These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Nikola Tesla: the man behind the magnetic field unit.  

PubMed

The magnetic field strength of both the magnet and gradient coils used in MR imaging equipment is measured in Tesla units, which are named for Nikola Tesla. This article presents the life and achievements of this Serbian-American inventor and researcher who discovered the rotating magnetic field, the basis of most alternating-current machinery. Nikola Tesla had 700 patents in the United States and Europe that covered every aspect of science and technology. Tesla's discoveries include the Tesla coil, AC electrical conduction, improved lighting, newer forms of turbine engines, robotics, fluorescent light, wireless transmission of electrical energy, radio, remote control, discovery of cosmic radio waves, and the use of the ionosphere for scientific purposes. He was a genius whose discoveries had a pivotal role in advancing us into the modern era. PMID:14994307

Roguin, Ariel

2004-03-01

2

Measuring and shimming the magnetic field of a 4 Tesla MRI magnet  

E-print Network

The Biomedical Magnetic Resonance Laboratory (BMRL) of the University of Illinois at Urbana-Champaign (UIUC) has ordered from the Texas Accelerator Center (TAC) a superconducting, self-shielded, solenoidal magnet with a maximum field of 4 Tesla...

Kyriazis, Georgios

1993-01-01

3

Magnetic Semiconductor Quantum Wells in High Fields to 60 Tesla: Photoluminescence Linewidth Annealing at Magnetization Steps  

SciTech Connect

Magnetic semiconductors offer a unique possibility for strongly tuning the intrinsic alloy disorder potential with applied magnetic field. We report the direct observation of a series of step-like reductions in the magnetic alloy disorder potential in single ZnSe/Zn(Cd,Mn)Se quantum wells between O and 60 Tesla. This disorder, measured through the linewidth of low temperature photoluminescence spectra drops abruptly at -19, 36, and 53 Tesla, in concert with observed magnetization steps. Conventional models of alloy disorder (developed for nonmagnetic semiconductors) reproduce the general shape of the data, but markedly underestimate the size of the linewidth reduction.

Awschalom, D.D.; Crooker, S.A.; Lyo, S.K.; Rickel, D.G.; Samarth, N.

1999-05-24

4

Optical Signatures from Magnetic 2-D Electron Gases in High Magnetic Fields to 60 Tesla  

SciTech Connect

We present experiments in the 60 Tesla Long-Pulse magnet at the Los Alamos National High Magnetic Field Lab (NHMFL) focusing on the high-field, low temperature photoluminescence (PL) from modulation-doped ZnSe/Zn(Cd,Mn)Se single quantum wells. High-speed charge-coupled array detectors and the long (2 second) duration of the magnet pulse permit continuous acquisition of optical spectra throughout a single magnet shot. High-field PL studies of the magnetic 2D electron gases at temperatures down to 350mK reveal clear intensity oscillations corresponding to integer quantum Hall filling factors, from which we determine the density of the electron gas. At very high magnetic fields, steps in the PL energy are observed which correspond to the partial unlocking of antiferromagnetically bound pairs of Mn2+ spins.

Crooker, S.A.; Kikkawa, J.M.; Awschalom, D.D.; Smorchikova, I.P.; Samarth, N.

1998-11-08

5

Magnetic field sensors applied to electropolishing of superconducting RF TESLA-type cavities  

NASA Astrophysics Data System (ADS)

In this work an electromagnetic non-invasive and contact-less technique using Flux-Gate first-order gradiometer is proposed to detect the magnetic field distribution during electropolishing of copper surface. The electropolishing of the copper surface employed in superconducting RF TESLA-type cavities has been monitored using magnetic field sensors. Local information regarding the dissolved copper surface during the electropolishing process has been obtained. An electromagnetic inversion of the magnetic field imaging have been implemented to better understand the effect of the cathode geometry on the electropolishing process.

Bonavolontà, C.; Valentino, M.; Palmieri, V.; Rampazzo, V.

2006-07-01

6

Sub-tesla-field magnetization of vibrated magnetic nanoreagents for screening tumor markers  

NASA Astrophysics Data System (ADS)

Magnetic nanoreagents (MNRs), consisting of liquid solutions and magnetic nanoparticles (MNPs) coated with bioprobes, have been widely used in biomedical disciplines. For in vitro tests of serum biomarkers, numerous MNR-based magnetic immunoassay methods or schemes have been developed; however, their applications are limited. In this study, a vibrating sample magnetometer (VSM) was used for screening tumor biomarkers based on the same MNRs as those used in other immunoassay methods. The examination mechanism is that examined tumor biomarkers are typically conjugated to the bioprobes coated on MNPs to form magnetic clusters. Consequently, the sub-Tesla-field magnetization (Msub-T) of MNRs, including magnetic clusters, exceeds that of MNRs containing only separate MNPs. For human serum samples, proteins other than the targeted biomarkers induce the formation of magnetic clusters with increased Msub-T because of weak nonspecific binding. In this study, this interference problem was suppressed by the vibration condition in the VSM and analysis. Based on a referenced Msub-T,0 value defined by the average Msub-T value of a normal person's serum samples, including general proteins and few tumor biomarkers, the difference ?Msub-T between the measured Msub-T and the reference Msub-T,0 determined the expression of only target tumor biomarkers in the tested serum samples. By using common MNRs with an alpha-fetoprotein-antibody coating, this study demonstrated that a current VSM can perform clinical screening of hepatocellular carcinoma.

Chieh, Jen-Jie; Huang, Kai-Wen; Shi, Jin-Cheng

2015-02-01

7

Magnetic semiconductor quantum wells in high fields to 60 Tesla: Photoluminescence linewidth annealing at magnetization steps  

SciTech Connect

Magnetic semiconductors offer a unique possibility for strongly tuning the intrinsic alloy disorder potential with applied magnetic field. We report the direct observation of a series of steplike reductions in the magnetic alloy disorder potential in single ZnSe/Zn(Cd,&hthinsp;Mn)Se quantum wells between 0 and 60 T. This disorder, measured through the linewidth of low-temperature photoluminescence spectra, drops abruptly at {approximately}19, 36, and 53 T, in concert with observed magnetization steps. Conventional models of alloy disorder (developed for nonmagnetic semiconductors) reproduce the general shape of the data, but markedly underestimate the size of the linewidth reduction. {copyright} {ital 1999} {ital The American Physical Society}

Crooker, S.A.; Rickel, D.G. [National High Magnetic Field Laboratory, MS E536, Los Alamos, New Mexico 87545 (United States)] [National High Magnetic Field Laboratory, MS E536, Los Alamos, New Mexico 87545 (United States); Lyo, S.K. [Sandia National Laboratory, P.O. Box 5800, MS-1415, Albuquerque, New Mexico 87185 (United States)] [Sandia National Laboratory, P.O. Box 5800, MS-1415, Albuquerque, New Mexico 87185 (United States); Samarth, N. [Department of Physics, Pennsylvania State University, University Park, Pennsylvania 16802 (United States)] [Department of Physics, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Awschalom, D.D. [Department of Physics, University of California, Santa Barbara, California 93106 (United States)] [Department of Physics, University of California, Santa Barbara, California 93106 (United States)

1999-07-01

8

A 10 tesla table-top controlled waveform magnet  

NASA Astrophysics Data System (ADS)

Controlled Waveform Magnets (CWMs) are a special class of pulsed magnets which provide semi-continuous, shape-controlled high magnetic field pulses. In this work we report a table-top CWM, driven by a capacitor bank, capable of producing virtually any user-shaped magnetic field waveform up to 10 Tesla. Insulated Gate Bipolar Transistor (IGBT) chips were paralleled to form the high current switch. Specimen pulse shapes including flat-tops up to 10 Tesla, and linear as well as some sinusoidal-top magnetic field waveforms have been successfully generated.

Roy Choudhury, Aditya N.; Venkataraman, V.

2012-06-01

9

Local study of the Mg 1 - x Al x B 2 single crystals by scanning tunneling spectroscopy in magnetic field up to 3 Tesla  

Microsoft Academic Search

We have performed local tunneling spectroscopy on high quality Mg1-xAlxB2 single crystals by means of variable temperature scanning tunneling spectroscopy in magnetic field up to 3Tesla. Single gap conductance spectra due to c-axis tunneling were extensively measured, probing different amplitudes of the three-dimensional ?? as a function of Al content (i.e. as a function of the critical temperature TC). Temperature

F. Giubileo; F. Bobba; A. Scarfato; A. M. Cucolo; A. Kohen; D. Roditchev; N. D. Zhigadlo; J. Karpinski

2008-01-01

10

A 10 tesla table-top controlled waveform magnet  

NASA Astrophysics Data System (ADS)

Controlled waveform magnets (CWMs) are a class of pulsed magnets whose pulse shape with time can be programmed by the user. With a CWM, the user gains control not only over the magnitude of the field but also over its rate of change. In this work we present a table-top CWM, driven by a capacitor bank, capable of producing virtually any user-shaped magnetic field waveform up to 10 tesla. Insulated gate bipolar transistor chips have been paralleled to form the high current switch and paralleled chips of SiC Schottky diodes form the crowbar diode module. Sample controlled waveforms including flat-tops up to 10 tesla and some triangular magnetic field pulses have been successfully generated for 10-20 ms with a ripple <1%.

Roy Choudhury, Aditya N.; Venkataraman, V.

2012-04-01

11

Status of the NHMFL 60 tesla quasi-continuous magnet  

SciTech Connect

All components of the National High Magnetic Field Laboratory`s (NHMFL) 60 T quasi-continuous magnet are now under construction, with complete delivery and installation expected in early 1996. This research magnet has a cold bore of 32 mm and will produce a constant 60 tesla for 100 ms plus a wide variety of other pulse shapes such as linear ramps, steps, crowbar decays, and longer flat-tops at lower fields. Fabrication and testing of prototype coils are described along with the layout, construction status, and protection philosophy of the 400 MW power supply. Examples of simulated pulse shapes are shown.

Campbell, L.J.; Boenig, H.J.; Rickel, D.G.; Schilig, J.B.; Sims, J.R. [Los Alamos National Lab., NM (United States); Schneider-Muntau, H.J. [National High Magnetic Field Laboratory (NHMFL), Tallahassee, FL (United States)

1995-07-01

12

Singlet and triplet states of trions in ZuSe-based quantum wells probed by magnetic fields to 50 Tesla  

SciTech Connect

Singlet and triplet states of positively (X{sup +}) and negatively (X{sup -}) charged excitons in ZnSe-based quantum wells have been studied by means of photoluminescence in pulsed magnetic fields up to 50 T. The binding energy of the X{sup -} singlet state shows a monotonic increase with magnetic field with a tendency to saturation, while that of the X{sup +} slightly decreases. The triplet X{sup +} and X{sup -} states, being unbound at zero magnetic field, noticeably increase their binding energy in high magnetic fields. The experimental evidence for the interaction between the triplet and singlet states of lTions leading to their anticrossing in magnetic fields has been found.

Astakhov, G. V.; Yakovlev, D. R.; Crooker, S. A. (Scott A.); Barrick, T. (Todd); Dzyubenko, A. B.; Sander, Thomas; Kochereshko, V. P.; Ossau, W.; Faschinger, W.; Waag, A.

2002-01-01

13

The NHMFL 60 tesla, 100 millisecond pulsed magnet  

SciTech Connect

Among the new facilities to be offered by the National Science Foundation through the National High Magnetic Field Laboratory (NHMFL) are pulsed fields that can only be achieved at a national user facility by virtue of their strength, duration, and volume. In particular, a 44 mm bore pulsed magnet giving a 60 tesla field for 100 ms is in the final design stage. This magnet will be powered by a 1.4 GW motor-generator at Los Alamos and is an important step toward proving design principles that will be needed for the higher field quasi-stationary pulsed magnets that this power source is capable of driving. This report will discuss specifications and parameters of this magnet.

Boenig, H.J.; Campbell, L.J.; Rickel, D.G.; Rogers, J.D.; Schillig, J.B.; Sims, J.R. (Los Alamos National Lab., NM (United States)); Pernambuco-Wise, P.; Schneider-Muntau, H.J. (Florida State Univ., Tallahassee, FL (United States). National High Magnetic Field Lab.)

1992-11-09

14

Nikola Tesla: 145 years of visionary ideas  

Microsoft Academic Search

The paper gives a short review of Tesla's major inventions including the rotating magnetic field, the Tesla coil and transformer, and the power struggle between Edison's direct current systems and the Tesla-Westinghouse alternating current approach. It also looks at some of Tesla's visionary ideas

Jasmina Vujic; Aleksandar Marincic; Milos Ercegovac; Bratislav Milovanovic

2001-01-01

15

Persistent currents at fields above 23 Tesla.  

SciTech Connect

Experimental studies made on organic conducting salts of the composition {alpha}-(BEDT-TTF) 2MHg(SCN)4 (where M = K, Tl and Rb) indicate that they exhibit persistent currents at magnetic fields exceeding 23 T. The presence of currents cannot be explained by the quantum Hall effect, while superconductivity seems unlikely. All indications point towards a new type of dissipationless current flow involving relative gradients in the pinning of a CDW and quantized orbital magnetism.

Harrison, N. (Neil)

2001-01-01

16

Bohr - Planck quantum theory, (Tesla) magnetic monopoles and fine structure constant  

E-print Network

In this work we apply Bohr-Planck (Old quantum atomic and radiation) theory, i.e. and quasi-classical methods for analysis of the magnetic monopoles and other problems. We reproduce exactly some basic elements of the Dirac magnetic monopoles theory, especially Dirac electric/magnetic charge quantization condition. Also, we suggest a new, effective, simply called Tesla model (for analogy with positions of the solenoids by Tesla inductive motor) of the magnetic monopole instead of usual effective Dirac model (half-infinite, very tinny solenoid) of the magnetic monopole. In our, i.e. Tesla model we use three equivalent tiny solenoids connected in series with a voltage source. One end of any solenoid is placed at the circumference of a circle and solenoids are directed radial toward circle center. Length of any solenoid is a bit smaller than finite circle radius so that other end of any solenoid is very close to the circle center. Angles between neighboring solenoids equal $120^{\\circ}$. All this implies that, practically, there is no magnetic field, or, magnetic pole, e.g. $S$, in the circle center, and that whole system holds only other, $N$ magnetic pole, at the ends of the solenoids at circle circumference. Finally, we reproduce relatively satisfactory value of the fine structure constant using Planck, i.e. Bose-Einstein statistics and Wien displacement law.

Vladan Pankovic; Darko V. Kapor; Stevica Djurovic; Miodrag Krmar

2014-10-17

17

Design study of steady-state 30-tesla liquid-neon-cooled magnet  

NASA Technical Reports Server (NTRS)

A design for a 30-tesla, liquid-neon-cooled magnet was reported which is capable of continuous operation. Cooled by nonboiling, forced-convection heat transfer to liquid neon flowing at 2.8 cu m/min in a closed, pressurized heat-transfer loop and structurally supported by a tapered structural ribbon, the tape-wound coils with a high-purity-aluminum conductor will produce over 30 teslas for 1 minute at 850 kilowatts. The magnet will have an inside diameter of 7.5 centimeters and an outside diameter of 54 centimeters. The minimum current density at design field will be 15.7 kA/sq cm.

Prok, G. M.; Brown, G. V.

1976-01-01

18

Superconductivity in Strong Magnetic Field (Greater Than Upper Critical Field)  

SciTech Connect

The National High Magnetic Field Laboratory, funded by the National Science Foundation and other US federal Agencies, has in recent years built a wide range of magnetic fields, DC 25 to 35 Tesla, short pulse 50 - 60 Tesla, and quasi-continuous 60 Tesla. Future plans are to push the frontiers to 45 Tesla DC and 70 to 100 Tesla pulse. This user facility, is open for national and international users, and creates an excellent tool for materials research (metals, semiconductors, superconductors, biological systems ..., etc). Here we present results of a systematic study of the upper critical field of a novel superconducting material which is considered a promising candidate for the search for superconductivity beyond H{sub c2} as proposed by several new theories. These theories predict that superconductors with low carrier density can reenter the superconducting phase beyond the conventional upper critical field H{sub c2}. This negates the conventional thinking that superconductivity and magnetic fields are antagonistic.

Tessema, G.X.; Gamble, B.K.; Skove, M.J.; Lacerda, A.H.; Mielke, C.H.

1998-08-22

19

LBL program of 1 meter long, 50 mm diameter bore, dipoles with fields greater than 8 tesla  

SciTech Connect

Model dipole superconducting magnets with central fields above 8 tesla are being developed for future multi-TeV colliding beam accelerators. The first three models are 1 meter long, have nominal 50 mm diameter cold bores, and utilize Nb-Ti superconductor operating in He II at 1.8 K. None of the three models had an iron flux-return yoke. The maximum central fields achieved are 8.0, 8.6, and 9.1 tesla - all short-sample performance at 1.8 K for the conductors used. At 4.3 K the maximum central fields are from 1.5 to 2.0 tesla lower. In one design, the superconductor is arranged in four concentric cylindrical layers, sometimes called a four-shell geometry. With higher current density Nb-Ti we expect this design to reach 10 tesla central field and a two layer design to reach 8 tesla. The other design uses 8 flat pancakes with upturned ends. Improved Nb-Ti should also allow this design to reach 10 tesla central field. This geometry is being used for our Nb/sub 3/Sn wind-and-react dipole to be operated in He I at 4.3 K.

Hassenzahl, W.; Gilbert, W.; Taylor, C.; Meuser, R.

1983-08-01

20

Design and evaluation of a hybrid radiofrequency applicator for magnetic resonance imaging and RF induced hyperthermia: electromagnetic field simulations up to 14.0 Tesla and proof-of-concept at 7.0 Tesla.  

PubMed

This work demonstrates the feasibility of a hybrid radiofrequency (RF) applicator that supports magnetic resonance (MR) imaging and MR controlled targeted RF heating at ultrahigh magnetic fields (B0?7.0T). For this purpose a virtual and an experimental configuration of an 8-channel transmit/receive (TX/RX) hybrid RF applicator was designed. For TX/RX bow tie antenna electric dipoles were employed. Electromagnetic field simulations (EMF) were performed to study RF heating versus RF wavelength (frequency range: 64 MHz (1.5T) to 600 MHz (14.0T)). The experimental version of the applicator was implemented at B0?=?7.0T. The applicators feasibility for targeted RF heating was evaluated in EMF simulations and in phantom studies. Temperature co-simulations were conducted in phantoms and in a human voxel model. Our results demonstrate that higher frequencies afford a reduction in the size of specific absorption rate (SAR) hotspots. At 7T (298 MHz) the hybrid applicator yielded a 50% iso-contour SAR (iso-SAR-50%) hotspot with a diameter of 43 mm. At 600 MHz an iso-SAR-50% hotspot of 26 mm in diameter was observed. RF power deposition per RF input power was found to increase with B0 which makes targeted RF heating more efficient at higher frequencies. The applicator was capable of generating deep-seated temperature hotspots in phantoms. The feasibility of 2D steering of a SAR/temperature hotspot to a target location was demonstrated by the induction of a focal temperature increase (?T?=?8.1 K) in an off-center region of the phantom. Temperature simulations in the human brain performed at 298 MHz showed a maximum temperature increase to 48.6C for a deep-seated hotspot in the brain with a size of (19×23×32)mm(3) iso-temperature-90%. The hybrid applicator provided imaging capabilities that facilitate high spatial resolution brain MRI. To conclude, this study outlines the technical underpinnings and demonstrates the basic feasibility of an 8-channel hybrid TX/RX applicator that supports MR imaging, MR thermometry and targeted RF heating in one device. PMID:23613896

Winter, Lukas; Özerdem, Celal; Hoffmann, Werner; Santoro, Davide; Müller, Alexander; Waiczies, Helmar; Seemann, Reiner; Graessl, Andreas; Wust, Peter; Niendorf, Thoralf

2013-01-01

21

Design and Evaluation of a Hybrid Radiofrequency Applicator for Magnetic Resonance Imaging and RF Induced Hyperthermia: Electromagnetic Field Simulations up to 14.0 Tesla and Proof-of-Concept at 7.0 Tesla  

PubMed Central

This work demonstrates the feasibility of a hybrid radiofrequency (RF) applicator that supports magnetic resonance (MR) imaging and MR controlled targeted RF heating at ultrahigh magnetic fields (B0?7.0T). For this purpose a virtual and an experimental configuration of an 8-channel transmit/receive (TX/RX) hybrid RF applicator was designed. For TX/RX bow tie antenna electric dipoles were employed. Electromagnetic field simulations (EMF) were performed to study RF heating versus RF wavelength (frequency range: 64 MHz (1.5T) to 600 MHz (14.0T)). The experimental version of the applicator was implemented at B0?=?7.0T. The applicators feasibility for targeted RF heating was evaluated in EMF simulations and in phantom studies. Temperature co-simulations were conducted in phantoms and in a human voxel model. Our results demonstrate that higher frequencies afford a reduction in the size of specific absorption rate (SAR) hotspots. At 7T (298 MHz) the hybrid applicator yielded a 50% iso-contour SAR (iso-SAR-50%) hotspot with a diameter of 43 mm. At 600 MHz an iso-SAR-50% hotspot of 26 mm in diameter was observed. RF power deposition per RF input power was found to increase with B0 which makes targeted RF heating more efficient at higher frequencies. The applicator was capable of generating deep-seated temperature hotspots in phantoms. The feasibility of 2D steering of a SAR/temperature hotspot to a target location was demonstrated by the induction of a focal temperature increase (?T?=?8.1 K) in an off-center region of the phantom. Temperature simulations in the human brain performed at 298 MHz showed a maximum temperature increase to 48.6C for a deep-seated hotspot in the brain with a size of (19×23×32)mm3 iso-temperature-90%. The hybrid applicator provided imaging capabilities that facilitate high spatial resolution brain MRI. To conclude, this study outlines the technical underpinnings and demonstrates the basic feasibility of an 8-channel hybrid TX/RX applicator that supports MR imaging, MR thermometry and targeted RF heating in one device. PMID:23613896

Winter, Lukas; Özerdem, Celal; Hoffmann, Werner; Santoro, Davide; Müller, Alexander; Waiczies, Helmar; Seemann, Reiner; Graessl, Andreas; Wust, Peter; Niendorf, Thoralf

2013-01-01

22

Artifacts in 3Tesla MRI: Physical background and reduction strategies  

Microsoft Academic Search

Magnetic resonance imaging (MRI) at a field strength of 3 Tesla has become more and more fre- quently used in recent years. In an increasing num- ber of radiological sites, 3-Tesla MRI now starts to play the same role for clinical imaging that was occupied by 1.5-Tesla systems in the past. Because of physical limitations related to the higher field

Olaf Dietrich; Maximilian F. Reiser; Stefan O. Schoenberg

2008-01-01

23

Behavior of metal implants used in ENT surgery in 7 Tesla magnetic resonance imaging.  

PubMed

Magnetic resonance imaging (MRI) has become increasingly important as an imaging technique in cross-sectional imaging of head and neck diseases. To investigate whether MRI examinations can be performed without risk in patients with metal implants even at higher field strengths, we examined different materials in 7 Tesla MRI. Implants near sensory organs like the middle ear or eye are of particular interest here. Using the 7 Tesla research MRI for small animals, we tested implants made of various metals like titanium, gold, gold/platinum, platinum/iridium, gold-plated silver, PTFE and stainless steel for heating, translocation and rotation according to a standardized protocol. A fiber optic temperature probe measured the heating of the implant before, during and after MRI scanning. None of the implants showed significant heating. The gold-plated stainless steel ventilation tube was the only implant to markedly change its position already in the Petri dish. Of the remaining implants, a trachea support ring, a nose dilatator and the wire from the ventilation tubes moved during vibration of the Petri dish. With exception of two implants, all implants changed positions in the water bath. In the swim test, the gold implants showed the least movement of all the implants. In this study, the properties of the non-ferromagnetic implant materials differed in the 7 Tesla MRI. Stainless steel ventilation tubes, the trachea support ring and the nose dilatator were not suited for the 7 Tesla MRI system, because they changed their position during MRI. In the case of ventilation tubes with a steel wire, the wire should be removed before MRI to prevent injury to the external auditory canal. There was a tendency for the pure gold implants to move less in the 7 Tesla MRI than all other tested materials. General statements cannot be made about the MRI suitability of different implants. Every implant should be individually examined to confirm its definitive MRI compatibility. Particularly, middle ear implants warrant special attention here due to their closeness to the oval window. PMID:16835741

Thelen, Ariane; Bauknecht, Hans-Christian; Asbach, Patrick; Schrom, Thomas

2006-10-01

24

Effect of 1. 5 tesla nuclear magnetic resonance imaging scanner on implanted permanent pacemakers  

SciTech Connect

Patients with a permanent pacemaker are currently restricted from diagnostic nuclear magnetic resonance (NMR) imaging because of potential adverse effects on the pacemaker by the magnet. Previous work has shown that NMR imaging will result in asynchronous pacing of the pulse generator within a given distance of the magnet. The radiofrequency signal generated by the system may also result in rapid cardiac pacing, which may have deleterious effects. This study utilized a 1.5 tesla unit in an in vivo laboratory animal to evaluate the unit's effects on eight different pulse generators from two manufacturers. All pacemakers functioned in an asynchronous mode when placed within a certain distance of the magnet. In addition, transient reed switch inhibition was observed. Seven of the eight pulse generators paced rapidly when exposed to the radiofrequency signal and there was a dramatic decrease in arterial blood pressure. Whether effective rapid cardiac pacing would occur could not be predicted before exposure to the magnetic resonance unit. Nuclear magnetic resonance imaging with high magnetic fields in patients with a pacemaker should continue to be avoided until the mechanism of the rapid cardiac pacing can be further delineated and either predicted or prevented.

Hayes, D.L.; Holmes, D.R. Jr.; Gray, J.E.

1987-10-01

25

Prevalence of Incidental Pancreatic Cysts on 3 Tesla Magnetic Resonance  

PubMed Central

Objectives To ascertain the prevalence of pancreatic cysts detected incidentally on 3-Tesla magnetic resonance imaging (MRI) of the abdomen and correlate this prevalence with patient age and gender; assess the number, location, and size of these lesions, as well as features suspicious for malignancy; and determine the prevalence of incidentally detected dilatation of the main pancreatic duct (MPD). Methods Retrospective analysis of 2,678 reports of patients who underwent abdominal MRI between January 2012 and June 2013. Patients with a known history of pancreatic conditions or surgery were excluded, and the remaining 2,583 reports were examined for the presence of pancreatic cysts, which was then correlated with patient age and gender. We also assessed whether cysts were solitary or multiple, as well as their location within the pancreatic parenchyma, size, and features suspicious for malignancy. Finally, we calculated the prevalence of incidental MPD dilatation, defined as MPD diameter ? 2.5 mm. Results Pancreatic cysts were detected incidentally in 9.3% of patients (239/2,583). The prevalence of pancreatic cysts increased significantly with age (p<0.0001). There were no significant differences in prevalence between men and women (p=0.588). Most cysts were multiple (57.3%), distributed diffusely throughout the pancreas (41.8%), and 5 mm or larger (81.6%). In 12.1% of cases, cysts exhibited features suspicious for malignancy. Overall, 2.7% of subjects exhibited incidental MPD dilatation. Conclusions In this sample, the prevalence of pancreatic cysts detected incidentally on 3T MRI of the abdomen was 9.3%. Prevalence increased with age and was not associated with gender. The majority of cysts were multiple, diffusely distributed through the pancreatic parenchyma, and ? 5 mm in size; 12.1% were suspicious for malignancy. An estimated 2.7% of subjects had a dilated MPD. PMID:25798910

de Oliveira, Patricia Bedesco; Puchnick, Andrea; Szejnfeld, Jacob; Goldman, Suzan Menasce

2015-01-01

26

Test Results for HD1, a 16 Tesla Nb3Sn Dipole Magnet  

SciTech Connect

The Superconducting Magnet Group at Lawrence Berkeley National Laboratory has been developing the technology for using brittle superconductor in high-field accelerator magnets. HD1, the latest in a series of magnets, contains two, double-layer Nb{sub 3}Sn flat racetrack coils. This single-bore dipole configuration, using the highest performance conductor available, was designed and assembled for a 16 tesla conductor/structure/pre-stress proof-of-principle. With the combination of brittle conductor and high Lorentz stress, considerable care was taken to predict the magnet's mechanical responses to pre-stress, cool-down, and excitation. Subsequent cold testing satisfied expectations: Training started at 13.6 T, 83% of 'short-sample', achieved 90% in 10 quenches, and reached its peak bore field (16 T) after 19 quenches. The average plateau, {approx}92% of 'short-sample', appeared to be limited by 'stick-slip' conductor motions, consistent with the 16.2 T conductor 'lift-off' pre-stress that was chosen for this first test. Some lessons learned and some implications for future conductor and magnet technology development are presented and discussed.

Lietzke, A.F.; Bartlett, S.; Bish, P.; Caspi, S.; Chiesa, L.; Dietderich, D.; Ferracin, P.; Gourlay, S.A.; Goli, M.; Hafalia, R.R.; Higley, H.; Hannaford, R.; Lau, W.; Liggens, N.; Mattafirri, S.; McInturff, A.; Nyman, M.; Sabbi, G.; Scanlan, R.; Swanson, J.

2003-10-01

27

Magnetic Fields  

NSDL National Science Digital Library

Students visualize the magnetic field of a strong permanent magnet using a compass. The lesson begins with an analogy to the effect of the Earth's magnetic field on a compass. Students see the connection that the compass simply responds to the Earth's magnetic field since it is the closest, strongest field, and thus the compass responds to the field of the permanent magnets, allowing them the ability to map the field of that magnet in the activity. This information will be important in designing a solution to the grand challenge in activity 4 of the unit.

2014-09-18

28

High field superconducting magnets  

NASA Technical Reports Server (NTRS)

A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.

Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)

2011-01-01

29

Magnetic Fields  

E-print Network

In this chapter, we give a brief introduction into the use of the Zeeman effect in astronomy and the general detection of magnetic fields in stars, concentrating on the use of FORS2 for longitudinal magnetic field measurements.

Schöller, Markus

2015-01-01

30

The measurement and analysis of the magnetic field of a synchrotron light source magnet  

E-print Network

In this thesis a unique system is used to measure the magnetic field of a superconducting synchrotron light source magnet. The magnet measured is a superferric dipole C-magnet designed to produce a magnetic field up to 3 Tesla in magnitude. Its...

Graf, Udo Werner

1994-01-01

31

Test Results of HD1b, an upgraded 16 Tesla Nb3Sn DipoleMagnet  

SciTech Connect

The Superconducting Magnet Group at Lawrence Berkeley National Laboratory has been developing high-field, brittle-superconductor, accelerator magnet technology, in which the conductor's support system can significantly impact conductor performance (as well as magnet training). A recent H-dipole coil test (HD1) achieved a peak bore-field of 16 Tesla, using two, flat-racetrack, double-layer Nb{sub 3}Sn coils. However, its 4.5 K training was slow, with an erratic plateau at {approx}92% of its un-degraded ''short-sample'' expectation ({approx}16.6 T). Quench-origins correlated with regions where low conductor pre-stress had been expected (3-D FEM predictions and variations in 300 K coil-size). The coils were re-assembled with minor coil-support changes and re-tested as ''HD1b'', with a 185 MPa average pre-stress (30 MPa higher than HD1, with a 15-20 MPa pole-turn margin expected at 17 T). Training started higher (15.1 T), and quickly reached a stable, negligibly higher plateau at 16 T. After a thermal cycle, training started at 15.4 T, but peaked at 15.8 T, on the third attempt, before degrading to a 15.7 T plateau. The temperature dependence of this plateau was explored in a sub-atmospheric LHe bath to 3.0 K. Magnet performance data for both thermal cycles is presented and discussed, along with issues for future high-field accelerator magnet development.

Lietzke, A.F.; Bartlett, S.E.; Bish, P.; Caspi, S.; Dietderich,D.; Ferracin, P.; Gourlay, S.; Hafalia, A.R.; Hannaford, C.R.; Higley,H.; Lau, W.; Liggins, N.; Mattafirri, S.; Nyman, M.; Sabbi, G.; Scanlan,R.; Swanson, J.

2005-04-16

32

A 4 Tesla Superconducting Magnet Developed for a 6 Circle Huber Diffractometer at the XMaS Beamline  

SciTech Connect

We report here on the development and testing of a 4 Tesla cryogen free superconducting magnet designed to fit within the Euler cradle of a 6 circle Huber diffractometer, allowing scattering in both the vertical and horizontal planes. The geometry of this magnet allows the field to be applied in three orientations. The first being along the beam direction, the second with the field transverse to the beam direction a horizontal plane and finally the field can be applied vertically with respect to the beam. The magnet has a warm bore and an open geometry of 180 deg. , allowing large access to reciprocal space. A variable temperature insert has been developed, which is capable of working down to a temperature of 1.7 K and operating over a wide range of angles whilst maintaining a temperature stability of a few mK. Initial ferromagnetic diffraction measurements have been carried out on single crystal Tb and Dy samples.

Thompson, P. B. J.; Brown, S. D.; Bouchenoire, L.; Mannix, D. [XMaS, UK-CRG, ESRF, BP 220, F-38043 Grenoble CEDEX (France); Dept of Physics, University of Liverpool, Liverpool (United Kingdom); Paul, D. F. [XMaS, UK-CRG, ESRF, BP 220, F-38043 Grenoble CEDEX (France); Dept of Physics, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL (United Kingdom); Lucas, C. A.; Kervin, J. [Dept of Physics, University of Liverpool, Liverpool (United Kingdom); Cooper, M. J. [Dept of Physics, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL (United Kingdom); Arakawa, P.; Laughon, G. [American Magnetics Inc, P.O. Box2509, 112 Flint Road, Oak Ridge, TN 37831-2509 (United States)

2007-01-19

33

Ultralow magnetic fields and Gravity Probe B gyroscope readout  

Microsoft Academic Search

We describe the generation of an ultralow magnetic field of < 10?11 Tesla in the flight dewar of the Gravity Probe B Relativity Mission. The field was achieved using expanded-superconducting-shield techniques and is maintained with the aid of a magnetic materials control program. A high performance magnetic shield system is required for the proper function of gyroscope readout. The readout

J. C. Mester; J. M. Lockhart; B. Muhlfelder; D. O. Murray; M. A. Taber

2000-01-01

34

Noninvasive Magnetic Resonance Thermography of Recurrent Rectal Carcinoma in a 1.5 Tesla Hybrid System  

Microsoft Academic Search

To implement noninvasive thermometry, we installed a hybrid system consisting of a radiofrequency multiantenna applica- tor (SIGMA-Eye) for deep hyperthermia (BSD-2000\\/3D) inte- grated into the gantry of a 1.5 Tesla magnetic resonance (MR) tomograph Symphony. This system can record MR data during radiofrequency heating and is suitable for application and evaluation of methods for MR thermography. In 15 patients with

Johanna Gellermann; Waldemar Wlodarczyk; Bert Hildebrandt; Hildegard Ganter; Anett Nicolau; Beate Rau; Wolfgang Tilly; Horst Fahling; Jacek Nadobny; Roland Felix; Peter Wust

35

Heat Capacity Measurements in Pulsed Magnetic Fields  

SciTech Connect

The new NHMFL 60T quasi-continuous magnet produces a flat-top field for a period of 100 ms at 60 Tesla, and for longer time at lower fields, e.g. 0.5 s at 45 Tesla. We have developed for the first time the capability to measure heat capacity at very high magnetic fields in the NHMFL 60T quasi-continuous magnet at LANL, using a probe built out of various plastic materials. The field plateau allows us to utilize a heat-pulse method to obtain heat capacity data. Proof-of-principle heat capacity experiments were performed on a variety of correlated electron systems. Both magnet performance characteristics and physical properties of various materials studied hold out a promise of wide application of this new tool.

Jaime, M.; Movshovich, R.; Sarrao, J.L.; Kim, J.; Stewart, G.; Beyermann, W.P.; Canfield, P.C.

1998-10-23

36

Human cardiac 31P magnetic resonance spectroscopy at 7 tesla  

PubMed Central

Purpose Phosphorus magnetic resonance spectroscopy (31P-MRS) affords unique insight into cardiac energetics but has a low intrinsic signal-to-noise ratio (SNR) in humans. Theory predicts an increased 31P-MRS SNR at 7T, offering exciting possibilities to better investigate cardiac metabolism. We therefore compare the performance of human cardiac 31P-MRS at 7T to 3T, and measure T1s for 31P metabolites at 7T. Methods Matched 31P-MRS data were acquired at 3T and 7T, on nine normal volunteers. A novel Look-Locker CSI acquisition and fitting approach was used to measure T1s on six normal volunteers. Results T1s in the heart at 7T were: phosphocreatine (PCr) 3.05 ± 0.41s, ?-ATP 1.82 ± 0.09s, ?-ATP 1.39 ± 0.09s, ?-ATP 1.02 ± 0.17s and 2,3-DPG (2,3-diphosphoglycerate) 3.05 ± 0.41s (N = 6). In the field comparison (N = 9), PCr SNR increased 2.8× at 7T relative to 3T, the Cramer-Ráo uncertainty (CRLB) in PCr concentration decreased 2.4×, the mean CRLB in PCr/ATP decreased 2.7× and the PCr/ATP SD decreased 2×. Conclusion Cardiac 31P-MRS at 7T has higher SNR and the spectra can be quantified more precisely than at 3T. Cardiac 31P T1s are shorter at 7T than at 3T. We predict that 7T will become the field strength of choice for cardiac 31P-MRS. Magn Reson Med 72:304–315, 2014. © 2013 The Authors. Magnetic Resonance in Medicine Published by Wiley Periodicals, Inc. on behalf of International Society of Medicine in Resonance. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution, and reproduction in any medium, provided the original work is properly cited. PMID:24006267

Rodgers, Christopher T; Clarke, William T; Snyder, Carl; Vaughan, J Thomas; Neubauer, Stefan; Robson, Matthew D

2014-01-01

37

7 Tesla magnetic resonance imaging: a closer look at substantia nigra anatomy in Parkinson's disease.  

PubMed

A hallmark of Parkinson's disease (PD) is the progressive neurodegeneration of dopaminergic neurons in the substantia nigra pars compacta (SNc). Dopaminergic denervation is commonly imaged using radiotracer imaging in target structures such as the striatum. Until recently, imaging made only a modest contribution to detecting neurodegenerative changes in the substantia nigra (SN) directly. Histologically, the SN is subdivided into the ventral pars reticulata and the dorsal pars compacta, which is composed of dopaminergic neurons. In humans, dopaminergic neurons, which are known to accumulate neuromelanin, form clusters of cells (nigrosomes) that penetrate deep into the SN pars reticulata (SNr). The SNr contains higher levels of iron than the SNc in normal subjects. Neuromelanin and T2*-weighted imaging therefore better detect the SNc and the SNr, respectively. The development of ultra-high field 7 Tesla (7T) magnetic resonance imaging (MRI) provided the increase in spatial resolution and in contrast that was needed to detect changes in SN morphology. 7T MRI allows visualization of nigrosome-1 as a hyperintense signal area on T2*-weighted images in the SNc of healthy subjects and its absence in PD patients, probably because of the loss of melanized neurons and the increase of iron deposition. This review is designed to provide a better understanding of the correspondence between the outlines and subdivisions of the SN detected using different MRI contrasts and the histological organization of the SN. The recent findings obtained at 7T will then be presented in relation to histological knowledge. PMID:25308960

Lehéricy, Stéphane; Bardinet, Eric; Poupon, Cyril; Vidailhet, Marie; François, Chantal

2014-11-01

38

In vivo estimation of bone stiffness at the distal femur and proximal tibia using ultra-high-field 7-Tesla magnetic resonance imaging and micro-finite element analysis  

PubMed Central

The goal of this study was to demonstrate the feasibility of using 7-Tesla (7T) magnetic resonance imaging (MRI) and micro-finite element analysis (?FEA) to evaluate mechanical and structural properties of whole, cortical, and trabecular bone at the distal femur and proximal tibia in vivo. 14 healthy subjects were recruited (age 40.7 ± 15.7 years). The right knee was scanned on a 7T MRI scanner using a 28 channel-receive knee coil and a three-dimensional fast low-angle shot sequence (TR/TE 20 ms/5.02 ms, 0.234 mm × 0.234 mm × 1 mm, 80 axial images, 7 min 9 s). Bone was analyzed at the distal femoral metaphysis, femoral condyles, and tibial plateau. Whole, cortical, and trabecular bone stiffness was computed using ?FEA. Bone volume fraction (BVF), bone areas, and cortical thickness were measured. Trabecular bone stiffness (933.7 ± 433.3 MPa) was greater than cortical bone stiffness (216 ± 152 MPa) at all three locations (P < 0.05). Across locations, there were no differences in bone stiffness (whole, cortical, or trabecular). Whole, cortical, and trabecular bone stiffness correlated with BVF (R ? 0.69, P < 0.05) and inversely correlated with corresponding whole, cortical, and trabecular areas (R ? ?0.54, P < 0.05), but not with cortical thickness (R < ?0.11, P > 0.05). Whole, cortical, and trabecular stiffness correlated with body mass index (R ? 0.62, P < 0.05). In conclusion, at the distal femur and proximal tibia, trabecular bone contributes 66–74% of whole bone stiffness. 7T MRI and ?FEA may be used as a method to provide insight into how structural properties of cortical or trabecular bone affect bone mechanical competence in vivo. PMID:22124539

Rajapakse, Chamith S.; Babb, James S.; Honig, Stephen P.; Recht, Michael P.; Regatte, Ravinder R.

2013-01-01

39

Magnetic resonance imaging without field cycling at less than earth's magnetic field  

NASA Astrophysics Data System (ADS)

A strong pre-polarization field, usually tenths of a milli-tesla in magnitude, is used to increase the signal-to-noise ratio in ordinary superconducting quantum interference device-based nuclear magnetic resonance/magnetic resonance imaging experiments. Here, we introduce an experimental approach using two techniques to remove the need for the pre-polarization field. A dynamic nuclear polarization (DNP) technique enables us to measure an enhanced resonance signal. In combination with a ? / 2 pulse to avoid the Bloch-Siegert effect in a micro-tesla field, we obtained an enhanced magnetic resonance image by using DNP technique with a 34.5 ?T static external magnetic field without field cycling. In this approach, the problems of eddy current and flux trapping in the superconducting pickup coil, both due to the strong pre-polarization field, become negligible.

Lee, Seong-Joo; Shim, Jeong Hyun; Kim, Kiwoong; Yu, Kwon Kyu; Hwang, Seong-min

2015-03-01

40

Magnetic Field Safety Magnetic Field Safety  

E-print Network

Magnetic Field Safety Training #12;Magnetic Field Safety Strong Magnetic Fields exist around energized magnets. High magnetic fields alone are a recognized hazard only for personnel with certain medical conditions such as pacemakers, magnetic implants, or embedded shrapnel. In addition, high magnetic

McQuade, D. Tyler

41

Detection of Entorhinal Layer II Using Tesla Magnetic Resonance Imaging  

E-print Network

) to minimize background effects. Images were collected on a 7T whole-body MRI scanner based on a Siemens Sonata islands using magnetic resonance imaging. We scanned human autopsied temporal lobe blocks in a 7T human used a human whole-body 7T scanner, obtaining images with 100 m isotropic voxels, and were able

Fischl, Bruce

42

Reproducibility of small animal cine and scar cardiac magnetic resonance imaging using a clinical 3.0 tesla system  

PubMed Central

Background To evaluate the inter-study, inter-reader and intra-reader reproducibility of cardiac cine and scar imaging in rats using a clinical 3.0 Tesla magnetic resonance (MR) system. Methods Thirty-three adult rats (Sprague–Dawley) were imaged 24 hours after surgical occlusion of the left anterior descending coronary artery using a 3.0 Tesla clinical MR scanner (Philips Healthcare, Best, The Netherlands) equipped with a dedicated 70 mm solenoid receive-only coil. Left-ventricular (LV) volumes, mass, ejection fraction and amount of myocardial scar tissue were measured. Intra-and inter-observer reproducibility was assessed in all animals. In addition, repeat MR exams were performed in 6 randomly chosen rats within 24 hours to assess inter-study reproducibility. Results The MR imaging protocol was successfully completed in 32 (97%) animals. Bland-Altman analysis demonstrated high intra-reader reproducibility (mean bias%: LV end-diastolic volume (LVEDV), -1.7%; LV end-systolic volume (LVESV), -2.2%; LV ejection fraction (LVEF), 1.0%; LV mass, -2.7%; and scar mass, -1.2%) and high inter-reader reproducibility (mean bias%: LVEDV, 3.3%; LVESV, 6.2%; LVEF, -4.8%; LV mass, -1.9%; and scar mass, -1.8%). In addition, a high inter-study reproducibility was found (mean bias%: LVEDV, 0.1%; LVESV, -1.8%; LVEF, 1.0%; LV mass, -4.6%; and scar mass, -6.2%). Conclusions Cardiac MR imaging of rats yielded highly reproducible measurements of cardiac volumes/function and myocardial infarct size on a clinical 3.0 Tesla MR scanner system. Consequently, more widely available high field clinical MR scanners can be employed for small animal imaging of the heart e.g. when aiming at serial assessments during therapeutic intervention studies. PMID:24345214

2013-01-01

43

Phase-based Regional Oxygen Metabolism in Magnetic Resonance Imaging at High Field  

E-print Network

Tesla (3T). We also extended our method to high-field human imaging at 7 Tesla (7T), which allows us-susceptibility measurements in magnetic resonance imaging (MRI) have been used to quantify Yv in candidate cerebral veins. However, currently there is no method to quantify regional CMRO2 using MRI. Here we propose a novel

44

Recurrent ulnar nerve entrapment at the elbow: Correlation of surgical findings and 3-Tesla magnetic resonance neurography.  

PubMed

The authors describe the correlation between 3-Tesla magnetic resonance neurography (MRN) and surgical findings in two patients who underwent multiple previous failed ulnar nerve surgeries. MRN correctly localized the site of the abnormality. Prospectively observed MRN findings of perineural fibrosis, ulnar nerve re-entrapment abnormalities, medial antebrachial cutaneous neuroma and additional median nerve entrapment were confirmed surgically. PMID:24421652

Chhabra, Avneesh; Wadhwa, Vibhor; Thakkar, Rashmi S; Carrino, John A; Dellon, A Lee

2013-01-01

45

Recurrent ulnar nerve entrapment at the elbow: Correlation of surgical findings and 3-Tesla magnetic resonance neurography  

PubMed Central

The authors describe the correlation between 3-Tesla magnetic resonance neurography (MRN) and surgical findings in two patients who underwent multiple previous failed ulnar nerve surgeries. MRN correctly localized the site of the abnormality. Prospectively observed MRN findings of perineural fibrosis, ulnar nerve re-entrapment abnormalities, medial antebrachial cutaneous neuroma and additional median nerve entrapment were confirmed surgically. PMID:24421652

Chhabra, Avneesh; Wadhwa, Vibhor; Thakkar, Rashmi S; Carrino, John A; Dellon, A Lee

2013-01-01

46

Correlating Hemodynamic Magnetic Resonance Imaging with high-field Intracranial Vessel Wall Imaging in Stroke  

PubMed Central

Vessel wall magnetic resonance imaging at ultra-high field (7 Tesla) can be used to visualize vascular lesions noninvasively and holds potential for improving stroke-risk assessment in patients with ischemic cerebrovascular disease. We present the first multi-modal comparison of such high-field vessel wall imaging with more conventional (i) 3 Tesla hemodynamic magnetic resonance imaging and (ii) digital subtraction angiography in a 69-year-old male with a left temporal ischemic infarct. PMID:25426229

Langdon, Weston; Donahue, Manus J.; van der Kolk, Anja G.; Rane, Swati; Strother, Megan K.

2014-01-01

47

Ultralow Magnetic Fields and Gravity Probe B Gyroscope Readout  

Microsoft Academic Search

We describe the generation of an ultralow magnetic field of < 10-11Tesla in the flight dewar of the Gravity Probe B Relativity Mission. The field was achieved using expanded-superconducting-shield techniques and is maintained with the aid of a magnetic materials control program. A high performance magnetic shield system is required for the proper function of gyroscope readout. The readout system

J. C. Mester; J. M. Lockhart; B. Muhlfelder; D. O. Murray; M. A. Taber

2000-01-01

48

Magnetocaloric effect: permanent magnet array for generation of high magnetic fields  

NASA Astrophysics Data System (ADS)

The magnetocaloric effect (MCE), the heating or cooling of magnetic materials in a magnetic field, is unusually large in the Gd_5(Si_xGe_1-x)4 alloy system. Normally the maximum in the MCE occurs at the Curie temperature (Tc) because the spin entropy change is a maximum. By suitable selection of the composition of this alloy system the Curie temperature can be changed over the range 25 K for x = 0 to 340 K for x =1, and the composition range around x = 0.5 exhibits the largest magnetocaloric effect. In order to increase the amount of heat exchanged the change in applied magnetic field should be as large as possible, and in this research values above 1.5 Tesla are suggested. We have studied a permanent magnet array based on NdFeB, which with a remanent magnetization of only 1.2 Tesla can still generate a magnetic flux density, or magnetic induction B of 2-3 Tesla. In order to generate the high magnetic induction in the absence of a power supply, a modified hollow cylindrical permanent magnet array (HCPMA) has been designed to produce the required strength of magnetic field. Soft magnetic materials including permalloy (NiFe) were used for focusing the magnetic field in the central region. The magnitude of the magnetic flux density at the center was about 2 Tesla. The magnitude and homogeneity of the magnetic field for this design are comparable with the conventional C-shaped yoke and HCPMA. This can be easily adapted for a low power rotary system in which the magnetocaloric material can be exposed alternately to high and low magnetic fields so that it can accept and reject heat from its surroundings.

Lee, Seong-Jae; Kenkel, John; Jiles, David

2002-03-01

49

Crystal field and magnetic properties  

NASA Technical Reports Server (NTRS)

Magnetization and magnetic susceptibility measurements have been made in the temperature range 1.3 to 4.2 K on powdered samples of ErH3. The susceptibility exhibits Curie-Weiss behavior from 4.2 to 2 K, and intercepts the negative temperature axis at theta = 1.05 + or - 0.05 K, indicating that the material is antiferromagnetic. The low field effective moment is 6.77 + or - 0.27 Bohr magnetons per ion. The magnetization exhibits a temperature independent contribution, the slope of which is (5 + or - 1.2) x 10 to the -6th Weber m/kg Tesla. The saturation moment is 3.84 + or - 1 - 0.15 Bohr magnetons per ion. The results can be qualitatively explained by the effects of crystal fields on the magnetic ions. No definitive assignment of a crystal field ground state can be given, nor can a clear choice between cubically or hexagonally symmetric crystal fields be made. For hexagonal symmetry, the first excited state is estimated to be 86 to 100 K above the ground state. For cubic symmetry, the splitting is on the order of 160 to 180 K.

Flood, D. J.

1977-01-01

50

Interaction mechanisms and biological effects of static magnetic fields  

SciTech Connect

Mechanisms through which static magnetic fields interact with living systems are described and illustrated by selected experimental observations. These mechanisms include electrodynamic interactions with moving, ionic charges (blood flow and nerve impulse conduction), magnetomechanical interactions (orientation and translation of molecules structures and magnetic particles), and interactions with electronic spin states in charge transfer reactions (photo-induced electron transfer in photosynthesis). A general summary is also presented of the biological effects of static magnetic fields. There is convincing experimental evidence for magnetoreception mechanisms in several classes of lower organisms, including bacteria and marine organisms. However, in more highly evolved species of animals, there is no evidence that the interactions of static magnetic fields with flux densities up to 2 Tesla (1 Tesla [T] = 10{sup 4} Gauss) produce either behavioral or physiolocical alterations. These results, based on controlled studies with laboratory animals, are consistent with the outcome of recent epidemiological surveys on human populations exposed occupationally to static magnetic fields.

Tenforde, T.S.

1994-06-01

51

Characterization of transceive surface element designs for 7 tesla magnetic resonance imaging of the prostate: radiative antenna and microstrip  

NASA Astrophysics Data System (ADS)

Ultra-high field magnetic resonance (?7 tesla) imaging (MRI) faces challenges with respect to efficient spin excitation and signal reception from deeply situated organs. Traditional radio frequency surface coil designs relying on near-field coupling are suboptimal at high field strengths. Better signal penetration can be obtained by designing a radiative antenna in which the energy flux is directed to the target location. In this paper, two different radiative antenna designs are investigated to be used as transceive elements, which employ different dielectric permittivities for the antenna substrate. Their transmit and receive performances in terms of B+1, local SAR (specific absorption rate) and SNR (signal-to-noise ratio) were compared using extensive electromagnetic simulations and MRI measurements with traditional surface microstrip coils. Both simulations and measurements demonstrated that the radiative element shows twofold gain in B+1 and SNR at 10 cm depth, and additionally a comparable SAR peak value. In terms of transmit performance, the radiative antenna with a dielectric permittivity of 37 showed a 24% more favorable local SAR10g?avg/(B+1)2 ratio than the radiative antenna with a dielectric permittivity of 90. In receive, the radiative element with a dielectric permittivity of 90 resulted in a 20% higher SNR for shallow depths, but for larger depths this difference diminished compared to the radiative element with a dielectric permittivity of 37. Therefore, to image deep anatomical regions effectively, the radiative antenna with a dielectric permittivity of 37 is favorable.

Ipek, Ö.; Raaijmakers, A. J. E.; Klomp, D. W. J.; Lagendijk, J. J. W.; Luijten, P. R.; van den Berg, C. A. T.

2012-01-01

52

Characterization of transceive surface element designs for 7 tesla magnetic resonance imaging of the prostate: radiative antenna and microstrip.  

PubMed

Ultra-high field magnetic resonance (?7 tesla) imaging (MRI) faces challenges with respect to efficient spin excitation and signal reception from deeply situated organs. Traditional radio frequency surface coil designs relying on near-field coupling are suboptimal at high field strengths. Better signal penetration can be obtained by designing a radiative antenna in which the energy flux is directed to the target location. In this paper, two different radiative antenna designs are investigated to be used as transceive elements, which employ different dielectric permittivities for the antenna substrate. Their transmit and receive performances in terms of B(+)(1), local SAR (specific absorption rate) and SNR (signal-to-noise ratio) were compared using extensive electromagnetic simulations and MRI measurements with traditional surface microstrip coils. Both simulations and measurements demonstrated that the radiative element shows twofold gain in B(+)(1) and SNR at 10 cm depth, and additionally a comparable SAR peak value. In terms of transmit performance, the radiative antenna with a dielectric permittivity of 37 showed a 24% more favorable local SAR(10g avg)/(B(+)(1))(2) ratio than the radiative antenna with a dielectric permittivity of 90. In receive, the radiative element with a dielectric permittivity of 90 resulted in a 20% higher SNR for shallow depths, but for larger depths this difference diminished compared to the radiative element with a dielectric permittivity of 37. Therefore, to image deep anatomical regions effectively, the radiative antenna with a dielectric permittivity of 37 is favorable. PMID:22170777

Ipek, O; Raaijmakers, A J E; Klomp, D W J; Lagendijk, J J W; Luijten, P R; van den Berg, C A T

2012-01-21

53

Time-varying magnetic fields: effect on DNA synthesis.  

PubMed

Human fibroblasts have exhibited enhanced DNA synthesis when exposed to sinusoidally varying magnetic fields for a wide range of frequencies (15 hertz to 4 kilohertz) and amplitudes (2.3 X 10(-6) to 5.6 X 10(-4) tesla). This effect, which is at maximum during the middle of the S phase of the cell cycle, appears to be independent of the time derivative of the magnetic field, suggesting an underlying mechanism other than Faraday's law. The threshold is estimated to be between 0.5 X 10(-5) and 2.5 X 10(-5) tesla per second. These results bring into question the allegedly specific magnetic wave shapes now used in therapeutic devices for bone nonunion. The range of magnetic field amplitudes tested encompass the geomagnetic field, suggesting the possibility of mutagenic interactions directly arising from short-term changes in the earth's field. PMID:6695183

Liboff, A R; Williams, T; Strong, D M; Wistar, R

1984-02-24

54

Magnetic field effects on surgical ligation clips.  

PubMed

Magnetic forces exerted on surgical clips and the magnetic resonance imaging distortion they create in phantoms and rabbits at magnetic field strengths of 1.5 Tesla were investigated. Results are reported for both ligation and aneurysm clips manufactured from three types of stainless steel as well as titanium, tantalum and niobium metals. Paramagnetism and eddy currents were measured in a customized moving Gouy balance. Direct measurements of other magnetic forces were carried out in a 1.5T MRI system. The titanium and tantalum clips showed the least interaction with the magnetic field, both in terms of forces exerted and the observed image distortion with the larger clips generating the larger interactions. The strongest field distortions and attractive forces occurred with 17-7PH stainless steel clips. These interactions were ferromagnetic in origin and of sufficient strength to present significant risk to patients having this type of clip present during an MRI scan. PMID:3431354

Brown, M A; Carden, J A; Coleman, R E; McKinney, R; Spicer, L D

1987-01-01

55

Magnetic fields in astrophysics  

Microsoft Academic Search

The evidence of cosmic magnetism is examined, taking into account the Zeeman effect, beats in atomic transitions, the Hanle effect, Faraday rotation, gyro-lines, and the strength and scale of magnetic fields in astrophysics. The origin of magnetic fields is considered along with dynamos, the conditions for magnetic field generation, the topology of flows, magnetic fields in stationary flows, kinematic turbulent

Ia. B. Zeldovich; A. A. Ruzmaikin; D. D. Sokolov

1983-01-01

56

The National High Magnetic Field Laboratory  

NASA Astrophysics Data System (ADS)

The National High Magnetic Field Laboratory (NHMFL) is a collaboration between Florida State University, the University of Florida, and the Los Alamos National Laboratory. The DC Field Facilities are located at the main campus for the NHMFL in Tallahassee, Florida and are described in this paper. The DC Field Facility has a variety of resistive and superconducting magnets. The DC Field Facility infrastructure, the most powerful in the world, is able to provide 57 MW of continuous low noise DC power. Constant magnetic fields of up to 45 tesla in a 32 mm bore and 20 tesla in 195 mm bore are available at no charge to the user community. The users of the facility are selected by a peer reviewed process. Roughly 400 research groups visit the lab to conduct experiments each year. Experimental capabilities provided by the NHMFL are magneto-optics, millimeter wave spectroscopy, magnetization, dilatometry, specific heat, electrical transport, ultrasound, low to medium resolution NMR, EMR, and materials processing. Measurements of properties can be made on samples at temperatures from 20 mK to 1000 K, pressures from ambient to 10 GPa, orientation and currents from 1 pA to 10 kA.

Hannahs, S. T.; Palm, E. C.

2010-04-01

57

A 2-Tesla active shield magnet for whole body imaging and spectroscopy  

SciTech Connect

This paper reports on the development and testing of a 2T superconducting Active Shield magnet, with a 0.99m diameter warm bore for whole-body Magnetic Resonance Imaging (MRI) and spectroscopy. The magnet and cryostat were designed to meet the same performance standards as existing MRI magnets, but with the volume of the stray field region reduced to less than 4% of that for an unshielded magnet. The 0.5 mT stray field contour is within 5m axially and 3m radially of the magnet center. The system weight is only 14 tonnes.

Davies, F.J.; Elliott, R.T.; Hawksworth, D.G. (Oxford Magnet Technology Ltd., Wharf Road, Eynsham, Oxford OX8 1BP (GB))

1991-03-01

58

D-zero rototrack: first stage of D-zero 2 Tesla solenoid field mapping device  

SciTech Connect

A simple and portable field mapping device was developed at Fermilab and successfully used to test the D0 2 Tesla solenoid at Toshiba Works in Japan. A description of the mechanical structure, electric driving and control system, and software of the field mapping device is given. Four Hall probe elements of Group3 Digital Gaussmeters are mounted on the radial extension arm of a carriage, which is mounted on a central rotating beam. The system gives two dimensional motions (axial and rotational) to the Hall probes. To make the system compact and portable, we used a laptop computer with PCMCIA cards. For the control system we used commercially available software LabVIEW and Motion Toolbox, and for the data analysis we used Microsoft Excel.

Yamada, R.; Korienek, J.; Krider, J.; Lindenmeyer, C.; Miksa, D.; Miksa, R.

1997-09-01

59

Magnetic field sensor  

NASA Astrophysics Data System (ADS)

Earlier papers1-3 in this journal have described experiments on measuring the magnetic fields of current-carrying wires and permanent magnets using magnetic field probes of various kinds. This paper explains how to use an iPad and the free app MagnetMeter-3D Vector Magnetometer and Accelerometer4 (compass HD) to measure the magnetic fields.

Silva, Nicolas

2012-09-01

60

Exploring Magnetic Field Lines  

NSDL National Science Digital Library

In this activity, learners explore the magnetic field of a bar magnet as an introduction to understanding Earth's magnetic field. First, learners explore and play with magnets and compasses. Then, learners trace the field lines of the magnet using the compass on a large piece of paper. This activity will also demonstrate why prominences are always "loops."

2012-06-26

61

Genotoxic Effects of Superconducting Static Magnetic Fields (SMFs) on Wheat (Triticum aestivum) Pollen Mother Cells (PMCs)  

NASA Astrophysics Data System (ADS)

The effects of superconducting static magnetic fields (SMFs) on the pollen mother cells (PMCs) of wheat were investigated in order to evaluate the possible genotoxic effect of such non-ionizing radiation. The seeds of wheat were exposed to static magnetic fields with either different magnetic flux densities (0, 1, 3, 5 and 7 Tesla) for 5 h or different durations (1, 3 and 5 h) at a magnetic flux density of 7 Tesla. The seeds were germinated at 23oC after exposure and the seedlings were transplanted into the field. The PMCs from young wheat ears were taken and slides were made following the conventional method. The genotoxic effect was evaluated in terms of micronucleus (MN), chromosomal bridge, lagging chromosome and fragments in PMCs. Although the exposed groups of a low field intensity (below 5 Tesla) showed no statistically significant difference in the aberration frequency compared with the unexposed control groups and sham exposed groups, a significant increase in the chromosomal bridge, lagging chromosome, triple-polar segregation or micronucleus was observed at a field strength of 5 Tesla or 7 Tesla, respectively. The analysis of dose-effect relationships indicated that the increased frequency of meiotic abnormal cells correlated with the flux density of the magnetic field and duration, but no linear relationship was observed. Such statistically significant differences indicated a potential genotoxic effect of high static magnetic fields above 5 T.

Zhang, Pingping; Yin, Ruochun; Chen, Zhiyou; Wu, Lifang; Yu, Zengliang

2007-04-01

62

Exploring Magnetic Fields  

NSDL National Science Digital Library

This is an activity about magnetic fields. Using iron filings, learners will observe magnets in various arrangements to investigate the magnetic field lines of force. This information is then related to magnetic loops on the Sun's surface and the magnetic field of the Earth. This is the second activity in the Exploring the Earth's Magnetic Field: An IMAGE Satellite Guide to the Magnetosphere educators guide.

2012-08-03

63

Design status of the US 100 tesla non-destructive magnet system  

SciTech Connect

A collaborative effort is now underway in the US between the Department of Energy and the National Science Foundation to design, build, and use a 100 T non-destructive magnet for studying the properties of materials at high fields. The National High Magnetic Field Laboratory (NHMFL) at Tallahassee, Florida, and Los Alamos, New Mexico, where the magnet will be sited, is carrying out this task. This magnet will join other pulsed magnets at NHMFL, to provide magnetic fields at strengths, time durations, and volumes that are longer (in combination) than any now available. In particular, the goal for the 100 T magnet is a time duration above 80 T of about 15 ms in a cold bore of 24 mm. The present status of the design effort and various design issues are presented here.

Schneider-Muntau, H.; Eyssa, Y.; Pernambuco-Wise, P. [Florida State Univ., Tallahassee, FL (United States). National High Magnetic Field Lab.; Boenig, H.; Campbell, L.J.; Eberl, K.R.; Parkin, D.M.; Schillig, J.; Sims, J. [Los Alamos National Lab., NM (United States)

1996-09-01

64

Stepped Impedance Resonators for High Field Magnetic Resonance Imaging  

PubMed Central

Multi-element volume radio-frequency (RF) coils are an integral aspect of the growing field of high field magnetic resonance imaging (MRI). In these systems, a popular volume coil of choice has become the transverse electromagnetic (TEM) multi-element transceiver coil consisting of microstrip resonators. In this paper, to further advance this design approach, a new microstrip resonator strategy in which the transmission line is segmented into alternating impedance sections referred to as stepped impedance resonators (SIRs) is investigated. Single element simulation results in free space and in a phantom at 7 tesla (298 MHz) demonstrate the rationale and feasibility of the SIR design strategy. Simulation and image results at 7 tesla in a phantom and human head illustrate the improvements in transmit magnetic field, as well as, RF efficiency (transmit magnetic field versus SAR) when two different SIR designs are incorporated in 8-element volume coil configurations and compared to a volume coil consisting of microstrip elements. PMID:23508243

Akgun, Can E.; DelaBarre, Lance; Yoo, Hyoungsuk; Sohn, Sung-Min; Snyder, Carl J.; Adriany, Gregor; Ugurbil, Kamil; Gopinath, Anand; Vaughan, J. Thomas

2014-01-01

65

Quantitative analysis of 3-Tesla magnetic resonance imaging in the differential diagnosis of breast lesions  

PubMed Central

The aim of this study was to investigate the value of quantitative 3-Tesla (3T) magnetic resonance (MR) assessment in the diagnosis of breast lesions. A total of 44 patients with breast lesions were selected. All the patients underwent MR plain scanning and T1 dynamic contrast-enhanced imaging. The vascular function parameters of the lesions, namely volume transfer constant (Ktrans), rate constant (Kep), extravascular extracellular volume fraction (Ve) and integrated area under the curve (iAUC), were acquired. These parameters were compared between benign and malignant breast lesions, and also among differential grades of invasive ductal carcinoma. The values of Ktrans, Kep and iAUC were significantly different between the benign and malignant tumors; however, the values of Ve in the benign and malignant tumors were not significantly different. The values of Ktrans, Kep and iAUC in invasive ductal carcinoma were significantly different between grade I and grade II, and between grade I and grade III; however, there was no significant difference between grade II and grade III. The Ve values in invasive ductal carcinoma did not significantly differ among grades I, II and III. Among the vascular function parameters, Ktrans exhibited the highest sensitivity and specificity in the differentiation of benign and malignant lesions. Quantitative 3-T MR assessment is valuable in the diagnosis of benign and malignant breast lesions. It can also provide reference values for the differentiation of the histological grade of breast invasive ductal carcinoma. PMID:25667653

MA, ZHEN-SHEN; WANG, DA-WEI; SUN, XIU-BIN; SHI, HAO; PANG, TAO; DONG, GUI-QING; ZHANG, CHENG-QI

2015-01-01

66

Effects of Magnetic Field on Biological Cells and Applications  

NASA Astrophysics Data System (ADS)

While there has been extensive research performed in the physics of magnetic fields and the physics and chemistry in life sciences, independent of each other, there has been a paucity of scientific research and development investigating the possible applications of magnetic fields in life sciences. The focus of this presentation is to present the stimulation mechanism by which magnetic fields affect (a) yeast cells (b) plant cells and (c) mammalian normal and cancer cells. Recently we have found that the Saccharomyces Cerevsa yeast growth increases by about 30to a 1 tesla field and the production of CO2 increases by about 30of yeast metabolism may be due to an increase in intercellular interaction and protein channel alignment, the introduction of an alteration in the DNA from the magnetic field exposure or a combination of these mechanisms. We also have found that the application of high magnetic fields (1 tesla and above) can have marked effects on the germination and growth of plants, especially corn, beans and peas. This finding has opened up the possibility of technology developments in botanical growth systems to accelerate seed germination and crop harvesting. Most recently we have investigated the application of high magnetic fields on leukemia, CaCoII and HEP G2 cancer cell lines. We found that when leukemia are exposed to a 12 tesla field for 2 hours has an increase in cell death by about 30that were not exposed to the magnetic field. Viability of CaCoII cells sandwiched between permanent magnets of maximum strength of 1.2 tesla was measured. A decrease in viable cells by 33unexposed cells. HSP 70 was measured for HEPG2 cells that were exposed to permanent magnetic field of 1.2 tesla for 40 minutes and for unexposed cells. It was found that the exposed cells produce 19 times more HSP70 compared to unexposed cells. Our results together with other investigators report suggest a strong evidence of a reduction in the cell growth rate for cancer cells when subjected to high magnetic field. Devices that utilize an applied steady magnetic filed in it operation such as devices for blood component separation and diagnostic sensors have been developed.

Chen, Ching-Jen

2001-03-01

67

Exploring Magnetic Fields  

NSDL National Science Digital Library

In this activity, students investigate the presence of magnetic fields around magnets, the sun and the earth. They will explore magnetic field lines, understand that magnetic lines of force show the strength and direction of magnetic fields, determine how field lines interact between attracting and repelling magnetic poles, and discover that the earth and sun have magnetic properties. They will also discover that magnetic force is invisible and that a "field of force" is a region or space in which one object can attract or repel another.

68

Magnetic Fields Matter  

NSDL National Science Digital Library

This lesson introduces students to the effects of magnetic fields in matter addressing permanent magnets, diamagnetism, paramagnetism, ferromagnetism, and magnetization. First students must compare the magnetic field of a solenoid to the magnetic field of a permanent magnet. Students then learn the response of diamagnetic, paramagnetic, and ferromagnetic material to a magnetic field. Now aware of the mechanism causing a solid to respond to a field, students learn how to measure the response by looking at the net magnetic moment per unit volume of the material.

2014-09-18

69

Design considerations of a power supply system for fast cycling superconducting accelerator magnets of 2 Tesla b-field generated by a conductor of 100 kA current  

SciTech Connect

Recently proposed fast cycling accelerators for proton drivers (SF-SPS, CERN and SF-MR, SF-BOOSTER, FNAL) neutrino sources require development of new magnet technology. In support of this magnet development a power supply system will need to be developed that can support the high current and high rate of power swing required by the fast cycling (1 sec rise and fall in the SF-MR, 5Hz in Booster). This paper will outline a design concept for a +/- 2000 V and 100,000 A fast ramping power supply system. This power supply design is in support of a 6.44 km magnet system at 0.020 H and 330 m 5 Hz, 0.00534 H superconducting loads. The design description will include the layout and plan for extending the present FNAL Main Injector style ramping power supply to the higher currents needed for this operation. This will also include the design for a harmonic filter and power factor corrector that will be needed to control the large power swings caused by the fast cycle time. A conceptual design for the current regulation system and control will also be outlined. The power circuit design will include the bridge, filter and transformer plan based on existing designs.

Hays, Steve; Piekarz, Henryk; Pfeffer, Howie; Claypool, Brad; /Fermilab

2007-06-01

70

Fabrication and test results of a high field, Nb3Sn superconducting racetrack dipole magnet  

Microsoft Academic Search

The LBNL Superconducting Magnet Program is extending accelerator magnet technology to the highest possible fields. A 1 meter long, racetrack dipole magnet, utilizing state-of-the-art Nb3Sn superconductor, has been built and tested. A record dipole filed of 14.7 Tesla has been achieved. Relevant features of the final assembly and test results are discussed

R. Benjegerdes; P. Bish; D. Byford; S. Caspi; D. R. Dietderich; S. A. Gourlay; R. Hafalia; R. Hannaford; H. Higley; A. Jackson; A. Lietzke; N. Liggins; A. D. McInturff; J. O'Neill; E. Palmerston; G. Sabbi; R. M. Scanlan; J. Swanson

2001-01-01

71

Fabrication and test results of a high field, Nb3Sn superconducting racetrack dipole magnet  

SciTech Connect

The LBNL Superconducting Magnet Program is extending accelerator magnet technology to the highest possible fields. A 1 meter long, racetrack dipole magnet, utilizing state-of-the-art Nb{sub 3}Sn superconductor, has been built and tested. A record dipole filed of 14.7 Tesla has been achieved. Relevant features of the final assembly and tested results are discussed.

Benjegerdes, R.; Bish, P.; Byford, D.; Caspi, S.; Dietderich, D.R.; Gourlay, S.A.; Hafalia, R.; Hannaford, R.; Higley, H.; Jackson, A.; Lietzke, A.; Liggins, N.; McInturff, A.D.; O'Neill, J.; Palmerston, E.; Sabbi, G.; Scanlan, R.M.; Swanson, J.

2001-06-15

72

Visualizing Magnetic Field Lines  

NSDL National Science Digital Library

In this activity, students take the age old concept of etch-a-sketch a step further. Using iron filings, students begin visualizing magnetic field lines. To do so, students use a compass to read the direction of the magnet's magnetic field. Then, students observe the behavior of iron filings near that magnet as they rotate the filings about the magnet. Finally, students study the behavior of iron filings suspended in mineral oil which displays the magnetic field in three dimensions.

VU Bioengineering RET Program, School of Engineering,

73

What are Magnetic Fields?  

NSDL National Science Digital Library

This is an activity about magnetic fields. Using iron filings, learners will observe magnets in various arrangements to investigate the magnetic field lines of force. This information is then related to magnetic loops on the Sun's surface and the magnetic field of the Earth. This is the second activity in the Magnetic Math booklet; this booklet can be found on the Space Math@NASA website.

2012-08-03

74

Magnetic fields of galaxies  

Microsoft Academic Search

The current state of the understanding of the magnetic fields of galaxies is reviewed. A simple model of the turbulent dynamo is developed which explains the main observational features of the global magnetic fields of spiral galaxies. The generation of small-scale chaotic magnetic fields in the interstellar medium is also examined. Attention is also given to the role of magnetic

Aleksandr A. Ruzmaikin; Dmitrii D. Sokolov; Anvar M. Shukurov

1988-01-01

75

Noninvasive magnetic resonance thermography of recurrent rectal carcinoma in a 1.5 Tesla hybrid system.  

PubMed

To implement noninvasive thermometry, we installed a hybrid system consisting of a radiofrequency multiantenna applicator (SIGMA-Eye) for deep hyperthermia (BSD-2000/3D) integrated into the gantry of a 1.5 Tesla magnetic resonance (MR) tomograph Symphony. This system can record MR data during radiofrequency heating and is suitable for application and evaluation of methods for MR thermography. In 15 patients with preirradiated pelvic rectal recurrences, we acquired phase data sets (25 slices) every 10 to 15 minutes over the treatment time (60-90 minutes) using gradient echo sequences (echo time = 20 ms), transformed the phase differences to MR temperatures, and fused the color-coded MR-temperature distributions with anatomic T1-weighted MR data sets. We could generate one complete series of MR data sets per patient with satisfactory quality for further analysis. In fat, muscle, water bolus, prostate, bladder, and tumor, we delineated regions of interest (ROI), used the fat ROI for drift correction by transforming these regions to a phase shift zero, and evaluated the MR-temperature frequency distributions. Mean MR temperatures (T(MR)), maximum T(MR), full width half maximum (FWHM), and other descriptors of tumors and normal tissues were noninvasively derived and their dependencies outlined. In 8 of 15 patients, direct temperature measurements in reference points were available. We correlated the tumor MR temperatures with direct measurements, clinical response, and tumor features (volume and location), and found reasonable trends and correlations. Therefore, the mean T(MR) of the tumor might be useful as a variable to evaluate the quality and effectivity of heat treatments, and consequently as optimization variable. Feasibility of noninvasive MR thermography for regional hyperthermia has been shown and should be further investigated. PMID:15994965

Gellermann, Johanna; Wlodarczyk, Waldemar; Hildebrandt, Bert; Ganter, Hildegard; Nicolau, Anett; Rau, Beate; Tilly, Wolfgang; Fähling, Horst; Nadobny, Jacek; Felix, Roland; Wust, Peter

2005-07-01

76

Mapping Magnetic Fields  

NSDL National Science Digital Library

This is an activity about bar magnets and their invisible magnetic fields. Learners will experiment with magnets and a compass to detect and draw magnetic fields. This is Activity 1 of a larger resource, entitled Exploring the Sun. The NASA spacecraft missions represented by this material include SOHO, TRACE, STEREO, Hinode, and SDO.

2012-08-03

77

The Declining Magnetic Field  

NSDL National Science Digital Library

This is an activity about the declining strength of Earth's magnetic field. Learners will review a graph of magnetic field intensity and calculate the amount by which the field has changed its intensity in the last century, the rate of change of its intensity, and when the field should decrease to zero strength at the current rate of change. Learners will also use evidence from relevant sources to create a conjecture on the effects on Earth of a vanished magnetic field. Access to information sources about Earth's magnetic field strength is needed for this activity. This is Activity 7 in the Exploring Magnetism on Earth teachers guide.

78

Performance analysis of HD1: a 16 Tesla Nb3Sn dipole Magnet  

SciTech Connect

The Superconducting Magnet Group at Lawrence Berkeley National Laboratory (LBNL) has been developing technology for high field accelerator magnets from brittle conductors. HD1 is a single bore block dipole magnet using two, double-layer Nb{sub 3}Sn flat racetrack coils. The magnet was tested in October 2003 and reached a bore peak field of 16 T (94.5% of short sample). The average quench current plateau appeared to be limited by 'stick slip' conductor motions. Diagnostics recorded quench origins and preload distributions. Cumulative deformation of the mechanical structure has been observed. Quench velocity in different field regions has been measured and compared with model predictions. The results obtained during the HD1 test are presented and discussed.

Mattafirri, S.; Bartlett, S.E.; Bish, P.A.; Caspi, S.; Dietderich, D.R.; Ferracin, P.; Gourlay, S.A.; Hannaford, C.R.; Hafalia, A.R.; Lau, W.G.; Lietzke, A.F.; McInturff, A.D.; Nyman, M.; Sabbi, G.L.; Scanlan, R.M.

2005-06-01

79

The first excited states of platinum phthalocyanine in magnetic fields  

Microsoft Academic Search

A Zeeman study of platinum phthalocyanine in Shpol'skii matrices was performed in the temperature range of 25-77 K with magnetic fields up to ˜6·3 Tesla (T). The general phosphorescence region (950-945 nm) exhibited only one principal peak whose position is not affected by the field. An extremely weak structure that is energetically about 26 cm-1 lower than the principal peak

Wen-Hsiung Chen; Klaus E. Rieckhoff; Eva-Maria Voigt

1986-01-01

80

The Magnetic Field  

NSDL National Science Digital Library

This demonstration of the magnetic field lines of Earth uses a bar magnet, iron filings, and a compass. The site explains how to measure the magnetic field of the Earth by measuring the direction a compass points from various points on the surface. There is also an explanation of why the north magnetic pole on Earth is actually, by definition, the south pole of a magnet.

Jeffrey Barker

81

Drawing Magnetic Fields  

NSDL National Science Digital Library

Students use a compass and a permanent magnet to trace the magnetic field lines produced by the magnet. By positioning the compass in enough spots around the magnet, the overall magnet field will be evident from the collection of arrows representing the direction of the compass needle. In activities 3 and 4 of this unit, students will use this information to design a way to solve the grand challenge of separating metal for a recycling company.

2014-09-18

82

Electricity and Magnetic Fields  

NSDL National Science Digital Library

The grand challenge for this legacy cycle unit is for students to design a way to help a recycler separate aluminum from steel scrap metal. In previous lessons, they have looked at how magnetism might be utilized. In this lesson, students think about how they might use magnets and how they might confront the problem of turning the magnetic field off. Through the accompanying activity students explore the nature of an electrically induced magnetic field and its applicability to the needed magnet.

VU Bioengineering RET Program,

83

Magnetic fields at Neptune  

Microsoft Academic Search

The National Aeronautics and Space Administration Goddard Space Flight Center-University of Delaware Bartol Research Institute magnetic field experiment on the Voyager 2 spacecraft discovered a strong and complex intrinsic magnetic field of Neptune and an associated magnetosphere and magnetic tail. A maximum magnetic field of nearly 10,000 nanoteslas (1 nanotesla = 10⁻⁵ gauss) was observed near closest approach, at a

N. F. Ness; M. H. Acuna; L. F. Burlaga; J. E. P. Connerney; R. P. Lepping; F. M. Neubauer

1989-01-01

84

Mitigated-force carriage for high magnetic field environments  

DOEpatents

A carriage for high magnetic field environments includes a first work-piece holding means for holding a first work-piece, the first work-piece holding means being disposed in an operable relationship with a work-piece processing magnet having a magnetic field strength of at least 1 Tesla. The first work-piece holding means is further disposed in operable connection with a second work-piece holding means for holding a second work-piece so that, as the first work-piece is inserted into the magnetic field, the second work-piece is simultaneously withdrawn from the magnetic field, so that an attractive magnetic force imparted on the first work-piece offsets a resistive magnetic force imparted on the second work-piece.

Ludtka, Gerard M; Ludtka, Gail M; Wilgen, John B; Murphy, Bart L

2014-05-20

85

Magnetic Fields Analogous to electric field, a magnet  

E-print Network

Magnetic Fields Analogous to electric field, a magnet produces a magnetic field, B Set up a B field two ways: Moving electrically charged particles Current in a wire Intrinsic magnetic field Basic) Opposite magnetic poles attract like magnetic poles repel #12;Like the electric field lines

Bertulani, Carlos A. - Department of Physics and Astronomy, Texas A&M University

86

Magnetic Field Problem  

NSDL National Science Digital Library

The above animations represent two typical bar magnets each with a North and South pole. The arrows represent the direction of the magnetic field. The color of the arrows represents the magnitude of the field with magnitude increasing as the color changes from blue to green to red to black. You may drag either magnet and double-click anywhere inside the animation to add a magnetic field line, and mouse-down to read the magnitude of the magnetic field at that point.

Wolfgang Christian

87

Multi circular-cavity surface coil for magnetic resonance imaging of monkey's brain at 4 Tesla  

NASA Astrophysics Data System (ADS)

Animal models in medical research has been used to study humans diseases for several decades. The use of different imaging techniques together with different animal models offers a great advantage due to the possibility to study some human pathologies without the necessity of chirurgical intervention. The employ of magnetic resonance imaging for the acquisition of anatomical and functional images is an excellent tool because its noninvasive nature. Dedicated coils to perform magnetic resonance imaging experiments are obligatory due to the improvement on the signal-to-noise ratio and reduced specific absorption ratio. A specifically designed surface coil for magnetic resonance imaging of monkey's brain is proposed based on the multi circular-slot coil. Numerical simulations of the magnetic and electric fields were also performed using the Finite Integration Method to solve Maxwell's equations for this particular coil design and, to study the behavior of various vector magnetic field configurations and specific absorption ratio. Monkey's brain images were then acquired with a research-dedicated magnetic resonance imaging system at 4T, to evaluate the anatomical images with conventional imaging sequences. This coil showed good quality images of a monkey's brain and full compatibility with standard pulse sequences implemented in research-dedicated imager.

Osorio, A. I.; Solis-Najera, S. E.; Vázquez, F.; Wang, R. L.; Tomasi, D.; Rodriguez, A. O.

2014-11-01

88

HD1: Design and Fabrication of a 16 Tesla Nb3Sn Dipole Magnet  

SciTech Connect

The Lawrence Berkeley National Laboratory (LBNL) Supcrconducting Magnet Group has completed the design, fabrication and tcst of HD1, a 16 T block-coil dipole magnet. State of the art Nb{sub 3}Sn conductor was wound in double-layer racetrack coils and supported by an iron yoke and a tensioned aluminum shell. In order to prevent conductor movement under magnetic forces up to the design field, a coil prestress of 150 MPa was required. To achieve this level without damaging the brittle conductor, the target stress was generated during cool-down to 4.2 K by exploiting the thermal contraction differentials between yoke and shell. Accurate control of the shell tension during assembly was obtained using pressurized bladders and interference load keys. An integrated 3D CAD model was used to optimize magnetic and mechanical design and analysis.

Hafalia, A.R.; Barlett, S.E.; Caspi, S.; Chiesa, L.; Dietderich, D.R.; Ferracin, P.; Goli, M.; Gourlay, S.A.; Hannaford, C.R.; Higley, H.; Lietzke, A.F.; Liggins, N.; Mattafirri, S.; McInturff, A.D.; Myman, M.; Sabbi, G.L.; Scanlan, R.M.; Swanson, J.

2003-10-01

89

HD1: Design and Fabrication of a 16 Tesla Nb3Sn DipoleMagnet  

SciTech Connect

The Lawrence Berkeley National Laboratory (LBNL) Superconducting Magnet Group has completed the design, fabrication and test of HD1, a 16 T block-coil dipole magnet. State of the art Nb{sub 3}Sn conductor was wound in double-layer racetrack coils and supported by an iron yoke and a tensioned aluminum shell. In order to prevent conductor movement under magnetic forces up to the design field, a coil pre-stress of 150 MPa was required. To achieve this level without damaging the brittle conductor, the target stress was generated during cool-down to 4.2 K by exploiting the thermal contraction differentials between yoke and shell. Accurate control of the shell tension during assembly was obtained using pressurized bladders and interference load keys. An integrated 3D CAD model was used to optimize magnetic and mechanical design and analysis.

Hafalia, A.R.; Bartlett, S.E.; Capsi, S.; Chiesa, L.; Dietderich,D.R.; Ferracin, P.; Goli, M.; Gourlay, S.A.; Hannaford, C.R.; Highley,H.; Lietzke, A.F.; Liggins, N.; Mattafirri, S.; McInturff, A.D.; Nyman,M.; Sabbi, G.L.; Scanlan, R.M.; Swanson, J.

2003-11-10

90

Mapping Magnetic Field Lines  

NSDL National Science Digital Library

This is a lesson about the magnetic field of a bar magnet. The lesson begins with an introductory discussion with learners about magnetism to draw out any misconceptions that may be in their minds. Then, learners freely experiment with bar magnets and various materials, such as paper clips, rulers, copper or aluminum wire, and pencils, to discover that magnets attract metals containing iron, nickel, and/or cobalt but not most other materials. Next, learners experiment with using a magnetic compass to discover how it is affected by the magnet and then draw the magnetic field lines of the magnet by putting dots at the location of the compass arrow. This is the first lesson in the first session of the Exploring Magnetism teacher guide.

2012-08-03

91

Mapping Magnetic Fields  

NSDL National Science Digital Library

This is an activity about magnetism. Using bar magnets, classroom materials, and a compass, learners will explore how bar magnets interact with one another and with other materials, use a compass to find the direction north, and use various materials to make magnetic field lines visible around a bar magnet. This is an activity in a larger poster resource, entitled The Sun Like It's Never Been Seen Before: In 3D.

92

The Magnetic Field  

NSDL National Science Digital Library

This webpage is part of the University Corporation for Atmospheric Research (UCAR) Windows to the Universe program. It describes the nature and configuration of magnetic fields, which are the result of moving electric charges, including how they cause magnetic objects to orient themselves along the direction of the magnetic force points, which are illustrated as lines. Magnetic field lines by convention point outwards at the north magnetic pole and inward at the south magnetic pole. The site features text, scientific illustrations and an animation. Text and vocabulary are selectable for the beginning, intermediate, or advanced reader.

Windows to the Universe

1997-12-03

93

Hyperemic stress myocardial perfusion cardiovascular magnetic resonance in mice at 3 Tesla: initial experience and validation against microspheres  

PubMed Central

Background Dynamic first pass contrast-enhanced myocardial perfusion is the standard CMR method for the estimation of myocardial blood flow (MBF) and MBF reserve in man, but it is challenging in rodents because of the high temporal and spatial resolution requirements. Hyperemic first pass myocardial perfusion CMR during vasodilator stress in mice has not been reported. Methods Five C57BL/6 J mice were scanned on a clinical 3.0 Tesla Achieva system (Philips Healthcare, Netherlands). Vasodilator stress was induced via a tail vein catheter with an injection of dipyridamole. Dynamic contrast-enhanced perfusion imaging (Gadobutrol 0.1 mmol/kg) was based on a saturation recovery spoiled gradient echo method with 10-fold k-space and time domain undersampling (k-t PCA). One week later the mice underwent repeat anaesthesia and LV injections of fluorescent microspheres at rest and at stress. Microspheres were analysed using confocal microscopy and fluorescence-activated cell sorting. Results Mean MBF at rest measured by Fermi-function constrained deconvolution was 4.1?±?0.5 ml/g/min and increased to 9.6?±?2.5 ml/g/min during dipyridamole stress (P?=?0.005). The myocardial perfusion reserve was 2.4 ±?0.54. The mean count ratio of stress to rest microspheres was 2.4 ±?0.51 using confocal microscopy and 2.6?±?0.46 using fluorescence. There was good agreement between cardiovascular magnetic resonance CMR and microspheres with no significant difference (P?=?0.84). Conclusion First-pass myocardial stress perfusion CMR in a mouse model is feasible at 3 Tesla. Rest and stress MBF values were consistent with existing literature and perfusion reserve correlated closely to microsphere analysis. Data were acquired on a 3 Tesla scanner using an approach similar to clinical acquisition protocols, potentially facilitating translation of imaging findings between rodent and human studies. PMID:23870734

2013-01-01

94

MAGNET ENGINEERING AND TEST RESULTS OF THE HIGH FIELD MAGNET R AND D PROGRAM AT BNL.  

SciTech Connect

The Superconducting Magnet Division at Brookhaven National Laboratory (BNL) has been carrying out design, engineering, and technology development of high performance magnets for future accelerators. High Temperature Superconductors (HTS) play a major role in the BNL vision of a few high performance interaction region (IR) magnets that would be placed in a machine about ten years from now. This paper presents the engineering design of a ''react and wind'' Nb{sub 3}Sn magnet that will provide a 12 Tesla background field on HTS coils. In addition, the coil production tooling as well as the most recent 10-turn R&D coil test results will be discussed.

COZZOLINO,J.; ANERELLA,M.; ESCALLIER,J.; GANETIS,G.; GHOSH,A.; GUPTA,R.; HARRISON,M.; JAIN,A.; MARONE,A.; MURATORE,J.; PARKER,B.; SAMPSON,W.; SOIKA,R.; WANDERER,P.

2002-08-04

95

Decreased chemotaxis of human peripheral phagocytes exposed to a strong static magnetic field.  

PubMed

The chemotaxis of human peripheral phagocytes, neutrophils and monocytes was examined in a strong static magnetic field (0.317+/-0.012 Tesla). The chemotaxis of the suspension of purified neutrophils and monocytes was tested in the Boyden chamber using C5a as a chemotactic signal. The chambers were placed into a temperature regulated (36.6 degrees C) equipment producing a strong static magnetic field (0.317 Tesla) for 60 minutes. The movement of cells proceeded into a nitrocellulose membrane toward the north-pole of the magnet, i.e. in the direction of the Earth's gravitational pull. The C5a induced chemotaxis of human neutrophils decreased significantly in the strong static magnetic field. Monocytes were not significantly effected. The strong static magnetic field decreased the chemotactic movement of neutrophils and this phenomenon may have implications when humans are exposed to magnetic resonance imaging for extended periods of time. PMID:15334831

Sipka, S; Szöllosi, I; Batta, Gy; Szegedi, Gy; Illés, A; Bakó, Gy; Novák, D

2004-01-01

96

Magnetic Field Distribution of Permanent Magnet Magnetized by Static Magnetic Field Generated by HTS Bulk Magnet  

Microsoft Academic Search

Demagnetized rare earth magnets (Nd-Fe-B) can be fully magnetized by scanning them in the intense static fields over 3 T of a HTS bulk magnet which was cooled to the temperature range lower than 77K with use of cryo-coolers and activated by the field of 5 T. We precisely examined the magnetic field distributions of magnetized permanent magnets. The magnetic

Tetsuo Oka; Nobutaka Kawasaki; Satoshi Fukui; Jun Ogawa; Takao Sato; Toshihisa Terasawa; Yoshitaka Itoh; Ryohei Yabuno

2012-01-01

97

Static Magnetic Fields in Semiconductor Floating-Zone Growth  

NASA Technical Reports Server (NTRS)

Heat and mass transfer in semiconductor float-zone processing are strongly influenced by convective flows in the zone, originating from sources such as buoyancy convection, thermocapillary (Marangoni) convection, differential rotation, or radio frequency heating. Because semiconductor melts are conducting, flows can be damped by the use of static magnetic fields to influence the interface shape and the segregation of dopants and impurities. An important objective is often the suppression of time-dependent flows and the ensuing dopant striations. In RF-heated Si-FZ - crystals, fields up to O.STesla show some flattening of the interface curvature and a reduction of striation amplitudes. In radiation-heated (small-scale) SI-FZ crystals, fields of 0.2 - 0.5 Tesla already suppress the majority of the dopant striations. The uniformity of the radial segregation is often compromised by using a magnetic field, due to the directional nature of the damping. Transverse fields lead to an asymmetric interface shape and thus require crystal rotation (resulting in rotational dopant striations) to achieve a radially symmetric interface, whereas axial fields introduce a coring effect. A complete suppression of dopant striations and a reduction of the coring to insignificant values, combined with a shift of the axial segregation profile towards a more diffusion-limited case, are possible with axial static fields in excess of 1 Tesla. Strong static magnetic fields, however, can also lead to the appearance of thermoelectromagnetic convection, caused by the interaction of thermoelectric currents with the magnetic field.

Croll, Arne; Benz, K. W.

1999-01-01

98

Giant Coercive Fields of 2.5 Tesla in Nanostructured MnxGa Films  

NASA Astrophysics Data System (ADS)

There is a growing interest in designing new magnetic materials that are free of rare-earth elements. The magnetism of the Heusler ferrimagnet MnxGa [1] was found to be enhanced when fabricated with nanoscale structural disorder. Films of MnxGa (x=2 to 3) with thicknesses of 20 to 40 nm were grown using molecular beam epitaxy at 100 C then annealed at 400 C. Disordered films were grown on lattice mismatched Si (001) substrates, then compared to epitaxially grown films on desorbed GaAs (001) substrates. While the epitaxial films have small hysteresis in the magnetization with coercive fields in the range ?oHC = 10-2 - 10-1 T, the disordered films exhibited surprisingly wide hysteresis with record high coercive fields as large as ?oHC = 2.5 T. These magnitudes are comparable to those of rare-earth-based magnets. This hysteresis was also present in the anomalous Hall effect. The enhanced coercive field in the disordered material arises from a combination of the exceptionally large magnetocrystalline anisotropy and nanoscale structural disorder. These results point out a new opportunity for developing rare-earth-free magnetic materials. Discovery of this unusually high coercive field is outlined and its sources discussed. [1] J. Winterlik, et al., Phys. Rev. B 77, 054406 (2008).

Bennett, Steven; Nummy, Thomas; Cardinal, Thomas; Nowak, Welville; Heiman, Don

2012-02-01

99

Photodetachment in magnetic fields  

Microsoft Academic Search

The behavior of the photodetachment cross section, near threshold, for atomic negative ioris in a magnetic field is described and illustrated with data on photodetachment of electrons from negative sulfur ions. The effect of the final state interaction is discussed and the photodetachment of atomic negative ions in a magnetic field is compared to photoionization of neutral atoms in a

D. J. Larson; R. Stoneman

1982-01-01

100

THE INTERPLANETARY MAGNETIC FIELD  

Microsoft Academic Search

A new analysis of magnetic and concurrent plasma data collected from the ; space probes Pionecr 5, Explorer 10, and Mariner 2 yields a new model of the ; interplanetary magnetic field. It is hypothesized that the observed ; interplanetary field F\\/sub i\\/ is due to motion of the magnetometer relative to a ; negatively charged rotating sun from which

V. A. BAILEY

1963-01-01

101

Magnetic field line Hamiltonian  

SciTech Connect

The magnetic field line Hamiltonian and the associated canonical form for the magnetic field are important concepts both for understanding toroidal plasma physics and for practical calculations. A number of important properties of the canonical or Hamiltonian representation are derived and their importance is explained.

Boozer, A.H.

1984-03-01

102

Cosmic Magnetic Fields  

Microsoft Academic Search

Most of the visible matter in the Universe is in a plasma state, or more specifically is composed of ionized or partially ionized gas permeated by magnetic fields. Thanks to recent advances on the theory and detection of cosmic magnetic fields there has been a worldwide growing interest in the study of their role on the formation of astrophysical sources

Elisabete M. de Gouveia Dal Pino; Dal Pino

2006-01-01

103

TESLA'S VISION OF THE WIRELESS GLOBAL COMMUNICATIONS  

E-print Network

to align with the electric field. The Inventions, Researches and Writings of Nikola Tesla #12;March 12TESLA'S VISION OF THE WIRELESS GLOBAL COMMUNICATIONS Ljiljana Trajkovi Communication Networks;March 12, 2004 Kwantlen College Ljiljana Trajkovic, Simon Fraser University 2 Road map Tesla in 1890's

Trajkovic, Ljiljana

104

ROLE FOR THE MAGNETIC FIELD IN THE RADIATION-INDUCED EFFLUX OF CALCIUM IONS FROM BRAIN TISSUE 'IN VITRO'  

EPA Science Inventory

Two independent laboratories have demonstrated that specific frequencies of electromagnetic radiation can cause a change in the efflux of calcium ions from brain tissue in vitro. Under a static magnetic field intensity of 38 microTesla (microT) due to the earth's magnetic field, ...

105

Cosmological magnetic fields  

E-print Network

Magnetic fields are observed not only in stars, but in galaxies, clusters, and even high redshift Lyman-alpha systems. In principle, these fields could play an important role in structure formation and also affect the anisotropies in the cosmic microwave background radiation (CMB). The study of cosmological magnetic fields aims not only to quantify these effects on large-scale structure and the CMB, but also to answer one of the outstanding puzzles of modern cosmology: when and how do magnetic fields originate? They are either primordial, i.e. created before the onset of structure formation, or they are generated during the process of structure formation itself.

Roy Maartens

2000-07-24

106

Interplanetary Magnetic Field Lines  

NSDL National Science Digital Library

This web page, authored and curated by David P. Stern, provides information and a graphical exercise for students regarding the interaction between magnetic field lines and a plasma. The activity involves tracing a typical interplanetary magnetic field line, dragged out of a location on the Sun by the radial flow of the solar wind. This illustrates the way magnetic field lines are "frozen to the plasma" and the wrapping of field lines due to the rotation of the sun. This is part of the work "The Exploration of the Earth's Magnetosphere". A Spanish translation is available.

Mendez, J.

107

The Earth's Magnetic Field  

NSDL National Science Digital Library

The magnetic field of the Earth is contained in a region called the magnetosphere. The magnetosphere prevents most of the particles from the sun, carried in solar wind, from hitting the Earth. This site, produced by the University Corporation for Atmospheric Research (UCAR), uses text, scientific illustrations,and remote imagery to explain the occurrence and nature of planetary magnetic fields and magnetospheres, how these fields interact with the solar wind to produce phenomena like auroras, and how magnetic fields of the earth and other planets can be detected and measured by satellite-borne magnetometers.

108

Science up to 100 tesla  

SciTech Connect

100 Tesla is the highest attainable field that can be held for milli-sec in a non-destructive magnet. The strongest steels turn soft under stresses of 4GPa, which is the magnetic pressure of 100 T. Until there is a breakthrough in materials, magnets having all the low temperature and high pressure trimmings will be limited to about 100 T. Within the field range 1-100 T far more resources are now devoted to producing the highest possible continuous fields (40+5 T) than to producing longer pulsed fields above 50 T. This illustrates that the utility of the field can be more important than the strength of the field to researchers in condensed matter. Discoveries are typically made in new territory, but this can be new combinations of pressure, temperature, and magnetic field, or new probes and new materials. If any activity has kept up with the proliferation of new experiments and new facilities in high magnetic field research it is the listing of experiments that could and should be done in high fields. Part of the reason for the vitality of high field research is that high fields provide a generic environment. Compared to particle accelerators and plasma machines a high field laboratory is a setting for generic science, like synchrotron light sources or neutron scattering centers. Although the latter two installations probes states, while a magnetic field creates a state. Because it is unrealistic to try to list all the science opportunities at high fields, the author list sources for lists in the public domain and gives a few examples.

Campbell, L.J. [Los Alamos National Lab., NM (United States). National High Magnetic Field Lab.

1995-05-01

109

Detection of lung tumors in mice using a 1-tesla compact magnetic resonance imaging system.  

PubMed

Due to their small size, lung tumors in rodents are typically investigated using high-field magnetic resonance (MR) systems (4.7 T or higher) to achieve higher signal-to-noise ratios, although low-field MR systems are less sensitive to susceptibility artifacts caused by air in the lung. We investigated the feasibility of detecting lung tumors in living, freely breathing mice with a 1-T compact permanent magnet MR system. In total, 4 mice were used, and MR images of mouse lungs were acquired using a T1-weighted three-dimensional fast low-angle shot sequence without cardiac or respiratory gating. The delineation and size of lung tumors were assessed and compared with histopathological findings. Submillimeter lesions were demonstrated as hyperintense, relative to the surrounding lung parenchyma, and were delineated clearly. Among the 13 lesions validated in histopathological sections, 11 were detected in MR images; the MR detection rate was thus 84.6%. A strong correlation was obtained in size measurements between MR images and histological sections. Thus, a dedicated low-field MR system can be used to detect lung tumors in living mice noninvasively without gating. PMID:24743153

Wang, Fang; Akashi, Ken; Murakami, Yoshinori; Inoue, Yusuke; Furuta, Toshihiro; Yamada, Haruyasu; Ohtomo, Kuni; Kiryu, Shigeru

2014-01-01

110

Detection of Lung Tumors in Mice Using a 1-Tesla Compact Magnetic Resonance Imaging System  

PubMed Central

Due to their small size, lung tumors in rodents are typically investigated using high-field magnetic resonance (MR) systems (4.7 T or higher) to achieve higher signal-to-noise ratios, although low-field MR systems are less sensitive to susceptibility artifacts caused by air in the lung. We investigated the feasibility of detecting lung tumors in living, freely breathing mice with a 1-T compact permanent magnet MR system. In total, 4 mice were used, and MR images of mouse lungs were acquired using a T1-weighted three-dimensional fast low-angle shot sequence without cardiac or respiratory gating. The delineation and size of lung tumors were assessed and compared with histopathological findings. Submillimeter lesions were demonstrated as hyperintense, relative to the surrounding lung parenchyma, and were delineated clearly. Among the 13 lesions validated in histopathological sections, 11 were detected in MR images; the MR detection rate was thus 84.6%. A strong correlation was obtained in size measurements between MR images and histological sections. Thus, a dedicated low-field MR system can be used to detect lung tumors in living mice noninvasively without gating. PMID:24743153

Wang, Fang; Akashi, Ken; Murakami, Yoshinori; Inoue, Yusuke; Furuta, Toshihiro; Yamada, Haruyasu; Ohtomo, Kuni; Kiryu, Shigeru

2014-01-01

111

Sources of Magnetic Field Magnetic Phenomena  

E-print Network

push on currents Moving charges can make and feel magnetic forces. We don't understand how permanent will consider the last piece of the puzzle in electromagnetic - changing magnetic fields can make induction. 15Lecture 9 Sources of Magnetic Field 1 Magnetic Phenomena 1. Magnets can push on each other (and

Tobar, Michael

112

Mapping Magnetic Field Lines  

NSDL National Science Digital Library

This is an activity about electromagnetism. Learners will use a compass to map the magnetic field lines surrounding a coil of wire that is connected to a battery. This activity requires a large coil or spool of wire, a source of electricity such as 3 D-cell batteries or an AC to DC power adapter, alligator-clipped wire, and magnetic compasses. This is the third lesson in the second session of the Exploring Magnetism teachers guide.

2012-08-03

113

The First Magnetic Fields  

NASA Astrophysics Data System (ADS)

We review current ideas on the origin of galactic and extragalactic magnetic fields. We begin by summarizing observations of magnetic fields at cosmological redshifts and on cosmological scales. These observations translate into constraints on the strength and scale magnetic fields must have during the early stages of galaxy formation in order to seed the galactic dynamo. We examine mechanisms for the generation of magnetic fields that operate prior during inflation and during subsequent phase transitions such as electroweak symmetry breaking and the quark-hadron phase transition. The implications of strong primordial magnetic fields for the reionization epoch as well as the first generation of stars are discussed in detail. The exotic, early-Universe mechanisms are contrasted with astrophysical processes that generate fields after recombination. For example, a Biermann-type battery can operate in a proto-galaxy during the early stages of structure formation. Moreover, magnetic fields in either an early generation of stars or active galactic nuclei can be dispersed into the intergalactic medium.

Widrow, Lawrence M.; Ryu, Dongsu; Schleicher, Dominik R. G.; Subramanian, Kandaswamy; Tsagas, Christos G.; Treumann, Rudolf A.

2012-05-01

114

An active antenna for ELF magnetic fields  

NASA Astrophysics Data System (ADS)

The work of Nikola Tesla, especially that directed toward world-wide electrical energy distribution via excitation of the earth-ionosphere cavity resonances, has stimulated interest in the study of these resonances. Not only are they important for their potential use in the transmission of intelligence and electrical power, they are important because they are an integral part of our natural environment. This paper describes the design of a sensitive, untuned, low noise active antenna which is uniquely suited to modern earth-ionosphere cavity resonance measurements employing fast-Fourier transform techniques for near-real-time data analysis. It capitalizes on a little known field-antenna interaction mechanism. Recently, the authors made preliminary measurements of the magnetic fields in the earth-ionosphere cavity. During the course of this study, the problem of designing an optimized ELF magnetic field sensor presented itself. The sensor would have to be small, light weight (for portable use), and capable of detecting the 5-50 Hz picoTesla-level signals generated by the natural excitations of the earth-ionosphere cavity resonances. A review of the literature revealed that past researchers had employed very large search coils, both tuned and untuned. Hill and Bostick, for example, used coils of 30,000 turns wound on high permeability cores of 1.83 m length, weighing 40 kg. Tuned coils are unsuitable for modern fast-Fourier transform data analysis techniques which require a broad spectrum input. 'Untuned' coils connected to high input impedance voltage amplifiers exhibit resonant responses at the resonant frequency determined by the coil inductance and the coil distributed winding capacitance. Also, considered as antennas, they have effective areas equal only to their geometrical areas.

Sutton, John F.; Spaniol, Craig

1994-01-01

115

Magnetic field dosimeter development  

SciTech Connect

In recent years there has been increased concern over potential health hazards related to exposure of personnel to magnetic fields. If exposure standards are to be established, then a means for measuring magnetic field dose must be available. To meet this need, the Department of Energy has funded development of prototype dosimeters at the Battelle Pacific Northwest Laboratory. This manual reviews the principle of operation of the dosimeter and also contains step-by-step instructions for its operation.

Lemon, D.K.; Skorpik, J.R.; Eick, J.L.

1980-09-01

116

Persistence of magnetic field driven by relativistic electrons in a plasma  

E-print Network

The onset and evolution of magnetic fields in laboratory and astrophysical plasmas is determined by several mechanisms, including instabilities, dynamo effects and ultra-high energy particle flows through gas, plasma and interstellar-media. These processes are relevant over a wide range of conditions, from cosmic ray acceleration and gamma ray bursts to nuclear fusion in stars. The disparate temporal and spatial scales where each operates can be reconciled by scaling parameters that enable to recreate astrophysical conditions in the laboratory. Here we unveil a new mechanism by which the flow of ultra-energetic particles can strongly magnetize the boundary between the plasma and the non-ionized gas to magnetic fields up to 10-100 Tesla (micro Tesla in astrophysical conditions). The physics is observed from the first time-resolved large scale magnetic field measurements obtained in a laser wakefield accelerator. Particle-in-cell simulations capturing the global plasma and field dynamics over the full plasma le...

Flacco, A; Lifschitz, A; Sylla, F; Kahaly, S; Veltcheva, M; Silva, L O; Malka, V

2015-01-01

117

Solar Wind Magnetic Fields  

NASA Technical Reports Server (NTRS)

The magnetic fields originate as coronal fields that are converted into space by the supersonic, infinitely conducting, solar wind. On average, the sun's rotation causes the field to wind up and form an Archimedes Spiral. However, the field direction changes almost continuously on a variety of scales and the irregular nature of these changes is often interpreted as evidence that the solar wind flow is turbulent.

Smith, E. J.

1995-01-01

118

Monopole passband excitation by field emitters in 9-cell TESLA-type cavities  

NASA Astrophysics Data System (ADS)

We present an extension of the calculation of dipole-mode driven beam break-up instabilities, as calculated in [V. Volkov, Phys. Rev. ST Accel. Beams 12, 011301 (2009); PRABFM1098-440210.1103/PhysRevSTAB.12.011301V. Volkov, J. Knobloch, and A. Matveenko, Phys. Rev. ST Accel. Beams (to be published)PRABFM1098-4402], to the monopole fundamental mode passband. The excitation of these modes has been observed in 9-cell TESLA cavities on test stands without beam [G. Kreps , Proceedings of SRF2009 (HZB, Berlin, Germany, 2009), pp. 289-291] and the same effect has been observed in klystrons with high DC currents.

Volkov, V.; Knobloch, J.; Matveenko, A.

2010-08-01

119

Magnetic resonance imaging of rodent spinal cord with an improved performance coil at 7 Tesla  

NASA Astrophysics Data System (ADS)

Magnetic Resonance Imaging of animal models provide reliable means to study human diseases. The image acquisition particularly determined by the radio frequency coil to detect the signal emanated from a particular region of interest. A scaled-down version of the slotted surface coil was built based on the previous results of a magnetron-type surface coil for human applications. Our coil prototype had a 2 cm total diameter and six circular slots and was developed for murine spinal cord at 7 T. Electromagnetic simulations of the slotted and circular coils were also performed to compute the spatially dependent magnetic and electric fields using a simulated saline-solution sphere. The quality factor of both coils was experimentally measured giving a lower noise figure and a higher quality factor for the slotted coil outperforming the circular coil. Images of the spinal cord of a rat were acquired using standard pulse sequences. The slotted surface coil can be a good tool for spinal cord rat imaging using conventional pulse sequences at 7 T.

Solis-Najera, S. E.; Rodriguez, A. O.

2014-11-01

120

Detailing Radio Frequency Heating Induced by Coronary Stents: A 7.0 Tesla Magnetic Resonance Study  

PubMed Central

The sensitivity gain of ultrahigh field Magnetic Resonance (UHF-MR) holds the promise to enhance spatial and temporal resolution. Such improvements could be beneficial for cardiovascular MR. However, intracoronary stents used for treatment of coronary artery disease are currently considered to be contra-indications for UHF-MR. The antenna effect induced by a stent together with RF wavelength shortening could increase local radiofrequency (RF) power deposition at 7.0 T and bears the potential to induce local heating, which might cause tissue damage. Realizing these constraints, this work examines RF heating effects of stents using electro-magnetic field (EMF) simulations and phantoms with properties that mimic myocardium. For this purpose, RF power deposition that exceeds the clinical limits was induced by a dedicated birdcage coil. Fiber optic probes and MR thermometry were applied for temperature monitoring using agarose phantoms containing copper tubes or coronary stents. The results demonstrate an agreement between RF heating induced temperature changes derived from EMF simulations versus MR thermometry. The birdcage coil tailored for RF heating was capable of irradiating power exceeding the specific-absorption rate (SAR) limits defined by the IEC guidelines by a factor of three. This setup afforded RF induced temperature changes up to +27 K in a reference phantom. The maximum extra temperature increase, induced by a copper tube or a coronary stent was less than 3 K. The coronary stents examined showed an RF heating behavior similar to a copper tube. Our results suggest that, if IEC guidelines for local/global SAR are followed, the extra RF heating induced in myocardial tissue by stents may not be significant versus the baseline heating induced by the energy deposited by a tailored cardiac transmit RF coil at 7.0 T, and may be smaller if not insignificant than the extra RF heating observed under the circumstances used in this study. PMID:23185498

Santoro, Davide; Winter, Lukas; Müller, Alexander; Vogt, Julia; Renz, Wolfgang; Özerdem, Celal; Grässl, Andreas; Tkachenko, Valeriy; Schulz-Menger, Jeanette; Niendorf, Thoralf

2012-01-01

121

Detailing radio frequency heating induced by coronary stents: a 7.0 Tesla magnetic resonance study.  

PubMed

The sensitivity gain of ultrahigh field Magnetic Resonance (UHF-MR) holds the promise to enhance spatial and temporal resolution. Such improvements could be beneficial for cardiovascular MR. However, intracoronary stents used for treatment of coronary artery disease are currently considered to be contra-indications for UHF-MR. The antenna effect induced by a stent together with RF wavelength shortening could increase local radiofrequency (RF) power deposition at 7.0 T and bears the potential to induce local heating, which might cause tissue damage. Realizing these constraints, this work examines RF heating effects of stents using electro-magnetic field (EMF) simulations and phantoms with properties that mimic myocardium. For this purpose, RF power deposition that exceeds the clinical limits was induced by a dedicated birdcage coil. Fiber optic probes and MR thermometry were applied for temperature monitoring using agarose phantoms containing copper tubes or coronary stents. The results demonstrate an agreement between RF heating induced temperature changes derived from EMF simulations versus MR thermometry. The birdcage coil tailored for RF heating was capable of irradiating power exceeding the specific-absorption rate (SAR) limits defined by the IEC guidelines by a factor of three. This setup afforded RF induced temperature changes up to +27 K in a reference phantom. The maximum extra temperature increase, induced by a copper tube or a coronary stent was less than 3 K. The coronary stents examined showed an RF heating behavior similar to a copper tube. Our results suggest that, if IEC guidelines for local/global SAR are followed, the extra RF heating induced in myocardial tissue by stents may not be significant versus the baseline heating induced by the energy deposited by a tailored cardiac transmit RF coil at 7.0 T, and may be smaller if not insignificant than the extra RF heating observed under the circumstances used in this study. PMID:23185498

Santoro, Davide; Winter, Lukas; Müller, Alexander; Vogt, Julia; Renz, Wolfgang; Ozerdem, Celal; Grässl, Andreas; Tkachenko, Valeriy; Schulz-Menger, Jeanette; Niendorf, Thoralf

2012-01-01

122

On the Subjective Acceptance during Cardiovascular Magnetic Resonance Imaging at 7.0 Tesla  

PubMed Central

Purpose This study examines the subjective acceptance during UHF-CMR in a cohort of healthy volunteers who underwent a cardiac MR examination at 7.0T. Methods Within a period of two-and-a-half years (January 2012 to June 2014) a total of 165 healthy volunteers (41 female, 124 male) without any known history of cardiac disease underwent UHF-CMR. For the assessment of the subjective acceptance a questionnaire was used to examine the participants experience prior, during and after the UHF-CMR examination. For this purpose, subjects were asked to respond to the questionnaire in an exit interview held immediately after the completion of the UHF-CMR examination under supervision of a study nurse to ensure accurate understanding of the questions. All questions were answered with “yes” or “no” including space for additional comments. Results Transient muscular contraction was documented in 12.7% of the questionnaires. Muscular contraction was reported to occur only during periods of scanning with the magnetic field gradients being rapidly switched. Dizziness during the study was reported by 12.7% of the subjects. Taste of metal was reported by 10.1% of the study population. Light flashes were reported by 3.6% of the entire cohort. 13% of the subjects reported side effects/observations which were not explicitly listed in the questionnaire but covered by the question about other side effects. No severe side effects as vomiting or syncope after scanning occurred. No increase in heart rate was observed during the UHF-CMR exam versus the baseline clinical examination. Conclusions This study adds to the literature by detailing the subjective acceptance of cardiovascular magnetic resonance imaging examinations at a magnetic field strength of 7.0T. Cardiac MR examinations at 7.0T are well tolerated by healthy subjects. Broader observational and multi-center studies including patient cohorts with cardiac diseases are required to gain further insights into the subjective acceptance of UHF-CMR examinations. PMID:25621491

Klix, Sabrina; Els, Antje; Paul, Katharina; Graessl, Andreas; Oezerdem, Celal; Weinberger, Oliver; Winter, Lukas; Thalhammer, Christof; Huelnhagen, Till; Rieger, Jan; Mehling, Heidrun; Schulz-Menger, Jeanette; Niendorf, Thoralf

2015-01-01

123

Magnetic Field Problem: Current  

NSDL National Science Digital Library

A cross section of a circular wire loop carrying an unknown current is shown above. The arrows represent the direction of the magnetic field. The color of the arrows represents the magnitude of the field with magnitude increasing as the color changes from blue to green to red to black. You can double-click in the animation to add magnetic field lines, click-drag the center of the loop to reposition it, and click-drag the top or bottom of the loop to change its size.

Wolfgang Christian

124

Magnetic Field Solver  

NASA Technical Reports Server (NTRS)

The Magnetic Field Solver computer program calculates the magnetic field generated by a group of collinear, cylindrical axisymmetric electromagnet coils. Given the current flowing in, and the number of turns, axial position, and axial and radial dimensions of each coil, the program calculates matrix coefficients for a finite-difference system of equations that approximates a two-dimensional partial differential equation for the magnetic potential contributed by the coil. The program iteratively solves these finite-difference equations by use of the modified incomplete Cholesky preconditioned-conjugate-gradient method. The total magnetic potential as a function of axial (z) and radial (r) position is then calculated as a sum of the magnetic potentials of the individual coils, using a high-accuracy interpolation scheme. Then the r and z components of the magnetic field as functions of r and z are calculated from the total magnetic potential by use of a high-accuracy finite-difference scheme. Notably, for the finite-difference calculations, the program generates nonuniform two-dimensional computational meshes from nonuniform one-dimensional meshes. Each mesh is generated in such a way as to minimize the numerical error for a benchmark one-dimensional magnetostatic problem.

Ilin, Andrew V.

2006-01-01

125

Magnetic fields at Neptune  

NASA Technical Reports Server (NTRS)

The Voyager 2 magnetic field experiment discovered a complex and powerful magnetic field in Neptune, as well as an associated magnetosphere and magnetic tail. As the spacecraft exited the magnetosphere, the magnetic tail appeared to be monopolar. The auroral zones are probably located far from the rotation poles, and may possess complex geometry. The Neptune rings and all its known moons are imbedded deep within the magnetosphere (except for Nereid, which is outside when it lies sunward of the planet); the radiation belts have a complex structure due to the absorption of energetic particles by the moons and rings of Neptune, as well as losses associated with the significant changes in the diurnally varying magnetosphere configuration.

Ness, Norman F.; Acuna, Mario H.; Burlaga, Leonard F.; Connerney, John E. P.; Lepping, Ronald P.

1989-01-01

126

The Sun and Magnetic Fields  

NSDL National Science Digital Library

In this activity about magnetic fields and their relation to the Sun, learners will simulate sunspots by using iron filings to show magnetic fields around a bar or cow magnet, and draw the magnetic field surrounding two dipole magnets, both in parallel and perpendicular alignments. Finally, learners examine images of sunspots to relate their magnetic field drawings and observations to what is seen on the Sun.

127

Graphene Magnetic Field Sensors  

Microsoft Academic Search

Graphene extraordinary magnetoresistance (EMR) devices have been fabricated and characterized in varying magnetic fields at room temperature. The atomic thickness, high carrier mobility and high current carrying capabilities of graphene are ideally suited for the detection of nanoscale sized magnetic domains. The device sensitivity can reach 10 mV\\/Oe, larger than state of the art InAs 2DEG devices of comparable size

Simone Pisana; Patrick M. Braganca; Ernesto E. Marinero; Bruce A. Gurney

2010-01-01

128

Magnetic cumulative effect upon the explosion of a shaped charge with an axial magnetic field in its sheath  

Microsoft Academic Search

Experiments on creating an axial magnetic field in the metallic sheath of a shaped charge immediately before explosion are\\u000a reported. Under such conditions, the penetrability of the charge is shown to decrease substantially. For instance, the penetration\\u000a into a steel target is reduced more than twice when the initial field in the sheath is several tenths of a tesla. The

S. V. Fedorov; A. V. Babkin; S. V. Ladov

2003-01-01

129

[Optimal imaging parameters and the advantage of cerebrospinal fluid flow image using time-spatial labeling inversion pulse at 3 tesla magnetic resonance imaging: comparison of image quality for 1.5 tesla magnetic resonance imaging].  

PubMed

Cerebrospinal fluid (CSF) imaging by time-spatial labeling inversion pulse (Time-SLIP) technique is labeled by CSF with a selective inversion recovery (IR) pulse as internal tracer, thus making it possible to visualize CSF dynamics non-invasively. The purpose of this study was to clarify labeled CSF signals during various black blood time to inversion (BBTI) values at 3 tesla (T) and 1.5 T magnetic resonance imaging (MRI) and to determine appropriate CSF imaging parameters at 3 T MRI in 10 healthy volunteers. To calculate optimal BBTI values, ROIs were set in untagged cerebral parenchyma and CSF on the image of the CSF flow from the aqueduct to the fourth ventricle in 1.5 T and 3 T MRI. Visual evaluation of CSF flow also was assessed with changes of matrix and echo time (TE) at 3 T MRI. The mean BBTI value at null point of untagged CSF in 3 T MRI was longer than that of 1.5 T. The MR conditions of the highest visual evaluation were FOV, 14 cm×14 cm; Matrix, 192×192; and TE, 117 ms. CSF imaging using Time-SLIP at 3 T MRI is expected visualization of CSF flow and clarification of CSF dynamics in more detail by setting the optimal conditions because 3 T MRI has the advantage of high contrast and high signal-to-noise ratio. PMID:25672449

Ozasa, Masaya; Yahata, Seiji; Yoshida, Ayako; Takeyama, Mamoru; Eshima, Mitsuhiro; Shinohara, Maiko; Yamamoto, Takao; Abe, Kayoko

2014-12-01

130

Magnetic Field and Life  

NSDL National Science Digital Library

This is a lesson where learners explore magnetic forces, fields, and the relationship between electricity. Learners will use this information to infer how the Earth generates a protective magnetic field. The lesson models scientific inquiry using the 5E instructional model and includes teacher notes, prerequisite concepts, common misconceptions, student journal and reading. This is lesson seven in the Astro-Venture Geology Training Unit that were developed to increase students' awareness of and interest in astrobiology and the many career opportunities that utilize science, math and technology skills. The lessons are designed for educators to use with with the Astro-Venture multimedia modules.

131

Multiwavelength Magnetic Field Modeling  

NASA Astrophysics Data System (ADS)

We model the large-scale Galactic magnetic fields, including a spiral arm compression to generate anisotropic turbulence, by comparing polarized synchrotron and thermal dust emission. Preliminary results show that in the outer Galaxy, the dust emission comes from regions where the fields are more ordered than average while the situation is reversed in the inner Galaxy. We will attempt in subsequent work to present a more complete picture of what the comparison of these observables tells us about the distribution of the components of the magnetized ISM and about the physics of spiral arm shocks and turbulence.

Jaffe, T. R.

2015-03-01

132

Magnetic Fields in Galaxies  

NASA Astrophysics Data System (ADS)

The origin and evolution of cosmic magnetic fields, their strength and structure in intergalactic space, their first occurrence in young galaxies, and their dynamical importance for galaxy evolution remain widely unknown. Radio synchrotron emission, its polarization and its Faraday rotation are powerful tools to study the strength and structure of magnetic fields in galaxies. Unpolarized radio synchrotron emission traces isotropic turbulent fields which are strongest in spiral arms and bars (20-30 ?G) and in central starburst regions (50-100 ?G). Such fields are dynamically important; they can affect gas flows and drive gas inflows in central regions. Polarized radio emission traces ordered fields which can be regular or anisotropic turbulent, generated from isotropic turbulent fields by compression or shear. The strongest ordered fields of 10-15 ?G strength are generally found in interarm regions and follow the orientation of adjacent gas spiral arms. In galaxies with strong density waves, ordered (anisotropic turbulent) fields are also observed at the inner edges of the spiral arms. Ordered fields with spiral patterns exist in grand-design, barred and flocculent galaxies, and in central regions of starburst galaxies. Ordered fields in interacting galaxies have asymmetric distributions and are an excellent tracer of past interactions between galaxies or with the intergalactic medium. Irregular galaxies host isotropic turbulent fields often of similar strength as in spiral galaxies, but only weak ordered fields. Faraday rotation measures (RM) of the diffuse polarized radio emission from the disks of several galaxies reveal large-scale spiral patterns that can be described by the superposition of azimuthal modes; these are signatures of regular fields generated by a mean-field ? -? dynamo. So far no indications were found in external galaxies of large-scale field reversals, like the one in the Milky Way. Ordered magnetic fields are also observed in radio halos around edge-on galaxies out to large distances from the plane, with X-shaped patterns. In the outflow cone above a starburst region of NGC 253, RM data indicate a helical magnetic field.

Beck, Rainer

133

Wake fields in 9-cell TESLA accelerating structures : Spectral Element Discontinuous Galerkin (SEDG) simulations.  

SciTech Connect

Using our recently developed high-order accurate Maxwell solver, NEKCEM, we carried out longitudinal wakefield calculations for a 9-cell TESLA cavity structure in 3D. Indirect method is used for wake potential calculations. Computational results with NEKCEM are compared with those of GdfidL. NEKCEM uses a spectral element discontinuous Galerkin (SEDG) method based on a domain decomposition approach using spectral-element discretizations on Gauss-Lobatto-Legendre grids with body-conforming hexahedral meshes. The numerical scheme is designed to ensure high-order spectral accuracy, using the discontinuous Galerkin form with boundary conditions weakly enforced through a flux term between elements. Concerns related to implementation on wake potential calculations are discussed, and wake potential calculations with indirect method by NEKCEM compared with the results of the finite difference time-domain code GdfidL.

Min, M.; Fischer, P. F.; Chae, Y.-C.

2007-01-01

134

Effect of extremely low frequency (ELF) magnetic field exposure on morphological and biophysical properties of human lymphoid cell line (Raji)  

Microsoft Academic Search

Human B lymphoid cells (Raji) were exposed for 72 h to a 50 Hz sinusoidal magnetic field at a density of 2 milliTesla (rms). The results of exposure showed a decrease in membrane fluidity as detected by Laurdan emission spectroscopy and DPH fluorescence polarization. Field exposure also resulted in a reorganization of cytoskeletal components. Scanning electron microscopy (SEM) revealed a

N Santoro; A Lisi; D Pozzi; E Pasquali; A Serafino; S Grimaldi

1997-01-01

135

Magnetic Field Dependent Charge Transport Studies in Organic Semiconducting Materials  

NASA Astrophysics Data System (ADS)

Organic magnetoresistance is a phenomenon that is exhibited by many organic semiconductors. The resistance can change by more than 10 % at room temperature and as little as 10 milli-Tesla (mT) applied magnetic field. The change can be either positive or negative, and is angle invariant with respect to magnetic field orientation. Several theories have been presented to account for this anomalous magnetoresistance, but thus far the magnetoresistance by interconversion of singlets and triplets (MIST) model has been the most successful in explaining the behavior. Despite all the research that has gone into this effect, very few reports have gone to fields above 1 Tesla (T). In this manuscript, several specific predictions made by the MIST mechanism will be tested including qualitative behaviors and a quantitative fitting. Studies have been performed up to 35 T to explore the high field behavior. It will be demonstrated that for the low field regime, the MIST model is in excellent agreement with experiment, but that the high field regime is caused by a separate mechanism, not described by any current theory.

Martin, Jesse

136

Characterization and manipulation of a high-magnetic field trap  

NASA Astrophysics Data System (ADS)

We report on the characterization of an efficient atom trap within a background magnetic field of 2.6 Tesla. Up to 10?8 Rubidium atoms are recaptured from a cold atomic beam with a 2-3% collection efficiency, in a cigar-shaped volume and cooled with a six-beam optical molasses. The aspect ratio of the trap is measured as a function of the magnetic field curvature, which can be varied to produce a range of trap shapes. The trapping lineshape is both narrow and asymmetric, as is characteristic of laser-cooling of atoms or ions in an external trapping potential. Additional features of the high magnetic field trap include cooling onto hollow shell-like structures. Simulation results are also presented.

Paradis, Eric; Raithel, Georg

2012-06-01

137

[Nikola Tesla in medicine, too].  

PubMed

Using primary and secondary sources we have shown in this paper the influence of Nikola Tesla's work on the field of medicine. The description of his experiments conduced within secondary-school education programs aimed to present the popularization of his work in Croatia. Although Tesla was dedicated primarily to physics and was not directly involved in biomedical research, his work significantly contributed to paving the way of medical physics particularly radiology and high-frequency electrotherapy. PMID:18383745

Hanzek, Branko; Jakobovi?, Zvonimir

2007-12-01

138

Transformative effects of higher magnetic field in Fourier transform ion cyclotron mass spectrometry  

PubMed Central

The relationship of magnetic field strength and Fourier transform ion cyclotron resonance mass spectrometry performance was tested using three instruments with the same designs but different fields of 4.7, 7 and 9.4 tesla. We found that the theoretically predicted “transformative” effects of magnetic field are indeed observed experimentally. The most striking effects were that mass accuracy demonstrated approximately 2nd–3rd-order improvement with the magnetic field, depending upon the charge state of the analyte, and that peak splitting, which prohibited automated data analysis at 4.7 T, was not observed at 9.4 T. PMID:20444622

Karabacak, N. Murat; Easterling, Michael L.; Agar, N.Y.R.; Agar, Jeffrey N.

2010-01-01

139

Magnetic fields at Uranus  

NASA Technical Reports Server (NTRS)

The conclusions drawn regarding the structure, behavior and composition of the Uranian magnetic field and magnetosphere as revealed by Voyager 2 data are summarized. The planet had a bipolar magnetotail and a bow shock wave which was observed 23.7 Uranus radii (UR) upstream and a magnetopause at 18.0 UR. The magnetic field observed can be represented by a dipole offset from the planet by 0.3 UR. The field vector and the planetary angular momentum vector formed a 60 deg angle, permitting Uranus to be categorized as an oblique rotator, with auroral zones occurring far from the rotation axis polar zones. The surface magnetic field was estimated to lie between 0.1-1.1 gauss. Both the field and the magnetotail rotated around the planet-sun line in a period of about 17.29 hr. Since the ring system is embedded within the magnetosphere, it is expected that the rings are significant absorbers of radiation belt particles.

Ness, N. F.; Acuna, M. H.; Behannon, K. W.; Burlaga, L. F.; Connerney, J. E. P.; Lepping, R. P.

1986-01-01

140

High RF Magnetic Field Near-Field Microwave Microscope  

NASA Astrophysics Data System (ADS)

Near-field microwave microscopes have been developed to quantitatively image RF and microwave properties of a variety of materials on deep sub-wavelength scales [1]. Microscopes that develop high-RF magnetic fields on short length scales are useful for examining the fundamental electrodynamic properties of superconductors [2]. We are creating a new class of near-field microwave microscopes that develop RF fields on the scale of 1 Tesla on sub-micron length scales. These microscopes will be employed to investigate defects that limit the RF properties of bulk Nb materials used in accelerator cavities, and the nonlinear Meissner effect in novel superconductors. Work funded by the US Department of Energy. [1] S. M. Anlage, V. V. Talanov, A. R. Schwartz, ``Principles of Near-Field Microwave Microscopy,'' in Scanning Probe Microscopy: Electrical and Electromechanical Phenomena at the Nanoscale, Volume 1, edited by S. V. Kalinin and A. Gruverman (Springer-Verlag, New York, 2007), pp. 215-253. [2] D. I. Mircea, H. Xu, S. M. Anlage, ``Phase-sensitive Harmonic Measurements of Microwave Nonlinearities in Cuprate Thin Films,'' Phys. Rev. B 80, 144505 (2009).

Tai, Tamin; Mircea, Dragos I.; Anlage, Steven M.

2010-03-01

141

TESLA FEL-Report 1997-06 TESLA FEL-Report 1997-06  

E-print Network

for a TESLA bunch 1 TESLA FEL-Report 1997-06 #12;compressor III design (BC-case). In both cases the e ect Compressor Magnet Chicanes M.Dohlus, T. Limberg Deutsches Elektronen Synchrotron, Notkestr. 85, 22607 Hamburg compressor magnet chicanes, these short bunches will start to radiate coherently. In this paper, a numerical

142

[Nikola Tesla: flashes of inspiration].  

PubMed

Nikola Tesla (1856-1943) was one of the greatest inventors in history and a key player in the revolution that led to the large-scale use of electricity. He also made important contributions to such diverse fields as x-rays, remote control, radio, the theory of consciousness or electromagnetism. In his honour, the international unit of magnetic induction was named after him. Yet, his fame is scarce in comparison with that of other inventors of the time, such as Edison, with whom he had several heated arguments. He was a rather odd, reserved person who lived for his inventions, the ideas for which came to him in moments of inspiration. In his autobiography he relates these flashes with a number of neuropsychiatric manifestations, which can be seen to include migraine auras, synaesthesiae, obsessions and compulsions. PMID:23307357

Villarejo-Galende, Albero; Herrero-San Martín, Alejandro

2013-01-16

143

Reactivation and operation of the large six-tesla CFFF superconducting magnet  

Microsoft Academic Search

The second MHD superconducting magnet system constructed at the Argonne National Laboratory, originally intended for use in the coal-fired plasma MHD power generation program, has been in storage at Argonne since its assembly and short-term testing a decade ago. At that time it was energized for only a few days and then decommissioned. The magnet, a 6-T dipole having an

D. Hill; J. Libera; M. Petrick

1992-01-01

144

Evolution of Stellar Magnetic Fields  

NASA Astrophysics Data System (ADS)

Stellar magnetic fields can reliably be characterized by several magnetic activity indicators, such as X-ray or radio luminosity. Physical processes leading to such emission provide important information on dynamic processes in stellar atmospheres and magnetic structuring.

Güdel, Manuel

2015-03-01

145

Magnetic Fields and Forces in Permanent Magnet Levitated Bearings  

Microsoft Academic Search

Magnetic fields and magnetic forces from magnetic bearings made of circular Halbach permanent-magnet arrays are computed and analyzed. The magnetic fields are calculated using superposition of fields due to patches of magnetization charge at surfaces where the magnetization is discontinuous. The magnetic force from the magnetic bearing is computed using superposition of forces on each patch of magnetization charge. The

Kevin D. Bachovchin; James F. Hoburg; Richard F. Post

2012-01-01

146

Magnetic Field of the Earth  

NSDL National Science Digital Library

Students can learn about how the magnetic field of the earth is similar to magnets. Go to the following link: Magnetic Field of the Earth 1. What makes the earth like a magnet? 2. How do we measure magnetism? Be sure to check out the fun games and activities on this web site too!! Now click on the following link and listen to a 2 minute presentation about magnetism: Pulse Planet Next go to ...

Mrs. Merritt

2005-10-18

147

Crustal Magnetic Fields  

NASA Technical Reports Server (NTRS)

Cosmos 49, Polar Orbit Geophysical Observatory (POGO) (Orbiting Geophysical Observatory (OGO-2, 4 and 6)) and Magsat have been the only low-earth orbiting satellites to measure the crustal magnetic field on a global scale. These missions revealed the presence of long- wavelength (> 500 km) crustal anomalies predominantly located over continents. Ground based methods were, for the most part, unable to record these very large-scale features; no doubt due to the problems of assembling continental scale maps from numerous smaller surveys acquired over many years. Questions arose as to the source and nature of these long-wave length anomalies. As a result there was a great stimulant given to the study of the magnetic properties of the lower crust and upper mantle. Some indication as to the nature of these deep sources has been provided by the recent results from the deep crustal drilling programs. In addition, the mechanism of magnetization, induced or remanent, was largely unknown. For computational ease these anomalies were considered to result solely from induced magnetization. However, recent results from Mars Orbiter Laser Altimeter (MOLA), a magnetometer-bearing mission to Mars, have revealed crustal anomalies with dimensions similar to the largest anomalies on Earth. These Martian features could only have been produced by remanent magnetization, since Mars lacks an inducing field. The origin of long-wavelength crustal anomalies, however, has not been completely determined. Several large crustal magnetic anomalies (e.g., Bangui, Kursk, Kiruna and Central Europe) will be discussed and the role of future satellite magnetometer missions (Orsted, SUNSAT and Champ) in their interpretation evaluated.

Taylor, Patrick T.; Ravat, D.; Frawley, James J.

1999-01-01

148

Fetal magnetic resonance imaging: jumping from 1.5 to 3 tesla (preliminary experience).  

PubMed

Several attempts have been made at imaging the fetus at 3 T as part of the continuous search for increased image signal and better anatomical delineation of the developing fetus. Until very recently, imaging of the fetus at 3 T has been disappointing, with numerous artifacts impeding image analysis. Better magnets and coils and improved technology now allow imaging of the fetus at greater magnetic strength, some hurdles in the shape of imaging artifacts notwithstanding. In this paper we present the preliminary experience of evaluating the developing fetus at 3 T and discuss several artifacts encountered and techniques to decrease them, as well as safety concerns associated with scanning the fetus at higher magnetic strength. PMID:24671739

Victoria, Teresa; Jaramillo, Diego; Roberts, Timothy Paul Leslie; Zarnow, Deborah; Johnson, Ann Michelle; Delgado, Jorge; Rubesova, Erika; Vossough, Arastoo

2014-04-01

149

A High-Resolution Computational Atlas of the Human Hippocampus from Postmortem Magnetic Resonance Imaging at 9.4 Tesla  

PubMed Central

This paper describes the construction of a computational anatomical atlas of the human hippocampus. The atlas is derived from high-resolution 9.4 Tesla MRI of postmortem samples. The main subfields of the hippocampus (cornu Ammonis fields CA1, CA2/3; the dentate gyrus; and the vestigial hippocampal sulcus) are labeled in the images manually using a combination of distinguishable image features and geometrical features. A synthetic average image is derived from the MRI of the samples using shape and intensity averaging in the diffeomorphic non-linear registration framework, and a consensus labeling of the template is generated. The agreement of the consensus labeling with manual labeling of each sample is measured, and the effect of aiding registration with landmarks and manually generated mask images is evaluated. The atlas is provided as an online resource with the aim of supporting subfield segmentation in emerging hippocampus imaging and image analysis techniques. An example application examining subfield-level hippocampal atrophy in temporal lobe epilepsy demonstrates the application of the atlas to in vivo studies. PMID:18840532

Yushkevich, Paul A.; Avants, Brian B.; Pluta, John; Das, Sandhitsu; Minkoff, David; Mechanic-Hamilton, Dawn; Glynn, Simon; Pickup, Stephen; Liu, Weixia; Gee, James C.; Grossman, Murray; Detre, John A.

2008-01-01

150

Magnetostriction and magnetic texture to 100.75 Tesla in frustrated SrCu2(BO3)2  

PubMed Central

Strong geometrical frustration in magnets leads to exotic states such as spin liquids, spin supersolids, and complex magnetic textures. SrCu2(BO3)2, a spin-1/2 Heisenberg antiferromagnet in the archetypical Shastry–Sutherland lattice, exhibits a rich spectrum of magnetization plateaus and stripe-like magnetic textures in applied fields. The structure of these plateaus is still highly controversial due to the intrinsic complexity associated with frustration and competing length scales. We discover magnetic textures in SrCu2(BO3)2 via magnetostriction and magnetocaloric measurements in fields up to 100.75 T. In addition to observing low-field fine structure with unprecedented resolution, the data also reveal lattice responses at 73.6 T and at 82 T that we attribute, using a controlled density matrix renormalization group approach, to a unanticipated 2/5 plateau and to the long-predicted 1/2 plateau.

Jaime, Marcelo; Daou, Ramzy; Crooker, Scott A.; Weickert, Franziska; Uchida, Atsuko; Feiguin, Adrian E.; Batista, Cristian D.; Dabkowska, Hanna A.; Gaulin, Bruce D.

2012-01-01

151

A 2 Tesla Full Scale High Performance Periodic Permanent Magnet Model for Attractive (228 KN) and repulsive Maglev  

NASA Technical Reports Server (NTRS)

Two 214.5 cm. long high performance periodic (26 cm period) permanent magnet half-assemblies were designed and constructed for use as a wiggler using Nd-B-Fe and vanadium permendur as hard and soft magnetic materials by Field Effects, a division of Intermagnetics General Corporation. Placing these assemblies in a supporting structure with a 2.1 cm pole to pole separation resulted in a periodic field with a maximum value of 2.04 T. This is believed to be the highest field ever achieved by this type of device. The attractive force between the two 602 kg magnet assemblies is 228 kN, providing enough force for suspension of a 45,500 kg vehicle. If used in an attractive maglev system with an appropriate flat iron rail, one assembly will generate the same force with a gap of 1.05 cm leading to a lift to weight ratio of 38.6, not including the vehicle attachment structure. This permanent magnet compares well with superconducting systems which have lift to weight ratios in the range of 5 to 10. This paper describes the magnet assemblies and their measured magnetic performance. The measured magnetic field and resulting attractive magnetic force have a negative spring characteristic. Appropriate control coils are necessary to provide stable operation. The estimated performance of the assemblies in a stable repulsive mode, with eddy currents in a conducting guideway, is also discussed.

Stekly, Z. J. J.; Gardner, C.; Domigan, P.; Baker, J.; Hass, M.; McDonald, C.; Wu, C.; Farrell, R. A.

1996-01-01

152

The WIND magnetic field investigation  

Microsoft Academic Search

The magnetic field experiment on WIND will provide data for studies of a broad range of scales of structures and fluctuation characteristics of the interplanetary magnetic field throughout the mission, and, where appropriate, relate them to the statics and dynamics of the magnetosphere. The basic instrument of the Magnetic Field Investigation (MFI) is a boom-mounted dual triaxial fluxgate magnetometer and

R. P. Lepping; M. H. Ac?na; L. F. Burlaga; W. M. Farrell; J. A. Slavin; K. H. Schatten; F. Mariani; N. F. Ness; F. M. Neubauer; Y. C. Whang; J. B. Byrnes; R. S. Kennon; P. V. Panetta; J. Scheifele; E. M. Worley

1995-01-01

153

Magnetic Field Topology in Jets  

NASA Technical Reports Server (NTRS)

We present results on the magnetic field topology in a pulsed radiative. jet. For initially helical magnetic fields and periodic velocity variations, we find that the magnetic field alternates along the, length of the jet from toroidally dominated in the knots to possibly poloidally dominated in the intervening regions.

Gardiner, T. A.; Frank, A.

2000-01-01

154

Low field magnetic resonance imaging  

DOEpatents

A method and system of magnetic resonance imaging does not need a large homogenous field to truncate a gradient field. Spatial information is encoded into the spin magnetization by allowing the magnetization to evolve in a non-truncated gradient field and inducing a set of 180 degree rotations prior to signal acquisition.

Pines, Alexander (Berkeley, CA); Sakellariou, Dimitrios (Billancourt, FR); Meriles, Carlos A. (Fort Lee, NJ); Trabesinger, Andreas H. (London, GB)

2010-07-13

155

Magnetic Field Problem: Current and Magnets  

NSDL National Science Digital Library

The above animations represent two typical bar magnets each with a North and South pole. The arrows represent the direction of the magnetic field. A wire is placed between the magnets and a current that comes out of the page can be turned on.

Wolfgang Christian

156

3-Tesla magnetic resonance imaging improves the prostate cancer detection rate in transrectral ultrasound-guided biopsy  

PubMed Central

The detection rate of prostate cancer (PCa) using traditional biopsy guided by transrectal ultrasound (TRUS) is not satisfactory. The aim of this study was to determine the utility of 3-Tesla (3-T) magnetic resonance imaging (MRI) prior to TRUS-guided prostate biopsy and to investigate which subgroup of patients had the most evident improvement in PCa detection rate. A total of 420 patients underwent 3-T MRI examination prior to the first prostate biopsy and the positions of suspicious areas were recorded respectively. TRUS-guided biopsy regimes included systematic 12-core biopsy and targeted biopsy identified by MRI. Patients were divided into subgroups according to their serum prostate-specific antigen (PSA) levels, PSA density (PSAD), prostate volume, TRUS findings and digital rectal examination (DRE) findings. The ability of MRI to improve the cancer detection rate was evaluated. The biopsy positive rate of PCa was 41.2% (173/420), and 41 of the 173 (23.7%) patients were detected only by targeted biopsy in the MRI-suspicious area. Compared with the systematic biopsy, the positive rate was significantly improved by the additional targeted biopsy (P=0.0033). The highest improvement of detection rate was observed in patients with a PSA level of 4–10 ng/ml, PSAD of 0.12–0.20 ng/ml2, prostate volume >50 ml, negative TRUS findings and negative DRE findings (P<0.05). Therefore, it is considered that 3-T MRI examination could improve the PCa detection rate on first biopsy, particularly in patients with a PSA level of 4–10 ng/ml, PSAD of 0.12–0.20 ng/ml2, prostate volume of >50 ml, negative TRUS findings and negative DRE findings. PMID:25452804

CHEN, JIE; YI, XIAO-LEI; JIANG, LI-XIN; WANG, REN; ZHAO, JUN-GONG; LI, YUE-HUA; HU, BING

2015-01-01

157

Probing Magnetic Fields With SNRs  

NASA Astrophysics Data System (ADS)

As supernova remnants (SNRs) expand, their shock waves freeze in and compress magnetic field lines they encounter; consequently we can use SNRs as magnifying glasses for interstellar magnetic fields. A simple model is used to derive polarization and rotation measure (RM) signatures of SNRs. This model is exploited to gain knowledge about the large-scale magnetic field in the Milky Way. Three examples are given which indicate a magnetic anomaly, an azimuthal large-scale magnetic field towards the anti-centre, and a chimney that releases magnetic energy from the plane into the halo.

Kothes, Roland

2015-03-01

158

The Galactic Magnetic Field  

NASA Astrophysics Data System (ADS)

With this Letter, we complete our model of the Galactic magnetic field (GMF), by using the WMAP7 22 GHz total synchrotron intensity map and our earlier results to obtain a 13-parameter model of the Galactic random field, and to determine the strength of the striated random field. In combination with our 22-parameter description of the regular GMF, we obtain a very good fit to more than 40,000 extragalactic Faraday rotation measures and the WMAP7 22 GHz polarized and total intensity synchrotron emission maps. The data call for a striated component to the random field whose orientation is aligned with the regular field, having zero mean and rms strength ?20% larger than the regular field. A noteworthy feature of the new model is that the regular field has a significant out-of-plane component, which had not been considered earlier. The new GMF model gives a much better description of the totality of data than previous models in the literature.

Jansson, Ronnie; Farrar, Glennys R.

2012-12-01

159

THE GALACTIC MAGNETIC FIELD  

SciTech Connect

With this Letter, we complete our model of the Galactic magnetic field (GMF), by using the WMAP7 22 GHz total synchrotron intensity map and our earlier results to obtain a 13-parameter model of the Galactic random field, and to determine the strength of the striated random field. In combination with our 22-parameter description of the regular GMF, we obtain a very good fit to more than 40,000 extragalactic Faraday rotation measures and the WMAP7 22 GHz polarized and total intensity synchrotron emission maps. The data call for a striated component to the random field whose orientation is aligned with the regular field, having zero mean and rms strength Almost-Equal-To 20% larger than the regular field. A noteworthy feature of the new model is that the regular field has a significant out-of-plane component, which had not been considered earlier. The new GMF model gives a much better description of the totality of data than previous models in the literature.

Jansson, Ronnie; Farrar, Glennys R. [Center for Cosmology and Particle Physics, Department of Physics, New York University, New York, NY 10003 (United States)

2012-12-10

160

The Martian magnetic field  

NASA Technical Reports Server (NTRS)

The paper presents an overview of the Martian magnetic field measurements and the criticisms made of them. The measurements of the Mars 2, 3, and 5 spacecraft were interpreted by Dolginov et al. (1976, 1978) to be consistent with an intrinsic planetary magnetic moment of 2.5 times 10 to the 22nd power gauss cu cm, basing this result on the apparent size of the obstacle responsible for deflecting the solar wind and an apparent encounter of the spacecraft with the planetary field. It is shown that if the dependence of the Martian magnetic moment on the rotation rate was linear, the estimate of the moment would be far larger than reported by Dolginov et al. An upper limit of 250 km is calculated for the dynamo radius using the similarity law, compared with 500 km obtained by Dolginov et al. It is concluded that the possible strength of a Martian dynamo is below expectations, and it is likely that the Mars dynamo is not presently operative.

Russell, C. T.

1979-01-01

161

Electric and magnetic fields  

NASA Technical Reports Server (NTRS)

A number of energy momentum anomalies are described that result from the use of Abraham-Lorentz electromagnetic theory. These anomalies have in common the motion of charged bodies or current carrying conductors relative to the observer. The anomalies can be avoided by using the nonflow approach, based on internal energy of the electromagnetic field. The anomalies can also be avoided by using the flow approach, if all contributions to flow work are included. The general objective of this research is a fundamental physical understanding of electric and magnetic fields which, in turn, might promote the development of new concepts in electric space propulsion. The approach taken is to investigate quantum representations of these fields.

Kaufman, H. R.; Robinson, R. S.; Etters, R. D.

1982-01-01

162

High Force Magnetic Levitation Using Magnetized Superconducting Bulks as a Field Source for Bearing Applications  

NASA Astrophysics Data System (ADS)

The ability of high temperature superconducting bulks to trap magnetic fields of several tesla allows them to generate very high levitation force. This paper reports the development of a bulk-bulk superconducting rotary bearing design which uses superconducting bulks on both the rotor and the stator. An evaluation is made of the effectiveness of pulsed fields for magnetizing bulks. Modeling of the bulks using the perfectly trapped flux model is also reported to assess the limits of the bearing design. The results demonstrate the feasibility of a (RE)BCO-MgB2 bulk bearing capable of force densities of the order of 100N/cm2. The design and construction of a unique system capable of magnetizing a 25 mm (RE)BCO bulk and measuring levitation force between this bulk and a coaxial MgB2 hollow cylinder is outlined.

Patel, A.; Giunchi, G.; Albisetti, A. Figini; Shi, Y.; Hopkins, S. C.; Palka, R.; Cardwell, D. A.; Glowacki, B. A.

163

Magnetic field programming in quadrupole magnetic field-flow fractionation  

NASA Astrophysics Data System (ADS)

Magnetic field-flow fractionation (MgFFF) is a technique for the separation and characterization of magnetic nanoparticles. It is explained that the analysis of polydisperse samples requires a programmed decay of field and field gradient during sample elution. A procedure for achieving reproducible field decay with asymptotic approach to zero field using a quadrupole electromagnet is described. An example of an analysis of a polydisperse sample under programmed field decay is given.

Stephen Williams, P.; Carpino, Francesca; Moore, Lee R.; Zborowski, Maciej

164

Scattering by magnetic fields  

Microsoft Academic Search

Consider the scattering amplitude $s(\\\\omega,\\\\omega^\\\\prime;\\\\lambda)$,\\u000a$\\\\omega,\\\\omega^\\\\prime\\\\in{\\\\Bbb S}^{d-1}$, $\\\\lambda > 0$, corresponding to an\\u000aarbitrary short-range magnetic field $B(x)$, $x\\\\in{\\\\Bbb R}^d$. This is a smooth\\u000afunction of $\\\\omega$ and $\\\\omega^\\\\prime$ away from the diagonal\\u000a$\\\\omega=\\\\omega^\\\\prime$ but it may be singular on the diagonal. If $d=2$, then\\u000athe singular part of the scattering amplitude (for example, in the transversal\\u000agauge) is a

D. R. Yafaev

2005-01-01

165

Magnetic Fields: Visible and Permanent.  

ERIC Educational Resources Information Center

Children will be able to see the concept of a magnetic field translated into a visible reality using the simple method outlined. Standard shelf paper, magnets, iron filings, and paint in a spray can are used to prepare a permanent and well-detailed picture of the magnetic field. (Author/JN)

Winkeljohn, Dorothy R.; Earl, Robert D.

1983-01-01

166

Contrast optimization of Macaca mulatta basal ganglia in magnetic resonance images at 4.7 Tesla  

Microsoft Academic Search

To determine whether high field MRI could distinguish among the different regions of the basal ganglia, the brains of two Macaca mulatta monkeys were explored in vivo using a 4.7 T MR imager. Gradient-echo (GE) and spin-echo images were acquired with proton-density, T1 and T2(*) weightings. Five GE images with increased susceptibility effects were generated using a GESFID sequence, from

J.-M Bonny; F Durif; J. E Bazin; E Touraille; J Yelnik; J.-P Renou

2001-01-01

167

Study the effect of magnetic field on gaseous flames using digital speckle pattern interferometry  

NASA Astrophysics Data System (ADS)

An experimental investigation on the behavior of gaseous flames in the presence of magnetic field by using digital speckle pattern interferometry is presented. Premixed, partially premixed and diffusion flames generated by butane torch burner were exposed to the magnetic field of 0.35 Tesla. Phase has been extracted from a single DSPI fringe pattern by the application of Riesz transform and the monogenic signal and from which refractive index and the temperature were calculated. Experimental results show that the temperature and the width of the flames are increased under the influence of magnetic gradient.

Kumar, Manoj; Agarwal, Shilpi; Kumar, Varun; Khan, Gufran S.; Shakher, Chandra

2014-10-01

168

On-chip SQUID measurements in the presence of high magnetic fields  

E-print Network

We report a low temperature measurement technique and magnetization data of a quantum molecular spin, by implementing an on-chip SQUID technique. This technique enables the SQUID magnetometery in high magnetic fields, up to 7 Tesla. The main challenges and the calibration process are detailed. The measurement protocol is used to observe quantum tunneling jumps of the S=10 molecular magnet, Mn12-tBuAc. The effect of transverse field on the tunneling splitting for this molecular system is addressed as well.

L. Chen; W. Wernsdorfer; C. Lampropoulos; G. Christou; I. Chiorescu

2010-09-11

169

The Heliospheric Magnetic Field  

NASA Astrophysics Data System (ADS)

The heliospheric magnetic field (HMF) is the extension of the coronal magnetic field carried out into the solar system by the solar wind. It is the means by which the Sun interacts with planetary magnetospheres and channels charged particles propagating through the heliosphere. As the HMF remains rooted at the solar photosphere as the Sun rotates, the large-scale HMF traces out an Archimedean spiral. This pattern is distorted by the interaction of fast and slow solar wind streams, as well as the interplanetary manifestations of transient solar eruptions called coronal mass ejections. On the smaller scale, the HMF exhibits an array of waves, discontinuities, and turbulence, which give hints to the solar wind formation process. This review aims to summarise observations and theory of the small- and large-scale structure of the HMF. Solar-cycle and cycle-to-cycle evolution of the HMF is discussed in terms of recent spacecraft observations and pre-spaceage proxies for the HMF in geomagnetic and galactic cosmic ray records.

Owens, Mathew J.; Forsyth, Robert J.

2013-11-01

170

Photonic Magnetic Field Sensor  

NASA Astrophysics Data System (ADS)

Small, in-line polarization rotators or isolators to reduce feedback in fiber optic links can be the basis for excellent magnetic field sensors. Based on the giant magneto-optical (GMO) or Faraday effect in iron garnets, they with a magnetic field of a few hundred Gauss, (20 mT) for an interaction length for an optical beam of a few millimeters achieve a polarization rotation or phase shift of 45 deg (1/8 cycle). When powered by a small laser diode, with the induced linear phase shift recovered at the shot noise limit, we have demonstrated sensitivities at the 3.3 nT/Hz1/2 level for frequencies from less than 1 Hz to frequencies into the high kHz range. Through further improvements; an increase in interaction length, better materials and by far the greatest factor, the addition of a flux concentrator, sensitivities at the pT/Hz1/2 level appear to be within reach. We will detail such a design and discuss the issues that may limit achieving these goals.

Wyntjes, Geert

2002-02-01

171

Fast superconducting magnetic field switch  

DOEpatents

The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles.

Goren, Yehuda (Mountain View, CA); Mahale, Narayan K. (The Woodlands, TX)

1996-01-01

172

Magnetic field modification of optical magnetic dipoles.  

PubMed

Acting on optical magnetic dipoles opens novel routes to govern light-matter interaction. We demonstrate magnetic field modification of the magnetic dipolar moment characteristic of resonant nanoholes in thin magnetoplasmonic films. This is experimentally shown through the demonstration of the magneto-optical analogue of Babinet's principle, where mirror imaged MO spectral dependencies are obtained for two complementary magnetoplasmonic systems: holes in a perforated metallic layer and a layer of disks on a substrate. PMID:25646869

Armelles, Gaspar; Caballero, Blanca; Cebollada, Alfonso; Garcia-Martin, Antonio; Meneses-Rodríguez, David

2015-03-11

173

Exposure guidelines for magnetic fields  

SciTech Connect

The powerful magnetic fields produced by a controlled fusion experiment at Lawrence Livermore National Laboratory (LLNL) necessitated the development of personnel-exposure guidelines for steady magnetic fields. A literature search and conversations with active researchers showed that it is currently possible to develop preliminary exposure guidelines for steady magnetic fields. An overview of the results of past research into the bioeffects of magnetic fields was compiled, along with a discussion of hazards that may be encountered by people with sickle-cell anemia or medical electronic and prosthetic implants. The LLNL steady magnetic-field exposure guidelines along with a review of developments concerning the safety of time-varying fields were also presented in this compilation. Guidelines developed elsewhere for time varying fields were also given. Further research is needed to develop exposure standards for both steady or time-varying fields.

Miller, G.

1987-12-01

174

Magnetic fields in massive stars  

Microsoft Academic Search

Although indirect evidence for the presence of magnetic fields in high-mass stars is regularly reported in the literature, the detection of these fields remains an extremely challenging observational problem. We review the recent discoveries of magnetic fields in different types of massive stars and briefly discuss strategies for spectropolarimetric observations to be carried out in the future.

S. Hubrig; M. Scholler; M. Briquet; M. A. Pogodin; R. V. Yudin; J. F. Gonzalez; T. Morel; P. De; R. Ignace; G. Mathys; G. J. Peters

2007-01-01

175

Magnetic fields in massive stars  

E-print Network

Although indirect evidence for the presence of magnetic fields in high-mass stars is regularly reported in the literature, the detection of these fields remains an extremely challenging observational problem. We review the recent discoveries of magnetic fields in different types of massive stars and briefly discuss strategies for spectropolarimetric observations to be carried out in the future.

S. Hubrig

2007-03-09

176

Magnetic-field-dosimetry system  

SciTech Connect

A device is provided for measuring the magnetic field dose and peak field exposure. The device includes three Hall-effect sensors all perpendicular to each other, sensing the three dimensional magnetic field and associated electronics for data storage, calculating, retrieving and display.

Lemon, D.K.; Skorpik, J.R.; Eick, J.L.

1981-01-21

177

The Galileo magnetic field investigation  

Microsoft Academic Search

The Galileo Orbiter carries a complement of fields and particles instruments designed to provide data needed to shed light on the structure and dynamical variations of the Jovian magnetosphere. Many questions remain regarding the temporal and spatial properties of the magnetospheric magnetic field, how the magnetic field maintains corotation of the embedded plasma and the circumstances under which corotation breaks

M. G. Kivelson; K. K. Khurana; J. D. Means; C. T. Russell; R. C. Snare

1992-01-01

178

A proposal for the surface roughness wake field measurement at the TESLA Test Facility  

Microsoft Academic Search

The wake fields due to the rough surface of the vacuum chamber have a major influence on the beam dynamics in linear colliders and free electron lasers. These wake fields mainly consists of the fundamental tube mode, modified by the rough boundary condition, which decreases its phase velocity to the speed of light. Its wavelength is proportional to the square

A. Novokhatsky; M. Timm; T. Weiland; H. Schlarb

1999-01-01

179

Homopolar generator powered high field magnet experiment for the ignitex fusion device  

Microsoft Academic Search

The design of a scaled down prototype of the IGNITEX (Texas Ignition Experiment) toroidal field (TF) magnet is discussed. The IGNITEX concept is a single-tum tokamak designed to produce and control an ignited plasma with ohmic heating alone[l,2]. The objective of the IGNITEX Technology Demonstrator (ITD) is to design, fabricate and test the operation of a single turn, 20 tesla,

M. D. Werst; G. W. Brunson; M. D. Driga; K. T. Hsieh; R. L. Sledge; W. F. Weldon; H. H. Woodson

1989-01-01

180

Performance results of a 300 MWth generator at high magnetic field  

Microsoft Academic Search

The High Performance Demonstration Experiment (HPDE) in progress at AEDC has as its objective a 300 MW thermal input open-cycle MHD system has been assembled. Testing with the channel configured in the Faraday mode was initiated in late 1979. Experimental results have been obtained at a magnetic field strength from 1.5 to 3.8 Tesla (T). A maximum Faraday power of

L. S. Christensen; G. L. Whitehead; E. J. Felderman

1983-01-01

181

Performance results of a 300 MWth generator at high magnetic field  

NASA Astrophysics Data System (ADS)

The High Performance Demonstration Experiment (HPDE) in progress at AEDC has as its objective a 300 MW thermal input open-cycle MHD system has been assembled. Testing with the channel configured in the Faraday mode was initiated in late 1979. Experimental results have been obtained at a magnetic field strength from 1.5 to 3.8 Tesla (T). A maximum Faraday power of 35.5 MW has been generated, which represents an enthalpy extraction of 11.6 percent.

Christensen, L. S.; Whitehead, G. L.; Felderman, E. J.

1983-01-01

182

Mercury's magnetic field and interior  

NASA Technical Reports Server (NTRS)

The magnetic-field data collected on Mercury by the Mariner-10 spacecraft present substantial evidence for an intrinsic global magnetic field. However, studies of Mercury's thermal evolution show that it is most likely that the inner core region of Mercury solidified or froze early in the planet's history. Thus, the explanation of Mercury's magnetic field in the framework of the traditional planetary dynamo is less than certain.

Connerney, J. E. P.; Ness, N. F.

1988-01-01

183

Ferrofilm in a magnetic field  

NASA Astrophysics Data System (ADS)

A vertically draining thin ferrofilm under the influence of gravity and a nonuniform magnetic field is considered. It is observed experimentally that the presence of the magnetic field greatly alters the drainage of the film. A mathematical model is developed to describe the behavior. Experiments are conducted for multiple magnetic field configurations. The model is solved for two different sets of boundary conditions and results are compared to experiments. It is shown that the magnetic field structure, the concentration of magnetite in the solution, and the boundary conditions all have noticeable affects on the evolution of the thinning film. Good qualitative agreement between the model and the experiments is observed.

Back, Randy; Beckham, J. Regan

2012-10-01

184

Improved Cerebral Time-of-Flight Magnetic Resonance Angiography at 7 Tesla – Feasibility Study and Preliminary Results Using Optimized Venous Saturation Pulses  

PubMed Central

Purpose Conventional saturation pulses cannot be used for 7 Tesla ultra-high-resolution time-of-flight magnetic resonance angiography (TOF MRA) due to specific absorption rate (SAR) limitations. We overcome these limitations by utilizing low flip angle, variable rate selective excitation (VERSE) algorithm saturation pulses. Material and Methods Twenty-five neurosurgical patients (male n?=?8, female n?=?17; average age 49.64 years; range 26–70 years) with different intracranial vascular pathologies were enrolled in this trial. All patients were examined with a 7 Tesla (Magnetom 7 T, Siemens) whole body scanner system utilizing a dedicated 32-channel head coil. For venous saturation pulses a 35° flip angle was applied. Two neuroradiologists evaluated the delineation of arterial vessels in the Circle of Willis, delineation of vascular pathologies, presence of artifacts, vessel-tissue contrast and overall image quality of TOF MRA scans in consensus on a five-point scale. Normalized signal intensities in the confluence of venous sinuses, M1 segment of left middle cerebral artery and adjacent gray matter were measured and vessel-tissue contrasts were calculated. Results Ratings for the majority of patients ranged between good and excellent for most of the evaluated features. Venous saturation was sufficient for all cases with minor artifacts in arteriovenous malformations and arteriovenous fistulas. Quantitative signal intensity measurements showed high vessel-tissue contrast for confluence of venous sinuses, M1 segment of left middle cerebral artery and adjacent gray matter. Conclusion The use of novel low flip angle VERSE algorithm pulses for saturation of venous vessels can overcome SAR limitations in 7 Tesla ultra-high-resolution TOF MRA. Our protocol is suitable for clinical application with excellent image quality for delineation of various intracranial vascular pathologies. PMID:25232868

Wrede, Karsten H.; Johst, Sören; Dammann, Philipp; Özkan, Neriman; Mönninghoff, Christoph; Kraemer, Markus; Maderwald, Stefan; Ladd, Mark E.; Sure, Ulrich; Umutlu, Lale; Schlamann, Marc

2014-01-01

185

Evolution of pulsar magnetic fields  

Microsoft Academic Search

Theoretical considerations of neutron star matter and magnetic fields suggest a picture of the evolution of pulsar dipole moments. At birth the spin axis and magnetic dipole are argued to be roughly aligned. Subsequently the magnetic dipole greatly diminishes in strength and changes its direction until it ultimately makes a large angle with the spin axis. This view is supported

E. Flowers; M. A. Ruderman

1977-01-01

186

Theory of fossil magnetic field  

NASA Astrophysics Data System (ADS)

Theory of fossil magnetic field is based on the observations, analytical estimations and numerical simulations of magnetic flux evolution during star formation in the magnetized cores of molecular clouds. Basic goals, main features of the theory and manifestations of MHD effects in young stellar objects are discussed.

Dudorov, Alexander E.; Khaibrakhmanov, Sergey A.

2015-02-01

187

Cosmic Magnetic Fields - An Overview  

NASA Astrophysics Data System (ADS)

Magnetic fields have been known in antiquity. Aristotle attributes the first of what could be called a scientific discussion on magnetism to Thales, who lived from about 625 BC. In China “magnetic carts” were in use to help the Emperor in his journeys of inspection. Plinius comments that in the Asia Minor province of Magnesia shepherds' staffs get at times “glued” to a stone, a alodestone. In Europe the magnetic compass came through the Arab sailors who met the Portuguese explorers. The first scientific treatise on magnetism, “De Magnete”, was published by William Gilbert who in 1600 described his experiments and suggested that the Earth was a huge magnet. Johannes Kepler was a correspondent of Gilbert and at times suggested that planetary motion was due to magnetic forces. Alas, this concept was demolished by Isaac Newton,who seeing the falling apple decided that gravity was enough. This concept of dealing with gravitational forces only remains en vogue even today. The explanations why magnetic effects must be neglected go from “magnetic energy is only 1% of gravitation” to “magnetic fields only complicate the beautiful computer solutions”. What is disregarded is the fact that magnetic effects are very directional(not omni-directional as gravity) and also the fact that magnetic fields are seen every where in our cosmic universe.

Wielebinski, Richard; Beck, Rainer

188

Application of 3.0 Tesla Magnetic Resonance Imaging for Diagnosis in the Orthotopic Nude Mouse Model of Pancreatic Cancer  

PubMed Central

The aim of this study was to successfully establish an orthotopic murine model using two different human pancreatic adenocarcinoma cell lines and to propose a 3.0 tesla MRI protocol for noninvasive characterization of this model. SW1990 and MIAPaca-2 tumor cells were injected into the pancreas of BALB/C nu/nu mice. Tumor growth rate and morphological information were assessed by 3.0 tesla MRI (T1WI, T2WI and DCE-MRI) and immunohistology. Proliferation of SW1990 was significantly faster than that of MIAPaca-2 (P=0.000), but MIAPaca-2 mice had a significantly shorter survival than SW1990 mice (41 days and 44 days respectively, P=0.027). MRI could reliably monitor tumor growth in both cell lines: the tumors exhibiting a spherical growth pattern showed a high-intensity signal, and the SW1990 group developed significantly larger tumors compared with the MIAPaCa-2 group. There were no statistical differences between the two groups in which tumor size was assessed using electronic calipers and an MRI scan (P=0.680). Both tumors showed a slow gradual enhancement pattern. Immunohistochemistry demonstrated tumor tissues showing high expression of Ki-67. This model closely mimics human pancreatic cancer and permits monitoring of tumor growth and morphological information by noninvasive 3.0 tesla MRI studies reducing the number of mice required. PMID:25048266

Wu, Li; Wang, Chen; Yao, Xiuzhong; Liu, Kai; Xu, Yanjun; Zhang, Haitao; Fu, Caixia; Wang, Xiaolin; Li, Yingyi

2014-01-01

189

Magnetic field measurements of a superconducting undulator for a Harmonic Generation FEL experiment at the NSLS  

SciTech Connect

An 18mm period, 0.54 Tesla, 8mm gap superconducting undulator with both horizontal and vertical focusing has been built and tested. This magnet, which is fabricated in 25 cm length sections, is being tested for use in the radiator section (total magnet length of 1.5 m) of the Harmonic Generation Free Electron Laser experiment at the National Synchrotron Light Source - Accelerator Test Facility at Brookhaven National Lab., in collaboration with Grumman Corp. The measurement system is outlined, sources and estimates of errors are described, and some magnetic field data are presented and discussed.

Solomon, L.; Ingold, G.; Ben-Zvi, I.; Krinsky, S.; Yu, L.H.; Sampson, W.; Robins, K.

1993-07-01

190

Origin of cosmic magnetic fields.  

PubMed

We calculate, in the free Maxwell theory, the renormalized quantum vacuum expectation value of the two-point magnetic correlation function in de Sitter inflation. We find that quantum magnetic fluctuations remain constant during inflation instead of being washed out adiabatically, as usually assumed in the literature. The quantum-to-classical transition of super-Hubble magnetic modes during inflation allow us to treat the magnetic field classically after reheating, when it is coupled to the primeval plasma. The actual magnetic field is scale independent and has an intensity of few×10(-12)??G if the energy scale of inflation is few×10(16)??GeV. Such a field accounts for galactic and galaxy cluster magnetic fields. PMID:23971556

Campanelli, Leonardo

2013-08-01

191

Measurements of magnetic field alignment  

SciTech Connect

The procedure for installing Superconducting Super Collider (SSC) dipoles in their respective cryostats involves aligning the average direction of their field with the vertical to an accuracy of 0.5 mrad. The equipment developed for carrying on these measurements is described and the measurements performed on the first few prototypes SSC magnets are presented. The field angle as a function of position in these 16.6 m long magnets is a characteristic of the individual magnet with possible feedback information to its manufacturing procedure. A comparison of this vertical alignment characteristic with a magnetic field intensity (by NMR) characteristic for one of the prototypes is also presented. 5 refs., 7 figs.

Kuchnir, M.; Schmidt, E.E.

1987-11-06

192

Photoluminescence studies of modulation doped coupled double quantum wells in magnetic fields  

SciTech Connect

We have studied the photoluminescence spectra of a series of mudulation doped couple double quantum well structures in parallel and perpendicular magnetic fields to 62 tesla at 4K and 77K, for B{parallel}a, the spectra display distinct Landau level transitions which show anti-crossing with the e1-hh1 exciton. At high fields, the lowest conduction band-valence exciton approaches the extrapolated 0- 0 Landau level. About 25 Tesla, there is valence band mixing of the e1-lh1, e1-hh2, e1-hh1 transitions. The spectral peaks display a diamagnetic shift in low in-plane magnetic fields which become linear in high fields. At magnetic fields beyond 40T, spin splitting is observed for both B{parallel}z and B{perpendicular} geometries. The partial energy gap discovered in conductance measurements in in-plane fields was not conclusively observed using photoluminescence spectroscopy, although anomalies in the energy dependence of the lowest level with magnetic field were evident at similar field values.

Kim, Y.; Perry, C.H. [Northeastern Univ., Boston, MA (United States)]|[Los Alamos National Lab., NM (United States); Simmons, J.A.; Klem, J.F.; Jones, E.D. [Sandia National Labs., Albuquerque, NM (United States); Rickel, D.G. [Los Alamos National Lab., NM (United States)

1996-09-01

193

The magnetic field of Mercury  

Microsoft Academic Search

The magnetic field of Mercury was measured on two fly-bys of the planet by the Mariner 10 space-craft. The presence of a field at Mercury is interesting for what it implies for both the internal and external sources of field. The internal field of the planet is almost certainly generated by an internal dynamo although there remain many puzzles as

D. J. Southwood

1997-01-01

194

The magnetic field of Mercury  

Microsoft Academic Search

The magnetic field of Mercury was measured on two fly-bys of the planet by the Mariner 10 spacecraft. The presence of a field at Mercury is interesting for what it implies for both the internal and external sources of field. The internal field of the planet is almost certainly generated by an internal dynamo although there remain many puzzles as

D. J. Southwood

1997-01-01

195

Electromagnetic superconductivity of vacuum induced by strong magnetic field  

E-print Network

The quantum vacuum may become an electromagnetic superconductor in the presence of a strong external magnetic field of the order of 10^{16} Tesla. The magnetic field of the required strength (and even stronger) is expected to be generated for a short time in ultraperipheral collisions of heavy ions at the Large Hadron Collider. The superconducting properties of the new phase appear as a result of a magnetic-field-assisted condensation of quark-antiquark pairs with quantum numbers of electrically charged rho mesons. We discuss similarities and differences between the suggested superconducting state of the quantum vacuum, a conventional superconductivity and the Schwinger pair creation. We argue qualitatively and quantitatively why the superconducting state should be a natural ground state of the vacuum at the sufficiently strong magnetic field. We demonstrate the existence of the superconducting phase using both the Nambu-Jona-Lasinio model and an effective bosonic model based on the vector meson dominance (the rho-meson electrodynamics). We discuss various properties of the new phase such as absence of the Meissner effect, anisotropy of superconductivity, spatial inhomogeneity of ground state, emergence of a neutral superfluid component in the ground state and presence of new topological vortices in the quark-antiquark condensates.

M. N. Chernodub

2012-08-24

196

Crystal field and magnetic properties of ErH3  

NASA Technical Reports Server (NTRS)

Magnetization and magnetic susceptibility measurements have been made in the temperature range 1.3 to 4.2 K on powdered samples of ErH3. The susceptibility exhibits Curie-Weiss behavior from 4.2 to 2 K, and intercepts the negative temperature axis at 1.05 + or - 0.05 K, indicating that the material is antiferromagnetic. The low field effective moment is 6.77 + or - 0.27 Bohr magnetons per ion. The magnetization exhibits a temperature independent contribution, the slope of which is (5 + or - 1.2) times 10 to the minus 6 Weber m/kg Tesla. The saturation moment is 3.84 + or - 0.15 Bohr magnetons per ion. The results can be qualitatively explained by the effects of crystal fields on the magnetic ions. No definitive assignment of a crystal field ground state can be given, nor can a clear choice between cubically or hexagonally symmetric crystal fields be made. For hexagonal symmetry, the first excited state is estimated to be 86 to 100 K above the ground state. For cubic symmetry, the splitting is of the order of 160 to 180 K.

Flood, D. J.

1977-01-01

197

Measurements of Rayleigh-Taylor-Induced Magnetic Fields in the Linear and Non-linear Regimes  

NASA Astrophysics Data System (ADS)

Magnetic fields are generated in plasmas by the Biermann-battery, or thermoelectric, source driven by non-collinear temperature and density gradients. The ablation front in laser-irradiated targets is susceptible to Rayleigh-Taylor (RT) growth that produces gradients capable of generating magnetic fields. Measurements of these RT-induced magnetic fields in planar foils have been made using a combination of x-ray and monoenergetic-proton radiography techniques. At a perturbation wavelength of 120 ?m, proton radiographs indicate an increase of the magnetic-field strength from ˜1 to ˜10 Tesla during the linear growth phase. A characteristic change in field structure was observed later in time for irradiated foils of different initial surface perturbations. Proton radiographs show a regular cellular configuration initiated at the same time during the drive, independent of the initial foil conditions. This non-linear behavior has been experimentally investigated and the source of these characteristic features will be discussed.

Manuel, Mario

2012-10-01

198

Preprocessing Magnetic Fields with Chromospheric Longitudinal Fields  

NASA Astrophysics Data System (ADS)

Nonlinear force-free field (NLFFF) extrapolation is a powerful tool for the modeling of the magnetic field in the solar corona. However, since the photospheric magnetic field does not in general satisfy the force-free condition, some kind of processing is required to assimilate data into the model. In this paper, we report the results of new preprocessing for the NLFFF extrapolation. Through this preprocessing, we expect to obtain magnetic field data similar to those in the chromosphere. In our preprocessing, we add a new term concerning chromospheric longitudinal fields into the optimization function proposed by Wiegelmann et al. We perform a parameter survey of six free parameters to find minimum force- and torque-freeness with the simulated-annealing method. Analyzed data are a photospheric vector magnetogram of AR 10953 observed with the Hinode spectropolarimeter and a chromospheric longitudinal magnetogram observed with SOLIS spectropolarimeter. It is found that some preprocessed fields show the smallest force- and torque-freeness and are very similar to the chromospheric longitudinal fields. On the other hand, other preprocessed fields show noisy maps, although the force- and torque-freeness are of the same order. By analyzing preprocessed noisy maps in the wave number space, we found that small and large wave number components balance out on the force-free index. We also discuss our iteration limit of the simulated-annealing method and magnetic structure broadening in the chromosphere.

Yamamoto, Tetsuya T.; Kusano, K.

2012-06-01

199

PREPROCESSING MAGNETIC FIELDS WITH CHROMOSPHERIC LONGITUDINAL FIELDS  

SciTech Connect

Nonlinear force-free field (NLFFF) extrapolation is a powerful tool for the modeling of the magnetic field in the solar corona. However, since the photospheric magnetic field does not in general satisfy the force-free condition, some kind of processing is required to assimilate data into the model. In this paper, we report the results of new preprocessing for the NLFFF extrapolation. Through this preprocessing, we expect to obtain magnetic field data similar to those in the chromosphere. In our preprocessing, we add a new term concerning chromospheric longitudinal fields into the optimization function proposed by Wiegelmann et al. We perform a parameter survey of six free parameters to find minimum force- and torque-freeness with the simulated-annealing method. Analyzed data are a photospheric vector magnetogram of AR 10953 observed with the Hinode spectropolarimeter and a chromospheric longitudinal magnetogram observed with SOLIS spectropolarimeter. It is found that some preprocessed fields show the smallest force- and torque-freeness and are very similar to the chromospheric longitudinal fields. On the other hand, other preprocessed fields show noisy maps, although the force- and torque-freeness are of the same order. By analyzing preprocessed noisy maps in the wave number space, we found that small and large wave number components balance out on the force-free index. We also discuss our iteration limit of the simulated-annealing method and magnetic structure broadening in the chromosphere.

Yamamoto, Tetsuya T. [Solar-Terrestrial Environment Laboratory, Nagoya University, Chikusa-ku, Nagoya 464-8601 (Japan); Kusano, K., E-mail: tyamamot@stelab.nagoya-u.ac.jp [Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokohama, Kanagawa 236-0001 (Japan)

2012-06-20

200

Preflare magnetic and velocity fields  

NASA Technical Reports Server (NTRS)

A characterization is given of the preflare magnetic field, using theoretical models of force free fields together with observed field structure to determine the general morphology. Direct observational evidence for sheared magnetic fields is presented. The role of this magnetic shear in the flare process is considered within the context of a MHD model that describes the buildup of magnetic energy, and the concept of a critical value of shear is explored. The related subject of electric currents in the preflare state is discussed next, with emphasis on new insights provided by direct calculations of the vertical electric current density from vector magnetograph data and on the role of these currents in producing preflare brightenings. Results from investigations concerning velocity fields in flaring active regions, describing observations and analyses of preflare ejecta, sheared velocities, and vortical motions near flaring sites are given. This is followed by a critical review of prevalent concepts concerning the association of flux emergence with flares

Hagyard, M. J.; Gaizauskas, V.; Chapman, G. A.; Deloach, A. C.; Gary, G. A.; Jones, H. P.; Karpen, J. T.; Martres, M.-J.; Porter, J. G.; Schmeider, B.

1986-01-01

201

The magnetic field of Neptune  

NASA Technical Reports Server (NTRS)

A model is given of the planetary magnetic field of Neptune based on a spherical harmonic analysis of the observations obtained by the Voyager 2. Generalized inverse techniques are used to partially solve a severely underdetermined inverse problem, and the resulting model is nonunique since the observations are limited in spatial distribution. Dipole, quadrupole, and octupole coefficients are estimated independently of other terms, and the parameters are shown to be well constrained by the measurement data. The large-scale features of the magnetic field including dipole tilt, offset, and harmonic content are found to characterize a magnetic field that is similar to that of Uranus. The traits of Neptune's magnetic field are theorized to relate to the 'ice' interior of the planet, and the dynamo-field generation reflects this poorly conducting planet.

Connerney, J. E. P.; Acuna, Mario H.; Ness, Norman F.

1992-01-01

202

Resonant magnetic fields from inflation  

SciTech Connect

We propose a novel scenario to generate primordial magnetic fields during inflation induced by an oscillating coupling of the electromagnetic field to the inflaton. This resonant mechanism has two key advantages over previous proposals. First of all, it generates a narrow band of magnetic fields at any required wavelength, thereby allaying the usual problem of a strongly blue spectrum and its associated backreaction. Secondly, it avoids the need for a strong coupling as the coupling is oscillating rather than growing or decaying exponentially. Despite these major advantages, we find that the backreaction is still far too large during inflation if the generated magnetic fields are required to have a strength of O(10{sup ?15} Gauss) today on observationally interesting scales. We provide a more general no-go argument, proving that this problem will apply to any model in which the magnetic fields are generated on subhorizon scales and freeze after horizon crossing.

Byrnes, Christian T. [CERN, PH-TH Division, CH-1211, Genève 23 (Switzerland); Hollenstein, Lukas; Jain, Rajeev Kumar [Département de Physique Théorique and Center for Astroparticle Physics, Université de Genève, 24, Quai Ernest Ansermet, CH-1211 Genève 4 (Switzerland); Urban, Federico R., E-mail: cbyrnes@cern.ch, E-mail: lukas.hollenstein@unige.ch, E-mail: rajeev.jain@unige.ch, E-mail: urban@phas.ubc.ca [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, B.C. V6T 1Z1 (Canada)

2012-03-01

203

Resonant magnetic fields from inflation  

E-print Network

We propose a novel scenario to generate primordial magnetic fields during inflation induced by an oscillating coupling of the electromagnetic field to the inflaton. This resonant mechanism has two key advantages over previous proposals. First of all, it generates a narrow band of magnetic fields at any required wavelength, thereby allaying the usual problem of a strongly blue spectrum and its associated backreaction. Secondly, it avoids the need for a strong coupling as the coupling is oscillating rather than growing or decaying exponentially. Despite these major advantages, we find that the backreaction is still far too large during inflation if the generated magnetic fields are required to have a strength of order 10^{-15} Gauss today on observationally interesting scales. We provide a more general no-go argument, proving that this problem will apply to any model in which the magnetic fields are generated on subhorizon scales and freeze after horizon crossing.

Christian T. Byrnes; Lukas Hollenstein; Rajeev Kumar Jain; Federico R. Urban

2012-03-06

204

Development of high temperature superconductors for magnetic field applications  

SciTech Connect

The key requirement for magnetic field applications of high temperature superconductor (HTS) materials is to have conductors with high transport critical current density available for magnet builders. After 3 or 4 years of being without any such object, conductor makers have had recent success in producing simple conductor prototypes. These have permitted the construction of simple HTS magnets having self fields exceeding 1 tesla at 4K. Thus the scientific feasibility of making powerful HTS magnets has been demonstrated. Attention to the technological aspects of making HTS conductors for magnets with strong flux pinning and reduced superconducting granularity is now sensible and attractive. However, extrinsic defects such as filament sausaging, cracking, misaligned grains and other perturbation to long range current flow must be controlled at a low level if the benefit of intrinsic improvements to the critical current density is to be maintained in the conductor form. Due to the great complexity of the HTS materials, there is sometimes confusion as to whether a given sample has an intrinsically or extrinsically limited critical current density. Systematic microstructure variation experiments and resistive transition analysis are shown to be particularly helpful in this phase of conductor development.

Larbalestier, D.C.

1991-12-31

205

Development of high temperature superconductors for magnetic field applications  

SciTech Connect

The key requirement for magnetic field applications of high temperature superconductor (HTS) materials is to have conductors with high transport critical current density available for magnet builders. After 3 or 4 years of being without any such object, conductor makers have had recent success in producing simple conductor prototypes. These have permitted the construction of simple HTS magnets having self fields exceeding 1 tesla at 4K. Thus the scientific feasibility of making powerful HTS magnets has been demonstrated. Attention to the technological aspects of making HTS conductors for magnets with strong flux pinning and reduced superconducting granularity is now sensible and attractive. However, extrinsic defects such as filament sausaging, cracking, misaligned grains and other perturbation to long range current flow must be controlled at a low level if the benefit of intrinsic improvements to the critical current density is to be maintained in the conductor form. Due to the great complexity of the HTS materials, there is sometimes confusion as to whether a given sample has an intrinsically or extrinsically limited critical current density. Systematic microstructure variation experiments and resistive transition analysis are shown to be particularly helpful in this phase of conductor development.

Larbalestier, D.C.

1991-01-01

206

Increase in the mitotic recombination frequency in Drosophila melanogaster by magnetic field exposure and its suppression by vitamin E supplement  

Microsoft Academic Search

In order to estimate possible mutagenic and\\/or carcinogenic activity of electromagnetic fields, wing spot tests were performed in Drosophila melanogaster. A DNA repair defective mutation mei-41D5 was introduced into the conventional mwh\\/flr test system to enhance mutant spot frequency. Third instar larvae were exposed to a 5-Tesla static magnetic field for 24 h, and after molting, wings were examined under

Takao Koana; Mikie O Okada; Masateru Ikehata; Masayoshi Nakagawa

1997-01-01

207

Attempt to detect diamagnetic anisotropy of oxides with isotropic crystal structure by measuring its rotational oscillation in strong magnetic field  

Microsoft Academic Search

Sensitivity to detect diamagnetic anisotropy DeltachiDIA of inorganic oxides was improved by increasing intensity of horizontal field from 1.6 T to 5.0 Tesla. The field induced a rotational oscillation of a magnetically stable axis of a sample, which was suspended with a thin fiber. Accurate Deltachi values are obtained when restoration torque of the fiber is negligibly small compared to

S. Kano; K. Hisayoshi; T. Kashiwagi; T. Kida; M. Hagiwara; C. Uyeda

2009-01-01

208

Schrödinger operators with magnetic fields  

Microsoft Academic Search

We prove a large number of results about atoms in constant magnetic field including (i) Asymptotic formula for the ground state energy of Hydrogen in large field, (ii) Proof that the ground state of Hydrogen in an arbitrary constant field hasLz = 0 and of the monotonicity of the binding energy as a function ofB, (iii) Borel summability of Zeeman

J. E. Avron; I. W. Herbst; B. Simon

1981-01-01

209

Study on technology of high-frequency pulsed magnetic field strength measurement.  

PubMed

High-frequency transient weak magnetic field is always involved in researches about biomedical engineering field while common magnetic-field sensors cannot work properly at frequencies as high as MHz. To measure the value of MHz-level weak pulsed magnetic-field strength accurately, this paper designs a measurement and calibration method for pulsed magnetic-field. In this paper, a device made of Nonferromagnetic material was independently designed and applied to pulsed magnetic field measurement. It held an accurately relative position between the magnetic field generating coil and the detecting coil. By applying a sinusoidal pulse to the generator, collecting the induced electromotive force of the detector, the final magnetic field strength was worked out through algorithms written in Matlab according to Faraday's Law. Experiments were carried out for measurement and calibration. Experiments showed that, under good stability and consistency, accurate measurement of magnetic-field strength of a sinepulse magnetic-field can be achieved, with frequency at 0.5, 1, 1.5 MHz and strength level at micro-Tesla. Calibration results carried out a measuring relative error about 2.5%. PMID:23366106

Chen, Yi-Mei; Liu, Zhi-Peng; Yin, Tao

2012-01-01

210

Investigating Magnetic Force Fields  

NSDL National Science Digital Library

In this classroom activity, the students will investigate the magnetic pull of a bar magnet at varying distances with the use of paper clips. Students will hypothesize, conduct the experiment, collect the data, and draw conclusions that support their data. Each student will record the experiment and their findings in their science journals. As a class, students will compare each groups' data and their interpretation of the results.

Daryl ("Tish") Monjeau, Bancroft Elementary School, Minneapolis, MN

2012-03-18

211

Reconnection of stressed magnetic fields  

NASA Technical Reports Server (NTRS)

It is shown that magnetized plasma configurations under magnetic stress relax irreversibly to the state of minimum stress at a rate that is essentially Alfvenic provided a magnetic null is present. The relaxation is effected by the reconnection at the field null and proceeds at a rate proportional to the absolute value of ln(eta) exp-1, where eta is the resistivity. An analytic calculation in the linear regime is presented.

Hassam, A. B.

1992-01-01

212

Preface: Cosmic magnetic fields  

NASA Astrophysics Data System (ADS)

Recent advances in observations and modeling have opened new perspectives for the understanding of fundamental dynamical processes of cosmic magnetism, and associated magnetic activity on the Sun, stars and galaxies. The goal of the Special Issue is to discuss the progress in solar physics and astrophysics, similarities and differences in phenomenology and physics of magnetic phenomena on the Sun and other stars. Space observatories, ground-based telescopes, and new observational methods have provided tremendous amount of data that need to be analyzed and understood. The solar observations discovered multi-scale organization of solar activity, dramatically changing current paradigms of solar variability. On the other side, stellar observations discovered new regimes of dynamics and magnetism that are different from the corresponding solar phenomena, but described by the same physics. Stars represent an astrophysical laboratory for studying the dynamical, magnetic and radiation processes across a broad range of stellar masses and ages. These studies allow us to look at the origin and evolution of our Sun, whereas detailed investigations of the solar magnetism give us a fundamental basis for interpretation and understanding of unresolved stellar data.

Kosovichev, Alexander

2015-02-01

213

The polar heliospheric magnetic field  

NASA Technical Reports Server (NTRS)

It is suggested that the polar heliospheric magnetic field, at large heliocentric distances, may deviate considerably from the generally accepted Archimedean spiral. Instead, it is suggested that the large-scale field near the poles may be dominated by randomly-oriented transverse magnetic fields with magnitude much larger than the average spiral. The average vector field is still the spiral, but the average magnitude may be much larger. In addition, the field direction is transverse to the radial direction most of the time instead of being nearly radial. This magnetic-field structure has important consequences for the transport of cosmic rays. Preliminary model calculations suggest changes in the radial gradient of galactic cosmic rays which may improve agreement with observations.

Jokipii, J. R.; Kota, J.

1989-01-01

214

Measuring Earth's Magnetic Field Simply.  

ERIC Educational Resources Information Center

Describes a method for measuring the earth's magnetic field using an empty toilet paper tube, copper wire, clear tape, a battery, a linear variable resistor, a small compass, cardboard, a protractor, and an ammeter. (WRM)

Stewart, Gay B.

2000-01-01

215

The ACE Magnetic Fields Experiment  

Microsoft Academic Search

The magnetic field experiment on ACE provides continuous measurements of the local magnetic field in the interplanetary medium.\\u000a These measurements are essential in the interpretation of simultaneous ACE observations of energetic and thermal particles\\u000a distributions. The experiment consists of a pair of twin, boom- mounted, triaxial fluxgate sensors which are located 165 inches\\u000a (=4.19 m) from the center of the

C. W. Smith; J. L'Heureux; N. F. Ness; M. H. Acuña; L. F. Burlaga; J. Scheifele

1998-01-01

216

Magnetic resonance in an elliptic magnetic field  

E-print Network

The behaviour of a particle with a spin 1/2 and a dipole magnetic moment in a time-varying magnetic field in the form $(h_0 cn(\\omega t,k), h_0 sn(\\omega t,k), H_0 dn(\\omega t,k))$, where $\\omega$ is the driving field frequency, $t$ is the time, $h_0$ and $H_0$ are the field amplitudes, $cn$, $sn$, $dn$ are Jacobi elliptic functions, $ k$ is the modulus of the elliptic functions has been considered. The variation parameter $k$ from zero to 1 gives rise to a wide set of functions from trigonometric shapes to exponential pulse shapes modulating the field. The problem was reduced to the solution of general Heun' equation. The exact solution of the wave function was found at resonance for any $ k$. It has been shown that the transition probability in this case does not depend on $k$. The present study may be useful for analysis interference experiments, improving magnetic spectrometers and the field of quantum computing.

E. A. Ivanchenko

2004-04-20

217

Magnetic Resonance Imaging System Based on Earth's Magnetic Field  

E-print Network

magnetic field can be partly compensated by the receiving coil design and shielding of electromagnetic pick magnetic fields. Common sources of static magnetic fields are super conducting coils, electromagnets, and permanent magnets. The induced magnetization, and thus the signal, is proportional to the magnitude

StepiÂ?nik, Janez

218

The magnetic field of Neptune  

NASA Technical Reports Server (NTRS)

The Voyager 2 observations obtained during the Neptune encounter are used to develop a spherical harmonic model of the planetary magnetic field of Neptune. The model yields a dipole of magnitude 0.14 G R(N) exp 3, tilted by 47 deg toward 72 deg west longitude. Neptune's quadrupole is equal to or exceeding in magnitude the surface dipole field; the octupole is also very large, although less well constrained. The characteristics of the Neptune's magnetic field are illustrated using contour maps of the field on the planet's surface.

Connerney, J. E. P.; Acuna, Mario H.; Ness, Norman F.

1991-01-01

219

Optical sensor of magnetic fields  

DOEpatents

An optical magnetic field strength sensor for measuring the field strength of a magnetic field comprising a dilute magnetic semi-conductor probe having first and second ends, longitudinally positioned in the magnetic field for providing Faraday polarization rotation of light passing therethrough relative to the strength of the magnetic field. Light provided by a remote light source is propagated through an optical fiber coupler and a single optical fiber strand between the probe and the light source for providing a light path therebetween. A polarizer and an apparatus for rotating the polarization of the light is provided in the light path and a reflector is carried by the second end of the probe for reflecting the light back through the probe and thence through the polarizer to the optical coupler. A photo detector apparatus is operably connected to the optical coupler for detecting and measuring the intensity of the reflected light and comparing same to the light source intensity whereby the magnetic field strength may be calculated.

Butler, M.A.; Martin, S.J.

1986-03-25

220

The magnetic field of Mercury  

NASA Technical Reports Server (NTRS)

The Mariner 10 spacecraft encountered Mercury three times in 1974-1975. The first and third encounters provided detailed observations of a well-developed detached bow shock wave which results from the interaction of the solar wind. The planet possesses a global magnetic field and a modest magnetosphere, which deflects the solar wind. The field is approximately dipolar, with orientation in the same sense as earth, tilted 12 deg from the rotation axis. The magnetic moment corresponds to an undistorted equatorial field intensity of 350 gammas, approximately 1% of earth's. The field, while unequivocally intrinsic to the planet, may be due to remanent magnetization acquired from an extinct dynamo or a primordial magnetic field or due to a presently active dynamo. The latter possibility appears more plausible at present. In any case, the existence of the magnetic field provides very strong evidence of a mature differentiated planetary interior with a large core (core radius about 0.7 Mercury radius) and a record of the history of planetary formation in the magnetization of the crustal rocks.

Ness, N. F.

1977-01-01

221

Chiral transition with magnetic fields  

NASA Astrophysics Data System (ADS)

We study the nature of the chiral transition for an effective theory with spontaneous breaking of symmetry, where charged bosons and fermions are subject to the effects of a constant external magnetic field. The problem is studied in terms of the relative intensity of the magnetic field with respect to the mass and the temperature. When the former is the smallest of the scales, we present a suitable method to obtain magnetic and thermal corrections up to ring order at high temperature. By these means, we solve the problem of the instability in the boson sector for these theories, where the squared masses—taken as functions of the order parameter—can vanish and even become negative. The solution is found by considering the screening properties of the plasma, encoded in the resummation of the ring diagrams at high temperature. We also study the case where the magnetic field is the intermediate of the three scales and explore the nature of the chiral transition as we vary the field strength, the coupling constants, and the number of fermions. We show that the critical temperature for the restoration of chiral symmetry monotonically increases from small to intermediate values of the magnetic field and that this temperature is always above the critical temperature for the case when the magnetic field is absent.

Ayala, Alejandro; Hernández, Luis Alberto; Mizher, Ana Júlia; Rojas, Juan Cristóbal; Villavicencio, Cristián

2014-06-01

222

Edison vs. Tesla  

SciTech Connect

As Edison vs. Tesla week heats up at the Energy Department, we are exploring the rivalry between Thomas Edison and Nikola Tesla and how their work is still impacting the way we use energy today. Whether you're on Team Tesla or Team Edison, both inventors were key players in creating things like batteries, power plants and wireless technologies -- all innovations we still use today. And as we move toward a clean energy future, energy efficient lighting, like LED bulbs, and more efficient electric motors not only help us save money on electricity costs but help combat climate change. For this, Tesla and Edison both deserve our recognition.

Hogan, Kathleen; Wallace, Hal; Ivestor, Rob

2013-11-20

223

Edison vs. Tesla  

ScienceCinema

As Edison vs. Tesla week heats up at the Energy Department, we are exploring the rivalry between Thomas Edison and Nikola Tesla and how their work is still impacting the way we use energy today. Whether you're on Team Tesla or Team Edison, both inventors were key players in creating things like batteries, power plants and wireless technologies -- all innovations we still use today. And as we move toward a clean energy future, energy efficient lighting, like LED bulbs, and more efficient electric motors not only help us save money on electricity costs but help combat climate change. For this, Tesla and Edison both deserve our recognition.

Hogan, Kathleen; Wallace, Hal; Ivestor, Rob

2014-01-07

224

CHAPTER 3. STRUCTURE OF MAGNETIC FIELDS 1 Structure of Magnetic  

E-print Network

CHAPTER 3. STRUCTURE OF MAGNETIC FIELDS 1 Chapter 3 Structure of Magnetic Fields Many of the most in Fig. 3.1, the generic structure of the magnetic field can be open (a­c and f) or closed (d,e). In open). The magnetic field structure in closed configurations (d,e) is toroidal in character or topology. That is, its

Callen, James D.

225

A magnetically shielded room with ultra low residual field and gradient  

SciTech Connect

A versatile and portable magnetically shielded room with a field of (700 ± 200) pT within a central volume of 1 m × 1 m × 1 m and a field gradient less than 300 pT/m, achieved without any external field stabilization or compensation, is described. This performance represents more than a hundredfold improvement of the state of the art for a two-layer magnetic shield and provides an environment suitable for a next generation of precision experiments in fundamental physics at low energies; in particular, searches for electric dipole moments of fundamental systems and tests of Lorentz-invariance based on spin-precession experiments. Studies of the residual fields and their sources enable improved design of future ultra-low gradient environments and experimental apparatus. This has implications for developments of magnetometry beyond the femto-Tesla scale in, for example, biomagnetism, geosciences, and security applications and in general low-field nuclear magnetic resonance (NMR) measurements.

Altarev, I.; Chesnevskaya, S.; Gutsmiedl, E.; Kuchler, F.; Lins, T.; Marino, M.; McAndrew, J.; Niessen, B.; Paul, S.; Petzoldt, G.; Singh, J.; Stoepler, R.; Stuiber, S.; Sturm, M.; Taubenheim, B. [Physikdepartment, Technische Universität München, D-85748 Garching (Germany); Babcock, E. [Jülich Center for Neutron Science, Lichtenbergstrasse 1, D-85748 Garching (Germany); Beck, D.; Sharma, S. [Physics Department, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Burghoff, M.; Fan, I. [Physikalisch-Technische Bundesanstalt Berlin, D-10587 Berlin (Germany); and others

2014-07-15

226

A magnetically shielded room with ultra low residual field and gradient  

NASA Astrophysics Data System (ADS)

A versatile and portable magnetically shielded room with a field of (700 ± 200) pT within a central volume of 1 m × 1 m × 1 m and a field gradient less than 300 pT/m, achieved without any external field stabilization or compensation, is described. This performance represents more than a hundredfold improvement of the state of the art for a two-layer magnetic shield and provides an environment suitable for a next generation of precision experiments in fundamental physics at low energies; in particular, searches for electric dipole moments of fundamental systems and tests of Lorentz-invariance based on spin-precession experiments. Studies of the residual fields and their sources enable improved design of future ultra-low gradient environments and experimental apparatus. This has implications for developments of magnetometry beyond the femto-Tesla scale in, for example, biomagnetism, geosciences, and security applications and in general low-field nuclear magnetic resonance (NMR) measurements.

Altarev, I.; Babcock, E.; Beck, D.; Burghoff, M.; Chesnevskaya, S.; Chupp, T.; Degenkolb, S.; Fan, I.; Fierlinger, P.; Frei, A.; Gutsmiedl, E.; Knappe-Grüneberg, S.; Kuchler, F.; Lauer, T.; Link, P.; Lins, T.; Marino, M.; McAndrew, J.; Niessen, B.; Paul, S.; Petzoldt, G.; Schläpfer, U.; Schnabel, A.; Sharma, S.; Singh, J.; Stoepler, R.; Stuiber, S.; Sturm, M.; Taubenheim, B.; Trahms, L.; Voigt, J.; Zechlau, T.

2014-07-01

227

Damping of cosmic magnetic fields  

SciTech Connect

We examine the evolution of magnetic fields in an expanding fluid composed of matter and radiation with particular interest in the evolution of cosmic magnetic fields. We derive the propagation velocities and damping rates for relativistic and non-relativistic fast and slow magnetosonic and Alfv{acute e}n waves in the presence of viscous and heat conducting processes. The analysis covers all magnetohydrodynamics modes in the radiation diffusion and the free-streaming regimes. When our results are applied to the evolution of magnetic fields in the early universe, we find that cosmic magnetic fields are damped from prior to the epoch of neutrino decoupling up to recombination. Similar to the case of sound waves propagating in a demagnetized plasma, fast magnetosonic waves are damped by radiation diffusion on all scales smaller than the radiation diffusion length. The characteristic damping scales are the horizon scale at neutrino decoupling (M{sub {nu}}{approx}10{sup {minus}4}M{sub {circle_dot}} in baryons) and the Silk mass at recombination (M{sub {gamma}}{approx}10{sup 13}M{sub {circle_dot}} in baryons). In contrast, the oscillations of slow magnetosonic and Alfv{acute e}n waves get overdamped in the radiation diffusion regime, resulting in frozen-in magnetic field perturbations. Further damping of these perturbations is possible only if before recombination the wave enters a regime in which radiation free-streams on the scale of the perturbation. The maximum damping scale of slow magnetosonic and Alfv{acute e}n modes is always smaller than or equal to the damping scale of fast magnetosonic waves, and depends on the magnetic field strength and its direction relative to the wave vector. Our findings have multifold implications for cosmology. The dissipation of magnetic field energy into heat during the epoch of neutrino decoupling ensures that most magnetic field configurations generated in the very early universe satisfy big bang nucleosynthesis constraints. Further dissipation before recombination constrains models in which primordial magnetic fields give rise to galactic magnetic fields or density perturbations. Finally, the survival of Alfv{acute e}n and slow magnetosonic modes on scales well below the Silk mass may be of significance for the formation of structure on small scales. {copyright} {ital 1998} {ital The American Physical Society}

Jedamzik, K. [Max-Planck-Institut fuer Astrophysik, 85748 Garching bei Muenchen (Germany)] [Max-Planck-Institut fuer Astrophysik, 85748 Garching bei Muenchen (Germany); Katalinic, V.; Olinto, A.V. [Department of Astronomy and Astrophysics and Enrico Fermi Institute, University of Chicago, 5640 S. Ellis Ave., Chicago, Illinois 60637 (United States)] [Department of Astronomy and Astrophysics and Enrico Fermi Institute, University of Chicago, 5640 S. Ellis Ave., Chicago, Illinois 60637 (United States)

1998-03-01

228

Biodegradation of phenol: a comparative study with and without applying magnetic fields.  

PubMed

The objective of this work was to study the effect of magnetic fields on the rate of phenol biodegradation using immobilized activated sludge. A recirculation flow bioreactor employing immobilized bacterial beads was used with phenol as the substrate to study the biodegradation process. This study was conducted by applying separately the north pole and the south pole magnetic fields to the bioreactor. Rate of dissolved oxygen consumption, phenol concentration and extracellular protein concentration were the parameters monitored during the process. It was observed that by applying a magnetic south pole to the process, biodegradation in the form of biological oxidation was enhanced. A 30% increase in biodegradation rate was obtained by applying a magnetic south pole of strength of 0.45 Tesla to the bioreactor with immobilized microbial beads as compared to the control. Magnetic north pole irradiation inhibited this type of biooxidation. This process has potential for biological treatment of organic wastes. PMID:7763365

Jung, J; Sanji, B; Godbole, S; Sofer, S

1993-01-01

229

High-magnetic-field-tuned insulating state in single-crystal BaIrO3  

NASA Astrophysics Data System (ADS)

BaIrO3 is a novel magnetic insulator associated with the spin-orbit interaction. It magnetically orders at TC=182 K, with an extremely small saturation moment MS< 0.03 ?B/Ir. Application of high magnetic field up to 35 Tesla results in an exotic behavior characterized by: (1) a drastic rise in electrical resistivity by 250% at low temperatures and (2) highly anisotropic magnetoresistivity with unusually strong hysteretic behavior. Our first principle calculations suggest a band structure near Fermi surface extremely sensitive to slight changes in lattice parameters, which captures underlying physical properties observed experimentally. The giant positive magnetoresistivity along with the extremely small saturation moment signals a delicate interplay between the structural and the electronic degrees of freedom in this compound. The electrical transport and magnetic properties in high magnetic field will be presented and discussed.

Korneta, O. B.; Qi, T. F.; Li, L.; Butrouna, K.; Cao, G.; Choi, E. S.; Wan, Xiangang

2013-03-01

230

Magnetic Field Generation in Stars  

NASA Astrophysics Data System (ADS)

Enormous progress has been made on observing stellar magnetism in stars from the main sequence (particularly thanks to the MiMeS, MAGORI and BOB surveys) through to compact objects. Recent data have thrown into sharper relief the vexed question of the origin of stellar magnetic fields, which remains one of the main unanswered questions in astrophysics. In this chapter we review recent work in this area of research. In particular, we look at the fossil field hypothesis which links magnetism in compact stars to magnetism in main sequence and pre-main sequence stars and we consider why its feasibility has now been questioned particularly in the context of highly magnetic white dwarfs. We also review the fossil versus dynamo debate in the context of neutron stars and the roles played by key physical processes such as buoyancy, helicity, and superfluid turbulence, in the generation and stability of neutron star fields. Independent information on the internal magnetic field of neutron stars will come from future gravitational wave detections. Coherent searches for the Crab pulsar with the Laser Interferometer Gravitational Wave Observatory (LIGO) have already constrained its gravitational wave luminosity to be ?2 % of the observed spin-down luminosity, thus placing a limit of ?1016 G on the internal field. Indirect spin-down limits inferred from recycled pulsars also yield interesting gravitational-wave-related constraints. Thus we may be at the dawn of a new era of exciting discoveries in compact star magnetism driven by the opening of a new, non-electromagnetic observational window. We also review recent advances in the theory and computation of magnetohydrodynamic turbulence as it applies to stellar magnetism and dynamo theory. These advances offer insight into the action of stellar dynamos as well as processes which control the diffusive magnetic flux transport in stars.

Ferrario, Lilia; Melatos, Andrew; Zrake, Jonathan

2015-03-01

231

Cosmic Structure of Magnetic Fields  

E-print Network

The simulations of the formation of cosmological structure allows to determine the spatial inhomogeneity of cosmic magnetic fields. Such simulations, however, do not give an absolute number for the strength of the magnetic field due to insufficient spatial resolution. Combining these simulations with observations of the Rotation Measure to distant radio sources allows then to deduce upper limits for the strength of the magnetic field. These upper limits are of order 0.2 - 2 muG along the filaments and sheets of the galaxy distribution. In one case, the sheet outside the Coma cluster, there is a definitive estimate of the strength of the magnetic field consistent with this range. Such estimates are almost three orders of magnitude higher than hitherto assumed usually. High energy cosmic ray particles can be either focussed or strongly scattered in such magnetic filaments and sheets, depending on the initial transverse momentum. The cosmological background in radio and X-ray wavelengths will have contributions from these intergalactic filaments and sheets, should the magnetic fields really be as high as 0.2 - 2 muG.

Peter L. Biermann; Hyesung Kang; Joerg P. Rachen; Dongsu Ryu

1997-09-25

232

Upper Critical Field Measurements by Pulsed Magnetic Fields in High-Tc Supoerconducting Oxides  

NASA Astrophysics Data System (ADS)

Upper critical fields of high-Tc superconducting oxides, La1.85Sr0.15CuO4-?, Y0.4Ba0.6CuOy and YBa2Cu3O7-?, were measured by magnetoresistance method under a pulsed magnetic field up to 60 T in a temperature region 4.2 K to Tc. The Hc2(0) defined by the midpoint of the resistive transition are estimated to be 40, 90 and 148 tesla, for La1.85Sr0.15CuO4-?, Y0.4Ba0.6CuOy and YBa2Cu3O7-?, respectively.

Okuda, Kiichi; Noguchi, Satoru; Yamagishi, Akio; Sugiyama, Kiyohiro; Date, Muneyuki

1987-05-01

233

Use of a radio frequency shield during 1.5 and 3.0 Tesla magnetic resonance imaging: experimental evaluation  

PubMed Central

Radiofrequency (RF) shields have been recently developed for the purpose of shielding portions of the patient’s body during magnetic resonance imaging (MRI) examinations. We present an experimental evaluation of a commercially available RF shield in the MRI environment. All tests were performed on 1.5 T and 3.0 T clinical MRI scanners. The tests were repeated with and without the RF shield present in the bore, for comparison. Effects of the shield, placed within the scanner bore, on the RF fields generated by the scanner were measured directly using tuned pick-up coils. Attenuation, by as much as 35 dB, of RF field power was found inside the RF shield. These results were supported by temperature measurements of metallic leads placed inside the shield, in which no measurable RF heating was found. In addition, there was a small, simultaneous detectable increase (?1 dB) of RF power just outside the edges of the shield. For these particular scanners, the autocalibrated RF power levels were reduced for scan locations prescribed just outside the edges of the shield, which corresponded with estimations based on the pick-up coil measurements. Additionally, no significant heating during MRI scanning was observed on the shield surface. The impact of the RF shield on the RF fields inside the magnet bore is likely to be dependent on the particular model of the RF shield or the MRI scanner. These results suggest that the RF shield could be a valuable tool for clinical MRI practices. PMID:25378957

Favazza, Christopher P; King, Deirdre M; Edmonson, Heidi A; Felmlee, Joel P; Rossman, Phillip J; Hangiandreou, Nicholas J; Watson, Robert E; Gorny, Krzysztof R

2014-01-01

234

Acoustic cardiac triggering: a practical solution for synchronization and gating of cardiovascular magnetic resonance at 7 Tesla  

PubMed Central

Background To demonstrate the applicability of acoustic cardiac triggering (ACT) for imaging of the heart at ultrahigh magnetic fields (7.0 T) by comparing phonocardiogram, conventional vector electrocardiogram (ECG) and traditional pulse oximetry (POX) triggered 2D CINE acquisitions together with (i) a qualitative image quality analysis, (ii) an assessment of the left ventricular function parameter and (iii) an examination of trigger reliability and trigger detection variance derived from the signal waveforms. Results ECG was susceptible to severe distortions at 7.0 T. POX and ACT provided waveforms free of interferences from electromagnetic fields or from magneto-hydrodynamic effects. Frequent R-wave mis-registration occurred in ECG-triggered acquisitions with a failure rate of up to 30% resulting in cardiac motion induced artifacts. ACT and POX triggering produced images free of cardiac motion artefacts. ECG showed a severe jitter in the R-wave detection. POX also showed a trigger jitter of approximately ?t = 72 ms which is equivalent to two cardiac phases. ACT showed a jitter of approximately ?t = 5 ms only. ECG waveforms revealed a standard deviation for the cardiac trigger offset larger than that observed for ACT or POX waveforms. Image quality assessment showed that ACT substantially improved image quality as compared to ECG (image quality score at end-diastole: ECG = 1.7 ± 0.5, ACT = 2.4 ± 0.5, p = 0.04) while the comparison between ECG vs. POX gated acquisitions showed no significant differences in image quality (image quality score: ECG = 1.7 ± 0.5, POX = 2.0 ± 0.5, p = 0.34). Conclusions The applicability of acoustic triggering for cardiac CINE imaging at 7.0 T was demonstrated. ACT's trigger reliability and fidelity are superior to that of ECG and POX. ACT promises to be beneficial for cardiovascular magnetic resonance at ultra-high field strengths including 7.0 T. PMID:21080933

2010-01-01

235

Use of a radio frequency shield during 1.5 and 3.0 Tesla magnetic resonance imaging: experimental evaluation.  

PubMed

Radiofrequency (RF) shields have been recently developed for the purpose of shielding portions of the patient's body during magnetic resonance imaging (MRI) examinations. We present an experimental evaluation of a commercially available RF shield in the MRI environment. All tests were performed on 1.5 T and 3.0 T clinical MRI scanners. The tests were repeated with and without the RF shield present in the bore, for comparison. Effects of the shield, placed within the scanner bore, on the RF fields generated by the scanner were measured directly using tuned pick-up coils. Attenuation, by as much as 35 dB, of RF field power was found inside the RF shield. These results were supported by temperature measurements of metallic leads placed inside the shield, in which no measurable RF heating was found. In addition, there was a small, simultaneous detectable increase (?1 dB) of RF power just outside the edges of the shield. For these particular scanners, the autocalibrated RF power levels were reduced for scan locations prescribed just outside the edges of the shield, which corresponded with estimations based on the pick-up coil measurements. Additionally, no significant heating during MRI scanning was observed on the shield surface. The impact of the RF shield on the RF fields inside the magnet bore is likely to be dependent on the particular model of the RF shield or the MRI scanner. These results suggest that the RF shield could be a valuable tool for clinical MRI practices. PMID:25378957

Favazza, Christopher P; King, Deirdre M; Edmonson, Heidi A; Felmlee, Joel P; Rossman, Phillip J; Hangiandreou, Nicholas J; Watson, Robert E; Gorny, Krzysztof R

2014-01-01

236

Theoretical analysis of magnetic field interactions with aortic blood flow  

SciTech Connect

The flow of blood in the presence of a magnetic field gives rise to induced voltages in the major arteries of the central circulatory system. Under certain simplifying conditions, such as the assumption that the length of major arteries (e.g., the aorta) is infinite and that the vessel walls are not electrically conductive, the distribution of induced voltages and currents within these blood vessels can be calculated with reasonable precision. However, the propagation of magnetically induced voltages and currents from the aorta into neighboring tissue structures such as the sinuatrial node of the heart has not been previously determined by any experimental or theoretical technique. In the analysis presented in this paper, a solution of the complete Navier-Stokes equation was obtained by the finite element technique for blood flow through the ascending and descending aortic vessels in the presence of a uniform static magnetic field. Spatial distributions of the magnetically induced voltage and current were obtained for the aortic vessel and surrounding tissues under the assumption that the wall of the aorta is electrically conductive. Results are presented for the calculated values of magnetically induced voltages and current densities in the aorta and surrounding tissue structures, including the sinuatrial node, and for their field-strength dependence. In addition, an analysis is presented of magnetohydrodynamic interactions that lead to a small reduction of blood volume flow at high field levels above approximately 10 tesla (T). Quantitative results are presented on the offsetting effects of oppositely directed blood flows in the ascending and descending aortic segments, and a quantitative estimate is made of the effects of assuming an infinite vs. a finite length of the aortic vessel in calculating the magnetically induced voltage and current density distribution in tissue.

Kinouchi, Y.; Yamaguchi, H. [Univ. of Tokushima (Japan)] [Univ. of Tokushima (Japan); Tenforde, T.S. [Pacific Northwest Lab., Richland, WA (United States). Health Div.] [Pacific Northwest Lab., Richland, WA (United States). Health Div.

1996-04-01

237

The magnetic field of Uranus  

NASA Technical Reports Server (NTRS)

Aspherical harmonic model of the planetary magnetic field of Uranus is obtained from the Voyager 2 encounter observations using generalized inverse techniques which allow partial solutions to complex (underdetermined) problems. The Goddard Space Flight Center 'Q3' model is characterized by a large dipole tilt (58.6 deg) relative to the rotation axis, a dipole moment of 0.228 G R(Uranus radii cubed) and an unusually large quadrupole moment. Characteristics of this complex model magnetic field are illustrated using contour maps of the field on the planet's surface and discussed in the context of possible dynamo generation in the relatively poorly conducting 'ice' mantle.

Connerney, J. E. P.; Acuna, Mario H.; Ness, Norman F.

1987-01-01

238

MAGNETIC FIELD MEASUREMENTS FOR FAST-CHANGING MAGNETIC FIELDS.  

SciTech Connect

Several recent applications for fast ramped magnets have been found that require rapid measurement of the field quality during the ramp. (In one instance, accelerator dipoles will be ramped at 1 T/sec, with measurements needed to the accuracy typically required for accelerators.) We have built and tested a new type of magnetic field measuring system to meet this need. The system consists of 16 stationary pickup windings mounted on a cylinder. The signals induced in the windings in a changing magnetic field are sampled and analyzed to obtain the field harmonics. To minimize costs, printed circuit boards were used for the pickup windings and a combination of amplifiers and ADPs used for the voltage readout system. New software was developed for the analysis. Magnetic field measurements of a model dipole developed for the SIS200 accelerator at GSI are presented. The measurements are needed to insure that eddy currents induced by the fast ramps do not impact the field quality needed for successful accelerator operation.

JAIN, A.; ESCALLIER, J.; GANETIS, G.; LOUIE, W.; MARONE, A.; THOMAS. R.; WANDERER, P.

2004-10-03

239

Magnetic Fields in Molecular Clouds  

E-print Network

Magnetic fields are believed to play an important role in the evolution of molecular clouds, from their large scale structure to dense cores, protostellar envelopes, and protoplanetary disks. How important is unclear, and whether magnetic fields are the dominant force driving star formation at any scale is also unclear. In this review we examine the observational data which address these questions, with particular emphasis on high angular resolution observations. Unfortunately the data do not clarify the situation. It is clear that the fields are important, but to what degree we don't yet know. Observations to date have been limited by the sensitivity of available telescopes and instrumentation. In the future ALMA and the SKA in particular should provide great advances in observational studies of magnetic fields, and we discuss which observations are most desirable when they become available.

Tyler L. Bourke; Alyssa A. Goodman

2004-01-14

240

Modeling Earth's magnetic field variation  

NASA Astrophysics Data System (ADS)

Observations of the Earth's magnetic field taken at the Earth's surface and at satellite altitude have been combined to construct models of the geomagnetic field and its variation. Lesur et al. (2010) developed a kinematic reconstruction of core field changes that satisfied the frozen-flux constraint. By constraining the field evolution to be entirely due to advection of the magnetic field at the core surface it maintained the spatial complexity of the field morphology imposed by a satellite field model backward in time [Wardinski & Lesur,2012]. In this study we attempt a kinematic construction of future variation in Earth's magnetic field variation. Our approach, first seeks to identify typical time scales of the magnetic field and core surface flows present in decadal and millennial field and flow models. Therefore, the individual spherical harmonic coefficients are treated by methods of time series analysis. The second step employs stochastic modelling of the temporal variability of such spherical harmonic coefficients that represent the field and core surface flow. Difficulties arise due to the non-stationary behavior of the field and core surface flow. However, the broad behavior may consist of some homogeneity, which could be captured by a generalized stochastic model that calls for the d'th difference of the time series to be stationary (ARIMA-Model), or by detrending the coefficient time series. By computing stochastic models, we obtain two sets of field-forecasts, the first set is obtained from stochastic models of the Gauss coefficients. Here, first results suggest that secular variation on time scales shorter than 5 years behaves rather randomly and cannot be described sufficiently well by stochastic models. The second set is derived from forward modeling the secular variation using the diffusion-less induction equation (kinematic construction). This approach has not provide consistent results.

Wardinski, I.

2012-12-01

241

LABORATORY V MAGNETIC FIELDS AND FORCES  

E-print Network

's technology. Magnets are used today to image parts of the body, to explore the mysteries of the human brain to combine magnets to change the magnetic field at any point. You must determine the map of the magnetic

Minnesota, University of

242

Tesla and AND gates  

Microsoft Academic Search

This column takes a closer look at the work of Nikola Tesla, a brilliant engineer and scientist who made incredible contributions in many diverse areas, such as radar and radio. Tesla was the first person to be awarded a patent on an AND gate.

Mel Breuer

2007-01-01

243

PRELIMINARY RESULTS ON NIOBIUM SPUTTERED FILMS INSIDE TESLA TYPE CAVITIES  

Microsoft Academic Search

In the framework of the ARES project and as a possible application for TESLA (1) we realized a test set-up to study the deposition of Nb films inside a single-cell TESLA type cavity. The plasma confinement was obtained with two external coils centered on the cavity axis in a magnetic bottle configuration. The system is operational and optimization of the

M. Minestrini; M. Ferrario; W. DeMasi; V. Merlo; S. Tazzari

244

Indoor localization using magnetic fields  

NASA Astrophysics Data System (ADS)

Indoor localization consists of locating oneself inside new buildings. GPS does not work indoors due to multipath reflection and signal blockage. WiFi based systems assume ubiquitous availability and infrastructure based systems require expensive installations, hence making indoor localization an open problem. This dissertation consists of solving the problem of indoor localization by thoroughly exploiting the indoor ambient magnetic fields comprising mainly of disturbances termed as anomalies in the Earth's magnetic field caused by pillars, doors and elevators in hallways which are ferromagnetic in nature. By observing uniqueness in magnetic signatures collected from different campus buildings, the work presents the identification of landmarks and guideposts from these signatures and further develops magnetic maps of buildings - all of which can be used to locate and navigate people indoors. To understand the reason behind these anomalies, first a comparison between the measured and model generated Earth's magnetic field is made, verifying the presence of a constant field without any disturbances. Then by modeling the magnetic field behavior of different pillars such as steel reinforced concrete, solid steel, and other structures like doors and elevators, the interaction of the Earth's field with the ferromagnetic fields is described thereby explaining the causes of the uniqueness in the signatures that comprise these disturbances. Next, by employing the dynamic time warping algorithm to account for time differences in signatures obtained from users walking at different speeds, an indoor localization application capable of classifying locations using the magnetic signatures is developed solely on the smart phone. The application required users to walk short distances of 3-6 m anywhere in hallway to be located with accuracies of 80-99%. The classification framework was further validated with over 90% accuracies using model generated magnetic signatures representing hallways with different kinds of pillars, doors and elevators. All in all, this dissertation contributes the following: 1) provides a framework for understanding the presence of ambient magnetic fields indoors and utilizing them to solve the indoor localization problem; 2) develops an application that is independent of the user and the smart phones and 3) requires no other infrastructure since it is deployed on a device that encapsulates the sensing, computing and inferring functionalities, thereby making it a novel contribution to the mobile and pervasive computing domain.

Pathapati Subbu, Kalyan Sasidhar

245

Black holes and magnetic fields  

E-print Network

Stationary axisymmetric magnetic fields are expelled from outer horizons of black holes as they become extremal. Extreme black holes exhibit Meissner effect also within exact Einstein--Maxwell theory and in string theories in higher dimensions. Since maximally rotating black holes are expected to be astrophysically most important, the expulsion of the magnetic flux from their horizons represents a potential threat to an electromagnetic mechanism launching the jets at the account of black-hole rotation.

J. Bicak; V. Karas; T. Ledvinka

2007-04-09

246

Observations of Mercury's magnetic field  

NASA Technical Reports Server (NTRS)

Magnetic field data obtained by Mariner 10 during the third and final encounter with the planet Mercury on 16 March 1975 were studied. A well developed bow shock and modest magnetosphere, previously observed at first encounter on 29 March 1974, were again observed. In addition, a much stronger magnetic field near closest approach, 400 gamma versus 98 gamma, was observed at an altitude of 327 km and approximately 70 deg north Mercurian latitude. Spherical harmonic analysis of the data provide an estimate of the centered planetary magnetic dipole of 4.7 x 10 to the 22nd power Gauss/cu cm with the axis tilted 12 deg to the rotation axis and in the same sense as Earth's. The interplanetary field was sufficiently different between first and third encounters that in addition to the very large field magnitude observed, it argues strongly against a complex induction process generating the observed planetary field. While a possibility exists that Mercury possesses a remanent field due to magnetization early in its formation, a present day active dynamo seems to be a more likely candidate for its origin.

Ness, N. F.; Behannon, K. W.; Lepping, R. P.; Whang, Y. C.

1975-01-01

247

Some features of bulk melt-textured high-temperature superconductors subjected to alternating magnetic fields  

NASA Astrophysics Data System (ADS)

Monolithic, large grain, (RE)Ba2Cu3O7 high-temperature superconductors (where RE denotes a rare-earth ion) are known to be able to trap fields in excess of several teslas and represent thus an extremely promising competing technology for permanent magnet in several applications, e.g. in motors and generators. In any rotating machine, however, the superconducting permanent magnet is subjected to variable (transient, or alternating) parasitic magnetic fields. These magnetic fields interact with the superconductor, which yields a reduction of the remnant magnetization. In the present work we quantify these effects by analysing selected experimental data on bulk melt-textured superconductors subjected to AC fields. Our results indicate that the non-uniformity of superconducting properties in rather large samples might lead to unusual features and need to be taken into account to analyse the experimental data. We also investigate the evolution of the DC remnant magnetization of the bulk sample when it is subjected to a large number of AC magnetic field cycles, and investigate the experimental errors that result from a misorientation of the sample or a mispositioning of the Hall probe. The time-dependence of the remnant magnetization over 100000 cycles of the AC field is shown to display distinct regimes which all differ strongly from the usual decay due to magnetic relaxation.

Vanderbemden, P.; Molenberg, I.; Simeonova, P.; Lovchinov, V.

2014-12-01

248

Magnetic field tomography, helical magnetic fields and Faraday depolarization  

NASA Astrophysics Data System (ADS)

Wide-band radio polarization observations offer the possibility to recover information about the magnetic fields in synchrotron sources, such as details of their three-dimensional configuration, that has previously been inaccessible. The key physical process involved is the Faraday rotation of the polarized emission in the source (and elsewhere along the wave's propagation path to the observer). In order to proceed, reliable methods are required for inverting the signals observed in wavelength space into useful data in Faraday space, with robust estimates of their uncertainty. In this paper, we examine how variations of the intrinsic angle of polarized emission ?0 with the Faraday depth ? within a source affect the observable quantities. Using simple models for the Faraday dispersion F(?) and ?0(?), along with the current and planned properties of the main radio interferometers, we demonstrate how degeneracies among the parameters describing the magneto-ionic medium can be minimized by combining observations in different wavebands. We also discuss how depolarization by Faraday dispersion due to a random component of the magnetic field attenuates the variations in the spectral energy distribution of the polarization and shifts its peak towards shorter wavelengths. This additional effect reduces the prospect of recovering the characteristics of the magnetic field helicity in magneto-ionic media dominated by the turbulent component of the magnetic field.

Horellou, C.; Fletcher, A.

2014-07-01

249

Magnetic Fields of the Earth and Sun  

NSDL National Science Digital Library

This is an activity that compares the magnetic field of the Earth to the complex magnetic field of the Sun. Using images of the Earth and Sun that have magnets attached in appropriate orientations, learners will use a handheld magnetic field detector to observe the magnetic field of the Earth and compare it to that of the Sun, especially in sunspot areas. For each group of students, this activity requires use of a handheld magnetic field detector, such as a Magnaprobe or a similar device, a bar magnet, and ten small disc magnets.

250

Magnetic Forces and Field Line Density  

NSDL National Science Digital Library

This is an activity about depicting the relative strength of magnetic fields using field line density. Learners will use the magnetic field line drawing of six magnetic poles created in a previous activity and identify the areas of strong, weak, and medium magnetic intensity using the density of magnetic field lines. This is the fifth activity in the Magnetic Math booklet; this booklet can be found on the Space Math@NASA website. How to Draw Magnetic Fields - II in the Magnetic Math booklet must be completed prior to this activity.

251

A Large Volume Double Channel 1H-X RF Probe for Hyperpolarized Magnetic Resonance at 0.0475 Tesla  

PubMed Central

In this work we describe a large volume 340 mL 1H-X magnetic resonance (MR) probe for studies of hyperpolarized compounds at 0.0475 T. 1H/13C and 1H/15N probe configurations are demonstrated with the potential for extension to 1H/129Xe. The primary applications of this probe are preparation and quality assurance of 13C and 15N hyperpolarized contrast agents using PASADENA (parahydrogen and synthesis allow dramatically enhanced nuclear alignment) and other parahydrogen-based methods of hyperpolarization. The probe is efficient and permits 62 ?s 13C excitation pulses at 5.3 Watts, making it suitable for portable operation. The sensitivity and detection limits of this probe, tuned to 13C, are compared with a commercial radio frequency (RF) coil operating at 4.7 T. We demonstrate that low field MR of hyperpolarized contrast agents could be as sensitive as conventional high field detection and outline potential improvements and optimization of the probe design for preclinical in vivo MRI. PASADENA application of this low-power probe is exemplified with 13C hyperpolarized 2-hydroxyethyl propionate-1-13C,2,3,3-d3. PMID:22706029

Coffey, Aaron M.; Shchepin, Roman V.; Wilkens, Ken; Waddell, Kevin W.; Chekmenev, Eduard Y.

2012-01-01

252

TESLA FEL Report 1996-07 TESLA FEL Report 1996-07  

E-print Network

TESLA FEL Report 1996-07 #12;TESLA FEL Report 1996-07 #12;TESLA FEL Report 1996-07 #12;TESLA FEL Report 1996-07 #12;TESLA FEL Report 1996-07 #12;TESLA FEL Report 1996-07 #12;TESLA FEL Report 1996-07 #12;TESLA FEL Report 1996-07 #12;TESLA FEL Report 1996-07 #12;TESLA FEL Report 1996-07 #12;TESLA FEL Report

253

TESLA FEL-Report 1996-10 TESLA FEL-Report 1996-10  

E-print Network

#12;TESLA FEL-Report 1996-10 #12;TESLA FEL-Report 1996-10 #12;TESLA FEL-Report 1996-10 #12;TESLA FEL-Report 1996-10 #12;TESLA FEL-Report 1996-10 #12;TESLA FEL-Report 1996-10 #12;TESLA FEL-Report 1996-10 #12;TESLA FEL-Report 1996-10 #12;TESLA FEL-Report 1996-10 #12;TESLA FEL-Report 1996-10 #12;TESLA FEL

254

TESLA FEL-Report 1996-13 TESLA FEL-Report 1996-13  

E-print Network

TESLA FEL-Report 1996-13 #12;TESLA FEL-Report 1996-13 #12;TESLA FEL-Report 1996-13 #12;TESLA FEL-Report 1996-13 #12;TESLA FEL-Report 1996-13 #12;TESLA FEL-Report 1996-13 #12;TESLA FEL-Report 1996-13 #12;TESLA FEL-Report 1996-13 #12;TESLA FEL-Report 1996-13 #12;TESLA FEL-Report 1996-13 #12;TESLA FEL

255

TESLA FEL-Report 1996-16 TESLA FEL-Report 1996-16  

E-print Network

#12;TESLA FEL-Report 1996-16 #12;TESLA FEL-Report 1996-16 #12;TESLA FEL-Report 1996-16 #12;TESLA FEL-Report 1996-16 #12;TESLA FEL-Report 1996-16 #12;TESLA FEL-Report 1996-16 #12;TESLA FEL-Report 1996-16 #12;TESLA FEL-Report 1996-16 #12;TESLA FEL-Report 1996-16 #12;TESLA FEL-Report 1996-16 #12;TESLA FEL

256

TESLA FEL Report 1996-06 TESLA FEL Report 1996-06  

E-print Network

TESLA FEL Report 1996-06 #12;TESLA FEL Report 1996-06 #12;TESLA FEL Report 1996-06 #12;TESLA FEL Report 1996-06 #12;TESLA FEL Report 1996-06 #12;TESLA FEL Report 1996-06 #12;TESLA FEL Report 1996-06 #12;TESLA FEL Report 1996-06 #12;TESLA FEL Report 1996-06 #12;TESLA FEL Report 1996-06 #12;TESLA FEL Report

257

High-resolution phased-array MRI of the human brain at 7 tesla: initial experience in multiple sclerosis patients  

Microsoft Academic Search

Recent advancement for magnetic resonance imaging (MRI) involves the incorporation of higher-field strengths. Although imagers with higher magnetic field strengths were developed and tested in research labs, the direct application to patient MR studies have been extremely limited. Imaging at 7 Tesla (7T) affords advantages in signal-to-noise ratio and image contrast and resolution; however, these benefits can only be realized

Meredith Metcalf; Duan Xu; Darin T Okuda; Lucas Carvajal; Radhika Srinivasan; Douglas A C Kelley; Pratik Mukherjee; Sarah J Nelson; Daniel B Vigneron; Daniel Pelletier

2010-01-01

258

VOLUME 16 No. 3 NATIONAL HIGH MAGNETIC FIELD LABORATORY  

E-print Network

-mail winters@magnet.fsu.edu. Trying to reduce your carbon footprint? Sign up for an online subscription at http the core of our cryogenics plant, the ugly below-the-radar-screen nuts and bolts that keep the 45-tesla experimental samples cold. The new plant will increase our liquid helium capacity, our operating efficiency

Weston, Ken

259

Origin of astrophysical magnetic fields.  

NASA Astrophysics Data System (ADS)

The standard model for the origin of magnetic fields observed in stars and galaxies is the ?-? dynamo, in which a feedback loop involving differential rotation and helical turbulence leads to exponential amplification of a large-scale field. Recently this model has been criticized on the grounds that the Lorentz forces associated with the buildup of small-scale fields by the turbulence prevents the turbulent diffusion of magnetic field that is an essential part of the model. The author discusses the consequences for cosmology if dynamo theory is wrong, and reviews recent criticisms from a new perspective. They suggest new calculations that can help to decide whether the theory is right or wrong.

Field, George B.

260

Proposed applications with implementation techniques of the upcoming renewable energy resource, The Tesla Turbine  

NASA Astrophysics Data System (ADS)

Recent research has shown that tesla turbine can be one of the future efficient sources of renewable energy. Modern techniques used for designing of tesla turbine have given optimum results regarding efficiency and applications. In this paper we have suggested fully coordinated applications of tesla turbine in different fields particularly in power generation at both low level and high level generation. In Energy deficient countries the tesla turbine has wide range of applications and it can play an important role in energy management system. Our proposed applications includes, the use of tesla turbine as renewable energy resource using tesla turbine in distributed generation system use of tesla turbine at home for power generation use of tesla turbine in irrigation channels using tesla turbine in hybrid electric vehicles All applications are explained with the help of flow charts and block diagrams and their implementation techniques are also explained in details. The results of physical experiments and simulations are also included for some applications.

Usman Saeed Khan, M.; Maqsood, M. Irfan; Ali, Ehsan; Jamal, Shah; Javed, M.

2013-06-01

261

EXPLORER 10 MAGNETIC FIELD MEASUREMENTS  

Microsoft Academic Search

Magnetic field measurements made by means of Explorer 10 over geocentric ; distances of 1.8 to 42.6R\\/sub e\\/ on March 25experiment on the same satellite are ; referenced in interpretations. The close-in data are consistent with the ; existence of a very weak ring current below 3R\\/sub e\\/ along the trajectory, but ; alternative explanations for the field deviations are

J. P. Heppner; N. F. Ness; C. S. Scearce; T. L. Skillman

1963-01-01

262

Effects of magnetic fields on iron electrodeposition  

Microsoft Academic Search

The effects of magnetic fields (of 0–5 T magnetic flux density) on iron electrodeposition were investigated in terms of current efficiency, morphology and crystal orientation. The AFM images showed that the shape of iron grains was angular in no magnetic field and roundish in magnetic fields. The occurrence of preferred orientation parallel to the substrate plane was influenced by an

H. Matsushima; T. Nohira; I. Mogi; Y. Ito

2004-01-01

263

How to Draw Magnetic Fields - I  

NSDL National Science Digital Library

This is an activity about depicting magnetic fields. Learners will observe two provided drawings of magnetic field line patterns for bar magnets in simple orientations of like and unlike polarities and carefully draw the field lines for both orientations. This is the third activity in the Magnetic Math booklet; this booklet can be found on the Space Math@NASA website.

264

Transverse Magnetic Field Propellant Isolator  

NASA Technical Reports Server (NTRS)

An alternative high voltage isolator for electric propulsion and ground-based ion source applications has been designed and tested. This design employs a transverse magnetic field that increases the breakdown voltage. The design can greatly enhance the operating range of laboratory isolators used for high voltage applications.

Foster, John E.

2000-01-01

265

Jupiter's magnetic field and magnetosphere  

NASA Technical Reports Server (NTRS)

Among the planets of the solar system, Jupiter is unique in connection with its size and its large magnetic moment, second only to the sun's. The Jovian magnetic field was first detected indirectly by radio astronomers who postulated its existence to explain observations of nonthermal radio emissions from Jupiter at decimetric and decametric wavelengths. Since the early radio astronomical studies of the Jovian magnetosphere, four spacecraft have flown by the planet at close distances and have provided in situ information about the geometry of the magnetic field and its strength. The Jovian magnetosphere is described in terms of three principal regions. The inner magnetosphere is the region where the magnetic field created by sources internal to the planet dominates. The region in which the equatorial currents flow is denoted as the middle magnetosphere. In the outer magnetosphere, the field has a large southward component and exhibits large temporal and/or spatial variations in magnitude and direction in response to changes in solar wind pressure.

Acuna, M. H.; Behannon, K. W.; Connerney, J. E. P.

1983-01-01

266

A high-field superferric NMR magnet.  

PubMed

Strong, extensive magnetic fringe fields are a significant problem with magnetic resonance imaging magnets. This is particularly acute with 4-T, whole-body research magnets. To date this problem has been addressed by restricting an extensive zone around the unshielded magnet or by placing external unsaturated iron shielding around the magnet. This paper describes a solution to this problem which uses superconducting coils closely integrated with fully saturated iron elements. A 4-T, 30-cm-bore prototype, based on this design principle, was built and tested. The 5 G fringe field is contained within 1 meter of the magnet bore along the z axis. Homogeneity of the raw magnetic field is 10 ppm over 30% of the magnet's diameter after passive shimming. Compared with an unshielded magnet, 20% less superconductor is required to generate the magnetic field. Images and spectra are presented to demonstrate the magnet's viability for magnetic resonance imaging and spectroscopy. PMID:8419740

Huson, F R; Bryan, R N; MacKay, W W; Herrick, R C; Colvin, J; Ford, J J; Pissanetzky, S; Plishker, G A; Rocha, R; Schmidt, W

1993-01-01

267

Magnetic fields in the sun  

NASA Technical Reports Server (NTRS)

The observed properties of solar magnetic fields are reviewed, with particular reference to the complexities imposed on the field by motions of the highly conducting gas. Turbulent interactions between gas and field lead to heating or cooling of the gas according to whether the field energy density is less or greater than the maximum kinetic energy density in the convection zone. The field strength above which cooling sets in is 700 gauss. A weak solar dipole field may be primeval, but dynamo action is also important in generating new flux. The dynamo is probably not confined to the convection zone, but extends throughout most of the volume of the sun. Planetary tides appear to play a role in driving the dynamo.

Mullan, D. J.

1974-01-01

268

Magnetic fields in spiral galaxies  

NASA Astrophysics Data System (ADS)

The magnetic field structure in edge-on galaxies observed so far shows a plane-parallel magnetic field component in the disk of the galaxy and an X-shaped field in its halo. The plane-parallel field is thought to be the projected axisymmetric (ASS) disk field as observed in face-on galaxies. Some galaxies addionionally exhibit strong vertical magnetic fields in the halo right above and below the central region of the disk. The mean-field dynamo theory in the disk cannot explain these observed fields without the action of a wind, which also probably plays an important role to keep the vertical scale heights constant in galaxies of different Hubble types and star formation activities, as has been observed in the radio continuum: At ?6 cm the vertical scale heights of the thin disk and the thick disk/halo in a sample of five edge-on galaxies are similar with a mean value of 300 +/- 50 pc for the thin disk and 1.8 +/- 0.2 kpc for the thick disk (a table and references are given in Krause 2011) with our sample including the brightest halo observed so far, NGC 253, with strong star formation, as well as one of the weakest halos, NGC 4565, with weak star formation. If synchrotron emission is the dominant loss process of the relativistic electrons the outer shape of the radio emission should be dumbbell-like as has been observed in several edge-on galaxies like e.g. NGC 253 (Heesen et al. 2009) and NGC 4565. As the synchrotron lifetime t syn at a single frequency is proportional to the total magnetic field strength B t -1.5, a cosmic ray bulk speed (velocity of a galactic wind) can be defined as v CR = h CR /t syn = 2 h z /t syn , where h CR and h z are the scale heights of the cosmic rays and the observed radio emission at this freqnency. Similar observed radio scale heights imply a self regulation mechanism between the galactic wind velocity, the total magnetic field strength and the star formation rate SFR in the disk: v CR ~ B t 1.5 ~ SFR ~ 0.5 (Niklas & Beck 1997).

Krause, Marita

2015-03-01

269

Slotless Permanent-Magnet Machines: General Analytical Magnetic Field Calculation  

Microsoft Academic Search

This paper presents a general analytical model for predicting the magnetic field of slotless permanent-magnet machines. The model takes into account the effect of eddy currents in conductive regions and notably in conductive permanent magnets without neglecting their remanent field. The modeling of this effect is important for the design of very high speed slotless permanent-magnet machines, as the power

Pierre-Daniel Pfister; Yves Perriard

2011-01-01

270

Magnetic field of the Earth  

NASA Astrophysics Data System (ADS)

The magnetic field of the Earth has global meaning for a life on the Earth. The world geophysical science explains: - occurrence of a magnetic field of the Earth it is transformation of kinetic energy of movements of the fused iron in the liquid core of Earth - into the magnetic energy; - the warming up of a kernel of the Earth occurs due to radioactive disintegration of elements, with excretion of thermal energy. The world science does not define the reasons: - drift of a magnetic dipole on 0,2 a year to the West; - drift of lithospheric slabs and continents. The author offers: an alternative variant existing in a world science the theories "Geodynamo" - it is the theory « the Magnetic field of the Earth », created on the basis of physical laws. Education of a magnetic field of the Earth occurs at moving the electric charge located in a liquid kernel, at rotation of the Earth. At calculation of a magnetic field is used law the Bio Savara for a ring electric current: dB = . Magnetic induction in a kernel of the Earth: B = 2,58 Gs. According to the law of electromagnetic induction the Faradey, rotation of a iron kernel of the Earth in magnetic field causes occurrence of an electric field Emf which moves electrons from the center of a kernel towards the mantle. So of arise the radial electric currents. The magnetic field amplifies the iron of mantle and a kernel of the Earth. As a result of action of a radial electric field the electrons will flow from the center of a kernel in a layer of an electric charge. The central part of a kernel represents the field with a positive electric charge, which creates inverse magnetic field Binv and Emfinv When ?mfinv = ?mf ; ?inv = B, there will be an inversion a magnetic field of the Earth. It is a fact: drift of a magnetic dipole of the Earth in the western direction approximately 0,2 longitude, into a year. Radial electric currents a actions with the basic magnetic field of a Earth - it turn a kernel. It coincides with laws of electromagnetism. According to a rule of the left hand: if the magnetic field in a kernel is directed to drawing, electric current are directed to an axis of rotation of the Earth, - a action of force clockwise (to West). Definition of the force causing drift a kernel according to the law of Ampere F = IBlsin. Powerful force 3,5 × 1012 Nyton, what makes drift of the central part of a kernel of the Earth on 0,2 the longitude in year to West, and also it is engine of the mechanism of movement of slabs together with continents. Movement of a core of the Earth carry out around of a terrestrial axis one circulation in the western direction in 2000 of years. Linear speed of rotation of a kernel concerning a mantle on border the mantle a kernel: V = × 3,471 × 10 = 3,818 × 10 m/s = 33 m/day = 12 km/years. Considering greater viscosity of a mantle, the powerful energy at rotation of a kernel seize a mantle and lithospheric slabs and makes their collisions as a result of which there are earthquakes and volcano. Continents Northern and Southern America every year separate from the Europe and Africa on several centimeters. Atlantic ocean as a result of movement of these slabs with such speed was formed for 200 million years, that in comparison with the age of the Earth - several billions years, not so long time. Drift of a kernel in the western direction is a principal cause of delay of speed of rotation of the Earth. Flow of radial electric currents allot according to the law of Joule - Lenz, the quantity of warmth : Q = I2Rt = IUt, of thermal energy 6,92 × 1017 calories/year. This defines heating of a kernel and the Earth as a whole. In the valley of the median-Atlantic ridge having numerous volcanos, the lava flow constantly thus warm up waters of Atlantic ocean. It is a fact the warm current Gulf Stream. Thawing of a permafrost and ices of Arctic ocean, of glaciers of Greenland and Antarctica is acknowledgement: the warmth of earth defines character of thawing of glaciers and a permafrost. This is a global warming. The version of the author: the period

Popov, Aleksey

2013-04-01

271

Advances in high field magnetism at Osaka  

NASA Astrophysics Data System (ADS)

Recent advances in high field magnetism mainly done in the High Magnetic Field Laboratory, Osaka University, are reviewed. Various magnetic and electronic properties are induced in high fields; it is emphasized that the newly developed incommensurate mean field model is effective in understanding complex phase diagrams such as in CeSb, CeBi and PrCo 2Si 2.

Date, M.

1989-03-01

272

Assessment of Safety and Interference Issues of Radio Frequency Identification Devices in 0.3 Tesla Magnetic Resonance Imaging and Computed Tomography  

PubMed Central

The objective of this study was to evaluate two issues regarding magnetic resonance imaging (MRI) including device functionality and image artifacts for the presence of radio frequency identification devices (RFID) in association with 0.3?Tesla at 12.7?MHz MRI and computed tomography (CT) scanning. Fifteen samples of RFID tags with two different sizes (wristband and ID card types) were tested. The tags were exposed to several MR-imaging conditions during MRI examination and X-rays of CT scan. Throughout the test, the tags were oriented in three different directions (axial, coronal, and sagittal) relative to MRI system in order to cover all possible situations with respect to the patient undergoing MRI and CT scanning, wearing a RFID tag on wrist. We observed that the tags did not sustain physical damage with their functionality remaining unaffected even after MRI and CT scanning, and there was no alternation in previously stored data as well. In addition, no evidence of either signal loss or artifact was seen in the acquired MR and CT images. Therefore, we can conclude that the use of this passive RFID tag is safe for a patient undergoing MRI at 0.3 T/12.7?MHz and CT Scanning. PMID:24701187

Periyasamy, M.; Dhanasekaran, R.

2014-01-01

273

LABORATORY V MAGNETIC FIELDS AND FORCES  

E-print Network

's technology. Magnets are used today to image parts of the body, to explore the mysteries of the human brain to combine magnets to change the magnetic field at any point. You decide to determine the form

Minnesota, University of

274

Superconducting TESLA cavities  

Microsoft Academic Search

The conceptional design of the proposed linear electron-positron collider TESLA is based on 9-cell 1.3 GHz superconducting niobium cavities with an accelerating gradient of Eacc>=25 MV\\/m at a quality factor Q0>=5×109. The design goal for the cavities of the TESLA Test Facility (TTF) linac was set to the more moderate value of Eacc>=15 MV\\/m. In a first series of 27

B. Aune; R. Bandelmann; D. Bloess; B. Bonin; A. Bosotti; M. Champion; C. Crawford; G. Deppe; B. Dwersteg; D. A. Edwards; H. T. Edwards; M. Ferrario; M. Fouaidy; P.-D. Gall; A. Gamp; A. Gössel; J. Graber; D. Hubert; M. Hüning; M. Juillard; T. Junquera; H. Kaiser; G. Kreps; M. Kuchnir; R. Lange; M. Leenen; M. Liepe; L. Lilje; A. Matheisen; W.-D. Möller; A. Mosnier; H. Padamsee; C. Pagani; M. Pekeler; H.-B. Peters; O. Peters; D. Proch; K. Rehlich; D. Reschke; H. Safa; T. Schilcher; P. Schmüser; J. Sekutowicz; S. Simrock; W. Singer; M. Tigner; D. Trines; K. Twarowski; G. Weichert; J. Weisend; J. Wojtkiewicz; S. Wolff; K. Zapfe

2000-01-01

275

8.5: Presentation session: BRAiN measurements and imaging technologies: “Data-driven evaluation and optimization of acquisition strategies for ultra-high-field functional MRI at 7 Tesla”  

Microsoft Academic Search

Blood oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI) is commonly performed using 2D single-shot echo-planar imaging (EPI). However, challenges with EPI at 7 Tesla (T) include significant geometric distortions (due to low bandwidth (BW) in the phase-encode (PE) direction) and amplification of physiological noise. Recent studies have suggested that 3D multi-shot sequences such as PRESTO may offer comparable

Robert L. Barry

2010-01-01

276

Quantitative estimates of magnetic field reconnection properties from electric and magnetic field measurements  

E-print Network

Quantitative estimates of magnetic field reconnection properties from electric and magnetic field there are positive electric field components tangential to the magnetopause and a magnetic field component normal to it. Because these three components are the smallest of the six electric and magnetic fields

California at Berkeley, University of

277

First evidence of detecting surface nuclear magnetic resonance signals using a compact B-field sensor  

NASA Astrophysics Data System (ADS)

The noninvasive detection and characterization of subsurface aquifer structures demands geophysical techniques. Surface nuclear magnetic resonance (SNMR) is the only technique that is directly sensitive to hydrogen protons and, therefore, allows for unambiguous detection of subsurface water. Traditionally, SNMR utilizes large surface coils for both transmitting excitation pulses and recording the groundwater response. Recorded data are thus a voltage induced by the time derivative of the secondary magnetic field. For the first time, we demonstrate that the secondary magnetic field in a SNMR experiment can be directly detected using a superconducting quantum interference device magnetometer. Conducting measurements at a test site in Germany, we demonstrate not only the ability to detect SNMR signals on the order of femtoTesla but also we are able to satisfy the observed data by inverse modeling. This is expected to open up completely new applications for this exciting technology.

Davis, Aaron C.; Dlugosch, Raphael; Queitsch, Matthias; Macnae, James C.; Stolz, Ronny; Müller-Petke, Mike

2014-06-01

278

Explaining Mercury's peculiar magnetic field  

NASA Astrophysics Data System (ADS)

MESSENGER magnetometer data revealed that Mercury's magnetic field is not only particularly weak but also has a peculiar geometry. The MESSENGER team finds that the location of the magnetic equator always lies significantly north of the geographic equator, is largely independent of the distance to the planet, and also varies only weakly with longitude. The field is best described by an axial dipole that is offset to the north by about 20% of the planetary radius. In terms of classical Gauss coefficients, this translates into a low axial dipole component of g10= -190 nT but a relatively large axial quadrupole contribution that amounts to roughly 40% of this value. The axial octupole is also sizable while higher harmonic contributions are much weaker. Very remarkable is also the fact that the equatorial dipole contribution is very small, consistent with a dipole tilt below 0.8 degree, and this is also true for the other non-axisymmetic field contributions. We analyze several numerical dynamos concerning their capability of explaining Mercury's magnetic field. Classical schemes geared to model the geomagnetic field typically show a much weaker quadrupole component and thus a smaller offset. The onset only becomes larger when the dynamo operates in the multipolar regime at higher Rayleigh numbers. However, since the more complex dynamics generally promotes all higher multipole contributions the location of the magnetic equator varies strongly with longitude and distance to the planet. The situation improves when introducing a stably stratified outer layer in the dynamo region, representing either a rigid FeS layer or a sub-adiabatic core-mantle boundary heat flux. This layer filters out the higher harmonic contributions and the field not only becomes sufficiently weak but also assumes a Mercury like offset geometry during a few percent of the simulation time. To increase the likelihood for the offset configuration, the north-south symmetry must be permanently broken and we explore two scenarios. Increasing the heat flux through the northern hemisphere of the core-mantle boundary is an obvious choice but is not supported by current models for Mercury's mantle. We find that a combination of internal rather than bottom driving and an increased heat flux through the equatorial region of the core-mantle boundary also promotes the required symmetry breaking and results in very Mercury like fields. The reason is that the imposed heat flux pattern, though being equatorially symmetric, lowers the critical Rayleigh number for the onset of equatorially anti-symmetric convection modes. In both scenarios, a stably stratified layer or a feedback coupling to the magnetospheric field is required for lowering the field strength to Mercury-like values.

Wicht, Johannes; Cao, Hao; Heyner, Daniel; Dietrich, Wieland; Christensen, Ulrich R.

2014-05-01

279

PLANT GROWTH UNDER STATIC MAGNETIC FIELD INFLUENCEê  

Microsoft Academic Search

Already germinated seeds of Zea mays were cultivated in the presence of static magnetic field in order to observe several biochemical changes and stimulation effect on plantlets growth. Magnetic treatment involved the application of five different values of magnetic induction of static magnetic field, ranging between 50 mT and 250 mT, during 14 days. In order to investigate the biochemical

M. RÃCUCIU; D. CREANGÃ; I. HORGA

2008-01-01

280

Field errors in superconducting magnets  

SciTech Connect

The mission of this workshop is a discussion of the techniques for tracking particles through arbitrary accelerator field configurations to look for dynamical effects that are suggested by various theoretical models but are not amenable to detailed analysis. A major motivation for this type of study is that many of our accelerator projects are based on the use of superconducting magnets which have field imperfections that are larger and of a more complex nature than those of conventional magnets. Questions such as resonances, uncorrectable closed orbit effects, coupling between planes, and diffusion mechanisms all assume new importance. Since, simultaneously, we are trying to do sophisticated beam manipulations such as stacking, high current accelerator, long life storage, and low loss extraction, we clearly need efficient and accurate tracking programs to proceed with confidence.

Barton, M.Q.

1982-01-01

281

Measurements of Solar Vector Magnetic Fields  

NASA Technical Reports Server (NTRS)

Various aspects of the measurement of solar magnetic fields are presented. The four major subdivisions of the study are: (1) theoretical understanding of solar vector magnetic fields; (3) techniques for interpretation of observational data; and (4) techniques for data display.

Hagyard, M. J. (editor)

1985-01-01

282

Plasma stability in a dipole magnetic field  

E-print Network

The MHD and kinetic stability of an axially symmetric plasma, confined by a poloidal magnetic field with closed lines, is considered. In such a system the stabilizing effects of plasma compression and magnetic field ...

Simakov, Andrei N., 1974-

2001-01-01

283

Effects of static magnetic fields on light scattering in red chromatophore of goldfish scale  

NASA Astrophysics Data System (ADS)

Light scattering in a guanine crystal plate of goldfish scales was observed with and without static magnetic field exposure. Under a microscopic image with dark-field-illumination, the structural color of the scale by guanine plates was observed, and isolated chromatophores showed a twinkling which was the intermittent light scattering of the light from the side. The light scattering was quenched by static magnetic fields of more than 0.26 tesla (T). The quenching was reversibly occurred when the applied external magnetic fields were changed between ambient fields and 5 T. The quenched light scattering did not improve when the magnetic field was decreased from 5 to 0.3 T. It recovered to the original twinkling state about one minute after reaching an ambient geomagnetic field level. The mechanism of the quenched light scattering was speculated to be concerned with the possible magnetic orientation of guanine crystal plates, which were sustained by protein fibers in the red chromatophore. The diamagnetic complex of guanine crystal plates and protein fibers are the candidates for the nanosized light scattering controller based on the magnetic orientation mechanism.

Iwasaka, M.

2010-05-01

284

[Three patients with transient global amnesia following an increased venous pressure: a study using 3.0 Tesla diffusion-weighted magnetic resonance imaging].  

PubMed

We present 3 patients with transient global amnesia (TGA). Patient 1 was a 67-year-old man who had developed TGA 5 years ago. He showed sudden onset amnesia immediately after he quarreled with his wife loudly during driving. Three-Tesla (3T) diffusion-weighted magnetic resonance imaging (DWI) taken 18 hours after onset revealed a small hyperintense signal area in the right CA1 subfield of the hippocampus. Patient 2 was a 66-year-old woman who showed sudden onset amnesia immediately after she walked for about 20 minutes holding a heavy luggage with her arms. 3T DWI taken 64 hours after onset revealed a small hyperintense signal area in the left CA1 subfield of the hippocampus. Patient 3 was a 68-year-old woman who showed sudden onset amnesia immediately after she hurriedly cleaned up her house with a cleaner. 3T DWI taken 48 hours after onset revealed small hyperintense signal areas in the left CA1 subfield and the right subiculum proper of the hippocampus. She developed TGA recurrence 6 months after the first episode of TGA. All these 3 patients had no cardiovascular diseases. Their amnesia resolved within 5-6 hours. Magnetic resonance venography (MRV) revealed hypoplasia of the left transverse sinus in Patient 1 and Patient 3, and aplasia of the left transverse sinus in Patient 2. Ultrasound studies revealed a retrograde flow component of internal jugular vein during Valsalva maneuver in Patient 2. We speculate that an increased venous pressure might have precipitated cerebral venous ischemia in the hippocampus, which is most vulnerable to ischemic insults. PMID:20681264

Sakai, Toshiyuki; Kondo, Masahide; Tomimoto, Hidekazu

2010-07-01

285

Rotating copper plasmoid in external magnetic field  

SciTech Connect

Effect of nonuniform magnetic field on the expanding copper plasmoid in helium and argon gases using optical emission spectroscopy and fast imaging is presented. We report a peculiar oscillatory rotation of plasmoid in magnetic field and argon ambient. The temporal variation and appearance of the dip in the electron temperature show a direct evidence of the threading and expulsion of the magnetic field lines from the plasmoid. Rayleigh Taylor instability produced at the interface separating magnetic field and plasma is discussed.

Pandey, Pramod K.; Thareja, Raj K. [Department of Physics, Indian Institute of Technology Kanpur, Uttar Pradesh 208 016 (India)

2013-02-15

286

Minireview: Biological effects of magnetic fields  

SciTech Connect

The literature about the biological effects of magnetic fields is reviewed. The authors begin by discussing the weak and/or time variable fields, responsible for subtle changes in the circadian rhythms of superior animals, which are believed to be induced by same sort of resonant mechanism. The safety issues related with the strong magnetic fields and gradients generated by clinical NMR magnets are then considered. The last portion summarizes the debate about the biological effects of strong and uniform magnetic fields.

Villa, M.; Mustarelli, P. (Lab. NMR, Pavia (Italy)); Caprotti, M. (Fondazione Clinica del Lavoro, Pavia (Italy))

1991-01-01

287

Magnetic monopole and the nature of the static magnetic field  

E-print Network

We investigate the factuality of the hypothetical magnetic monopole and the nature of the static magnetic field. It is shown from many aspects that the concept of the massive magnetic monopoles clearly is physically untrue. We argue that the static magnetic field of a bar magnet, in fact, is the static electric field of the periodically quasi-one-dimensional electric-dipole superlattice, which can be well established in some transition metals with the localized d-electron. This research may shed light on the perfect unification of magnetic and electrical phenomena.

Xiuqing Huang

2008-12-10

288

Anisotropy of magnetic emulsions induced by magnetic and electric fields  

E-print Network

The anisotropy of magnetic emulsions induced by simultaneously acting electric and magnetic fields is theoretically and experimentally investigated. Due to the anisotropy, the electric conductivity and magnetic permeability of a magnetic emulsion are no longer scalar coefficients, but are tensors. The electric conductivity and magnetic permeability tensors of sufficiently diluted emulsions in sufficiently weak electric and magnetic fields are found as functions of the electric and magnetic intensity vectors. The theoretically predicted induced anisotropy was verified experimentally. The experimental data are analyzed and compared with theoretical predictions. The results of the analysis and comparison are discussed.

Yury I. Dikansky; Alexander N. Tyatyushkin; Arthur R. Zakinyan

2011-09-10

289

Microwave Measurements of Coronal Magnetic Field  

NASA Astrophysics Data System (ADS)

Magnetic field measurements of the solar corona using microwave observation are reviewed. The solar corona is filled with highly ionised plasma and magnetic field. Moving charged particles interact with magnetic field due to Lorentz force. This results in gyration motion perpendicular to the magnetic field and free motion along the magnetic field. Circularly polarized electro-magnetic waves interact with gyrating electrons efficiently and the interaction depends on the sense of circular polarization (right-handed or left-handed). This is the reason why we can measure magnetic field strength through microwave observations. This process does not require complicated quantum physics but the classical treatment is enough. Hence the inversion of measured values to magnetic field strength is simpler than in the case of optical and infrared measurements. There are several methods to measure magnetic field strength through microwave observations. We can divide them into two categories: one is based on emission mechanisms and the other is based on wave propagation. In the case of emission mechanisms, thermal f-f emission, thermal gyro-resonance emission and non-thermal gyro-synchrotron emission can be used to measure magnetic field strength. In the case of wave propagation, polarization reversal due to propagation through quasi-transverse magnetic field region can be used. Examples of distribution of magnetic field strength in the solar corona measured by Nobeyama Radioheliograph will be presented.

Shibasaki, K.

2006-08-01

290

High magnetic field MHD generator program. Final report, July 1, 1976-December 31, 1979  

SciTech Connect

A theoretical and experimental program was undertaken to investigate MHD channel phenomena which are important at high magnetic fields. The areas studied were inhomogeneity effects, boundary layers, Hall field breakdown and electrode configuration and current concentrations. In addition, a program was undertaken to study steady-state combustion disk and linear channels in an existing 6 Tesla magnet of small dimensions. The structure of the inhomogeneities in the Stanford M-2 was characterized and compared with theoretical results from a linearized perturbation analysis. General agreement was obtained and the analysis was used to compute stability regions for large size generators. The Faraday electrical connection was found to be more stable than the Hall or diagonal wall connections. Boundary layer profile measurements were compared with theoretical calculations with good agreement. Extrapolation of the calculations to pilot scale MHD channels indicates that Hartmann effects are important in the analysis of the sidewall, and Joule heating is important in calculating heat transfer and voltage drops for the electrode wall. Hall field breakdown was shown to occur both in the plasma and through the interelectrode insulator with the insulator breakdown threshold voltage lower than the plasma value. The threshold voltage was shown to depend on the interelectrode gap but was relatively independent of plasma conditions. Experiments were performed at 5.5 Tesla with both disk and linear MHD channels.

Eustis, R. H.; Kruger, C. H.; Mitchner, M.; Self, S. A.; Koester, J. K.; Nakamura, T.

1980-04-01

291

MRI-related static magnetic stray fields and postural body sway: a double-blind randomized crossover study.  

PubMed

We assessed postural body sway performance after exposure to movement induced time-varying magnetic fields in the static magnetic stray field in front of a 7 Tesla (T) magnetic resonance imaging scanner. Using a double blind randomized crossover design, 30 healthy volunteers performed two balance tasks (i.e., standing with eyes closed and feet in parallel and then in tandem position) after standardized head movements in a sham, low exposure (on average 0.24 T static magnetic stray field and 0.49 T·s(-1) time-varying magnetic field) and high exposure condition (0.37 T and 0.70 T·s(-1)). Personal exposure to static magnetic stray fields and time-varying magnetic fields was measured with a personal dosimeter. Postural body sway was expressed in sway path, area, and velocity. Mixed-effects model regression analysis showed that postural body sway in the parallel task was negatively affected (P < 0.05) by exposure on all three measures. The tandem task revealed the same trend, but did not reach statistical significance. Further studies are needed to investigate the possibility of independent or synergetic effects of static magnetic stray field and time-varying magnetic field exposure. In addition, practical safety implications of these findings, e.g., for surgeons and others working near magnetic resonance imaging scanners need to be investigated. PMID:22886724

van Nierop, Lotte E; Slottje, Pauline; Kingma, Herman; Kromhout, Hans

2013-07-01

292

Designing an optimum pulsed magnetic field by a resistance/self-inductance/capacitance discharge system and alignment of carbon nanotubes embedded in polypyrrole matrix.  

PubMed

In this work, an optimized pulsed magnetic field production apparatus is designed based on a RLC (Resistance/Self-inductance/Capacitance) discharge circuit. An algorithm for designing an optimum magnetic coil is presented. The coil is designed to work at room temperature. With a minor physical reinforcement, the magnetic flux density can be set up to 12 Tesla with 2 ms duration time. In our design process, the magnitude and the length of the magnetic pulse are the desired parameters. The magnetic field magnitude in the RLC circuit is maximized on the basis of the optimal design of the coil. The variables which are used in the optimization process are wire diameter and the number of coil layers. The coil design ensures the critically damped response of the RLC circuit. The electrical, mechanical, and thermal constraints are applied to the design process. A locus of probable magnetic flux density values versus wire diameter and coil layer is provided to locate the optimum coil parameters. Another locus of magnetic flux density values versus capacitance and initial voltage of the RLC circuit is extracted to locate the optimum circuit parameters. Finally, the application of high magnetic fields on carbon nanotube-PolyPyrrole (CNT-PPy) nano-composite is presented. Scanning probe microscopy technique is used to observe the orientation of CNTs after exposure to a magnetic field. The result shows alignment of CNTs in a 10.3 Tesla, 1.5 ms magnetic pulse. PMID:25725890

Kazemikia, Kaveh; Bonabi, Fahimeh; Asadpoorchallo, Ali; Shokrzadeh, Majid

2015-02-01

293

Designing an optimum pulsed magnetic field by a resistance/self-inductance/capacitance discharge system and alignment of carbon nanotubes embedded in polypyrrole matrix  

NASA Astrophysics Data System (ADS)

In this work, an optimized pulsed magnetic field production apparatus is designed based on a RLC (Resistance/Self-inductance/Capacitance) discharge circuit. An algorithm for designing an optimum magnetic coil is presented. The coil is designed to work at room temperature. With a minor physical reinforcement, the magnetic flux density can be set up to 12 Tesla with 2 ms duration time. In our design process, the magnitude and the length of the magnetic pulse are the desired parameters. The magnetic field magnitude in the RLC circuit is maximized on the basis of the optimal design of the coil. The variables which are used in the optimization process are wire diameter and the number of coil layers. The coil design ensures the critically damped response of the RLC circuit. The electrical, mechanical, and thermal constraints are applied to the design process. A locus of probable magnetic flux density values versus wire diameter and coil layer is provided to locate the optimum coil parameters. Another locus of magnetic flux density values versus capacitance and initial voltage of the RLC circuit is extracted to locate the optimum circuit parameters. Finally, the application of high magnetic fields on carbon nanotube-PolyPyrrole (CNT-PPy) nano-composite is presented. Scanning probe microscopy technique is used to observe the orientation of CNTs after exposure to a magnetic field. The result shows alignment of CNTs in a 10.3 Tesla, 1.5 ms magnetic pulse.

Kazemikia, Kaveh; Bonabi, Fahimeh; Asadpoorchallo, Ali; Shokrzadeh, Majid

2015-02-01

294

Harmonic undulator radiations with constant magnetic field  

NASA Astrophysics Data System (ADS)

Harmonic undulators has been analysed in the presence of constant magnetic field along the direction of main undulator field. The spectrum modifications in harmonic undulator radiations and intensity degradation as a function of constant magnetic field magnitude at fundamental and third harmonics have been evaluated with a numerical integration method and generalised Bessel function. The role of harmonic field to overcome the intensity reduction due to constant magnetic field and energy spread in electron beam has also been demonstrated.

Jeevakhan, Hussain; Mishra, G.

2015-01-01

295

How to Draw Magnetic Fields - II  

NSDL National Science Digital Library

This is an activity about depicting magnetic polarity. Learners will observe several provided drawings of magnetic field line patterns for bar magnets in simple orientations of like and unlike polarities and carefully draw the field lines and depict the polarities for several orientations, including an arrangement of six magnetic poles. This is the fourth activity in the Magnetic Math booklet; this booklet can be found on the Space Math@NASA website.

2012-08-03

296

A potential multiple resonance mechanism by which weak magnetic fields affect molecules and medical problems: the example of melatonin and experimental "multiple sclerosis".  

PubMed

A biophysical hypothesis to explain the powerful ameliorating effects of weak (nanoTesla range) magnetic fields on melatonin-related diseases is presented. The effects are dependent upon the molarity of the melatonin within specific organ spaces. The optimal ameliorating effects upon experimental allergic encephalomyelitis for both the derived intensities (about 35 and 70 nT) and the frequency (7 Hz) were congruent with the empirical observations from previously published and unpublished experiments with rats involving about 1-5000 nT strengths of either 0.5, 7, 40, or 60 Hz magnetic fields. The hypothesis predicts that weaker magnetic fields within the nanoTesla to picoTesla range would optimally affect concentrations of melatonin (in this situation) within the micromolar range and that neurological states (epilepsy) or conditions (ethanol, antidepressants, sleep deprivation) that affect nocturnal melatonin levels in human beings would determine the optimal effective intensity within the 7 Hz range. The resonance solution also suggests that mitochondrial proton gradients may be critical to the process. The model offers an alternative explanation to the variations of Faraday's Law and the Boltzmann constant that have been employed to explain and to dismiss biological effects from weak magnetic fields. PMID:16321472

Persinger, Michael A

2006-01-01

297

Interplanetary magnetic field data book  

NASA Technical Reports Server (NTRS)

An interplanetary magnetic field (IMF) data set is presented that is uniform with respect to inclusion of cislunar IMF data only, and which has as complete time coverage as presently possible over a full solar cycle. Macroscale phenomena in the interplanetary medium (sector structure, heliolatitude variations, solar cycle variations, etc.) and other phenomena (e.g., ground level cosmic-ray events) for which knowledge of the IMF with hourly resolution is necessary, are discussed. Listings and plots of cislunar hourly averaged IMP parameters over the period November 27, 1963, to May 17, 1974, are presented along with discussion of the mutual consistency of the IMF data used herein. The magnetic tape from which the plots and listings were generated, which is available from the National Space Science Data Center (NSSDC), is also discussed.

King, J. H.

1975-01-01

298

Scanning localized magnetic fields in a microfluidic device with a single nitrogen vacancy center  

E-print Network

Nitrogen vacancy (NV) color centers in diamond have emerged as highly versatile optical emitters that exhibit room temperature spin properties. These characteristics make NV centers ideal for magnetometry, which plays an important role in chemical and biological sensing applications. The integration of NV magnetometers with microfluidic systems could enable the study of isolated chemical and biological samples in a fluid environment with high spatial resolution. Here we demonstrate a method to perform localized magnetometry with nanometer spatial precision using a single NV center in a microfluidic device. We manipulate a magnetic particle within a liquid environment using a combination of planar microfluidic flow control and vertical magnetic actuation to achieve 3-dimensional manipulation. A diamond nanocrystal containing a single NV center is deposited in the microfluidic channels and acts as a local magnetic field probe. We map out the magnetic field distribution of the magnetic particle by varying its position relative to the diamond nanocrystal and performing optically resolved electron spin resonance (ESR) measurements. We control the magnetic particle position with a 48 nm precision and attain a magnetic field sensitivity of 17.5 microTesla/Hz^1/2. These results open up the possibility for studying local magnetic properties of biological and chemical systems with high sensitivity in an integrated microfluidic platform.

Kangmook Lim; Chad Ropp; Benjamin Shapiro; Jacob M. Taylor; Edo Waks

2014-08-01

299

Scanning Localized Magnetic Fields in a Microfluidic Device with a Single Nitrogen Vacancy Center  

NASA Astrophysics Data System (ADS)

Nitrogen vacancy (NV) color centers in diamond have emerged as highly versatile optical emitters that exhibit room temperature spin properties. These characteristics make NV centers ideal for magnetometry, which plays an important role in chemical and biological sensing applications. The integration of NV magnetometers with microfluidic systems could enable the study of isolated chemical and biological samples in a fluid environment with high spatial resolution. Here we demonstrate a method to perform localized magnetometry with nanometer spatial precision using a single NV center in a microfluidic device. We manipulate a magnetic particle within a liquid environment using a combination of planar microfluidic flow control and vertical magnetic actuation to achieve 3-dimensional manipulation. A diamond nanocrystal containing a single NV center is deposited in the microfluidic channels and acts as a local magnetic field probe. We map out the magnetic field distribution of the magnetic particle by varying its position relative to the diamond nanocrystal and performing optically resolved electron spin resonance (ESR) measurements. We control the magnetic particle position with a 48 nm precision and attain a magnetic field sensitivity of 17.5 microTesla/Hz^1/2. These results open up the possibility for studying local magnetic properties of biological and chemical systems with high sensitivity in an integrated microfluidic platform.

Lim, Kangmook; Ropp, Chad; Shapiro, Benjamin; Taylor, Jacob M.; Waks, Edo

2015-03-01

300

Tesla's contribution to radiowave propagation  

Microsoft Academic Search

We review Nikola Tesla's contribution to radiowave propagation and wireless power transmission. Tesla's patents, published and unpublished notes about radiowave propagation and wireless power transmission are less known, and if known to some extent, they are usually wrongly interpreted

Aleksandar Marincic; Djuradj Budimir

2001-01-01

301

Progress in HTS trapped field magnets: J(sub c), area, and applications  

NASA Technical Reports Server (NTRS)

Progress in trapped field magnets is reported. Single YBCO grains with diameters of 2 cm are made in production quantities, while 3 cm, 4 1/2 cm and 6 cm diameters are being explored. For single grain tiles: J(sub c) is approximately 10,000 A/cm(exp 2) for melt textured grains; J(sub c) is approximately 40,000 A/cm2 for light ion irradiation; and J(sub c) is approximately 85,000 A/cm(exp 2) for heavy ion irradiation. Using 2 cm diameter tiles bombarded by light ions, we have fabricated a mini-magnet which trapped 2.25 Tesla at 77K, and 5.3 Tesla at 65K. A previous generation of tiles, 1 cm x 1 cm, was used to trap 7.0 Tesla at 55K. Unirradiated 2.0 cm tiles were used to provide 8 magnets for an axial gap generator, in a collaborative experiment with Emerson Electric Co. This generator delivered 100 Watts to a resistive load, at 2265 rpm. In this experiment activation of the TFMs was accomplished by a current pulse of 15 ms duration. Tiles have also been studied for application as a bumper-tether system for the soft docking of spacecraft. A method for optimizing tether forces, and mechanisms of energy dissipation are discussed. A bus bar was constructed by welding three crystals while melt-texturing, such that their a,b planes were parallel and interleaved. The bus bar, an area of approximately 2 cm(exp 2), carried a transport current of 1000 amps, the limit of the testing equipment available.

Weinstein, Roy; Ren, Yanru; Liu, Jianxiong; Sawh, Ravi; Parks, Drew; Foster, Charles; Obot, Victor; Arndt, G. Dickey; Crapo, Alan

1995-01-01

302

Magnetic field driven domain-wall propagation in magnetic nanowires  

SciTech Connect

The mechanism of magnetic field induced magnetic domain-wall (DW) propagation in a nanowire is revealed: A static DW cannot exist in a homogeneous magnetic nanowire when an external magnetic field is applied. Thus, a DW must vary with time under a static magnetic field. A moving DW must dissipate energy due to the Gilbert damping. As a result, the wire has to release its Zeeman energy through the DW propagation along the field direction. The DW propagation speed is proportional to the energy dissipation rate that is determined by the DW structure. The negative differential mobility in the intermediate field is due to the transition from high energy dissipation at low field to low energy dissipation at high field. For the field larger than the so-called Walker breakdown field, DW plane precesses around the wire, leading to the propagation speed oscillation.

Wang, X.R. [Physics Department, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong (China); Yan, P. [Physics Department, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong (China)], E-mail: yanpeng@ust.hk; Lu, J.; He, C. [Physics Department, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong (China)

2009-08-15

303

Permanent Magnet Ecr Plasma Source With Magnetic Field Optimization  

DOEpatents

In a plasma-producing device, an optimized magnet field for electron cyclotron resonance plasma generation is provided by a shaped pole piece. The shaped pole piece adjusts spacing between the magnet and the resonance zone, creates a convex or concave resonance zone, and decreases stray fields between the resonance zone and the workpiece. For a cylindrical permanent magnet, the pole piece includes a disk adjacent the magnet together with an annular cylindrical sidewall structure axially aligned with the magnet and extending from the base around the permanent magnet. The pole piece directs magnetic field lines into the resonance zone, moving the resonance zone further from the face of the magnet. Additional permanent magnets or magnet arrays may be utilized to control field contours on a local scale. Rather than a permeable material, the sidewall structure may be composed of an annular cylindrical magnetic material having a polarity opposite that of the permanent magnet, creating convex regions in the resonance zone. An annular disk-shaped recurve section at the end of the sidewall structure forms magnetic mirrors keeping the plasma off the pole piece. A recurve section composed of magnetic material having a radial polarity forms convex regions and/or magnetic mirrors within the resonance zone.

Doughty, Frank C. (Plano, TX); Spencer, John E. (Plano, TX)

2000-12-19

304

Tilted microstrip phased arrays with improved electromagnetic decoupling for ultrahigh-field magnetic resonance imaging.  

PubMed

One of the technical challenges in designing a dedicated transceiver radio frequency (RF) array for MR imaging in humans at ultrahigh magnetic fields is how to effectively decouple the resonant elements of the array. In this work, we propose a new approach using tilted microstrip array elements for improving the decoupling performance and potentially parallel imaging capability. To investigate and validate the proposed design technique, an 8-channel volume array with tilted straight-type microstrip elements was designed, capable for human imaging at the ultrahigh field of 7 Tesla. In this volume transceiver array, its electromagnetic decoupling behavior among resonant elements, RF field penetration to biological samples, and parallel imaging performance were studied through bench tests and in vivo MR imaging experiments. In this specific tilted element array design, decoupling among array elements changes with the tilted angle of the elements and the best decoupling can be achieved at certain tilted angle. In vivo human knee MR images were acquired using the tilted volume array at 7 Tesla for method validation. Results of this study demonstrated that the electromagnetic decoupling between array elements and the B1 field strength can be improved by using the tilted element method in microstrip RF coil array designs at the ultrahigh field of 7T. PMID:25526481

Pang, Yong; Wu, Bing; Jiang, Xiaohua; Vigneron, Daniel B; Zhang, Xiaoliang

2014-12-01

305

Magnetic fluid flow phenomena in DC and rotating magnetic fields  

E-print Network

An investigation of magnetic fluid experiments and analysis is presented in three parts: a study of magnetic field induced torques in magnetorheological fluids, a characterization and quantitative measurement of properties ...

Rhodes, Scott E. (Scott Edward), 1981-

2004-01-01

306

Behavior of the magnetic structures of the magnetic fluid film under tilted magnetic fields  

Microsoft Academic Search

The patterns of the magnetic structure of the magnetic fluid thin film under tilted magnetic fields were taken to investigate the behavior of magnetic structures. The tilted angle ? is the angle between the direction of applied magnetic field and the normal line of the film. In our previous work, a nearly perfect ordered hexagonal structure in magnetic fluid thin

H. C Yang; I. J Jang; H. E Horng; J. M Wu; Y. C Chiou; Chin-Yih Hong

1999-01-01

307

Behavior of the magnetic structures of the magnetic fluid film under tilted magnetic fields  

Microsoft Academic Search

The patterns of the magnetic structure of the magnetic fluid thin film under tilted magnetic fields were taken to investigate the behavior of magnetic structures. The tilted angle theta is the angle between the direction of applied magnetic field and the normal line of the film. In our previous work, a nearly perfect ordered hexagonal structure in magnetic fluid thin

H. C. Yang; I. J. Jang; H. E. Horng; J. M. Wu; Y. C. Chiou; Chin-Yih Hong

1999-01-01

308

Evaluation of the WARP-turbo spin echo sequence for 3 Tesla magnetic resonance imaging of stifle joints in dogs with stainless steel tibial plateau leveling osteotomy implants.  

PubMed

Susceptibility artifacts caused by ferromagnetic implants compromise magnetic resonance imaging (MRI) of the canine stifle after tibial plateau leveling osteotomy (TPLO) procedures. The WARP-turbo spin echo sequence is being developed to mitigate artifacts and utilizes slice encoding for metal artifact reduction. The aim of the current study was to evaluate the WARP-turbo spin echo sequence for imaging post TPLO canine stifle joints. Proton density weighted images of 19 canine cadaver limbs were made post TPLO using a 3 Tesla MRI scanner. Susceptibility artifact sizes were recorded and compared for WARP vs. conventional turbo spin echo sequences. Three evaluators graded depiction quality for the tibial tuberosity, medial and lateral menisci, tibial osteotomy, and caudal cruciate ligament as sufficient or insufficient to make a diagnosis. Artifacts were subjectively smaller and local structures were better depicted in WARP-turbo spin echo images. Signal void area was also reduced by 75% (sagittal) and 49% (dorsal) in WARP vs. conventional turbo spin echo images. Evaluators were significantly more likely to grade local anatomy depiction as adequate for making a diagnosis in WARP-turbo spin echo images in the sagittal but not dorsal plane. The proportion of image sets with anatomic structure depiction graded adequate to make a diagnosis ranged from 28 to 68% in sagittal WARP-turbo spin echo images compared to 0-19% in turbo spin echo images. Findings indicated that the WARP-turbo spin echo sequence reduces the severity of susceptibility artifacts in canine stifle joints post TPLO. However, variable depiction of local anatomy warrants further refinement of the technique. PMID:24438513

Simpler, Renee E; Kerwin, Sharon C; Eichelberger, Bunita M; Wall, Corey R; Thompson, James A; Padua, Abraham; Purdy, David; Griffin, John F

2014-01-01

309

Efficacy of Using Three-Tesla Magnetic Resonance Imaging Diagnosis of Capsule Invasion for Decision-Making About Neurovascular Bundle Preservation in Robotic-Assisted Radical Prostatectomy  

PubMed Central

Purpose To evaluate the efficacy of using 3-tesla (T) magnetic resonance imaging (MRI) diagnosis of extracapsular extension (ECE) for decision-making about neurovascular bundle (NVB) preservation in robot-assisted radical prostatectomy (RARP) for prostate cancer (PC). Materials and Methods We prospectively collected data on PC patients (n=67) who underwent preoperative 3-T MRI before RARP. The choice between nerve sparing or resection was based on 3-T MRI findings of ECE. We compared the MRI findings with the pathological data on surgical margins. Our clinical staging in this study was defined only by MRI. Results When the data were divided by prostate lobe (right lobe or left lobe, n=134), 3-T MRI showed 28 positive cases of ECE in 134 prostate lobes, allowing NVB preservation in 42 cases (31.3%). Nerve-sparing surgery was achieved in 38.7% of cases in which clinical T2 staging by MRI was reported. The pathological data revealed that 10 of 134 prostate lobes had positive ECE. The overall sensitivity, specificity, positive predictive value, and negative predictive value for predicting stage T3 (positive ECE) by side were 60.0% (12 of 20 sides), 86.0% (98 of 114 sides), 42.9% (12 of 28 sides), and 92.5% (98 of 106 sides), respectively. Conclusions Three-T MRI prior to RARP enables the use of ECE diagnosis to guide decision-making about NVB preservation, with comparatively high specificity and negative predictive value. Further prospective studies are underway to reach more definitive conclusions. PMID:23878685

Shigemura, Katsumi; Muramaki, Mototsugu; Takahashi, Satoru; Miyake, Hideaki; Fujisawa, Masato

2013-01-01

310

T2 Relaxometry Using 3.0-Tesla Magnetic Resonance Imaging of the Brain in Early- and Late-Onset Restless Legs Syndrome  

PubMed Central

Background and Purpose Previous T2 relaxometry studies have provided evidence for regional brain iron deficiency in patients with restless legs syndrome (RLS). Measurement of the iron content in several brain regions, and in particular the substantia nigra (SN), in early- and late-onset RLS patients using T2 relaxometry have yielded inconsistent results. In this study the regional iron content was assessed in patients with early- and late-onset RLS using magnetic resonance imaging (MRI), and compared the results with those in controls. Methods Thirty-seven patients with idiopathic RLS (20 with early onset and 17 with late onset) and 40 control subjects were studied using a 3.0-tesla MRI with a gradient-echo sampling of free induction decay and echo pulse sequence. The regions of interest in the brain were measured independently by two trained analysts using software known as medical image processing, analysis, and visualization. The results were compared and a correlation analysis was conducted to investigate which brain areas were related to RLS clinical variables. Results The iron index in the SN was significantly lower in patients with late-onset RLS than in controls (p=0.034), while in patients with early-onset RLS there was no significant difference. There was no significant correlation between the SN iron index of the late-onset RLS group and clinical variables such as disease severity. Conclusions Late-onset RLS is associated with decreased iron content in the SN. This finding supports the hypothesis that regional brain iron deficiency plays a role in the pathophysiology of late-onset RLS. PMID:25045371

Moon, Hye-Jin; Chang, Yongmin; Lee, Yeong Seon; Song, Hee Jin; Chang, Hyuk Won; Ku, Jeonghun

2014-01-01

311

Diagnostic accuracy of a short-duration 3 Tesla magnetic resonance protocol for diagnosing stifle joint lesions in dogs with non-traumatic cranial cruciate ligament rupture  

PubMed Central

Background Magnetic resonance (MR) imaging is the preferred diagnostic tool to evaluate internal disorders of many joints in humans; however, the usefulness of MR imaging in the context of osteoarthritis, and joint disease in general, has yet to be characterized in veterinary medicine. The objective of this study was to assess the diagnostic accuracy of short-duration 3 Tesla MR imaging for the evaluation of cranial and caudal cruciate ligament, meniscal and cartilage damage, as well as the degree of osteoarthritis, in dogs affected by non-traumatic, naturally-occurring cranial cruciate ligament rupture (CCLR). Diagnoses made from MR images were compared to those made during surgical exploration. Twenty-one client-owned dogs were included in this study, and one experienced evaluator assessed all images. Results All cranial cruciate ligaments were correctly identified as ruptured. With one exception, all caudal cruciate ligaments were correctly identified as intact. High sensitivities and specificities were obtained when diagnosing meniscal rupture. MR images revealed additional subclinical lesions in both the cranial and caudal cruciate ligaments and in the menisci. There was a “clear” statistical (kappa) agreement between the MR and the surgical findings for both cartilage damage and degree of osteoarthritis. However, the large 95% confidence intervals indicated that evaluation of cartilage damage and of degree of osteoarthritis is not clinically satisfactory. Conclusions The presence of cruciate ligament damage and meniscal tears could be accurately assessed using the MR images obtained with our protocol. However, in the case of meniscal evaluation, occasional misdiagnosis did occur. The presence of cartilage damage and the degree of osteoarthritis could not be properly evaluated. PMID:23448526

2013-01-01

312

Quantitative model of the magnetospheric magnetic field  

Microsoft Academic Search

Quantitative representations of the magnetic fields associated with the magnetopause currents and the distributed currents (tail and quiet time ring currents) have been developed. These fields are used together with a dipole representation of the main field of the earth to model the total vector magnetospheric magnetic field. The model is based on quiet time data averaged over all 'tilt

W. P. Olson; K. A. Pfitzer

1974-01-01

313

Near-Field Magnetic Dipole Moment Analysis  

NASA Technical Reports Server (NTRS)

This paper describes the data analysis technique used for magnetic testing at the NASA Goddard Space Flight Center (GSFC). Excellent results have been obtained using this technique to convert a spacecraft s measured magnetic field data into its respective magnetic dipole moment model. The model is most accurate with the earth s geomagnetic field cancelled in a spherical region bounded by the measurement magnetometers with a minimum radius large enough to enclose the magnetic source. Considerably enhanced spacecraft magnetic testing is offered by using this technique in conjunction with a computer-controlled magnetic field measurement system. Such a system, with real-time magnetic field display capabilities, has been incorporated into other existing magnetic measurement facilities and is also used at remote locations where transport to a magnetics test facility is impractical.

Harris, Patrick K.

2003-01-01

314

Magnetization and magnetic susceptibility of DyH3  

NASA Technical Reports Server (NTRS)

The magnetization and differential magnetic susceptibility of powdered DyH3 samples are measured at a temperature of 4.2 K in applied magnetic fields ranging up to 9 Teslas. The differential magnetic susceptibility is also investigated in the zero applied field. Magnetization is plotted as a function of field strength, and differential susceptibility is described as a function of both field strength and temperature. A saturation magnetic moment of 5.12 Bohr magnetons per ion is derived from the magnetization data, and the zero-field susceptibility measurements are found to indicate antiferromagnetic ordering below 3.45 K. The susceptibility at 4.2 K is shown to have an inverse-square dependence on field strength for values of not less than 0.3 Tesla.

Flood, D. J.

1975-01-01

315

Magnetic field observations in Comet Halley's coma  

NASA Astrophysics Data System (ADS)

During the encounter with Comet Halley, the magnetometer (MISCHA) aboard the Vega 1 spacecraft observed an increased level of magnetic field turbulence, resulting from an upstream bow wave. Both Vega spacecraft measured a peak field strength of 70-80 nT and observed draping of magnetic field lines around the cometary obstacle. An unexpected rotation of the magnetic field vector was observed, which may reflect either penetration of magnetic field lines into a diffuse layer related to the contact surface separating the solar-wind and cometary plasma, or the persistence of pre-existing interplanetary field structures.

Riedler, W.; Schwingenschuh, K.; Yeroshenko, Ye. G.; Styashkin, V. A.; Russell, C. T.

1986-05-01

316

Calorimetric Study of Magnetic Field-Induced Phase Transitions in - Fulvalenium) -  

NASA Astrophysics Data System (ADS)

The particular class of organic conductors known as the Bechgaard salts exhibit a variety of highly anisotropic magnetic, thermal, and electrical phenomena. At low temperatures (below 10 kelvin), the application of a strong magnetic field establishes an effectively lower-dimensional anisotropic Fermi surface, as manifested in a variety of quasi one dimensional and quasi two dimensional thermodynamic and transport properties. Most dramatically, an increasing magnetic field--after suppression of superconductivity, induces a second order phase transition from a metallic to a spin density wave semimetal, followed by a series of first order phase transitions between density wave semimetallic states. This thesis concerns the thermodynamic nature of the low temperature magnetic field induced phase transitions in the Bechgaard charge-transfer salt (TMTSF)2-Cl(O)4. Presented here are the first measurements of the specific heat in magnetic fields up to 30 tesla, as well as the design and construction of a small sample calorimeter capable of operating at dilution refrigerator temperatures in the challenging environment of the high field resistive Bitter magnets. From transport measurements, the existence of a magnetic field induced reentrance into the metallic state has previously been inferred. In this thesis, the unambiguous bulk thermodynamic character of the reentrance is calorimetrically demonstrated. The behavior of the electronic specific heat at the reentrant transition is shown to be consistent with magnetic field enhanced localization. Additionally, quantum oscillations in the high field semimetallic state and the presence of additional structure above the reentrant field are observed. Although these oscillations have also been observed in magnetoresistance and magnetization, the magnitude of the oscillations in the specific heat calls into question all known models for the physical origin of these oscillations.

Fortune, Nathanael Alexander

317

Full 180° Magnetization Reversal with Electric Fields  

NASA Astrophysics Data System (ADS)

Achieving 180° magnetization reversal with an electric field rather than a current or magnetic field is a fundamental challenge and represents a technological breakthrough towards new memory cell designs. Here we propose a mesoscale morphological engineering approach to accomplishing full 180° magnetization reversals with electric fields by utilizing both the in-plane piezostrains and magnetic shape anisotropy of a multiferroic heterostructure. Using phase-field simulations, we examined a patterned single-domain nanomagnet with four-fold magnetic axis on a ferroelectric layer with electric-field-induced uniaxial strains. We demonstrated that the uniaxial piezostrains, if non-collinear to the magnetic easy axis of the nanomagnet at certain angles, induce two successive, deterministic 90° magnetization rotations, thereby leading to full 180° magnetization reversals.

Wang, J. J.; Hu, J. M.; Ma, J.; Zhang, J. X.; Chen, L. Q.; Nan, C. W.

2014-12-01

318

Full 180° magnetization reversal with electric fields.  

PubMed

Achieving 180° magnetization reversal with an electric field rather than a current or magnetic field is a fundamental challenge and represents a technological breakthrough towards new memory cell designs. Here we propose a mesoscale morphological engineering approach to accomplishing full 180° magnetization reversals with electric fields by utilizing both the in-plane piezostrains and magnetic shape anisotropy of a multiferroic heterostructure. Using phase-field simulations, we examined a patterned single-domain nanomagnet with four-fold magnetic axis on a ferroelectric layer with electric-field-induced uniaxial strains. We demonstrated that the uniaxial piezostrains, if non-collinear to the magnetic easy axis of the nanomagnet at certain angles, induce two successive, deterministic 90° magnetization rotations, thereby leading to full 180° magnetization reversals. PMID:25512070

Wang, J J; Hu, J M; Ma, J; Zhang, J X; Chen, L Q; Nan, C W

2014-01-01

319

Magnetic field effects on microwave absorbing materials  

NASA Technical Reports Server (NTRS)

The objective of this program was to gather information to formulate a microwave absorber that can work in the presence of strong constant direct current (DC) magnetic fields. The program was conducted in four steps. The first step was to investigate the electrical and magnetic properties of magnetic and ferrite microwave absorbers in the presence of strong magnetic fields. This included both experimental measurements and a literature survey of properties that may be applicable to finding an appropriate absorbing material. The second step was to identify those material properties that will produce desirable absorptive properties in the presence of intense magnetic fields and determine the range of magnetic field in which the absorbers remain effective. The third step was to establish ferrite absorber designs that will produce low reflection and adequate absorption in the presence of intense inhomogeneous static magnetic fields. The fourth and final step was to prepare and test samples of such magnetic microwave absorbers if such designs seem practical.

Goldberg, Ira; Hollingsworth, Charles S.; Mckinney, Ted M.

1991-01-01

320

Full 180° Magnetization Reversal with Electric Fields  

PubMed Central

Achieving 180° magnetization reversal with an electric field rather than a current or magnetic field is a fundamental challenge and represents a technological breakthrough towards new memory cell designs. Here we propose a mesoscale morphological engineering approach to accomplishing full 180° magnetization reversals with electric fields by utilizing both the in-plane piezostrains and magnetic shape anisotropy of a multiferroic heterostructure. Using phase-field simulations, we examined a patterned single-domain nanomagnet with four-fold magnetic axis on a ferroelectric layer with electric-field-induced uniaxial strains. We demonstrated that the uniaxial piezostrains, if non-collinear to the magnetic easy axis of the nanomagnet at certain angles, induce two successive, deterministic 90° magnetization rotations, thereby leading to full 180° magnetization reversals. PMID:25512070

Wang, J. J.; Hu, J. M.; Ma, J.; Zhang, J. X.; Chen, L. Q.; Nan, C. W.

2014-01-01

321

Investigation of the initial dip in fMRI at 7 Tesla Essa Yacoub, Amir Shmuel, Josef Pfeuffer, Pierre-Francois Van De Moortele, Gregor Adriany, Kamil  

E-print Network

magnetic fields, the present study investigated the initial dip at 7 T. In addition, to reduce the partialInvestigation of the initial dip in fMRI at 7 Tesla Essa Yacoub, Amir Shmuel, Josef Pfeuffer studies, previous fMRI studies have reported an initial decrease (i.e. the initial dip) in the BOLD

322

Magnetic field calculation and measurement of active magnetic bearings  

NASA Astrophysics Data System (ADS)

Magnetic Bearings are typical devices in which electric energy and mechanical energy convert mutually. Magnetic Field indicates the relationship between 2 of the most important parameters in a magnetic bearing - current and force. This paper presents calculation and measurement of the magnetic field distribution of a self-designed magnetic bearing. Firstly, the static Maxwell's equations of the magnetic bearing are presented and a Finite Element Analysis (FEA) is found to solve the equations and get post-process results by means of ANSYS software. Secondly, to confirm the calculation results a Lakeshore460 3-channel Gaussmeter is used to measure the magnetic flux density of the magnetic bearing in X, Y, Z directions accurately. According to the measurement data the author constructs a 3D magnetic field distribution digital model by means of MATLAB software. Thirdly, the calculation results and the measurement data are compared and analyzed; the comparing result indicates that the calculation results are consistent with the measurement data in allowable dimension variation, which means that the FEA calculation method of the magnetic bearing has high precision. Finally, it is concluded that the magnetic field calculation and measurement can accurately reflect the real magnetic distribution in the magnetic bearing and the result can guide the design and analysis of the magnetic bearing effectively.

Ding, Guoping; Zhou, Zude; Hu, Yefa

2006-11-01

323

Diluted magnetic semiconductors: Novel properties in high magnetic fields  

NASA Astrophysics Data System (ADS)

Diluted magnetic semiconductors, II-VI and IV-VI compounds in which the cation is partially replaced by a magnetic ion such as Mn or a rare earth, combine interesting semiconducting and magnetic properties. At zero applied field, the materials behave like normal semiconductors or semimetals with energy gaps that can be varied with the composition of the magnetic ion. In the presence of an applied field, however, novel properties are observed. These include large field-induced splittings of energy levels, leading to strong Faraday rotations and the possibility of energy-gap tuning by magnetic field, field and temperature-dependent g-factors, large negative magnetoresistance followed at higher fields by a slowly varying positive magnetoresistance, and large paramagnetism with coupling of the magnetic ions by superexchange. Not only can these properties be observed in bulk crystal, but also they suggest promising physics and applications in artificially structured materials.

Anderson, J. R.

1990-06-01

324

Deformation of Water by a Magnetic Field  

ERIC Educational Resources Information Center

After the discovery that superconducting magnets could levitate diamagnetic objects, researchers became interested in measuring the repulsion of diamagnetic fluids in strong magnetic fields, which was given the name "The Moses Effect." Both for the levitation experiments and the quantitative studies on liquids, the large magnetic fields necessary…

Chen, Zijun; Dahlberg, E. Dan

2011-01-01

325

Exploring Magnetic Fields with a Compass  

ERIC Educational Resources Information Center

A compass is an excellent classroom tool for the exploration of magnetic fields. Any student can tell you that a compass is used to determine which direction is north, but when paired with some basic trigonometry, the compass can be used to actually measure the strength of the magnetic field due to a nearby magnet or current-carrying wire. In this…

Lunk, Brandon; Beichner, Robert

2011-01-01

326

Analysis of magnetic field levels at KSC  

NASA Technical Reports Server (NTRS)

The scope of this work is to evaluate the magnetic field levels of distribution systems and other equipment at Kennedy Space Center (KSC). Magnetic fields levels in several operational areas and various facilities are investigated. Three dimensional mappings and contour are provided along with the measured data. Furthermore, the portion of magnetic fields generated by the 60 Hz fundamental frequency and the portion generated by harmonics are examined. Finally, possible mitigation techniques for attenuating fields from electric panels are discussed.

Christodoulou, Christos G.

1994-01-01

327

TESLA-Report 1996-12 TESLA-Report 1996-12  

E-print Network

TESLA-Report 1996-12 #12;TESLA-Report 1996-12 #12;TESLA-Report 1996-12 #12;TESLA-Report 1996-12 #12;TESLA-Report 1996-12 #12;TESLA-Report 1996-12 #12;TESLA-Report 1996-12 #12;TESLA-Report 1996-12 #12;TESLA-Report 1996-12 #12;TESLA-Report 1996-12 #12;TESLA-Report 1996-12 #12;TESLA-Report 1996-12 #12

328

Magnetic field waves at Uranus  

NASA Technical Reports Server (NTRS)

The research efforts funded by the Uranus Data Analysis Program (UDAP) grant to the Bartol Research Institute (BRI) involved the study of magnetic field waves associated with the Uranian bow shock. Upstream wave studies are motivated as a study of the physics of collisionless shocks. Collisionless shocks in plasmas are capable of 'reflecting' a fraction of the incoming thermal particle distribution and directing the resulting energetic particle motion back into the upstream region. Once within the upstream region, the backward streaming energetic particles convey information of the approaching shock to the supersonic flow. This particle population is responsible for the generation of upstream magnetic and electrostatic fluctuations known as 'upstream waves', for slowing the incoming wind prior to the formation of the shock ramp, and for heating of the upstream plasma. The waves produced at Uranus not only differed in several regards from the observations at other planetary bow shocks, but also gave new information regarding the nature of the reflected particle populations which were largely unmeasurable by the particle instruments. Four distinct magnetic field wave types were observed upstream of the Uranian bow shock: low-frequency Alfven or fast magnetosonic waves excited by energetic protons originating at or behind the bow shock; whistler wave bursts driven by gyrating ion distributions within the shock ramp; and two whistler wave types simultaneously observed upstream of the flanks of the shock and argued to arise from resonance with energetic electrons. In addition, observations of energetic particle distributions by the LECP experiment, thermal particle populations observed by the PLS experiment, and electron plasma oscillations recorded by the PWS experiment proved instrumental to this study and are included to some degree in the papers and presentations supported by this grant.

Smith, Charles W.; Goldstein, Melvyn L.; Lepping, Ronald P.; Mish, William H.; Wong, Hung K.

1994-01-01

329

Eight-Channel Head Array and Control System for Parallel Transmit/Receive Magnetic Resonance Imaging  

E-print Network

Interest in magnetic resonance imaging (MRI) at high fields strengths (3 Tesla and above) is driven by the associated improvements in signal-to-noise ratio and spectral resolution. In practice, however, technical challenges prevent these benefits...

Moody, Katherine

2014-08-11

330

Abnormal Magnetic Field Effects on Electrogenerated Chemiluminescence  

NASA Astrophysics Data System (ADS)

We report abnormal magnetic field effects on electrogenerated chemiluminescence (MFEECL) based on triplet emission from the Ru(bpy)3Cl2-TPrA electrochemical system: the appearance of MFEECL after magnetic field ceases. In early studies the normal MFEECL have been observed from electrochemical systems during the application of magnetic field. Here, the abnormal MFEECL suggest that the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes may become magnetized in magnetic field and experience a long magnetic relaxation after removing magnetic field. Our analysis indicates that the magnetic relaxation can gradually increase the density of charge-transfer complexes within reaction region due to decayed magnetic interactions, leading to a positive component in the abnormal MFEECL. On the other hand, the magnetic relaxation facilitates an inverse conversion from triplets to singlets within charge-transfer complexes. The inverse triplet --> singlet conversion reduces the density of triplet light-emitting states through charge-transfer complexes and gives rise to a negative component in the abnormal MFEECL. The combination of positive and negative components can essentially lead to a non-monotonic profile in the abnormal MFEECL after ceasing magnetic field. Nevertheless, our experimental studies may reveal un-usual magnetic behaviors with long magnetic relaxation from the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes in solution at room temperature.

Pan, Haiping; Shen, Yan; Wang, Hongfeng; He, Lei; Hu, Bin

2015-03-01

331

Abnormal magnetic field effects on electrogenerated chemiluminescence.  

PubMed

We report abnormal magnetic field effects on electrogenerated chemiluminescence (MFEECL) based on triplet emission from the Ru(bpy)3Cl2-TPrA electrochemical system: the appearance of MFEECL after magnetic field ceases. In early studies the normal MFEECL have been observed from electrochemical systems during the application of magnetic field. Here, the abnormal MFEECL suggest that the activated charge-transfer [Ru(bpy)3(3+) … TPrA(•)] complexes may become magnetized in magnetic field and experience a long magnetic relaxation after removing magnetic field. Our analysis indicates that the magnetic relaxation can gradually increase the density of charge-transfer complexes within reaction region due to decayed magnetic interactions, leading to a positive component in the abnormal MFEECL. On the other hand, the magnetic relaxation facilitates an inverse conversion from triplets to singlets within charge-transfer complexes. The inverse triplet ? singlet conversion reduces the density of triplet light-emitting states through charge-transfer complexes and gives rise to a negative component in the abnormal MFEECL. The combination of positive and negative components can essentially lead to a non-monotonic profile in the abnormal MFEECL after ceasing magnetic field. Nevertheless, our experimental studies may reveal un-usual magnetic behaviors with long magnetic relaxation from the activated charge-transfer [Ru(bpy)3(3+) … TPrA(•)] complexes in solution at room temperature. PMID:25772580

Pan, Haiping; Shen, Yan; Wang, Hongfeng; He, Lei; Hu, Bin

2015-01-01

332

Abnormal Magnetic Field Effects on Electrogenerated Chemiluminescence  

PubMed Central

We report abnormal magnetic field effects on electrogenerated chemiluminescence (MFEECL) based on triplet emission from the Ru(bpy)3Cl2-TPrA electrochemical system: the appearance of MFEECL after magnetic field ceases. In early studies the normal MFEECL have been observed from electrochemical systems during the application of magnetic field. Here, the abnormal MFEECL suggest that the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes may become magnetized in magnetic field and experience a long magnetic relaxation after removing magnetic field. Our analysis indicates that the magnetic relaxation can gradually increase the density of charge-transfer complexes within reaction region due to decayed magnetic interactions, leading to a positive component in the abnormal MFEECL. On the other hand, the magnetic relaxation facilitates an inverse conversion from triplets to singlets within charge-transfer complexes. The inverse triplet ? singlet conversion reduces the density of triplet light-emitting states through charge-transfer complexes and gives rise to a negative component in the abnormal MFEECL. The combination of positive and negative components can essentially lead to a non-monotonic profile in the abnormal MFEECL after ceasing magnetic field. Nevertheless, our experimental studies may reveal un-usual magnetic behaviors with long magnetic relaxation from the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes in solution at room temperature. PMID:25772580

Pan, Haiping; Shen, Yan; Wang, Hongfeng; He, Lei; Hu, Bin

2015-01-01

333

Unique topological characterization of braided magnetic fields  

SciTech Connect

We introduce a topological flux function to quantify the topology of magnetic braids: non-zero, line-tied magnetic fields whose field lines all connect between two boundaries. This scalar function is an ideal invariant defined on a cross-section of the magnetic field, and measures the average poloidal magnetic flux around any given field line, or the average pairwise crossing number between a given field line and all others. Moreover, its integral over the cross-section yields the relative magnetic helicity. Using the fact that the flux function is also an action in the Hamiltonian formulation of the field line equations, we prove that it uniquely characterizes the field line mapping and hence the magnetic topology.

Yeates, A. R. [Department of Mathematical Sciences, Durham University, Durham DH1 3LE (United Kingdom); Hornig, G. [Division of Mathematics, University of Dundee, Dundee DD1 4HN (United Kingdom)

2013-01-15

334

Bipolar pulse field for magnetic refrigeration  

DOEpatents

A magnetic refrigeration apparatus includes first and second steady state magnets, each having a field of substantially equal strength and opposite polarity, first and second bodies made of magnetocaloric material disposed respectively in the influence of the fields of the first and second steady state magnets, and a pulsed magnet, concentric with the first and second steady state magnets, and having a field which cycles between the fields of the first and second steady state magnets, thereby cyclically magnetizing and demagnetizing and thus heating and cooling the first and second bodies. Heat exchange apparatus of suitable design can be used to expose a working fluid to the first and second bodies of magnetocaloric material. A controller is provided to synchronize the flow of working fluid with the changing states of magnetization of the first and second bodies.

Lubell, Martin S. (Oak Ridge, TN)

1994-01-01

335

Bipolar pulse field for magnetic refrigeration  

DOEpatents

A magnetic refrigeration apparatus includes first and second steady state magnets, each having a field of substantially equal strength and opposite polarity, first and second bodies made of magnetocaloric material disposed respectively in the influence of the fields of the first and second steady state magnets, and a pulsed magnet, concentric with the first and second steady state magnets, and having a field which cycles between the fields of the first and second steady state magnets, thereby cyclically magnetizing and demagnetizing and thus heating and cooling the first and second bodies. Heat exchange apparatus of suitable design can be used to expose a working fluid to the first and second bodies of magnetocaloric material. A controller is provided to synchronize the flow of working fluid with the changing states of magnetization of the first and second bodies. 2 figs.

Lubell, M.S.

1994-10-25

336

Exploring Magnetic Fields in Your Environment  

NSDL National Science Digital Library

This is a lesson about measuring magnetic field directions of Earth and in the environment. First, learners go outside, far away from buildings, power lines, or anything electrical or metal, and use compasses to identify magnetic North. Next, they use the compasses to probe whether there are any sources of magnetic fields in the local environment, including around electronic equipment such as a CD player and speakers. This is the first lesson in the second session of the Exploring Magnetism teacher guide.

337

Measurements of Heme Relaxation and Ligand Recombination in Strong Magnetic Fields  

PubMed Central

Heme cooling signals and diatomic ligand recombination kinetics are measured in strong magnetic fields (up to 10 Tesla). We examined diatomic ligand recombination to heme model compounds (NO and CO), myoglobin (NO and O2), and horseradish peroxidase (NO). No magnetic field induced rate changes in any of the samples were observed within the experimental detection limit. However, in the case of CO binding to heme in glycerol and O2 binding to myoglobin, we observe a small magnetic field dependent change in the early time amplitude of the optical response that is assigned to heme cooling. One possibility, consistent with this observation, is that there is a weak magnetic field dependence of the non-radiative branching ratio into the vibrationally hot electronic ground state during CO photolysis. Ancillary studies of the “spin-forbidden” CO binding reaction in a variety of heme compounds in the absence of magnetic field demonstrate a surprisingly wide range for the Arrhenius prefactor. We conclude that CO binding to heme is not always retarded by unfavorable spin selection rules involving a double spin-flip superexchange mechanism. In fact, it appears that the small prefactor (~109s?1) found for CO rebinding to Mb may be anomalous, rather than the general rule for heme-CO rebinding. These results point to unresolved fundamental issues that underlie the theory of heme-ligand photolysis and rebinding. PMID:19588986

Zhang, Zhenyu; Benabbas, Abdelkrim; Ye, Xiong; Yu, Anchi; Champion, Paul M.

2009-01-01

338

Comparison of Gross Body Fat-Water Magnetic Resonance Imaging at 3 Tesla to Dual Energy X-Ray Absorptiometry in Obese Women  

PubMed Central

Improved understanding of how depot-specific adipose tissue mass predisposes to obesity-related comorbidities could yield new insights into the pathogenesis and treatment of obesity as well as metabolic benefits of weight loss. We hypothesized that three-dimensional contiguous “fat-water” MR imaging (FWMRI) covering the majority of a whole-body field of view (FOV) acquired at 3 Tesla (3T) and coupled with automated segmentation and quantification of amount, type and distribution of adipose and lean soft tissue would show great promise in body composition methodology. Precision of adipose and lean soft tissue measurements in body and trunk regions were assessed for 3T FWMRI and compared to DEXA. Anthropometric, FWMRI and DEXA measurements were obtained in twelve women with BMI 30–39.9 kg/m2. Test-retest results found coefficients of variation for FWMRI that were all under 3%: gross body adipose tissue (GBAT) 0.80%, total trunk adipose tissue (TTAT) 2.08%, visceral adipose tissue (VAT) 2.62%, subcutaneous adipose tissue (SAT) 2.11%, gross body lean soft tissue (GBLST) 0.60%, and total trunk lean soft tissue (TTLST) 2.43%. Concordance correlation coefficients between FWMRI and DEXA were 0.978, 0.802, 0.629, and 0.400 for GBAT, TTAT, GBLST and TTLST, respectively. While Bland Altman plots demonstrated agreement between FWMRI and DEXA for GBAT and TTAT, a negative bias existed for GBLST and TTLST measurements. Differences may be explained by the FWMRI FOV length and potential for DEXA to overestimate lean soft tissue. While more development is necessary, the described 3T FWMRI method combined with fully-automated segmentation is fast (<30 minutes total scan and post-processing time), noninvasive, repeatable and cost effective. PMID:23712980

Silver, HJ; Niswender, KD; Kullberg, J; Berglund, J; Johansson, L; Bruvold, M; Avison, MJ; Welch, EB.

2012-01-01

339

Dirac oscillator in an external magnetic field  

E-print Network

We show that 2+1 dimensional Dirac oscillators in an external magnetic field is mapped onto the same with reduced angular frequency in absence of magnetic field. This can be used to study the atomic transitions in a radiation field. Relativistic Landau levels are constructed explicitly. Several interesting features of this system are discussed.

Bhabani Prasad Mandal; Shweta Verma

2009-12-19

340

DC-based magnetic field controller  

DOEpatents

A magnetic field controller for laboratory devices and in particular to dc operated magnetic field controllers for mass spectrometers, comprising a dc power supply in combination with improvements to a hall probe subsystem, display subsystem, preamplifier, field control subsystem, and an output stage.

Kotter, Dale K. (Shelley, ID); Rankin, Richard A. (Ammon, ID); Morgan, John P,. (Idaho Falls, ID)

1994-01-01

341

Representation of magnetic fields in space  

NASA Technical Reports Server (NTRS)

Several methods by which a magnetic field in space can be represented are reviewed with particular attention to problems of the observed geomagnetic field. Time dependence is assumed to be negligible, and five main classes of representation are described by vector potential, scalar potential, orthogonal vectors, Euler potentials, and expanded magnetic field.

Stern, D. P.

1975-01-01

342

DC-based magnetic field controller  

DOEpatents

A magnetic field controller is described for laboratory devices and in particular to dc operated magnetic field controllers for mass spectrometers, comprising a dc power supply in combination with improvements to a Hall probe subsystem, display subsystem, preamplifier, field control subsystem, and an output stage. 1 fig.

Kotter, D.K.; Rankin, R.A.; Morgan, J.P.

1994-05-31

343

Ohm's law for mean magnetic fields  

Microsoft Academic Search

The magnetic fields associated with plasmas frequently exhibit small amplitude MHD fluctuations. It is useful to have equations for the magnetic field averaged over these fluctuations, the so-called mean field equations. Under very general assumptions it is shown that the effect of MHD fluctuations on a force-free plasma can be represented by one parameter in Ohm's law, which is effectively

Boozer

1986-01-01

344

Magnetic field sensor for isotropically sensing an incident magnetic field in a sensor plane  

NASA Technical Reports Server (NTRS)

A magnetic field sensor that isotropically senses an incident magnetic field. This is preferably accomplished by providing a magnetic field sensor device that has one or more circular shaped magnetoresistive sensor elements for sensing the incident magnetic field. The magnetoresistive material used is preferably isotropic, and may be a CMR material or some form of a GMR material. Because the sensor elements are circular in shape, shape anisotropy is eliminated. Thus, the resulting magnetic field sensor device provides an output that is relatively independent of the direction of the incident magnetic field in the sensor plane.

Pant, Bharat B. (Inventor); Wan, Hong (Inventor)

2001-01-01

345

MAGNETIC FIELD CONFINEMENT IN THE SOLAR CORONA. I. FORCE-FREE MAGNETIC FIELDS B. Fornberg,2  

E-print Network

MAGNETIC FIELD CONFINEMENT IN THE SOLAR CORONA. I. FORCE-FREE MAGNETIC FIELDS N. Flyer,1 B Axisymmetric force-free magnetic fields external to a unit sphere are studied as solutions to boundary value total azimuthal flux with a power-law distribution over the poloidal field. Particular attention is paid

Fornberg, Bengt

346

Wide-range nuclear magnetic resonance detector  

NASA Technical Reports Server (NTRS)

Compact and easy to use solid state nuclear magnetic resonance detector is designed for measuring field strength to 20 teslas in cryogenically cooled magnets. Extremely low noise and high sensitivity make detector applicable to nearly all types of analytical nuclear magnetic resonance measurements and can be used in high temperature and radiation environments.

Sturman, J. C.; Jirberg, R. J.

1972-01-01

347

Spectroscopic, diffusion and perfusion magnetic resonance imaging at 3.0 Tesla in the delineation of glioblastomas: preliminary results.  

PubMed

Recent advances in magnetic resonance imaging (MRI) have allowed the evaluation of metabolic, diffusion and hemodynamic features of malignant gliomas. The aim of this study was to evaluate whether such information provided useful, complementary information to conventional MRI for improving the evaluation of glioblastoma extent. Ten patients with glioblastoma multiforme underwent conventional MRI, proton MR spectroscopic imaging (1H-MRSI), perfusion-weighted imaging (PWI) and diffusion-weighted imaging (DWI). Metabolite signals, including normalized choline, N-acetylaspartate, creatine and lactate/lipids, were obtained by 1H-MRSI; apparent diffusion coefficient (ADC) by DWI; and relative cerebral blood volume (rCBV) by PWI. In edematous-appearing areas, 3 multiparametric patterns were identified: infiltrating tumor, with abnormal metabolite ratios, lower ADC and higher rCBV; pure edema, with normal metabolite ratios, higher ADC and lower rCBV; and tumor-infiltrated edema, with abnormal metabolite ratios and intermediate ADC and rCBV. In normal-appearing areas, 2 multiparametric patterns were identified: tumor-infiltrated tissue, with abnormal metabolite ratios and higher rCBV; and normal tissue, with normal MR parameters. The combination of 1H-MRSI, DWI and PWI features contributed to delineation of glioblastomas, offering information not available with conventional MRI. This approach may enhance the assessment of brain gliomas, providing useful information for guiding stereotactic biopsies, surgical resection and radiation treatment. PMID:17167979

Di Costanzo, A; Trojsi, F; Giannatempo, G M; Vuolo, L; Popolizio, T; Catapano, D; Bonavita, S; d'Angelo, V A; Tedeschi, G; Scarabino, T

2006-09-01

348

Spin injection, transport, and relaxation in spin light-emitting diodes: magnetic field effects  

NASA Astrophysics Data System (ADS)

Efficient electrical spin injection into semiconductor based devices at room temperature is one of the most important requirements for the development of applicable spintronic devices in the near future and is thus an important and very active research field. Here we report experimental results for the electrical spin injection in spin light-emitting diodes (spin-LEDs) without external magnetic fields at room temperature. Our devices consist of a Fe/Tb multilayer spin injector with remanent out-of-plane magnetization, an MgO tunnel barrier for efficient spin injection and an InAs quantum dot light-emitting diode. Using a series of samples with different injection path lengths allows us to experimentally determine the spin relaxation during vertical transport from the spin injector to the active region at room temperature. In combination with our concept for remanent spin injection, we are additionally able to investigate the influence of an external magnetic field on the spin relaxation process during transport. While the spin relaxation length at room temperature without external magnetic field is determined to be 27 nm, this value almost doubles if an external magnetic field of 2 Tesla is applied in Faraday geometry. This demonstrates that the results for spin injection and spin relaxation obtained with or without magnetic field can hardly be compared. The efficiency of spin-induced effects is overestimated as long as magnetic fields are involved. Since strong magnetic fields are not acceptable in application settings, this may lead to wrong conclusions and potentially impairs proper device development.

Höpfner, Henning; Fritsche, Carola; Ludwig, Arne; Ludwig, Astrid; Stromberg, Frank; Wende, Heiko; Keune, Werner; Reuter, Dirk; Wieck, Andreas D.; Gerhardt, Nils C.; Hofmann, Martin R.

2013-09-01

349

Magnetic field waves at Uranus  

NASA Technical Reports Server (NTRS)

The proposed research efforts funded by the UDAP grant to the BRI involve the study of magnetic field waves associated with the Uranian bow shock. This is a collaborative venture bringing together investigators at the BRI, Southwest Research Institute (SwRI), and Goddard Space Flight Center (GSFC). In addition, other collaborations have been formed with investigators granted UDAP funds for similar studies and with investigators affiliated with other Voyager experiments. These investigations and the corresponding collaborations are included in the report. The proposed effort as originally conceived included an examination of waves downstream from the shock within the magnetosheath. However, the observations of unexpected complexity and diversity within the upstream region have necessitated that we confine our efforts to those observations recorded upstream of the bow shock on the inbound and outbound legs of the encounter by the Voyager 2 spacecraft.

Smith, Charles W.; Goldstein, Melvyn L.; Lepping, Ronald P.; Mish, William H.; Wong, Hung K.

1991-01-01

350

Orientation within a high magnetic field determines swimming direction and laterality of c-Fos induction in mice.  

PubMed

High-strength static magnetic fields (>7 tesla) perturb the vestibular system causing dizziness, nystagmus, and nausea in humans; and head motion, locomotor circling, conditioned taste aversion, and c-Fos induction in brain stem vestibular nuclei in rodents. To determine the role of head orientation, mice were exposed for 15 min within a 14.1-tesla magnet at six different angles (mice oriented parallel to the field with the head toward B+ at 0°; or pitched rostrally down at 45°, 90°, 90° sideways, 135°, and 180°), followed by a 2-min swimming test. Additional mice were exposed at 0°, 90°, and 180° and processed for c-Fos immunohistochemistry. Magnetic field exposure induced circular swimming that was maximal at 0° and 180° but attenuated at 45° and 135°. Mice exposed at 0° and 45° swam counterclockwise, whereas mice exposed at 135° and 180° swam clockwise. Mice exposed at 90° (with their rostral-caudal axis perpendicular to the magnetic field) did not swim differently than controls. In parallel, exposure at 0° and 180° induced c-Fos in vestibular nuclei with left-right asymmetries that were reversed at 0° vs. 180°. No significant c-Fos was induced after 90° exposure. Thus, the optimal orientation for magnetic field effects is the rostral-caudal axis parallel to the field, such that the horizontal canal and utricle are also parallel to the field. These results have mechanistic implications for modeling magnetic field interactions with the vestibular apparatus of the inner ear (e.g., the model of Roberts et al. of an induced Lorenz force causing horizontal canal cupula deflection). PMID:23720133

Houpt, Thomas A; Kwon, Bumsup; Houpt, Charles E; Neth, Bryan; Smith, James C

2013-10-01

351

Homogenous BSCCO-2212 Round Wires for Very High Field Magnets  

SciTech Connect

The performance demands on modern particle accelerators generate a relentless push towards higher field magnets. In turn, advanced high field magnet development places increased demands on superconducting materials. Nb3Sn conductors have been used to achieve 16 T in a prototype dipole magnet and are thought to have the capability for {approx}18 T for accelerator magnets (primarily dipoles but also higher order multipole magnets). However there have been suggestions and proposals for such magnets higher than 20 T. The High Energy Physics Community (HEP) has identified important new physics opportunities that are enabled by extremely high field magnets: 20 to 50 T solenoids for muon cooling in a muon collider (impact: understanding of neutrinos and dark matter); and 20+ T dipoles and quadrupoles for high energy hadron colliders (impact: discovery reach far beyond present). This proposal addresses the latest SBIR solicitation that calls for grant applications that seek to develop new or improved superconducting wire technologies for magnets that operate at a minimum of 12 Tesla (T) field, with increases up to 15 to 20 T sought in the near future (three to five years). The long-term development of accelerator magnets with fields greater than 20 T will require superconducting wires having significantly better high-field properties than those possessed by current Nb{sub 3}Sn or other A15 based wires. Given the existing materials science base for Bi-2212 wire processing, we believe that Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub y} (Bi-2212) round wires can be produced in km-long piece lengths with properties suitable to meet both the near term and long term needs of the HEP community. The key advance will be the translation of this materials science base into a robust, high-yield wire technology. While the processing and application of A15 materials have advanced to a much higher level than those of the copper oxide-based, high T{sub c} (HTS) counterparts, the HTS materials have the very significant advantage of an extremely high H{sub c2}. For this reason, Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub y} (Bi-2212, or 2212) in the form of a multifilamentary Ag alloy matrix composite is beginning to attract the interest of the magnet community for future extremely high-field magnets or magnet-insert coils for 4.2K operation. Fig. 1 shows an example of excellent JE (engineering current density) in Bi-2212 round wire at fields up to 45 T, demonstrating the potential for high field applications of this material. For comparison, the Nb{sub 3}Sn wires used in magnets in the 16-18 T range typically perform with J{sub E} in the range 200-500 A/mm{sup 2}; the Bi-2212 wire retains this level of performance to fields at least as high as 45 T, and probably significantly higher. Bi-2212 conductors have in fact been used to generate a 25 T field in a superconducting insert magnet. These two factors- the very high field critical current performance of Bi-2212, and the already demonstrated capability of this material for high field magnets up to 25 T, strongly suggest this material as a leading contender for the next generation high field superconducting (HFS) wire. This potential was recognized by the US Academy of Science's Committee on Opportunities in High Magnetic Field Science. Their report of the same name specifically calls out the high field potential for this material, and suggests that 30 T magnets appear feasible based on the performance of 2212. There are several requirements for HFS conductors. The most obvious is J{sub E} (B, T), the engineering current density at the field and temperature of operation. As shown in Fig. 1, Bi-2212 excels in this regard. Stability requirements for magnets dictate that the effective filament diameter should be less than 30 micrometers, something that Bi-2212 multifilamentary wire can uniquely satisfy among the HFS superconducting wire technologies. Additional requirements include mechanical properties that prevent stress limitation of J{sub E} at the operating conditions, resistive transition index (n-value) suffic

Dr. Scott Campbell

2012-06-30

352

Accuracy and stability of measuring GABA, glutamate, and glutamine by proton magnetic resonance spectroscopy: A phantom study at 4 Tesla  

NASA Astrophysics Data System (ADS)

Proton magnetic resonance spectroscopy has the potential to provide valuable information about alterations in gamma-aminobutyric acid (GABA), glutamate (Glu), and glutamine (Gln) in psychiatric and neurological disorders. In order to use this technique effectively, it is important to establish the accuracy and reproducibility of the methodology. In this study, phantoms with known metabolite concentrations were used to compare the accuracy of 2D J-resolved MRS, single-echo 30 ms PRESS, and GABA-edited MEGA-PRESS for measuring all three aforementioned neurochemicals simultaneously. The phantoms included metabolite concentrations above and below the physiological range and scans were performed at baseline, 1 week, and 1 month time-points. For GABA measurement, MEGA-PRESS proved optimal with a measured-to-target correlation of R2 = 0.999, with J-resolved providing R2 = 0.973 for GABA. All three methods proved effective in measuring Glu with R2 = 0.987 (30 ms PRESS), R2 = 0.996 (J-resolved) and R2 = 0.910 (MEGA-PRESS). J-resolved and MEGA-PRESS yielded good results for Gln measures with respective R2 = 0.855 (J-resolved) and R2 = 0.815 (MEGA-PRESS). The 30 ms PRESS method proved ineffective in measuring GABA and Gln. When measurement stability at in vivo concentration was assessed as a function of varying spectral quality, J-resolved proved the most stable and immune to signal-to-noise and linewidth fluctuation compared to MEGA-PRESS and 30 ms PRESS.

Henry, Michael E.; Lauriat, Tara L.; Shanahan, Meghan; Renshaw, Perry F.; Jensen, J. Eric

2011-02-01

353

The role of 3-tesla diffusion-weighted magnetic resonance imaging in selecting prostate cancer patients for active surveillance  

PubMed Central

Purpose Differentiating significant cancer from insignificant cancer is a major challenge in active surveillance (AS) for prostate cancer. We evaluated whether the apparent diffusion coefficient (ADC) grade from 3-T diffusion-weighted magnetic resonance imaging (DW-MRI) is useful to exclude men with unfavorable pathological features from men meeting current AS eligibility criteria. Methods Among patients who underwent radical prostatectomy, 117 potential AS candidates defined according to 2013 European Association of Urology guidelines who had undergone preoperative 3-T DW-MRI were included. A blinded uro-radiologist graded the level of suspicion from the ADC map using the Likert scale from 1 to 5. The rate of unfavorable pathological features was evaluated according to ADC grade. Unfavorable pathological features were defined as non–organ-confined disease or pathological Gleason score?7 (4+3). The associations between unfavorable pathological features and clinical variables including ADC grade (>3 vs. ?3) were evaluated using logistic regression analysis. Results The rates of unfavorable pathological features were 0.0% (0/14), 2.9% (1/34), 5.4% (2/37), 25.0% (6/24), and 37.5% (3/8) from grades 1 to 5 (P=0.002). The predictive accuracy was as high as 0.804. The rates were significantly different between low (?3, 3.5%) and high (>3, 28.1%, P<0.001) grades. The sensitivity, specificity, and positive and negative predictive values were 75.0%, 78.1%, 28.1%, and 96.5%. ADC grade (odds ratio [OR], 10.696; 95% confidence interval [CI], 2.675–42.773) was significantly associated with unfavorable pathological features, even after adjusting for other variables (OR, 11.274; 95% CI, 2.622–48.471). Conclusions ADC grade from 3-T DW-MRI is useful to predict men with unfavorable pathologic features from AS candidates. PMID:25599072

Jeong, Chang Wook; Park, Yong Hyun; Hwang, Sung II; Lee, Sangchul; Jeong, Seong Jin; Hong, Sung Kyu; Byun, Seok-Soo; Lee, Hak Jong; Lee, Sang Eun

2014-01-01

354

Numerical analysis of magnetic field in superconducting magnetic energy storage  

SciTech Connect

This paper reports that the superconducting magnetic energy storage (SMES) is more useful than the other systems of electric energy storage because of larger stored energy and higher efficiency. The other systems are the battery, the flywheel, the pumped-storage power station. Some models of solenoid type SMES are designed in U.S.A. and Japan. But a high magnetic field happens by the large scale SMES in the living environment, and makes the erroneous operations of the computer display, the pacemaker of the heart and the electronic equipments. We study some fit designs of magnetic shielding of the solenoidal type SMES for reduction of the magnetic field in living environment. When some superconducting shielding coils are over the main storage coil, magnetic field reduces remarkably than the case of non shielding coil. The calculated results of the magnetic field are obtained y the finite element method.

Kanamaru, Y. (Kanazawa Inst. of Technology, 7-1 Ohgigaoka, Nonoichi, Ishikawa 921 (JP)); Amemiya, Y. (Chiba Inst. of Tech., Narashino (Japan))

1991-09-01

355

Spectra of magnetic fields injected during baryogenesis  

SciTech Connect

Helical magnetic fields are injected into the cosmic medium during cosmological baryogenesis and can potentially provide a useful probe of the early universe. We construct a model to study the injection process during a first order phase transition and to determine the power spectra of the injected magnetic field. By Monte Carlo simulations we evaluate the Fourier space symmetric and helical power spectra of the magnetic field at the time the phase transition completes. The spectra are peaked at the scale given by the inverse size of bubbles at percolation and with a comparable width. These injected magnetic fields set the initial conditions for further cosmological magneto-hydrodynamical evolution.

Ng Yifung [CERCA, Department of Physics, Case Western Reserve University, Cleveland, Ohio 44106-7079 (United States); Vachaspati, Tanmay [CERCA, Department of Physics, Case Western Reserve University, Cleveland, Ohio 44106-7079 (United States); Institute for Advanced Study, Princeton, New Jersey 08540 (United States)

2010-07-15

356

Flow Transitions in a Rotating Magnetic Field  

NASA Technical Reports Server (NTRS)

Critical Rayleigh numbers have been measured in a liquid metal cylinder of finite height in the presence of a rotating magnetic field. Several different stability regimes were observed, which were determined by the values of the Rayleigh and Hartmann numbers. For weak rotating magnetic fields and small Rayleigh numbers, the experimental observations can be explained by the existence of a single non-axisymmetric meridional roll rotating around the cylinder, driven by the azimuthal component of the magnetic field. The measured dependence of rotational velocity on magnetic field strength is consistent with the existence of laminar flow in this regime.

Volz, M. P.; Mazuruk, K.

1996-01-01

357

Magnetic Fields in the Milky Way  

NASA Astrophysics Data System (ADS)

This chapter presents a review of observational studies to determine the magnetic field in the Milky Way, both in the disk and in the halo, focused on recent developments and on magnetic fields in the diffuse interstellar medium. I discuss some terminology which is confusingly or inconsistently used and try to summarize current status of our knowledge on magnetic field configurations and strengths in the Milky Way. Although many open questions still exist, more and more conclusions can be drawn on the large-scale and small-scale components of the Galactic magnetic field. The chapter is concluded with a brief outlook to observational projects in the near future.

Haverkorn, Marijke

358

Magnetic fields in anisotropic relativistic stars  

E-print Network

Relativistic, spherically symmetric configurations consisting of a gravitating magnetized anisotropic fluid are studied. For such configurations, we obtain static equilibrium solutions with an axisymmetric, poloidal magnetic field produced by toroidal electric currents. The presence of such a field results in small deviations of the shape of the configuration from spherical symmetry. This in turn leads to the modification of an equation for the current and correspondingly to changes in the structure of the internal magnetic field for the systems supported by the anisotropic fluid, in contrast to the case of an isotropic fluid, where such deviations do not affect the magnetic field.

Vladimir Folomeev; Vladimir Dzhunushaliev

2015-02-28

359

Ferroelectric Cathodes in Transverse Magnetic Fields  

SciTech Connect

Experimental investigations of a planar ferroelectric cathode in a transverse magnetic field up to 3 kGs are presented. It is shown that the transverse magnetic field affects differently the operation of ferroelectric plasma cathodes in ''bright'' and ''dark'' modes in vacuum. In the ''bright'' mode, when the surface plasma is formed, the application of the transverse magnetic field leads to an increase of the surface plasma density. In the ''dark'' mode, the magnetic field inhibits the development of electron avalanches along the surface, as it does similarly in other kinds of surface discharges in the pre-breakdown mode.

Alexander Dunaevsky; Yevgeny Raitses; Nathaniel J. Fisch

2002-07-29

360

Magnetic fields in anisotropic relativistic stars  

E-print Network

Relativistic, spherically symmetric configurations consisting of a gravitating magnetized anisotropic fluid are studied. For such configurations, we obtain static equilibrium solutions with an axisymmetric, poloidal magnetic field produced by toroidal electric currents. The presence of such a field results in small deviations of the shape of the configuration from spherical symmetry. This in turn leads to the modification of an equation for the current and correspondingly to changes in the structure of the internal magnetic field for the systems supported by the anisotropic fluid, in contrast to the case of an isotropic fluid, where such deviations do not affect the magnetic field.

Folomeev, Vladimir

2015-01-01

361

Magnetic field screening effect in electroweak model  

E-print Network

It is shown that in the Weinberg-Salam model a magnetic field screening effect for static magnetic solutions takes place. The origin of this phenomenon can be traced to the mutual cancellation of Abelian magnetic fields created by the SU(2) gauge fields and Higgs boson. The effect implies monopole charge screening in the finite energy system of monopoles and antimonopoles. We consider another manifestation of the screening effect which leads to an essential energy decrease of magnetic solutions. Applying a variational method we have found a magnetic field configuration with a topological azimuthal magnetic flux which minimizes the energy functional and possesses a total energy of order 1 TeV. We suppose that a corresponding magnetic bound state exists in the electroweak theory and can be detected by experiment.

A. S. Bakry; D. G. Pak; P. M. Zhang; L. P. Zou

2014-10-03

362

Generation of the magnetic field in jets  

E-print Network

We consider dynamo action under the combined influence of turbulence and large-scale shear in sheared jets. Shear can stretch turbulent magnetic field lines in such a way that even turbulent motions showing mirror symmetry become suitable for generation of a large-scale magnetic field. We derive the integral induction equation governing the behaviour of the mean field in jets. The main result is that sheared jets may generate a large-scale magnetic field if shear is sufficiently strong. The generated mean field is mainly concentrated in a magnetic sheath surrounding the central region of a jet, and it exhibits sign reversals in the direction of the jet axis. Typically, the magnetic field in a sheath is dominated by the component along the jet that can reach equipartition with the kinetic energy of particles, The field in the central region of jets has a more disordered structure.

V. Urpin

2006-05-22

363

Assessment of global myocardial perfusion reserve using cardiovascular magnetic resonance of coronary sinus flow at 3 Tesla  

PubMed Central

Background Despite increasing clinical use, there is limited data regarding regadenoson in stress perfusion cardiovascular magnetic resonance (CMR). In particular, given its long half-life the optimal stress protocol remains unclear. Although Myocardial Perfusion Reserve (MPR) may provide additive prognostic information, current techniques for its measurement are cumbersome and challenging for routine clinical practice. The aims of this study were: 1) To determine the feasibility of MPR quantification during regadenoson stress CMR by measurement of Coronary Sinus (CS) flow; and 2) to investigate the role of aminophylline reversal during regadenoson stress-CMR. Methods 117 consecutive patients with possible myocardial ischemia were prospectively enrolled. Perfusion imaging was performed at 1 minute and 15 minutes after administration of 0.4 mg regadenoson. A subgroup of 41 patients was given aminophylline (100 mg) after stress images were acquired. CS flow was measured using phase-contrast imaging at baseline (pre CS flow), and immediately after the stress (peak CS flow) and rest (post CS flow) perfusion images. Results CS flow measurements were obtained in 92% of patients with no adverse events. MPR was significantly underestimated when calculated as peak CS flow/post CS flow as compared to peak CS flow/pre CS flow (2.43?±?0.20 vs. 3.28?±?0.32, p?=?0.03). This difference was abolished when aminophylline was administered (3.35?±?0.44 vs. 3.30?±?0.52, p?=?0.95). Impaired MPR (peak CS flow/pre CS flow <2) was associated with advanced age, diabetes, current smoking and higher Framingham risk score. Conclusions Regadenoson stress CMR with MPR measurement from CS flow can be successfully performed in most patients. This measurement of MPR appears practical to perform in the clinical setting. Residual hyperemia is still present even 15 minutes after regadenoson administration, at the time of resting-perfusion acquisition, and is completely reversed by aminophylline. Our findings suggest routine aminophylline administration may be required when performing stress CMR with regadenoson. PMID:24674383

2014-01-01

364

Reducing Field Distortion in Magnetic Resonance Imaging  

NASA Technical Reports Server (NTRS)

A concept for a magnetic resonance imaging (MRI) system that would utilize a relatively weak magnetic field provides for several design features that differ significantly from the corresponding features of conventional MRI systems. Notable among these features are a magnetic-field configuration that reduces (relative to the conventional configuration) distortion and blurring of the image, the use of a superconducting quantum interference device (SQUID) magnetometer as the detector, and an imaging procedure suited for the unconventional field configuration and sensor. In a typical application of MRI, a radio-frequency pulse is used to excite precession of the magnetic moments of protons in an applied magnetic field, and the decaying precession is detected for a short time following the pulse. The precession occurs at a resonance frequency proportional to the strengths of the magnetic field and the proton magnetic moment. The magnetic field is configured to vary with position in a known way; hence, by virtue of the aforesaid proportionality, the resonance frequency varies with position in a known way. In other words, position is encoded as resonance frequency. MRI using magnetic fields weaker than those of conventional MRI offers several advantages, including cheaper and smaller equipment, greater compatibility with metallic objects, and higher image quality because of low susceptibility distortion and enhanced spin-lattice-relaxation- time contrast. SQUID MRI is being developed into a practical MRI method for applied magnetic flux densities of the order of only 100 T

Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob

2010-01-01

365

SIMULATING MAGNETIC FIELDS IN THE ANTENNAE GALAXIES  

SciTech Connect

We present self-consistent high-resolution simulations of NGC 4038/4039 (the 'Antennae galaxies') including star formation, supernova feedback, and magnetic fields performed with the N-body/smoothed particle hydrodynamic (SPH) code GADGET, in which magnetohydrodynamics are followed with the SPH method. We vary the initial magnetic field in the progenitor disks from 10{sup -9} to 10{sup -4} G. At the time of the best match with the central region of the Antennae system, the magnetic field has been amplified by compression and shear flows to an equilibrium field value of {approx}10 {mu}G, independent of the initial seed field. These simulations are a proof of the principle that galaxy mergers are efficient drivers for the cosmic evolution of magnetic fields. We present a detailed analysis of the magnetic field structure in the central overlap region. Simulated radio and polarization maps are in good morphological and quantitative agreement with the observations. In particular, the two cores with the highest synchrotron intensity and ridges of regular magnetic fields between the cores and at the root of the southern tidal arm develop naturally in our simulations. This indicates that the simulations are capable of realistically following the evolution of the magnetic fields in a highly nonlinear environment. We also discuss the relevance of the amplification effect for present-day magnetic fields in the context of hierarchical structure formation.

Kotarba, H.; Karl, S. J.; Naab, T.; Johansson, P. H.; Lesch, H. [University Observatory Munich, Scheinerstr. 1, D-81679 Munich (Germany); Dolag, K.; Stasyszyn, F. A., E-mail: kotarba@usm.lmu.d [Max Planck Institute for Astrophysics, Karl-Schwarzschild-Str. 1, D-85741 Garching (Germany)

2010-06-20

366

Consistency evaluation between EGSnrc and Geant4 charged particle transport in an equilibrium magnetic field  

NASA Astrophysics Data System (ADS)

Following the proposal by several groups to integrate magnetic resonance imaging (MRI) with radiation therapy, much attention has been afforded to examining the impact of strong (on the order of a Tesla) transverse magnetic fields on photon dose distributions. The effect of the magnetic field on dose distributions must be considered in order to take full advantage of the benefits of real-time intra-fraction imaging. In this investigation, we compared the handling of particle transport in magnetic fields between two Monte Carlo codes, EGSnrc and Geant4, to analyze various aspects of their electromagnetic transport algorithms; both codes are well-benchmarked for medical physics applications in the absence of magnetic fields. A water-air-water slab phantom and a water-lung-water slab phantom were used to highlight dose perturbations near high- and low-density interfaces. We have implemented a method of calculating the Lorentz force in EGSnrc based on theoretical models in literature, and show very good consistency between the two Monte Carlo codes. This investigation further demonstrates the importance of accurate dosimetry for MRI-guided radiation therapy (MRIgRT), and facilitates the integration of a ViewRay MRIgRT system in the University of Wisconsin-Madison's Radiation Oncology Department.

Yang, Y. M.; Bednarz, B.

2013-02-01

367

The AGN origin of cluster magnetic fields  

NASA Astrophysics Data System (ADS)

The origin of magnetic fields in galaxy clusters is one of the most fascinating but challenging problems in astrophysics. In this dissertation, the possibility of an Active Galactic Nucleus (AGN) origin of cluster magnetic fields is studied through state of the art simulations of magnetic field evolution in large scale structure formation using a newly developed cosmological Adaptive Mesh Refinement (AMR) Magnetohydrodynamics (MHD) code -- EnzoMHD. After presenting a complete but concise description and verification of the code, we discuss the creation of magnetic fields through the Biermann Battery effect during first star formation and galaxy cluster formation. We find that magnetic fields are produced as predicted by theory in both cases. For the first star formation, we obtain a lower limit of (~ 10 -9 G) for magnetic fields when the first generation stars form. On the other hand, we find that the magnetic energy is amplified 4 orders of magnitude within ~ 10 Gyr during cluster formation. We then study magnetic field injection from AGN into the Intra- Cluster Medium (ICM) and their impact on the ICM. We reproduce the X-ray cavities as well as weak shocks seen in observations in the simulation, and further confirm the idea that AGN outburst must contain lots of magnetic energy (up to 10 61 ergs) and the magnetic fields play an important part in the formation of jet/lobe system. We present high resolution simulations of cluster formation with magnetic fields injected from high redshift AGN. We find that these local magnetic fields are spread quickly throughout the whole cluster by cluster mergers. The ICM is in a turbulent state with a Kolmogorov-like power spectrum. Magnetic fields are amplified to and maintained at the observational level of a few mG by bulk flows at large scale and the ICM turbulence at small scale. The total magnetic energy increases about 25 times to ~ 1.2 × 10^61 ergs at the present time. We conclude that magnetic fields from AGN at high redshift may provide sufficient initial magnetic fields to magnetize the whole cluster.

Xu, Hao

368

SQUID-Detected Magnetic Resonance Imaging in MicroteslaFields  

SciTech Connect

Magnetic resonance imaging (MRI) has developed into a powerful clinical tool for imaging the human body (1). This technique is based on nuclear magnetic resonance (NMR) of protons (2, 3) in a static magnetic field B{sub 0}. An applied radiofrequency pulse causes the protons to precess about B{sub 0} at their Larmor frequency {nu}{sub 0} = ({gamma}/2{pi})B{sub 0}, where {gamma} is the gyromagnetic ratio; {gamma}/2{pi} = 42.58 MHz/tesla. The precessing protons generate an oscillating magnetic field and hence a voltage in a nearby coil that is amplified and recorded. The application of three-dimensional magnetic field gradients specifies a unique magnetic field and thus an NMR frequency in each voxel of the subject, so that with appropriate encoding of the signals one can acquire a complete image (4). Most clinical MRI systems involve magnetic fields generated by superconducting magnets, and the current trend is to higher magnetic fields than the widely used 1.5-T systems (5). Nonetheless, there is ongoing interest in the development of less expensive imagers operating at lower fields. Commercially available 0.2-T systems based on permanent magnets offer both lower cost and a more open access than their higher-field counterparts, at the expense of signal-to-noise-ratio (SNR) and spatial resolution. At the still lower field of 0.03 mT maintained by a conventional, room-temperature solenoid, Connolly and co-workers (6, 7) obtain good spatial resolution and signal-to-noise ratio (SNR) by prepolarizing the protons in a field B{sub p} of 0.3 T. Prepolarization (8) enhances the magnetic moment of an ensemble of protons over that produced by the lower precession field; after the polarizing field is removed, the higher magnetic moment produces a correspondingly larger signal during its precession in B{sub 0}. Using the same method, Stepisnik et al. (9) obtained MR images in the Earth's magnetic field ({approx} 50 {micro}T). Alternatively, one can enhance the signal amplitude in MRI using laser polarized noble gases such as {sup 3}He or {sup 129}Xe (10-12). Hyperpolarized gases were used successfully to image the human lung in fields on the order of several mT (13-15). To overcome the sensitivity loss of Faraday detection at low frequencies, ultrasensitive magnetometers based on the Superconducting QUantum Interference Device (SQUID) (16) are used to detect NMR and MRI signals (17-24). Recently, SQUID-based MRI systems capable of acquiring in vivo images have appeared. For example, in the 10-mT system of Seton et al. (18) signals are coupled to a SQUID via a superconducting tuned circuit, while Clarke and coworkers (22, 25, 26) developed a system at 132 {micro}T with an untuned input circuit coupled to a SQUID. In a quite different approach, atomic magnetometers have been used recently to detect the magnetization (27) and NMR signal (28) of hyperpolarized gases. This technique could potentially be used for low-field MRI in the future. The goal of this review is to summarize the current state-of-the-art of MRI in microtesla fields detected with SQUIDs. The principles of SQUIDs and NMR are briefly reviewed. We show that very narrow NMR linewidths can be achieved in low magnetic fields that are quite inhomogeneous, with illustrative examples from spectroscopy. After describing our ultralow-field MRI system, we present a variety of images. We demonstrate that in microtesla fields the longitudinal relaxation T{sub 1} is much more material dependent than is the case in high fields; this results in a substantial improvement in 'T{sub 1}-weighted contrast imaging'. After outlining the first attempts to combine microtesla NMR with magnetoencephalography (MEG) (29), we conclude with a discussion of future directions.

Moessle, Michael; Hatridge, Michael; Clarke, John

2006-08-14

369

Magnetization and magnetic susceptibility of DyH3  

NASA Technical Reports Server (NTRS)

The magnetization and differential magnetic susceptibility of powdered samples of DyH3 have been measured at 4.2 K in applied magnetic fields ranging to 9 Teslas. The differential magnetic susceptibility has also been studied in zero applied field as a function of temperature. The magnetization data are described by an equation of the form M = aB/(1 + bB + cB. The ratio a/b is a measure of the saturation magnetization and gives an effective moment of 5.12 Bohr magnetons per ion. The zero field susceptibility exhibits a maximum at T = 3.45 K, and an inflection point near 2.85 K. The susceptibility at 4.2 K has a 1/B squared dependence on the applied magnetic field for B approximately greater than 0.3 Teslas.

Flood, D. J.

1974-01-01

370

Detecting ultra-low magnetic fields with common magnetic minerals  

Microsoft Academic Search

Growing volume of extraterrestrial material is being used to analyze magnetic paleo-intensities. They are important for estimation of paleo-fields that once existed in extraterrestrial environment. The extraterrestrial field can be several orders of magnitudes weaker than a terrestrial field. The data demonstrating that the TRM linear acquisition is valid for such low fields are virtually not existent. We tested the

G. Kletetschka; P. J. Wasilewski; T. Kohout; E. Herrero-Bervera; M. D. Fuller

2004-01-01

371

Experimental Differentiation of Intraocular Masses Using Ultrahigh-Field Magnetic Resonance Imaging – A Case Series  

PubMed Central

Purpose The case reports presented here were compiled to demonstrate the potential for improved diagnosis and monitoring of disease progress of intraocular lesions using ultrahigh-field magnetic resonance microscopy (MRM) at 7.1 Tesla. Methods High-resolution ex vivo ocular magnetic resonance (MR) images were acquired on an ultrahigh-field MR system (7.1 Tesla, ClinScan, Bruker BioScan, Germany) using a 2-channel coil with 4 coil elements and T2-weighted turbo spin echo (TSE) sequences of human eyes enucleated because of different intraocular lesions. Imaging parameters were: 40×40 mm field of view, 512×512 matrix, and 700 µm slice thickness. The results were correlated with in vivo ultrasound and histology of the enucleated eyes. Results Imaging was performed in enucleated eyes with choroidal melanoma, malignant melanoma of iris and ciliary body with scleral perforation, ciliary body melanoma, intraocular metastasis of esophageal cancer, subretinal bleeding in the presence of perforated corneal ulcer, hemorrhagic choroidal detachment, and premature retinopathy with phthisis and ossification of bulbar structures. MR imaging allowed differentiation between solid and cystic tumor components. In case of hemorrhage, fluid-fluid levels were identified. Melanin and calcifications caused significant hypointensity. Microstructural features of eye lesions identified by MRM were confirmed by histology. Conclusion This study demonstrates the potential of MRM for the visualization and differential diagnosis of intraocular lesions. At present, the narrow bore of the magnet still limits the use of this technology in humans in vivo. Further advances in ultrahigh-field MR imaging will permit visualization of tumor extent and evaluation of nonclassified intraocular structures in the near future. PMID:24349051

Hosten, Norbert; Zimpfer, Annette; Guthoff, Rudolf; Langner, Sönke; Stachs, Oliver

2013-01-01

372

Exploration of Traveling Waves in High Field Magnetic Resonance Imaging  

NASA Astrophysics Data System (ADS)

MRI has been a remarkable means of medical imaging for the last three decades without exposure to ionizing radiation. The increase in MRI signal with the increase of magnetic field strength is the main motive in a move towards imaging at higher field strengths. However, the advent of higher field strength MRI has come with the challenge of maintaining homogeneous excitation fields (B1). One promising solution to this has been to transmit radio-frequency (RF) signals using a patch antenna instead of the usual RF coil. This technique exploits the theory of waveguides and traveling waves typically used in high frequency applications. In this particular study we have investigated this unique application by measuring B1 maps, geometric distortions, and signal-to-noise ratios (SNRs) in order to better quantify its potential in MRI. Using phantoms to match the similar physical features of the human head/torso region, we ran comparative scans using the traveling wave setup versus the conventional head volume coil setup on a Philips 7 Tesla MRI scanner. The goal of this experiment was to systematically measure B1 maps for flip angle efficiency and multi-planar rendering images for geometric distortion. Although the application of traveling wave in MRI does suffer from low excitation (small flip angles), there seems to be little to no correlation between traveling wave phase variability and frequency/phase encoding. Therefore, further experiments, if carried out, may enhance image quality such as RF shielding, the use of local receive coils, and/or the addition of a second patch antenna.

Hernandez, Zachary

2010-10-01

373

Quark antiscreening at strong magnetic field and inverse magnetic catalysis  

NASA Astrophysics Data System (ADS)

The dependence of the QCD coupling constant with a strong magnetic field and the implications for the critical temperature of the chiral phase transition are investigated. It is found that the coupling constant becomes anisotropic in a strong magnetic field and that the quarks, confined by the field to the lowest Landau level where they pair with antiquarks, produce an antiscreening effect. These results lead to inverse magnetic catalysis, providing a natural explanation for the behavior of the critical temperature in the strong-field region.

Ferrer, E. J.; de la Incera, V.; Wen, X. J.

2015-03-01

374

The Evolution of the Earth's Magnetic Field.  

ERIC Educational Resources Information Center

Describes the change of earth's magnetic field at the boundary between the outer core and the mantle. Measurement techniques used during the last 300 years are considered. Discusses the theories and research for explaining the field change. (YP)

Bloxham, Jeremy; Gubbins, David

1989-01-01

375

Magnetic Braiding and Parallel Electric Fields  

E-print Network

The braiding of the solar coronal magnetic field via photospheric motions - with subsequent relaxation and magnetic reconnection -- is one of the most widely debated ideas of solar physics. We readdress the theory in the light of developments in three-dimensional magnetic reconnection theory. It is known that the integrated parallel electric field along field lines is the key quantity determining the rate of reconnection, in contrast with the two-dimensional case where the electric field itself is the important quantity. We demonstrate that this difference becomes crucial for sufficiently complex magnetic field structures. A numerical method is used to relax a braided magnetic field to an ideal force-free equilibrium; that equilibrium is found to be smooth, with only large- scale current structures. However, the equilibrium is shown to have a highly filamentary integrated parallel current structure with extremely short length- scales. An analytical model is developed to show that, in a coronal situation, the length scales associated with the integrated parallel current structures will rapidly decrease with increasing complexity, or degree of braiding, of the magnetic field. Analysis shows the decrease in these length scales will, for any finite resistivity, eventually become inconsistent with the stability of a force- free field. Thus the inevitable consequence of the magnetic braiding process is shown to be a loss of equilibrium of the coronal field, probably via magnetic reconnection events.

A. L. Wilmot-Smith; G. Hornig; D. I. Pontin

2008-10-08

376

Magnetic Field Seeding through Supernova Feedback  

NASA Astrophysics Data System (ADS)

Stellar feedback occurring at small-scales can significantly impact the evolution of galaxies at much larger scales. For example, an appropriate feedback mechanism, including thermal and radiative components, can help regulate star formation, particularly in low-mass galaxies. While feedback models are generally prevalent in numerical simulations, the magnetic component is often neglected. However, measurements of galaxies indicate the presence of fields with a strength on the order of µG. Previous studies have demonstrated the formation of these fields through the amplification of a primordial magnetic field. Here, we describe a self-consistent prescription where magnetic fields are injected in supernova injections, calibrated by observations of magnetic fields in supernova remnants. These fields will then become seeds that evolve by way of mixing and turbulence to result in galactic-scale magnetic fields. As a proof of concept, we apply this method to model the supernova of a single Population III star and trace the evolution of the injected magnetic field. Future studies will apply this prescription to study not only the effects of magnetic fields on galaxy formation and evolution, but also the growth of the magnetized bubbles that form in the IGM.

Koh, Daegene; Wise, John

2015-01-01

377

Graphene Nanoribbon in Sharply Localized Magnetic Fields  

E-print Network

We study the effect of a sharply localized magnetic field on the electron transport in a strip (ribbon) of graphene sheet, which allows to give results for the transmission and reflection probability through magnetic barriers. The magnetic field is taken as a single and double delta type localized functions, which are treated later as the zero width limit of gaussian fields. For both field configurations, we evaluate analytically and numerically their transmission and reflection coefficients. The possibility of spacial confinement due to the inhomogeneous field configuration is also investigated.

Abdulaziz D. Alhaidari; Hocine Bahlouli; Abderrahim El Mouhafid; Ahmed Jellal

2013-03-20

378

Coronal magnetic fields produced by photospheric shear  

NASA Technical Reports Server (NTRS)

The magneto-frictional method is used for computing force free fields to examine the evolution of the magnetic field of a line dipole, when there is relative shearing motion between the two polarities. It found that the energy of the sheared field can be arbitrarily large compared with the potential field. It is also found that it is possible to fit the magnetic energy, as a function of shear, by a simple functional form.

Sturrock, P. A.; Yang, W.-H.

1987-01-01

379

Control of magnetism by electric fields  

NASA Astrophysics Data System (ADS)

The electrical manipulation of magnetism and magnetic properties has been achieved across a number of different material systems. For example, applying an electric field to a ferromagnetic material through an insulator alters its charge-carrier population. In the case of thin films of ferromagnetic semiconductors, this change in carrier density in turn affects the magnetic exchange interaction and magnetic anisotropy; in ferromagnetic metals, it instead changes the Fermi level position at the interface that governs the magnetic anisotropy of the metal. In multiferroics, an applied electric field couples with the magnetization through electrical polarization. This Review summarizes the experimental progress made in the electrical manipulation of magnetization in such materials, discusses our current understanding of the mechanisms, and finally presents the future prospects of the field.

Matsukura, Fumihiro; Tokura, Yoshinori; Ohno, Hideo

2015-03-01

380

Control of magnetism by electric fields.  

PubMed

The electrical manipulation of magnetism and magnetic properties has been achieved across a number of different material systems. For example, applying an electric field to a ferromagnetic material through an insulator alters its charge-carrier population. In the case of thin films of ferromagnetic semiconductors, this change in carrier density in turn affects the magnetic exchange interaction and magnetic anisotropy; in ferromagnetic metals, it instead changes the Fermi level position at the interface that governs the magnetic anisotropy of the metal. In multiferroics, an applied electric field couples with the magnetization through electrical polarization. This Review summarizes the experimental progress made in the electrical manipulation of magnetization in such materials, discusses our current understanding of the mechanisms, and finally presents the future prospects of the field. PMID:25740132

Matsukura, Fumihiro; Tokura, Yoshinori; Ohno, Hideo

2015-03-01

381

Magnetic isotope and magnetic field effects on the DNA synthesis  

PubMed Central

Magnetic isotope and magnetic field effects on the rate of DNA synthesis catalysed by polymerases ? with isotopic ions 24Mg2+, 25Mg2+ and 26Mg2+ in the catalytic sites were detected. No difference in enzymatic activity was found between polymerases ? carrying 24Mg2+ and 26Mg2+ ions with spinless, non-magnetic nuclei 24Mg and 26Mg. However, 25Mg2+ ions with magnetic nucleus 25Mg were shown to suppress enzymatic activity by two to three times with respect to the enzymatic activity of polymerases ? with 24Mg2+ and 26Mg2+ ions. Such an isotopic dependence directly indicates that in the DNA synthesis magnetic mass-independent isotope effect functions. Similar effect is exhibited by polymerases ? with Zn2+ ions carrying magnetic 67Zn and non-magnetic 64Zn nuclei, respectively. A new, ion–radical mechanism of the DNA synthesis is suggested to explain these effects. Magnetic field dependence of the magnesium-catalysed DNA synthesis is in a perfect agreement with the proposed ion–radical mechanism. It is pointed out that the magnetic isotope and magnetic field effects may be used for medicinal purposes (trans-cranial magnetic treatment of cognitive deceases, cell proliferation, control of the cancer cells, etc). PMID:23851636

Buchachenko, Anatoly L.; Orlov, Alexei P.; Kuznetsov, Dmitry A.; Breslavskaya, Natalia N.

2013-01-01

382

Magnetization, Low Field Instability and Quench of RHQT Nb(3)Al Strands  

SciTech Connect

Since 2005, we made and tested three RHQT Nb{sub 3}Al strands, one with Nb matrix and two with Ta matrix, which are fully stabilized with Cu electroplating. We observed anomalously large magnetization curves extending beyond 1 to 1.5 Tesla with the F1 Nb matrix strand at 4.2 K, when we measured its magnetization with a balanced coil magnetometer. This problem was eliminated with the Ta matrix strands operating at 4.2 K. But with these strands a similar but smaller anomalous magnetization was observed at 1.9 K. We studied these phenomena with FEM. With the F1 Nb matrix strand, it is explained that at low external field, inter-filamentary coupling currents in the outer layers of sub-elements create a shielding effect. It reduces the inside field, keeps the inside Nb matrix superconductive, and stands against a higher outside field beyond the Hc of Nb. At an even higher external field, the superconductivity of the whole Nb matrix collapses and releases a large amount of energy, which may cause a big quench. Depending on the size of the energy in the strand or the cable, a magnet could quench, causing the low field instability. Some attempt to analyze the anomaly with FEM is presented.

Yamada, R.; Wake, M.; Kikuchi, A.; Velev, V.; /Fermilab

2009-01-01

383

Interplanetary stream magnetism: Kinematic effects. [solar magnetic fields and wind  

NASA Technical Reports Server (NTRS)

The particle density, and the magnetic field intensity and direction are calculated in corotating streams of the solar wind, assuming that the solar wind velocity is constant and radial and that its azimuthal variations are not two rapid. The effects of the radial velocity profile in corotating streams on the magnetic fields were examined using kinematic approximation and a variety of field configurations on the inner boundary. Kinematic and dynamic effects are discussed.

Burlaga, L. F.; Barouch, E.

1974-01-01

384

Protein crystals orientation in a magnetic field.  

PubMed

Nucleation and crystal growth of hen egg-white lysozyme, bovine pancreatic trypsin inhibitor and porcine pancreatic alpha-amylase were carried out in the presence of a magnetic field of 1.25 T produced by small permanent magnets. Crystals were oriented in the magnetic field, except when heterogeneous nucleation occurred. The orientation of protein crystals in the presence of a magnetic field can be attributed to the anisotropic diamagnetic susceptibility of proteins resulting from the large anisotropy of the alpha-helices due to the axial alignment of the peptide bonds. PMID:9761881

Astier, J P; Veesler, S; Boistelle, R

1998-07-01

385

Neutron spin polarization in strong magnetic fields  

E-print Network

The effects of strong magnetic fields on the inner crust of neutron stars are investigated after taking into account the anomalous magnetic moments of nucleons. Energy spectra and wave functions for protons and neutrons in a uniform magnetic field are provided. The particle spin polarizations and the yields of protons and neutrons are calculated in a free Fermi gas model. Obvious spin polarization occurs when $B\\geq10^{14}$G for protons and $B\\geq10^{17}$G for neutrons, respectively. It is shown that the neutron spin polarization depends solely on the magnetic field strength.

H. Wen; L. S. Kisslinger; Walter Greiner; G. Mao

2006-01-09

386

High concentration ferronematics in low magnetic fields  

E-print Network

We investigated experimentally the magneto-optical and dielectric properties of magnetic-nanoparticle-doped nematic liquid crystals (ferronematics). Our studies focus on the effect of the very small orienting bias magnetic field $B_{bias}$, and that of the nematic director pretilt at the boundary surfaces in our systems sensitive to low magnetic fields. Based on the results we assert that $B_{bias}$ is not necessarily required for a detectable response to low magnetic fields, and that the initial pretilt, as well as the aggregation of the nanoparticles play an important (though not yet explored enough) role.

T. Tóth-Katona; P. Salamon; N. Éber; N. Tomašovi?ová; Z. Mitróová; P. Kop?anský

2014-09-05

387

Fluctuating magnetic field induced resonant activation  

NASA Astrophysics Data System (ADS)

In this paper, we have studied the properties of a Brownian particle at stationary state in the presence of a fluctuating magnetic field. Time dependence of the field makes the system thermodynamically open. As a signature of that the steady state distribution function becomes function of damping strength, intensity of fluctuations and constant parts of the applied magnetic field. It also depends on the correlation time of the fluctuating magnetic field. Our another observation is that the random magnetic field can induce the resonant activation phenomenon. Here correlation time is increased under the fixed variance of the fluctuating field. But if the correlation time (?) increases under the fixed field strength then the mean first passage time rapidly grows at low ? and it almost converges at other limit. This is sharp contrast to the usual colored noise driven open system case where the mean first passage time diverges exponentially. We have also observed that a giant enhancement of barrier crossing rate occurs particularly at large strength of constant parts of the applied magnetic field even for very weak fluctuating magnetic field. Finally, break down of the Arrhenius result and disappearance of the Kramers' turn over phenomenon may occur in the presence of a fluctuating magnetic field.

Mondal, Shrabani; Das, Sudip; Baura, Alendu; Bag, Bidhan Chandra

2014-12-01

388

Alignment of magnetic uniaxial particles in a magnetic field: Simulation  

NASA Astrophysics Data System (ADS)

The numerical investigations of the process of alignment of magnetically uniaxial Nd-Fe-B powders in an applied magnetic field were carried out using the discrete element method (DEM). It is shown that magnetic alignment of ensemble of spherical particles provides extremely high degree of alignment, which is achieved in low magnetic fields. A model of formation of anisotropic particles as a combination of spherical particles is suggested. The influence of the shape anisotropy and friction coefficient on the alignment degree was analyzed. The increase in the friction coefficient leads to a decrease in the alignment degree; the simulation results are in qualitative agreement with experimental dependences. It is shown that in magnetic fields higher than 5 T, the calculated field dependences of the alignment degree quantitatively render the experimental data. The increase of about 6% in the alignment degree in the experiments with addition of internal lubricant can be explained by the decrease of 14% in friction coefficient.

Golovnia, O. A.; Popov, A. G.; Sobolev, A. N.; Hadjipanayis, G. C.

2014-09-01

389

Two-axis magnetic field sensor  

NASA Technical Reports Server (NTRS)

A ferromagnetic thin-film based magnetic field sensor with first and second sensitive direction sensing structures each having a nonmagnetic intermediate layer with two major surfaces on opposite sides thereof having a magnetization reference layer on one and an anisotropic ferromagnetic material sensing layer on the other having a length in a selected length direction and a smaller width perpendicular thereto and parallel to the relatively fixed magnetization direction. The relatively fixed magnetization direction of said magnetization reference layer in each is oriented in substantially parallel to the substrate but substantially perpendicular to that of the other. An annealing process is used to form the desired magnetization directions.

Jander, Albrecht (Inventor); Nordman, Catherine A. (Inventor); Qian, Zhenghong (Inventor); Smith, Carl H. (Inventor)

2006-01-01

390

Astrophysical magnetic fields and nonlinear dynamo theory  

Microsoft Academic Search

The current understanding of astrophysical magnetic fields is reviewed, focusing on their generation and maintenance by turbulence. In the astrophysical context this generation is usually explained by a self-excited dynamo, which involves flows that can amplify a weak ‘seed’ magnetic field exponentially fast. Particular emphasis is placed on the nonlinear saturation of the dynamo. Analytic and numerical results are discussed

Axel Brandenburg; Kandaswamy Subramanian

2005-01-01

391

Space Quantization in a Gyrating Magnetic Field  

Microsoft Academic Search

The nonadiabatic transitions which a system with angular momentum J makes in a magnetic field which is rotating about an axis inclined with respect to the field are calculated. It is shown that the effects depend on the sign of the magnetic moment of the system. We therefore have an absolute method for measuring the sign and magnitude of the

I. I. Rabi

1937-01-01

392

Magnetic fields, branes, and noncommutative geometry  

Microsoft Academic Search

We construct a simple physical model of a particle moving on the infinite noncommutative 2-plane. The model consists of a pair of opposite charges moving in a strong magnetic field. In addition, the charges are connected by a spring. In the limit of large magnetic field, the charges are frozen into the lowest Landau levels. Interactions of such particles include

Daniela Bigatti; Leonard Susskind

2000-01-01

393

Appendix E: Software MEASURING CONSTANT MAGNETIC FIELD  

E-print Network

, and the Guide Box, shown below. The Guide Box will give you directions and tasks to perform. It will also tell "degree" will make a plot of magnetic field strength as a function of angle (B vs. ). Click "OK" when you. This process is called "zeroing the Hall probe" in the Guide Box. Place the magnetic field sensor wand

Minnesota, University of

394

CHROMOSPHERIC AND CORONAL MAGNETIC FIELDS Eric Priest  

E-print Network

CHROMOSPHERIC AND CORONAL MAGNETIC FIELDS Eric Priest Mathematics Institute, St Andrews University the structure of the magnetic field (in the pho­ tosphere, chromosphere and corona) and the dynamics, so that a corona lay above spherical shells of tran­ sition region, chromosphere and photosphere

Priest, Eric

395

CHROMOSPHERIC AND CORONAL MAGNETIC FIELDS Eric Priest  

E-print Network

CHROMOSPHERIC AND CORONAL MAGNETIC FIELDS Eric Priest Mathematics Institute, St Andrews University the structure of the magnetic field (in the pho- tosphere, chromosphere and corona) and the dynamics, so that a corona lay above spherical shells of tran- sition region, chromosphere and photosphere

Priest, Eric

396

Statistical analysis of magnetic-field spectra  

Microsoft Academic Search

We have calculated and statistically analyzed the magnetic-field spectrum (the B spectrum) at fixed electron Fermi energy for two quantum dot systems with classically chaotic shape. This problem arises naturally in transport measurements where the incoming electron has a fixed energy while one tunes the magnetic field to obtain resonance conductance patterns. The B spectrum, defined as the collection of

Jian Wang; Hong Guo

1998-01-01

397

On the origins of galactic magnetic fields  

E-print Network

We present a five dimensional unified theory of gravity and electromagnetism which leads to modified Maxwell equations, suggesting a new origin for galactic magnetic fields. It is shown that a region with nonzero scalar curvature would amplify the magnetic fields under certain conditions.

A. Borzou; H. R. Sepangi; R. Yousefi; A. H. Ziaie

2009-11-18

398

Manipulation of molecular structures with magnetic fields  

Microsoft Academic Search

The present thesis deals with the use of magnetic fields as a handle to manipulate matter at a molecular level and as a tool to probe molecular properties or inter molecular interactions. The work consists of in situ optical studies of (polymer) liquid crystals and molecular aggregates in high magnetic fields up to 20T, together with a description of the

Marius Iosif Boamfa

2003-01-01

399

Magnetic Fields at the Center of Coils  

ERIC Educational Resources Information Center

In this note we synthesize and extend expressions for the magnetic field at the center of very short and very long current-carrying coils. Elementary physics textbooks present the following equation for the magnetic field inside a very long current-carrying coil (solenoid): B[subscript sol] = µ[subscript 0] (N/L) I, (1) where I is the current, N…

Binder, Philippe; Hui, Kaleonui; Goldman, Jesse

2014-01-01

400

Permanent magnet edge-field quadrupole  

DOEpatents

Planar permanent magnet edge-field quadrupoles for use in particle accelerating machines and in insertion devices designed to generate spontaneous or coherent radiation from moving charged particles are disclosed. The invention comprises four magnetized rectangular pieces of permanent magnet material with substantially similar dimensions arranged into two planar arrays situated to generate a field with a substantially dominant quadrupole component in regions close to the device axis.

Tatchyn, Roman O. (Mountain View, CA)

1997-01-01

401

Magnetic Helicity and Large Scale Magnetic Fields: A Primer  

NASA Astrophysics Data System (ADS)

Magnetic fields of laboratory, planetary, stellar, and galactic plasmas commonly exhibit significant order on large temporal or spatial scales compared to the otherwise random motions within the hosting system. Such ordered fields can be measured in the case of planets, stars, and galaxies, or inferred indirectly by the action of their dynamical influence, such as jets. Whether large scale fields are amplified in situ or a remnant from previous stages of an object's history is often debated for objects without a definitive magnetic activity cycle. Magnetic helicity, a measure of twist and linkage of magnetic field lines, is a unifying tool for understanding large scale field evolution for both mechanisms of origin. Its importance stems from its two basic properties: (1) magnetic helicity is typically better conserved than magnetic energy; and (2) the magnetic energy associated with a fixed amount of magnetic helicity is minimized when the system relaxes this helical structure to the largest scale available. Here I discuss how magnetic helicity has come to help us understand the saturation of and sustenance of large scale dynamos, the need for either local or global helicity fluxes to avoid dynamo quenching, and the associated observational consequences. I also discuss how magnetic helicity acts as a hindrance to turbulent diffusion of large scale fields, and thus a helper for fossil remnant large scale field origin models in some contexts. I briefly discuss the connection between large scale fields and accretion disk theory as well. The goal here is to provide a conceptual primer to help the reader efficiently penetrate the literature.

Blackman, Eric G.

2014-04-01

402

"Non-Contact Ultrasonic Treatment of Metals in a Magnetic Field"  

SciTech Connect

A concept has been originated for non-contact ultrasonic treatment of metals based on the use of an induction coil located in a high-field superconducting magnet. An advantage of using a high magnetic field environment (> 9 T) is that this allows the induced surface current in the sample to be decreased proportionately. As a result, the incidental induction heating associated with the use of the EMAT (Electromagnetic Acoustical Transducer) is greatly reduced, which improves the energy efficiency of the EMAT approach. The method can be coupled with high-field magnetic processing, but can also be used where only ultrasonic treatment is beneficial. In the proof-of-principle experiments, a high-field EMAT was used for non-contact ultrasonic processing of aluminum samples during solidification. The magnetic field for the EMAT was supplied by a high-field (20 Tesla) resistive magnet, and the current was provided by an induction coil. This resulted in a highly efficient EMAT that delivered 0.5 MPa (~5 atmospheres) of acoustic drive to the surface of the sample while coupling less than 100 watts of incidental induction heating. The exceptionally high energy efficiency of the electromagnetic transducer is due to the use of the high magnetic field, which reduces the current needed to achieve the same acoustic pressure. In these initial experiments, aluminum samples of A356 alloy were heated to the liquid state and allowed to solidify at a controlled cooling rate while subjected to the non-contact ultrasonic stimulation (0.5 MPa @ 165 kHz) provided by an induction coil located within the 200 mm (~8-inch) bore of a 20-T Bitter resistive magnet.

Ludtka, Gerard Michael [ORNL; Wilgen, John B [ORNL; Kisner, Roger A [ORNL; Jaramillo, Roger A [ORNL; Ludtka, Gail Mackiewicz- [ORNL

2007-01-01

403

Comparison of adjustable permanent magnetic field sources  

NASA Astrophysics Data System (ADS)

A permanent magnet assembly in which the flux density can be altered by a mechanical operation is often significantly smaller than comparable electromagnets and also requires no electrical power to operate. In this paper five permanent magnet designs in which the magnetic flux density can be altered are analyzed using numerical simulations, and compared based on the generated magnetic flux density in a sample volume and the amount of magnet material used. The designs are the concentric Halbach cylinder, the two half Halbach cylinders, the two linear Halbach arrays and the four and six rod mangle. The concentric Halbach cylinder design is found to be the best performing design, i.e. the design that provides the most magnetic flux density using the least amount of magnet material. A concentric Halbach cylinder has been constructed and the magnetic flux density, the homogeneity and the direction of the magnetic field are measured and compared with numerical simulation and a good agrement is found.

Bjørk, R.; Bahl, C. R. H.; Smith, A.; Pryds, N.

2010-11-01

404

Chaotic magnetic fields: Particle motion and energization  

SciTech Connect

Magnetic field line equations correspond to a Hamiltonian dynamical system, so the features of a Hamiltonian systems can easily be adopted for discussing some essential features of magnetic field lines. The integrability of the magnetic field line equations are discussed by various authors and it can be shown that these equations are, in general, not integrable. We demonstrate several examples of realistic chaotic magnetic fields, produced by asymmetric current configurations. Particular examples of chaotic force-free field and non force-free fields are shown. We have studied, for the first time, the motion of a charged particle in chaotic magnetic fields. It is found that the motion of a charged particle in a chaotic magnetic field is not necessarily chaotic. We also showed that charged particles moving in a time-dependent chaotic magnetic field are energized. Such energization processes could play a dominant role in particle energization in several astrophysical environments including solar corona, solar flares and cosmic ray propagation in space.

Dasgupta, Brahmananda [CSPAR, University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Ram, Abhay K. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Li, Gang [Department of Physics, University of Alabama in Huntsville, Huntsville, AL 35899 and CSPAR, University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Li, Xiaocan [Department of Physics, University of Alabama in Huntsville, Huntsville, AL 35899 (United States)

2014-02-11

405

Magnetic fields in Neutron Stars  

E-print Network

Isolated neutron stars show a diversity in timing and spectral properties, which has historically led to a classification in different sub-classes. The magnetic field plays a key role in many aspects of the neutron star phenomenology: it regulates the braking torque responsible for their timing properties and, for magnetars, it provides the energy budget for the outburst activity and high quiescent luminosities (usually well above the rotational energy budget). We aim at unifying this observational variety by linking the results of the state-of-the-art 2D magneto-thermal simulations with observational data. The comparison between theory and observations allows to place two strong constraints on the physical properties of the inner crust. First, strong electrical currents must circulate in the crust, rather than in the star core. Second, the innermost part of the crust must be highly resistive, which is in principle in agreement with the presence of a novel phase of matter so-called nuclear pasta phase.

Viganò, Daniele; Miralles, Juan A; Rea, Nanda

2015-01-01

406

[Low-field magnetic resonance imaging for rheumatoid arthritis].  

PubMed

Magnetic resonance imaging (MRI) as a cross-sectional imaging procedure allows a three-dimensional representation of musculature, ligaments, tendons, capsules, synovial membranes, bones and cartilage with high resolution quality. An activity assessment is further possible by application of a contrast medium (gadolinium-DTPA) to differentiate between active and chronic inflammatory processes. Evidence of a bone marrow edema detected by MRI in patients with rheumatoid arthritis (RA) can be interpreted as a prognostic and predictive factor for the development of bone erosions. On the basis of these advantages MRI is being employed more and more in the early diagnosis of inflammatory joint diseases. Semi-quantitative scores for analysis and grading of findings have already been developed and are in clinical use. Because MRI technical performances are invariably reproducible they can be practically retrieved in the course of examination which is particularly relevant in rheumatology. Therapy response or progression can thus be adequately displayed. Open, dedicated low-field MRI with a low signal strength of 0.2 Tesla (T) has been known since the 90s and now represents new MRI examination options in rheumatology. Smaller devices with lower acquisition and maintenance expenses as well as considerably more convenience due to the device itself result in a higher subjective acceptability by the patients as well as objectively more data records of low-field MRI scans of RA, which underline the significance of this new technical method. The German Society for Rheumatology (DGRh), represented by the Committee for "Diagnostic Imaging", meets this development with the release of recommendations and standards for the procedures of low-field MRI and their scoring and summarizes the most important technical data and information on clinical indications. PMID:19894053

Ostendorf, B; Edelmann, E; Kellner, H; Scherer, A

2010-02-01

407

Electrospray ionization—Fourier transform ion cyclotron resonance mass spectrometry at 11.5 tesla: Instrument design and initial results  

Microsoft Academic Search

Initial results obtained using a new electrospray ionization (ESI) Fourier transform ion cyclotron resonance (FTICR) mass\\u000a spectrometer operated at a magnetic field 11.5 tesla are presented. The new instrument utilized an electrostatic ion guide\\u000a between the ESI source and FTICR trap that provided up to 5% overall transmission efficiency for light ions and up to 30%\\u000a efficiency for heavier biomolecules.

Michael V. Gorshkov; Pasa Tolic; Ljiljana Paša Toli?; Harold R. Udseth; Gordon A. Anderson; Baoming M. Huang; James E. Bruce; David C. Prior; Steven A. Hofstadler; Liang Tang; Lin-Zhi Chen; Jesse A. Willett; Alan L. Rockwood; Michael S. Sherman; Richard D. Smith

1998-01-01

408

Warm inflation in presence of magnetic fields  

SciTech Connect

We present preliminary results on the possible effects that primordial magnetic fields can have for a warm inflation scenario, based on global supersymmetry, with a new-inflation-type potential. This work is motivated by two considerations: first, magnetic fields seem to be present in the universe on all scales which rises de possibility that they could also permeate the early universe; second, the recent emergence of inflationary models where the inflaton is not assumed to be isolated but instead it is taken as an interacting field, even during the inflationary expansion. The effects of magnetic fields are included resorting to Schwinger's proper time method.

Piccinelli, Gabriella [Centro Tecnológico, FES Aragón, Universidad Nacional Autónoma de México, Avenida Rancho Seco S/N, Bosques de Aragón, Nezahualcóyotl, Estado de México 57130 (Mexico)] [Centro Tecnológico, FES Aragón, Universidad Nacional Autónoma de México, Avenida Rancho Seco S/N, Bosques de Aragón, Nezahualcóyotl, Estado de México 57130 (Mexico); Sánchez, Ángel [Department of Physics, University of Texas at El Paso, El Paso, Texas 79968 (United States)] [Department of Physics, University of Texas at El Paso, El Paso, Texas 79968 (United States); Ayala, Alejandro; Mizher, Ana Julia [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, México Distrito Federal 04510 (Mexico)] [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, México Distrito Federal 04510 (Mexico)

2013-07-23

409

Experimental studies of protozoan response to intense magnetic fields and forces  

NASA Astrophysics Data System (ADS)

Intense static magnetic fields of up to 31 Tesla were used as a novel tool to manipulate the swimming mechanics of unicellular organisms. It is shown that homogenous magnetic fields alter the swimming trajectories of the single cell protozoan Paramecium caudatum, by aligning them parallel to the applied field. Immobile neutrally buoyant paramecia also oriented in magnetic fields with similar rates as the motile ones. It was established that the magneto-orientation is mostly due to the magnetic torques acting on rigid structures in the cell body and therefore the response is a non-biological, passive response. From the orientation rate of paramecia in various magnetic field strengths, the average anisotropy of the diamagnetic susceptibility of the cell was estimated. It has also been demonstrated that magnetic forces can be used to create increased, decreased and even inverted simulated gravity environments for the investigation of the gravi-responses of single cells. Since the mechanisms by which Earth's gravity affects cell functioning are still not fully understood, a number of methods to simulate different strength gravity environments, such as centrifugation, have been employed. Exploiting the ability to exert magnetic forces on weakly diamagnetic constituents of the cells, we were able to vary the gravity from -8 g to 10 g, where g is Earth's gravity. Investigations of the swimming response of paramecia in these simulated gravities revealed that they actively regulate their swimming speed to oppose the external force. This result is in agreement with centrifugation experiments, confirming the credibility of the technique. Moreover, the Paramecium's swimming ceased in simulated gravity of 10 g, indicating a maximum possible propulsion force of 0.7 nN. The magnetic force technique to simulate gravity is the only earthbound technique that can create increased and decreased simulated gravities in the same experimental setup. These findings establish a general technique for applying continuously variable forces to cells or cell populations suitable for exploring their force transduction mechanisms.

Guevorkian, Karine

410

NON-CONTACT ULTRASONIC TREATMENT OF METALS IN A MAGNETIC FIELD  

SciTech Connect

A high-field EMAT (Electromagnetic Acoustical Transducer) has been used for non-contact ultrasonic processing of aluminum samples during solidification. The magnetic field for the EMAT is supplied by a high-field (20 Tesla) resistive magnet, and the current is provided by an induction coil. This resulted in a highly efficient EMAT that delivered 0.5 MPa of acoustic drive to the surface of the sample while coupling less than 100 watts of incidental induction heating. The exceptionally high energy efficiency of the electromagnetic transducer is due to the use of high magnetic field, which reduces the current needed to achieve the same acoustic pressure. In the initial experiments, aluminum samples of A356 alloy were heated to the liquid state and allowed to solidify at a controlled cooling rate while subjected to the non-contact ultrasonic stimulation (0.5 MPa @ 165 kHz) provided by an induction coil located within the bore of a 20-T resistive magnet

Wilgen, John B [ORNL] [ORNL; Kisner, Roger A [ORNL] [ORNL; Jaramillo, Roger A [ORNL] [ORNL; Ludtka, Gerard Michael [ORNL] [ORNL; Ludtka, Gail Mackiewicz- [ORNL] [ORNL

2007-01-01

411

Ohm's law for mean magnetic fields  

SciTech Connect

Spatially complicated magnetic fields are frequently treated as the sum of a large, slowly varying, mean field and a small, rapidly varying, field. The primary effect of the small field is to modify the Ohm's law of the mean field. A set of plausible assumptions leads to a form of the mean field Ohm's law which is fundamentally different from the conventional alpha effect of dynamo theory.

Boozer, A.H.

1984-11-01

412

Design considerations of a pair of power leads for fast-cycling superconducting accelerator magnets operating at 2 Tesla and 100 kA  

SciTech Connect

Recently proposed injector accelerator, Low Energy Ring (LER) for the LHC and fast cycling accelerators for the proton drivers (SF-SPS at CERN and DSF-MR at Fermilab) require that a new magnet technology be developed. In support of this accelerator program, a pair of power leads needs to be developed to close the loop between the power supply and accelerator system. The magnet proposed to be used will be a modified transmission line magnet technology that would allow for accelerator quality magnetic field sweep of 2 T/s. The transmission line conductor will be using HTS technology and cooled with supercritical helium at 5 K. The power leads consist of two sections; upper one is a copper and lower section will be using HTS tapes. The accelerator magnet will be ramped to 100 kA in a second and almost immediately ramped down to zero in one second. This paper outlines the design considerations for the power leads to meet the operational requirements for the accelerator system. The power leads thermal analysis during the magnet powering cycle will be included.

Huang, Yuenian; Hays, Steven; Piekarz, Henryk; de Rijk, Gijsbert; Rossi, L.; /Fermilab /CERN

2007-08-01

413

Magnetic fields in noninvasive brain stimulation.  

PubMed

The idea that magnetic fields could be used therapeutically arose 2000 years ago. These therapeutic possibilities were expanded after the discovery of electromagnetic induction by the Englishman Michael Faraday and the American Joseph Henry. In 1896, Arsène d'Arsonval reported his experience with noninvasive brain magnetic stimulation to the scientific French community. In the second half of the 20th century, changing magnetic fields emerged as a noninvasive tool to study the nervous system and to modulate neural function. In 1985, Barker, Jalinous, and Freeston presented transcranial magnetic stimulation, a relatively focal and painless technique. Transcranial magnetic stimulation has been proposed as a clinical neurophysiology tool and as a potential adjuvant treatment for psychiatric and neurologic conditions. This article aims to contextualize the progress of use of magnetic fields in the history of neuroscience and medical sciences, until 1985. PMID:23787954

Vidal-Dourado, Marcos; Conforto, Adriana Bastos; Caboclo, Luis Otávio Sales Ferreira; Scaff, Milberto; Guilhoto, Laura Maria de Figueiredo Ferreira; Yacubian, Elza Márcia Targas

2014-04-01

414

Field Mapping System for Solenoid Magnet  

NASA Astrophysics Data System (ADS)

A three-dimensional Hall probe mapping system for measuring the solenoid magnet of PLS photo-cathode RF e-gun has been developed. It can map the solenoid field either in Cartesian or in cylindrical coordinate system with a measurement reproducibility better than 5 × 10-5 T. The system has three axis motors: one for the azimuthal direction and the other two for the x and z direction. This architecture makes the measuring system simple in fabrication. The magnetic center was calculated using the measured axial component of magnetic field Bz in Cartesian coordinate system because the accuracy of magnetic axis measurement could be improved significantly by using Bz, instead of the radial component of magnetic field Br. This paper describes the measurement system and summarizes the measurement results for the solenoid magnetic of PLS photo-cathode RF e-gun.

Park, K. H.; Jung, Y. K.; Kim, D. E.; Lee, H. G.; Park, S. J.; Chung, C. W.; Kang, B. K.

2007-01-01

415

Dynamic Magnetic Field Applications for Materials Processing  

NASA Technical Reports Server (NTRS)

Magnetic fields, variable in time and space, can be used to control convection in electrically conducting melts. Flow induced by these fields has been found to be beneficial for crystal growth applications. It allows increased crystal growth rates, and improves homogeneity and quality. Particularly beneficial is the natural convection damping capability of alternating magnetic fields. One well-known example is the rotating magnetic field (RMF) configuration. RMF induces liquid motion consisting of a swirling basic flow and a meridional secondary flow. In addition to crystal growth applications, RMF can also be used for mixing non-homogeneous melts in continuous metal castings. These applied aspects have stimulated increasing research on RMF-induced fluid dynamics. A novel type of magnetic field configuration consisting of an axisymmetric magnetostatic wave, designated the traveling magnetic field (TMF), has been recently proposed. It induces a basic flow in the form of a single vortex. TMF may find use in crystal growth techniques such as the vertical Bridgman (VB), float zone (FZ), and the traveling heater method. In this review, both methods, RMF and TMF are presented. Our recent theoretical and experimental results include such topics as localized TMF, natural convection dumping using TMF in a vertical Bridgman configuration, the traveling heater method, and the Lorentz force induced by TMF as a function of frequency. Experimentally, alloy mixing results, with and without applied TMF, will be presented. Finally, advantages of the traveling magnetic field, in comparison to the more mature rotating magnetic field method, will be discussed.

Mazuruk, K.; Grugel, Richard N.; Motakef, S.; Whitaker, Ann F. (Technical Monitor)

2001-01-01

416

Protein detection with magnetic nanoparticles in a rotating magnetic field  

NASA Astrophysics Data System (ADS)

A detection scheme based on magnetic nanoparticle (MNP) dynamics in a rotating magnetic field for a quantitative and easy-to-perform detection of proteins is illustrated. For the measurements, a fluxgate-based setup was applied, which measures the MNP dynamics, while a rotating magnetic field is generated. The MNPs exhibit single iron oxide cores of 25 nm and 40 nm diameter, respectively, as well as a protein G functionalized shell. IgG antibodies were utilized as binding target molecules for the physical proof-of-concept. The measurement results were fitted with a theoretical model describing the magnetization dynamics in a rotating magnetic field. The established detection scheme allows quantitative determination of proteins even at a concentration lower than of the particles. The observed differences between the two MNP types are discussed on the basis of logistic functions.

Dieckhoff, Jan; Lak, Aidin; Schilling, Meinhard; Ludwig, Frank

2014-01-01

417

MAGNETIC INTERACTION BETWEEN TWO NON-MAGNETIC PARTICLES MIGRATING IN A CONDUCTIVE FLUID INDUCED BY A STRONG MAGNETIC FIELD-AN ANALYTICAL APPROACH  

Microsoft Academic Search

An analytical approach is developed in the present paper to investigate the interaction between two non-magnetic particles migrating in a conductive ?uid due to an imposed strong magnetic fleld (e.g., 10 Tesla). The interaction between the conductive ?uid and a single particle migrating along the magnetic lines is in?uenced by the magnetic fleld and can be represented by an additional

Zhi Sun; Muxing Guo; Frederik Verhaeghe; Jef Vleugels; Omer Van der Biest; Bart Blanpain

2010-01-01

418

External-field-free magnetic biosensor  

SciTech Connect

In this paper, we report a magnetic nanoparticle (MNP) detection scheme without the presence of any external magnetic field. The proposed magnetic sensor uses a patterned groove structure within the sensor so that no external magnetic field is needed to magnetize the MNPs. An example is given based on a giant magnetoresistance (GMR) sensing device with a spin valve structure. For this structure, the detection of MNPs located inside the groove and near the free layer is demonstrated under no external magnetic field. Micromagnetic simulations are performed to calculate the signal to noise level of this detection scheme. A maximum signal to noise ratio (SNR) of 18.6?dB from one iron oxide magnetic nanoparticle with 8?nm radius is achieved. As proof of concept, this external-field-free GMR sensor with groove structure of 200?nm?×?200?nm is fabricated using a photo and an electron beam integrated lithography process. Using this sensor, the feasibility demonstration of the detection SNR of 9.3?dB is achieved for 30??l magnetic nanoparticles suspension (30?nm iron oxide particles, 1?mg/ml). This proposed external-field-free sensor structure is not limited to GMR devices and could be applicable to other magnetic biosensing devices.

Li, Yuanpeng; Wang, Yi; Klein, Todd; Wang, Jian-Ping, E-mail: jpwang@umn.edu [Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

2014-03-24

419

Theory of magnetic superconductors in an external magnetic field  

Microsoft Academic Search

The theory of Abrikosov and Gor'kov has been extended to study superconducting systems containing a lattice of magnetic ions. Differential equations have been set up for the Green's-function matrices which describe a magnetic superconductor in the presence of local-spin--conduction-electron exchange and external magnetic field. The self-consistent gap equation for the system has been formulated in terms of normal-state Green's functions.

Narayan C. Das

1984-01-01

420

Theory of magnetic superconductors in an external magnetic field  

Microsoft Academic Search

The theory of Abrikosov and Gor'kov has been extended to study superconducting systems containing a lattice of magnetic ions. Differential equations have been set up for the Green's-function matrices which describe a magnetic superconductor in the presence of local-spin-conduction-electron exchange and external magnetic field. The self-consistent gap equation for the system has been formulated in terms of normal-state Green's functions.

Narayan C. Das

1984-01-01

421

Compact low field magnetic resonance imaging magnet: Design and optimization  

NASA Astrophysics Data System (ADS)

Magnetic resonance imaging (MRI) is performed with a very large instrument that allows the patient to be inserted into a region of uniform magnetic field. The field is generated either by an electromagnet (resistive or superconductive) or by a permanent magnet. Electromagnets are designed as air cored solenoids of cylindrical symmetry, with an inner bore of 80-100 cm in diameter. In clinical analysis of peripheral regions of the body (legs, arms, foot, knee, etc.) it would be better to adopt much less expensive magnets leaving the most expensive instruments to applications that require the insertion of the patient in the magnet (head, thorax, abdomen, etc.). These "dedicated" apparati could be smaller and based on resistive magnets that are manufactured and operated at very low cost, particularly if they utilize an iron yoke to reduce power requirements. In order to obtain good field uniformity without the use of a set of shimming coils, we propose both particular construction of a dedicated magnet, using four independently controlled pairs of coils, and an optimization-based strategy for computing, a posteriori, the optimal current values. The optimization phase could be viewed as a low-cost shimming procedure for obtaining the desired magnetic field configuration. Some experimental measurements, confirming the effectiveness of the proposed approach (construction and optimization), have also been reported. In particular, it has been shown that the adoption of the proposed optimization based strategy has allowed the achievement of good uniformity of the magnetic field in about one fourth of the magnet length and about one half of its bore. On the basis of the good experimental results, the dedicated magnet can be used for MRI of peripheral regions of the body and for animal experimentation at very low cost.

Sciandrone, M.; Placidi, G.; Testa, L.; Sotgiu, A.

2000-03-01

422

Colour superconductivity in a strong magnetic field  

E-print Network

We explore the effects of an applied strong external magnetic field in a three flavour massless colour superconductor. The long-range component of the B field that penetrates the superconductor enhances some quark condensates, leading to a different condensation pattern. The external field also reduces the flavour symmetries in the system, and thus it changes drastically the corresponding low energy physics. Our considerations are relevant for the study of highly magnetized compact stars.

Efrain J. Ferrer; Vivian de la Incera; Cristina Manuel

2005-11-30

423

Ohm's law for mean magnetic fields  

SciTech Connect

The magnetic fields associated with plasmas frequently exhibit small amplitude MHD fluctuations. It is useful to have equations for the magnetic field averaged over these fluctuations, the so-called mean field equations. Under very general assumptions it is shown that the effect of MHD fluctuations on a force-free plasma can be represented by one parameter in Ohm's law, which is effectively the coefficient of electric current viscosity.

Boozer, A.H.

1986-05-01

424

Ohm's law for mean magnetic fields  

Microsoft Academic Search

The magnetic fields associated with plasmas frequently exhibit small-amplitude MHD fluctuations. It is useful to have equations for the magnetic field averaged over these fluctuations, the so-called mean field equations. Under very general assumptions, it is shown that the effect of MHD fluctuations on a force-free plasma can be represented by one parameter in Ohm's law, which is effectively the

A. H. Boozer

1986-01-01

425

Magnetic field corrections to solar oscillation frequencies  

NASA Technical Reports Server (NTRS)

It is argued that the frequencies of both the solar p- and g-modes of oscillation are modified by a magnetic field. In particular, the decrease in p-mode frequencies is attributed to a magnetic field within the solar interior evolving over the solar cycle. Field strengths at the base of the convection zone of at least 500,000 G are required.

Roberts, B.; Campbell, W. R.

1986-01-01

426

Thermodynamics of the Magnetic-Field-Induced \\  

Microsoft Academic Search

High magnetic fields are used to kill superconductivity and probe what happens to system when it cannot reach the ideal ground state, i.e. what is the normal-state ground state? Early work in High-Tc, where the application of magnetic field destroyed the zero resistance state and recovered a resistivity value that connected continuously with the zero field curve, lead people to

Scott Chandler Riggs

2010-01-01

427

Magnetic field homogeneity perturbations in finite Halbach dipole magnets.  

PubMed

Halbach hollow cylinder dipole magnets of a low or relatively low aspect ratio attract considerable attention due to their applications, among others, in compact NMR and MRI systems for investigating small objects. However, a complete mathematical framework for the analysis of magnetic fields in these magnets has been developed only for their infinitely long precursors. In such a case the analysis is reduced to two-dimensions (2D). The paper details the analysis of the 3D magnetic field in the Halbach dipole cylinders of a finite length. The analysis is based on three equations in which the components of the magnetic flux density Bx, By and Bz are expanded to infinite power series of the radial coordinate r. The zeroth term in the series corresponds to a homogeneous magnetic field Bc, which is perturbed by the higher order terms due to a finite magnet length. This set of equations is supplemented with an equation for the field profile B(z) along the magnet axis, presented for the first time. It is demonstrated that the geometrical factors in the coefficients of particular powers of r, defined by intricate integrals are the coefficients of the Taylor expansion of the homogeneity profile (B(z)-Bc)/Bc. As a consequence, the components of B can be easily calculated with an arbitrary accuracy. In order to describe perturbations of the field due to segmentation, two additional equations are borrowed from the 2D theory. It is shown that the 2D approach to the perturbations generated by the segmentation can be applied to the 3D Halbach structures unless r is not too close to the inner radius of the cylinder ri. The mathematical framework presented in the paper was verified with great precision by computations of B by a highly accurate integration of the magnetostatic Coulomb law and utilized to analyze the inhomogeneity of the magnetic field in the magnet with the accuracy better than 1 ppm. PMID:24316186

Turek, Krzysztof; Liszkowski, Piotr

2014-01-01

428

Theory of Passive Magnetic Field Transport  

E-print Network

In recent years, our knowledge of photospheric magnetic fields went through a thorough transformation--nearly unnoticed by dynamo theorists. It is now practically certain that the overwhelming majority of the unsigned magnetic flux crossing the solar surface is in turbulent form (intranetwork and hidden fields). Furthermore, there are now observational indications (supported by theoretical arguments discussed in this paper) that the net polarity imbalance of the turbulent field may give a significant or even dominant contribution to the weak large-scale background magnetic fields outside unipolar network areas. This turbulent magnetic field consists of flux tubes with magnetic fluxes below 1e10 Wb (1e18 Mx). The motion of these thin tubes is dominated by the drag of the surrounding flows, so the transport of this component of the solar magnetic field must fully be determined by the kinematics of the turbulence (i.e. it is "passive"), and it can be described by a one-fluid model like mean-field theory (MFT). This paper reviews the theory of passive magnetic field transport using mostly first (and occasionally higher) order smoothing formalism; the most important transport effects are however also independently derived using Lagrangian analysis for a simple two-component flow model. Solar applications of the theory are also presented. Among some other novel findings it is proposed that the observed unsigned magnetic flux density in the photosphere requires a small-scale dynamo effect operating in the convective zone and that the net polarity imbalance in turbulent (and, in particular, hidden) fields may give a major contribution to the weak large-scale background magnetic fields on the Sun.

Kristof Petrovay

1997-03-25

429

Magnetic reconnection at the edge of Uranus's magnetic field  

NASA Astrophysics Data System (ADS)

A new modeling study sheds light on how the magnetosphere of Uranus compares to those of other planets. Magnetospheres around the inner planets Mercury and Earth are primarily driven by the solar wind—the charged particles spewed out from the Sun—through magnetic reconnection, in which the planet's magnetic field lines break and reconnect, releasing energy in the process.

Balcerak, Ernie

2014-09-01

430

TESLA Report 2001-38 THE TESLA CRYO-PLANTS  

E-print Network

TESLA Report 2001-38 THE TESLA CRYO-PLANTS H. Quack, M. Kauschke, C. Haberstroh, TU Dresden, 01062 out that concerning the four most frequent sources of unavailability the effect of multiple plants of vacuum or oil spill into the cold box piping, there would be a clear advantage of multiple refrigerators

431

Tuning permanent magnets with adjustable field clamps  

SciTech Connect

The effective length of a permanent-magnet assembly can be varied by adjusting the geometrical parameters of a field clamp. This paper presents measurements on a representative dipole and quadrupole as the field clamp is withdrawn axially or radially. The detailed behavior depends upon the magnet multipolarity and geometry. As a rule-of-thumb, a 3-mm-thick iron plate placed at one end plane of the magnet will shorten the length by one-third of the magnet bore radius.

Schermer, R.I.

1987-01-01

432

Earth-directed ICME magnetic field configurations  

NASA Astrophysics Data System (ADS)

It is known that the geoeffectiveness of interplanetary coronal mass ejections (ICMEs) depends on their magnetic field configuration. However, it remains unclear how the ICME interactions with the solar wind or other solar transient structures affect their magnetic configuration through, say, distortion of their cross-section, or deformation of their front. Obviously, precise space weather forecasting is depended on precise understanding of the evolution of the ICME internal magnetic topology.The goal of this study is to identify the ambient solar wind parameters that affect the flux-rope geometry and magnetic field configuration.

Nieves-Chinchilla, Teresa; Vourlidas, Angelos; Szabo, Adam; Savani, Neel; Mays, M. Leila; Hidalgo, Miguel Angel; Wenyuan, Yu

2015-04-01

433

3D analysis of applied field effect on trapped magnetic field during pulsed field magnetization of bulk superconductor  

NASA Astrophysics Data System (ADS)

External applied field effect in magnetization process by pulsed field (PFM) method of rectangular bulk superconductor is analysed by solving the A-V magnetic equation coupled to the thermal one in order to show the influence of the amplitude of the external field on the trapped magnetic field of bulk superconductor. A numerical model based on the control volume method (CVM) has been developed, which uses a power-law model with temperature dependency and magnetic field dependence on critical current density. For low cooling temperature Tco = 20 K, a good distribution of the trapped magnetic field of the bulk superconductor is obtained when we applied high external field.

Lotfi Khene, Mohamed; Alloui, Lotfi; Mimoune, Souri Mohamed; Bouillault, Frédéric; Feliachi, Mouloud

2014-04-01

434

The Measurement of Magnetic Fields  

ERIC Educational Resources Information Center

Discusses five experimental methods used by senior high school students to provide an accurate calibration curve of magnet current against the magnetic flux density produced by an electromagnet. Compares the relative merits of the five methods, both as measurements and from an educational viewpoint. (JR)

Berridge, H. J. J.

1973-01-01

435

Superconducting tubular wires in transverse magnetic fields  

NASA Astrophysics Data System (ADS)

The electromagnetic response of a round tubular wire of superconducting film to a transverse magnetic field is investigated theoretically. For a superconducting tubular wire (STW) in which the thickness d of the superconducting layer is much smaller than the radius R of the wire, analytical expressions for the magnetic-field and current distributions are obtained on the basis of the critical state model with constant critical current density jc. When an applied transverse magnetic field Ha increases monotonically from zero, the penetration of the magnetic field into an STW occurs in two stages: for 0magnetic field in the interior of an STW is shielded, whereas for Ha>jcd/2 the magnetic field extends into the interior. Analytical expressions of the hysteretic ac loss Qtube of an STW in a transverse ac magnetic field of amplitude H0 are also obtained, and Qtube(H0) is found to have an abrupt change at H0?jcd/2.

Mawatari, Yasunori

2011-04-01

436

Magnet Powered Pinwheel  

NSDL National Science Digital Library

Learners use the current flowing in a wire to create a magnetic field that turns a magnet. Learners can use this property of electromagnetism to build a magnet-powered pinwheel. This is one of four activities learners can complete related to PhysicsQuest 2008. Each activity gives a clue to solve a puzzle in the accompanying comic book, "Nikola Tesla and the Electric Fair."

American Physical Society

2009-01-01