Science.gov

Sample records for terahertz pulsed imaging

  1. Terahertz pulsed imaging in vivo

    NASA Astrophysics Data System (ADS)

    Pickwell-MacPherson, E.

    2011-03-01

    Terahertz (1012 Hz) pulsed imaging is a totally non-destructive and non-ionising imaging modality and thus potential applications in medicine are being investigated. In this paper we present results using our hand-held terahertz probe that has been designed for in vivo use. In particular, we use the terahertz probe to perform reflection geometry in vivo measurements of human skin. The hand-held terahertz probe gives more flexibility than a typical flat-bed imaging system, but it also results in noisier data and requires existing processing methods to be improved. We describe the requirements and limitations of system geometry, data acquisition rate, image resolution and penetration depth and explain how various factors are dependent on each other. We show how some of the physical limitations can be overcome using novel data processing methods.

  2. Terahertz-pulsed imaging of cancers

    NASA Astrophysics Data System (ADS)

    Wallace, Vincent P.; Woodward, Ruth M.; Fitzgerald, Anthony J.; Pickwell, E.; Pye, Richard J.; Arnone, Donald D.

    2003-06-01

    Over the last decade advances in laser and semiconductor technology has allowed the investigation of terahertz region of the electromagnetic spectrum as a potential tool for medical imaging. The terahertz frequency range covers the far infrared wavelengths and is sensitive to librational and vibrational modes of molecules. Terahertz radiation is non-ionizing and is not highly scattered like visible and near infrared light. Terahertz Pulsed Imaging (TPI) has already been demonstrated as an effective tool for differentiating between tissue types in particular normal skin and basal cell carcinoma in vitro. TPI may prove advantageous in distinguishing type, lateral spread and depth of tumors. Here we present recent ex vivo results obtained with a portable TPI system in a clinical setting. It is hoped that this technique could be applied to other epithelial tissues, which give rise to more than 80% of all adult cancers and include common cancers of the skin, oral cavity, breast, colon and prostate.

  3. Wavelet compression in medical terahertz pulsed imaging

    NASA Astrophysics Data System (ADS)

    Handley, J. W.; Fitzgerald, A. J.; Berry, E.; Boyle, R. D.

    2002-11-01

    This paper concerns the robustness of discrete wavelet transform (DWT) compression in terahertz pulsed imaging (TPI). TPI datasets consist of terahertz time-domain series which are sampled at each 'pixel' of the image, leading to file sizes which are typically of the order of several megabytes (MB) per image. This makes efficient compression highly desirable for both transmission and storage. However, since the data may be required for diagnostic purposes it is essential that no relevant information is lost or artefacts introduced. We show that for a nylon step wedge the estimates of refractive index and absorption coefficients are not significantly altered when the terahertz data are reconstructed from only 20% of DWT coefficients.

  4. Tissue classification using terahertz pulsed imaging

    NASA Astrophysics Data System (ADS)

    Woodward, Ruth M.; Fitzgerald, Anthony J.; Wallace, Vincent P.

    2004-07-01

    We demonstrate the application of terahertz pulsed imaging (TPI) in reflection geometry as a diagnostic aid for epithelial cancer, specifically basal cell carcinoma. Epithelial cancer, which includes skin, breast and colon cancer, accounts for about 85% of all cancers. The terahertz (THz) region is typically defined in the frequency range of 0.1-10 THz. The sensitivity of terahertz radiation to water makes TPI an ideal technique for the study of skin, particularly as cancerous tissue has been shown to contain more water than normal tissue. Twenty-one ex vivo skin samples from a previous study, which successfully identified all 17 samples exhibiting basal cell carcinoma, were analysed in detail using time-domain algorithms to determine the role of TPI as a diagnostic aid. Eight parameters were assessed, four of which were identified as uncorrelated. The samples were classified into two groups: diseased tissue, and tissue without disease. A sensitivity and specificity greater than 80 % for six of the parameters was attained. These results demonstrate the potential of TPI as a diagnostic aid.

  5. Terahertz pulsed imaging study of dental caries

    NASA Astrophysics Data System (ADS)

    Karagoz, Burcu; Altan, Hakan; Kamburoglu, K?vanç

    2015-07-01

    Current diagnostic techniques in dentistry rely predominantly on X-rays to monitor dental caries. Terahertz Pulsed Imaging (TPI) has great potential for medical applications since it is a nondestructive imaging method. It does not cause any ionization hazard on biological samples due to low energy of THz radiation. Even though it is strongly absorbed by water which exhibits very unique chemical and physical properties that contribute to strong interaction with THz radiation, teeth can still be investigated in three dimensions. Recent investigations suggest that this method can be used in the early identification of dental diseases and imperfections in the tooth structure without the hazards of using techniques which rely on x-rays. We constructed a continuous wave (CW) and time-domain reflection mode raster scan THz imaging system that enables us to investigate various teeth samples in two or three dimensions. The samples comprised of either slices of individual tooth samples or rows of teeth embedded in wax, and the imaging was done by scanning the sample across the focus of the THz beam. 2D images were generated by acquiring the intensity of the THz radiation at each pixel, while 3D images were generated by collecting the amplitude of the reflected signal at each pixel. After analyzing the measurements in both the spatial and frequency domains, the results suggest that the THz pulse is sensitive to variations in the structure of the samples that suggest that this method can be useful in detecting the presence of caries.

  6. Three-dimensional terahertz pulse imaging of dental tissue

    NASA Astrophysics Data System (ADS)

    Crawley, David A.; Longbottom, Christopher; Wallace, Vincent P.; Cole, Bryan E.; Arnone, Donald D.; Pepper, Michael

    2002-04-01

    Generating images of layered tissue structures can give valuable information to clinicians. However, the provision of accurate imaging of certain tissue structures, like teeth, in 3-dimensions is still a difficult problem. We present a method that relies on the use of pulsed Terahertz radiation to gain 3-dimensional information from teeth samples. The method makes use of Terahertz Pulse Imaging (TPI) to provide depth information. Example images are shown where structures in teeth at depth are rendered. We discuss issues that arise using this imaging method and propose ways in which it could be used in clinical practice.

  7. Optical properties of tissue measured using terahertz-pulsed imaging

    NASA Astrophysics Data System (ADS)

    Berry, Elizabeth; Fitzgerald, Anthony J.; Zinov'ev, Nickolay N.; Walker, Gillian C.; Homer-Vanniasinkam, Shervanthi; Sudworth, Caroline D.; Miles, Robert E.; Chamberlain, J. Martyn; Smith, Michael A.

    2003-06-01

    The first demonstrations of terahertz imaging in biomedicine were made several years ago, but few data are available on the optical properties of human tissue at terahertz frequencies. A catalogue of these properties has been established to estimate variability and determine the practicality of proposed medical applications in terms of penetration depth, image contrast and reflection at boundaries. A pulsed terahertz imaging system with a useful bandwidth 0.5-2.5 THz was used. Local ethical committee approval was obtained. Transmission measurements were made through tissue slices of thickness 0.08 to 1 mm, including tooth enamel and dentine, cortical bone, skin, adipose tissue and striated muscle. The mean and standard deviation for refractive index and linear attenuation coefficient, both broadband and as a function of frequency, were calculated. The measurements were used in simple models of the transmission, reflection and propagation of terahertz radiation in potential medical applications. Refractive indices ranged from 1.5 +/- 0.5 for adipose tissue to 3.06 +/- 0.09 for tooth enamel. Significant differences (P < 0.05) were found between the broadband refractive indices of a number of tissues. Terahertz radiation is strongly absorbed in tissue so reflection imaging, which has lower penetration requirements than transmission, shows promise for dental or dermatological applications.

  8. Tissue characterization using terahertz pulsed imaging in reflection geometry

    NASA Astrophysics Data System (ADS)

    Huang, S. Y.; Wang, Y. X. J.; Yeung, D. K. W.; Ahuja, A. T.; Zhang, Y.-T.; Pickwell-MacPherson, E.

    2009-01-01

    Terahertz pulsed imaging (TPI™) is a non-ionizing and non-destructive imaging technique that has been recently used to study a wide range of biological materials. The severe attenuation of terahertz radiation in samples with high water content means that biological samples need to be very thin if they are to be measured in transmission geometry. To overcome this limitation, samples could be measured in reflection geometry and this is the most feasible way in which TPI could be performed in a clinical setting. In this study, we therefore used TPI in reflection geometry to characterize the terahertz properties of several organ samples freshly harvested from laboratory rats. We observed differences in the measured time domain responses and determined the frequency-dependent optical properties to characterize the samples further. We found statistically significant differences between the tissue types. These results show that TPI has the potential to accurately differentiate between tissue types non-invasively.

  9. Compression of Pulsed Terahertz Image Using Discrete Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Shon, Chae-Hwa; Chong, Won-Yong; Kim, Geun-Ju; Jeon, Seok-Gy; Kim, Jung-Il; Jin, Yun-Sik

    2007-12-01

    We present the result of data compression using discrete wavelet transform (DWT) in terahertz pulsed imaging (TPI). A test object composed of dielectric materials is imaged by a fast oscillating delay line in reflection geometry. In general, because the size of the original image is from several megabytes (MB) to tens of MB, an adequate compression algorithm that prevents the loss of relevant information is indispensable. We analyze the image by multilevel DWT and obtain the wavelet coefficients of the levels. The images reconstructed from some of the coefficients are compared with the original image. The reconstructed pulse signals and their frequency-domain spectrums for each pixel are compared with the original signals to obtain the optimum decomposition level. The image could be compressed below 15% of its original size without loss of image quality and significant errors in the time and frequency domains.

  10. Visualization and classification in biomedical terahertz pulsed imaging

    NASA Astrophysics Data System (ADS)

    Löffler, Torsten; Siebert, Karsten; Czasch, Stephanie; Bauer, Tobias; Roskos, Hartmut G.

    2002-11-01

    'Visualization' in imaging is the process of extracting useful information from raw data in such a way that meaningful physical contrasts are developed. 'Classification' is the subsequent process of defining parameter ranges which allow us to identify elements of images such as different tissues or different objects. In this paper, we explore techniques for visualization and classification in terahertz pulsed imaging (TPI) for biomedical applications. For archived (formalin-fixed, alcohol-dehydrated and paraffin-mounted) test samples, we investigate both time- and frequency-domain methods based on bright- and dark-field TPI. Successful tissue classification is demonstrated.

  11. A promising diagnostic method: Terahertz pulsed imaging and spectroscopy

    PubMed Central

    Sun, Yiwen; Sy, Ming Yiu; Wang, Yi-Xiang J; Ahuja, Anil T; Zhang, Yuan-Ting; Pickwell-MacPherson, Emma

    2011-01-01

    The terahertz band lies between the microwave and infrared regions of the electromagnetic spectrum. This radiation has very low photon energy and thus it does not pose any ionization hazard for biological tissues. It is strongly attenuated by water and very sensitive to water content. Unique absorption spectra due to intermolecular vibrations in this region have been found in different biological materials. These unique features make terahertz imaging very attractive for medical applications in order to provide complimentary information to existing imaging techniques. There has been an increasing interest in terahertz imaging and spectroscopy of biologically related applications within the last few years and more and more terahertz spectra are being reported. This paper introduces terahertz technology and provides a short review of recent advances in terahertz imaging and spectroscopy techniques, and a number of applications such as molecular spectroscopy, tissue characterization and skin imaging are discussed. PMID:21512652

  12. Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue

    NASA Astrophysics Data System (ADS)

    Woodward, Ruth M.; Cole, Bryan E.; Wallace, Vincent P.; Pye, Richard J.; Arnone, Donald D.; Linfield, Edmund H.; Pepper, Michael

    2002-11-01

    We demonstrate the application of terahertz pulse imaging (TPI) in reflection geometry for the study of skin tissue and related cancers both in vitro and in vivo. The sensitivity of terahertz radiation to polar molecules, such as water, makes TPI suitable for studying the hydration levels in the skin and the determination of the lateral spread of skin cancer pre-operatively. By studying the terahertz pulse shape in the time domain we have been able to differentiate between diseased and normal tissue for the study of basal cell carcinoma (BCC). Basal cell carcinoma has shown a positive terahertz contrast, and inflammation and scar tissue a negative terahertz contrast compared to normal tissue. In vivo measurements on the stratum corneum have enabled visualization of the stratum corneum-epidermis interface and the study of skin hydration levels. These results demonstrate the potential of terahertz pulse imaging for the study of skin tissue and its related disorders, both in vitro and in vivo.

  13. Terahertz pulse imaging in reflection geometry of skin tissue using time-domain analysis techniques

    NASA Astrophysics Data System (ADS)

    Woodward, Ruth M.; Wallace, Vincent P.; Cole, Bryan E.; Pye, Richard J.; Arnone, Donald D.; Linfield, Edmund H.; Pepper, Michael

    2002-06-01

    We demonstrate the application of Terahertz Pulse Imaging (TPI) in reflection geometry for the study of skin tissue and related cancers. The terahertz frequency regime of 0.1-100THz excites the vibrational modes of molecules, allowing for spectroscopic investigation. The sensitivity of terahertz to polar molecules, such as water, makes TPI suitable for studying the hydration levels in the stratum corneum and the determination of the lateral spread of skin cancer pre-operatively. By studying the terahertz pulse shape in the time domain we have been able to differentiate between diseased and normal tissue for the study of basal cell carcinoma (BCC). Measurements on scar tissue, which is known to contain less water than the surrounding skin, and on regions of inflammation, show a clear contrast in the THz image compared to normal skin. We discuss the time domain analysis techniques used to classify the different tissue types. Basal cell carcinoma shows a positive terahertz contrast, and inflammation and scar tissue shows a negative terahertz contrast compared to normal tissue. This demonstrates for the first time the potential of TPI both in the study of skin cancer and inflammatory related disorders.

  14. Hardness and Density Distributions of Pharmaceutical Tablets Measured by Terahertz Pulsed Imaging

    E-print Network

    Elliott, James

    Hardness and Density Distributions of Pharmaceutical Tablets Measured by Terahertz Pulsed Imaging) as a novel tool to quantify the hard- ness and surface density distribution of pharmaceutical tablets. Good these relate to tablet hardness. Numerical simulations of tablet surface density distribu- tion by finite

  15. High Speed Terahertz Pulse Imaging in the Reflection Geometry and Image Quality Enhancement by Digital Image Processing

    NASA Astrophysics Data System (ADS)

    Shon, Chae-Hwa; Chong, Won-Yong; Jeon, Seok-Gy; Kim, Geun-Ju; Kim, Jung-Il; Jin, Yun-Sik

    2008-01-01

    We describe the formation and enhancement of two dimensional pulsed terahertz (THz) images obtained in the reflection geometry with a high-speed optical delay line. Two test objects are imaged and analyzed with respect to material information and concealed structure. Clear THz images were obtained with various imaging modes and were compared with the X-ray images. The THz image of a sample revealed material features that the X-ray image cannot distinguish. We could enhance the THz image quality using various image processing techniques, such as edge detection, de-noising, high-pass filtering, and wavelet filtering.

  16. Terahertz Pulsed Imaging and Magnetic Resonance Imaging as Tools to Probe Formulation Stability

    PubMed Central

    Zhang, Qilei; Gladden, Lynn F.; Avalle, Paolo; Zeitler, J. Axel; Mantle, Michael D.

    2013-01-01

    Dissolution stability over the entire shelf life duration is of critical importance to ensure the quality of solid dosage forms. Changes in the drug release profile during storage may affect the bioavailability of drug products. This study investigated the stability of a commercial tablet (Lescol® XL) when stored under accelerated conditions (40 °C/75% r.h.). Terahertz pulsed imaging (TPI) was used to investigate the structure of the tablet coating before and after the accelerated aging process. The results indicate that the coating was reduced in thickness and exhibited a higher density after being stored under accelerated conditions for four weeks. In situ magnetic resonance imaging (MRI) of the water penetration processes during tablet dissolution in a USP-IV dissolution cell equipped with an in-line UV-vis analyzer was carried out to study local differences in water uptake into the tablet matrix between the stressed and unstressed state. The drug release profiles of the Lescol® XL tablet before and after the accelerated storage stability testing were compared using a “difference” factor f1 and a “similarity” factor f2. The results reveal that even though the physical properties of the coating layers changed significantly during the stress testing, the coating protected the tablet matrix and the densification of the coating polymer had no adverse effect on the drug release performance. PMID:24300564

  17. Terahertz pulsed imaging study to assess remineralization of artificial caries lesions

    NASA Astrophysics Data System (ADS)

    Churchley, David; Lynch, Richard J. M.; Lippert, Frank; O'Bryan Eder, Jennifer Susan; Alton, Jesse; Gonzalez-Cabezas, Carlos

    2011-02-01

    We compare terahertz-pulsed imaging (TPI) with transverse microradiography (TMR) and microindentation to measure remineralization of artificial caries lesions. Lesions are formed in bovine enamel using a solution of 0.1 M lactic acid/0.2% Carbopol C907 and 50% saturated with hydroxyapatite adjusted to pH 5.0. The 20-day experimental protocol consists of four 1 min treatment periods with dentifrices containing 10, 675, 1385, and 2700 ppm fluoride, a 4-h/day acid challenge, and, for the remaining time, specimens are stored in a 50:50 pooled human/artificial saliva mixture. Each specimen is imaged at the focal point of the terahertz beam (data-point spacing = 50 ?m). The time-domain data are used to calculate the refractive index volume percent profile throughout the lesion, and the differences in the integrated areas between the baseline and post-treatment profiles are used to calculate ??Z(THz). In addition, the change from baseline in both the lesion depth and the intensity of the reflected pulse from the air/enamel interface is determined. Statistically significant Pearson correlation coefficients are observed between TPI and TMR/microindentation (P < 0.05). We demonstrate that TPI has potential as a research tool for hard tissue imaging.

  18. Non-destructive quantification of pharmaceutical tablet coatings using terahertz pulsed imaging and optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Zhong, Shuncong; Shen, Yao-Chun; Ho, Louise; May, Robert K.; Zeitler, J. Axel; Evans, Mike; Taday, Philip F.; Pepper, Michael; Rades, Thomas; Gordon, Keith C.; Müller, Ronny; Kleinebudde, Peter

    2011-03-01

    Optical coherence tomography (OCT) and terahertz pulsed imaging (TPI) are two powerful techniques allowing high quality cross-sectional images from within scattering media to be obtained non-destructively. In this paper, we report experimental results of using OCT and TPI for quantitatively characterizing pharmaceutical tablet coatings in the thickness range of 10-140 ?m. We found that the spectral OCT system developed in-house has an axial resolution of 0.9 ?m, and is capable of quantifying very thin coatings in the range of 10-60 ?m. The upper limit of 60 ?m within the tablet coating and core is owed to the strong scattering of OCT light, which has relatively short wavelengths in the range of 0.5-1.0 ?m. On the other hand, TPI utilizes terahertz radiation that has substantially long wavelengths in the range of hundreds of microns, and thus is less prone to the scattering problem. Consequently TPI has been demonstrated to be able to quantify thicker coatings in the range of 40-140 ?m and beyond. We concluded that OCT and TPI are two complementary analytical techniques for non-destructive and quantitative characterization of pharmaceutical tablet coatings.

  19. Terahertz pulse imaging of stratified architectural materials for cultural heritage studies

    NASA Astrophysics Data System (ADS)

    Jackson, J. Bianca; Labaune, Julien; Mourou, Gérard; Duling, Irl N.; Walker, Gillian; Bowen, John; Menu, Michel

    2011-06-01

    Terahertz pulse imaging (TPI) is a novel noncontact, nondestructive technique for the examination of cultural heritage artifacts. It has the advantage of broadband spectral range, time-of-flight depth resolution, and penetration through optically opaque materials. Fiber-coupled, portable, time-domain terahertz systems have enabled this technique to move out of the laboratory and into the field. Much like the rings of a tree, stratified architectural materials give the chronology of their environmental and aesthetic history. This work concentrates on laboratory models of stratified mosaics and fresco paintings, specimens extracted from a neolithic excavation site in Catalhoyuk, Turkey, and specimens measured at the medieval Eglise de Saint Jean-Baptiste in Vif, France. Preparatory spectroscopic studies of various composite materials, including lime, gypsum and clay plasters are presented to enhance the interpretation of results and with the intent to aid future computer simulations of the TPI of stratified architectural material. The breadth of the sample range is a demonstration of the cultural demand and public interest in the life history of buildings. The results are an illustration of the potential role of TPI in providing both a chronological history of buildings and in the visualization of obscured wall paintings and mosaics.

  20. Potential uses of terahertz pulse imaging in dentistry: caries and erosion detection

    NASA Astrophysics Data System (ADS)

    Longbottom, Christopher; Crawley, David A.; Cole, Bryan E.; Arnone, Donald D.; Wallace, Vincent P.; Pepper, Michael

    2002-06-01

    TeraHertz Pulse Imaging (TPI) is a relatively new imaging modality for medical and dental imaging. The aim of the present study was to make a preliminary assessment of the potential uses of TPI in clinical dentistry, particularly in relation to caries detection and the detection and monitoring of erosion. Images were obtained in vitro using a new TPI system developed by TeraView Ltd. We present data showing that TPI in vitro images of approximal surfaces of whole teeth demonstrate a distinctive shadowing in the presence of natural carious lesions in enamel. The thickness of this enamel shadowing appears to be related to lesion depth. The use of non-ionizing radiation to image such lesions non-destructively in vitro represents a significant step towards such measurements in vivo. In addition, data is presented which indicates that TPI may have a potential role in the detection and monitoring of enamel erosion. In vitro experiments on whole incisor teeth show that TPI is capable of detecting relatively small artificially induced changes in the buccal or palatal surface of the enamel of these teeth. Imaging of enamel thickness at such a resolution without ionizing radiation would represent a significant breakthrough if applicable in vivo.

  1. Diffusion and swelling measurements in pharmaceutical powder compacts using terahertz pulsed imaging.

    PubMed

    Yassin, Samy; Su, Ke; Lin, Hungyen; Gladden, Lynn F; Zeitler, J Axel

    2015-05-01

    Tablet dissolution is strongly affected by swelling and solvent penetration into its matrix. A terahertz-pulsed imaging (TPI) technique, in reflection mode, is introduced as a new tool to measure one-dimensional swelling and solvent ingress in flat-faced pharmaceutical compacts exposed to dissolution medium from one face of the tablet. The technique was demonstrated on three tableting excipients: hydroxypropylmethyl cellulose (HPMC), Eudragit RSPO, and lactose. Upon contact with water, HPMC initially shrinks to up to 13% of its original thickness before undergoing expansion. HPMC and lactose were shown to expand to up to 20% and 47% of their original size in 24 h and 13 min, respectively, whereas Eudragit does not undergo dimensional change. The TPI technique was used to measure the ingress of water into HPMC tablets over a period of 24 h and it was observed that water penetrates into the tablet by anomalous diffusion. X-ray microtomography was used to measure tablet porosity alongside helium pycnometry and was linked to the results obtained by TPI. Our results highlight a new application area of TPI in the pharmaceutical sciences that could be of interest in the development and quality testing of advanced drug delivery systems as well as immediate release formulations. PMID:25645509

  2. Quantifying Pharmaceutical Film Coating with Optical Coherence Tomography and Terahertz Pulsed Imaging: An Evaluation.

    PubMed

    Lin, Hungyen; Dong, Yue; Shen, Yaochun; Zeitler, J Axel

    2015-10-01

    Spectral domain optical coherence tomography (OCT) has recently attracted a lot of interest in the pharmaceutical industry as a fast and non-destructive modality for quantification of thin film coatings that cannot easily be resolved with other techniques. Because of the relative infancy of this technique, much of the research to date has focused on developing the in-line measurement technique for assessing film coating thickness. To better assess OCT for pharmaceutical coating quantification, this paper evaluates tablets with a range of film coating thickness measured using OCT and terahertz pulsed imaging (TPI) in an off-line setting. In order to facilitate automated coating quantification for film coating thickness in the range of 30-200 ?m, an algorithm that uses wavelet denoising and a tailored peak finding method is proposed to analyse each of the acquired A-scan. Results obtained from running the algorithm reveal an increasing disparity between the TPI and OCT measured intra-tablet variability when film coating thickness exceeds 100 ?m. The finding further confirms that OCT is a suitable modality for characterising pharmaceutical dosage forms with thin film coatings, whereas TPI is well suited for thick coatings. PMID:26284354

  3. Quantifying Pharmaceutical Film Coating with Optical Coherence Tomography and Terahertz Pulsed Imaging: An Evaluation

    PubMed Central

    Lin, Hungyen; Dong, Yue; Shen, Yaochun; Zeitler, J Axel

    2015-01-01

    Spectral domain optical coherence tomography (OCT) has recently attracted a lot of interest in the pharmaceutical industry as a fast and non-destructive modality for quantification of thin film coatings that cannot easily be resolved with other techniques. Because of the relative infancy of this technique, much of the research to date has focused on developing the in-line measurement technique for assessing film coating thickness. To better assess OCT for pharmaceutical coating quantification, this paper evaluates tablets with a range of film coating thickness measured using OCT and terahertz pulsed imaging (TPI) in an off-line setting. In order to facilitate automated coating quantification for film coating thickness in the range of 30–200 ?m, an algorithm that uses wavelet denoising and a tailored peak finding method is proposed to analyse each of the acquired A-scan. Results obtained from running the algorithm reveal an increasing disparity between the TPI and OCT measured intra-tablet variability when film coating thickness exceeds 100 ?m. The finding further confirms that OCT is a suitable modality for characterising pharmaceutical dosage forms with thin film coatings, whereas TPI is well suited for thick coatings. © 2015 The Authors. Journal of Pharmaceutical Sciences published by Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 104:3377–3385, 2015 PMID:26284354

  4. Diffusion and Swelling Measurements in Pharmaceutical Powder Compacts Using Terahertz Pulsed Imaging

    PubMed Central

    Yassin, Samy; Su, Ke; Lin, Hungyen; Gladden, Lynn F; Zeitler, J Axel

    2015-01-01

    Tablet dissolution is strongly affected by swelling and solvent penetration into its matrix. A terahertz-pulsed imaging (TPI) technique, in reflection mode, is introduced as a new tool to measure one-dimensional swelling and solvent ingress in flat-faced pharmaceutical compacts exposed to dissolution medium from one face of the tablet. The technique was demonstrated on three tableting excipients: hydroxypropylmethyl cellulose (HPMC), Eudragit RSPO, and lactose. Upon contact with water, HPMC initially shrinks to up to 13% of its original thickness before undergoing expansion. HPMC and lactose were shown to expand to up to 20% and 47% of their original size in 24 h and 13 min, respectively, whereas Eudragit does not undergo dimensional change. The TPI technique was used to measure the ingress of water into HPMC tablets over a period of 24 h and it was observed that water penetrates into the tablet by anomalous diffusion. X-ray microtomography was used to measure tablet porosity alongside helium pycnometry and was linked to the results obtained by TPI. Our results highlight a new application area of TPI in the pharmaceutical sciences that could be of interest in the development and quality testing of advanced drug delivery systems as well as immediate release formulations. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 104:1658–1667, 2015 PMID:25645509

  5. Imaging with terahertz radiation

    NASA Astrophysics Data System (ADS)

    Chan, Wai Lam; Deibel, Jason; Mittleman, Daniel M.

    2007-08-01

    Within the last several years, the field of terahertz science and technology has changed dramatically. Many new advances in the technology for generation, manipulation, and detection of terahertz radiation have revolutionized the field. Much of this interest has been inspired by the promise of valuable new applications for terahertz imaging and sensing. Among a long list of proposed uses, one finds compelling needs such as security screening and quality control, as well as whimsical notions such as counting the almonds in a bar of chocolate. This list has grown in parallel with the development of new technologies and new paradigms for imaging and sensing. Many of these proposed applications exploit the unique capabilities of terahertz radiation to penetrate common packaging materials and provide spectroscopic information about the materials within. Several of the techniques used for terahertz imaging have been borrowed from other, more well established fields such as x-ray computed tomography and synthetic aperture radar. Others have been developed exclusively for the terahertz field, and have no analogies in other portions of the spectrum. This review provides a comprehensive description of the various techniques which have been employed for terahertz image formation, as well as discussing numerous examples which illustrate the many exciting potential uses for these emerging technologies.

  6. Analysis of coating structures and interfaces in solid oral dosage forms by three dimensional terahertz pulsed imaging.

    PubMed

    Zeitler, J Axel; Shen, Yaochun; Baker, Colin; Taday, Philip F; Pepper, Michael; Rades, Thomas

    2007-02-01

    Three dimensional terahertz pulsed imaging (TPI) was evaluated as a novel tool for the nondestructive characterization of different solid oral dosage forms. The time-domain reflection signal of coherent pulsed light in the far infrared was used to investigate film-coated tablets, sugar-coated tablets, multilayered controlled release tablets, and soft gelatin capsules. It is possible to determine the spatial and statistical distribution of coating thickness in single and multiple coated products using 3D TPI. The measurements are nondestructive even for layers buried underneath other coating structures. The internal structure of coating materials can be analyzed. As the terahertz signal penetrates up to 3 mm into the dosage form interfaces between layers in multilayered tablets can be investigated. In soft gelatin capsules it is possible to measure the thickness of the gelatin layer and to characterize the seal between the gelatin layers for quality control. TPI is a unique approach for the nondestructive characterization and quality control of solid dosage forms. The measurements are fast and fully automated with the potential for much wider application of the technique in the process analytical technology scheme. PMID:17075850

  7. Continuous-wave terahertz imaging of nonmelanoma skin cancers

    NASA Astrophysics Data System (ADS)

    Joseph, Cecil Sudhir

    Continuous wave terahertz imaging has the potential to offer a safe, non-invasive medical imaging modality for detecting different types of human skin cancers. Terahertz pulse imaging (TPI) has already shown that there is contrast between basal cell carcinoma and normal skin. Continuous-wave imaging offers a simpler, lower cost alternative to terahertz pulse imaging. This project aims to isolate the optimal contrast frequency for a continuous wave terahertz imaging system and demonstrate transmission based, in-vitro , imaging of thin sections of non-melanoma skin cancers and correlate the images to sample histology. The aim of this project is to conduct a proof-of-principle experiment that establishes whether continuous-wave terahertz imaging can detect differences between cancerous and normal tissue while outlining the basic requirements for building a system capable of performing in vivo tests.

  8. Terahertz imaging: applications and perspectives.

    PubMed

    Jansen, Christian; Wietzke, Steffen; Peters, Ole; Scheller, Maik; Vieweg, Nico; Salhi, Mohammed; Krumbholz, Norman; Jördens, Christian; Hochrein, Thomas; Koch, Martin

    2010-07-01

    Terahertz (THz) spectroscopy, and especially THz imaging, holds large potential in the field of nondestructive, contact-free testing. The ongoing advances in the development of THz systems, as well as the appearance of the first related commercial products, indicate that large-scale market introduction of THz systems is rapidly approaching. We review selected industrial applications for THz systems, comprising inline monitoring of compounding processes, plastic weld joint inspection, birefringence analysis of fiber-reinforced components, water distribution monitoring in polymers and plants, as well as quality inspection of food products employing both continuous wave and pulsed THz systems. PMID:20648121

  9. Investigating the use of terahertz pulsed time domain reflection imaging for the study of fabric layers of an Egyptian mummy

    NASA Astrophysics Data System (ADS)

    Fukunaga, K.; Cortes, E.; Cosentino, A.; Stã¼nkel, I.; Leona, M.; Duling, N.; Mininberg, D. T.

    2011-08-01

    This paper reports the first use of terahertz time domain reflection imaging involving textiles on part of a complete human mummy, still in original wrapping. X-ray technique has been used extensively to investigate anatomical features, since X-ray pass through the wrapping. Terahertz waves, on the other hand, can penetrate into non-metallic materials and its reflection depends on the refractive index of materials at the interface, such as textiles and the air. The mummy of Kharushere (ca. 945-712 B.C.) was examined by using Terahertz time domain reflection imaging in the Egyptian galleries of The Metropolitan Museum of Art. Experimental results suggest that the Terahetz imaging is a promising technique for probing the fabric layers surrounding Egyptian mummies, although it is still very limited in its current state. In the future it could become a useful complement to CT scanning when materials with low radiographic density and contrast are being investigated

  10. Applications of terahertz-pulsed technology in the pharmaceutical industry

    NASA Astrophysics Data System (ADS)

    Taday, Philip F.

    2010-02-01

    Coatings are applied to pharmaceutical tablets (or pills) to for either cosmetic or release control reasons. Cosmetic coatings control the colour or to mask the taste of an active ingredient; the thickness of these coating is not critical to the performance of the product. On the other hand the thickness and uniformity of a controlled release coating has been found affect the release of the active ingredient. In this work we have obtained from a pharmacy single brand of pantoprazole tablet and mapped them using terahertz pulsed imaging (TPI) prior to additional dissolution testing. Three terahertz parameters were derived for univariate analysis for each layer: coating thickness, terahertz electric field peak strength and terahertz interface index. These parameters were then correlated dissolution tested. The best fit was found to be with combined coating layer thickness of the inert layer and enteric coating. The commercial tablets showed a large variation in coating thickness.

  11. Terahertz interferometric imaging of RDX

    NASA Astrophysics Data System (ADS)

    Sinyukov, Alexander M.; Barat, Robert B.; Gary, Dale E.; Michalopoulou, Zoi-Heleni; Zorych, Ivan; Zimdars, David; Federici, John F.

    2007-04-01

    Experimental results of homodyne terahertz interferometric 2-D imaging of RDX are presented. Continuous waves at 0.25-0.6 THz are used to obtain images of a C-4 sample at several THz frequencies. The performance of an N element detector array is imitated by only one detector placed at N positions. The distance between the C-4 sample and the detector array is ~30 cm. By taking interferometric images at several THz frequencies RDX can be recognized by the spectral peak at 0.82 THz. Simulations of interferometric images of two point sources of spherical waves are presented. The terahertz interferometric imaging method can be used in defense and security applications to detect concealed weapons, explosives as well as chemical and biological agents.

  12. A comparison of terahertz-pulsed imaging with transverse microradiography and microhardness to measure mineral changes in enamel after treatment with fluoride dentifrices

    NASA Astrophysics Data System (ADS)

    Churchley, David; Lippert, Frank; Lynch, Richard; Alton, Jesse; Gonzalez-Cabezas, C.; Eder, J.

    2009-02-01

    The aim of this study was to determine the ability of Terahertz Pulsed Imaging (TPI) to measure mineral changes in enamel lesions during de/remineralisation studies. A comparison was made between transverse microradiography (TMR) and microhardness measurements. Artificial lesions were formed in bovine enamel using a solution of 0.1 M lactic acid (pH 5.0) containing 0.2% Carbopol C907 and 50% saturated with hydroxyapatite. The 20 day experimental protocol consisted of four, one-minute treatment periods with dentifrices containing 10, 675, 1385 and 2700ppm fluoride, a 4 h/day acid challenge, and for the remaining time specimens were stored in a 50:50 pooled human / artificial saliva mixture. Terahertz images were generated by positioning the specimens at the focus of the beam and raster scanning the optics to collect the reflections from the air / enamel (AEI) and lesion / enamel (LEI) interface. Significant differences were observed in the intensity change from baseline of the AEI and LEI reflections upon treatment with the four dentifrices. A linear correlation was observed between ?AEI vs ?VHN (r2 = 0.997), ?AEI vs ?KHN (r2 =0.964), ?II (ratio of LEI to AEI) vs ??Z (r2 =0.875) and ?LEI vs ??Z (r2 =0.870). Statistically significant correlations (p<0.05 Pearson correlation coefficient) were also found between the TPI and microhardness / microradiography data. This study has demonstrated that TPI is a useful technology to measure in vitro (and possibly in situ) mineral changes in enamel and is sufficiently sensitive to discriminate between the levels of remineralization produced by the different dentifrices.

  13. Terahertz imaging and international safety guidelines

    NASA Astrophysics Data System (ADS)

    Walker, Gillian C.; Berry, Elizabeth; Zinov'ev, Nick N.; Fitzgerald, Anthony J.; Miles, Robert E.; Chamberlain, J. Martyn; Smith, Michael A.

    2002-05-01

    Terahertz (THz) radiation has a frequency of the order of 101212 Hz. This lies between the infrared and microwave regions of the electromagnetic spectrum; a section labeled the 'THz gap'. Infrared and microwave radiation is used in the medical field; research is underway for an application for THz radiation. At present no formal safety analysis of a THz pulsed imaging (TPI) system has been performed. This will be necessary for future in vivo studies. The radiation is delivered in a train of femtosecond pulses. International guidelines on exposure to non-ionizing radiation, and supporting literature, were reviewed to determine the Maximum Permissible Exposure (MPE) for radiation of this range of wavelengths, both for a single pulse and continuous wave exposure. Two methods of deriving the MPE were identified. Current guidelines for infrared and microwave regions of the electromagnetic spectrum incorporate the THz region. Using conservative parameter estimation an MPE per pulse, over the area of the beam, of 94 W was calculated. At present THz pulsed imaging systems produce pulses of power approximately 1 mW; this lies within the limit calculated using the published guidelines. There are, however, areas requiring further investigation before the technique becomes routine in clinical practice.

  14. Terahertz generation in plasmas using two-color laser pulses

    SciTech Connect

    Penano, Joseph; Sprangle, Phillip; Gordon, Daniel; Hafizi, Bahman; Serafim, Philip

    2010-02-15

    We analyze the generation of terahertz radiation when an intense, short laser pulse is mixed with its frequency-doubled counterpart in plasma. The nonlinear coupling of the fundamental and the frequency-doubled laser pulses in plasma is shown to be characterized by a third order susceptibility which has a time dependence characteristic of the laser pulse durations. The terahertz generation process depends on the relative polarizations of the lasers and the terahertz frequency is omegaapprox1/tau{sub L}, where tau{sub L} is the laser pulse duration. Since the laser pulse duration is typically in the picosecond or subpicosecond regime the resulting radiation is in the terahertz or multiterahertz regime. To obtain the third order susceptibility we solve the plasma fluid equations correct to third order in the laser fields, including both the relativistic and ponderomotive force terms. The relativistic and ponderomotive contributions to the susceptibility nearly cancel in the absence of electron collisions. Therefore, in this terahertz generation mechanism collisional effects play a critical role. Consistent with recent experimental observations, our model shows that (1) the terahertz field amplitude is proportional to I{sub 1}sq root(I{sub 2}), where I{sub 1} and I{sub 2} are the intensities of the fundamental and second harmonic laser pulses, respectively, (2) the terahertz emission is maximized when the polarization of the laser beams and the terahertz are aligned, (3) for typical experimental parameters, the emitted terahertz field amplitude is on the order of tens of kilovolts/cm with duration comparable to that of the drive laser pulses, and (4) the direction of terahertz emission depends sensitively on experimental parameters.

  15. Terahertz technology for imaging and spectroscopy

    NASA Astrophysics Data System (ADS)

    Crowe, T. W.; Porterfield, D. W.; Hesler, J. L.; Bishop, W. L.; Kurtz, D. S.; Hui, K.

    2006-05-01

    The terahertz region of the electromagnetic spectrum has unique properties that make it especially useful for imaging and spectroscopic detection of concealed weapons, explosives and chemical and biological materials. However, terahertz energy is difficult to generate and detect, and this has led to a technology gap in this frequency band. Nonlinear diodes can be used to bridge this gap by translating the functionality achieved at microwave frequencies to the terahertz band. Basic building blocks include low-noise mixers, frequency multipliers, sideband generators and direct detectors. These terahertz components rely on planar Schottky diodes and recently developed integrated diode circuits make them easier to assemble and more robust. The new generation of terahertz sources and receivers requires no mechanical tuning, yet achieves high efficiency and broad bandwidth. This paper reviews the basic design of terahertz transmitters and receivers, with special emphasis on the recent development of systems that are compact, easy to use and have excellent performance.

  16. Spectral interference of terahertz pulses from two laser filaments in air

    NASA Astrophysics Data System (ADS)

    Chen, Yanping; Zhang, Zhelin; Zhang, Zhen; Yuan, Xiaohui; Liu, Feng; Chen, Min; Xu, Jianqiu; Yu, Jin; Sheng, Zhengming; Zhang, Jie

    2015-06-01

    Spectral interference is experimentally demonstrated by two terahertz pulses emitting from filaments induced by two successive femtosecond laser pulses in air. Here, a leading pulse is set to be weaker than a trailing pulse and their temporal separation is larger than the pulse duration of the terahertz pulses. When the leading pulse is stronger than the trailing pulse, the frequency modulation within the whole terahertz envelope is greatly deteriorated due to nonlinear effects applying on the trailing pulse through the plasmas generated by the leading pulses. Such unique terahertz spectrum may find applications in terahertz spectroscopy.

  17. Papyrus imaging with terahertz time domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Labaune, J.; Jackson, J. B.; Pagès-Camagna, S.; Duling, I. N.; Menu, M.; Mourou, G. A.

    2010-09-01

    Terahertz time domain spectroscopic imaging (THz-TDSI) is a non-ionizing, non-contact and non-destructive measurement technique that has been recently utilized to study cultural heritage artifacts. We will present this technique and the results of non-contact measurements of papyrus texts, including images of hidden papyri. Inks for modern papyrus specimens were prepared using the historical binder, Arabic gum, and two common pigments used to write ancient texts, carbon black and red ochre. The samples were scanned in reflection at normal incidence with a pulse with a spectral range between 0.1 and 1.5 THz. Temporal analysis of the signals provides the depths of the layers, and their frequency spectra give information about the inks.

  18. Tailored terahertz pulses from a laser-modulated electron beam.

    PubMed

    Byrd, J M; Hao, Z; Martin, M C; Robin, D S; Sannibale, F; Schoenlein, R W; Zholents, A A; Zolotorev, M S

    2006-04-28

    We present a new method to generate steady and tunable, coherent, broadband terahertz radiation from a relativistic electron beam modulated by a femtosecond laser. We have demonstrated this in the electron storage ring at the Advanced Light Source. Interaction of an electron beam with a femtosecond laser pulse copropagating through a wiggler modulates the electron energies within a short slice of the electron bunch with about the same duration of the laser pulse. The bunch develops a longitudinal density perturbation due to the dispersion of electron trajectories, and the resulting hole emits short pulses of temporally and spatially coherent terahertz pulses synchronized to the laser. We present measurements of the intensity and spectra of these pulses. This technique allows tremendous flexibility in shaping the terahertz pulse by appropriate modulation of the laser pulse. PMID:16712239

  19. Terahertz polarization imaging based on the continuous wave terahertz radiations

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Shen, Yanchun; Zhao, Guozhong

    2015-08-01

    Terahertz (THz) imaging is a hot topic in the current imaging technology. THz imaging has the advantage to penetrate most of non-metal and non-polar materials for the detection of concealed objects, while it is harmless to biological organism. Continuous wave terahertz (THz) imaging is enable to offer a safe and noninvasive imaging for the investigated objects. In this paper, THz real-time polarization imaging system is demonstrated based on the SIFIR-50 THz laser as a radiation source and a NEC Terahertz Imager as an array detector. The experimental system employs two wire grid polarizers to acquire the intensity images in four different directions. The polarization information of the measured object is obtained based on the Stokes-Mueller matrix. Imaging experiments on the currency with water mark and the hollowed-out metal ring have been done. Their polarization images are acquired and analyzed. The results show that the extracted polarization images include the valuable information which can effectively detect and recognize the different kinds of objects.

  20. Application of terahertz pulse imaging as PAT tool for non-destructive evaluation of film-coated tablets under different manufacturing conditions.

    PubMed

    Dohi, Masafumi; Momose, Wataru; Yoshino, Hiroyuki; Hara, Yuko; Yamashita, Kazunari; Hakomori, Tadashi; Sato, Shusaku; Terada, Katsuhide

    2016-02-01

    Film-coated tablets (FCTs) are a popular solid dosage form in pharmaceutical industry. Manufacturing conditions during the film-coating process affect the properties of the film layer, which might result in critical quality problems. Here, we analyzed the properties of the film layer using a non-destructive approach with terahertz pulsed imaging (TPI). Hydrophilic tablets that become distended upon water absorption were used as core tablets and coated with film under different manufacturing conditions. TPI-derived parameters such as film thickness (FT), film surface reflectance (FSR), and interface density difference (IDD) between the film layer and core tablet were affected by manufacturing conditions and influenced critical quality attributes of FCTs. Relative standard deviation of FSR within tablets correlated well with surface roughness. Tensile strength could be predicted in a non-destructive manner using the multivariate regression equation to estimate the core tablet density by film layer density and IDD. The absolute value of IDD (Lateral) correlated with the risk of cracking on the lateral film layer when stored in a high-humidity environment. Further, in-process control was proposed for this value during the film-coating process, which will enable a feedback control system to be applied to process parameters and reduced risk of cracking without a stability test. PMID:26678177

  1. Terahertz Imaging and Security Applications

    NASA Astrophysics Data System (ADS)

    Grossman, Erich

    2005-03-01

    Imaging at millimeter-wave and terahertz frequencies could vastly improve the security of personnel checkpoints, because of the penetration through clothing and spatial resolution available in this spectral range. Since 9/11, the social need for improved checkpoint screening has been obvious and great. However, although efforts to develop such imagers had been underway for many years before that, practical low-cost systems, analogous to IR uncooled imagers, still don't exist. An emphasis on purely passive imaging places very stringent sensitivity requirements on such imagers. A number of long-term efforts, which I briefly mention, are underway to improve the sensitivity of such passive imagers. However, most of the emphasis in our program is on active imaging. With this approach, much simpler and lower-cost detectors, such as (uncooled) antenna-coupled microbolometers can be used, at the expense of incorporating slightly more complex optics and illumination components. I discuss several tradeoffs presented in the design of active imaging systems for the 100 to 1000 GHz frequency range, describe how we have addressed them in the design of a scanning, 95 GHz, bolometer-based imager for concealed weapons detection that is nearing completion, and describe how the system architecture can be modified to scale the operating frequency to the 650 GHz atmospheric window. Co-authors: Arttu Luukanen and Aaron Miller

  2. Terahertz Tools Advance Imaging for Security, Industry

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Picometrix, a wholly owned subsidiary of Advanced Photonix Inc. (API), of Ann Arbor, Michigan, invented the world s first commercial terahertz system. The company improved the portability and capabilities of their systems through Small Business Innovation Research (SBIR) agreements with Langley Research Center to provide terahertz imaging capabilities for inspecting the space shuttle external tanks and orbiters. Now API s systems make use of the unique imaging capacity of terahertz radiation on manufacturing floors, for thickness measurements of coatings, pharmaceutical tablet production, and even art conservation.

  3. Imaging of ex vivo nonmelanoma skin cancers in the optical and terahertz spectral regions optical and terahertz skin cancers imaging.

    PubMed

    Joseph, Cecil S; Patel, Rakesh; Neel, Victor A; Giles, Robert H; Yaroslavsky, Anna N

    2014-05-01

    We tested the hypothesis that polarization sensitive optical and terahertz imaging may be combined for accurate nonmelanoma skin cancer (NMSC) delineation. Nine NMSC specimens were imaged. 513 ?m and 440 nm wavelengths were used for terahertz and optical imaging, respectively. Histopathology was processed for evaluation. Terahertz reflectance of NMSC was quantified. Our results demonstrate that cross-polarized terahertz images correctly identified location of the tumours, whereas cross-polarized and polarization difference optical images accurately presented morphological features. Cross-polarized terahertz images exhibited lower reflectivity values in cancer as compared to normal tissue. Combination of optical and terahertz imaging shows promise for intraoperative delineation of NMSC. PMID:22987857

  4. Terahertz interferometric imaging of a concealed object

    NASA Astrophysics Data System (ADS)

    Sinyukov, Alexander M.; Bandyopadhyay, Aparajita; Sengupta, Amartya; Barat, Robert B.; Gary, Dale E.; Michalopoulou, Zoi-Heleni; Zimdars, David; Federici, John F.

    2006-10-01

    Experimental results of two-dimensional homodyne terahertz interferometric imaging are presented. The performance of an N element detector array is imitated by only one detector placed at N positions. Continuous waves at 0.25-0.3 THz are used to detect concealed objects: a metal object and an RDX sample. The terahertz interferometric imaging method can be used in defense and security applications to detect concealed weapons, explosives as well as chemical and biological agents.

  5. Processing and Probability Analysis of Pulsed Terahertz NDE of Corrosion under Shuttle Tile Data

    NASA Technical Reports Server (NTRS)

    Anastasi, Robert F.; Madaras, Eric I.; Seebo, Jeffrey P.; Ely, Thomas M.

    2009-01-01

    This paper examines data processing and probability analysis of pulsed terahertz NDE scans of corrosion defects under a Shuttle tile. Pulsed terahertz data collected from an aluminum plate with fabricated corrosion defects and covered with a Shuttle tile is presented. The corrosion defects imaged were fabricated by electrochemically etching areas of various diameter and depth in the plate. In this work, the aluminum plate echo signal is located in the terahertz time-of-flight data and a threshold is applied to produce a binary image of sample features. Feature location and area are examined and identified as corrosion through comparison with the known defect layout. The results are tabulated with hit, miss, or false call information for a probability of detection analysis that is used to identify an optimal processing threshold.

  6. An HTS detector for terahertz imaging

    NASA Astrophysics Data System (ADS)

    Hellicar, Andrew D.; Du, Jia; Hanham, Stephen; Nikolic, Nasiha

    2008-04-01

    This paper describes the design, implementation and measurements of a detector for imaging purposes at terahertz frequencies. The detector comprises of a ring slot antenna coupled to a high temperature superconducting Josephson Junction device. The detector was shown to respond to an incident field at 0.6 THz. An imaging system was constructed to test the detector's ability to generate images at 0.6 THz. Images have been acquired that demonstrate the ability of the detector to operate in an imaging mode in scenarios that exploit terahertz radiation's unique properties including penetration through packaging, sensitivity of water and millimeter scale resolution.

  7. Terahertz polarization imaging for colon cancer detection

    NASA Astrophysics Data System (ADS)

    Doradla, Pallavi; Alavi, Karim; Joseph, Cecil S.; Giles, Robert H.

    2014-03-01

    Continuous wave terahertz (THz) imaging has the potential to offer a safe, noninvasive medical imaging modality for delineating colorectal cancer. The terahertz reflectance measurements of fresh 3 - 5 mm thick human colonic excisions were acquired using a continuous-wave polarization imaging technique. A CO2 optically pumped Far- Infrared molecular gas laser operating at 584 GHz was used to illuminate the colon tissue, while the reflected signals were detected using a liquid Helium cooled silicon bolometer. Both co-polarized and cross-polarized remittance from the samples was collected using wire grid polarizers in the experiment. The experimental analysis of 2D images obtained from THz reflection polarization imaging techniques showed intrinsic contrast between cancerous and normal regions based on increased reflection from the tumor. Also, the study demonstrates that the cross-polarized terahertz images not only correlates better with the histology, but also provide consistent relative reflectance difference values between normal and cancerous regions for all the measured specimens.

  8. The Polarization and Efficiency of the Terahertz Pulses Generated by Tilted-Pulse-Front Pumping Scheme

    NASA Astrophysics Data System (ADS)

    Zhong, Sen-Cheng; Zhu, Li-Guo; Tao, Shi-Xing; Meng, Kun; Peng, Long-Yao; Liu, Qiao; Peng, Qi-Xian; Zhao, Jian-Heng; Li, Ze-Ren

    2014-03-01

    Optical rectification of laser pulses in LiNbO3 by tilted-pulse-front pumping(TPFP) is a powerful way to generate terahertz(THz) pulses. However, comprehensive theoretical analysis is still lack. In this work, we first established and presented a detailed theoretical model for TPFP scheme, which then was used to analyze the pump beam polarization dependent terahertz pulses generated by this scheme. The terahertz pulses polarization and generation efficiency for various pump beam polarization angle were investigated by using nonlinear susceptibility tensor of LiNbO3 crystal. The results indicate that one can change the polarization state of the terahertz pulse by changing the pump beam polarization.

  9. Array technology for terahertz imaging

    NASA Astrophysics Data System (ADS)

    Reck, Theodore; Siles, Jose; Jung, Cecile; Gill, John; Lee, Choonsup; Chattopadhyay, Goutam; Mehdi, Imran; Cooper, Ken

    2012-06-01

    Heterodyne terahertz (0.3 - 3THz) imaging systems are currently limited to single or a low number of pixels. Drastic improvements in imaging sensitivity and speed can be achieved by replacing single pixel systems with an array of detectors. This paper presents an array topology that is being developed at the Jet Propulsion Laboratory based on the micromachining of silicon. This technique fabricates the array's package and waveguide components by plasma etching of silicon, resulting in devices with precision surpassing that of current metal machining techniques. Using silicon increases the versatility of the packaging, enabling a variety of orientations of circuitry within the device which increases circuit density and design options. The design of a two-pixel transceiver utilizing a stacked architecture is presented that achieves a pixel spacing of 10mm. By only allowing coupling from the top and bottom of the package the design can readily be arrayed in two dimensions with a spacing of 10mm x 18mm.

  10. Array Technology for Terahertz Imaging

    NASA Technical Reports Server (NTRS)

    Reck, Theodore; Siles, Jose; Jung, Cecile; Gill, John; Lee, Choonsup; Chattopadhyay, Goutam; Mehdi, Imran; Cooper, Ken

    2012-01-01

    Heterodyne terahertz (0.3 - 3THz) imaging systems are currently limited to single or a low number of pixels. Drastic improvements in imaging sensitivity and speed can be achieved by replacing single pixel systems with an array of detectors. This paper presents an array topology that is being developed at the Jet Propulsion Laboratory based on the micromachining of silicon. This technique fabricates the array's package and waveguide components by plasma etching of silicon, resulting in devices with precision surpassing that of current metal machining techniques. Using silicon increases the versatility of the packaging, enabling a variety of orientations of circuitry within the device which increases circuit density and design options. The design of a two-pixel transceiver utilizing a stacked architecture is presented that achieves a pixel spacing of 10mm. By only allowing coupling from the top and bottom of the package the design can readily be arrayed in two dimensions with a spacing of 10mm x 18mm.

  11. Detection and Characterization of Flaws in Sprayed on Foam Insulation with Pulsed Terahertz Frequency Electromagnetic Waves

    NASA Technical Reports Server (NTRS)

    Winfree, William P.; Madaras, Eric I.

    2005-01-01

    The detection and repair of flaws such as voids and delaminations in the sprayed on foam insulation of the external tank reduces the probability of foam debris during shuttle ascent. The low density of sprayed on foam insulation along with it other physical properties makes detection of flaws difficult with conventional techniques. An emerging technology that has application for quantitative evaluation of flaws in the foam is pulsed electromagnetic waves at terahertz frequencies. The short wavelengths of these terahertz pulses make them ideal for imaging flaws in the foam. This paper examines the application of terahertz pulses for flaw detection in foam characteristic of the foam insulation of the external tank. Of particular interest is the detection of voids and delaminations, encapsulated in the foam or at the interface between the foam and a metal backing. The technique is shown to be capable of imaging small voids and delaminations through as much as 20 cm of foam. Methods for reducing the temporal responses of the terahertz pulses to improve flaw detection and yield quantitative characterizations of the size and location of the flaws are discussed.

  12. Terahertz interferometric and synthetic aperture imaging

    NASA Astrophysics Data System (ADS)

    Sinyukov, Alexander M.; Bandyopadhyay, Aparajita; Sengupta, Amartya; Barat, Robert B.; Gary, Dale E.; Michalopoulou, Zoi-Heleni; Zimdars, David; Federici, John F.

    2006-05-01

    Experimental results of homodyne terahertz interferometric 1-D and 2-D imaging are presented. Continuous waves at 0.25-0.3 THz are used to detect a metal object behind a barrier. The performance of an N element detector array is imitated by only one detector placed at N positions. The reconstructed images are in a good agreement with theoretical predictions. The terahertz interferometric imaging method can be used in defense and security applications to detect concealed weapons, explosives as well as chemical and biological agents.

  13. Terahertz spin current pulses controlled by magnetic heterostructures

    NASA Astrophysics Data System (ADS)

    Kampfrath, T.; Battiato, M.; Maldonado, P.; Eilers, G.; Nötzold, J.; Mährlein, S.; Zbarsky, V.; Freimuth, F.; Mokrousov, Y.; Blügel, S.; Wolf, M.; Radu, I.; Oppeneer, P. M.; Münzenberg, M.

    2013-04-01

    In spin-based electronics, information is encoded by the spin state of electron bunches. Processing this information requires the controlled transport of spin angular momentum through a solid, preferably at frequencies reaching the so far unexplored terahertz regime. Here, we demonstrate, by experiment and theory, that the temporal shape of femtosecond spin current bursts can be manipulated by using specifically designed magnetic heterostructures. A laser pulse is used to drive spins from a ferromagnetic iron thin film into a non-magnetic cap layer that has either low (ruthenium) or high (gold) electron mobility. The resulting transient spin current is detected by means of an ultrafast, contactless amperemeter based on the inverse spin Hall effect, which converts the spin flow into a terahertz electromagnetic pulse. We find that the ruthenium cap layer yields a considerably longer spin current pulse because electrons are injected into ruthenium d states, which have a much lower mobility than gold sp states. Thus, spin current pulses and the resulting terahertz transients can be shaped by tailoring magnetic heterostructures, which opens the door to engineering high-speed spintronic devices and, potentially, broadband terahertz emitters.

  14. Biomedical terahertz imaging with a quantum cascade laser

    NASA Astrophysics Data System (ADS)

    Kim, Seongsin M.; Hatami, Fariba; Harris, James S.; Kurian, Allison W.; Ford, James; King, Douglas; Scalari, Giacomo; Giovannini, Marcella; Hoyler, Nicolas; Faist, Jerome; Harris, Geoff

    2006-04-01

    We present biomedical imaging using a single frequency terahertz imaging system based on a low threshold quantum cascade laser emitting at 3.7THz (?=81?m). With a peak output power of 4mW, coherent terahertz radiation and detection provide a relatively large dynamic range and high spatial resolution. We study image contrast based on water/fat content ratios in different tissues. Terahertz transmission imaging demonstrates a distinct anatomy in a rat brain slice. We also demonstrate malignant tissue contrast in an image of a mouse liver with developed tumors, indicating potential use of terahertz imaging for probing cancerous tissues.

  15. Terahertz imaging of subjects with concealed weapons

    NASA Astrophysics Data System (ADS)

    Dickinson, Jason C.; Goyette, Thomas M.; Gatesman, Andrew J.; Joseph, Cecil S.; Root, Zachary G.; Giles, Robert H.; Waldman, Jerry; Nixon, William E.

    2006-05-01

    In response to the growing interest in developing terahertz imaging systems for concealed weapons detection, the Submillimeter-Wave Technology Laboratory (STL) at the University of Massachusetts Lowell has produced full-body terahertz imagery using coherent active radar measurement techniques. The proof-of-principle results were readily obtained utilizing the compact radar range resources at STL. Two contrasting techniques were used to collect the imagery. Both methods made use of in-house transceivers, consisting of two ultra-stable far-infrared lasers, terahertz heterodyne detection systems, and terahertz anechoic chambers. The first technique involved full beam subject illumination with precision azimuth and elevation control to produce high resolution images via two axis Fourier transforms. Imagery collected in this manner is presented at 1.56THz and 350GHz. The second method utilized a focused spot, moved across the target subject in a high speed two dimensional raster pattern created by a large two-axis positioning mirror. The existing 1.56THz compact radar range was modified to project a focused illumination spot on the target subject several meters away, and receive the back-reflected intensity. The process was repeated across two dimensions, and the resultant image was assembled and displayed utilizing minimal on-the-fly processing. Imagery at 1.56THz of human subjects with concealed weapons are presented and discussed for this scan type.

  16. Real-Time Detection of Terahertz Pulse Amplitude and Position

    NASA Astrophysics Data System (ADS)

    Pühringer, Harald; Nejim, Zeineb; Pfleger, Michael; Katletz, Stefan

    2015-10-01

    A novel and continuous detection scheme for the pulse amplitude and temporal position of a terahertz time domain system is presented. Currently, we have achieved a sampling time of 25 Hz and a resolution of less than 70 fs. The method is therefore very well suited for online measurements in production processes to monitor the thickness and inhomogeneities in the composition of non-conducting materials.

  17. Tailored terahertz pulses from a laser-modulated electronbeam

    SciTech Connect

    Martin, Michael C.; Byrd, John; Hao, Zhao; Robin, David; Sannibale,Fernando; Schoenlein, Robert W.; Zholents, Alexander; Zolotorev, Max

    2005-07-19

    Interaction of an electron beam with a femtosecond laserpulseco-propagating through a wiggler modulates the electronenergieswithin a short slice of the electron bunch comparable with the durationof the laser pulse (Figure 1). Propagating around an electron storagering, this bunch develops a longitudinal density perturbation due to thedispersion of electron trajectories. Figure 1 shows how this createsfemtosecond electron bunch wings which are used for femtosecond x-raylight. In addition, this density perturbation emits temporally andspatially coherent tera-hertz pulses whichare inherently synchronized tothe modulating laser. This gives us a new way to study coherentsynchrotron radaition, and creates an opportunity for tuning the THzemmission specifically for the needs of a given experiment.

  18. Terahertz real-time imaging for nondestructive detection

    NASA Astrophysics Data System (ADS)

    Zhang, LiangLiang; Karpowicz, Nick; Zhang, CunLin; Zhao, YueJin; Zhang, XiCheng

    2008-03-01

    We present a real time imaging measurement in the terahertz (THz) frequency region. The dynamic subtraction technique is used to reduce long-term optical background drift. The reflective images of two targets, a Nikon camera's lens cap and a plastic toy gun, are obtained. For the lens cap, the image data were processed to be false color images. For the toy gun, we show that even under an optically opaque canvas bag, a clear terahertz image is obtained. It is shown that terahertz real time imaging can be used to nondestructively detect concealed objects.

  19. Real-time measurement of the full spatiotemporal field of a single terahertz pulse by pulsed digital holography

    NASA Astrophysics Data System (ADS)

    Wang, Xiaolei; Zhai, Hongchen; Li, Lujie

    2010-11-01

    Up to now, a variety of methods have been developed for the single-shot THz detection, which include spectral encoding technique [2-3], optical streak camera [4], non-collinear geometry spatial encoding [5], non-collinear cross correlation technique [6], retrieval algorithm based on in-line spectral interferometry [7], two-dimensional electro-optic imaging with dual echelons [8], tilted front collinear geometry [9], etc. For a single-shot characterization of THz pulse, all of the schemes mentioned above can be, however, only employed to measure the electric field of a single-shot THz either in its spatial or temporal domain, respectively, in real time. In this paper, we describe a method for a single-shot recording of the full spatiotemporal electric field, E(x, y, t), of freely propagating terahertz pulse based on the electro-optic (E-O) sampling technique and the pulsed digital holographic approach. From a series of sub-holograms recorded digitally, the complete THz electric field E(x, y, t) can be recovered by the following digital reconstruction algorithm. The spatial and temporal resolutions are limited by the wavelength of terahertz pulse and the probe pulse duration, respectively. Our new method will open a possibility of a full characterization of the three-dimensional THz field E(x, y, t) in a single-shot mode.

  20. A terahertz pulse emitter monolithically integrated with a quantum cascade laser

    E-print Network

    Kao, Tsung-Yu

    A terahertz pulse emitter monolithically integrated with a quantum cascade laser(QCL) is demonstrated. The emitter facet is excited by near-infrared pulses from a mode-locked Ti:sapphire laser, and the resulting current ...

  1. Generation of high power single-cycle and multiple-cycle terahertz pulses

    E-print Network

    Chen, Zhao, S.M. Massachusetts Institute of Technology. Department of Chemistry

    2013-01-01

    In this thesis, we present experimental methods and results of tabletop generation of high power single-cycle and frequency-tunable multiple-cycle terahertz (THz) pulses pumped with near-infrared ultrashort optical pulses ...

  2. Ultrafast imaging of terahertz Cherenkov waves and transition-like radiation in LiNbO?.

    PubMed

    Wang, Zhenyou; Su, FuHai; Hegmann, Frank A

    2015-03-23

    We use ultrafast phase-contrast imaging to directly observethe cone-like terahertz (THz) Cherenkov wave generated by optical rectification of femtosecond laser pulses focused into bulk lithium niobate (LiNbO?) single crystals. The transverse imaging geometry allows the Cherenkov angle, THz wave velocity, and optical pump pulse group velocity to be measured. Furthermore, transition-like THz radiation generated by the femtosecond laser pulse at the air-crystal boundary is observed. The effect of optical pump pulse polarization on the generation of THz Cherenkov waves and transition-like radiation in LiNbO? is also investigated. PMID:25837145

  3. Video-rate terahertz electric-field vector imaging

    SciTech Connect

    Takai, Mayuko; Takeda, Masatoshi; Sasaki, Manabu; Tachizaki, Takehiro; Yasumatsu, Naoya; Watanabe, Shinichi

    2014-10-13

    We present an experimental setup to dramatically reduce a measurement time for obtaining spatial distributions of terahertz electric-field (E-field) vectors. The method utilizes the electro-optic sampling, and we use a charge-coupled device to detect a spatial distribution of the probe beam polarization rotation by the E-field-induced Pockels effect in a ?110?-oriented ZnTe crystal. A quick rotation of the ZnTe crystal allows analyzing the terahertz E-field direction at each image position, and the terahertz E-field vector mapping at a fixed position of an optical delay line is achieved within 21 ms. Video-rate mapping of terahertz E-field vectors is likely to be useful for achieving real-time sensing of terahertz vector beams, vector vortices, and surface topography. The method is also useful for a fast polarization analysis of terahertz beams.

  4. 3-D Terahertz Synthetic-Aperture Imaging and Spectroscopy

    NASA Astrophysics Data System (ADS)

    Henry, Samuel C.

    Terahertz (THz) wavelengths have attracted recent interest in multiple disciplines within engineering and science. Situated between the infrared and the microwave region of the electromagnetic spectrum, THz energy can propagate through non-polar materials such as clothing or packaging layers. Moreover, many chemical compounds, including explosives and many drugs, reveal strong absorption signatures in the THz range. For these reasons, THz wavelengths have great potential for non-destructive evaluation and explosive detection. Three-dimensional (3-D) reflection imaging with considerable depth resolution is also possible using pulsed THz systems. While THz imaging (especially 3-D) systems typically operate in transmission mode, reflection offers the most practical configuration for standoff detection, especially for objects with high water content (like human tissue) which are opaque at THz frequencies. In this research, reflection-based THz synthetic-aperture (SA) imaging is investigated as a potential imaging solution. THz SA imaging results presented in this dissertation are unique in that a 2-D planar synthetic array was used to generate a 3-D image without relying on a narrow time-window for depth isolation cite [Shen 2005]. Novel THz chemical detection techniques are developed and combined with broadband THz SA capabilities to provide concurrent 3-D spectral imaging. All algorithms are tested with various objects and pressed pellets using a pulsed THz time-domain system in the Northwest Electromagnetics and Acoustics Research Laboratory (NEAR-Lab).

  5. Detection of Terahertz Pulses Using a Modified Sagnac Interferometer

    SciTech Connect

    Benjamin Clough1; David H. Hurley; Pengyu Han; Jun Liao; Rena Huang3; X. –C. Zhang

    2009-12-01

    We describe a time resolved, interferometric method to detect terahertz (THz) pulses based on Sagnac geometry. A ZnTe electro-optic crystal is placed in one arm of the interferometer, and the THz-induced optical phase shift is demodulated by allowing the two arms to optically interfere. The theorital principle behind this new method is illustrated and a detailed comparison with the traditional electro-optic (EO) sampling technique used in THz time domain spectroscopy is performed. Key features of this new method are highlighted, serving as an aid to identify where this method may be useful in future applications.

  6. Laser pulse amplitude changes induced by terahertz waves under linear electro-optic effect

    SciTech Connect

    Ilyakov, I. E. Shishkin, B. V.; Kitaeva, G. Kh.; Akhmedzhanov, R. A.

    2014-04-14

    Changes in the amplitude of femtosecond laser pulses and in the energy of terahertz wave radiation induced during their co-propagation in ZnTe and GaP crystals are studied theoretically and experimentally. The results show that variation of the optical field amplitude leads to changes in the laser pulse energy and spectrum shift. We investigate the quantitative correlations between variations of the optical pulse energy, spectrum, phase and terahertz radiation energy. The values of laser pulse energy change and spectrum shift are proportional to the first time derivative of the magnitude of terahertz electric field, which enables coherent electro-optic detection. A simple and convenient calibration technique for terahertz energy detectors based on the correlation between laser and terahertz energy changes is proposed and tested.

  7. Passive terahertz imaging for security application

    NASA Astrophysics Data System (ADS)

    Guo, Lan-tao; Deng, Chao; Zhao, Yuan-meng; Zhang, Cun-lin

    2013-08-01

    The passive detection is safe for passengers and operators as no radiation. Therefore, passive terahertz (THz) imaging can be applied to human body security check. Imaging in the THz band offers the unique property of being able to identify object through a range of materials. Therefore passive THz imaging is meaningful for security applications. This attribute has always been of interest to both the civil and military marks with applications. We took advantage of a single THz detector and a trihedral scanning mirror to propose another passive THz beam scanning imaging method. This method overcame the deficiencies of the serious decline in image quality due to the movement of the focused mirror. We exploited a THz scanning mirror with a trihedral scanning mirror and an ellipsoidal mirror to streamline the structure of the system and increase the scanning speed. Then the passive THz beam scanning imaging system was developed based on this method. The parameters were set as follows: the best imaging distance was 1.7m, the image height was 2m, the image width was 1m, the minimum imaging time of per frame was 8s, and the minimum resolution was 4cm. We imaged humans with different objects hidden under their clothes, such as fruit knife, belt buckle, mobile phone, screwdriver, bus cards, keys and other items. All the tested stuffs could be detected and recognized from the image.

  8. Enhanced terahertz pulse generation and detection using electric field singularities in photo-conducting antennas

    NASA Astrophysics Data System (ADS)

    Cai, Yi

    1998-07-01

    In recent years, generation of ultra-short electromagnetic pulses with frequency components in the terahertz (THz) range has been achieved by various techniques. Among those different methods, photo- conducting antennas have proven to be the most efficient source of THz radiation. THz spectrometers utilizing such photo-conducting antennas as transmitters and receivers are meanwhile routinely used for spectroscopic studies in the frequency regime between 0.1 to 5THz, which can be covered by neither conventional optical nor microwave spectrometers. However, THz emission power from the existing photo-conducting antenna is not sufficient for many applications (such as electro-optic sampling for real time THz detection and imaging, THz near field spectroscopy, remote chemical sensing, etc.). This dissertation presents a systematic study of a new family of more efficient THz antennas, ranging from engineering simulation, device fabrication, system characterization and their applications. We, for the first time, have designed the THz dipole antennas with relatively sophisticated shapes to optimize the fringing electric field in the regime where the THz pulse is generated. We demonstrate that this is the most efficient THz emitters, to our knowledge, with a record high THz average power of 2-3?W with mW laser excitation. The previously reported state-of-the-art THz radiation power under similar condition are 38nW (39) and 10nW (25). With the singular electric field terahertz emitters, we are enabled to impact the terahertz spectroscopy imaging technology with even higher band width, sensitivity, spatial resolution, and compactness. In this dissertation, we also present our demonstrations on these improvements, including: (1) The significant improvement on performance of THz spectroscopy systems with a signal to noise ratio as high as ~106 (2) The feasibility of a THz focal plane imaging system using real time delay scanning in shot noise limited free space electro-optic sampling (FSEOS) that requires only 20mW of laser power; (3) A record high THz imaging space resolution of ~30/mum is achieved with new integrated near field terahertz imaging probes; (4) A compact all solid-state terahertz system, operating with a diode pumped Cr:LiSaF laser. We also demonstrate a few applications empowered by this high sensitivity, including chemical sensing, photo induced conductivity measurement of Si nano-structure thin film, and semi-insulating GaAs.

  9. Compact, high average power, fiber-pumped terahertz source for active real-time imaging of concealed objects.

    PubMed

    Creeden, Daniel; McCarthy, John C; Ketteridge, Peter A; Schunemann, Peter G; Southward, Timothy; Komiak, James J; Chicklis, Evan P

    2007-05-14

    We have modeled and demonstrated a scalable, compact, fiber-pumped terahertz source based on difference frequency mixing (DFM) in zinc germanium phosphide (ZGP) capable of producing high average and peak-power pulses. Currently, our terahertz source produces 2 mW of average THz power and >40 W of peak power with sub-nanosecond pulses at a repetition rate of 100 kHz in the range of 2-3 THz without cryogenic cooling or ultra-fast optics. This high average power laser-based terahertz output enables the real-time imaging of concealed objects using an off-the-shelf uncooled microbolometer focal-plane array. With this THz system, we have imaged objects obscured inside in a common shipping envelope, demonstrating the potential of compact laser-based terahertz sources for use in security screening applications. PMID:19546954

  10. Image reconstruction and optimization using a terahertz scanned imaging system

    NASA Astrophysics Data System (ADS)

    Y?ld?r?m, ?hsan Ozan; Özkan, Vedat A.; Idikut, F?rat; Takan, Taylan; ?ahin, Asaf B.; Altan, Hakan

    2014-10-01

    Due to the limited number of array detection architectures in the millimeter wave to terahertz region of the electromagnetic spectrum, imaging schemes with scan architectures are typically employed. In these configurations the interplay between the frequencies used to illuminate the scene and the optics used play an important role in the quality of the formed image. Using a multiplied Schottky-diode based terahertz transceiver operating at 340 GHz, in a stand-off detection scheme; the effect of image quality of a metal target was assessed based on the scanning speed of the galvanometer mirrors as well as the optical system that was constructed. Background effects such as leakage on the receiver were minimized by conditioning the signal at the output of the transceiver. Then, the image of the target was simulated based on known parameters of the optical system and the measured images were compared to the simulation. By using an image quality index based on ?2 algorithm the simulated and measured images were found to be in good agreement with a value of ?2 = 0 .14. The measurements as shown here will aid in the future development of larger stand-off imaging systems that work in the terahertz frequency range.

  11. Electric-Field Ionization of Gallium Acceptors in Germanium Induced by Single-cycle Terahertz Pulses

    E-print Network

    Mukai, Y; Tanaka, K

    2013-01-01

    The electric field ionization of gallium acceptors in germanium was studied by using terahertz time-domain spectroscopy after single-cycle terahertz pulse excitation. As the peak electric field of the excitation pulse increases, the distinct absorptions due to acceptor transitions centered at 2.0 and 2.2 THz decrease, and simultaneously, absorption emerges in the lower frequency region. These behaviors clearly show that the terahertz pulse ionizes neutral acceptors. The electric field dependence of the released hole density is well reproduced by a model assuming direct field-assisted tunneling of acceptors.

  12. Generation of Terahertz Radiation by Interaction of Intense Femtosecond Laser Pulses with a Metal Surface

    NASA Astrophysics Data System (ADS)

    Akhmedzhanov, R. A.; Ilyakov, I. E.; Mironov, V. A.; Oladyshkin, I. V.; Suvorov, E. V.; Fadeev, D. A.; Shishkin, B. V.

    2015-04-01

    We present the results of experimental and theoretical studies of generation of terahertz radiation during reflection of a femtosecond-long laser pulse from a metal surface. It is shown that a greater part of the experimental results (narrow directivity of the terahertz waves and dependence of its energy on the polarization and incidence angle of the laser radiation) can be interpreted within the model of ?erenkov radiation. Some new features of generation of terahertz radiation are considered, which appear during an optical breakdown of the medium near the metal surface. Structural changes in the terahertz signal, which take place in the process of formation of the near-surface plasma, are studied.

  13. Adaptive terahertz imaging using a virtual transceiver and coherence weighting

    E-print Network

    Buma, Takashi

    , and M. C. Kemp, "Detection of concealed explosives at a distance using terahertz technology," Proc. IEEE, and D. Zimdars, "THz imaging and sensing for security applications ­ explosives, weapons, and drugs

  14. Terahertz imaging and quantum cascade laser based devices

    E-print Network

    Lee, Alan Wei Min

    2010-01-01

    The terahertz (THz) frequency range (f=0.3-10 THz, [lambda]=30-1000 lam) is much less technologically developed that the adjacent microwave and infrared frequency ranges, but offers several advantages for imaging applications: ...

  15. Super-resolution reconstruction of terahertz images

    NASA Astrophysics Data System (ADS)

    Li, Yue; Li, Li; Hellicar, Andrew; Guo, Y. Jay

    2008-04-01

    A prototype of terahertz imaging system has been built in CSIRO. This imager uses a backward wave oscillator as the source and a Schottky diode as the detector. It has a bandwidth of 500-700 GHz and a source power 10 mW. The resolution at 610 GHz is about 0.85 mm. Even though this imaging system is a coherent system, only the signal power is measured at the detector and the phase information of the detected wave is lost. Some initial images of tree leaves, chocolate bars and pinholes have been acquired with this system. In this paper, we report experimental results of an attempt to improve the resolution of this imaging system beyond the limitation of diffraction (super-resolution). Due to the lack of phase information needed for applying any coherent super-resolution algorithms, the performance of the incoherent Richardson-Lucy super-resolution algorithm has been evaluated. Experimental results have demonstrated that the Richardson-Lucy algorithm can significantly improve the resolution of these images in some sample areas and produce some artifacts in other areas. These experimental results are analyzed and discussed.

  16. Amplification of terahertz pulses in gases beyond thermodynamic equilibrium

    SciTech Connect

    Schwaab, G. W.; Schroeck, K.; Havenith, M.

    2007-03-15

    In Ebbinghaus et al. [Plasma Sources Sci. Technol. 15, 72 (2006)] we reported terahertz time-domain spectroscopy in a plasma at low pressure, we observed a simultaneous absorption and amplification process within each single rotational transition. Here we show that this observation is a direct consequence of the short interaction time of the pulsed terahertz radiation with the plasma, which is shorter than the average collision time between the molecules. Thus, during the measurement time the molecular states may be considered entangled. Solution of the time-dependent Schroedinger equation yields a linear term that may be neglected for long observation times, large frequencies, or nonentangled states. We determine the restrictions for the observation of this effect and calculate the spectrum of a simple diatomic molecule. Using this model we are able to explain the spectral features showing a change from emission to absorption as observed previously. In addition we find that the amplification and absorption do not follow the typical Lambert-Beer exponential law but an approximate square law.

  17. Resolution capability comparison of infrared and terahertz imagers

    NASA Astrophysics Data System (ADS)

    Bergeron, Alain; Marchese, Linda; Savard, Éric; LeNoc, Loïc; Bolduc, Martin; Terroux, Marc; Dufour, Denis; Tang, Denis; Châteauneuf, François; Jerominek, Hubert

    2011-11-01

    Infrared and terahertz are two imaging technologies that differ fundamentally in numerous aspects. Infrared imaging is an efficient passive technology whereas terahertz technology is an active technology requiring some kind of illumination to be efficient. What's more, the detectors are also different and yield differences in the fundamental physics when integrated in a complete system. One of these differences lies in the size of the detectors. Infrared detectors are typically larger than the infrared wavelengths whereas terahertz detectors are typically smaller than the wavelength of illumination. This results in different constraints when designing these systems, constraints that are imposed by the resolution capabilities of the system. In the past INO has developed an infrared imaging camera core of 1024×768 pixels and tested some microscanning devices to improve its sampling frequency and ultimately its resolution. INO has also engineered detectors and camera cores specifically designed for active terahertz imaging with smaller dimensions (160×120 pixels). In this paper the evaluation of the resolution capabilities of a terahertz imager at the pixel level is performed. The resolution capabilities for the THz are evaluated in the sub-wavelength range, which is not actually possible in the infrared wavebands. Based on this evaluation, the comparison between the resolution limits of infrared detectors and the terahertz detectors at the pixel level is performed highlighting the differences between the wavebands and their impact on system design.

  18. Yb:YAG thin-disk chirped pulse amplification laser system for intense terahertz pulse generation.

    PubMed

    Ochi, Yoshihiro; Nagashima, Keisuke; Maruyama, Momoko; Tsubouchi, Masaaki; Yoshida, Fumiko; Kohno, Nanase; Mori, Michiaki; Sugiyama, Akira

    2015-06-01

    We have developed a 1 kHz repetition picosecond laser system dedicated for intense terahertz (THz) pulse generation. The system comprises a chirped pulse amplification laser equipped with a Yb:YAG thin-disk amplifier. At room temperature, the Yb:YAG thin-disk regenerative amplifier provides pulses having energy of over 10 mJ and spectral bandwidth of 1.2 nm. The pulse duration achieved after passage through a diffraction grating pair compressor was 1.3 ps. By employing this picosecond laser as a pump source, THz pulses having a peak frequency of 0.3 THz and 4 µJ of energy were generated by means of optical rectification in an Mg-doped LiNbO3 crystal. PMID:26072862

  19. Towards gigawatt terahertz emission by few-cycle laser pulses

    SciTech Connect

    Wang Weimin; Kawata, Shigeo; Sheng Zhengming; Zhang Jie; Li Yutong

    2011-07-15

    It is shown by analysis and simulations that an extremely powerful terahertz (THz) radiation can be produced by a few-cycle laser pulse in a tenuous plasma. The THz amplitude scales linearly with the laser amplitude as well as with the sine of the laser carrier-envelope phase, and in particular, it increases exponentially with the decrease of the laser duration. For example, the THz amplitude increases by near 2 orders of magnitude as the laser duration decreases from one and a half cycles to one cycle; a single-cycle laser of 200 TW can drive the THz radiation of 1 GW with the energy conversion efficiency higher than 10{sup -4}.

  20. Electro-optic time lensing with an intense single-cycle terahertz pulse

    SciTech Connect

    Shen Yuzhen; Carr, G. L.; Murphy, James B.; Wang Xijie; Yang Xi; Tsang, Thomas Y.

    2010-05-15

    We demonstrate that an intense single-cycle terahertz (THz) pulse can act as a time lens to phase modulate and compress a copropagating ultrashort laser pulse. By using the THz-induced phase modulation as a time lens and a glass plate as a group velocity dispersive element, we have compressed an unchirped {approx} 165 fs laser pulse to {approx} 45 fs.

  1. Electro-optic time lensing with an intense single-cycle terahertz pulse

    SciTech Connect

    Shen, Y.; Carr, G.L.; Murphy, J.B.; Tsang, T. Y.; Wang, X.; Yang, X.

    2010-05-18

    We demonstrate that an intense single-cycle terahertz (THz) pulse can act as a time lens to phase modulate and compress a copropagating ultrashort laser pulse. By using the THz-induced phase modulation as a time lens and a glass plate as a group velocity dispersive element, we have compressed an unchirped {approx}165 fs laser pulse to {approx}45 fs.

  2. Spatiotemporal shaping of half-cycle terahertz pulses by diffraction through

    E-print Network

    Stroud, Carlos R.

    Spatiotemporal shaping of half-cycle terahertz pulses by diffraction through conductive apertures have been employed to optimize both the radiated power and the pulse shape.4,5 The presence of strong atoms,12 and UWB ranging.13 Many of these applications require a specific pulse shape, which can

  3. Non-Destructive Corrosion Detection Using Terahertz Time-Domain Spectroscopy and Imaging

    NASA Astrophysics Data System (ADS)

    Owens, Lindsay; Smith, Stanley; Petkie, Doug; Deibel, Jason

    2008-10-01

    The objective of this project is to detect corrosion of manufactured metal underneath paint. The system used in this research is a commercial terahertz time-domain spectroscopy and imaging system. THz signals are generated and detected using optical excitation of biased semiconductor antennas with 100 femtosecond pulses from an 800 nm laser. Spectral images were of metal samples were taken at frequencies between 100 GHz and 1 THz using a variety of imaging modalities in both transmission and reflection. Prelimiary imaging data shows a clear distinction between corroded and clean metal concealed underneath a coat of paint.

  4. A metal-dielectric antenna for terahertz near-field imaging

    NASA Astrophysics Data System (ADS)

    Klein, N.; Lahl, P.; Poppe, U.; Kadlec, F.; Kužel, P.

    2005-07-01

    We present an antenna-based approach to near-field imaging and spectroscopy, which can be used for both continuous-wave and pulsed broadband electromagnetic radiations from microwave to terahertz frequencies. Our near-field antenna consists of a rectangular-shaped block of low-loss dielectric material sharpened to a pyramidal tip which is partially metallized and terminated by a micron-sized plane facet. At this facet the entire energy of the incident wave is concentrated as a very high but strongly localized electric field, which can be used as a sensitive near-field microprobe for electromagnetic radiation. Currently, experiments in reflection geometry with pulsed terahertz radiation and continuous-wave radiation near 80GHz reveal a frequency-independent spatial resolution of about 20?m corresponding to ? /200 at 80GHz, which is only limited by the size of the facet terminating the tip.

  5. Half Cycle Terahertz Pulse Generation by Prism-Coupled Cherenkov Phase-Matching Method

    NASA Astrophysics Data System (ADS)

    Kawase, Kodo; Ichino, Shingo; Suizu, Koji; Shibuya, Takayuki

    2011-10-01

    Nonlinear optical terahertz wave generation is a promising method for realizing a practical source with wide frequency range and high peak power. Unfortunately, many nonlinear crystals have a strong absorption in the terahertz frequency region. This limits efficient and widely tunable terahertz wave generation. The Cherenkov phase-matching method is one of the most promising techniques for overcoming these problems. We propose a prism-coupled Cherenkov phase-matching method, in which a prism with a suitable refractive index at terahertz frequencies is coupled to a nonlinear crystal. We demonstrate prism-coupled Cherenkov phase-matching terahertz generation using the DAST and LiNbO3 crystals. With a DAST crystal, we obtain a spectral flat tunability up to 10 THz by difference frequency generation. With a LiNbO3 crystal, we observe a spectral flat broadband terahertz pulse generation up to 5 THz pumped by a femto second fiber laser. The obtained temporal waveform is an ideal half cycle pulse suitable for reflection terahertz tomography.

  6. Terahertz inverse synthetic aperture radar (ISAR) imaging with a

    E-print Network

    Massachusetts at Lowell, University of

    ," Opt. Lett. 33, 440-442 (2008). 7. D. L. Mensa, High Resolution Radar Cross-Section Imaging, (ArtechTerahertz inverse synthetic aperture radar (ISAR) imaging with a quantum cascade laser transmitter (TQCL) laser as the transmitter and an optically pumped molecular laser as the local oscillator has been

  7. High-power femtosecond-terahertz pulse induces a wound response in mouse skin

    PubMed Central

    Kim, Kyu-Tae; Park, Jaehun; Jo, Sung Jin; Jung, Seonghoon; Kwon, Oh Sang; Gallerano, Gian Piero; Park, Woong-Yang; Park, Gun-Sik

    2013-01-01

    Terahertz (THz) technology has emerged for biomedical applications such as scanning, molecular spectroscopy, and medical imaging. Although a thorough assessment to predict potential concerns has to precede before practical utilization of THz source, the biological effect of THz radiation is not yet fully understood with scant related investigations. Here, we applied a femtosecond-terahertz (fs-THz) pulse to mouse skin to evaluate non-thermal effects of THz radiation. Analysis of the genome-wide expression profile in fs-THz-irradiated skin indicated that wound responses were predominantly mediated by transforming growth factor-beta (TGF-?) signaling pathways. We validated NF?B1- and Smad3/4-mediated transcriptional activation in fs-THz-irradiated skin by chromatin immunoprecipitation assay. Repeated fs-THz radiation delayed the closure of mouse skin punch wounds due to up-regulation of TGF-?. These findings suggest that fs-THz radiation initiate a wound-like signal in skin with increased expression of TGF-? and activation of its downstream target genes, which perturbs the wound healing process in vivo. PMID:23907528

  8. Efficient Cherenkov emission of broadband terahertz radiation from an ultrashort laser pulse in a sandwich structure with nonlinear core

    SciTech Connect

    Bodrov, S. B.; Bakunov, M. I.; Hangyo, M.

    2008-11-01

    A scheme for efficient generation of broadband terahertz radiation by a femtosecond laser pulse propagating in a planar sandwichlike structure is proposed. The structure consists of a thin nonlinear core cladded with prisms made of a material with low terahertz absorption. The focused into a line laser pulse propagates in the core as a leaky or waveguide mode and emits Cherenkov wedge of terahertz waves in the cladding. We developed a theory that describes terahertz generation in such a structure and calculated spatial distribution of the generated terahertz field, its energy spectrum and optical-to-terahertz conversion efficiency. The developed theory predicts the conversion efficiency of up to several percent in a 1 cm long and 1 cm wide Si-LiNbO{sub 3}-Si sandwich structure with a 20 {mu}m thick nonlinear layer pumped by 8.5 {mu}J Ti:sapphire laser with pulse duration of 100 fs.

  9. Terahertz digital holography image processing based on MAP algorithm

    NASA Astrophysics Data System (ADS)

    Chen, Guang-Hao; Li, Qi

    2015-04-01

    Terahertz digital holography combines the terahertz technology and digital holography technology at present, fully exploits the advantages in both of them. Unfortunately, the quality of terahertz digital holography reconstruction images is gravely harmed by speckle noise which hinders the popularization of this technology. In this paper, the maximum a posterior estimation (MAP) filter is harnessed for the restoration of the digital reconstruction images. The filtering results are compared with images filtered by Wiener Filter and conventional frequency-domain filters from both subjective and objective perspectives. As for objective assessment, we adopted speckle index (SPKI) and edge preserving index (EPI) to quantitate the quality of images. In this paper, Canny edge detector is also used to outline the target in original and reconstruction images, which then act as an important role in the evaluation of filter performance. All the analysis indicate that maximum a posterior estimation filtering algorithm performs superiorly compared with the other two competitors in this paper and has enhanced the terahertz digital holography reconstruction images to a certain degree, allowing for a more accurate boundary identification.

  10. Detection and identification of illicit drugs using terahertz imaging

    NASA Astrophysics Data System (ADS)

    Lu, Meihong; Shen, Jingling; Li, Ning; Zhang, Yan; Zhang, Cunlin; Liang, Laishun; Xu, Xiaoyu

    2006-11-01

    We demonstrated an advanced terahertz imaging technique for detection and identification of illicit drugs by introducing the component spatial pattern analysis. As an explanation, the characteristic fingerprint spectra and refractive index of ketamine were first measured with terahertz time-domain spectroscopy both in the air and nitrogen. The results obtained in the ambient air indicated that some absorption peaks are not obvious or probably not dependable. It is necessary and important to present a more practical technique for the detection. The spatial distributions of several illicit drugs [3,4-methylenedioxymethamphetamine, methylenedioxyamphetamine, heroin, acetylcodeine, morphine, and ketamine], widely consumed in the world, were obtained from terahertz images using absorption spectra previously measured in the range from 0.2to2.6THz in the ambient air. The different kinds of pure illicit drugs hidden in mail envelopes were inspected and identified. It could be an effective method in the field of safety inspection.

  11. An antenna can be used for terahertz scanning imaging instrument

    NASA Astrophysics Data System (ADS)

    Wang, Hanqi; Liu, Xin; Guo, Lantao; Deng, Chao; Zhang, Cunlin

    2015-08-01

    In order to satisfy needs which are efficient detection and miniaturization of terahertz scanning imaging instrument, a rectangular wave-guide antenna with lengthwise slits on the broad face is designed. The antenna has the advantages which are high aperture efficiency, compact structure, small volume, light weight, low cost, low side-lobe performance, narrow beam scanning and so on. At first, these parameters include slit length, slit distance, slit width and slit offset along the central axial of the broad face are calculated with the aid of related theory, then the antenna is modeled and optimized in the software. The simulation results show that the antenna can directly transmit and receive the terahertz wave at 0.1THz, the gain of the main lobe is higher, the gain of the side lobe is lower and main lobe presents the pencil beam. The results can provide reference for the revised design of terahertz scanning imaging instrument.

  12. Application of image processing for terahertz time domain spectroscopy imaging quantitative detection

    NASA Astrophysics Data System (ADS)

    Li, Li-juan; Wang, Sheng; Ren, Jiao-jiao; Zhou, Ming-xing; Zhao, Duo

    2015-03-01

    According to nondestructive testing principle for the terahertz time domain spectroscopy Imaging, using digital image processing techniques, through Terahertz time-domain spectroscopy system collected images and two-dimensional datas and using a range of processing methods, including selecting regions of interest, contrast enhancement, edge detection, and defects being detected. In the paper, Matlab programming is been use to defect recognition of Terahertz, by figuring out the pixels to determine defects defect area and border length, roundness, diameter size. Through the experiment of the qualitative analysis and quantitative calculation of Matlab image processing, this method of detection of defects of geometric dimension of the sample to get a better result.

  13. Terahertz imaging performance model for concealed weapon identification

    NASA Astrophysics Data System (ADS)

    Jacobs, Eddie; Driggers, Ronald G.; Krapels, Keith A.; De Lucia, Frank C.; Petkie, Douglas T.

    2004-12-01

    Terahertz imaging is becoming more viable for many applications due to advances in detector and emitter technologies. One of the applications for THz imaging is the detection and identification of concealed weapons (e.g., in airport security screening lines). The path described here provides an imaging performance model for the application of concealed weapon identification. The approach is the typical U.S. Army target acquisition model for sensor performance prediction coupled to the acquire methodology for weapon identification performance prediction.

  14. Terahertz and multispectral imaging of a Tanda painting

    NASA Astrophysics Data System (ADS)

    Jackson, J. Bianca; Melis, Marcello; Walker, Gillian; Giovannacci, David; Miccoli, Matteo; Martos-Levif, Dominique; Bowen, John; Detalle, Vincent

    2015-06-01

    We systematically examined the mid-20th century Italian painting "After Fishing" (fig. 1) by Ausonio Tanda using multi-spectral (UV, RGB visible, tri-band IR), x-ray and terahertz time-domain spectroscopic imaging. THz-TDSI was performed in both transmission and reflection geometries and the results were compared.

  15. Fast terahertz imaging using a quantum cascade amplifier

    E-print Network

    Ren, Yuan; Wallis, Robert; Jessop, David Stephen; Degl'Innocenti, Riccardo; Klimont, Adam; Beere, Harvey E.; Ritchie, David A.

    2015-07-09

    A terahertz (THz) imaging scheme based on the effect of self-mixing in a 2.9 THz quantum cascade (QC) amplifier has been demonstrated. By coupling an antireflective-coated silicon lens to the facet of a QC laser, with no external optical feedback...

  16. A hybrid continuous-wave terahertz imaging system

    NASA Astrophysics Data System (ADS)

    Dolganova, Irina N.; Zaytsev, Kirill I.; Metelkina, Anna A.; Karasik, Valeriy E.; Yurchenko, Stanislav O.

    2015-11-01

    A hybrid (active-passive mode) terahertz (THz) imaging system and an algorithm for imaging synthesis are proposed to enhance the THz image quality. The concept of image contrast is used to compare active and passive THz imaging. Combining the measurement of the self-emitted radiation of the object with the back-scattered source radiation measurement, it becomes possible to use the THz image to retrieve maximum information about the object. The experimental results confirm the advantages of hybrid THz imaging systems, which can be generalized for a wide range of applications in the material sciences, chemical physics, bio-systems, etc.

  17. High field, high efficiency terahertz pulse generation by optical rectification

    E-print Network

    Huang, Wenqian Ronny

    2014-01-01

    The great difficulty of producing high intensity radiation in the terahertz (THz) spectral region by conventional electronics has stimulated interest in development of sources based on photonics. Optical rectification in ...

  18. Proposal for real-time terahertz imaging system with palm-size terahertz camera and compact quantum cascade laser

    E-print Network

    Oda, Naoki

    This paper describes a real-time terahertz (THz) imaging system, using the combination of a palm-size THz camera with a compact quantum cascade laser (QCL). The THz camera contains a 320x240 microbolometer focal plane array ...

  19. Nonstationary time-domain statistics of multiply scattered broadband terahertz pulses

    E-print Network

    Natelson, Douglas

    Nonstationary time-domain statistics of multiply scattered broadband terahertz pulses Jeremy Pearce March 30, 2006; posted April 12, 2006 (Doc. ID 67361) We examine the time-domain statistics of randomly that the nonstationarity is a consequence of the time dependence of the configurationally averaged intensity

  20. REVIEW OF SCIENTIFIC INSTRUMENTS 84, 022701 (2013) Intense terahertz pulses from SLAC electron beams using coherent

    E-print Network

    2013-01-01

    of the terahertz pulses and preliminary observations of nonlinear materials response. © 2013 American Institute beams using coherent transition radiation Ziran Wu,1 Alan S. Fisher,1,a) John Goodfellow,2,3 Matthias, California 94025, USA 2 Department of Materials Science and Engineering, Stanford University, Stanford

  1. Reflection type of terahertz imaging system using a high-T{sub c} superconducting oscillator

    SciTech Connect

    Kashiwagi, T.; Minami, H.; Kadowaki, K.; Nakade, K.; Saiwai, Y.; Kitamura, T.; Watanabe, C.; Ishida, K.; Sekimoto, S.; Asanuma, K.; Yasui, T.; Shibano, Y.; Markovi?, B.; Mirkovi?, J.; Tsujimoto, M.; Yamamoto, T.

    2014-01-13

    A reflection type of imaging system is shown at sub-terahertz frequencies generated from high-T{sub c} superconducting intrinsic Josephson junction mesa structures fabricated by single crystalline Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+?} to demonstrate how the sub-terahertz imaging technique using monochromatic radiation is powerful and unique for the variety of practical applications. Several examples are discussed in detail and are compared to other terahertz imaging systems.

  2. Intense terahertz pulses from SLAC electron beams using coherent transition radiation.

    PubMed

    Wu, Ziran; Fisher, Alan S; Goodfellow, John; Fuchs, Matthias; Daranciang, Dan; Hogan, Mark; Loos, Henrik; Lindenberg, Aaron

    2013-02-01

    SLAC has two electron accelerators, the Linac Coherent Light Source (LCLS) and the Facility for Advanced Accelerator Experimental Tests (FACET), providing high-charge, high-peak-current, femtosecond electron bunches. These characteristics are ideal for generating intense broadband terahertz (THz) pulses via coherent transition radiation. For LCLS and FACET respectively, the THz pulse duration is typically 20 and 80 fs RMS and can be tuned via the electron bunch duration; emission spectra span 3-30 THz and 0.5 THz-5 THz; and the energy in a quasi-half-cycle THz pulse is 0.2 and 0.6 mJ. The peak electric field at a THz focus has reached 4.4 GV/m (0.44 V/A?) at LCLS. This paper presents measurements of the terahertz pulses and preliminary observations of nonlinear materials response. PMID:23464183

  3. On the role of terahertz field acceleration and beaming of surface plasmon generated ultrashort electron pulses

    SciTech Connect

    Greig, S. R. Elezzabi, A. Y.

    2014-07-28

    A mechanism for control of the energy and pitch angle of surface plasmon accelerated electron pulses is proposed. Electrons generated via multi-photon absorption in a silver film on a glass prism are ponderomotively accelerated in the surface plasmon field excited by a 30 fs, 800?nm optical pulse. Through introduction of a single-cycle terahertz (THz) pulse, the energy spectrum and trajectory of the generated electron pulse can be controlled via the THz field strength. Generated electron pulses achieve peak kinetic energies up to 1.56?keV, while utilizing an incident optical field strength five times less than comparable plasmon accelerated electron pulses. These results demonstrate that THz pulses can be utilized to achieve tunable, high energy, trajectory controlled electron pulses necessary for various applications that require ultrafast electron pulse manipulation.

  4. Terahertz field enhancement via coherent superposition of the pulse sequences after a single optical-rectification crystal

    SciTech Connect

    Sajadi, Mohsen Wolf, Martin; Kampfrath, Tobias

    2014-03-03

    Terahertz electromagnetic pulses are frequently generated by optical rectification of femtosecond laser pulses. In many cases, the efficiency of this process is known to saturate with increasing intensity of the generation beam because of two-photon absorption. Here, we demonstrate two routes to reduce this effect in ZnTe(110) crystals and enhance efficiency, namely, by (i) recycling the generation pulses and by (ii) splitting each generation pulse into two pulses before pumping the crystal. In both methods, the second pulse arrives ?1?ns after the first one, sufficiently long for optically generated carriers to relax. Enhancement is achieved by coherently superimposing the two resulting terahertz fields.

  5. High energy terahertz pulses from organic crystals: DAST and DSTMS pumped at Ti:sapphire wavelength

    E-print Network

    Monoszlai, B; Jazbinsek, M; Hauri, C P

    2013-01-01

    High energy terahertz pulses are produced by optical rectification (OR) in organic crystals DAST and DSTMS by a Ti:sapphire amplifier system centered at 0.8 microns. The simple scheme provides broadband spectra between 1 and 5 THz, when pumped by collimated 60 fs near-infrared pump pulse and it is scalable in energy. Fluence-dependent conversion efficiency and damage threshold are reported as well as optimized OR at visible wavelength.

  6. Ultrafast Spatiotemporal Dynamics of Terahertz Generation by Ionizing Two-Color Femtosecond Pulses in Gases

    SciTech Connect

    Babushkin, I.; Kuehn, W.; Reimann, K.; Woerner, M.; Herrmann, J.; Elsaesser, T.; Koehler, C.; Skupin, S.; Berge, L.

    2010-07-30

    We present a combined theoretical and experimental study of spatiotemporal propagation effects in terahertz (THz) generation in gases using two-color ionizing laser pulses. The observed strong broadening of the THz spectra with increasing gas pressure reveals the prominent role of spatiotemporal reshaping and of a plasma-induced blueshift of the pump pulses in the generation process. Results obtained from (3+1)-dimensional simulations are in good agreement with experimental findings and clarify the mechanisms responsible for THz emission.

  7. Terahertz Lasers Reveal Information for 3D Images

    NASA Technical Reports Server (NTRS)

    2013-01-01

    After taking off her shoes and jacket, she places them in a bin. She then takes her laptop out of its case and places it in a separate bin. As the items move through the x-ray machine, the woman waits for a sign from security personnel to pass through the metal detector. Today, she was lucky; she did not encounter any delays. The man behind her, however, was asked to step inside a large circular tube, raise his hands above his head, and have his whole body scanned. If you have ever witnessed a full-body scan at the airport, you may have witnessed terahertz imaging. Terahertz wavelengths are located between microwave and infrared on the electromagnetic spectrum. When exposed to these wavelengths, certain materials such as clothing, thin metal, sheet rock, and insulation become transparent. At airports, terahertz radiation can illuminate guns, knives, or explosives hidden underneath a passenger s clothing. At NASA s Kennedy Space Center, terahertz wavelengths have assisted in the inspection of materials like insulating foam on the external tanks of the now-retired space shuttle. "The foam we used on the external tank was a little denser than Styrofoam, but not much," says Robert Youngquist, a physicist at Kennedy. The problem, he explains, was that "we lost a space shuttle by having a chunk of foam fall off from the external fuel tank and hit the orbiter." To uncover any potential defects in the foam covering, such as voids or air pockets, that could keep the material from staying in place, NASA employed terahertz imaging to see through the foam. For many years, the technique ensured the integrity of the material on the external tanks.

  8. Nonlinear Cross-Phase Modulation with Intense Single-Cycle Terahertz Pulses

    SciTech Connect

    Shen,Y.; Watanabe, T.; Arena, D.; Kao, C.; Murphy, J.; Tsang, T.; Wang, X.; Carr, G.

    2007-01-01

    We have demonstrated nonlinear cross-phase modulation in electro-optic crystals using intense, single-cycle terahertz (THz) radiation. Individual THz pulses, generated by coherent transition radiation emitted by subpicosecond electron bunches, have peak energies of up to 100{mu}J per pulse. The time-dependent electric field of the intense THz pulses induces cross-phase modulation in electro-optic crystals through the Pockels effect, leading to spectral shifting, broadening, and modulation of copropagating laser pulses. The observed THz-induced cross-phase modulation agrees well with a time-dependent phase-shift model.

  9. Study of freshly excised brain tissues using terahertz imaging.

    PubMed

    Oh, Seung Jae; Kim, Sang-Hoon; Ji, Young Bin; Jeong, Kiyoung; Park, Yeonji; Yang, Jaemoon; Park, Dong Woo; Noh, Sam Kyu; Kang, Seok-Gu; Huh, Yong-Min; Son, Joo-Hiuk; Suh, Jin-Suck

    2014-08-01

    We demonstrated that tumors in freshly excised whole brain tissue could be differentiated clearly from normal brain tissue using a reflection-type terahertz (THz) imaging system. THz binary images of brain tissues with tumors indicated that the tumor boundaries in the THz images corresponded well to those in visible images. Grey and white-matter regions were distinguishable owing to the different distribution of myelin in the brain tissue. THz images corresponded closely with magnetic resonance imaging (MRI) results. The MRI and hematoxylin and eosin-stained microscopic images were investigated to account for the intensity differences in the THz images for fresh and paraffin-embedded brain tissue. Our results indicated that the THz signals corresponded to the cell density when water was removed. Thus, THz imaging could be used as a tool for label-free and real-time imaging of brain tumors, which would be helpful for physicians to determine tumor margins during brain surgery. PMID:25136506

  10. Advanced terahertz imaging system performance model for concealed weapon identification

    NASA Astrophysics Data System (ADS)

    Murrill, Steven R.; Redman, Brian; Espinola, Richard L.; Franck, Charmaine C.; Petkie, Douglas T.; De Lucia, Frank C.; Jacobs, Eddie L.; Griffin, Steven T.; Halford, Carl E.; Reynolds, Joe

    2007-04-01

    The U.S. Army Night Vision and Electronic Sensors Directorate (NVESD) and the U.S. Army Research Laboratory (ARL) have developed a terahertz-band imaging system performance model for detection and identification of concealed weaponry. The details of this MATLAB-based model which accounts for the effects of all critical sensor and display components, and for the effects of atmospheric attenuation, concealment material attenuation, and active illumination, were reported on at the 2005 SPIE Europe Security and Defence Symposium. The focus of this paper is to report on recent advances to the base model which have been designed to more realistically account for the dramatic impact that target and background orientation can have on target observability as related to specular and Lambertian reflections captured by an active-illumination-based imaging system. The advanced terahertz-band imaging system performance model now also accounts for target and background thermal emission, and has been recast into a user-friendly, Windows-executable tool. This advanced THz model has been developed in support of the Defense Advanced Research Project Agency's (DARPA) Terahertz Imaging Focal-Plane Technology (TIFT) program. This paper will describe the advanced THz model and its new radiometric sub-model in detail, and provide modeling and experimental results on target observability as a function of target and background orientation.

  11. INTERFEROMETRIC IMAGING WITH TERAHERTZ PULSES. (R827122)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  12. Micromachined antenna-coupled uncooled microbolometers for terahertz imaging arrays

    NASA Astrophysics Data System (ADS)

    Miller, Aaron J.; Luukanen, Arttu; Grossman, Erich N.

    2004-09-01

    In recent years our group has made significant progress toward the goal of a scalable, inexpensive terahertz imaging system for the detection of weapons concealed under clothing. By actively illuminating the subject under examination with only moderate source power (few milliwatts) the sensitivity constraints on the detector technology are significantly lessened compared to purely passive millimeter-wave detection. Last year, we demonstrated a fully planar, optically lithographed, uncooled terahertz imaging array with 120 pixels on a silicon substrate 75 mm in diameter. In this paper we present the recent progress on improving the responsivity of the individual microbolometers by a simple technique of surface micromachining to reduce the substrate thermal conduction. We describe the microbolometer array fabrication and present results on devices with a measured electrical responsivity of over 85 V/W (electrical NEP ~25 pW/rtHz), an improvement by a factor of two over current substrate-supported bolometers.

  13. Terahertz generation by nonlinear mixing of laser pulses in a clustered gas

    SciTech Connect

    Kumar, Manoj; Tripathi, V. K.

    2011-05-15

    A scheme of terahertz (THz) generation by two collinear laser pulses of finite spot size in a clustered gas is investigated theoretically. The lasers quickly ionize the atoms of the clusters, converting them into plasma balls, and exert a ponderomotive force on the cluster electrons, producing a beat frequency longitudinal current of limited transverse extent. The current acts as an antenna to produce beat frequency terahertz radiation. As the cluster expands under the hydrodynamic pressure, plasma frequency of cluster electrons {omega}{sub pe} decreases and approaches {radical}(3) times the frequency of laser, resonant heating and expansion of clusters occurs. On further expansion of clusters as {omega}{sub pe} approaches {radical}(3) times the terahertz frequency, resonant enhancement in THz radiated power occurs.

  14. EDITORIAL: Terahertz nanotechnology Terahertz nanotechnology

    NASA Astrophysics Data System (ADS)

    Demming, Anna; Tonouchi, Masayoshi; Reno, John L.

    2013-05-01

    A useful synergy is being established between terahertz research and nanotechnology. High power sources [1-3] and detectors [4] in what was once considered the terahertz 'frequency gap' [5] in the electromagnetic spectrum have stimulated research with huge potential benefits in a range of industries including food, medicine and security, as well as fundamental physics and astrophysics. This special section, with guest editors Masayoshi Tonouchi and John Reno, gives a glimpse of the new horizons nanotechnology is broaching in terahertz research. While the wavelengths relevant to the terahertz domain range from hundreds of micrometres to millimetres, structures at the nanoscale reveal interesting low energy dynamics in this region. As a result terahertz spectroscopy techniques are becoming increasingly important in nanomaterial characterization, as demonstrated in this special section by colleagues at the University of Oxford in the UK and the Australian National University. They use terahertz spectroscopy to identify the best nanostructure parameters for specific applications [6]. The low energy dynamics in nanostructures also makes them valuable tools for terahertz detection [7]. In addition the much sought after terahertz detection over broadband frequency ranges has been demonstrated, providing versatility that has been greatly in demand, particularly in spectroscopy applications [8, 9]. Also in this special section, researchers in Germany and China tackle some of the coupling issues in terahertz time domain spectroscopy with an emitter specifically well suited for systems operated with an amplified fibre [3]. 'In medical imaging, the advantage of THz radiation is safety, because its energy is much lower than the ionization energy of biological molecules, in contrast to hazardous x-ray radiation,' explains Joo-Hiuk Son from the University of Seoul in Korea in his review [10]. As he also points out, the rotational and vibrational energies of water molecules are within the THz spectral region providing an additional benefit. His review describes the principle, characteristics, and applications of terahertz molecular imaging, where the use of nanoparticle probes allows dramatically enhanced sensitivity. Jiaguang Han and Weili Zhang and colleagues in China, Saudi Arabia, Japan and the US report exciting developments for optoelectronics [11]. They describe work on plasmon-induced transparency (PIT), an analogue of electromagnetically induced transparency (EIT) where interference leads to a sharp transparency window that may be useful for nonlinear and slow-light devices, optical switching, pulse delay, and storage for optical information processing. While PIT has advantages over the cumbersome experimental systems required for EIT, it has so far been constrained to very narrow band operation. Now Zhang and colleagues present the simulation, implementation, and measurement of a broadband PIT metamaterial functioning across a frequency range greater than 0.40 THz in the terahertz regime. 'We can foresee a historic breakthrough for science and technology through terahertz research,' concluded Masayoshi Tonouchi in his review over five years ago as momentum in the field was mounting [12]. He added, 'It is also noteworthy that THz research is built on many areas of science and the coordination of a range of disciplines is giving birth to a new science.' With the inherently multidisciplinary nature of nanotechnology research it is not so strange to see the marriage of the two fields form such a fruitful partnership, as this special section highlights. References [1] Williams B S, Kumar S, Hu Q and Reno J L 2006 High-power terahertz quantum-cascade lasers Electron. Lett. 42 89-91 [2] Köhler R et al 2002 Terahertz semiconductor-heterostructure laser Nature 417 156-9 [3] Mittendorff M, Xu M, Dietz R J B, K¨unzel H, Sartorius B, Schneider H, Helm M and Winnerl S 2013 Large area photoconductive THz emitter for 1.55 ?m excitation based on an InGaAs heterostructure Nanotechnology 24 214007 [4] Chen H-T, Padilla W J, Zide J M O, Gossa

  15. High-speed time domain terahertz security imaging

    NASA Astrophysics Data System (ADS)

    Zimdars, David; White, Jeffrey; Williamson, Steven; Stuk, G.

    2005-05-01

    Terahertz imaging has the potential to reveal concealed explosives; metallic and non-metallic weapons (such as ceramic, plastic or composite guns and knives); flammables; biological agents; chemical weapons and other threats hidden in packages or on personnel. Time domain terahertz imaging can be employed in reflection mode to image with sub millimeter resolution. Previously, single pixel acquisition times for THz waveforms was typically 20 Hz with time records of approx 80 picoseconds, which typically restricted imaging time to hours for areas on the order of 1 square foot, limiting the field practicality of the equipment. We describe and demonstrate advanced imagers with 100 Hz --> 320 picosecond, and 4000 Hz -- 20 picosecond waveform records. These systems have been demonstrated to image >600 pixels/second from a single channel. Such a system, combined with a 32 channel linear THz array, could image a 1 square foot area with 1 mm resolution in <5 seconds, performing a shoe explosives detection image in a short period of time.

  16. The potential of terahertz imaging for cancer diagnosis: A review of investigations to date

    PubMed Central

    Yu, Calvin; Fan, Shuting; Sun, Yiwen; Pickwell-MacPherson, Emma

    2012-01-01

    The terahertz region lies between the microwave and infrared regions of the electromagnetic spectrum such that it is strongly attenuated by water and very sensitive to water content. Terahertz radiation has very low photon energy and thus it does not pose any ionization hazard for biological tissues. Because of these characteristic properties, there has been an increasing interest in terahertz imaging and spectroscopy for biological applications within the last few years and more and more terahertz spectra are being reported, including spectroscopic studies of cancer. The presence of cancer often causes increased blood supply to affected tissues and a local increase in tissue water content may be observed: this acts as a natural contrast mechanism for terahertz imaging of cancer. Furthermore the structural changes that occur in affected tissues have also been shown to contribute to terahertz image contrast. This paper introduces terahertz technology and provides a short review of recent advances in terahertz imaging and spectroscopy techniques. In particular investigations relating to the potential of terahertz imaging and spectroscopy for cancer diagnosis will be highlighted. PMID:23256057

  17. Optimal Control of Quantum Rings by Terahertz Laser Pulses E. Rasanen,1,3,* A. Castro,1,3

    E-print Network

    Gross, E.K.U.

    Optimal Control of Quantum Rings by Terahertz Laser Pulses E. Ra¨sa¨nen,1,3,* A. Castro,1,3 J. The control scheme is developed in the framework of optimal-control theory for laser pulses of two]. Quantum optimal-control theory (OCT) [6] is a power- ful tool to find optimal laser pulses for controlling

  18. Physical mechanisms of terahertz pulse emission from photoexcited surfaces of tellurium crystals

    SciTech Connect

    Bi?i?nas, A.; Arlauskas, A.; Adamonis, J.; Cic?nas, P.; Krotkus, A.

    2014-09-07

    We report on terahertz (THz) emission from tellurium crystal surfaces excited by femtosecond optical pulses. Measurements were performed on three differently cut Te samples and with different wavelength optical excitation pulses. THz pulse amplitude dependences on the azimuthal angle measured at various excitation wavelengths have evidenced that three different mechanisms are responsible for THz generation in tellurium: second order nonlinear optical rectification effect, dominating at lower excitation photon energies, as well as transverse and ordinary photo-Dember effects, which emerge at energies larger than 0.9?eV. The shapes of the azimuthal angle dependences were also explained by theoretical model.

  19. Intense terahertz emission from relativistic circularly polarized laser pulses interaction with overdense plasmas

    SciTech Connect

    Chen, Zi-Yu; Li, Xiao-Ya; Yu, Wei

    2013-10-15

    During the interaction of a relativistic circularly polarized laser pulse with an overdense plasma target, the longitudinal motion of bunches of electrons under the action of light pressure and electrostatic restore force can emit intense terahertz (THz) pulses. This mechanism allows high pump laser intensity and large electron number participating in the emission. Two-dimensional particle-in-cell simulations are carried out to investigate the THz emission. The results suggest that such a source can produce remarkably intense THz pulses with energy of several mJ/sr and power of tens of gigawatts, which could find applications in nonlinear studies and relativistic laser-plasma interaction diagnostics.

  20. Target recognition in passive terahertz image of human body

    NASA Astrophysics Data System (ADS)

    Zhao, Ran; Zhao, Yuan-meng; Deng, Chao; Zhang, Cun-lin; Li, Yue

    2014-11-01

    THz radiation can penetrate through many nonpolar dielectric materials and can be used for nondestructive/noninvasive sensing and imaging of targets under nonpolar, nonmetallic covers or containers. Thus using THz systems to "see through" concealing barriers (i.e. packaging, corrugated cardboard, clothing) has been proposed as a new security screening method. Objects that can be detected by THz include concealed weapons, explosives, and chemical agents under clothing. Passive THz imaging system can detect THz wave from human body without transmit any electromagnetic wave, and the suspicious objects will become visible because the THz wave is blocked by this items. We can find out whether or not someone is carrying dangerous objects through this image. In this paper, the THz image enhancement, segmentation and contour extraction algorithms were studied to achieve effective target image detection. First, the terahertz images are enhanced and their grayscales are stretched. Then we apply global threshold segmentation to extract the target, and finally the targets are marked on the image. Experimental results showed that the algorithm proposed in this paper can extract and mark targets effectively, so that people can identify suspicious objects under clothing quickly. The algorithm can significantly improve the usefulness of the terahertz security apparatus.

  1. A single-pixel terahertz imaging system based on compressed sensing Wai Lam Chan,a

    E-print Network

    systems use a ras- ter scan to move an object in front of a single pixel detector. This mechanicalA single-pixel terahertz imaging system based on compressed sensing Wai Lam Chan,a Kriti Charan; accepted 5 September 2008; published online 23 September 2008 We describe a terahertz imaging system

  2. Developments in time-resolved ultrafast imaging and spectroscopy at terahertz frequencies

    E-print Network

    Teo, Stephanie M

    2014-01-01

    Prior to the advent of high energy pulsed femtosecond lasers, the field of terahertz (THz) spectroscopy was stagnated by the lack of both high power THz sources and sensitive THz detectors. Over the past few years, it has ...

  3. Single attosecond pulse from terahertz-assisted high-order harmonic generation

    SciTech Connect

    Balogh, Emeric; Kovacs, Katalin; Dombi, Peter; Farkas, Gyozo; Fulop, Jozsef A.; Hebling, Janos; Tosa, Valer; Varju, Katalin

    2011-08-15

    High-order harmonic generation by few-cycle 800 nm laser pulses in neon gas in the presence of a strong terahertz (THz) field is investigated numerically with propagation effects taken into account. Our calculations show that the combination of THz fields with up to 12 fs laser pulses can be an effective gating technique to generate single attosecond pulses. We show that in the presence of the strong THz field only a single attosecond burst can be phase matched, whereas radiation emitted during other half cycles disappears during propagation. The cutoff is extended and a wide supercontinuum appears in the near-field spectra, extending the available spectral width for isolated attosecond pulse generation from 23 to 93 eV. We demonstrate that phase-matching effects are responsible for the generation of isolated attosecond pulses, even in conditions when single-atom response yields an attosecond pulse train.

  4. Terahertz generation in lithium niobate driven by Ti:sapphire laser pulses and its limitations.

    PubMed

    Wu, Xiaojun; Carbajo, Sergio; Ravi, Koustuban; Ahr, Frederike; Cirmi, Giovanni; Zhou, Yue; Mücke, Oliver D; Kärtner, Franz X

    2014-09-15

    We experimentally investigate the limits of 800-nm-to-terahertz (THz) energy conversion in lithium niobate at room temperature driven by amplified Ti:sapphire laser pulses with tilted pulse front. The influence of the pump central wavelength, pulse duration, and fluence on THz generation is studied. We achieved a high peak efficiency of 0.12% using transform limited 150 fs pulses and observed saturation of the optical-to-THz conversion efficiency at a fluence of 15??mJ/cm2 for this pulse duration. We experimentally identify two main limitations for the scaling of optical-to-THz conversion efficiencies: (i) the large spectral broadening of the optical pump spectrum in combination with large angular dispersion of the tilted pulse front and (ii) free-carrier absorption of THz radiation due to multi-photon absorption of the 800 nm radiation. PMID:26466283

  5. Isotope-selective dissociation of diatomic molecules by terahertz optical pulses

    NASA Astrophysics Data System (ADS)

    Ichihara, Akira; Matsuoka, Leo; Segawa, Etsuo; Yokoyama, Keiichi

    2015-04-01

    We propose a method for isotope-selective dissociation of diatomic molecules in the gas phase by using two kinds of terahertz-pulse fields. The first field consists of a train of pulses, composing a frequency comb, which excites only the selected isotope into a highly rotationally-excited state. The second field dissociates the excited molecules by further rovibrational excitations. We numerically demonstrate the applicability of the proposed scheme by molecular wave-packet computations using the lithium chlorides 7Li35Cl and 7Li37Cl . Nearly 20% of the 7Li37Cl in the lowest rovibrational state is dissociated in a single interaction of the designed terahertz fields, while the dissociation probability is negligible in 7Li35Cl . This scheme is expected to be applicable to the molecular ensemble whose rotational states spread in energy.

  6. Continuous wave terahertz reflection imaging of human colorectal tissue

    NASA Astrophysics Data System (ADS)

    Doradla, Pallavi; Alavi, Karim; Joseph, Cecil S.; Giles, Robert H.

    2013-03-01

    Continuous wave terahertz (THz) imaging has the potential to offer a safe, non-ionizing, and nondestructive medical imaging modality for delineating colorectal cancer. Fresh excisions of normal colon tissue were obtained from surgeries performed at the University of Massachusetts Medical School, Worcester. Reflection measurements of thick sections of colorectal tissues, mounted in an aluminum sample holder, were obtained for both fresh and formalin fixed tissues. The two-dimensional reflection images were acquired by using an optically pumped far-infrared molecular gas laser operating at 584 GHz with liquid Helium cooled silicon bolometer detector. Using polarizers in the experiment both co-polarized and cross-polarized remittance form the samples was collected. Analysis of the images showed the importance of understanding the effects of formalin fixation while determining reflectance level of tissue response. The resulting co- and cross-polarized images of both normal and formalin fixed tissues showed uniform terahertz response over the entire sample area. Initial measurements indicated a co-polarized reflectance of 16%, and a cross-polarized reflectance of 0.55% from fresh excisions of normal colonic tissues.

  7. Role of nonlinear refraction in the generation of terahertz field pulses by light fields

    SciTech Connect

    Zabolotskii, A. A.

    2013-07-15

    The generation of microwave (terahertz) pulses without any envelope in a four-level quasi-resonant medium is considered. Two intense quasi-monochromatic laser fields lead to a partial upper-level population. Microwave field pulses cause the transition between these levels. For appropriately chosen scales, the evolution of the fields is shown to be described by the pseudo-spin evolution equations in a microwave field with the inclusion of nonlinear refraction caused by an adiabatic upper-level population. The evolution of terahertz field pulses is described outside the scope of the slow-envelope approximation. When a number of standard approximations are taken into account, this system of equations is shown to be equivalent to an integrable version of the generalized reduced Maxwell-Bloch equations or to the generalized three-wave mixing equations. The soliton solution found by the inverse scattering transform method is used as an example to show that nonlinear refraction leads to a strong compression of the microwave (terahertz) field soliton.

  8. Role of nonlinear refraction in the generation of terahertz field pulses by light fields

    NASA Astrophysics Data System (ADS)

    Zabolotskii, A. A.

    2013-07-01

    The generation of microwave (terahertz) pulses without any envelope in a four-level quasi-resonant medium is considered. Two intense quasi-monochromatic laser fields lead to a partial upper-level population. Microwave field pulses cause the transition between these levels. For appropriately chosen scales, the evolution of the fields is shown to be described by the pseudo-spin evolution equations in a microwave field with the inclusion of nonlinear refraction caused by an adiabatic upper-level population. The evolution of terahertz field pulses is described outside the scope of the slow-envelope approximation. When a number of standard approximations are taken into account, this system of equations is shown to be equivalent to an integrable version of the generalized reduced Maxwell-Bloch equations or to the generalized three-wave mixing equations. The soliton solution found by the inverse scattering transform method is used as an example to show that nonlinear refraction leads to a strong compression of the microwave (terahertz) field soliton.

  9. Terahertz Generation in Lithium Niobate Driven by Ti:Sapphire Laser Pulses and its Limitations

    E-print Network

    Wu, Xiaojun; Ravi, Koustuban; Ahr, Frederike; Cirmi, Giovanni; Zhou, Yue; Mücke, Oliver D; Kärtner, Franz X

    2014-01-01

    We experimentally investigate the limits to 800 nm-to-terahertz (THz) energy conversion in lithium niobate at room temperature driven by amplified Ti:Sapphire laser pulses with tilted-pulse-front. The influence of the pump central wavelength, pulse duration, and fluence on THz generation is studied. We achieved a high peak efficiency of 0.12% using transform limited 150 fs pulses and observed saturation of the optical to THz conversion efficiency at a fluence of 15 mJ/cm2. We experimentally identify two main limitations for the scaling of optical-to-THz conversion efficiencies: (i) the large spectral broadening of the optical pump spectrum in combination with large angular dispersion of the tilted-pulse-front and (ii) free-carrier absorption of THz radiation due to multi-photon absorption of the 800 nm radiation.

  10. Terahertz imaging system performance model for concealed-weapon identification.

    PubMed

    Murrill, Steven R; Jacobs, Eddie L; Moyer, Steven K; Halford, Carl E; Griffin, Steven T; De Lucia, Frank C; Petkie, Douglas T; Franck, Charmaine C

    2008-03-20

    The U.S. Army Night Vision and Electronic Sensors Directorate (NVESD) and the U.S. Army Research Laboratory have developed a terahertz (THz) -band imaging system performance model for detection and identification of concealed weaponry. The MATLAB-based model accounts for the effects of all critical sensor and display components and for the effects of atmospheric attenuation, concealment material attenuation, and active illumination. The model is based on recent U.S. Army NVESD sensor performance modeling technology that couples system design parameters to observer-sensor field performance by using the acquire methodology for weapon identification performance predictions. This THz model has been developed in support of the Defense Advanced Research Project Agencies' Terahertz Imaging Focal-Plane Technology (TIFT) program and is currently being used to guide the design and development of a 0.650 THz active-passive imaging system. This paper will describe the THz model in detail, provide and discuss initial modeling results for a prototype THz imaging system, and outline plans to calibrate and validate the model through human perception testing. PMID:18709076

  11. Terahertz imaging system performance model for concealed-weapon identification

    NASA Astrophysics Data System (ADS)

    Murrill, Steven R.; Jacobs, Eddie L.; Moyer, Steven K.; Halford, Carl E.; Griffin, Steven T.; De Lucia, Frank C.; Petkie, Douglas T.; Franck, Charmaine C.

    2008-03-01

    The U.S. Army Night Vision and Electronic Sensors Directorate (NVESD) and the U.S. Army Research Laboratory have developed a terahertz (THz) -band imaging system performance model for detection and identification of concealed weaponry. The MATLAB-based model accounts for the effects of all critical sensor and display components and for the effects of atmospheric attenuation, concealment material attenuation, and active illumination. The model is based on recent U.S. Army NVESD sensor performance modeling technology that couples system design parameters to observer-sensor field performance by using the acquire methodology for weapon identification performance predictions. This THz model has been developed in support of the Defense Advanced Research Project Agencies' Terahertz Imaging Focal-Plane Technology (TIFT) program and is currently being used to guide the design and development of a 0.650 THz active-passive imaging system. This paper will describe the THz model in detail, provide and discuss initial modeling results for a prototype THz imaging system, and outline plans to calibrate and validate the model through human perception testing.

  12. Terahertz imaging system performance model for concealed weapon identification

    NASA Astrophysics Data System (ADS)

    Murrill, Steven R.; Jacobs, Eddie L.; Moyer, Steven K.; Halford, Carl E.; Griffin, Steven T.; De Lucia, Frank C.; Petkie, Douglas T.; Franck, Charmaine C.

    2005-11-01

    The U.S. Army Night Vision and Electronic Sensors Directorate and the U.S. Army Research Laboratory have developed a terahertz-band imaging system performance model for detection and identification of concealed weaponry. The MATLAB-based model accounts for the effects of all critical sensor and display components, and for the effects of atmospheric attenuation, concealment material attenuation, and active illumination. The model is based on recent U.S. Army NVESD sensor performance models that couple system design parameters to observer-sensor field performance using the acquire methodology for weapon identification performance predictions. This THz model has been developed in support of the Defense Advanced Research Project Agencies' Terahertz Imaging Focal-Plane-Array Technology (TIFT) program and is presently being used to guide the design and development of a 0.650 THz active/passive imaging system. This paper will describe the THz model in detail, provide and discuss initial modeling results for a prototype THz imaging system, and outline plans to validate and calibrate the model through human perception testing.

  13. Terahertz imaging using an interferometric array

    NASA Astrophysics Data System (ADS)

    Federici, John F.; Gary, Dale; Barat, Robert; Zimdars, David

    2005-05-01

    It has been suggested that interferometric/ synthetic aperture imaging techniques, when applied to the THz regime, can provide sufficient imaging resolution and spectral content to detect concealed explosives and other weapons from a standoff distance. The interferometric imaging method is demonstrated using CW THz generation and detection. Using this hardware, the reconstruction of THz images from a point source is emphasized and compared to theoretical predictions.

  14. High-resolution emission spectra of pulsed terahertz quantum-cascade lasers

    SciTech Connect

    Ikonnikov, A. V. Antonov, A. V.; Lastovkin, A. A.; Gavrilenko, V. I.; Sadof'ev, Yu. G.; Samal, N.

    2010-11-15

    The spectra of pulsed terahertz quantum-cascade lasers were measured with high spectral resolution. The characteristic line width at half maximum was 0.01 cm{sup -1}; it is controlled by laser temperature variations during the supply voltage pulse. It was shown that an increase in the laser temperature leads to a decrease in the emission frequency, which is caused by an increase in the effective refractive index of the active region. It was also found that a decrease in the supply voltage results in a decrease in the emission frequency, which is caused by a change in the energy of diagonal transitions between lasing levels.

  15. Diagnose human colonic tissues by terahertz near-field imaging

    NASA Astrophysics Data System (ADS)

    Chen, Hua; Ma, Shihua; Wu, Xiumei; Yang, Wenxing; Zhao, Tian

    2015-03-01

    Based on a terahertz (THz) pipe-based near-field imaging system, we demonstrate the capability of THz imaging to diagnose freshly surgically excised human colonic tissues. Through THz near-field scanning the absorbance of the colonic tissues, the acquired images can clearly distinguish cancerous tissues from healthy tissues fast and automatically without pathological hematoxylin and eosin stain diagnosis. A statistical study on 58 specimens (20 healthy tissues and 38 tissues with tumor) from 31 patients (mean age: 59 years; range: 46 to 79 years) shows that the corresponding diagnostic sensitivity and specificity on colonic tissues are both 100%. Due to its capability to perform quantitative analysis, our study indicates the potential of the THz pipe-based near-field imaging for future automation on human tumor pathological examinations.

  16. InP Double Heterojunction Bipolar Transistor for broadband terahertz detection and imaging systems

    NASA Astrophysics Data System (ADS)

    Coquillat, D.; Nodjiadjim, V.; Konczykowska, A.; Dyakonova, N.; Consejo, C.; Ruffenach, S.; Teppe, F.; Riet, M.; Muraviev, A.; Gutin, A.; Shur, M.; Godin, J.; Knap, W.

    2015-10-01

    This paper presents terahertz detectors based on high performance 0.7-?m InP double heterojunction bipolar transistor (DHBT) technology and reports on the analysis of their voltage responsivity over a wide frequency range of the incoming terahertz radiation. The detectors operated without any spatial antennas to couple terahertz radiation to the device and have been characterized in the 0.25 - 3.1 THz range with the responsivities (normalized to 1 W radiant power) of 5 V/W and 200 ?V/W measured at 0.35 THz and 3.11 THz, respectively. The InP DHBTs also performed as the imaging single-pixels at room temperature in the raster scanned transmission mode. A set of the sub-terahertz images of plant leaves suggest potential utility of InP DHBT detectors for terahertz imaging dedicated to non-invasive testing of plants.

  17. Detection of colon cancer by continuous-wave terahertz polarization imaging

    E-print Network

    Massachusetts at Lowell, University of

    & Statistics 2008). Early diagnosis is an effective method of reducing cancer risk. The staging and subsequentDetection of colon cancer by continuous- wave terahertz polarization imaging technique Pallavi Doradla Karim Alavi Cecil Joseph Robert Giles #12;Detection of colon cancer by continuous-wave terahertz

  18. Single-cycle Terahertz Pulses with >0.2 V/A Field Amplitudes via Coherent Transition Radiation

    SciTech Connect

    Daranciang, Dan; Goodfellow, John; Fuchs, Matthias; Wen, Haidan; Ghimire, Shambhu; Reis, David A.; Loos, Henrik; Fisher, Alan S.; Lindenberg, Aaron M.; /Stanford U. Materials Sci. Dept. /SIMES, Stanford /SLAC, PULSE

    2012-02-15

    We demonstrate terahertz pulses with field amplitudes exceeding 0.2 V/{angstrom} generated by coherent transition radiation. Femtosecond, relativistic electron bunches generated at the Linac Coherent Light Source are passed through a beryllium foil, and the emitted radiation is characterized as a function of the bunch duration and charge. Broadband pulses centered at a frequency of 10 THz with energies of 140 {mu}J are measured. These far-below-bandgap pulses drive a nonlinear optical response in a silicon photodiode, with which we perform nonlinear autocorrelations that yield information regarding the terahertz temporal profile. Simulations of the spatiotemporal profile agree well with experimental results.

  19. Intense terahertz-pulse generation by four-wave mixing process in induced gas plasma

    NASA Astrophysics Data System (ADS)

    Wicharn, S.; Buranasiri, P.

    2015-08-01

    In this article, we have numerically investigated an intense terahertz (THz) pulses generation in gaseous plasma based on the third-order nonlinear effect, four-wave mixing rectification (FWMR). We have proposed that the fundamental fields and second-harmonic field of ultra-short pulse lasers are combined and focused into a very small gas chamber to induce a gaseous plasma, which intense THz pulse is produced. To understand the THz generation process, the first-order multiple-scale perturbation method (MSPM) has been utilized to derive a set of nonlinear coupled-mode equations for interacting fields such as two fundamental fields, a second-harmonic field, and a THz field. Then, we have simulate the intense THz-pulse generation by using split step-beam propagation method (SS-BPM) and calculated output THz intensities. Finally, the output THz intensities generated from induced air, nitrogen, and argon plasma have been compared.

  20. Method for large and rapid terahertz imaging

    DOEpatents

    Williams, Gwyn P.; Neil, George R.

    2013-01-29

    A method of large-scale active THz imaging using a combination of a compact high power THz source (>1 watt), an optional optical system, and a camera for the detection of reflected or transmitted THz radiation, without the need for the burdensome power source or detector cooling systems required by similar prior art such devices. With such a system, one is able to image, for example, a whole person in seconds or less, whereas at present, using low power sources and scanning techniques, it takes several minutes or even hours to image even a 1 cm.times.1 cm area of skin.

  1. Scalable, Low-Noise Architecture for Integrated Terahertz Imagers

    NASA Astrophysics Data System (ADS)

    Gergelyi, Domonkos; Földesy, Péter; Zarándy, Ákos

    2015-06-01

    We propose a scalable, low-noise imager architecture for terahertz recordings that helps to build large-scale integrated arrays from any field-effect transistor (FET)- or HEMT-based terahertz detector. It enhances the signal-to-noise ratio (SNR) by inherently enabling complex sampling schemes. The distinguishing feature of the architecture is the serially connected detectors with electronically controllable photoresponse. We show that this architecture facilitate room temperature imaging by decreasing the low-noise amplifier (LNA) noise to one-sixteenth of a non-serial sensor while also reducing the number of multiplexed signals in the same proportion. The serially coupled architecture can be combined with the existing read-out circuit organizations to create high-resolution, coarse-grain sensor arrays. Besides, it adds the capability to suppress overall noise with increasing array size. The theoretical considerations are proven on a 4 by 4 detector array manufactured on 180 nm feature sized standard CMOS technology. The detector array is integrated with a low-noise AC-coupled amplifier of 40 dB gain and has a resonant peak at 460 GHz with 200 kV/W overall sensitivity.

  2. An Approach for Sub-Second Imaging of Concealed Objects Using Terahertz (THz) Radar

    NASA Astrophysics Data System (ADS)

    Cooper, K. B.; Dengler, R. J.; Llombart, N.; Bryllert, T.; Chattopadhyay, G.; Mehdi, I.; Siegel, P. H.

    2009-12-01

    High-resolution, long-range detection of person-borne concealed weapons has recently been demonstrated using a terahertz imaging radar. However, the radar’s image acquisition time must be greatly shortened, from minutes to less than one second, before the system can be effectively deployed in a real-life threat environment. Here we analyze the major system modifications necessary for increasing the speed of a terahertz imaging radar by up to two orders of magnitude.

  3. Quantum path control and isolated attosecond pulse generation in the combination of near-infrared and terahertz pulses

    NASA Astrophysics Data System (ADS)

    Zhong, Hui-Ying; Guo, Jing; Zhang, Hong-Dan; Du, Hui; Liu, Xue-Shen

    2015-07-01

    We present an efficient and realizable scheme for the generation of an ultrashort single attosecond (as) pulse from H atom with a 800-nm fundamental laser field combined with a terahertz (THz) field. The high-order harmonic generation (HHG) can be obtained by solving the time-dependent Schrödinger equation accurately and efficiently with time-dependent generalized pseudo-spectral (TDGPS) method. The result shows that the plateau of high-order harmonics is extended and the broadband spectra can be produced by the combined laser pulse, which can be explained by the corresponding ionization probability. The time-frequency analysis and semi-classical three-step model are also presented to further investigate this mechanism. Besides, by the superposition of the harmonics near the cutoff region, an isolated 133-as pulse can be obtained. Project supported by the National Natural Science Foundation of China (Grant Nos. 11174108, 11104108, and 11271158).

  4. A self-consistent regime of generation of terahertz radiation by an optical pulse with a tilted intensity front

    SciTech Connect

    Bugai, A N; Sazonov, S V; Shashkov, Andrei Yu

    2012-11-30

    We derived a self-consistent system of nonlinear wave equations describing the terahertz generation in dielectric uniaxial crystals by optical pulsed radiation with a tilted wavefront. The numerical analysis of the system of equations showed that the generation of a broadband one-period terahertz signal is accompanied by a red shift of the carrier frequency of the optical pulse, the magnitude of the shift being proportional to the pulse intensity. The generation efficiency with respect to energy reached a maximum at a certain distance of propagation in the crystal, after which the efficiency decreased. A satisfactory agreement was obtained between theoretical calculations and experimental data of other investigations. (generation of terahertz radiation)

  5. Exploration of Terahertz Imaging with Silicon MOSFETs

    NASA Astrophysics Data System (ADS)

    Lisauskas, Alvydas; Bauer, Maris; Boppel, Sebastian; Mundt, Martin; Khamaisi, Bassam; Socher, Eran; Venckevi?ius, Rimvydas; Minkevi?ius, Linas; Kašalynas, Irmantas; Seliuta, Dalius; Valušis, Gintaras; Krozer, Viktor; Roskos, Hartmut G.

    2014-01-01

    We summarize three lines of development and investigation of foundry-processed patch-antenna-coupled Si MOSFETs as detectors of THz radiation: (i) Exploiting the pinciple of plasma-waved-based mixing in the two-dimensional electron gas of the transistors' channels, we demonstrate efficient detection at frequencies as high as 9 THz, much above the transit-time-limited cut-off frequencies of the devices (tens of GHz). Real-time imaging at 600 GHz with a 12 × 12 detector array is explored. (ii) Given the limited THz power usually available for applications, we explore imaging with enhanced sensitivity in heterodyne mode. We show that real-time operation of a 100 × 100-pixel heterodyne camera should be possible at 600 GHz with a better dynamic range (30 dB) than for direct power detection (20 dB), even if only a quarter-milliwatt of local-oscillator power, distributed radiatively over all detector pixels, is available. (iii) Finally, we present an all-electronic raster-scan imaging system for 220 GHz entirely based on CMOS devices, combining the CMOS detectors with an emitter circuit implemented in a 90-nm CMOS process and delivering radiation with a power on the 100- ?W scale. Considering progress in the field, we anticipate that the emitter concept of oscillator-based power generation with on-chip frequency multiplication will carry well into the sub-millimeter-wave regime.

  6. Non-destructive terahertz imaging of illicit drugs using spectral fingerprints

    NASA Astrophysics Data System (ADS)

    Kawase, Kodo; Ogawa, Yuichi; Watanabe, Yuuki; Inoue, Hiroyuki

    2003-10-01

    The absence of non-destructive inspection techniques for illicit drugs hidden in mail envelopes has resulted in such drugs being smuggled across international borders freely. We have developed a novel basic technology for terahertz imaging, which allows detection and identification of drugs concealed in envelopes, by introducing the component spatial pattern analysis. The spatial distributions of the targets are obtained from terahertz multispectral transillumination images, using absorption spectra measured with a tunable terahertz-wave source. The samples we used were methamphetamine and MDMA, two of the most widely consumed illegal drugs in Japan, and aspirin as a reference.

  7. Numerical and simulation study of terahertz radiation generation by laser pulses propagating in the extraordinary mode in magnetized plasma

    SciTech Connect

    Jha, Pallavi; Kumar Verma, Nirmal

    2014-06-15

    A one-dimensional numerical model for studying terahertz radiation generation by intense laser pulses propagating, in the extraordinary mode, through magnetized plasma has been presented. The direction of the static external magnetic field is perpendicular to the polarization as well as propagation direction of the laser pulse. A transverse electromagnetic wave with frequency in the terahertz range is generated due to the presence of the magnetic field. Further, two-dimensional simulations using XOOPIC code show that the THz fields generated in plasma are transmitted into vacuum. The fields obtained via simulation study are found to be compatible with those obtained from the numerical model.

  8. Numerical and simulation study of terahertz radiation generation by laser pulses propagating in the extraordinary mode in magnetized plasma

    NASA Astrophysics Data System (ADS)

    Jha, Pallavi; Kumar Verma, Nirmal

    2014-06-01

    A one-dimensional numerical model for studying terahertz radiation generation by intense laser pulses propagating, in the extraordinary mode, through magnetized plasma has been presented. The direction of the static external magnetic field is perpendicular to the polarization as well as propagation direction of the laser pulse. A transverse electromagnetic wave with frequency in the terahertz range is generated due to the presence of the magnetic field. Further, two-dimensional simulations using XOOPIC code show that the THz fields generated in plasma are transmitted into vacuum. The fields obtained via simulation study are found to be compatible with those obtained from the numerical model.

  9. A Real-Time Terahertz Time-Domain Polarization Analyzer with 80-MHz Repetition-Rate Femtosecond Laser Pulses

    PubMed Central

    Watanabe, Shinichi; Yasumatsu, Naoya; Oguchi, Kenichi; Takeda, Masatoshi; Suzuki, Takeshi; Tachizaki, Takehiro

    2013-01-01

    We have developed a real-time terahertz time-domain polarization analyzer by using 80-MHz repetition-rate femtosecond laser pulses. Our technique is based on the spinning electro-optic sensor method, which we recently proposed and demonstrated by using a regenerative amplifier laser system; here we improve the detection scheme in order to be able to use it with a femtosecond laser oscillator with laser pulses of a much higher repetition rate. This improvement brings great advantages for realizing broadband, compact and stable real-time terahertz time-domain polarization measurement systems for scientific and industrial applications. PMID:23478599

  10. Two-dimensional tomographic terahertz imaging by homodyne self-mixing.

    PubMed

    Mohr, Till; Breuer, Stefan; Giuliani, G; Elsäßer, Wolfgang

    2015-10-19

    We realize a compact two-dimensional tomographic terahertz imaging experiment involving only one photoconductive antenna (PCA) simultaneously serving as a transmitter and receiver of the terahertz radiation. A hollow-core Teflon cylinder filled with ?-Lactose monohydrate powder is studied at two terahertz frequencies, far away and at a specific absorption line of the powder. This sample is placed between the antenna and a chopper wheel, which serves as back reflector of the terahertz radiation into the PCA. Amplitude and phase information of the continuous-wave (CW) terahertz radiation are extracted from the measured homodyne self-mixing (HSM) signal after interaction with the cylinder. The influence of refraction is studied by modeling the set-up utilizing ZEMAX and is discussed by means of the measured 1D projections. The tomographic reconstruction by using the Simultaneous Algebraic Reconstruction Technique (SART) allows to identify both object geometry and ?-Lactose filling. PMID:26480382

  11. Compressed sensing pulse-echo mode terahertz reflectance tomography

    E-print Network

    , thanks to the sufficient incoherency in the pulse-echo mode- sensing matrix and the fast sampling scheme spec- tral signal is sparse and the samples are obtained with an incoherent basis [4]. Specifically antenna on the same side measures the THz waveforms [see Fig. 1(a)]. Thanks to sufficient incoherency

  12. Terahertz imaging systems: a non-invasive technique for the analysis of paintings

    NASA Astrophysics Data System (ADS)

    Fukunaga, K.; Hosako, I.; Duling, I. N., III; Picollo, M.

    2009-07-01

    Terahertz (THz) imaging is an emerging technique for non-invasive analysis. Since THz waves can penetrate opaque materials, various imaging systems that use THz waves have been developed to detect, for instance, concealed weapons, illegal drugs, and defects in polymer products. The absorption of THz waves by water is extremely strong, and hence, THz waves can be used to monitor the water content in various objects. THz imaging can be performed either by transmission or by reflection of THz waves. In particular, time domain reflection imaging uses THz pulses that propagate in specimens, and in this technique, pulses reflected from the surface and from the internal boundaries of the specimen are detected. In general, the internal structure is observed in crosssectional images obtained using micro-specimens taken from the work that is being analysed. On the other hand, in THz time-domain imaging, a map of the layer of interest can be easily obtained without collecting any samples. When realtime imaging is required, for example, in the investigation of the effect of a solvent or during the monitoring of water content, a THz camera can be used. The first application of THz time-domain imaging in the analysis of a historical tempera masterpiece was performed on the panel painting Polittico di Badia by Giotto, of the permanent collection of the Uffizi Gallery. The results of that analysis revealed that the work is composed of two layers of gypsum, with a canvas between these layers. In the paint layer, gold foils covered by paint were clearly observed, and the consumption or ageing of gold could be estimated by noting the amount of reflection. These results prove that THz imaging can yield useful information for conservation and restoration purposes.

  13. Gelatin embedding: a novel way to preserve biological samples for terahertz imaging and spectroscopy

    NASA Astrophysics Data System (ADS)

    Fan, Shuting; Ung, Benjamin; Parrott, Edward P. J.; Pickwell-MacPherson, Emma

    2015-04-01

    Sample dehydration has traditionally been a challenging problem in ex vivo terahertz biomedical experiments as water content changes significantly affect the terahertz properties and can diminish important contrast features. In this paper, we propose a novel method to prevent sample dehydration using gelatin embedding. By looking at terahertz image data and calculating the optical properties of the gelatin-embedded sample, we find that our method successfully preserves the sample for at least 35?h, both for imaging and spectroscopy. Our novel preservation method demonstrates for the first time the capability to simultaneously maintain sample structural integrity and prevent dehydration at room temperature. This is particularly relevant for terahertz studies of freshly excised tissues but could be beneficial for other imaging and spectroscopy techniques.

  14. Low-cost plasma terahertz heterodyne image detection

    NASA Astrophysics Data System (ADS)

    Joseph, H.; Abramovich, A.; Kopeika, N. S.; Rozban, D.; Akram, A.

    2010-08-01

    Miniature inexpensive neon indicator lamp plasma glow discharge detectors (GDD) are excellent candidates to serve as room temperature, low cost, terahertz (THz) radiation detectors and as pixels in THz imaging systems. Heterodyne amplification of low power signals via higher power reference beams is very important for THz imaging systems because it permits detection of much lower object beam intensities. An experimental result of 300GHz heterodyne detection by a single commercial GDD device costing about 30 cents is presented here. In heterodyne image detection a picture is taken of interference fringes or a hologram deriving from a coherent reference wave and a coherent wave reflected from or transmitted through an object. Transmission with in-line or zero angles between those two waves is important to widen the fringes. The GDD detector is transparent, so that it's possible to receive radiation from both sides, at 0 and 180 degree. This permit receiving the wave reflected from or transmitted through an object at 0 degree and the reference wave from the opposite direction at 180 degree. Such interference fringe widening can permit heterodyne direct imaging of the object instead of imaging the interference pattern.

  15. Generation of high power pulsed terahertz radiation using a plasmonic photoconductive emitter array with logarithmic spiral antennas

    SciTech Connect

    Berry, Christopher W.; Hashemi, Mohammad R.; Jarrahi, Mona

    2014-02-24

    An array of 3?×?3 plasmonic photoconductive terahertz emitters with logarithmic spiral antennas is fabricated on a low temperature (LT) grown GaAs substrate and characterized in response to a 200 fs optical pump from a Ti:sapphire mode-locked laser at 800?nm wavelength. A microlens array is used to split and focus the optical pump beam onto the active area of each plasmonic photoconductive emitter element. Pulsed terahertz radiation with record high power levels up to 1.9 mW in the 0.1–2 THz frequency range is measured at an optical pump power of 320 mW. The record high power pulsed terahertz radiation is enabled by the use of plasmonic contact electrodes, enhancing the photoconductor quantum efficiencies, and by increasing the overall device active area, mitigating the carrier screening effect and thermal breakdown at high optical pump power levels.

  16. Fast high-resolution terahertz radar imaging at 25 meters

    NASA Astrophysics Data System (ADS)

    Cooper, Ken B.; Dengler, Robert J.; Llombart, Nuria; Talukder, Ashit; Panangadan, Anand V.; Peay, Chris S.; Mehdi, Imran; Siegel, Peter H.

    2010-04-01

    We report improvements in the scanning speed and standoff range of an ultra-wide bandwidth terahertz (THz) imaging radar for person-borne concealed object detection. Fast beam scanning of the single-transceiver radar is accomplished by rapidly deflecting a flat, light-weight subreflector in a confocal Gregorian optical geometry. With RF back-end improvements also implemented, the radar imaging rate has increased by a factor of about 30 compared to that achieved previously in a 4 m standoff prototype instrument. In addition, a new 100 cm diameter ellipsoidal aluminum reflector yields beam spot diameters of approximately 1 cm over a 50×50 cm field of view at a range of 25 m, although some aberrations are observed that probably arise from misaligned optics. Through-clothes images of concealed pipes at 25 m range, acquired in 5 seconds, are presented, and the impact of reduced signal-to-noise from an even faster frame rate is analyzed. These results inform the requirements for eventually achieving sub-second or video-rate THz radar imaging.

  17. Fast, High-Resolution Terahertz Radar Imaging at 25 Meters

    NASA Technical Reports Server (NTRS)

    Cooper, Ken B.; Dengler, Robert J.; Llombart, Nuria; Talukder, Ashit; Panangadan, Anand V.; Peay, Chris S.; Siegel, Peter H.

    2010-01-01

    We report improvements in the scanning speed and standoff range of an ultra-wide bandwidth terahertz (THz) imaging radar for person-borne concealed object detection. Fast beam scanning of the single-transceiver radar is accomplished by rapidly deflecting a flat, light-weight subreflector in a confocal Gregorian optical geometry. With RF back-end improvements also implemented, the radar imaging rate has increased by a factor of about 30 compared to that achieved previously in a 4 m standoff prototype instrument. In addition, a new 100 cm diameter ellipsoidal aluminum reflector yields beam spot diameters of approximately 1 cm over a 50x50 cm field of view at a range of 25 m, although some aberrations are observed that probably arise from misaligned optics. Through-clothes images of a concealed threat at 25 m range, acquired in 5 seconds, are presented, and the impact of reduced signal-to-noise from an even faster frame rate is analyzed. These results inform the system requirements for eventually achieving sub-second or video-rate THz radar imaging.

  18. Bursts of Terahertz Radiation from Large-Scale Plasmas Irradiated by Relativistic Picosecond Laser Pulses.

    PubMed

    Liao, G Q; Li, Y T; Li, C; Su, L N; Zheng, Y; Liu, M; Wang, W M; Hu, Z D; Yan, W C; Dunn, J; Nilsen, J; Hunter, J; Liu, Y; Wang, X; Chen, L M; Ma, J L; Lu, X; Jin, Z; Kodama, R; Sheng, Z M; Zhang, J

    2015-06-26

    Powerful terahertz (THz) radiation is observed from large-scale underdense preplasmas in front of a solid target irradiated obliquely with picosecond relativistic intense laser pulses. The radiation covers an extremely broad spectrum with about 70% of its energy located in the high frequency regime over 10 THz. The pulse energy of the radiation is found to be above 100???J per steradian in the laser specular direction at an optimal preplasma scale length around 40-50???m. Particle-in-cell simulations indicate that the radiation is mainly produced by linear mode conversion from electron plasma waves, which are excited successively via stimulated Raman scattering instability and self-modulated laser wakefields during the laser propagation in the preplasma. This radiation can be used not only as a powerful source for applications, but also as a unique diagnostic of parametric instabilities of laser propagation in plasmas. PMID:26197129

  19. Terahertz imaging of excised oral cancer at frozen temperature

    PubMed Central

    Sim, Yookyeong Carolyn; Park, Jae Yeon; Ahn, Kang-Min; Park, Chansik; Son, Joo-Hiuk

    2013-01-01

    The feasibility of terahertz (THz) imaging at frozen temperature for the clinical application of oral cancer detection was investigated by analyzing seven oral tissues resected from four patients. The size, shape, and internal position of the oral cancers were mapped by THz radiation in the frequency range of 0.2–1.2 THz at ?20 °C and 20 °C, and compared with those identified in the histological examination. THz imaging of frozen tissue was found to offer greater sensitivity in distinguishing cancerous areas from surrounding tissue and a larger THz-frequency spectral difference between the oral cancer and normal mucosa than room-temperature THz imaging. A cancerous tumor hidden inside tissue was also detected using this method by observing the THz temporal domain waveform. The histological analysis showed that these findings resulted from cell structure deformations involving the invasion of oral tumor and neoplastic transformations of mucous cells. Therefore, a cytological approach using THz radiation at a frozen temperature might be applied to detect oral cancer. PMID:24010003

  20. Single-cycle coherent terahertz-pulse propagation in rigid-rotor molecular media

    NASA Astrophysics Data System (ADS)

    Marskar, Robert; Ã-sterberg, Ulf L.

    2015-08-01

    We theoretically analyze linear and nonlinear coherent propagation of linearly polarized, plane-wave, resonant single-cycle terahertz pulses through spatially extended rigid-rotor molecular media. Our model incorporates mixed state medium preparation, nonperturbative nonlinearities, saturation, coherence, memory effects, and propagation, but ignores the effects of damping. Explicit solutions are reported in the linear propagation regime. These solutions are the multilevel superposition of linear, single-cycle 0 ? pulses, and appear as temporal beats in the time domain. For media initially in thermal equilibrium, the pulse and molecular beats are dispersive and broaden temporally with increased propagation distance. In the simplified limit of equal rotational line strength (an idealized situation), the emitted impulses are exact temporal copies of the input pulse. An efficient, scalable computational method for solving the reduced multilevel Maxwell-Bloch equations for molecular media is reported. This method is based on a standard differential method for the propagation equation together with an operator splitting method for the Bloch equations. It invokes neither the slowly varying envelope (SVEA) or rotating wave approximations (RWA), and incorporates a large number of possible energy eigenstates (we solve for 7744 levels). Case studies of nonlinear single-cycle pulse propagation are then provided by means of computer solutions. In the nonlinear regime, we observe strong molecular orientations and suppression of the pulse and orientational revivals predicted by linear theory. For sufficiently strong pulses, coherent bleaching effects lead to increased transmission of the driving pulse, which also bears signs of self-modulation and carrier-shock formation.

  1. Generation of coherent pulses of sub-terahertz longitudinal acoustic phonons in n-i-p-i silicon doping superlattices

    NASA Astrophysics Data System (ADS)

    Wilson, Thomas

    2010-03-01

    Intense pulses of coherent 246-GHz longitudinal acoustic phonons have been produced in n-i-p-i silicon doping superlattices by the resonant absorption of pulsed far-infrared (FIR) laser radiation. A niobium small-period grating-coupler has been used to convert the incident transverse electric field into an evanescent longitudinal field over the thickness of the superlattice. Si:B piezo-phonon spectroscopy is used, in conjunction with a fast granular aluminum/palladium microbolometer, to verify that the phonons exist in a narrow frequency band (˜10-GHz) around the FIR laser frequency at 246-GHz (1.22 mm). Time-of-flight across the thin (0.5-mm) substrate is used to verify that the phonons are longitudinal. The laser radiation is coupled onto the grating-coupler via a corrugated waveguide and a hyper-hemispherical silicon lens. Potential applications include the development of a novel terahertz cryogenic acoustic microscope for sub-surface imaging and sub-nanometer lateral resolution.

  2. Terahertz spectroscopy of liver cirrhosis: investigating the origin of contrast

    NASA Astrophysics Data System (ADS)

    Sy, Stanley; Huang, Shengyang; Wang, Yi-Xiang J.; Yu, Jun; Ahuja, Anil T.; Zhang, Yuan-ting; Pickwell-MacPherson, Emma

    2010-12-01

    We have previously demonstrated that terahertz pulsed imaging is able to distinguish between rat tissues from different healthy organs. In this paper we report our measurements of healthy and cirrhotic liver tissues using terahertz reflection spectroscopy. The water content of the fresh tissue samples was also measured in order to investigate the correlations between the terahertz properties, water content, structural changes and cirrhosis. Finally, the samples were fixed in formalin to determine whether water was the sole source of image contrast in this study. We found that the cirrhotic tissue had a higher water content and absorption coefficient than the normal tissue and that even after formalin fixing there were significant differences between the normal and cirrhotic tissues' terahertz properties. Our results show that terahertz pulsed imaging can distinguish between healthy and diseased tissue due to differences in absorption originating from both water content and tissue structure.

  3. Single-shot measurement of the spectral envelope of broad-bandwidth terahertz pulses from femtosecond electron bunches

    SciTech Connect

    van Tilborg, Jeroen; Toth, Csaba; Matlis, Nicholas; Plateau, Guillaume; Leemans, Wim

    2011-06-17

    We present a new approach (demonstrated experimentally and through modeling) to characterize the spectral envelope of a terahertz (THz) pulse in a single shot. The coherent THz pulse is produced by a femtosecond electron bunch and contains information on the bunch duration. The technique, involving a single low-power laser probe pulse, is an extension of the conventional spectral encoding method (limited in time resolution to hundreds of femtoseconds) into a regime only limited in resolution by the laser pulse length (tens of femtoseconds). While only the bunch duration is retrieved (and not the exact charge profile), such a measurement provides a useful and critical parameter for optimization of the electron accelerator.

  4. High-speed terahertz reflection three-dimensional imaging for nondestructive

    E-print Network

    .4290) Nondestructive testing. References and links 1. W. Withayachumnankul, G. M. Png, X. Yin, S. Atakaramians, IHigh-speed terahertz reflection three- dimensional imaging for nondestructive evaluation Kyong Hwan of the imaging system to nondestructive evaluation, a THz reflection 3D image of an artificially made sample

  5. Speckle pattern of the images of objects exposed to monochromatic coherent terahertz radiation

    SciTech Connect

    Vinokurov, Nikolai A; Knyazev, Boris A; Kulipanov, Gennadii N; Dem'yanenko, M A; Esaev, D G; Chashchina, O I; Cherkasskii, Valerii S

    2009-05-31

    By using a free electron laser and a microbolometer array, real-time images are recorded for the first time in the terahertz range at the rate of up to 90 frames per second. In the case of diffusive illumination of objects by coherent monochromatic radiation, the images consist of speckles. The study of the statistical properties of speckle patterns shows that they are quite accurately described by the theory developed for speckles in the visible range. By averaging a set of images with the help of a rotating scatterer during the exposure time of a frame (20 ms) and by summing statistically independent speckle patterns of many frames, images of the acceptable quality are obtained. The possibilities of terahertz speckle photography and speckle interferometry are discussed. (terahertz radiation)

  6. DEVELOPMENT OF A 4 K STIRLING-TYPE PULSE TUBE CRYOCOOLER FOR A MOBILE TERAHERTZ DETECTION SYSTEM

    SciTech Connect

    Bradley, P. E.; Gerecht, E.; Radebaugh, R.; Garaway, I.

    2010-04-09

    We discuss in this paper the design and development of a 4 K Stirling-type pulse tube cryocooler for a mobile terahertz detection system. This system integrates new heterodyne detector technology at terahertz frequencies with advancements of Stirling-type pulse tube technology that brings the advent of cooled detector sensitivities in a mobile, compact, and long duration operation system without degradation of sensitivity. To achieve this goal we reduced overall system size, input power, and temperature fluctuations and mechanical vibrations in order to maintain the detector sensitivity. The Stirling-type pulse tube cryocooler developed for this system is a hybrid design employing a He-4 pulse-tube cryocooler operating at 60 Hz and 2.5 MPa average pressure that precools a He-3 pulse tube cryocooler operating at 30 Hz and 1.0 MPa average pressure to achieve 4 K cooling for the terahertz receiver. The He-4 cryocooler employs stainless steel mesh regenerators for the first stage and ErPr spheres for the second stage, while the He-3 cryocooler employs stainless mesh for the first stage and ErPr spheres for the second stage with a layered rare-earth third stage regenerator. Design details and cooler performance goals are discussed.

  7. Development of a 4 K Stirling-Type Pulse Tube Cryocooler for a Mobile Terahertz Detection System

    NASA Astrophysics Data System (ADS)

    Bradley, P. E.; Gerecht, E.; Radebaugh, R.; Garaway, I.

    2010-04-01

    We discuss in this paper the design and development of a 4 K Stirling-type pulse tube cryocooler for a mobile terahertz detection system. This system integrates new heterodyne detector technology at terahertz frequencies with advancements of Stirling-type pulse tube technology that brings the advent of cooled detector sensitivities in a mobile, compact, and long duration operation system without degradation of sensitivity. To achieve this goal we reduced overall system size, input power, and temperature fluctuations and mechanical vibrations in order to maintain the detector sensitivity. The Stirling-type pulse tube cryocooler developed for this system is a hybrid design employing a He-4 pulse-tube cryocooler operating at 60 Hz and 2.5 MPa average pressure that precools a He-3 pulse tube cryocooler operating at 30 Hz and 1.0 MPa average pressure to achieve 4 K cooling for the terahertz receiver. The He-4 cryocooler employs stainless steel mesh regenerators for the first stage and ErPr spheres for the second stage, while the He-3 cryocooler employs stainless mesh for the first stage and ErPr spheres for the second stage with a layered rare-earth third stage regenerator. Design details and cooler performance goals are discussed.

  8. Investigating murals with terahertz reflective tomography

    NASA Astrophysics Data System (ADS)

    Yuan, Minjie; Sun, Wenfeng; Wang, Xinke; Wang, Sen; Zhang, Qunxi; Ye, Jiasheng; Zhang, Yan

    2015-08-01

    Terahertz time-domain spectroscopy (THz-TDS) imaging technology has been proposed to be used in the non-invasive detection of murals. THz-TDS images provide structural data of the sample that cannot be obtained with other complementary techniques. In this paper, two types of defects hidden in the plaster used to simulate the cases of defects in the murals, have been investigated by the terahertz reflected time domain spectroscopy imaging system. These preset defects include a leaf slice and a slit built in the plaster. With the terahertz reflective tomography, information about defects has been determined involving the thickness from the surface of sample to the built-in defect, the profile and distribution of the defect. With this THz tomography, different defects with the changes of optical thickness and their relative refractive index have been identified. The application of reflective pulsed terahertz imaging has been extended to the defect detection of the murals.

  9. Efficient terahertz wave generation from GaP crystals pumped by chirp-controlled pulses from femtosecond photonic crystal fiber amplifier

    SciTech Connect

    Li, Jiang; Shi, Junkai; Xu, Baozhong; Xing, Qirong; Wang, Chingyue; Chai, Lu E-mail: yanfengli@tju.edu.cn; Liu, Bowen; Hu, Minglie; Li, Yanfeng E-mail: yanfengli@tju.edu.cn; Fedotov, Andrey B.; Zheltikov, Aleksei M.

    2014-01-20

    A chirp-tunable femtosecond 10?W, 42?MHz photonic-crystal-fiber oscillator-amplifier system that is capable of delivering sub-60 fs light pulses at 1040?nm is used to demonstrate high-efficiency terahertz radiation generation via optical rectification in GaP crystals only a few millimeters in length. The optimization of the chirp of the fiber-laser pulses is shown to radically enhance the terahertz output, indicating one possible way to more efficiently use these extended nonlinear crystals in compact fiber-pumped terahertz radiation sources.

  10. Diffraction mode terahertz tomography

    DOEpatents

    Ferguson, Bradley; Wang, Shaohong; Zhang, Xi-Cheng

    2006-10-31

    A method of obtaining a series of images of a three-dimensional object. The method includes the steps of transmitting pulsed terahertz (THz) radiation through the entire object from a plurality of angles, optically detecting changes in the transmitted THz radiation using pulsed laser radiation, and constructing a plurality of imaged slices of the three-dimensional object using the detected changes in the transmitted THz radiation. The THz radiation is transmitted through the object as a two-dimensional array of parallel rays. The optical detection is an array of detectors such as a CCD sensor.

  11. Room temperature terahertz wave imaging at 60 fps by frequency up-conversion in DAST crystal

    NASA Astrophysics Data System (ADS)

    Fan, Shuzhen; Qi, Feng; Notake, Takashi; Nawata, Kouji; Matsukawa, Takeshi; Takida, Yuma; Minamide, Hiroaki

    2014-02-01

    Terahertz imaging has attracted a lot of interests for more than 10 years. But real time, high sensitive, low cost THz imaging in room temperature, which is widely needed by fields such as biology, biomedicine and homeland security, has not been fully developed yet. A lot of approaches have been reported on electro-optic (E-O) imaging and THz focal plane arrays with photoconductive antenna or micro-bolometer integrated. In this paper, we report high sensitive realtime THz image at 60 frames per second (fps) employing a commercial infrared camera, using nonlinear optical frequency up-conversion technology. In this system, a flash-lamp pumped nanosecond pulse green laser is used to pump two optical parametric oscillator systems with potassium titanyl phosphate crystals (KTP-OPO). One system with dual KTP crystals is used to generate infrared laser for the pumping of THz difference frequency generation (DFG) in a 4- Dimethylamino-N-Methyl-4-Stilbazolium Tosylate (DAST) crystal. The other one is for generation of pumping laser for THz frequency up-conversion in a second DAST crystal. The THz frequency can be tuned continuously from a few THz to less than 30 THz by controlling the angle of KTP crystals. The frequency up-converted image in infrared region is recorded by a commercial infrared camera working at 60 Hz. Images and videos are presented to show the feasibility of this technique and the real-time ability. Comparison with a general micro-bolometer THz camera shows the high sensitivity of this technique.

  12. Development and Testing of a Single Frequency Terahertz Imaging System for Breast Cancer Detection

    PubMed Central

    St. Peter, Benjamin; Yngvesson, Sigfrid; Siqueira, Paul; Kelly, Patrick; Khan, Ashraf; Glick, Stephen; Karellas, Andrew

    2013-01-01

    The ability to discern malignant from benign tissue in excised human breast specimens in Breast Conservation Surgery (BCS) was evaluated using single frequency terahertz radiation. Terahertz (THz) images of the specimens in reflection mode were obtained by employing a gas laser source and mechanical scanning. The images were correlated with optical histological micrographs of the same specimens, and a mean discrimination of 73% was found for five out of six samples using Receiver Operating Characteristic (ROC) analysis. The system design and characterization is discussed in detail. The initial results are encouraging but further development of the technology and clinical evaluation is needed to evaluate its feasibility in the clinical environment. PMID:25055306

  13. Terahertz Technology: A Boon to Tablet Analysis

    PubMed Central

    Wagh, M. P.; Sonawane, Y. H.; Joshi, O. U.

    2009-01-01

    The terahertz gap has a frequency ranges from ?0.3 THz to ?10 THz in the electromagnetic spectrum which is in between microwave and infrared. The terahertz radiations are invisible to naked eye. In comparison with x-ray they are intrinsically safe, non-destructive and non-invasive. Terahertz spectroscopy enables 3D imaging of structures and materials, and the measurement of the unique spectral fingerprints of chemical and physical forms. Terahertz radiations are produced by a dendrimer based high power terahertz source and spectroscopy technologies. It resolves many of the questions left unanswered by complementary techniques, such as optical imaging, Raman and infrared spectra. In the pharmaceutical industries it enables nondestructive, internal, chemical analysis of tablets, capsules, and other dosage forms. Tablet coatings are a major factor in drug bioavailability. Therefore tablet coatings integrity and uniformity are of crucial importance to quality. Terahertz imaging gives an unparalleled certainty about the integrity of tablet coatings and the matrix performance of tablet cores. This article demonstrates the potential of terahertz pulse imaging for the analysis of tablet coating thickness by illustrating the technique on tablets. PMID:20490288

  14. 21 CFR 892.1560 - Ultrasonic pulsed echo imaging system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... false Ultrasonic pulsed echo imaging system. 892.1560...892.1560 Ultrasonic pulsed echo imaging system. (a) Identification. An ultrasonic pulsed echo imaging system is a device intended to project a pulsed sound beam into body...

  15. 21 CFR 892.1560 - Ultrasonic pulsed echo imaging system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... false Ultrasonic pulsed echo imaging system. 892.1560...892.1560 Ultrasonic pulsed echo imaging system. (a) Identification. An ultrasonic pulsed echo imaging system is a device intended to project a pulsed sound beam into body...

  16. 21 CFR 892.1560 - Ultrasonic pulsed echo imaging system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... false Ultrasonic pulsed echo imaging system. 892.1560...892.1560 Ultrasonic pulsed echo imaging system. (a) Identification. An ultrasonic pulsed echo imaging system is a device intended to project a pulsed sound beam into body...

  17. 21 CFR 892.1560 - Ultrasonic pulsed echo imaging system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... false Ultrasonic pulsed echo imaging system. 892.1560...892.1560 Ultrasonic pulsed echo imaging system. (a) Identification. An ultrasonic pulsed echo imaging system is a device intended to project a pulsed sound beam into body...

  18. "Shim pulses" for NMR spectroscopy and imaging.

    PubMed

    Topgaard, Daniel; Martin, Rachel W; Sakellariou, Dimitris; Meriles, Carlos A; Pines, Alexander

    2004-12-21

    A way to use adiabatic radiofrequency pulses and modulated magnetic-field gradient pulses, together constituting a "shim pulse," for NMR spectroscopy and imaging is demonstrated. These pulses capitalize on phase shifts derived from probe gradient coils to compensate for nonlinear intrinsic main magnetic field homogeneity for spectroscopy, as well as for deviations from linear gradients for imaging. This approach opens up the possibility of exploiting cheaper, less-than-perfect magnets and gradient coils for NMR applications. PMID:15591105

  19. “Shim pulses” for NMR spectroscopy and imaging

    PubMed Central

    Topgaard, Daniel; Martin, Rachel W.; Sakellariou, Dimitris; Meriles, Carlos A.; Pines, Alexander

    2004-01-01

    A way to use adiabatic radiofrequency pulses and modulated magnetic-field gradient pulses, together constituting a “shim pulse,” for NMR spectroscopy and imaging is demonstrated. These pulses capitalize on phase shifts derived from probe gradient coils to compensate for nonlinear intrinsic main magnetic field homogeneity for spectroscopy, as well as for deviations from linear gradients for imaging. This approach opens up the possibility of exploiting cheaper, less-than-perfect magnets and gradient coils for NMR applications. PMID:15591105

  20. Optical generation of narrow-band terahertz packets in periodically inverted electro-optic crystals: conversion efficiency and optimal laser pulse format.

    PubMed

    Vodopyanov, Konstantin L

    2006-03-20

    We explore optical-to-terahertz conversion efficiencies which can be achieved with femto- and picosecond optical pulses in electro-optic crystals with periodically inverted sign of second-order susceptibility. Optimal crystal lengths, pulse durations, pulse formats and focusing are regarded. We show that for sufficiently short (femtosecond) optical pulses, with a pulsewidth much shorter than the inverse terahertz frequency, conversion efficiency does not depend on pulse duration. We also show that by mixing two picosecond pulses (bandwidth-limited or chirped), one can achieve conversion efficiency, which is the same as in the case of femtosecond pulse with the same pulse energy. Additionally, when the group velocity dispersion of optical pulses is small, one can substantially exceed Manley -Rowe conversion limit due to cascaded processes. PMID:19503563

  1. Coherent detection for continuous terahertz wave

    NASA Astrophysics Data System (ADS)

    Yuan, Hui; Lu, Tielin; Zhang, Jingshui; Zhang, Liangliang; Zhao, Ji; Zhao, Yuejin

    2015-08-01

    In this paper we demonstrated a coherent raster-scan imaging system that can acquire phase information based on continuous terahertz imaging. It mixes the terahertz with a Fs-laser by a electro-optic crystal of ZnTe to make a hybrid modulation on the crystal to achieve continuous terahertz detection. In this way, it can not only propagate for a long distance but also achieve phase detection for continuous terahertz imaging. The surface images of objects that are under test can be obtained by the Backward-Wave Oscillator, which the output power is 10mW at 205.994GHz. With the repetition frequency of 80MHz, the output power of the MaiTai is 1.65W and 100fs pulse light at 800nm. The images can achieve diffraction-limited resolution approximately. And the simulated results show that the system can obtain phase imaging of test objects based on continuous terahertz source. The way to get the phase of the signal has significant meaning for coherent detection of continuous terahertz source.

  2. Numerical and experimental studies of mechanisms underlying the effect of pulsed broadband terahertz radiation on nerve cells

    SciTech Connect

    Duka, M V; Dvoretskaya, L N; Babelkin, N S; Khodzitskii, M K; Chivilikhin, S A; Smolyanskaya, O A

    2014-08-31

    We have studied the mechanisms underlying the effect of pulsed broadband terahertz radiation on the growth of neurites of sensory ganglia using a comparative analysis of measured reflection spectra of ganglion neurites (in the frequency range 0.1 – 2.0 THz) and spectra obtained by numerical simulation with CST Microwave Studio. The observed changes are shown to be mainly due to pulse energy absorption in the ganglion neurites. Of particular interest are the observed single resonance frequencies related to resonance size effects, which can be used to irradiate ganglia in order to activate their growth. (laser biophotonics)

  3. Terahertz imaging of subjects with concealed weapons Jason C. Dickinson*a

    E-print Network

    Massachusetts at Lowell, University of

    Terahertz imaging of subjects with concealed weapons Jason C. Dickinson*a , Thomas M. Goyettea for concealed weapons detection, the Submillimeter-Wave Technology Laboratory (STL) at the University-the-fly processing. Imagery at 1.56THz of human subjects with concealed weapons are presented and discussed

  4. Application of Terahertz Imaging and Backscatter Radiography to Space Shuttle Foam Inspection

    NASA Technical Reports Server (NTRS)

    Ussery, Warren

    2008-01-01

    Two state of the art technologies have been developed for External Fuel Tank foam inspections. Results of POD tests have shown Backscatter Radiography and Terahertz imaging detect critical defects with no false positive issue. These techniques are currently in use on the External Tank program as one component in the foam quality assurance program.

  5. Two-dimensional imaging of continuous-wave terahertz radiation using electro-optic detection

    E-print Network

    Heinz, Tony F.

    pixel can be used to obtain depth information.4 With the advent of free-space electro-optic detection,5Two-dimensional imaging of continuous-wave terahertz radiation using electro-optic detection Ajay and detection processes. The generation process occurs by mixing in a photoconductive emitter, while

  6. Terahertz nano-spectroscopy and imaging of superfluid surface plasmons in conventional and anisotropic superconductors

    NASA Astrophysics Data System (ADS)

    Stinson, H. T.; Wu, J. S.; Jiang, B. Y.; Fei, Z.; Rodin, A. S.; Chapler, B.; McLeod, A. S.; Castro Neto, A.; Lee, Y. S.; Fogler, M. M.; Basov, D. N.

    2015-03-01

    We numerically model near-field spectroscopy and superfluid polariton imaging experiments on conventional and unconventional superconductors in the infrared and terahertz regime. Our modeling shows that near-field spectroscopy can measure the magnitude of the superconducting gap in Bardeen-Cooper-Schrieffer superconductors with nanoscale spatial resolution. We demonstrate how the same technique can measure the c-axis plasma frequency, and thus the c-axis superfluid density, of layered unconventional superconductors such as cuprates and pnictides with identical spatial resolution. We discuss the development of a cryogenic terahertz near-field microscope designed to perform these proposed experiments.

  7. Parasitic antenna effect in terahertz plasmon detector array for real-time imaging system

    NASA Astrophysics Data System (ADS)

    Yang, Jong-Ryul; Lee, Woo-Jae; Ryu, Min Woo; Rok Kim, Kyung; Han, Seong-Tae

    2015-10-01

    The performance uniformity of each pixel integrated with a patch antenna in a terahertz plasmon detector array is very important in building the large array necessary for a real-time imaging system. We found a parasitic antenna effect in the terahertz plasmon detector whose response is dependent on the position of the detector pixel in the illumination area of the terahertz beam. It was also demonstrated that the parasitic antenna effect is attributed to the physical structure consisting of signal pads, bonding wires, and interconnection lines on a chip and a printed circuit board. Experimental results show that the performance of the detector pixel is determined by the sum of the effects of each parasitic antenna and the on-chip integrated antenna designed to detect signals at the operating frequency. The parasitic antenna effect can be minimized by blocking the interconnections with a metallic shield.

  8. High-performance sub-terahertz transmission imaging system for food inspection

    PubMed Central

    Ok, Gyeongsik; Park, Kisang; Chun, Hyang Sook; Chang, Hyun-Joo; Lee, Nari; Choi, Sung-Wook

    2015-01-01

    Unlike X-ray systems, a terahertz imaging system can distinguish low-density materials in a food matrix. For applying this technique to food inspection, imaging resolution and acquisition speed ought to be simultaneously enhanced. Therefore, we have developed the first continuous-wave sub-terahertz transmission imaging system with a polygonal mirror. Using an f-theta lens and a polygonal mirror, beam scanning is performed over a range of 150 mm. For obtaining transmission images, the line-beam is incorporated with sample translation. The imaging system demonstrates that a pattern with 2.83 mm line-width at 210 GHz can be identified with a scanning speed of 80 mm/s. PMID:26137392

  9. High-performance sub-terahertz transmission imaging system for food inspection.

    PubMed

    Ok, Gyeongsik; Park, Kisang; Chun, Hyang Sook; Chang, Hyun-Joo; Lee, Nari; Choi, Sung-Wook

    2015-05-01

    Unlike X-ray systems, a terahertz imaging system can distinguish low-density materials in a food matrix. For applying this technique to food inspection, imaging resolution and acquisition speed ought to be simultaneously enhanced. Therefore, we have developed the first continuous-wave sub-terahertz transmission imaging system with a polygonal mirror. Using an f-theta lens and a polygonal mirror, beam scanning is performed over a range of 150 mm. For obtaining transmission images, the line-beam is incorporated with sample translation. The imaging system demonstrates that a pattern with 2.83 mm line-width at 210 GHz can be identified with a scanning speed of 80 mm/s. PMID:26137392

  10. Dielectric Covered Planar Antennas at Submillimeter Wavelengths for Terahertz Imaging

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Goutam; Gill, John J.; Skalare, Anders; Lee, Choonsup; Llombart, Nuria; Siegel, Peter H.

    2011-01-01

    Most optical systems require antennas with directive patterns. This means that the physical area of the antenna will be large in terms of the wavelength. When non-cooled systems are used, the losses of microstrip or coplanar waveguide lines impede the use of standard patch or slot antennas for a large number of elements in a phased array format. Traditionally, this problem has been solved by using silicon lenses. However, if an array of such highly directive antennas is to be used for imaging applications, the fabrication of many closely spaced lenses becomes a problem. Moreover, planar antennas are usually fed by microstrip or coplanar waveguides while the mixer or the detector elements (usually Schottky diodes) are coupled in a waveguide environment. The coupling between the antenna and the detector/ mixer can be a fabrication challenge in an imaging array at submillimeter wavelengths. Antennas excited by a waveguide (TE10) mode makes use of dielectric superlayers to increase the directivity. These antennas create a kind of Fabry- Perot cavity between the ground plane and the first layer of dielectric. In reality, the antenna operates as a leaky wave mode where a leaky wave pole propagates along the cavity while it radiates. Thanks to this pole, the directivity of a small antenna is considerably enhanced. The antenna consists of a waveguide feed, which can be coupled to a mixer or detector such as a Schottky diode via a standard probe design. The waveguide is loaded with a double-slot iris to perform an impedance match and to suppress undesired modes that can propagate on the cavity. On top of the slot there is an air cavity and on top, a small portion of a hemispherical lens. The fractional bandwidth of such antennas is around 10 percent, which is good enough for heterodyne imaging applications.The new geometry makes use of a silicon lens instead of dielectric quarter wavelength substrates. This design presents several advantages when used in the submillimeter-wave and terahertz bands: a) Antenna fabrication compatible with lithographic techniques. b) Much simpler fabrication of the lens. c) A simple quarter-wavelength matching layer of the lens will be more efficient if a smaller portion of the lens is used. d) The directivity is given by the lens diameter instead of the leaky pole (the bandwidth will not depend anymore on the directivity but just on the initial cavity). The feed is a standard waveguide, which is compatible with proven Schottky diode mixer/detector technologies. The development of such technology will benefit applications where submillimeter- wave heterodyne array designs are required. The main fields are national security, planetary exploration, and biomedicine. For national security, wideband submillimeter radars could be an effective tool for the standoff detection of hidden weapons or bombs concealed by clothing or packaging. In the field of planetary exploration, wideband submillimeter radars can be used as a spectrometer to detect trace concentrations of chemicals in atmospheres that are too cold to rely on thermal imaging techniques. In biomedicine, an imaging heterodyne system could be helpful in detecting skin diseases.

  11. Tailored terahertz pulses from a laser-modulated electron beam Michael C. Martin, John Byrd, Zhao Hao, David Robin, Fernando Sannibale, Robert W. Schoenlein,

    E-print Network

    Tailored terahertz pulses from a laser-modulated electron beam Michael C. Martin, John Byrd, Zhao@lbl.gov Interaction of an electron beam with a femtosecond laser pulse co-propagating through a wiggler modulates that the growth of a microbunching instability which creates high-power THz emissions can be triggered

  12. Strong sub-terahertz surface waves generated on a metal wire by high-intensity laser pulses.

    PubMed

    Tokita, Shigeki; Sakabe, Shuji; Nagashima, Takeshi; Hashida, Masaki; Inoue, Shunsuke

    2015-01-01

    Terahertz pulses trapped as surface waves on a wire waveguide can be flexibly transmitted and focused to sub-wavelength dimensions by using, for example, a tapered tip. This is particularly useful for applications that require high-field pulses. However, the generation of strong terahertz surface waves on a wire waveguide remains a challenge. Here, ultrafast field propagation along a metal wire driven by a femtosecond laser pulse with an intensity of 10(18)?W/cm(2) is characterized by femtosecond electron deflectometry. From experimental and numerical results, we conclude that the field propagating at the speed of light is a half-cycle transverse-magnetic surface wave excited on the wire and a considerable portion of the kinetic energy of laser-produced fast electrons can be transferred to the sub-surface wave. The peak electric field strength of the surface wave and the pulse duration are estimated to be 200?MV/m and 7?ps, respectively. PMID:25652694

  13. Strong sub-terahertz surface waves generated on a metal wire by high-intensity laser pulses

    PubMed Central

    Tokita, Shigeki; Sakabe, Shuji; Nagashima, Takeshi; Hashida, Masaki; Inoue, Shunsuke

    2015-01-01

    Terahertz pulses trapped as surface waves on a wire waveguide can be flexibly transmitted and focused to sub-wavelength dimensions by using, for example, a tapered tip. This is particularly useful for applications that require high-field pulses. However, the generation of strong terahertz surface waves on a wire waveguide remains a challenge. Here, ultrafast field propagation along a metal wire driven by a femtosecond laser pulse with an intensity of 1018?W/cm2 is characterized by femtosecond electron deflectometry. From experimental and numerical results, we conclude that the field propagating at the speed of light is a half-cycle transverse-magnetic surface wave excited on the wire and a considerable portion of the kinetic energy of laser-produced fast electrons can be transferred to the sub-surface wave. The peak electric field strength of the surface wave and the pulse duration are estimated to be 200?MV/m and 7?ps, respectively. PMID:25652694

  14. Parametric study of broadband terahertz radiation generation based on interaction of two-color ultra-short laser pulses

    SciTech Connect

    Moradi, S.; Ganjovi, A.; Shojaei, F.; Saeed, M.

    2015-04-15

    In this work, using a two-dimensional kinetic model based on particle in cell-Monte Carlo collision simulation method, the influence of different parameters on the broadband intense Terahertz (THz) radiation generation via application of two-color laser fields, i.e., the fundamental and second harmonic modes, is studied. These two modes are focused into the molecular oxygen (O{sub 2}) with uniform density background gaseous media and the plasma channels are created. Thus, a broadband THz pulse that is around the plasma frequency is emitted from the formed plasma channel and co-propagates with the laser pulse. For different laser pulse shapes, the THz electric field and its spectrum are both calculated. The effects of laser pulse and medium parameters, i.e., positive and negative chirp pulse, number of laser cycles in the pulse, laser pulse shape, background gas pressure, and exerted DC electric field on THz spectrum are verified. Application of a negatively chirped femtosecond (40 fs) laser pulse results in four times enhancement of the THz pulse energy (2 times in THz electric field). The emission of THz radiation is mostly observed in the forward direction.

  15. 21 CFR 892.1550 - Ultrasonic pulsed doppler imaging system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...Ultrasonic pulsed doppler imaging system. 892.1550 Section 892...Ultrasonic pulsed doppler imaging system. (a) Identification...ultrasonic pulsed doppler imaging system is a device that combines...location of tissue interfaces or dynamic tissue characteristics...

  16. 21 CFR 892.1550 - Ultrasonic pulsed doppler imaging system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...Ultrasonic pulsed doppler imaging system. 892.1550 Section 892...Ultrasonic pulsed doppler imaging system. (a) Identification...ultrasonic pulsed doppler imaging system is a device that combines...location of tissue interfaces or dynamic tissue characteristics...

  17. 21 CFR 892.1550 - Ultrasonic pulsed doppler imaging system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...Ultrasonic pulsed doppler imaging system. 892.1550 Section 892...Ultrasonic pulsed doppler imaging system. (a) Identification...ultrasonic pulsed doppler imaging system is a device that combines...location of tissue interfaces or dynamic tissue characteristics...

  18. 21 CFR 892.1550 - Ultrasonic pulsed doppler imaging system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...Ultrasonic pulsed doppler imaging system. 892.1550 Section 892...Ultrasonic pulsed doppler imaging system. (a) Identification...ultrasonic pulsed doppler imaging system is a device that combines...location of tissue interfaces or dynamic tissue characteristics...

  19. 21 CFR 892.1550 - Ultrasonic pulsed doppler imaging system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...Ultrasonic pulsed doppler imaging system. 892.1550 Section 892...Ultrasonic pulsed doppler imaging system. (a) Identification...ultrasonic pulsed doppler imaging system is a device that combines...location of tissue interfaces or dynamic tissue characteristics...

  20. Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances

    PubMed Central

    Tuniz, Alessandro; Kaltenecker, Korbinian J.; Fischer, Bernd M.; Walther, Markus; Fleming, Simon C.; Argyros, Alexander; Kuhlmey, Boris T.

    2013-01-01

    Using conventional materials, the resolution of focusing and imaging devices is limited by diffraction to about half the wavelength of light, as high spatial frequencies do not propagate in isotropic materials. Wire array metamaterials, because of their extreme anisotropy, can beat this limit; however, focusing with these has only been demonstrated up to microwave frequencies and using propagation over a few wavelengths only. Here we show that the principle can be scaled to frequencies orders of magnitudes higher and to considerably longer propagation lengths. We demonstrate imaging through straight and tapered wire arrays operating in the terahertz spectrum, with unprecedented propagation of near field information over hundreds of wavelengths and focusing down to 1/28 of the wavelength with a net increase in power density. Applications could include in vivo terahertz-endoscopes with resolution compatible with imaging individual cells. PMID:24162458

  1. Antenna-coupled uncooled Nb5N6 microbolometers for terahertz imaging

    NASA Astrophysics Data System (ADS)

    Tu, X. C.; Mao, Q. K.; Xu, L.; Wan, C.; Sun, Z. L.; Kang, L.; Chen, J.; Wu, P. H.

    2013-05-01

    In recent years our team has done a lot of work toward the goal of sensitive, inexpensive detectors for terahertz detection. In this paper we describe simple fabrication steps and the characterizations of uncooled Nb5N6 microbolometers for terahertz imaging. The best dc responsivity of the Nb5N6 microbolometer is -760 V/W at the bias current of 0.19 mA. A typical noise voltage as low as 10 nV/Hz1/2 yields a low noise equivalent power (NEP) of 1.3×10-11 W/Hz1/2 at a modulation frequency above 4 kHz. We constructed a quasi-optical type receiver by attaching this uncooled Nb5N6 microbolometer to the hyperhemispherical silicon lens. Subsequently, the imaging experiment is performed using this Nb5N6 microbolometer receiver at a THz imaging system.

  2. Kilowatt-peak Terahertz-wave Generation and Sub-femtojoule Terahertz-wave Pulse Detection Based on Nonlinear Optical Wavelength-conversion at Room Temperature

    NASA Astrophysics Data System (ADS)

    Minamide, Hiroaki; Hayashi, Shin'ichiro; Nawata, Koji; Taira, Takunori; Shikata, Jun-ichi; Kawase, Kodo

    2013-12-01

    Intense Terahertz (THz)-wave generation and highly sensitive THz-wave detection were obtained by wavelength conversion with nonlinear optical susceptibility ?(2) of LiNbO3 crystals. Maximum peak output of about 50 kW (5 ?J/pulse) was demonstrated in an injection-seeded THz-wave parametric generator pumped by post-amplified emission from a microchip Nd:YAG laser. Using the sub-nanosecond pulse duration of the laser proposed herein provides effective mitigation of stimulated Brillouin scattering in LiNbO3, producing higher gain for wavelength conversion between near-infrared (near-IR) pump light and THz waves. Monochromatic THz radiation was obtained in the continuous tuning range of 0.7-2.9 THz. Additionally, highly sensitive THz-wave detection was demonstrated based on up-conversion from THz waves to near-IR light as well as efficient THz-wave generation. The signal generated with non-collinear phase-matching condition showed spectroscopic detection on the screen apart from the LiNbO3 crystal. Highly sensitive detection with minimum energy of about 80 aJ/pulse (0.8 ?W at peak) and a large dynamic range of more than 100 dB were achieved in this experiment.

  3. Influences of different gases on the terahertz radiation based on the application of two-color laser pulses

    NASA Astrophysics Data System (ADS)

    Moradi, S.; Ganjovi, A.; Shojaei, F.; Saeed, M.

    2015-10-01

    In this work, using a two-dimensional Particle In Cell-Monte Carlo Collision simulation method, a comparative study is performed on the influences of different types of atomic and molecular gases at various background gas pressures on the generation of broadband and intense Terahertz (THz) radiation via the application of two-color laser pulses. These two modes are focused into Argon (Ar), Xenon (Xe), Nitrogen (N2), Oxygen (O2), and air as the background gaseous media and the plasma channel is created. It is observed that the THz radiation emission dramatically changes due to the propagation effects. A wider THz pulse is emitted from the formed plasma channel at the higher gas pressures. The significant effects of the propagation features of the emitted THz pulse on its energy at the longer lengths of the plasma channel are observed.

  4. Effect of extreme pump pulse reshaping on intense terahertz emission in lithium niobate at multimilliJoule pump energies.

    PubMed

    Blanchard, F; Ropagnol, X; Hafez, H; Razavipour, H; Bolduc, M; Morandotti, R; Ozaki, T; Cooke, D G

    2014-08-01

    We report on terahertz (THz) generation via optical rectification in a room-temperature lithium niobate crystal under variable pump pulse durations, ranging from 100 to 300 fs, at 800 nm center wavelength. The efficiency for the process is predicted to have an order of magnitude increase when longer duration Fourier-limited pump pulses are used. Our results confirm this increase in efficiency, and we report a record 800 nm pump energy conversion efficiency of 0.35% with a saturation at >240??fs pulse duration. While promising, our findings show a series of key problems that must be overcome before the theoretical limit can be achieved, including the influence of the pump bandwidth broadening due to the cascaded nonlinearity taking place within the crystal. PMID:25078170

  5. Generation of Widely Tunable Fourier-Transform Pulsed Terahertz Radiation Using Narrowband Near-Infrared Laser Radiation

    NASA Astrophysics Data System (ADS)

    Liu, Jinjun; Haase, Christa; Merkt, Frédéric

    2009-06-01

    Widely tunable, Fourier-transform-limited pulses of terahertz (THz) radiation have been generated by optical frequency deference using (i) crystals of the highly nonlinear organic salt 4-N,N-dimethylamino-4^'-N^'-methyl stilbazolium tosylate (DAST), (ii) zinc telluride (ZnTe) crystals, and (iii) gallium phosphide (GaP) crystals. Outputs from two narrowband (??<1 MHz, ?˜800 nm) cw titanium-doped sapphire (Ti:Sa) ring lasers with a well-controlled frequency difference were shaped into pulses using acousto-optic modulators, coupled into an optical fiber, pulse amplified in Nd:YAG-pumped Ti:Sa crystals and used as optical sources to pump the THz nonlinear crystals. The THz radiation was detected over a broad frequency range and its bandwidth was determined to be ˜10 MHz. Absorption spectra of gas phase molecules including HF and OCS using the THz source will be presented.

  6. Imaging molecular adsorption and desorption dynamics on graphene using terahertz emission spectroscopy

    PubMed Central

    Sano, Y.; Kawayama, I.; Tabata, M.; Salek, K. A.; Murakami, H.; Wang, M.; Vajtai, R.; Ajayan, P. M.; Kono, J.; Tonouchi, M.

    2014-01-01

    Being an atomically thin material, graphene is known to be extremely susceptible to its environment, including defects and phonons in the substrate on which it is placed as well as gas molecules that surround it. Thus, any device design using graphene has to take into consideration all surrounding components, and device performance needs to be evaluated in terms of environmental influence. However, no methods have been established to date to readily measure the density and distribution of external perturbations in a quantitative and non-destructive manner. Here, we present a rapid and non-contact method for visualizing the distribution of molecular adsorbates on graphene semi-quantitatively using terahertz time-domain spectroscopy and imaging. We found that the waveform of terahertz bursts emitted from graphene-coated InP sensitively changes with the type of atmospheric gas, laser irradiation time, and ultraviolet light illumination. The terahertz waveform change is explained through band structure modifications in the InP surface depletion layer due to the presence of localized electric dipoles induced by adsorbed oxygen. These results demonstrate that terahertz emission serves as a local probe for monitoring adsorption and desorption processes on graphene films and devices, suggesting a novel two-dimensional sensor for detecting local chemical reactions. PMID:25116593

  7. Imaging molecular adsorption and desorption dynamics on graphene using terahertz emission spectroscopy.

    PubMed

    Sano, Y; Kawayama, I; Tabata, M; Salek, K A; Murakami, H; Wang, M; Vajtai, R; Ajayan, P M; Kono, J; Tonouchi, M

    2014-01-01

    Being an atomically thin material, graphene is known to be extremely susceptible to its environment, including defects and phonons in the substrate on which it is placed as well as gas molecules that surround it. Thus, any device design using graphene has to take into consideration all surrounding components, and device performance needs to be evaluated in terms of environmental influence. However, no methods have been established to date to readily measure the density and distribution of external perturbations in a quantitative and non-destructive manner. Here, we present a rapid and non-contact method for visualizing the distribution of molecular adsorbates on graphene semi-quantitatively using terahertz time-domain spectroscopy and imaging. We found that the waveform of terahertz bursts emitted from graphene-coated InP sensitively changes with the type of atmospheric gas, laser irradiation time, and ultraviolet light illumination. The terahertz waveform change is explained through band structure modifications in the InP surface depletion layer due to the presence of localized electric dipoles induced by adsorbed oxygen. These results demonstrate that terahertz emission serves as a local probe for monitoring adsorption and desorption processes on graphene films and devices, suggesting a novel two-dimensional sensor for detecting local chemical reactions. PMID:25116593

  8. Character research on 2.52 terahertz coaxial reflection-mode confocal scanning microscopic imaging

    NASA Astrophysics Data System (ADS)

    Yang, Yong-fa; Li, Qi; Hu, Jia-qi

    2014-12-01

    The technology of terahertz (THz) is a major research area in the 21st century. THz imaging is an important research direction. The single-frequency continuous-wave THz technology is combined with coaxial reflection-mode confocal scanning microscopic imaging in this article. Under the given system parameters, the transverse response character of 2.52THz (118.83?m) coaxial reflection-mode confocal scanning microscopic imaging is emulated and analyzed. The results of emulation show that coaxial reflection-mode confocal scanning microscopic imaging is feasible in THz region.

  9. On-chip integration solutions of compact optics and detectors in room-temperature terahertz imaging systems

    NASA Astrophysics Data System (ADS)

    Minkevi?ius, Linas; TamošiÅ«nas, Vincas; Kašalynas, Irmantas; Venckevi?ius, Rimvydas; Madeikis, Karolis; Voisiat, Bogdan; Seliuta, Dalius; Ra?iukaitis, Gediminas; Valušis, Gintaras

    2015-08-01

    On-chip integrated solutions employing properties of Fresnel zone plates with integrated band-pass filters for the room temperature terahertz imaging systems are discussed. Finite-difference time-domain simulations were used to predict properties of conventional zone plates and ones with resonant filter areas as flat optics components. They are produced employing the laser direct writing and characterized by electronic THz sources and an optically pumped terahertz laser. It was shown that more than one order of magnitude detection enhancement can be observed of bow-tie-shaped InGaAs-based terahertz detectors by on-chip incorporation of the secondary diffractive optics.

  10. Terahertz imaging modalities of ancient Egyptian mummified objects and of a naturally mummified rat.

    PubMed

    Öhrström, Lena; Fischer, Bernd M; Bitzer, Andreas; Wallauer, Jan; Walther, Markus; Rühli, Frank

    2015-06-01

    During the last few years, terahertz (THz) imaging has been used to investigate artwork and historic artifacts. The application of THz imaging to mummy investigations is very attractive since it provides spectroscopic information over a broad frequency range and its radiation has proven to be harmless to human cells. However, compared with the current standard imaging methods in mummy imaging-X-ray and computed tomography (CT)--it remains a novel, emerging technique whose potential still needs to be fully evaluated. Here, ancient Egyptian mummified objects as well as a naturally mummified rat have been investigated by two different THz imaging systems: a broadband THz time domain imaging system and an electronic THz scanner. The obtained THz images are compared with conventional CT, X-ray, and magnetic resonance images. While the broadband THz time domain setup permits analyses of smaller samples, the electronic THz scanner allows the recording of data of thicker and larger samples at the expense of a limited spectral bandwidth. Terahertz imaging shows clear potential for mummy investigations, although currently CT imaging offers much higher spatial resolution. Furthermore, as commercial mobile THz scanners become available, THz imaging could be applied directly in museums or at excavation sites. PMID:25998647

  11. Feasibility of electron cyclotron autoresonance acceleration by a short terahertz pulse

    E-print Network

    Salamin, Yousef I; Galow, Benjamin J; Keitel, Christoph H

    2015-01-01

    A vacuum autoresonance accelerator scheme for electrons, which employs terahertz radiation and currently available magnetic fields, is suggested. Based on numerical simulations, parameter values, which could make the scheme experimentally feasible, are identified and discussed.

  12. Terahertz Imaging and Backscatter Radiography Probability of Detection Study for Space Shuttle Foam Inspections

    NASA Technical Reports Server (NTRS)

    Ussery, Warren; Johnson, Kenneth; Walker, James; Rummel, Ward

    2008-01-01

    This slide presentation reviews the use of terahertz imaging and Backscatter Radiography in a probability of detection study of the foam on the external tank (ET) shedding and damaging the shuttle orbiter. Non-destructive Examination (NDE) is performed as one method of preventing critical foam debris during the launch. Conventional NDE methods for inspection of the foam are assessed and the deficiencies are reviewed. Two methods for NDE inspection are reviewed: Backscatter Radiography (BSX) and Terahertz (THZ) Imaging. The purpose of the Probability of Detection (POD) study was to assess performance and reliability of the use of BSX and or THZ as an appropriate NDE method. The study used a test article with inserted defects, and a sample of blanks included to test for false positives. The results of the POD study are reported.

  13. Three-dimensional terahertz imaging using swept-frequency feedback interferometry with a quantum cascade laser.

    PubMed

    Keeley, J; Dean, P; Valavanis, A; Bertling, K; Lim, Y L; Alhathlool, R; Taimre, T; Li, L H; Indjin, D; Raki?, A D; Linfield, E H; Davies, A G

    2015-03-15

    We demonstrate coherent three-dimensional terahertz imaging by frequency modulation of a quantum cascade laser in a compact and experimentally simple self-mixing scheme. Through this approach, we can realize significantly faster acquisition rates compared to previous schemes employing longitudinal mechanical scanning of a sample. We achieve a depth resolution of better than 0.1 ?m with a power noise spectral density below -50??dB/Hz, for a sampling time of 10??ms/pixel. PMID:25768165

  14. Terahertz near-field imaging of surface plasmon waves in graphene structures

    NASA Astrophysics Data System (ADS)

    Mitrofanov, O.; Yu, W.; Thompson, R. J.; Jiang, Y.; Greenberg, Z. J.; Palmer, J.; Brener, I.; Pan, W.; Berger, C.; de Heer, W. A.; Jiang, Z.

    2015-12-01

    We introduce a near-field scanning probe terahertz (THz) microscopy technique for probing surface plasmon waves on graphene. Based on THz time-domain spectroscopy method, this near-field imaging approach is well suited for studying the excitation and evolution of THz plasmon waves on graphene as well as for mapping of graphene properties at THz frequencies on the sub-wavelength scale.

  15. Combination of silicon phase masks with time-domain spectroscopy for single-scan terahertz imaging

    NASA Astrophysics Data System (ADS)

    Jolly, A.; Gokhan, F. S.; Jolly, J.-C.; Hocquet, S.; Chassagne, B.

    2015-09-01

    We demonstrate the effectiveness of silicon phase masks to implement spatially resolved, multispectral imaging capabilities in the range of terahertz frequencies, using a standard setup of basic interest for time-domain spectrometry with a single-cell source and a single-cell detector. Our principle primarily aims at the development of robust and inexpensive systems. It consists of appropriate space-to-time encoding, in order to ensure single-scan triggering and then take advantage of rapid and self-consistent measurements in the two-dimensional space. The process enables very efficient discrimination giving access to a relevant spatial resolution in the analysis of small size, planar assemblies made of inhomogeneous materials. Benchmark results are provided to validate the concept, thanks to prototyping phase masks with 2 × 2 pixels, prior evidencing actual performance limitations in the case of 3 × 3 pixels. Due to the frequency bandwidth of 0.1-1.5 THz in our setup and to the available operating conditions, currently acceptable pixel resolutions lie in the range of 3-4 mm. Numerical modeling by means of finite elements helps to discuss these numbers and to investigate the relevant theoretical issues, figuring the main propagation issues in connection with a sub-picosecond seed pulse throughout various masks. This involves diffraction and trailing edge effects when crossing the mask together with residual, parasitic reflections. Finally, we give a consistent prospective for improved performance, via realistic updates regarding the architecture of the setup and complementary post-processing. Further values for the attainable spatial resolution then range from 5 × 5 to 6 × 6 pixels.

  16. Two-dimensional interferometric and synthetic aperture imaging with a hybrid terahertz/millimeter wave system.

    PubMed

    Su, Ke; Liu, Zhiwei; Barat, Robert B; Gary, Dale E; Michalopoulou, Zoi-Heleni; Federici, John F

    2010-07-01

    We have developed an interferometric synthetic aperture incoherent imaging system at 94 GHz, in which a high-power electronic millimeter wave source (Gunn Oscillator) is integrated with a continuous-wave terahertz (THz) photomixing detection system to achieve a high signal-to-noise ratio. Imaging of a point source located 10?m away from the detector array is presented. Two-dimensional THz reflective images of an extended object with different shapes are reconstructed with only four detectors by use of rotational synthesis. PMID:20648115

  17. InGaAs-based bow-tie diode for spectroscopic terahertz imaging

    NASA Astrophysics Data System (ADS)

    Kašalynas, I.; Venckevi?ius, R.; Seliuta, D.; Grigelionis, I.; Valušis, G.

    2011-12-01

    Suitability of InGaAs-based bow-tie diodes for a spectroscopic terahertz imaging is demonstrated by inspecting explosive simulators packed in a thick plastic container. The transmission images were obtained within the frequency range of 0.58-2.52 THz at room temperature using optimized bow-tie diode connection scheme. Content of sucrose and tartaric acid in the test samples was discriminated. Measured absorbance was found to be in a good correlation with Fourier spectroscopy data. Performance of room temperature THz imaging using the bow-tie diode was compared versus a commercial pyro-electric sensor.

  18. Terahertz imaging system based on bessel beams via 3D printed axicons at 100GHz

    NASA Astrophysics Data System (ADS)

    Liu, Changming; Wei, Xuli; Zhang, Zhongqi; Wang, Kejia; Yang, Zhenggang; Liu, Jinsong

    2014-11-01

    Terahertz (THz) imaging technology shows great advantage in nondestructive detection (NDT), since many optical opaque materials are transparent to THz waves. In this paper, we design and fabricate dielectric axicons to generate zeroth order-Bessel beams by 3D printing technology. We further present an all-electric THz imaging system using the generated Bessel beams in 100GHz. Resolution targets made of printed circuit board are imaged, and the results clearly show the extended depth of focus of Bessel beam, indicating the promise of Bessel beam for the THz NDT.

  19. Processing sequence for non-destructive inspection based on 3D terahertz images

    NASA Astrophysics Data System (ADS)

    Balacey, H.; Perraud, Jean-Baptiste; Bou Sleiman, J.; Guillet, Jean-Paul; Recur, B.; Mounaix, P.

    2014-11-01

    In this paper we present an innovative data and image processing sequence to perform non-destructive inspection from 3D terahertz (THz) images. We develop all the steps starting from a 3D tomographic reconstruction of a sample from its radiographs acquired with a monochromatic millimetre wave imaging system. Thus an automated segmentation provides the different volumes of interest (VOI) composing the sample. Then a 3D visualization and dimensional measurements are performed on these VOI, separately, in order to provide an accurate nondestructive testing (NDT) of the studied sample. This sequence is implemented onto an unique software and validated through the analysis of different objects

  20. Real-time, continuous-wave terahertz imaging using a microbolometer focal-plane array

    NASA Technical Reports Server (NTRS)

    Hu, Qing (Inventor); Min Lee, Alan W. (Inventor)

    2010-01-01

    The present invention generally provides a terahertz (THz) imaging system that includes a source for generating radiation (e.g., a quantum cascade laser) having one or more frequencies in a range of about 0.1 THz to about 10 THz, and a two-dimensional detector array comprising a plurality of radiation detecting elements that are capable of detecting radiation in that frequency range. An optical system directs radiation from the source to an object to be imaged. The detector array detects at least a portion of the radiation transmitted through the object (or reflected by the object) so as to form a THz image of that object.

  1. Enhanced terahertz imaging system performance analysis and design tool for concealed weapon identification

    NASA Astrophysics Data System (ADS)

    Murrill, Steven R.; Franck, Charmaine C.; Espinola, Richard L.; Petkie, Douglas T.; De Lucia, Frank C.; Jacobs, Eddie L.

    2011-11-01

    The U.S. Army Research Laboratory (ARL) and the U.S. Army Night Vision and Electronic Sensors Directorate (NVESD) have developed a terahertz-band imaging system performance model/tool for detection and identification of concealed weaponry. The details of the MATLAB-based model which accounts for the effects of all critical sensor and display components, and for the effects of atmospheric attenuation, concealment material attenuation, and active illumination, were reported on at the 2005 SPIE Europe Security & Defence Symposium (Brugge). An advanced version of the base model that accounts for both the dramatic impact that target and background orientation can have on target observability as related to specular and Lambertian reflections captured by an active-illumination-based imaging system, and for the impact of target and background thermal emission, was reported on at the 2007 SPIE Defense and Security Symposium (Orlando). This paper will provide a comprehensive review of an enhanced, user-friendly, Windows-executable, terahertz-band imaging system performance analysis and design tool that now includes additional features such as a MODTRAN-based atmospheric attenuation calculator and advanced system architecture configuration inputs that allow for straightforward performance analysis of active or passive systems based on scanning (single- or line-array detector element(s)) or staring (focal-plane-array detector elements) imaging architectures. This newly enhanced THz imaging system design tool is an extension of the advanced THz imaging system performance model that was developed under the Defense Advanced Research Project Agency's (DARPA) Terahertz Imaging Focal-Plane Technology (TIFT) program. This paper will also provide example system component (active-illumination source and detector) trade-study analyses using the new features of this user-friendly THz imaging system performance analysis and design tool.

  2. Ionic contrast terahertz time resolved imaging of frog auricular heart muscle electrical activity

    NASA Astrophysics Data System (ADS)

    Masson, Jean-Baptiste; Sauviat, Martin-Pierre; Gallot, Guilhem

    2006-10-01

    The authors demonstrate the direct, noninvasive and time resolved imaging of functional frog auricular fibers by ionic contrast terahertz (ICT) near field microscopy. This technique provides quantitative, time-dependent measurement of ionic flow during auricular muscle electrical activity, and opens the way of direct noninvasive imaging of cardiac activity under stimulation. ICT microscopy technique was associated with full three-dimensional simulation enabling to measure precisely the fiber sizes. This technique coupled to waveguide technology should provide the grounds to development of advanced in vivo ion flux measurement in mammalian hearts, allowing the prediction of heart attack from change in K+ fluxes.

  3. Nonlinear pulse compression in pulse-inversion fundamental imaging.

    PubMed

    Cheng, Yun-Chien; Shen, Che-Chou; Li, Pai-Chi

    2007-04-01

    Coded excitation can be applied in ultrasound contrast agent imaging to enhance the signal-to-noise ratio with minimal destruction of the microbubbles. Although the axial resolution is usually compromised by the requirement for a long coded transmit waveforms, this can be restored by using a compression filter to compress the received echo. However, nonlinear responses from microbubbles may cause difficulties in pulse compression and result in severe range side-lobe artifacts, particularly in pulse-inversion-based (PI) fundamental imaging. The efficacy of pulse compression in nonlinear contrast imaging was evaluated by investigating several factors relevant to PI fundamental generation using both in-vitro experiments and simulations. The results indicate that the acoustic pressure and the bubble size can alter the nonlinear characteristics of microbubbles and change the performance of the compression filter. When nonlinear responses from contrast agents are enhanced by using a higher acoustic pressure or when more microbubbles are near the resonance size of the transmit frequency, higher range side lobes are produced in both linear imaging and PI fundamental imaging. On the other hand, contrast detection in PI fundamental imaging significantly depends on the magnitude of the nonlinear responses of the bubbles and thus the resultant contrast-to-tissue ratio (CTR) still increases with acoustic pressure and the nonlinear resonance of microbubbles. It should be noted, however, that the CTR in PI fundamental imaging after compression is consistently lower than that before compression due to obvious side-lobe artifacts. Therefore, the use of coded excitation is not beneficial in PI fundamental contrast detection. PMID:17679323

  4. Spectral modification of the laser emission of a terahertz quantum cascade laser induced by broad-band double pulse injection seeding

    NASA Astrophysics Data System (ADS)

    Markmann, Sergej; Nong, Hanond; Pal, Shovon; Hekmat, Negar; Scholz, Sven; Kukharchyk, Nadezhda; Ludwig, Arne; Dhillon, Sukhdeep; Tignon, Jérôme; Marcadet, Xavier; Bock, Claudia; Kunze, Ulrich; Wieck, Andreas D.; Jukam, Nathan

    2015-09-01

    We demonstrate by injection seeding that the spectral emission of a terahertz (THz) quantum cascade laser (QCL) can be modified with broad-band THz pulses whose bandwidths are greater than the QCL bandwidth. Two broad-band THz pulses delayed in time imprint a modulation on the single THz pulse spectrum. The resulting spectrum is used to injection seed the THz QCL. By varying the time delay between the THz pulses, the amplitude distribution of the QCL longitudinal modes is modified. By applying this approach, the QCL emission is reversibly switched from multi-mode to single mode emission.

  5. Feasibility demonstration of frequency domain terahertz imaging in breast cancer margin determination

    NASA Astrophysics Data System (ADS)

    Yngvesson, Sigfrid K.; St. Peter, Benjamin; Siqueira, Paul; Kelly, Patrick; Glick, Stephen; Karellas, Andrew; Khan, Ashraf

    2012-03-01

    In breast conservation surgery, surgeons attempt to remove malignant tissue along with a surrounding margin of healthy tissue. Subsequent pathological analysis determines if those margins are clear of malignant tissue, a process that typically requires at least one day. Only then can it be determined whether a follow-up surgery is necessary. This possibility of re-excision is undesirable in terms of reducing patient morbidity, emotional stress and healthcare. It has been shown that terahertz (THz) images of breast specimens can accurately differentiate between breast carcinoma, normal fibroglandular tissue, and adipose tissue. That study employed the Time-Domain Spectroscopy (TDS) technique. We are instead developing a new technique, Frequency-Domain Terahertz Imaging (FDTI). In this joint project between UMass/Amherst and UMass Medical School/Worcester (UMMS), we are investigating the feasibility of the FDTI technique for THz reflection imaging of breast cancer margins. Our system, which produces mechanically scanned images of size 2cm x 2cm, uses a THz gas laser. The system is calibrated with mixtures of water and ethanol and reflection coefficients as low as 1% have been measured. Images from phantoms and specimens cut from breast cancer lumpectomies at UMMS will be presented. Finally, there will be a discussion of a possible transition of this FDTI setup to a compact and inexpensive CMOS THz camera for use in the operating room.

  6. Terahertz imaging system for stand-off detection of threats

    NASA Astrophysics Data System (ADS)

    Hübers, H.-W.; Semenov, A. D.; Richter, H.; Böttger, U.

    2007-04-01

    Suicide bombers and hidden bombs or explosives have become serious threats especially for mass transportation. Until now there exists no established system which can be used against these threats. Therefore new technologies especially for stand-off detection of threats are required. Terahertz (THz) rays offer an alternative inspection method, which can cope with these new challenges. Major advantages of THz radiation as compared to other spectral regions are the possibility to penetrate through clothes and that THz radiation is not harmful for human health. In this report the design and results of a THz stand-off detection system will be presented. The sensor is based on active illumination of the object and sensitive heterodyne detection of reflected and backscattered radiation. The system operates at about 0.8 THz. A THz laser is used for illumination and a superconducting hot-electron bolometric mixer for detection. The local oscillator required for heterodyne detection is a multiplied microwave source. The optical system is designed to allow for stand-off detection at 20 m with a spatial resolution less than 2 cm.

  7. Terahertz imaging with sub-wavelength resolution by femtosecond laser filament in air

    PubMed Central

    Zhao, Jiayu; Chu, Wei; Guo, Lanjun; Wang, Zhi; Yang, Jing; Liu, Weiwei; Cheng, Ya; Xu, Zhizhan

    2014-01-01

    Terahertz (THz) imaging provides cutting edge technique in biology, medical sciences and non-destructive evaluation. However, due to the long wavelength of the THz wave, the obtained resolution of THz imaging is normally a few hundred microns and is much lower than that of the traditional optical imaging. We introduce a sub-wavelength resolution THz imaging technique which uses the THz radiation generated by a femtosecond laser filament in air as the probe. This method is based on the fact that the femtosecond laser filament forms a waveguide for the THz wave in air. The diameter of the THz beam, which propagates inside the filament, varies from 20??m to 50??m, which is significantly smaller than the wavelength of the THz wave. Using this highly spatially confined THz beam as the probe, THz imaging with resolution as high as 20??m (~?/38 at 0.4?THz) can be realized. PMID:24457525

  8. An ultrafast carbon nanotube terahertz polarisation modulator

    NASA Astrophysics Data System (ADS)

    Docherty, Callum J.; Stranks, Samuel D.; Habisreutinger, Severin N.; Joyce, Hannah J.; Herz, Laura M.; Nicholas, Robin J.; Johnston, Michael B.

    2014-05-01

    We demonstrate ultrafast modulation of terahertz radiation by unaligned optically pumped single-walled carbon nanotubes. Photoexcitation by an ultrafast optical pump pulse induces transient terahertz absorption in nanowires aligned parallel to the optical pump. By controlling the polarisation of the optical pump, we show that terahertz polarisation and modulation can be tuned, allowing sub-picosecond modulation of terahertz radiation. Such speeds suggest potential for semiconductor nanowire devices in terahertz communication technologies.

  9. Imaging with a terahertz quantum cascade laser for biomedical applications

    NASA Astrophysics Data System (ADS)

    Kim, Seongsin M.; Hatami, Fariba; Kurian, Allison W.; Goddard, Lynford; Ford, James; Harris, James S.; Scalari, Giacomo; Giovannini, Marcella; Hoyler, Nicolas; Faist, Jerome; Harris, Geoff

    2005-11-01

    We investigated and demonstrated bio-medical imaging using a THz quantum cascade laser. With the THz quantum cascade laser (QCL) at 3.8 THz, we obtained large dynamic range and high spatial resolution in the transmission imaging technique. The various tissues images, such as lung, liver, and brain sections from the laboratory mouse were obtained and studied. The most important factor for this imaging scheme is to obtain high contrast with different absorption characteristics in tissues. We explored distinct images from the fat, muscles and tendon from the freshly cut tissues and investigated absorption coefficient and compared with FTIR measurement. We also demonstrated the image of distinct region of tumors progressed and normal tissues using this technique. The comparison of frequency dependent medical imaging with utilizing different wavelength of QCLs has been addressed.

  10. Bio-medical imaging with a terahertz quantum cascade laser

    NASA Astrophysics Data System (ADS)

    Kim, Seongsin M.; Hatami, Fariba; Kurian, Allison W.; Ford, James; Harris, James S.; Scalari, Giacomo; Giovannini, Marcella; Hoyler, Nicolas; Faist, Jerome; Harris, Geoff

    2006-02-01

    We investigated and demonstrated bio-medical imaging using a THz quantum cascade laser. With the THz quantum cascade laser (QCL) at 3.8 THz, we obtained large dynamic range and high spatial resolution in the transmission imaging technique. The various tissues images, such as lung, liver, and brain sections from the laboratory mouse were obtained and studied. The most important factor for this imaging scheme is to obtain high contrast with different absorption characteristics in tissues. We explored distinct images from the fat, muscles and tendon from the freshly cut tissues and investigated absorption coefficient and compared with FTIR measurement. We also demonstrated the image of distinct region of tumors progressed and normal tissues using this technique. The comparison of frequency dependent medical imaging with utilizing different wavelength of QCLs has been addressed.

  11. Terahertz imaging of sub-wavelength particles with Zenneck surface waves

    NASA Astrophysics Data System (ADS)

    Navarro-Cía, M.; Natrella, M.; Dominec, F.; Delagnes, J. C.; Kužel, P.; Mounaix, P.; Graham, C.; Renaud, C. C.; Seeds, A. J.; Mitrofanov, O.

    2013-11-01

    Impact of sub-wavelength-size dielectric particles on Zenneck surface waves on planar metallic antennas is investigated at terahertz (THz) frequencies with THz near-field probe microscopy. Perturbations of the surface waves show the particle presence, despite its sub-wavelength size. The experimental configuration, which utilizes excitation of surface waves at metallic edges, is suitable for THz imaging of dielectric sub-wavelength size objects. As a proof of concept, the effects of a small strontium titanate rectangular particle and a titanium dioxide sphere on the surface field of a bow-tie antenna are experimentally detected and verified using full-wave simulations.

  12. Imaging of free carriers in semiconductors via optical feedback in terahertz quantum cascade lasers

    SciTech Connect

    Mezzapesa, F. P. Brambilla, M.; Dabbicco, M.; Scamarcio, G.; Columbo, L. L.; Vitiello, M. S.

    2014-01-27

    To monitor the density of photo-generated charge carriers on a semiconductor surface, we demonstrate a detectorless imaging system based on the analysis of the optical feedback in terahertz quantum cascade lasers. Photo-excited free electron carriers are created in high resistivity n-type silicon wafers via low power (?40 mW/cm{sup 2}) continuous wave pump laser in the near infrared spectral range. A spatial light modulator allows to directly reconfigure and control the photo-patterned intensity and the associated free-carrier density distribution. The experimental results are in good agreement with the numerical simulations.

  13. Simultaneous Noncontact Precision Imaging of Microstructural and Thickness Variation in Dielectric Materials Using Terahertz Energy

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Seebo, Jeffrey P.; Winfree, William P.

    2008-01-01

    This article describes a noncontact single-sided terahertz electromagnetic measurement and imaging method that simultaneously characterizes microstructural (egs. spatially-lateral density) and thickness variation in dielectric (insulating) materials. The method was demonstrated for two materials-Space Shuttle External Tank sprayed-on foam insulation and a silicon nitride ceramic. It is believed that this method can be used as an inspection method for current and future NASA thermal protection system and other dielectric material inspection applications, where microstructural and thickness variation require precision mapping. Scale-up to more complex shapes such as cylindrical structures and structures with beveled regions would appear to be feasible.

  14. Terahertz imaging of sub-wavelength particles with Zenneck surface waves

    SciTech Connect

    Navarro-Cía, M.; Natrella, M.; Graham, C.; Renaud, C. C.; Seeds, A. J.; Mitrofanov, O.; Dominec, F.; Kužel, P.; Delagnes, J. C.; Mounaix, P.

    2013-11-25

    Impact of sub-wavelength-size dielectric particles on Zenneck surface waves on planar metallic antennas is investigated at terahertz (THz) frequencies with THz near-field probe microscopy. Perturbations of the surface waves show the particle presence, despite its sub-wavelength size. The experimental configuration, which utilizes excitation of surface waves at metallic edges, is suitable for THz imaging of dielectric sub-wavelength size objects. As a proof of concept, the effects of a small strontium titanate rectangular particle and a titanium dioxide sphere on the surface field of a bow-tie antenna are experimentally detected and verified using full-wave simulations.

  15. Portable video rate time domain terahertz line imager for security and aerospace nondestructive examination

    NASA Astrophysics Data System (ADS)

    Zimdars, David; Fichter, G.; Megdanoff, C.; Murdock, M.; Duling, Irl; White, Jeffrey; Williamson, S. L.

    2010-04-01

    A portable video rate time-domain terahertz (TD-THz) reflection line-scanner suitable for aerospace destructive examination (NDE) and security inspection is described. The imager scans a line 6 inches wide and collects a TD-THz cross-sectional "B-scan" of the sub-surface structure at rates up to 30 Hz. The imager is hand-held. By rolling the scanner over surface, a radiographic two dimensional "C-Scan" image can be stitched together from the individual lines at a rate of 1-4 inches per second (depending on desired resolution). The case is 8.7 in. wide (12.9 in. with wheels), 12.5 in. long, and 7.9 in. high. The weight is approximately 11 lbs. Example images taken with the scanner of radome THz NDE are shown.

  16. Intense, carrier frequency and bandwidth tunable quasi single-cycle pulses from an organic emitter covering the Terahertz frequency gap

    PubMed Central

    Vicario, C.; Monoszlai, B.; Jazbinsek, M.; Lee, S. -H.; Kwon, O. -P.; Hauri, C. P.

    2015-01-01

    In Terahertz (THz) science, one of the long-standing challenges has been the formation of spectrally dense, single-cycle pulses with tunable duration and spectrum across the frequency range of 0.1–15?THz (THz gap). This frequency band, lying between the electronically and optically accessible spectra hosts important molecular fingerprints and collective modes which cannot be fully controlled by present strong-field THz sources. We present a method that provides powerful single-cycle THz pulses in the THz gap with a stable absolute phase whose duration can be continuously selected between 68 fs and 1100 fs. The loss-free and chirp-free technique is based on optical rectification of a wavelength-tunable pump pulse in the organic emitter HMQ-TMS that allows for tuning of the spectral bandwidth from 1 to more than 7 octaves over the entire THz gap. The presented source tunability of the temporal carrier frequency and spectrum expands the scope of spectrally dense THz sources to time-resolved nonlinear THz spectroscopy in the entire THz gap. This opens new opportunities towards ultrafast coherent control over matter and light. PMID:26400005

  17. Intense, carrier frequency and bandwidth tunable quasi single-cycle pulses from an organic emitter covering the Terahertz frequency gap.

    PubMed

    Vicario, C; Monoszlai, B; Jazbinsek, M; Lee, S-H; Kwon, O-P; Hauri, C P

    2015-01-01

    In Terahertz (THz) science, one of the long-standing challenges has been the formation of spectrally dense, single-cycle pulses with tunable duration and spectrum across the frequency range of 0.1-15?THz (THz gap). This frequency band, lying between the electronically and optically accessible spectra hosts important molecular fingerprints and collective modes which cannot be fully controlled by present strong-field THz sources. We present a method that provides powerful single-cycle THz pulses in the THz gap with a stable absolute phase whose duration can be continuously selected between 68 fs and 1100 fs. The loss-free and chirp-free technique is based on optical rectification of a wavelength-tunable pump pulse in the organic emitter HMQ-TMS that allows for tuning of the spectral bandwidth from 1 to more than 7 octaves over the entire THz gap. The presented source tunability of the temporal carrier frequency and spectrum expands the scope of spectrally dense THz sources to time-resolved nonlinear THz spectroscopy in the entire THz gap. This opens new opportunities towards ultrafast coherent control over matter and light. PMID:26400005

  18. Intense, carrier frequency and bandwidth tunable quasi single-cycle pulses from an organic emitter covering the Terahertz frequency gap

    NASA Astrophysics Data System (ADS)

    Vicario, C.; Monoszlai, B.; Jazbinsek, M.; Lee, S.-H.; Kwon, O.-P.; Hauri, C. P.

    2015-09-01

    In Terahertz (THz) science, one of the long-standing challenges has been the formation of spectrally dense, single-cycle pulses with tunable duration and spectrum across the frequency range of 0.1-15?THz (THz gap). This frequency band, lying between the electronically and optically accessible spectra hosts important molecular fingerprints and collective modes which cannot be fully controlled by present strong-field THz sources. We present a method that provides powerful single-cycle THz pulses in the THz gap with a stable absolute phase whose duration can be continuously selected between 68 fs and 1100 fs. The loss-free and chirp-free technique is based on optical rectification of a wavelength-tunable pump pulse in the organic emitter HMQ-TMS that allows for tuning of the spectral bandwidth from 1 to more than 7 octaves over the entire THz gap. The presented source tunability of the temporal carrier frequency and spectrum expands the scope of spectrally dense THz sources to time-resolved nonlinear THz spectroscopy in the entire THz gap. This opens new opportunities towards ultrafast coherent control over matter and light.

  19. Screening mail for powders using terahertz technology

    NASA Astrophysics Data System (ADS)

    Kemp, Mike

    2011-11-01

    Following the 2001 Anthrax letter attacks in the USA, there has been a continuing interest in techniques that can detect or identify so-called 'white powder' concealed in envelopes. Electromagnetic waves (wavelengths 100-500 ?m) in the terahertz frequency range penetrate paper and have short enough wavelengths to provide good resolution images; some materials also have spectroscopic signatures in the terahertz region. We report on an experimental study into the use of terahertz imaging and spectroscopy for mail screening. Spectroscopic signatures of target powders were measured and, using a specially designed test rig, a number of imaging methods based on reflection, transmission and scattering were investigated. It was found that, contrary to some previous reports, bacterial spores do not appear to have any strong spectroscopic signatures which would enable them to be identified. Imaging techniques based on reflection imaging and scattering are ineffective in this application, due to the similarities in optical properties between powders of interest and paper. However, transmission imaging using time-of-flight of terahertz pulses was found to be a very simple and sensitive method of detecting small quantities (25 mg) of powder, even in quite thick envelopes. An initial feasibility study indicates that this method could be used as the basis of a practical mail screening system.

  20. Continuous Wave Terahertz Reflection Imaging of Human Colorectal Tissue

    E-print Network

    Massachusetts at Lowell, University of

    -ionizing, and nondestructive medical imaging modality for delineating colorectal cancer. Fresh excisions of normal colon tissue-polarized remittance form the samples was collected. Analysis of the images showed the importance of understanding the effects of formalin fixation while determining reflectance level of tissue response. The resulting co

  1. Diffuse reflection imaging at terahertz frequencies for security applications

    NASA Astrophysics Data System (ADS)

    Dean, P.; Khanna, S.; Chakraborty, S.; Lachab, M.; Davies, A. G.; Linfield, E. H.

    2007-10-01

    We report diffuse reflection imaging of concealed powdered samples in atmospheric air using a quantum cascade laser operating at 2.83 THz. The imaging system uses a helium-cooled silicon bolometer for mapping radiation diffusely reflected and scattered from samples, and a room-temperature pyroelectric sensor for simultaneously acquiring a specular image. A range of powders concealed within plastic packaging and standard FedEx envelopes was imaged with a resolution of better than 0.5 mm, and it was possible to detect powdered samples concealed within packaging from which there was a strong component of surface reflection. The feasibility of performing dual-wavelength diffuse reflection imaging for identification of illicit drugs and explosives is discussed.

  2. Imaging embryonic development with ultrashort pulse microscopy

    NASA Astrophysics Data System (ADS)

    Gibbs, Holly C.; Bai, Yuqiang; Lekven, Arne C.; Yeh, Alvin T.

    2014-05-01

    We report the application of ultrashort pulse microscopy (UPM) for integrated imaging of embryonic development at the tissue, cell, and molecular length scales. The UPM is a multimodal imaging platform that utilizes the broad-power spectrum and high-peak power of 10-fs pulses to render two-photon excited signals and the short coherence gate of such pulses to render optical coherence signals. We show that ultrashort pulses efficiently excite cellular autofluorescence in developing zebrafish embryos such that tissues are readily visualized and individual cells can be monitored, providing a potential method for label-free cell tracking. We also show the ability of ultrashort pulses, without tuning, to excite a broad spectrum of fluorescent protein variants for tracking genetically labeled cell lineages in live embryos, with no apparent damage to the embryos. Molecular information at the mRNA transcript level can also be obtained from embryos that have been stained to reveal the localization of the expression of a gene using NBT/BCIP, which we show can be detected with three-dimensional resolution using a combination of two-photon and optical coherence signals. From this demonstration, we conclude that UPM is an efficient and a powerful tool for elucidating the dynamic multiparameter and multiscale mechanisms of embryonic development.

  3. Photonic time-division multiplexing (OTDM) using ultrashort picosecond pulses in a terahertz optical asymmetric demultiplexer (TOAD)

    NASA Astrophysics Data System (ADS)

    Melo, A. M.; Lima, J. L. S.; de Oliveira, R. S.; Sombra, A. S. B.

    2002-05-01

    The performance of a terahertz optical asymmetric demultiplexer (TOAD) operating with an ordinary fiber and with a DDF and DIF (dispersion decreasing and increasing fiber) configurations, for three lengths of fiber ( ?=?/2,2? and 5?) and using soliton and quasi-soliton laser profiles for the control pulse, was studied. The numerical simulations show that the increase of the fiber length leads to the decrease of the power for the first and second demultiplexed pulses and leads to a broadening of these pulses, with the exception of the TOAD operating with the DDF fiber. For the TOAD operating with a basic telecommunication fiber one see that the increase of the power of the control power lead to a strong compression of the demultiplexed pulse. Operating the TOAD using a DDF fiber one can say that the control power necessary to demultiplex the signal pulse is always lower compared with the TOAD with the normal telecommunication fiber. This is a strong suggestion that the use of the DDF fiber will allow the use of less control power. Our simulations considering the TOAD operating with a DDF and DIF with a linear profile conclude that it is possible to operate the TOAD with lower control power using a DDF fiber setup. For this device the demultiplexed pulses will present a compression on time duration and will be insensitive to the time profile of the control pulse. We also did simulations with the TOAD operating with DDF in four different profiles: hyperbolic, exponential, linear and Gaussian. For all the profiles the increase of the length of the fiber also decreases the pump power of the three first peaks for the soliton and quasi-soliton regimes. The first critical power is always lower for the quasi-soliton regime compared to the soliton regime for all profiles under consideration and all lengths of the TOAD under consideration. It was also observed that for all the profiles and lengths of fiber one has pulse compression for the switched pulse. For the ?=2? fiber with the hyperbolic profile, both soliton and quasi-soliton profiles present the lowest critical power and the highest compression factors for all the considered profiles.

  4. Speckle in active millimeter-wave and terahertz imaging and spectroscopy

    NASA Astrophysics Data System (ADS)

    Sheen, David M.; McMakin, Douglas L.; Hall, Thomas E.

    2007-04-01

    Wideband millimeter-wave imaging techniques and systems have been developed at Pacific Northwest National Laboratory (PNNL) for concealed weapon detection and other applications. These techniques evolved from singlefrequency millimeter-wave holographic imaging methods to wideband three-dimensional planar and cylindrical techniques and systems. The single-frequency holographic method was derived from optical and ultrasonic holography techniques. Speckle is highly significant in this case, and is caused by constructive and destructive interference from multiple scattering locations or depths within a single resolution cell. The wideband three-dimensional techniques developed at PNNL significantly reduce the speckle effect through the use of high depth resolution obtained from the wide bandwidth of the illumination. For these techniques, speckle can still be significant in some cases and affect image quality. In this paper, we explore the situations in which speckle occurs and its relationship to lateral and depth resolution. This will be accomplished through numerical simulation and demonstrated in actual imaging results. Speckle may also play a significant role in altering reflection spectra in wideband terahertz spectra. Reflection from rough surfaces will generate speckle, which will result in significant variation in the reflection spectrum as measured over very wide bandwidths. This effect may make if difficult to interpret spectral absorption features from general reflectance data. In this paper, physical optics numerical simulation techniques will be used to model the reflection from arbitrary random surfaces and explore the effect of the surface on the reflection spectra and reconstructed image. Laboratory imaging and numerical modeling results in the millimeter-wave through the terahertz frequency ranges are presented.

  5. Speckle in Active Millimeter-Wave and Terahertz Imaging and Spectroscopy

    SciTech Connect

    Sheen, David M.; McMakin, Douglas L.; Hall, Thomas E.

    2007-04-01

    Wideband millimeter-wave imaging techniques and systems have been developed at PNNL for concealed weapon detection and other applications. These techniques evolved from single-frequency millimeter-wave holographic imaging methods to wideband three-dimensional planar and cylindrical techniques and systems. The single-frequency holographic method was derived from optical and ultrasonic holography techniques. Speckle is highly significant in this case, and is caused by constructive and destructive interference from multiple scattering locations or depths within a single resolution cell. The wideband three-dimensional techniques developed at PNNL significantly reduce the speckle effect through the use of high depth resolution obtained from the wide bandwidth of the illumination. For these techniques, speckle can still be significant in some cases and affect image quality. In this paper, we explore the situations in which speckle occurs and it's relationship to lateral and depth resolution. This will be accomplished through numerical simulation and demonstrated in actual imaging results. Speckle may also play a significant role in altering reflection spectra in wideband terahertz spectra. Reflection from rough surfaces will generate speckle, which will result in significant variation in the reflection spectrum as measured over very wide bandwidths. This effect may make if difficult to interpret spectral absorption features from general reflectance data. In this paper, physical optics numerical simulation techniques will be used to model the reflection from arbitrary random surfaces and explore the effect of the surface on the reflection spectra and reconstructed image. Laboratory imaging and numerical modeling results in the millimeter-wave through the terahertz frequency ranges are presented.

  6. Ionic contrast terahertz near-field imaging of axonal water fluxes.

    PubMed

    Masson, Jean-Baptiste; Sauviat, Martin-Pierre; Martin, Jean-Louis; Gallot, Guilhem

    2006-03-28

    We demonstrate the direct and noninvasive imaging of functional neurons by ionic contrast terahertz near-field microscopy. This technique provides quantitative measurements of ionic concentrations in both the intracellular and extracellular compartments and opens the way to direct noninvasive imaging of neurons during electrical, toxin, or thermal stresses. Furthermore, neuronal activity results from both a precise control of transient variations in ionic conductances and a much less studied water exchange between the extracellular matrix and the intraaxonal compartment. The developed ionic contrast terahertz microscopy technique associated with a full three-dimensional simulation of the axon-aperture near-field system allows a precise measurement of the axon geometry and therefore the direct visualization of neuron swelling induced by temperature change or neurotoxin poisoning. Water influx as small as 20 fl per mum of axonal length can be measured. This technique should then provide grounds for the development of advanced functional neuroimaging methods based on diffusion anisotropy of water molecules. PMID:16547134

  7. Ionic contrast terahertz near-field imaging of axonal water fluxes

    PubMed Central

    Masson, Jean-Baptiste; Sauviat, Martin-Pierre; Martin, Jean-Louis; Gallot, Guilhem

    2006-01-01

    We demonstrate the direct and noninvasive imaging of functional neurons by ionic contrast terahertz near-field microscopy. This technique provides quantitative measurements of ionic concentrations in both the intracellular and extracellular compartments and opens the way to direct noninvasive imaging of neurons during electrical, toxin, or thermal stresses. Furthermore, neuronal activity results from both a precise control of transient variations in ionic conductances and a much less studied water exchange between the extracellular matrix and the intraaxonal compartment. The developed ionic contrast terahertz microscopy technique associated with a full three-dimensional simulation of the axon-aperture near-field system allows a precise measurement of the axon geometry and therefore the direct visualization of neuron swelling induced by temperature change or neurotoxin poisoning. Water influx as small as 20 fl per ?m of axonal length can be measured. This technique should then provide grounds for the development of advanced functional neuroimaging methods based on diffusion anisotropy of water molecules. PMID:16547134

  8. 21 CFR 892.1560 - Ultrasonic pulsed echo imaging system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultrasonic pulsed echo imaging system. 892.1560... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1560 Ultrasonic pulsed echo imaging system. (a) Identification. An ultrasonic pulsed echo imaging system is a device intended to project...

  9. 21 CFR 892.1560 - Ultrasonic pulsed echo imaging system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ultrasonic pulsed echo imaging system. 892.1560... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1560 Ultrasonic pulsed echo imaging system. (a) Identification. An ultrasonic pulsed echo imaging system is a device intended to project...

  10. 21 CFR 892.1550 - Ultrasonic pulsed doppler imaging system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ultrasonic pulsed doppler imaging system. 892.1550... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1550 Ultrasonic pulsed doppler imaging system. (a) Identification. An ultrasonic pulsed doppler imaging system is a device that combines...

  11. 21 CFR 892.1560 - Ultrasonic pulsed echo imaging system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ultrasonic pulsed echo imaging system. 892.1560... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1560 Ultrasonic pulsed echo imaging system. (a) Identification. An ultrasonic pulsed echo imaging system is a device intended to project...

  12. 21 CFR 892.1550 - Ultrasonic pulsed doppler imaging system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ultrasonic pulsed doppler imaging system. 892.1550... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1550 Ultrasonic pulsed doppler imaging system. (a) Identification. An ultrasonic pulsed doppler imaging system is a device that combines...

  13. 21 CFR 892.1560 - Ultrasonic pulsed echo imaging system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ultrasonic pulsed echo imaging system. 892.1560... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1560 Ultrasonic pulsed echo imaging system. (a) Identification. An ultrasonic pulsed echo imaging system is a device intended to project...

  14. 21 CFR 892.1550 - Ultrasonic pulsed doppler imaging system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ultrasonic pulsed doppler imaging system. 892.1550... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1550 Ultrasonic pulsed doppler imaging system. (a) Identification. An ultrasonic pulsed doppler imaging system is a device that combines...

  15. Emission of terahertz radiation from SiC Jared H. Strait,a

    E-print Network

    Afshari, Ehsan

    with near-IR femtosecond optical pulses. Broadband terahertz generation and detection in semiconductors with femtosecond optical pulses is a powerful and well-studied mechanism with applications in spectroscopy, imaging pump lasers operating around 800 nm. Free-carrier generation through two-photon or defect absorption

  16. FDTD-based computed terahertz wave propagation in multilayer medium structures

    NASA Astrophysics Data System (ADS)

    Tu, Wan-li; Zhong, Shun-cong; Yao, Hai-zi; Shen, Yao-chun

    2013-08-01

    The terahertz region of the electromagnetic spectrum spans the frequency range of 0.1THz~10THz, which means it sandwiches between the mid-infrared (IR) and the millimeter/ microwave. With the development and commercialization of terahertz pulsed spectroscopy (TPS) and terahertz pulsed imaging (TPI) systems, terahertz technologies have been widely used in the sensing and imaging fields. It allows high quality cross-sectional images from within scattering media to be obtained nondestructively. Characterizing the interaction of terahertz radiation with multilayer medium structures is critical for the development of nondestructive testing technology. Currently, there was much experimental investigation of using TPI for the characterization of terahertz radiation in materials (e.g., pharmaceutical tablet coatings), but there were few theoretical researches on propagation of terahertz radiation in multilayer medium structures. Finite Difference Time Domain (FDTD) algorithm is a proven method for electromagnetic scattering theory, which analyzes continuous electromagnetic problems by employing finite difference and obtains electromagnetic field value at the sampling point to approach the actual continuous solutions. In the present work, we investigated the propagation of terahertz radiation in multilayer medium structures based on FDTD method. The model of multilayer medium structures under the THz frequency plane wave incidence was established, and the reflected radiation properties were recorded and analyzed. The terahertz radiation used was broad-band in the frequency up to 2 THz. A batch of single layer coated pharmaceutical tablets, whose coating thickness in the range of 40~100?m, was computed by FDTD method. We found that the simulation results on pharmaceutical tablet coatings were in good agreement with the experimental results obtained using a commercial system (TPI imaga 2000, TeraView, Cambridge, UK) , demonstrating its usefulness in simulating and analyzing terahertz responses from a multilayered sample.

  17. Terahertz holography for imaging amplitude and phase objects.

    PubMed

    Hack, Erwin; Zolliker, Peter

    2014-06-30

    A non-monochromatic THz Quantum Cascade Laser and an uncooled micro-bolometer array detector with VGA resolution are used in a beam-splitter free holographic set-up to measure amplitude and phase objects in transmission. Phase maps of the diffraction pattern are retrieved using the Fourier transform carrier fringe method; while a Fresnel-Kirchhoff back propagation algorithm is used to reconstruct the complex object image. A lateral resolution of 280 µm and a relative phase sensitivity of about 0.5 rad are estimated from reconstructed images of a metallic Siemens star and a polypropylene test structure, respectively. Simulations corroborate the experimental results. PMID:24977861

  18. Single nanowire photoconductive terahertz detectors.

    PubMed

    Peng, Kun; Parkinson, Patrick; Fu, Lan; Gao, Qiang; Jiang, Nian; Guo, Ya-Nan; Wang, Fan; Joyce, Hannah J; Boland, Jessica L; Tan, Hark Hoe; Jagadish, Chennupati; Johnston, Michael B

    2015-01-14

    Spectroscopy and imaging in the terahertz (THz) region of the electromagnetic spectrum has proven to provide important insights in fields as diverse as chemical analysis, materials characterization, security screening, and nondestructive testing. However, compact optoelectronics suited to the most powerful terahertz technique, time-domain spectroscopy, are lacking. Here, we implement single GaAs nanowires as microscopic coherent THz sensors and for the first time incorporated them into the pulsed time-domain technique. We also demonstrate the functionality of the single nanowire THz detector as a spectrometer by using it to measure the transmission spectrum of a 290 GHz low pass filter. Thus, nanowires are shown to be well suited for THz device applications and hold particular promise as near-field THz sensors. PMID:25490548

  19. The generation of high field terahertz radiation and its application in terahertz nonlinear spectroscopy

    E-print Network

    Yeh, Ka-Lo

    2009-01-01

    In this thesis research, I implemented a terahertz generation scheme that enables high-field near-single-cycle terahertz (THz) pulse generation via optical rectification in a LiNbO3 (LN) crystal. I also developed a method ...

  20. A cryogen-free HTS Josephson junction detector for terahertz imaging

    NASA Astrophysics Data System (ADS)

    Du, J.; Smart, K.; Li, L.; Leslie, K. E.; Hanham, S. M.; Wang, D. H. C.; Foley, C. P.; Ji, F.; Li, X. D.; Zeng, D. Z.

    2015-08-01

    A cryogen-free terahertz (THz) imaging system based on a high-temperature superconducting (HTS) Josephson junction detector is reported. The detector was made of a YBa2Cu3O7-x step-edge Josephson junction and integrated into an on-chip thin-film antenna. The HTS Josephson detector was cooled via a commercial mechanical cryocooler; an important step towards cryogen-free THz instrumentation, which is critical for industrial acceptance. In addition, it is shown that operating the detector in a cryocooler provides improved flexibility for optimizing the detector parameters and performance due to the ability to adjust the temperature compared to liquid nitrogen cooling methods. The dc and ac characteristics, the detector responsivity and the noise-equivalent power of the detector, and resulting image quality were studied as the function of operating temperatures.

  1. Continuous-wave coherent imaging with terahertz quantum cascade lasers using electro-optic harmonic sampling

    E-print Network

    Ravaro, Marco; Santarelli, Giorgio; Sirtori, Carlo; Li, Lianhe; Khanna, S P; Linfield, Edmund H; Barbieri, Stefano; 10.1063/1.4793424

    2013-01-01

    We demonstrate a coherent imaging system based on a terahertz (THz) frequency quantum cascade laser (QCL) phase-locked to a near-infrared fs-laser comb. The phase locking enables coherent electro-optic sampling of the continuous-wave radiation emitted by the QCL through the generation of a heterodyne beat-note signal. We use this beat-note signal to demonstrate raster scan coherent imaging using a QCL emitting at 2.5 THz. At this frequency the detection noise floor of our system is of 3 pW/Hz and the long-term phase stability is <3 degrees/h, limited by the mechanical stability of the apparatus.

  2. Investigating the Effects of Terahertz Radiation on Bacillus subtilis Jillian P. Giles1,2, Brittany J. Raitt3, Cecil S. Joseph1,2, Mark E. Hines3, Robert H. Giles1,2

    E-print Network

    Massachusetts at Lowell, University of

    the detection of concealed weapons, plastic explosives, chemicals, and dangerous biological agents [2, 3 and biological samples, and terahertz pulsed imaging is used to detect tooth enamel thickness and differentiate

  3. Thermal Effusivity Tomography from Pulsed Thermal Imaging

    Energy Science and Technology Software Center (ESTSC)

    2006-12-01

    The software program generates 3D volume distribution of thermal effusivity within a test material from one-sided pulsed thermal imaging data. Thsi is the first software capable of accurate, fast and automated thermal tomographic imaging of inhomogeneous materials to produce 3D images similar to those obtained from 3D X-ray CT (all previous thermal-imaging software can only produce 2D results). Because thermal effusivity is an intrisic material property that is related to material constituent, density, conductivity, etc.,more »quantitative imaging of effusivity allowed direct visualization of material's internal constituent/structure and damage distributions, thereby potentially leading to quantitative prediction of other material properties such as strength. I can be therefre be used for 3D imaging of material structure in fundamental material studies, nondestructive characterization of defects/flaws in structural engineering components, health monitoring of material damage and degradation during service, and medical imaging and diagnostics. This technology is one-sided, non contact and sensitive to material's thermal property and discontinuity. One major advantage of this tomographic technology over x-ray CT and ultrasounds is its natural efficiency for 3D imaging of the volume under a large surface area. This software is implemented with a method for thermal computed tomography of thermal effusivity from one-sided pulsed thermal imaging (or thermography) data. The method is based on several solutions of the governing heat transfer equation under pulsed thermography test condition. In particular, it consists of three components. 1) It utilized the thermal effusivity as the imaging parameter to construct the 3D image. 2) It established a relationship between the space (depth) and the time, because thermography data are in the time domain. 3) It incorporated a deconvolution algorithm to solve the depth porfile of the material thermal effusivity from the measured (temporal) surface temperature data. The predicted effusivity is a direct function of depth, not an average or convolved parameter, so it is an accurate (and more sensitive) representation of local property along depth.« less

  4. Transmission mode terahertz computed tomography

    DOEpatents

    Ferguson, Bradley Stuart; Wang, Shaohong; Zhang, Xi-Cheng

    2006-10-10

    A method of obtaining a series of images of a three-dimensional object by transmitting pulsed terahertz (THz) radiation through the entire object from a plurality of angles, optically detecting changes in the transmitted THz radiation using pulsed laser radiation, and constructing a plurality of imaged slices of the three-dimensional object using the detected changes in the transmitted THz radiation. The THz radiation is transmitted through the object as a scanning spot. The object is placed within the Rayleigh range of the focused THz beam and a focusing system is used to transfer the imaging plane from adjacent the object to a desired distance away from the object. A related system is also disclosed.

  5. Generation of longitudinally polarized terahertz pulses with field amplitudes exceeding 2?kV/cm

    SciTech Connect

    Cliffe, M. J. Rodak, A.; Graham, D. M.; Jamison, S. P.

    2014-11-10

    We demonstrate the generation of near-single cycle longitudinally polarized terahertz radiation using a large-area radially biased photoconductive antenna with a longitudinal field amplitude in excess of 2?kV/cm. The 76?mm diameter antenna was photo-excited by a 0.5?mJ amplified near-infrared femtosecond laser system and biased with a voltage of up to 100?kV applied over concentric electrodes. Amplitudes for both the transverse and longitudinal field components of the source were measured using a calibrated electro-optic detection scheme. By tightly focusing the radiation emitted from the photoconductive antenna, we obtained a maximum longitudinal field amplitude of 2.22?kV/cm with an applied bias field of 38.5?kV/cm.

  6. Terahertz wavefront assessment based on 2D electro-optic imaging

    NASA Astrophysics Data System (ADS)

    Cahyadi, Harsono; Ichikawa, Ryuji; Degert, Jérôme; Freysz, Eric; Yasui, Takeshi; Abraham, Emmanuel

    2015-03-01

    Complete characterization of terahertz (THz) radiation becomes an interesting yet challenging study for many years. In visible optical region, the wavefront assessment has been proved as a powerful tool for the beam profiling and characterization, which consequently requires 2-dimension (2D) single-shot acquisition of the beam cross-section to provide the spatial profile in time- and frequency-domain. In THz region, the main problem is the lack of effective THz cameras to satisfy this need. In this communication, we propose a simple setup based on free-space collinear 2D electrooptic sampling in a ZnTe crystal for the characterization of THz wavefronts. In principle, we map the optically converted, time-resolved data of the THz pulse by changing the time delay between the probe pulse and the generated THz pulse. The temporal waveforms from different lens-ZnTe distances can clearly indicate the evolution of THz beam as it is converged, focused, or diverged. From the Fourier transform of the temporal waveforms, we can obtain the spectral profile of a broadband THz wave, which in this case within the 0.1-2 THz range. The spectral profile also provides the frequency dependency of the THz pulse amplitude. The comparison between experimental and theoretical results at certain frequencies (here we choose 0.285 and 1.035 THz) is in a good agreement suggesting that our system is capable of THz wavefront characterization. Furthermore, the implementation of Hartmann/Shack-Hartmann sensor principle enables the reconstruction of THz wavefront. We demonstrate the reconstruction of THz wavefronts which are changed from planar wave to spherical one due to the insertion of convex THz lens in the THz beam path. We apply and compare two different reconstruction methods: linear integration and Zernike polynomial. Roughly we conclude that the Zernike method provide smoother wavefront shape that can be elaborated later into quantitative-qualitative analysis about the wavefront distortion.

  7. Real-time, continuous-wave terahertz imaging by use of a microbolometer focal-plane array

    NASA Astrophysics Data System (ADS)

    Lee, Alan Wei Min; Hu, Qing

    2005-10-01

    Real-time, continuous-wave terahertz imaging is demonstrated with a 10 mW, 2.52 THz (118.8 µm) far-infrared gas laser and a 160×120 element microbolometer camera. The microbolometer camera is designed for wavelengths of 7.5-14 µm but retains sensitivity at terahertz (THz) frequencies. The setup has no moving parts, and transmission-mode THz images can be obtained at the video rate of 60 frames/s. The peak signal-to-noise ratio is estimated to be 13 dB for a single frame of video, acquired in 16 ms. With this setup, THz imaging through a FedEx envelope is demonstrated, showing the feasibility of real-time mail screening.

  8. Real-time, continuous-wave terahertz imaging by use of a microbolometer focal-plane array.

    PubMed

    Lee, Alan Wei Min; Hu, Qing

    2005-10-01

    Real-time, continuous-wave terahertz imaging is demonstrated with a 10 mW, 2.52 THz (118.8 microm) far-infrared gas laser and a 160 x 120 element microbolometer camera. The microbolometer camera is designed for wavelengths of 7.5-14 microm but retains sensitivity at terahertz (THz) frequencies. The setup has no moving parts, and transmission-mode THz images can be obtained at the video rate of 60 frames/s. The peak signal-to-noise ratio is estimated to be 13 dB for a single frame of video, acquired in 16 ms. With this setup, THz imaging through a FedEx envelope is demonstrated, showing the feasibility of real-time mail screening. PMID:16208900

  9. Single-shot spatiotemporal measurements of high-field terahertz pulses

    E-print Network

    Geddes, Cameron Guy Robinson

    , development of single-shot techniques is required. The high-power Ti:Al2O3 laser of the Lasers, Op- tics-wakefield- accelerated electron bunches, are studied. The near-single-cycle THz pulses are measured with two single- shot of the THz pulse as the pump beam in pump­probe experiments.1 While conventional laser- based sources (e

  10. Femtoelectron-Based Terahertz Imaging of Hydration State in a Proton Exchange Membrane Fuel Cell

    NASA Astrophysics Data System (ADS)

    Buaphad, P.; Thamboon, P.; Kangrang, N.; Rhodes, M. W.; Thongbai, C.

    2015-08-01

    Imbalanced water management in a proton exchange membrane (PEM) fuel cell significantly reduces the cell performance and durability. Visualization of water distribution and transport can provide greater comprehension toward optimization of the PEM fuel cell. In this work, we are interested in water flooding issues that occurred in flow channels on cathode side of the PEM fuel cell. The sample cell was fabricated with addition of a transparent acrylic window allowing light access and observed the process of flooding formation (in situ) via a CCD camera. We then explore potential use of terahertz (THz) imaging, consisting of femtoelectron-based THz source and off-angle reflective-mode imaging, to identify water presence in the sample cell. We present simulations of two hydration states (water and nonwater area), which are in agreement with the THz image results. A line-scan plot is utilized for quantitative analysis and for defining spatial resolution of the image. Implementing metal mesh filtering can improve spatial resolution of our THz imaging system.

  11. Terahertz NDE for Metallic Surface Roughness Evaluation

    NASA Technical Reports Server (NTRS)

    Madaras, Eric I.; Anastasi, Robert F.

    2006-01-01

    Metallic surface roughness in a nominally smooth surface is a potential indication of material degradation or damage. When the surface is coated or covered with an opaque dielectric material, such as paint or insulation, then inspecting for surface changes becomes almost impossible. Terahertz NDE is a method capable of penetrating the coating and inspecting the metallic surface. The terahertz frequency regime is between 100 GHz and 10 THz and has a free space wavelength of 300 micrometers at 1 THz. Pulsed terahertz radiation, can be generated and detected using optical excitation of biased semiconductors with femtosecond laser pulses. The resulting time domain signal is 320 picoseconds in duration. In this application, samples are inspected with a commercial terahertz NDE system that scans the sample and generates a set of time-domain signals that are a function of the backscatter from the metallic surface. Post processing is then performed in the time and frequency domains to generate C-scan type images that show scattering effects due to surface non-uniformity.

  12. Image reconstruction from Pulsed Fast Neutron Analysis

    SciTech Connect

    Bendahan, Joseph; Feinstein, Leon; Keeley, Doug; Loveman, Rob

    1999-06-10

    Pulsed Fast Neutron Analysis (PFNA) has been demonstrated to detect drugs and explosives in trucks and large cargo containers. PFNA uses a collimated beam of nanosecond-pulsed fast neutrons that interact with the cargo contents to produce gamma rays characteristic to their elemental composition. By timing the arrival of the emitted radiation to an array of gamma-ray detectors a three-dimensional elemental density map or image of the cargo is created. The process to determine the elemental densities is complex and requires a number of steps. The first step consists of extracting from the characteristic gamma-ray spectra the counts associated with the elements of interest. Other steps are needed to correct for physical quantities such as gamma-ray production cross sections and angular distributions. The image processing includes also phenomenological corrections that take into account the neutron attenuation through the cargo, and the attenuation of the gamma rays from the point they were generated to the gamma-ray detectors. Additional processing is required to map the elemental densities from the data acquisition system of coordinates to a rectilinear system. This paper describes the image processing used to compute the elemental densities from the counts observed in the gamma-ray detectors.

  13. Standoff Detection of Hidden Explosives and Cold and Fire Arms by Terahertz Time-Domain Spectroscopy and Active Spectral Imaging (Review)

    NASA Astrophysics Data System (ADS)

    Skvortsov, L. A.

    2014-11-01

    Terahertz time-domain spectroscopy and standoff spectral imaging for detection of explosives and cold and fire arms hidden, for example, under clothing, were reviewed. Special attention was paid to different schemes for practical implementation of these methods. Progress in this direction and existing problems and the prospects for their solution were discussed. Issues related to sources and receivers of terahertz radiation were briefly discussed. It was noted that interest in quantum-cascade lasers as compact sources of terahertz radiation and the potential of using them at room temperature were increasing.

  14. High-contrast coherent terahertz imaging of porcine tissue via swept-frequency feedback interferometry.

    PubMed

    Lim, Yah Leng; Taimre, Thomas; Bertling, Karl; Dean, Paul; Indjin, Dragan; Valavanis, Alexander; Khanna, Suraj P; Lachab, Mohammad; Schaider, Helmut; Prow, Tarl W; Peter Soyer, H; Wilson, Stephen J; Linfield, Edmund H; Giles Davies, A; Raki?, Aleksandar D

    2014-11-01

    There is considerable interest in the interrogation of biological tissue at terahertz (THz) frequencies, largely due to the contrast in the optical properties of different biological tissues which occur in this electro-magnetic radiation band. Of particular interest are THz biomedical images, which have the potential to highlight different information than those acquired in other frequency bands, thereby providing an augmented picture of biological structures. In this work, we demonstrate the feasibility of an interferometric biological imaging technique using a THz quantum cascade laser (QCL) operating at 2.59 THz to perform coherent imaging of porcine tissue samples. We show the potential of this new THz biomedical imaging technique for in vivo studies, by virtue of its reflection geometry and useful tissue penetration depth enabled by the large THz powers emitted by the quantum cascade laser used in this work. The observed clustering of interferometric tissue signatures opens a pathway towards automatic techniques for the discrimination of healthy tissue types for the study of normal physiology and possible therapeutic approaches. PMID:25426324

  15. High-speed terahertz reflection three-dimensional imaging using beam steering.

    PubMed

    Yee, Dae-Su; Jin, Kyong Hwan; Yahng, Ji Sang; Yang, Ho-Soon; Kim, Chi Yup; Ye, Jong Chul

    2015-02-23

    High-speed terahertz (THz) reflection three-dimensional (3D) imaging is demonstrated using electronically-controlled optical sampling (ECOPS) and beam steering. ECOPS measurement is used for scanning an axial range of 7.8 mm in free space at 1 kHz scan rate while a transverse range of 100 × 100 mm(2) is scanned using beam steering instead of moving an imaging target. Telecentric f-? lenses with axial and non-axial symmetry have been developed for beam steering. It is experimentally demonstrated that the non-axially symmetric lens has better characteristics than the axially symmetric lens. The total scan time depends on the number of points in a transverse range. For example, it takes 40 s for 200 × 200 points and 10 s for 100 × 100 points. To demonstrate the application of the imaging technique to nondestructive testing, THz 3D tomographic images of a glass fiber reinforced polymer sample with artificial internal defects have been acquired using the lenses for comparison. PMID:25836537

  16. Improvements in Magnetic Resonance Imaging Excitation Pulse Design

    E-print Network

    Goyal, Vivek K

    Improvements in Magnetic Resonance Imaging Excitation Pulse Design by Adam Charles Zelinski of Doctor of Philosophy Abstract This thesis focuses on the design of magnetic resonance imaging (MRI) radio Resonance Imaging Excitation Pulse Design by Adam Charles Zelinski Submitted to the Department of Electrical

  17. Nonresonant coherent control: Intersubband excitations manipulated by a nonresonant terahertz pulse

    NASA Astrophysics Data System (ADS)

    Folpini, Giulia; Morrill, Drew; Somma, Carmine; Reimann, Klaus; Woerner, Michael; Elsaesser, Thomas; Biermann, Klaus

    2015-08-01

    We present an approach for controlling quantum coherences in condensed matter by interaction with a nonresonant optical control field. Coherent intersubband (IS) excitations of electrons in GaAs/AlGaAs quantum wells are manipulated by a strong nonresonant terahertz (THz) field as demonstrated by phase-resolved two-color two-dimensional spectroscopy. In the linear regime of IS response, we observe a THz-induced enhancement of the midinfrared (MIR) IS absorption and a dispersive perturbed free induction decay caused by a THz-induced blueshift of the IS polarization. In the regime of IS Rabi oscillations, the THz field causes pronounced phase shifts of the coherently emitted MIR field, while the IS Rabi frequency remains unaffected. Such behavior is accounted for by a full solution of the Maxwell-Bloch equations, treating the THz and MIR fields without approximations. Our control scheme paves the way for THz control of IS emitters and holds potential for an extension to other systems.

  18. Terahertz spectroscopy and imaging for cultural heritage management: state of art and perspectives

    NASA Astrophysics Data System (ADS)

    Catapano, Ilaria; Soldovieri, Francesco

    2014-05-01

    Non-invasive diagnostic tools able to provide information on the materials and preservation state of artworks are crucial to help conservators, archaeologists and anthropologists to plan and carry out their tasks properly. In this frame, technological solutions exploiting Terahertz (THz) radiation, i.e., working at frequencies ranging from 0.1 to 10 THz, are currently deserving huge attention as complementary techniques to classical analysis methodologies based on electromagnetic radiations from X-rays to mid infrared [1]. The main advantage offered by THz spectroscopy and imaging systems is referred to their capability of providing information useful to determine the construction modality, the history life and the conservation state of artworks as well as to identify previous restoration actions [1,2]. In particular, unlike mid- and near-infrared spectroscopy, which provides fingerprint absorption spectra depending on the intramolecular behavior, THz spectroscopy is related to the structure of the molecules of the investigated object. Hence, it can discriminate, for instance, the different materials mixed in a paint [1,2]. Moreover, THz radiation is able to penetrate several materials which are opaque to both visible and infrared materials, such as varnish, paint, plaster, paper, wood, plastic, and so on. Accordingly, it is useful to detect hidden objects and characterize the inner structure of the artwork under test even in the direction of the depth, while avoiding core drillings. In this frame, THz systems allow us to discriminate different layers of materials present in artworks like paints, to obtain images providing information on the construction technique as well as to discover risk factors affecting the preservation state, such as non-visible cracks, hidden molds and air gaps between the paint layer and underlying structure. Furthermore, adopting a no-ionizing radiation, THz systems offer the not trivial benefit of negligible long term risks to the molecular stability of the exposed objects and humans. Recently, the interest on THz technology is also growing up thanks to the development of flexible and compact commercial systems having source and detector probes coupled by means of optical fiber cables and that do not require complex optical alignments. These features allow us to reconfigure the measurement configuration easily; thus transmission, normal reflection and oblique reflection data can be collected according to the constrains and objective of the survey to be performed. Moreover, they open the way to on field applications. An example of last generation THz systems is the Fiber-Coupled Terahertz Time Domain System (FICO) marketed by Z-Omega and available at the Institute of Electromagnetic Sensing of the Environment. Such a system is designed to perform both transmission and reflection spectroscopy and imaging measurements in the range from 60GHz to 3THz; with a waveform acquisition speed up to 500Hz. A review of the literature assessing potentialities and open challenges of THz spectroscopy and imaging in the frame of cultural heritage preservation will be provided at the conferences, with a specific focus on the diagnostic capabilities of last generation systems. REFERENCES [1] K. Fukunaga, I. Hosako, Innovative non-invasive analysis techniques for cultural heritage using terahertz technology, C. R. Physique, vol. 11, pp.519-526, 2010. [2] G.Fillippidis, M. Massaouti, A. Selimis, E.J. Gualda, J.M. Manceau, S. Tzortzakis, Nonlinear imaging and THz diagnostic tools in the service of Cultural Heritage, Appl. Phys. A, vol.106, pp.257-263, 2012.

  19. Theoretical analysis of conditions for observation of plasma oscillations in semiconductors from pulsed terahertz emission

    SciTech Connect

    Reklaitis, Antanas

    2014-08-28

    Oscillations of electron-hole plasma generated by femtosecond optical pulse in freestanding semiconductor are studied using hydrodynamic model and Monte Carlo simulations. The conditions required for the observation of coherent plasma oscillations in THz emission from semiconductor are determined. It is shown that several conditions have to be fulfilled in order to observe coherent plasma oscillations. First, the intensity of the optical pulse must exceed some threshold value. Second, the optical absorption depth must exceed the thickness of the built-in electric field region. Third, the generation of electron-hole pairs with uniform illumination is required, i.e., the laser beam with the flattop intensity profile has to be used. It is found that the duration of the optical pulse does not play a vital role in the development of plasma oscillations.

  20. Computed tomography image using sub-terahertz waves generated from a high-Tc superconducting intrinsic Josephson junction oscillator

    NASA Astrophysics Data System (ADS)

    Kashiwagi, T.; Nakade, K.; Saiwai, Y.; Minami, H.; Kitamura, T.; Watanabe, C.; Ishida, K.; Sekimoto, S.; Asanuma, K.; Yasui, T.; Shibano, Y.; Tsujimoto, M.; Yamamoto, T.; Markovi?, B.; Mirkovi?, J.; Klemm, R. A.; Kadowaki, K.

    2014-02-01

    A computed tomography (CT) imaging system using monochromatic sub-terahertz coherent electromagnetic waves generated from a device constructed from the intrinsic Josephson junctions in a single crystalline mesa structure of the high-Tc superconductor Bi2Sr2CaCu2O8+? was developed and tested on three samples: Standing metallic rods supported by styrofoam, a dried plant (heart pea) containing seeds, and a plastic doll inside an egg shell. The images obtained strongly suggest that this CT imaging system may be useful for a variety of practical applications.

  1. Imaging with a 90 frames/s microbolometer focal plane array and high-power terahertz free electron laser

    SciTech Connect

    Dem'yanenko, M. A.; Esaev, D. G.; Knyazev, B. A.; Vinokurov, N. A.; Kulipanov, G. N.

    2008-03-31

    An uncooled microbolometer focal plane array (FPA) has been developed and used for imaging of objects illuminated by monochromatic coherent radiation of a free electron laser tunable in the range of 1.25-2.5 THz. A sensitivity threshold of 1.3x10{sup -3} W/cm{sup 2} was obtained for the FPA with a homemade absolute interferometric power meter. Videos up to 90 frames/s were recorded in both transmission and reflection/scattering modes. When objects were illuminated by laser radiation scattered by a rough metal surface, speckled images were observed. Good quality terahertz images were achieved through the fast rotation of the scatterer.

  2. Paul Sellin, Radiation Imaging Group Digital pulse shape discrimination applied

    E-print Network

    Sellin, Paul

    Paul Sellin, Radiation Imaging Group Digital pulse shape discrimination applied to capture Background to the project: Y Pulse shape discrimination (PSD) in liquid scintillators Y Digital PSD Jastaniah and PJ Sellin, "Digital pulse-shape algorithms for scintillation-based neutron detectors", IEEE

  3. Operation of Terahertz Quantum-cascade Lasers at 164 K in Pulsed Mode and at 117 K in Continuous-wave Mode

    NASA Technical Reports Server (NTRS)

    Williams, Benjamin S.; Kumar, Sushil; Hu, Qing; Reno, John L.

    2005-01-01

    We report the demonstration of a terahertz quantum-cascade laser that operates up to 164 K in pulsed mode and 117 K in continuous-wave mod e at approximately 3.0 THz. The active region was based on a resonant -phonon depopulation scheme and a metal-metal waveguide was used for modal confinement. Copper to copper thermocompression wafer bonding w as used to fabricate the waveguide, which displayed improved thermal properties compared to a previous indium-gold bonding method.

  4. Pulsed-Source Interferometry in Acoustic Imaging

    NASA Technical Reports Server (NTRS)

    Shcheglov, Kirill; Gutierrez, Roman; Tang, Tony K.

    2003-01-01

    A combination of pulsed-source interferometry and acoustic diffraction has been proposed for use in imaging subsurface microscopic defects and other features in such diverse objects as integrated-circuit chips, specimens of materials, and mechanical parts. A specimen to be inspected by this technique would be mounted with its bottom side in contact with an acoustic transducer driven by a continuous-wave acoustic signal at a suitable frequency, which could be as low as a megahertz or as high as a few hundred gigahertz. The top side of the specimen would be coupled to an object that would have a flat (when not vibrating) top surface and that would serve as the acoustical analog of an optical medium (in effect, an acoustical "optic").

  5. Qualitative and quantitative analysis of calcium-based microfillers using terahertz spectroscopy and imaging.

    PubMed

    Abina, Andreja; Puc, Uroš; Jegli?, Anton; Prah, Jana; Venckevi?ius, Rimvydas; Kašalynas, Irmantas; Valušis, Gintaras; Zidanšek, Aleksander

    2015-10-01

    In different industrial applications, several strictly defined parameters of calcium-based microfillers such as average particle size, particle size distribution, morphology, specific surface area, polymorphism and chemical purity, play a key role in the determination of its usefulness and effectiveness. Therefore, an analytical tool is required for rapid and non-destructive characterization of calcium-based microfillers during the synthesis process or before its use in a further manufacturing process. Since spectroscopic techniques are preferred over microscopy and thermogravimetry, particularly due to its non-destructive nature and short analysis time, we applied terahertz (THz) spectroscopy to analyse calcite microfillers concentration in polymer matrix, its granulation and chemical treatment. Based on the analysis of peak absorbance amplitude, peak frequency position, and the appearance of additional spectral features, quantitative and qualitative analysis was successfully achieved. In addition, THz imaging was also applied for both quantitative and qualitative analysis of calcium-based microfillers. By using spatial distribution map, the inhomogeneity in concentration of calcium carbonate in polymer matrix was characterized. Moreover, by THz spectroscopy and imaging different calcium compounds were detected in binary mixtures. Finally, we demonstrated that the applied spectroscopic technique offers valuable results and can be, in combination with other spectroscopic and microscopic techniques, converted to a powerful rapid analytical tool. PMID:26078145

  6. Terahertz real-time imaging uncooled array based on antenna- and cavity-coupled bolometers.

    PubMed

    Simoens, François; Meilhan, Jérôme

    2014-03-28

    The development of terahertz (THz) applications is slowed down by the availability of affordable, easy-to-use and highly sensitive detectors. CEA-Leti took up this challenge by tailoring the mature infrared (IR) bolometer technology for optimized THz sensing. The key feature of these detectors relies on the separation between electromagnetic absorption and the thermometer. For each pixel, specific structures of antennas and a resonant quarter-wavelength cavity couple efficiently the THz radiation on a broadband range, while a central silicon microbridge bolometer resistance is read out by a complementary metal oxide semiconductor circuit. 320×240 pixel arrays have been designed and manufactured: a better than 30?pW power direct detection threshold per pixel has been demonstrated in the 2-4?THz range. Such performance is expected on the whole THz range by proper tailoring of the antennas while keeping the technological stack largely unchanged. This paper gives an overview of the developed bolometer-based technology. First, it describes the technology and reports the latest performance characterizations. Then imaging demonstrations are presented, such as real-time reflectance imaging of a large surface of hidden objects and THz time-domain spectroscopy beam two-dimensional profiling. Finally, perspectives of camera integration for scientific and industrial applications are discussed. PMID:24567477

  7. Terahertz Real-Time Imaging Uncooled Arrays Based on Antenna-Coupled Bolometers or FET Developed at CEA-Leti

    NASA Astrophysics Data System (ADS)

    Simoens, François; Meilhan, Jérôme; Nicolas, Jean-Alain

    2015-10-01

    Sensitive and large-format terahertz focal plane arrays (FPAs) integrated in compact and hand-held cameras that deliver real-time terahertz (THz) imaging are required for many application fields, such as non-destructive testing (NDT), security, quality control of food, and agricultural products industry. Two technologies of uncooled THz arrays that are being studied at CEA-Leti, i.e., bolometer and complementary metal oxide semiconductor (CMOS) field effect transistors (FET), are able to meet these requirements. This paper reminds the followed technological approaches and focuses on the latest modeling and performance analysis. The capabilities of application of these arrays to NDT and security are then demonstrated with experimental tests. In particular, high technological maturity of the THz bolometer camera is illustrated with fast scanning of large field of view of opaque scenes achieved in a complete body scanner prototype.

  8. Coherent terahertz control of antiferromagnetic spin waves

    NASA Astrophysics Data System (ADS)

    Kampfrath, Tobias; Sell, Alexander; Klatt, Gregor; Pashkin, Alexej; Mährlein, Sebastian; Dekorsy, Thomas; Wolf, Martin; Fiebig, Manfred; Leitenstorfer, Alfred; Huber, Rupert

    2011-01-01

    Ultrafast charge and spin excitations in the elusive terahertz regime of the electromagnetic spectrum play a pivotal role in condensed matter. The electric field of free-space terahertz pulses has provided a direct gateway to manipulating the motion of charges on the femtosecond timescale. Here, we complement this process by showing that the magnetic component of intense terahertz transients enables ultrafast control of the spin degree of freedom. Single-cycle terahertz pulses switch on and off coherent spin waves in antiferromagnetic NiO at frequencies as high as 1 THz. An optical probe pulse with a duration of 8 fs follows the terahertz-induced magnetic dynamics directly in the time domain and verifies that the terahertz field addresses spins selectively by means of the Zeeman interaction. This concept provides a universal ultrafast means to control previously inaccessible magnetic excitations in the electronic ground state.

  9. Reconstruction of pulse noisy images via stochastic resonance

    PubMed Central

    Han, Jing; Liu, Hongjun; Sun, Qibing; Huang, Nan

    2015-01-01

    We investigate a practical technology for reconstructing nanosecond pulse noisy images via stochastic resonance, which is based on the modulation instability. A theoretical model of this method for optical pulse signal is built to effectively recover the pulse image. The nanosecond noise-hidden images grow at the expense of noise during the stochastic resonance process in a photorefractive medium. The properties of output images are mainly determined by the input signal-to-noise intensity ratio, the applied voltage across the medium, and the correlation length of noise background. A high cross-correlation gain is obtained by optimizing these parameters. This provides a potential method for detecting low-level or hidden pulse images in various imaging applications. PMID:26067911

  10. Research of room-temperature continuous-wave terahertz imaging array based on microbolometer

    NASA Astrophysics Data System (ADS)

    Su, Bo; Duan, Guoteng; Cui, Hai-lin; Zhang, Cun-lin

    2013-08-01

    We have designed a novel uncooled Terahertz (THz) imaging array based microbolometer. The Micro Electro Mechanical System (MEMS) technology is used to fabricate the imaging array which comprise bolometer layer, THz absorption layer, supporting layer (silicon nitride (SiNx)), resonant optical cavity and electrode. The vanadium oxide thin films is selected for the bolometer temperature sensing material because it has a high temperature coefficient of resistance (TCR) in the range 2%/K and 3%/K at room temperature and suitable square resistance 18.40k?/?, a small 1/f noise constant and can be integrated with signal read-out electronics in a cost efficient way. In order to provide a high absorption of the radiation in the bolometer membrane, a resonant optical cavity structure which has a reflection layer formed at the bottom of air gap is adopted for the targeted wavelength. The best air gap of the optical cavity structure is quarter of wavelength of interest, for example, 25?m for 3 THz radiation. The absorption mechanism is that the two reflected THz radiations coming from the absorption layer and reflection layer interfere destructively at THz absorption layer and free carriers in THz absorption layer absorb THz radiation, the absorbed THz radiation heats the imaging array so that the resistance values of bolometer change. The microbolometer need to be packaged in vacuum for best performance, so a cylindrical vacuum chamber which is sealed with polyethylene lamina for the THz radiation is fabricated. In order to maintain the vacuum performance of the chamber (conventional bolometers operate with vacuum levels <0.01mbar), the vacuum pump and molecular pump are adopted; furthermore the packaging technique of vacuum chamber is introduced in detail. Finally, because of its uncooled property of the microbolometer, it will have a low cost and be easy for fabrication of large array.

  11. A 1.35 mJ ammonia Fabry-Perot cavity terahertz pulsed laser with metallic capacitive-mesh input and output couplers

    NASA Astrophysics Data System (ADS)

    Qi, Chun-chao; Zuo, Du-luo; Lu, Yan-zhao; Miao, Liang; Yin, Jie; Cheng, Zu-hai

    2010-09-01

    An efficient ammonia Fabry-Perot (F-P) cavity terahertz (THz) laser has been studied experimentally in this article. The input and output couplers also served as sealed windows fabricated by depositing nickel capacitive metallic meshes on ZnSe and high-resistivity silicon substrates have been constructed as a F-P oscillator. Using the THz laser, the properties related to THz pulsed laser such as beam profile, delay, the minimum pump intensity, THz lasing threshold and THz atmospheric transmission have been investigated. Further, the factors such as pump intensity and gas pressure influencing the efficiency of THz laser have also been discussed. Finally, the highest output pulse energies of 1.35 mJ at 90 ?m operating at 1.09 kPa ammonia pressure pumped by a 402 mJ TEA CO 2 laser with 9R (16) line have been generated, and photon conversion efficiencies of 6.5% have been achieved.

  12. Nanowire-based field effect transistors for terahertz detection and imaging systems.

    PubMed

    Romeo, L; Coquillat, D; Pea, M; Ercolani, D; Beltram, F; Sorba, L; Knap, W; Tredicucci, A; Vitiello, M S

    2013-05-31

    The development of self-assembled nanostructure technologies has recently opened the way towards a wide class of semiconductor integrated devices, with progressively optimized performances and the potential for a widespread range of electronic and photonic applications. Here we report on the development of field effect transistors (FETs) based on semiconductor nanowires (NWs) as highly-sensitive room-temperature plasma-wave broadband terahertz (THz) detectors. The electromagnetic radiation at 0.3?THz is funneled onto a broadband bow-tie antenna, whose lobes are connected to the source and gate FET electrodes. The oscillating electric field experienced by the channel electrons, combined with the charge density modulation by the gate electrode, results in a source-drain signal rectification, which can be read as a DC signal output. We investigated the influence of Se-doping concentration of InAs NWs on the detection performances, reaching responsivity values higher than 100 V W?¹, with noise-equivalent-power of ?10?? W Hz(?½). Transmission imaging experiments at 0.3 THz show the good reliability and sensitivity of the devices in a real practical application. PMID:23618953

  13. Readout system for the terahertz superconducting imaging array (TeSIA)

    NASA Astrophysics Data System (ADS)

    Li, Sheng; Yang, Jin-Ping; Duan, Wen-Ying; Lin, Zhen-Hui; Li, Jing; Shi, Sheng-Cai

    2012-12-01

    Terahertz Superconducting Imaging Array (TeSIA) is a project for the development of a large THz direct-detection array for mapping observations. The prototype of TeSIA is an 8×8 pixel direct-detection array operating at the 850 ?m band, incorporating THz superconducting detectors such as kinetic inductance detectors (KIDs) and transition edge sensors (TES). KIDs have the advantage that only a broadband low noise cryogenic amplifier is needed at low temperature for the readout system, and hundreds of pixels could be readout simultaneously by the frequency-division multiplexing (FDM) technique. The readout system for a KIDs array is composed of several parts like excitation signal generating, intermediate frequency (IF) circuit, baseband signal acquisition and processing. Excitation signal is a kind of comb signal carrying various frequencies corresponding simply to resonant frequencies of the detectors. It is generated in baseband with a bandwidth covering all KIDs and up-converted to microwave frequency (about several gigahertz) to feed the detectors. With THz radiation, the forward transmission coefficient (S21) of all KIDs varies and the variation can be measured through the comb signal. Fast Fourier transform (FFT) with pipeline structure will be used to process the baseband excitation signal in real time. Consequently, the radiation intensity can be estimated by monitoring the signal amplitude and phase of the corresponding frequency channels. In this paper we will present mainly the design ofan electronic readout system for the 8×8 pixel array.

  14. Terahertz spectroscopic investigations of leather in terahertz wave range

    NASA Astrophysics Data System (ADS)

    Song, Mei-jing; Li, Jiu-sheng

    2012-03-01

    Pulsed THz time-domain spectroscopy is a coherent technique, in which both the amplitude and the phase of a THz pulse are measured. Recently, material characterization using THz spectroscopy has been applied to biochemicals, pharmaceuticals, polymers and semiconductors and has given us important information. Moreover, THz imaging has progressed and is expected to be applicable for the identification of narcotics and explosives. The most important and characteristic point of THz spectroscopy is said to be its ability to observe intermolecular vibrations in contrast to infrared spectroscopy (IR), which observes intramolecular vibrations. Coherent detection enables direct calculations of both the imaginary and the real parts of the refractive index without using the Kramers-Kronig relations. Terahertz wave spectroscopy has been used to study the properties and absorption spectra characteristic of materials. In this paper, the spectral characteristics of cow skin, pig skin sheep skin, horse skin and deer skin have been measured with terahertz time-domain spectroscopy in the range of 0.1~2.0THz. The results show that THz-TDS technology provides an important tool for quality analysis and detection of leathers.

  15. Terahertz spectroscopic investigations of leather in terahertz wave range

    NASA Astrophysics Data System (ADS)

    Song, Mei-jing; Li, Jiu-sheng

    2011-11-01

    Pulsed THz time-domain spectroscopy is a coherent technique, in which both the amplitude and the phase of a THz pulse are measured. Recently, material characterization using THz spectroscopy has been applied to biochemicals, pharmaceuticals, polymers and semiconductors and has given us important information. Moreover, THz imaging has progressed and is expected to be applicable for the identification of narcotics and explosives. The most important and characteristic point of THz spectroscopy is said to be its ability to observe intermolecular vibrations in contrast to infrared spectroscopy (IR), which observes intramolecular vibrations. Coherent detection enables direct calculations of both the imaginary and the real parts of the refractive index without using the Kramers-Kronig relations. Terahertz wave spectroscopy has been used to study the properties and absorption spectra characteristic of materials. In this paper, the spectral characteristics of cow skin, pig skin sheep skin, horse skin and deer skin have been measured with terahertz time-domain spectroscopy in the range of 0.1~2.0THz. The results show that THz-TDS technology provides an important tool for quality analysis and detection of leathers.

  16. Terahertz beat oscillation of plasmonic electrons interacting with femtosecond light pulses.

    PubMed

    Zhang, Xinping; He, Jianfang; Wang, Yimeng; Liu, Feifei

    2016-01-01

    Plasmon resonance in nanostructured metals is in essence collective oscillation of free electrons, which is driven by optical electric fields and oscillates at nearly the same frequency as the excitation photons. This is the basic physics for the currently extensively interested topics in optical metamaterials, optical switching, and logic optical "circuits" with potential applications in optical communication and optical computation. We present here an interference effect between photons and plasmon electrons, which is observed as multi-cycle beat-oscillation. The beat frequency is in the range of 3~4?THz, which is equal to the difference between optical frequency of the photons and oscillation frequency of the plasmon electrons. Such beat oscillation evolves in a time scale of more than 1?ps, which is much longer than the optical pulse length, implying interaction between photons and pure damping plasmon-electrons. The discovered mechanisms might be important for exploring new approaches for THz generation. PMID:26732478

  17. FDTD-based quantitative analysis of terahertz wave detection for multilayered structures.

    PubMed

    Tu, Wanli; Zhong, Shuncong; Shen, Yaochun; Zhou, Qing; Yao, Ligang

    2014-10-01

    Experimental investigations have shown that terahertz pulsed imaging (TPI) is able to quantitatively characterize a range of multilayered media (e.g., biological issues, pharmaceutical tablet coatings, layered polymer composites, etc.). Advanced modeling of the interaction of terahertz radiation with a multilayered medium is required to enable the wide application of terahertz technology in a number of emerging fields, including nondestructive testing. Indeed, there have already been many theoretical analyses performed on the propagation of terahertz radiation in various multilayered media. However, to date, most of these studies used 1D or 2D models, and the dispersive nature of the dielectric layers was not considered or was simplified. In the present work, the theoretical framework of using terahertz waves for the quantitative characterization of multilayered media was established. A 3D model based on the finite difference time domain (FDTD) method is proposed. A batch of pharmaceutical tablets with a single coating layer of different coating thicknesses and different refractive indices was modeled. The reflected terahertz wave from such a sample was computed using the FDTD method, assuming that the incident terahertz wave is broadband, covering a frequency range up to 3.5 THz. The simulated results for all of the pharmaceutical-coated tablets considered were found to be in good agreement with the experimental results obtained using a commercial TPI system. In addition, we studied a three-layered medium to mimic the occurrence of defects in the sample. PMID:25401257

  18. 21 CFR 892.1560 - Ultrasonic pulsed echo imaging system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1560 Ultrasonic pulsed echo imaging system. (a) Identification....

  19. Improvements in magnetic resonance imaging excitation pulse design

    E-print Network

    Zelinski, Adam Charles

    2008-01-01

    This thesis focuses on the design of magnetic resonance imaging (MRI) radio-frequency (RF) excitation pulses, and its primary contributions are made through connections with the novel multiple-system single-output (MSSO) ...

  20. Clutter discrimination algorithm simulation in pulse laser radar imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Yan-mei; Li, Huan; Guo, Hai-chao; Su, Xuan; Zhu, Fule

    2015-10-01

    Pulse laser radar imaging performance is greatly influenced by different kinds of clutter. Various algorithms are developed to mitigate clutter. However, estimating performance of a new algorithm is difficult. Here, a simulation model for estimating clutter discrimination algorithms is presented. This model consists of laser pulse emission, clutter jamming, laser pulse reception and target image producing. Additionally, a hardware platform is set up gathering clutter data reflected by ground and trees. The data logging is as clutter jamming input in the simulation model. The hardware platform includes a laser diode, a laser detector and a high sample rate data logging circuit. The laser diode transmits short laser pulses (40ns FWHM) at 12.5 kilohertz pulse rate and at 905nm wavelength. An analog-to-digital converter chip integrated in the sample circuit works at 250 mega samples per second. The simulation model and the hardware platform contribute to a clutter discrimination algorithm simulation system. Using this system, after analyzing clutter data logging, a new compound pulse detection algorithm is developed. This new algorithm combines matched filter algorithm and constant fraction discrimination (CFD) algorithm. Firstly, laser echo pulse signal is processed by matched filter algorithm. After the first step, CFD algorithm comes next. Finally, clutter jamming from ground and trees is discriminated and target image is produced. Laser radar images are simulated using CFD algorithm, matched filter algorithm and the new algorithm respectively. Simulation result demonstrates that the new algorithm achieves the best target imaging effect of mitigating clutter reflected by ground and trees.

  1. Simultaneous Noncontact Precision Imaging of Microstructural and Thickness Variation in Dielectric Materials Using Terahertz Energy

    NASA Technical Reports Server (NTRS)

    Roth, Donald J (Inventor)

    2011-01-01

    A process for simultaneously measuring the velocity of terahertz electromagnetic radiation in a dielectric material sample without prior knowledge of the thickness of the sample and for measuring the thickness of a material sample using terahertz electromagnetic radiation in a material sample without prior knowledge of the velocity of the terahertz electromagnetic radiation in the sample is disclosed and claimed. The process evaluates, in a plurality of locations, the sample for microstructural variations and for thickness variations and maps the microstructural and thickness variations by location. A thin sheet of dielectric material may be used on top of the sample to create a dielectric mismatch. The approximate focal point of the radiation source (transceiver) is initially determined for good measurements.

  2. Faraday rotation imaging microscope with microsecond pulse magnet

    NASA Astrophysics Data System (ADS)

    Suwa, Masayori; Tsukahara, Satoshi; Watarai, Hitoshi

    2015-11-01

    We have fabricated a high-performance Faraday rotation (FR) imaging microscope that uses a microsecond pulse magnet comprising an insulated gated bipolar transistor and a 2 ?F capacitor. Our microscope produced images with greater stability and sensitivity than those of previous microscopes that used millisecond pulse magnet; these improvements are likely due to high repetition rate and negligible Joule heating effects. The mechanical vibrations in the magnet coil caused by the pulsed current were significantly reduced. The present FR microscope constructed an averaged image from 1000 FR images within 10 min under 1.7 T. Applications of the FR microscope to discriminating three benzene derivatives in micro-capillaries and oscillation-free imaging of spherical polystyrene and polymethyl methacrylate microparticles demonstrated its high performance.

  3. IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY, VOL. 1, NO. 2, NOVEMBER 2011 473 One-Dimensional Terahertz Imaging of

    E-print Network

    Natelson, Douglas

    the dodecane. In addition, the images provide insight into the dynamics of concentrated emulsions after mixing to escape from porous rocks [2]. One challenge involves the choice of surfactant used for a particular well in the reservoir. Selecting the cor- rect surfactant can have a significant impact on the efficacy of residual oil

  4. Terahertz Mapping of Microstructure and Thickness Variations

    NASA Technical Reports Server (NTRS)

    Roth, Donald J.; Seebo, Jeffrey P.; Winfree, William P.

    2010-01-01

    A noncontact method has been devised for mapping or imaging spatial variations in the thickness and microstructure of a layer of a dielectric material. The method involves (1) placement of the dielectric material on a metal substrate, (2) through-the-thickness pulse-echo measurements by use of electromagnetic waves in the terahertz frequency range with a raster scan in a plane parallel to the substrate surface that do not require coupling of any kind, and (3) appropriate processing of the digitized measurement data.

  5. Wavelet Domain Radiofrequency Pulse Design Applied to Magnetic Resonance Imaging

    PubMed Central

    Huettner, Andrew M.; Mickevicius, Nikolai J.; Ersoz, Ali; Koch, Kevin M.; Muftuler, L. Tugan; Nencka, Andrew S.

    2015-01-01

    A new method for designing radiofrequency (RF) pulses with numerical optimization in the wavelet domain is presented. Numerical optimization may yield solutions that might otherwise have not been discovered with analytic techniques alone. Further, processing in the wavelet domain reduces the number of unknowns through compression properties inherent in wavelet transforms, providing a more tractable optimization problem. This algorithm is demonstrated with simultaneous multi-slice (SMS) spin echo refocusing pulses because reduced peak RF power is necessary for SMS diffusion imaging with high acceleration factors. An iterative, nonlinear, constrained numerical minimization algorithm was developed to generate an optimized RF pulse waveform. Wavelet domain coefficients were modulated while iteratively running a Bloch equation simulator to generate the intermediate slice profile of the net magnetization. The algorithm minimizes the L2-norm of the slice profile with additional terms to penalize rejection band ripple and maximize the net transverse magnetization across each slice. Simulations and human brain imaging were used to demonstrate a new RF pulse design that yields an optimized slice profile and reduced peak energy deposition when applied to a multiband single-shot echo planar diffusion acquisition. This method may be used to optimize factors such as magnitude and phase spectral profiles and peak RF pulse power for multiband simultaneous multi-slice (SMS) acquisitions. Wavelet-based RF pulse optimization provides a useful design method to achieve a pulse waveform with beneficial amplitude reduction while preserving appropriate magnetization response for magnetic resonance imaging. PMID:26517262

  6. Terahertz sources and detectors

    NASA Astrophysics Data System (ADS)

    Crowe, Thomas W.; Porterfield, David W.; Hesler, Jeffrey L.; Bishop, William L.; Kurtz, David S.; Hui, Kai

    2005-05-01

    Through the support of the US Army Research Office we are developing terahertz sources and detectors suitable for use in the spectroscopy of chemical and biological materials as well as for use in imaging systems to detect concealed weapons. Our technology relies on nonlinear diodes to translate the functionality achieved at microwave frequencies to the terahertz band. Basic building blocks that have been developed for this application include low-noise mixers, frequency multipliers, sideband generators and direct detectors. These components rely on planar Schottky diodes and integrated diode circuits and are therefore easy to assemble and robust. They require no mechanical tuners to achieve high efficiency and broad bandwidth. This paper will review the range of performance that has been achieved with these terahertz components and briefly discuss preliminary results achieved with a spectroscopy system and the development of sources for imaging systems.

  7. Antenna-coupled microbolometer based uncooled 2D array and camera for 2D real-time terahertz imaging

    NASA Astrophysics Data System (ADS)

    Simoens, F.; Meilhan, J.; Gidon, S.; Lasfargues, G.; Lalanne Dera, J.; Ouvrier-Buffet, J. L.; Pocas, S.; Rabaud, W.; Guellec, F.; Dupont, B.; Martin, S.; Simon, A. C.

    2013-09-01

    CEA-Leti has developed a monolithic large focal plane array bolometric technology optimized for 2D real-time imaging in the terahertz range. Each pixel consists in a silicon microbolometer coupled to specific antennas and a resonant quarter-wavelength cavity. First prototypes of imaging arrays have been designed and manufactured for optimized sensing in the 1-3.5THz range where THz quantum cascade lasers are delivering high optical power. NEP in the order of 1 pW/sqrt(Hz) has been assessed at 2.5 THz. This paper reports the steps of this development, starting from the pixel level, to an array associated monolithically to its CMOS ROIC and finally a stand-alone camera. For each step, modeling, technological prototyping and experimental characterizations are presented.

  8. Pulsed laser linescanner for a backscatter absorption gas imaging system

    DOEpatents

    Kulp, Thomas J.; Reichardt, Thomas A.; Schmitt, Randal L.; Bambha, Ray P.

    2004-02-10

    An active (laser-illuminated) imaging system is described that is suitable for use in backscatter absorption gas imaging (BAGI). A BAGI imager operates by imaging a scene as it is illuminated with radiation that is absorbed by the gas to be detected. Gases become "visible" in the image when they attenuate the illumination creating a shadow in the image. This disclosure describes a BAGI imager that operates in a linescanned manner using a high repetition rate pulsed laser as its illumination source. The format of this system allows differential imaging, in which the scene is illuminated with light at least 2 wavelengths--one or more absorbed by the gas and one or more not absorbed. The system is designed to accomplish imaging in a manner that is insensitive to motion of the camera, so that it can be held in the hand of an operator or operated from a moving vehicle.

  9. Development of Neutron Color Image Intensifier for Pulsed Neutron Source

    NASA Astrophysics Data System (ADS)

    Nittoh, Koichi; Konagai, Chikara; Yahagi, Mitsuru; Kiyanagi, Yoshiaki; Kamiyama, Takashi

    We have been developing neutron color image intensifiers (hereafter abbreviated as NCIIs) for static neutron sources. With the recent progress of high power pulsed neutron sources, needs for energy selective neutron imaging are increasing. To fulfil suchrequirements, we have newly developed NCIIs having a high-speed blanking (gating) circuit and an output phosphor withshorter decay time. By combining these functions with a selection of input phosphor, measuring neutron energy ranges could beprecisely selectable between cold and epithermal region, which extends the NCII utilization area to pulsed facilities.

  10. Tracking surface plasmon pulses using ultrafast leakage imaging

    E-print Network

    Gorodetski, Y; Wang, S; Hutchison, J A; Drezet, A; Genet, C; Ebbesen, T W

    2015-01-01

    We introduce a new method for performing ultrafast imaging and tracking of surface plasmon wave packets that propagate on metal films. We demonstrate the efficiency of leakage radiation microscopy implemented in the time domain for measuring both group and phase velocities of near-field pulses with a high level of precision. The versatility of our far-field imaging method is particularly appealing in the context of ultrafast near-field optics.

  11. The SPARC linear accelerator based terahertz source

    SciTech Connect

    Chiadroni, E.; Bacci, A.; Bellaveglia, M.; Boscolo, M.; Castellano, M.; Cultrera, L.; Di Pirro, G.; Ferrario, M.; Ficcadenti, L.; Filippetto, D.; Gatti, G.; Pace, E.; Rossi, A. R.; Vaccarezza, C.; Catani, L.; Cianchi, A.; Marchetti, B.; Mostacci, A.; Palumbo, L.; Ronsivalle, C.; and others

    2013-03-04

    Ultra-short electron beams, produced through the velocity bunching compression technique, are used to drive the SPARC linear accelerator based source, which relies on the emission of coherent transition radiation in the terahertz range. This paper reports on the main features of this radiation, as terahertz source, with spectral coverage up to 5 THz and pulse duration down to 200 fs, with an energy per pulse of the order of several micro-joule, and as electron beam longitudinal diagnostics.

  12. Mesoscopic structuring and dynamics of alcohol/water solutions probed by Terahertz Time-Domain Spectroscopy and Pulsed Field Gradient Nuclear Magnetic Resonance

    E-print Network

    Li, Ruoyu; D'Agostino, Carmine; McGregor, James; Mantle, Michael D.; Zeitler, J. Axel; Gladden, Lynn F.

    2014-08-12

    and methanol with water.58,60 The terahertz absorption spectra were calculated using the Beer?Lambert law from the acquired data by truncating the waveforms 20 ps after the main peak which is just before the first etalon reflection from the quartz windows... . ? RESULTS Terahertz Absorption Spectra. The terahertz absorption spectra of the pure liquids are plotted in Figure 2. The absorption spectra of alcohol/water mixtures are typical of those of pure liquids, which increase monotonically with frequency, and...

  13. Terahertz radar cross section measurements.

    PubMed

    Iwaszczuk, Krzysztof; Heiselberg, Henning; Jepsen, Peter Uhd

    2010-12-01

    We perform angle- and frequency-resolved radar cross section (RCS) measurements on objects at terahertz frequencies. Our RCS measurements are performed on a scale model aircraft of size 5-10 cm in polar and azimuthal configurations, and correspond closely to RCS measurements with conventional radar on full-size objects. The measurements are performed in a terahertz time-domain system with freely propagating terahertz pulses generated by tilted pulse front excitation of lithium niobate crystals and measured with sub-picosecond time resolution. The application of a time domain system provides ranging information and also allows for identification of scattering points such as weaponry attached to the aircraft. The shapes of the models and positions of reflecting parts are retrieved by the filtered back projection algorithm. PMID:21164990

  14. Terahertz metamaterials

    DOEpatents

    Peralta, Xomalin Guaiuli; Brener, Igal; O'Hara, John; Azad, Abul; Smirnova, Evgenya; Williams, John D.; Averitt, Richard D.

    2014-08-12

    Terahertz metamaterials comprise a periodic array of resonator elements disposed on a dielectric substrate or thin membrane, wherein the resonator elements have a structure that provides a tunable magnetic permeability or a tunable electric permittivity for incident electromagnetic radiation at a frequency greater than about 100 GHz and the periodic array has a lattice constant that is smaller than the wavelength of the incident electromagnetic radiation. Microfabricated metamaterials exhibit lower losses and can be assembled into three-dimensional structures that enable full coupling of incident electromagnetic terahertz radiation in two or three orthogonal directions. Furthermore, polarization sensitive and insensitive metamaterials at terahertz frequencies can enable new devices and applications.

  15. Multispectral angular domain imaging with a tunable pulsed laser

    NASA Astrophysics Data System (ADS)

    Ng, Eldon; Vasefi, Fartash; Carson, Jeffrey J. L.

    2012-03-01

    Angular Domain Imaging (ADI) is an imaging technique that is capable of generating three dimensional images of attenuating targets embedded in a scattering medium. In ADI, an angular filter is positioned between the sample and the detector to discriminate between quasi-ballistic photons and scattered photons. Quasi-ballistic photons have undergone relatively few forward directed scattering events, and can be used to generate a projection image representative of the imaging target. Scattered photons have undergone many scattering events and contain little information regarding the imaging target, thereby leading to decreased image contrast. Our implementation of ADI utilizes a silicon micro-channel array to reject scattered photons based on the angle at which they exit the sample. The objective of this work was to collect ADI images with a tunable pulsed laser within the visible range. Samples were illuminated at 13 wavelengths between 460 nm and 700 nm. An angular filter array of 80 ?m × 80 ?m tunnels 2-cm long was used to select the quasiballistic photons. Images were detected with a linear 16-bit linear CCD. The phantom consisted of a 0.7 mm attenuating target submerged in one of four IntralipidR dilutions (0.15%-0.3%) contained within a 1 cm path length cuvette. Image contrast ranged from 0.02 at 460 nm and 0.3% IntralipidR to 1 at 680 nm at 0.15% IntralipidR. For a given scattering level, contrast increased at longer wavelengths. Resolution varied minimally with wavelength. The results suggested that multispectral ADI with a tunable pulsed laser is feasible and may find utility in imaging thin tissue samples in the future.

  16. Computed tomography image using sub-terahertz waves generated from a high-T{sub c} superconducting intrinsic Josephson junction oscillator

    SciTech Connect

    Kashiwagi, T. Minami, H.; Kadowaki, K.; Nakade, K.; Saiwai, Y.; Kitamura, T.; Watanabe, C.; Ishida, K.; Sekimoto, S.; Asanuma, K.; Yasui, T.; Shibano, Y.; Tsujimoto, M.; Yamamoto, T.; Markovi?, B.; Mirkovi?, J.; Klemm, R. A.

    2014-02-24

    A computed tomography (CT) imaging system using monochromatic sub-terahertz coherent electromagnetic waves generated from a device constructed from the intrinsic Josephson junctions in a single crystalline mesa structure of the high-T{sub c} superconductor Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+?} was developed and tested on three samples: Standing metallic rods supported by styrofoam, a dried plant (heart pea) containing seeds, and a plastic doll inside an egg shell. The images obtained strongly suggest that this CT imaging system may be useful for a variety of practical applications.

  17. Characteristic responses of biological and nanoscale systems in the terahertz frequency range

    NASA Astrophysics Data System (ADS)

    Angeluts, A. A.; Balakin, A. V.; Evdokimov, M. G.; Esaulkov, M. N.; Nazarov, M. M.; Ozheredov, I. A.; Sapozhnikov, D. A.; Solyankin, P. M.; Cherkasova, O. P.; Shkurinov, A. P.

    2014-07-01

    This paper briefly examines methods for the generation of pulsed terahertz radiation and principles of pulsed terahertz spectroscopy, an advanced informative method for studies of complex biological and nanostructured systems. Some of its practical applications are described. Using a number of steroid hormones as examples, we demonstrate that terahertz spectroscopy in combination with molecular dynamics methods and computer simulation allows one to gain information about the structure of molecules in crystals. A 'terahertz colour vision' method is proposed for analysis of pulsed terahertz signals reflected from biological tissues and it is shown that this method can be effectively used to analyse the properties of biological tissues and for early skin cancer diagnosis.

  18. Study of the Coherent Phonon-Polariton effect on the Terahertz pulse generation in < 110 > ZnTe crystal

    NASA Astrophysics Data System (ADS)

    Tu, Chien-Ming; Chen, Jeng-Chung; Chi, Cheng-Chung

    2011-03-01

    We report a study of the wave form and spectrum of the THz radiation generated by illuminating 110 ZnTe crystal with femto-second optical pulses of 750 nm in wavelength. The co-linearly measured wave form consists of a main W-shaped THz pulse and a trailing quasi monochromatic damped oscillation (QMDO) with a duration of several tens of pico-seconds. In Fourier-transformed spectrum of the measured THz waveform, there are two peaks, one centered at 0.6 THz and the other one at 2.7 THz, which correspond to the main THz pulse and the QMDO respectively. Our calculation of the THz pulse generated by the optical pulse indicates that the QMDO is caused by the phase matching of the optical pulse and the coherent phonon-polariton in ZnTe. We observe that, by increasing the optical pulse width, the duration of the trailing QMDO shrinks in time domain, and the amplitude of the phase-matching component also reduces, both of which are consistent with our calculations. There remain some subtle differences between the experimental results and the theoretical calculations, the origin of which will be discussed. Supported by the NSC grant 99-2120-M-007-002.

  19. Terahertz spectroscopy of pigmentary skin nevi in vivo

    NASA Astrophysics Data System (ADS)

    Zaitsev, K. I.; Chernomyrdin, N. V.; Kudrin, K. G.; Reshetov, I. V.; Yurchenko, S. O.

    2015-09-01

    Pigmentary skin nevi are studied in vivo using terahertz pulsed spectroscopy. Dielectric parameters of healthy skin and dysplastic and nondysplastic nevi are reconstructed and analyzed. The fact that complex permittivities of the samples substantially differ in the terahertz spectral range can be used for early noninvasive diagnostics of dysplastic nevi, which are precursors of melanoma (the most dangerous skin cancer). A method is proposed to identify various dysplastic and nondysplastic nevi using the analysis of terahertz dielectric characteristics. It is demonstrated that terahertz pulsed spectroscopy is promising for early noninvasive diagnostics of dysplastic nevi and melanomas of the skin.

  20. Tunable and efficient terahertz radiation generation by photomixing of two super Gaussian laser pulses in a corrugated magnetized plasma

    SciTech Connect

    Varshney, Prateek; Sajal, Vivek Kumar, Ravindra; Sharma, Navneet K.; Singh, Kunwar Pal

    2015-05-21

    A scheme of terahertz (THz) radiation generation is investigated by photo-mixing of two super Gaussian laser beams having different frequencies (?{sub 1},??{sub 2}) and wave numbers (k{sup ?}{sub 1},?k{sup ?}{sub 2}) in a performed corrugated plasma embedded with transverse dc magnetic field. Lasers exert a nonlinear ponderomotive force, imparting an oscillatory velocity to plasma electrons that couples with the density corrugations (n{sup ?}=n{sub ?0}e{sup i?z}) to generate a strong transient nonlinear current, that resonantly derives THz radiation of frequency ??{sub h} (upper hybrid frequency). The periodicity of density corrugations is suitably chosen to transfer maximum momentum from lasers to THz radiation at phase matching conditions ?=?{sub 1}??{sub 2}?and?k{sup ?}=k{sup ?}{sub 1}?k{sup ?}{sub 2}+?{sup ?}. The efficiency, power, beam quality, and tunability of the present scheme exhibit high dependency upon the applied transverse dc magnetic field along with q-indices and beam width parameters (a{sub 0}) of super Gaussian lasers. In the present scheme, efficiency ?10{sup ?2} is achieved with the optimization of all these parameters.

  1. Wall Painting Investigation by Means of Non-invasive Terahertz Time-Domain Imaging (THz-TDI): Inspection of Subsurface Structures Buried in Historical Plasters

    NASA Astrophysics Data System (ADS)

    Dandolo, Corinna Ludovica Koch; Jepsen, Peter Uhd

    2015-10-01

    Characterization of subsurface features of wall paintings is important in conservation and technical art history as well as in building archaeology and architecture fields. In this study, an area of the apsidal wall painting of Nebbelunde Church (Rødby, Denmark) has been investigated by means of terahertz time-domain imaging (THz-TDI). Subsurface structures have been detected at different depths inside the lime-based plaster of the wall painting until approximately 1 cm from the surface. The surface morphology of the buried structures has been 3D imaged in detail, providing a substantial contribution in their characterization.

  2. Analysis of a seventeenth-century panel painting by reflection terahertz time-domain imaging (THz-TDI): contribution of ultrafast optics to museum collections inspection

    NASA Astrophysics Data System (ADS)

    Koch Dandolo, Corinna L.; Filtenborg, Troels; Skou-Hansen, Jacob; Jepsen, Peter Uhd

    2015-11-01

    Terahertz time-domain imaging (THz -TDI) has been applied for nondestructive visualization of a hidden painting and other subsurface composition layers of a seventeenth-century panel painting belonging to the National Gallery of Denmark. Plan-type and cross-sectional scans realized by THz have been compared with images obtained by X-radiography, thus helping in a deep understanding of the strengths and limitations of this technique for art diagnostic purposes and in defining its rule among the other complementary investigation tools for nondestructive inspection of art pieces.

  3. Giant enhancement of terahertz emission from nanoporous GaP

    SciTech Connect

    Atrashchenko, A. Korotchenkov, A.; Evtikhiev, V. P.; Arlauskas, A.; Adomavi?ius, R.; Krotkus, A.; Ulin, V. P.; Belov, P.

    2014-11-10

    In this paper, we have studied the emission of terahertz radiation from nanoporous semiconductor matrices of GaP excited by the femtosecond laser pulses. We observe 3–4 orders of magnitude increase of terahertz radiation emission from the nanoporous matrix compared to bulk material. The effect is mainly related to drastic increase of the sample surface and pinning of conducting electrons to surface states. This result opens up a promising way to create powerful sources of terahertz radiation using nanoporous semiconductors.

  4. Diffusion and Swelling Measurements in Pharmaceutical Powder Compacts Using Terahertz Pulsed Imaging

    E-print Network

    Yassin, Samy; Su, Ke; Lin, Hungyen; Gladden, Lynn F.; Zeitler, J. Axel

    2015-02-02

    and dif- fusion kinetics are influenced by the rate of water penetrating the tablet matrix and the rate of air draining out. The changes in pressure prompted by this fluid transport, coupled with the movement of the solids within the matrix during... for sustained drug release; and lac- tose "-monohydrate (Meggle, Wasserburg, Germany), which is a soluble, filler, diluent, and bulking agent commonly found in immediate-release formulations. Tablets were compressed to a height of 1.5 mm with diameters of 10...

  5. Terahertz Science, Technology, and Communication

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Goutam

    2013-01-01

    The term "terahertz" has been ubiquitous in the arena of technology over the past couple of years. New applications are emerging every day which are exploiting the promises of terahertz - its small wavelength; capability of penetrating dust, clouds, and fog; and possibility of having large instantaneous bandwidth for high-speed communication channels. Until very recently, space-based instruments for astrophysics, planetary science, and Earth science missions have been the primary motivator for the development of terahertz sensors, sources, and systems. However, in recent years the emerging areas such as imaging from space platforms, surveillance of person-borne hidden weapons or contraband from a safe stand-off distance and reconnaissance, medical imaging and DNA sequencing, and in the world high speed communications have been the driving force for this area of research.

  6. Optical imaging of objects in turbid medium with ultrashort pulses

    NASA Astrophysics Data System (ADS)

    Wang, Chih-Yu; Sun, Chia-Wei; Yang, Chih Chung; Kiang, Yean-Woei; Lin, Chii-Wann

    2000-07-01

    Photons are seriously scattered when entering turbid medium; this the images of objects hidden in turbid medium can not be obtained by just collecting the transmitted photons. Early-arriving photons, which are also called ballistic or snake protons, are much less scattered when passing through turbid medium, and contains more image information than the late-arriving ones. Therefore, objects embedded in turbid medium can be imaged by gathering the ballistic and snake photons. In the present research we try to recover images of objects in turbid medium by simultaneously time-gate and polarization-gate to obtain the snake photons. An Argon-pumped Ti-Sapphire laser with 100fs pulses was employed as a light source. A streak camera with a 2ps temporal resolution was used to extract the ballistic and snake photons. Two pieces of lean swine meat, measured 4mmX3mm and 5xxX4mm, respectively, were placed in a 10cmX10cmX3cm acrylic tank, which was full of diluted milk. A pair of polarizer and an analyzer was used to extract the light that keeps polarization unchanged. The combination of time gating and polarization gating resulted in good images of objects hidden in turbid medium.

  7. Pulse sequence for dynamic volumetric imaging of hyperpolarized metabolic products

    NASA Astrophysics Data System (ADS)

    Cunningham, Charles H.; Chen, Albert P.; Lustig, Michael; Hargreaves, Brian A.; Lupo, Janine; Xu, Duan; Kurhanewicz, John; Hurd, Ralph E.; Pauly, John M.; Nelson, Sarah J.; Vigneron, Daniel B.

    2008-07-01

    Dynamic nuclear polarization and dissolution of a 13C-labeled substrate enables the dynamic imaging of cellular metabolism. Spectroscopic information is typically acquired, making the acquisition of dynamic volumetric data a challenge. To enable rapid volumetric imaging, a spectral-spatial excitation pulse was designed to excite a single line of the carbon spectrum. With only a single resonance present in the signal, an echo-planar readout trajectory could be used to resolve spatial information, giving full volume coverage of 32 × 32 × 16 voxels every 3.5 s. This high frame rate was used to measure the different lactate dynamics in different tissues in a normal rat model and a mouse model of prostate cancer.

  8. Tunable focus graphene-based terahertz lens

    NASA Astrophysics Data System (ADS)

    Li, Jiu-Sheng

    2016-01-01

    To extend the usage of the terahertz wave, we present a simple method for variable focus length terahertz wave lens based on graphene. The focus length of the graphene-based terahertz lens can be tunable by changing the applied electric field without change the configuration. To demonstrate the feasibility of the approach, numerical simulation performed with the aid of the finite element method is used to evaluate the terahertz performance of the proposed device. With an appropriate design, the focal length of the proposed device can be tuned from 7.3 ?m to 15.2 ?m. The total size of the present graphene lens is only 3.5 ?m×13 ?m. It is believed to be applicable for future communication, imaging and sensing in terahertz range.

  9. A spatial light modulator for terahertz beams

    SciTech Connect

    Chen, Hou-tong; Taylor, Antoinette J

    2009-01-01

    Spatial light modulators that control the spatial transmission of a terahertz beam either electrically or optically, have been difficult to build due to the lack of suitable materials. Here we propose the use of active terahertz metamaterials for the construction of a multi-pixel spatial modulator for terahertz beams. Our first-generation device consists of a 4 x 4 pixel array, where each pixel is an array of sub-wavelength-sized split-ring resonator elements fabricated on a semiconductor substrate, and is independently controlled by applying an external voltage. Through terahertz transmission experiments, we show that the spatial modulator has a uniform modulation depth of around 40 percent across all pixels at the resonant frequency. Around this operating frequency, the crosstalk between pixels is negligible. This device can operate under small voltage levels, at room temperature, with low power consumption and reasonably high switching speed, and can therefore benefit future applications in terahertz imaging and communications.

  10. Mapping the longitudinal wall stiffness heterogeneities within intact canine aortas using Pulse Wave Imaging (PWI) ex vivo

    E-print Network

    Konofagou, Elisa E.

    Mapping the longitudinal wall stiffness heterogeneities within intact canine aortas using Pulse Article history: Accepted 26 April 2013 Keywords: Canine Aorta In Situ Pulse Wave Imaging (PWI) Pulse Wave­Korteweg (M­K) formulation. Pulse Wave Imaging (PWI) is a relatively new, ultrasound-based imaging method

  11. Effects of frame rate and image resolution on pulse rate measured using multiple camera imaging photoplethysmography

    NASA Astrophysics Data System (ADS)

    Blackford, Ethan B.; Estepp, Justin R.

    2015-03-01

    Non-contact, imaging photoplethysmography uses cameras to facilitate measurements including pulse rate, pulse rate variability, respiration rate, and blood perfusion by measuring characteristic changes in light absorption at the skin's surface resulting from changes in blood volume in the superficial microvasculature. Several factors may affect the accuracy of the physiological measurement including imager frame rate, resolution, compression, lighting conditions, image background, participant skin tone, and participant motion. Before this method can gain wider use outside basic research settings, its constraints and capabilities must be well understood. Recently, we presented a novel approach utilizing a synchronized, nine-camera, semicircular array backed by measurement of an electrocardiogram and fingertip reflectance photoplethysmogram. Twenty-five individuals participated in six, five-minute, controlled head motion artifact trials in front of a black and dynamic color backdrop. Increasing the input channel space for blind source separation using the camera array was effective in mitigating error from head motion artifact. Herein we present the effects of lower frame rates at 60 and 30 (reduced from 120) frames per second and reduced image resolution at 329x246 pixels (one-quarter of the original 658x492 pixel resolution) using bilinear and zero-order downsampling. This is the first time these factors have been examined for a multiple imager array and align well with previous findings utilizing a single imager. Examining windowed pulse rates, there is little observable difference in mean absolute error or error distributions resulting from reduced frame rates or image resolution, thus lowering requirements for systems measuring pulse rate over sufficient length time windows.

  12. Nonlinear terahertz superconducting plasmonics

    SciTech Connect

    Wu, Jingbo; Liang, Lanju; Jin, Biaobing E-mail: tonouchi@ile.osaka-u.ac.jp Kang, Lin; Xu, Weiwei; Chen, Jian; Wu, Peiheng E-mail: tonouchi@ile.osaka-u.ac.jp; Zhang, Caihong; Kawayama, Iwao; Murakami, Hironaru; Tonouchi, Masayoshi E-mail: tonouchi@ile.osaka-u.ac.jp; Wang, Huabing

    2014-10-20

    Nonlinear terahertz (THz) transmission through subwavelength hole array in superconducting niobium nitride (NbN) film is experimentally investigated using intense THz pulses. The good agreement between the measurement and numerical simulations indicates that the field strength dependent transmission mainly arises from the nonlinear properties of the superconducting film. Under weak THz pulses, the transmission peak can be tuned over a frequency range of 145 GHz which is attributed to the high kinetic inductance of 50?nm-thick NbN film. Utilizing the THz pump-THz probe spectroscopy, we study the dynamic process of transmission spectra and demonstrate that the transition time of such superconducting plasmonic device is within 5 ps.

  13. Terahertz detection and carbon nanotubes

    SciTech Connect

    Leonard, Francois

    2014-06-11

    Researchers at Sandia National Laboratories, along with collaborators from Rice University and the Tokyo Institute of Technology, are developing new terahertz detectors based on carbon nanotubes that could lead to significant improvements in medical imaging, airport passenger screening, food inspection and other applications.

  14. Terahertz detection and carbon nanotubes

    ScienceCinema

    Leonard, Francois

    2014-06-13

    Researchers at Sandia National Laboratories, along with collaborators from Rice University and the Tokyo Institute of Technology, are developing new terahertz detectors based on carbon nanotubes that could lead to significant improvements in medical imaging, airport passenger screening, food inspection and other applications.

  15. Approaching real-time terahertz imaging using photo-induced reconfigurable aperture arrays

    NASA Astrophysics Data System (ADS)

    Shams, Md. Itrat Bin; Jiang, Zhenguo; Rahman, Syed; Qayyum, Jubaid; Hesler, Jeffrey L.; Cheng, Li-Jing; Xing, Huili Grace; Fay, Patrick; Liu, Lei

    2014-05-01

    We report a technique using photo-induced coded-aperture arrays for potential real-time THz imaging at roomtemperature. The coded apertures (based on Hadamard coding) were implemented using programmable illumination on semi-insulating Silicon wafer by a commercial digital-light processing (DLP) projector. Initial imaging experiments were performed in the 500-750 GHz band using a WR-1.5 vector network analyzer (VNA) as the source and receiver. Over the entire band, each array pixel can be optically turned on and off with an average modulation depth of ~20 dB and ~35 dB, for ~4 cm2 and ~0.5 cm2 imaging areas respectively. The modulation speed is ~1.3 kHz using the current DLP system and data acquisition software. Prototype imaging demonstrations have shown that a 256-pixel image can be obtained in the order of 10 seconds using compressed sensing (CS), and this speed can be improved greatly for potential real-time or video-rate THz imaging. This photo-induced coded-aperture imaging (PI-CAI) technique has been successfully applied to characterize THz beams in quasi-optical systems and THz horn antennas.

  16. Application of laser pulse stretching scheme for efficiently delivering laser energy in photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Wang, Tianheng; Kumavor, Patrick D.; Zhu, Quing

    2012-06-01

    High-energy and short-duration laser pulses are desirable to improve the photoacoustic image quality when imaging deeply seated lesions. In many clinical applications, the high-energy pulses are coupled to tissue using optical fibers. These pulses can damage fibers if the damage threshold is exceeded. While keeping the total energy under the Food and Drug Administration limit for avoiding tissue damage, it is necessary to reduce the peak intensity and increase the pulse duration for minimizing fiber damage and delivering sufficient light for imaging. We use laser-pulse-stretching to address this problem. An initial 17-ns pulse was stretched to 27 and 37 ns by a ring-cavity laser-pulse-stretching system. The peak power of the 37-ns stretched pulse reduced to 42% of the original, while the fiber damage threshold was increased by 1.5-fold. Three ultrasound transducers centered at 1.3-, 3.5-, and 6-MHz frequencies were simulated, and the results showed that the photoacoustic signal of a 0.5-mm-diameter target obtained with 37-ns pulse was about 98, 91, and 80%, respectively, using the same energy as the 17-ns pulse. Simulations were validated using a broadband hydrophone. Quantitative comparisons of photoacoustic images obtained with three corresponding transducers showed that the image quality was not affected by stretching the pulse.

  17. Application of laser pulse stretching scheme for efficiently delivering laser energy in photoacoustic imaging.

    PubMed

    Wang, Tianheng; Kumavor, Patrick D; Zhu, Quing

    2012-06-01

    High-energy and short-duration laser pulses are desirable to improve the photoacoustic image quality when imaging deeply seated lesions. In many clinical applications, the high-energy pulses are coupled to tissue using optical fibers. These pulses can damage fibers if the damage threshold is exceeded. While keeping the total energy under the Food and Drug Administration limit for avoiding tissue damage, it is necessary to reduce the peak intensity and increase the pulse duration for minimizing fiber damage and delivering sufficient light for imaging. We use laser-pulse-stretching to address this problem. An initial 17-ns pulse was stretched to 27 and 37 ns by a ring-cavity laser-pulse-stretching system. The peak power of the 37-ns stretched pulse reduced to 42% of the original, while the fiber damage threshold was increased by 1.5-fold. Three ultrasound transducers centered at 1.3-, 3.5-, and 6-MHz frequencies were simulated, and the results showed that the photoacoustic signal of a 0.5-mm-diameter target obtained with 37-ns pulse was about 98, 91, and 80%, respectively, using the same energy as the 17-ns pulse. Simulations were validated using a broadband hydrophone. Quantitative comparisons of photoacoustic images obtained with three corresponding transducers showed that the image quality was not affected by stretching the pulse. PMID:22734748

  18. High-resolution broadband terahertz spectroscopy via electronic heterodyne detection of photonically generated terahertz frequency comb.

    PubMed

    Pavelyev, D G; Skryl, A S; Bakunov, M I

    2014-10-01

    We report an alternative approach to the terahertz frequency-comb spectroscopy (TFCS) based on nonlinear mixing of a photonically generated terahertz pulse train with a continuous wave signal from an electronic synthesizer. A superlattice is used as a nonlinear mixer. Unlike the standard TFCS technique, this approach does not require a complex double-laser system but retains the advantages of TFCS-high spectral resolution and wide bandwidth. PMID:25360955

  19. Lasers in Surgery and Medicine 43:457462 (2011) Continuous Wave Terahertz Transmission Imaging of

    E-print Network

    Massachusetts at Lowell, University of

    2011-01-01

    Hospital, 55 Fruit Street, Boston, Massachusetts 02114 Background and Objective: Continuous wave tera to TPI. The goal of this study was to investigate the feasibility of continuous wave tera- hertz imaging

  20. A Source for Ultrafast Continuum Infrared and Terahertz Radiation

    E-print Network

    Petersen, Poul B.

    A compact and stable method for generating high-intensity linearly polarized continuum mid-IR and terahertz light using ultrafast femtosecond (fs) laser pulses is demonstrated. Continuous light generation from <400cm?1 ...

  1. A Concealed Barcode Identification System Using Terahertz Time-domain Spectroscopy

    NASA Astrophysics Data System (ADS)

    Guan, Yu; Yamamoto, Manabu; Kitazawa, Toshiyuki; Tripathi, Saroj R.; Takeya, Kei; Kawase, Kodo

    2015-03-01

    We present a concealed terahertz barcode/chipless tag to achieve remote identification through an obstructing material using terahertz radiation. We show scanned terahertz reflection spectral images of barcodes concealed by a thick obstacle. A concealed and double- side printed terahertz barcode structure is proposed, and we demonstrate that our design has better performance in definition than a single-side printed barcode using terahertz time-domain spectroscopy. This technique combines the benefits of a chipless tag to read encoded information covered by an optically opaque material with low cost and a simple fabrication process. Simulations are also described, along with an explanation of the principle of the terahertz barcode identification system.

  2. Infrared imaging diagnostics for intense pulsed electron beam

    NASA Astrophysics Data System (ADS)

    Yu, Xiao; Shen, Jie; Qu, Miao; Liu, Wenbin; Zhong, Haowen; Zhang, Jie; Yan, Sha; Zhang, Gaolong; Le, Xiaoyun

    2015-08-01

    Infrared imaging diagnostic method for two-dimensional calorimetric diagnostics has been developed for intense pulsed electron beam (IPEB). By using a 100-?m-thick tungsten film as the infrared heat sink for IPEB, the emitting uniformity of the electron source can be analyzed to evaluate the efficiency and stability of the diode system. Two-dimensional axisymmetric finite element method heat transfer simulation, combined with Monte Carlo calculation, was performed for error estimation and optimization of the method. The test of the method was finished with IPEB generated by explosive emission electron diode with pulse duration (FWHM) of 80 ns, electron energy up to 450 keV, and a total beam current of over 1 kA. The results showed that it is possible to measure the cross-sectional energy density distribution of IPEB with energy sensitivity of 0.1 J/cm2 and spatial resolution of 1 mm. The technical details, such as irradiation protection of bremsstrahlung ? photons and the functional extensibility of the method were discussed in this work.

  3. Infrared imaging diagnostics for intense pulsed electron beam.

    PubMed

    Yu, Xiao; Shen, Jie; Qu, Miao; Liu, Wenbin; Zhong, Haowen; Zhang, Jie; Yan, Sha; Zhang, Gaolong; Le, Xiaoyun

    2015-08-01

    Infrared imaging diagnostic method for two-dimensional calorimetric diagnostics has been developed for intense pulsed electron beam (IPEB). By using a 100-?m-thick tungsten film as the infrared heat sink for IPEB, the emitting uniformity of the electron source can be analyzed to evaluate the efficiency and stability of the diode system. Two-dimensional axisymmetric finite element method heat transfer simulation, combined with Monte Carlo calculation, was performed for error estimation and optimization of the method. The test of the method was finished with IPEB generated by explosive emission electron diode with pulse duration (FWHM) of 80 ns, electron energy up to 450 keV, and a total beam current of over 1 kA. The results showed that it is possible to measure the cross-sectional energy density distribution of IPEB with energy sensitivity of 0.1 J/cm(2) and spatial resolution of 1 mm. The technical details, such as irradiation protection of bremsstrahlung ? photons and the functional extensibility of the method were discussed in this work. PMID:26329179

  4. Single-pulse coherent diffraction imaging using soft x-ray laser.

    PubMed

    Kang, Hyon Chol; Kim, Hyung Taek; Kim, Sang Soo; Kim, Chan; Yu, Tae Jun; Lee, Seong Ku; Kim, Chul Min; Kim, I Jong; Sung, Jae Hee; Janulewicz, Karol A; Lee, Jongmin; Noh, Do Young

    2012-05-15

    We report a coherent diffraction imaging (CDI) using a single 8 ps soft x-ray laser pulse at a wavelength of 13.9 nm. The soft x-ray pulse was generated by a laboratory-scale intense pumping laser providing coherent x-ray pulses up to the level of 10(11) photons/pulse. A spatial resolution below 194 nm was achieved with a single pulse, and it was shown that a resolution below 55 nm is feasible with improved detector capability. The single-pulse CDI might provide a way to investigate dynamics of nanoscale molecules or particles. PMID:22627538

  5. Features of plasma glow in low pressure terahertz gas discharge

    SciTech Connect

    Bratman, V. L.; Golubev, S. V.; Izotov, I. V.; Kalynov, Yu. K.; Koldanov, V. A.; Razin, S. V.; Litvak, A. G.; Sidorov, A. V.; Skalyga, V. A.; Zorin, V. G.; Lobachevsky State University of Nizhny Novgorod , 23 Gagarina st., 603950 Nizhny Novgorod

    2013-12-15

    Investigations of the low pressure (1–100 Torr) gas discharge in the powerful (1 kW) quasi-optical terahertz (0.55 THz) wave beams were made. An intense afterglow was observed after the end of gyrotron terahertz radiation pulse. Afterglow duration significantly exceeded radiation pulse length (8 ?s). This phenomenon could be explained by the strong dependence of the collisional-radiative recombination rate (that is supposed to be the most likely mechanism of electron losses from the low pressure terahertz gas discharge) on electron temperature.

  6. High Power Terahertz Conductive Antenna with Chaotic Electrodes

    NASA Astrophysics Data System (ADS)

    Kim, Christopher; Graber, Benjamin; Wu, Dong Ho

    2015-03-01

    Time domain terahertz spectroscopy (TDTS) is now widely adopted and being used for various purposes, including chemical and material analysis as well as detection of hazardous materials in the laboratories. While there are several different methods available to generate a wideband terahertz pulse for the TDTS, currently a terahertz photoconductive antenna may be the most popular one, as it can produce a wideband terahertz pulse very efficiently. However our experimental investigation indicates that the conventional photoconductive antenna with a pair of parallel electrodes can produce a terahertz pulse at most about 100 micro-Watts. When attempted to produce a higher power terahertz pulse the antenna may experience irrevocable failure. In order to overcome this problem we recently redesigned the photoconductive antenna and implemented electrodes that lead to a chaotic trajectories of charged particles. With the new electrodes we have demonstrated a high power (>2 mW) coherent terahertz beam, and we found that the lifetime of the antenna is also substantially longer than that of the conventional antenna. In this talk I will present our experimental results and disclose some of our new antenna designs. Supported by DTRA and Naval Research Laboratory.

  7. Active terahertz metamaterials

    SciTech Connect

    Chen, Hou-tong; O' Hara, John F; Taylor, Antoinette J

    2009-01-01

    In this paper we present an overview of research in our group in terahertz (THz) metamaterials and their applications. We have developed a series of planar metamaterials operating at THz frequencies, all of which exhibit a strong resonant response. By incorporating natural materials, e.g. semiconductors, as the substrates or as critical regions of metamaterial elements, we are able to effectively control the metamaterial resonance by the application of external stimuli, e.g., photoexcitation and electrical bias. Such actively controllable metamaterials provide novel functionalities for solid-state device applications with unprecedented performance, such as THz spectroscopy, imaging, and many others.

  8. Active terahertz holography

    NASA Astrophysics Data System (ADS)

    Xie, Zhenwei; Wang, Xinke; Zhang, Yan

    2013-12-01

    We present a novel technology to dynamically control the wave front of the terahertz (THz) beam with photo-generated carriers. The computer generated hologram is projected onto a silicon wafer by a conventional optical spatial light modulator. The photo-generated carriers on the silicon surface will from a hologram to modulate the wave front of the input THz beam. Some special field distributions and vortex beams are generated using this method. This technology is broadband, structure free, tunable, and all-optical controllable. It will provide numerous possible applications in future THz imaging and communication systems.

  9. Noncontact imaging photoplethysmography to effectively access pulse rate variability

    NASA Astrophysics Data System (ADS)

    Sun, Yu; Hu, Sijung; Azorin-Peris, Vicente; Kalawsky, Roy; Greenwald, Stephen

    2013-06-01

    Noncontact imaging photoplethysmography (PPG) can provide physiological assessment at various anatomical locations with no discomfort to the patient. However, most previous imaging PPG (iPPG) systems have been limited by a low sample frequency, which restricts their use clinically, for instance, in the assessment of pulse rate variability (PRV). In the present study, plethysmographic signals are remotely captured via an iPPG system at a rate of 200 fps. The physiological parameters (i.e., heart and respiration rate and PRV) derived from the iPPG datasets yield statistically comparable results to those acquired using a contact PPG sensor, the gold standard. More importantly, we present evidence that the negative influence of initial low sample frequency could be compensated via interpolation to improve the time domain resolution. We thereby provide further strong support for the low-cost webcam-based iPPG technique and, importantly, open up a new avenue for effective noncontact assessment of multiple physiological parameters, with potential applications in the evaluation of cardiac autonomic activity and remote sensing of vital physiological signs.

  10. Terahertz heterodyne imaging with InGaAs-based bow-tie diodes

    NASA Astrophysics Data System (ADS)

    Minkevi?ius, Linas; Tamošiunas, Vincas; Kašalynas, Irmantas; Seliuta, Dalius; Valušis, Gintaras; Lisauskas, Alvydas; Boppel, Sebastian; Roskos, Hartmut G.; Köhler, Klaus

    2011-09-01

    Room-temperature detection and imaging in transmission and reflection geometries at 0.591 THz with planar asymmetrically shaped InGaAs diodes (also called bow-tie diodes) are demonstrated in direct and heterodyne mode. The sensitivity of the diodes is found to be 6 V/W in direct mode, and the noise-equivalent power (NEP) in direct and heterodyne mode is estimated to be about 4 nW/?H z and 230 fW/Hz for a local-oscillator power of 11 ?W, respectively. The improvement of the dynamic range by heterodyning over direct power detection amounts to about 20 dB using pixel read-out times relevant to real-time imaging conditions.

  11. Terahertz imaging with a quantum cascade laser and amorphous-silicon microbolometer array

    NASA Astrophysics Data System (ADS)

    Simoens, F.; Durand, T.; Meilhan, J.; Gellie, P.; Maineult, W.; Sirtori, C.; Barbieri, S.; Beere, H.; Ritchie, D.

    2009-09-01

    Portability, low cost and fast acquisition rates are key features that a THz imaging system should satisfy for extended commercialized applications. With regards to these features, the source - detector association of a THz Quantum Cascade Laser (QCL) with an un-cooled micro-bolometer two-dimensional array looks promising for THz active imaging. QCLs performance is rapidly improving, with higher operating temperatures and output powers recently demonstrated. On the detector side, un-cooled micro-bolometer array opens the way to real-time video rate, with no raster scanning and potential low cost. In parallel to the development of room temperature micro-bolometer sensors specifically designed for the THz range, the authors have characterized experimentally the sensitivity of CEA-LETI standard amorphous Silicon infrared microbolometers illuminated by a 3THz QCL. The sensitivity of these existing sensors is then compared to the expected sensitivity of the CEA-LETI upcoming THz sensors.

  12. Nonlinear restoration of pulse and high noisy images via stochastic resonance

    NASA Astrophysics Data System (ADS)

    Sun, Qibing; Liu, Hongjun; Huang, Nan; Wang, Zhaolu; Han, Jing; Li, Shaopeng

    2015-11-01

    We propose a novel scheme for restoring pulse and high noisy images using stochastic resonance, which is based on the modulation instability and provides a cross-correlation gain higher than 8. As opposed to previously reported designs, this unique approach employs a continuous noise and pulse signal for the generation of modulation instability. The visibility and quality of output images can be improved by appropriately adjusting the system parameters. This provides a simple and feasible method for detecting low-level or hidden pulse images in various imaging applications.

  13. Nonlinear restoration of pulse and high noisy images via stochastic resonance.

    PubMed

    Sun, Qibing; Liu, Hongjun; Huang, Nan; Wang, Zhaolu; Han, Jing; Li, Shaopeng

    2015-01-01

    We propose a novel scheme for restoring pulse and high noisy images using stochastic resonance, which is based on the modulation instability and provides a cross-correlation gain higher than 8. As opposed to previously reported designs, this unique approach employs a continuous noise and pulse signal for the generation of modulation instability. The visibility and quality of output images can be improved by appropriately adjusting the system parameters. This provides a simple and feasible method for detecting low-level or hidden pulse images in various imaging applications. PMID:26530885

  14. Nonlinear restoration of pulse and high noisy images via stochastic resonance

    PubMed Central

    Sun, Qibing; Liu, Hongjun; Huang, Nan; Wang, Zhaolu; Han, Jing; Li, Shaopeng

    2015-01-01

    We propose a novel scheme for restoring pulse and high noisy images using stochastic resonance, which is based on the modulation instability and provides a cross-correlation gain higher than 8. As opposed to previously reported designs, this unique approach employs a continuous noise and pulse signal for the generation of modulation instability. The visibility and quality of output images can be improved by appropriately adjusting the system parameters. This provides a simple and feasible method for detecting low-level or hidden pulse images in various imaging applications. PMID:26530885

  15. Impact of frequency and polarization diversity on a terahertz radar's imaging performance

    NASA Astrophysics Data System (ADS)

    Cooper, Ken B.; Dengler, Robert J.; Llombart, Nuria

    2011-05-01

    The Jet Propulsion Laboratory's 675 GHz, 25 m standoff imaging radar can achieve >1 Hz real time frame rates over 40x40 cm fields of view for rapid detection of person-borne concealed weapons. In its normal mode of operation, the radar generates imagery based solely on the time-of-flight, or range, between the radar and target. With good clothing penetration at 675 GHz, a hidden object will be detectable as an anomaly in the range-to-surface profile of a subject. Here we report on results of two modifications in the radar system that were made to asses its performance using somewhat different detection approaches. First, the radar's operating frequency and bandwidth were cut in half, to 340 GHz and 13 GHz, where there potential system advantages include superior transmit power and clothing penetration, as well as a lower cost of components. In this case, we found that the twofold reduction in range and cross-range resolution sharply limited the quality of through-clothes imagery, although some improvement is observed for detection of large targets concealed by very thick clothing. The second radar modification tested involved operation in a fully polarimetric mode, where enhanced image contrast might occur between surfaces with different material or geometric characteristics. Results from these tests indicated that random speckle dominates polarimetric power imagery, making it an unattractive approach for contrast improvement. Taken together, the experiments described here underscore the primary importance of high resolution imaging in THz radar applications for concealed weapons detection.

  16. Place Pulse : measuring the collaborative image of the city

    E-print Network

    Salesses, Mark Philip

    2012-01-01

    This thesis presents Place Pulse, a tool capable of conducting large crowdsourced visual preference surveys. The data collected with Place Pulse was used to create quantitative measures of the perceptions people hold of ...

  17. 21 CFR 892.1560 - Ultrasonic pulsed echo imaging system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... pulsed sound beam into body tissue to determine the depth or location of the tissue interfaces and to measure the duration of an acoustic pulse from the transmitter to the tissue interface and back to...

  18. Imaging the Cardiovascular Pulse Dept. of Computer Sc.

    E-print Network

    diseases, sport training, sleep studies, and psychophysiology (polygraph). 1. Introduction Monitoring of cardiac pulse is widely used in health care, sport training, sleep studies, and psycho- physiological's cardiac pulse. The golden standard for pulse measurement is Electro-Cardio- Graphy (ECG) [1]. ECG records

  19. Communication: SHG-detected circular dichroism imaging using orthogonal phase-locked laser pulses.

    PubMed

    Jarrett, Jeremy W; Liu, Xiaoying; Nealey, Paul F; Vaia, Richard A; Cerullo, Giulio; Knappenberger, Kenneth L

    2015-04-21

    We demonstrate a novel method for second harmonic generation-detected circular dichroism (CD) imaging based on the use of phase-locked, temporally delayed femtosecond laser pulses. The polarization state of the fundamental wave was controllably changed over 2? rad by using a birefringent delay line, which provided attosecond inter-pulse delays for orthogonal phase-locked replicas; the achievable phase stability was 14 as. By introducing either a positive or negative delay of ?667 as, we induced a ±?/2 phase shift between the orthogonally polarized pulses, resulting in left circularly polarized or right circularly polarized light. CD imaging performance using the pulse sequence was compared to results obtained for plasmonic nanoantennas using a rotating quarter-wave plate. The pulse sequence is expected to simplify polarization-resolved optical imaging by reducing experimental artifacts and decreasing image acquisition times. This method can be easily extended to other CD spectroscopy measurements. PMID:25903859

  20. Evaluation of human hairs with terahertz wave

    NASA Astrophysics Data System (ADS)

    Serita, Kazunori; Murakami, Hironaru; Kawayama, Iwao; Takahashi, Yoshinori; Yoshimura, Masashi; Mori, Yusuke; Tonouchi, Masayoshi

    2014-03-01

    Single human hairs using a scanning laser terahertz (THz) imaging system are evaluated. The system features near-field THz emission and far-field THz detection. A sample is set in the vicinity of a two-dimensional THz emitter, and an excitation laser beam is scanned over the emitter via a galvanometer. By detecting the transmitted THz wave pulses that are locally generated at the irradiation spots of the excitation laser, we can obtain the THz transmission image and the spectrum of the sample with imaging time of 47 s for 512×512 pixels and maximum resolution of ˜27 ?m. Using the system, we succeeded in observing the specific features of single human hairs in both the THz transmittance spectra and transmission images; it was found that the THz transmittance spectrum of gray hair shows a tendency of increase while that of black hair shows a decrease with increasing frequency above 1.2 THz. We could also observe the change of the moisture retention in the hair, and it is found that cuticles play one of the important roles in keeping moisture inside the hair. Those obtained data indicate that our system can be useful for evaluating single human hairs and those kinds of microscale samples.

  1. Stimulated Raman hyperspectral imaging based on spectral filtering of broadband fiber laser pulses.

    PubMed

    Ozeki, Yasuyuki; Umemura, Wataru; Sumimura, Kazuhiko; Nishizawa, Norihiko; Fukui, Kiichi; Itoh, Kazuyoshi

    2012-02-01

    We demonstrate a technique of hyperspectral imaging in stimulated Raman scattering (SRS) microscopy using a tunable optical filter, whose transmission wavelength can be varied quickly by a galvanometer mirror. Experimentally, broadband Yb fiber laser pulses are synchronized with picosecond Ti:sapphire pulses, and then spectrally filtered out by the filter. After amplification by fiber amplifiers, we obtain narrowband pulses with a spectral width of <3.3 cm(-1) and a wavelength tunability of >225 cm(-1). By using these pulses, we accomplish SRS imaging of polymer beads with spectral information. PMID:22297376

  2. High Dynamic Velocity Range Particle Image Velocimetry Using Multiple Pulse Separation Imaging

    PubMed Central

    Persoons, Tim; O’Donovan, Tadhg S.

    2011-01-01

    The dynamic velocity range of particle image velocimetry (PIV) is determined by the maximum and minimum resolvable particle displacement. Various techniques have extended the dynamic range, however flows with a wide velocity range (e.g., impinging jets) still challenge PIV algorithms. A new technique is presented to increase the dynamic velocity range by over an order of magnitude. The multiple pulse separation (MPS) technique (i) records series of double-frame exposures with different pulse separations, (ii) processes the fields using conventional multi-grid algorithms, and (iii) yields a composite velocity field with a locally optimized pulse separation. A robust criterion determines the local optimum pulse separation, accounting for correlation strength and measurement uncertainty. Validation experiments are performed in an impinging jet flow, using laser-Doppler velocimetry as reference measurement. The precision of mean flow and turbulence quantities is significantly improved compared to conventional PIV, due to the increase in dynamic range. In a wide range of applications, MPS PIV is a robust approach to increase the dynamic velocity range without restricting the vector evaluation methods. PMID:22346564

  3. Terahertz emission, detection, and military applications

    NASA Astrophysics Data System (ADS)

    Wu, Dong H.; Meyer, Jerry R.

    2004-09-01

    We review the current status of terahertz technologies, especially terahertz beam generators and detectors, which include those being developed in our laboratory. Of the many promising terahertz technologies, only a few may currently be suitable for military applications in the field, which require a high-power terahertz output and a high sensitivity in detection. In addition to these requirements, terahertz imaging for military applications demands focal-plane-arrayed detectors. Presently we are developing a terahertz source based on a modified difference-frequency technique, in which we employ an optical parametric method. We used a Nd:YAG Q-switched laser as a pump source, and LiNbO3 and GaSe crystals as the optical parametric medium. The phase matching condition is achieved by means of our new electro-optical tuning technique. Our preliminary experiments indicate that the new tuning technique enhances the terahertz-beam output power. Although the output power is currently unstable, our source can produce terahertz peak power as high as a few watts. For terahertz detection we use a Si-bolometer or an electro-optic (EO) detector. In addition to these sensors we are presently developing a new detector based on a quantum dot structure. The sensitivity of the quantum dot detector is expected to be about 10-21 W/(Hz)1/2 in terms of the noise equivalent power (NEP); this is orders of magnitude better than the sensitivity of our bolometer (10-13 W/(Hz)1/2) at 4.2 K or our EO detector (10-12 W/(Hz)1/2) at room temperature.

  4. MREIT conductivity imaging of canine head using multi-echo pulse sequence

    NASA Astrophysics Data System (ADS)

    Han, Y. Q.; Meng, Z. J.; Jeong, W. C.; Kim, Y. T.; Minhas, A. S.; Kim, H. J.; Nam, H. S.; Kwon, O.; Woo, E. J.

    2010-04-01

    In magnetic resonance electrical impedance tomography (MREIT), we measure induced magnetic flux densities subject to multiple injection currents to reconstruct cross-sectional conductivity images. Spin echo pulse sequence has been widely used in MREIT and produce postmortem and in vivo conductivity images of animal and human subjects. The image quality depends on the SNR of the measured magnetic flux density image. In order to reduce the scan time and current amplitude while keeping the image quality, we have developed a multi-echo pulse sequence for MREIT. In this study, we show results of canine head MREIT imaging experiments using the multi-echo pulse sequence. Compared to the injection current nonlinear encoding (ICNE) pulse sequence, it provides a higher SNR of MR magnitude images by combining multiple echo signals. Noise in measured magnetic flux density data is significantly reduced due to an increased current injection time over multiple echo signals. These allow us to significantly decrease the total scan time. Reconstructed conductivity images of a canine head show enhanced conductivity contrast between gray and white matter using the multi-echo pulse sequence. In our future work, we will focus on in vivo human and disease model animal experiments using the new MREIT pulse sequence.

  5. Characterization of burn injuries using terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Arbab, M. Hassan; Dickey, Trevor C.; Winebrenner, Dale P.; Chen, Antao; Mourad, Pierre D.

    2011-03-01

    The accuracy rates of the clinical assessment techniques used in grading burn injuries remain significantly low for partial thickness burns. In this paper, we present experimental results from terahertz characterization of 2nd and 3rd degree burn wounds induced on a rat model. Reflection measurements were obtained from the surface of both burned and normal skin using pulsed terahertz spectroscopy. Signal processing techniques are described for interpretation of the acquired terahertz waveform and differentiation of burn wounds. Furthermore, the progression of burn injuries is shown by comparison between acute characterization and 72-hours survival studies. While the water content of healthy and desiccated skin has been considered as a source of terahertz signal contrast, it is demonstrated that other biological effects such as formation of post-burn interstitial edema as well as the density of the discrete scattering structures in the skin (such as hair follicles, sweat glands, etc.) play a significant role in the terahertz response of the burn wounds.

  6. Chirped Pulse Adiabatic Passage in CARS for Imaging of Biological Structure and Dynamics

    SciTech Connect

    Malinovskaya, Svetlana A.

    2007-12-26

    We propose the adiabatic passage control scheme implementing chirped femtosecond laser pulses to maximize coherence in a predetermined molecular vibrational mode using two-photon Raman transitions. We investigate vibrational energy relaxation and collisional dephasing as factors of coherence loss, and demonstrate the possibility for preventing decoherence by the chirped pulse train. The proposed method may be used to advance noninvasive biological imaging techniques.

  7. Development of a novel acoustic lens based pulse echo ultrasound imaging system

    NASA Astrophysics Data System (ADS)

    Sinha, Saugata; Rao, Navalgund A.

    2014-03-01

    Acoustic lens based focusing technology where the image reconstruction is achieved through the focusing of an acoustic lens, can potentially replace time consuming and expensive electronic focusing technology for producing high resolution real time ultrasound (US) images. A novel acoustic lens focusing based pulse echo US imaging system is explored here. In the system, a Polyvinylidene fluoride (PVDF) film transducer generates plane wave which is backscattered by the object and focused by a spherical acoustic lens on to a linear array of transducers. To improve the anticipated low signal to noise ratio (SNR) of the received US signal due to the low electromechanical coupling coefficient of the PVDF film, here we explored the possibility of implementing pulse compression technique using linear frequency modulated (FM) signals or chirp signals. Comparisons among the different SNR values obtained with short pulse and after pulse compression with chirp signal show a clear improvement of the SNR for the compressed pulse. The preliminary results show that the SNR achieved for the compressed pulse depends on time bandwidth product of the input chirp and the spectrum of the US transducers. The axial resolution obtained with compressed pulse improved with increasing sweep bandwidth of input chirp signals, whereas the lateral resolution remained almost constant. This work demonstrates the feasibility of using a PVDF film transducer as an US transmitter in an acoustic lens focusing based imaging system and implementing pulse compression technique into the same setup to improve SNR of the received US signal.

  8. Correlation chemical shift imaging with low-power adiabatic pulses and constant-density spiral trajectories

    E-print Network

    Andronesi, Ovidiu C.

    In this work we introduce the concept of correlation chemical shift imaging (CCSI). Novel CCSI pulse sequences are demonstrated on clinical scanners for two-dimensional Correlation Spectroscopy (COSY) and Total Correlation ...

  9. Terahertz radiation from a laser plasma filament

    NASA Astrophysics Data System (ADS)

    Wu, H.-C.; Meyer-Ter-Vehn, J.; Ruhl, H.; Sheng, Z.-M.

    2011-03-01

    By the use of two-dimensional particle-in-cell simulations, we clarify the terahertz (THz) radiation mechanism from a plasma filament formed by an intense femtosecond laser pulse. The nonuniform plasma density of the filament leads to a net radiating current for THz radiation. This current is mainly located within the pulse and the first cycle of the wakefield. As the laser pulse propagates, a single-cycle and radially polarized THz pulse is constructively built up forward. The single-cycle shape is mainly due to radiation damping effect.

  10. Terahertz metamaterials

    SciTech Connect

    Chen, Hou-tong; Taylor, Antoineete J; Azad, Abul K; O' Hara, John F

    2009-01-01

    In this paper we present our recent developments in terahertz (THz) metamaterials and devices. Planar THz metamaterials and their complementary structures fabricated on suitable substrates have shown electric resonant response, which causes the band-pass or band-stop property in THz transmission and reflection. The operational frequency can be further tuned up to 20% upon photoexcitation of an integrated semiconductor region in the splitring resonators as the metamaterial elements. On the other hand, the use of semiconductors as metamaterial substrates enables dynamical control of metamaterial resonances through photoexcitation, and reducing the substrate carrier lifetime further enables an ultrafast switching recovery. The metamaterial resonances can also be actively controlled by application of a voltage bias when they are fabricated on semiconductor substrates with appropriate doping concentration and thickness. Using this electrically driven approach, THz modulation depth up to 80% and modulation speed of 2 MHz at room temperature have been demonstrated, which suggests practical THz applications.

  11. 64 ?W pulsed terahertz emission from growth optimized InGaAs/InAlAs heterostructures with separated photoconductive and trapping regions

    SciTech Connect

    Dietz, Roman J. B.; Globisch, Björn; Stanze, Dennis; Roehle, Helmut; Göbel, Thorsten; Schell, Martin; Gerhard, Marina; Velauthapillai, Ajanthkrishna; Koch, Martin

    2013-08-05

    We present results on optimized growth temperatures and layer structure design of high mobility photoconductive Terahertz (THz) emitters based on molecular beam epitaxy grown In{sub 0.53}Ga{sub 0.47}As/In{sub 0.52}Al{sub 0.48}As multilayer heterostructures (MLHS). The photoconductive antennas made of these MLHS are evaluated as THz emitters in a THz time domain spectrometer and with a Golay cell. We measured a THz bandwidth in excess of 4 THz and average THz powers of up to 64 ?W corresponding to an optical power-to-THz power conversion efficiency of up to 2 × 10{sup ?3}.

  12. Broadband terahertz amplification in a heterogeneous quantum cascade laser.

    PubMed

    Bachmann, Dominic; Leder, Norbert; Rösch, Markus; Scalari, Giacomo; Beck, Mattias; Arthaber, Holger; Faist, Jérôme; Unterrainer, Karl; Darmo, Juraj

    2015-02-01

    We demonstrate a broadband terahertz amplifier based on ultrafast gain switching in a quantum cascade laser. A heterogeneous active region is processed into a coupled cavity metal-metal waveguide device and provides broadband terahertz gain that allows achieving an amplification bandwidth of more than 500 GHz. The temporal and spectral evolution of a terahertz seed pulse, which is generated in an integrated emitter section, is presented and an amplification factor of 21 dB is reached. Furthermore, the quantum cascade amplifier emission spectrum of the emerging sub-nanosecond terahertz pulse train is measured by time-domain spectroscopy and reveals discrete modes between 2.14 and 2.68 THz. PMID:25836170

  13. Focus and Alignment Tolerance in a Photoconductive Terahertz Source

    NASA Astrophysics Data System (ADS)

    Paz-Martínez, Gaudencio; Garduño-Mejía, Jesus; Kolokoltsev, Oleg V.; Treviño-Palacios, Carlos G.; Qureshi, Naser

    2015-09-01

    Robust coupling between a pulsed laser beam and a photoelectric circuit is an important issue in the development of miniaturized, integrated, and embedded terahertz instrumentation. Here, we present a study of the effect of varying the focus and alignment parameters of an excitation laser pulse on the emission characteristics of a standard Hertzian-dipole type terahertz photoelectric source. The objective is to quantify the tolerance of a terahertz time-domain spectroscopy system, and we study the variation of peak amplitude, waveform, phase, and energy distribution as a function of excitation position and defocus. We find that a terahertz source can be made relatively tolerant to variations in focus, alignment, and details of the geometry of the photoelectric system, providing a window for a more robust field operation.

  14. Pulse-width considerations for nonlinear Raman brain imaging: whither the optimum?

    NASA Astrophysics Data System (ADS)

    Lanin, A. A.; Stepanov, E. A.; Tikhonov, R. A.; Sidorov-Biryukov, D. A.; Fedotov, A. B.; Zheltikov, A. M.

    2015-11-01

    We propose simple, yet efficient strategies of pulse-width optimization applicable for nonlinear Raman brain imaging. With the spectral bandwidth of laser pulses accurately matched against the bandwidth of molecular vibrations, the coherent Raman signal is shown to be radically enhanced, enabling higher sensitivities and higher frame rates in nonlinear Raman brain imaging. As a specific example, we show that subpicosecond pulses offer a powerful tool for the detection of brain tumors using stimulated Raman microscopy, as they provide a strong signal without compromising the molecular specificity.

  15. Current density imaging sequence for monitoring current distribution during delivery of electric pulses in irreversible electroporation

    PubMed Central

    2015-01-01

    Background Electroporation is gaining its importance in everyday clinical practice of cancer treatment. For its success it is extremely important that coverage of the target tissue, i.e. treated tumor, with electric field is within the specified range. Therefore, an efficient tool for the electric field monitoring in the tumor during delivery of electroporation pulses is needed. The electric field can be reconstructed by the magnetic resonance electric impedance tomography method from current density distribution data. In this study, the use of current density imaging with MRI for monitoring current density distribution during delivery of irreversible electroporation pulses was demonstrated. Methods Using a modified single-shot RARE sequence, where four 3000 V and 100 ?s long pulses were included at the start, current distribution between a pair of electrodes inserted in a liver tissue sample was imaged. Two repetitions of the sequence with phases of refocusing radiofrequency pulses 90° apart were needed to acquire one current density image. For each sample in total 45 current density images were acquired to follow a standard protocol for irreversible electroporation where 90 electric pulses are delivered at 1 Hz. Results Acquired current density images showed that the current density in the middle of the sample increased from first to last electric pulses by 60%, i.e. from 8 kA/m2 to 13 kA/m2 and that direction of the current path did not change with repeated electric pulses significantly. Conclusions The presented single-shot RARE-based current density imaging sequence was used successfully to image current distribution during delivery of short high-voltage electric pulses. The method has a potential to enable monitoring of tumor coverage by electric field during irreversible electroporation tissue ablation. PMID:26356233

  16. Single-chip pulse programmer for magnetic resonance imaging using a 32-bit microcontroller.

    PubMed

    Handa, Shinya; Domalain, Thierry; Kose, Katsumi

    2007-08-01

    A magnetic resonance imaging (MRI) pulse programmer has been developed using a single-chip microcontroller (ADmicroC7026). The microcontroller includes all the components required for the MRI pulse programmer: a 32-bit RISC CPU core, 62 kbytes of flash memory, 8 kbytes of SRAM, two 32-bit timers, four 12-bit DA converters, and 40 bits of general purpose I/O. An evaluation board for the microcontroller was connected to a host personal computer (PC), an MRI transceiver, and a gradient driver using interface circuitry. Target (embedded) and host PC programs were developed to enable MRI pulse sequence generation by the microcontroller. The pulse programmer achieved a (nominal) time resolution of approximately 100 ns and a minimum time delay between successive events of approximately 9 micros. Imaging experiments using the pulse programmer demonstrated the effectiveness of our approach. PMID:17764345

  17. A modulated pulse laser for underwater detection, ranging, imaging, and communications

    NASA Astrophysics Data System (ADS)

    Cochenour, Brandon; Mullen, Linda; Muth, John

    2012-06-01

    A new, modulated-pulse, technique is currently being investigated for underwater laser detection, ranging, imag- ing, and communications. This technique represents a unique marriage of pulsed and intensity modulated sources. For detection, ranging, and imaging, the source can be congured to transmit a variety of intensity modulated waveforms, from single-tone to pseudorandom code. The utility of such waveforms in turbid underwater envi- ronments in the presence of backscatter is investigated in this work. The modulated pulse laser may also nd utility in underwater laser communication links. In addition to exibility in modulation format additional variable parameters, such as macro-pulse width and macro-pulse repetition rate, provide a link designer with additional methods of optimizing links based on the bandwidth, power, range, etc. needed for the application. Initial laboratory experiments in simulated ocean waters are presented.

  18. Terahertz emission from a two-color plasma filament in a slot waveguide

    SciTech Connect

    Dietze, D.; Unterrainer, K.; Darmo, J.

    2012-02-27

    Terahertz emission in forward direction from a long two-color filament placed in the center of a slot waveguide is reported. The waveguide improves the collection and imaging of the generated THz radiation. By tuning the plate separation and position of the waveguide along the filament axis, the emitted mode can be matched to the collection optics. We achieved an increase of the detected electric field by 40% and of the THz pulse energy by four times compared to the case without waveguide.

  19. Flexible waveguide enabled single-channel terahertz endoscopic system

    NASA Astrophysics Data System (ADS)

    Doradla, Pallavi; Alavi, Karim; Joseph, Cecil S.; Giles, Robert H.

    2015-03-01

    Colorectal cancer is the third most commonly diagnosed cancer in the world. The current standard of care for colorectal cancer is the conventional colonoscopy, which relies exclusively on the Physician's experience. Continuous wave terahertz (THz) imaging has the potential to offer a safe, noninvasive medical imaging modality for detecting cancers. The current study demonstrates the design and development of a prototype terahertz endoscopic system based on flexible metal-coated terahertz waveguides. A CO2 pumped Far-Infrared molecular gas laser operating at 584 GHz frequency was used for illuminating the tissue, while the reflected signals were detected using liquid Helium cooled silicon bolometer. The continuous-wave terahertz imaging system utilizes a single waveguide channel to transmit the radiation and collect the back reflected intrinsic terahertz signal from the sample and is capable of operation in both transmission and reflection modalities. The two dimensional reflectance images obtained using a prototype terahertz endoscopic system showed intrinsic contrast between cancerous and normal regions of the colorectal tissue, thereby demonstrating the potential impact of terahertz imaging for in vivo cancer detection.

  20. Characteristic responses of biological and nanoscale systems in the terahertz frequency range

    SciTech Connect

    Angeluts, A A; Balakin, A V; Evdokimov, M G; Ozheredov, I A; Sapozhnikov, D A; Solyankin, P M; Shkurinov, A P; Esaulkov, M N; Nazarov, M M; Cherkasova, O P

    2014-07-31

    This paper briefly examines methods for the generation of pulsed terahertz radiation and principles of pulsed terahertz spectroscopy, an advanced informative method for studies of complex biological and nanostructured systems. Some of its practical applications are described. Using a number of steroid hormones as examples, we demonstrate that terahertz spectroscopy in combination with molecular dynamics methods and computer simulation allows one to gain information about the structure of molecules in crystals. A 'terahertz colour vision' method is proposed for analysis of pulsed terahertz signals reflected from biological tissues and it is shown that this method can be effectively used to analyse the properties of biological tissues and for early skin cancer diagnosis. (laser biophotonics)

  1. On-Demand Lensless Single Cell Imaging Activated by Differential Resistive Pulse Sensing.

    PubMed

    Guo, Jinhong; Huang, Xiwei; Ai, Ye

    2015-07-01

    We present an on-demand single cell imaging technique activated by differential resistive pulse sensing in a portable system integrating a microfluidic differential coulter counter and a lensless complementary metal-oxide-semiconductor (CMOS) imaging sensor. Dual parametric single cell analysis and on-demand single cell imaging have been demonstrated by microbeads of different sizes and a cell mixture including red blood cells (RBCs) and tumor cell line HepG2 cells. The on-demand imaging capability could avoid generating useless images without cells and enable selective imaging of single cells within a specific size range. PMID:26035335

  2. Wide-band Pulse-echo Imaging with Distributed Apertures in Multi-path Environments

    E-print Network

    Yazici, Birsen

    Wide-band Pulse-echo Imaging with Distributed Apertures in Multi-path Environments T. Varslot , B be located several hundred wavelengths apart. Such an array is referred to as distributed aperture [2 to image extended objects using a distributed aperture by employing wide-band transmit waveforms

  3. Characterization of pulsed (plasma focus) neutron source with image plate and application to neutron radiography

    SciTech Connect

    Andola, Sanjay; Niranjan, Ram; Rout, R. K.; Kaushik, T. C.; Gupta, S. C.; Shaikh, A. M.

    2013-02-05

    Plasma focus device of Mather type developed in house has been used first time for neutron radiography of different objects. The device gives (1.2{+-}0.3) Multiplication-Sign 10{sup 9} neutrons per pulse produced by D-D fusion reaction with a pulse width of 50{+-}5 ns. The method involves exposing sample to be radiographed to thermalized D-D neutrons and recording the image on Fuji-film BAS-ND image plates. The thermal neutron component of the moderated beam was estimated using two image plates: a conventional IP for X-rays and gamma rays, and an IP doped with Gd for detecting neutrons.

  4. Study of terahertz intensity dependence on time resolved dynamic fringes in the interferometric autocorrelation setup

    NASA Astrophysics Data System (ADS)

    Venkatesh, M.; Chaudhary, A. K.

    2014-10-01

    Terahertz signal is generated from Low temperature gallium arsenide photoconductive dipole antennas (gap = 5?m, length = 20?m) by focusing 15 fs laser pulses and applying 12V DC across it. Terahertz intensity is detected by Pyroelectric detector (THZ1.5MB-USB). The collinear autocorrelation arrangement provides dynamic fringes which are allowed to be incident on photoconductive antennas to study the variation in terahertz intensity with respect to delay between laser pulses. Interestingly, the profile of THz intensity variation was similar to interferometric autocorrelation signal of laser pulses. The THz power attenuation with its propagation distance in atmosphere was measured.

  5. Acoustic investigation of microbubble response to medical imaging ultrasound pulses 

    E-print Network

    Thomas, David H.

    2010-01-01

    Ultrasound contrast agents have the ability to provide locally increased echogenicity, improving the sensitivity and specificity of images. Due to the unique interaction of microbubbles with the imaging ultrasound field, ...

  6. Analysis of rectangular resonant cavities in terahertz parallel-plate waveguides

    E-print Network

    Natelson, Douglas

    Analysis of rectangular resonant cavities in terahertz parallel-plate waveguides Victoria Astley of rectangular resonant cavities integrated into parallel-plate waveguides, using terahertz pulses. When the waveguide is excited with the lowest-order transverse- electric mode, these cavities exhibit resonances

  7. Development of tunable terahertz quantum cascade wire lasers

    E-print Network

    Qin, Qi, Ph. D. Massachusetts Institute of Technology

    2012-01-01

    For a long time, terahertz (THz) radiation has been of great interest to scientific community because of its spectroscopic and imaging applications based on its unique properties, such as the capabilities to penetrate many ...

  8. Porous polymer fibers for low-loss Terahertz guiding

    E-print Network

    Skorobogatiy, Maksim

    Spectroscopy to Quantify Pharmaceutical Polymorphism and Crystallinity," J. Pharmaceutical Sci. 94, 837-destructive terahertz imaging of illicit drugs using spectral fingerprints," Opt. Express 11, 2549-2554 (2003). 8. T

  9. Pulse

    MedlinePLUS

    ... resting for at least 10 minutes. Take the exercise heart rate while you are exercising. ... pulse rate can help determine if the patient's heart is pumping. ... rate gives information about your fitness level and health.

  10. Terahertz surface emission from Cu{sub 2}ZnSnSe{sub 4} thin film photovoltaic material excited by femtosecond laser pulses

    SciTech Connect

    Zhao, Zhenyu Han, Qifeng; Zhang, Jingtao; Shi, Wangzhou; Niehues, Gudrun; Funkner, Stefan; Yamamoto, Kohji; Tani, Masahiko; Estacio, Elmer; Guo, Qixin

    2014-12-08

    We observed efficient terahertz (THz) emission from sol-gel grown Cu{sub 2}ZnSnSe{sub 4} (CZTSe) thin films using THz time domain spectroscopy technique. The THz emission bandwidth exceeds 2 THz with a dynamic range of 20?dB in the amplitude spectrum. The THz emission amplitude from CZTSe is found to be independent of external magnetic fields. Comparing the polarity of THz emission waveforms of CZTSe and GaAs, we suggest that the acceleration of photo-carriers in the surface accumulation layer of CZTSe is the dominant mechanism of radiation emission. Optical excitation fluence dependence measurements show that the saturation fluence of the CZTSe thin film reaches 1.48??J/cm{sup 2}.

  11. Potential for biomolecular imaging with femtosecond X-ray pulses.

    PubMed

    Neutze, R; Wouts, R; van der Spoel, D; Weckert, E; Hajdu, J

    2000-08-17

    Sample damage by X-rays and other radiation limits the resolution of structural studies on non-repetitive and non-reproducible structures such as individual biomolecules or cells. Cooling can slow sample deterioration, but cannot eliminate damage-induced sample movement during the time needed for conventional measurements. Analyses of the dynamics of damage formation suggest that the conventional damage barrier (about 200 X-ray photons per A2 with X-rays of 12 keV energy or 1 A wavelength) may be extended at very high dose rates and very short exposure times. Here we have used computer simulations to investigate the structural information that can be recovered from the scattering of intense femtosecond X-ray pulses by single protein molecules and small assemblies. Estimations of radiation damage as a function of photon energy, pulse length, integrated pulse intensity and sample size show that experiments using very high X-ray dose rates and ultrashort exposures may provide useful structural information before radiation damage destroys the sample. We predict that such ultrashort, high-intensity X-ray pulses from free-electron lasers that are currently under development, in combination with container-free sample handling methods based on spraying techniques, will provide a new approach to structural determinations with X-rays. PMID:10963603

  12. Magneto-optical imaging of magnetic domain pattern produced by intense femtosecond laser pulse irradiation

    NASA Astrophysics Data System (ADS)

    Sinha, Jaivarhan; Mohan, Shyam; Banerjee, S. S.; Kahaly, S.; Kumar, G. Ravindra

    2009-03-01

    An important and intriguing area of research is laser plasma generated giant magnetic field pulses. Interaction of ultrashort high intensity laser pulses with matter involves several mechanisms for generating ultrastrong magnetic fields. By irradiating a magnetic recordable tape constituting of ?-Fe2O3 particles with an intense p-polarized femtosecond laser pulses (˜ 10^16 W cm-2, 100fs), we have found complex magnetic field patterns stored in the tape. We image the local magnetic field distribution around the irradiated region [1] using the high sensitivity magneto-optical imaging technique. We understand the complex magnetic domains patterns recoded on the tape in terms of interesting instabilities [1] generated in the plasma produced during the irradiation of the tape with intense laser pulses. [0pt] [1] Jaivardhan Sinha, Shyam Mohan, S. S Banerjee, S. Kahaly, G. Ravindra Kumar, Phys. Rev. E 77, 046118(2008). *satyajit@iitk.ac.in

  13. A Versatile High Speed 250 MHz Pulse Imager for Biomedical Applications

    PubMed Central

    Epel, Boris; Sundramoorthy, Subramanian V.; Mailer, Colin; Halpern, Howard J.

    2009-01-01

    A versatile 250 MHz pulse electron paramagnetic resonance (EPR) instrument for imaging of small animals is presented. Flexible design of the imager hardware and software makes it possible to use virtually any pulse EPR imaging modality. A fast pulse generation and data acquisition system based on general purpose PCI boards performs measurements with minimal additional delays. Careful design of receiver protection circuitry allowed us to achieve very high sensitivity of the instrument. In this article we demonstrate the ability of the instrument to obtain three dimensional images using the electron spin echo (ESE) and single point imaging (SPI) methods. In a phantom that contains a 1 mM solution of narrow line (16 ?T, peak-to-peak) paramagnetic spin probe we achieved an acquisition time of 32 seconds per image with a fast 3D ESE imaging protocol. Using an 18 minute 3D phase relaxation (T2e) ESE imaging protocol in a homogeneous sample a spatial resolution of 1.4 mm and a standard deviation of T2e of 8.5% were achieved. When applied to in vivo imaging this precision of T2e determination would be equivalent to 2 torr resolution of oxygen partial pressure in animal tissues. PMID:19924261

  14. Integrated heterodyne terahertz transceiver

    DOEpatents

    Lee, Mark (Albuquerque, NM); Wanke, Michael C. (Albuquerque, NM)

    2009-06-23

    A heterodyne terahertz transceiver comprises a quantum cascade laser that is integrated on-chip with a Schottky diode mixer. An antenna connected to the Schottky diode receives a terahertz signal. The quantum cascade laser couples terahertz local oscillator power to the Schottky diode to mix with the received terahertz signal to provide an intermediate frequency output signal. The fully integrated transceiver optimizes power efficiency, sensitivity, compactness, and reliability. The transceiver can be used in compact, fieldable systems covering a wide variety of deployable applications not possible with existing technology.

  15. Integrated heterodyne terahertz transceiver

    SciTech Connect

    Wanke, Michael C.; Lee, Mark; Nordquist, Christopher D.; Cich, Michael J.

    2012-09-25

    A heterodyne terahertz transceiver comprises a quantum cascade laser that is integrated on-chip with a Schottky diode mixer. A terahertz signal can be received by an antenna connected to the mixer, an end facet or sidewall of the laser, or through a separate active section that can amplify the incident signal. The quantum cascade laser couples terahertz local oscillator power to the Schottky diode to mix with the received terahertz signal to provide an intermediate frequency output signal. The fully integrated transceiver optimizes power efficiency, sensitivity, compactness, and reliability. The transceiver can be used in compact, fieldable systems covering a wide variety of deployable applications not possible with existing technology.

  16. RF Shimming Pulses For Ex-Situ NMR Spectroscopy and Imaging Using B1 Inhomogeneities

    E-print Network

    Bouchard, Louis-S

    2007-01-01

    I describe a method for generating "shim pulses" for NMR spectroscopy and imaging (MRI) by taking advantage of the inherent inhomogeneity in the static and radiofrequency (RF) fields of a one-sided NMR system. The RF inhomogeneity here is assumed, without loss of generality, to be a linear gradient. General polynomials in the spatial variables can be generated using x, y and z RF gradients using trains of hard pulses which result in linear combinations of monomials xy, y^2, xz etc., and any desired scalings of these monomials. The basic shim pulse is constructed using small tip angle approximations.

  17. Pulsed Laser Microbeam-Induced Cell Lysis: Time-Resolved Imaging and Analysis of Hydrodynamic Effects

    PubMed Central

    Rau, Kaustubh R.; Quinto-Su, Pedro A.; Hellman, Amy N.; Venugopalan, Vasan

    2006-01-01

    Time-resolved imaging was used to examine the use of pulsed laser microbeam irradiation to produce cell lysis. Lysis was accomplished through the delivery of 6 ns, ? = 532 nm laser pulses via a 40×, 0.8 NA objective to a location 10 ?m above confluent monolayers of PtK2 cells. The process dynamics were examined at cell surface densities of 600 and 1000 cells/mm2 and pulse energies corresponding to 0.7×, 1×, 2×, and 3× the threshold for plasma formation. The cell lysis process was imaged at times of 0.5 ns to 50 ?s after laser pulse delivery and revealed the processes of plasma formation, pressure wave propagation, and cavitation bubble dynamics. Cavitation bubble expansion was the primary agent of cell lysis with the zone of lysed cells fully established within 600 ns of laser pulse delivery. The spatial extent of cell lysis increased with pulse energy but decreased with cell surface density. Hydrodynamic analysis indicated that cells subject to transient shear stresses in excess of a critical value were lysed while cells exposed to lower shear stresses remained adherent and viable. This critical shear stress is independent of laser pulse energy and varied from ?60–85 kPa for cell monolayers cultured at a density of 600 cells/mm2 to ?180–220 kPa for a surface density of 1000 cells/mm2. The implications for single cell lysis and microsurgery are discussed. PMID:16617076

  18. Multiresolution Approach for Noncontact Measurements of Arterial Pulse Using Thermal Imaging

    NASA Astrophysics Data System (ADS)

    Chekmenev, Sergey Y.; Farag, Aly A.; Miller, William M.; Essock, Edward A.; Bhatnagar, Aruni

    This chapter presents a novel computer vision methodology for noncontact and nonintrusive measurements of arterial pulse. This is the only investigation that links the knowledge of human physiology and anatomy, advances in thermal infrared (IR) imaging and computer vision to produce noncontact and nonintrusive measurements of the arterial pulse in both time and frequency domains. The proposed approach has a physical and physiological basis and as such is of a fundamental nature. A thermal IR camera was used to capture the heat pattern from superficial arteries, and a blood vessel model was proposed to describe the pulsatile nature of the blood flow. A multiresolution wavelet-based signal analysis approach was applied to extract the arterial pulse waveform, which lends itself to various physiological measurements. We validated our results using a traditional contact vital signs monitor as a ground truth. Eight people of different age, race and gender have been tested in our study consistent with Health Insurance Portability and Accountability Act (HIPAA) regulations and internal review board approval. The resultant arterial pulse waveforms exactly matched the ground truth oximetry readings. The essence of our approach is the automatic detection of region of measurement (ROM) of the arterial pulse, from which the arterial pulse waveform is extracted. To the best of our knowledge, the correspondence between noncontact thermal IR imaging-based measurements of the arterial pulse in the time domain and traditional contact approaches has never been reported in the literature.

  19. Application of Hilbert-Huang Transform for Improved Defect Detection in Terahertz NDE of Shuttle Tiles

    NASA Technical Reports Server (NTRS)

    Anastasi, Robert F.; Madaras, Eric I.

    2005-01-01

    Terahertz NDE is being examined as a method to inspect the adhesive bond-line of Space Shuttle tiles for defects. Terahertz signals are generated and detected, using optical excitation of biased semiconductors with femtosecond laser pulses. Shuttle tile samples were manufactured with defects that included repair regions unbond regions, and other conditions that occur in Shuttle structures. These samples were inspected with a commercial terahertz NDE system that scanned a tile and generated a data set of RF signals. The signals were post processed to generate C-scan type images that are typically seen in ultrasonic NDE. To improve defect visualization the Hilbert-Huang Transform, a transform that decomposes a signal into oscillating components called intrinsic mode functions, was applied to test signals identified as being in and out of the defect regions and then on a complete data set. As expected with this transform, the results showed that the decomposed low-order modes correspond to signal noise while the high-order modes correspond to low frequency oscillations in the signal and mid-order modes correspond to local signal oscillations. The local oscillations compare well with various reflection interfaces and the defect locations in the original signal.

  20. Comparison of pulse sequences for R1-based electron paramagnetic resonance oxygen imaging

    NASA Astrophysics Data System (ADS)

    Epel, Boris; Halpern, Howard J.

    2015-05-01

    Electron paramagnetic resonance (EPR) spin-lattice relaxation (SLR) oxygen imaging has proven to be an indispensable tool for assessing oxygen partial pressure in live animals. EPR oxygen images show remarkable oxygen accuracy when combined with high precision and spatial resolution. Developing more effective means for obtaining SLR rates is of great practical, biological and medical importance. In this work we compared different pulse EPR imaging protocols and pulse sequences to establish advantages and areas of applicability for each method. Tests were performed using phantoms containing spin probes with oxygen concentrations relevant to in vivo oxymetry. We have found that for small animal size objects the inversion recovery sequence combined with the filtered backprojection reconstruction method delivers the best accuracy and precision. For large animals, in which large radio frequency energy deposition might be critical, free induction decay and three pulse stimulated echo sequences might find better practical usage.

  1. Comparison of pulse sequences for R1-based electron paramagnetic resonance oxygen imaging.

    PubMed

    Epel, Boris; Halpern, Howard J

    2015-05-01

    Electron paramagnetic resonance (EPR) spin-lattice relaxation (SLR) oxygen imaging has proven to be an indispensable tool for assessing oxygen partial pressure in live animals. EPR oxygen images show remarkable oxygen accuracy when combined with high precision and spatial resolution. Developing more effective means for obtaining SLR rates is of great practical, biological and medical importance. In this work we compared different pulse EPR imaging protocols and pulse sequences to establish advantages and areas of applicability for each method. Tests were performed using phantoms containing spin probes with oxygen concentrations relevant to in vivo oxymetry. We have found that for small animal size objects the inversion recovery sequence combined with the filtered backprojection reconstruction method delivers the best accuracy and precision. For large animals, in which large radio frequency energy deposition might be critical, free induction decay and three pulse stimulated echo sequences might find better practical usage. PMID:25828242

  2. Terahertz radiation by optical rectification in a hydrogen-bonded organic molecular ferroelectric crystal, 2-phenylmalondialdehyde

    E-print Network

    Guan, W; Sotome, M; Kinoshita, Y; Takeda, R; Inoue, A; Horiuchi, S; Okamoto, H

    2014-01-01

    Terahertz radiation by optical rectification has been observed at room temperature in a hydrogen-bonded organic molecular ferroelectric crystal, 2-phenyl malondialdehyde (PhMDA). The radiated electromagnetic wave consisted of a single-cycle terahertz pulse with a temporal width of $\\sim$ 0.5 ps. The terahertz radiation amplitude divided by the sample thickness in PhMDA was nearly equivalent to that in a typical terahertz wave emitter ZnTe. This is attributable to a long coherence length in the range of 130 $\\sim$ 800 $\\mu$m for the terahertz radiation from PhMDA. We also discussed the possibility of PhMDA as a terahertz wave emitter in terms of the phase-matching condition.

  3. Pulse-dilation enhanced gated optical imager with 5 ps resolution (invited)

    SciTech Connect

    Hilsabeck, T. J.; Kilkenny, J. D.; Hares, J. D.; Dymoke-Bradshaw, A. K. L.; Bell, P. M.; Koch, J. A.; Celliers, P. M.; Bradley, D. K.; McCarville, T.; Pivovaroff, M.; Soufli, R.; Bionta, R.

    2010-10-15

    A 5 ps gated framing camera was demonstrated using the pulse-dilation of a drifting electron signal. The pulse-dilation is achieved by accelerating a photoelectron derived information pulse with a time varying potential [R. D. Prosser, J. Phys. E 9, 57 (1976)]. The temporal dependence of the accelerating potential causes a birth time dependent axial velocity dispersion that spreads the pulse as it transits a drift region. The expanded pulse is then imaged with a conventional gated microchannel plate based framing camera and the effective gating time of the combined instrument is reduced over that of the framing camera alone. In the drift region, electron image defocusing in the transverse or image plane is prevented with a large axial magnetic field. Details of the unique issues associated with rf excited photocathodes were investigated numerically and a prototype instrument based on this principle was recently constructed. Temporal resolution of the instrument was measured with a frequency tripled femtosecond laser operating at 266 nm. The system demonstrated 20x temporal magnification and the results are presented here. X-ray image formation strategies and photometric calculations for inertial confinement fusion implosion experiments are also examined.

  4. Deep imaging with low-cost photoacoustic tomography system with pulsed diode laser

    NASA Astrophysics Data System (ADS)

    Pramanik, Manojit

    2015-07-01

    Optical imaging beyond a few mm inside biological tissue is a challenging task due to the light scattering inside the biological tissue. Photoacoustic tomography (PAT) breaks this depth limit of optical imaging by combining light and sound. Over the last few years PAT has emerged as a viable deep tissue imaging modality and created lot of attention to the medical imaging community. However, the cost, size and time consuming image acquisition of the PAT system is deterrent to its translation to real clinical applications. So, there is a need for inexpensive, compact, simple, fast PAT imaging system for easy adoption by the clinical practitioners. Nanosecond pulsed laser diodes could help to bring down the cost, size and image acquisition time and make PAT attractive for deep tissue imaging of optical contrast with high resolution. In this work, we present our findings on using a low-cost pulsed diode laser for deep tissue imaging with photoacoustics. The PAT system was tested on tissue phantoms to verify its potential imaging depth demonstration. Up to 3 cm deep inside chicken breast tissue we were able to see photoacoustic signals and up to 2 cm deep we were able to image successfully.

  5. A polarization-independent broadband terahertz absorber

    SciTech Connect

    Shi, Cheng; Zang, XiaoFei E-mail: ymzhu@usst.edu.cn; Wang, YiQiao; Chen, Lin; Cai, Bin; Zhu, YiMing E-mail: ymzhu@usst.edu.cn

    2014-07-21

    A highly efficient broadband terahertz absorber is designed, fabricated, and experimentally as well as theoretically evaluated. The absorber comprises a heavily doped silicon substrate and a well-designed two-dimensional grating. Due to the destructive interference of waves and diffraction, the absorber can achieve over 95% absorption in a broad frequency range from 1 to 2 THz and for angles of incidence from 0° to 60°. Such a terahertz absorber is also polarization-independent due to its symmetrical structure. This omnidirectional and broadband absorber have potential applications in anti-reflection coatings, imaging systems, and so on.

  6. Perfect terahertz absorber using fishnet based metafilm

    SciTech Connect

    Azad, Abul Kalam; Shchegolkov, Dmitry Yu; Chen, Houtong; Taylor, Antoinette; Smirnova, E I; O' Hara, John F

    2009-01-01

    We present a perfect terahertz (THz) absorber working for a broad-angle of incidence. The two fold symmetry of rectangular fishnet structure allows either complete absorption or mirror like reflection depending on the polarization of incident the THz beam. Metamaterials enable the ability to control the electromagnetic wave in a unique fashion by designing the permittivity or permeability of composite materials with desired values. Although the initial idea of metamaterials was to obtain a negative index medium, however, the evolution of metamaterials (MMs) offers a variety of practically applicable devices for controlling electromagnetic wave such as tunable filters, modulators, phase shifters, compact antenna, absorbers, etc. Terahertz regime, a crucial domain of the electromagnetic wave, is suffering from the scarcity of the efficient devices and might take the advantage of metamaterials. Here, we demonstrate design, fabrication, and characterization of a terahertz absorber based on a simple fishnet metallic film separated from a ground mirror plane by a dielectric spacer. Such absorbers are in particular important for bolometric terahertz detectors, high sensitivity imaging, and terahertz anechoic chambers. Recently, split-ring-resonators (SRR) have been employed for metamaterial-based absorbers at microwave and THz frequencies. The experimental demonstration reveals that such absorbers have absorptivity close to unity at resonance frequencies. However, the downside of these designs is that they all employ resonators of rather complicated shape with many fine parts and so they are not easy to fabricate and are sensitive to distortions.

  7. Terahertz Array Receivers with Integrated Antennas

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Goutam; Llombart, Nuria; Lee, Choonsup; Jung, Cecile; Lin, Robert; Cooper, Ken B.; Reck, Theodore; Siles, Jose; Schlecht, Erich; Peralta, Alessandro; Thomas, Bertrand; Mehdi, Imran

    2011-01-01

    Highly sensitive terahertz heterodyne receivers have been mostly single-pixel. However, now there is a real need of multi-pixel array receivers at these frequencies driven by the science and instrument requirements. In this paper we explore various receiver font-end and antenna architectures for use in multi-pixel integrated arrays at terahertz frequencies. Development of wafer-level integrated terahertz receiver front-end by using advanced semiconductor fabrication technologies has progressed very well over the past few years. Novel stacking of micro-machined silicon wafers which allows for the 3-dimensional integration of various terahertz receiver components in extremely small packages has made it possible to design multi-pixel heterodyne arrays. One of the critical technologies to achieve fully integrated system is the antenna arrays compatible with the receiver array architecture. In this paper we explore different receiver and antenna architectures for multi-pixel heterodyne and direct detector arrays for various applications such as multi-pixel high resolution spectrometer and imaging radar at terahertz frequencies.

  8. Integrated Arrays on Silicon at Terahertz Frequencies

    NASA Technical Reports Server (NTRS)

    Chattopadhayay, Goutam; Lee, Choonsup; Jung, Cecil; Lin, Robert; Peralta, Alessandro; Mehdi, Imran; Llombert, Nuria; Thomas, Bertrand

    2011-01-01

    In this paper we explore various receiver font-end and antenna architecture for use in integrated arrays at terahertz frequencies. Development of wafer-level integrated terahertz receiver front-end by using advanced semiconductor fabrication technologies and use of novel integrated antennas with silicon micromachining are reported. We report novel stacking of micromachined silicon wafers which allows for the 3-dimensional integration of various terahertz receiver components in extremely small packages which easily leads to the development of 2- dimensioanl multi-pixel receiver front-ends in the terahertz frequency range. We also report an integrated micro-lens antenna that goes with the silicon micro-machined front-end. The micro-lens antenna is fed by a waveguide that excites a silicon lens antenna through a leaky-wave or electromagnetic band gap (EBG) resonant cavity. We utilized advanced semiconductor nanofabrication techniques to design, fabricate, and demonstrate a super-compact, low-mass submillimeter-wave heterodyne frontend. When the micro-lens antenna is integrated with the receiver front-end we will be able to assemble integrated heterodyne array receivers for various applications such as multi-pixel high resolution spectrometer and imaging radar at terahertz frequencies.

  9. Nonlinear terahertz spectroscopy of electronic and vibrational responses in condensed matter systems

    E-print Network

    Hwang, Harold Young

    2012-01-01

    In this work, I describe experiments utilizing high-field terahertz (THz) pulses to initiate nonlinear responses in several classes of materials. We have developed several methods for interrogating the nonlinear THz response ...

  10. Pulse-modulated second harmonic imaging microscope quantitatively demonstrates marked increase of collagen in tumor after chemotherapy

    E-print Network

    Raja, Anju M.

    Pulse-modulated second harmonic imaging microscopes (PM-SHIMs) exhibit improved signal-to-noise ratio (SNR) over conventional SHIMs on sensitive imaging and quantification of weak collagen signals inside tissues. We quantify ...

  11. RF Pulse Design for Parallel Excitation in Magnetic Resonance Imaging 

    E-print Network

    Liu, Yinan

    2012-07-16

    Parallel excitation is an emerging technique to improve or accelerate multi-dimensional spatially selective excitations in magnetic resonance imaging (MRI) using multi-channel transmit arrays. The technique has potential in many applications...

  12. Terahertz wave electro-optic measurements with optical spectral filtering

    SciTech Connect

    Ilyakov, I. E. Shishkin, B. V.; Kitaeva, G. Kh.; Akhmedzhanov, R. A.

    2015-03-23

    We propose electro-optic detection techniques based on variations of the laser pulse spectrum induced during pulse co-propagation with terahertz wave radiation in a nonlinear crystal. Quantitative comparison with two other detection methods is made. Substantial improvement of the sensitivity compared to the standard electro-optic detection technique (at high frequencies) and to the previously shown technique based on laser pulse energy changes is demonstrated in experiment.

  13. Subsurface imaging for panel paintings inspection: A comparative study of the ultraviolet, the visible, the infrared and the terahertz spectra

    NASA Astrophysics Data System (ADS)

    Bendada, A.; Sfarra, S.; Ibarra-Castanedo, C.; Akhloufi, M.; Caumes, J.-P.; Pradere, C.; Batsale, J.-C.; Maldague, X.

    2015-03-01

    Infrared (IR) reflectography has been used for many years for the detection of underdrawings on panel paintings. Advances in the fields of IR sensors and optics have impelled the wide spread use of IR reflectography by several recognized Art Museums and specialized laboratories around the World. The transparency or opacity of a painting is the result of a complex combination of the optical properties of the painting pigments and the underdrawing material, as well as the type of illumination source and the sensor characteristics. For this reason, recent researches have been directed towards the study of multispectral approaches that could provide simultaneous and complementary information of an artwork. The present work relies on non-simultaneous multispectral inspection using a set of detectors covering from the ultraviolet to the terahertz spectra. It is observed that underdrawings contrast increases with wavelength up to 1700 nm and, then, gradually decreases. In addition, it is shown that IR thermography, i.e., temperature maps or thermograms, could be used simultaneously as an alternative technique for the detection of underdrawings besides the detection of subsurface defects.

  14. Multi-pulse time delay integration method for flexible 3D super-resolution range-gated imaging.

    PubMed

    Xinwei, Wang; Youfu, Li; Yan, Zhou

    2015-03-23

    Constructing flexible regular-shaped range-intensity profiles by the convolution of illuminator laser pulse and sensor gate pulse is crucial for 3D super-resolution range-gated imaging. However, ns-scale rectangular-shaped laser pulse with tunable pulse width is difficult to be obtained, especially for pulsed solid-stated lasers. In this paper we propose a multi-pulse time delay integration (MPTDI) method to reshape range-intensity profiles (RIP) free from the above limitation of pulsed lasers. An equivalent laser pulse temporal shaping model is established to evaluate and optimize the MPTDI method. By using MPTDI, the RIP shape and depth of viewing can both be flexibly changed as desired. Here typical triangular and trapezoidal RIPs are established for 3D imaging under triangular and trapezoidal range-intensity correlation algorithms. In addition, a prototype experiment is demonstrated to prove the feasibility of MPTDI. PMID:25837121

  15. Fast simulation and optimization of pulse-train chemical exchange saturation transfer (CEST) imaging

    NASA Astrophysics Data System (ADS)

    Xiao, Gang; Zhe Sun, Phillip; Wu, Renhua

    2015-06-01

    Chemical exchange saturation transfer (CEST) MRI has been increasingly applied to detect dilute solutes and physicochemical properties, with promising in vivo applications. Whereas CEST imaging has been implemented with continuous wave (CW) radio-frequency irradiation on preclinical scanners, pulse-train irradiation is often chosen on clinical systems. Therefore, it is necessary to optimize pulse-train CEST imaging, particularly important for translational studies. Because conventional Bloch-McConnell formulas are not in the form of homogeneous differential equations, the routine simulation approach simulates the evolving magnetization step by step, which is time consuming. Herein we developed a computationally efficient numerical solution using matrix iterative analysis of homogeneous Bloch-McConnell equations. The proposed algorithm requires simulation of pulse-train CEST MRI magnetization within one irradiation repeat, with 99% computation time reduction from that of conventional approach under typical experimental conditions. The proposed solution enables determination of labile proton ratio and exchange rate from pulse-train CEST MRI experiment, within 5% from those determined from quantitative CW-CEST MRI. In addition, the structural similarity index analysis shows that the dependence of CEST contrast on saturation pulse flip angle and duration between simulation and experiment was 0.98??±??0.01, indicating that the proposed simulation algorithm permits fast optimization and quantification of pulse-train CEST MRI.

  16. Fast simulation and optimization of pulse-train chemical exchange saturation transfer (CEST) imaging.

    PubMed

    Xiao, Gang; Sun, Phillip Zhe; Wu, Renhua

    2015-06-21

    Chemical exchange saturation transfer (CEST) MRI has been increasingly applied to detect dilute solutes and physicochemical properties, with promising in vivo applications. Whereas CEST imaging has been implemented with continuous wave (CW) radio-frequency irradiation on preclinical scanners, pulse-train irradiation is often chosen on clinical systems. Therefore, it is necessary to optimize pulse-train CEST imaging, particularly important for translational studies. Because conventional Bloch-McConnell formulas are not in the form of homogeneous differential equations, the routine simulation approach simulates the evolving magnetization step by step, which is time consuming. Herein we developed a computationally efficient numerical solution using matrix iterative analysis of homogeneous Bloch-McConnell equations. The proposed algorithm requires simulation of pulse-train CEST MRI magnetization within one irradiation repeat, with 99% computation time reduction from that of conventional approach under typical experimental conditions. The proposed solution enables determination of labile proton ratio and exchange rate from pulse-train CEST MRI experiment, within 5% from those determined from quantitative CW-CEST MRI. In addition, the structural similarity index analysis shows that the dependence of CEST contrast on saturation pulse flip angle and duration between simulation and experiment was 0.98 ± 0.01, indicating that the proposed simulation algorithm permits fast optimization and quantification of pulse-train CEST MRI. PMID:26020414

  17. Pulsed infrared imaging: A new NDT methodology for aboveground storage tanks

    SciTech Connect

    Bales, M.J.; Bishop, C.C. )

    1994-07-01

    Historically, thermography or infrared imaging has been used for nondestructive testing (NDT) applications that characteristically have their own thermal fingerprint because they produce their own heat. Aboveground storage tanks, and the nation's infrastructure in general, do not produce their own thermal fingerprints. Material loss due to corrosion can be detected in aboveground storage tanks using a new technology called pulsed infrared imaging (PII). The PII technique involves providing heat, by means of a pulse, and dynamically collecting infrared images of the material surface. Heat intensity and duration are dependent on the thermal characteristics of the material. For the test to be successful, the heat, which is supplied to the top surface, must penetrate and conduct through the material to the bottom surface. The paper describes this technique and the thermal image processor workstation.

  18. Electro-optic crystal mosaics for the generation of terahertz radiation

    DOEpatents

    Carrig, T.J.; Taylor, A.J.; Stewart, K.R.

    1996-08-06

    Apparatus for the generation of high energy terahertz radiation is presented and comprises laser means effective to produce subpicosecond optical pulses and a mosaic comprising a plurality of planar electro-optic crystals fastened together edge to edge in the form of a grid. The electro-optic crystals are in optical communication with the subpicosecond optical pulses, and behave as a single large electro-optic crystal, producing high energy terahertz radiation by way of optical rectification. 5 figs.

  19. Electro-optic crystal mosaics for the generation of terahertz radiation

    DOEpatents

    Carrig, Timothy J. (Los Alamos, NM); Taylor, Antoinette J. (Los Alamos, NM); Stewart, Kevin R. (Schenectady, NY)

    1996-01-01

    Apparatus for the generation of high energy terahertz radiation is presented and comprises laser means effective to produce subpicosecond optical pulses and a mosaic comprising a plurality of planar electro-optic crystals fastened together edge to edge in the form of a grid. The electro-optic crystals are in optical communication with the subpicosecond optical pulses, and behave as a single large electro-optic crystal, producing high energy terahertz radiation by way of optical rectification.

  20. Influence of tip-sample interaction in a time-domain terahertz scattering near field scanning microscope

    NASA Astrophysics Data System (ADS)

    Thoma, A.; Dekorsy, T.

    2008-06-01

    Apertureless near field measurements with a metallic tip are performed in the terahertz frequency range. Lateral scans are recorded for different time delays within a terahertz pulse. The forward scattered terahertz signal strongly depends on the time delay. At larger time delays, the tip-sample interaction leads to additional structures in the scan that do not correspond to a change in topography or dielectric function.

  1. In vivo imaging rhodopsin distribution in the photoreceptors with nano-second pulsed scanning laser ophthalmoscopy

    PubMed Central

    Liu, Tan; Liu, Xiaojing; Wen, Rong; Lam, Byron L.

    2015-01-01

    Background Rhodopsin is a biomarker for the function of rod photoreceptors, the dysfunction of which is related to many blinding diseases like retinitis pigmentosa and age-related macular degeneration. Imaging rhodopsin quantitatively may provide a powerful clinical tool for diagnosis of these diseases. To map rhodopsin distribution accurately in the retina, absorption by rhodopsin intermediates need to be minimized. Methods and materials We developed nano-second pulsed scanning laser ophthalmoscopy (SLO) to image rhodopsin distribution in the retina. The system takes advantage of the light-induced shift of rhodopsin absorption spectra, which in turn affects the fundus spectral reflection before and after photo-bleaching. By imaging the retina twice, one in the dark-adapted state and the other one in the light-adapted state, the rhodopsin absorption change can be calculated from the differential image, which is a function of the rhodopsin concentration in the rod photoreceptors. Results The system was successfully applied to in vivo imaging of rat retina in different bleaching conditions to verify its feasibility. Our studies showed that the differential image between the dark- and light-adapted states represents rhodopsin distribution in the retina. We also conducted a dynamic bleaching experiment to prove the importance of reducing light absorption of rhodopsin intermediates. Conclusions The preliminary results showed that our nano-second pulsed-light SLO is promising in imaging the functional biomarker of the rod photoreceptors. By using nanosecond pulsed laser, in which one laser pulse generates one pixel of the image, the absorption of rhodopsin intermediates can be reduced. PMID:25694955

  2. Hidden images of holography: wavefront reconstruction of abnormalities within pulsed holographic recording

    NASA Astrophysics Data System (ADS)

    Richardson, Martin

    2014-02-01

    Unplanned images recorded within holographic space are of candid interest that can reshape audience definition crossing intellectual boundaries. This paper details three examples of off-axis Pulsed Laser transmission holograms that involve holographic portraits. These are movie director Martin Scorsese, former Royal Photographic Society President Mike Austin and a unique recently discovered early pulsed recording of Nick Phillips together with Anton Furst recorded in 1977. Each example was made when operating conditions for the pulsed ruby lasers were optimum, offering a coherence of several meters time-compressed into 25 ns. This gave rise to not only the portrait capture but also others present during the recording session inside the room. This optimum condition captured more than was intended resulting in images that, until now, have remained un-documented.

  3. A compact, short-pulse laser for near-field, range-gated imaging

    SciTech Connect

    Zutavern, F.J.; Helgeson, W.D.; Loubriel, G.M.; Yates, G.J.; Gallegos, R.A.; McDonald, T.E.

    1996-12-31

    This paper describes a compact laser, which produces high power, wide-angle emission for a near-field, range-gated, imaging system. The optical pulses are produced by a 100 element laser diode array (LDA) which is pulsed with a GaAs, photoconductive semiconductor switch (PCSS). The LDA generates 100 ps long, gain-switched, optical pulses at 904 nm when it is driven with 3 ns, 400 A, electrical pulses from a high gain PCSS. Gain switching is facilitated with this many lasers by using a low impedance circuit to drive an array of lasers, which are connected electrically in series. The total optical energy produced per pulse is 10 microjoules corresponding to a total peak power of 100 kW. The entire laser system, including prime power (a nine volt battery), pulse charging, PCSS, and LDA, is the size of a small, hand-held flashlight. System lifetime, which is presently limited by the high gain PCSS, is an active area of research and development. Present limitations and potential improvements will be discussed. The complete range-gated imaging system is based on complementary technologies: high speed optical gating with intensified charge coupled devices (ICCD) developed at Los Alamos National Laboratory (LANL) and high gain, PCSS-driven LDAs developed at Sandia National Laboratories (SNL). The system is designed for use in highly scattering media such as turbid water or extremely dense fog or smoke. The short optical pulses from the laser and high speed gating of the ICCD are synchronized to eliminate the back-scattered light from outside the depth of the field of view (FOV) which may be as short as a few centimeters. A high speed photodiode can be used to trigger the intensifier gate and set the range-gated FOV precisely on the target. The ICCD and other aspects of the imaging system are discussed in a separate paper.

  4. Single-molecule imaging with longer X-ray laser pulses

    PubMed Central

    Martin, Andrew V.; Corso, Justine K.; Caleman, Carl; Timneanu, Nicusor; Quiney, Harry M.

    2015-01-01

    During the last five years, serial femtosecond crystallography using X-ray laser pulses has been developed into a powerful technique for determining the atomic structures of protein molecules from micrometre- and sub-micrometre-sized crystals. One of the key reasons for this success is the ‘self-gating’ pulse effect, whereby the X-ray laser pulses do not need to outrun all radiation damage processes. Instead, X-ray-induced damage terminates the Bragg diffraction prior to the pulse completing its passage through the sample, as if the Bragg diffraction were generated by a shorter pulse of equal intensity. As a result, serial femtosecond crystallography does not need to be performed with pulses as short as 5–10?fs, but can succeed for pulses 50–100?fs in duration. It is shown here that a similar gating effect applies to single-molecule diffraction with respect to spatially uncorrelated damage processes like ionization and ion diffusion. The effect is clearly seen in calculations of the diffraction contrast, by calculating the diffraction of the average structure separately to the diffraction from statistical fluctuations of the structure due to damage (‘damage noise’). The results suggest that sub-nanometre single-molecule imaging with 30–50?fs pulses, like those produced at currently operating facilities, should not yet be ruled out. The theory presented opens up new experimental avenues to measure the impact of damage on single-particle diffraction, which is needed to test damage models and to identify optimal imaging conditions. PMID:26594374

  5. Imaging monitored loosening of dense fibrous tissues using high-intensity pulsed ultrasound

    NASA Astrophysics Data System (ADS)

    Yeh, Chia-Lun; Li, Pai-Chi; Shih, Wen-Pin; Huang, Pei-Shin; Kuo, Po-Ling

    2013-10-01

    Pulsed high-intensity focused ultrasound (HIFU) is proposed as a new alternative treatment for contracture of dense fibrous tissue. It is hypothesized that the pulsed-HIFU can release the contracted tissues by attenuating tensile stiffness along the fiber axis, and that the stiffness reduction can be quantitatively monitored by change of B-mode images. Fresh porcine tendons and ligaments were adapted to an ex vivo model and insonated with pulsed-HIFU for durations ranging from 5 to 30 min. The pulse length was 91 µs with a repetition frequency of 500 Hz, and the peak rarefactional pressure was 6.36 MPa. The corresponding average intensities were kept around 1606 W cm-2 for ISPPA and 72.3 W cm-2 for ISPTA. B-mode images of the tissues were acquired before and after pulsed-HIFU exposure, and the changes in speckle intensity and organization were analyzed. The tensile stiffness of the HIFU-exposed tissues along the longitudinal axis was examined using a stretching machine. Histology examinations were performed by optical and transmission electron microscopy. Pulsed-HIFU exposure significantly decreased the tensile stiffness of the ligaments and tendons. The intensity and organization of tissue speckles in the exposed region were also decreased. The speckle changes correlated well with the degree of stiffness alteration. Histology examinations revealed that pulsed-HIFU exposure probably damages tissues via a cavitation-mediated mechanism. Our results suggest that pulsed-HIFU with a low duty factor is a promising tool for developing new treatment strategies for orthopedic disorders.

  6. Terahertz Physics

    NASA Astrophysics Data System (ADS)

    Lewis, R. A.

    2013-01-01

    1. Introduction; Part I. Basics: 2. Oscillations; 3. Combining oscillations; 4. Light; 5. Matter; 6. Interaction of light and matter; Part II. Components: 7. Sources; 8. Optics; 9. Detectors; Part III. Applications: 10. Spectroscopy; 11. Imaging; Glossary; Appendices; Index.

  7. Terahertz wave generation from gas plasma using a phase compensator with attosecond phase-control accuracy

    SciTech Connect

    Dai Jianming; Zhang, X.-C.

    2009-01-12

    We report the use of a precise phase compensator for the generation of intense terahertz waves from laser-induced gas plasma excited by a femtosecond pulse ({omega}) and its second harmonic (2{omega}) at both close contact and standoff distances. The attosecond accuracy phase-control capability of the device enables further optimization of the terahertz emission from gas plasma and elimination of the temporal walkoff between the {omega} and 2{omega} pulses traveling in dispersive media, resulting in intense terahertz generation at a distance of over 100 m by sending the optical beams far away and focusing them locally.

  8. Thermal Imaging of the Superficial Temporal Artery: An Arterial Pulse Recovery Model

    E-print Network

    Farag, Aly A.

    been greatly advanced by Pavlidis et al. [10], [9] who applied thermal imagery for the measurementThermal Imaging of the Superficial Temporal Artery: An Arterial Pulse Recovery Model Sergey Y) using passive thermal Infra Red (IR) sensors. The proposed ap- proach has a physical and physiological

  9. A neutron imaging device for sample alignment in a pulsed neutron scattering instrument

    NASA Astrophysics Data System (ADS)

    Grazzi, F.; Scherillo, A.; Zoppi, M.

    2009-09-01

    A neutron-imaging device for alignment purposes has been tested on the INES beamline at ISIS, the pulsed neutron source of Rutherford Appleton Laboratory (U.K.). Its use, in conjunction with a set of movable jaws, turns out extremely useful for scattering application to complex samples where a precise and well-defined determination of the scattering volume is needed.

  10. A neutron imaging device for sample alignment in a pulsed neutron scattering instrument

    SciTech Connect

    Grazzi, F.; Scherillo, A.; Zoppi, M.

    2009-09-15

    A neutron-imaging device for alignment purposes has been tested on the INES beamline at ISIS, the pulsed neutron source of Rutherford Appleton Laboratory (U.K.). Its use, in conjunction with a set of movable jaws, turns out extremely useful for scattering application to complex samples where a precise and well-defined determination of the scattering volume is needed.

  11. A pulsed THz Imaging System with a line focus and a balanced 1-D detection

    E-print Network

    A pulsed THz Imaging System with a line focus and a balanced 1-D detection scheme with two with a line focus intended to speed up measurements. A balanced 1-D detection scheme working with two time. Speed is mainly limited by the need for mechanical delay stages as well as by single-pixel

  12. Terahertz Computed Tomography of NASA Thermal Protection System Materials

    NASA Technical Reports Server (NTRS)

    Roth, D. J.; Reyes-Rodriguez, S.; Zimdars, D. A.; Rauser, R. W.; Ussery, W. W.

    2011-01-01

    A terahertz axial computed tomography system has been developed that uses time domain measurements in order to form cross-sectional image slices and three-dimensional volume renderings of terahertz-transparent materials. The system can inspect samples as large as 0.0283 cubic meters (1 cubic foot) with no safety concerns as for x-ray computed tomography. In this study, the system is evaluated for its ability to detect and characterize flat bottom holes, drilled holes, and embedded voids in foam materials utilized as thermal protection on the external fuel tanks for the Space Shuttle. X-ray micro-computed tomography was also performed on the samples to compare against the terahertz computed tomography results and better define embedded voids. Limits of detectability based on depth and size for the samples used in this study are loosely defined. Image sharpness and morphology characterization ability for terahertz computed tomography are qualitatively described.

  13. Spatial Terahertz Modulator

    NASA Astrophysics Data System (ADS)

    Xie, Zhenwei; Wang, Xinke; Ye, Jiasheng; Feng, Shengfei; Sun, Wenfeng; Akalin, Tahsin; Zhang, Yan

    2013-11-01

    Terahertz (THz) technology is a developing and promising candidate for biological imaging, security inspection and communications, due to the low photon energy, the high transparency and the broad band properties of the THz radiation. However, a major encountered bottleneck is lack of efficient devices to manipulate the THz wave, especially to modulate the THz wave front. A wave front modulator should allow the optical or electrical control of the spatial transmission (or reflection) of an input THz wave and hence the ability to encode the information in a wave front. Here we propose a spatial THz modulator (STM) to dynamically control the THz wave front with photo-generated carriers. A computer generated THz hologram is projected onto a silicon wafer by a conventional spatial light modulator (SLM). The corresponding photo-generated carrier spatial distribution will be induced, which forms an amplitude hologram to modulate the wave front of the input THz beam. Some special intensity patterns and vortex beams are generated by using this method. This all-optical controllable STM is structure free, high resolution and broadband. It is expected to be widely used in future THz imaging and communication systems.

  14. Improved Shear Wave Motion Detection Using Pulse-Inversion Harmonic Imaging with a Phased Array Transducer.

    PubMed

    Song, Pengfei; Zhao, Heng; Urban, Matthew; Manduca, Armando; Pislaru, Sorin; Kinnick, Randall; Pislaru, Cristina; Greenleaf, James; Chen, Shigao

    2013-09-01

    Ultrasound tissue harmonic imaging is widely used to improve ultrasound B-mode imaging quality thanks to its effectiveness in suppressing imaging artifacts associated with ultrasound reverberation, phase aberration, and clutter noise. In ultrasound shear wave elastography (SWE), because the shear wave motion signal is extracted from the ultrasound signal, these noise sources can significantly deteriorate the shear wave motion tracking process and consequently result in noisy and biased shear wave motion detection. This situation is exacerbated in in vivo SWE applications such as heart, liver, and kidney. This paper, therefore, investigated the possibility of implementing harmonic imaging, specifically pulse-inversion harmonic imaging, in shear wave tracking, with the hypothesis that harmonic imaging can improve shear wave motion detection based on the same principles that apply to general harmonic B-mode imaging. We first designed an experiment with a gelatin phantom covered by an excised piece of pork belly and show that harmonic imaging can significantly improve shear wave motion detection by producing less underestimated shear wave motion and more consistent shear wave speed measurements than fundamental imaging. Then, a transthoracic heart experiment on a freshly sacrificed pig showed that harmonic imaging could robustly track the shear wave motion and give consistent shear wave speed measurements of the left ventricular myocardium while fundamental imaging could not. Finally, an in vivo transthoracic study of seven healthy volunteers showed that the proposed harmonic imaging tracking sequence could provide consistent estimates of the left ventricular myocardium stiffness in end-diastole with a general success rate of 80% and a success rate of 93.3% when excluding the subject with Body Mass Index (BMI) higher than 25. These promising results indicate that pulse-inversion harmonic imaging can significantly improve shear wave motion tracking and thus potentially facilitate more robust assessment of tissue elasticity by SWE. PMID:24021638

  15. Improved Shear Wave Motion Detection Using Pulse-Inversion Harmonic Imaging with a Phased Array Transducer

    PubMed Central

    Song, Pengfei; Zhao, Heng; Urban, Matthew W.; Manduca, Armando; Pislaru, Sorin V.; Kinnick, Randall R.; Pislaru, Cristina; Greenleaf, James F.; Chen, Shigao

    2013-01-01

    Ultrasound tissue harmonic imaging is widely used to improve ultrasound B-mode imaging quality thanks to its effectiveness in suppressing imaging artifacts associated with ultrasound reverberation, phase aberration, and clutter noise. In ultrasound shear wave elastography (SWE), because the shear wave motion signal is extracted from the ultrasound signal, these noise sources can significantly deteriorate the shear wave motion tracking process and consequently result in noisy and biased shear wave motion detection. This situation is exacerbated in in vivo SWE applications such as heart, liver, and kidney. This paper, therefore, investigated the possibility of implementing harmonic imaging, specifically pulse-inversion harmonic imaging, in shear wave tracking, with the hypothesis that harmonic imaging can improve shear wave motion detection based on the same principles that apply to general harmonic B-mode imaging. We first designed an experiment with a gelatin phantom covered by an excised piece of pork belly and show that harmonic imaging can significantly improve shear wave motion detection by producing less underestimated shear wave motion and more consistent shear wave speed measurements than fundamental imaging. Then, a transthoracic heart experiment on a freshly sacrificed pig showed that harmonic imaging could robustly track the shear wave motion and give consistent shear wave speed measurements while fundamental imaging could not. Finally, an in vivo transthoracic study of seven healthy volunteers showed that the proposed harmonic imaging tracking sequence could provide consistent estimates of the left ventricular myocardium stiffness in end-diastole with a general success rate of 80% and a success rate of 93.3% when excluding the subject with Body Mass Index (BMI) higher than 25. These promising results indicate that pulse-inversion harmonic imaging can significantly improve shear wave motion tracking and thus potentially facilitate more robust assessment of tissue elasticity by SWE. PMID:24021638

  16. Terahertz NDE for Under Paint Corrosion Detection and Evaluation

    NASA Technical Reports Server (NTRS)

    Anastasi, Robert F.; Madaras, Eric I.

    2005-01-01

    Corrosion under paint is not visible until it has caused paint to blister, crack, or chip. If corrosion is allowed to continue then structural problems may develop. Identifying corrosion before it becomes visible would minimize repairs and costs and potential structural problems. Terahertz NDE imaging under paint for corrosion is being examined as a method to inspect for corrosion by examining the terahertz response to paint thickness and to surface roughness.

  17. Aeronautics composite material inspection with a terahertz time-domain spectroscopy system

    NASA Astrophysics Data System (ADS)

    Ospald, Frank; Zouaghi, Wissem; Beigang, René; Matheis, Carsten; Jonuscheit, Joachim; Recur, Benoit; Guillet, Jean-Paul; Mounaix, Patrick; Vleugels, Wouter; Bosom, Pablo Venegas; González, Laura Vega; López, Ion; Edo, Rafael Martínez; Sternberg, Yehuda; Vandewal, Marijke

    2014-03-01

    The usability of pulsed broadband terahertz radiation for the inspection of composite materials from the aeronautics industry is investigated, with the goal of developing a mobile time-domain spectroscopy system that operates in reflection geometry. A wide range of samples based on glass and carbon fiber reinforced plastics with various types of defects is examined using an imaging system; the results are evaluated both in time and frequency domain. The conductivity of carbon fibers prevents penetration of the respective samples but also allows analysis of coatings from the reflected THz pulses. Glass fiber composites are, in principle, transparent for THz radiation, but commonly with significant absorption for wavelengths >1 THz. Depending on depth, matrix material, and size, defects like foreign material inserts, delaminations, or moisture contamination can be visualized. If a defect is not too deep in the sample, its location can be correctly identified from the delay between partial reflections at the surface and the defect itself.

  18. Mode locking at terahertz frequencies using a distributed Bragg reflector laser with a sampled grating.

    PubMed

    Hou, Lianping; Haji, Mohsin; Marsh, John H

    2013-04-01

    We present a highly reproducible method of producing terahertz (THz) optical pulses using a class of mode-locked AlGaInAs/InP laser operating in the 1.55 ?m wavelength range. The device uses a sample grating distributed Bragg reflector to provide strong frequency selectivity at the mode-locked frequency while the distributed reflectors relax the fabrication tolerances and ensure the cavity can self adjust to being an integral number of mode-locked periods in length. The measured devices provide nearly transform-limited pulse trains at 640 GHz or 1.28 THz with a high degree of controllability and operate with consistent performance over a wide range of drive conditions. Being low cost and compact sources of THz radiation, these lasers will open up many applications, including systems for high-speed optical communication and THz imaging. PMID:23546261

  19. Terahertz spectroscopy of two-dimensional subwavelength plasmonic structures

    SciTech Connect

    Azad, Abul K; Chen, Houtong; Taylor, Antoinette; O' Hara, John F; Han, Jiaguang; Lu, Xinchao; Zhang, Weili

    2009-01-01

    The fascinating properties of plasmonic structures have had significant impact on the development of next generation ultracompact photonic and optoelectronic components. We study two-dimensional plasmonic structures functioning at terahertz frequencies. Resonant terahertz response due to surface plasmons and dipole localized surface plasmons were investigated by the state-of-the-art terahertz time domain spectroscopy (THz-TDS) using both transmission and reflection configurations. Extraordinary terahertz transmission was demonstrated through the subwavelength metallic hole arrays made from good conducting metals as well as poor metals. Metallic arrays m!lde from Pb, generally a poor metal, and having optically thin thicknesses less than one-third of a skin depth also contributed in enhanced THz transmission. A direct transition of a surface plasmon resonance from a photonic crystal minimum was observed in a photo-doped semiconductor array. Electrical controls of the surface plasmon resonances by hybridization of the Schottkey diode between the metallic grating and the semiconductor substrate are investigated as a function of the applied reverse bias. In addition, we have demonstrated photo-induced creation and annihilation of surface plasmons with appropriate semiconductors at room temperature. According to the Fano model, the transmission properties are characterized by two essential contributions: resonant excitation of surface plasmons and nonresonant direct transmission. Such plasmonic structures may find fascinating applications in terahertz imaging, biomedical sensing, subwavelength terahertz spectroscopy, tunable filters, and integrated terahertz devices.

  20. Spectroscopic SRS imaging with a time-lens source synchronized to a femtosecond pulse shaper

    NASA Astrophysics Data System (ADS)

    Wang, Ke; Zhang, Delong; Charan, Kriti; Slipchenko, Mikhail N.; Wang, Ping; Cheng, Ji-Xin; Xu, Chris

    2013-02-01

    Though single-color coherent Raman microscopy has been widely used for vibrational imaging of isolated Raman bands, it is still challenging to visualize molecules having overlapping Raman bands. We address this issue by developing a spectroscopic SRS microscope with a time-lens laser source synchronized to a femtosecond laser. The time-lens source provides 2-ps pulse at the wavelength of 1064 nm. A pulse shaper is installed for intra-pulse spectral scanning of the femtosecond laser output. By electronically modulating the time-lens source at MHz frequency, spectroscopic stimulated Raman loss (SRL) images were obtained on a laser-scanning microscope. Using this microscope, we have been able to detect 0.2% DMSO in aqueous solution. Spectroscopic SRL images of prostate cancer cells were obtained. Multivariate curve resolution analysis was further applied to decompose the SRL images into concentration maps of proteins and lipids. With high sensitivity and high spectral resolution, this method offers exciting potential in label-free imaging of live cells using fingerprint Raman bands.

  1. Sub-wavelength terahertz beam profiling of a THz source via an all-optical knife-edge technique

    NASA Astrophysics Data System (ADS)

    Phing, Sze Ho; Mazhorova, Anna; Shalaby, Mostafa; Peccianti, Marco; Clerici, Matteo; Pasquazi, Alessia; Ozturk, Yavuz; Ali, Jalil; Morandotti, Roberto

    2015-02-01

    Terahertz technologies recently emerged as outstanding candidates for a variety of applications in such sectors as security, biomedical, pharmaceutical, aero spatial, etc. Imaging the terahertz field, however, still remains a challenge, particularly when sub-wavelength resolutions are involved. Here we demonstrate an all-optical technique for the terahertz near-field imaging directly at the source plane. A thin layer (<100 nm-thickness) of photo carriers is induced on the surface of the terahertz generation crystal, which acts as an all-optical, virtual blade for terahertz near-field imaging via a knife-edge technique. Remarkably, and in spite of the fact that the proposed approach does not require any mechanical probe, such as tips or apertures, we are able to demonstrate the imaging of a terahertz source with deeply sub-wavelength features (<30 ?m) directly in its emission plane.

  2. Sub-wavelength terahertz beam profiling of a THz source via an all-optical knife-edge technique

    PubMed Central

    Phing, Sze Ho; Mazhorova, Anna; Shalaby, Mostafa; Peccianti, Marco; Clerici, Matteo; Pasquazi, Alessia; Ozturk, Yavuz; Ali, Jalil; Morandotti, Roberto

    2015-01-01

    Terahertz technologies recently emerged as outstanding candidates for a variety of applications in such sectors as security, biomedical, pharmaceutical, aero spatial, etc. Imaging the terahertz field, however, still remains a challenge, particularly when sub-wavelength resolutions are involved. Here we demonstrate an all-optical technique for the terahertz near-field imaging directly at the source plane. A thin layer (<100?nm-thickness) of photo carriers is induced on the surface of the terahertz generation crystal, which acts as an all-optical, virtual blade for terahertz near-field imaging via a knife-edge technique. Remarkably, and in spite of the fact that the proposed approach does not require any mechanical probe, such as tips or apertures, we are able to demonstrate the imaging of a terahertz source with deeply sub-wavelength features (<30??m) directly in its emission plane. PMID:25711343

  3. Metamaterials for terahertz polarimetric devices

    SciTech Connect

    O'hara, John F; Taylor, Antoinette J; Smirnova, Evgenya; Azad, Abul

    2008-01-01

    We present experimental and numerical investigations of planar terahertz metamaterial structures designed to interact with the state of polarization. The dependence of metamaterial resonances on polarization results in unique amplitude and phase characteristics of the terahertz transmission, providing the basis for polarimetric terahertz devices. We highlight some potential applications for polarimetric devices and present simulations of a terahertz quarter-wave plate and a polarizing terahertz beam splitter. Although this work was performed at terahertz frequencies, it may find applications in other frequency ranges as well.

  4. High-performing nonlinear visualization of terahertz radiation on a silicon charge-coupled device

    PubMed Central

    Shalaby, Mostafa; Vicario, Carlo; Hauri, Christoph P.

    2015-01-01

    Photoinduced electron transitions can lead to significant changes of the macroscopic electronic properties in semiconductors. This principle is responsible for the detection of light with charge-coupled devices. Their spectral sensitivity is limited by the semiconductor bandgap which has restricted their visualization capabilities to the optical, ultraviolet, and X-ray regimes. The absence of an imaging device in the low frequency terahertz range has severely hampered the advance of terahertz imaging applications in the past. Here we introduce a high-performing imaging concept to the terahertz range. On the basis of a silicon charge-coupled device we visualize 5–13?THz radiation with photon energy under 2% of the sensor's band-gap energy. The unprecedented small pitch and large number of pixels allow the visualization of complex terahertz radiation patterns in real time and with high spatial detail. This advance will have a great impact on a wide range of terahertz imaging disciplines. PMID:26496973

  5. High-performing nonlinear visualization of terahertz radiation on a silicon charge-coupled device

    NASA Astrophysics Data System (ADS)

    Shalaby, Mostafa; Vicario, Carlo; Hauri, Christoph P.

    2015-10-01

    Photoinduced electron transitions can lead to significant changes of the macroscopic electronic properties in semiconductors. This principle is responsible for the detection of light with charge-coupled devices. Their spectral sensitivity is limited by the semiconductor bandgap which has restricted their visualization capabilities to the optical, ultraviolet, and X-ray regimes. The absence of an imaging device in the low frequency terahertz range has severely hampered the advance of terahertz imaging applications in the past. Here we introduce a high-performing imaging concept to the terahertz range. On the basis of a silicon charge-coupled device we visualize 5-13 THz radiation with photon energy under 2% of the sensor's band-gap energy. The unprecedented small pitch and large number of pixels allow the visualization of complex terahertz radiation patterns in real time and with high spatial detail. This advance will have a great impact on a wide range of terahertz imaging disciplines.

  6. High-performing nonlinear visualization of terahertz radiation on a silicon charge-coupled device.

    PubMed

    Shalaby, Mostafa; Vicario, Carlo; Hauri, Christoph P

    2015-01-01

    Photoinduced electron transitions can lead to significant changes of the macroscopic electronic properties in semiconductors. This principle is responsible for the detection of light with charge-coupled devices. Their spectral sensitivity is limited by the semiconductor bandgap which has restricted their visualization capabilities to the optical, ultraviolet, and X-ray regimes. The absence of an imaging device in the low frequency terahertz range has severely hampered the advance of terahertz imaging applications in the past. Here we introduce a high-performing imaging concept to the terahertz range. On the basis of a silicon charge-coupled device we visualize 5-13?THz radiation with photon energy under 2% of the sensor's band-gap energy. The unprecedented small pitch and large number of pixels allow the visualization of complex terahertz radiation patterns in real time and with high spatial detail. This advance will have a great impact on a wide range of terahertz imaging disciplines. PMID:26496973

  7. Tamper to delay motion and decrease ionization of a sample during short pulse x-ray imaging

    DOEpatents

    London, Richard A. (Orinda, CA); Szoke; Abraham (Fremont, CA), Hau-Riege; Stefan P. (Fremont, CA), Chapman; Henry N. (Livermore, CA)

    2007-06-26

    A system for x-ray imaging of a small sample comprising positioning a tamper so that it is operatively connected to the sample, directing short intense x-ray pulses onto the tamper and the sample, and detecting an image from the sample. The tamper delays the explosive motion of the sample during irradiation by the short intense x-ray pulses, thereby extending the time to obtain an x-ray image of the original structure of the sample.

  8. Applications of terahertz spectroscopy to pharmaceutical sciences.

    PubMed

    Taday, Philip F

    2004-02-15

    The application of terahertz pulsed spectroscopy within the US Food and Drug Administration's (FDA's) recent process analytical technology (PAT) initiative is considered. As a case study the potency levels in paracetamol (4-acetamidophenol) and aspirin (acetylsalicylic acid) test tablets have been recovered from the terahertz absorption spectra using a multivariate partial-least-squares (PLS) calibration model. Root-mean-square errors of cross-validation (RMSECVs) of 2.85% and 3.90% were obtained for paracetamol and aspirin, respectively. Information about other excipients can also be obtained; for example, using the strong lactose absorption lines in the tablets, RMSECVs of 3.65% and 4.30% could be recovered from the paracetamol and aspirin samples, respectively. As active ingredients may also change their solid-state form during formulation processing or storage and as this can adversely affect the final dosage performance, monitoring of pharmaceutical ingredients is essential for a 'right-first-time' philosophy within the industry. Terahertz pulse spectroscopy is a high-throughput technique with many areas of potential exploitation in the pharmaceutical industry; these issues are discussed in this paper. PMID:15306525

  9. Quantitative comparison of fuel spray images obtained using ultrafast coherent and incoherent double-pulsed illumination

    E-print Network

    Purwar, Harsh; Idlahcen, Saïd; Rozé, Claude; Blaisot, Jean-Bernard; Ménard, Thibault

    2015-01-01

    We present a quantitative comparison between the high-pressure fuel spray images obtained experimentally using classical imaging with coherent and incoherent ultrafast illuminations recorded using a compatible CMOS camera. The ultrafast, incoherent illumination source was extracted from the supercontinuum generated by tightly focusing the femtosecond laser pulses in water. The average velocity maps computed using time-correlated image-pairs and spray edge complexity computed using the average curvature scale space maps are compared for the spray images obtained with the two illumination techniques and also for the numerically simulated spray using the coupled volume of fluid and level set method for interface tracking (direct numerical simulation or DNS). The spray images obtained with supercontinuum-derived, incoherent, ultrafast illumination are clearer, since the artifacts arising due to laser speckles and multiple diffraction effects are largely reduced and show a better correlation with the DNS results.

  10. Two layer metamaterials for selective frequency transmission in the terahertz region (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Landau, Mayer A.

    2015-09-01

    We have fabricated a metamaterial tunable filter for dynamic frequency selection in the terahertz region. The metamaterial consists of a sandwich of two meta-surfaces grown on high resistivity silicon wafers. The first meta-surface consists of a two-dimensional array of gold double split ring resonators and the second meta-surface consisits of an array of gold cut rods. Both meta-surfaces are fabricated for a response in the terahertz region. Our terahertz pulses are produced using the standard Austin switch technique. The terahertz pulse is focused onto the two meta-surfaces which are sandwiched together to produce a transmission window. Together, with the right orientation, translation, and parallelism of the two meta-surfaces, we achieve filtering of terahertz pulses. Since the unit cells for the inclusions are on the order of 100 microns, control of the translation, orientation, and parallelism of the two meta-surfaces with respect to each other and with respect to the orientation and direction of the impinging terahertz field is a challenge. We describe our technique for doing this and present data on our frequency filtering in the terahertz.

  11. Nonlinear TeraHertz Coherent Excitation of Vibrational Modes of Liquids

    E-print Network

    Allodi, Marco A; Blake, Geoffrey A

    2015-01-01

    We report the first coherent excitation of intramolecular vibrational modes via the nonlinear interaction of a TeraHertz (THz) light field with molecular liquids. A TeraHertz-TeraHertz-Raman pulse sequence prepares the coherences with a broadband, high-energy, (sub)picosecond TeraHertz pulse, that are then measured in a TeraHertz Kerr effect spectrometer via phase-sensitive, heterodyne detection with an optical pulse. The spectrometer reported here has broader TeraHertz frequency coverage and an increased sensitivity relative to previously reported TeraHertz Kerr effect experiments. Vibrational coherences are observed in liquid diiodomethane at 3.66 THz (122 cm$^{-1}$), and in carbon tetrachloride at 6.50 THz (217 cm$^{-1}$), in exact agreement with literature values of those intramolecular modes. This work opens the door to 2D spectroscopies, nonlinear in TeraHertz field, that can study the dynamics of condensed-phase molecular systems, as well as coherent control at TeraHertz frequencies.

  12. Terahertz quantum cascade lasers

    E-print Network

    Williams, Benjamin S. (Benjamin Stanford), 1974-

    2003-01-01

    The development of the terahertz frequency range has long been impeded by the relative dearth of compact, coherent radiation sources of reasonable power. This thesis details the development of quantum cascade lasers (QCLs) ...

  13. Active terahertz metamaterials

    SciTech Connect

    Chen, Hou-tong

    2009-01-01

    We demonstrate planar terahertz metamaterial devices enabling actively controllable transmission amplitude, phase, or frequency at room temperature via carrier depletion or photoexcitation in the semiconductor substrate or in semiconductor materials incorporated into the metamaterial structure.

  14. Broadband terahertz photonics

    E-print Network

    Burghoff, David Patrick

    2014-01-01

    In recent years, quantum cascade lasers have emerged as mature semiconductor sources of light in the terahertz range, the frequency range spanning 1 to 10 THz. Though technological development has pushed their operating ...

  15. Terahertz Schottky Multiplier Sources

    NASA Technical Reports Server (NTRS)

    Schlecht, Erich T.

    2007-01-01

    This viewgraph presentation reviews the multiplier source technologies and the status/Performance of THz multiplier sources. An example of a THz application is imaging radar. The presentation reviews areas of requirements for THz sources: (1) Figures of merit, (i.e., Frequency Terahertz for high resolution Bandwidth of at least 15 GHz for high range resolution Efficiency (i.e., minimize power supply requirements) (2) Output power: (i.e., Milliwatts below 800 GHz, 10s of microwatts above 1 THz, 1-2 microwatts near 2 THz (3) Mechanical--stability, compact, low mass (4) Environmental -- radiation, vibration, thermal. Several sources for 0.3 - 2 THz are reviewed: FIR lasers, quantum cascade lasers (QCL), backward-wave oscillator (BWO), and Multiplier sources. The current state of the art (SoA) is shown as Substrateless Technology. It also shows where the SoA is for devices beyond 1 THz. The presentation concludes by reviewing the options for future development, and 2 technology roadmaps

  16. Active Terahertz Metamaterials

    NASA Astrophysics Data System (ADS)

    Taylor, Antoinette

    2011-03-01

    In recent years terahertz technology has become an optimistic candidate for numerous sensing, imaging, and diagnostic applications. Nevertheless, THz technology still suffers from a deficiency in high-power sources, efficient detectors, and other functional devices ubiquitous in neighboring microwave and infrared frequency bands, such as amplifiers, modulators, and switches. One of the greatest obstacles in this progress is the lack of materials that naturally respond well to THz radiation. The potential of metamaterials for THz applications originates from their resonant electromagnetic response, which significantly enhances their interaction with THz radiation. Thus, metamaterials offer a route towards helping to fill the so-called ``THz gap''. Here, we present a series of novel THz metamaterials. Importantly, the critical dependence of the resonant response on the supporting substrate and/or the fabricated structure enables the creation of active THz metamaterial devices. We show that the resonant response can be controlled using optical or electrical excitation and thermal tuning, enabling efficient THz devices which will be of importance for advancing numerous real world THz applications. We acknowledge contribution to this work from H. Chen, J. O'Hara, A. Azad, J. Zhou, R. Singh, M. Reiten, and D. Chowdhury of the Center for Integrated Nanotechnologies.

  17. Application of femtotechnologies and terahertz spectroscopy methods in cataract diagnostics

    NASA Astrophysics Data System (ADS)

    Sakhnov, S. N.; Leksutkina, E. V.; Smolyanskaya, O. A.; Usov, A. V.; Parakhuda, S. E.; Grachev, Ya. V.; Kozlov, S. A.

    2011-08-01

    We study the destructive action of femtosecond pulses (200 fs) on the human cataractous crystalline lens and the transmission of the cataractous lens in the terahertz spectral range of electromagnetic oscillations (0.2-1 THz) in relation to the density of the nucleus of the lens.

  18. Short electron beam bunch characterization through measurement of terahertz radiation

    SciTech Connect

    Shukui Zhang; Stephen Benson; David Douglas; Michelle D. Shinn; Gwyn Williams

    2004-08-01

    This paper presents the measurement of sub-picosecond relativistic electron beam bunch length by analyzing the spectra of the coherent terahertz pulses through Kramers-Kronig transformation. The results are compared with autocorrelation from a scanning polarization autocorrelator that measures the coherent optical transition radiation. The limitations of the different methods to such a characterization are discussed.

  19. Pulse wave imaging in normal, hypertensive and aneurysmal human aortas in vivo: a feasibility study

    NASA Astrophysics Data System (ADS)

    Li, Ronny X.; Luo, Jianwen; Balaram, Sandhya K.; Chaudhry, Farooq A.; Shahmirzadi, Danial; Konofagou, Elisa E.

    2013-07-01

    Arterial stiffness is a well-established biomarker for cardiovascular risk, especially in the case of hypertension. The progressive stages of an abdominal aortic aneurysm (AAA) have also been associated with varying arterial stiffness. Pulse wave imaging (PWI) is a noninvasive, ultrasound imaging-based technique that uses the pulse wave-induced arterial wall motion to map the propagation of the pulse wave and measure the regional pulse wave velocity (PWV) as an index of arterial stiffness. In this study, the clinical feasibility of PWI was evaluated in normal, hypertensive, and aneurysmal human aortas. Radiofrequency-based speckle tracking was used to estimate the pulse wave-induced displacements in the abdominal aortic walls of normal (N = 15, mean age 32.5 ± 10.2 years), hypertensive (N = 13, mean age 60.8 ± 15.8 years), and aneurysmal (N = 5, mean age 71.6 ± 11.8 years) human subjects. Linear regression of the spatio-temporal variation of the displacement waveform in the anterior aortic wall over a single cardiac cycle yielded the slope as the PWV and the coefficient of determination r2 as an approximate measure of the pulse wave propagation uniformity. The aortic PWV measurements in all normal, hypertensive, and AAA subjects were 6.03 ± 1.68, 6.69 ± 2.80, and 10.54 ± 6.52 m s-1, respectively. There was no significant difference (p = 0.15) between the PWVs of the normal and hypertensive subjects while the PWVs of the AAA subjects were significantly higher (p < 0.001) compared to those of the other two groups. Also, the average r2 in the AAA subjects was significantly lower (p < 0.001) than that in the normal and hypertensive subjects. These preliminary results suggest that the regional PWV and the pulse wave propagation uniformity (r2) obtained using PWI, in addition to the PWI images and spatio-temporal maps that provide qualitative visualization of the pulse wave, may potentially provide valuable information for the clinical characterization of aneurysms and other vascular pathologies that regionally alter the arterial wall mechanics.

  20. Pulsed light imaging for wide-field dosimetry of photodynamic therapy in the skin

    NASA Astrophysics Data System (ADS)

    Davis, Scott C.; Sexton, Kristian; Chapman, Michael Shane; Maytin, Edward; Hasan, Tayyaba; Pogue, Brian W.

    2014-03-01

    Photodynamic therapy using aminoluvelinic acid (ALA) is an FDA-approved treatment for actinic keratoses, pre-cancerous skin lesions which pose a significant risk for immunocompromised individuals, such as organ transplant recipients. While PDT is generally effective, response rates vary, largely due to variations in the accumulation of the photosensitizer protoporphyrin IX (PpIX) after ALA application. The ability to quantify PpIX production before treatment could facilitate the use of additional interventions to improve outcomes. While many groups have demonstrated the ability to image PpIX in the clinic, these systems generally require darkening the room lights during imaging, which is unpopular with clinicians. We have developed a novel wide-field imaging system based on pulsed excitation and gated acquisition to image photosensitizer activity in the skin. The tissue is illuminated using four pulsed LED's to excite PpIX, and the remitted light acquired with a synchronized ICCD. This approach facilitates real-time background subtraction of ambient light, precluding the need to darken the exam room. Delivering light in short bursts also allows the use of elevated excitation intensity while remaining under the maximum permissible exposure limits, making the modality more sensitive to photosensitizer fluorescence than standard approaches. Images of tissue phantoms indicate system sensitivity down to 250nM PpIX and images of animals demonstrate detection of PpIX fluorescence in vivo under normal room light conditions.

  1. Waveguide piezoelectric micromachined ultrasonic transducer array for short-range pulse-echo imaging

    NASA Astrophysics Data System (ADS)

    Lu, Y.; Tang, H.; Wang, Q.; Fung, S.; Tsai, J. M.; Daneman, M.; Boser, B. E.; Horsley, D. A.

    2015-05-01

    This paper presents an 8 × 24 element, 100 ?m-pitch, 20 MHz ultrasound imager based on a piezoelectric micromachined ultrasonic transducer (PMUT) array having integrated acoustic waveguides. The 70 ?m diameter, 220 ?m long waveguides function both to direct acoustic waves and to confine acoustic energy, and also to provide mechanical protection for the PMUT array used for surface-imaging applications such as an ultrasonic fingerprint sensor. The imager consists of a PMUT array bonded with a CMOS ASIC using wafer-level conductive eutectic bonding. This construction allows each PMUT in the array to have a dedicated front-end receive amplifier, which together with on-chip analog multiplexing enables individual pixel read-out with high signal-to-noise ratio through minimized parasitic capacitance between the PMUT and the front-end amplifier. Finite element method simulations demonstrate that the waveguides preserve the pressure amplitude of acoustic pulses over distances of 600 ?m. Moreover, the waveguide design demonstrated here enables pixel-by-pixel readout of the ultrasound image due to improved directivity of the PMUT by directing acoustic waves and creating a pressure field with greater spatial uniformity at the end of the waveguide. Pulse-echo imaging experiments conducted using a one-dimensional steel grating demonstrate the array's ability to form a two-dimensional image of a target.

  2. 3-D photoacoustic and pulse echo imaging of prostate tumor progression in the mouse window chamber

    NASA Astrophysics Data System (ADS)

    Bauer, Daniel R.; Olafsson, Ragnar; Montilla, Leonardo G.; Witte, Russell S.

    2011-02-01

    Understanding the tumor microenvironment is critical to characterizing how cancers operate and predicting their response to treatment. We describe a novel, high-resolution coregistered photoacoustic (PA) and pulse echo (PE) ultrasound system used to image the tumor microenvironment. Compared to traditional optical systems, the platform provides complementary contrast and important depth information. Three mice are implanted with a dorsal skin flap window chamber and injected with PC-3 prostate tumor cells transfected with green fluorescent protein. The ensuing tumor invasion is mapped during three weeks or more using simultaneous PA and PE imaging at 25 MHz, combined with optical and fluorescent techniques. Pulse echo imaging provides details of tumor structure and the surrounding environment with 100-?m3 resolution. Tumor size increases dramatically with an average volumetric growth rate of 5.35 mm3/day, correlating well with 2-D fluorescent imaging (R = 0.97, p < 0.01). Photoacoustic imaging is able to track the underlying vascular network and identify hemorrhaging, while PA spectroscopy helps classify blood vessels according to their optical absorption spectrum, suggesting variation in blood oxygen saturation. Photoacoustic and PE imaging are safe, translational modalities that provide enhanced depth resolution and complementary contrast to track the tumor microenvironment, evaluate new cancer therapies, and develop molecular contrast agents in vivo.

  3. Nonlinear imaging of lipid membrane alterations elicited by nanosecond pulsed electric fields

    NASA Astrophysics Data System (ADS)

    Moen, Erick K.; Beier, Hope T.; Thompson, Gary L.; Armani, Andrea M.; Ibey, Bennett L.

    2015-03-01

    Second Harmonic Generation (SHG) imaging is a useful tool for examining the structure of interfaces between bulk materials. Recently, this technique was applied to detecting subtle perturbations in the structure of cellular membranes following nanosecond pulsed electric field (nsPEF) exposure. Monitoring the cell's outer membrane as it is exposed to nsPEF via SHG has demonstrated that nanoporation is likely the root cause for size-specific, increased cytoplasmic membrane permeabilization. It is theorized that the area of the membrane covered by these pores is tied to pulse intensity or duration. The extent of this effect along the cell's surface, however, has never been measured due to its temporal brevity and minute pore size. By enhancing the SHG technique developed and elucidated previously, we are able to obtain this information. Further, we vary the pulse width and amplitude of the applied stimulus to explore the mechanical changes of the membrane at various sites around the cell. By using this unique SHG imaging technique to directly visualize the change in order of phospholipids within the membrane, we are able to better understand the complex response of living cells to electric pulses.

  4. Advantage of terahertz radiation versus X-ray to detect hidden organic materials in sealed vessels

    NASA Astrophysics Data System (ADS)

    Bessou, Maryelle; Duday, Henri; Caumes, Jean-Pascal; Salort, Simon; Chassagne, Bruno; Dautant, Alain; Ziéglé, Anne; Abraham, Emmanuel

    2012-10-01

    Terahertz imaging and conventional X-ray have been used to investigate a sealed Ancient Egyptian jar preserved at the Museum of Aquitaine (France). Terahertz radiation revealed an unknown content that could not have been visualized by X-ray. By comparison with a model object, we concluded that this content was composed of organic materials explaining their relative radiolucency.

  5. Femtosecond pulse shaping enables detection of optical Kerr-effect (OKE) dynamics for molecular imaging

    PubMed Central

    Robles, Francisco E.; Fischer, Martin C.; Warren, Warren S.

    2014-01-01

    We apply femtosecond pulse shaping to generate optical pulse trains that directly access a material’s nonlinear refractive index (n2) and can thus determine time-resolved optical Kerr-effect (OKE) dynamics. Two types of static pulse trains are discussed: The first uses two identical fields delayed in time, plus a pump field at a different wavelength. Time-resolved OKE dynamics are retrieved by monitoring the phase of the interference pattern produced by the two identical fields in the Fourier-domain (FD) as a function of pump–probe–time–delay (where the probe is one of the two identical fields). The second pulse train uses three fields with equal time delays, but with the center field phase shifted by ?/2. In this pulse scheme, changes on a sample’s nonlinear refractive index produce a new frequency in the FD signal, which in turn yields background-free intensity changes in the conjugate (time) domain and provides superior signal-to-noise ratios. The demonstrated sensitivity improvements enable, for the first time to our knowledge, molecular imaging based on OKE dynamics. PMID:25121875

  6. Femtosecond pulse shaping enables detection of optical Kerr-effect (OKE) dynamics for molecular imaging.

    PubMed

    Robles, Francisco E; Fischer, Martin C; Warren, Warren S

    2014-08-15

    We apply femtosecond pulse shaping to generate optical pulse trains that directly access a material's nonlinear refractive index (n2) and can thus determine time-resolved optical Kerr-effect (OKE) dynamics. Two types of static pulse trains are discussed: The first uses two identical fields delayed in time, plus a pump field at a different wavelength. Time-resolved OKE dynamics are retrieved by monitoring the phase of the interference pattern produced by the two identical fields in the Fourier-domain (FD) as a function of pump-probe-time-delay (where the probe is one of the two identical fields). The second pulse train uses three fields with equal time delays, but with the center field phase shifted by ?/2. In this pulse scheme, changes on a sample's nonlinear refractive index produce a new frequency in the FD signal, which in turn yields background-free intensity changes in the conjugate (time) domain and provides superior signal-to-noise ratios. The demonstrated sensitivity improvements enable, for the first time to our knowledge, molecular imaging based on OKE dynamics. PMID:25121875

  7. 2D photoacoustic scanning imaging with a single pulsed laser diode excitation

    NASA Astrophysics Data System (ADS)

    Chen, Xuegang; Li, Changwei; Zeng, Lvming; Liu, Guodong; Huang, Zhen; Ren, Zhong

    2012-03-01

    A portable near-infrared photoacoustic scanning imaging system has been developed with a single pulsed laser diode, which was integrated with an optical lens system to straightforward boost the laser energy density for photoacoustic generation. The 905 nm laser diode provides a maximum energy output of 14 ?J within 100 ns pulse duration, and the pulse repetition frequency rate is 0.8 KHz. As a possible alternative light source, the preliminary 2D photoacoustic results primely correspond with the test phantoms of umbonate extravasated gore and knotted blood vessel network. The photoacoustic SNR can reach 20.6+/-1.2 dB while signal averaging reduces to 128 pulses from thousands to tens of thousands times, and the signal acquisition time accelerates to less than 0.2 s in each A-scan, especially the volume of the total radiation source is only 10 × 3 × 3 cm3. It demonstrated that the pulsed semiconductor laser could be a candidate of photoacoustic equipment for daily clinical application.

  8. 2D photoacoustic scanning imaging with a single pulsed laser diode excitation

    NASA Astrophysics Data System (ADS)

    Chen, Xuegang; Li, Changwei; Zeng, Lvming; Liu, Guodong; Huang, Zhen; Ren, Zhong

    2011-11-01

    A portable near-infrared photoacoustic scanning imaging system has been developed with a single pulsed laser diode, which was integrated with an optical lens system to straightforward boost the laser energy density for photoacoustic generation. The 905 nm laser diode provides a maximum energy output of 14 ?J within 100 ns pulse duration, and the pulse repetition frequency rate is 0.8 KHz. As a possible alternative light source, the preliminary 2D photoacoustic results primely correspond with the test phantoms of umbonate extravasated gore and knotted blood vessel network. The photoacoustic SNR can reach 20.6+/-1.2 dB while signal averaging reduces to 128 pulses from thousands to tens of thousands times, and the signal acquisition time accelerates to less than 0.2 s in each A-scan, especially the volume of the total radiation source is only 10 × 3 × 3 cm3. It demonstrated that the pulsed semiconductor laser could be a candidate of photoacoustic equipment for daily clinical application.

  9. An imaging proton spectrometer for short-pulse laser plasma experiments

    SciTech Connect

    Chen, H; Hazi, A; van Maren, R; Chen, S; Fuchs, J; Gauthier, M; Pape, S L; Rygg, J R; Shepherd, R

    2010-05-11

    Ultra intense short pulse laser pulses incident on solid targets can generate energetic protons. In additions to their potentially important applications such as in cancer treatments and proton fast ignition, these protons are essential to understand the complex physics of intense laser plasma interaction. To better characterize these laser-produced protons, we designed and constructed a novel, spatially imaging proton spectrometer that will not only measure proton energy distribution with high resolution, but also provide its angular characteristics. The information obtained from this spectrometer compliments those from commonly used diagnostics including radiochromic film packs, CR39 nuclear track detectors, and non-imaging magnetic spectrometers. The basic characterizations and sample data from this instrument are presented.

  10. ULTRASOUND PULSE-ECHO IMAGING USING THE SPLIT-STEP FOURIER PROPAGATOR

    SciTech Connect

    HUANG, LIANJIE; QUAN, YOULI

    2007-01-31

    Ultrasonic reflection imaging has the potential to produce higher image resolution than transmission tomography, but imaging resolution and quality still need to be further improved for early cancer detection and diagnosis. We present an ultrasound reflection image reconstruction method using the split-step Fourier propagator. It is based on recursive inward continuation of ultrasonic wavefields in the frequency-space and frequency-wavenumber domains. The inward continuation within each extrapolation interval consists of two steps. In the first step, a phase-shift term is applied to the data in the frequency-wavenumber domain for propagation in a reference medium. The second step consists of applying another phase-shift term to data in the frequency-space domain to approximately compensate for ultrasonic scattering effects of heterogeneities within the breast. We use synthetic ultrasound pulse-echo data recorded around a ring for heterogeneous, computer-generated numerical breast phantoms to study the imaging capability of the method. The phantoms are derived from an experimental breast phantom and a sound-speed tomography image of an in-vivo ultrasound breast data collected usi ng a ring array. The heterogeneous sound-speed models used for pulse-echo imaging are obtained using a computationally efficient, first-arrival-time (time-of-flight) transmission tomography method. Our studies demonstrate that reflection image reconstruction using the split-step Fourier propagator with heterogeneous sound-speed models significantly improves image quality and resolution. We also numerically verify the spatial sampling criterion of wavefields for a ring transducer array.

  11. Ultrafast carrier dynamics and terahertz emission in optically pumped graphene at room temperature

    NASA Astrophysics Data System (ADS)

    Boubanga-Tombet, S.; Chan, S.; Watanabe, T.; Satou, A.; Ryzhii, V.; Otsuji, T.

    2012-01-01

    We report, within a picosecond time scale, fast relaxation and relatively slow recombination dynamics of photogenerated electrons and holes in an exfoliated graphene under infrared pulse excitation. We conduct time-domain spectroscopic studies using an optical pump and terahertz probe with an optical probe technique and show that graphene sheet amplifies an incoming terahertz field. The graphene emission spectral dependency on laser pumping intensity shows a threshold-like behavior, testifying to the occurrence of the negative conductivity and the population inversion. The phase behavior of the measured terahertz electric field also shows clear Lorentzian-like normal dispersion around the gain peak, testifying to the amplification that can be attributed to stimulated emission of photocarriers in the inverted states. The emission spectra clearly narrow at a longer terahertz probe delay time, giving evidence that the quasi-Fermi energy moves closer to the equilibrium at this longer terahertz probe delay time.

  12. Real-Time Pulse Echo and Photoacoustic Imaging Using an Ultrasound Array and In-line Reflective Illumination

    E-print Network

    Witte, Russell S.

    Real-Time Pulse Echo and Photoacoustic Imaging Using an Ultrasound Array and In-line Reflective of Arizona Tucson, AZ USA ABSTRACT Recent clinical studies have demonstrated that photoacoustic (PA) imaging that can efficiently deliver light in line with the image plane. This photoacoustic enabling device (PED

  13. Dual Frequency Band Annular Probe for Volumetric Pulse-echo Optoacoustic Imaging

    NASA Astrophysics Data System (ADS)

    Kalkhoran, Mohammad Azizian; Varray, François; Vray, Didier

    Optoacoustic (OA) pulse echo (PE) imaging is a hybridized modality that is capable of providing physiological information on the basis of anatomical structure. In this work, we propose a dual frequency band annular probe for backward mode volumetric PE/OA imaging. The performance of this design is evaluated based on the spatio-temporal impulse response, three dimensional steerability of the transducer and point spread function. Optimum settings for number of elements in each ring and maximum steering are suggested. The transducer design and synthetic array beamforming simulation are presented. The resolution performance and reconstruction capabilities are shown with the in-silico measurements.

  14. Polarization and phase pulse shaping applied to structural contrast in nonlinear microscopy imaging

    SciTech Connect

    Schoen, Peter; Behrndt, Martin; Aiet-Belkacem, Dora; Rigneault, Herve; Brasselet, Sophie

    2010-01-15

    The spectral polarization shaping of ultrashort pulses is shown to allow retrieval of two-dimensional individual tensorial components of the second-harmonic-generation response of molecular samples in nonlinear microscopy imaging. This configuration, which cannot be performed by traditional polarization-controlled excitation, provides a structural contrast that can be directly related to information on the local symmetry and order of the sample, with submicrometric spatial resolution. Phase shaping, in addition to polarization spectral manipulation, is proposed as a possible scheme for imaging individual tensorial components without the need for a spectral information extraction.

  15. Imaging in diffuse media with pulsed-ultrasound-modulated light and the photorefractive effect.

    PubMed

    Sui, Lei; Roy, Ronald A; DiMarzio, Charles A; Murray, Todd W

    2005-07-01

    Acousto-optic imaging in diffuse media is a dual wave-sensing technique in which an acoustic field interacts with multiply scattered laser light. The acoustic field causes a phase modulation in the optical field emanating from the interaction region, and this phase-modulated optical field carries with it information about the local optomechanical properties of the media. We report on the use of a pulsed ultrasound transducer to modulate the optical field and the use of a photorefractive-crystal-based interferometry system to detect ultrasound-modulated light. The use of short pulses of focused ultrasound allows for a one-dimensional acousto-optic image to be obtained along the transducer axis from a single, time-averaged acousto-optic signal. The axial and lateral resolutions of the system are controlled by the spatial pulse length and width of the ultrasound beam, respectively. In addition, scanning the ultrasound transducer in one dimension yields two-dimensional images of optical inhomogeneities buried in turbid media. PMID:16004051

  16. Terahertz spectroscopy of human skin constituents in suspension

    NASA Astrophysics Data System (ADS)

    Joseph, Cecil; Yaroslavsky, Anna; Al-Arashi, Munir; Gatesman, Andrew; Goyette, Thomas; Giles, Robert

    2008-03-01

    Continuous wave terahertz imaging has the potential to offer a non-invasive medical imaging modality for detecting different types of human cancers. The aim of this study was to identify frequencies of interest for continuous wave terahertz imaging of skin cancer. The absorption characteristics of water, collagen, and elastin were studied in the range between 20 and 100cm-1. In addition, we have recorded and analyzed the teraherz absorption spectra of several substances that are present in human skin (i.e. tryptophan, tyrosine, melanin, urocanic acid, keratin) and their water suspensions with the goal of using them as biomarkers for skin cancer detection.

  17. Time-domain terahertz spectroscopy of artificial skin

    NASA Astrophysics Data System (ADS)

    Corridon, Peter M.; Ascázubi, Ricardo; Krest, Courtney; Wilke, Ingrid

    2006-02-01

    Time-domain Terahertz (THz) spectroscopy and imaging is currently evaluated as a novel tool for medical imaging and diagnostics. The application of THz-pulse imaging of human skin tissues and related cancers has been demonstrated recently in-vitro and in-vivo. With this in mind, we present a time-domain THz-transmission study of artificial skin. The skin samples consist of a monolayer of porous matrix of fibers of cross-linked bovine tendon collagen and a glycosaminoglycan (chondroitin-6-sulfate) that is manufactured with a controlled porosity and defined degradation rate. Another set of samples consists of the collagen monolayer covered with a silicone layer. We have measured the THz-transmission and determined the index of refraction and absorption of our samples between 0.1 and 3 THz for various states of hydration in distilled water and saline solutions. The transmission of the THz-radiation through the artificial skin samples is modeled by electromagnetic wave theory. Moreover, the THz-optical properties of the artificial skin layers are compared to the THz-optical properties of freshly excised human skin samples. Based on this comparison the potential use of artificial skin samples as photo-medical phantoms for human skin is discussed.

  18. Fluorescence imaging beyond the ballistic regime by ultrasound-pulse-guided digital phase conjugation

    NASA Astrophysics Data System (ADS)

    Si, Ke; Fiolka, Reto; Cui, Meng

    2012-10-01

    Fluorescence imaging has revolutionized biomedical research over the past three decades. Its high molecular specificity and unrivalled single-molecule-level sensitivity have enabled breakthroughs in a number of research fields. For in vivo applications its major limitation is its superficial imaging depth, a result of random scattering in biological tissues causing exponential attenuation of the ballistic component of a light wave. Here, we present fluorescence imaging beyond the ballistic regime by combining single-cycle pulsed ultrasound modulation and digital optical phase conjugation. We demonstrate a near-isotropic three-dimensional localized sound-light interaction zone. With the exceptionally high optical gain provided by the digital optical phase conjugation system, we can deliver sufficient optical power to a focus inside highly scattering media for not only fluorescence imaging but also a variety of linear and nonlinear spectroscopy measurements. This technology paves the way for many important applications in both fundamental biology research and clinical studies.

  19. Accuracy of pulsed arterial spin labeling magnetic resonance imaging in the human brain : tag width and timing effects

    E-print Network

    Bolar, Divya Sanam

    2007-01-01

    Arterial spin labeling (ASL) is the only non-invasive magnetic resonance imaging (MRI) technique that allows absolute quantification of cerebral blood flow (CBF). It involves using radiofrequency pulses designed to invert ...

  20. Metamaterials for terahertz polarimetric devices

    SciTech Connect

    O'hara, John F; Taylor, Antoinette J; Smirnova, Evgenya; Azad, Abul; Chen, Hou-tong; Peralta, Xomalin G; Brener, Igal

    2008-01-01

    We present experimental and numerical investigations of planar terahertz metamaterial structures designed to interact with the state of polarization. The dependence of metamaterial resonances on polarization results in unique amplitude and phase characteristics of the terahertz transmission, providing the basis for polarimetric terahertz devices. We highlight some potential applications for polarimetric devices and present simulations of a terahertz quarter-wave plate and a polarizing terahertz beam splitter. Although this work was performed at tcrahertz frequencies, it may find applications in other frequency ranges as well.

  1. Comparison of an electro-optical system and photo-conducting antenna employed as detectors of pulsed terahertz radiation by means of a new method for measuring spectral width

    NASA Astrophysics Data System (ADS)

    Grachev, Ya V.; Osipova, M. O.; Bespalov, V. G.

    2014-12-01

    Two detection systems, electro-optical system and photoconducting system, are tested by the method suggested previously for determining the boundaries of broadband terahertz radiation in time-domain spectroscopy. From a series of measurements the error in determining the operation ranges is calculated. The terahertz spectrometer with an electro-optical detector based on a ZnTe (110) crystal of thickness 2 mm has the operation spectral range of 0.059 - 1.092 THz. The detector utilizing an iPCA-21-05-1000-800-h photo-conducting antenna with the same source of signal demonstrates a wider operation band ranging from 0.017 to 1.6 THz. The method developed makes it possible to experimentally compare the parameters of the considered terahertz spectrometers obtained under the same quality of adjustment.

  2. Comparison of an electro-optical system and photo-conducting antenna employed as detectors of pulsed terahertz radiation by means of a new method for measuring spectral width

    SciTech Connect

    Grachev, Ya V; Osipova, M O; Bespalov, V G

    2014-12-31

    Two detection systems, electro-optical system and photoconducting system, are tested by the method suggested previously for determining the boundaries of broadband terahertz radiation in time-domain spectroscopy. From a series of measurements the error in determining the operation ranges is calculated. The terahertz spectrometer with an electro-optical detector based on a ZnTe (110) crystal of thickness 2 mm has the operation spectral range of 0.059 – 1.092 THz. The detector utilizing an iPCA-21-05-1000-800-h photo-conducting antenna with the same source of signal demonstrates a wider operation band ranging from 0.017 to 1.6 THz. The method developed makes it possible to experimentally compare the parameters of the considered terahertz spectrometers obtained under the same quality of adjustment. (laser applications and other topics in quantum electronics)

  3. Direct detector for terahertz radiation

    DOEpatents

    Wanke, Michael C. (Albuquerque, NM); Lee, Mark (Albuquerque, NM); Shaner, Eric A. (Albuquerque, NM); Allen, S. James (Santa Barbara, CA)

    2008-09-02

    A direct detector for terahertz radiation comprises a grating-gated field-effect transistor with one or more quantum wells that provide a two-dimensional electron gas in the channel region. The grating gate can be a split-grating gate having at least one finger that can be individually biased. Biasing an individual finger of the split-grating gate to near pinch-off greatly increases the detector's resonant response magnitude over prior QW FET detectors while maintaining frequency selectivity. The split-grating-gated QW FET shows a tunable resonant plasmon response to FIR radiation that makes possible an electrically sweepable spectrometer-on-a-chip with no moving mechanical optical parts. Further, the narrow spectral response and signal-to-noise are adequate for use of the split-grating-gated QW FET in a passive, multispectral terahertz imaging system. The detector can be operated in a photoconductive or a photovoltaic mode. Other embodiments include uniform front and back gates to independently vary the carrier densities in the channel region, a thinned substrate to increase bolometric responsivity, and a resistive shunt to connect the fingers of the grating gate in parallel and provide a uniform gate-channel voltage along the length of the channel to increase the responsivity and improve the spectral resolution.

  4. An exploration of the utilities of terahertz waves for the NDE of composites

    SciTech Connect

    Hsu, David K.; Im, Kwang-Hee; Chiou, Chien-Ping; Barnard, Daniel J.

    2011-06-23

    We report an investigation of terahertz waves for the nondestructive evaluation of composite materials and structures. The modalities of the terahertz radiation used were time domain spectroscopy (TDS) and continuous wave (CW). The composite materials and structures investigated include both non-conducting polymeric composites and carbon fiber composites. Terahertz signals in the TDS mode resembles that of ultrasound; however, unlike ultrasound, a terahertz pulse can detect a crack hidden behind a larger crack. This was demonstrated in thick GFRP laminates containing double saw slots. In carbon composites the penetration of terahertz waves is quite limited and the detection of flaws is strongly affected by the angle between the electric field vector of the terahertz waves and the intervening fiber directions. The structures tested in this study include both solid laminates and honeycomb sandwiches. The defects and anomalies investigated by terahertz waves were foreign material inclusions, simulated disbond and delamination, mechanical impact damage, heat damage, and water or hydraulic fluid ingression. The effectiveness and limitations of terahertz radiation for the NDE of composites are discussed.

  5. Generation of coherent terahertz radiation in ultrafast laser-gas interactions

    SciTech Connect

    Kim, Ki-Yong

    2009-05-15

    The generation of intense terahertz radiation in ultrafast laser-gas interactions is studied on a basis of transient electron current model. When an ultrashort pulse laser's fundamental and its second harmonic fields are mixed to ionize a gas, a nonvanishing, directional photoelectron current can be produced, which simultaneously emits terahertz radiation in the far field. Here, the generation mechanism is examined with an analytic derivation and numerical simulations, in which tunneling ionization and subsequent electron motion in the combined laser field play a key role. In the simulations, three types of laser-gas interactions are considered: (i) mixing the fundamental and its second harmonic fields, (ii) mixing nonharmonic, two-color fields, and (iii) focusing single-color, few-cycle pulses. In these interactions, terahertz generation and other nonlinear effects driven by the transient current are investigated. In particular, anticorrelation between terahertz and second (or third) harmonic generation is observed and analyzed.

  6. Time resolved imaging of magnetization dynamics in hard disk writer yokes excited by bipolar current pulses

    SciTech Connect

    Yu, W. Keatley, P. S.; Hicken, R. J.; Gubbins, M. A.; Czoschke, P. J.; Lopusnik, R.

    2014-05-07

    A partially built hard disk writer structure with a NiFe/CoFe/Ru/NiFe/CoFe synthetic antiferromagnetic (SAF) yoke was studied by time and vector resolved scanning Kerr microscopy. All three time dependent components of the magnetization were recorded simultaneously as a bipolar current pulse with 1?MHz repetition rate was delivered to the coil. The component of magnetization parallel to the symmetry axis of the yoke was compared at the pole and above a coil winding in the centre of the yoke. The two responses are in phase as the pulse rises, but the pole piece lags the yoke as the pulse falls. The Kerr signal is smaller within the yoke than within the confluence region during pulse cycling. This suggests funneling of flux into the confluence region. Dynamic images acquired at different time delays showed that the relaxation is faster in the centre of the yoke than in the confluence region, perhaps due to the different magnetic anisotropy in these regions. Although the SAF yoke is designed to support a single domain to aid flux conduction, no obvious flux beaming was observed, suggesting the presence of a more complicated domain structure. The SAF yoke writer hence provides relatively poor flux conduction but good control of rise time compared to single layer and multi-layered yokes studied previously.

  7. A Pulse Coupled Neural Network Segmentation Algorithm for Reflectance Confocal Images of Epithelial Tissue

    PubMed Central

    Malik, Bilal H.; Jabbour, Joey M.; Maitland, Kristen C.

    2015-01-01

    Automatic segmentation of nuclei in reflectance confocal microscopy images is critical for visualization and rapid quantification of nuclear-to-cytoplasmic ratio, a useful indicator of epithelial precancer. Reflectance confocal microscopy can provide three-dimensional imaging of epithelial tissue in vivo with sub-cellular resolution. Changes in nuclear density or nuclear-to-cytoplasmic ratio as a function of depth obtained from confocal images can be used to determine the presence or stage of epithelial cancers. However, low nuclear to background contrast, low resolution at greater imaging depths, and significant variation in reflectance signal of nuclei complicate segmentation required for quantification of nuclear-to-cytoplasmic ratio. Here, we present an automated segmentation method to segment nuclei in reflectance confocal images using a pulse coupled neural network algorithm, specifically a spiking cortical model, and an artificial neural network classifier. The segmentation algorithm was applied to an image model of nuclei with varying nuclear to background contrast. Greater than 90% of simulated nuclei were detected for contrast of 2.0 or greater. Confocal images of porcine and human oral mucosa were used to evaluate application to epithelial tissue. Segmentation accuracy was assessed using manual segmentation of nuclei as the gold standard. PMID:25816131

  8. Intracavity terahertz generation inside a high-energy ultrafast soliton fiber laser

    NASA Astrophysics Data System (ADS)

    Matthäus, Gabor; Ortaç, Bülend; Limpert, Jens; Nolte, Stefan; Hohmuth, Rico; Voitsch, Martin; Richter, Wolfgang; Pradarutti, Boris; Tünnermann, Andreas

    2008-12-01

    Intracavity terahertz emission inside a high-energy ultrafast Yb-doped fiber laser is presented. The terahertz radiation is generated by a transient photocurrent induced at the surface of a saturable InGaAs multiquantum well grown by molecular beam epitaxy on top of a semiconductor Bragg reflector. This device simultaneously works as the saturable absorber mirror for initiating and managing the passive mode locking required for the ultrashort pulse operation of the laser system. The maximum terahertz average power achieved is 4.2?W, which reveals a net conversion efficiency of 3.1×10-5.

  9. Stimulated Terahertz Emission from Intra-Excitonic Transitions inCu2O

    SciTech Connect

    Huber, Rupert; Schmid, Ben A.; Shen, Y. Ron; Chemla, Daniel S.; Kaindl, Robert A.

    2005-06-16

    We report the first observation of stimulated emission of terahertz radiation from internal transitions of excitons. The far-infrared electromagnetic response of Cu{sub 2}O is monitored via broadband terahertz pulses after ultrafast resonant excitation of three-dimensional 3p excitons. Stimulated emission from the 3p to the energetically lower 2s bound level occurs at a photon energy of 6.6 meV, with a cross section of {approx} 10{sup 14} cm{sup 2}. Simultaneous excitation of both exciton levels, in turn, drives quantum beats which lead to efficient terahertz emission sharply peaked at the difference frequency.

  10. Chirp-pulse-compression three-dimensional lidar imager with fiber optics.

    PubMed

    Pearson, Guy N; Ridley, Kevin D; Willetts, David V

    2005-01-10

    A coherent three-dimensional (angle-angle-range) lidar imager using a master-oscillator-power-amplifier concept and operating at a wavelength of 1.5 microm with chirp-pulse compression is described. A fiber-optic delay line in the local oscillator path enables a single continuous-wave semiconductor laser source with a modulated drive waveform to generate both the constant-frequency local oscillator and the frequency chirp. A portion of this chirp is gated out and amplified by a two-stage fiber amplifier. The digitized return signal was compressed by cross correlating it with a sample of the outgoing pulse. In this way a 350-ns, 10-microJ pulse with a 250-MHz frequency sweep is compressed to a width of approximately 8 ns. With a 25-mm output aperture, the lidar has been used to produce three-dimensional images of hard targets out to a range of approximately 2 km with near-diffraction-limited angular resolution and submeter range resolution. PMID:15678779

  11. Chirp-pulse-compression three-dimensional lidar imager with fiber optics

    NASA Astrophysics Data System (ADS)

    Pearson, Guy N.; Ridley, Kevin D.; Willetts, David V.

    2005-01-01

    A coherent three-dimensional (angle-angle-range) lidar imager using a master-oscillator-power-amplifier concept and operating at a wavelength of 1.5 ?m with chirp-pulse compression is described. A fiber-optic delay line in the local oscillator path enables a single continuous-wave semiconductor laser source with a modulated drive waveform to generate both the constant-frequency local oscillator and the frequency chirp. A portion of this chirp is gated out and amplified by a two-stage fiber amplifier. The digitized return signal was compressed by cross correlating it with a sample of the outgoing pulse. In this way a 350-ns, 10-?J pulse with a 250-MHz frequency sweep is compressed to a width of approximately 8 ns. With a 25-mm output aperture, the lidar has been used to produce three-dimensional images of hard targets out to a range of approximately 2 km with near-diffraction-limited angular resolution and submeter range resolution.

  12. Nd:YAG Pulsed Laser based flaw imaging techniques for noncontact NDE of an aluminum plate

    NASA Astrophysics Data System (ADS)

    Park, Woong-Ki; Lee, Changgil; Park, Seunghee

    2012-04-01

    Recently, the longitudinal, shear and surface waves have been very widely used as a kind of ultrasonic wave exploration methods to identify internal defects of metallic structures. The ultrasonic wave-based non-destructive testing (NDT) is one of main non-destructive inspection techniques for a health assessment about nuclear power plant, aircraft, ships, and/or automobile manufacturing. In this study, a noncontact pulsed laser-based flaw imaging NDT technique is implemented to detect the damage of a plate-like structure and to identify the location of the damage. To achieve this goal, the Nd:YAG pulsed laser equipment is used to generate a guided wave and scans a specific area to find damage location. The Nd: YAG pulsed laser is used to generate Lamb wave and piezoelectric sensors are installed to measure structural responses. Ann aluminum plate is investigated to verify the effectiveness and the robustness of the proposed NDT approach. A notch is a target to detect, which is inflicted on the surface of an aluminum plate. The damagesensitive features are extracted by comparing the time of flight of the guided wave obtained from an acoustic emission (AE) sensor and make use of the flaw imaging techniques of the aluminum plate.

  13. Review of terahertz technology development at INO

    NASA Astrophysics Data System (ADS)

    Dufour, Denis; Marchese, Linda; Terroux, Marc; Oulachgar, Hassane; Généreux, Francis; Doucet, Michel; Mercier, Luc; Tremblay, Bruno; Alain, Christine; Beaupré, Patrick; Blanchard, Nathalie; Bolduc, Martin; Chevalier, Claude; D'Amato, Dominic; Desroches, Yan; Duchesne, François; Gagnon, Lucie; Ilias, Samir; Jerominek, Hubert; Lagacé, François; Lambert, Julie; Lamontagne, Frédéric; Le Noc, Loïc; Martel, Anne; Pancrati, Ovidiu; Paultre, Jacques-Edmond; Pope, Tim; Provençal, Francis; Topart, Patrice; Vachon, Carl; Verreault, Sonia; Bergeron, Alain

    2015-10-01

    Over the past decade, INO has leveraged its expertise in the development of uncooled microbolometer detectors for infrared imaging to produce terahertz (THz) imaging systems. By modifying its microbolometer-based focal plane arrays to enhance absorption in the THz bands and by developing custom THz imaging lenses, INO has developed a leading-edge THz imaging system, the IRXCAM-THz-384 camera, capable of exploring novel applications in the emerging field of terahertz imaging and sensing. Using appropriate THz sources, results show that the IRXCAM-THz-384 camera is able to image a variety of concealed objects of interest for applications such as non-destructive testing and weapons detections. By using a longer wavelength (94 GHz) source, it is also capable of sensing the signatures of various objects hidden behind a drywall panel. This article, written as a review of THz research at INO over the past decade, describes the technical components that form the IRXCAM-THz-384 camera and the experimental setup used for active THz imaging. Image results for concealed weapons detection experiments, an exploration of wavelength choice on image quality, and the detection of hidden objects behind drywall are also presented.

  14. Terahertz Quantum Cascade Laser With Efficient Coupling and Beam Profile

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Goutam; Kawamura, Jonathan H.; Lin, Robert H.; Williams, Benjamin

    2012-01-01

    Quantum cascade lasers (QCLs) are unipolar semiconductor lasers, where the wavelength of emitted radiation is determined by the engineering of quantum states within the conduction band in coupled multiple-quantum-well heterostructures to have the desired energy separation. The recent development of terahertz QCLs has provided a new generation of solid-state sources for radiation in the terahertz frequency range. Terahertz QCLs have been demonstrated from 0.84 to 5.0 THz both in pulsed mode and continuous wave mode (CW mode). The approach employs a resonant-phonon depopulation concept. The metal-metal (MM) waveguide fabrication is performed using Cu-Cu thermo-compression bonding to bond the GaAs/AlGaAs epitaxial layer to a GaAs receptor wafer.

  15. High spatial resolution fast-neutron imaging detectors for Pulsed Fast-Neutron Transmission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Mor, I.; Vartsky, D.; Bar, D.; Feldman, G.; Goldberg, M. B.; Katz, D.; Sayag, E.; Shmueli, I.; Cohen, Y.; Tal, A.; Vagish, Z.; Bromberger, B.; Dangendorf, V.; Mugai, D.; Tittelmeier, K.; Weierganz, M.

    2009-05-01

    Two generations of a novel detector for high-resolution transmission imaging and spectrometry of fast-neutrons are presented. These devices are based on a hydrogenous fiber scintillator screen and single- or multiple-gated intensified camera systems (ICCD). This detector is designed for energy-selective neutron radiography with nanosecond-pulsed broad-energy (1-10 MeV) neutron beams. Utilizing the Time-of-Flight (TOF) method, such a detector is capable of simultaneously capturing several images, each at a different neutron energy (TOF). In addition, a gamma-ray image can also be simultaneously registered, allowing combined neutron/gamma inspection of objects. This permits combining the sensitivity of the fast-neutron resonance method to low-Z elements with that of gamma radiography to high-Z materials.

  16. Terahertz-driven linear electron acceleration

    PubMed Central

    Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Dwayne Miller, R. J.; Kärtner, Franz X.

    2015-01-01

    The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50?MeV?m?1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/proton accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. These ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams. PMID:26439410

  17. Terahertz-driven linear electron acceleration

    NASA Astrophysics Data System (ADS)

    Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Dwayne Miller, R. J.; Kärtner, Franz X.

    2015-10-01

    The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30-50 MeV m-1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/proton accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. These ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams.

  18. Terahertz radiation mixer

    DOEpatents

    Wanke, Michael C. (Albuquerque, NM); Allen, S. James (Santa Barbara, CA); Lee, Mark (Albuquerque, NM)

    2008-05-20

    A terahertz radiation mixer comprises a heterodyned field-effect transistor (FET) having a high electron mobility heterostructure that provides a gatable two-dimensional electron gas in the channel region of the FET. The mixer can operate in either a broadband pinch-off mode or a narrowband resonant plasmon mode by changing a grating gate bias of the FET. The mixer can beat an RF signal frequency against a local oscillator frequency to generate an intermediate frequency difference signal in the microwave region. The mixer can have a low local oscillator power requirement and a large intermediate frequency bandwidth. The terahertz radiation mixer is particularly useful for terahertz applications requiring high resolution.

  19. Time-resolved imaging of pulse-induced magnetization reversal with a microwave assist field

    PubMed Central

    Rao, Siddharth; Rhensius, Jan; Bisig, Andre; Mawass, Mohamad-Assaad; Weigand, Markus; Kläui, Mathias; Bhatia, Charanjit S.; Yang, Hyunsoo

    2015-01-01

    The reversal of the magnetization under the influence of a field pulse has been previously predicted to be an incoherent process with several competing phenomena such as domain wall relaxation, spin wave-mediated instability regions, and vortex-core mediated reversal dynamics. However, there has been no study on the direct observation of the switching process with the aid of a microwave signal input. We report a time-resolved imaging study of magnetization reversal in patterned magnetic structures under the influence of a field pulse with microwave assistance. The microwave frequency is varied to demonstrate the effect of resonant microwave-assisted switching. We observe that the switching process is dominated by spin wave dynamics generated as a result of magnetic instabilities in the structures, and identify the frequencies that are most dominant in magnetization reversal. PMID:26023723

  20. An imaging proton spectrometer for short-pulse laser plasma experiments

    SciTech Connect

    Chen, H; Hazi, A; van Maren, R; Chen, S; Fuchs, J; Gauthier, M; Rygg, J R; Shepherd, R

    2010-02-09

    Ultra intense short pulse laser pulses incident on solid targets can generate energetic protons. In additions to their potentially important applications such as in cancer treatments and proton fast ignition, these protons are essential to understand the complex physics of intense laser plasma interaction. To better understand these laser-produced protons, we designed and constructed a novel, spatially imaging proton spectrometer that will not only provide at high-resolution the energy distribution, but also the protons angular characteristics. The information obtained from this spectrometer compliments those from other methods using radiochromic film packs, CR39 films and other protons spectrometers. The basic characterizations and example data from this diagnostics will be presented. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, as part of the Cimarron project funded by LDRD-09SI11.