPERTIES OF THE RED SUPERGIANT WOH G64: THE LARGEST STAR KNOWN?

    SciTech Connect

    Levesque, Emily M.; Massey, Philip; Plez, Bertrand; Olsen, Knut A. G. E-mail: phil.massey@lowell.edu E-mail: kolsen@noao.edu

    2009-06-15

    WOH G64 is an unusual red supergiant (RSG) in the Large Magellanic Cloud (LMC), with a number of properties that set it apart from the rest of the LMC RSG population, including a thick circumstellar dust torus, an unusually late spectral type, maser activity, and nebular emission lines. Its reported physical properties are also extreme, including the largest radius for any star known and an effective temperature that is much cooler than other RSGs in the LMC, both of which are at variance with stellar evolutionary theory. We fit moderate-resolution optical spectrophotometry of WOH G64 with the MARCS stellar atmosphere models, determining an effective temperature of 3400 {+-} 25 K. We obtain a similar result from the star's broadband V - K colors. With this effective temperature, and taking into account the flux contribution from the asymmetric circumstellar dust envelope, we calculate log(L/L {sub sun}) = 5.45 {+-} 0.05 for WOH G64, quite similar to the luminosity reported by Ohnaka and collaborators based on their radiative transfer modeling of the star's dust torus. We determine a radius of R/R {sub sun} = 1540, bringing the size of WOH G64 and its position on the Hertzsprung-Russell diagram into agreement with the largest known Galactic RSGs, although it is still extreme for the LMC. In addition, we use the Ca II triplet absorption feature to determine a radial velocity of 294 {+-} 2 km s{sup -1} for the star; this is the same radial velocity as the rotating gas in the LMC's disk, which confirms its membership in the LMC and precludes it from being an unusual Galactic halo giant. Finally, we describe the star's unusual nebula emission spectrum; the gas is nitrogen-rich and shock-heated, and displays a radial velocity that is significantly more positive than the star itself by 50 km s{sup -1}.

  4. Line-profile microvariability in OB-star spectra: the Supergiant ? Cep (O6If(n))

    NASA Astrophysics Data System (ADS)

    Kholtygin, A. F.; Sudnik, N. P.; Burlakova, T. E.; Valyavin, G. G.

    2011-12-01

    We observed the bright O6If(n) supergiant ? Cep in 1997 with the 6-m optical telescope of the Special Astrophysical Observatory and in 2007 with the 1.8-m telescope of the Bohyunsan Optical Astronomy Observatory (South Korea). A total of 90 spectra of the star were acquired, with good time resolution (10 minutes), signal-to-noise ratios 150-300, and spectral resolutions of 45 000-60 000. We detected line-profile variations of H, HeI, and HeII lines. It is suggested that the detected variations are due to non-radial photospheric pulsations and the star's rotation (rotational profile modulation).

  5. Cold gas in hot star clusters: the wind from the red supergiant W26 in Westerlund 1

    NASA Astrophysics Data System (ADS)

    Mackey, Jonathan; Castro, Norberto; Fossati, Luca; Langer, Norbert

    2015-10-01

    The massive red supergiant W26 in Westerlund 1 is one of a growing number of red supergiants shown to have winds that are ionized from the outside in. The fate of this dense wind material is important for models of second generation star formation in massive star clusters. Mackey et al. (2014, Nature, 512, 282) showed that external photoionization can stall the wind of red supergiants and accumulate mass in a dense static shell. We use spherically symmetric radiation-hydrodynamic simulations of an externally photoionized wind to predict the brightness distribution of H? and [N II] emission arising from photoionized winds both with and without a dense shell. We analyse spectra of the H? and [N II] emission lines in the circumstellar environment around W26 and compare them with simulations to investigate whether W26 has a wind that is confined by external photoionization. Simulations of slow winds that are decelerated into a dense shell show strongly limb-brightened line emission, with line radial velocities that are independent of the wind speed. Faster winds (?22 km s-1) do not form a dense shell, have less limb-brightening, and the line radial velocity is a good tracer of the wind speed. The brightness of the [N II] and H? lines as a function of distance from W26 agrees reasonably well with observations when only the line flux is considered. The radial velocity of the simulated winds disagrees with observations, however: the brightest observed emission is blueshifted by ?25 km s-1 relative to the radial velocity of the star, whereas a spherically symmetric wind has the brightest emission at zero radial velocity because of limb brightening. Our results show that the bright nebula surrounding W26 must be asymmetric, and we suggest that it is confined by external ram pressure from the extreme wind of the nearby supergiant W9. We obtain a lower limit on the nitrogen abundance within the nebula of 2.35 times solar. The line ratio strongly favours photoionization over shock ionization, and so even if the observed nebula is pressure confined there should still be an ionization front and a photoionization-confined shell closer to the star that is not resolved by the current observations, which could be tested with better spectral resolution and spatial coverage. Appendices are available in electronic form at http://www.aanda.org

  6. Evidence for a supersonic turbulent velocity gradient in the outer photosphere of the supergiant alpha Cygni (A2Ia)

    NASA Technical Reports Server (NTRS)

    De Jager, C.; Mulder, P. S.; Kondo, Y.

    1984-01-01

    The balloon-borne UV Stellar Spectrometer's high resolution, near-UV spectra of the supergiant Alpha Cyg are subjected to analysis in order to determine the average microturbulent line-of-sight velocity component. A value of 15.0 + or - 0.5 km/sec is obtained, which is close to the 13.7 km/sec local sound velocity, and is consistent with the view that shock waves are the dominant structure in the outer photosphere of Deneb, so that shock wave dissipation determines the thermal structure of the photosphere.

  7. Integral-Field Spectroscopy of the Post Red Supergiant IRC +10420: evidence for an axi-symmetric wind

    E-print Network

    Ben Davies; René D. Oudmaijer; Kailash C. Sahu

    2007-08-16

    We present NAOMI/OASIS adaptive-optics assisted integral-field spectroscopy of the transitional massive hypergiant IRC +10420, an extreme mass-losing star apparently in the process of evolving from a Red Supergiant toward the Wolf-Rayet phase. To investigate the present-day mass-loss geometry of the star, we study the appearance of the line-emission from the inner wind as viewed when reflected off the surrounding nebula. We find that, contrary to previous work, there is strong evidence for wind axi-symmetry, based on the equivalent-width and velocity variations of H$\\alpha$ and Fe {\\sc ii} $\\lambda$6516. We attribute this behaviour to the appearance of the complex line-profiles when viewed from different angles. We also speculate that the Ti {\\sc ii} emission originates in the outer nebula in a region analogous to the Strontium Filament of $\\eta$ Carinae, based on the morphology of the line-emission. Finally, we suggest that the present-day axisymmetric wind of IRC +10420, combined with its continued blueward evolution, is evidence that the star is evolving toward the B[e] supergiant phase.

  8. Swift-X-Ray Telescope Monitoring of the Candidate Supergiant Fast X-ray Transient IGR J16418-4532

    NASA Technical Reports Server (NTRS)

    Romano, P.; Mangano, V.; Ducci, L.; Esposito, P.; Evans, P. A.; Vercellone, S.; Kennea, J. A.; Burrows, D. N.; Gehrels, N.

    2012-01-01

    We report on the Swift monitoring of the candidate supergiant fast X-ray transient (SFXT) IGR J16418-4532, for which both orbital and spin periods are known (approx. 3.7 d and approx.1250 s, respectively). Our observations, for a total of approx. 43 ks, span over three orbital periods and represent the most intense and complete sampling of the light curve of this source with a sensitive X-ray instrument. With this unique set of observations, we can address the nature of this transient. By applying the clumpy wind model for blue supergiants to the observed X-ray light curve, and assuming a circular orbit, the X-ray emission from this source can be explained in terms of the accretion from a spherically symmetric clumpy wind, composed of clumps with different masses, ranging from approx. 5 × 10(exp 16) to 10(exp 21) g. Our data suggest, based on the X-ray behaviour, that this is an intermediate SFXT.

  9. Swift/XRT Monitoring of the Candidate Supergiant Fast X-ray Transient IGR J16418-4532

    NASA Technical Reports Server (NTRS)

    Romano, P.; Mangano, V.; Ducci, L.; Esposito, P.; Evans, P. A.; Vercellone, S.; Kennea, J. A.; Burrows, D. N.; Gehrels, N.

    2011-01-01

    We report on the Swift monitoring of the candidate supergiant fast X-ray transient (SFXT) IGR J16418.4532, for which both orbital and spin periods are known (approx. 3.7d and approx. 1250 s, respectively). Our observations, for a total of approx. 43 ks, span over three orbital periods and represent the most intense and complete sampling of the light curve of this source with a sensitive X-ray instrument. With this unique set of observations we can address the nature of this transient. By applying the clumpy wind model for blue supergiants to the observed X-ray light curve, and assuming a circular orbit, the X-ray emission from this source can be explained in terms of the accretion from a spherically symmetric clumpy wind, composed of clumps with different masses, ranging from 5 X 10(exp 16) g to 10(exp 21) g. Our data suggest, based on the X-ray behaviour, that this is an intermediate SFXT

  10. The flux-weighted gravity-luminosity relationship of blue supergiant stars as a constraint for stellar evolution

    E-print Network

    Meynet, Georges; Georgy, Cyril

    2015-01-01

    (abridged) The flux-weighted gravity-luminosity relationship (FGLR) of blue supergiant stars (BSG) links their absolute magnitude to the spectroscopically determined flux-weighted gravity log g = Teff^4. BSG are the brightest stars in the universe at visual light and the application of the FGLR has become a powerful tool to determine extragalactic distances. Observationally, the FGLR is a tight relationship with only small scatter. It is, therefore, ideal to be used as a constraint for stellar evolution models. The goal of this work is to investigate whether stellar evolution can reproduce the observed FGLR and to develop an improved foundation of the FGLR as an extragalactic distance indicator. We use different grids of stellar models for initial masses between 9 and 40 Msun, for metallicities between Z = 0.002 and 0.014, with and without rotation, computed with various mass loss rates during the red supergiant phase. For each of these models we discuss the details of post-main sequence evolution and constru...

  11. DISCOVERY OF A POSSIBLY SINGLE BLUE SUPERGIANT STAR IN THE INTRA-CLUSTER REGION OF VIRGO CLUSTER OF GALAXIES

    SciTech Connect

    Ohyama, Youichi; Hota, Ananda

    2013-04-20

    IC 3418 is a dwarf irregular galaxy falling into the Virgo cluster, and a 17 kpc long trail is seen behind the galaxy, which is considered to have formed due to ram pressure stripping. The trail contains compact knots and diffuse blobs of ultraviolet and blue optical emission and, thus, it is a clear site of recent star formation but in an unusual environment, surrounded by a million degree intra-cluster medium. We report on our optical spectroscopy of a compact source in the trail, SDSS J122952.66+112227.8, and show that the optical spectrum is dominated by emission from a massive blue supergiant star. If confirmed, our report would mark the farthest star with spectroscopic observation. We interpret that a massive O-type star formed in situ in the trail has evolved recently out of the main sequence into this blue supergiant phase, and now lacks any detectable spectral sign of its associated H II region. We argue that turbulence within the ram pressure striped gaseous trail may play a dominant role for the star formation within such trails.

  12. Giant outburst from the supergiant fast X-ray transient IGR J17544-2619: accretion from a transient disc?

    NASA Astrophysics Data System (ADS)

    Romano, P.; Bozzo, E.; Mangano, V.; Esposito, P.; Israel, G.; Tiengo, A.; Campana, S.; Ducci, L.; Ferrigno, C.; Kennea, J. A.

    2015-04-01

    Supergiant fast X-ray transients (SFXTs) are high mass X-ray binaries associated with OB supergiant companions and characterized by an X-ray flaring behaviour whose dynamical range reaches 5 orders of magnitude on time scales of a few hundred to thousands of seconds. Current investigations concentrate on finding possible mechanisms to inhibit accretion in SFXTs and to explain their unusually low average X-ray luminosity. We present the Swift observations of an exceptionally bright outburst displayed by the SFXT IGR J17544-2619 on 2014 October 10 when the source achieved a peak luminosity of 3 × 1038 erg s-1. This extends the total source dynamic range to ?106, the largest (by a factor of 10) recorded so far from an SFXT. Tentative evidence for pulsations at a period of 11.6 s is also reported. We show that these observations challenge, for the first time, the maximum theoretical luminosity achievable by an SFXT and propose that this giant outburst was due to the formation of a transient accretion disc around the compact object. Tables 1 and 2, and Fig. 2 are available in electronic form at http://www.aanda.org

  13. A Five-year Spectroscopic and Photometric Campaign on the Prototypical ? Cygni Variable and A-type Supergiant Star Deneb

    NASA Astrophysics Data System (ADS)

    Richardson, N. D.; Morrison, N. D.; Kryukova, E. E.; Adelman, S. J.

    2011-01-01

    Deneb is often considered the prototypical A-type supergiant and is one of the visually most luminous stars in the Galaxy. A-type supergiants are potential extragalactic distance indicators, but the variability of these stars needs to be better characterized before this technique can be considered reliable. We analyzed 339 high-resolution echelle spectra of Deneb obtained over the five-year span of 1997 through 2001 as well as 370 Strömgren photometric measurements obtained during the same time frame. Our spectroscopic analysis included dynamical spectra of the H? profile, H? equivalent widths, and radial velocities measured from Si II ?? 6347, 6371. Time-series analysis reveals no obvious cyclic behavior that proceeds through multiple observing seasons, although we found a suspected 40 day period in two, non-consecutive observing seasons. Some correlations are found between photometric and radial velocity data sets and suggest radial pulsations at two epochs. No correlation is found between the variability of the H? profiles and that of the radial velocities or the photometry. Lucy found evidence that Deneb was a long-period single-lined spectroscopic binary star, but our data set shows no evidence for radial velocity variations caused by a binary companion.

  14. VLTI/AMBER Studies of the Atmospheric Structure and Fundamental Parameters of Red Giant and Supergiant Stars

    NASA Astrophysics Data System (ADS)

    Arroyo-Torres, B.; Wittkowski, M.; Marcaide, J. M.; Abellan, F. J.; Chiavassa, A.; Fabregat, J.; Freytag, B.; Guirado, J. C.; Hauschildt, P. H.; Marti-Vidal, I.; Quirrenbach, A.; Scholz, M.; Wood, P. R.

    2015-08-01

    We present recent near-IR interferometric studies of red giant and supergiant stars, which are aimed at obtaining information on the structure of the atmospheric layers and constraining the fundamental parameters of these objects. The observed visibilities of six red supergiants (RSGs), and also of one of the five red giants observed, indicate large extensions of the molecular layers, as previously observed for Mira stars. These extensions are not predicted by hydrostatic PHOENIX model atmospheres, hydrodynamical (RHD) simulations of stellar convection, or self-excited pulsation models. All these models based on parameters of RSGs lead to atmospheric structures that are too compact compared to our observations. We discuss how alternative processes might explain the atmospheric extensions for these objects. As the continuum appears to be largely free of contamination by molecular layers, we can estimate reliable Rosseland angular radii for our stars. Together with distances and bolometric fluxes, we estimate the effective temperatures and luminosities of our targets, locate them in the HR diagram, and compare their positions to recent evolutionary tracks.

  15. Wind Variability of B Supergiants. No. 2; The Two-component Stellar Wind of gamma Arae

    NASA Technical Reports Server (NTRS)

    Prinja, R. K.; Massa, D.; Fullerton, A. W.; Howarth, I. D.; Pontefract, M.

    1996-01-01

    The stellar wind of the rapidly rotating early-B supergiant, gamma Ara, is studied using time series, high-resolution IUE spectroscopy secured over approx. 6 days in 1993 March. Results are presented based on an analysis of several line species, including N(N), C(IV), Si(IV), Si(III), C(II), and Al(III). The wind of this star is grossly structured, with evidence for latitude-dependent mass loss which reflects the role of rapid rotation. Independent, co-existing time variable features are identified at low-velocity (redward of approx. -750 km/s) and at higher-speeds extending to approx. -1500 km/s. The interface between these structures is 'defined' by the appearance of a discrete absorption component which is extremely sharp (in velocity space). The central velocity of this 'Super DAC' changes only gradually, over several days, between approx. -400 and -750 km/s in most of the ions. However, its location is shifted redward by almost 400 km/s in Al(III) and C(II), indicating that the physical structure giving rise to this feature has a substantial velocity and ionization jump. Constraints on the relative ionization properties of the wind structures are discussed, together with results based on SEI line-profile-fitting methods. The overall wind activity in gamma Ara exhibits a clear ion dependence, such that low-speed features are promoted in low-ionization species, including Al(III), C(II), and Si(III). We also highlight that - in contrast to most OB stars - there are substantial differences in the epoch-to-epoch time-averaged wind profiles of gamma Ara. We interpret the results in terms of a two-component wind model for gamma Ara, with an equatorially compressed low ionization region, and a high speed, higher-ionization polar outflow. This picture is discussed in the context of the predicted bi-stability mechanism for line-driven winds in rapidly rotating early-B type stars, and the formation of compressed wind regions in rapidly rotating hot stars. The apparent absence of a substantial shift in the wind ionization mixture of gamma Ara, and the normal nature of its photospheric spectrum, suggests wind-compression as the likely dominant cause for the observed equatorial density enhancements.

  16. Modelling Dusty Circumbinary Disk around B[e] Supergiant RY Sct

    NASA Astrophysics Data System (ADS)

    Men'shchikov, Alexander; Miroshnichenko, Anatoly

    2005-08-01

    The supergiant RY Sct is an eclipsing binary system with a fairly large infrared (IR) excess caused by the presence of circumbinary dust. Many strong forbidden lines ([O i], [N ii], [S iii], [Fe ii]), in combination with the near-IR excess, put it in the list of peculiar Be or B[e] stars. Although RY Sct is one of the best-studied systems, even its basic physical parameters remain unreliable. Recent IR images of the system, obtained with a 0.3 arcsec resolution at the 10-m Keck telescope, showed the dusty disk at the wavelengths 3-20 ?m and stimulated us to perform its detailed modelling using our 2-D radiative transfer code. Our model reproduces all available observations of RY Sct obtained during the last few decades. The modelling demonstrated that the observations cannot be described by a single model at one moment in time, implying rapid changes in the dusty disk during the last 20 years. Assuming that a temperature of 27,000 K describes both components of the binary and that its distance is 1.8 kpc, its total luminosity is 4.2 - 105 solar luminosity. The model disk has the optical depth of 0.04 and the opening angle of 26° (between the boundaries). Dust in the disk exists between 60 AU and 105 AU, where it blends into the interstellar medium. We observe the disk almost edge-on, at an angle of 14° to its midplane. The total mass of the disk is 0.017 solar mass. There is a strong density enhancement at 1800 AU from the binary, which emits most of the IR radiation and is prominent in the Keck telescope images. Presumably, the dense ring has been created by a fast wind that swept out and compressed the previously lost material in the older and slower stellar wind. Our model predicts that presently there is a large amount of small, hot dust grains in the dust formation zone, whose emission changed the shape of the SED of RY Sct in the near IR. The dust density must now be significantly greater in the dust formation zone, suggesting a much higher massloss rate or dust-to-gas mass ratio or much lower wind velocities than before, or a combination of these factors.

  17. Quantitative studies of the Far-UV, UV and optical spectra of late O and early B-type supergiants in the Magellanic Clouds

    E-print Network

    C. J. Evans; P. A. Crowther; A. W. Fullerton; D. J. Hillier

    2004-04-12

    We present quantitative studies of 8 late O and early B-type supergiants in the Magellanic Clouds using far-ultraviolet FUSE, ultraviolet IUE/HST and optical VLT-UVES spectroscopy. Temperatures, mass-loss rates and CNO abundances are obtained using the non-LTE, spherical, line-blanketed model atmosphere code of Hillier & Miller (1998). We support recent results for lower temperatures of OB-type supergiants as a result of stellar winds and blanketing, which amounts to ~2000 K at B0 Ia. In general, H$\\alpha$ derived mass-loss rates are consistent with UV and far-UV spectroscopy, although from consideration of the SIV $\\lambda\\lambda$1063-1073 doublet, clumped winds are preferred over homogenous models. AV 235 (B0 Iaw) is a notable exception, which has an unusually strong H$\\alpha$ profile that is inconsistent with the other Balmer lines and UV wind diagnostics. We also derive CNO abundances for our sample, revealing substantial nitrogen enrichment, with carbon and oxygen depletion. Our results are supported by comparison with the Galactic supergiant HD 2905 (BC0.7 Ia) for which near-solar CNO abundances are obtained. This bolsters previous suggestions that ``normal'' OB-type supergiants exhibit atmospheric compositions indicative of partical CNO processing.

  18. NuSTAR detection of a cyclotron line in the supergiant fast X-ray transient IGR J17544-2619

    E-print Network

    Bhalerao, Varun

    We present NuSTAR spectral and timing studies of the supergiant fast X-ray transient (SFXT) IGR J17544?2619. The spectrum is well described by an ~1?keV blackbody and a hard continuum component, as expected from an accreting ...

  19. INTEGRAL and Swift observations of the supergiant fast X-ray transient AXJ1845.0-0433=IGRJ18450-0435

    E-print Network

    V. Sguera; A. J. Bird; A. J. Dean; A. Bazzano; P. Ubertini; R. Landi; A. Malizia; E. J. Barlow; D. J. Clark; A. B. Hill; M. Molina

    2006-10-31

    Context: AXJ1845.0-0433 was discovered by ASCA in 1993 during fast outburst activity characterized by several flares on short timescales. Up to now, the source was not detected again by any X-ray mission. Its optical counterpart is suggested to be an O9.5I supergiant star, which is the only remarkable object found inside the ASCA error box. Aims: To detect and characterize new fast outbursts of AXJ1845.0-0433 and confirm its supergiant HMXB nature, using INTEGRAL and archival Swift XRT observations. Methods: We performed an analysis of INTEGRAL IBIS and JEM-X data with OSA 5.1 as well as an analysis of archive Swift XRT data. Results: We report on fast flaring activity from the source on timescales of a few tens of minutes, the first to be reported since its discovery in 1993. Two outbursts have been detected by INTEGRAL (Apr 2005 and Apr 2006) with similar peak fluxes and peak luminosities of 80 mCrab and 9.3X10^35 erg s^-1 (20--40 keV), respectively. Two other outbursts were detected by Swift XRT on Nov 2005 and Mar 2006. The refined Swift XRT position of AXJ1845.0-0433 confirms its association with the supergiant star previously proposed as optical counterpart. Conclusions: Our INTEGRAL and Swift results fully confirm the supergiant HMXB nature of AXJ1845.0-0433 which can therefore be classified as a supergiant fast X-ray transient. Moreover they provide for the first time evidence of its recurrent fast transient behaviour.

  20. Synchrotron radiation from the winds of O supergiants - Tb = 10 to the 7. 6th K at 60 stellar radii

    SciTech Connect

    Phillips, R.B.; Titus, M.A. )

    1990-08-01

    Results are presented on VLBI measurements of the nonthermal radio components around two O supergiant stars: Cyg OB2 No. 9 and HD 167971. The measurements were used to characterize the brightness temperature of the emission and to measure the size of compact 5-10 mJy components in these stars, reported by Bieging et al. (1989). The sizes found for the 5-10 mJy components are consistent with the free-free wind radii, indicating that the compact companions are not the sources of nonthermal radiation. Results suggest that there is a small fractional population (10 to the -4th to 10 to the -7th) of ultrarelativistic electrons (Teff of about 10 to the 11th K) coexisting with the stellar wind, which emit optically thin synchrotron radiation. This is in agreement with the synchrotron model of White (1985). 21 refs.

  1. The supergiant amphipod Alicella gigantea (Crustacea: Alicellidae) from hadal depths in the Kermadec Trench, SW Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Jamieson, A. J.; Lacey, N. C.; Lörz, A.-N.; Rowden, A. A.; Piertney, S. B.

    2013-08-01

    Here we provide the first record of the 'supergiant' amphipod Alicella gigantea Chevreux, 1899 (Alicellidae) from the Southern Hemisphere, and extend the known bathymetric range by over 1000 m to 7000 m. An estimated nine individuals were observed across 1500 photographs taken in situ by baited camera at 6979 m in the Kermadec Trench, SW Pacific Ocean. Nine specimens, ranging in length from 102 to 290 mm were recovered by baited trap at depths of 6265 m and 7000 m. Mitochondrial and nuclear DNA sequences obtained indicate a cosmopolitan distribution for the species. Data and observations from the study are used to discuss the reason for gigantism in this species, and its apparently disjunct geographical distribution.

  2. Red Supergiants as Cosmic Abundance Probes: The First Direct Metallicity Determination of NGC 4038 in the Antennae

    NASA Astrophysics Data System (ADS)

    Lardo, C.; Davies, B.; Kudritzki, R.-P.; Gazak, J. Z.; Evans, C. J.; Patrick, L. R.; Bergemann, M.; Plez, B.

    2015-10-01

    We present a direct determination of the stellar metallicity in the close pair galaxy NGC 4038 (D = 20 Mpc) based on the quantitative analysis of moderate-resolution KMOS/Very Large Telescope spectra of three super star clusters. The method adopted in our analysis has been developed and optimized to measure accurate metallicities from atomic lines in the J-band of single red supergiant (RSG) or RSG-dominated star clusters. Hence, our metallicity measurements are not affected by the biases and poorly understood systematics inherent to strong line H ii methods, which are routinely applied to massive data sets of galaxies. We find [Z] = +0.07 ± 0.03 and compare our measurements to H ii strong line calibrations. Our abundances and literature data suggest the presence of a flat metallicity gradient, which can be explained as redistribution of metal-rich gas following the strong interaction.

  3. Evidence for a supersonic turbulent velocity gradient in the outer photosphere of the supergiant alpha Cygni (A2Ia)

    NASA Astrophysics Data System (ADS)

    de Jager, C.; Mulder, P. S.; Kondo, Y.

    1984-12-01

    Two high-resolution near-ultraviolet spectra of the supergiant ? Cyg have been analyzed with the aim of determining the average microturbulent line-of-sight velocity component which was found to be 15.0±0.5 km s-1. This value is close to the local sound velocity (13.7 km s-1). This result, together with previous determinations in the visual spectral region, is consistent with the picture that shock waves are the dominant structure in the outer photosphere of Deneb. The macroturbulent velocity component is ?10 km s-1, a factor two to four smaller than earlier communicated values for the line of sight components of the stochastic macroturbulent velocities.

  4. Einstein Observatory magnitude-limited X-ray survey of late-type giant and supergiant stars

    NASA Technical Reports Server (NTRS)

    Maggio, A.; Vaiana, G. S.; Haisch, B. M.; Stern, R. A.; Bookbinder, J.

    1990-01-01

    Results are presented of an extensive X-ray survey of 380 giant and supergiant stars of spectral types from F to M, carried out with the Einstein Observatory. It was found that the observed F giants or subgiants (slightly evolved stars with a mass M less than about 2 solar masses) are X-ray emitters at the same level of main-sequence stars of similar spectral type. The G giants show a range of emissions more than 3 orders of magnitude wide; some single G giants exist with X-ray luminosities comparable to RS CVn systems, while some nearby large G giants have upper limits on the X-ray emission below typical solar values. The K giants have an observed X-ray emission level significantly lower than F and F giants. None of the 29 M giants were detected, except for one spectroscopic binary.

  5. On the magnetic structure and wind parameter profiles of Alfven wave driven winds in late-type supergiant stars

    E-print Network

    D. Falceta-Goncalves; A. A. Vidotto; V. Jatenco-Pereira

    2006-02-14

    Cool stars at giant and supergiant evolutionary phases present low velocity and high density winds, responsible for the observed high mass-loss rates. Although presenting high luminosities, radiation pressure on dust particles is not sufficient to explain the wind acceleration process. Among the possible solutions to this still unsolved problem, Alfven waves are, probably, the most interesting for their high efficiency in transfering energy and momentum to the wind. Typically, models of Alfven wave driven winds result in high velocity winds if they are not highly damped. In this work we determine self-consistently the magnetic field geometry and solve the momentum, energy and mass conservation equations, to demonstrate that even a low damped Alfven wave flux is able to reproduce the low velocity wind. We show that the magnetic fluxtubes expand with a super-radial factor S>30 near the stellar surface, larger than that used in previous semi-empirical models. The rapid expansion results in a strong spatial dilution of the wave flux. We obtained the wind parameter profiles for a typical supergiant star of 16 M_sun. The wind is accelerated in a narrow region, coincident with the region of high divergence of the magnetic field lines, up to 100 km/s. For the temperature, we obtained a slight decrease near the surface for low damped waves, because the wave heating mechanism is less effective than the radiative losses. The peak temperature occurs at 1.5 r_0 reaching 6000 K. Propagating outwards, the wind cools down mainly due to adiabatic expansion.

  6. DISTANCE AND PROPER MOTION MEASUREMENT OF THE RED SUPERGIANT, S PERSEI, WITH VLBI H{sub 2}O MASER ASTROMETRY

    SciTech Connect

    Asaki, Y.; Deguchi, S.; Imai, H.; Hachisuka, K.; Miyoshi, M.; Honma, M. E-mail: deguchi@nro.nao.ac.j E-mail: khachi@shao.ac.c E-mail: mareki.honma@nao.ac.j

    2010-09-20

    We have conducted Very Long Baseline Array phase-referencing monitoring of H{sub 2}O masers around the red supergiant, S Persei, for six years. We have fitted maser motions to a simple expanding-shell model with a common annual parallax and stellar proper motion, and obtained the annual parallax as 0.413 {+-} 0.017 mas and the stellar proper motion as (-0.49 {+-} 0.23 mas yr{sup -1}, -1.19 {+-} 0.20 mas yr{sup -1}) in right ascension and declination, respectively. The obtained annual parallax corresponds to the trigonometric distance of 2.42{sup +0.11}{sub -0.09} kpc. Assuming a Galactocentric distance of the Sun of 8.5 kpc, the circular rotational velocity of the local standard of rest at a distance of the Sun of 220 km s{sup -1}, and a flat Galactic rotation curve, S Persei is suggested to have a non-circular motion deviating from the Galactic circular rotation for 15 km s{sup -1}, which is mainly dominated by the anti-rotation direction component of 12.9 {+-} 2.9 km s{sup -1}. This red supergiant is thought to belong to the OB association, Per OB1, so that this non-circular motion is representative of a motion of the OB association in the Milky Way. This non-circular motion is somewhat larger than that explained by the standard density-wave theory for a spiral galaxy and is attributed to either a cluster shuffling of the OB association, or to non-linear interactions between non-stationary spiral arms and multi-phase interstellar media. The latter comes from a new view of a spiral arm formation in the Milky Way suggested by recent large N-body/smoothed particle hydrodynamics numerical simulations.

  7. QUANTITATIVE SPECTROSCOPY OF BLUE SUPERGIANT STARS IN THE DISK OF M81: METALLICITY, METALLICITY GRADIENT, AND DISTANCE

    SciTech Connect

    Kudritzki, Rolf-Peter; Urbaneja, Miguel A.; Gazak, Zachary; Bresolin, Fabio; Przybilla, Norbert; Gieren, Wolfgang; Pietrzynski, Grzegorz E-mail: urbaneja@ifa.hawaii.edu E-mail: bresolin@ifa.hawaii.edu E-mail: wgieren@astro-udec.cl

    2012-03-01

    The quantitative spectral analysis of low-resolution ({approx}5 A) Keck LRIS spectra of blue supergiants in the disk of the giant spiral galaxy M81 is used to determine stellar effective temperatures, gravities, metallicities, luminosities, interstellar reddening, and a new distance using the flux-weighted gravity-luminosity relationship. Substantial reddening and extinction are found with E(B - V) ranging between 0.13 and 0.38 mag and an average value of 0.26 mag. The distance modulus obtained after individual reddening corrections is 27.7 {+-} 0.1 mag. The result is discussed with regard to recently measured tip of the red giant branch and Cepheid distances. The metallicities (based on elements such as iron, titanium, magnesium) are supersolar ( Almost-Equal-To 0.2 dex) in the inner disk (R {approx}< 5 kpc) and slightly subsolar ( Almost-Equal-To - 0.05 dex) in the outer disk (R {approx}> 10 kpc) with a shallow metallicity gradient of 0.034 dex kpc{sup -1}. The comparison with published oxygen abundances of planetary nebulae and metallicities determined through fits of Hubble Space Telescope color-magnitude diagrams indicates a late metal enrichment and a flattening of the abundance gradient over the last 5 Gyr. This might be the result of gas infall from metal-rich satellite galaxies. Combining these M81 metallicities with published blue supergiant abundance studies in the Local Group and the Sculptor Group, a galaxy mass-metallicity relationship based solely on stellar spectroscopic studies is presented and compared with recent studies of Sloan Digital Sky Survey star-forming galaxies.

  8. Chemical composition of optically bright post-AGB stars.

    NASA Astrophysics Data System (ADS)

    Van Winckel, H.

    1997-03-01

    We present a detailed LTE chemical analysis of 10 optically bright F-type post-AGB objects on the basis of the analysis of high-resolution optical spectra and compare the results with similar objects discussed in the literature. The iron content is low on average, and so confirms the old and hence low-mass nature of the supergiants, with a noticable exception of HD 95767. We emphasize the fact that the chemical patterns observed are very diverse : several different classes can be distinguished. Only a minor fraction of the objects are conform to standard post third dredge-up theory. Only in HD 187885 (Van Winckel et al., 1996A&A...306L..37V), HD 56126 (Klochkova, 1995MNRAS.272..710K) and HD 158616 (this paper) is there conclusive chemical evidence that they occur in a post-AGB evolutionary phase : a high total CNO abundance, for HD 187885 a supersolar He content and-above all-a large overabundance of s-process elements. The other objects, together with other well studied high galactic latitude F-supergiants, display no s-process enhancement but even depletion in some cases. The high N abondance and the mildly enhanced total CNO abundance indicate that the atmospheres of these objects contain a mixture of CNO-cycled material and He-burning products. For some sources, however, this enhancement of the total CNO abundance is barely significant. HD 107369, the only object in our sample with neither H? emission nor observed IR excess, displays also unique chemical patterns among our sample stars (a C deficiency coupled with a moderate Fe depletion of [Fe/H]=-1.1). This star is the only object in our sample showing similar chemical patterns to the metal poor B stars at high galactic latitude (Conlon et al., 1993, in ASP Conf. Ser., Vol. 45, p. 146). Our chemical analysis does therefore not point to an evolutionary connection between the dusty high-latitude supergiants and the metal-poor B stars, but rather suggests that the latter evolve from stars such as HD 107369.

  9. A Five-year Spectroscopic and Photometric Campaign on the Prototypical alpha Cygni Variable and A-type Supergiant Star Deneb

    E-print Network

    Richardson, N D; Kryukova, E E; Adelman, S J

    2010-01-01

    Deneb is often considered the prototypical A-type supergiant, and is one of the visually most luminous stars in the Galaxy. A-type supergiants are potential extragalactic distance indicators, but the variability of these stars needs to be better characterized before this technique can be considered reliable. We analyzed 339 high resolution echelle spectra of Deneb obtained over the five-year span of 1997 through 2001 as well as 370 Stromgren photometric measurements obtained during the same time frame. Our spectroscopic analysis included dynamical spectra of the H-alpha profile, H-alpha equivalent widths, and radial velocities measured from Si II 6347, 6371. Time-series analysis reveals no obvious cyclic behavior that proceeds through multiple observing seasons, although we found a suspected 40 day period in two, non-consecutive observing seasons. Some correlations are found between photometric and radial velocity data sets, and suggest radial pulsations at two epochs. No correlation is found between the vari...

  10. Quantitative Studies of the Far-Ultraviolet, Ultraviolet, and Optical Spectra of Late O- and Early B-Type Supergiants in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Evans, C. J.; Crowther, P. A.; Fullerton, A. W.; Hillier, D. J.

    2004-08-01

    We present quantitative studies of eight late O- and early B-type supergiants in the Magellanic Clouds using far-ultraviolet Far Ultraviolet Spectroscopic Explorer, ultraviolet International Ultraviolet Explorer/Hubble Space Telescope, and optical VLT-UVES spectroscopy. Temperatures, mass-loss rates, and CNO abundances are obtained using the non-LTE, spherical, line-blanketed model atmosphere code of Hillier & Miller. We support recent results for lower temperatures of OB-type supergiants as a result of stellar winds and blanketing, which amounts to ~2000 K at B0 Ia. In general, H?-derived mass-loss rates are consistent with UV and far-UV spectroscopy, although from consideration of the S IV ??1063, 1073 doublet, clumped winds are preferred over homogenous models. AV 235 (B0 Iaw) is a notable exception, which has an unusually strong H? profile that is inconsistent with the other Balmer lines and UV wind diagnostics. We also derive CNO abundances for our sample, revealing substantial nitrogen enrichment, with carbon and oxygen depletion. Our results are supported by comparison with the Galactic supergiant HD 2905 (BC0.7 Ia) for which near-solar CNO abundances are obtained. This bolsters previous suggestions that ``normal'' OB-type supergiants exhibit atmospheric compositions indicative of partial CNO processing. Based on observations made with the NASA-CNES-CSA Far Ultraviolet Spectroscopic Explorer. FUSE is operated by Johns Hopkins University under NASA contract NAS5-32985. Also based in part on observations collected at the European Southern Observatory Very Large Telescope in program 67.D-0238, plus archival data obtained with the NASA-ESA Hubble Space Telescope and the NASA-ESA-PPARC International Ultraviolet Explorer.

  11. Broad Balmer Wings in BA Hyper/Supergiants Distorted by Diffuse Interstellar Bands: Five Examples in the 30 Doradus Region from the VLT-FLAMES Tarantula Survey

    NASA Astrophysics Data System (ADS)

    Walborn, Nolan R.; Sana, Hugues; Evans, Christopher J.; Taylor, William D.; Sabbi, Elena; Barbá, Rodolfo H.; Morrell, Nidia I.; Maíz Apellániz, Jesús; Sota, Alfredo; Dufton, Philip L.; McEvoy, Catherine M.; Clark, J. Simon; Markova, Nevena; Ulaczyk, Krzysztof

    2015-08-01

    Extremely broad emission wings at H? and H? have been found in VLT-FLAMES Tarantula Survey data for five very luminous BA supergiants in or near 30 Doradus in the Large Magellanic Cloud. The profiles of both lines are extremely asymmetrical, which we have found to be caused by very broad diffuse interstellar bands (DIBs) in the longward wing of H? and the shortward wing of H?. These DIBs are well known to interstellar but not to many stellar specialists, so that the asymmetries may be mistaken for intrinsic features. The broad emission wings are generally ascribed to electron scattering, although we note difficulties for that interpretation in some objects. Such profiles are known in some Galactic hyper/supergiants and are also seen in both active and quiescent Luminous Blue Variables (LBVs). No prior or current LBV activity is known in these 30 Dor stars, although a generic relationship to LBVs is not excluded; subject to further observational and theoretical investigation, it is possible that these very luminous supergiants are approaching the LBV stage for the first time. Their locations in the HRD and presumed evolutionary tracks are consistent with that possibility. The available evidence for spectroscopic variations of these objects is reviewed, while recent photometric monitoring does not reveal variability. A search for circumstellar nebulae has been conducted, with an indeterminate result for one of them.

  12. Hunting for Magnetars in High Mass X-ray Binaries. The Case of SuperGiant Fast X-Ray Transients

    E-print Network

    E. Bozzo; M. Falanga; L. Stella

    2008-11-06

    In this paper we summarize some aspects of the wind accretion theory in high mass X-ray binaries hosting a magnetic neutron star and a supergiant companion. In particular, we concentrate on the different types of interaction between the inflowing wind matter and the neutron star magnetosphere that are relevant when accretion of matter onto the neutron star surface is largely inhibited; these include inhibition by the centrifugal and magnetic barriers. We show that very large luminosity swings (~10^4 or more on time scales as short as hours) can result from transitions across different regimes. This scenario is then applied to the activity displayed by supergiant fast X-ray transients (SFXTs), a new class of high mass X-ray binaries in our galaxy recently discovered with INTEGRAL. According to this interpretation we argue that SFXTs which display very large luminosity swings and host a slowly spinning neutron star are expected to be characterized by magnetar-like fields. Supergiant fast X-ray transients might thus provide a unique opportunity to detect and study accreting magnetars in binary systems.

  13. An HST COS "SNAPshot" Spectrum of the K-Supergiant (Lambda)Vel (K4Ib-II)

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth G.; Ayres, Thomas R.; Harper, Graham M.; Kober, Gladys; Nielsen, Krister E.; Wahlgren, Glenn M.

    2014-01-01

    We present a far-ultraviolet spectrum of the K4 Ib-II supergiant (Lambda)Vel obtained with the Hubble Space Telescope's Cosmic Origins Spectrograph (COS) as a part of the SNAPshot program "SNAPing coronal iron" (GO 11687). The observation covers a wavelength region (1326-1467 A) not previously recorded for (Lambda)Vel at a spectral resolving power of R approx. 20,000 and displays strong emission and absorption features, superposed on a bright chromospheric continuum. Fluorescent excitation is responsible for much of the observed emission, mainly powered by strong H I Ly(alpha) and the O I (UV 2) triplet emission near (Lambda)1304. The molecular CO and H2 fluorescences are weaker than in the early-K giant (alpha) Boo while the Fe II and Cr II lines, also pumped by H I Ly(alpha), are stronger in (Lambda)Vel. This pattern of relative lines strengths between the two stars is explained by the lower iron-group element abundance in (alpha) Boo, which weakens that star's Fe II and Cr II emission without reducing the molecular fluorescences. The (Lambda)Vel spectrum shows fluorescent Fe II, Cr II, and H2 emission similar to that observed in the M supergiant (alpha) Ori, but more numerous well-defined narrow emissions from CO. The additional CO emissions are visible in the spectrum of (Lambda)Vel since that star does not have the cool, opaque circumstellar shells that surround a Ori and produce broad circumstellar CO (A-X) band absorptions that hide those emissions in the cooler star. The presence of Si IV emission in (Lambda)Vel indicates a approx.8 × 10(exp 4) K plasma that is mixed into the cooler chromosphere. Evidence of the stellar wind is seen in the CII (Lambda)(Lambda)1334,1335 lines and in the blueshifted Fe II and Ni II wind absorption lines. Line modeling using Sobolev with Exact Integration for the Cii lines indicates a larger terminal velocity (approx.45 versus approx.30 km/s) and turbulence (approx.27 versus <21 km/s) with a more quickly accelerating wind (beta = 0.35 versus 0.7) at the time of this COS observation in 2010 than derived from GHRS data obtained in 1994. The Fe ii and Ni ii absorptions are blueshifted by 7.6 km/s relative to the chromospheric emission, suggesting formation in lower levels of the accelerating wind and their width indicate a higher turbulence in the (Lambda)Vel wind compared to (alpha) Ori. Key words: stars: atmospheres-- stars: chromospheres - stars individual (? Vel, a Boo, a Ori) - stars: late-type - stars: mass loss - supergiants.

  14. Chemical Emergencies

    MedlinePLUS

    When a hazardous chemical has been released, it may harm people's health. Chemical releases can be unintentional, as in the case of an ... the case of a terrorist attack with a chemical weapon. Some hazardous chemicals have been developed by ...

  15. Chemical Peels

    MedlinePLUS

    ... Z Diseases and treatments A - D Chemical peel Chemical peels Also called chemexfoliation , derma peeling Do you ... the cost of cosmetic treatments. Learn more about chemical peels: Is a chemical peel the right choice ...

  16. The vast population of Wolf-Rayet and red supergiant stars in M101. I. Motivation and first results

    SciTech Connect

    Shara, Michael M.; Bibby, Joanne L.; Zurek, David; Crowther, Paul A.; Moffat, Anthony F. J.; Drissen, Laurent

    2013-12-01

    Assembling a catalog of at least 10,000 Wolf-Rayet (W-R) stars is an essential step in proving (or disproving) that these stars are the progenitors of Type Ib and Type Ic supernovae. To this end, we have used the Hubble Space Telescope (HST) to carry out a deep, He II optical narrowband imaging survey of the ScI spiral galaxy M101. Almost the entire galaxy was imaged with the unprecedented depth and resolution that only the HST affords. Differenced with archival broadband images, the narrowband images allow us to detect much of the W-R star population of M101. We describe the extent of the survey and our images, as well as our data reduction procedures. A detailed broadband-narrowband imaging study of a field east of the center of M101, containing the giant star-forming region NGC 5462, demonstrates our completeness limits, how we find W-R candidates, their properties and spatial distribution, and how we rule out most contaminants. We use the broadband images to locate luminous red supergiant (RSG) candidates. The spatial distributions of the W-R and RSG stars near NGC 5462 are strikingly different. W-R stars dominate the complex core, while RSGs dominate the complex halo. Future papers in this series will describe and catalog more than a thousand W-R and RSG candidates that are detectable in our images, as well as spectra of many of those candidates.

  17. Photometric variability and evolutionary status of the supergiant with an infrared excess HD 179821=V1427 aquilae

    NASA Astrophysics Data System (ADS)

    Arkhipova, V. P.; Esipov, V. F.; Ikonnikova, N. P.; Komissarova, G. V.; Tatarnikov, A. M.; Yudin, B. F.

    2009-11-01

    We present new results of our UBV photometry for HD 179821=V1427 Aql, an F supergiant with an infrared excess, from 2000 to 2008. The semiregular low-amplitude (? V = 0{./ m }05-0{./ m }20) photometric variability of the star with a cycle period from 130 to 200 days is caused by pulsations, along with the instability of a variable stellar wind. V1427 Aql also exhibits a long-term trend in the brightness and colors that is probably attributable to a change in the stellar temperature as a result of mass loss episodes, which cause variations in the continuum formation level. We present the results of our JHKLM photometry for V1427 Aql in 1992-2008. We trace the trend in the near-infrared brightness, which agrees with the long-term variability in the V band. Based on broadband photometry, we have determined the color excess for V1427 Aql: E( B- V) = 0.7. Based on low-resolution spectroscopy, we have estimated the stellar temperature and revealed variability of the H ? line caused by a change in the contribution from the emission component. The hypotheses of whether the star belongs to post-AGB objects or to massive yellow hypergiants are discussed.

  18. Integral-Field Spectroscopy of the Post Red Supergiant IRC +10420: evidence for an axi-symmetric wind

    E-print Network

    Davies, Ben; Sahu, Kailash C

    2007-01-01

    We present NAOMI/OASIS adaptive-optics assisted integral-field spectroscopy of the transitional massive hypergiant IRC +10420, an extreme mass-losing star apparently in the process of evolving from a Red Supergiant toward the Wolf-Rayet phase. To investigate the present-day mass-loss geometry of the star, we study the appearance of the line-emission from the inner wind as viewed when reflected off the surrounding nebula. We find that, contrary to previous work, there is strong evidence for wind axi-symmetry, based on the equivalent-width and velocity variations of H$\\alpha$ and Fe {\\sc ii} $\\lambda$6516. We attribute this behaviour to the appearance of the complex line-profiles when viewed from different angles. We also speculate that the Ti {\\sc ii} emission originates in the outer nebula in a region analogous to the Strontium Filament of $\\eta$ Carinae, based on the morphology of the line-emission. Finally, we suggest that the present-day axisymmetric wind of IRC +10420, combined with its continued blueward...

  19. A double detached shell around a post-Red Supergiant:IRAS 17163-3907, the Fried Egg nebula

    E-print Network

    Lagadec, E; Oudmaijer, R D; Verhoelst, T; Cox, N L J; Szczerba, R; Mekarnia, D; van Winckel, H

    2011-01-01

    We performed a mid-infrared imaging survey of evolved stars in order to study the dust distribution in circumstellar envelopes around these objects and to better understand the mass-loss mechanism responsible for the formation of these envelopes. During this survey, we resolved for the first time the circumstellar environment of IRAS 17163-3907 (hereinafter IRAS17163), which is one of the brightest objects in the mid-infrared sky, but is surprisingly not well studied. Our aim is to determine the evolutionary status of IRAS 17163 and study its circumstellar environment in order to understand its mass-loss history. We obtained diffraction-limited images of IRAS 17163 in the mid-infrared using VISIR on the VLT. Optical spectra of the object allowed us to determine its spectral type and estimate its distance via the presence of diffuse interstellar bands. We show that IRAS 17163 is a Post-Red Supergiant, possibly belonging to the rare class of Yellow Hypergiants, and is very similar to the well studied object IRC...

  20. Imaging the dynamical atmosphere of the red supergiant Betelgeuse in the CO first overtone lines with VLTI/AMBER

    E-print Network

    Ohnaka, K; Millour, F; Hofmann, K -H; Driebe, T; Schertl, D; Massi, A Chelli F; Petrov, R; Stee, Ph

    2011-01-01

    We present the first 1-D aperture synthesis imaging of the red supergiant Betelgeuse in the individual CO first overtone lines with VLTI/AMBER. The reconstructed 1-D projection images reveal that the star appears differently in the blue wing, line center, and red wing of the individual CO lines. The 1-D projection images in the blue wing and line center show a pronounced, asymmetrically extended component up to ~1.3 stellar radii, while those in the red wing do not show such a component. The observed 1-D projection images in the lines can be reasonably explained by a model in which the CO gas within a region more than half as large as the stellar size is moving slightly outward with 0--5 km s^-1, while the gas in the remaining region is infalling fast with 20--30 km s^-1. A comparison between the CO line AMBER data taken in 2008 and 2009 shows a significant time variation in the dynamics of the CO line-forming region in the photosphere and the outer atmosphere. In contrast to the line data, the reconstructed ...

  1. The Orbit and Position of the X-ray Pulsar XTE J1855-026: An Eclipsing Supergiant System

    NASA Technical Reports Server (NTRS)

    Corbet, Robin H. D.; Mukai, Koji; White, Nicholas E. (Technical Monitor)

    2002-01-01

    A pulse timing orbit has been obtained for the X-ray binary XTEJ1855-026 using observations made with the Proportional Counter Array on board the Rossi X-ray Timing Explorer. The mass function obtained of approximately 16 solar mass together with the detection of an extended near-total eclipse confirm that the primary star is supergiant as predicted. The orbital eccentricity is found to be very low with a best fit value of 0.04 +/- 0.02. The orbital period is also refined to be 6.0724 +/- 0.0009 days using an improved and extended light curve obtained with RXTE's All Sky Monitor. Observations with the ASCA satellite provide an improved source location of R.A.= 18 hr 55 min 31.3 sec, decl.= -02 deg 36 min 24.0 sec (2000) with an estimated systematic uncertainty of less than 12 min. A serendipitous new source, AX J1855.4-0232, was also discovered during the ASCA observations.

  2. RED SUPERGIANT STARS AS COSMIC ABUNDANCE PROBES: NLTE EFFECTS IN J-BAND IRON AND TITANIUM LINES

    SciTech Connect

    Bergemann, Maria; Kudritzki, Rolf-Peter; Lind, Karin; Plez, Bertrand; Davies, Ben; Gazak, Zach E-mail: klind@mpa-garching.mpg.de E-mail: zgazak@ifa.hawaii.edu E-mail: bdavies@ast.cam.ac.uk

    2012-06-01

    Detailed non-LTE (NLTE) calculations for red supergiant (RSG) stars are presented to investigate the influence of NLTE on the formation of atomic iron and titanium lines in the J band. With their enormous brightness at J band RSG stars are ideal probes of cosmic abundances. Recent LTE studies have found that metallicities accurate to 0.15 dex can be determined from medium-resolution spectroscopy of individual RSGs in galaxies as distant as 10 Mpc. The NLTE results obtained in this investigation support these findings. NLTE abundance corrections for iron are smaller than 0.05 dex for effective temperatures between 3400 K and 4200 K and 0.1 dex at 4400 K. For titanium the NLTE abundance corrections vary smoothly between -0.4 dex and +0.2 dex as a function of effective temperature. For both elements, the corrections also depend on stellar gravity and metallicity. The physical reasons behind the NLTE corrections and the consequences for extragalactic J-band abundance studies are discussed.

  3. Comparative Studies of the Dust around Red Supergiant and Oxygen-Rich Asymptotic Giant Branch Stars in the Local Universe

    NASA Astrophysics Data System (ADS)

    Sargent, Benjamin; Srinivasan, Sundar; Speck, Angela K.; Volk, Kevin; Kemper, Ciska; Reach, William; Lagadec, Eric; Bernard, Jean-Philippe; McDonald, Iain; Meixner, Margaret; Sloan, Greg; Jones, Olivia

    2015-08-01

    We analyze the dust emission features seen in Spitzer Space Telescope Infrared Spectrograph (IRS) spectra of red supergiant (RSG) and oxygen-rich asymptotic giant branch (AGB) stars in the Large Magellanic Cloud and Small Magellanic Cloud galaxies and in various Milky Way globular clusters. The spectra come from the Spitzer Legacy program SAGE-Spectroscopy (PI: F. Kemper), the Spitzer program SMC-Spec (PI: G. Sloan), and other archival Spitzer-IRS programs. The broad 10 and 20 ?m emission features attributed to amorphous dust of silicate composition seen in the spectra show evidence for systematic differences in the centroid of both emission features between O-rich AGB and RSG populations. Radiative transfer modeling using the GRAMS grid of models of AGB and RSG stars suggests that the centroid differences are due to differences in dust properties. We investigate differences in dust composition, size, shape, etc that might be responsible for these spectral differences. We explore how these differences may arise from the different circumstellar environments around RSG and O-rich AGB stars and assess effects of varying metallicity (LMC versus SMC versus Milky Way globular cluster) and other properties (mass-loss rate, luminosity, etc.) on the dust originating from these stars. BAS acknowledges funding from NASA ADAP grant NNX13AD54G.

  4. Mass Loss from Dusty AGB and Red Supergiant Stars in the Magellanic Clouds and in the Galaxy

    NASA Astrophysics Data System (ADS)

    Sargent, Benjamin A.; Srinivasan, Sundar; Meixner, Margaret; Kastner, Joel

    2016-01-01

    Asymptotic giant branch (AGB) and red supergiant (RSG) stars are evolved stars that eject large parts of their mass in outflows of dust and gas. As part of an ongoing effort to measure mass loss from evolved stars in our Galaxy and in the Magellanic Clouds, we are modeling mass loss from AGB and RSG stars in these galaxies. Our approach is twofold. We pursue radiative transfer modeling of the spectral energy distributions (SEDs) of AGB and RSG stars in the Large Magellanic Cloud (LMC), in the Small Magellanic Cloud (SMC), and in the Galactic bulge and in globular clusters of the Milky Way. We are also constructing detailed dust opacity models of AGB and RSG stars in these galaxies for which we have infrared spectra; e.g., from the Spitzer Space Telescope Infrared Spectrograph (IRS). Our sample of infrared spectra largely comes from Spitzer-IRS observations. The detailed dust modeling of spectra informs our choice of dust properties to use in radiative transfer modeling of SEDs. We seek to determine how mass loss from these evolved stars depends upon the metallicity of their host environments. BAS acknowledges funding from NASA ADAP grant NNX15AF15G.

  5. CHARA/MIRC observations of two M supergiants in Perseus OB1: Temperature, bayesian modeling, and compressed sensing imaging

    SciTech Connect

    Baron, F.; Monnier, J. D.; Anderson, M.; Aarnio, A.; Kiss, L. L.; Neilson, H. R.; Zhao, M.; Pedretti, E.; Thureau, N.; Ten Brummelaar, T. A.; Sturmann, J.; Sturmann, L.; Turner, N.; Ridgway, S. T.; McAlister, H. A.

    2014-04-10

    Two red supergiants (RSGs) of the Per OB1 association, RS Per and T Per, have been observed in the H band using the Michigan Infra-Red Combiner (MIRC) instrument at the CHARA array. The data show clear evidence of a departure from circular symmetry. We present here new techniques specially developed to analyze such cases, based on state-of-the-art statistical frameworks. The stellar surfaces are first modeled as limb-darkened disks based on SATLAS models that fit both MIRC interferometric data and publicly available spectrophotometric data. Bayesian model selection is then used to determine the most probable number of spots. The effective surface temperatures are also determined and give further support to the recently derived hotter temperature scales of RSGs. The stellar surfaces are reconstructed by our model-independent imaging code SQUEEZE, making use of its novel regularizer based on Compressed Sensing theory. We find excellent agreement between the model-selection results and the reconstructions. Our results provide evidence for the presence of near-infrared spots representing about 3%-5% of the stellar flux.

  6. Evidence for the pulsational origin of the Long Secondary Periods: The red supergiant star V424 Lac (HD 216946)

    NASA Astrophysics Data System (ADS)

    Messina, Sergio

    2007-10-01

    The results of a long-term UBV photometric monitoring of the red supergiant (RSG) star V424 Lac are presented. V424 Lac shows multiperiodic brightness variations which can be attributed to pulsational oscillations. A much longer period ( P = 1601 d), that allows us to classify this star as a long secondary period variable star (LSPV) has been also detected. The B - V and U - B color variations related to the long secondary period (LSP) are similar to those related to the shorter periods, supporting the pulsational nature of LSP. The long period brightness variation of V424 Lac is accompanied by a near-UV (NUV) excess, which was spectroscopically detected in a previous study [Massey, P., Plez, B., Levesque, E.M., et al., 2005. ApJ 634, 1286] and which is now found to be variable from photometry. On the basis of the results found for V424 Lac, the NUV excess recently found in a number of RSGs may be due not solely to circumstellar dust but may also have a contribution from a still undetected LSP variability.

  7. The VLT-FLAMES Tarantula Survey. V. The peculiar B[e]-like supergiant, VFTS698, in 30 Doradus

    NASA Astrophysics Data System (ADS)

    Dunstall, P. R.; Fraser, M.; Clark, J. S.; Crowther, P. A.; Dufton, P. L.; Evans, C. J.; Lennon, D. J.; Soszy?ski, I.; Taylor, W. D.; Vink, J. S.

    2012-06-01

    Aims: We present an analysis of a peculiar supergiant B-type star (VFTS698/Melnick 2/Parker 1797) in the 30 Doradus region of the Large Magellanic Cloud which exhibits characteristics similar to the broad class of B[e] stars. Methods: We analyse optical spectra from the VLT-FLAMES survey, together with archival optical and infrared photometry and X-ray imaging to characterise the system. Results: We find radial velocity variations of around 400 km s-1 in the high excitation Si iv, N iii and He ii spectra, and photometric variability of ~0.6 mag with a period of 12.7 d. In addition, we detect long-term photometric variations of ~0.25 mag, which may be due to a longer-term variability with a period of ~400 d. Conclusions: We conclude that VFTS698 is likely an interacting binary comprising an early B-type star secondary orbiting a veiled, more massive companion. Spectral evidence suggests a mid-to-late B-type primary, but this may originate from an optically-thick accretion disc directly surrounding the primary. Based on observations at the European Southern Observatory Very Large Telescope in programme 182.D-0222.Table 8 is available in electronic form at http://www.aanda.org

  8. INTEGRAL sources: from obscured high mass X-ray binaries to supergiant fast X-ray transients

    E-print Network

    Chaty, S

    2008-01-01

    A new type of high-energy binary system has been revealed by the INTEGRAL satellite. These sources are being unveiled by means of multi-wavelength optical, near- and mid-infrared observations. Among these sources, two distinct classes are appearing: the first one is constituted of intrinsically obscured high-energy sources, of which IGR J16318-4848 seems to be the most extreme example. The second one is populated by the so-called supergiant fast X-ray transients, with IGR J17544-2619 being the archetype. We first give here a general introduction on INTEGRAL sources, before reporting on multi-wavelength optical to mid-infrared observations of a sample constituted of 21 INTEGRAL sources. We show that in the case of the obscured sources our observations suggest the presence of absorbing material (dust and/or cold gas) enshrouding the whole binary system. We finally discuss the nature of these two different types of sources, in the context of high energy binary systems, and give a scenario of unification of all t...

  9. The VLT-FLAMES Tarantula Survey. XIX. B-type supergiants: Atmospheric parameters and nitrogen abundances to investigate the role of binarity and the width of the main sequence

    NASA Astrophysics Data System (ADS)

    McEvoy, C. M.; Dufton, P. L.; Evans, C. J.; Kalari, V. M.; Markova, N.; Simón-Díaz, S.; Vink, J. S.; Walborn, N. R.; Crowther, P. A.; de Koter, A.; de Mink, S. E.; Dunstall, P. R.; Hénault-Brunet, V.; Herrero, A.; Langer, N.; Lennon, D. J.; Maíz Apellániz, J.; Najarro, F.; Puls, J.; Sana, H.; Schneider, F. R. N.; Taylor, W. D.

    2015-03-01

    Context. Model atmosphere analyses have been previously undertaken for both Galactic and extragalactic B-type supergiants. By contrast, little attention has been given to a comparison of the properties of single supergiants and those that are members of multiple systems. Aims: Atmospheric parameters and nitrogen abundances have been estimated for all the B-type supergiants identified in the VLT-FLAMES Tarantula survey. These include both single targets and binary candidates. The results have been analysed to investigate the role of binarity in the evolutionary history of supergiants. Methods: tlusty non-local thermodynamic equilibrium (LTE) model atmosphere calculations have been used to determine atmospheric parameters and nitrogen abundances for 34 single and 18 binary supergiants. Effective temperatures were deduced using the silicon balance technique, complemented by the helium ionisation in the hotter spectra. Surface gravities were estimated using Balmer line profiles and microturbulent velocities deduced using the silicon spectrum. Nitrogen abundances or upper limits were estimated from the N ii spectrum. The effects of a flux contribution from an unseen secondary were considered for the binary sample. Results: We present the first systematic study of the incidence of binarity for a sample of B-type supergiants across the theoretical terminal age main sequence (TAMS). To account for the distribution of effective temperatures of the B-type supergiants it may be necessary to extend the TAMS to lower temperatures. This is also consistent with the derived distribution of mass discrepancies, projected rotational velocities and nitrogen abundances, provided that stars cooler than this temperature are post-red supergiant objects. For all the supergiants in the Tarantula and in a previous FLAMES survey, the majority have small projected rotational velocities. The distribution peaks at about 50 km s-1 with 65% in the range 30 km s-1 ? vesini ? 60 km s-1. About ten per cent have larger vesini (?100 km s-1), but surprisingly these show little or no nitrogen enhancement. All the cooler supergiants have low projected rotational velocities of ?70 km s-1and high nitrogen abundance estimates, implying that either bi-stability braking or evolution on a blue loop may be important. Additionally, there is a lack of cooler binaries, possibly reflecting the small sample sizes. Single-star evolutionary models, which include rotation, can account for all of the nitrogen enhancement in both the single and binary samples. The detailed distribution of nitrogen abundances in the single and binary samples may be different, possibly reflecting differences in their evolutionary history. Conclusions: The first comparative study of single and binary B-type supergiants has revealed that the main sequence may be significantly wider than previously assumed, extending to Teff = 20 000 K. Some marginal differences in single and binary atmospheric parameters and abundances have been identified, possibly implying non-standard evolution for some of the sample. This sample as a whole has implications for several aspects of our understanding of the evolutionary status of blue supergiants. Tables 1, 4, 7 are available in electronic form at http://www.aanda.org

  10. Low-amplitude rotational modulation rather than pulsations in the CoRoT B-type supergiant HD 46769

    NASA Astrophysics Data System (ADS)

    Aerts, C.; Simón-Díaz, S.; Catala, C.; Neiner, C.; Briquet, M.; Castro, N.; Schmid, V. S.; Scardia, M.; Rainer, M.; Poretti, E.; Pápics, P. I.; Degroote, P.; Bloemen, S.; Østensen, R. H.; Auvergne, M.; Baglin, A.; Baudin, F.; Michel, E.; Samadi, R.

    2013-09-01

    Aims: We aim to detect and interpret photometric and spectroscopic variability of the bright CoRoT B-type supergiant target HD 46769 (V = 5.79). We also attempt to detect a magnetic field in the target. Methods: We analyse a 23-day oversampled CoRoT light curve after detrending and spectroscopic follow-up data using standard Fourier analysis and phase dispersion minimization methods. We determine the fundamental parameters of the star, as well as its abundances from the most prominent spectral lines. We perform a Monte Carlo analysis of spectropolarimetric data to obtain an upper limit of the polar magnetic field, assuming a dipole field. Results: In the CoRoT data, we detect a dominant period of 4.84 d with an amplitude of 87 ppm and some of its (sub-)multiples. Given the shape of the phase-folded light curve and the absence of binary motion, we interpret the dominant variability in terms of rotational modulation, with a rotation period of 9.69 d. Subtraction of the rotational modulation signal does not reveal any sign of pulsations. Our results are consistent with the absence of variability in the Hipparcos light curve. The spectroscopy leads to a projected rotational velocity of 72 ± 2 km s-1 and does not reveal periodic variability or the need to invoke macroturbulent line broadening. No signature of a magnetic field is detected in our data. A field stronger than ~500 G at the poles can be excluded, unless the possible non-detected field were more complex than dipolar. Conclusions: The absence of pulsations and macroturbulence of this evolved B-type supergiant is placed into the context of instability computations and of observed variability of evolved B-type stars. Based on CoRoT space-based photometric data; the CoRoT space mission was developed and operated by the French space agency CNES, with the participation of ESA's RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain. Based on observations collected at La Silla Observatory, ESO (Chile) with the HARPS spectrograph at the 3.6 m telescope, under programme LP185.D-0056. Based on observations obtained with the HERMES spectrograph attached to the 1.2 m Mercator telescope, which is supported by the Fund for Scientific Research of Flanders (FWO), Belgium, the Research Council of KU Leuven, Belgium, the Fonds National de la Recherche Scientific (FNRS), Belgium, the Royal Observatory of Belgium, the Observatoire de Genève, Switzerland, and the Thüringer Landessternwarte Tautenburg, Germany. Based on observations obtained with the Narval spectropolarimeter at the Observatoire du Pic du Midi (France), which is operated by the Institut National des Sciences de l'Univers (INSU).

  11. Luminous and variable stars in M31 and M33. II. Luminous blue variables, candidate LBVs, Fe II emission line stars, and other supergiants

    SciTech Connect

    Humphreys, Roberta M.; Davidson, Kris; Weis, Kerstin; Bomans, D. J.; Burggraf, Birgitta E-mail: kweis@astro.rub.de

    2014-07-20

    An increasing number of non-terminal eruptions are being found in the numerous surveys for optical transients. Very little is known about these giant eruptions, their progenitors and their evolutionary state. A greatly improved census of the likely progenitor class, including the most luminous evolved stars, the luminous blue variables (LBVs), and the warm and cool hypergiants is now needed for a complete picture of the final pre-supernova stages of very massive stars. We have begun a survey of the evolved and unstable luminous star populations in several nearby resolved galaxies. In this second paper on M31 and M33, we review the spectral characteristics, spectral energy distributions, circumstellar ejecta, and evidence for mass loss for 82 luminous and variable stars. We show that many of these stars have warm circumstellar dust including several of the Fe II emission line stars, but conclude that the confirmed LBVs in M31 and M33 do not. The confirmed LBVs have relatively low wind speeds even in their hot, quiescent or visual minimum state compared to the B-type supergiants and Of/WN stars which they spectroscopically resemble. The nature of the Fe II emission line stars and their relation to the LBV state remains uncertain, but some have properties in common with the warm hypergiants and the sgB[e] stars. Several individual stars are discussed in detail. We identify three possible candidate LBVs and three additional post-red supergiant candidates. We suggest that M33-013406.63 (UIT301,B416) is not an LBV/S Dor variable, but is a very luminous late O-type supergiant and one of the most luminous stars or pair of stars in M33.

  12. A double detached shell around a post-red supergiant: IRAS 17163-3907, the Fried Egg nebula

    NASA Astrophysics Data System (ADS)

    Lagadec, E.; Zijlstra, A. A.; Oudmaijer, R. D.; Verhoelst, T.; Cox, N. L. J.; Szczerba, R.; Mékarnia, D.; van Winckel, H.

    2011-10-01

    Context. We performed a mid-infrared imaging survey of evolved stars to study the dust distribution in circumstellar envelopes around these objects and to understand the mass-loss mechanism responsible for the formation of these envelopes better. During this survey, we resolved the circumstellar environment of IRAS 17163-3907 for the first time (hereafter IRAS 17163), which is one of the brightest objects in the mid-infrared sky, but is surprisingly not well studied. Aims: Our aim is to determine the evolutionary status of IRAS 17163 and study its circumstellar environment to understand its mass-loss history. Methods: We obtained diffraction-limited images of IRAS 17163 in the mid-infrared using VISIR on the VLT. Optical spectra of the object allowed us to determine its spectral type and estimate its distance through diffuse interstellar bands. Results: We show that IRAS 17163 is a post-red supergiant, possibly belonging to the rare class of yellow hypergiants, and is very similar to the well-studied object IRC +10420. Our mid-infrared images of IRAS 17163 are the first direct images of this bright mid-infrared source. These images clearly show a double dusty detached shell around the central star, caused by successive ejections of material on a timescale of the order of 400 years and a total circumstellar mass exceeding than 4 M?. This indicates that non-quiescent mass-loss occurs during this phase of stellar evolution. Based on observations made with the Very Large Telescope at Paranal Observatory under program 081.D-0130(A).Based on observations made with the Mercator Telescope, operated on the island of La Palma by the Flemish Community, at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofsica de Canarias.

  13. Blue supergiant model for ultra-long gamma-ray burst with superluminous-supernova-like bump

    SciTech Connect

    Nakauchi, Daisuke; Nakamura, Takashi; Kashiyama, Kazumi; Suwa, Yudai

    2013-11-20

    Long gamma-ray bursts (LGRBs) have a typical duration of ?30 s, and some of them are associated with hypernovae, such as Type Ic SN 1998bw. Wolf-Rayet stars are the most plausible LGRB progenitors, since the free fall time of the envelope is consistent with the duration, and the natural outcome of the progenitor is a Type Ic SN. While a new population of ultra-long GRBs (ULGRBs), GRB 111209A, GRB 101225A, and GRB 121027A, has a duration of ?10{sup 4} s, two of them are accompanied by superluminous-supernova-like (SLSN-like) bumps, which are ? 10 times brighter than typical hypernovae. Wolf-Rayet progenitors cannot explain ULGRBs because of durations that are too long and SN-like bumps that are too bright. A blue supergiant (BSG) progenitor model, however, can explain the duration of ULGRBs. Moreover, SLSN-like bumps can be attributed to the so-called cocoon fireball photospheric emissions (CFPEs). Since a large cocoon is inevitably produced during the relativistic jet piercing though the BSG envelope, this component can be smoking gun evidence of the BSG model for ULGRBs. In this paper, we examine u-, g-, r-, i-, and J-band light curves of three ULGRBs and demonstrate that they can be fitted quite well by our BSG model with the appropriate choices of the jet opening angle and the number density of the ambient gas. In addition, we predict that for 121027A, SLSN-like bump could have been observed for ?20-80 days after the burst. We also propose that some SLSNe might be CFPEs of off-axis ULGRBs without visible prompt emissions.

  14. Soft X-ray characterisation of the long-term properties of supergiant fast X-ray transients

    NASA Astrophysics Data System (ADS)

    Romano, P.; Ducci, L.; Mangano, V.; Esposito, P.; Bozzo, E.; Vercellone, S.

    2014-08-01

    Context. Supergiant fast X-ray transients (SFXTs) are high mass X-ray binaries (HMXBs) that are characterised by a hard X-ray (? 15 keV) flaring behaviour. These flares reach peak luminosities of 1036-1037 erg s-1 and last a few hours in the hard X-rays. Aims: We investigate the long-term properties of SFXTs by examining the soft (0.3-10 keV) X-ray emission of the three least active SFXTs in the hard X-ray and by comparing them with the remainder of the SFXT sample. Methods: We performed the first high-sensitivity soft X-ray long-term monitoring with Swift/XRT of three relatively unexplored SFXTs, IGR J08408-4503, IGR J16328-4726, and IGR J16465-4507, whose hard X-ray duty cycles are the lowest measured among the SFXT sample. We assessed how long each source spends in each flux state and compared their properties with those of the prototypical SFXTs. Results: The behaviour of IGR J08408-4503 and IGR J16328-4726 resembles that of other SFXTs, and it is characterised by a relatively high inactivity duty cycle (IDC) and pronounced dynamic range (DR) in the X-ray luminosity. We found DR ~ 7400, IDC ~ 67% for IGR J08408-4503, and DR ~ 750, IDC ~ 61% for IGR J16328-4726 (in all cases the IDC is given with respect to the limiting flux sensitivity of XRT, that is 1-3 × 10-12 erg cm-2 s-1). In common with all the most extreme SFXT prototypes (IGR J17544-2619, XTE J1739-302, and IGR J16479-4514), IGR J08408-4503 shows two distinct flare populations. The first one is associated with the brightest outbursts (X-ray luminosity LX ? 1035 - 36 erg s-1), while the second comprises dimmer events with typical luminosities of LX ? 1035 erg s-1. This double-peaked distribution of the flares as a function of the X-ray luminosity seems to be a ubiquitous feature of the extreme SFXTs. The lower DR of IGR J16328-4726 suggests that this is an intermediate SFXT. IGR J16465-4507 is characterised by a low IDC ~ 5% and a relatively narrow DR ~ 40, reminiscent of classical supergiant HMXBs. The duty cycles measured with XRT are found to be comparable with those reported previously by BAT and INTEGRAL, when the higher limiting sensitivities of these instruments are taken into account and sufficiently long observational campaigns are available. By making use of these new results and those we reported previously, we prove that no clear correlation exists between the duty cycles of the SFXTs and their orbital periods. Conclusions: The unique sensitivity and scheduling flexibility of Swift/XRT allowed us to carry out an efficient long-term monitoring of the SFXTs, following their activity across more than 4 orders of magnitude in X-ray luminosity. While it is not possible to exclude that particular distributions of the clump and wind parameters may produce double-peaked differential distributions in the X-ray luminosities of the SFXTs, the lack of a clear correlation between the duty cycles and orbital periods of these sources make it difficult to interpret their peculiar variability by only using arguments related to the properties of supergiant star winds. Our findings favour the idea that a correct interpretation of the SFXT phenomenology requires a mechanism to strongly reduce the mass accretion rate onto the compact object during most of its orbit around the companion, as proposed in a number of theoretical works. Tables 1-4 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/568/A55

  15. A Suzaku X-ray Observation of One Orbit of the Supergiant Fast X-ray Transient IGR J16479-4514

    NASA Technical Reports Server (NTRS)

    Sidoli, L.; Esposito, P.; Sguera, V.; Bodaghee, A.; Tomsick, J. A.; Pottschmidt, K.; Rodriguez, J.; Ramano, P.; Wilms, J.

    2013-01-01

    We report on a 250 ks long X-ray observation of the supergiant fast X-ray transient (SFXT) IGR J16479-4514 performed with Suzaku in 2012 February. During this observation, about 80% of the short orbital period (P(sub orb) approximates 3.32 days) was covered as continuously as possible for the first time. The source light curve displays variability of more than two orders of magnitude, starting with a very low emission state (10(exp -13) erg / sq cm/s; 1-10 keV) lasting the first 46 ks, consistent with being due to the X-ray eclipse by the supergiant companion. The transition to the uneclipsed X-ray emission is energy dependent. Outside the eclipse, the source spends most of the time at a level of 6-7X10)(exp-12) erg/sq. cm/s) punctuated by two structured faint flares with a duration of about 10 and 15 ks, respectively, reaching a peak flux of 3-4X10(exp -11) erg/sq. cm./S, separated by about 0.2 in orbital phase. Remarkably, the first faint flare occurs at a similar orbital phase of the bright flares previously observed in the system. This indicates the presence of a phase-locked large scale structure in the supergiant wind, driving a higher accretion rate onto the compact object. The average X-ray spectrum is hard and highly absorbed, with a column density, NH, of 10*exp 23)/sq cm, clearly in excess of the interstellar absorption. There is no evidence for variability of the absorbing column density, except that during the eclipse, where a less absorbed X-ray spectrum is observed. A narrow Fe K-alpha emission line at 6.4 keV is viewed along the whole orbit, with an intensity which correlates with the continuum emission above 7 keV. The scattered component visible during the X-ray eclipse allowed us to directly probe the wind density at the orbital separation, resulting in rho(sub w)=7X10(exp -14) g/cubic cm. Assuming a spherical geometry for the supergiant wind, the derived wind density translates into a ratio M(sub w)/v(sub infinity) = 7X10(exp -17) Solar M/km which, assuming terminal velocities in a large range 500-3000 km/s, implies an accretion luminosity two orders of magnitude higher than that observed. As a consequence, a mechanism should be at work reducing the mass accretion rate. Different possibilities are discussed.

  16. IGR J17544-2619 in Depth With Suzaku: Direct Evidence for Clumpy Winds in a Supergiant Fast X-ray Transient

    NASA Astrophysics Data System (ADS)

    Rampy, Rachel A.; Smith, David M.; Negueruela, Ignacio

    2009-12-01

    We present direct evidence for dense clumps of matter in the companion wind in a Supergiant Fast X-ray Transient (SFXT) binary. This is seen as a brief period of enhanced absorption during one of the bright, fast flares that distinguish these systems. The object under study was IGR J17544-2619, and a total of 236 ks of data were accumulated with the Japanese satellite Suzaku. The activity in this period spans a dynamic range of almost 104 in luminosity and gives a detailed look at SFXT behavior.

  17. Supermassive Star Clusters in Supergiant Galaxies: Tracing the Enrichment of the Earliest Stellar Systems

    NASA Astrophysics Data System (ADS)

    Harris, William

    2010-09-01

    The cD-type Brightest Cluster Galaxies contain the richest globular cluster systems {GCSs} that exist. The wealth of results gathered from previous HST imaging programs in many smaller galaxies show that GCSs are powerful and unique tracers that link to origin and evolution of structure in two directions simultaneously: one direction is inward to the structure of the protoglobular clouds, star formation in the densest known conditions, and their chemical enrichment history. The other direction is outward to constraining early galaxy formation history, the nature of the pregalactic dwarfs, or the spatial and dynamic structure of the halo. But we have not yet tapped the vast mine of GCS data waiting for exploitation in the most luminous galaxies of all, the cDs. Surprisingly, we know little about these systems beyond the globular cluster populations in the nearby cDs M87 {Virgo} and NGC 1399 {Fornax}, and these two cases no longer provide adequate tests of the new phenomena now being uncovered, such as the correlation between GC mass and metallicity, the strikingly different formation efficiencies of metal-poor and metal-rich clusters, the galaxy-to-galaxy differences in GC mass distribution, and connections to Ultra-Compact Dwarfs and dE nuclei.We propose to image 7 cD-type systems within 200 Mpc that are representative of the very biggest galaxies known {Mv < -23}. These lie in far richer Abell-cluster environments than we could ever probe in Virgo, Fornax, or nearer systems. We will use ACS/WFC and WFC3 to image their GCSs down to the turnover point of the GC luminosity function, using the B and I filters for an optimal combination of exposure time, field size, and metallicity sensitivity. Our complete survey will produce luminosities, metallicities, and spatial distribution functions for more than 35,000 GCs, the largest GC database in existence and an order of magnitude larger than even the recent Virgo Cluster Survey. The legacy value of our survey will supply a rich resource for a wide array of other GC science and the formation histories of these unique systems.

  18. A FIVE-YEAR SPECTROSCOPIC AND PHOTOMETRIC CAMPAIGN ON THE PROTOTYPICAL {alpha} CYGNI VARIABLE AND A-TYPE SUPERGIANT STAR DENEB

    SciTech Connect

    Richardson, N. D.; Morrison, N. D.; Kryukova, E. E.; Adelman, S. J. E-mail: nmorris@utnet.utoledo.edu E-mail: adelmans@citadel.edu

    2011-01-15

    Deneb is often considered the prototypical A-type supergiant and is one of the visually most luminous stars in the Galaxy. A-type supergiants are potential extragalactic distance indicators, but the variability of these stars needs to be better characterized before this technique can be considered reliable. We analyzed 339 high-resolution echelle spectra of Deneb obtained over the five-year span of 1997 through 2001 as well as 370 Stroemgren photometric measurements obtained during the same time frame. Our spectroscopic analysis included dynamical spectra of the H{alpha} profile, H{alpha} equivalent widths, and radial velocities measured from Si II {lambda}{lambda} 6347, 6371. Time-series analysis reveals no obvious cyclic behavior that proceeds through multiple observing seasons, although we found a suspected 40 day period in two, non-consecutive observing seasons. Some correlations are found between photometric and radial velocity data sets and suggest radial pulsations at two epochs. No correlation is found between the variability of the H{alpha} profiles and that of the radial velocities or the photometry. Lucy found evidence that Deneb was a long-period single-lined spectroscopic binary star, but our data set shows no evidence for radial velocity variations caused by a binary companion.

  19. GALEX AND PAN-STARRS1 DISCOVERY OF SN IIP 2010aq: THE FIRST FEW DAYS AFTER SHOCK BREAKOUT IN A RED SUPERGIANT STAR

    SciTech Connect

    Gezari, S.; Huber, M. E.; Grav, T.; Rest, A.; Narayan, G.; Forster, K.; Neill, J. D.; Martin, D. C.; Valenti, S.; Smartt, S. J.; Chornock, R.; Berger, E.; Soderberg, A. M.; Mattila, S.; Kankare, E.; Burgett, W. S.; Chambers, K. C.; Dombeck, T.; Heasley, J. N.; Hodapp, K. W.

    2010-09-01

    We present the early UV and optical light curve of Type IIP supernova (SN) 2010aq at z = 0.0862, and compare it to analytical models for thermal emission following SN shock breakout in a red supergiant star. SN 2010aq was discovered in joint monitoring between the Galaxy Evolution Explorer (GALEX) Time Domain Survey (TDS) in the NUV and the Pan-STARRS1 Medium Deep Survey (PS1 MDS) in the g, r, i, and z bands. The GALEX and Pan-STARRS1 observations detect the SN less than 1 day after the shock breakout, measure a diluted blackbody temperature of 31, 000 {+-} 6000 K 1 day later, and follow the rise in the UV/optical light curve over the next 2 days caused by the expansion and cooling of the SN ejecta. The high signal-to-noise ratio of the simultaneous UV and optical photometry allows us to fit for a progenitor star radius of 700 {+-} 200R {sub sun}, the size of a red supergiant star. An excess in UV emission two weeks after shock breakout compared with SNe well fitted by model atmosphere-code synthetic spectra with solar metallicity is best explained by suppressed line blanketing due to a lower metallicity progenitor star in SN 2010aq. Continued monitoring of PS1 MDS fields by the GALEX TDS will increase the sample of early UV detections of Type II SNe by an order of magnitude and probe the diversity of SN progenitor star properties.

  20. Neutral and ionised gas around the post-red supergiant IRC +10 420 at AU size scales

    NASA Astrophysics Data System (ADS)

    Oudmaijer, R. D.; de Wit, W. J.

    2013-03-01

    Context. IRC +10 420 is one of the few known massive stars in rapid transition from the red supergiant phase to the Wolf-Rayet or luminous blue variable phase. Aims: The star has an ionised wind and using the Br? line we assess the mass-loss on spatial scales of ~1 AU. Methods: We present new VLT Interferometer AMBER data which are combined with all other AMBER data present in the literature. The final dataset covers a position angle range of ~180° and baselines up to 110 m. The spectrally dispersed visibilities, differential phases and line flux are conjointly analysed and modelled. We also present the first AMBER/FINITO observations which cover a larger wavelength range and allow us to observe the Na i doublet at 2.2 ?m. The data are complemented by X-Shooter data, which provide a higher spectral resolution view. Results: The Br? emission line and the Na i doublet are both spatially resolved. After correcting the AMBER data for the fact that the lines are not spectrally resolved, we find that Br? traces a ring with a diameter of 4.18 mas, in agreement with higher spectral resolution data. We consider a geometric model in which the Br? emission emerges from the top and bottom rings of an hour-glass shaped structure, viewed almost pole-on. It provides satisfactory fits to most visibilities and differential phases. The fact that we detect line emission from a neutral metal like Na i within the ionised region, a very unusual occurrence, suggests the presence of a dense pseudo-photosphere. Conclusions: The ionised wind can be reproduced with a polar wind, which could well have the shape of an hour-glass. Closer in, the resolved Na i emission is found to occur on scales barely larger than the continuum. This fact and that many yellow hypergiants exhibit this comparatively rare emission hints at the presence of a "Yellow" or even "White Wall" in the Hertzsprung-Russell diagram, preventing them from visibly evolving to the blue. Based on observations at ESO, and in particular with VLTI, proposals 079.D-0123(A), and 383.C-0166(A) and X-Shooter, proposal SV-9434.FITS files are available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr(130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/551/A69

  1. Wind Variability of B Supergiants. No. 1; The Rapid Rotator HD 64760 (B0.5 Ib)

    NASA Technical Reports Server (NTRS)

    Massa, Derck; Prinja, Raman K.; Fullerton, Alexander W.

    1995-01-01

    We present the results of a 6 day time series of observations of the rapidly rotating B0.5 Ib star HD 64760. We point out several reasons why such intermediate luminosity B supergiants are ideal targets for wind variability studies and then present our results that show the following: continuous wind activity throughout the 6 day run with the wind never in steady state for more than a few hr; wind variability very near nu = 0 km sec(exp -1) in the resonance lines from the lower ionization stages (Al III and C II); a distinct correlation between variability in the Si III ; lambda(lambda)1300 triplets, the strong C III (lambda)1247 singlet, and the onset of extremely strong wind activity, suggesting a connection between photospheric and wind activity; long temporal coherence in the behavior of the strong absorption events; evidence for large-scale spatial coherence, implied by a whole scale, simultaneous weakening in the wind absorption over a wide range in velocities; and ionization variability in the wind accompanying the largest changes in the absorption strengths of the wind lines. In addition, modeling of the wind lines provides the following information about the state the wind in HD 64760. The number of structures on the portion of a constant velocity surface occulting the stellar disk at a particular time must be quite small, while the number on the entire constant velocity surface throughout the wind must be large. The escape probability at low velocity is overestimated by a normal beta approx. 1 velocity law, perhaps due to the presence of low-velocity shocks deep in the wind or a shallow velocity gradient at low velocity. Estimates of the ionization structure in the wind indicate that the ionization ratios are not those expected from thermal equilibrium wind models or from an extrapolation of previous O star results. The large observed q(N V)/q(Si IV) ratio is almost certainly due to distributed X-rays, but the level of ionization predicted by distributed X-ray wind models is inconsistent with the predicted mass-loss rate. Thus, it is impossible to reconcile the observed ionization ratios and the predicted mass-loss rate within the framework of the available models.

  2. Photometry of the Variable Bright Red Supergiant Betelgeuse from the Ground and from Space with the BRITE Nano-satellites

    NASA Astrophysics Data System (ADS)

    Minor, Robert; Guinan, Edward F.

    2016-01-01

    Robert B. Minor, Edward Guinan, Richard Wasatonic Betelgeuse (Alpha Orionis) is a large, luminous semi-regular red supergiant of spectral class M1.5-2Iab. It is the 8th brightest star in the night sky. Betelgeuse is 30,000 times more luminous than the Sun and 700 times larger. It has an estimated age of ~8 +/- 2 Myr. Betelgeuse explode in a Type II supernova (anytime within the next million years). When it explodes, it will shine with about the intensity of a full moon and may be visible during the day. However, it is too far away to cause any major damage to Earth. Photometry of this pre-supernova star has been ongoing at Villanova for nearly 45 years. These observations are being used to define the complex brightness variations of this star. Semi-regular periodic light variations have been found with periods of 385 days up to many years. These light variations are used to study its unstable atmosphere and resulting complex pulsations. Over the last 15 years, it has been observed by Wasatonic who has accumulated a large photometric database. The ground-based observations are limited to precisions of 1.5%, and due to poor weather, limit observations to about 1-2 times per week. However, with the recent successful launch of the BRITE Nano-satellites (http://www.brite-constellation.at) during 2013-14, it is possible to secure high precision photometry of bright stars, including Betelgeuse, continuously for up to 3 months. Villanova has participated in the BRITE guest investigators program and has been awarded observing time and data rights many bright stars, including Betelgeuse. BRITE blue and red observations of Betelgeuse were carried out during the Nov-Feb 2013-14 season and the 2014-15. These datasets were given to Villanova and have been combined with coexistent photometry from Wasatonic. Although BRITE's red data is saturated, the blue data is useable. The BRITE datasets were combined with our ground-based V, red, and near-IR photometry. Problems were uncovered with the some of the BRITE data, but they were resolved for the most part. We present and discuss the results obtained so far.

  3. Chemical sensor

    NASA Technical Reports Server (NTRS)

    Rauh, R. David (Inventor)

    1990-01-01

    A sensor for detecting a chemical substance includes an insertion element having a structure which enables insertion of the chemical substance with a resulting change in the bulk electrical characteristics of the insertion element under conditions sufficient to permit effective insertion; the change in the bulk electrical characteristics of the insertion element is detected as an indication of the presence of the chemical substance.

  4. Luminous and Variable Stars in M31 and M33. II. Luminous Blue Variables, Candidate LBVs, Fe II Emission Line Stars, and Other Supergiants

    NASA Astrophysics Data System (ADS)

    Humphreys, Roberta M.; Weis, Kerstin; Davidson, Kris; Bomans, D. J.; Burggraf, Birgitta

    2014-07-01

    An increasing number of non-terminal eruptions are being found in the numerous surveys for optical transients. Very little is known about these giant eruptions, their progenitors and their evolutionary state. A greatly improved census of the likely progenitor class, including the most luminous evolved stars, the luminous blue variables (LBVs), and the warm and cool hypergiants is now needed for a complete picture of the final pre-supernova stages of very massive stars. We have begun a survey of the evolved and unstable luminous star populations in several nearby resolved galaxies. In this second paper on M31 and M33, we review the spectral characteristics, spectral energy distributions, circumstellar ejecta, and evidence for mass loss for 82 luminous and variable stars. We show that many of these stars have warm circumstellar dust including several of the Fe II emission line stars, but conclude that the confirmed LBVs in M31 and M33 do not. The confirmed LBVs have relatively low wind speeds even in their hot, quiescent or visual minimum state compared to the B-type supergiants and Of/WN stars which they spectroscopically resemble. The nature of the Fe II emission line stars and their relation to the LBV state remains uncertain, but some have properties in common with the warm hypergiants and the sgB[e] stars. Several individual stars are discussed in detail. We identify three possible candidate LBVs and three additional post-red supergiant candidates. We suggest that M33-013406.63 (UIT301,B416) is not an LBV/S Dor variable, but is a very luminous late O-type supergiant and one of the most luminous stars or pair of stars in M33. Based on observations with the Multiple Mirror Telescope, a joint facility of the Smithsonian Institution and the University of Arizona and on observations obtained with the Large Binocular Telescope (LBT), an international collaboration among institutions in the United States, Italy and Germany. LBT Corporation partners are: The University of Arizona on behalf of the Arizona university system; Istituto Nazionale di Astrofisica, Italy; LBT Beteiligungsgesellschaft, Germany, representing the Max-Planck Society, the Astrophysical Institute Potsdam, and Heidelberg University; The Ohio State University, and The Research Corporation, on behalf of The University of Notre Dame, University of Minnesota and University of Virginia.

  5. Chemical burns

    PubMed Central

    Cartotto, Robert C.; Peters, Walter J.; Neligan, Peter C.; Douglas, Leith G.; Beeston, Jeff

    1996-01-01

    Objectives To report a burn unit’s experience with chemical burns and to discuss the fundamental principles in managing chemical burns. Design A chart review. Setting A burn centre at a major university-affiliated hospital. Patients Twenty-four patients with chemical burns, representing 2.6% of all burn admissions over an 8-year period at the Ross Tilley Regional Adult Burn Centre. Seventy-five percent of the burn injuries were work-related accidents. Chemicals involved included hydrofluoric acid, sulfuric acid, black liquor, various lyes, potassium permanganate and phenol. Results Fourteen patients required excision and skin grafting. Complications were frequent and included ocular chemical contacts, wound infections, tendon exposures, toe amputation and systemic reactions from absorption of chemical. One patient died from a chemical scald burn to 98% of the body surface area. Conclusions The key principles in the management of chemical burns include removal of the chemical, copious irrigation, limited use of antidotes, correct estimation of the extent of injury, identification of systemic toxicity, treatment of ocular contacts and management of chemical inhalation injury. Individualized treatment is emphasized. PMID:8640619

  6. [Chemical weapons and chemical terrorism].

    PubMed

    Nakamura, Katsumi

    2005-10-01

    Chemical Weapons are kind of Weapons of Mass Destruction (WMD). They were used large quantities in WWI. Historically, large quantities usage like WWI was not recorded, but small usage has appeared now and then. Chemical weapons are so called "Nuclear weapon for poor countrys" because it's very easy to produce/possession being possible. They are categorized (1) Nerve Agents, (2) Blister Agents, (3) Cyanide (blood) Agents, (4) Pulmonary Agents, (5) Incapacitating Agents (6) Tear Agents from the viewpoint of human body interaction. In 1997 the Chemical Weapons Convention has taken effect. It prohibits chemical weapons development/production, and Organization for the Prohibition of Chemical Weapons (OPCW) verification regime contributes to the chemical weapons disposal. But possibility of possession/use of weapons of mass destruction by terrorist group represented in one by Matsumoto and Tokyo Subway Sarin Attack, So new chemical terrorism countermeasures are necessary. PMID:16296384

  7. Chemical microsensors

    SciTech Connect

    Li, DeQuan; Swanson, Basil I.

    1995-01-01

    An article of manufacture is provided including a substrate having an oxide surface layer and a selective thin film of a cyclodextrin derivative chemically bound upon said substrate, said film is adapted for the inclusion of a selected organic compound therewith. Such an article can be either a chemical sensor capable of detecting a resultant mass change from inclusion of the selected organic compound or a chemical separator capable of reversibly selectively separating a selected organic compound.

  8. Chemical sensors

    DOEpatents

    Lowell, J.R. Jr.; Edlund, D.J.; Friesen, D.T.; Rayfield, G.W.

    1991-07-02

    Sensors responsive to small changes in the concentration of chemical species are disclosed. The sensors comprise a mechanochemically responsive polymeric film capable of expansion or contraction in response to a change in its chemical environment. They are operatively coupled to a transducer capable of directly converting the expansion or contraction to a measurable electrical response. 9 figures.

  9. Chemical preconcentrator

    DOEpatents

    Manginell, Ronald P. (Albuquerque, NM); Frye-Mason, Gregory C. (Cedar Crest, NM)

    2001-01-01

    A chemical preconcentrator is disclosed with applications to chemical sensing and analysis. The preconcentrator can be formed by depositing a resistive heating element (e.g. platinum) over a membrane (e.g. silicon nitride) suspended above a substrate. A coating of a sorptive material (e.g. a microporous hydrophobic sol-gel coating or a polymer coating) is formed on the suspended membrane proximate to the heating element to selective sorb one or more chemical species of interest over a time period, thereby concentrating the chemical species in the sorptive material. Upon heating the sorptive material with the resistive heating element, the sorbed chemical species are released for detection and analysis in a relatively high concentration and over a relatively short time period. The sorptive material can be made to selectively sorb particular chemical species of interest while not substantially sorbing other chemical species not of interest. The present invention has applications for use in forming high-sensitivity, rapid-response miniaturized chemical analysis systems (e.g. a "chem lab on a chip").

  10. Unnecessary Chemicals

    ERIC Educational Resources Information Center

    Johnson, Anita

    1978-01-01

    Discusses the health hazards resulting from chemical additions of many common products such as cough syrups, food dyes, and cosmetics. Steps being taken to protect consumers from these health hazards are included. (MDR)

  11. Chemical Peels

    MedlinePLUS

    ... Bumps and growths Color problems Contagious skin diseases Cosmetic treatments Dry / sweaty skin Eczema / dermatitis Hair and ... dermatologist Home Public and patients Diseases and treatments Cosmetic treatments Chemical peels public SPOT Skin Cancer™ Diseases ...

  12. Chemical Agents

    MedlinePLUS

    ... Info Chemical Emergencies A–Z Abrin Adamsite Ammonia Arsenic Arsine Barium Benzene Brevetoxin Bromine BZ Carbon monoxide ... X Y Z A Abrin Adamsite (DM) Ammonia Arsenic Arsine (SA) B Barium Benzene Brevetoxin Bromine (CA) ...

  13. Chemical sensors

    DOEpatents

    Lowell, J.R. Jr.; Edlund, D.J.; Friesen, D.T.; Rayfield, G.W.

    1992-06-09

    Sensors responsive to small changes in the concentration of chemical species are disclosed, comprising a mechanicochemically responsive polymeric film capable of expansion or contraction in response to a change in its chemical environment, either operatively coupled to a transducer capable of directly converting the expansion or contraction to a measurable electrical or optical response, or adhered to a second inert polymeric strip, or doped with a conductive material. 12 figs.

  14. Hiding in plain sight - red supergiant imposters? Super-AGB stars - bridging the divide between low/intermediate-mass and high-mass stars

    NASA Astrophysics Data System (ADS)

    Doherty, Carolyn Louise; Gil-Pons, Pilar; Lattanzio, John; Siess, Lionel

    2015-08-01

    Super Asymptotic Giant Branch (Super-AGB) stars reside in the mass range ~ 6.5-10 M? and bridge the divide between low/intermediate-mass and massive stars. They are characterised by off-centre carbon ignition prior to a thermally pulsing phase which can consist of many tens to even thousands of thermal pulses. With their high luminosities and very large, cool, red stellar envelopes, these stars appear seemingly identical to their slightly more massive red supergiant counterparts. Due to their similarities, super-AGB stars may therefore act as stellar imposters and contaminate red supergiant surveys. Super-AGB stars undergo relatively extreme nucleosynthetic conditions, with very efficient proton-capture nucleosynthesis occurring at the base of the convective envelope and also heavy element (s-process) production during the thermal pulse to be later mixed to the surface during third dredge-up events. The surface enrichment from these two processes may result in a clear nucleosynthetic signature to differentiate these two classes of star.The final fate of super-AGB stars is also quite uncertain and depends primarily on the competition between the core growth and mass-loss rates. If the stellar envelope is removed prior to the core reaching the Chandrasekhar mass, an O-Ne white dwarf will remain, otherwise the star will undergo an electron-capture supernova leaving behind a neutron star. We describe the factors which influence these different final fate channels, such as the efficiency of convection, the mass-loss rates, the third dredge-up efficiency and the Fe-peak opacity instability which may lead to expulsion of the entire remaining stellar envelope. We determine the relative fraction of super-AGB stars that end life as either an O-Ne white dwarf or as a neutron star, and provide a mass limit for the lowest mass supernova over a broad range of metallicities from the earliest time (Z=0) right through until today (Z~0.04).

  15. Obama Finding Teacher Support Secure, If Tepid: Policy Rifts Complicate Obama-Teacher Dance

    ERIC Educational Resources Information Center

    Klein, Alyson

    2012-01-01

    Ask Antonio White what he thinks of Race to the Top--President Barack Obama's signature K-12 initiative--and the Florida teacher will tell you the competitive-grant program is a "difficult pill to swallow." Merit pay for teachers based partly on student test scores is "a joke," he says. He's also not a fan of expanding charter schools, or of U.S.…

  16. Chemical sensors

    SciTech Connect

    Hubbard, C.W.; Gordon, R.L.

    1987-05-01

    The revolution in analytical chemistry promised by recent developments in the field of chemical sensors has potential for significant positive impact on both research and production activities conducted by and for the Department of Energy. Analyses which were, in the past, performed only with a roomful of expensive equipment can now be performed with miniature solid-state electronic devices or small optical probes. Progress in the development of chemical sensors has been rapid, and the field is currently growing at a great rate. In accordance, Pacific Northwest Laboratory initiated a survey of recent literature so that contributors to active programs in research on analytical methods could be made aware of principles and applications of this new technology. This report presents the results of that survey. The sensors discussed here are divided into three types: micro solid-state devices, optical sensors, and piezoelectric crystal devices. The report is divided into three corresponding sections. The first section, ''Micro Solid-State Devices,'' discusses the design, operation, and application of electronic sensors that are produced in much the same way as standard solid-state electronic devices. The second section, ''Optrodes,'' covers the design and operation of chemical sensors that use fiber optics to detect chemically induced changes in optical properties. The final section, ''Piezoelectric Crystal Detectors,'' discusses two types of chemical sensors that depend on the changes in the properties of an oscillating piezoelectric crystal to detect the presence of certain materials. Advantages and disadvantages of each type of sensor are summarized in each section.

  17. DUST PRODUCTION FACTORIES IN THE EARLY UNIVERSE: FORMATION OF CARBON GRAINS IN RED-SUPERGIANT WINDS OF VERY MASSIVE POPULATION III STARS

    SciTech Connect

    Nozawa, Takaya; Yoon, Sung-Chul; Maeda, Keiichi; Kozasa, Takashi; Nomoto, Ken'ichi; Langer, Norbert

    2014-06-01

    We investigate the formation of dust in a stellar wind during the red-supergiant (RSG) phase of a very massive Population III star with a zero-age main sequence mass of 500 M {sub ?}. We show that, in a carbon-rich wind with a constant velocity, carbon grains can form with a lognormal-like size distribution, and that all of the carbon available for dust formation finally condenses into dust for wide ranges of the mass-loss rate ((0.1-3) × 10{sup –3} M {sub ?} yr{sup –1}) and wind velocity (1-100 km s{sup –1}). We also find that the acceleration of the wind, driven by newly formed dust, suppresses the grain growth but still allows more than half of the gas-phase carbon to finally be locked up in dust grains. These results indicate that, at most, 1.7 M {sub ?} of carbon grains can form during the RSG phase of 500 M {sub ?} Population III stars. Such a high dust yield could place very massive primordial stars as important sources of dust at the very early epoch of the universe if the initial mass function of Population III stars was top-heavy. We also briefly discuss a new formation scenario of carbon-rich ultra-metal-poor stars, considering feedback from very massive Population III stars.

  18. High spectral resolution imaging of the dynamical atmosphere of the red supergiant Antares in the CO first overtone lines with VLTI/AMBER

    E-print Network

    Ohnaka, Keiichi; Schertl, Dieter; Weigelt, Gerd; Baffa, Carlo; Chelli, Alain; Petrov, Romain; Robbe-Dubois, Sylvie

    2013-01-01

    We present high spectral resolution aperture-synthesis imaging of the red supergiant Antares (alpha Sco) in individual CO first overtone lines with VLTI/AMBER. The reconstructed images reveal that the star appears differently in the blue wing, line center, and red wing and shows an asymmetrically extended component. The appearance of the star within the CO lines changes drastically within one year, implying a significant change in the velocity field in the atmosphere. Our modeling suggests an outer atmosphere (MOLsphere) extending to 1.2--1.4 stellar radii with CO column densities of (0.5--1)x10^{20} cm^{-2} and a temperature of ~2000 K. While the velocity field in 2009 is characterized by strong upwelling motions at 20--30 km/s, it changed to strong downdrafts in 2010. On the other hand, the AMBER data in the continuum show only a slight deviation from limb-darkened disks and only marginal time variations. We derive a limb-darkened disk diameter of 37.38+/-0.06 mas and a power-law-type limb-darkening paramet...

  19. Infrared Space Observatory Observations of Far-Infrared Rotational Emission Lines of Water Vapor Toward the Supergiant Star VY Canis Majoris

    NASA Technical Reports Server (NTRS)

    Neufeld, David A.; Feuchtgruber, Helmut; Harwit, Martin; Melnick, Gary J.

    1999-01-01

    We report the detection of numerous far-infrared emission lines of water vapor toward the supergiant star VY Canis Majoris. A 29.5-45 micron grating scan of VY CMa, obtained using the Short-Wavelength Spectrometer (SWS) of the Infrared Space Observatory at a spectral resolving power lambda/delat.lambda of approximately 2000, reveals at least 41 spectral features due to water vapor that together radiate a total luminosity of approximately 25 solar luminosity . In addition to pure rotational transitions within the ground vibrational state, these features include rotational transitions within the (010) excited vibrational state. The spectrum also shows the (sup 2)product(sub 1/2) (J = 5/2) left arrow (sup 2)product(sub 3/2) (J = 3/2) OH feature near 34.6 micron in absorption. Additional SWS observations of VY CMa were carried out in the instrument's Fabry-Perot mode for three water transitions: the 7(sub 25)-6(sub 16) line at 29.8367 micron, the 4(sub 41)-3(sub 12) line at 31.7721 micron, and the 4(sub 32)-3(sub 03) line at 40.6909 micron. The higher spectral resolving power lambda/delta.lambda of approximately 30,000 thereby obtained permits the line profiles to be resolved spectrally for the first time and reveals the "P Cygni" profiles that are characteristic of emission from an outflowing envelope.

  20. Delicious Chemicals.

    ERIC Educational Resources Information Center

    Barry, Dana M.

    This paper presents an approach to chemistry and nutrition that focuses on food items that people consider delicious. Information is organized according to three categories of food chemicals that provide energy to the human body: (1) fats and oils; (2) carbohydrates; and (3) proteins. Minerals, vitamins, and additives are also discussed along with…

  1. Chemical Evolution

    E-print Network

    Francesca Matteucci

    2007-04-05

    In this series of lectures we first describe the basic ingredients of galactic chemical evolution and discuss both analytical and numerical models. Then we compare model results for the Milky Way, Dwarf Irregulars, Quasars and the Intra-Cluster- Medium with abundances derived from emission lines. These comparisons allow us to put strong constraints on the stellar nucleosynthesis and the mechanisms of galaxy formation.

  2. Chemical Mahjong

    ERIC Educational Resources Information Center

    Cossairt, Travis J.; Grubbs, W. Tandy

    2011-01-01

    An open-access, Web-based mnemonic game is described whereby introductory chemistry knowledge is tested using mahjong solitaire game play. Several tile sets and board layouts are included that are themed upon different chemical topics. Introductory tile sets can be selected that prompt the player to match element names to symbols and metric…

  3. Chemical warfare

    PubMed Central

    Samuels, Richard Ian; Mattoso, Thalles Cardoso; Moreira, Denise D.O.

    2013-01-01

    Leaf-cutting ants are well known for their highly complex social organization, which provides them with a strong defense against parasites invading their colonies. Besides this attribute, these insects have morphological, physiological and structural characteristics further reinforcing the defense of their colonies. With the discovery of symbiotic bacteria present on the integument of leaf-cutting ants, a new line of defense was proposed and considered to be specific for the control of a specialized fungal parasite of the ants’ fungus gardens (Escovopsis). However, recent studies have questioned the specificity of the integumental bacteria, as they were also found to inhibit a range of fungi, including entomopathogens. The microbiota associated with the leaf-cutting ant gardens has also been proposed as another level of chemical defense, protecting the garden from parasite invasion. Here we review the chemical defense weaponry deployed by leaf-cutting ants against parasites of their fungus gardens and of the ants themselves. PMID:23795235

  4. High spectral resolution imaging of the dynamical atmosphere of the red supergiant Antares in the CO first overtone lines with VLTI/AMBER

    NASA Astrophysics Data System (ADS)

    Ohnaka, K.; Hofmann, K.-H.; Schertl, D.; Weigelt, G.; Baffa, C.; Chelli, A.; Petrov, R.; Robbe-Dubois, S.

    2013-07-01

    Aims: We present aperture-synthesis imaging of the red supergiant Antares (? Sco) in the CO first overtone lines. Our goal is to probe the structure and dynamics of the outer atmosphere. Methods: Antares was observed between 2.28 ?m and 2.31 ?m with VLTI/AMBER with spectral resolutions of up to 12 000 and angular resolutions as high as 7.2 mas at two epochs with a time interval of one year. Results: The reconstructed images in individual CO lines reveal that the star appears differently in the blue wing, line center, and red wing. In 2009, the images in the line center and red wing show an asymmetrically extended component, while the image in the blue wing shows little trace of it. In 2010, however, the extended component appears in the line center and blue wing, and the image in the red wing shows only a weak signature of the extended component. Our modeling of these AMBER data suggests that there is an outer atmosphere (MOLsphere) extending to 1.2-1.4 R? with CO column densities of (0.5-1) × 1020 cm-2 and a temperature of ~2000 K. The CO line images observed in 2009 can be explained by a model in which a large patch or clump of CO gas is infalling at only 0-5 km s-1, while the CO gas in the remaining region is moving outward much faster at 20-30 km s-1. The images observed in 2010 suggest that a large clump of CO gas is moving outward at 0-5 km s-1, while the CO gas in the remaining region is infalling much faster at 20-30 km s-1. In contrast to the images in the CO lines, the AMBER data in the continuum show only a slight deviation from limb-darkened disks and only marginal time variations. We derive a limb-darkened disk diameter of 37.38 ± 0.06 mas and a power-law-type limb-darkening parameter of (8.7 ± 1.6) × 10-2 (2009) and 37.31 ± 0.09 mas and (1.5 ± 0.2) × 10-1 (2010). We also obtain an effective temperature of 3660 ± 120 K (the error includes the effects of the temporal flux variation that is assumed to be the same as Betelgeuse) and a luminosity of log L?/L? = 4.88 ± 0.23. Comparison with theoretical evolutionary tracks suggests a mass of 15 ± 5 M? with an age of 11-15 Myr, which is consistent with the recently estimated age for the Upper Scorpius OB association. Conclusions: The properties of the outer atmosphere of Antares are similar to those of another well-studied red supergiant, Betelgeuse. The density of the extended outer atmosphere of Antares and Betelgeuse is higher than predicted by the current 3D convection simulations by at least six orders of magnitude, implying that convection alone cannot explain the formation of the extended outer atmosphere. Based on AMBER observations made with the Very Large Telescope Interferometer of the European Southern Observatory. Program ID: 083.D-0333(A/B) (AMBER guaranteed time observation), 085.D-0085(A/B).Appendices are available in electronic form at http://www.aanda.orgMovies of data cube are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/555/A24

  5. V-Band, Near-IR, and TiO Photometry of the Semi-Regular Red Supergiant TV Geminorum: Long-Term Quasi-Periodic Changes in Temperature, Radius, and Luminosity

    NASA Astrophysics Data System (ADS)

    Wasatonic, Richard P.; Guinan, Edward F.; Durbin, Allyn J.

    2015-11-01

    Seventeen years of V-band and intermediate Wing near-IR TiO (?719-nm to ?1024-nm) time-series photometry of the M1-4 Iab supergiant TV Geminorum are presented. The observations were conducted from 1997 to 2014 with the primary goals of determining both long-term (years) and short-term (months) periodicities and estimating temporal changes in temperature, luminosity, and radius as the star varies in brightness. Our results suggest a dominant short-term V-band period of ˜411 days (˜1.12 years) that is superimposed on a long-term cycle of ˜3137 days (˜8.59 years). Over this long-term cycle, the effective temperature varies between ˜3500 K to ˜3850 K and, at an adopted distance of 1.5 ± 0.2 kpc, the luminosity varies from ˜6.2 × 104 L? to ˜8.9 × 104 L? and the radius varies from ˜620 R? to ˜710 R?. Variations in temperature and luminosity are indicative of a semi-regular long-term pulsation with imposed short-term periods similar to the V-band variations. However, the calculated radius variations are apparently not generally inversely correlated with respect to the long-term temperature and luminosity changes as typically found in Cepheids and Mira-type variables. This observation suggests other undetermined mechanisms, such as the formation and subsequent dissipation of supergranules or possible complex pulsations, are taking place in this evolved red supergiant to account for these variations. Like other young, massive luminous red supergiants such as Betelgeuse (? Orionis) and Antares (? Scorpii), TV Gem shows complicated light variations on time scales that range from months to several years. These evolved high massive stars are important to study because they are nearby, bright progenitors of core-collapsed Type II supernovae.

  6. LUMINOUS SUPERNOVA-LIKE UV/OPTICAL/INFRARED TRANSIENTS ASSOCIATED WITH ULTRA-LONG GAMMA-RAY BURSTS FROM METAL-POOR BLUE SUPERGIANTS

    SciTech Connect

    Kashiyama, Kazumi; Yajima, Hidenobu; Nakauchi, Daisuke; Nakamura, Takashi; Suwa, Yudai

    2013-06-10

    Metal-poor massive stars typically end their lives as blue supergiants (BSGs). Gamma-ray bursts (GRBs) from such progenitors could have an ultra-long duration of relativistic jets. For example, Population III (Pop III) GRBs at z {approx} 10-20 might be observable as X-ray-rich events with a typical duration of T{sub 90} {approx} 10{sup 4}(1 + z) s. The recent GRB111209A at z = 0.677 has an ultra-long duration of T{sub 90} {approx} 2.5 Multiplication-Sign 10{sup 4} s and it has been suggested that its progenitor might have been a metal-poor BSG in the local universe. Here, we suggest that luminous UV/optical/infrared emission is associated with this new class of GRBs from metal-poor BSGs. Before the jet head breaks out of the progenitor envelope, the energy injected by the jet is stored in a hot plasma cocoon, which finally emerges and expands as a baryon-loaded fireball. We show that the photospheric emissions from the cocoon fireball could be intrinsically very bright (L{sub peak} {approx} 10{sup 42}-10{sup 44} erg s{sup -1}) in UV/optical bands ({epsilon}{sub peak} {approx} 10 eV) with a typical duration of {approx}100 days in the rest frame. Such cocoon emissions from Pop III GRBs might be detectable in infrared bands at {approx}years after Pop III GRBs at up to z {approx} 15 by upcoming facilities such as the James Webb Space Telescope. We also suggest that GRB111209A might have been rebrightening in UV/optical bands up to an AB magnitude of {approx}< 26. The cocoon emission from local metal-poor BSGs might have been observed previously as luminous supernovae without GRBs since they can be seen from the off-axis direction of the jet.

  7. The Contribution of Thermally-Pulsing Asymptotic Giant Branch and Red Supergiant Starts to the Luminosities of the Magellanic Clouds at 1-24 micrometers

    NASA Technical Reports Server (NTRS)

    Melbourne, J.; Boyer, Martha L.

    2013-01-01

    We present the near-through mid-infrared flux contribution of thermally-pulsing asymptotic giant branch (TP-AGB) and massive red supergiant (RSG) stars to the luminosities of the Large and Small Magellanic Clouds (LMC and SMC, respectively). Combined, the peak contribution from these cool evolved stars occurs at approx 3 - 4 micron, where they produce 32% of the SMC light, and 25% of the LMC flux. The TP-AGB star contribution also peaks at approx 3 - 4 micron and amounts to 21% in both galaxies. The contribution from RSG stars peaks at shorter wavelengths, 2.2 micron, where they provide 11% of the SMC flux, and 7% for the LMC. Both TP-AGB and RSG stars are short lived, and thus potentially impose a large stochastic scatter on the near-IR derived mass-to-light (M/L) ratios of galaxies at rest-frame 1 - 4 micron. To minimize their impact on stellar mass estimates, one can use the M/L ratio at shorter wavelengths (e.g., at 0.8 - 1 micron). At longer wavelengths (much > 8 micron), emission from dust in the interstellar medium dominates the flux. In the LMC, which shows strong polycyclic aromatic hydrocarbon (PAH) emission at 8 micron, TP-AGB and RSG contribute less than 4% of the 8 micron flux. However, 19% of the SMC 8 micron flux is from evolved stars, nearly half of which is produced by the rarest, dustiest, carbon-rich TP-AGB stars. Thus, star formation rates of galaxies, based on an 8 micron flux (e.g., observed-frame 24 micron at z = 2), may be biased modestly high, especially for galaxies with little PAH emission.

  8. Toward connecting core-collapse supernova theory with observations. I. Shock revival in a 15 M {sub ?} blue supergiant progenitor with SN 1987A energetics

    SciTech Connect

    Handy, Timothy; Plewa, Tomasz; Odrzywo?ek, Andrzej

    2014-03-10

    We study the evolution of the collapsing core of a 15 M {sub ?} blue supergiant supernova progenitor from the core bounce until 1.5 s later. We present a sample of hydrodynamic models parameterized to match the explosion energetics of SN 1987A. We find the spatial model dimensionality to be an important contributing factor in the explosion process. Compared to two-dimensional (2D) simulations, our three-dimensional (3D) models require lower neutrino luminosities to produce equally energetic explosions. We estimate that the convective engine in our models is 4% more efficient in 3D than in 2D. We propose that the greater efficiency of the convective engine found in 3D simulations might be due to the larger surface-to-volume ratio of convective plumes, which aids in distributing energy deposited by neutrinos. We do not find evidence of the standing accretion shock instability or turbulence being a key factor in powering the explosion in our models. Instead, the analysis of the energy transport in the post-shock region reveals characteristics of penetrative convection. The explosion energy decreases dramatically once the resolution is inadequate to capture the morphology of convection on large scales. This shows that the role of dimensionality is secondary to correctly accounting for the basic physics of the explosion. We also analyze information provided by particle tracers embedded in the flow and find that the unbound material has relatively long residency times in 2D models, while in 3D a significant fraction of the explosion energy is carried by particles with relatively short residency times.

  9. Long-lasting X-ray emission from type IIb supernova 2011dh and mass-loss history of the yellow supergiant progenitor

    SciTech Connect

    Maeda, Keiichi; Katsuda, Satoru; Bamba, Aya; Terada, Yukikatsu; Fukazawa, Yasushi

    2014-04-20

    Type IIb supernova (SN) 2011dh, with conclusive detection of an unprecedented yellow supergiant (YSG) progenitor, provides an excellent opportunity to deepen our understanding on the massive star evolution in the final centuries toward the SN explosion. In this paper, we report on detection and analyses of thermal X-ray emission from SN IIb 2011dh at ?500 days after the explosion on Chandra archival data, providing a solidly derived mass-loss rate of a YSG progenitor for the first time. We find that the circumstellar media should be dense, more than that expected from a Wolf-Rayet (W-R) star by one order of magnitude. The emission is powered by a reverse shock penetrating into an outer envelope, fully consistent with the YSG progenitor but not with a W-R progenitor. The density distribution at the outermost ejecta is much steeper than that expected from a compact W-R star, and this finding must be taken into account in modeling the early UV/optical emission from SNe IIb. The derived mass-loss rate is ?3 × 10{sup –6} M {sub ?} yr{sup –1} for the mass-loss velocity of ?20 km s{sup –1} in the final ?1300 yr before the explosion. The derived mass-loss properties are largely consistent with the standard wind mass-loss expected for a giant star. This is not sufficient to be a main driver to expel nearly all the hydrogen envelope. Therefore, the binary interaction, with a huge mass transfer having taken place at ? 1300 yr before the explosion, is a likely scenario to produce the YSG progenitor.

  10. Chemical durability

    SciTech Connect

    Kreuer, K.D.; Warhus, U.

    1986-03-01

    The chemical durability of NASICON (Na/sub 1+x/Zr/sub 2/Si/sub x/P/sub 3-x/O/sub 12/, x=0-3) versus molten sodium and sulfur at 600 K has been investigated. Degradation by molten sodium has been observed for phosphorus-containing compositions only. The pure silicate (x=3), however, appeared to be stable, because reduction of silicon demanded by thermodynamics did not occur at the given temperature for kinetic reasons. The latter composition has also been shown to have good durability against molten sulfur.

  11. Chemical abundances of massive stars in Local Group galaxies

    NASA Astrophysics Data System (ADS)

    Venn, Kim A.; Kaufer, Andreas; Tolstoy, Eline; Kudritzki, Rolf-Peter; Przybilla, Norbert; Smartt, Stephen J.; Lennon, Daniel J.

    The relative abundances of elements in galaxies can provide valuable information on the stellar and chemical evolution of a galaxy. While nebulae can provide abundances for a variety of light elements, stars are the only way to directly determine the abundances of iron-group and s-process and r-process elements in a galaxy. The new 8m and 10m class telescopes and high-efficiency spectrographs now make high-quality spectral observations of bright supergiants possible in dwarf galaxies in the Local Group. We have been concentrating on elemental abundances in the metal-poor dwarf irregular galaxies, NGC 6822, WLM, Sextants A, and GR 8. Comparing abundance ratios to those predicted from their star formation histories, determined from color-magnitude diagrams, and comparing those ratios between these galaxies can give us new insights into the evolution of these dwarf irregular galaxies. Iron-group abundances also allow us to examine the metallicities of the stars in these galaxies directly, which affects their inferred mass loss rates and predicted stellar evolution properties.

  12. Chemical Engineering Rate Processes

    E-print Network

    Fenster, Sam

    Chemical Engineering · Rate Processes Physical Chemical Biochemical · Example - pharmacokinetics ocw.mit.edu #12;The historical chemical engineer · Chemistry + Mechanical design of equipment chemical engineer today · Electronics · Pharmaceuticals · Environment - Air, Energy and Water

  13. Chemical Analyses

    NASA Technical Reports Server (NTRS)

    Bulluck, J. W.; Rushing, R. A.

    1994-01-01

    As a preliminary study on the effects of chemical aging of polymer materials MERL and TRI have examined two polymeric materials that are typically used for offshore umbilical applications. These two materials were Tefzel, a copolymer of ethylene and tetrafluoroethylene, and Coflon, polyvinylidene fluoride. The Coflon specimens were cut from pipe sections and exposed to H2S at various temperatures and pressures. One of these specimens was tested for methane permeation, and another for H2S permeation. The Tefzel specimens were cut from .05 mm sheet stock material and were exposed to methanol at elevated temperature and pressure. One of these specimens was exposed to methanol permeation for 2 days at 100 C and 2500 psi. An additional specimen was exposed to liquid methanol for 3 days at 150 C and 15 Bar. Virgin specimens of each material were similarly prepared and tested.

  14. Chemical Accelerators The phrase "chemical accelerators"

    E-print Network

    Meetings Chemical Accelerators The phrase "chemical accelerators" is scarcely older than for one or two dozen people grew to include nearly a hundred. Chemical accelerators is a name sug- gested by one of us for devices that produce beams of chemically interesting species at relative kinetic

  15. Optical spectra of five new Be/X-ray binaries in the Small Magellanic Cloud and the link of the supergiant B[e] star LHA 115-S 18 with an X-ray source

    NASA Astrophysics Data System (ADS)

    Maravelias, G.; Zezas, A.; Antoniou, V.; Hatzidimitriou, D.

    2014-03-01

    The Small Magellanic Cloud (SMC) is well known to harbour a large number of high-mass X-ray binaries (HMXBs). The identification of their optical counterparts provides information on the nature of the donor stars and can help to constrain the parameters of these systems and their evolution. We obtained optical spectra for a number of HMXBs identified in previous Chandra and XMM-Newton surveys of the SMC using the AAOmega/2dF fibre-fed spectrograph at the Anglo-Australian Telescope. We find five new Be/X-ray binaries (BeXRBs; including a tentative one), by identifying the spectral type of their optical counterparts, and we confirm the spectral classification of an additional 15 known BeXRBs. We compared the spectral types, orbital periods and eccentricities of the BeXRB populations in the SMC and the Milky Way and we find marginal evidence for difference between the spectral type distributions, but no statistically significant differences for the orbital periods and the eccentricities. Moreover, our search revealed that the well-known supergiant B[e] star LHA 115-S 18 (or AzV 154) is associated with the weak X-ray source CXOU J005409.57-724143.5. We provide evidence that the supergiant star LHA 115-S 18 is the optical counterpart of the X-ray source, and we discuss different possibilities of the origin of its low X-ray luminosity (Lx ˜ 4 × 1033 erg s-1).

  16. NEAR-INFRARED COUNTERPARTS TO CHANDRA X-RAY SOURCES TOWARD THE GALACTIC CENTER. II. DISCOVERY OF WOLF-RAYET STARS AND O SUPERGIANTS

    SciTech Connect

    Mauerhan, J. C.; Stolovy, S. R.; Muno, M. P.; Morris, M. R.; Cotera, A.

    2010-02-10

    We present new identifications of infrared counterparts to the population of hard X-ray sources near the Galactic center detected by the Chandra X-ray Observatory. We have spectroscopically confirmed 16 new massive stellar counterparts to the X-ray population, including nitrogen-type (WN) and carbon-type (WC) Wolf-Rayet stars, and O supergiants. These discoveries increase the total sample of massive stellar X-ray sources in the Galactic center region to 30 (possibly 31). For the majority of these sources, the X-ray photometry is consistent with thermal emission from plasma having temperatures in the range of kT = 1-8 keV or non-thermal emission having power-law indices in the range of -1 {approx}< GAMMA {approx}< 3, and X-ray luminosities in the range of L{sub X} {approx} 10{sup 32}-10{sup 34} erg s{sup -1} (0.5-8.0 keV). Several sources have exhibited X-ray variability of several factors between observations. These X-ray properties are not a ubiquitous feature of single massive stars but are typical of massive binaries, in which the high-energy emission is generated by the collision of supersonic winds, or by accretion onto a compact companion. However, without direct evidence for companions, the possibility of intrinsic hard X-ray generation from single stars cannot be completely ruled out. The spectral energy distributions of these sources exhibit significant infrared excess, attributable to free-free emission from ionized stellar winds, supplemented by hot dust emission in the case of the WC stars. With the exception of one object located near the outer regions of the Quintuplet cluster, most of the new stars appear isolated or in loose associations. Seven hydrogen-rich WN and O stars are concentrated near the Sagittarius B H II region, while other similar stars and more highly evolved hydrogen-poor WN and WC stars lie scattered within {approx}50 pc, in projection, of Sagitarrius A West. We discuss various mechanisms capable of generating the observed X-rays and the implications these stars have for massive star formation in the Galaxy's Central Molecular Zone.

  17. The 100-Month Swift Catalogue of Supergiant Fast X-Ray Transients I. BAT On-Board and Transient Monitor Flares

    NASA Technical Reports Server (NTRS)

    Romano, P.; Krimm, H. A.; Palmer, D. M.; Ducci, L.; Esposito, P.; Vercellone, S.; Evans, P. A.; Guidorzi, C.; Mangano, V.; Kennea, J. A.; Barthelmy, S. D.; Burrows, D. N.; Gehrels, N.

    2014-01-01

    Context. Supergiant fast X-ray transients (SFXTs) are high mass X-ray binaries (HMXBs) that are defined by their hard X-ray flaring behaviour. During these flares they reach peak luminosities of 10 (sup 36)-10 (sup 37) ergs per second for a few hours (in the hard X-ray), which are much shorter timescales than those characterizing Be/X-ray binaries. Aims. We investigate the characteristics of bright flares (detections in excess of 5 sigma) for a sample of SFXTs and their relation to the orbital phase. Methods. We have retrieved all Swift/BAT Transient Monitor light curves and collected all detections in excess of 5 sigma from both daily- and orbital-averaged light curves in the time range of 2005 February 12 to 2013 May 31 (MJD 53413-56443). We also considered all on-board detections as recorded in the same time span and selected those in excess of 5 sigma and within 4 arc minutes of each source in our sample. Results. We present a catalogue of over a thousand BAT flares from 11 SFXTs, down to 15-150 kiloelectronvolt fluxes of approximately 6×10 (sup -10) ergs per centimeters squared per second (daily timescale) and approximately 1.5×10 (sup -9) ergs per centimeters squared per second (orbital timescale, averaging approximately 800 seconds); the great majority of these flares are unpublished. The catalogue spans 100 months. This population is characterized by short (a few hundred seconds) and relatively bright (in excess of 100 mCrab, 15-50 kiloelectronvolt) events. In the hard X-ray, these flares last generally much less than a day. Clustering of hard X-ray flares can be used to indirectly measure the length of an outburst, even when the low-level emission is not detected. We construct the distributions of flares, of their significance (in terms of sigma), and of their flux as a function of orbital phase to infer the properties of these binary systems. In particular, we observe a trend of clustering of flares at some phases as P (sub orb) increases, which is consistent with a progression from tight circular or mildly eccentric orbits at short periods to wider and more eccentric orbits at longer orbital periods. Finally, we estimate the expected number of flares for a given source for our limiting flux and provide the recipe for calculating them for the limiting flux of future hard X-ray observatories.

  18. CHEMICAL ENGINEERING Curriculum Notes

    E-print Network

    Mohan, Chilukuri K.

    CHEMICAL ENGINEERING Curriculum Notes 2013-2014 1. Chemical engineering students must complete not included in the required chemical engineering curriculum. All technical electives are subject to approval be in chemical engineering. 2. Chemical engineering students must complete a minimum of 18 credits in the Social

  19. Chemical Ecology: Chemical Communication in Nature.

    ERIC Educational Resources Information Center

    Wood, William F.

    1983-01-01

    Substances that deliver chemical messages between same/different species are called semiochemicals. Surveyed are three types of semiochemicals (pheromones, allomones, and kairomones), types of organisms involved, and specific chemicals used to carry the various kinds of messages. (JN)

  20. The Chemical Engineer in the Chemical Industry.

    ERIC Educational Resources Information Center

    Zabicky, Jacob

    1986-01-01

    Describes a course for third- or fourth-year chemical engineering students designed to acquaint them with the chemical industry. The course deals with productivity, characteristics of the chemical industry, sources of information, industrial intelligence, research and development, patent law, technology transfer, and quality control. (TW)

  1. CHEMICAL SAFETY ALERTS-

    EPA Science Inventory

    Chemical Safety Alerts are short publications which explain specific hazards that have become evident through chemical accident investigation efforts. EPA has produced over a dozen Alerts to date. This year's Alert: Managing Chemical Reactivity Hazards

  2. Microfluidic chemical reaction circuits

    DOEpatents

    Lee, Chung-cheng (Irvine, CA); Sui, Guodong (Los Angeles, CA); Elizarov, Arkadij (Valley Village, CA); Kolb, Hartmuth C. (Playa del Rey, CA); Huang, Jiang (San Jose, CA); Heath, James R. (South Pasadena, CA); Phelps, Michael E. (Los Angeles, CA); Quake, Stephen R. (Stanford, CA); Tseng, Hsian-rong (Los Angeles, CA); Wyatt, Paul (Tipperary, IE); Daridon, Antoine (Mont-Sur-Rolle, CH)

    2012-06-26

    New microfluidic devices, useful for carrying out chemical reactions, are provided. The devices are adapted for on-chip solvent exchange, chemical processes requiring multiple chemical reactions, and rapid concentration of reagents.

  3. Chemical Management System

    Energy Science and Technology Software Center (ESTSC)

    1998-10-30

    CMS provides an inventory of all chemicals on order or being held in the laboratory, to provide a specific location for all chemical containers, to ensure that health and safety regulatory codes are being upheld, and to provide PNNL staff with hazardous chemical information to better manage their inventories. CMS is comprised of five major modules: 1) chemical purchasing, 2) chemical inventory, 3) chemical names, properties, and hazard groups, 4) reporting, and 5) system administration.

  4. Nature's chemicals and synthetic chemicals: Comparative toxicology

    SciTech Connect

    Ames, B.N.; Profet, M.; Gold, L.S. )

    1990-10-01

    The toxicology of synthetic chemicals is compared to that of natural chemicals, which represent the vast bulk of the chemicals to which humans are exposed. It is argued that animals have a broad array of inducible general defenses to combat the changing array of toxic chemicals in plant food (nature's pesticides) and that these defenses are effective against both natural and synthetic toxins. Synthetic toxins such as dioxin are compared to natural chemicals, such as indole carbinol (in broccoli) and ethanol. Trade-offs between synthetic and natural pesticides are discussed. The finding that in high-dose tests, a high proportion of both natural and synthetic chemicals are carcinogens, mutagens, teratogens, and clastogens (30-50{percent} for each group) undermines current regulatory efforts to protect public health from synthetic chemicals based on these tests.

  5. Balancing Equations Chemical Reactions

    E-print Network

    Heller, Barbara

    Balancing Equations Chemical Reactions #12;Chemical Equations · A chemical equation describes what of the participants (solid, liquid, gas, aqueous) and the amount of each substance. #12;Balancing of Equations · To balance a chemical equation, you have to establish a mathematical relationship between the quantity

  6. Chemical Emergencies Overview

    MedlinePLUS

    ... that cause nausea and vomiting Hazardous chemicals by name (A-Z list) If you know the name of a chemical but aren’t sure what ... in, you can look for the chemical by name on the A–Z List of Chemical Agents . ...

  7. PINS chemical identification software

    DOEpatents

    Caffrey, Augustine J.; Krebs, Kennth M.

    2004-09-14

    An apparatus and method for identifying a chemical compound. A neutron source delivers neutrons into the chemical compound. The nuclei of chemical elements constituting the chemical compound emit gamma rays upon interaction with the neutrons. The gamma rays are characteristic of the chemical elements constituting the chemical compound. A spectrum of the gamma rays is generated having a detection count and an energy scale. The energy scale is calibrated by comparing peaks in the spectrum to energies of pre-selected chemical elements in the spectrum. A least-squares fit completes the calibration. The chemical elements constituting the chemical compound can be readily determined, which then allows for identification of the chemical compound.

  8. DTP - Chemical Biology Consortium

    Cancer.gov

    Chemical Biology Consortium Home Discovery Development Pathways Grants/Contracts Books/Publications Site Search Data Search What's New Chemical Biology Consortium (CBC) Division of Cancer Treatment and Diagnosis To download Adobe Reader for documents

  9. Chemical Transformation Simulator

    EPA Science Inventory

    The Chemical Transformation Simulator (CTS) is a web-based, high-throughput screening tool that automates the calculation and collection of physicochemical properties for an organic chemical of interest and its predicted products resulting from transformations in environmental sy...

  10. Chemical Industry Bandwidth Study

    SciTech Connect

    none,

    2006-12-01

    The Chemical Bandwidth Study provides a snapshot of potentially recoverable energy losses during chemical manufacturing. The advantage of this study is the use of "exergy" analysis as a tool for pinpointing inefficiencies.

  11. Capacitive chemical sensor

    DOEpatents

    Manginell, Ronald P; Moorman, Matthew W; Wheeler, David R

    2014-05-27

    A microfabricated capacitive chemical sensor can be used as an autonomous chemical sensor or as an analyte-sensitive chemical preconcentrator in a larger microanalytical system. The capacitive chemical sensor detects changes in sensing film dielectric properties, such as the dielectric constant, conductivity, or dimensionality. These changes result from the interaction of a target analyte with the sensing film. This capability provides a low-power, self-heating chemical sensor suitable for remote and unattended sensing applications. The capacitive chemical sensor also enables a smart, analyte-sensitive chemical preconcentrator. After sorption of the sample by the sensing film, the film can be rapidly heated to release the sample for further analysis. Therefore, the capacitive chemical sensor can optimize the sample collection time prior to release to enable the rapid and accurate analysis of analytes by a microanalytical system.

  12. Personal Chemical Exposure informatics

    EPA Science Inventory

    Chemical Exposure science is the study of human contact with chemicals (from manufacturing facilities, everyday products, waste) occurring in their environments and advances knowledge of the mechanisms and dynamics of events that cause or prevent adverse health outcomes. (adapted...

  13. Chemical burn or reaction

    MedlinePLUS

    ... different products that contain toxic chemicals such as ammonia and bleach. The mixture can give off hazardous ... chemicals immediately after use. Use paints, petroleum products, ammonia, bleach, and other products that give off fumes ...

  14. Chemicals Industry Vision

    SciTech Connect

    none,

    1996-12-01

    Chemical industry leaders articulated a long-term vision for the industry, its markets, and its technology in the groundbreaking 1996 document Technology Vision 2020 - The U.S. Chemical Industry. (PDF 310 KB).

  15. Computing Equilibrium Chemical Compositions

    NASA Technical Reports Server (NTRS)

    Mcbride, Bonnie J.; Gordon, Sanford

    1995-01-01

    Chemical Equilibrium With Transport Properties, 1993 (CET93) computer program provides data on chemical-equilibrium compositions. Aids calculation of thermodynamic properties of chemical systems. Information essential in design and analysis of such equipment as compressors, turbines, nozzles, engines, shock tubes, heat exchangers, and chemical-processing equipment. CET93/PC is version of CET93 specifically designed to run within 640K memory limit of MS-DOS operating system. CET93/PC written in FORTRAN.

  16. Establishing Chemical Technology Programs.

    ERIC Educational Resources Information Center

    Hajian, Harry G.

    In light of the increasing demand for well-prepared chemical technicians, this paper provides suggestions for two-year colleges interested in initiating or upgrading a chemical technology program. Introductory comments indicate that, from the industry standpoint, chemical technicians are invaluable, but inadequate in numbers and often unprepared.…

  17. Equilibrium Chemical Engines

    E-print Network

    Tatsuo Shibata; Shin-ichi Sasa

    1997-10-30

    An equilibrium reversible cycle with a certain engine to transduce the energy of any chemical reaction into mechanical energy is proposed. The efficiency for chemical energy transduction is also defined so as to be compared with Carnot efficiency. Relevance to the study of protein motors is discussed. KEYWORDS: Chemical thermodynamics, Engine, Efficiency, Molecular machine.

  18. HARVARD UNIVERSITY CHEMICAL BIOLOGY

    E-print Network

    Church, George M.

    HARVARD UNIVERSITY CHEMICAL BIOLOGY PHD PROGRAM 2013-2014 Student Handbook #12;Program Contacts at the beginning of each semester. Laboratory Rotations Students in the Chemical Biology Program are expected an interest in having Chemical Biology Program Students in their labs. Students may rotate in the labs

  19. Chemical Zeolites Combinatorial . . .

    E-print Network

    Servatius, Brigitte

    . Chemical Zeolites · crystalline solid · units: Si + 4O Si O O O O · two covalent bonds per oxygen #12Chemical Zeolites Combinatorial . . . Realization 2d Zeolites Finite Zeolites The Layer . . . Holes University (Brigitte Servatius -- WPI) #12;Chemical Zeolites Combinatorial . . . Realization 2d Zeolites

  20. Hazard Communication & Chemical Safety

    E-print Network

    Haimovich, Alexander

    types of chemical hazards Physical Hazards Health Hazards The first rule of Chemical safety is by an approved procedure #12;Health Hazards Chemicals are classified as being a health hazard if they: Can cause cancer Are poisonous (toxic) Cause harm to your skin, internal organs, or nervous system Are corrosive

  1. Chemicals for worldwide aquaculture

    USGS Publications Warehouse

    Schnick, R.A.

    1991-01-01

    Regulations and therapeutants or other safe chemicals that are approved or acceptable for use in the aquaculture industry in the US, Canada, Europe and Japan are presented, discussing also compounds that are unacceptable for aquaculture. Chemical use practices that could affect public health are considered and details given regarding efforts to increase the number of registered and acceptable chemicals.

  2. AGRICULTURAL CHEMICAL USAGE DATA

    EPA Science Inventory

    This report, which summarizes the use of agricultural chemicals is issued by the National Agricultural Statistics Service (NASS) as part of its series on Agricultural Chemical Usage. Other publications in the series present statistics for on-farm agricultural chemical usage for f...

  3. Toxicology and Chemical Safety.

    ERIC Educational Resources Information Center

    Hall, Stephen K.

    1983-01-01

    Topics addressed in this discussion of toxicology and chemical safety include routes of exposure, dose/response relationships, action of toxic substances, and effects of exposure to chemicals. Specific examples are used to illustrate the principles discussed. Suggests prudence in handling any chemicals, whether or not toxicity is known. (JN)

  4. Chemical and Environmental Technology.

    ERIC Educational Resources Information Center

    Sheather, Harry

    The two-year curriculum in chemical technology presented in the document is designed to prepare high school graduates for technical positions in the chemical industry. Course outlines are given for general chemistry, chemical calculations, quantitative analysis, environmental chemistry, organic chemistry 1 and 2, instrumental analysis, and…

  5. UCI Chemical Hygiene Plan i August 2014 CHEMICAL HYGIENE PLAN

    E-print Network

    Nizkorodov, Sergey

    UCI Chemical Hygiene Plan i August 2014 CHEMICAL HYGIENE PLAN University of California, Irvine (949) 824-8539 #12;UCI Chemical Hygiene Plan ii August 2014 Chemical Hygiene Plan (CHP) Chapters..................................................... A-1 Appendix B: Container Labelling

  6. Wyss Institute Chemical Hygiene Plan CHEMICAL HYGIENE PLAN

    E-print Network

    Napp, Nils

    Wyss Institute Chemical Hygiene Plan CHEMICAL HYGIENE PLAN The Wyss Institute for Biologically Inspired Engineering June 2015 #12;Wyss Institute Chemical Hygiene Plan TABLE OF CONTENTS 1.0 POLICY..........................................................................................2 2.1 CHEMICAL HYGIENE OFFICER

  7. Wyss Institute Chemical Hygiene Plan CHEMICAL HYGIENE PLAN

    E-print Network

    Church, George M.

    Wyss Institute Chemical Hygiene Plan CHEMICAL HYGIENE PLAN The Wyss Institute for Biologically Inspired Engineering June 2014 #12;Wyss Institute Chemical Hygiene Plan TABLE OF CONTENTS 1.0 POLICY.......................................................................................... 2 2.1 CHEMICAL HYGIENE OFFICER

  8. Chemical exchange program analysis.

    SciTech Connect

    Waffelaert, Pascale

    2007-09-01

    As part of its EMS, Sandia performs an annual environmental aspects/impacts analysis. The purpose of this analysis is to identify the environmental aspects associated with Sandia's activities, products, and services and the potential environmental impacts associated with those aspects. Division and environmental programs established objectives and targets based on the environmental aspects associated with their operations. In 2007 the most significant aspect identified was Hazardous Materials (Use and Storage). The objective for Hazardous Materials (Use and Storage) was to improve chemical handling, storage, and on-site movement of hazardous materials. One of the targets supporting this objective was to develop an effective chemical exchange program, making a business case for it in FY07, and fully implementing a comprehensive chemical exchange program in FY08. A Chemical Exchange Program (CEP) team was formed to implement this target. The team consists of representatives from the Chemical Information System (CIS), Pollution Prevention (P2), the HWMF, Procurement and the Environmental Management System (EMS). The CEP Team performed benchmarking and conducted a life-cycle analysis of the current management of chemicals at SNL/NM and compared it to Chemical Exchange alternatives. Those alternatives are as follows: (1) Revive the 'Virtual' Chemical Exchange Program; (2) Re-implement a 'Physical' Chemical Exchange Program using a Chemical Information System; and (3) Transition to a Chemical Management Services System. The analysis and benchmarking study shows that the present management of chemicals at SNL/NM is significantly disjointed and a life-cycle or 'Cradle-to-Grave' approach to chemical management is needed. This approach must consider the purchasing and maintenance costs as well as the cost of ultimate disposal of the chemicals and materials. A chemical exchange is needed as a mechanism to re-apply chemicals on site. This will not only reduce the quantity of unneeded chemicals and the amount spent on new purchases, but will also avoid disposal costs. If SNL/NM were to realize a 5 percent reduction in chemical inventory and a 10 percent reduction in disposal of unused chemicals the total savings would be $189, 200 per year.

  9. Chemical evolution STRUCTURE OF GALAXIES

    E-print Network

    Kruit, Piet van der

    Outline Absorption Chemical evolution STRUCTURE OF GALAXIES 8. Absorption; chemical evolution Piet Piet van der Kruit, Kapteyn Astronomical Institute Absorption; chemical evolution #12;Outline Absorption Chemical evolution Outline Absorption Holmberg's analysis Analysis of Disney et al. Edge

  10. Probing the mass-loss history of AGB and red supergiant stars from CO rotational line profiles - II. CO line survey of evolved stars: derivation of mass-loss rate formulae

    E-print Network

    De Beck, E; de Koter, A; Justtanont, K; Verhoelst, T; Kemper, F; Menten, K M M

    2010-01-01

    We aim to (1) set up simple and general analytical expressions to estimate mass-loss rates of evolved stars, and (2) from those calculate estimates for the mass-loss rates of asymptotic giant branch (AGB), red supergiant (RSG), and yellow hypergiant stars in our galactic sample. Rotationally excited lines of CO are a very robust diagnostic in the study of circumstellar envelopes (CSEs). When sampling different layers of the CSE, observations of these molecular lines lead to detailed profiles of kinetic temperature, expansion velocity, and density. A state-of-the-art, nonlocal thermal equilibrium, and co-moving frame radiative transfer code that predicts CO line intensities in the CSEs of late-type stars is used in deriving relations between stellar and molecular-line parameters, on the one hand, and mass-loss rate, on the other. We present analytical expressions for estimating the mass-loss rates of evolved stellar objects for 8 rotational transitions of the CO molecule, apply them to our extensive CO data se...

  11. Excimer laser chemical problems

    SciTech Connect

    Tennant, R.; Peterson, N.

    1982-01-01

    Techniques need to be developed to maintain XeF and XeCl laser performance over long periods of time without degradation resulting from chemical processes occurring within the laser. The dominant chemical issues include optical damage, corrosions of laser materials, gas contamination, and control of halogen concentration. Each of these issues are discussed and summarized. The methods of minimizing or controlling the chemical processes involved are presented.

  12. Field emission chemical sensor

    DOEpatents

    Panitz, J.A.

    1983-11-22

    A field emission chemical sensor for specific detection of a chemical entity in a sample includes a closed chamber enclosing two field emission electrode sets, each field emission electrode set comprising (a) an electron emitter electrode from which field emission electrons can be emitted when an effective voltage is connected to the electrode set; and (b) a collector electrode which will capture said electrons emitted from said emitter electrode. One of the electrode sets is passive to the chemical entity and the other is active thereto and has an active emitter electrode which will bind the chemical entity when contacted therewith.

  13. Chemical Processing Manual

    NASA Technical Reports Server (NTRS)

    Beyerle, F. J.

    1972-01-01

    Chemical processes presented in this document include cleaning, pickling, surface finishes, chemical milling, plating, dry film lubricants, and polishing. All types of chemical processes applicable to aluminum, for example, are to be found in the aluminum alloy section. There is a separate section for each category of metallic alloy plus a section for non-metals, such as plastics. The refractories, super-alloys and titanium, are prime candidates for the space shuttle, therefore, the chemical processes applicable to these alloys are contained in individual sections of this manual.

  14. Apparatus for chemical synthesis

    DOEpatents

    Kong, Peter C. (Idaho Falls, ID); Herring, J. Stephen (Idaho Falls, ID); Grandy, Jon D. (Idaho Falls, ID)

    2011-05-10

    A method and apparatus for forming a chemical hydride is described and which includes a pseudo-plasma-electrolysis reactor which is operable to receive a solution capable of forming a chemical hydride and which further includes a cathode and a movable anode, and wherein the anode is moved into and out of fluidic, ohmic electrical contact with the solution capable of forming a chemical hydride and which further, when energized produces an oxygen plasma which facilitates the formation of a chemical hydride in the solution.

  15. 310 Facility chemical specifications

    SciTech Connect

    Hagerty, K.J.

    1997-05-21

    The 300 area Treated Effluent Disposal Facility (TEDF) was designed and built to treat the waste water from the 300 area process sewer system. Several treatment technologies are employed to remove the trace quantities of contaminants in the stream, including iron coprecipitation, clarification, filtration, ion exchange, and ultra violet light/hydrogen peroxide oxidation of organics. The chemicals that will be utilized in the treatment process are hydrogen peroxide, sulfuric acid, sodium hydroxide, and ferric chloride. This document annotates the required chemical characteristics of TEDF bulk chemicals as well as the criteria that were used to establish these criteria. The chemical specifications in appendix B are generated from this information.

  16. CHEMICAL CATEGORIES IN EPA'S NEW CHEMICALS PROGRAM

    EPA Science Inventory

    Under section 5 of the Toxic Substances Control Act (TSCA),any person who intends to manufacture or import a new chemical substance, or mixture containing such a substance, in the United States for commercial purposes must submit a premanufacture notice (PMN) to the Environmental...

  17. Chemical Compositions of Stars

    NASA Astrophysics Data System (ADS)

    Leckrone, D.; Murdin, P.

    2000-11-01

    In 1835, in a famously inaccurate forecast, the French philosopher Auguste Comte wrote of stars that, `We understand the possibility of determining their shapes, their distances, their sizes and their movements; whereas we would never know how to study by any means their chemical composition…'. At the close of the 20th century the accurate measurement of the abundances of the chemical elements in...

  18. Chemical Biology Consortium Agreement

    Cancer.gov

    NCI_CBC v.1.2 9/2009 The National Cancer Institute’s Chemical Biology Consortium Participants Agreement Mission: The mission of the National Cancer Institute’s (“NCI”) Chemical Biology Consortium (“CBC”) is to increase the flow of early

  19. Undergraduate Chemical Physics

    E-print Network

    Bristol, University of

    a final-year research project or scientific dissertation. #12;bristol.ac.uk/study You will benefit fromUndergraduate Chemical Physics Faculty of Science #12;bristol.ac.uk/study Chemical physics covers nanotechnology, surface science, laser spectroscopy, atomic and molecular structure, materials, and all those

  20. Chemical Equation Balancing.

    ERIC Educational Resources Information Center

    Blakley, G. R.

    1982-01-01

    Reviews mathematical techniques for solving systems of homogeneous linear equations and demonstrates that the algebraic method of balancing chemical equations is a matter of solving a system of homogeneous linear equations. FORTRAN programs using this matrix method to chemical equation balancing are available from the author. (JN)

  1. Chemical Reaction Problem Solving.

    ERIC Educational Resources Information Center

    Veal, William

    1999-01-01

    Discusses the role of chemical-equation problem solving in helping students predict reaction products. Methods for helping students learn this process must be taught to students and future teachers by using pedagogical skills within the content of chemistry. Emphasizes that solving chemical reactions should involve creative cognition where…

  2. Chemicals in Everyday Life.

    ERIC Educational Resources Information Center

    Seymour, Raymond B.

    1987-01-01

    Discusses the dependencies of people on chemicals in various aspects of life. Describes some of the natural and synthetic chemicals currently used in food production, clothing, shelter, travel and exploration, sports and recreation, ventilation, heating and cooling, communications, decoration, sanitation, and education. (TW)

  3. Elemental Chemical Puzzlers

    ERIC Educational Resources Information Center

    Thomas, Nicholas C.

    2009-01-01

    This paper provides nine short chemically based puzzles or problems extensible for use with students from middle school to college. Some of these will strengthen students' recognition of individual elements and element names. Others require students to focus on the salient properties of given chemical elements.

  4. CHEMICAL PROCESSES IN SOILS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chemical Processes in Soils” edited by Tabatabai and D.L. Sparks (2005) is a key review useful for soil scientists, agronomists, conservationists, environmental scientists and other related professionals who need to understand these processes of chemical reactions and how they may be related to the...

  5. Chemical cloud tracking systems

    NASA Astrophysics Data System (ADS)

    Grim, Larry B.; Gruber, Thomas C., Jr.; Marshall, Martin; Rowland, Brad

    2002-02-01

    This paper describes the Chemical Cloud Tracking System (CCTS) which has been installed at Dugway Proving Ground. The CCTS allows mapping of chemical clouds in real time from a safe standoff distance. The instruments used are passive standoff chemical agent detectors (FTIRs). Each instrument individually can only measure the total of all the chemical in its line-of-site; the distance to the cloud is unknown. By merging data from multiple vantage points (either one instrument moving past the cloud or two or more instruments spaced so as to view the cloud from different directions) a map of the cloud locations can be generated using tomography. To improve the sensitivity and accuracy of the cloud map, chemical point sensors can be added to the sensor array being used. The equipment required for the CCTS is commercially available. Also, the data fusion techniques (tomography) have been demonstrated previously in the medical field. The Chemical Cloud Tracking System can monitor the movement of many chemical clouds of either military or industrial origin. Since the technique is standoff, the personnel are not exposed to toxic hazards while they follow the cloud. Also, the equipment works on-the-move which allows rapid response to emergency situations (plant explosions, tanker car accidents, chemical terrorism, etc.).

  6. Chemicals and Allied Products.

    ERIC Educational Resources Information Center

    Nelson, R. F.; Hovious, J. C.

    1978-01-01

    Presents a literature review of wastes from chemical industry, covering publications of 1976-77. This review covers: (1) wastewater treatment by-product type; (2) biological, and physical/chemical treatments; and (3) source treatment. A list of 80 references is also presented. (HM)

  7. Great Lakes: Chemical Monitoring

    ERIC Educational Resources Information Center

    Delfino, Joseph J.

    1976-01-01

    The Tenth Great Lakes Regional Meeting of the American Chemical Society met to assess current Chemical Research activity in the Great Lakes Basin, and addressed to the various aspects of the theme, Chemistry of the Great Lakes. Research areas reviewed included watershed studies, atmospheric and aquatic studies, and sediment studies. (BT)

  8. Difficult Decisions: Chemical Warfare.

    ERIC Educational Resources Information Center

    Slesnick, Irwin L.; Miller, John A.

    1988-01-01

    Gives the background history and chemistry of modern day chemical warfare from World War I to the present. Provides discussion questions to stimulate deeper thinking on the issue. Contains a discussion activity called "Can New Chemical Weapons Lead to Humane Warfare?" (CW)

  9. Tortuous path chemical preconcentrator

    DOEpatents

    Manginell, Ronald P. (Albuquerque, NM); Lewis, Patrick R. (Albuquerque, NM); Adkins, Douglas R. (Albuquerque, NM); Wheeler, David R. (Albuquerque, NM); Simonson, Robert J. (Cedar Crest, NM)

    2010-09-21

    A non-planar, tortuous path chemical preconcentrator has a high internal surface area having a heatable sorptive coating that can be used to selectively collect and concentrate one or more chemical species of interest from a fluid stream that can be rapidly released as a concentrated plug into an analytical or microanalytical chain for separation and detection. The non-planar chemical preconcentrator comprises a sorptive support structure having a tortuous flow path. The tortuosity provides repeated twists, turns, and bends to the flow, thereby increasing the interfacial contact between sample fluid stream and the sorptive material. The tortuous path also provides more opportunities for desorption and readsorption of volatile species. Further, the thermal efficiency of the tortuous path chemical preconcentrator is comparable or superior to the prior non-planar chemical preconcentrator. Finally, the tortuosity can be varied in different directions to optimize flow rates during the adsorption and desorption phases of operation of the preconcentrator.

  10. Chemical recognition software

    SciTech Connect

    Wagner, J.S.; Trahan, M.W.; Nelson, W.E.; Hargis, P.J. Jr.; Tisone, G.C.

    1994-12-01

    We have developed a capability to make real time concentration measurements of individual chemicals in a complex mixture using a multispectral laser remote sensing system. Our chemical recognition and analysis software consists of three parts: (1) a rigorous multivariate analysis package for quantitative concentration and uncertainty estimates, (2) a genetic optimizer which customizes and tailors the multivariate algorithm for a particular application, and (3) an intelligent neural net chemical filter which pre-selects from the chemical database to find the appropriate candidate chemicals for quantitative analyses by the multivariate algorithms, as well as providing a quick-look concentration estimate and consistency check. Detailed simulations using both laboratory fluorescence data and computer synthesized spectra indicate that our software can make accurate concentration estimates from complex multicomponent mixtures. even when the mixture is noisy and contaminated with unknowns.

  11. Appendix G. Chemicals Appendix G. Chemicals G-3

    E-print Network

    Pennycook, Steve

    Appendix G. Chemicals #12;#12;Appendix G. Chemicals G-3 Appendix G. Chemicals This appendix), not a comprehensive discussion of chemicals and their effects on the environment and biological systems. G.1 the atmosphere from industrial sources before being deposited on soil or water. G.2 Pathways of Chemicals from

  12. Appendix G. Chemicals Appendix G. Chemicals G-3

    E-print Network

    Pennycook, Steve

    Appendix G. Chemicals #12;#12;Appendix G. Chemicals G-3 Appendix G. Chemicals This appendix), not a comprehensive discussion of chemicals and their effects on the environment and biological systems. G.1 the atmosphere from industrial sources before being deposited on soil or water. G.2 Pathways of Chemicals From

  13. Evolved stars as complex chemical laboratories - the quest for gaseous chemistry

    NASA Astrophysics Data System (ADS)

    Katrien Els Decin, Leen

    2015-08-01

    At the end of their life, most stars lose a large fraction of their mass through a stellar wind. The stellar winds of evolved (super)giant stars are the dominant suppliers for the pristine building blocks of the interstellar medium (ISM). Crucial to the understanding of the chemical life cycle of the ISM is hence a profound insight in the chemical and physical structure governing these stellar winds.These winds are really unique chemical laboratories in which currently more than 70 different molecules and 15 different dust species are detected. Several chemical processes such as neutral-neutral and ion-molecule gas-phase reactions, dust nucleation and growth, and photo-processes determine the chemical content of these winds. However, gas-phase and dust-nucleation chemistry for astronomical environments still faces many challenges. One should realize that only ˜15% of the rate coefficients for gas-phase reactions considered to occur in (inter/circum)stellar regions at temperatures (T) below 300K have been subject to direct laboratory determinations and that the temperature dependence of the rate constants is often not known; only ˜2% have rate constants at T<200K and less than 0.5% at T<100 K. For stellar wind models, an important bottleneck occurs among the reactions involving silicon- and sulfur-bearing species, for which only a few have documented reaction rates. Often, researchers are implementing ‘educated guesses’ for these unknown rates, sometimes forcing the network to yield predictions concurring with (astronomical) observations. Large uncertainties are inherent in this type of ‘optimized’ chemical schemes.Thanks to an ERC-CoG grant, we are now in the position to solve some riddles involved in understanding the gas-phase chemistry in evolved stars. In this presentation, I will demonstrate the need for accurate temperature-dependent gas-phase reaction rate constants and will present our new laboratory equipment built to measure the rate constants for species key in stellar wind chemistry. Specifically, we aim to obtain the rate constants of reactions involving silicon- and sulphur bearing species and HCCO for 30

  14. Chemical process hazards analysis

    SciTech Connect

    1996-02-01

    The Office of Worker Health and Safety (EH-5) under the Assistant Secretary for the Environment, Safety and Health of the US Department (DOE) has published two handbooks for use by DOE contractors managing facilities and processes covered by the Occupational Safety and Health Administration (OSHA) Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119), herein referred to as the PSM Rule. The PSM Rule contains an integrated set of chemical process safety management elements designed to prevent chemical releases that can lead to catastrophic fires, explosions, or toxic exposures. The purpose of the two handbooks, ``Process Safety Management for Highly Hazardous Chemicals`` and ``Chemical Process Hazards Analysis,`` is to facilitate implementation of the provisions of the PSM Rule within the DOE. The purpose of this handbook ``Chemical Process Hazards Analysis,`` is to facilitate, within the DOE, the performance of chemical process hazards analyses (PrHAs) as required under the PSM Rule. It provides basic information for the performance of PrHAs, and should not be considered a complete resource on PrHA methods. Likewise, to determine if a facility is covered by the PSM rule, the reader should refer to the handbook, ``Process Safety Management for Highly Hazardous Chemicals`` (DOE- HDBK-1101-96). Promulgation of the PSM Rule has heightened the awareness of chemical safety management issues within the DOE. This handbook is intended for use by DOE facilities and processes covered by the PSM rule to facilitate contractor implementation of the PrHA element of the PSM Rule. However, contractors whose facilities and processes not covered by the PSM Rule may also use this handbook as a basis for conducting process hazards analyses as part of their good management practices. This handbook explains the minimum requirements for PrHAs outlined in the PSM Rule. Nowhere have requirements been added beyond what is specifically required by the rule.

  15. The U.S. Chemical Industry, Foreign Chemical Industries

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1972

    1972-01-01

    This section of the annual report on the chemical industry provides data on the chemical production of Japan, West Germany, United Kingdom, Italy, and France, including the output of major chemical products in these nations. (PR)

  16. Chemical Hygiene Program

    NASA Technical Reports Server (NTRS)

    Mayor, Antoinette C.

    1999-01-01

    The Chemical Management Team is responsible for ensuring compliance with the OSHA Laboratory Standard. The program at Lewis Research Center (LeRC) evolved over many years to include training, developing Standard Operating Procedures (SOPS) for each laboratory process, coordinating with other safety and health organizations and teams at the Center, and issuing an SOP binder. The Chemical Hygiene Policy was first established for the Center. The Chemical Hygiene Plan was established and reviewed by technical, laboratory and management for viability and applicability to the Center. A risk assessment was conducted for each laboratory. The laboratories were prioritized by order of risk, higher risk taking priority. A Chemical Management Team staff member interviewed the lead researcher for each laboratory process to gather the information needed to develop the SOP for the process. A binder containing the Chemical Hygiene Plan, the SOP, a map of the laboratory identifying the personal protective equipment and best egress, and glove guides, as well as other guides for safety and health. Each laboratory process has been captured in the form of an SOP. The chemicals used in the procedure have been identified and the information is used to reduce the number of chemicals in the lab. The Chemical Hygiene Plan binder is used as a training tool for new employees. LeRC is in compliance with the OSHA Standard. The program was designed to comply with the OSHA standard. In the process, we have been able to assess the usage of chemicals in the laboratories, as well as reduce or relocate the chemicals being stored in the laboratory. Our researchers are trained on the hazards of the materials they work with and have a better understanding of the hazards of the process and what is needed to prevent any incident. From the SOP process, we have been able to reduce our chemical inventory, determine and implement better hygiene procedures and equipment in the laboratories, and provide specific training to our employees. As a result of this program, we are adding labeling to the laboratories for emergency responders and initiating a certified chemical user program.

  17. Chemical warfare agents

    PubMed Central

    Ganesan, K.; Raza, S. K.; Vijayaraghavan, R.

    2010-01-01

    Among the Weapons of Mass Destruction, chemical warfare (CW) is probably one of the most brutal created by mankind in comparison with biological and nuclear warfare. Chemical weapons are inexpensive and are relatively easy to produce, even by small terrorist groups, to create mass casualties with small quantities. The characteristics of various CW agents, general information relevant to current physical as well as medical protection methods, detection equipment available and decontamination techniques are discussed in this review article. A brief note on Chemical Weapons Convention is also provided. PMID:21829312

  18. Chemical Engineering at NASA

    NASA Technical Reports Server (NTRS)

    Collins, Jacob

    2008-01-01

    This viewgraph presentation is a review of the career paths for chemicals engineer at NASA (specifically NASA Johnson Space Center.) The author uses his personal experience and history as an example of the possible career options.

  19. Chemical Principles Exemplified

    ERIC Educational Resources Information Center

    Plumb, Robert C.

    1972-01-01

    Collection of two short descriptions of chemical principles seen in life situations: the autocatalytic reaction seen in the bombardier beetle, and molecular potential energy used for quick roasting of beef. Brief reference is also made to methanol lighters. (PS)

  20. Chemical dependence - resources

    MedlinePLUS

    Drug abuse - resources; Resources - chemical dependence ... The following organizations are a good resource for information on drug dependence: National Council on Alcoholism and Drug Dependence -- ncadd.org National Institute on Drug Abuse -- www.drugabuse.gov ...

  1. Reflections on Chemical Equations.

    ERIC Educational Resources Information Center

    Gorman, Mel

    1981-01-01

    The issue of how much emphasis balancing chemical equations should have in an introductory chemistry course is discussed. The current heavy emphasis on finishing such equations is viewed as misplaced. (MP)

  2. Chemical engineering Research !!

    E-print Network

    Chemical engineering Research !! www.chemeng.lth.se Updated August 2012 #12;WWT Fermentation hydrolysis Improved fermentation Yeast Fermentation technology Hydrolysis Process integration Consider a changed reactivity #12;Feedstock Pretreatment Hydrolysis Fermentation Separation Ethanol Lignin & other

  3. Chemical Bonds II

    ERIC Educational Resources Information Center

    Sanderson, R. T.

    1972-01-01

    The continuation of a paper discussing chemical bonding from a bond energy viewpoint, with a number of examples of single and multiple bonds. (Part I appeared in volume 1 number 3, pages 16-23, February 1972.) (AL)

  4. Enhanced Chemical Cleaning

    SciTech Connect

    Spires, Renee H.

    2010-11-01

    Renee Spires, Project Manager at Savannah River Remediation, opens Session 3 (Accelerated Waste Retrieval and Closure: Key Technologies) at the 2010 EM Waste Processing Technical Exchange with a talk on enhanced chemical cleaning.

  5. Legendary Chemical Aphrodisiacs.

    ERIC Educational Resources Information Center

    Waddell, Thomas G.; And Others

    1980-01-01

    Presents a survey of the literature and a summary of information regarding aphrodisiacs. Chemical compounds are discussed as groups of plant natural products, animal natural products, and synthetic products. (CS)

  6. Chemical Safety Programs.

    ERIC Educational Resources Information Center

    Shaw, Richard

    2000-01-01

    Discusses the need to enhance understanding of chemical safety in educational facilities that includes adequate staff training and drilling requirements. The question of what is considered proper training is addressed. (GR)

  7. Chemical warfare agents.

    PubMed

    Kuca, Kamil; Pohanka, Miroslav

    2010-01-01

    Chemical warfare agents are compounds of different chemical structures. Simple molecules such as chlorine as well as complex structures such as ricin belong to this group. Nerve agents, vesicants, incapacitating agents, blood agents, lung-damaging agents, riot-control agents and several toxins are among chemical warfare agents. Although the use of these compounds is strictly prohibited, the possible misuse by terrorist groups is a reality nowadays. Owing to this fact, knowledge of the basic properties of these substances is of a high importance. This chapter briefly introduces the separate groups of chemical warfare agents together with their members and the potential therapy that should be applied in case someone is intoxicated by these agents. PMID:20358695

  8. Chemicals from coal

    SciTech Connect

    Harold A. Wittcoff; Bryan G. Reuben; Jeffrey S. Plotkin

    2004-12-01

    This chapter contains sections titled: Chemicals from Coke Oven Distillate; The Fischer-Tropsch Reaction; Coal Hydrogenation; Substitute Natural Gas (SNG); Synthesis Gas Technology; Calcium Carbide; Coal and the Environment; and Notes and References

  9. CHEMICAL ENGINEERING Program of Study

    E-print Network

    Thomas, Andrew

    CHEMICAL ENGINEERING Program of Study Research Facilities Financial Aid Applying Correspondence The Department of Chemical Engineering and Biological Engineering has well-established programs at both area of chemical engineering and include both fundamental and applied topics. The Department has

  10. ANALYTICAL METHODS in CHEMICAL ECOLOGY

    E-print Network

    ANALYTICAL METHODS in CHEMICAL ECOLOGY a post graduate course (doktorandkurs) when: February 10 ­ 28, 2014 where: Chemical Ecology, Plant Protection Biology, Swedish University of Agriculture (SLU to modern analytical methods used in Chemical Ecological and Ecotoxicological research, such as: methods

  11. Chemical Hygiene Michigan State University

    E-print Network

    Isaacs, Rufus

    Chemical Hygiene Plan Michigan State University Environmental Health and Safety Engineering 2014 #12;ii Michigan State University Chemical Hygiene Plan Table of Contents 1.0 SCOPE.................................................................................................... 1 1.4 HAZARDOUS CHEMICAL DEFINITIONS

  12. Chemical Evolution of Galaxies

    E-print Network

    B. E. J. Pagel

    2000-08-24

    Chemical evolution of galaxies brings together ideas on stellar evolution and nucleosynthesis with theories of galaxy formation, star formation and galaxy evolution, with all their associated uncertainties. In a new perspective brought about by the Hubble Deep Field and follow-up investigations of global star formation rates, diffuse background etc., it has become necessary to consider the chemical composition of dark baryonic matter as well as that of visible matter in galaxies.

  13. Integrated Chemical List

    Cancer.gov

    Some Long Island breast cancer advocates, who have been interested in the Long Island Breast Cancer Study Project (LIBCSP), submitted a list of chemicals and other agents of concern to them as possible causes of breast cancer. Many of the agents are already included in the LIBCSP. The table lists both the agents of community interest and those included in the LIBCSP, and is called the Integrated Chemical List.

  14. Quantum Chemical Calculations

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W.; Arnold, James O. (Technical Monitor)

    1997-01-01

    The current methods of quantum chemical calculations will be reviewed. The accent will be on the accuracy that can be achieved with these methods. The basis set requirements and computer resources for the various methods will be discussed. The utility of the methods will be illustrated with some examples, which include the calculation of accurate bond energies for SiF$_n$ and SiF$_n^+$ and the modeling of chemical data storage.

  15. Chemical Peeling of Tomatoes. 

    E-print Network

    Heddins, Gerald C.; Burns, E. E.

    1965-01-01

    - ,, ,& cording to variety and chemical in terms of percent; 3. peel removed and percent weight lost. 4 , " Both NaOH and CaC12 solutions were more - : effective for peeling tomatoes than the standard% .? water treatment. More complete peel removal was j... tomatoes, but most have not been peeling lines is another factor. Proper scalding, careful handling and the addition of fruit firming chemicals ar: adjuncts to maintaining wholeness of fruit (4). Kertesz et al. (10) investigated practical methods...

  16. Chemical modification of silicene

    NASA Astrophysics Data System (ADS)

    Wang, Rong; Xu, Ming-Sheng; Pi, Xiao-Dong

    2015-08-01

    Silicene is a two-dimensional (2D) material, which is composed of a single layer of silicon atoms with sp2-sp3 mixed hybridization. The sp2-sp3 mixed hybridization renders silicene excellent reactive ability, facilitating the chemical modification of silicene. It has been demonstrated that chemical modification effectively enables the tuning of the properties of silicene. We now review all kinds of chemical modification methods for silicene, including hydrogenation, halogenation, organic surface modification, oxidation, doping and formation of 2D hybrids. The effects of these chemical modification methods on the geometrical, electronic, optical, and magnetic properties of silicene are discussed. The potential applications of chemically modified silicene in a variety of fields such as electronics, optoelectronics, and magnetoelectronics are introduced. We finally envision future work on the chemical modification of silicene for further advancing the development of silicene. Project supported by the National Basic Program of China (Grant No. 2013CB632101), the National Natural Science Foundation of China (Grant Nos. 61222404 and 61474097), and the Fundamental Research Funds for the Central Universities of China (Grant No. 2014XZZX003-09).

  17. Chemical Equilibrium And Transport (CET)

    NASA Technical Reports Server (NTRS)

    Mcbride, B. J.

    1991-01-01

    Powerful, machine-independent program calculates theoretical thermodynamic properties of chemical systems. Aids in design of compressors, turbines, engines, heat exchangers, and chemical processing equipment.

  18. Appendix B: Chemicals Appendix B: Chemicals B-3

    E-print Network

    Pennycook, Steve

    basic facts about chemicals. The information is intended to be a basis for understanding the dose), not a comprehensive discussion of chemicals and their effects on the environment and biological systems. PERSPECTIVE to the route or way in which a person can come in contact with a chemical substance. Chemicals released

  19. Chemical and Biological Engineering Department of Chemical and Biological Engineering

    E-print Network

    Chemical and Biological Engineering Department of Chemical and Biological Engineering 127 Perlstein: Sohail Murad The mission of the Department of Chemical and Biolog- ical Engineering is to meet: · Fundamental knowledge and design capability in biological engineering, chemical engineering, and food process

  20. Institute of Chemical Engineering page 1 Chemical Process Engineering

    E-print Network

    Auzinger, Winfried

    Institute of Chemical Engineering page 1 Chemical Process Engineering Future Energy Technology "Future Energy Technology" Contact: hermann.hofbauer@tuwien.ac.at #12;Institute of Chemical Engineering page 2 Chemical Process Engineering Future Energy Technology Gasification & Gas Cleaning The GGC team

  1. Chemical Engineering Is Chemical Engineering right for me?

    E-print Network

    Martin, Ralph R.

    Chemical Engineering Is Chemical Engineering right for me? If you are interested in the uses and processes surrounding the engineering of new and raw materials, a degree in Chemical Engineering may be well suited to you. The Chemical Engineering degree programme will focus on the development of products

  2. Chemical Organization Theory as a Theoretical Base for Chemical Computing

    E-print Network

    Dittrich, Peter

    Chemical Organization Theory as a Theoretical Base for Chemical Computing NAOKI MATSUMARU, FLORIAN-07743 Jena, Germany http://www.minet.uni-jena.de/csb/ Submitted 14 November 2005 In chemical computing- gramming chemical systems a theoretical method to cope with that emergent behavior is desired

  3. Idaho Chemical Processing Plant safety document ICPP hazardous chemical evaluation

    SciTech Connect

    Harwood, B.J.

    1993-01-01

    This report presents the results of a hazardous chemical evaluation performed for the Idaho Chemical Processing Plant (ICPP). ICPP tracks chemicals on a computerized database, Haz Track, that contains roughly 2000 individual chemicals. The database contains information about each chemical, such as its form (solid, liquid, or gas); quantity, either in weight or volume; and its location. The Haz Track database was used as the primary starting point for the chemical evaluation presented in this report. The chemical data and results presented here are not intended to provide limits, but to provide a starting point for nonradiological hazards analysis.

  4. Chemical reaction dynamics

    PubMed Central

    Crim, F. Fleming

    2008-01-01

    Understanding the motions of the constituent atoms in reacting molecules lies at the heart of chemistry and is the central focus of chemical reaction dynamics. The most detailed questions one can ask are about the evolution of molecules prepared in a single quantum state to products in individual states, and both calculations and experiments are providing such detailed understanding of increasingly complex systems. A central goal of these studies is uncovering the essential details of chemical change by removing the averaging over the initial conditions that occurs in many cases. Such information provides an exquisite test of theory and helps paint pictures of complicated chemical transformations. The goal of this Special Feature is to provide a snapshot of a portion of the field of chemical reaction dynamics. Much of the work presented here emphasizes a close interplay of experiment and theory in ways that sharpen the conclusions of both and animate future studies. The articles do not completely cover the rich field of chemical reaction dynamics but rather provide a glimpse of some of the emerging insights. PMID:18753626

  5. Chemical inhomogeneities and pulsation

    E-print Network

    S. Turcotte

    2001-11-08

    Major improvements in models of chemically peculiar stars have been achieved in the past few years. With these new models it has been possible to test quantitatively some of the processes involved in the formation of abundance anomalies and their effect on stellar structure. The models of metallic A (Am) stars have shown that a much deeper mixing has to be present to account for observed abundance anomalies. This has implications on their variability, which these models also reproduce qualitatively. These models also have implications for other chemically inhomogeneous stars such as HgMn B stars which are not known to be variable and lambda Bootis stars which can be. The study of the variability of chemically inhomogeneous stars can provide unique information on the dynamic processes occurring in many types of stars in addition to modeling of the evolution of their surface composition.

  6. Chemical Domino Demonstration

    NASA Astrophysics Data System (ADS)

    Alexander, M. Dale

    1998-04-01

    The Chemical Domino Demonstration is both educational and entertaining. It provides an excellent means for a review of chemical concepts at the conclusion of a general chemistry course. This demonstration consists of a number of different chemical reactions occurring in sequence in a Rube Goldberg-type apparatus. These reactions include the reduction of water by an active metal, the oxidation of a moderately active metal by an acid, reduction of metallic ions by a metal of greater activity, acid-base neutralization reactions in solution monitored with indicators, a gas-phase acid-base neutralization reaction, decomposition of a compound, precipitation of an insoluble salt, substitution reactions of coordination complexes, and pyrotechnic oxidation-reduction reactions including a hypergolic oxidation-reduction reaction, an intramolecular oxidation-reduction reaction, and the combustion of a flammable gas.

  7. Micromachined chemical jet dispenser

    DOEpatents

    Swierkowski, Steve P. (Livermore, CA)

    1999-03-02

    A dispenser for chemical fluid samples that need to be precisely ejected in size, location, and time. The dispenser is a micro-electro-mechanical systems (MEMS) device fabricated in a bonded silicon wafer and a substrate, such as glass or silicon, using integrated circuit-like fabrication technology which is amenable to mass production. The dispensing is actuated by ultrasonic transducers that efficiently produce a pressure wave in capillaries that contain the chemicals. The 10-200 .mu.m diameter capillaries can be arranged to focus in one spot or may be arranged in a larger dense linear array (.about.200 capillaries). The dispenser is analogous to some ink jet print heads for computer printers but the fluid is not heated, thus not damaging certain samples. Major applications are in biological sample handling and in analytical chemical procedures such as environmental sample analysis, medical lab analysis, or molecular biology chemistry experiments.

  8. Micromachined chemical jet dispenser

    DOEpatents

    Swierkowski, S.P.

    1999-03-02

    A dispenser is disclosed for chemical fluid samples that need to be precisely ejected in size, location, and time. The dispenser is a micro-electro-mechanical systems (MEMS) device fabricated in a bonded silicon wafer and a substrate, such as glass or silicon, using integrated circuit-like fabrication technology which is amenable to mass production. The dispensing is actuated by ultrasonic transducers that efficiently produce a pressure wave in capillaries that contain the chemicals. The 10-200 {micro}m diameter capillaries can be arranged to focus in one spot or may be arranged in a larger dense linear array (ca. 200 capillaries). The dispenser is analogous to some ink jet print heads for computer printers but the fluid is not heated, thus not damaging certain samples. Major applications are in biological sample handling and in analytical chemical procedures such as environmental sample analysis, medical lab analysis, or molecular biology chemistry experiments. 4 figs.

  9. Chemical Kinetics Database

    National Institute of Standards and Technology Data Gateway

    SRD 17 NIST Chemical Kinetics Database (Web, free access)   The NIST Chemical Kinetics Database includes essentially all reported kinetics results for thermal gas-phase chemical reactions. The database is designed to be searched for kinetics data based on the specific reactants involved, for reactions resulting in specified products, for all the reactions of a particular species, or for various combinations of these. In addition, the bibliography can be searched by author name or combination of names. The database contains in excess of 38,000 separate reaction records for over 11,700 distinct reactant pairs. These data have been abstracted from over 12,000 papers with literature coverage through early 2000.

  10. Chemical Engineering and Materials Science

    E-print Network

    Berdichevsky, Victor

    Chemical Engineering and Materials Science COLLEGE of ENGINEERING DepartmentofChemicalEngineering-credit EDGE Engineering Entrepreneur Certificate Program is a great addition to a chemical engineering t engineering.wayne.edu/che #12;What is chemical engineering? Imagine saving the lives of pediatric patients

  11. Environmental Chemicals in Breast Milk

    EPA Science Inventory

    Most of the information available on environmental chemicals in breast milk is focused on persistent, lipophilic chemicals; the database on levels of these chemicals has expanded substantially since the 1950s. Currently, various types of chemicals are measured in breast milk and ...

  12. Laboratory Safety and Chemical Hazards.

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 1983

    1983-01-01

    Toxicology/chemical hazards, safety policy, legal responsibilities, adequacy of ventilation, chemical storage, evaluating experimental hazards, waste disposal, and laws governing chemical safety were among topics discussed in 10 papers presented at the Seventh Biennial Conference on Chemical Education (Stillwater, Oklahoma 1982). Several topics…

  13. Pazufloxacin Toyama Chemical Co.

    PubMed

    Johnson, A P

    2000-09-01

    Toyama Chemical Co Ltd is developing pazufloxacin (T-3761), an orally active synthetic quinolone antibiotic, which is awaiting registration following successful clinical trials that demonstrated its pharmacological similarities to tosufloxacin (Toyama Chemical Co) with respect to clinical efficacy, adverse effects and overall safety [272136]. As of June 2000, the company had filed an NDA for marketing approval in Japan [373027]. The company is also developing an injectable formulation, pazufloxacin mesylate (T-3762), which has entered phase III trials in Japan [228819]. There is a licensing agreement with Welfide Corp (formerly Yoshitomi/The Green Cross Corp) in Japan [228819]. PMID:11249595

  14. Equilibria in Chemical Systems

    Energy Science and Technology Software Center (ESTSC)

    1992-01-01

    SOLGASMIX-PV calculates equilibrium relationships in complex chemical systems. Chemical equilibrium calculations involve finding the system composition, within certain constraints, which contains the minimum free energy. The constraints are the preservation of the masses of each element present and either constant pressure or volume. SOLGASMIX-PV can calculate equilibria in systems containing a gaseous phase, condensed phase solutions, and condensed phases of invariant and variable stoichiometry. Either a constant total gas volume or a constant total pressuremore »can be assumed. Unit activities for condensed phases and ideality for solutions are assumed, although nonideal systems can be handled provided activity coefficient relationships are available.« less

  15. GUIDELINES FOR DISPOSAL OF CHEMICAL WASTE Excess Chemicals and Chemical Wastes

    E-print Network

    Kim, Duck O.

    GUIDELINES FOR DISPOSAL OF CHEMICAL WASTE wstPS.DOC Excess Chemicals and Chemical Wastes · Toxic and toxics are not present (e.g., heavy metals). If you do the need for additional labels. · Waste Chemicals - - Call EHSO at x2723 for collection. (If the label

  16. Chemical Aspects of Dentistry.

    ERIC Educational Resources Information Center

    Helfman, Murry

    1982-01-01

    Dental caries (tooth decay) and periodontal (gum) disease are treated/prevented by procedures utilizing chemical expertise. Procedures and suggestions on how they might be incorporated into the high school chemistry curriculum are described. Specific topics discussed include dental caries, fluoride, diet, tooth decay prevention, silver amalgan,…

  17. Safety Issues Chemical Storage

    E-print Network

    Cohen, Robert E.

    acids, e.g. Nitric acid and acetic acid. Oxidizers stored with flammables. Acids stored with bases cabinets. Corrosives (acids and bases) or other liquids stored above eye level. Stock chemicals stored that will be stored in the lab. · Store in groups based on compatibility. · Where possible, use separate cabinets

  18. Chemical Complexity in Galaxies

    E-print Network

    Jean L. Turner; David S. Meier

    2007-08-10

    ALMA will be able to detect a broad spectrum of molecular lines in galaxies. Current aperture synthesis observations indicate that the molecular line emission from galaxies is remarkably variable, even on kpc scales. Imaging spectroscopy at resolutions of an arcsecond or better will reduce the chemical complexity by allowing regions of physical conditions to be defined and classified.

  19. Chemical Complexity in Galaxies

    E-print Network

    Turner, Jean L

    2007-01-01

    ALMA will be able to detect a broad spectrum of molecular lines in galaxies. Current aperture synthesis observations indicate that the molecular line emission from galaxies is remarkably variable, even on kpc scales. Imaging spectroscopy at resolutions of an arcsecond or better will reduce the chemical complexity by allowing regions of physical conditions to be defined and classified.

  20. Department of Chemical Engineering

    E-print Network

    Zhigilei, Leonid V.

    offers instruction in computer methods, laboratory techniques, critical thinking and problem solving.Va. Department of Chemical Engineering benefit from a modern academic curriculum and state-of-the-art and phase equilibria Our state-of-the-art research takes place in superior facilities. For example, Wilsdorf

  1. Advanced Chemical Propulsion

    NASA Technical Reports Server (NTRS)

    Alexander, Leslie, Jr.

    2006-01-01

    Advanced Chemical Propulsion (ACP) provides near-term incremental improvements in propulsion system performance and/or cost. It is an evolutionary approach to technology development that produces useful products along the way to meet increasingly more demanding mission requirements while focusing on improving payload mass fraction to yield greater science capability. Current activities are focused on two areas: chemical propulsion component, subsystem, and manufacturing technologies that offer measurable system level benefits; and the evaluation of high-energy storable propellants with enhanced performance for in-space application. To prioritize candidate propulsion technology alternatives, a variety of propulsion/mission analyses and trades have been conducted for SMD missions to yield sufficient data for investment planning. They include: the Advanced Chemical Propulsion Assessment; an Advanced Chemical Propulsion System Model; a LOx-LH2 small pumps conceptual design; a space storables propellant study; a spacecraft cryogenic propulsion study; an advanced pressurization and mixture ratio control study; and a pump-fed vs. pressure-fed study.

  2. Chemical reacting flows

    NASA Technical Reports Server (NTRS)

    Mularz, Edward J.; Sockol, Peter M.

    1990-01-01

    Future aerospace propulsion concepts involve the combustion of liquid or gaseous fuels in a highly turbulent internal airstream. Accurate predictive computer codes which can simulate the fluid mechanics, chemistry, and turbulence-combustion interaction of these chemical reacting flows will be a new tool that is needed in the design of these future propulsion concepts. Experimental and code development research is being performed at LeRC to better understand chemical reacting flows with the long-term goal of establishing these reliable computer codes. Our approach to understand chemical reacting flows is to look at separate, more simple parts of this complex phenomenon as well as to study the full turbulent reacting flow process. As a result, we are engaged in research on the fluid mechanics associated with chemical reacting flows. We are also studying the chemistry of fuel-air combustion. Finally, we are investigating the phenomenon of turbulence-combustion interaction. Research, both experimental and analytical, is highlighted in each of these three major areas.

  3. Electro-chemical grinding

    NASA Technical Reports Server (NTRS)

    Feagans, P. L.

    1972-01-01

    Electro-chemical grinding technique has rotation speed control, constant feed rates, and contour control. Hypersonic engine parts of nickel alloys can be almost 100% machined, keeping tool pressure at virtual zero. Technique eliminates galling and permits constant surface finish and burr-free interrupted cutting.

  4. Common Sense and Chemicals

    ERIC Educational Resources Information Center

    Roy, Ken

    2010-01-01

    This month's column features two true stories about the use of chemicals in the middle school science classroom. The lesson of these stories is simple. Certainly, it is prudent to have age-appropriate experiences in science, given the developmental constraints of students in middle school. On the other hand, when the curriculum necessitates…

  5. Making a Chemical Rainbow

    ERIC Educational Resources Information Center

    Angelin, Marcus; Ramstrom, Olof

    2010-01-01

    In this laboratory experiment, high school students are challenged to prepare a six-layered chemical "rainbow" in a test tube. Students start with six unknown, colorless liquids and six pigments ranging from violet to red. The experiment is problem based and forces the students to apply their knowledge of solubility and density and combine it with…

  6. Chemical Bonds I

    ERIC Educational Resources Information Center

    Sanderson, R. T.

    1972-01-01

    Chemical bonding is discussed from a bond energy, rather than a wave mechanics, viewpoint. This approach is considered to be more suitable for the average student. (The second part of the article will appear in a later issue of the journal.) (AL)

  7. Risks and Chemical Substances.

    ERIC Educational Resources Information Center

    Blumberg, Avrom A.

    1994-01-01

    Examines exposure to chemicals within the home and three important ways in which hazardous substances can be identified and evaluated. Suggests a rational picture of human health risks and contains an introductory discussion of reasons for exposure, epidemiology, cancer causes and patterns, animal testing, toxins, and risk. (LZ)

  8. NETL - Chemical Looping Reactor

    SciTech Connect

    2013-07-24

    NETL's Chemical Looping Reactor unit is a high-temperature integrated CLC process with extensive instrumentation to improve computational simulations. A non-reacting test unit is also used to study solids flow at ambient temperature. The CLR unit circulates approximately 1,000 pounds per hour at temperatures around 1,800 degrees Fahrenheit.

  9. NETL - Chemical Looping Reactor

    ScienceCinema

    None

    2014-06-26

    NETL's Chemical Looping Reactor unit is a high-temperature integrated CLC process with extensive instrumentation to improve computational simulations. A non-reacting test unit is also used to study solids flow at ambient temperature. The CLR unit circulates approximately 1,000 pounds per hour at temperatures around 1,800 degrees Fahrenheit.

  10. Recharging Batteries Chemically

    NASA Technical Reports Server (NTRS)

    Williams, R. M.; Rowlette, J.; Graf, J.

    1985-01-01

    Iron/air batteries recharged chemically by solution of strong base in alcohol or by basic alcohol solution of reducing agent. Although method still experimental, it has potential for batteries in electric automobiles or as energy system in remote applications. Also used in quiet operations where noise or infrared signature of diesel engine is not desired.

  11. Chemical Principles Exemplified

    ERIC Educational Resources Information Center

    Plumb, Robert C.

    1970-01-01

    This is the first of a new series of brief ancedotes about materials and phenomena which exemplify chemical principles. Examples include (1) the sea-lab experiment illustrating principles of the kinetic theory of gases, (2) snow-making machines illustrating principles of thermodynamics in gas expansions and phase changes, and (3) sunglasses that…

  12. Accurate quantum chemical calculations

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.

    1989-01-01

    An important goal of quantum chemical calculations is to provide an understanding of chemical bonding and molecular electronic structure. A second goal, the prediction of energy differences to chemical accuracy, has been much harder to attain. First, the computational resources required to achieve such accuracy are very large, and second, it is not straightforward to demonstrate that an apparently accurate result, in terms of agreement with experiment, does not result from a cancellation of errors. Recent advances in electronic structure methodology, coupled with the power of vector supercomputers, have made it possible to solve a number of electronic structure problems exactly using the full configuration interaction (FCI) method within a subspace of the complete Hilbert space. These exact results can be used to benchmark approximate techniques that are applicable to a wider range of chemical and physical problems. The methodology of many-electron quantum chemistry is reviewed. Methods are considered in detail for performing FCI calculations. The application of FCI methods to several three-electron problems in molecular physics are discussed. A number of benchmark applications of FCI wave functions are described. Atomic basis sets and the development of improved methods for handling very large basis sets are discussed: these are then applied to a number of chemical and spectroscopic problems; to transition metals; and to problems involving potential energy surfaces. Although the experiences described give considerable grounds for optimism about the general ability to perform accurate calculations, there are several problems that have proved less tractable, at least with current computer resources, and these and possible solutions are discussed.

  13. Global chemical pollution

    SciTech Connect

    Travis, C.C.; Hester, S.T. )

    1991-05-01

    Over the past decade, public and governmental awareness of environmental problems has grown steadily, with an accompanying increase in the regulation of point sources of pollution. As a result, great strides have been made in cleaning polluted rivers and decreasing air pollution near factories. However, traditional regulatory approaches to environmental pollution have focused primarily on protecting the maximally exposed individual located in the immediate vicinity of the pollution source. Little attention has been given to the global implications of human production and use of synthetic chemicals. A consensus is emerging that even trace levels of environmental contamination can have potentially devastating environmental consequences. The authors maintain that ambient levels of pollution have risen to the point where human health is being affected on a global scale. Atmospheric transport is recognized as the primary mode of global distribution and entry into the food chain for organic chemicals. The following are examples of global chemical pollutants that result in human exposure of significant proportions: PCBs, dioxins, benzene, mercury and lead. Current regulatory approaches for environmental pollution do not incorporate ways of dealing with global pollution. Instead the major focus has been on protecting the maximally exposed individual. If we do not want to change our standard of living, the only way to reduce global chemical pollution is to make production and consumption processes more efficient and to lower the levels of production of these toxic chemicals. Thus the only reasonable solution to global pollution is not increased regulation of isolated point sources, but rather an increased emphasis on waste reduction and materials recycling. Until we focus on these issues, we will continue to experience background cancer risk in the 10{sup {minus}3} range.

  14. The chemical space project.

    PubMed

    Reymond, Jean-Louis

    2015-03-17

    One of the simplest questions that can be asked about molecular diversity is how many organic molecules are possible in total? To answer this question, my research group has computationally enumerated all possible organic molecules up to a certain size to gain an unbiased insight into the entire chemical space. Our latest database, GDB-17, contains 166.4 billion molecules of up to 17 atoms of C, N, O, S, and halogens, by far the largest small molecule database reported to date. Molecules allowed by valency rules but unstable or nonsynthesizable due to strained topologies or reactive functional groups were not considered, which reduced the enumeration by at least 10 orders of magnitude and was essential to arrive at a manageable database size. Despite these restrictions, GDB-17 is highly relevant with respect to known molecules. Beyond enumeration, understanding and exploiting GDBs (generated databases) led us to develop methods for virtual screening and visualization of very large databases in the form of a "periodic system of molecules" comprising six different fingerprint spaces, with web-browsers for nearest neighbor searches, and the MQN- and SMIfp-Mapplet application for exploring color-coded principal component maps of GDB and other large databases. Proof-of-concept applications of GDB for drug discovery were realized by combining virtual screening with chemical synthesis and activity testing for neurotransmitter receptor and transporter ligands. One surprising lesson from using GDB for drug analog searches is the incredible depth of chemical space, that is, the fact that millions of very close analogs of any molecule can be readily identified by nearest-neighbor searches in the MQN-space of the various GDBs. The chemical space project has opened an unprecedented door on chemical diversity. Ongoing and yet unmet challenges concern enumerating molecules beyond 17 atoms and synthesizing GDB molecules with innovative scaffolds and pharmacophores. PMID:25687211

  15. The Use of Chemical-Chemical Interaction and Chemical Structure to Identify New Candidate Chemicals Related to Lung Cancer

    PubMed Central

    Zheng, Mingyue; Kong, Xiangyin; Huang, Tao; Cai, Yu-Dong

    2015-01-01

    Lung cancer causes over one million deaths every year worldwide. However, prevention and treatment methods for this serious disease are limited. The identification of new chemicals related to lung cancer may aid in disease prevention and the design of more effective treatments. This study employed a weighted network, constructed using chemical-chemical interaction information, to identify new chemicals related to two types of lung cancer: non-small lung cancer and small-cell lung cancer. Then, a randomization test as well as chemical-chemical interaction and chemical structure information were utilized to make further selections. A final analysis of these new chemicals in the context of the current literature indicates that several chemicals are strongly linked to lung cancer. PMID:26047514

  16. INCOMPATIBLE CHEMICAL LIST PRUDENT PRACTICES FOR HANDLING CHEMICALS IN LABORATORIES

    E-print Network

    Zhang, Zhongfei "Mark"

    heavy metals Nitrites Acids Nitroparaffins Inorganic bases, amines Oxalic Acid Silver, mercury Oxygen of Incompatible Chemicals CHEMICAL IS INCOMPATIBLE WITH Acetic Acid Chromic acid, nitric acid, hydroxyl compounds, ethylene glycol, perchloric acid, peroxides, permanganates Acetylene Chlorine, bromine, copper, fluorine

  17. CHEMICAL ENGINEERING Graduation Checklist Bachelor of Science in Chemical Engineering

    E-print Network

    Zallen, Richard

    CHEMICAL ENGINEERING Graduation Checklist Bachelor of Science in Chemical Engineering College of Engineering For Students Graduating in Calendar Year 2014 (Co-op students graduating in Calendar Year 2015

  18. Chemical Demonstrations with Consumer Chemicals: The Black and White Reaction.

    ERIC Educational Resources Information Center

    Wright, Stephen W.

    2002-01-01

    Describes a dramatic chemical demonstration in which chemicals that are black and white combine to produce a colorless liquid. Reactants include tincture of iodine, bleach, white vinegar, Epsom salt, vitamin C tablets, and liquid laundry starch. (DDR)

  19. Appendix G: Chemicals Appendix G: Chemicals G-3

    E-print Network

    Pennycook, Steve

    . The potential health effects of noncarcinogens range from skin irritation to life- shortening. Carcinogens cause considering human health, chemicals are divided into two broad categories: chemicals that may cause adverse or toxic health effects but do not cause cancer

  20. Chemical Engineering in Space

    NASA Technical Reports Server (NTRS)

    Lobmeyer, Dennis A.; Meneghelli, Barry; Steinrock, Todd (Technical Monitor)

    2001-01-01

    The aerospace industry has long been perceived as the domain of both physicists and mechanical engineers. This perception has endured even though the primary method of providing the thrust necessary to launch a rocket into space is chemical in nature. The chemical engineering and chemistry personnel behind the systems that provide access to space have labored in the shadows of the physicists and mechanical engineers. As exploration into the cosmos moves farther away from Earth, there is a very distinct need for new chemical processes to help provide the means for advanced space exploration. The state of the art in launch systems uses chemical propulsion systems, primarily liquid hydrogen and liquid oxygen, to provide the energy necessary to achieve orbit. As we move away from Earth, there are additional options for propulsion. Unfortunately, few of these options can compare to the speed or ease of use provided by the chemical propulsion agents. It is with great care and significant cost that gaseous compounds such as hydrogen and oxygen are liquefied and become dense enough to use for rocket fuel. These low-temperature liquids fall within a specialty area known as cryogenics. Cryogenics, the science and art of producing cold operating conditions for use on Earth, in orbit, or on some other nonterrestrial body, has become increasingly important to our ability to travel within our solar system. The production of cryogenic fuels and the long-term storage of these fluids are necessary for travel. As our explorations move farther away from Earth, we need to address how to produce the necessary fuels to make a round-trip. The cost and the size of these expeditions are extreme at best. If we take everything necessary for our survival for the round-trip, we invalidate any chance of travel in the near future. As with the early explorers on Earth, we need to harvest much of our energy and our life support from the celestial bodies. The in situ production of these energy sources is paramount to success. We are currently working on several processes to produce the propellants that would allow us to visit and explore the surface of Mars. The capabilities currently at our disposal for launching and delivering equipment to another planet or satellite dictate that the size and scale of any hardware must be extremely small. The miniaturization of the processes needed to prepare the in situ propellants and life support commodities is a real challenge. Chemical engineers are faced with the prospect of reproducing an entire production facility in miniature so the complex can be lifted into space and delivered to our destination. Another area that does not normally concern chemical engineers is the extreme physical aspects payloads are subjected to with the launch of a spacecraft. Extreme accelerations followed by the sudden loss of nearly all gravitational forces are well outside normal equipment design conditions. If the equipment cannot survive the overall trip, then it obviously will not be able to yield the needed products upon arrival. These launch constraints must be taken into account. Finally, we must consider both the effectiveness and efficiencies of the processes. A facility located on the Moon or Mars will not have an unlimited supply of power or other ancillary utilities. For a Mars expedition, the available electric power is severely limited. The design of both the processes and the equipment must be considered. With these constraints in mind, only the most efficient designs will be viable. Cryogenics, in situ resource utilization, miniaturization, launchability, and power/process efficiencies are only a few of the areas that chemical engineers provide support and expertise for the exploration of space.

  1. [Chemical risk in farming].

    PubMed

    Moretto, Angelo

    2013-01-01

    The most important chemical risks in agriculture are plant protection products. Exposure evaluation in agriculture is not an easy task and cannot be carried out with the tools and methodologies of industrial exposures. However, toxicological studies on plant protection products, that are compulsory, provide a lot of useful information for actual risk assessment. Exposure evaluation can be carried out on the basis of exposure models and on semiquantitative measures based on the observation of the activity as it is carried our by the farmer. It is therefore possible to develop risk profiles that can guide exposure evaluation and health surveillance. Concentrated animal feeding operations are associated with several chemical risks including disinfectants, antibiotics, and gases such as ammonia and hydrogen sulfide, in addition to organic dusts and endotoxins. PMID:24303717

  2. Organic chemical evolution

    NASA Technical Reports Server (NTRS)

    Chang, S.

    1981-01-01

    The course of organic chemical evolution preceding the emergence of life on earth is discussed based on evidence of processes occurring in interstellar space, the solar system and the primitive earth. Following a brief review of the equilibrium condensation model for the origin and evolution of the solar system, consideration is given to the nature and organic chemistry of interstellar clouds, comets, Jupiter, meteorites, Venus and Mars, and the prebiotic earth. Major issues to be resolved in the study of organic chemical evolution on earth are identified regarding condensation and accretion in the solar nebula, early geological evolution, the origin and evolution of the atmosphere, organic production rates, organic-inorganic interactions, environmental fluctuations, phase separation and molecular selectivity.

  3. Chemical Modification of Polysaccharides

    PubMed Central

    Cumpstey, Ian

    2013-01-01

    This review covers methods for modifying the structures of polysaccharides. The introduction of hydrophobic, acidic, basic, or other functionality into polysaccharide structures can alter the properties of materials based on these substances. The development of chemical methods to achieve this aim is an ongoing area of research that is expected to become more important as the emphasis on using renewable starting materials and sustainable processes increases in the future. The methods covered in this review include ester and ether formation using saccharide oxygen nucleophiles, including enzymatic reactions and aspects of regioselectivity; the introduction of heteroatomic nucleophiles into polysaccharide chains; the oxidation of polysaccharides, including oxidative glycol cleavage, chemical oxidation of primary alcohols to carboxylic acids, and enzymatic oxidation of primary alcohols to aldehydes; reactions of uronic-acid-based polysaccharides; nucleophilic reactions of the amines of chitosan; and the formation of unsaturated polysaccharide derivatives. PMID:24151557

  4. Biocatalysis for Biobased Chemicals

    PubMed Central

    de Regil, Rubén; Sandoval, Georgina

    2013-01-01

    The design and development of greener processes that are safe and friendly is an irreversible trend that is driven by sustainable and economic issues. The use of Biocatalysis as part of a manufacturing process fits well in this trend as enzymes are themselves biodegradable, require mild conditions to work and are highly specific and well suited to carry out complex reactions in a simple way. The growth of computational capabilities in the last decades has allowed Biocatalysis to develop sophisticated tools to understand better enzymatic phenomena and to have the power to control not only process conditions but also the enzyme’s own nature. Nowadays, Biocatalysis is behind some important products in the pharmaceutical, cosmetic, food and bulk chemicals industry. In this review we want to present some of the most representative examples of industrial chemicals produced in vitro through enzymatic catalysis. PMID:24970192

  5. Chemical genetics and regeneration.

    PubMed

    Sengupta, Sumitra; Zhang, Liyun; Mumm, Jeff S

    2015-10-01

    Regeneration involves interactions between multiple signaling pathways acting in a spatially and temporally complex manner. As signaling pathways are highly conserved, understanding how regeneration is controlled in animal models exhibiting robust regenerative capacities should aid efforts to stimulate repair in humans. One way to discover molecular regulators of regeneration is to alter gene/protein function and quantify effect(s) on the regenerative process: dedifferentiation/reprograming, stem/progenitor proliferation, migration/remodeling, progenitor cell differentiation and resolution. A powerful approach for applying this strategy to regenerative biology is chemical genetics, the use of small-molecule modulators of specific targets or signaling pathways. Here, we review advances that have been made using chemical genetics for hypothesis-focused and discovery-driven studies aimed at furthering understanding of how regeneration is controlled. PMID:26511866

  6. Chemical resonant sensors

    NASA Astrophysics Data System (ADS)

    Hauptmann, Peter R.

    1993-03-01

    Resonant sensors designed to have a mechanical resonance frequency are a subject of special practical interest. They are sensors with outputs based on a quasi-digital frequency signal which is a great advantage over conventional analog sensors. Micromachined mechanical resonant sensors can be used to replace conventional piezoresistors in precision sensor applications such as pressure sensors and accelerometers. For the detecting of chemical species, only a part of known resonant sensor principles can be used for practical aims. Ultrasonic sensors can be classified in this category. They include BAW-, SAW-, APM-, and FPW-sensors. The theoretical concepts for their behavior and the advantages and disadvantages in comparison with other chemical sensors are discussed. Experimental results with BAW-sensors for gas and under-liquid sensing are given. Finally, the actual situation in research and industrial application of this sensor class is reviewed.

  7. Chemical and UV Mutagenesis.

    PubMed

    Bose, Jeffrey L

    2016-01-01

    The ability to create mutations is an important step towards understanding bacterial physiology and virulence. While targeted approaches are invaluable, the ability to produce genome-wide random mutations can lead to crucial discoveries. Transposon mutagenesis is a useful approach, but many interesting mutations can be missed by these insertions that interrupt coding and noncoding sequences due to the integration of an entire transposon. Chemical mutagenesis and UV-based random mutagenesis are alternate approaches to isolate mutations of interest with the potential of only single nucleotide changes. Once a standard method, difficulty in identifying mutation sites had decreased the popularity of this technique. However, thanks to the recent emergence of economical whole-genome sequencing, this approach to making mutations can once again become a viable option. Therefore, this chapter provides an overview protocol for random mutagenesis using UV light or DNA-damaging chemicals. PMID:25646611

  8. Cooee bitumen: Chemical aging

    NASA Astrophysics Data System (ADS)

    Lemarchand, Claire A.; Schrøder, Thomas B.; Dyre, Jeppe C.; Hansen, Jesper S.

    2013-09-01

    We study chemical aging in "Cooee bitumen" using molecular dynamic simulations. This model bitumen is composed of four realistic molecule types: saturated hydrocarbon, resinous oil, resin, and asphaltene. The aging reaction is modelled by the chemical reaction: "2 resins ? 1 asphaltene." Molecular dynamic simulations of four bitumen compositions, obtained by a repeated application of the aging reaction, are performed. The stress autocorrelation function, the fluid structure, the rotational dynamics of the plane aromatic molecules, and the diffusivity of each molecule are determined for the four different compositions. The aging reaction causes a significant dynamics slowdown, which is correlated to the aggregation of asphaltene molecules in larger and dynamically slower nanoaggregates. Finally, a detailed description of the role of each molecule types in the aggregation and aging processes is given.

  9. Production of feedstock chemicals

    SciTech Connect

    Ng, T.K.; Busche, R.M.; McDonald, C.C.; Hardy, R.W.F.

    1983-02-11

    Renewable raw materials may be converted by biological means to feedstocks for the chemical industry. Glucose from cornstarch is the current choice as a substrate, although advances may enable the use of less expensive lignocellulosic materials. The production of oxychemicals and their derivatives from renewable resources could amount to about 100 billion pounds annually, or about half of the U.S. production of organic chemicals. Ethanol produced by fermentation is now cost-competitive with industrial ethanol produced from fossil fuel. Biological routes to other oxychemicals exist and are expected to be important in the future. Several product recovery methods may be used, but new energy-conserving methods will be needed to make the engineering-biology combinations economical. (Refs. 64).

  10. Chemical vapor deposition sciences

    SciTech Connect

    1992-12-31

    Chemical vapor deposition (CVD) is a widely used method for depositing thin films of a variety of materials. Applications of CVD range from the fabrication of microelectronic devices to the deposition of protective coatings. New CVD processes are increasingly complex, with stringent requirements that make it more difficult to commercialize them in a timely fashion. However, a clear understanding of the fundamental science underlying a CVD process, as expressed through computer models, can substantially shorten the time required for reactor and process development. Research scientists at Sandia use a wide range of experimental and theoretical techniques for investigating the science of CVD. Experimental tools include optical probes for gas-phase and surface processes, a range of surface analytic techniques, molecular beam methods for gas/surface kinetics, flow visualization techniques and state-of-the-art crystal growth reactors. The theoretical strategy uses a structured approach to describe the coupled gas-phase and gas-surface chemistry, fluid dynamics, heat and mass transfer of a CVD process. The software used to describe chemical reaction mechanisms is easily adapted to codes that model a variety of reactor geometries. Carefully chosen experiments provide critical information on the chemical species, gas temperatures and flows that are necessary for model development and validation. This brochure provides basic information on Sandia`s capabilities in the physical and chemical sciences of CVD and related materials processing technologies. It contains a brief description of the major scientific and technical capabilities of the CVD staff and facilities, and a brief discussion of the approach that the staff uses to advance the scientific understanding of CVD processes.

  11. Micromachined chemical jet dispenser

    SciTech Connect

    Swierkowski, S.; Ciarlo, D.

    1996-05-13

    Goal is to develop a multi-channel micromachined chemical fluid jet dispenser that is applicable to prototype tests with biological samples that demonstrate its utility for molecular biology experiments. Objective is to demonstrate a new device capable of ultrasonically ejecting droplets from 10-200 {mu}m diameter capillaries that are arranged in an array that is linear or focused. The device is based on several common fabrication procedures used in MEMS (micro electro mechanical systems) technology: piezoelectric actuators, silicon, etc.

  12. Chemical sensor system

    NASA Technical Reports Server (NTRS)

    Darrach, Murray R. (Inventor); Chutjian, Ara (Inventor)

    2008-01-01

    A chemical sensing apparatus and method for the detection of sub parts-per-trillion concentrations of molecules in a sample by optimizing electron utilization in the formation of negative ions is provided. A variety of media may be sampled including air, seawater, dry sediment, or undersea sediment. An electrostatic mirror is used to reduce the kinetic energy of an electron beam to zero or near-zero kinetic energy.

  13. Chemical bonding technology

    NASA Technical Reports Server (NTRS)

    Plueddemann, E.

    1986-01-01

    Primers employed in bonding together the various material interfaces in a photovoltaic module are being developed. The approach develops interfacial adhesion by generating actual chemical bonds between the various materials bonded together. The current status of the program is described along with the progress toward developing two general purpose primers for ethylene vinyl acetate (EVA), one for glass and metals, and another for plastic films.

  14. Chemical Biology Chemical Screening for Hair Cell Loss and Protection

    E-print Network

    Rubel, Edwin

    Chemical Biology Chemical Screening for Hair Cell Loss and Protection in the Zebrafish Lateral Line Rubel,1,2 and David W. Raible1,4 Abstract In humans, most hearing loss results from death of hair cells of mechanosensory hair cells. We discuss chemical screens to identify compounds that induce hair cell loss

  15. CHEMICALS IN THE ENVIRONMENT: OPPT CHEMICAL FACT SHEETS

    EPA Science Inventory

    The OPPT Chemical Fact Sheets are produced by the Office of Pollution, Prevention and Toxics to provide a brief summary of information on selected chemicals. The Fact Sheets cover each chemicals identity, production and use, environmental fate, and health and environmental effect...

  16. The awesome power of synergy from chemical-chemical profiling.

    PubMed

    Piotrowski, Jeff S; Ho, Chuek Hei; Boone, Charles

    2010-08-27

    Chemical-chemical profiling, as described in Farha and Brown (2010), delivers all the power of chemical-genomic profiling while untethering researchers from model systems and thereby enabling us to pursue cell-based drug target identification in almost any organism. PMID:20797605

  17. Chemical and Thermal Analysis

    NASA Technical Reports Server (NTRS)

    Bulluck, J. W.; Rushing, R. A.

    1994-01-01

    Thermal decomposition activation energies have been determined using two methods of Thermogravimetric Analysis (TGA), with good correlation being obtained between the two techniques. Initial heating curves indicated a two-component system for Coflon (i.e. polymer plus placticizer) but a single component system for Tefzel. Two widely differing activation energies were for Coflon supported this view, 15 kcl/mol being associated with plasticizer, and 40 kcal/mol with polymer degradation. With Tefzel, values were 40-45 kcal/mol, the former perhaps being associated with a low molecular weight fraction. Appropriate acceleration factors have been determined. Thermomechanical Analysis (TMA) has shown considerable dimensional change during temperature cycles. For unaged pipe sections heating to 100 C and then holding the temperature resulted in a stable thickness increase of 2%, whereas the Coflon thickness decreased continuously, reaching -4% in 2.7 weeks. Previously strained tensile bars of Tefzel expanded on cooling during TMA. SEM performed on H2S-aged Coflon samples showed significant changes in both physical and chemical nature. The first may have resulted from explosive decompression after part of the aging process. Chemically extensive dehydrofluorination was indicated, and sulfur was present as a result of the aging. These observations indicate that chemical attack of PVDF can occur in some circumstances.

  18. Metabolomics in chemical ecology.

    PubMed

    Kuhlisch, Constanze; Pohnert, Georg

    2015-07-01

    Chemical ecology elucidates the nature and role of natural products as mediators of organismal interactions. The emerging techniques that can be summarized under the concept of metabolomics provide new opportunities to study such environmentally relevant signaling molecules. Especially comparative tools in metabolomics enable the identification of compounds that are regulated during interaction situations and that might play a role as e.g. pheromones, allelochemicals or in induced and activated defenses. This approach helps overcoming limitations of traditional bioassay-guided structure elucidation approaches. But the power of metabolomics is not limited to the comparison of metabolic profiles of interacting partners. Especially the link to other -omics techniques helps to unravel not only the compounds in question but the entire biosynthetic and genetic re-wiring, required for an ecological response. This review comprehensively highlights successful applications of metabolomics in chemical ecology and discusses existing limitations of these novel techniques. It focuses on recent developments in comparative metabolomics and discusses the use of metabolomics in the systems biology of organismal interactions. It also outlines the potential of large metabolomics initiatives for model organisms in the field of chemical ecology. PMID:25926134

  19. Chemical Reactions at Surfaces

    SciTech Connect

    Michael Henderson and Nancy Ryan Gray

    2010-04-14

    Chemical reactions at surfaces underlie some of the most important processes of today, including catalysis, energy conversion, microelectronics, human health and the environment. Understanding surface chemical reactions at a fundamental level is at the core of the field of surface science. The Gordon Research Conference on Chemical Reactions at Surfaces is one of the premiere meetings in the field. The program this year will cover a broad range of topics, including heterogeneous catalysis and surface chemistry, surfaces in environmental chemistry and energy conversion, reactions at the liquid-solid and liquid-gas interface, electronic materials growth and surface modification, biological interfaces, and electrons and photons at surfaces. An exciting program is planned, with contributions from outstanding speakers and discussion leaders from the international scientific community. The conference provides a dynamic environment with ample time for discussion and interaction. Attendees are encouraged to present posters; the poster sessions are historically well attended and stimulate additional discussions. The conference provides an excellent opportunity for junior researchers (e.g. graduate students or postdocs) to present their work and interact with established leaders in the field.

  20. Miniature Chemical Sensor

    SciTech Connect

    Andrew C. R. Pipino

    2004-12-13

    A new chemical detection technology has been realized that addresses DOE environmental management needs. The new technology is based on a variant of the sensitive optical absorption technique, cavity ring-down spectroscopy (CRDS). Termed evanescent-wave cavity ring-down spectroscopy (EW-CRDS), the technology employs a miniature solid-state optical resonator having an extremely high Q-factor as the sensing element, where the high-Q is achieved by using ultra-low-attenuation optical materials, ultra-smooth surfaces, and ultra-high reflectivity coatings, as well as low-diffraction-loss designs. At least one total-internal reflection (TIR) mirror is integral to the resonator permitting the concomitant evanescent wave to probe the ambient environment. Several prototypes have been designed, fabricated, characterized, and applied to chemical detection. Moreover, extensions of the sensing concept have been explored to enhance selectivity, sensitivity, and range of application. Operating primarily in the visible and near IR regions, the technology inherently enables remote detection by optical fiber. Producing 11 archival publications, 5 patents, 19 invited talks, 4 conference proceedings, a CRADA, and a patent-license agreement, the project has realized a new chemical detection technology providing >100 times more sensitivity than comparable technologies, while also providing practical advantages.

  1. Chemical Evolution of Galaxies

    NASA Astrophysics Data System (ADS)

    Matteucci, Francesca

    Models of galactic chemical evolution study how the chemical elements have formed and dispersed in the Universe. During the Big Bang, only light elements, such as hydrogen (H), deuterium (D), helium (He), and a very tiny fraction of lithium (7Li) were formed, while all the other elements from carbon to uranium and beyond were formed inside the stars. The chemical elements and their isotopes are characterized by their mass number (A), namely, the sum of the protons and neutrons composing their nuclei. So, when we write 7Li, it means that A= 7 for Li. Elements with A = 5 and A = 8 do not exist because they would not be stable, elements with A = 9, 10, 11 are the isotopes of berillium (Be) and boron (B), which are formed, together with 6Li and some 7Li during spallation processes, which derive from the interaction between cosmic rays and interstellar atoms of carbon (C), nitrogen (N), and oxygen (O). All the elements with A ? 12 starting from 12C have been synthesized inside the stars and the sum of all of them in Astronomy is called metallicity and indicated with capital Z.

  2. Chemical and Thermal Analysis

    NASA Technical Reports Server (NTRS)

    Bulluck, J. W.; Rushing, R. A.; Thornton, C. P.

    1996-01-01

    Work has included significant research in several areas aimed at further clarification of the aging and chemical failure mechanism of thermoplastics (PVDF or Tefzel) for pipes. Among the areas investigated were the crystallinity changes associated with both the Coflon and Tefzel after various simulated environmental exposures using X-Ray diffraction analysis. We have found that significant changes in polymer crystallinity levels occur as a function of the exposures. These crystallinity changes may have important consequences on the fracture, fatigue, tensile, and chemical resistance of the materials. We have also noted changes in the molecular weight distribution of the Coflon material using a dual detector Gel Permeation Analysis. Again these changes may result in variation in the mechanical and chemical properties in the material. We conducted numerous analytical studies with methods including X-Ray Diffraction, Gel Permeation Chromatography, Fourier Transform Infrared Spectroscopy, Thermogravimetric Analysis, and Differential Scanning Calorimetry. We investigated a number of aged samples of both Tefzel and Coflon that were forwarded from MERL. Pressurized tests were performed in a modified Fluid G, which we will call G2. In this case the ethylene diamine concentration was increased to 3 percent in methanol. Coflon pipe sections and powdered Coflon were exposed in pressure cells at 1700 psi at three separate test temperatures, 70 C, 110 C, and 130 C. The primary purpose of the pressure tests in Fluid G2 was to further elucidate the aging mechanism of PVDF degradation.

  3. Chemical and Thermal Analysis

    NASA Technical Reports Server (NTRS)

    Bulluck, J. W.; Rushing, R. A.

    1997-01-01

    Work during the past three years has included significant research in several areas aimed at further clarification of the aging and chemical failure mechanism of thermoplastics (PVDF or Tefzel) for pipes. Among the areas investigated were the crystallinity changes associated with both the Coflon and Tefzel after various simulated environmental exposures using X-Ray diffraction analysis. We have found that significant changes in polymer crystallinity levels occur as a function of the exposures. These crystallinity changes may have important consequences on the fracture, fatigue, tensile, and chemical resistance of the materials. We have also noted changes in the molecular weight distribution and the increased crosslinking of the Coflon material using Gel Permeation Chromatographic Analysis. Again these changes may result in variations in the mechanical and chemical properties in the material. We conducted numerous analytical studies with methods including X-ray Diffraction, Gel Permeation Chromatography, Fourier Transform Infrared Spectroscopy, and Differential Scanning Calorimetry. We investigated a plethora of aged samples of both Tefzel and Coflon that were forwarded from MERL. Pressurized tests were performed on powdered PVDF in a modified Fluid A, which we will call A-2. In this case the ethylene diamine concentration was increased to 3 percent in methanol. Coflon pipe sections and powdered Coflon were exposed in pressure cells at 1700 psi at three separate test temperatures.

  4. Ground water chemicals desk reference

    SciTech Connect

    Montgomery, J.J.; Welkom, L.M. )

    1989-01-01

    This new book covers the 137 organic compounds most commonly found in ground water and the unsaturated zone. The authors assess the fate and transport of ground water chemicals. The physical and chemical properties of the compound are described.

  5. CHEMICAL STORAGE: MYTHS VERSUS REALITY

    SciTech Connect

    Simmons, F

    2007-03-19

    A large number of resources explaining proper chemical storage are available. These resources include books, databases/tables, and articles that explain various aspects of chemical storage including compatible chemical storage, signage, and regulatory requirements. Another source is the chemical manufacturer or distributor who provides storage information in the form of icons or color coding schemes on container labels. Despite the availability of these resources, chemical accidents stemming from improper storage, according to recent reports (1) (2), make up almost 25% of all chemical accidents. This relatively high percentage of chemical storage accidents suggests that these publications and color coding schemes although helpful, still provide incomplete information that may not completely mitigate storage risks. This manuscript will explore some ways published storage information may be incomplete, examine the associated risks, and suggest methods to help further eliminate chemical storage risks.

  6. Chemical Agents: Facts about Evacuation

    MedlinePLUS

    ... Health Emergency Response Guide Reaching At-Risk Populations Chemical Agents: Facts About Evacuation Format: Select one PDF [ ... on Facebook Tweet Share Compartir Some kinds of chemical accidents or attacks, such as a train derailment ...

  7. Devices for collecting chemical compounds

    DOEpatents

    Scott, Jill R; Groenewold, Gary S

    2013-12-24

    A device for sampling chemical compounds from fixed surfaces and related methods are disclosed. The device may include a vacuum source, a chamber and a sorbent material. The device may utilize vacuum extraction to volatilize the chemical compounds from a fixed surface so that they may be sorbed by the sorbent material. The sorbent material may then be analyzed using conventional thermal desorption/gas chromatography/mass spectrometry (TD/GC/MS) instrumentation to determine presence of the chemical compounds. The methods may include detecting release and presence of one or more chemical compounds and determining the efficacy of decontamination. The device may be useful in collection and analysis of a variety of chemical compounds, such as residual chemical warfare agents, chemical attribution signatures and toxic industrial chemicals.

  8. Genotoxicity of complex chemical mixtures 

    E-print Network

    Phillips, Tracie Denise

    2009-05-15

    Complex chemical mixtures are ubiquitous in the environment. Humans are frequently exposed to these mixtures; therefore, it is important to understand potential interactions of chemical mixtures. Mixture interactions may influence the absorption...

  9. Chemical Processing. Resources in Technology.

    ERIC Educational Resources Information Center

    Technology Teacher, 1991

    1991-01-01

    Reviews major organic and inorganic chemicals, their products, and the sociocultural impact of the chemical industry. Provides the following learning activity components: objectives, list of materials and equipment, procedures, student quiz with answers, and three references. (SK)

  10. Chemical Educators Stress Industry Ties

    ERIC Educational Resources Information Center

    Worthy, Ward

    1975-01-01

    Describes various courses and programs designed to better prepare graduates to enter the chemical industry, including courses which stress the chemistry of industrial processes, and the economics of the chemical industry. (MLH)

  11. LLNL Chemical Kinetics Modeling Group

    SciTech Connect

    Pitz, W J; Westbrook, C K; Mehl, M; Herbinet, O; Curran, H J; Silke, E J

    2008-09-24

    The LLNL chemical kinetics modeling group has been responsible for much progress in the development of chemical kinetic models for practical fuels. The group began its work in the early 1970s, developing chemical kinetic models for methane, ethane, ethanol and halogenated inhibitors. Most recently, it has been developing chemical kinetic models for large n-alkanes, cycloalkanes, hexenes, and large methyl esters. These component models are needed to represent gasoline, diesel, jet, and oil-sand-derived fuels.

  12. Microscopic Models for Chemical Thermodynamics

    E-print Network

    V. A. Malyshev

    2011-12-08

    We introduce an infinite particle system dynamics, which includes stochastic chemical kinetics models, the classical Kac model and free space movement. We study energy redistribution between two energy types (kinetic and chemical) in different time scales, similar to energy redistribution in the living cell. One example is considered in great detail, where the model provides main formulas of chemical thermodynamics.

  13. Modern Chemical Technology, Volume 5.

    ERIC Educational Resources Information Center

    Pecsok, Robert L., Ed.; Chapman, Kenneth, Ed.

    This volume contains chapters 26-31 for the American Chemical Society (ACS) "Modern Chemical Technology" (ChemTeC) instructional material intended to prepare chemical technologists. Chapter 26 reviews oxidation and reduction, including applications in titrations with potassium permanganate and iodometry. Coordination compounds are described in the…

  14. The chemical ecology of cyanobacteria

    PubMed Central

    Leão, Pedro N.; Engene, Niclas; Antunes, Agostinho; Gerwick, William H.; Vasconcelos, Vitor

    2014-01-01

    This review covers the literature on the chemically mediated ecology of cyanobacteria, including ultraviolet radiation protection, feeding-deterrence, allelopathy, resource competition, and signalling. To highlight the chemical and biological diversity of this group of organisms, evolutionary and chemotaxonomical studies are presented. Several technologically relevant aspects of cyanobacterial chemical ecology are also discussed. PMID:22237837

  15. Green chemistry for chemical synthesis.

    PubMed

    Li, Chao-Jun; Trost, Barry M

    2008-09-01

    Green chemistry for chemical synthesis addresses our future challenges in working with chemical processes and products by inventing novel reactions that can maximize the desired products and minimize by-products, designing new synthetic schemes and apparati that can simplify operations in chemical productions, and seeking greener solvents that are inherently environmentally and ecologically benign. PMID:18768813

  16. Modern Chemical Technology, Volume 8.

    ERIC Educational Resources Information Center

    Pecsok, Robert L.; Chapman, Kenneth

    This volume is one of a series for the Chemical Technician Curriculum Project (ChemTeC) of the American Chemical Society funded by the National Science Foundation. It consists of discussions, exercises, and experiments on the following topics: amino acids and proteins, carbohydrates, synthetic polymers, other natural products, chemical separations…

  17. Modern Chemical Technology, Volume 6.

    ERIC Educational Resources Information Center

    Pecsok, Robert L., Ed.; Chapman, Kenneth, Ed.

    This volume contains chapters 32-39 for the American Chemical Society (ACS) "Modern Chemical Technology" (ChemTeC) instructional materials intended to prepare chemical technologists. The study of organic chemistry is continued as these major topics are considered: alcohols and phenols, alkyl and aryl halides, ethers, aldehydes and ketones,…

  18. Modern Chemical Technology, Volume 2.

    ERIC Educational Resources Information Center

    Pecsok, Robert L.; Chapman, Kenneth

    This volume contains chapters 8 to 13 of the ACS "Modern Chemical Technology" (ChemTeC) curriculum material which is intended to prepare chemical technologists. The content is centered around the background needed to understand the structure of the atom, covalence, electrovalence, elements and compounds, liquids and solutions, and chemical

  19. Green chemistry for chemical synthesis

    PubMed Central

    Li, Chao-Jun; Trost, Barry M.

    2008-01-01

    Green chemistry for chemical synthesis addresses our future challenges in working with chemical processes and products by inventing novel reactions that can maximize the desired products and minimize by-products, designing new synthetic schemes and apparati that can simplify operations in chemical productions, and seeking greener solvents that are inherently environmentally and ecologically benign. PMID:18768813

  20. Chemical Waste Management and Disposal.

    ERIC Educational Resources Information Center

    Armour, Margaret-Ann

    1988-01-01

    Describes simple, efficient techniques for treating hazardous chemicals so that nontoxic and nonhazardous residues are formed. Discusses general rules for management of waste chemicals from school laboratories and general techniques for the disposal of waste or surplus chemicals. Lists specific disposal reactions. (CW)

  1. Chemical Laws Academic Resource Center

    E-print Network

    Heller, Barbara

    Chemical Laws Academic Resource Center #12;Chemical Law · Chemical reactions are governed and volume of a gas, if the temperature is kept constant within a closed system · The mathematical equation by the equation below: p1v1 = p2v2 #12;Boyle's Law (Cont.) · It is important to remember that the temperature

  2. CHEMICAL LABORATORY SAFETY AND METHODOLOGY

    E-print Network

    Northern British Columbia, University of

    CHEMICAL LABORATORY SAFETY AND METHODOLOGY MANUAL August 2013 #12;ii Emergency Numbers UNBC Prince-Emergency Numbers UNBC Prince George Campus Chemstores 6472 Chemical Safety 6472 Radiation Safety 6472 Biological the safe use, storage, handling, waste and emergency management of chemicals on the University of Northern

  3. Nonlinear chemical dynamics Francesc Sagusa

    E-print Network

    Epstein, Irving R.

    Nonlinear chemical dynamics Francesc Saguésa and Irving R. Epsteinb a Departament de Química Física March 2003 The interdisciplinary field of nonlinear chemical dynamics has grown significantly in breadth an overview of some of the key results of nonlinear chemical dynamics, with emphasis on those areas most

  4. Pocket Calculators in Chemical Education.

    ERIC Educational Resources Information Center

    Holdsworth, D. K.

    1980-01-01

    Reviews ways in which programable pocket calculators are used in chemical education. Discussed are simulations of chemical experiments, performance of repetitive calculations, processing chemical data directly from instruments, testing hypotheses, and monitoring class practical results. Lists some calculators and their features and some useful…

  5. Identification of Chemical Toxicity Using Ontology Information of Chemicals

    PubMed Central

    Jiang, Zhanpeng; Xu, Rui; Dong, Changchun

    2015-01-01

    With the advance of the combinatorial chemistry, a large number of synthetic compounds have surged. However, we have limited knowledge about them. On the other hand, the speed of designing new drugs is very slow. One of the key causes is the unacceptable toxicities of chemicals. If one can correctly identify the toxicity of chemicals, the unsuitable chemicals can be discarded in early stage, thereby accelerating the study of new drugs and reducing the R&D costs. In this study, a new prediction method was built for identification of chemical toxicities, which was based on ontology information of chemicals. By comparing to a previous method, our method is quite effective. We hope that the proposed method may give new insights to study chemical toxicity and other attributes of chemicals. PMID:26508991

  6. Supergiant Pulses from Extragalactic Neutron Stars

    E-print Network

    Cordes, J M

    2015-01-01

    We evaluate the hypothesis that extragalactic radio bursts originate from neutron stars. These could be active pulsars or dormant, slowly spinning objects, but the different population distances for these two classes require correspondingly different contributions to burst dispersion measures from any host or intervening galaxies combined with the intergalactic medium. The large, apparent burst rate $\\sim 10^4~$ sky$^{-1}~$ day$^{-1}$ is comparable to the core-collapse supernova rate in a Hubble volume and can be accommodated by a single burst per object in the resulting large reservoir of $\\sim 10^{17}~$ neutron stars. A smaller population distance requires more bursts per object but the likelihood of seeing repeated bursts from any single object is extremely low on human timescales. Gravitational microlensing could play a role for high redshift sources. Extrapolation of the Crab pulsar's giant pulses --- exemplars of coherent, high brightness temperature radiation --- to a rate of one per $10^3~$yr yields a...

  7. The newly discovered eclipsing supergiant 22 Vulpeculae

    NASA Technical Reports Server (NTRS)

    Ake, T. B.; Parsons, S. B.; Kondo, Y.

    1985-01-01

    Spectra obtained with the IUE satellite have led to the discovery that 22 Vul is an atmospheric eclipsing binary belonging to the zeta Aurigae class of stars. The system is the first found with a G-type primary (G3 Ib-II), while the spectral type of the secondary is the latest (B9) and its period is the shortest (249 days) of any of the classical members of the group. Out-of-eclipse spectra, atmospheric eclipse phases and totality observations are discussed. Comparisons are made with other systems.

  8. Adapting Chemical Mixture Risk Assessment Methods to Assess Chemical and Non-Chemical Stressor Combinations

    EPA Science Inventory

    Presentation based on the following abstract: Chemical mixtures risk assessment methods are routinely used. To address combined chemical and nonchemical stressors, component-based approaches may be applicable, depending on the toxic action among diverse stressors. Such methods a...

  9. Chemical Microthruster Options

    NASA Technical Reports Server (NTRS)

    DeGroot, Wim; Oleson, Steve

    1996-01-01

    Chemical propulsion systems with potential application to microsatellites are classified by propellant phase, i.e. gas, liquid, or solid. Four promising concepts are selected based on performance, weight, size, cost, and reliability. The selected concepts, in varying stages of development, are advanced monopropellants, tridyne(TM), electrolysis, and solid gas generator propulsion. Tridyne(TM) and electrolysis propulsion are compared vs. existing cold gas and monopropellant systems for selected microsatellite missions. Electrolysis is shown to provide a significant weight advantage over monopropellant propulsion for an orbit transfer and plane change mission. Tridyne(TM) is shown to provide a significant advantage over cold gas thrusters for orbit trimming and spacecraft separation.

  10. Chemical kinetics modeling

    SciTech Connect

    Westbrook, C.K.; Pitz, W.J.

    1993-12-01

    This project emphasizes numerical modeling of chemical kinetics of combustion, including applications in both practical combustion systems and in controlled laboratory experiments. Elementary reaction rate parameters are combined into mechanisms which then describe the overall reaction of the fuels being studied. Detailed sensitivity analyses are used to identify those reaction rates and product species distributions to which the results are most sensitive and therefore warrant the greatest attention from other experimental and theoretical research programs. Experimental data from a variety of environments are combined together to validate the reaction mechanisms, including results from laminar flames, shock tubes, flow systems, detonations, and even internal combustion engines.

  11. Chemical sensing flow probe

    DOEpatents

    Laguna, G.R.; Peter, F.J.; Butler, M.A.

    1999-02-16

    A new chemical probe determines the properties of an analyte using the light absorption of the products of a reagent/analyte reaction. The probe places a small reaction volume in contact with a large analyte volume. Analyte diffuses into the reaction volume. Reagent is selectively supplied to the reaction volume. The light absorption of the reaction in the reaction volume indicates properties of the original analyte. The probe is suitable for repeated use in remote or hostile environments. It does not require physical sampling of the analyte or result in significant regent contamination of the analyte reservoir. 7 figs.

  12. Chemical sensing flow probe

    DOEpatents

    Laguna, George R. (Albuquerque, NM); Peter, Frank J. (Albuquerque, NM); Butler, Michael A. (Albuquerque, NM)

    1999-01-01

    A new chemical probe determines the properties of an analyte using the light absorption of the products of a reagent/analyte reaction. The probe places a small reaction volume in contact with a large analyte volume. Analyte diffuses into the reaction volume. Reagent is selectively supplied to the reaction volume. The light absorption of the reaction in the reaction volume indicates properties of the original analyte. The probe is suitable for repeated use in remote or hostile environments. It does not require physical sampling of the analyte or result in significant regent contamination of the analyte reservoir.

  13. Chemical sensor system

    DOEpatents

    Darrow, Christopher B. (Pleasanton, CA); Satcher, Jr., Joe H. (Modesto, CA); Lane, Stephen M. (Oakland, CA); Lee, Abraham P. (Walnut Creek, CA); Wang, Amy W. (Berkeley, CA)

    2002-01-01

    An implantable chemical sensor system for medical applications is described which permits selective recognition of an analyte using an expandable biocompatible sensor, such as a polymer, that undergoes a dimensional change in the presence of the analyte. The expandable polymer is incorporated into an electronic circuit component that changes its properties (e.g., frequency) when the polymer changes dimension. As the circuit changes its characteristics, an external interrogator transmits a signal transdermally to the transducer, and the concentration of the analyte is determined from the measured changes in the circuit. This invention may be used for minimally invasive monitoring of blood glucose levels in diabetic patients.

  14. Areawide chemical contamination

    SciTech Connect

    Miller, R.W.

    1981-04-17

    Nine case histories illustrate the mounting problems owing to chemical contamination that often extends beyond the workplace into the community. The effects include not only carcinogenesis and teratogenesis, so much in the public's mind, but also severe neurological and gonadal disabilities immediately after exposure. Recognition of causal relationships is often made by astute clinicians. The experience of the Atomic Bomb Casualty Commission in studying Japanese survivors in Hiroshima and Nagasaki serves as a model for future studies of communities exposed to unusual environmental contamination.

  15. Lasers in chemical processing

    SciTech Connect

    Davis, J.I.

    1982-04-15

    The high cost of laser energy is the crucial issue in any potential laser-processing application. It is expensive relative to other forms of energy and to most bulk chemicals. We show those factors that have previously frustrated attempts to find commercially viable laser-induced processes for the production of materials. Having identified the general criteria to be satisfied by an economically successful laser process and shown how these imply the laser-system requirements, we present a status report on the uranium laser isotope separation (LIS) program at the Lawrence Livermore National Laboratory (LLNL).

  16. Chemically rechargeable battery

    NASA Technical Reports Server (NTRS)

    Graf, James E. (Inventor); Rowlette, John J. (Inventor)

    1984-01-01

    Batteries (50) containing oxidized, discharged metal electrodes such as an iron-air battery are charged by removing and storing electrolyte in a reservoir (98), pumping fluid reductant such as formalin (aqueous formaldehyde) from a storage tank (106) into the battery in contact with the surfaces of the electrodes. After sufficient iron hydroxide has been reduced to iron, the spent reductant is drained, the electrodes rinsed with water from rinse tank (102) and then the electrolyte in the reservoir (106) is returned to the battery. The battery can be slowly electrically charged when in overnight storage but can be quickly charged in about 10 minutes by the chemical procedure of the invention.

  17. Absence of morphologic correlation between chemical toxicity and chemical carcinogenesis.

    PubMed Central

    Huff, J

    1993-01-01

    The experimental data set used to evaluate site-specific histopathologic correspondence between the morphologic end points of toxicity and carcinogenicity comprises 130 chemical carcinogenesis studies. Nearly 1500 sex-species-exposure-group experiments were evaluated for a) evidence of toxicity or/and carcinogenicity, b) dose-response relationships, c) site-specific correlations of toxicity and carcinogenicity, and d) correspondence with Salmonella mutagenicity. The major conclusions are that chemicals evaluated for long-term toxicity and carcinogenicity in experimental animals divide typically and consistently into three categories: a) chemicals causing organ toxicity without cancer, b) chemicals causing site-specific cancer with no associated toxicity, and c) chemicals causing both toxicity and cancer in the same organ. Few chemicals overall (and none in this data set) fit the remaining group that cause neither toxicity nor carcinogenicity under these protocol conditions. Mutagenicity exhibited no consistent pattern with any of these groupings. Only 7 of 53 "positive" chemicals had target organ toxicity at all sites of carcinogenicity. Just three chemicals showed carcinogenic effects at the highest exposure concentrations without supporting evidence of tumors at the lower levels. From these comparative morphological analyses, and for almost all cases, available data do not support a correlation between chemically induced toxicity or regenerative phenomena and carcinogenicity. Consequently, until scientific knowledge about molecular mechanisms of chemical carcinogenesis becomes better understood and generally accepted, attempts to use toxicity findings to modify risk assessment processes will be fraught with uncertainty and thus could have a negative impact on public health. PMID:8013424

  18. Natural chemicals, synthetic chemicals, risk assessment, and cancer

    SciTech Connect

    Ames, B.N.; Gold, L.S. )

    1990-01-01

    The administration of chemicals at the maximum tolerated dose (MTD) in standard animal cancer tests is postulated to increase cell division (mitogenesis), which in turn increases rates of mutagenesis and thus carcinogenesis. The animal data are consistent with this mechanism, because a high proportion of all chemicals tested are indeed rodent carcinogens. We conclude that at the low doses of most human exposures, where cell killing does not occur, the hazards to humans of rodent carcinogens may be much lower than is commonly assumed. The toxicological significance of exposures to synthetic chemicals is examined in the context of exposures to naturally occurring chemicals. We calculate that 99.99% of the pesticides in the American diet are chemicals that plants produce to defend themselves. Only 52 natural pesticides have been tested in high-dose animal cancer tests, and about half (27) are rodent carcinogens; these 27 are shown to be present in many common foods. We conclude that natural and synthetic chemicals are equally likely to be positive in animal cancer tests. The toxicology of synthetic chemicals is compared to that of natural chemicals, which represent the vast bulk of the chemicals to which humans are exposed. It is argued that animals have a broad array of inducible general defenses to combat the changing array of toxic chemicals in plant food (nature's pesticides) and that these defenses are effective against both natural and synthetic toxins. Synthetic toxins such as dioxin are compared to natural chemicals, such as indole carbinol and ethanol. The finding that in high-dose tests, a high proportion of both natural and synthetic chemicals are carcinogens, mutagens, teratogens, and clastogens (30-50% for each group) undermines current regulatory effects based on these tests to protect public health from low doses of synthetic chemicals.

  19. Chemical heat pump

    DOEpatents

    Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

    1984-01-01

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to faciliate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  20. Chemical heat pump

    DOEpatents

    Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

    1981-01-01

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  1. Chemical heat pump

    DOEpatents

    Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

    1984-01-01

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  2. Chemical heat pump

    DOEpatents

    Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

    1984-01-01

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate intallation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  3. Aqueous chemical wash compositions

    SciTech Connect

    Bannister, C.E.

    1987-07-21

    This patent describes an aqueous, substantially unfoamed chemical wash composition having properties making it suitable for use as a pre-flush in well cementing operations and/or for removal of drilling mud from a borehole at a temperature of from about 150/sup 0/F to about 270/sup 0/F, the wash a. being predominantly composed of water, b. containing an active surfactant component comprising a combination of (1) from about 0.1 to about 1.5 weight percent (total weight basis) of a water soluble anionic surfactant; (2) from about 0.1 to about 1.5 weight percent (total weight basis) of a nonionic surfactant; and (3) from about 0.05 to about 0.54 weight percent (total weight basis) of at least one water soluble amphoteric surfactant, and c. having dispersed therein a heterogeneous mixture of distinct particles comprising both a first particulate oil soluble resin which is friable and a second particulate oil soluble resin which is pliable and where the size of the friable resin particles ranges from about 0.5 to about 300 microns and the size of the pliable resin particles ranges from about 0.05 to about 30 microns. The amount of the friable-pliable resin mixture is sufficient to impart effective fluid loss control to the chemical wash composition.

  4. a Submillimeter Chemical Sensor

    NASA Astrophysics Data System (ADS)

    Neese, Christopher F.; Medvedev, Ivan R.; De Lucia, Frank C.; Plummer, Grant M.; Ball, Christopher D.; Frank, Aaron J.

    2010-06-01

    Rotational spectroscopy has been recognized a potentially powerful tool for chemical analysis since the very beginnings of the field. A typical rotational fingerprint consists of 10^5 resolvable spectral channels, leading to `absolute' specificity, even in complex mixtures. Furthermore, rotational spectroscopy requires very small amounts of sample with detection limits as low as picograms. Nevertheless, this technique has not yet been widely applied to analytical science because of the size, cost, and complexity of traditional spectrometers. A resurgence of interest in spectroscopic sensors has been fueled by increases in performance made possible by advances in laser systems and applications in medicine, environmental monitoring, and national security. Most of these new approaches make use of the optical/infrared spectral regions and their well established, but still rapidly evolving technology base. The submillimeter (SMM) spectral region, while much less well known, has also seen significant technological advances, allowing the design of powerful spectroscopic sensors. Using modern solid-state multiplier technology we have built a small bench top SMM spectrometer designed for use as a chemical sensor. This spectrometer includes a sample acquisition system including the vacuum equipment to provide the ideal pressures (1--10 mtorr) for SMM spectroscopy and a sorbent tube for analyte collection and preconcentration. The entire spectrometer, including power supplies, frequency synthesizers, a 1.2 m folded sample cell, and a computer for data analysis fits into a cubic foot box.

  5. Chemical sensing with nanowires.

    PubMed

    Penner, Reginald M

    2012-01-01

    Transformational advances in the performance of nanowire-based chemical sensors and biosensors have been achieved over the past two to three years. These advances have arisen from a better understanding of the mechanisms of transduction operating in these devices, innovations in nanowire fabrication, and improved methods for incorporating receptors into or onto nanowires. Nanowire-based biosensors have detected DNA in undiluted physiological saline. For silicon nanowire nucleic acid sensors, higher sensitivities have been obtained by eliminating the passivating oxide layer on the nanowire surface and by substituting uncharged protein nucleic acids for DNA as the capture strands. Biosensors for peptide and protein cancer markers, based on both semiconductor nanowires and nanowires of conductive polymers, have detected these targets at physiologically relevant concentrations in both blood plasma and whole blood. Nanowire chemical sensors have also detected several gases at the parts-per-million level. This review discusses these and other recent advances, concentrating on work published in the past three years. PMID:22524224

  6. [Chemical food contaminants].

    PubMed

    Schrenk, D

    2004-09-01

    Chemical food contaminants are substances which are neither present naturally in the usual raw material used for food production nor are added during the regular production process. Examples are environmental pollutants or contaminants derived from agricultural production of crops or livestock or from inadequate manufacturing of the food product itself. More difficult is the classification of those compounds formed during regular manufacturing such as products of thermal processes including flavoring substances. In these cases, it is common practice to call those compounds contaminants which are known for their adverse effects such as acrylamide, whereas constituents which add to the food-specific flavor such as Maillard products formed during roasting, baking etc. are not termed contaminants. From a toxicological viewpoint this distinction is not always clear-cut. Important groups of chemical contaminants are metals such as mercury or lead, persistent organic pollutants such as polychlorinated biphenyls and related pollutants, which are regularly found in certain types of food originating from background levels of these compounds in our environment. Furthermore, natural toxins form microorganisms or plants, and compounds formed during thermal treatment of food are of major interest. In general, a scientific risk assessment has to be carried out for any known contaminant. This comprises an exposure analysis and a toxicological and epidemiological assessment. On these grounds, regulatory and/or technological measures can often improve the situation. Major conditions for a scientific risk assessment and a successful implementation of regulations are highly developed food quality control, food toxicology and nutritional epidemiology. PMID:15378171

  7. Controlling toxic chemicals

    SciTech Connect

    Postel, S.

    1988-01-01

    The use of pesticides in agriculture and the disposal of industrial chemical wastes constitute two major pathways by which people are inadvertently exposed to toxics. These practices release hundreds of millions of tons of potentially hazardous substances into the environment each year. In many ways the situation with industrial chemical waste parallels the predicament with pesticides: Not only are current practices contaminating the environment and creating health risks, but they are unsustainable over the long term. Strategies that reduce pesticide use in agriculture and minimize waste generation in industry offer cost-effective approaches to decreasing risks from toxics. Such strategies differ fundamentally from current practice and require new ways of thinking. The quick fixes of pesticide spraying and end-of-pipe pollution control are replaced with new production systems aimed at reconciling economic profits with environmental protection. Current efforts in integrated pest management and industrial waste reduction, although clearly promising, only hint at their long-term potential for detoxifying the environment.

  8. Chemical Looping Combustion Kinetics

    SciTech Connect

    Edward Eyring; Gabor Konya

    2009-03-31

    One of the most promising methods of capturing CO{sub 2} emitted by coal-fired power plants for subsequent sequestration is chemical looping combustion (CLC). A powdered metal oxide such as NiO transfers oxygen directly to a fuel in a fuel reactor at high temperatures with no air present. Heat, water, and CO{sub 2} are released, and after H{sub 2}O condensation the CO{sub 2} (undiluted by N{sub 2}) is ready for sequestration, whereas the nickel metal is ready for reoxidation in the air reactor. In principle, these processes can be repeated endlessly with the original nickel metal/nickel oxide participating in a loop that admits fuel and rejects ash, heat, and water. Our project accumulated kinetic rate data at high temperatures and elevated pressures for the metal oxide reduction step and for the metal reoxidation step. These data will be used in computational modeling of CLC on the laboratory scale and presumably later on the plant scale. The oxygen carrier on which the research at Utah is focused is CuO/Cu{sub 2}O rather than nickel oxide because the copper system lends itself to use with solid fuels in an alternative to CLC called 'chemical looping with oxygen uncoupling' (CLOU).

  9. Selective chemical stripping

    NASA Astrophysics Data System (ADS)

    Malavallon, Olivier

    1995-04-01

    At the end of the 80's, some of the large European airlines expressed a wish for paint systems with improved strippability on their aircraft, allowing the possibility to strip down to the primer without altering it, using 'mild' chemical strippers based on methylene chloride. These improvements were initially intended to reduce costs and stripping cycle times while facilitating rapid repainting, and this without the need to change the conventionally used industrial facilities. The level of in-service performance of these paint systems was to be the same as the previous ones. Requirements related to hygiene safety and the environment were added to these initial requirements. To meet customers' expectations, Aerospatiale, within the Airbus Industry GIE, formed a work group. This group was given the task of specifying, following up the elaboration and qualifying the paint systems allowing requirements to be met, in relation with the paint suppliers and the airlines. The analysis made in this report showed the interest of transferring as far upstream as possible (to paint conception level) most of the technical constraints related to stripping. Thus, the concept retained for the paint system, allowing selective chemical stripping, is a 3-coat system with characteristics as near as possible to the previously used paints.

  10. Chemical Reactions in DSMC

    SciTech Connect

    Bird, G. A.

    2011-05-20

    DSMC simulations of chemically reacting gas flows have generally employed procedures that convert the macroscopic chemical rate equations to reaction cross-sections at the microscopic level. They therefore depend on the availability of experimental data that has been fitted to equations of the Arrhenius form. This paper presents a physical model for dissociation and recombination reactions and a phenomenological model for exchange and chain reactions. These are based on the vibrational states of the colliding molecules and do not require any experimentally-based data. The simplicity of the models allows the corresponding rate equations to be written down and, while these are not required for the implementation of the models, they facilitate their validation. The model is applied to a typical hypersonic atmospheric entry problem and the results are compared with the corresponding results from the traditional method. It is also used to investigate both spontaneous and forced ignition as well as the structure of a deflagration wave in an oxygen-hydrogen mixture.

  11. 198 Chemical Engineering Education AN INTRODUCTION TO

    E-print Network

    Hesketh, Robert

    198 Chemical Engineering Education AN INTRODUCTION TO DRUG DELIVERY FOR CHEMICAL ENGINEERS- maceutical sciences, engineering, and chemistry. Chemical en- gineers play an important role in this exciting- dergraduate chemical engineering students are rarely exposed to drug delivery through their coursework

  12. CHEMICAL SENSORS School of Chemistry and Biochemistry

    E-print Network

    Sherrill, David

    CHEMICAL SENSORS CHEM 6282 School of Chemistry and Biochemistry Chemical sensors physics and electronics or a chemical instrumentation course. The topics covered will include general theory of chemical recognition, electrochemical, optical, mass sensors and data reduction. Text: J

  13. CHEMICAL HYGIENE PLAN HAZARD COMMUNICATION PLAN

    E-print Network

    Kim, Duck O.

    CHEMICAL HYGIENE PLAN AND HAZARD COMMUNICATION PLAN Occupational Exposures to Hazardous Chemicals Research Safety 2723 Environmental Health/Safety Chemical Hygiene Officer Radiation Safety Officer (Accident Reports) 4589 Clinical Engineering 2964 #12;TABLE OF CONTENTS CHEMICAL HYGIENE PLAN (CHP) (4

  14. Gas Phase Chemical Detection with an Integrated Chemical Analysis System

    SciTech Connect

    Baca, Albert G.; Casalnuovo, Stephen A.; Frye-Mason, Gregory C.; Heller, Edwin J.; Hietala, Susan L.; Hietala, Vincent M.; Kottenstette, Richard J.; Lewis, Patrick R.; Manginell, Ronald P.; Matzke, Carloyn M.; Reno, John L.; Sasaki, Darryl Y.; Schubert, W. Kent

    1999-07-08

    Microfabrication technology has been applied to the development of a miniature, multi-channel gas phase chemical laboratory that provides fast response, small size, and enhanced versatility and chemical discrimination. Each analysis channel includes a sample concentrator followed by a gas chromatographic separator and a chemically selective surface acoustic wave detector array to achieve high sensitivity and selectivity. The performance of the components, individually and collectively, is described. The design and performance of novel micromachined acoustic wave devices, with the potential for improved chemical sensitivity, are also described.

  15. Concordant Chemical Reaction Networks

    PubMed Central

    Shinar, Guy; Feinberg, Martin

    2015-01-01

    We describe a large class of chemical reaction networks, those endowed with a subtle structural property called concordance. We show that the class of concordant networks coincides precisely with the class of networks which, when taken with any weakly monotonic kinetics, invariably give rise to kinetic systems that are injective — a quality that, among other things, precludes the possibility of switch-like transitions between distinct positive steady states. We also provide persistence characteristics of concordant networks, instability implications of discordance, and consequences of stronger variants of concordance. Some of our results are in the spirit of recent ones by Banaji and Craciun, but here we do not require that every species suffer a degradation reaction. This is especially important in studying biochemical networks, for which it is rare to have all species degrade. PMID:22659063

  16. Chemical vapor deposition growth

    NASA Technical Reports Server (NTRS)

    Ruth, R. P.; Manasevit, H. M.; Kenty, J. L.; Moudy, L. A.; Simpson, W. I.; Yang, J. J.

    1976-01-01

    The chemical vapor deposition (CVD) method for the growth of Si sheet on inexpensive substrate materials is investigated. The objective is to develop CVD techniques for producing large areas of Si sheet on inexpensive substrate materials, with sheet properties suitable for fabricating solar cells meeting the technical goals of the Low Cost Silicon Solar Array Project. Specific areas covered include: (1) modification and test of existing CVD reactor system; (2) identification and/or development of suitable inexpensive substrate materials; (3) experimental investigation of CVD process parameters using various candidate substrate materials; (4) preparation of Si sheet samples for various special studies, including solar cell fabrication; (5) evaluation of the properties of the Si sheet material produced by the CVD process; and (6) fabrication and evaluation of experimental solar cell structures, using standard and near-standard processing techniques.

  17. Volatile chemical reagent detector

    DOEpatents

    Chen, Liaohai; McBranch, Duncan; Wang, Rong; Whitten, David

    2004-08-24

    A device for detecting volatile chemical reagents based on fluorescence quenching analysis that is capable of detecting neutral electron acceptor molecules. The device includes a fluorescent material, a contact region, a light source, and an optical detector. The fluorescent material includes at least one polymer-surfactant complex. The polymer-surfactant complex is formed by combining a fluorescent ionic conjugated polymer with an oppositely charged surfactant. The polymer-surfactant complex may be formed in a polar solvent and included in the fluorescent material as a solution. Alternatively, the complex may be included in the fluorescent material as a thin film. The use of a polymer-surfactant complex in the fluorescent material allows the device to detect both neutral and ionic acceptor molecules. The use of a polymer-surfactant complex film allows the device and the fluorescent material to be reusable after exposing the fluorescent material to a vacuum for limited time.

  18. Chemical vapor deposition growth

    NASA Technical Reports Server (NTRS)

    Ruth, R. P.; Manasevit, H. M.; Kenty, J. L.; Moudy, L. A.; Simpson, W. I.; Yang, J. J.

    1976-01-01

    A chemical vapor deposition (CVD) reactor system with a vertical deposition chamber was used for the growth of Si films on glass, glass-ceramic, and polycrystalline ceramic substrates. Silicon vapor was produced by pyrolysis of SiH4 in a H2 or He carrier gas. Preliminary deposition experiments with two of the available glasses were not encouraging. Moderately encouraging results, however, were obtained with fired polycrystalline alumina substrates, which were used for Si deposition at temperatures above 1,000 C. The surfaces of both the substrates and the films were characterized by X-ray diffraction, reflection electron diffraction, scanning electron microscopy optical microscopy, and surface profilometric techniques. Several experiments were conducted to establish baseline performance data for the reactor system, including temperature distributions on the sample pedestal, effects of carrier gas flow rate on temperature and film thickness, and Si film growth rate as a function of temperature.

  19. Chemical composition of Mars

    NASA Technical Reports Server (NTRS)

    Morgan, J. W.; Anders, E.

    1979-01-01

    The chemical composition of Mars is estimated from the cosmochemical model of Ganapathy and Anders (1974) with additional petrological and geophysical constraints. The model assumes that planets and chondrites underwent the same fractionation processes in the solar nebula, and constraints are imposed by the abundance of the heat-producing elements, U, Th and K, the volatile-rich component and the high density of the mantle. Global abundances of 83 elements are presented, and it is noted that the mantle is an iron-rich garnet wehrlite, nearly identical to the bulk moon composition of Morgan at al. (1978) and that the core is sulfur poor (3.5% S). The comparison of model compositions for the earth, Venus, Mars, the moon and a eucrite parent body suggests that volatile depletion correlates mainly with size rather than with radial distance from the sun.

  20. Chemical and Thermal Analysis

    NASA Technical Reports Server (NTRS)

    Bulluck, J. W.; Rushing, R. A.

    1995-01-01

    During the past six months we have conducted significant research in several domains in order to clarify and understanding the aging and chemical failure mechanism of thermoplastics (PVDF or Tefzel) for pipes. We organized numerous analytical studies with methods including Fourier Transform Infrared Spectroscopy, Dynamic Mechanical Analysis, Differential Scanning Calorimetry, and Stress Relaxation experiments. In addition we have reanalyzed previous thermogravimetric data concerning the rate of deplasticization of Coflon pipe. We investigated a number of aged samples of both Tefzel and Coflon that were forwarded from MERL. We conducted stress relaxation experiments of Coflon pipe at several temperatures and determined an activation energy. We also examined the dynamic mechanical response PVDF during deplasticization and during methanol plasticization. We performed numerous DSC analyses to research the changing crystalline morphology. We have noted significant changes in crystallinity upon aging for both PVDF and Tefzel. Little variation in elemental composition was noted for many of the aged Coflon and Tefzel samples tested.