Science.gov

Sample records for tesla magnetic field

  1. Nikola Tesla: the man behind the magnetic field unit.

    PubMed

    Roguin, Ariel

    2004-03-01

    The magnetic field strength of both the magnet and gradient coils used in MR imaging equipment is measured in Tesla units, which are named for Nikola Tesla. This article presents the life and achievements of this Serbian-American inventor and researcher who discovered the rotating magnetic field, the basis of most alternating-current machinery. Nikola Tesla had 700 patents in the United States and Europe that covered every aspect of science and technology. Tesla's discoveries include the Tesla coil, AC electrical conduction, improved lighting, newer forms of turbine engines, robotics, fluorescent light, wireless transmission of electrical energy, radio, remote control, discovery of cosmic radio waves, and the use of the ionosphere for scientific purposes. He was a genius whose discoveries had a pivotal role in advancing us into the modern era. PMID:14994307

  2. Field quality measurements of a 2-Tesla transmission line magnet

    SciTech Connect

    Velev, G.V.; Foster, W.; Kashikhin, V.; Mazur, P.; Oleck, A.; Piekarz, H.; Schlabach, P.; Sylvester, C.; Wake, M.; /KEK, Tsukuba

    2005-09-01

    A prototype 2-Tesla superconducting transmission line magnet for future hadron colliders was designed, built and tested at Fermilab. The 1.5 m long, combined-function gradient-dipole magnet has a vertical pole aperture of 20 mm. To measure the magnetic field quality in such a small magnet aperture, a specialized rotating coil of 15.2 mm diameter, 0.69 m long was fabricated. Using this probe, a program of magnetic field quality measurements was successfully performed. Results of the measurements are presented and discussed.

  3. Sampling Hyperpolarized Molecules Utilizing a 1 Tesla Permanent Magnetic Field

    PubMed Central

    Tee, Sui Seng; DiGialleonardo, Valentina; Eskandari, Roozbeh; Jeong, Sangmoo; Granlund, Kristin L.; Miloushev, Vesselin; Poot, Alex J.; Truong, Steven; Alvarez, Julio A.; Aldeborgh, Hannah N.; Keshari, Kayvan R.

    2016-01-01

    Hyperpolarized magnetic resonance spectroscopy (HP MRS) using dynamic nuclear polarization (DNP) is a technique that has greatly enhanced the sensitivity of detecting 13C nuclei. However, the HP MRS polarization decays in the liquid state according to the spin-lattice relaxation time (T1) of the nucleus. Sampling of the signal also destroys polarization, resulting in a limited temporal ability to observe biologically interesting reactions. In this study, we demonstrate that sampling hyperpolarized signals using a permanent magnet at 1 Tesla (1T) is a simple and cost-effective method to increase T1s without sacrificing signal-to-noise. Biologically-relevant information may be obtained with a permanent magnet using enzyme solutions and in whole cells. Of significance, our findings indicate that changes in pyruvate metabolism can also be quantified in a xenograft model at this field strength. PMID:27597137

  4. Sampling Hyperpolarized Molecules Utilizing a 1 Tesla Permanent Magnetic Field.

    PubMed

    Tee, Sui Seng; DiGialleonardo, Valentina; Eskandari, Roozbeh; Jeong, Sangmoo; Granlund, Kristin L; Miloushev, Vesselin; Poot, Alex J; Truong, Steven; Alvarez, Julio A; Aldeborgh, Hannah N; Keshari, Kayvan R

    2016-01-01

    Hyperpolarized magnetic resonance spectroscopy (HP MRS) using dynamic nuclear polarization (DNP) is a technique that has greatly enhanced the sensitivity of detecting (13)C nuclei. However, the HP MRS polarization decays in the liquid state according to the spin-lattice relaxation time (T1) of the nucleus. Sampling of the signal also destroys polarization, resulting in a limited temporal ability to observe biologically interesting reactions. In this study, we demonstrate that sampling hyperpolarized signals using a permanent magnet at 1 Tesla (1T) is a simple and cost-effective method to increase T1s without sacrificing signal-to-noise. Biologically-relevant information may be obtained with a permanent magnet using enzyme solutions and in whole cells. Of significance, our findings indicate that changes in pyruvate metabolism can also be quantified in a xenograft model at this field strength. PMID:27597137

  5. Functionality of veterinary identification microchips following low- (0.5 tesla) and high-field (3 tesla) magnetic resonance imaging.

    PubMed

    Piesnack, Susann; Frame, Mairi E; Oechtering, Gerhard; Ludewig, Eberhard

    2013-01-01

    The ability to read patient identification microchips relies on the use of radiofrequency pulses. Since radiofrequency pulses also form an integral part of the magnetic resonance imaging (MRI) process, the possibility of loss of microchip function during MRI scanning is of concern. Previous clinical trials have shown microchip function to be unaffected by MR imaging using a field strength of 1 Tesla and 1.5. As veterinary MRI scanners range widely in field strength, this study was devised to determine whether exposure to lower or higher field strengths than 1 Tesla would affect the function of different types of microchip. In a phantom study, a total of 300 International Standards Organisation (ISO)-approved microchips (100 each of three different types: ISO FDX-B 1.4 × 9 mm, ISO FDX-B 2.12 × 12 mm, ISO HDX 3.8 × 23 mm) were tested in a low field (0.5) and a high field scanner (3.0 Tesla). A total of 50 microchips of each type were tested in each scanner. The phantom was composed of a fluid-filled freezer pack onto which a plastic pillow and a cardboard strip with affixed microchips were positioned. Following an MRI scan protocol simulating a head study, all of the microchips were accurately readable. Neither 0.5 nor 3 Tesla imaging affected microchip function in this study. PMID:23763334

  6. Optical Signatures from Magnetic 2-D Electron Gases in High Magnetic Fields to 60 Tesla

    SciTech Connect

    Crooker, S.A.; Kikkawa, J.M.; Awschalom, D.D.; Smorchikova, I.P.; Samarth, N.

    1998-11-08

    We present experiments in the 60 Tesla Long-Pulse magnet at the Los Alamos National High Magnetic Field Lab (NHMFL) focusing on the high-field, low temperature photoluminescence (PL) from modulation-doped ZnSe/Zn(Cd,Mn)Se single quantum wells. High-speed charge-coupled array detectors and the long (2 second) duration of the magnet pulse permit continuous acquisition of optical spectra throughout a single magnet shot. High-field PL studies of the magnetic 2D electron gases at temperatures down to 350mK reveal clear intensity oscillations corresponding to integer quantum Hall filling factors, from which we determine the density of the electron gas. At very high magnetic fields, steps in the PL energy are observed which correspond to the partial unlocking of antiferromagnetically bound pairs of Mn2+ spins.

  7. Tuning magnetic disorder in diluted magnetic semiconductors using high fields to 89 Tesla

    SciTech Connect

    Crooker, Scott A; Samarth, Nitin

    2008-01-01

    We describe recent and ongoing studies at the National High Magnetic Field Laboratory at Los Alamos using the new '100 Tesla Multi-Shot Magnet', which is presently delivering fields up to {approx}89 T during its commissioning. We discuss the first experiments performed in this magnet system, wherein the linewidth of low-temperature photoluminescence spectra was used to directly reveal the degree of magnetic alloy disorder 'seen' by excitons in single Zn{sub 0.80}Cd{sub 0.22}Mn{sub 0.08}Se quantum wells. The magnetic potential landscape in II-VI diluted magnetic semiconductors (DMS) is typically smoothed when the embedded Mn{sup 2+} spins align in an applied field. However, an important (but heretofore untested) prediction of current models of compositional disorder is that magnetic alloy fluctuations in many DMS compounds should increase again in very large magnetic fields approaching 100 T. We observed precisely this increase above {approx}70 T, in agreement with a simple model of magnetic alloy disorder.

  8. A high-field (30 Tesla) pulsed magnet instrument for single-crystal scattering studies

    NASA Astrophysics Data System (ADS)

    Islam, Zahirul; Nojiri, Hiroyuki; Narumi, Yasuo; Lang, Jonathan

    2010-03-01

    Pulsed magnets have emerged as a viable approach at synchrotron x-ray facilities for studying materials in high magnetic fields. We are developing a new high-field (30 Tesla) pulsed magnet system for single-crystal x-ray diffraction studies. It consists of a single 18mm-bore solenoid, designed and built at Tohoku University using high-tensile-strength and high conductivity CuAg wires. A dual-cryostat scheme has been developed at Advanced Photon Source in order to cool the coil using liquid nitrogen and the sample using a closed-cycle cryostat independently. Liquid nitrogen cooling allows repetition rate of a few minutes for peak fields near 30 Tesla. This scheme is unique in that it allows the applied magnetic field to be parallel to the scattering plane. Time-resolved scattering data are typically collected using a fast one-dimensional strip detector. Opportunities and challenges for experiments and instrumentation will be discussed.

  9. Sub-tesla-field magnetization of vibrated magnetic nanoreagents for screening tumor markers

    NASA Astrophysics Data System (ADS)

    Chieh, Jen-Jie; Huang, Kai-Wen; Shi, Jin-Cheng

    2015-02-01

    Magnetic nanoreagents (MNRs), consisting of liquid solutions and magnetic nanoparticles (MNPs) coated with bioprobes, have been widely used in biomedical disciplines. For in vitro tests of serum biomarkers, numerous MNR-based magnetic immunoassay methods or schemes have been developed; however, their applications are limited. In this study, a vibrating sample magnetometer (VSM) was used for screening tumor biomarkers based on the same MNRs as those used in other immunoassay methods. The examination mechanism is that examined tumor biomarkers are typically conjugated to the bioprobes coated on MNPs to form magnetic clusters. Consequently, the sub-Tesla-field magnetization (Msub-T) of MNRs, including magnetic clusters, exceeds that of MNRs containing only separate MNPs. For human serum samples, proteins other than the targeted biomarkers induce the formation of magnetic clusters with increased Msub-T because of weak nonspecific binding. In this study, this interference problem was suppressed by the vibration condition in the VSM and analysis. Based on a referenced Msub-T,0 value defined by the average Msub-T value of a normal person's serum samples, including general proteins and few tumor biomarkers, the difference ΔMsub-T between the measured Msub-T and the reference Msub-T,0 determined the expression of only target tumor biomarkers in the tested serum samples. By using common MNRs with an alpha-fetoprotein-antibody coating, this study demonstrated that a current VSM can perform clinical screening of hepatocellular carcinoma.

  10. A 0.5 Tesla Transverse-Field Alternating Magnetic Field Demagnetizer

    NASA Astrophysics Data System (ADS)

    Schillinger, W. E.; Morris, E. R.; Finn, D. R.; Coe, R. S.

    2015-12-01

    We have built an alternating field demagnetizer that can routinely achieve a maximum field of 0.5 Tesla. It uses an amorphous magnetic core with an air-cooled coil. We have started with a 0.5 T design, which satisfies most of our immediate needs, but we can certainly achieve higher fields. In our design, the magnetic field is transverse to the bore and uniform to 1% over a standard (25 mm) paleomagnetic sample. It is powered by a 1 kW power amplifier and is compatible with our existing sample handler for automated demagnetization and measurement (Morris et al., 2009). It's much higher peak field has enabled us to completely demagnetize many of the samples that previously we could not with commercial equipment. This capability is especially needed for high-coercivity sedimentary and igneous rocks that contain magnetic minerals that alter during thermal demagnetization. It will also enable detailed automated demagnetization of high coercivity phases in extraterrestrial samples, such as native iron, iron-alloy and sulfide minerals that are common in lunar rocks and meteorites. Furthermore, it has opened the door for us to use the rock-magnetic technique of component analysis, using coercivity distributions derived from very detailed AF demagnetization of NRM and remanence produced in the laboratory to characterize the magnetic mineralogy of sedimentary rocks. In addition to the many benefits this instrument has brought to our own research, a much broader potential impact is to replace the transverse coils in automated AF demagnetization systems, which typically are limited to peak fields around 0.1 T.

  11. Light scattering from liquid crystal director fluctuations in steady magnetic fields up to 25 tesla

    NASA Astrophysics Data System (ADS)

    Challa, Pavan K.; Curtiss, O.; Williams, J. C.; Twieg, R.; Toth, J.; McGill, S.; Jákli, A.; Gleeson, J. T.; Sprunt, S. N.

    2012-07-01

    We report on homodyne dynamic light scattering measurements of orientational fluctuation modes in both calamitic and bent-core nematic liquid crystals, carried out in the new split-helix resistive magnet at the National High Magnetic Field Laboratory. The relaxation rate and inverse scattered intensity of director fluctuations exhibit a linear dependence on field-squared up to 25 tesla, which is consistent with strictly lowest order coupling of the tensor order parameter Q to field (QαβBαBβ) in the nematic free energy. However, we also observe evidence of field dependence of certain nematic material parameters, an effect which may be expected from the mean field scaling of these quantities with the magnitude of Q and the predicted variation of Q with field.

  12. Light scattering from liquid crystal director fluctuations in steady magnetic fields up to 25 tesla.

    PubMed

    Challa, Pavan K; Curtiss, O; Williams, J C; Twieg, R; Toth, J; McGill, S; Jákli, A; Gleeson, J T; Sprunt, S N

    2012-07-01

    We report on homodyne dynamic light scattering measurements of orientational fluctuation modes in both calamitic and bent-core nematic liquid crystals, carried out in the new split-helix resistive magnet at the National High Magnetic Field Laboratory. The relaxation rate and inverse scattered intensity of director fluctuations exhibit a linear dependence on field-squared up to 25 tesla, which is consistent with strictly lowest order coupling of the tensor order parameter Q to field (Q(αβ)B(α)B(β)) in the nematic free energy. However, we also observe evidence of field dependence of certain nematic material parameters, an effect which may be expected from the mean field scaling of these quantities with the magnitude of Q and the predicted variation of Q with field. PMID:23005438

  13. Low-noise nano superconducting quantum interference device operating in Tesla magnetic fields.

    PubMed

    Schwarz, Tobias; Nagel, Joachim; Wölbing, Roman; Kemmler, Matthias; Kleiner, Reinhold; Koelle, Dieter

    2013-01-22

    Superconductivity in the cuprate YBa(2)Cu(3)O(7) (YBCO) persists up to huge magnetic fields (B) up to several tens of Teslas, and sensitive direct current (dc) superconducting quantum interference devices (SQUIDs) can be realized in epitaxially grown YBCO films by using grain boundary Josephson junctions (GBJs). Here we present the realization of high-quality YBCO nanoSQUIDs, patterned by focused ion beam milling. We demonstrate low-noise performance of such a SQUID up to B = 1 T applied parallel to the plane of the SQUID loop at the temperature T = 4.2 K. The GBJs are shunted by a thin Au layer to provide nonhysteretic current voltage characteristics, and the SQUID incorporates a 90 nm wide constriction which is used for on-chip modulation of the magnetic flux through the SQUID loop. The white flux noise of the device increases only slightly from 1.3 μΦ(0)/(Hz)(1/2) at B = 0 to 2.3 μΦ(0)/(Hz))(1/2) at 1 T. Assuming that a point-like magnetic particle with magnetization in the plane of the SQUID loop is placed directly on top of the constriction and taking into account the geometry of the SQUID, we calculate a spin sensitivity S(μ)(1/2) = 62 μ(B)/(Hz))(1/2) at B = 0 and 110 μ(B)/(Hz))(1/2) at 1 T. The demonstration of low noise of such a SQUID in Tesla fields is a decisive step toward utilizing the full potential of ultrasensitive nanoSQUIDs for direct measurements of magnetic hysteresis curves of magnetic nanoparticles and molecular magnets. PMID:23252846

  14. Impairment of chondrocyte biosynthetic activity by exposure to 3-tesla high-field magnetic resonance imaging is temporary.

    PubMed

    Sunk, Ilse-Gerlinde; Trattnig, Siegfried; Graninger, Winfried B; Amoyo, Love; Tuerk, Birgit; Steiner, Carl-Walter; Smolen, Josef S; Bobacz, Klaus

    2006-01-01

    The influence of magnetic resonance imaging (MRI) devices at high field strengths on living tissues is unknown. We investigated the effects of a 3-tesla electromagnetic field (EMF) on the biosynthetic activity of bovine articular cartilage. Bovine articular cartilage was obtained from juvenile and adult animals. Whole joints or cartilage explants were subjected to a pulsed 3-tesla EMF; controls were left unexposed. Synthesis of sulfated glycosaminoglycans (sGAGs) was measured by using [35S]sulfate incorporation; mRNA encoding the cartilage markers aggrecan and type II collagen, as well as IL-1beta, were analyzed by RT-PCR. Furthermore, effects of the 3-tesla EMF were determined over the course of time directly after exposure (day 0) and at days 3 and 6. In addition, the influence of a 1.5-tesla EMF on cartilage sGAG synthesis was evaluated. Chondrocyte cell death was assessed by staining with Annexin V and TdT-mediated dUTP nick end labelling (TUNEL). Exposure to the EMF resulted in a significant decrease in cartilage macromolecule synthesis. Gene expression of both aggrecan and IL-1beta, but not of collagen type II, was reduced in comparison with controls. Staining with Annexin V and TUNEL revealed no evidence of cell death. Interestingly, chondrocytes regained their biosynthetic activity within 3 days after exposure, as shown by proteoglycan synthesis rate and mRNA expression levels. Cartilage samples exposed to a 1.5-tesla EMF remained unaffected. Although MRI devices with a field strength of more than 1.5 T provide a better signal-to-noise ratio and thereby higher spatial resolution, their high field strength impairs the biosynthetic activity of articular chondrocytes in vitro. Although this decrease in biosynthetic activity seems to be transient, articular cartilage exposed to high-energy EMF may become vulnerable to damage. PMID:16831232

  15. Thirteen Tesla magnet constructed with MJR wire

    SciTech Connect

    Siddall, M.; Efferson, K.; Mcdonald, W.

    1983-05-01

    The authors have constructed an insert booster superconducting magnet of 20 mm clear bore and outside diameter of 100 mm and height 130 mm, wound and reacted from the Teledyne patented foraminous layered foil (jelly roll) wire fabricated by low cost, non-rebundled reduction to wire. This magnet was placed inside the 101 mm bore of a NbTi wound solenoid which was operated at 8.5 Tesla. The total field achieved was 13.0 Tesla with no training quench observed; although training was initially observed when the magnet was first tested alone up to 4.6 Tesla at American Magnets, Inc. (AMI). The magnet winding techniques utilize Airco's fiberglass type wire insulation, an AMI proprietary cement, argon atmosphere 700/sup 0/C for 100 hour reaction, followed by a postreaction potting impregnation. The MJR wire lot used (M22) was short sample tested and the Ln (J /SUB c/ ) -vs-H line intersected the insert magnet operating curve at 13.5 Tesla. The wire lot used has a 34 volume % copper external sheath for quench protection. The wire was fabricated with 15.4 volume % niobium and bronze/niobium ratio of 3.0 with 13.% Sn bronze.

  16. Magnetic field measurements of a clinical MR imager at 1.5 tesla

    NASA Astrophysics Data System (ADS)

    Muhech, A.; Tellez, I.; Esteva, M.; Marrufo, O.; Jimenez, L.; Vazquez, F.; Taboada, J.; Rodriguez, A. O.

    2012-10-01

    In the clinical environment is mandatory to run periodically measurements of uniformity of the magnetic field produced by the magnet to assure good image quality. The phase difference method was used to measure the magnetic field uniformity of the 1.5 T scanner of the Instituto Nacional de Neurologia y Neurocirugia MVS. The uniformity field values showed that the imager performance is reasonably good for clinical imaging. Some concern was raised since results may not be good enough for magnetic resonance spectroscopy runs.

  17. Orientational control of block copolymer microdomains by sub-tesla magnetic fields

    NASA Astrophysics Data System (ADS)

    Gopinadhan, Manesh; Choo, Youngwoo; Feng, Xunda; Kawabata, Kohsuke; di, Xiaojun; Osuji, Chinedum

    Magnetic fields offer a versatile approach to controlling the orientation of block copolymer (BCP) microdomains during self-assembly. To date however, such control has required the imposition of large magnetic fields (>3T), necessitating the use of complex magnet systems - either superconducting or very large conventional resistive magnets. Here we demonstrate the ability to direct BCP self-assembly using considerably smaller fields (<1T) which are accessible using simple rare-earth permanent magnets. The low field alignment is enabled by the presence of small quantities of mesogenic species that are blended into, and co-assemble with the liquid crystalline (LC) mesophase of the side-chain LC BCP under study. In situ SAXS experiments reveal a pronounced dependence of the critical alignment field strength on the stoichiometry of the blend, and the ability to generate aligned microdomains with orientational distribution coefficients exceeding 0.95 at sub-1 T fields for appropriate stoichiometries. The alignment response overall can be rationalized in terms of increased mobility and grain size due to the presence of the mesogenic additive. We use a permanent magnet to fabricate films with aligned nanopores, and the utility of this approach to generate complex BCP microdomain patterns in thin films by local field screening are highlighted. NSF DMR-1410568 and DMR-0847534.

  18. Generating Long Scale-Length Plasma Jets Embedded in a Uniform, Multi-Tesla Magnetic-Field

    NASA Astrophysics Data System (ADS)

    Manuel, Mario; Kuranz, Carolyn; Rasmus, Alex; Klein, Sallee; Fein, Jeff; Belancourt, Patrick; Drake, R. P.; Pollock, Brad; Hazi, Andrew; Park, Jaebum; Williams, Jackson; Chen, Hui

    2013-10-01

    Collimated plasma jets emerge in many classes of astrophysical objects and are of great interest to explore in the laboratory. In many cases, these astrophysical jets exist within a background magnetic field where the magnetic pressure approaches the plasma pressure. Recent experiments performed at the Jupiter Laser Facility utilized a custom-designed solenoid to generate the multi-tesla fields necessary to achieve proper magnetization of the plasma. Time-gated interferometry, Schlieren imaging, and proton radiography were used to characterize jet evolution and collimation under varying degrees of magnetization. Experimental results will be presented and discussed. This work is funded by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, grant number DE-NA0001840, by the National Laser User Facility Program, grant number DE-NA0000850, by the Predictive Sciences Academic Alliances Program in NNSA-ASC, grant number DEFC52-08NA28616, and by NASA through Einstein Postdoctoral Fellowship grant number PF3-140111 awarded by the Chandra X-ray Center, which is operated by the Smithsonian Astrophysical Observatory for NASA under contract NAS8-03060.

  19. Phase modulated magnetoelectric delta-E effect sensor for sub-nano tesla magnetic fields

    NASA Astrophysics Data System (ADS)

    Zabel, S.; Kirchhof, C.; Yarar, E.; Meyners, D.; Quandt, E.; Faupel, F.

    2015-10-01

    We present a resonant micromechanical magnetic field sensor, which utilizes the magnetically induced change in elastic modulus, i.e., the delta-E effect. The sensor is based on magnetoelectric thin film composites, resulting in high sensitivity at room temperature and at low frequencies. The cantilever is electrically excited and read out by a 2 μm AlN piezoelectric layer. Depending on its magnetization, the 2 μm thin film of amorphous (Fe90Co10)78Si12B10 changes its elasticity, which results in a shift of the cantilever's resonance frequency. The sensor is operated in the first or second transversal bending mode at 7.6 kHz or 47.4 kHz. With a limit of detection of 140 pTHz-0.5 at 20 Hz under a magnetic bias field and 1 nTHz-0.5 without external bias field, this sensor exceeds all comparable designs by one order of magnitude.

  20. Direct measurement of kilo-tesla level magnetic field generated with laser-driven capacitor-coil target by proton deflectometry

    NASA Astrophysics Data System (ADS)

    Law, K. F. F.; Bailly-Grandvaux, M.; Morace, A.; Sakata, S.; Matsuo, K.; Kojima, S.; Lee, S.; Vaisseau, X.; Arikawa, Y.; Yogo, A.; Kondo, K.; Zhang, Z.; Bellei, C.; Santos, J. J.; Fujioka, S.; Azechi, H.

    2016-02-01

    A kilo-tesla level, quasi-static magnetic field (B-field), which is generated with an intense laser-driven capacitor-coil target, was measured by proton deflectometry with a proper plasma shielding. Proton deflectometry is a direct and reliable method to diagnose strong, mm3-scale laser-produced B-field; however, this was not successful in the previous experiment. A target-normal-sheath-accelerated proton beam is deflected by Lorentz force in the laser-produced magnetic field with the resulting deflection pattern recorded on a radiochromic film stack. A 610 ± 30 T of B-field amplitude was inferred by comparing the experimental proton pattern with Monte-Carlo calculations. The amplitude and temporal evolutions of the laser-generated B-field were also measured by a differential magnetic probe, independently confirming the proton deflectometry measurement results.

  1. Aging and magnetism: Presenting a possible new holistic paradigm for ameliorating the aging process and the effects thereof, through externally applied physiologic PicoTesla magnetic fields.

    PubMed

    Jacobson, Jerry; Sherlag, Benjamin

    2015-09-01

    A new holistic paradigm is proposed for slowing our genomic-based biological clocks (e.g. regulation of telomere length), and decreasing heat energy exigencies for maintenance of physiologic homeostasis. Aging is considered the result of a progressive slow burn in small volumes of tissues with increase in the quantum entropic states; producing desiccation, microscopic scarring, and disruption of cooperative coherent states. Based upon piezoelectricity, i.e. photon-phonon transductions, physiologic PicoTesla range magnetic fields may decrease the production of excessive heat energy through target specific, bio molecular resonant interactions, renormalization of intrinsic electromagnetic tissue profiles, and autonomic modulation. Prospectively, we hypothesize that deleterious effects of physical trauma, immunogenic microbiological agents, stress, and anxiety may be ameliorated. A particle-wave equation is cited to ascertain magnetic field parameters for application to the whole organism thereby achieving desired homeostasis; secondary to restoration of structure and function on quantum levels. We hypothesize that it is at the atomic level that physical events shape the flow of signals and the transmission of energy in bio molecular systems. References are made to experimental data indicating the aspecific efficacy of non-ionizing physiologic magnetic field profiles for treatment of various pathologic states. PMID:26092501

  2. Measurement of the weighted peak level for occupational exposure to gradient magnetic fields for 1.5 and 3 Tesla MRI body scanners.

    PubMed

    Bonutti, F; Tecchio, M; Maieron, M; Trevisan, D; Negro, C; Calligaris, F

    2016-03-01

    The purpose of this work is to give a contribution to the construction of a comprehensive knowledge of the exposure levels to gradient magnetic fields (GMF) in terms of the weighed peak (WP), especially for 3 Tesla scanners for which there are still few works available in the literature. A new generation probe for the measurement of electromagnetic fields in the range of 1 Hz-400 kHz was used to assess the occupational exposure levels to the GMF for 1.5 and 3.0 Tesla MRI body scanners, using the method of the WP according to the International Commission on Non-Ionizing Radiation Protection (ICNIRP) approach. The probe was placed at a height of 1.1 m, close to the MRI scanners, where operators could stay during some medical procedures with particular issues. The measurements were performed for a set of typical acquisition sequences for body (liver) and head exams. The measured values of WP were in compliance with ICNIRP 2010 reference levels for occupational exposures. PMID:25987585

  3. The NHMFL 60 tesla, 100 millisecond pulsed magnet

    SciTech Connect

    Boenig, H.J.; Campbell, L.J.; Rickel, D.G.; Rogers, J.D.; Schillig, J.B.; Sims, J.R.; Pernambuco-Wise, P.; Schneider-Muntau, H.J.

    1992-11-09

    Among the new facilities to be offered by the National Science Foundation through the National High Magnetic Field Laboratory (NHMFL) are pulsed fields that can only be achieved at a national user facility by virtue of their strength, duration, and volume. In particular, a 44 mm bore pulsed magnet giving a 60 tesla field for 100 ms is in the final design stage. This magnet will be powered by a 1.4 GW motor-generator at Los Alamos and is an important step toward proving design principles that will be needed for the higher field quasi-stationary pulsed magnets that this power source is capable of driving. This report will discuss specifications and parameters of this magnet.

  4. Test results of a single aperture 10 tesla dipole model magnet for the Large Hadron Collider

    SciTech Connect

    Yamamoto, Akira; Shintomi, Takakazu; Kimura, Nobuhiro

    1996-07-01

    A single aperture dipole magnet has been developed with a design magnetic field of 10 tesla by using Nb-Ti/Cu conductor to be operated at 1.8 K in pressurized super fluid helium. The magnet features double shell coil design by using high keystone Rutherford cable and compact non-magnetic steel collars to be adaptable in split/symmetric coil/collar design for twin aperture dipoles. A design central magnetic field of 10 tesla has been successfully achieved in excitation at 1.95 K in pressurized superfluid helium. Test results of the magnet with a summary of the design and fabrication will be presented.

  5. Design and prototype fabrication of a 30 tesla cryogenic magnet

    NASA Technical Reports Server (NTRS)

    Prok, G. M.; Swanson, M. C.; Brown, G. V.

    1977-01-01

    A liquid neon cooled magnet was designed to produce 30 teslas in steady operation. To ensure the correctness of the heat transfer relationships used, supercritical neon heat transfer tests were made. Other tests made before the final design included tests on the effect of the magnetic field on pump motors, tensile shear tests on the cryogenic adhesives, and simulated flow studies for the coolant. The magnet will consist of two pairs of coils, cooled by forced convection of supercritical neon. Heat from the supercritical neon will be rejected through heat exchangers which are made of roll bonded copper panels and are submerged in a pool of saturated liquid neon. A partial mock up coil was wound to identify the tooling required to wind the magnet. This was followed by winding a prototype pair of coils. The prototype winding established procedures for fabricating the final magnet and revealed slight changes needed in the final design.

  6. 3-Tesla High-Field Magnetic Resonance Neurography for Guiding Nerve Blocks and Its Role in Pain Management.

    PubMed

    Fritz, Jan; Dellon, Arnold Lee; Williams, Eric H; Belzberg, Allan J; Carrino, John A

    2015-11-01

    Interventional magnetic resonance (MR) neurography is a minimally invasive technique that affords targeting of small nerves in challenging areas of the human body for highly accurate nerve blocks and perineural injections. This cross-sectional technique uniquely combines high tissue contrast and high-spatial-resolution anatomic detail, which enables the precise identification and selective targeting of peripheral nerves, accurate needle guidance and navigation of the needle tip within the immediate vicinity of a nerve, as well as direct visualization of the injected drug for the assessment of appropriate drug distribution and documentation of the absence of spread to confounding nearby nerves. PMID:26499273

  7. Design and prototype fabrication of a 30 tesla cryogenic magnet

    NASA Technical Reports Server (NTRS)

    Prok, G. M.; Swanson, M. C.; Brown, G. V.

    1977-01-01

    A liquid-neon-cooled magnet has been designed to produce 30 teslas in steady operation. Its feasibility was established by a previously reported parametric study. To ensure the correctness of the heat transfer relationships used, supercritical neon heat transfer tests were made. Other tests made before the final design included tests on the effect of the magnetic field on pump motors; tensile-shear tests on the cryogenic adhesives; and simulated flow studies for the coolant. The magnet will be made of two pairs of coils, cooled by forced convection of supercritical neon. Heat from the supercritical neon will be rejected through heat exchangers which are made of roll-bonded copper panels and are submerged in a pool of saturated liquid neon. A partial mock-up coil was wound to identify the tooling required to wind the magnet. This was followed by winding a prototype pair of coils. The prototype winding established procedures for fabricating the final magnet and revealed slight changes needed in the final design.

  8. Poly-coil design for a 60 tesla quasi-stationary magnet

    NASA Astrophysics Data System (ADS)

    Boenig, H. J.; Campbell, L. J.; Hodgdon, M. L.; Lopez, E. A.; Rickel, D. G.; Rogers, J. D.; Schillig, J. B.; Sims, J. R.; Pernambuco-Wise, P.; Schneider-Muntau, H. J.

    1993-02-01

    Among the new facilities to be offered by the National Science Foundation through the National High Magnetic Field Laboratory (NHMFL) are pulsed fields that can only be achieved at a national user facility by virtue of their strength, duration, and volume. In particular, a 44 mm bore pulsed magnet giving a 60 tesla field for 100 ms is in the final design stage. This magnet will be powered by a 1.4 GW motor-generator at Los Alamos and is an important step toward proving design principles that will be needed for the higher field quasi-stationary pulsed magnets that this power source is capable of driving.

  9. Optic Nerve Assessment Using 7-Tesla Magnetic Resonance Imaging

    PubMed Central

    Singh, Arun D.; Platt, Sean M.; Lystad, Lisa; Lowe, Mark; Oh, Sehong; Jones, Stephen E.; Alzahrani, Yahya; Plesec, Thomas

    2016-01-01

    Purpose The purpose of this study was to correlate high-resolution magnetic resonance imaging (MRI) and histologic findings in a case of juxtapapillary choroidal melanoma with clinical evidence of optic nerve invasion. Methods With institutional review board approval, an enucleated globe with choroidal melanoma and optic nerve invasion was imaged using a 7-tesla MRI followed by histopathologic evaluation. Results Optical coherence tomography, B-scan ultrasonography, and 1.5-tesla MRI of the orbit (1-mm sections) could not detect optic disc invasion. Ex vivo, 7-tesla MRI detected optic nerve invasion, which correlated with histopathologic features. Conclusions Our case demonstrates the potential to document the existence of optic nerve invasion in the presence of an intraocular tumor, a feature that has a major bearing on decision making, particularly for consideration of enucleation. PMID:27239461

  10. Prospects for 6 to 10 tesla magnets for a TEVATRON upgrade

    SciTech Connect

    Mantsch, Paul M.

    1988-07-08

    The first SSC physics is at least 10 years away. An upgrade of the Fermilab Tevatron will ensure the continuity of a vigorous high-energy physics program until the SSC turns on. Three basic proposals are under consideration: /bar p/p at 3 /times/ 10/sup 31/ --Increase luminosity by improvements to the p source. pp at 1 TeV and 2 /times/ 10/sup 32/--Move the main ring to a new tunnel, build a second Tevatron ring, and /bar p/p > 1.5 TeV and 7 /times/ 10/sup 30/--Replace the tevatron with a higher energy ring. The last two options requires about a hundred 6.6-tesla dipoles in addition to a ring of Tevatron strength (4.4 T) magnets. These higher-field magnets are necessary in both rings to lengthen the straight sections in order to realize the collision optics. The third option requires a ring of magnets of 6.6 T or slightly higher to replace the present Tevatron plus a number of special 8--9 tesla magnets. The viability of the high-energy option then depends on the practicality of sizable numbers of reliable 8--9 tesla dipoles as well as 800 6.6-tesla dipoles. The following develops a specification for an 8.8 T dipole, examines the design considerations and reviews the current state of high-field magnet development. 22 figs., 3 tabs.

  11. Matching field effects at tesla-level magnetic fields in critical current density in high-Tc superconductors containing self-assembled columnar defects

    SciTech Connect

    Sinclair, J.; Zuev, Yuri L; Cantoni, Claudia; Wee, Sung Hun; Varanasi, C. V.; Thompson, James R; Christen, David K

    2012-01-01

    We have investigated the superconductive transport properties of YBa2Cu3O7 films containing self-assembled columnar arrays of second phase SrZrO3 or BaSnO3 precipitates. A matching condition between columnar pinning sites (aligned at or near the c axis) and external magnetic flux, tilted with respect to them, is identified in the critical current JC.H/ data. The results for the material containing SrZrO3-based pins are analyzed within a simple intuitive model. At matching, the critical current is enhanced above the model prediction. In complementary contact-free investigations of BaSnO3-doped material, matching effects are observed over a wide range of temperatures in the field dependence of JC.H/. The deduced matching fields agree reasonably well with the densities of columnar pins directly observed by scanning electron microscopy.

  12. RHQT Nb3Al 15-Tesla magnet design study

    SciTech Connect

    Yamada, R.; Ambrosio, G.; Barzi, E.; Kashikin, V.; Kikuchi, A.; Novitski, I.; Takeuchi, T.; Wake, M.; Zlobin, A.; /Fermilab /NIMC, Tsukuba /KEK, Tsukuba

    2005-09-01

    Feasibility study of 15-Tesla dipole magnets wound with a new copper stabilized RHQT Nb{sub 3}Al Rutherford cable is presented. A new practical long copper stabilized RHQT Nb{sub 3}Al strand is presented, which is being developed and manufactured at the National Institute of Material Science (NIMS) in Japan. It has achieved a non-copper J{sub c} of 1000A/mm{sup 2} at 15 Tesla at 4.2K, with a copper over non-copper ratio of 1.04, and a filament size less than 50 microns. For this design study a short Rutherford cable with 28 Nb{sub 3}Al strands of 1 mm diameter will be fabricated late this year. The cosine theta magnet cross section is designed using ROXIE, and the stress and strain in the coil is estimated and studied with the characteristics of the Nb{sub 3}Al strand. The advantages and disadvantages of the Nb{sub 3}Al cable are compared with the prevailing Nb{sub 3}Sn cable from the point of view of stress-strain, J{sub c}, and possible degradation of stabilizer due to cabling. The Nb{sub 3}Al coil of the magnet, which will be made by wind and react method, has to be heat treated at 800 degree C for 10 hours. As preparation for the 15 Tesla magnet, a series of tests on strand and Rutherford cables are considered.

  13. Pulsed-coil magnet systems for applying 10-30 Tesla Fields to cm-scale targets on Sandia's Z facility

    DOE PAGESBeta

    Rovang, Dean C.; Lamppa, Derek C.; Cuneo, Michael Edward; Owen, Albert; Mckenney, John; Johnson, Drew; Radovich, Shawn; Kaye, Ronald J.; McBride, Ryan D; Alexander, C. Scott; et al

    2014-12-04

    We have successfully integrated the capability to apply uniform, high magnetic fields (10–30 T) to high energy density experiments on the Z facility. This system uses an 8-mF, 15-kV capacitor bank to drive large-bore (5 cm diameter), high-inductance (1–3 mH) multi-turn, multi-layer electromagnets that slowly magnetize the conductive targets used on Z over several milliseconds (time to peak field of 2–7 ms). This system was commissioned in February 2013 and has been used successfully to magnetize more than 30 experiments up to 10 T that have produced exciting and surprising physics results. These experiments used split-magnet topologies to maintain diagnosticmore » lines of sight to the target. We then describe the design, integration, and operation of the pulsed coil system into the challenging and harsh environment of the Z Machine. We also describe our plans and designs for achieving fields up to 20 T with a reduced-gap split-magnet configuration, and up to 30 T with a solid magnet configuration in pursuit of the Magnetized Liner Inertial Fusion concept.« less

  14. Pulsed-coil magnet systems for applying 10-30 Tesla Fields to cm-scale targets on Sandia's Z facility

    SciTech Connect

    Rovang, Dean C.; Lamppa, Derek C.; Cuneo, Michael Edward; Owen, Albert; Mckenney, John; Johnson, Drew; Radovich, Shawn; Kaye, Ronald J.; McBride, Ryan D; Alexander, C. Scott; Awe, Thomas James; Slutz, Stephen A.; Sefkow, Adam B; Haill, Thomas A.; Jones, Peter Andrew; Argo, Jeffrey W; Dalton, Devon; Robertson, Grafton Kincannon; Waisman, Eduardo Mario; Sinars, Daniel Brian; Meissner, Joel; Milhous, Mark; Nguyen, Doan; Mielke, Chuck

    2014-12-04

    We have successfully integrated the capability to apply uniform, high magnetic fields (10–30 T) to high energy density experiments on the Z facility. This system uses an 8-mF, 15-kV capacitor bank to drive large-bore (5 cm diameter), high-inductance (1–3 mH) multi-turn, multi-layer electromagnets that slowly magnetize the conductive targets used on Z over several milliseconds (time to peak field of 2–7 ms). This system was commissioned in February 2013 and has been used successfully to magnetize more than 30 experiments up to 10 T that have produced exciting and surprising physics results. These experiments used split-magnet topologies to maintain diagnostic lines of sight to the target. We then describe the design, integration, and operation of the pulsed coil system into the challenging and harsh environment of the Z Machine. We also describe our plans and designs for achieving fields up to 20 T with a reduced-gap split-magnet configuration, and up to 30 T with a solid magnet configuration in pursuit of the Magnetized Liner Inertial Fusion concept.

  15. Superconductivity in Strong Magnetic Field (Greater Than Upper Critical Field)

    SciTech Connect

    Tessema, G.X.; Gamble, B.K.; Skove, M.J.; Lacerda, A.H.; Mielke, C.H.

    1998-08-22

    The National High Magnetic Field Laboratory, funded by the National Science Foundation and other US federal Agencies, has in recent years built a wide range of magnetic fields, DC 25 to 35 Tesla, short pulse 50 - 60 Tesla, and quasi-continuous 60 Tesla. Future plans are to push the frontiers to 45 Tesla DC and 70 to 100 Tesla pulse. This user facility, is open for national and international users, and creates an excellent tool for materials research (metals, semiconductors, superconductors, biological systems ..., etc). Here we present results of a systematic study of the upper critical field of a novel superconducting material which is considered a promising candidate for the search for superconductivity beyond H{sub c2} as proposed by several new theories. These theories predict that superconductors with low carrier density can reenter the superconducting phase beyond the conventional upper critical field H{sub c2}. This negates the conventional thinking that superconductivity and magnetic fields are antagonistic.

  16. Development of a nano-tesla magnetic field shielded chamber and highly precise AC-susceptibility measurement coil at μK temperatures

    NASA Astrophysics Data System (ADS)

    Kumar, Anil; Prakash, Om; Ramakrishanan, S.

    2014-04-01

    A special sample measurement chamber has been developed to perform experiments at ultralow temperatures and ultralow magnetic field. A high permeability material known as cryoperm 10 and Pb is used to shield the measurement space consisting of the signal detecting set-up and the sample. The detecting setup consists of a very sensitive susceptibility coil wound on OFHC Cu bobbin.

  17. Design and Evaluation of a Hybrid Radiofrequency Applicator for Magnetic Resonance Imaging and RF Induced Hyperthermia: Electromagnetic Field Simulations up to 14.0 Tesla and Proof-of-Concept at 7.0 Tesla

    PubMed Central

    Winter, Lukas; Özerdem, Celal; Hoffmann, Werner; Santoro, Davide; Müller, Alexander; Waiczies, Helmar; Seemann, Reiner; Graessl, Andreas; Wust, Peter; Niendorf, Thoralf

    2013-01-01

    This work demonstrates the feasibility of a hybrid radiofrequency (RF) applicator that supports magnetic resonance (MR) imaging and MR controlled targeted RF heating at ultrahigh magnetic fields (B0≥7.0T). For this purpose a virtual and an experimental configuration of an 8-channel transmit/receive (TX/RX) hybrid RF applicator was designed. For TX/RX bow tie antenna electric dipoles were employed. Electromagnetic field simulations (EMF) were performed to study RF heating versus RF wavelength (frequency range: 64 MHz (1.5T) to 600 MHz (14.0T)). The experimental version of the applicator was implemented at B0 = 7.0T. The applicators feasibility for targeted RF heating was evaluated in EMF simulations and in phantom studies. Temperature co-simulations were conducted in phantoms and in a human voxel model. Our results demonstrate that higher frequencies afford a reduction in the size of specific absorption rate (SAR) hotspots. At 7T (298 MHz) the hybrid applicator yielded a 50% iso-contour SAR (iso-SAR-50%) hotspot with a diameter of 43 mm. At 600 MHz an iso-SAR-50% hotspot of 26 mm in diameter was observed. RF power deposition per RF input power was found to increase with B0 which makes targeted RF heating more efficient at higher frequencies. The applicator was capable of generating deep-seated temperature hotspots in phantoms. The feasibility of 2D steering of a SAR/temperature hotspot to a target location was demonstrated by the induction of a focal temperature increase (ΔT = 8.1 K) in an off-center region of the phantom. Temperature simulations in the human brain performed at 298 MHz showed a maximum temperature increase to 48.6C for a deep-seated hotspot in the brain with a size of (19×23×32)mm3 iso-temperature-90%. The hybrid applicator provided imaging capabilities that facilitate high spatial resolution brain MRI. To conclude, this study outlines the technical underpinnings and demonstrates the basic feasibility of an 8-channel hybrid TX

  18. Design and evaluation of a hybrid radiofrequency applicator for magnetic resonance imaging and RF induced hyperthermia: electromagnetic field simulations up to 14.0 Tesla and proof-of-concept at 7.0 Tesla.

    PubMed

    Winter, Lukas; Özerdem, Celal; Hoffmann, Werner; Santoro, Davide; Müller, Alexander; Waiczies, Helmar; Seemann, Reiner; Graessl, Andreas; Wust, Peter; Niendorf, Thoralf

    2013-01-01

    This work demonstrates the feasibility of a hybrid radiofrequency (RF) applicator that supports magnetic resonance (MR) imaging and MR controlled targeted RF heating at ultrahigh magnetic fields (B0≥7.0T). For this purpose a virtual and an experimental configuration of an 8-channel transmit/receive (TX/RX) hybrid RF applicator was designed. For TX/RX bow tie antenna electric dipoles were employed. Electromagnetic field simulations (EMF) were performed to study RF heating versus RF wavelength (frequency range: 64 MHz (1.5T) to 600 MHz (14.0T)). The experimental version of the applicator was implemented at B0 = 7.0T. The applicators feasibility for targeted RF heating was evaluated in EMF simulations and in phantom studies. Temperature co-simulations were conducted in phantoms and in a human voxel model. Our results demonstrate that higher frequencies afford a reduction in the size of specific absorption rate (SAR) hotspots. At 7T (298 MHz) the hybrid applicator yielded a 50% iso-contour SAR (iso-SAR-50%) hotspot with a diameter of 43 mm. At 600 MHz an iso-SAR-50% hotspot of 26 mm in diameter was observed. RF power deposition per RF input power was found to increase with B0 which makes targeted RF heating more efficient at higher frequencies. The applicator was capable of generating deep-seated temperature hotspots in phantoms. The feasibility of 2D steering of a SAR/temperature hotspot to a target location was demonstrated by the induction of a focal temperature increase (ΔT = 8.1 K) in an off-center region of the phantom. Temperature simulations in the human brain performed at 298 MHz showed a maximum temperature increase to 48.6C for a deep-seated hotspot in the brain with a size of (19×23×32)mm(3) iso-temperature-90%. The hybrid applicator provided imaging capabilities that facilitate high spatial resolution brain MRI. To conclude, this study outlines the technical underpinnings and demonstrates the basic feasibility of an 8-channel hybrid TX

  19. Design study of steady-state 30-tesla liquid-neon-cooled magnet

    NASA Technical Reports Server (NTRS)

    Prok, G. M.; Brown, G. V.

    1976-01-01

    A design for a 30-tesla, liquid-neon-cooled magnet was reported which is capable of continuous operation. Cooled by nonboiling, forced-convection heat transfer to liquid neon flowing at 2.8 cu m/min in a closed, pressurized heat-transfer loop and structurally supported by a tapered structural ribbon, the tape-wound coils with a high-purity-aluminum conductor will produce over 30 teslas for 1 minute at 850 kilowatts. The magnet will have an inside diameter of 7.5 centimeters and an outside diameter of 54 centimeters. The minimum current density at design field will be 15.7 kA/sq cm.

  20. Magnetization dynamics using ultrashort magnetic field pulses

    NASA Astrophysics Data System (ADS)

    Tudosa, Ioan

    Very short and well shaped magnetic field pulses can be generated using ultra-relativistic electron bunches at Stanford Linear Accelerator. These fields of several Tesla with duration of several picoseconds are used to study the response of magnetic materials to a very short excitation. Precession of a magnetic moment by 90 degrees in a field of 1 Tesla takes about 10 picoseconds, so we explore the range of fast switching of the magnetization by precession. Our experiments are in a region of magnetic excitation that is not yet accessible by other methods. The current table top experiments can generate fields longer than 100 ps and with strength of 0.1 Tesla only. Two types of magnetic were used, magnetic recording media and model magnetic thin films. Information about the magnetization dynamics is extracted from the magnetic patterns generated by the magnetic field. The shape and size of these patterns are influenced by the dissipation of angular momentum involved in the switching process. The high-density recording media, both in-plane and perpendicular type, shows a pattern which indicates a high spin momentum dissipation. The perpendicular magnetic recording media was exposed to multiple magnetic field pulses. We observed an extended transition region between switched and non-switched areas indicating a stochastic switching behavior that cannot be explained by thermal fluctuations. The model films consist of very thin crystalline Fe films on GaAs. Even with these model films we see an enhanced dissipation compared to ferromagnetic resonance studies. The magnetic patterns show that damping increases with time and it is not a constant as usually assumed in the equation describing the magnetization dynamics. The simulation using the theory of spin-wave scattering explains only half of the observed damping. An important feature of this theory is that the spin dissipation is time dependent and depends on the large angle between the magnetization and the magnetic

  1. A test of a 2 Tesla superconducting transmission line magnet system

    SciTech Connect

    Piekarz, Henryk; Carcagno, Ruben; Claypool, Brad; Foster, George W.; Hays, Steven L.; Huang, Yuenian; Kashikhin, Vladimir; Malamud, Ernest; Mazur, Peter O.; Nehring, Roger; Oleck, Andrew; Rabehl, Roger; Schlabach, Phil; Sylvester, Cosmore; Velev, Gueorgui; Volk, James; Wake, Masayoshi; /KEK, Tsukuba

    2005-09-01

    Superconducting transmission line magnet test system for an injector accelerator of a staged VLHC proton-proton colliding beam accelerator has been built and operated at Fermilab. The 1.5 m long, twin-aperture, combined function dipole magnet of 2 Tesla field is excited by a single turn 100 kA transmission line superconductor. The 100 kA dc current is generated using dc-dc switching converters powered by a bulk 240 kW supply. A pair of horizontally placed conventional leads facilitates transfer of this current to the magnet transmission line superconductor operating at liquid helium temperature. Fabrication of magnet components and magnet assembly work are described. The magnet test system and its operation are presented, and the performance is summarized.

  2. A 10 Kelvin 3 Tesla Magnet for Space Flight ADR Systems

    NASA Technical Reports Server (NTRS)

    Tuttle, Jim; Shirron, Peter; Canavan, Edgar; DiPirro, Michael; Riall, Sara; Pourrahimi, Shahin

    2003-01-01

    Many future space flight missions are expected to use adiabatic demagnetization refrigerators (ADRs) to reach detector operating temperatures well below one Kelvin. The goal is to operate each ADR with a mechanical cooler as its heat sink, thus avoiding the use of liquid cryogens. Although mechanical coolers are being developed to operate at temperatures of 6 Kelvin and below, there is a large efficiency cost associated with operating them at the bottom of their temperature range. For the multi-stage ADR system being developed at Goddard Space Flight Center, the goal is to operate with a 10 Kelvin mechanical cooler heat sink. With currently available paramagnetic materials, the highest temperature ADR stage in such a system will require a magnetic field of approximately three Tesla. Thus the goal is to develop a small, lightweight three Tesla superconducting magnet for operation at 10 Kelvin. It is important that this magnet have a low current/field ratio. Because traditional NbTi magnets do not operate safely above about six Kelvin, a magnet with a higher Tc is required. The primary focus has been on Nb3Sn magnets. Since standard Nb3Sn wire must be coated with thick insulation, wound on a magnet mandrel and then reacted, standard Nb,Sn magnets are quite heavy and require high currents Superconducting Systems developed a Nb3Sn wire which can be drawn down to small diameter, reacted, coated with thin insulation and then wound on a small diameter coil form. By using this smaller wire and operating closer to the wire s critical current, it should be possible to reduce the mass and operating current of 10 Kelvin magnets. Using this "react-then-wind" technology, Superconducting Systems has produced prototype 10 Kelvin magnets. This paper describes the development and testing of these magnets and discusses the outlook for including 10 Kelvin magnets on space-flight missions.

  3. The Travelling-Wave Primate System: A New Solution for Magnetic Resonance Imaging of Macaque Monkeys at 7 Tesla Ultra-High Field

    PubMed Central

    Herrmann, Tim; Mallow, Johannes; Plaumann, Markus; Luchtmann, Michael; Stadler, Jörg; Mylius, Judith; Brosch, Michael; Bernarding, Johannes

    2015-01-01

    Introduction Neuroimaging of macaques at ultra-high field (UHF) is usually conducted by combining a volume coil for transmit (Tx) and a phased array coil for receive (Rx) tightly enclosing the monkey’s head. Good results have been achieved using vertical or horizontal magnets with implanted or near-surface coils. An alternative and less costly approach, the travelling-wave (TW) excitation concept, may offer more flexible experimental setups on human whole-body UHF magnetic resonance imaging (MRI) systems, which are now more widely available. Goal of the study was developing and validating the TW concept for in vivo primate MRI. Methods The TW Primate System (TWPS) uses the radio frequency shield of the gradient system of a human whole-body 7 T MRI system as a waveguide to propagate a circularly polarized B1 field represented by the TE11 mode. This mode is excited by a specifically designed 2-port patch antenna. For receive, a customized neuroimaging monkey head receive-only coil was designed. Field simulation was used for development and evaluation. Signal-to-noise ratio (SNR) was compared with data acquired with a conventional monkey volume head coil consisting of a homogeneous transmit coil and a 12-element receive coil. Results The TWPS offered good image homogeneity in the volume-of-interest Turbo spin echo images exhibited a high contrast, allowing a clear depiction of the cerebral anatomy. As a prerequisite for functional MRI, whole brain ultrafast echo planar images were successfully acquired. Conclusion The TWPS presents a promising new approach to fMRI of macaques for research groups with access to a horizontal UHF MRI system. PMID:26066653

  4. 3.0 Tesla magnetic resonance imaging: A new standard in liver imaging?

    PubMed Central

    Girometti, Rossano

    2015-01-01

    An ever-increasing number of 3.0 Tesla (T) magnets are installed worldwide. Moving from the standard of 1.5 T to higher field strength implies a number of potential advantage and drawbacks, requiring careful optimization of imaging protocols or implementation of novel hardware components. Clinical practice and literature review suggest that state-of-the-art 3.0 T is equivalent to 1.5 T in the assessment of focal liver lesions and diffuse liver disease. Therefore, further technical improvements are needed in order to fully exploit the potential of higher field strength. PMID:26244063

  5. A Novel X-ray Diffractometer for the Florida Split Coil 25 Tesla Magnet

    NASA Astrophysics Data System (ADS)

    Wang, Shengyu; Kovalev, Alexey; Suslov, Alexey; Siegrist, Theo

    2014-03-01

    At National High Magnetic Field Laboratory (NHMFL), we are developing a unique X-ray diffractometer for the 25 Tesla Florida Split Coil Magnet for scattering experiments under extremely high static magnetic fields. The X-ray source is a sealed tube (copper or molybdenum anode), connected to the magnet by an evacuated beam tunnel. The detectors are either an image plate or a silicon drift detector, with the data acquisition system based on LabVIEW. Our preliminary experimental results showed that the performance of the detector electronics and the X-ray generator is reliable in the fringe magnetic fields produced at the highest field of 25 T. Using this diffractometer, we will make measurements on standard samples, such as LaB6, Al2O3 and Si, to calibrate the diffraction system. Magnetic samples, such as single crystal HoMnO3 and stainless steel 301 alloys will be measured subsequently. The addition of X-ray diffraction to the unique split coil magnet will significantly expand the NHMFL experimental capabilities. Therefore, external users will be able to probe spin - lattice interactions at static magnetic fields up to 25T. This project is supported by NSF-DMR Award No.1257649. NHMFL is supported by NSF Cooperative Agreement No. DMR-1157490, the State of Florida, and the U.S. DoE.

  6. Magnet Design and Analysis of a 40 Tesla Long Pulse System Energized by a Battery Bank

    NASA Astrophysics Data System (ADS)

    Lv, Y. L.; Peng, T.; Wang, G. B.; Ding, T. H.; Han, X. T.; Pan, Y.; Li, L.

    2013-03-01

    A 40 tesla long pulse magnet and a battery bank as the power supply have been designed. This is now under construction at the Wuhan National High Magnetic Field Center. The 22 mm bore magnet will generate smooth pulses with duration 1 s and rise time 0.5 s. The battery bank consists of 945 12V/200 Ah lead-acid battery cells. The magnet and battery bank were optimized by codes developed in-house and by ANSYS. The coil was made from soft copper with internal reinforcement by fiber-epoxy composite; it is divided into two sections connected in series. The inner section consists of helix coils with each layer reinforced by Zylon composite. The outer section will be wound from copper sheet and externally reinforced by carbon fiber composite.

  7. A 5 Tesla imaging magnet for imaging laboratory animals

    SciTech Connect

    Carolan, J.L.; Burns, W.A.; Green, M.A.

    1989-03-01

    This is a report on the construction of the first of a series of Magnetic Resonance Imaging (MRI) imaging magnets for laboratory animals. The first NCC magnet has a 33 centimeter warm bore with a design central induction of 5.5 T without active shielding and 5.0 T with active shielding. The magnet will be used for both imaging and spectroscopy of living animals. The active shield system is designed so that the 5 Gauss line is less than 3 meters from the magnet center when the magnet operates at design field. This permits the magnet to be used within an experimental space commonly available within a university building.

  8. Si-N membrane microcalorimetry: Thermal conductivity and specific heat of thin films from 2-500K in magnetic fields to 8 Tesla.

    NASA Astrophysics Data System (ADS)

    Zink, Barry

    2003-03-01

    Understanding the thermal behavior of mesoscopic systems and thin films is a critical issue of both fundamental and technological solid state science. Despite the wealth of knowledge in principle available from accurate measurement of specific heat and thermal conductivity of thin films, there are relatively few results of this type, due to the difficulty of isolating the small heat capacities and thermal conductivities from the typically large background contribution of conventional apparatus. Our group at UC San Diego uses amorphous Si-N membranes to thermally isolate small samples from their environment and allow accurate thermal measurements. Recent work adds the ability to measure thermal conductivity of films as thin as 150 Angstrom over a broad temperature range [1] to our well-established techniques for measuring Cp of small samples.[2] Our microcalorimeter is also particularly well-suited for measurements of both Cp and k in high magnetic fields [3]. The micromachining techniques used to fabricate the calorimeter allow production of significant numbers of calorimeters with well-controlled dimensions and highly reproducible properties which facilitates studies of the thermal properties of thin film and tiny crystals. In this talk I will briefly review the fabrication of our microcalorimeter and the techniques for measuring Cp and k. I will present example data and results of numerical heat flow simulations used to further our understanding of heat flow in the microcalorimeter [1] B. L. Zink, B. Revaz, J. J. Cherry and F. Hellman, Submitted to RSI, Sept. 2002 [2] D. W. Denlinger et al., Rev. Sci. Inst 65, 946-59 (1994) [3] B. L. Zink, B. Revaz, R. Sappey and F. Hellman, Rev. Sci. Instrum. 73, 1841 (2002)

  9. The Safety of MR Conditional Cochlear Implant at 1.5 Tesla Magnetic Resonance Imaging System.

    PubMed

    Takahashi, Daisuke; Ogura, Akio; Hayashi, Norio; Seino, Shinya; Kawai, Ryosuke; Matsuda, Tsuyoshi; Doi, Tsukasa; Tsuchihashi, Toshio

    2016-08-01

    In magnetic resonance imaging (MRI) examination of the patients with the cochlear implant, only limited data have a mention for safety information in the instruction manual supplied by the manufacturers. Therefore, imaging operators require more detailed safety information for implant device. We conducted detailed examination about displacement force, torque, and demagnetizing of the cochlear implant magnet based on American Society for Testing and Materials (ASTM) standard using the PULSAR and CONCERTO (MED-EL) with 1.5 tesla MRI system. As a result, the displacement force and the torque of the implant magnet were less than the numerical values descried in the manual. Therefore, these have almost no effect on the body under the condition described in a manual. In addition, the demagnetizing factor of the cochlear implant magnet occurred by a change magnetic field. The demagnetization depended on the direction of a line of magnetic force of the static magnetic field and the implant magnet. In conclusion, the operator must warn the position of the patients on inducing in the magnet room. PMID:27546081

  10. Prototype of 10 Tesla Water Cooled Bitter-type Magnet System

    NASA Astrophysics Data System (ADS)

    Bates, E. M.; Birmingham, W. J.; Riverva, W. F.; Romero-Talamas, C. A.

    2015-11-01

    A 1 Tesla water cooled Bitter-type magnetic system has been designed and is under construction at the Dusty Plasma Laboratory of the University of Maryland, Baltimore County (UMBC). It is a scaled version of a 10 T Bitter-type magnet that will be used in dusty plasma experiments where dust larger than 500 nm diameter will be strongly magnetized. We present here the design methods used for both magnets, and discuss the design parameters that drive the magnet cooling and power storage bank subsystems. The pressure vessel and plasma vacuum chamber subsystems are then built with the aforementioned subsystems as constraints. To validate our design, magnetic field and temperature measurements within the prototype magnet are compared to finite element analysis (FEA) and analytical methods used for preliminary designing. This knowledge will be used to finalize the 10 T magnet design. Once operational, the 10 T magnet will be programmable to be on for at least ten seconds to several minutes, with up to 20 plasma events planned per day.

  11. High field superconducting magnets

    NASA Technical Reports Server (NTRS)

    Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)

    2011-01-01

    A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.

  12. Two-Slotted Surface Coil Array for Magnetic Resonance Imaging at 4 Tesla

    SciTech Connect

    Solis, S. E.; Hernandez, J. A.; Rodriguez, A. O.; Tomasi, D.

    2008-08-11

    Arrays of antennas have been widely accepted for magnetic resonance imaging applications due to their high signal-to-noise ratio (SNR) over large volumes of interest. A new surface coil based on the magnetron tube and called slotted surface coil, has been recently introduced by our group. This coil design experimentally demonstrated a significant improvement over the circular-shaped coil when used in the receive-only mode. The slotted coils formed a two-sheet structure with a 90 deg. separation and each coil had 6 circular slots. Numerical simulations were performed using the finite element method for this coil design to study the behaviour of the array magnetic field. Then, we developed a two-coil array for brain magnetic resonance imaging to be operated at the resonant frequency of 170 MHz in the transceiver mode. Phantom images were acquired with our coil array and standard pulse sequences on a research-dedicated 4 Tesla scanner. Numerical simulations demonstrated that electromagnetic interaction between the coil elements is negligible, and that the magnetic field showed a good uniformity. In vitro images showed the feasibility of this coil array for standard pulses for high field magnetic resonance imaging.

  13. Mapping quantal touch using 7 Tesla functional magnetic resonance imaging and single-unit intraneural microstimulation.

    PubMed

    Sanchez Panchuelo, Rosa Maria; Ackerley, Rochelle; Glover, Paul M; Bowtell, Richard W; Wessberg, Johan; Francis, Susan T; McGlone, Francis

    2016-01-01

    Using ultra-high field 7 Tesla (7T) functional magnetic resonance imaging (fMRI), we map the cortical and perceptual responses elicited by intraneural microstimulation (INMS) of single mechanoreceptive afferent units in the median nerve, in humans. Activations are compared to those produced by applying vibrotactile stimulation to the unit's receptive field, and unit-type perceptual reports are analyzed. We show that INMS and vibrotactile stimulation engage overlapping areas within the topographically appropriate digit representation in the primary somatosensory cortex. Additional brain regions in bilateral secondary somatosensory cortex, premotor cortex, primary motor cortex, insula and posterior parietal cortex, as well as in contralateral prefrontal cortex are also shown to be activated in response to INMS. The combination of INMS and 7T fMRI opens up an unprecedented opportunity to bridge the gap between first-order mechanoreceptive afferent input codes and their spatial, dynamic and perceptual representations in human cortex. PMID:27154626

  14. Test Results for HD1, a 16 Tesla Nb3Sn Dipole Magnet

    SciTech Connect

    Lietzke, A.F.; Bartlett, S.; Bish, P.; Caspi, S.; Chiesa, L.; Dietderich, D.; Ferracin, P.; Gourlay, S.A.; Goli, M.; Hafalia, R.R.; Higley, H.; Hannaford, R.; Lau, W.; Liggens, N.; Mattafirri, S.; McInturff, A.; Nyman, M.; Sabbi, G.; Scanlan, R.; Swanson, J.

    2003-10-01

    The Superconducting Magnet Group at Lawrence Berkeley National Laboratory has been developing the technology for using brittle superconductor in high-field accelerator magnets. HD1, the latest in a series of magnets, contains two, double-layer Nb{sub 3}Sn flat racetrack coils. This single-bore dipole configuration, using the highest performance conductor available, was designed and assembled for a 16 tesla conductor/structure/pre-stress proof-of-principle. With the combination of brittle conductor and high Lorentz stress, considerable care was taken to predict the magnet's mechanical responses to pre-stress, cool-down, and excitation. Subsequent cold testing satisfied expectations: Training started at 13.6 T, 83% of 'short-sample', achieved 90% in 10 quenches, and reached its peak bore field (16 T) after 19 quenches. The average plateau, {approx}92% of 'short-sample', appeared to be limited by 'stick-slip' conductor motions, consistent with the 16.2 T conductor 'lift-off' pre-stress that was chosen for this first test. Some lessons learned and some implications for future conductor and magnet technology development are presented and discussed.

  15. A unique 30 Tesla single-solenoid pulsed magnet instrument for x-ray studies

    NASA Astrophysics Data System (ADS)

    Islam, Zahirul; Capatina, Dana; Ruff, Jacob; Das, Ritesh; Nojiri, Hiroyuki; Narumi, Yasuo

    2011-03-01

    We present a dual-cryostat pulsed-magnet instrument at the Advanced Photon Source (APS) with unique capabilities. The dual-cryostat independently cools the solenoid (Tohoku design) using liquid nitrogen and the sample using a closed-cycle refrigerator, respectively. Liquid nitrogen (LN) cooling allows a repetition rate of seven minutes for peak fields of 30 Tesla. The system is unique in that the LN cryostat incorporates a double-funnel vacuum tube passing through the solenoid's bore preserving the entire angular range allowed by the magnet. This scheme is advantageous in that it allows the applied magnetic field to be parallel to the scattering plane complementing typical split-pair magnets with fields normal to the scattering plane. Performance of the coils along with preliminary x-ray diffraction and spectroscopic studies will be presented. Use of the APS is supported by the U. S. DOE, Office of Science, under Contract No. DE-AC02-06CH11357. The work was supported in part by ICC-IMR, Tohoku University.

  16. Pulsed Magnetic Fields for an XAS Energy Dispersive Beamline

    SciTech Connect

    Linden, Peter van der; Mathon, Olivier; Neisius, Thomas

    2007-01-19

    Pulsed magnetic fields constitute an attractive alternative to superconducting magnets for many x-ray techniques. The ESRF ID24 energy dispersive beamline was used for pulsed magnetic field room temperature XMCD measurements on GdCo3. The signal has been measured up to a magnetic field of 5.5 Tesla without signs of deterioration.

  17. Design study of 15-Tesla RHQT Nb3Al block type dipole magnet

    SciTech Connect

    Yamada, R.; Ambrosio, G.; Barzi, E.; Kashikin, V.; Kikuchi, A.; Novitski, I.; Takeuchi, T.; Wake, M.; Zlobin, A.; /Fermilab /NIMC, Tsukuba /KEK, Tsukuba

    2005-09-01

    The design study of the block type 15-Tesla RHQT Nb{sub 3}Al dipole magnet, and its merits over Nb{sub 3}Sn magnets are presented. The copper stabilized RHQT Nb{sub 3}Al strand is now becoming commercially available for the application to the accelerator magnets. A 1 mm diameter RHQT Nb{sub 3}Al strand with filament size about 50 {mu}, non-copper Jc about 1000 A/mm{sup 2} at 15 Tesla at 4.2K, copper ratio of 50%, can now be produced over several hundred meters. The stress and strain characteristics of the Nb{sub 3}Al strand are superior to the Nb{sub 3}Sn strand. Another advantage is that it can tolerate a longitudinal strain up to 0.55%. The RHQT Nb{sub 3}Al Rutherford cable will have less chance of contamination of the stabilizer, compared to Nb{sub 3}Sn cable. These characteristics of the RHQT Nb{sub 3}Al will be beneficial for designing and producing 15-Tesla dipole magnets. An example 15-Tesla magnet cross section, utilizing the RHQT Nb{sub 3}Sn strand is presented. A systematic investigation on RHQT Nb{sub 3}Al strands, its Rutherford cables, and building a small racetrack magnet for cable testing are proposed.

  18. Test Results of HD1b, an upgraded 16 Tesla Nb3Sn DipoleMagnet

    SciTech Connect

    Lietzke, A.F.; Bartlett, S.E.; Bish, P.; Caspi, S.; Dietderich,D.; Ferracin, P.; Gourlay, S.; Hafalia, A.R.; Hannaford, C.R.; Higley,H.; Lau, W.; Liggins, N.; Mattafirri, S.; Nyman, M.; Sabbi, G.; Scanlan,R.; Swanson, J.

    2005-04-16

    The Superconducting Magnet Group at Lawrence Berkeley National Laboratory has been developing high-field, brittle-superconductor, accelerator magnet technology, in which the conductor's support system can significantly impact conductor performance (as well as magnet training). A recent H-dipole coil test (HD1) achieved a peak bore-field of 16 Tesla, using two, flat-racetrack, double-layer Nb{sub 3}Sn coils. However, its 4.5 K training was slow, with an erratic plateau at {approx}92% of its un-degraded ''short-sample'' expectation ({approx}16.6 T). Quench-origins correlated with regions where low conductor pre-stress had been expected (3-D FEM predictions and variations in 300 K coil-size). The coils were re-assembled with minor coil-support changes and re-tested as ''HD1b'', with a 185 MPa average pre-stress (30 MPa higher than HD1, with a 15-20 MPa pole-turn margin expected at 17 T). Training started higher (15.1 T), and quickly reached a stable, negligibly higher plateau at 16 T. After a thermal cycle, training started at 15.4 T, but peaked at 15.8 T, on the third attempt, before degrading to a 15.7 T plateau. The temperature dependence of this plateau was explored in a sub-atmospheric LHe bath to 3.0 K. Magnet performance data for both thermal cycles is presented and discussed, along with issues for future high-field accelerator magnet development.

  19. A 4 Tesla Superconducting Magnet Developed for a 6 Circle Huber Diffractometer at the XMaS Beamline

    SciTech Connect

    Thompson, P. B. J.; Brown, S. D.; Bouchenoire, L.; Mannix, D.; Paul, D. F.; Lucas, C. A.; Kervin, J.; Cooper, M. J.; Arakawa, P.; Laughon, G.

    2007-01-19

    We report here on the development and testing of a 4 Tesla cryogen free superconducting magnet designed to fit within the Euler cradle of a 6 circle Huber diffractometer, allowing scattering in both the vertical and horizontal planes. The geometry of this magnet allows the field to be applied in three orientations. The first being along the beam direction, the second with the field transverse to the beam direction a horizontal plane and finally the field can be applied vertically with respect to the beam. The magnet has a warm bore and an open geometry of 180 deg. , allowing large access to reciprocal space. A variable temperature insert has been developed, which is capable of working down to a temperature of 1.7 K and operating over a wide range of angles whilst maintaining a temperature stability of a few mK. Initial ferromagnetic diffraction measurements have been carried out on single crystal Tb and Dy samples.

  20. Alterations in the rat electrocardiogram induced by stationary magnetic fields

    SciTech Connect

    Gaffey, C.T.; Tenforde, T.S.

    1981-01-01

    A field strength dependent increase in the amplitude of the T-wave signal in the rat electrocardiogram (ECG) was observed during exposure to homogeneous, stationary magnetic fields. For 24 adult Sprague-Dswley and Buffalo rats of both sexes, the T-wave amplitude was found to increase by an average of 408% in a 2.0 Tesla (1 Tesla = 10/sup 4/ Gauss) field. No significant magnetically induced changes were observed in other components of the ECG record, including the P wave and the QRS complex. The minimum field level at which augmentation of the T wave could be detected was 0.3 Tesla. The magnetically induced increase in T-wave amplitude occurred instantaneously, and was immediately reversible after exposure to fields as high as 2.0 Tesla. No abnormalities in any component of the ECG record, including the T wave, were noted during a period of 3 weeks following cessation of a continuous 5-h exposure of rats to a 1.5-Tesla field. The heart rate and breathing rate of adult rats were not altered during, or subsequent to, application of fields up to 2.0 Tesla. The effect of animal orientation within the field was tested using juvenile rats 3-14 days old. The maximum increase in T-wave amplitude was observed when subjects were placed with the long axis of the body perpendicular to the lines of magnetic induction. (JMT)

  1. Team one (GA/MCA) effort of the DOE 12 Tesla Coil Development Program. 12 Tesla ETF toroidal field coil helium bath cooled NbTi alloy concept

    SciTech Connect

    Not Available

    1980-07-01

    This report presents the conceptual design of an ETF compatible toroidal field coil, employing helium bath cooled NbTi alloy conductor. The ten TF-coil array generates a peak field of 11-1/2 tesla at 2.87 m radius, corresponding to a major axis field of 6.1 tesla. The 10 kA conductor is an uninsulated, unsoldered Rutherford cable, employing NbTiTa ally as developed in Phase I of this effort. The conductor is encased within a four element frame of stainless steel strips to provide hoop and bearing load support.

  2. Human cardiac 31P magnetic resonance spectroscopy at 7 tesla

    PubMed Central

    Rodgers, Christopher T; Clarke, William T; Snyder, Carl; Vaughan, J Thomas; Neubauer, Stefan; Robson, Matthew D

    2014-01-01

    Purpose Phosphorus magnetic resonance spectroscopy (31P-MRS) affords unique insight into cardiac energetics but has a low intrinsic signal-to-noise ratio (SNR) in humans. Theory predicts an increased 31P-MRS SNR at 7T, offering exciting possibilities to better investigate cardiac metabolism. We therefore compare the performance of human cardiac 31P-MRS at 7T to 3T, and measure T1s for 31P metabolites at 7T. Methods Matched 31P-MRS data were acquired at 3T and 7T, on nine normal volunteers. A novel Look-Locker CSI acquisition and fitting approach was used to measure T1s on six normal volunteers. Results T1s in the heart at 7T were: phosphocreatine (PCr) 3.05 ± 0.41s, γ-ATP 1.82 ± 0.09s, α-ATP 1.39 ± 0.09s, β-ATP 1.02 ± 0.17s and 2,3-DPG (2,3-diphosphoglycerate) 3.05 ± 0.41s (N = 6). In the field comparison (N = 9), PCr SNR increased 2.8× at 7T relative to 3T, the Cramer-Ráo uncertainty (CRLB) in PCr concentration decreased 2.4×, the mean CRLB in PCr/ATP decreased 2.7× and the PCr/ATP SD decreased 2×. Conclusion Cardiac 31P-MRS at 7T has higher SNR and the spectra can be quantified more precisely than at 3T. Cardiac 31P T1s are shorter at 7T than at 3T. We predict that 7T will become the field strength of choice for cardiac 31P-MRS. Magn Reson Med 72:304–315, 2014. © 2013 The Authors. Magnetic Resonance in Medicine Published by Wiley Periodicals, Inc. on behalf of International Society of Medicine in Resonance. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution, and reproduction in any medium, provided the original work is properly cited. PMID:24006267

  3. Partial epilepsy: A pictorial review of 3 TESLA magnetic resonance imaging features

    PubMed Central

    Abud, Lucas Giansante; Thivard, Lionel; Abud, Thiago Giansante; Nakiri, Guilherme Seizem; dos Santos, Antonio Carlos; Dormont, Didier

    2015-01-01

    Epilepsy is a disease with serious consequences for patients and society. In many cases seizures are sufficiently disabling to justify surgical evaluation. In this context, Magnetic Resonance Imaging (MRI) is one of the most valuable tools for the preoperative localization of epileptogenic foci. Because these lesions show a large variety of presentations (including subtle imaging characteristics), their analysis requires careful and systematic interpretation of MRI data. Several studies have shown that 3 Tesla (T) MRI provides a better image quality than 1.5 T MRI regarding the detection and characterization of structural lesions, indicating that high-field-strength imaging should be considered for patients with intractable epilepsy who might benefit from surgery. Likewise, advanced MRI postprocessing and quantitative analysis techniques such as thickness and volume measurements of cortical gray matter have emerged and in the near future, these techniques will routinely enable more precise evaluations of such patients. Finally, the familiarity with radiologic findings of the potential epileptogenic substrates in association with combined use of higher field strengths (3 T, 7 T, and greater) and new quantitative analytical post-processing techniques will lead to improvements regarding the clinical imaging of these patients. We present a pictorial review of the major pathologies related to partial epilepsy, highlighting the key findings of 3 T MRI. PMID:26375569

  4. Mapping quantal touch using 7 Tesla functional magnetic resonance imaging and single-unit intraneural microstimulation

    PubMed Central

    Sanchez Panchuelo, Rosa Maria; Ackerley, Rochelle; Glover, Paul M; Bowtell, Richard W; Wessberg, Johan

    2016-01-01

    Using ultra-high field 7 Tesla (7T) functional magnetic resonance imaging (fMRI), we map the cortical and perceptual responses elicited by intraneural microstimulation (INMS) of single mechanoreceptive afferent units in the median nerve, in humans. Activations are compared to those produced by applying vibrotactile stimulation to the unit’s receptive field, and unit-type perceptual reports are analyzed. We show that INMS and vibrotactile stimulation engage overlapping areas within the topographically appropriate digit representation in the primary somatosensory cortex. Additional brain regions in bilateral secondary somatosensory cortex, premotor cortex, primary motor cortex, insula and posterior parietal cortex, as well as in contralateral prefrontal cortex are also shown to be activated in response to INMS. The combination of INMS and 7T fMRI opens up an unprecedented opportunity to bridge the gap between first-order mechanoreceptive afferent input codes and their spatial, dynamic and perceptual representations in human cortex. DOI: http://dx.doi.org/10.7554/eLife.12812.001 PMID:27154626

  5. Magnetic resonance imaging without field cycling at less than earth's magnetic field

    NASA Astrophysics Data System (ADS)

    Lee, Seong-Joo; Shim, Jeong Hyun; Kim, Kiwoong; Yu, Kwon Kyu; Hwang, Seong-min

    2015-03-01

    A strong pre-polarization field, usually tenths of a milli-tesla in magnitude, is used to increase the signal-to-noise ratio in ordinary superconducting quantum interference device-based nuclear magnetic resonance/magnetic resonance imaging experiments. Here, we introduce an experimental approach using two techniques to remove the need for the pre-polarization field. A dynamic nuclear polarization (DNP) technique enables us to measure an enhanced resonance signal. In combination with a π / 2 pulse to avoid the Bloch-Siegert effect in a micro-tesla field, we obtained an enhanced magnetic resonance image by using DNP technique with a 34.5 μT static external magnetic field without field cycling. In this approach, the problems of eddy current and flux trapping in the superconducting pickup coil, both due to the strong pre-polarization field, become negligible.

  6. Magnetic resonance imaging without field cycling at less than earth's magnetic field

    SciTech Connect

    Lee, Seong-Joo Shim, Jeong Hyun; Kim, Kiwoong; Yu, Kwon Kyu; Hwang, Seong-min

    2015-03-09

    A strong pre-polarization field, usually tenths of a milli-tesla in magnitude, is used to increase the signal-to-noise ratio in ordinary superconducting quantum interference device-based nuclear magnetic resonance/magnetic resonance imaging experiments. Here, we introduce an experimental approach using two techniques to remove the need for the pre-polarization field. A dynamic nuclear polarization (DNP) technique enables us to measure an enhanced resonance signal. In combination with a π/2 pulse to avoid the Bloch-Siegert effect in a micro-tesla field, we obtained an enhanced magnetic resonance image by using DNP technique with a 34.5 μT static external magnetic field without field cycling. In this approach, the problems of eddy current and flux trapping in the superconducting pickup coil, both due to the strong pre-polarization field, become negligible.

  7. Ultrahigh-Field MRI in Human Ischemic Stroke – a 7 Tesla Study

    PubMed Central

    Bauer, Miriam; Stengl, Katharina L.; Mutke, Matthias A.; Tovar-Martinez, Elena; Wuerfel, Jens; Endres, Matthias; Niendorf, Thoralf; Sobesky, Jan

    2012-01-01

    Introduction Magnetic resonance imaging (MRI) using field strengths up to 3 Tesla (T) has proven to be a powerful tool for stroke diagnosis. Recently, ultrahigh-field (UHF) MRI at 7 T has shown relevant diagnostic benefits in imaging of neurological diseases, but its value for stroke imaging has not been investigated yet. We present the first evaluation of a clinically feasible stroke imaging protocol at 7 T. For comparison an established stroke imaging protocol was applied at 3 T. Methods In a prospective imaging study seven patients with subacute and chronic stroke were included. Imaging at 3 T was immediately followed by 7 T imaging. Both protocols included T1-weighted 3D Magnetization-Prepared Rapid-Acquired Gradient-Echo (3D-MPRAGE), T2-weighted 2D Fluid Attenuated Inversion Recovery (2D-FLAIR), T2-weighted 2D Fluid Attenuated Inversion Recovery (2D-T2-TSE), T2* weighted 2D Fast Low Angle Shot Gradient Echo (2D-HemoFLASH) and 3D Time-of-Flight angiography (3D-TOF). Results The diagnostic information relevant for clinical stroke imaging obtained at 3 T was equally available at 7 T. Higher spatial resolution at 7 T revealed more anatomical details precisely depicting ischemic lesions and periinfarct alterations. A clear benefit in anatomical resolution was also demonstrated for vessel imaging at 7 T. RF power deposition constraints induced scan time prolongation and reduced brain coverage for 2D-FLAIR, 2D-T2-TSE and 3D-TOF at 7 T versus 3 T. Conclusions The potential of 7 T MRI for human stroke imaging is shown. Our pilot study encourages a further evaluation of the diagnostic benefit of stroke imaging at 7 T in a larger study. PMID:22701525

  8. High-field magnetization of Dy2O3

    NASA Technical Reports Server (NTRS)

    Flood, D. J.

    1974-01-01

    The magnetization of powdered samples of Dy2O3 has been measured at temperatures between 1.45 deg and 4.2 K, in applied magnetic fields ranging to 7 Teslas. A linear dependence of magnetization on applied field is observable in high field region, the slope of which is independent of temperature over the range investigated. The extrapolated saturation magnetic moment is 2.77 + or - 0.08 Bohr magnetons per ion.

  9. 3.0 Tesla vs 1.5 Tesla breast magnetic resonance imaging in newly diagnosed breast cancer patients

    PubMed Central

    Butler, Reni S; Chen, Christine; Vashi, Reena; Hooley, Regina J; Philpotts, Liane E

    2013-01-01

    AIM: To compare 3.0 Tesla (T) vs 1.5T magnetic resonance (MR) imaging systems in newly diagnosed breast cancer patients. METHODS: Upon Institutional Review Board approval, a Health Insurance Portability and Accountability Act-compliant retrospective review of 147 consecutive 3.0T MR examinations and 98 consecutive 1.5T MR examinations in patients with newly diagnosed breast cancer between 7/2009 and 5/2010 was performed. Eleven patients who underwent neoadjuvant chemotherapy in the 3.0T group were excluded. Mammographically occult suspicious lesions (BIRADS Code 4 and 5) additional to the index cancer in the ipsilateral and contralateral breast were identified. Lesion characteristics and pathologic diagnoses were recorded, and results achieved with both systems compared. Statistical significance was analyzed using Fisher’s exact test. RESULTS: In the 3.0T group, 206 suspicious lesions were identified in 55% (75/136) of patients and 96% (198/206) of these lesions were biopsied. In the 1.5T group, 98 suspicious lesions were identified in 53% (52/98) of patients and 90% (88/98) of these lesions were biopsied. Biopsy results yielded additional malignancies in 24% of patients in the 3.0T group vs 14% of patients in the 1.5T group (33/136 vs 14/98, P = 0.07). Average size and histology of the additional cancers was comparable. Of patients who had a suspicious MR imaging study, additional cancers were found in 44% of patients in the 3.0T group vs 27% in the 1.5T group (33/75 vs 14/52, P = 0.06), yielding a higher positive predictive value (PPV) for biopsies performed with the 3.0T system. CONCLUSION: 3.0T MR imaging detected more additional malignancies in patients with newly diagnosed breast cancer and yielded a higher PPV for biopsies performed with the 3.0T system. PMID:24003354

  10. Minimizing magnetic fields for precision experiments

    SciTech Connect

    Altarev, I.; Fierlinger, P.; Lins, T.; Marino, M. G.; Nießen, B.; Petzoldt, G.; Reisner, M.; Stuiber, S. Sturm, M.; Taggart Singh, J.; Taubenheim, B.; Rohrer, H. K.; Schläpfer, U.

    2015-06-21

    An increasing number of measurements in fundamental and applied physics rely on magnetically shielded environments with sub nano-Tesla residual magnetic fields. State of the art magnetically shielded rooms (MSRs) consist of up to seven layers of high permeability materials in combination with highly conductive shields. Proper magnetic equilibration is crucial to obtain such low magnetic fields with small gradients in any MSR. Here, we report on a scheme to magnetically equilibrate MSRs with a 10 times reduced duration of the magnetic equilibration sequence and a significantly lower magnetic field with improved homogeneity. For the search of the neutron's electric dipole moment, our finding corresponds to a 40% improvement of the statistical reach of the measurement. However, this versatile procedure can improve the performance of any MSR for any application.

  11. Rydberg EIT in High Magnetic Field

    NASA Astrophysics Data System (ADS)

    Ma, Lu; Anderson, David; Miller, Stephanie; Raithel, Georg

    2016-05-01

    We present progress towards an all-optical approach for measurements of strong magnetic fields using electromagnetically induced transparency (EIT) with Rydberg atoms in an atomic vapor. Rydberg EIT spectroscopy is a promising technique for the development of atom-based, calibration- and drift-free technology for high magnetic field sensing. In this effort, Rydberg EIT is employed to spectroscopically investigate the response of Rydberg atoms exposed to strong magnetic fields, in which Rydberg atoms are in the strong-field regime. In our setup, two neodymium block magnets are used to generate fields of about 0.8 Tesla, which strongly perturb the atoms. Information on the field strength and direction is obtained by a comparison of experimental spectra with calculated spectral maps. Investigations of magnetic-field inhomogeneities and other decoherence sources will be discussed.

  12. Aligning Paramecium caudatum with static magnetic fields.

    PubMed

    Guevorkian, Karine; Valles, James M

    2006-04-15

    As they negotiate their environs, unicellular organisms adjust their swimming in response to various physical fields such as temperature, chemical gradients, and electric fields. Because of the weak magnetic properties of most biological materials, however, they do not respond to the earth's magnetic field (5 x 10(-5) Tesla) except in rare cases. Here, we show that the trajectories of Paramecium caudatum align with intense static magnetic fields >3 Tesla. Otherwise straight trajectories curve in magnetic fields and eventually orient parallel or antiparallel to the applied field direction. Neutrally buoyant immobilized paramecia also align with their long axis in the direction of the field. We model this magneto-orientation as a strictly passive, nonphysiological response to a magnetic torque exerted on the diamagnetically anisotropic components of the paramecia. We have determined the average net anisotropy of the diamagnetic susceptibility, Deltachi(p), of a whole Paramecium: Deltachi(p) = (6.7+/- 0.7) x 10(-23) m(3). We show how the measured Deltachi(p) compares to the anisotropy of the diamagnetic susceptibilities of the components in the cell. We suggest that magnetic fields can be exploited as a novel, noninvasive, quantitative means to manipulate swimming populations of unicellular organisms. PMID:16461406

  13. Magnetic field decay in model SSC dipoles

    SciTech Connect

    Gilbert, W.S.; Althaus, R.F.; Barale, P.J.; Benjegerdes, R.W.; Green, M.A.; Green, M.I.; Scanlan, R.M.

    1988-08-01

    We have observed that some of our model SSC dipoles have long time constant decays of the magnetic field harmonics with amplitudes large enough to result in significant beam loss, if they are not corrected. The magnets were run at constant current at the SSC injection field level of 0.3 tesla for one to three hours and changes in the magnetic field were observed. One explanation for the observed field decay is time dependent superconductor magnetization. Another explanation involves flux creep or flux flow. Data are presented on how the decay changes with previous flux history. Similar magnets with different Nb-Ti filament spacings and matrix materials have different long time field decay. A theoretical model using proximity coupling and flux creep for the observed field decay is discussed. 10 refs., 5 figs., 2 tabs.

  14. Mitigated-force carriage for high magnetic field environments

    SciTech Connect

    Ludtka, Gerard M.; Ludtka, Gail M.; Wilgen, John B.; Murphy, Bart L.

    2015-05-19

    A carriage for high magnetic field environments includes a plurality of work-piece separators disposed in an operable relationship with a work-piece processing magnet having a magnetic field strength of at least 1 Tesla for supporting and separating a plurality of work-pieces by a preselected, essentially equal spacing, so that, as a first work-piece is inserted into the magnetic field, a second work-piece is simultaneously withdrawn from the magnetic field, so that an attractive magnetic force imparted on the first work-piece offsets a resistive magnetic force imparted on the second work-piece.

  15. Alterations in the rat electrocardiogram induced by stationary magnetic fields

    SciTech Connect

    Gaffey, C.T.; Tenforde, T.S.

    1981-01-01

    A field strength dependent increase in the amplitude of the T-wave signal in the rat electrocardiogram (ECG) was observed during exposure to homogeneous, stationary magnetic fields. For 24 adult Sprague-Dawley and Buffalo rats of both sexes, the T-wave amplitude was found to increase by an average of 408% in a 2.0 Tesla (1 Tesla - 10(4) Gauss) field. No significant magnetically induced changes were observed in other components of the ECG record, including the P wave and the QRS complex. The minimum field level at which augmentation of the T wave could be detected was 0.3 Tesla. The magnetically induced increase in T-wave amplitude occurred instantaneously, and was immediately reversible after exposure to fields as high as 2.0 Tesla. No abnormalities in any component of the ECG record, including the T wave, were noted during a period of 3 weeks following cessation of a continuous 5-h exposure of rats to a 1.5-Tesla field. The heart rate and breathing rate of adult rats were not altered during, or subsequent to, application of fields up to 2.0 Tesla. The effect of animal orientation within the field was tested using juvenile rats 3-14 days old. The maximum increase in T-wave amplitude was observed when subjects were placed with the long axis of the body perpendicular to the lines of magnetic induction. These experimental observations, as well as theoretical considerations, suggest that augmentation of the signal amplitude in the T-wave segment of the ECG may result from a superimposed electrical potential generated by aortic blood flow in the presence of a stationary magnetic field.

  16. A Study of Thermocurrent Induced Magnetic Fields in ILC Cavities

    SciTech Connect

    Crawford, Anthony C.; Cooley, Victoria

    2014-03-31

    The case of axisymmetric ILC type cavities with titanium helium vessels is investigated. A first order estimate for magnetic field within the SRF current layer is presented. The induced magnetic field is found to be not more than 1.4x10-8 Tesla = 0.14 milligauss for the case of axial symmetry. Magnetic fields due to symmetry breaking effects are discussed.

  17. Value of 3 Tesla diffusion-weighted magnetic resonance imaging for assessing liver fibrosis

    PubMed Central

    Papalavrentios, Lavrentios; Sinakos, Emmanouil; Chourmouzi, Danai; Hytiroglou, Prodromos; Drevelegas, Konstantinos; Constantinides, Manos; Drevelegas, Antonios; Talwalkar, Jayant; Akriviadis, Evangelos

    2015-01-01

    Background Limited data are available regarding the role of magnetic resonance imaging (MRI), particularly the new generation 3 Tesla technology, and especially diffusion-weighted imaging (DWI) in predicting liver fibrosis. The aim of our pilot study was to assess the clinical performance of the apparent diffusion coefficient (ADC) of liver parenchyma for the assessment of liver fibrosis in patients with non-alcoholic fatty liver disease (NAFLD). Methods 18 patients with biopsy-proven NAFLD underwent DWI with 3 Tesla MRI. DWI was performed with single-shot echo-planar technique at b values of 0-500 and 0-1000 s/mm2. ADC was measured in four locations in the liver and the mean ADC value was used for analysis. Staging of fibrosis was performed according to the METAVIR system. Results The median age of patients was 52 years (range 23-73). The distribution of patients in different fibrosis stages was: 0 (n=1), 1 (n=7), 2 (n=1), 3 (n=5), 4 (n=4). Fibrosis stage was poorly associated with ADC at b value of 0-500 s/mm2 (r= -0.30, P=0.27). However it was significantly associated with ADC at b value of 0-1000 s/mm2 (r= -0.57, P=0.01). For this b value (0-1000 s/mm2) the area under receiver-operating characteristic curve was 0.93 for fibrosis stage ≥3 and the optimal ADC cut-off value was 1.16 ×10-3 mm2/s. Conclusion 3 Tesla DWI can possibly predict the presence of advanced fibrosis in patients with NAFLD. PMID:25608776

  18. Crystal field and magnetic properties

    NASA Technical Reports Server (NTRS)

    Flood, D. J.

    1977-01-01

    Magnetization and magnetic susceptibility measurements have been made in the temperature range 1.3 to 4.2 K on powdered samples of ErH3. The susceptibility exhibits Curie-Weiss behavior from 4.2 to 2 K, and intercepts the negative temperature axis at theta = 1.05 + or - 0.05 K, indicating that the material is antiferromagnetic. The low field effective moment is 6.77 + or - 0.27 Bohr magnetons per ion. The magnetization exhibits a temperature independent contribution, the slope of which is (5 + or - 1.2) x 10 to the -6th Weber m/kg Tesla. The saturation moment is 3.84 + or - 1 - 0.15 Bohr magnetons per ion. The results can be qualitatively explained by the effects of crystal fields on the magnetic ions. No definitive assignment of a crystal field ground state can be given, nor can a clear choice between cubically or hexagonally symmetric crystal fields be made. For hexagonal symmetry, the first excited state is estimated to be 86 to 100 K above the ground state. For cubic symmetry, the splitting is on the order of 160 to 180 K.

  19. Fabrication and characterization of a MEMS nano-Tesla ferromagnetic-piezoelectric magnetic sensor array

    NASA Astrophysics Data System (ADS)

    Qu, Peng; Gollapudi, Sreenivasulu; Bidthanapally, Rao; Srinivasan, Gopalan; Petrov, Vladimir; Qu, Hongwei

    2016-06-01

    A self-biased MEMS magnetic sensor array with ferromagnetic-piezoelectric composites has been fabricated and characterized. The array with two Quartz-Nickel-Metglas cantilevers with nano-tesla sensitivity was fabricated by MEMS processes including silicon-quartz low temperature bonding, quartz wafer thinning, and electroplating of thick nickel thin films. Under self-biasing due to magnetization grading of ferromagnetic layer, magnetoelectric coefficients of 6.6 and 5.6 V/cm Oe and resolutions of ˜0.58 and ˜0.75 nT are obtained at the mechanical resonant frequencies of 191.5 and 184.8 Hz for the two sensors in the array, respectively. Such arrays have the potential for applications in biomagnetic imaging technologies including magneto-cardiography.

  20. Magnetic field sensor

    NASA Astrophysics Data System (ADS)

    Silva, Nicolas

    2012-09-01

    Earlier papers1-3 in this journal have described experiments on measuring the magnetic fields of current-carrying wires and permanent magnets using magnetic field probes of various kinds. This paper explains how to use an iPad and the free app MagnetMeter-3D Vector Magnetometer and Accelerometer4 (compass HD) to measure the magnetic fields.

  1. Does Magnetic Resonance Brain Scanning at 3.0 Tesla Pose a Hyperthermic Challenge to Term Neonates?

    PubMed

    Cawley, Paul; Few, Karen; Greenwood, Richard; Malcolm, Paul; Johnson, Glyn; Lally, Pete; Thayyil, Sudhin; Clarke, Paul

    2016-08-01

    Next-generation 3-Tesla magnetic resonance (MR) scanners offer improved neonatal neuroimaging, but the greater associated radiofrequency radiation may increase the risk of hyperthermia. Safety data for neonatal 3-T MR scanning are lacking. We measured rectal temperatures continuously in 25 neonates undergoing 3-T brain MR imaging and observed no significant hyperthermic threat. PMID:27318382

  2. Correlating Hemodynamic Magnetic Resonance Imaging with high-field Intracranial Vessel Wall Imaging in Stroke

    PubMed Central

    Langdon, Weston; Donahue, Manus J.; van der Kolk, Anja G.; Rane, Swati; Strother, Megan K.

    2014-01-01

    Vessel wall magnetic resonance imaging at ultra-high field (7 Tesla) can be used to visualize vascular lesions noninvasively and holds potential for improving stroke-risk assessment in patients with ischemic cerebrovascular disease. We present the first multi-modal comparison of such high-field vessel wall imaging with more conventional (i) 3 Tesla hemodynamic magnetic resonance imaging and (ii) digital subtraction angiography in a 69-year-old male with a left temporal ischemic infarct. PMID:25426229

  3. Interaction mechanisms and biological effects of static magnetic fields

    SciTech Connect

    Tenforde, T.S.

    1994-06-01

    Mechanisms through which static magnetic fields interact with living systems are described and illustrated by selected experimental observations. These mechanisms include electrodynamic interactions with moving, ionic charges (blood flow and nerve impulse conduction), magnetomechanical interactions (orientation and translation of molecules structures and magnetic particles), and interactions with electronic spin states in charge transfer reactions (photo-induced electron transfer in photosynthesis). A general summary is also presented of the biological effects of static magnetic fields. There is convincing experimental evidence for magnetoreception mechanisms in several classes of lower organisms, including bacteria and marine organisms. However, in more highly evolved species of animals, there is no evidence that the interactions of static magnetic fields with flux densities up to 2 Tesla (1 Tesla [T] = 10{sup 4} Gauss) produce either behavioral or physiolocical alterations. These results, based on controlled studies with laboratory animals, are consistent with the outcome of recent epidemiological surveys on human populations exposed occupationally to static magnetic fields.

  4. World Record Magnetic Field 100T

    SciTech Connect

    McDonald, Ross; Mielke, Chuck; Rickel, Dwight

    2012-03-22

    Scientists at the Los Alamos National Laboratory campus of the National High Magnetic Field Laboratory have successfully produced the world's first 100 Tesla non-destructive magnetic field. The achievement was decades in the making, involving a diverse team of scientists and engineers. The 100 Tesla mark was reached at approximately 3:30 p.m. on March 22, 2012. A note about the sound you'll hear when the magnet is energized: The sound that the 100 T multi-shot magnet makes is due to the electrical current modulation from the 3 phase power converters (known as 12 pulse converters) and the harmonics associated with the chopping of the sinusoidal input power. The magnet vibrates at the electrical current frequencies multiplied by 12 (i.e. ~ 55 Hz x 12 = 660 Hz) hence making an audible sound. The generator is not run at full speed (1650 RPM instead of 1800 RPM) so the frequency is slightly lower than US Line frequency (i.e. 55 Hz instead of 60 Hz). A spectrograph of the sound from the magnet pulse shows the multiple harmonics as reddish horizontal bands as a function of time.

  5. Efficacy in Microbial Sterilization of Pulsed Magnetic Field Treatment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sterilization effects of the pulsed magnetic field with a maximum intensity of 11.37 Tesla were investigated on Escherichia coli AS 1.129, Staphylococcus aureus AS 1.89, Saccharomyces cerevisiae ATTC 7552 and Bacillus subtilis AS 1.921. The well-regulated fluctuations of sterilization effects with m...

  6. Characterization of transceive surface element designs for 7 tesla magnetic resonance imaging of the prostate: radiative antenna and microstrip

    NASA Astrophysics Data System (ADS)

    Ipek, Ö.; Raaijmakers, A. J. E.; Klomp, D. W. J.; Lagendijk, J. J. W.; Luijten, P. R.; van den Berg, C. A. T.

    2012-01-01

    Ultra-high field magnetic resonance (⩾7 tesla) imaging (MRI) faces challenges with respect to efficient spin excitation and signal reception from deeply situated organs. Traditional radio frequency surface coil designs relying on near-field coupling are suboptimal at high field strengths. Better signal penetration can be obtained by designing a radiative antenna in which the energy flux is directed to the target location. In this paper, two different radiative antenna designs are investigated to be used as transceive elements, which employ different dielectric permittivities for the antenna substrate. Their transmit and receive performances in terms of B+1, local SAR (specific absorption rate) and SNR (signal-to-noise ratio) were compared using extensive electromagnetic simulations and MRI measurements with traditional surface microstrip coils. Both simulations and measurements demonstrated that the radiative element shows twofold gain in B+1 and SNR at 10 cm depth, and additionally a comparable SAR peak value. In terms of transmit performance, the radiative antenna with a dielectric permittivity of 37 showed a 24% more favorable local SAR10g avg/(B+1)2 ratio than the radiative antenna with a dielectric permittivity of 90. In receive, the radiative element with a dielectric permittivity of 90 resulted in a 20% higher SNR for shallow depths, but for larger depths this difference diminished compared to the radiative element with a dielectric permittivity of 37. Therefore, to image deep anatomical regions effectively, the radiative antenna with a dielectric permittivity of 37 is favorable.

  7. Characterization of transceive surface element designs for 7 tesla magnetic resonance imaging of the prostate: radiative antenna and microstrip.

    PubMed

    Ipek, O; Raaijmakers, A J E; Klomp, D W J; Lagendijk, J J W; Luijten, P R; van den Berg, C A T

    2012-01-21

    Ultra-high field magnetic resonance (≥7 tesla) imaging (MRI) faces challenges with respect to efficient spin excitation and signal reception from deeply situated organs. Traditional radio frequency surface coil designs relying on near-field coupling are suboptimal at high field strengths. Better signal penetration can be obtained by designing a radiative antenna in which the energy flux is directed to the target location. In this paper, two different radiative antenna designs are investigated to be used as transceive elements, which employ different dielectric permittivities for the antenna substrate. Their transmit and receive performances in terms of B(+)(1), local SAR (specific absorption rate) and SNR (signal-to-noise ratio) were compared using extensive electromagnetic simulations and MRI measurements with traditional surface microstrip coils. Both simulations and measurements demonstrated that the radiative element shows twofold gain in B(+)(1) and SNR at 10 cm depth, and additionally a comparable SAR peak value. In terms of transmit performance, the radiative antenna with a dielectric permittivity of 37 showed a 24% more favorable local SAR(10g avg)/(B(+)(1))(2) ratio than the radiative antenna with a dielectric permittivity of 90. In receive, the radiative element with a dielectric permittivity of 90 resulted in a 20% higher SNR for shallow depths, but for larger depths this difference diminished compared to the radiative element with a dielectric permittivity of 37. Therefore, to image deep anatomical regions effectively, the radiative antenna with a dielectric permittivity of 37 is favorable. PMID:22170777

  8. A 2-Tesla active shield magnet for whole body imaging and spectroscopy

    SciTech Connect

    Davies, F.J.; Elliott, R.T.; Hawksworth, D.G. )

    1991-03-01

    This paper reports on the development and testing of a 2T superconducting Active Shield magnet, with a 0.99m diameter warm bore for whole-body Magnetic Resonance Imaging (MRI) and spectroscopy. The magnet and cryostat were designed to meet the same performance standards as existing MRI magnets, but with the volume of the stray field region reduced to less than 4% of that for an unshielded magnet. The 0.5 mT stray field contour is within 5m axially and 3m radially of the magnet center. The system weight is only 14 tonnes.

  9. D-zero rototrack: first stage of D-zero 2 Tesla solenoid field mapping device

    SciTech Connect

    Yamada, R.; Korienek, J.; Krider, J.; Lindenmeyer, C.; Miksa, D.; Miksa, R.

    1997-09-01

    A simple and portable field mapping device was developed at Fermilab and successfully used to test the D0 2 Tesla solenoid at Toshiba Works in Japan. A description of the mechanical structure, electric driving and control system, and software of the field mapping device is given. Four Hall probe elements of Group3 Digital Gaussmeters are mounted on the radial extension arm of a carriage, which is mounted on a central rotating beam. The system gives two dimensional motions (axial and rotational) to the Hall probes. To make the system compact and portable, we used a laptop computer with PCMCIA cards. For the control system we used commercially available software LabVIEW and Motion Toolbox, and for the data analysis we used Microsoft Excel.

  10. Effect of magnetic field inhomogeneity on ion cyclotron motion coherence at high magnetic field.

    PubMed

    Vladimirov, Gleb; Kostyukevich, Yury; Hendrickson, Christopher L; Blakney, Greg T; Nikolaev, Eugene

    2015-01-01

    A three-dimensional code based on the particle-in-cell algorithm modified to account for the inhomogeneity of the magnetic field was applied to determine the effect of Z(1), Z(2), Z(3), Z(4), X, Y, ZX, ZY, XZ(2) YZ(2), XY and X(2)-Y(2) components of an orthogonal magnetic field expansion on ion motion during detection in an FT-ICR cell. Simulations were performed for magnetic field strengths of 4.7, 7, 14.5 and 21 Tesla, including experimentally determined magnetic field spatial distributions for existing 4.7 T and 14.5 T magnets. The effect of magnetic field inhomogeneity on ion cloud stabilization ("ion condensation") at high numbers of ions was investigated by direct simulations of individual ion trajectories. Z(1), Z(2), Z(3) and Z(4) components have the largest effect (especially Z(1)) on ion cloud stability. Higher magnetic field strength and lower m/z demand higher relative magnetic field homogeneity to maintain cloud coherence for a fixed time period. The dependence of mass resolving power upper limit on Z(1) inhomogeneity is evaluated for different magnetic fields and m/z. The results serve to set the homogeneity requirements for various orthogonal magnetic field components (shims) for future FT-ICR magnet design. PMID:26307725

  11. Design considerations of a power supply system for fast cycling superconducting accelerator magnets of 2 Tesla b-field generated by a conductor of 100 kA current

    SciTech Connect

    Hays, Steve; Piekarz, Henryk; Pfeffer, Howie; Claypool, Brad; /Fermilab

    2007-06-01

    Recently proposed fast cycling accelerators for proton drivers (SF-SPS, CERN and SF-MR, SF-BOOSTER, FNAL) neutrino sources require development of new magnet technology. In support of this magnet development a power supply system will need to be developed that can support the high current and high rate of power swing required by the fast cycling (1 sec rise and fall in the SF-MR, 5Hz in Booster). This paper will outline a design concept for a +/- 2000 V and 100,000 A fast ramping power supply system. This power supply design is in support of a 6.44 km magnet system at 0.020 H and 330 m 5 Hz, 0.00534 H superconducting loads. The design description will include the layout and plan for extending the present FNAL Main Injector style ramping power supply to the higher currents needed for this operation. This will also include the design for a harmonic filter and power factor corrector that will be needed to control the large power swings caused by the fast cycle time. A conceptual design for the current regulation system and control will also be outlined. The power circuit design will include the bridge, filter and transformer plan based on existing designs.

  12. Magnetic Field Stabilization for Magnetically Shielded Volumes by External Field Coils

    PubMed Central

    Brys, T.; Czekaj, S.; Daum, M.; Fierlinger, P.; George, D.; Henneck, R.; Hochman, Z.; Kasprzak, M.; Kohlik, K.; Kirch, K.; Kuzniak, M.; Kuehne, G.; Pichlmaier, A.; Siodmok, A.; Szelc, A.; Tanner, L.

    2005-01-01

    For highly sensitive magnetic measurements, e.g., a measurement of the neutron electric dipole moment (EDM), the magnetic field has to be stable in time on a level below picoTesla. One of several measures we employ to achieve this uses an external field coil system which can stabilize the ambient external field at a predefined value. Here we report on the construction and characterization of such a system in the magnetic test facility at PSI. The system actively stabilizes the field along the axis of the EDM experiment by means of four coils in a Helmholtz-like configuration. Additional coils serve to compensate for transverse ambient field components. Because of the long integration times in the EDM experiment (about 100 s or more) only slow disturbances have to be corrected for. The performance of the system has been measured using static and moving magnetic sources and suppression factors in excess of 200 have been observed. PMID:27308117

  13. Magnetic Field Stabilization for Magnetically Shielded Volumes by External Field Coils.

    PubMed

    Brys, T; Czekaj, S; Daum, M; Fierlinger, P; George, D; Henneck, R; Hochman, Z; Kasprzak, M; Kohlik, K; Kirch, K; Kuzniak, M; Kuehne, G; Pichlmaier, A; Siodmok, A; Szelc, A; Tanner, L

    2005-01-01

    For highly sensitive magnetic measurements, e.g., a measurement of the neutron electric dipole moment (EDM), the magnetic field has to be stable in time on a level below picoTesla. One of several measures we employ to achieve this uses an external field coil system which can stabilize the ambient external field at a predefined value. Here we report on the construction and characterization of such a system in the magnetic test facility at PSI. The system actively stabilizes the field along the axis of the EDM experiment by means of four coils in a Helmholtz-like configuration. Additional coils serve to compensate for transverse ambient field components. Because of the long integration times in the EDM experiment (about 100 s or more) only slow disturbances have to be corrected for. The performance of the system has been measured using static and moving magnetic sources and suppression factors in excess of 200 have been observed. PMID:27308117

  14. Effects of Magnetic Field on Biological Cells and Applications

    NASA Astrophysics Data System (ADS)

    Chen, Ching-Jen

    2001-03-01

    While there has been extensive research performed in the physics of magnetic fields and the physics and chemistry in life sciences, independent of each other, there has been a paucity of scientific research and development investigating the possible applications of magnetic fields in life sciences. The focus of this presentation is to present the stimulation mechanism by which magnetic fields affect (a) yeast cells (b) plant cells and (c) mammalian normal and cancer cells. Recently we have found that the Saccharomyces Cerevsa yeast growth increases by about 30to a 1 tesla field and the production of CO2 increases by about 30of yeast metabolism may be due to an increase in intercellular interaction and protein channel alignment, the introduction of an alteration in the DNA from the magnetic field exposure or a combination of these mechanisms. We also have found that the application of high magnetic fields (1 tesla and above) can have marked effects on the germination and growth of plants, especially corn, beans and peas. This finding has opened up the possibility of technology developments in botanical growth systems to accelerate seed germination and crop harvesting. Most recently we have investigated the application of high magnetic fields on leukemia, CaCoII and HEP G2 cancer cell lines. We found that when leukemia are exposed to a 12 tesla field for 2 hours has an increase in cell death by about 30that were not exposed to the magnetic field. Viability of CaCoII cells sandwiched between permanent magnets of maximum strength of 1.2 tesla was measured. A decrease in viable cells by 33unexposed cells. HSP 70 was measured for HEPG2 cells that were exposed to permanent magnetic field of 1.2 tesla for 40 minutes and for unexposed cells. It was found that the exposed cells produce 19 times more HSP70 compared to unexposed cells. Our results together with other investigators report suggest a strong evidence of a reduction in the cell growth rate for cancer cells when

  15. Stepped Impedance Resonators for High Field Magnetic Resonance Imaging

    PubMed Central

    Akgun, Can E.; DelaBarre, Lance; Yoo, Hyoungsuk; Sohn, Sung-Min; Snyder, Carl J.; Adriany, Gregor; Ugurbil, Kamil; Gopinath, Anand; Vaughan, J. Thomas

    2014-01-01

    Multi-element volume radio-frequency (RF) coils are an integral aspect of the growing field of high field magnetic resonance imaging (MRI). In these systems, a popular volume coil of choice has become the transverse electromagnetic (TEM) multi-element transceiver coil consisting of microstrip resonators. In this paper, to further advance this design approach, a new microstrip resonator strategy in which the transmission line is segmented into alternating impedance sections referred to as stepped impedance resonators (SIRs) is investigated. Single element simulation results in free space and in a phantom at 7 tesla (298 MHz) demonstrate the rationale and feasibility of the SIR design strategy. Simulation and image results at 7 tesla in a phantom and human head illustrate the improvements in transmit magnetic field, as well as, RF efficiency (transmit magnetic field versus SAR) when two different SIR designs are incorporated in 8-element volume coil configurations and compared to a volume coil consisting of microstrip elements. PMID:23508243

  16. How do protozoa respond to intense magnetic fields?

    NASA Astrophysics Data System (ADS)

    Guevorkian, Karine

    2005-03-01

    Most microorganisms such as Paramecium Caudatum, swim in helical paths in nature. In the absence of any external stimuli (e.g. obstacles, electric field, heat, etc.) the axes of these helical paths, which define the trajectories, are straight lines and are distributed in random directions. Our experiments reveal that these trajectories can be manipulated by applying intense DC magnetic fields of the order of several Tesla. Swimming paramecia, for example, align their trajectories with magnetic fields in excess of about 7 Tesla in fraction of a second. We will describe this phenomenon in fields up to 25 T. We will address whether this effect is an active or passive response to the magnetic torque exerted on the diamagnetically anisotropic structures in Paramecium. In addition we will present results for other species as they are obtained.

  17. Research of weak pulsed magnetic field system derived from the time, displacement, and static magnetic field.

    PubMed

    Zhao, Xiao-Dong; Qian, Zheng

    2015-10-01

    The accurate measurement of dynamic characteristics in weak magnetic sensors is urgently required as a greater number of applications for these devices are found. In this paper, a novel weak pulsed magnetic field system is presented. The underlying principle is to drive a permanent magnet passing another magnet rapidly, producing a pulsed weak magnetic field. The magnitude of the field can be adjusted by changing the velocity and distance between the two magnets. The standard value of the pulsed dynamic magnetic field can be traced back to the accurate measurement of time, displacement, and static magnetic field. In this study a detailed procedure for producing a pulse magnetic field system using the above method is outlined after which a theoretical analysis of the permanent magnet movement is discussed. Using the described apparatus a milli-second level pulse-width with a milli-Tesla magnetic field magnitude is used to study the dynamic characteristics of a giant magnetoresistance sensor. We conclude by suggesting possible improvements to the described apparatus. PMID:26520987

  18. Research of weak pulsed magnetic field system derived from the time, displacement, and static magnetic field

    NASA Astrophysics Data System (ADS)

    Zhao, Xiao-Dong; Qian, Zheng

    2015-10-01

    The accurate measurement of dynamic characteristics in weak magnetic sensors is urgently required as a greater number of applications for these devices are found. In this paper, a novel weak pulsed magnetic field system is presented. The underlying principle is to drive a permanent magnet passing another magnet rapidly, producing a pulsed weak magnetic field. The magnitude of the field can be adjusted by changing the velocity and distance between the two magnets. The standard value of the pulsed dynamic magnetic field can be traced back to the accurate measurement of time, displacement, and static magnetic field. In this study a detailed procedure for producing a pulse magnetic field system using the above method is outlined after which a theoretical analysis of the permanent magnet movement is discussed. Using the described apparatus a milli-second level pulse-width with a milli-Tesla magnetic field magnitude is used to study the dynamic characteristics of a giant magnetoresistance sensor. We conclude by suggesting possible improvements to the described apparatus.

  19. Magnetic field measurements of the superEBIS superconducting magnet. Informal report

    SciTech Connect

    Herschcovitch, A.; Kponou, A.; Clipperton, R.; Hensel, W.; Usack, F.

    1994-06-02

    SuperEBIS was designed to have a solenoidal magnetic field of a 5 Tesla strength with a 120 cm long bore. The field was specified to be straight within 1 part in 10000 within the bore, and uniform to within 1 part in 1000 within the central 90 cm. Magnetic field measurements were performed with a computerized magnetic field measuring setup that was borrowed from W. Sampson`s group. A preliminary test was made of a scheme to determine if the magnetic and mechanical axes of the solenoid coincided, and, if not, by how much.

  20. Genotoxic Effects of Superconducting Static Magnetic Fields (SMFs) on Wheat (Triticum aestivum) Pollen Mother Cells (PMCs)

    NASA Astrophysics Data System (ADS)

    Zhang, Pingping; Yin, Ruochun; Chen, Zhiyou; Wu, Lifang; Yu, Zengliang

    2007-04-01

    The effects of superconducting static magnetic fields (SMFs) on the pollen mother cells (PMCs) of wheat were investigated in order to evaluate the possible genotoxic effect of such non-ionizing radiation. The seeds of wheat were exposed to static magnetic fields with either different magnetic flux densities (0, 1, 3, 5 and 7 Tesla) for 5 h or different durations (1, 3 and 5 h) at a magnetic flux density of 7 Tesla. The seeds were germinated at 23oC after exposure and the seedlings were transplanted into the field. The PMCs from young wheat ears were taken and slides were made following the conventional method. The genotoxic effect was evaluated in terms of micronucleus (MN), chromosomal bridge, lagging chromosome and fragments in PMCs. Although the exposed groups of a low field intensity (below 5 Tesla) showed no statistically significant difference in the aberration frequency compared with the unexposed control groups and sham exposed groups, a significant increase in the chromosomal bridge, lagging chromosome, triple-polar segregation or micronucleus was observed at a field strength of 5 Tesla or 7 Tesla, respectively. The analysis of dose-effect relationships indicated that the increased frequency of meiotic abnormal cells correlated with the flux density of the magnetic field and duration, but no linear relationship was observed. Such statistically significant differences indicated a potential genotoxic effect of high static magnetic fields above 5 T.

  1. Photospheric magnetic fields

    NASA Technical Reports Server (NTRS)

    Howard, R.

    1972-01-01

    Knowledge on the nature of magnetic fields on the solar surface is reviewed. At least a large part of the magnetic flux in the solar surface is confined to small bundles of lines of force within which the field strength is of the order of 500 gauss. Magnetic fields are closely associated with all types of solar activity. Magnetic flux appears at the surface at the clearly defined birth or regeneration of activity of an active region. As the region ages, the magnetic flux migrates to form large-scale patterns and the polar fields. Some manifestations of the large-scale distribution are discussed.

  2. Fabrication and test results of a high field, Nb3Sn superconducting racetrack dipole magnet

    SciTech Connect

    Benjegerdes, R.; Bish, P.; Byford, D.; Caspi, S.; Dietderich, D.R.; Gourlay, S.A.; Hafalia, R.; Hannaford, R.; Higley, H.; Jackson, A.; Lietzke, A.; Liggins, N.; McInturff, A.D.; O'Neill, J.; Palmerston, E.; Sabbi, G.; Scanlan, R.M.; Swanson, J.

    2001-06-15

    The LBNL Superconducting Magnet Program is extending accelerator magnet technology to the highest possible fields. A 1 meter long, racetrack dipole magnet, utilizing state-of-the-art Nb{sub 3}Sn superconductor, has been built and tested. A record dipole filed of 14.7 Tesla has been achieved. Relevant features of the final assembly and tested results are discussed.

  3. Colonoscopy detects significantly more flat adenomas than 3-tesla magnetic resonance colonography: a pilot trial

    PubMed Central

    Hüneburg, Robert; Kukuk, Guido; Nattermann, Jacob; Endler, Christoph; Penner, Arndt-Hendrik; Wolter, Karsten; Schild, Hans; Strassburg, Christian; Sauerbruch, Tilman; Schmitz, Volker; Willinek, Winfried

    2016-01-01

    Background and study aims: Colorectal cancer (CRC) is one of the most common cancers worldwide, and several efforts have been made to reduce its occurrence or severity. Although colonoscopy is considered the gold standard in CRC prevention, it has its disadvantages: missed lesions, bleeding, and perforation. Furthermore, a high number of patients undergo this procedure even though no polyps are detected. Therefore, an initial screening examination may be warranted. Our aim was to compare the adenoma detection rate of magnetic resonance colonography (MRC) with that of optical colonoscopy. Patients and methods: A total of 25 patients with an intermediate risk for CRC (17 men, 8 women; mean age 57.6, standard deviation 11) underwent MRC with a 3.0-tesla magnet, followed by colonoscopy. The endoscopist was initially blinded to the results of MRC and unblinded immediately after examining the distal rectum. Following endoscopic excision, the size, anatomical localization, and appearance of all polyps were described according to the Paris classification. Results: A total of 93 lesions were detected during colonoscopy. These included a malignant infiltration of the transverse colon due to gastric cancer in 1 patient, 28 adenomas in 10 patients, 19 hyperplastic polyps in 9 patients, and 45 non-neoplastic lesions. In 5 patients, no lesion was detected. MRC detected significantly fewer lesions: 1 adenoma (P = 0.001) and 1 hyperplastic polyp (P = 0.004). The malignant infiltration was seen with both modalities. Of the 28 adenomas, 23 (82 %) were 5 mm or smaller; only 4 adenomas 10 mm or larger (14 %) were detected. Conclusion: MRC does not detect adenomas sufficiently independently of the location of the lesion. Even advanced lesions were missed. Therefore, colonoscopy should still be considered the current gold standard, even for diagnostic purposes. PMID:26878043

  4. The ESRF Miniature Pulsed Magnetic Field System

    NASA Astrophysics Data System (ADS)

    van der Linden, Peter J. E. M.; Strohm, Cornelius; Roth, Thomas; Detlefs, Carsten; Mathon, Olivier

    2010-06-01

    We have developed a portable system to provide pulsed magnetic fields on the ESRF X-ray beamlines. The complete system consists of a power supply, liquid Helium and liquid Nitrogen dewars with a siphon each, control electronics and a double cryostat for separate coil and sample cooling. The liquid nitrogen cooled solenoids reach a maximum field of 30 Tesla for a total pulse duration of one milisecond. They are constructed for optimised cooling rate after the pulse to obtain a high duty cycle, the repetition rate is five pulses per minute at maximum field. The sample is cooled in an independent Helium flow cryostat which is inserted into the bore of the magnet. The flow cryostat has a temperature range from 5 to 250 Kelvin with a direct contact between the sample and Helium flow. This overview gives a general presentation of the system and we will show recent results.

  5. The ESRF Miniature Pulsed Magnetic Field System

    SciTech Connect

    Linden, Peter J. E. M. van der; Strohm, Cornelius; Roth, Thomas; Detlefs, Carsten; Mathon, Olivier

    2010-06-23

    We have developed a portable system to provide pulsed magnetic fields on the ESRF X-ray beamlines. The complete system consists of a power supply, liquid Helium and liquid Nitrogen dewars with a siphon each, control electronics and a double cryostat for separate coil and sample cooling. The liquid nitrogen cooled solenoids reach a maximum field of 30 Tesla for a total pulse duration of one milisecond. They are constructed for optimised cooling rate after the pulse to obtain a high duty cycle, the repetition rate is five pulses per minute at maximum field. The sample is cooled in an independent Helium flow cryostat which is inserted into the bore of the magnet. The flow cryostat has a temperature range from 5 to 250 Kelvin with a direct contact between the sample and Helium flow. This overview gives a general presentation of the system and we will show recent results.

  6. Magnetic resonance imaging investigation of the bone conduction implant – a pilot study at 1.5 Tesla

    PubMed Central

    Jansson, Karl-Johan Fredén; Håkansson, Bo; Reinfeldt, Sabine; Rigato, Cristina; Eeg-Olofsson, Måns

    2015-01-01

    Purpose The objective of this pilot study was to investigate if an active bone conduction implant (BCI) used in an ongoing clinical study withstands magnetic resonance imaging (MRI) of 1.5 Tesla. In particular, the MRI effects on maximum power output (MPO), total harmonic distortion (THD), and demagnetization were investigated. Implant activation and image artifacts were also evaluated. Methods and materials One implant was placed on the head of a test person at the position corresponding to the normal position of an implanted BCI and applied with a static pressure using a bandage and scanned in a 1.5 Tesla MRI camera. Scanning was performed both with and without the implant, in three orthogonal planes, and for one spin-echo and one gradient-echo pulse sequence. Implant functionality was verified in-between the scans using an audio processor programmed to generate a sequence of tones when attached to the implant. Objective verification was also carried out by measuring MPO and THD on a skull simulator as well as retention force, before and after MRI. Results It was found that the exposure of 1.5 Tesla MRI only had a minor effect on the MPO, ie, it decreased over all frequencies with an average of 1.1±2.1 dB. The THD remained unchanged above 300 Hz and was increased only at lower frequencies. The retention magnet was demagnetized by 5%. The maximum image artifacts reached a distance of 9 and 10 cm from the implant in the coronal plane for the spin-echo and the gradient-echo sequence, respectively. The test person reported no MRI induced sound from the implant. Conclusion This pilot study indicates that the present BCI may withstand 1.5 Tesla MRI with only minor effects on its performance. No MRI induced sound was reported, but the head image was highly distorted near the implant. PMID:26604836

  7. The U.S. NHMFL 100 tesla multi-shot magnet

    SciTech Connect

    Ammerman, C. N.; Coe, H.; Ellis, G. G.; Lesch, B. L.; Sims, J. R.; Schillig, J. B.; Swenson, C. A.; Bacon, J. L.

    2001-01-01

    The design, analysis and fabrication progress of the 100 T Multi-Shot Magnet is described. The description includes the structural analysis of the outer coil set, the fabrication of the 100 T prototype coil 1, the fabrication of a coil 1 test shell, and the analysis of the electrical busbar assembly. Fabrication issues and their solutions are presented. This magnet will be installed as part of the user facility research equipment at the U.S. National High Magnetic Field Laboratory (NHMFL) Pulsed Field Facility at Los Alamos National Laboratory.

  8. Cardiovascular alterations in Macaca monkeys exposed to stationary magnetic fields: experimental observations and theoretical analysis

    SciTech Connect

    Tenforde, T.S.; Gaffey, C.T.; Moyer, B.R.; Budinger, T.F.

    1983-01-01

    Simultaneous measurements were made of the electrocardiogram (ECG) and the intraarterial blood pressure of adult male Macaca monkeys during acute exposure to homogeneous stationary magnetic fields ranging in strength up to 1.5 tesla. An instantaneous, field strength-dependent increase in the ECG signal amplitude at the locus of the T wave was observed in fields greater than 0.1 tesla. The temporal sequence of this signal in the ECG record and its reversibility following termination of the magnetic field exposure are consistent with an earlier suggestion that it arises from a magnetically induced aortic blood flow potential superimposed on the native T-wave signal. No measurable alterations in blood pressure resulted from exposure to fields up to 1.5 tesla. This experimental finding is in agreement with theoretical calculations of the magnetohydrodynamic effect on blood flow in the major arteries of the cardiovascular system. 27 references, 1 figure, 1 table.

  9. Performance analysis of HD1: a 16 Tesla Nb3Sn dipole Magnet

    SciTech Connect

    Mattafirri, S.; Bartlett, S.E.; Bish, P.A.; Caspi, S.; Dietderich, D.R.; Ferracin, P.; Gourlay, S.A.; Hannaford, C.R.; Hafalia, A.R.; Lau, W.G.; Lietzke, A.F.; McInturff, A.D.; Nyman, M.; Sabbi, G.L.; Scanlan, R.M.

    2005-06-01

    The Superconducting Magnet Group at Lawrence Berkeley National Laboratory (LBNL) has been developing technology for high field accelerator magnets from brittle conductors. HD1 is a single bore block dipole magnet using two, double-layer Nb{sub 3}Sn flat racetrack coils. The magnet was tested in October 2003 and reached a bore peak field of 16 T (94.5% of short sample). The average quench current plateau appeared to be limited by 'stick slip' conductor motions. Diagnostics recorded quench origins and preload distributions. Cumulative deformation of the mechanical structure has been observed. Quench velocity in different field regions has been measured and compared with model predictions. The results obtained during the HD1 test are presented and discussed.

  10. Magnetic field generator

    DOEpatents

    Krienin, Frank

    1990-01-01

    A magnetic field generating device provides a useful magnetic field within a specific retgion, while keeping nearby surrounding regions virtually field free. By placing an appropriate current density along a flux line of the source, the stray field effects of the generator may be contained. One current carrying structure may support a truncated cosine distribution, and it may be surrounded by a current structure which follows a flux line that would occur in a full coaxial double cosine distribution. Strong magnetic fields may be generated and contained using superconducting cables to approximate required current surfaces.

  11. On Cosmic Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Florido, E.; Battaner, E.

    2010-12-01

    Magnetic fields are present in all astrophysical media. However, many models and interpretations of observations often ignore them, because magnetic fields are difficult to handle and because they produce complicated morphological features. Here we will comment on the basic intuitive properties, which even if not completely true, provide a first guiding insight on the physics of a particular astrophysical problem. These magnetic properties are not mathematically demonstrated here. How magnetic fields evolve and how they introduce dynamical effects are considered, also including a short comment on General Relativity Magnetohydrodynamics. In a second part we consider some audacious and speculative matters. They are answers to three questions: a) How draw a cube without lifting the pencil from the paper so that when the pen passes through the same side do in the same direction? B) Are MILAGRO anisotropies miraculous? C) Do cosmic magnetic lenses exist?. The last two questions deal with issues related with the interplay between magnetic fields and cosmic ray propagation.

  12. Mitigated-force carriage for high magnetic field environments

    DOEpatents

    Ludtka, Gerard M; Ludtka, Gail M; Wilgen, John B; Murphy, Bart L

    2014-05-20

    A carriage for high magnetic field environments includes a first work-piece holding means for holding a first work-piece, the first work-piece holding means being disposed in an operable relationship with a work-piece processing magnet having a magnetic field strength of at least 1 Tesla. The first work-piece holding means is further disposed in operable connection with a second work-piece holding means for holding a second work-piece so that, as the first work-piece is inserted into the magnetic field, the second work-piece is simultaneously withdrawn from the magnetic field, so that an attractive magnetic force imparted on the first work-piece offsets a resistive magnetic force imparted on the second work-piece.

  13. Magnetic Fields in Galaxies

    NASA Astrophysics Data System (ADS)

    Beck, Rainer

    Magnetic fields are a major agent in the interstellar medium. They contribute significantly to the total pressure which balances the gas disk against gravitation. They affect the gas flows in spiral arms (Gómez and Cox, 2002). The effective sound speed of the gas is increased by the presence of strong fields which reduce the shock strength. The interstellar fields are closely connected to gas clouds. They affect the dynamics of the gas clouds (Elmegreen, 1981; de Avillez and Breitschwerdt, 2004). The stability and evolution of gas clouds are also influenced by magnetic fields, but it is not understood how (Crutcher, 1999; see Chap. 7). Magnetic fields are essential for the onset of star formation as they enable the removal of angular momentum from the protostellar cloud during its collapse (magnetic braking, Mouschovias, 1990). Strong fields may shift the stellar mass spectrum towards the more massive stars (Mestel, 1990). MHD turbulence distributes energy from supernova explosions within the ISM (Subramanian, 1998) and regenerates the field via the dynamo process (Wielebinski, R., Krause, 1993, Beck et al., 1996; Sect. 6). Magnetic reconnection is a possible heating source for the ISM and halo gas (Birk et al., 1998). Magnetic fields also control the density and distribution of cosmic rays in the ISM. A realistic model for any process in the ISM needs basic information about the magnetic field which has to be provided by observations.

  14. Early Knee Changes in Dancers Identified by Ultra High Field 7 Tesla MRI

    PubMed Central

    Chang, Gregory; Diamond, Matthew; Nevsky, Gregory; Regatte, Ravinder R.; Weiss, David S.

    2012-01-01

    Introduction We aimed to determine whether a unique, ultra high-field 7 Tesla (T) MRI scanner could detect occult cartilage and meniscal injuries in asymptomatic female dancers. Materials and Methods This study had institutional review board approval. We recruited eight pre-professional female dancers and nine non-athletic, female controls. We scanned the dominant knee on a 7T MRI scanner using a 3D-FLASH sequence and a proton density, fast spin-echo sequence to evaluate cartilage and menisci, respectively. Two radiologists scored cartilage (International Cartilage Repair Society classification) and meniscal (Stoller classification) lesions. We applied two-tailed z- and t-tests to determine statistical significance. Results There were no cartilage lesions in dancers or controls. For the medial meniscus, the dancers compared to controls demonstrated higher mean MRI score (2.38±0.61 vs. 1.0±0.97, p<0.0001) and higher frequency of mean grade 2 lesions (88% vs. 11%, p<0.01). For the lateral meniscus, there was no difference in score (0.5±0.81 vs. 0.5±0.78, p=0.78) in dancers compared to controls. Discussion Asymptomatic dancers demonstrate occult medial meniscal lesions. Because this has been described in early osteoarthritis, close surveillance of dancers’ knee symptoms and function with appropriate activity modification may help maintain their long-term knee health. PMID:23346987

  15. ISOTHERMAL PHASE TRANSFORMATION CYCLING IN STEEL BY APPLICATION OF A HIGH MAGNETIC FIELD

    SciTech Connect

    Ludtka, Gerard Michael; Jaramillo, Roger A; Ludtka, Gail Mackiewicz-; Kisner, Roger A; Wilgen, John B

    2007-01-01

    A phase transformation reversal via the application and removal of a large magnetic field was investigated. Because a large magnetic field can alter the phase equilibrium between paramagnetic austenite and ferromagnetic ferrite, volume fractions for each phase constituent can be modified at constant temperature by changing the magnetic field strength. In this research elevated temperature isothermal hold experiments were performed for 5160 steel. During the isothermal hold, the magnetic field was cycled between 0 and 30 Tesla. As companion experiments, temperature cycling and isothermal holds were performed without magnetic fields. The resulting microstructures were examined using optical and SEM metallography. These microstructures indicate that a portion of the microstructure experiences isothermal transformation cycling between austenite and ferrite due to the application and removal of the 30T (Tesla) magnetic field.

  16. High magnetic field processing of liquid crystalline polymers

    DOEpatents

    Smith, Mark E.; Benicewicz, Brian C.; Douglas, Elliot P.

    1998-01-01

    A process of forming bulk articles of oriented liquid crystalline thermoset material, the material characterized as having an enhanced tensile modulus parallel to orientation of an applied magnetic field of at least 25 percent greater than said material processed in the absence of a magnetic field, by curing a liquid crystalline thermoset precursor within a high strength magnetic field of greater than about 2 Tesla, is provided, together with a resultant bulk article of a liquid crystalline thermoset material, said material processed in a high strength magnetic field whereby said material is characterized as having a tensile modulus parallel to orientation of said field of at least 25 percent greater than said material processed in the absence of a magnetic field.

  17. High magnetic field processing of liquid crystalline polymers

    DOEpatents

    Smith, M.E.; Benicewicz, B.C.; Douglas, E.P.

    1998-11-24

    A process of forming bulk articles of oriented liquid crystalline thermoset material, the material characterized as having an enhanced tensile modulus parallel to orientation of an applied magnetic field of at least 25 percent greater than said material processed in the absence of a magnetic field, by curing a liquid crystalline thermoset precursor within a high strength magnetic field of greater than about 2 Tesla, is provided, together with a resultant bulk article of a liquid crystalline thermoset material, said material processed in a high strength magnetic field whereby said material is characterized as having a tensile modulus parallel to orientation of said field of at least 25 percent greater than said material processed in the absence of a magnetic field.

  18. Multi circular-cavity surface coil for magnetic resonance imaging of monkey's brain at 4 Tesla

    NASA Astrophysics Data System (ADS)

    Osorio, A. I.; Solis-Najera, S. E.; Vázquez, F.; Wang, R. L.; Tomasi, D.; Rodriguez, A. O.

    2014-11-01

    Animal models in medical research has been used to study humans diseases for several decades. The use of different imaging techniques together with different animal models offers a great advantage due to the possibility to study some human pathologies without the necessity of chirurgical intervention. The employ of magnetic resonance imaging for the acquisition of anatomical and functional images is an excellent tool because its noninvasive nature. Dedicated coils to perform magnetic resonance imaging experiments are obligatory due to the improvement on the signal-to-noise ratio and reduced specific absorption ratio. A specifically designed surface coil for magnetic resonance imaging of monkey's brain is proposed based on the multi circular-slot coil. Numerical simulations of the magnetic and electric fields were also performed using the Finite Integration Method to solve Maxwell's equations for this particular coil design and, to study the behavior of various vector magnetic field configurations and specific absorption ratio. Monkey's brain images were then acquired with a research-dedicated magnetic resonance imaging system at 4T, to evaluate the anatomical images with conventional imaging sequences. This coil showed good quality images of a monkey's brain and full compatibility with standard pulse sequences implemented in research-dedicated imager.

  19. Estimation and reduction of temporal magnetic field fluctuations in powered magnets using inductive and NMR feedback control

    NASA Astrophysics Data System (ADS)

    Thomson, Brian F.

    Powered magnets provide high magnetic fields that promise to significantly improve nuclear magnetic resonance spectroscopy (NMR). Higher fields increase NMR chemical shift resolution and signal-to-noise ratio (SNR) while decreasing quadrupolar line broadening in solids. High resolution NMR is typically performed using superconducting magnets, which are currently limited to 24 Tesla. Powered magnets can provide continuous fields up to 45 Tesla, significantly larger than that achievable by superconducting magnets. This will dramatically expand opportunities in the areas of material science, chemistry, and biology. However, temporal magnetic field fluctuations due to both the power supply and cooling water system currently render these magnets unsuitable for high resolution NMR. The focus of this dissertation is to design, synthesize, and verify a feedback control system that reduces temporal field fluctuations so that powered magnets can be used for high resolution NMR. Earlier studies have shown that feedback control using inductive measurements significantly reduces higher frequency field fluctuations associated with power supply ripple, but are limited in their ability to reduce lower frequency field fluctuations associated with variations in the cooling water system. Conversely, feedback control using NMR measurements are more conducive to reducing lower frequency field fluctuations and less successful at higher frequencies. Feedback control systems which use NMR measurements are often referred to as field-frequency locks (FFLs). Earlier studies have shown that FFLs can estimate and reduce lower frequency field fluctuations in superconducting magnets, but have limited ability to do the same in powered magnets. This dissertation investigates why such FFLs are limited in powered magnets, and demonstrates some alternative methods for estimating lower frequency field fluctuations using NMR measurements in powered magnets. A digital sampled-data feedback control

  20. HD1: Design and Fabrication of a 16 Tesla Nb3Sn DipoleMagnet

    SciTech Connect

    Hafalia, A.R.; Bartlett, S.E.; Capsi, S.; Chiesa, L.; Dietderich,D.R.; Ferracin, P.; Goli, M.; Gourlay, S.A.; Hannaford, C.R.; Highley,H.; Lietzke, A.F.; Liggins, N.; Mattafirri, S.; McInturff, A.D.; Nyman,M.; Sabbi, G.L.; Scanlan, R.M.; Swanson, J.

    2003-11-10

    The Lawrence Berkeley National Laboratory (LBNL) Superconducting Magnet Group has completed the design, fabrication and test of HD1, a 16 T block-coil dipole magnet. State of the art Nb{sub 3}Sn conductor was wound in double-layer racetrack coils and supported by an iron yoke and a tensioned aluminum shell. In order to prevent conductor movement under magnetic forces up to the design field, a coil pre-stress of 150 MPa was required. To achieve this level without damaging the brittle conductor, the target stress was generated during cool-down to 4.2 K by exploiting the thermal contraction differentials between yoke and shell. Accurate control of the shell tension during assembly was obtained using pressurized bladders and interference load keys. An integrated 3D CAD model was used to optimize magnetic and mechanical design and analysis.

  1. HD1: Design and Fabrication of a 16 Tesla Nb3Sn Dipole Magnet

    SciTech Connect

    Hafalia, A.R.; Barlett, S.E.; Caspi, S.; Chiesa, L.; Dietderich, D.R.; Ferracin, P.; Goli, M.; Gourlay, S.A.; Hannaford, C.R.; Higley, H.; Lietzke, A.F.; Liggins, N.; Mattafirri, S.; McInturff, A.D.; Myman, M.; Sabbi, G.L.; Scanlan, R.M.; Swanson, J.

    2003-10-01

    The Lawrence Berkeley National Laboratory (LBNL) Supcrconducting Magnet Group has completed the design, fabrication and tcst of HD1, a 16 T block-coil dipole magnet. State of the art Nb{sub 3}Sn conductor was wound in double-layer racetrack coils and supported by an iron yoke and a tensioned aluminum shell. In order to prevent conductor movement under magnetic forces up to the design field, a coil prestress of 150 MPa was required. To achieve this level without damaging the brittle conductor, the target stress was generated during cool-down to 4.2 K by exploiting the thermal contraction differentials between yoke and shell. Accurate control of the shell tension during assembly was obtained using pressurized bladders and interference load keys. An integrated 3D CAD model was used to optimize magnetic and mechanical design and analysis.

  2. High magnetic field induced changes of gene expression in arabidopsis

    PubMed Central

    Paul, Anna-Lisa; Ferl, Robert J; Meisel, Mark W

    2006-01-01

    Background High magnetic fields are becoming increasingly prevalent components of non-invasive, biomedical imaging tools (such as MRI), thus, an understanding of the molecular impacts associated with these field strengths in biological systems is of central importance. The biological impact of magnetic field strengths up to 30 Tesla were investigated in this study through the use of transgenic Arabidopsis plants engineered with a stress response gene consisting of the alcohol dehydrogenase (Adh) gene promoter driving the β-glucuronidase (GUS) gene reporter. Methods Magnetic field induced Adh/GUS activity was evaluated with histochemical staining to assess tissue specific expression and distribution, and with quantitative, spectrofluometric assays to measure degree of activation. The evaluation of global changes in the Arabidopsis genome in response to exposure to high magnetic fields was facilitated with Affymetrix Gene Chip microarrays. Quantitative analyses of gene expression were performed with quantitative real-time polymerase-chain-reaction (qRT-PCR). Results Field strengths in excess of about 15 Tesla induce expression of the Adh/GUS transgene in the roots and leaves. From the microarray analyses that surveyed 8000 genes, 114 genes were differentially expressed to a degree greater than 2.5 fold over the control. These results were quantitatively corroborated by qRT-PCR examination of 4 of the 114 genes. Conclusion The data suggest that magnetic fields in excess of 15 Tesla have far-reaching effect on the genome. The wide-spread induction of stress-related genes and transcription factors, and a depression of genes associated with cell wall metabolism, are prominent examples. The roles of magnetic field orientation of macromolecules and magnetophoretic effects are discussed as possible factors that contribute to the mounting of this response. PMID:17187667

  3. Ultralow Magnetic Fields and Gravity Probe B Gyroscope Readout

    NASA Astrophysics Data System (ADS)

    Mester, J. C.; Lockhart, J. M.; Muhlfelder, B.; Murray, D. O.; Taber, M. A.

    We describe the generation of an ultralow magnetic field of < 10-11Tesla in the flight dewar of the Gravity Probe B Relativity Mission. The field was achieved using expanded-superconducting-shield techniques and is maintained with the aid of a magnetic materials control program. A high performance magnetic shield system is required for the proper function of gyroscope readout. The readout system employs a dc SQUID to measure the London moment generated by the superconducting gyro rotor in order to resolve sub-milliarcsecond changes in the gyro spin direction. In addition to a low residual dc magnetic field, attenuation of external field variation is required to be 1012 at the gyro positions. We discuss the measurement of the dc magnetic field and ac attenuation factor and the performance of the readout system

  4. MAGNET ENGINEERING AND TEST RESULTS OF THE HIGH FIELD MAGNET R AND D PROGRAM AT BNL.

    SciTech Connect

    COZZOLINO,J.; ANERELLA,M.; ESCALLIER,J.; GANETIS,G.; GHOSH,A.; GUPTA,R.; HARRISON,M.; JAIN,A.; MARONE,A.; MURATORE,J.; PARKER,B.; SAMPSON,W.; SOIKA,R.; WANDERER,P.

    2002-08-04

    The Superconducting Magnet Division at Brookhaven National Laboratory (BNL) has been carrying out design, engineering, and technology development of high performance magnets for future accelerators. High Temperature Superconductors (HTS) play a major role in the BNL vision of a few high performance interaction region (IR) magnets that would be placed in a machine about ten years from now. This paper presents the engineering design of a ''react and wind'' Nb{sub 3}Sn magnet that will provide a 12 Tesla background field on HTS coils. In addition, the coil production tooling as well as the most recent 10-turn R&D coil test results will be discussed.

  5. Magnetic field dosimeter development

    SciTech Connect

    Lemon, D.K.; Skorpik, J.R.; Eick, J.L.

    1980-09-01

    In recent years there has been increased concern over potential health hazards related to exposure of personnel to magnetic fields. If exposure standards are to be established, then a means for measuring magnetic field dose must be available. To meet this need, the Department of Energy has funded development of prototype dosimeters at the Battelle Pacific Northwest Laboratory. This manual reviews the principle of operation of the dosimeter and also contains step-by-step instructions for its operation.

  6. Magnetic fields in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Chiba, Masashi

    The magnetic-field characteristics in spiral galaxies are investigated, with emphasis on the Milky Way. The dynamo theory is considered, and axisymmetric spiral (ASS) and bisymmetric spiral (BSS) magnetic fields are analyzed. Toroidal and poloidal magnetic fields are discussed.

  7. Static Magnetic Fields in Semiconductor Floating-Zone Growth

    NASA Technical Reports Server (NTRS)

    Croll, Arne; Benz, K. W.

    1999-01-01

    Heat and mass transfer in semiconductor float-zone processing are strongly influenced by convective flows in the zone, originating from sources such as buoyancy convection, thermocapillary (Marangoni) convection, differential rotation, or radio frequency heating. Because semiconductor melts are conducting, flows can be damped by the use of static magnetic fields to influence the interface shape and the segregation of dopants and impurities. An important objective is often the suppression of time-dependent flows and the ensuing dopant striations. In RF-heated Si-FZ - crystals, fields up to O.STesla show some flattening of the interface curvature and a reduction of striation amplitudes. In radiation-heated (small-scale) SI-FZ crystals, fields of 0.2 - 0.5 Tesla already suppress the majority of the dopant striations. The uniformity of the radial segregation is often compromised by using a magnetic field, due to the directional nature of the damping. Transverse fields lead to an asymmetric interface shape and thus require crystal rotation (resulting in rotational dopant striations) to achieve a radially symmetric interface, whereas axial fields introduce a coring effect. A complete suppression of dopant striations and a reduction of the coring to insignificant values, combined with a shift of the axial segregation profile towards a more diffusion-limited case, are possible with axial static fields in excess of 1 Tesla. Strong static magnetic fields, however, can also lead to the appearance of thermoelectromagnetic convection, caused by the interaction of thermoelectric currents with the magnetic field.

  8. Solar Wind Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Smith, E. J.

    1995-01-01

    The magnetic fields originate as coronal fields that are converted into space by the supersonic, infinitely conducting, solar wind. On average, the sun's rotation causes the field to wind up and form an Archimedes Spiral. However, the field direction changes almost continuously on a variety of scales and the irregular nature of these changes is often interpreted as evidence that the solar wind flow is turbulent.

  9. Decreased chemotaxis of human peripheral phagocytes exposed to a strong static magnetic field.

    PubMed

    Sipka, S; Szöllosi, I; Batta, Gy; Szegedi, Gy; Illés, A; Bakó, Gy; Novák, D

    2004-01-01

    The chemotaxis of human peripheral phagocytes, neutrophils and monocytes was examined in a strong static magnetic field (0.317+/-0.012 Tesla). The chemotaxis of the suspension of purified neutrophils and monocytes was tested in the Boyden chamber using C5a as a chemotactic signal. The chambers were placed into a temperature regulated (36.6 degrees C) equipment producing a strong static magnetic field (0.317 Tesla) for 60 minutes. The movement of cells proceeded into a nitrocellulose membrane toward the north-pole of the magnet, i.e. in the direction of the Earth's gravitational pull. The C5a induced chemotaxis of human neutrophils decreased significantly in the strong static magnetic field. Monocytes were not significantly effected. The strong static magnetic field decreased the chemotactic movement of neutrophils and this phenomenon may have implications when humans are exposed to magnetic resonance imaging for extended periods of time. PMID:15334831

  10. Magnetic exchange bias of more than 1 Tesla in a natural mineral intergrowth

    NASA Astrophysics Data System (ADS)

    McEnroe, Suzanne A.; Carter-Stiglitz, Brian; Harrison, Richard J.; Robinson, Peter; Fabian, Karl; McCammon, Catherine

    2007-10-01

    Magnetic exchange bias is a phenomenon whereby the hysteresis loop of a `soft' magnetic phase is shifted by an amount HE along the applied field axis owing to its interaction with a `hard' magnetic phase. Since the discovery of exchange bias fifty years ago, the development of a general theory has been hampered by the uncertain nature of the interfaces between the hard and soft phases, commonly between an antiferromagnetic phase and a ferro- or ferrimagnetic phase. Exchange bias continues to be the subject of investigation because of its technological applications and because it is now possible to manipulate magnetic materials at the nanoscale. Here we present the first documented example of exchange bias of significant magnitude (>1 T) in a natural mineral. We demonstrate that exchange bias in this system is due to the interaction between coherently intergrown magnetic phases formed through a natural process of phase separation during slow cooling over millions of years. Transmission electron microscopy studies show that these intergrowths have a known crystallographic orientation with a known crystallographic structure and that the interfaces are coherent.

  11. Magnetic Field Measurement System

    SciTech Connect

    Kulesza, Joe; Johnson, Eric; Lyndaker, Aaron; Deyhim, Alex; Waterman, Dave; Blomqvist, K. Ingvar; Dunn, Jonathan Hunter

    2007-01-19

    A magnetic field measurement system was designed, built and installed at MAX Lab, Sweden for the purpose of characterizing the magnetic field produced by Insertion Devices (see Figure 1). The measurement system consists of a large granite beam roughly 2 feet square and 14 feet long that has been polished beyond laboratory grade for flatness and straightness. The granite precision coupled with the design of the carriage yielded minimum position deviations as measured at the probe tip. The Hall probe data collection and compensation technique allows exceptional resolution and range while taking data on the fly to programmable sample spacing. Additional flip coil provides field integral data.

  12. Magnetic Field Solver

    NASA Technical Reports Server (NTRS)

    Ilin, Andrew V.

    2006-01-01

    The Magnetic Field Solver computer program calculates the magnetic field generated by a group of collinear, cylindrical axisymmetric electromagnet coils. Given the current flowing in, and the number of turns, axial position, and axial and radial dimensions of each coil, the program calculates matrix coefficients for a finite-difference system of equations that approximates a two-dimensional partial differential equation for the magnetic potential contributed by the coil. The program iteratively solves these finite-difference equations by use of the modified incomplete Cholesky preconditioned-conjugate-gradient method. The total magnetic potential as a function of axial (z) and radial (r) position is then calculated as a sum of the magnetic potentials of the individual coils, using a high-accuracy interpolation scheme. Then the r and z components of the magnetic field as functions of r and z are calculated from the total magnetic potential by use of a high-accuracy finite-difference scheme. Notably, for the finite-difference calculations, the program generates nonuniform two-dimensional computational meshes from nonuniform one-dimensional meshes. Each mesh is generated in such a way as to minimize the numerical error for a benchmark one-dimensional magnetostatic problem.

  13. Magnetic fields at neptune.

    PubMed

    Ness, N F; Acuña, M H; Burlaga, L F; Connerney, J E; Lepping, R P; Neubauer, F M

    1989-12-15

    The National Aeronautics and Space Administration Goddard Space Flight Center-University of Delaware Bartol Research Institute magnetic field experiment on the Voyager 2 spacecraft discovered a strong and complex intrinsic magnetic field of Neptune and an associated magnetosphere and magnetic tail. The detached bow shock wave in the supersonic solar wind flow was detected upstream at 34.9 Neptune radii (R(N)), and the magnetopause boundary was tentatively identified at 26.5 R(N) near the planet-sun line (1 R(N) = 24,765 kilometers). A maximum magnetic field of nearly 10,000 nanoteslas (1 nanotesla = 10(-5) gauss) was observed near closest approach, at a distance of 1.18 R(N). The planetary magnetic field between 4 and 15 R(N) can be well represented by an offset tilted magnetic dipole (OTD), displaced from the center of Neptune by the surprisingly large amount of 0.55 R(N) and inclined by 47 degrees with respect to the rotation axis. The OTD dipole moment is 0.133 gauss-R(N)(3). Within 4 R(N), the magnetic field representation must include localized sources or higher order magnetic multipoles, or both, which are not yet well determined. The obliquity of Neptune and the phase of its rotation at encounter combined serendipitously so that the spacecraft entered the magnetosphere at a time when the polar cusp region was directed almost precisely sunward. As the spacecraft exited the magnetosphere, the magnetic tail appeared to be monopolar, and no crossings of an imbedded magnetic field reversal or plasma neutral sheet were observed. The auroral zones are most likely located far from the rotation poles and may have a complicated geometry. The rings and all the known moons of Neptune are imbedded deep inside the magnetosphere, except for Nereid, which is outside when sunward of the planet. The radiation belts will have a complex structure owing to the absorption of energetic particles by the moons and rings of Neptune and losses associated with the significant changes

  14. The effect on medical metal implants by magnetic fields of magnetic resonance imaging.

    PubMed

    Mesgarzadeh, M; Revesz, G; Bonakdarpour, A; Betz, R R

    1985-01-01

    Forces and torques, due to a 0.3 Tesla magnetic field were evaluated on ten hip prostheses and ten hemostat clips. Measurements were performed with an instrument utilizing the movement of a laser beam caused by the deflection of a cantilever. The results indicate effects, if any, to be smaller than the instrument's sensitivity which, at its highest, was 7 mg of force and 125 mg.cm of torque. PMID:4059940

  15. Gray Matter-Specific Changes in Brain Bioenergetics after Acute Sleep Deprivation: A 31P Magnetic Resonance Spectroscopy Study at 4 Tesla

    PubMed Central

    Plante, David T.; Trksak, George H.; Jensen, J. Eric; Penetar, David M.; Ravichandran, Caitlin; Riedner, Brady A.; Tartarini, Wendy L.; Dorsey, Cynthia M.; Renshaw, Perry F.; Lukas, Scott E.; Harper, David G.

    2014-01-01

    Study Objectives: A principal function of sleep may be restoration of brain energy metabolism caused by the energetic demands of wakefulness. Because energetic demands in the brain are greater in gray than white matter, this study used linear mixed-effects models to examine tissue-type specific changes in high-energy phosphates derived using 31P magnetic resonance spectroscopy (MRS) after sleep deprivation and recovery sleep. Design: Experimental laboratory study. Setting: Outpatient neuroimaging center at a private psychiatric hospital. Participants: A total of 32 MRS scans performed in eight healthy individuals (mean age 35 y; range 23-51 y). Interventions: Phosphocreatine (PCr) and β-nucleoside triphosphate (NTP) were measured using 31P MRS three dimensional-chemical shift imaging at high field (4 Tesla) after a baseline night of sleep, acute sleep deprivation, and 2 nights of recovery sleep. Novel linear mixed-effects models were constructed using spectral and tissue segmentation data to examine changes in bioenergetics in gray and white matter. Measurements and Results: PCr increased in gray matter after 2 nights of recovery sleep relative to sleep deprivation with no significant changes in white matter. Exploratory analyses also demonstrated that increases in PCr were associated with increases in electroencephalographic slow wave activity during recovery sleep. No significant changes in β-NTP were observed. Conclusions: These results demonstrate that sleep deprivation and subsequent recovery-induced changes in high-energy phosphates primarily occur in gray matter, and increases in phosphocreatine after recovery sleep may be related to sleep homeostasis. Citation: Plante DT, Trksak GH, Jensen JE, Penetar DM, Ravichandran C, Riedner BA, Tartarini WL, Dorsey CM, Renshaw PF, Lukas SE, Harper DG. Gray matter-specific changes in brain bioenergetics after acute sleep deprivation: a 31P magnetic resonance spectroscopy study at 4 Tesla. SLEEP 2014

  16. An active antenna for ELF magnetic fields

    NASA Technical Reports Server (NTRS)

    Sutton, John F.; Spaniol, Craig

    1994-01-01

    The work of Nikola Tesla, especially that directed toward world-wide electrical energy distribution via excitation of the earth-ionosphere cavity resonances, has stimulated interest in the study of these resonances. Not only are they important for their potential use in the transmission of intelligence and electrical power, they are important because they are an integral part of our natural environment. This paper describes the design of a sensitive, untuned, low noise active antenna which is uniquely suited to modern earth-ionosphere cavity resonance measurements employing fast-Fourier transform techniques for near-real-time data analysis. It capitalizes on a little known field-antenna interaction mechanism. Recently, the authors made preliminary measurements of the magnetic fields in the earth-ionosphere cavity. During the course of this study, the problem of designing an optimized ELF magnetic field sensor presented itself. The sensor would have to be small, light weight (for portable use), and capable of detecting the 5-50 Hz picoTesla-level signals generated by the natural excitations of the earth-ionosphere cavity resonances. A review of the literature revealed that past researchers had employed very large search coils, both tuned and untuned. Hill and Bostick, for example, used coils of 30,000 turns wound on high permeability cores of 1.83 m length, weighing 40 kg. Tuned coils are unsuitable for modern fast-Fourier transform data analysis techniques which require a broad spectrum input. 'Untuned' coils connected to high input impedance voltage amplifiers exhibit resonant responses at the resonant frequency determined by the coil inductance and the coil distributed winding capacitance. Also, considered as antennas, they have effective areas equal only to their geometrical areas.

  17. ROLE FOR THE MAGNETIC FIELD IN THE RADIATION-INDUCED EFFLUX OF CALCIUM IONS FROM BRAIN TISSUE 'IN VITRO'

    EPA Science Inventory

    Two independent laboratories have demonstrated that specific frequencies of electromagnetic radiation can cause a change in the efflux of calcium ions from brain tissue in vitro. Under a static magnetic field intensity of 38 microTesla (microT) due to the earth's magnetic field, ...

  18. Improved capacitive stress transducers for high-field superconducting magnets

    NASA Astrophysics Data System (ADS)

    Benson, Christopher Pete; Holik, Eddie Frank, III; Jaisle, Andrew; McInturff, A.; McIntyre, P.

    2012-06-01

    High-field (12-18 Tesla) superconducting magnets are required to enable an increase in the energy of future colliders. Such field strength requires the use of Nb3Sn superconductor, which has limited tolerance for compressive and shear strain. A strategy for stress management has been developed at Texas A&M University and is being implemented in TAMU3, a short-model 14 Tesla stress-managed Nb3Sn block dipole. The strategy includes the use of laminar capacitive stress transducers to monitor the stresses within the coil package. We have developed fabrication techniques and fixtures, which improve the reproducibility of the transducer response both at room temperature and during cryogenic operation. This is a report of the status of transducer development.

  19. Rotational Resonance in milli-tesla fields detected by Field Cycling NMR.

    PubMed

    Reutter, S; Privalov, A; Buntkowsky, G; Fujara, F

    2012-02-01

    Rotational Resonance (R(2)) between different spin Zeeman levels in samples of adamantane C(10)H(16) (homonuclear R(2)) and a mixture of C(10)H(16) and C(10)D(16) (both homonuclear and heteronuclear R(2)) has been studied. A Field Cycling NMR instrument was used to match the external field frequency ν(0) to a fixed frequency of sample rotation ν(r) at ν(r) = 40, 50 or 60 kHz. Rotational Resonance is observed at rational frequency ratios of ν(0)/ν(r), such as 12, 23, 32 and 1. The method may prove to become a useful tool for the determination of spin-spin distances in condensed matter. PMID:22239819

  20. The interplanetary magnetic field

    NASA Technical Reports Server (NTRS)

    Davis, L., Jr.

    1972-01-01

    Large-scale properties of the interplanetary magnetic field as determined by the solar wind velocity structure are examined. The various ways in which magnetic fields affect phenomena in the solar wind are summarized. The dominant role of high and low velocity solar wind streams that persist, with fluctuations and evolution, for weeks or months is emphasized. It is suggested that for most purposes the sector structure is better identified with the stream structure than with the magnetic polarity and that the polarity does not necessarily change from one velocity sector to the next. Several mechanisms that might produce the stream structure are considered. The interaction of the high and low velocity streams is analyzed in a model that is steady state when viewed in a frame that corotates with the sun.

  1. Magnetic torque study of Weyl semimetal compounds TaP and NbP up to 45 Tesla

    NASA Astrophysics Data System (ADS)

    Li, Gang; Asaba, Tomoya; Tinsman, Colin; Yu, Fan; Lawson, Benjamin; Chen, Yulin; Li, Lu

    Weyl semimetal is a recently proposed new state in condensed matter physics, in which the bulk bands could have three dimensional linear dispersion but the degeneracy at the cross point is lifted into a pair of Weyl points with opposite chirality. Among the predicted candidates, Tantalum monophorspide (TaP) and Niobium monophorspide (NbP) have the simplest composition and do not require extrinsic tuning. Photoemission data is accumulating and the unique Fermi-arc surface state is observed. Magnetotransport experiments has shown highly anisotropic magnetoresistance and quantum oscillations has been observed. Because both linear dispersive bands and conventional bands exist in these materials, a detailed study of the electronic strucuture of the bulk is highly desirable. We use torque magnetometry to study quantum oscillations of TaP and NbP down to 300 mK, and up to 45 Tesla, with focus on the angular dependence of oscillation frequencies. Our comparison shows clear difference in geometry of different bulk bands in these materials. Besides, a discussion will be made on high field torque data since 45 Tesla is high enough to push several of the bands into quantum limit.

  2. Mechanical design of a high field common coil magnet

    SciTech Connect

    Caspi, S.; Chow, K.; Dietderich, D.; Gourlay, S.; Gupta, R.; McInturff, A.; Millos, G.; Scanlan, R.

    1999-03-18

    A common coil design for high field 2-in-1 accelerator magnets has been previously presented as a 'conductor-friendly' option for high field magnets applicable for a Very Large Hadron Collider. This paper presents the mechanical design for a 14 tesla 2-in-1 dipole based on the common coil design approach. The magnet will use a high current density Nb{sub 3}Sn conductor. The design addresses mechanical issues particular to the common coil geometry: horizontal support against coil edges, vertical preload on coil faces, end loading and support, and coil stresses and strains. The magnet is the second in a series of racetrack coil magnets that will provide experimental verification of the common coil design approach.

  3. Science up to 100 tesla

    SciTech Connect

    Campbell, L.J.

    1995-05-01

    100 Tesla is the highest attainable field that can be held for milli-sec in a non-destructive magnet. The strongest steels turn soft under stresses of 4GPa, which is the magnetic pressure of 100 T. Until there is a breakthrough in materials, magnets having all the low temperature and high pressure trimmings will be limited to about 100 T. Within the field range 1-100 T far more resources are now devoted to producing the highest possible continuous fields (40+5 T) than to producing longer pulsed fields above 50 T. This illustrates that the utility of the field can be more important than the strength of the field to researchers in condensed matter. Discoveries are typically made in new territory, but this can be new combinations of pressure, temperature, and magnetic field, or new probes and new materials. If any activity has kept up with the proliferation of new experiments and new facilities in high magnetic field research it is the listing of experiments that could and should be done in high fields. Part of the reason for the vitality of high field research is that high fields provide a generic environment. Compared to particle accelerators and plasma machines a high field laboratory is a setting for generic science, like synchrotron light sources or neutron scattering centers. Although the latter two installations probes states, while a magnetic field creates a state. Because it is unrealistic to try to list all the science opportunities at high fields, the author list sources for lists in the public domain and gives a few examples.

  4. Effect of a high-intensity static magnetic field on sciatic nerve regeneration in the rat

    SciTech Connect

    Cordeiro, P.G.; Seckel, B.R.; Miller, C.D.; Gross, P.T.; Wise, R.E.

    1989-02-01

    The effect of a high-intensity static magnetic field on peripheral nerve regeneration is evaluated in rat sciatic nerve. Forty-four rats underwent sciatic nerve repair using polyethylene nerve guides. Postoperatively, the animals were exposed to a 1-tesla magnetic field for 12 hours per day for 4 weeks with appropriate controls. Our results demonstrate that a 1-tesla static magnetic field has no statistically significant effect on nerve regeneration as determined by myelinated axon counts and electrophysiologic studies. Also, the specific orientation of the sciatic nerve with respect to the magnetic field has no influence on axonal growth or nerve conduction. Periods of restraint of 12 hours per day for 4 weeks significantly inhibit weight gain but have no effect on peripheral nerve regeneration.

  5. Magnetic resonance imaging of rodent spinal cord with an improved performance coil at 7 Tesla

    NASA Astrophysics Data System (ADS)

    Solis-Najera, S. E.; Rodriguez, A. O.

    2014-11-01

    Magnetic Resonance Imaging of animal models provide reliable means to study human diseases. The image acquisition particularly determined by the radio frequency coil to detect the signal emanated from a particular region of interest. A scaled-down version of the slotted surface coil was built based on the previous results of a magnetron-type surface coil for human applications. Our coil prototype had a 2 cm total diameter and six circular slots and was developed for murine spinal cord at 7 T. Electromagnetic simulations of the slotted and circular coils were also performed to compute the spatially dependent magnetic and electric fields using a simulated saline-solution sphere. The quality factor of both coils was experimentally measured giving a lower noise figure and a higher quality factor for the slotted coil outperforming the circular coil. Images of the spinal cord of a rat were acquired using standard pulse sequences. The slotted surface coil can be a good tool for spinal cord rat imaging using conventional pulse sequences at 7 T.

  6. Crustal Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Taylor, Patrick T.; Ravat, D.; Frawley, James J.

    1999-01-01

    Cosmos 49, Polar Orbit Geophysical Observatory (POGO) (Orbiting Geophysical Observatory (OGO-2, 4 and 6)) and Magsat have been the only low-earth orbiting satellites to measure the crustal magnetic field on a global scale. These missions revealed the presence of long- wavelength (> 500 km) crustal anomalies predominantly located over continents. Ground based methods were, for the most part, unable to record these very large-scale features; no doubt due to the problems of assembling continental scale maps from numerous smaller surveys acquired over many years. Questions arose as to the source and nature of these long-wave length anomalies. As a result there was a great stimulant given to the study of the magnetic properties of the lower crust and upper mantle. Some indication as to the nature of these deep sources has been provided by the recent results from the deep crustal drilling programs. In addition, the mechanism of magnetization, induced or remanent, was largely unknown. For computational ease these anomalies were considered to result solely from induced magnetization. However, recent results from Mars Orbiter Laser Altimeter (MOLA), a magnetometer-bearing mission to Mars, have revealed crustal anomalies with dimensions similar to the largest anomalies on Earth. These Martian features could only have been produced by remanent magnetization, since Mars lacks an inducing field. The origin of long-wavelength crustal anomalies, however, has not been completely determined. Several large crustal magnetic anomalies (e.g., Bangui, Kursk, Kiruna and Central Europe) will be discussed and the role of future satellite magnetometer missions (Orsted, SUNSAT and Champ) in their interpretation evaluated.

  7. On the Subjective Acceptance during Cardiovascular Magnetic Resonance Imaging at 7.0 Tesla

    PubMed Central

    Klix, Sabrina; Els, Antje; Paul, Katharina; Graessl, Andreas; Oezerdem, Celal; Weinberger, Oliver; Winter, Lukas; Thalhammer, Christof; Huelnhagen, Till; Rieger, Jan; Mehling, Heidrun; Schulz-Menger, Jeanette; Niendorf, Thoralf

    2015-01-01

    Purpose This study examines the subjective acceptance during UHF-CMR in a cohort of healthy volunteers who underwent a cardiac MR examination at 7.0T. Methods Within a period of two-and-a-half years (January 2012 to June 2014) a total of 165 healthy volunteers (41 female, 124 male) without any known history of cardiac disease underwent UHF-CMR. For the assessment of the subjective acceptance a questionnaire was used to examine the participants experience prior, during and after the UHF-CMR examination. For this purpose, subjects were asked to respond to the questionnaire in an exit interview held immediately after the completion of the UHF-CMR examination under supervision of a study nurse to ensure accurate understanding of the questions. All questions were answered with “yes” or “no” including space for additional comments. Results Transient muscular contraction was documented in 12.7% of the questionnaires. Muscular contraction was reported to occur only during periods of scanning with the magnetic field gradients being rapidly switched. Dizziness during the study was reported by 12.7% of the subjects. Taste of metal was reported by 10.1% of the study population. Light flashes were reported by 3.6% of the entire cohort. 13% of the subjects reported side effects/observations which were not explicitly listed in the questionnaire but covered by the question about other side effects. No severe side effects as vomiting or syncope after scanning occurred. No increase in heart rate was observed during the UHF-CMR exam versus the baseline clinical examination. Conclusions This study adds to the literature by detailing the subjective acceptance of cardiovascular magnetic resonance imaging examinations at a magnetic field strength of 7.0T. Cardiac MR examinations at 7.0T are well tolerated by healthy subjects. Broader observational and multi-center studies including patient cohorts with cardiac diseases are required to gain further insights into the subjective

  8. Spontaneous magnetic field generation in hypervelocity impacts. [of meteoroids onto lunar and planetary surfaces

    NASA Technical Reports Server (NTRS)

    Srnka, L. J.

    1977-01-01

    Hypervelocity impacts of meteoroids onto early planetary surfaces may have generated short-lived magnetic fields. The high specific power densities of the impacts, plasma production in the ejecta clouds, and the chemically layered targets of the meteoroids are analyzed in describing the evolution of the magnetic fields. Durations from about one millionth of a minute to one minute, as well as strengths up to 100 tesla, are posited for the impact-generated magnetic fields. The analogy of magnetic-field generation in laser-target experiments is also mentioned. The acquisition of shock remanence and thermoremanence by the ejecta and nearby rock following impact is discussed.

  9. Phonon spectroscopy in high magnetic fields: The B + center in Si

    NASA Astrophysics Data System (ADS)

    Roshko, S.; Dietsche, W.

    1996-05-01

    Normal-state tunnel junctions have been used for phonon spectroscopY in high magnetic fields for the first time. The binding energy of the positively charged acceptor B + in Si has been measured as a function of magnetic field up to 12 Tesla. It is found to increase linearly with magnetic field. This linear dependence originates from the energy increase of the lowest Landau level of the free heavy holes. It indicates that the magnetic field dependence of both the neutral and the positively charged acceptors are small.

  10. Electromagnetic superconductivity of vacuum induced by strong magnetic field: Numerical evidence in lattice gauge theory

    NASA Astrophysics Data System (ADS)

    Braguta, V. V.; Buividovich, P. V.; Chernodub, M. N.; Kotov, A. Yu.; Polikarpov, M. I.

    2012-12-01

    Using numerical simulations of quenched SU (2) gauge theory we demonstrate that an external magnetic field leads to spontaneous generation of quark condensates with quantum numbers of electrically charged ρ mesons if the strength of the magnetic field exceeds the critical value eBc = 0.927 (77) GeV2 or Bc = (1.56 ± 0.13) ṡ1016 Tesla. The condensation of the charged ρ mesons in strong magnetic field is a key feature of the magnetic-field-induced electromagnetic superconductivity of the vacuum.

  11. Mitigating stimulated scattering processes in gas-filled Hohlraums via external magnetic fields

    SciTech Connect

    Gong, Tao; Zheng, Jian; Li, Zhichao; Ding, Yongkun; Yang, Dong; Hu, Guangyue; Zhao, Bin

    2015-09-15

    A simple model, based on energy and pressure equilibrium, is proposed to deal with the effect of external magnetic fields on the plasma parameters inside the laser path, which shows that the electron temperature can be significantly enhanced as the intensity of the external magnetic fields increases. With the combination of this model and a 1D three-wave coupling code, the effect of external magnetic fields on the reflectivities of stimulated scattering processes is studied. The results indicate that a magnetic field with an intensity of tens of Tesla can decrease the reflectivities of stimulated scattering processes by several orders of magnitude.

  12. Scalarized photon analysis of spontaneous emission in the uniform magnetic field free-electron laser

    NASA Astrophysics Data System (ADS)

    Soln, Josip

    1990-04-01

    The recently developed concept of scalarized photons (formally photons of any polarization) is used to analyze the spontaneous emission in the uniform magnetic field free-electron laser in the microwave spectral region. With the electron beam energy of up to 10 MeV and the uniform magnetic field of up to 4 Tesla, the radiation (occurring with the fundamental and higher harmonic frequencies) can easily cover a 10- to 10,000 GHz spectral region.

  13. Coronal Magnetic Field Models

    NASA Astrophysics Data System (ADS)

    Wiegelmann, Thomas; Petrie, Gordon J. D.; Riley, Pete

    2015-07-01

    Coronal magnetic field models use photospheric field measurements as boundary condition to model the solar corona. We review in this paper the most common model assumptions, starting from MHD-models, magnetohydrostatics, force-free and finally potential field models. Each model in this list is somewhat less complex than the previous one and makes more restrictive assumptions by neglecting physical effects. The magnetohydrostatic approach neglects time-dependent phenomena and plasma flows, the force-free approach neglects additionally the gradient of the plasma pressure and the gravity force. This leads to the assumption of a vanishing Lorentz force and electric currents are parallel (or anti-parallel) to the magnetic field lines. Finally, the potential field approach neglects also these currents. We outline the main assumptions, benefits and limitations of these models both from a theoretical (how realistic are the models?) and a practical viewpoint (which computer resources to we need?). Finally we address the important problem of noisy and inconsistent photospheric boundary conditions and the possibility of using chromospheric and coronal observations to improve the models.

  14. An additive manufacturing acrylic for use in the 32 Tesla all superconducting magnet

    NASA Astrophysics Data System (ADS)

    Johnson, Zachary

    The National High Magnetic Field Laboratory is building a world record all superconducting magnet known as the "32T". It requires many thousands of parts, but in particular one kind is unusually expensive to manufacture, called "heater lead covers". These parts are traditionally made out of a glass filled epoxy known as G-10, and conventionally machined. The machining is the expensive portion, as there are many tight tolerance details. The proposal in this paper is to change the material and manufacturing method to additive manufacturing with the material called "RGD 430". The cost per part with traditional machining is approximately 1,500 each. The cost per part with additive manufacturing of RGD 430 is approximately 32.5 each. There will be at least 14 of this style of part on the completed 32T project. Thus the total cost for the project will be reduced from 21,000 to 455, a 98% cost savings. The additive manufacturing also allows the machine designers to expand the dimensions of the part to any shape possible. Through testing of the material it was found to follow the common polymer characteristics. Its linear elastic modulus at cryogenic temperatures approached 10 GPa. The yield strength was always over 100 MPa, when not damaged. The fracture mechanism was repeatable, and brittle in cryogenic environments. The geometric tolerancing of the additive manufacturing process are, as expected extremely precise. The final tolerances for dimensions in the profile of the printer are more precise than +/- 0.10mm. The final tolerances for dimensions in the thickness of the printer are more precise than +/-0.25mm. Before utilizing the material, there should be a few additional tests run on it to ensure it will work in-situ. Those tests are outside the scope of this thesis.

  15. Semiconductor Crystal Growth in Static and Rotating Magnetic fields

    NASA Technical Reports Server (NTRS)

    Volz, Martin

    2004-01-01

    Magnetic fields have been applied during the growth of bulk semiconductor crystals to control the convective flow behavior of the melt. A static magnetic field established Lorentz forces which tend to reduce the convective intensity in the melt. At sufficiently high magnetic field strengths, a boundary layer is established ahead of the solid-liquid interface where mass transport is dominated by diffusion. This can have a significant effect on segregation behavior and can eliminate striations in grown crystals resulting from convective instabilities. Experiments on dilute (Ge:Ga) and solid solution (Ge-Si) semiconductor systems show a transition from a completely mixed convective state to a diffusion-controlled state between 0 and 5 Tesla. In HgCdTe, radial segregation approached the diffusion limited regime and the curvature of the solid-liquid interface was reduced by a factor of 3 during growth in magnetic fields in excess of 0.5 Tesla. Convection can also be controlled during growth at reduced gravitational levels. However, the direction of the residual steady-state acceleration vector can compromise this effect if it cannot be controlled. A magnetic field in reduced gravity can suppress disturbances caused by residual transverse accelerations and by random non-steady accelerations. Indeed, a joint program between NASA and the NHMFL resulted in the construction of a prototype spaceflight magnet for crystal growth applications. An alternative to the suppression of convection by static magnetic fields and reduced gravity is the imposition of controlled steady flow generated by rotating magnetic fields (RMF)'s. The potential benefits of an RMF include homogenization of the melt temperature and concentration distribution, and control of the solid-liquid interface shape. Adjusting the strength and frequency of the applied magnetic field allows tailoring of the resultant flow field. A limitation of RMF's is that they introduce deleterious instabilities above a

  16. Superhorizon magnetic fields

    NASA Astrophysics Data System (ADS)

    Campanelli, Leonardo

    2016-03-01

    We analyze the evolution of superhorizon-scale magnetic fields from the end of inflation till today. Whatever is the mechanism responsible for their generation during inflation, we find that a given magnetic mode with wave number k evolves, after inflation, according to the values of k ηe , nk , and Ωk , where ηe is the conformal time at the end of inflation, nk is the number density spectrum of inflation-produced photons, and Ωk is the phase difference between the two Bogoliubov coefficients which characterize the state of that mode at the end of inflation. For any realistic inflationary magnetogenesis scenario, we find that nk-1≪|k ηe|≪1 , and three evolutionary scenarios are possible: (i) |Ωk∓π |=O (1 ) , in which case the evolution of the magnetic spectrum Bk(η ) is adiabatic, a2Bk(η )=const , with a being the expansion parameter; (ii) |Ωk∓π |≪|k ηe| , in which case the evolution is superadiabatic, a2Bk(η )∝η ; (iii) |k ηe|≪|Ωk∓π |≪1 or |k ηe|˜|Ωk∓π |≪1 , in which case an early phase of adiabatic evolution is followed, after a time η⋆˜|Ωk∓π |/k , by a superadiabatic evolution. Once a given mode reenters the horizon, it remains frozen into the plasma and then evolves adiabatically till today. As a corollary of our results, we find that inflation-generated magnetic fields evolve adiabatically on all scales and for all times in conformal-invariant free Maxwell theory, while they evolve superadiabatically after inflation on superhorizon scales in the nonconformal-invariant Ratra model, where the inflaton is kinematically coupled to the electromagnetic field. The latter result supports and, somehow, clarifies our recent claim that the Ratra model can account for the presence of cosmic magnetic fields without suffering from both backreaction and strong-coupling problems.

  17. High resolution T2(*)-weighted Magnetic Resonance Imaging at 3 Tesla using PROPELLER-EPI.

    PubMed

    Krämer, Martin; Reichenbach, Jürgen R

    2014-05-01

    We report the application of PROPELLER-EPI for high resolution T2(*)-weighted imaging with sub-millimeter in-plane resolution on a clinical 3 Tesla scanner. Periodically rotated blades of a long-axis PROPELLER-EPI sequence were acquired with fast gradient echo readout and acquisition matrix of 320 × 50 per blade. Images were reconstructed by using 2D-gridding, phase and geometric distortion correction and compensation of resonance frequency drifts that occurred during extended measurements. To characterize these resonance frequency offsets, short FID calibration measurements were added to the PROPELLER-EPI sequence. Functional PROPELLER-EPI was performed with volunteers using a simple block design of right handed finger tapping. Results indicate that PROPELLER-EPI can be employed for fast, high resolution T2(*)-weighted imaging provided geometric distortions and possible resonance frequency drifts are properly corrected. Even small resonance frequency drifts below 10 Hz as well as non-corrected geometric distortions degraded image quality substantially. In the initial fMRI experiment image quality and signal-to-noise ratio was sufficient for obtaining high resolution functional activation maps. PMID:24439698

  18. Magnetic Field Topology in Jets

    NASA Technical Reports Server (NTRS)

    Gardiner, T. A.; Frank, A.

    2000-01-01

    We present results on the magnetic field topology in a pulsed radiative. jet. For initially helical magnetic fields and periodic velocity variations, we find that the magnetic field alternates along the, length of the jet from toroidally dominated in the knots to possibly poloidally dominated in the intervening regions.

  19. Low field magnetic resonance imaging

    DOEpatents

    Pines, Alexander; Sakellariou, Dimitrios; Meriles, Carlos A.; Trabesinger, Andreas H.

    2010-07-13

    A method and system of magnetic resonance imaging does not need a large homogenous field to truncate a gradient field. Spatial information is encoded into the spin magnetization by allowing the magnetization to evolve in a non-truncated gradient field and inducing a set of 180 degree rotations prior to signal acquisition.

  20. Multi-voxel magnetic resonance spectroscopy of cerebral metabolites in healthy dogs at 1.5 Tesla.

    PubMed

    Choi, Sooyoung; Song, Yumi; Lee, Kija; Lee, Youngwon; Choi, Hojung

    2016-06-30

    This study was conducted to measure the difference in levels of cerebral metabolites in the right and left hemispheres, gray (GM) and white matter (WM), imaging planes, and anatomical regions of healthy dogs to establish normal variations. Eight male Beagle dogs (1 to 4 years of age; mean age, 2 years) with no evidence of neurologic disease were studied. Using the multi-voxel technique on a 1.5 Tesla magnetic resonance imaging scanner, metabolite values (N-acetyl aspartate [NAA], choline [Cho], creatine [Cr]) were obtained from the frontoparietal WM, parietal GM, temporal GM, occipital GM, thalamus, cerebellum, mid-brain, and pons. There was no significant difference in levels of these metabolites between the right and left in any locations or between the GM and WM in the cerebral hemispheres. However, there were significant differences in metabolite ratios within imaging planes. The NAA/Cr was lower in the cerebellum than other regions and the thalamus had a higher Cho/Cr and lower NAA/Cho ratio than in other regions. The spectral and metabolic values will provide a useful internal reference for clinical practice and research involving multi-voxel magnetic resonance spectroscopy. Measurement of metabolite values in the transverse plane is recommended for comparing levels of regional metabolites. PMID:26645339

  1. Multi-voxel magnetic resonance spectroscopy of cerebral metabolites in healthy dogs at 1.5 Tesla

    PubMed Central

    Choi, Sooyoung; Song, Yumi; Lee, Kija; Lee, Youngwon

    2016-01-01

    This study was conducted to measure the difference in levels of cerebral metabolites in the right and left hemispheres, gray (GM) and white matter (WM), imaging planes, and anatomical regions of healthy dogs to establish normal variations. Eight male Beagle dogs (1 to 4 years of age; mean age, 2 years) with no evidence of neurologic disease were studied. Using the multi-voxel technique on a 1.5 Tesla magnetic resonance imaging scanner, metabolite values (N-acetyl aspartate [NAA], choline [Cho], creatine [Cr]) were obtained from the frontoparietal WM, parietal GM, temporal GM, occipital GM, thalamus, cerebellum, mid-brain, and pons. There was no significant difference in levels of these metabolites between the right and left in any locations or between the GM and WM in the cerebral hemispheres. However, there were significant differences in metabolite ratios within imaging planes. The NAA/Cr was lower in the cerebellum than other regions and the thalamus had a higher Cho/Cr and lower NAA/Cho ratio than in other regions. The spectral and metabolic values will provide a useful internal reference for clinical practice and research involving multi-voxel magnetic resonance spectroscopy. Measurement of metabolite values in the transverse plane is recommended for comparing levels of regional metabolites. PMID:26645339

  2. Electric and magnetic fields

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.; Etters, R. D.

    1982-01-01

    A number of energy momentum anomalies are described that result from the use of Abraham-Lorentz electromagnetic theory. These anomalies have in common the motion of charged bodies or current carrying conductors relative to the observer. The anomalies can be avoided by using the nonflow approach, based on internal energy of the electromagnetic field. The anomalies can also be avoided by using the flow approach, if all contributions to flow work are included. The general objective of this research is a fundamental physical understanding of electric and magnetic fields which, in turn, might promote the development of new concepts in electric space propulsion. The approach taken is to investigate quantum representations of these fields.

  3. Characterization and manipulation of a high-magnetic field trap

    NASA Astrophysics Data System (ADS)

    Paradis, Eric; Raithel, Georg

    2012-06-01

    We report on the characterization of an efficient atom trap within a background magnetic field of 2.6 Tesla. Up to 10̂8 Rubidium atoms are recaptured from a cold atomic beam with a 2-3% collection efficiency, in a cigar-shaped volume and cooled with a six-beam optical molasses. The aspect ratio of the trap is measured as a function of the magnetic field curvature, which can be varied to produce a range of trap shapes. The trapping lineshape is both narrow and asymmetric, as is characteristic of laser-cooling of atoms or ions in an external trapping potential. Additional features of the high magnetic field trap include cooling onto hollow shell-like structures. Simulation results are also presented.

  4. About the parametrizations utilized to perform magnetic moments measurements using the transient field technique

    NASA Astrophysics Data System (ADS)

    Gómez, A. M.; Torres, D. A.

    2016-07-01

    The experimental study of nuclear magnetic moments, using the Transient Field technique, makes use of spin-orbit hyperfine interactions to generate strong magnetic fields, above the kilo-Tesla regime, capable to create a precession of the nuclear spin. A theoretical description of such magnetic fields is still under theoretical research, and the use of parametrizations is still a common way to address the lack of theoretical information. In this contribution, a review of the main parametrizations utilized in the measurements of Nuclear Magnetic Moments will be presented, the challenges to create a theoretical description from first principles will be discussed.

  5. MIT 12 Tesla Coil test results

    NASA Astrophysics Data System (ADS)

    Steeves, M. M.; Hoenig, M. O.

    1985-07-01

    Test results from the MIT 12 Tesla Coil experiment are presented. The coil was tested in the High Field Test Facility (HFTF) of the Lawrence Livermore National Laboratory in October 1984 and January 1985. The experiment measured the performance of an Internally Cooled, Cabled Superconductor (ICCS) of practical size, intended for use in magnetic fusion experiments. The MIT coil carried 15 kA at 11 T for 5 min with no sign of instability. A half turn length in a 10 T field was able to absorb a heat load in 4 msec of more than 200 mJ sub cm of cable volume while carrying a current of 12 kA. The MIT coil successfully met the performance requirements of the Department of Energy's 12 Tesla Coil Program.

  6. Reconnection of Magnetic Fields

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Spacecraft observations of steady and nonsteady reconnection at the magnetopause are reviewed. Computer simulations of three-dimensional reconnection in the geomagnetic tail are discussed. Theoretical aspects of the energization of particles in current sheets and of the microprocesses in the diffusion region are presented. Terrella experiments in which magnetospheric reconnection is simulated at both the magnetopause and in the tail are described. The possible role of reconnection in the evolution of solar magnetic fields and solar flares is discussed. A two-dimensional magnetohydrodynamic computer simulation of turbulent reconnection is examined. Results concerning reconnection in Tokamak devices are also presented.

  7. Magnetic fields and stardust

    NASA Technical Reports Server (NTRS)

    Hildebrand, Roger H.

    1988-01-01

    The purpose of this paper is to outline the principles governing the use of far-infrared and submillimeter polarimetry to investigate magnetic fields and dust in interstellar clouds. Particular topics of discussion are the alignment of dust grains in dense clouds, the dependence on wavelength of polarization due to emission or to partial absorption by aligned grains, the nature of that dependence for mixtures of grains with different properties, and the problem of distinguishing between (1) the effects of the shapes and dielectric functions of the grains and (2) the degree and direction of their alignment.

  8. [Optimal imaging parameters and the advantage of cerebrospinal fluid flow image using time-spatial labeling inversion pulse at 3 tesla magnetic resonance imaging: comparison of image quality for 1.5 tesla magnetic resonance imaging].

    PubMed

    Ozasa, Masaya; Yahata, Seiji; Yoshida, Ayako; Takeyama, Mamoru; Eshima, Mitsuhiro; Shinohara, Maiko; Yamamoto, Takao; Abe, Kayoko

    2014-12-01

    Cerebrospinal fluid (CSF) imaging by time-spatial labeling inversion pulse (Time-SLIP) technique is labeled by CSF with a selective inversion recovery (IR) pulse as internal tracer, thus making it possible to visualize CSF dynamics non-invasively. The purpose of this study was to clarify labeled CSF signals during various black blood time to inversion (BBTI) values at 3 tesla (T) and 1.5 T magnetic resonance imaging (MRI) and to determine appropriate CSF imaging parameters at 3 T MRI in 10 healthy volunteers. To calculate optimal BBTI values, ROIs were set in untagged cerebral parenchyma and CSF on the image of the CSF flow from the aqueduct to the fourth ventricle in 1.5 T and 3 T MRI. Visual evaluation of CSF flow also was assessed with changes of matrix and echo time (TE) at 3 T MRI. The mean BBTI value at null point of untagged CSF in 3 T MRI was longer than that of 1.5 T. The MR conditions of the highest visual evaluation were FOV, 14 cm×14 cm; Matrix, 192×192; and TE, 117 ms. CSF imaging using Time-SLIP at 3 T MRI is expected visualization of CSF flow and clarification of CSF dynamics in more detail by setting the optimal conditions because 3 T MRI has the advantage of high contrast and high signal-to-noise ratio. PMID:25672449

  9. Quench problems of Nb3 Sn cosine theta high field dipole model magnets

    SciTech Connect

    Yamada, Ryuji; Wake, Masayoshi; /KEK, Tsukuba

    2004-12-01

    We have developed and tested several cosine theta high field dipole model magnets for accelerator application, utilizing Nb{sub 3}Sn strands made by MJR method and PIT method. With Rutherford cables made with PIT strand we achieved 10.1 Tesla central field at 2.2 K operation, and 9.5 Tesla at 4.5 K operation. The magnet wound with the MJR cable prematurely quenched at 6.8 Tesla at 4.5 K due to cryo-instability. Typical quench behaviors of these magnets are described for both types of magnets, HFDA-04 of MJR and HFDA-05 of PIT. Their characteristics parameters are compared on d{sub eff}, RRR, thermal conductivity and others, together with other historical Nb{sub 3}Sn magnets. It is suggested a larger RRR value is essential for the stability of the epoxy impregnated high field magnets made with high current density strands. It is shown that a magnet with a larger RRR value has a longer MPZ value and more stable, due to its high thermal conductivity and low resistivity.

  10. Polar Magnetic Field Experiment

    NASA Technical Reports Server (NTRS)

    Russell, C. T.

    1999-01-01

    This grant covers the initial data reduction and analysis of the magnetic field measurements of the Polar spacecraft. At this writing data for the first three years of the mission have been processed and deposited in the key parameter database. These data are also available in a variety of time resolutions and coordinate systems via a webserver at UCLA that provides both plots and digital data. The flight software has twice been reprogrammed: once to remove a glitch in the data where there were rare collisions between commands in the central processing unit and once to provide burst mode data at 100 samples per second on a regular basis. The instrument continues to function as described in the instrument paper (1.1 in the bibliography attached below). The early observations were compared with observations on the same field lines at lower altitude. The polar magnetic measurements also proved to be most useful for testing the accuracy of MHD models. WE also made important contributions to study of waves and turbulence.

  11. Photonic Magnetic Field Sensor

    NASA Astrophysics Data System (ADS)

    Wyntjes, Geert

    2002-02-01

    Small, in-line polarization rotators or isolators to reduce feedback in fiber optic links can be the basis for excellent magnetic field sensors. Based on the giant magneto-optical (GMO) or Faraday effect in iron garnets, they with a magnetic field of a few hundred Gauss, (20 mT) for an interaction length for an optical beam of a few millimeters achieve a polarization rotation or phase shift of 45 deg (1/8 cycle). When powered by a small laser diode, with the induced linear phase shift recovered at the shot noise limit, we have demonstrated sensitivities at the 3.3 nT/Hz1/2 level for frequencies from less than 1 Hz to frequencies into the high kHz range. Through further improvements; an increase in interaction length, better materials and by far the greatest factor, the addition of a flux concentrator, sensitivities at the pT/Hz1/2 level appear to be within reach. We will detail such a design and discuss the issues that may limit achieving these goals.

  12. Electron beam guiding by external magnetic fields in imploded fuel plasma

    NASA Astrophysics Data System (ADS)

    Johzaki, T.; Sentoku, Y.; Nagatomo, H.; Sunahara, A.; Sakagami, H.; Fujioka, S.; Shiraga, H.; Endo, T.; FIREX project group

    2016-05-01

    For enhancing the core heating efficiency in fast ignition laser fusion, we proposed the fast electron beam by externally-applied the kilo-tesla (kT) class longitudinal magnetic field. We evaluated the imploded core and the magnetic field profiles formed through the implosion dynamics by resistive MHD radiation hydro code. Using those profiles, the guiding effect was evaluated by fast electron transport simulations, which shows that in addition to the feasible field configuration (moderate mirror ratio), the kT-class magnetic field is required at the fast electron generation point. In this case, the significant enhancement in heating efficiency is expected.

  13. Magnetic Fields: Visible and Permanent.

    ERIC Educational Resources Information Center

    Winkeljohn, Dorothy R.; Earl, Robert D.

    1983-01-01

    Children will be able to see the concept of a magnetic field translated into a visible reality using the simple method outlined. Standard shelf paper, magnets, iron filings, and paint in a spray can are used to prepare a permanent and well-detailed picture of the magnetic field. (Author/JN)

  14. Differential blood cell separation using a high gradient magnetic field.

    PubMed

    Paul, F; Roath, S; Melville, D

    1978-02-01

    A technique for the separation of erythrocytes from whole blood is described which exploits the magnetic property of haemoglobin in the reduced state. The technique is characterized by the use of a filter consisting of a cylinder, containing stainless steel wire mesh, placed between the jaws of an electro magnet. When activated, the electromagnet induces a magnetic field gradient in the vicinity of each of the constituent wires, sufficient to attract and trap erythrocytes in suspension. The number of erythrocytes captured varies with the applied field (0-1.4 Tesla in these experiments) and flow rate (1.9-12.9 x 10(-4) m s-1). The capture process does not cause haemolysis or observable surface damage to the erythrocytes and neither leucocytes nor platelets are retained by the filter. PMID:638075

  15. Differences in Velopharyngeal Structure during Speech among Asians Revealed by 3-Tesla Magnetic Resonance Imaging Movie Mode

    PubMed Central

    Nunthayanon, Kulthida; Honda, Ei-ichi; Shimazaki, Kazuo; Ohmori, Hiroko; Inoue-Arai, Maristela Sayuri; Kurabayashi, Tohru; Ono, Takashi

    2015-01-01

    Objective. Different bony structures can affect the function of the velopharyngeal muscles. Asian populations differ morphologically, including the morphologies of their bony structures. The purpose of this study was to compare the velopharyngeal structures during speech in two Asian populations: Japanese and Thai. Methods. Ten healthy Japanese and Thai females (five each) were evaluated with a 3-Tesla (3 T) magnetic resonance imaging (MRI) scanner while they produced vowel-consonant-vowel syllable (/asa/). A gradient-echo sequence, fast low-angle shot with segmented cine and parallel imaging technique was used to obtain sagittal images of the velopharyngeal structures. Results. MRI was carried out in real time during speech production, allowing investigations of the time-to-time changes in the velopharyngeal structures. Thai subjects had a significantly longer hard palate and produced shorter consonant than Japanese subjects. The velum of the Thai participants showed significant thickening during consonant production and their retroglossal space was significantly wider at rest, whereas the dimensional change during task performance was similar in the two populations. Conclusions. The 3 T MRI movie method can be used to investigate velopharyngeal function and diagnose velopharyngeal insufficiency. The racial differences may include differences in skeletal patterns and soft-tissue morphology that result in functional differences for the affected structures. PMID:26273584

  16. 3-D Numerical Field Calculations of CESR's Upgraded Superconducting Magnets

    NASA Astrophysics Data System (ADS)

    Greenwald, Zipi; Greenwald, Shlomo

    1997-05-01

    A 3-D numerical code( Z. Greenwald, ``BST.c 3-D Magnetic Field Calculation Numerical Code'', Cornell University Note 96-09) was used to calculate the spatial magnetic fields generated by a current carrying wire. In particular, the code calculates the fields of wire loops wrapped on a pipe similar to superconductive magnet structures. The arrangement and dimensions of the loops can be easily modified to create dipoles, quadrupoles, skew magnets etc., and combinations of the above. In this paper we show the calculated 3-D fields of ironless superconducting quadrupole dipole combination designed for CESR phase III upgrade (which will be manufactured by TESLA). Since the magnet poles are made of loops, the fields at the edges are not only distorted but have a component, B_z, in the z direction as well. This Bz field can cause X-Y coupling of the beam. In order to calculate the coupling, the particle trajectories through the whole magnet were computed. The code is also used to calculate local fields errors due to possible manufacturing imperfections. An example of a rotational error of one pole, and an example of an error in the winding width are shown.

  17. Observations of galactic magnetic fields

    NASA Astrophysics Data System (ADS)

    Beck, Rainer

    Magnetic fields are enchored in gas clouds. Field lines are tangled in spiral arms, but highly regular between the arms. The similarity of pitch angles between gaseous and magnetic arms suggests a coupling between the density wave and the magnetic wave. Observations of large-scale patterns in Faraday rotation favour a dynamo origin of the regular fields. Fields in barred galaxies do not reveal the strong shearing shocks observed in the cold gas, but swing smoothly from the upstream region into the bar. Magnetic fields are important for the dynamcis of gas clouds, for the formation of spiral structures, bars and halos, and for mass and angular momentum transport in central regions.

  18. Fast superconducting magnetic field switch

    DOEpatents

    Goren, Y.; Mahale, N.K.

    1996-08-06

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles. 6 figs.

  19. Fast superconducting magnetic field switch

    DOEpatents

    Goren, Yehuda; Mahale, Narayan K.

    1996-01-01

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles.

  20. Martian external magnetic field proxies

    NASA Astrophysics Data System (ADS)

    Langlais, Benoit; Civet, Francois

    2015-04-01

    Mars possesses no dynamic magnetic field of internal origin as it is the case for the Earth or for Mercury. Instead Mars is characterized by an intense and localized magnetic field of crustal origin. This field is the result of past magnetization and demagnetization processes, and reflects its evolution. The Interplanetary Magnetic Field (IMF) interacts with Mars' ionized environment to create an external magnetic field. This external field is weak compared to lithospheric one but very dynamic, and may hamper the detailed analysis of the internal magnetic field at some places or times. Because there are currently no magnetic field measurements made at Mars' surface, it is not possible to directly monitor the external field temporal variability as it is done in Earth's ground magnetic observatories. In this study we examine to indirect ways of quantifying this external field. First we use the Advanced Composition Explorer (ACE) mission which measures the solar wind about one hour upstream of the bow-shock resulting from the interaction between the solar wind and the Earth's internal magnetic field. These measurements are extrapolated to Mars' position taking into account the orbital configurations of the Mars-Earth system and the velocity of particles carrying the IMF. Second we directly use Mars Global Surveyor magnetic field measurements to quantify the level of variability of the external field. We subtract from the measurements the internal field which is otherwise modeled, and bin the residuals first on a spatial and then on a temporal mesh. This allows to compute daily or semi daily index. We present a comparison of these two proxies and demonstrate their complementarity. We also illustrate our analysis by comparing our Martian external field proxies to terrestrial index at epochs of known strong activity. These proxies will especially be useful for upcoming magnetic field measurements made around or at the surface of Mars.

  1. Cyclical magnetic field flow fractionation

    NASA Astrophysics Data System (ADS)

    Tasci, T. O.; Johnson, W. P.; Gale, B. K.

    2012-04-01

    In this study, a new magnetic field flow fractionation (FFF) system was designed and modeled by using finite element simulations. Other than current magnetic FFF systems, which use static magnetic fields, our system uses cyclical magnetic fields. Results of the simulations show that our cyclical magnetic FFF system can be used effectively for the separation of magnetic nanoparticles. Cyclical magnetic FFF system is composed of a microfluidic channel (length = 5 cm, height = 30 μm) and 2 coils. Square wave currents of 1 Hz (with 90 deg of phase difference) were applied to the coils. By using Comsol Multiphysics 3.5a, magnetic field profile and corresponding magnetic force exerted on the magnetite nanoparticles were calculated. The magnetic force data were exported from Comsol to Matlab. In Matlab, a parabolic flow profile with maximum flow speed of 0.4 mL/h was defined. Particle trajectories were obtained by the calculation of the particle speeds resulted from both magnetic and hydrodynamic forces. Particle trajectories of the particles with sizes ranging from 10 to 50 nm were simulated and elution times of the particles were calculated. Results show that there is a significant difference between the elution times of the particles so that baseline separation of the particles can be obtained. In this work, it is shown that by the application of cyclical magnetic fields, the separation of magnetic nanoparticles can be done efficiently.

  2. Magnetic field modification of optical magnetic dipoles.

    PubMed

    Armelles, Gaspar; Caballero, Blanca; Cebollada, Alfonso; Garcia-Martin, Antonio; Meneses-Rodríguez, David

    2015-03-11

    Acting on optical magnetic dipoles opens novel routes to govern light-matter interaction. We demonstrate magnetic field modification of the magnetic dipolar moment characteristic of resonant nanoholes in thin magnetoplasmonic films. This is experimentally shown through the demonstration of the magneto-optical analogue of Babinet's principle, where mirror imaged MO spectral dependencies are obtained for two complementary magnetoplasmonic systems: holes in a perforated metallic layer and a layer of disks on a substrate. PMID:25646869

  3. Exposure guidelines for magnetic fields.

    PubMed

    Miller, G

    1987-12-01

    The powerful magnetic fields produced by a controlled fusion experiment at Lawrence Livermore National Laboratory (LLNL) necessitated the development of personnel-exposure guidelines for steady magnetic fields. A literature search and conversations with active researchers showed that it is currently possible to develop preliminary exposure guidelines for steady magnetic fields. An overview of the results of past research into the bioeffects of magnetic fields was compiled, along with a discussion of hazards that may be encountered by people with sickle-cell anemia or medical electronic and prosthetic implants. The LLNL steady magnetic-field exposure guidelines along with a review of developments concerning the safety of time-varying fields were also presented in this compilation. Guidelines developed elsewhere for time varying fields were also given. Further research is needed to develop exposure standards for both steady or time-varying fields. PMID:3434538

  4. Exposure guidelines for magnetic fields

    SciTech Connect

    Miller, G.

    1987-12-01

    The powerful magnetic fields produced by a controlled fusion experiment at Lawrence Livermore National Laboratory (LLNL) necessitated the development of personnel-exposure guidelines for steady magnetic fields. A literature search and conversations with active researchers showed that it is currently possible to develop preliminary exposure guidelines for steady magnetic fields. An overview of the results of past research into the bioeffects of magnetic fields was compiled, along with a discussion of hazards that may be encountered by people with sickle-cell anemia or medical electronic and prosthetic implants. The LLNL steady magnetic-field exposure guidelines along with a review of developments concerning the safety of time-varying fields were also presented in this compilation. Guidelines developed elsewhere for time varying fields were also given. Further research is needed to develop exposure standards for both steady or time-varying fields.

  5. [Magnetic fields and fish behavior].

    PubMed

    Krylov, V V; Iziumov, Iu G; Izvekov, E I; Nepomniashchikh, V A

    2013-01-01

    In the review, contemporary data on the influence of natural and artificial magnetic fields on fish behavior are considered. In this regard, elasmobranchs and teleosts appear to be studied most exhaustively. Elasmobranchs and some teleosts are able to perceive magnetic fields via electroreceptors. A number of teleosts can sense magnetic fields via sensory cells containing crystals of biogenic magnetite. Laboratory experiments and field observations indicate the influence of magnetic fields on fish locomotor activity and spatial distribution. The geomagnetic field can be used by fish for navigation. Besides, artificial magnetic fields and natural fluctuations of the geomagnetic field can affect fish embryos leading to alterations in their development. It is suggested that, afterwards, these alterations can have an effect on fish behavior. PMID:25438567

  6. [Magnetic fields and fish behavior].

    PubMed

    2013-01-01

    In the review, contemporary data on the influence of natural and artificial magnetic fields on fish behavior are considered. In this regard, elasmobranchs and teleosts appear to be studied most exhaustively. Elasmobranchs and some teleosts are able to perceive magnetic fields via electroreceptors. A number of teleosts can sense magnetic fields via sensory cells containing crystals of biogenic magnetite. Laboratory experiments and field observations indicate the influence of magnetic fields on fish locomotor activity and spatial distribution. The geomagnetic field can be used by fish for navigation. Besides, artificial magnetic fields and natural fluctuations of the geomagnetic field can affect fish embryos leading to alterations in their development. It is suggested that, afterwards, these alterations can have an effect on fish behavior. PMID:25508098

  7. High-magnetic-field MHD-generator program

    NASA Astrophysics Data System (ADS)

    Nakamura, T.; Eustis, R. H.; Mitchner, M.; Self, S. A.; Koester, J. K.; Kruger, C. H.

    1981-07-01

    Progress in an experimental and theoretical program designed to investigate MHD channel phenomena which are important at high magnetic fields is described. The areas of research include nonuniformity effects, boundary layers, Hall field breakdown, the effects of electrode configuration and current concentrations, and studies of steady-state combustion disk and linear channels in an existing 6 Tesla magnet of small dimensions. In the study of the effects of nonuniformities, experiments were performed to test a multi-channel, fiber optics diagnostic system that yields time-resolved temperature profiles in an MHD chanel. For the study of magneto-acoustic fluctuation phenomena, a one dimensional model was developed to describe the performance of a non-ideal MHD generator with a generalized electrical configuration. A two dimensional MHD computer code was developed which predicts the dependence on electrode and insulator dimensions of the onset of interelectrode Hall field breakdown, as initiated either by breakdown in the insulator or in the plasma.

  8. Magnetic-field-dosimetry system

    DOEpatents

    Lemon, D.K.; Skorpik, J.R.; Eick, J.L.

    1981-01-21

    A device is provided for measuring the magnetic field dose and peak field exposure. The device includes three Hall-effect sensors all perpendicular to each other, sensing the three dimensional magnetic field and associated electronics for data storage, calculating, retrieving and display.

  9. Influence of strong static magnetic field on human cancer HT 1080 cells

    NASA Astrophysics Data System (ADS)

    Rodins, Juris; Korhovs, Vadims; Freivalds, Talivaldis; Buikis, Indulis; Ivanova, Tatjana

    2001-10-01

    The aim of this study was to investigate strong uniform magnetic field influence on the human cancer cells HT 1080. The cells were treated with magnetic field of intensity 1,16 Tesla and with anticancer agent - cis-platinum 0.025 mg/ml or vincristinum 2-3 ng/ml. The intact and the treated cell samples were incubated in a medium with acridine orange (AO). The magnetic field after 15 minutes of influence significantly increased cytoplasmic red fluorescence. Increased AO accumulation in lysosomes suggested to cancer cell metabolic activity stimulation.

  10. A 2 Tesla Full Scale High Performance Periodic Permanent Magnet Model for Attractive (228 KN) and repulsive Maglev

    NASA Technical Reports Server (NTRS)

    Stekly, Z. J. J.; Gardner, C.; Domigan, P.; Baker, J.; Hass, M.; McDonald, C.; Wu, C.; Farrell, R. A.

    1996-01-01

    Two 214.5 cm. long high performance periodic (26 cm period) permanent magnet half-assemblies were designed and constructed for use as a wiggler using Nd-B-Fe and vanadium permendur as hard and soft magnetic materials by Field Effects, a division of Intermagnetics General Corporation. Placing these assemblies in a supporting structure with a 2.1 cm pole to pole separation resulted in a periodic field with a maximum value of 2.04 T. This is believed to be the highest field ever achieved by this type of device. The attractive force between the two 602 kg magnet assemblies is 228 kN, providing enough force for suspension of a 45,500 kg vehicle. If used in an attractive maglev system with an appropriate flat iron rail, one assembly will generate the same force with a gap of 1.05 cm leading to a lift to weight ratio of 38.6, not including the vehicle attachment structure. This permanent magnet compares well with superconducting systems which have lift to weight ratios in the range of 5 to 10. This paper describes the magnet assemblies and their measured magnetic performance. The measured magnetic field and resulting attractive magnetic force have a negative spring characteristic. Appropriate control coils are necessary to provide stable operation. The estimated performance of the assemblies in a stable repulsive mode, with eddy currents in a conducting guideway, is also discussed.

  11. Magnetic fields in nearby spirals

    NASA Astrophysics Data System (ADS)

    Sun, Xiaohui; Lenc, Emil

    2013-10-01

    Magnetic fields play an important role in star formation process and dynamic evolution of galaxies. Previous studies of magnetic fields relied on narrow band polarisation observations and difficult to disentangle magnetised structures along line of sight. Thanks to the broad bandwidth and multi-channels of CABB we are now able to recover the 3D structures of magnetic fields using RM synthesis and QU-fitting. We propose to observe two nearby spirals M83 and NGC 4945 to build clear pictures of their magnetic fields.

  12. High resolution neurography of the brachial plexus by 3 Tesla magnetic resonance imaging.

    PubMed

    Cejas, C; Rollán, C; Michelin, G; Nogués, M

    2016-01-01

    The study of the structures that make up the brachial plexus has benefited particularly from the high resolution images provided by 3T magnetic resonance scanners. The brachial plexus can have mononeuropathies or polyneuropathies. The mononeuropathies include traumatic injuries and trapping, such as occurs in thoracic outlet syndrome due to cervical ribs, prominent transverse apophyses, or tumors. The polyneuropathies include inflammatory processes, in particular chronic inflammatory demyelinating polyneuropathy, Parsonage-Turner syndrome, granulomatous diseases, and radiation neuropathy. Vascular processes affecting the brachial plexus include diabetic polyneuropathy and the vasculitides. This article reviews the anatomy of the brachial plexus and describes the technique for magnetic resonance neurography and the most common pathologic conditions that can affect the brachial plexus. PMID:26860655

  13. Vestibular stimulation by magnetic fields

    PubMed Central

    Ward, Bryan K.; Roberts, Dale C.; Della Santina, Charles C.; Carey, John P.; Zee, David S.

    2015-01-01

    Individuals working next to strong static magnetic fields occasionally report disorientation and vertigo. With the increasing strength of magnetic fields used for magnetic resonance imaging (MRI) studies, these reports have become more common. It was recently learned that humans, mice and zebrafish all demonstrate behaviors consistent with constant peripheral vestibular stimulation while inside a strong, static magnetic field. The proposed mechanism for this effect involves a Lorentz force resulting from the interaction of a strong static magnetic field with naturally occurring ionic currents flowing through the inner ear endolymph into vestibular hair cells. The resulting force within the endolymph is strong enough to displace the lateral semicircular canal cupula, inducing vertigo and the horizontal nystagmus seen in normal mice and in humans. This review explores the evidence for interactions of magnetic fields with the vestibular system. PMID:25735662

  14. Magnetic resonance elastography detected with a SQUID in microtesla magnetic fields

    NASA Astrophysics Data System (ADS)

    Kelso, Nathan; Koski, Kristie; Reimer, Jeffrey

    2005-03-01

    We have used a SQUID-based microtesla magnetic resonance imaging (MRI) system to perform magnetic resonance elastography (MRE) experiments in a measurement field of 132 microtesla. Magnetic resonance elastography is based on MRI and measures three-dimensional displacement and strain fields in a sample. With appropriate data processing this allows for a quantitative map of the physical response of a material to an applied deformation. In the past, MRE experiments using conventional (1.5 tesla and above) MRI systems have demonstrated that MRE may be used as a non-invasive method for measuring stiffness of human tissues, which may aid in the detection and diagnosis of breast cancer and other cancers. Our MRE experiment consists of applying a small axial deformation to a cylindrical sample of 0.5% agarose gel. For samples approximately 30 mm in height, we were able to measure displacements on the order of 500 micrometers. Supported by USDOE.

  15. Magnetic fields around evolved stars

    NASA Astrophysics Data System (ADS)

    Leal-Ferreira, M.; Vlemmings, W.; Kemball, A.; Amiri, N.; Maercker, M.; Ramstedt, S.; Olofsson, G.

    2014-04-01

    A number of mechanisms, such as magnetic fields, (binary) companions and circumstellar disks have been suggested to be the cause of non-spherical PNe and in particular collimated outflows. This work investigates one of these mechanisms: the magnetic fields. While MHD simulations show that the fields can indeed be important, few observations of magnetic fields have been done so far. We used the VLBA to observe five evolved stars, with the goal of detecting the magnetic field by means of water maser polarization. The sample consists in four AGB stars (IK Tau, RT Vir, IRC+60370 and AP Lyn) and one pPN (OH231.8+4.2). In four of the five sources, several strong maser features were detected allowing us to measure the linear and/or circular polarization. Based on the circular polarization detections, we infer the strength of the component of the field along the line of sight to be between ~30 mG and ~330 mG in the water maser regions of these four sources. When extrapolated to the surface of the stars, the magnetic field strength would be between a few hundred mG and a few Gauss when assuming a toroidal field geometry and higher when assuming more complex magnetic fields. We conclude that the magnetic energy we derived in the water maser regions is higher than the thermal and kinetic energy, leading to the conclusion that, indeed, magnetic fields probably play an important role in shaping Planetary Nebulae.

  16. [Nikola Tesla in medicine, too].

    PubMed

    Hanzek, Branko; Jakobović, Zvonimir

    2007-12-01

    Using primary and secondary sources we have shown in this paper the influence of Nikola Tesla's work on the field of medicine. The description of his experiments conduced within secondary-school education programs aimed to present the popularization of his work in Croatia. Although Tesla was dedicated primarily to physics and was not directly involved in biomedical research, his work significantly contributed to paving the way of medical physics particularly radiology and high-frequency electrotherapy. PMID:18383745

  17. Application of the double relaxation oscillation superconducting quantum interference device sensor to micro-tesla 1H nuclear magnetic resonance experiments

    NASA Astrophysics Data System (ADS)

    Kang, Chan Seok; Kim, Kiwoong; Lee, Seong-Joo; Hwang, Seong-min; Kim, Jin-Mok; Yu, Kwon Kyu; Kwon, Hyukchan; Lee, Sang Kil; Lee, Yong-Ho

    2011-09-01

    We developed an ultra-low field (ULF)-nuclear magnetic resonance (NMR) measurement system capable of working with a measurement field (Bm) of several micro-tesla and performed basic NMR studies with a double relaxation oscillation superconducting quantum interference device (DROS) instead of conventional dc-SQUIDs. DROS is a SQUID sensor utilizing a relaxation oscillation between a dc-SQUID and a relaxation circuit; the new unit consists of an inductor and a resistor, and is connected in parallel with the SQUID. DROS has a 10 times larger flux-to-voltage transfer coefficient (˜mV/ϕ0) than that of the dc-SQUID, and this large transfer coefficient enables the acquisition of the SQUID signal with a simple flux-locked-loop (FLL) circuit using room temperature pre-amplifiers. The DROS second-order gradiometer showed average field noise of 9.2 μϕ0/√Hz in a magnetically shielded room (MSR). In addition, a current limiter formed of a Josephson junction array was put in a flux-transformer of DROS to prevent excessive currents that can be generated from the high pre-polarization field (Bp). Using this system, we measured an 1H NMR signal in water under 2.8 μT Bm field and reconstructed a one-dimensional MR image from the 1H NMR signal under a gradient field BG of 4.09 nT/mm. In addition, we confirmed that the ULF-NMR system can measure the NMR signal in the presence of metal without any distortion by measuring the NMR signal of a sample wrapped with metal. Lastly, we have measured the scalar J-coupling of trimethylphosphate and were able to confirm a clear doublet NMR signal with the coupling strength J3[P,H] = 10.4 ± 0.8 Hz. Finally, because the existing ULF-NMR/MRI studies were almost all performed with dc-SQUID based systems, we constructed a dc-SQUID-based ULF-NMR system in addition to the DROS based system and compared the characteristics of the two different systems by operating the two systems under identical experimental conditions.

  18. [Nikola Tesla: flashes of inspiration].

    PubMed

    Villarejo-Galende, Albero; Herrero-San Martín, Alejandro

    2013-01-16

    Nikola Tesla (1856-1943) was one of the greatest inventors in history and a key player in the revolution that led to the large-scale use of electricity. He also made important contributions to such diverse fields as x-rays, remote control, radio, the theory of consciousness or electromagnetism. In his honour, the international unit of magnetic induction was named after him. Yet, his fame is scarce in comparison with that of other inventors of the time, such as Edison, with whom he had several heated arguments. He was a rather odd, reserved person who lived for his inventions, the ideas for which came to him in moments of inspiration. In his autobiography he relates these flashes with a number of neuropsychiatric manifestations, which can be seen to include migraine auras, synaesthesiae, obsessions and compulsions. PMID:23307357

  19. Exploratory 7-Tesla magnetic resonance spectroscopy in Huntington's disease provides in vivo evidence for impaired energy metabolism.

    PubMed

    van den Bogaard, Simon J A; Dumas, Eve M; Teeuwisse, Wouter M; Kan, Hermien E; Webb, Andrew; Roos, Raymund A C; van der Grond, Jeroen

    2011-12-01

    Huntington's disease (HD) is a neurodegenerative genetic disorder that affects the brain. Atrophy of deep grey matter structures has been reported and it is likely that underlying pathologic processes occur before, or in concurrence with, volumetric changes. Measurement of metabolite concentrations in these brain structures has the potential to provide insight into pathological processes. We aim to gain understanding of metabolite changes with respect to the disease stage and pathophysiological changes. We studied five brain regions using magnetic resonance spectroscopy (MRS) using a 7-Tesla MRI scanner. Localized proton spectra were acquired to obtain six metabolite concentrations. MRS was performed in the caudate nucleus, putamen, thalamus, hypothalamus, and frontal lobe in 44 control subjects, premanifest gene carriers and manifest HD. In the caudate nucleus, HD patients display lower NAA (p = 0.009) and lower creatine concentration (p = 0.001) as compared to controls. In the putamen, manifest HD patients show lower NAA (p = 0.024), lower creatine concentration (p = 0.027), and lower glutamate (p = 0.013). Although absolute values of NAA, creatine, and glutamate were lower, no significant differences to controls were found in the premanifest gene carriers. The lower concentrations of NAA and creatine in the caudate nucleus and putamen of early manifest HD suggest deficits in neuronal integrity and energy metabolism. The changes in glutamate could support the excitotoxicity theory. These findings not only give insight into neuropathological changes in HD but also indicate that MRS can possibly be applied in future clinical trails to evaluate medication targeted at specific metabolic processes. PMID:21614431

  20. The Capacitive Magnetic Field Sensor

    NASA Astrophysics Data System (ADS)

    Zyatkov, D. O.; Yurchenko, A. V.; Balashov, V. B.; Yurchenko, V. I.

    2016-01-01

    The results of a study of sensitive element magnetic field sensor are represented in this paper. The sensor is based on the change of the capacitance with an active dielectric (ferrofluid) due to the magnitude of magnetic field. To prepare the ferrofluid magnetic particles are used, which have a followingdispersion equal to 50 < Ø < 56, 45 < Ø < 50, 40 < Ø < 45 and Ø < 40micron of nanocrystalline alloy of brand 5BDSR. The dependence of the sensitivity of the capacitive element from the ferrofluid with different dispersion of magnetic particles is considered. The threshold of sensitivity and sensitivity of a measuring cell with ferrofluid by a magnetic field was determined. The experimental graphs of capacitance change of the magnitude of magnetic field are presented.

  1. Origin of cosmic magnetic fields.

    PubMed

    Campanelli, Leonardo

    2013-08-01

    We calculate, in the free Maxwell theory, the renormalized quantum vacuum expectation value of the two-point magnetic correlation function in de Sitter inflation. We find that quantum magnetic fluctuations remain constant during inflation instead of being washed out adiabatically, as usually assumed in the literature. The quantum-to-classical transition of super-Hubble magnetic modes during inflation allow us to treat the magnetic field classically after reheating, when it is coupled to the primeval plasma. The actual magnetic field is scale independent and has an intensity of few×10(-12)  G if the energy scale of inflation is few×10(16)  GeV. Such a field accounts for galactic and galaxy cluster magnetic fields. PMID:23971556

  2. Measurements of magnetic field alignment

    SciTech Connect

    Kuchnir, M.; Schmidt, E.E.

    1987-11-06

    The procedure for installing Superconducting Super Collider (SSC) dipoles in their respective cryostats involves aligning the average direction of their field with the vertical to an accuracy of 0.5 mrad. The equipment developed for carrying on these measurements is described and the measurements performed on the first few prototypes SSC magnets are presented. The field angle as a function of position in these 16.6 m long magnets is a characteristic of the individual magnet with possible feedback information to its manufacturing procedure. A comparison of this vertical alignment characteristic with a magnetic field intensity (by NMR) characteristic for one of the prototypes is also presented. 5 refs., 7 figs.

  3. Magnetic fields in young galaxies

    NASA Astrophysics Data System (ADS)

    Nordlund, Åke; Rögnvaldsson, Örnólfur

    We have studied the fate of initial magnetic fields in the hot halo gas out of which the visible parts of galaxies form, using three-dimensional numerical MHD-experiments. The halo gas undergoes compression by several orders of magnitude in the subsonic cooling flow that forms the cold disk. The magnetic field is carried along and is amplified considerably in the process, reaching μG levels for reasonable values of the initial ratio of magnetic to thermal energy density.

  4. The MAVEN Magnetic Field Investigation

    NASA Astrophysics Data System (ADS)

    Connerney, J. E. P.; Espley, J.; Lawton, P.; Murphy, S.; Odom, J.; Oliversen, R.; Sheppard, D.

    2015-12-01

    The MAVEN magnetic field investigation is part of a comprehensive particles and fields subsystem that will measure the magnetic and electric fields and plasma environment of Mars and its interaction with the solar wind. The magnetic field instrumentation consists of two independent tri-axial fluxgate magnetometer sensors, remotely mounted at the outer extremity of the two solar arrays on small extensions ("boomlets"). The sensors are controlled by independent and functionally identical electronics assemblies that are integrated within the particles and fields subsystem and draw their power from redundant power supplies within that system. Each magnetometer measures the ambient vector magnetic field over a wide dynamic range (to 65,536 nT per axis) with a resolution of 0.008 nT in the most sensitive dynamic range and an accuracy of better than 0.05 %. Both magnetometers sample the ambient magnetic field at an intrinsic sample rate of 32 vector samples per second. Telemetry is transferred from each magnetometer to the particles and fields package once per second and subsequently passed to the spacecraft after some reformatting. The magnetic field data volume may be reduced by averaging and decimation, when necessary to meet telemetry allocations, and application of data compression, utilizing a lossless 8-bit differencing scheme. The MAVEN magnetic field experiment may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors and the MAVEN mission plan provides for occasional spacecraft maneuvers—multiple rotations about the spacecraft x and z axes—to characterize spacecraft fields and/or instrument offsets in flight.

  5. The MAVEN Magnetic Field Investigation

    NASA Technical Reports Server (NTRS)

    Connerney, J. E. P.; Espley, J.; Lawton, P.; Murphy, S.; Odom, J.; Oliversen, R.; Sheppard, D.

    2014-01-01

    The MAVEN magnetic field investigation is part of a comprehensive particles and fields subsystem that will measure the magnetic and electric fields and plasma environment of Mars and its interaction with the solar wind. The magnetic field instrumentation consists of two independent tri-axial fluxgate magnetometer sensors, remotely mounted at the outer extremity of the two solar arrays on small extensions ("boomlets"). The sensors are controlled by independent and functionally identical electronics assemblies that are integrated within the particles and fields subsystem and draw their power from redundant power supplies within that system. Each magnetometer measures the ambient vector magnetic field over a wide dynamic range (to 65,536 nT per axis) with a quantization uncertainty of 0.008 nT in the most sensitive dynamic range and an accuracy of better than 0.05%. Both magnetometers sample the ambient magnetic field at an intrinsic sample rate of 32 vector samples per second. Telemetry is transferred from each magnetometer to the particles and fields package once per second and subsequently passed to the spacecraft after some reformatting. The magnetic field data volume may be reduced by averaging and decimation, when necessary to meet telemetry allocations, and application of data compression, utilizing a lossless 8-bit differencing scheme. The MAVEN magnetic field experiment may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors and the MAVEN mission plan provides for occasional spacecraft maneuvers - multiple rotations about the spacecraft x and z axes - to characterize spacecraft fields and/or instrument offsets in flight.

  6. Magnetic Resonance Microscopy at 14 Tesla and Correlative Histopathology of Human Brain Tumor Tissue

    PubMed Central

    Gonzalez-Segura, Ana; Morales, Jose Manuel; Gonzalez-Darder, Jose Manuel; Cardona-Marsal, Ramon; Lopez-Gines, Concepcion; Cerda-Nicolas, Miguel; Monleon, Daniel

    2011-01-01

    Magnetic Resonance Microscopy (MRM) can provide high microstructural detail in excised human lesions. Previous MRM images on some experimental models and a few human samples suggest the large potential of the technique. The aim of this study was the characterization of specific morphological features of human brain tumor samples by MRM and correlative histopathology. We performed MRM imaging and correlative histopathology in 19 meningioma and 11 glioma human brain tumor samples obtained at surgery. To our knowledge, this is the first MRM direct structural characterization of human brain tumor samples. MRM of brain tumor tissue provided images with 35 to 40 µm spatial resolution. The use of MRM to study human brain tumor samples provides new microstructural information on brain tumors for better classification and characterization. The correlation between MRM and histopathology images allowed the determination of image parameters for critical microstructures of the tumor, like collagen patterns, necrotic foci, calcifications and/or psammoma bodies, vascular distribution and hemorrhage among others. Therefore, MRM may help in interpreting the Clinical Magnetic Resonance images in terms of cell biology processes and tissue patterns. Finally, and most importantly for clinical diagnosis purposes, it provides three-dimensional information in intact samples which may help in selecting a preferential orientation for the histopathology slicing which contains most of the informative elements of the biopsy. Overall, the findings reported here provide a new and unique microstructural view of intact human brain tumor tissue. At this point, our approach and results allow the identification of specific tissue types and pathological features in unprocessed tumor samples. PMID:22110653

  7. Cosmic Magnetic Fields - An Overview

    NASA Astrophysics Data System (ADS)

    Wielebinski, Richard; Beck, Rainer

    Magnetic fields have been known in antiquity. Aristotle attributes the first of what could be called a scientific discussion on magnetism to Thales, who lived from about 625 BC. In China “magnetic carts” were in use to help the Emperor in his journeys of inspection. Plinius comments that in the Asia Minor province of Magnesia shepherds' staffs get at times “glued” to a stone, a alodestone. In Europe the magnetic compass came through the Arab sailors who met the Portuguese explorers. The first scientific treatise on magnetism, “De Magnete”, was published by William Gilbert who in 1600 described his experiments and suggested that the Earth was a huge magnet. Johannes Kepler was a correspondent of Gilbert and at times suggested that planetary motion was due to magnetic forces. Alas, this concept was demolished by Isaac Newton,who seeing the falling apple decided that gravity was enough. This concept of dealing with gravitational forces only remains en vogue even today. The explanations why magnetic effects must be neglected go from “magnetic energy is only 1% of gravitation” to “magnetic fields only complicate the beautiful computer solutions”. What is disregarded is the fact that magnetic effects are very directional(not omni-directional as gravity) and also the fact that magnetic fields are seen every where in our cosmic universe.

  8. High-field magnets using high-critical-temperature superconducting thin films

    DOEpatents

    Mitlitsky, F.; Hoard, R.W.

    1994-05-10

    High-field magnets fabricated from high-critical-temperature superconducting ceramic (HTSC) thin films which can generate fields greater than 4 Tesla are disclosed. The high-field magnets are made of stackable disk-shaped substrates coated with HTSC thin films, and involves maximizing the critical current density, superconducting film thickness, number of superconducting layers per substrate, substrate diameter, and number of substrates while minimizing substrate thickness. The HTSC thin films are deposited on one or both sides of the substrates in a spiral configuration with variable line widths to increase the field. 4 figures.

  9. High-field magnets using high-critical-temperature superconducting thin films

    DOEpatents

    Mitlitsky, Fred; Hoard, Ronald W.

    1994-01-01

    High-field magnets fabricated from high-critical-temperature superconducting ceramic (HTSC) thin films which can generate fields greater than 4 Tesla. The high-field magnets are made of stackable disk-shaped substrates coated with HTSC thin films, and involves maximizing the critical current density, superconducting film thickness, number of superconducting layers per substrate, substrate diameter, and number of substrates while minimizing substrate thickness. The HTSC thin films are deposited on one or both sides of the substrates in a spiral configuration with variable line widths to increase the field.

  10. Apparatus and method for magnetically processing a specimen

    DOEpatents

    Ludtka, Gerard M; Ludtka, Gail M; Wilgen, John B; Kisner, Roger A; Jaramillo, Roger A

    2013-09-03

    An apparatus for magnetically processing a specimen that couples high field strength magnetic fields with the magnetocaloric effect includes a high field strength magnet capable of generating a magnetic field of at least 1 Tesla and a magnetocaloric insert disposed within a bore of the high field strength magnet. A method for magnetically processing a specimen includes positioning a specimen adjacent to a magnetocaloric insert within a bore of a magnet and applying a high field strength magnetic field of at least 1 Tesla to the specimen and to the magnetocaloric insert. The temperature of the specimen changes during the application of the high field strength magnetic field due to the magnetocaloric effect.

  11. Magnetic field annealing for improved creep resistance

    SciTech Connect

    Brady, Michael P.; Ludtka, Gail M.; Ludtka, Gerard M.; Muralidharan, Govindarajan; Nicholson, Don M.; Rios, Orlando; Yamamoto, Yukinori

    2015-12-22

    The method provides heat-resistant chromia- or alumina-forming Fe-, Fe(Ni), Ni(Fe), or Ni-based alloys having improved creep resistance. A precursor is provided containing preselected constituents of a chromia- or alumina-forming Fe-, Fe(Ni), Ni(Fe), or Ni-based alloy, at least one of the constituents for forming a nanoscale precipitate MaXb where M is Cr, Nb, Ti, V, Zr, or Hf, individually and in combination, and X is C, N, O, B, individually and in combination, a=1 to 23 and b=1 to 6. The precursor is annealed at a temperature of 1000-1500.degree. C. for 1-48 h in the presence of a magnetic field of at least 5 Tesla to enhance supersaturation of the M.sub.aX.sub.b constituents in the annealed precursor. This forms nanoscale M.sub.aX.sub.b precipitates for improved creep resistance when the alloy is used at service temperatures of 500-1000.degree. C. Alloys having improved creep resistance are also disclosed.

  12. Magnetic field dependent photoluminescence studies of InGaAs/GaAs strained-single-quantum wells

    SciTech Connect

    Jones, E.D.; Dawson, L.R.; Klem, J.F.; Lyo, S.K.; Heiman, D.; Liu, X.C.

    1994-08-01

    Magnetoluminescence determined conduction-band and valence-band dispersion curves are presented for n-type InGaAs/GaAs stained-single-quantum well structures. The magnetic field range was 0 to 30 tesla, and the temperature varied between 4.2 and 77.4 K.

  13. Magnetic field synthesis for microwave magnetics

    NASA Astrophysics Data System (ADS)

    Morgenthaler, F. R.

    1982-04-01

    The Microwave and Quantum Magnetics Group of the M.I.T. Department of Electrical Engineering and Computer Science undertook a two-year research program directed at developing synthesis procedures that allow magnetostatic and/or magnetoelastic modes to be specially tailored for microwave signal processing applications that include magnetically tunable filters and limiters as well as delay lines that are either linearly dispersive or nondispersive over prescribed bandwidths. Special emphasis was given to devices employing thin films of yttrium iron garnet (YIG) that are blessed with spatially nonuniform dc magnetic fields.

  14. Magnetic field structure evolution in rotating magnetic field plasmas

    SciTech Connect

    Petrov, Yuri; Yang Xiaokang; Huang, T.-S.

    2008-07-15

    A study of magnetic field structure evolution during 40-ms plasma discharge has been performed in a new device with 80 cm long/40 cm diameter cylindrical chamber, in which a plasma current I{sub p}{approx_equal}2 kA was driven and sustained by a rotating magnetic field. The main focus of the experiments is on how the changes in externally applied magnetic field affect the current profile and magnetic field in plasma. During plasma discharge, a pulse current was briefly fed to a magnetic coil located at the midplane (middle coil). The magnetic field in cross section of plasma was scanned with pickup probes. Two regimes were studied: without and with an external toroidal field (TF) produced by axial I{sub z} current. With a relatively small current (I{sub m} {<=} 600 A) in the middle coil, the plasma current is boosted up to 5 kA. The magnetic flux surfaces become extended along the axial Z direction, sometimes with the formation of doublet shape plasma. The regime without TF appears to be less stable, presumably due to the reversal of plasma current in central area of plasma column.

  15. PREPROCESSING MAGNETIC FIELDS WITH CHROMOSPHERIC LONGITUDINAL FIELDS

    SciTech Connect

    Yamamoto, Tetsuya T.; Kusano, K.

    2012-06-20

    Nonlinear force-free field (NLFFF) extrapolation is a powerful tool for the modeling of the magnetic field in the solar corona. However, since the photospheric magnetic field does not in general satisfy the force-free condition, some kind of processing is required to assimilate data into the model. In this paper, we report the results of new preprocessing for the NLFFF extrapolation. Through this preprocessing, we expect to obtain magnetic field data similar to those in the chromosphere. In our preprocessing, we add a new term concerning chromospheric longitudinal fields into the optimization function proposed by Wiegelmann et al. We perform a parameter survey of six free parameters to find minimum force- and torque-freeness with the simulated-annealing method. Analyzed data are a photospheric vector magnetogram of AR 10953 observed with the Hinode spectropolarimeter and a chromospheric longitudinal magnetogram observed with SOLIS spectropolarimeter. It is found that some preprocessed fields show the smallest force- and torque-freeness and are very similar to the chromospheric longitudinal fields. On the other hand, other preprocessed fields show noisy maps, although the force- and torque-freeness are of the same order. By analyzing preprocessed noisy maps in the wave number space, we found that small and large wave number components balance out on the force-free index. We also discuss our iteration limit of the simulated-annealing method and magnetic structure broadening in the chromosphere.

  16. Assessment of the right ventricle with cardiovascular magnetic resonance at 7 Tesla

    PubMed Central

    2013-01-01

    Background Functional and morphologic assessment of the right ventricle (RV) is of clinical importance. Cardiovascular magnetic resonance (CMR) at 1.5T has become gold standard for RV chamber quantification and assessment of even small wall motion abnormalities, but tissue analysis is still hampered by limited spatial resolution. CMR at 7T promises increased resolution, but is technically challenging. We examined the feasibility of cine imaging at 7T to assess the RV. Methods Nine healthy volunteers underwent CMR at 7T using a 16-element TX/RX coil and acoustic cardiac gating. 1.5T served as gold standard. At 1.5T, steady-state free-precession (SSFP) cine imaging with voxel size (1.2x1.2x6) mm3 was used; at 7T, fast gradient echo (FGRE) with voxel size (1.2x1.2x6) mm3 and (1.3x1.3x4) mm3 were applied. RV dimensions (RVEDV, RVESV), RV mass (RVM) and RV function (RVEF) were quantified in transverse slices. Overall image quality, image contrast and image homogeneity were assessed in transverse and sagittal views. Results All scans provided diagnostic image quality. Overall image quality and image contrast of transverse RV views were rated equally for SSFP at 1.5T and FGRE at 7T with voxel size (1.3x1.3x4)mm3. FGRE at 7T provided significantly lower image homogeneity compared to SSFP at 1.5T. RVEDV, RVESV, RVEF and RVM did not differ significantly and agreed close between SSFP at 1.5T and FGRE at 7T (p=0.5850; p=0.5462; p=0.2789; p=0.0743). FGRE at 7T with voxel size (1.3x1.3x4) mm3 tended to overestimate RV volumes compared to SSFP at 1.5T (mean difference of RVEDV 8.2±9.3ml) and to FGRE at 7T with voxel size (1.2x1.2x6) mm3 (mean difference of RVEDV 9.3±8.6ml). Conclusions FGRE cine imaging of the RV at 7T was feasible and provided good image quality. RV dimensions and function were comparable to SSFP at 1.5T as gold standard. PMID:23497030

  17. Rotating superconductor magnet for producing rotating lobed magnetic field lines

    DOEpatents

    Hilal, Sadek K.; Sampson, William B.; Leonard, Edward F.

    1978-01-01

    This invention provides a rotating superconductor magnet for producing a rotating lobed magnetic field, comprising a cryostat; a superconducting magnet in the cryostat having a collar for producing a lobed magnetic field having oppositely directed adjacent field lines; rotatable support means for selectively rotating the superconductor magnet; and means for energizing the superconductor magnet.

  18. Chondrule magnetic properties

    NASA Technical Reports Server (NTRS)

    Wasilewski, P. J.; Obryan, M. V.

    1994-01-01

    The topics discussed include the following: chondrule magnetic properties; chondrules from the same meteorite; and REM values (the ratio for remanence initially measured to saturation remanence in 1 Tesla field). The preliminary field estimates for chondrules magnetizing environments range from minimal to a least several mT. These estimates are based on REM values and the characteristics of the remanence initially measured (natural remanence) thermal demagnetization compared to the saturation remanence in 1 Tesla field demagnetization.

  19. Preflare magnetic and velocity fields

    NASA Technical Reports Server (NTRS)

    Hagyard, M. J.; Gaizauskas, V.; Chapman, G. A.; Deloach, A. C.; Gary, G. A.; Jones, H. P.; Karpen, J. T.; Martres, M.-J.; Porter, J. G.; Schmeider, B.

    1986-01-01

    A characterization is given of the preflare magnetic field, using theoretical models of force free fields together with observed field structure to determine the general morphology. Direct observational evidence for sheared magnetic fields is presented. The role of this magnetic shear in the flare process is considered within the context of a MHD model that describes the buildup of magnetic energy, and the concept of a critical value of shear is explored. The related subject of electric currents in the preflare state is discussed next, with emphasis on new insights provided by direct calculations of the vertical electric current density from vector magnetograph data and on the role of these currents in producing preflare brightenings. Results from investigations concerning velocity fields in flaring active regions, describing observations and analyses of preflare ejecta, sheared velocities, and vortical motions near flaring sites are given. This is followed by a critical review of prevalent concepts concerning the association of flux emergence with flares

  20. Magnetic Field of Strange Dwarfs

    NASA Astrophysics Data System (ADS)

    Baghdasaryan, D. S.

    2016-03-01

    The generation of a magnetic field in a strange quark star owing to differential rotation of the superfluid and superconducting quark core relative to the normal electron-nuclear crust of the star is examined. The maximum possible magnetic field on the surface is estimated for various models of strange dwarfs. Depending on the configuration parameters, i.e., the mass M and radius R of the star, a range of 103-105 G is found. These values of the magnetic field may be an additional condition for identification of strange dwarfs among the extensive class of observed white dwarfs.

  1. Magnetic fields and scintillator performance

    SciTech Connect

    Green, D.; Ronzhin, A.; Hagopian, V.

    1995-06-01

    Experimental data have shown that the light output of a scintillator depends on the magnitude of the externally applied magnetic fields, and that this variation can affect the calorimeter calibration and possibly resolution. The goal of the measurements presented here is to study the light yield of scintillators in high magnetic fields in conditions that are similar to those anticipated for the LHC CMS detector. Two independent measurements were performed, the first at Fermilab and the second at the National High Magnetic Field Laboratory at Florida State University.

  2. AC photovoltaic module magnetic fields

    SciTech Connect

    Jennings, C.; Chang, G.J.; Reyes, A.B.; Whitaker, C.M.

    1997-12-31

    Implementation of alternating current (AC) photovoltaic (PV) modules, particularly for distributed applications such as PV rooftops and facades, may be slowed by public concern about electric and magnetic fields (EMF). This paper documents magnetic field measurements on an AC PV module, complementing EMF research on direct-current PV modules conducted by PG and E in 1993. Although not comprehensive, the PV EMF data indicate that 60 Hz magnetic fields (the EMF type of greatest public concern) from PV modules are comparable to, or significantly less than, those from household appliances. Given the present EMF research knowledge, AC PV module EMF may not merit considerable concern.

  3. Magnetoconvection in sheared magnetic fields

    SciTech Connect

    Bian, N. H.; Garcia, O. E.

    2008-10-15

    The development of magnetoconvection in a sheared magnetic field is investigated. The equilibrium magnetic field B{sub 0} is horizontal and its orientation varies linearly along the vertical axis. Preliminary consideration of the transition from the inertial to the viscous regime of the gravitational resistive interchange instability, reveals that the latter is characterized by the existence of viscoresistive boundary layers of vertical width which scales as Q{sup -1/6}, where Q is the Chandrasekhar number. The situation is analogous to the one encountered in magnetically confined laboratory plasmas, where convective flows are constrained by the magnetic shear to develop in boundary layers located around resonant magnetic surfaces in order to fulfill the 'interchange condition'k{center_dot}B{sub 0}=0, where k is the wave vector of the magnetic perturbation. It follows that when the effect of thermal diffusion is taken into account in the process, convection can only occur above a certain critical value of the Rayleigh number which scales as Q{sup 2/3} for large Q. At the onset, the convection pattern is a superposition of identically thin convective rolls everywhere aligned with the local magnetic field lines and which therefore adopt the magnetic field geometry, a situation also reminiscent of the penumbra of sunspots. Using this degeneracy, equations describing the weakly nonlinear state are obtained and discussed. A reduced magnetohydrodynamic description of magnetoconvection is introduced. Since it is valid for arbitrary magnetic field configurations, it allows a simple extension to the case where there exists an inclination between the direction of gravity and the plane spanned by the equilibrium magnetic field. These reduced magnetohydrodynamic equations are proposed as a powerful tool for further investigations of magnetoconvection in more complex field line geometries.

  4. Bioluminescence under static magnetic fields

    NASA Astrophysics Data System (ADS)

    Iwasaka, M.; Ueno, S.

    1998-06-01

    In the present study, the effect of magnetic fields on the emission of light by a living system was studied. The fireflies Hotaria parvula and Luciola cruciata were used as the bioluminescence systems. The firefly light organ was fixed at the edge of an optical fiber. The emitted light was introduced into a single-channel photon-counting system using an optical fiber. We measured both the spectrum of a constant light emission and, the time course of bioluminescence pulses. Two horizontal-type superconducting magnets, which produced 8 and 14 T magnetic fields at their center, were used as the magnetic-field generators. We also carried out an in vitro study of bioluminescence. The enzymatic activity of luciferase was measured under a 14 T magnetic field. We measured emission spectra of bioluminescence over the interval 500-600 nm at 25 °C in a stable emission state. It was observed that the peak wavelength around 550 nm shifted to 560 nm under a 14 T magnetic field. However, the effects of magnetic fields were not significant. Also, we measured the time course of emissions at 550 nm in a transient emission state. The rate in the light intensity under a 14 T magnetic field increased compared to the control. There is a possibility that the change in the emission intensities under a magnetic field is related to a change in the biochemical systems of the firefly, such as the enzymatic process of luciferase and the excited singlet state with subsequent light emission.

  5. Magnetic field structure of Mercury

    NASA Astrophysics Data System (ADS)

    Hiremath, K. M.

    2012-04-01

    Recently planet Mercury - an unexplored territory in our solar system - has been of much interest to the scientific community due to recent flybys of the spacecraft MESSENGER that discovered its intrinsic stationary and large-scale dipole like magnetic field structure with an intensity of ˜300nT confirming Mariner 10 observations. In the present study, with the observed constraint of Mercury's atmospheric magnetic field structure, internal magnetic field structure is modeled as a solution of magnetic diffusion equation. In this study, Mercury's internal structure mainly consists of a stable stratified fluid core and the convective mantle. For simplicity, magnetic diffusivity in both parts of the structure is considered to be uniform and constant with a value represented by a suitable averages. It is further assumed that vigorous convection in the mantle disposes of the electric currents leading to a very high diffusivity in that region. Thus, in order to satisfy observed atmospheric magnetic field structure, Mercury's most likely magnetic field structure consists of a solution of MHD diffusion equation in the core and a combined multipolar (dipole and quadrupole like magnetic field structures embedded in the uniform field) solution of a current free like magnetic field structure in the mantle and in the atmosphere. With imposition of appropriate boundary conditions at the core-mantle boundary for the first two diffusion eigen modes, in order to satisfy the observed field structure, present study puts the constraint on Mercury's core radius to be ˜2000km. From the estimated magnetic diffusivity and the core radius, it is also possible to estimate the two diffusion eigen modes with their diffusion time scales of ˜8.6 and 3.7 billion years respectively suggesting that the planet inherits its present-day magnetic field structure from the solar Nebula. It is proposed that permanency of such a large-scale magnetic field structure of the planet is attained during

  6. Three-dimensional charge density wave order in YBa2Cu3O6.67 at high magnetic fields.

    PubMed

    Gerber, S; Jang, H; Nojiri, H; Matsuzawa, S; Yasumura, H; Bonn, D A; Liang, R; Hardy, W N; Islam, Z; Mehta, A; Song, S; Sikorski, M; Stefanescu, D; Feng, Y; Kivelson, S A; Devereaux, T P; Shen, Z-X; Kao, C-C; Lee, W-S; Zhu, D; Lee, J-S

    2015-11-20

    Charge density wave (CDW) correlations have been shown to universally exist in cuprate superconductors. However, their nature at high fields inferred from nuclear magnetic resonance is distinct from that measured with x-ray scattering at zero and low fields. We combined a pulsed magnet with an x-ray free-electron laser to characterize the CDW in YBa2Cu3O6.67 via x-ray scattering in fields of up to 28 tesla. While the zero-field CDW order, which develops at temperatures below ~150 kelvin, is essentially two dimensional, at lower temperature and beyond 15 tesla, another three-dimensionally ordered CDW emerges. The field-induced CDW appears around the zero-field superconducting transition temperature; in contrast, the incommensurate in-plane ordering vector is field-independent. This implies that the two forms of CDW and high-temperature superconductivity are intimately linked. PMID:26541608

  7. Three-dimensional charge density wave order in YBa2Cu3O6.67 at high magnetic fields

    DOE PAGESBeta

    Gerber, S.; Jang, H.; Nojiri, H.; Matsuzawa, S.; Yasumura, H.; Bonn, D. A.; Liang, R.; Hardy, W. N.; Islam, Z.; Mehta, A.; et al

    2015-11-20

    In this study, charge density wave (CDW) correlations have recently been shown to universally exist in cuprate superconductors. However, their nature at high fields inferred from nuclear magnetic resonance is distinct from that measured by x-ray scattering at zero and low fields. Here we combine a pulsed magnet with an x-ray free electron laser to characterize the CDW in YBa2Cu3O6.67 via x-ray scattering in fields up to 28 Tesla. While the zero-field CDW order, which develops below T ~ 150 K, is essentially two-dimensional, at lower temperature and beyond 15 Tesla, another three-dimensionally ordered CDW emerges. The field-induced CDW onsetsmore » around the zero-field superconducting transition temperature, yet the incommensurate in-plane ordering vector is field-independent. This implies that the two forms of CDW and high-temperature superconductivity are intimately linked.« less

  8. Three-Dimensional Charge Density Wave Order in YBa2Cu3O6.67 at High Magnetic Fields

    SciTech Connect

    Gerber, S.; Jang, H.; Nojiri, H.; Matsuzawa, S.; Yasumura, H.; Bonn, D. A.; Liang, R.; Hardy, W.; Islam, Z.; Lee, W. -S.; Zhu, D.; Lee, J. -S.

    2015-11-20

    Charge density wave (CDW) correlations have been shown to universally exist in cuprate superconductors. However, their nature at high fields inferred from nuclear magnetic resonance is distinct from that measured by x-ray scattering at zero and low fields. Here we combine a pulsed magnet with an x-ray free electron laser to characterize the CDW in YBa2Cu3O6.67 via x-ray scattering in fields up to 28 Tesla. While the zero-field CDW order, which develops below T ~ 150 K, is essentially two-dimensional, at lower temperature and beyond 15 Tesla, another three-dimensionally ordered CDW emerges. The field-induced CDW onsets around the zero-field superconducting transition temperature, yet the incommensurate inplane ordering vector is field-independent. This implies that the two forms of CDW and hightemperature superconductivity are intimately linked.

  9. Magnetic Field Generation in Stars

    NASA Astrophysics Data System (ADS)

    Ferrario, Lilia; Melatos, Andrew; Zrake, Jonathan

    2015-10-01

    Enormous progress has been made on observing stellar magnetism in stars from the main sequence (particularly thanks to the MiMeS, MAGORI and BOB surveys) through to compact objects. Recent data have thrown into sharper relief the vexed question of the origin of stellar magnetic fields, which remains one of the main unanswered questions in astrophysics. In this chapter we review recent work in this area of research. In particular, we look at the fossil field hypothesis which links magnetism in compact stars to magnetism in main sequence and pre-main sequence stars and we consider why its feasibility has now been questioned particularly in the context of highly magnetic white dwarfs. We also review the fossil versus dynamo debate in the context of neutron stars and the roles played by key physical processes such as buoyancy, helicity, and superfluid turbulence, in the generation and stability of neutron star fields.

  10. Experiments of cylindrical isentropic compression by ultrahigh magnetic field

    NASA Astrophysics Data System (ADS)

    Gu, Zhuowei; Zhou, Zhongyu; Zhang, Chunbo; Tang, Xiaosong; Tong, Yanjin; Zhao, Jianheng; Sun, Chengwei

    2015-09-01

    The high Explosive Magnetic Flux Implosion Compression Generator (EMFICG) is a kind of unique high energy density dynamic technique with characters like ultrahigh pressure and low temperature rising and could be suitable as a tool of cylindrical isentropic compression. The Institute of Fluid Physics, Chinese Academy of Engineering Physics (IFP, CAEP) have developed EMFICG technique and realized cylindrical isentropic compression. In the experiments, a seed magnetic field of 5-6 Tesla were built first and compressed by a stainless steel liner which is driven by high explosive. The inner free surface velocity of sample was measured by PDV. The isentropic compression of a copper sample was verified and the isentropic pressure is over 100 GPa. The cylindrical isentropic compression process has been numerical simulated by 1D MHD code and the simulation results were compared with the experiments. Compared with the transitional X-ray flash radiograph measurement, this method will probably promote the data accuracy.

  11. Magnetostriction and magnetic texture to 100.75 Tesla in frustrated SrCu2(BO3)2

    PubMed Central

    Jaime, Marcelo; Daou, Ramzy; Crooker, Scott A.; Weickert, Franziska; Uchida, Atsuko; Feiguin, Adrian E.; Batista, Cristian D.; Dabkowska, Hanna A.; Gaulin, Bruce D.

    2012-01-01

    Strong geometrical frustration in magnets leads to exotic states such as spin liquids, spin supersolids, and complex magnetic textures. SrCu2(BO3)2, a spin-1/2 Heisenberg antiferromagnet in the archetypical Shastry–Sutherland lattice, exhibits a rich spectrum of magnetization plateaus and stripe-like magnetic textures in applied fields. The structure of these plateaus is still highly controversial due to the intrinsic complexity associated with frustration and competing length scales. We discover magnetic textures in SrCu2(BO3)2 via magnetostriction and magnetocaloric measurements in fields up to 100.75 T. In addition to observing low-field fine structure with unprecedented resolution, the data also reveal lattice responses at 73.6 T and at 82 T that we attribute, using a controlled density matrix renormalization group approach, to a unanticipated 2/5 plateau and to the long-predicted 1/2 plateau.

  12. Attosecond-magnetic-field-pulse generation by intense few-cycle circularly polarized UV laser pulses

    NASA Astrophysics Data System (ADS)

    Yuan, Kai-Jun; Bandrauk, André D.

    2013-07-01

    Intense attosecond-magnetic-field pulses are predicted to be produced by intense few-cycle attosecond circularly polarized UV pulses. Numerical solutions of the time-dependent Schrödinger equation for H2+ are used to study the electronic dynamical process. Spinning attosecond circular electron wave packets are created on subnanometer molecular dimensions, thus generating attosecond magnetic fields of several tens of Teslas (105 G). Simulations show that the induced magnetic field is critically dependent on the pulse wavelength λ and pulse duration nτ (n is number of cycles) as predicted by a classical model. For ultrashort few-cycle circularly polarized attosecond pulses, molecular orientation influences the generation of the induced magnetic fields as a result of preferential ionization perpendicular to the molecular axis. The nonspherical asymmetry of molecules allows for efficient attosecond-magnetic-field-pulse generation.

  13. Development of a 50-T pulsed magnetic field facility by using an 1.5-MJ capacitor bank

    NASA Astrophysics Data System (ADS)

    Shin, Y. H.; Kim, Yongmin

    2015-09-01

    Because DC magnets consume a huge amount of electricity (resistive DC magnet) or liquid helium (superconducting magnet), a capacitor-bank-driven pulsed magnet is known to be a cost-effective way of generating high magnetic fields. This type of pulsed magnet is normally operated at liquid nitrogen temperature and consumes little electric power to generate over 50 tesla (T) during a short transient time of less than 50 millisecond (ms). With modern fast data acquisition systems, almost all kinds of physical quantities, such as photoluminescence, magnetization or resistance can be measured during a short magnetic field pulse. We report a recently home-built capacitor-bankdriven pulsed magnetic field facility, in which a capacitor bank of 1.5-MJ maximum stored energy is utilized to generate pulsed magnetic fields up to 50 T with transient pulse time of 22 ms.

  14. Measuring Earth's Magnetic Field Simply.

    ERIC Educational Resources Information Center

    Stewart, Gay B.

    2000-01-01

    Describes a method for measuring the earth's magnetic field using an empty toilet paper tube, copper wire, clear tape, a battery, a linear variable resistor, a small compass, cardboard, a protractor, and an ammeter. (WRM)

  15. The magnetic field of Mercury

    NASA Technical Reports Server (NTRS)

    Ness, N. F.

    1977-01-01

    The Mariner 10 spacecraft encountered Mercury three times in 1974-1975. The first and third encounters provided detailed observations of a well-developed detached bow shock wave which results from the interaction of the solar wind. The planet possesses a global magnetic field and a modest magnetosphere, which deflects the solar wind. The field is approximately dipolar, with orientation in the same sense as earth, tilted 12 deg from the rotation axis. The magnetic moment corresponds to an undistorted equatorial field intensity of 350 gammas, approximately 1% of earth's. The field, while unequivocally intrinsic to the planet, may be due to remanent magnetization acquired from an extinct dynamo or a primordial magnetic field or due to a presently active dynamo. The latter possibility appears more plausible at present. In any case, the existence of the magnetic field provides very strong evidence of a mature differentiated planetary interior with a large core (core radius about 0.7 Mercury radius) and a record of the history of planetary formation in the magnetization of the crustal rocks.

  16. Optical sensor of magnetic fields

    DOEpatents

    Butler, M.A.; Martin, S.J.

    1986-03-25

    An optical magnetic field strength sensor for measuring the field strength of a magnetic field comprising a dilute magnetic semi-conductor probe having first and second ends, longitudinally positioned in the magnetic field for providing Faraday polarization rotation of light passing therethrough relative to the strength of the magnetic field. Light provided by a remote light source is propagated through an optical fiber coupler and a single optical fiber strand between the probe and the light source for providing a light path therebetween. A polarizer and an apparatus for rotating the polarization of the light is provided in the light path and a reflector is carried by the second end of the probe for reflecting the light back through the probe and thence through the polarizer to the optical coupler. A photo detector apparatus is operably connected to the optical coupler for detecting and measuring the intensity of the reflected light and comparing same to the light source intensity whereby the magnetic field strength may be calculated.

  17. Bridgman Growth of GeSi Alloys in a Static Magnetic Field

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Szofran, F. R.; Vujisic, L.; Motakef, S.

    1998-01-01

    Ge(0.95)Si(0.050 alloy crystals have been grown by the vertical Bridgman technique, both with and without an axial 5 Tesla magnetic field. The crystals were processed in a constant axial thermal gradient and the effects of graphite, hot pressed boron nitride, and pyrolitic boron nitride ampoule materials on interface shapes and macrosegregation profiles were investigated. The sample grown in a graphite ampoule at 5 Tesla exhibited a macroscopic axial concentration profile close to that of complete mixing and strong striation patterns. In samples grown in boron nitride ampoules, both with and without a 5 Tesla magnetic field applied, measured macroscopic axial concentration profiles were intermediate between those expected for a completely mixed melt and diffusion-controlled growth, and striation patterns were also observed. Possible explanations for the apparent inability of the magnetic field to reduce the flow velocities to below the growth velocities are discussed, and results of growth experiments in pyrolitic boron nitride ampoules are also described.

  18. Theory of light-induced effective magnetic field in Rashba ferromagnets

    NASA Astrophysics Data System (ADS)

    Qaiumzadeh, Alireza; Titov, Mikhail

    2016-07-01

    Motivated by recent experiments on all-optical magnetization reversal in conductive ferromagnetic thin films we use nonequilibrium formalism to calculate the effective magnetic field induced in a Rashba ferromagnet by a short laser pulse. The main contribution to the effect originates in the direct optical transitions between spin-split subbands. The resulting effective magnetic field is inversely proportional to the impurity scattering rate and can reach the amplitude of a few Tesla in the systems like Co/Pt bilayers. We show that the total light-induced effective magnetic field in ferromagnetic systems is the sum of two contributions: a helicity dependent term, which is an even function of magnetization, and a helicity independent term, which is an odd function of magnetization. The primary role of the spin-orbit interaction is to widen the frequency range for direct optical transitions.

  19. Crystal field and magnetic properties of ErH3

    NASA Technical Reports Server (NTRS)

    Flood, D. J.

    1977-01-01

    Magnetization and magnetic susceptibility measurements have been made in the temperature range 1.3 to 4.2 K on powdered samples of ErH3. The susceptibility exhibits Curie-Weiss behavior from 4.2 to 2 K, and intercepts the negative temperature axis at 1.05 + or - 0.05 K, indicating that the material is antiferromagnetic. The low field effective moment is 6.77 + or - 0.27 Bohr magnetons per ion. The magnetization exhibits a temperature independent contribution, the slope of which is (5 + or - 1.2) times 10 to the minus 6 Weber m/kg Tesla. The saturation moment is 3.84 + or - 0.15 Bohr magnetons per ion. The results can be qualitatively explained by the effects of crystal fields on the magnetic ions. No definitive assignment of a crystal field ground state can be given, nor can a clear choice between cubically or hexagonally symmetric crystal fields be made. For hexagonal symmetry, the first excited state is estimated to be 86 to 100 K above the ground state. For cubic symmetry, the splitting is of the order of 160 to 180 K.

  20. Magnetic field induced dynamical chaos

    SciTech Connect

    Ray, Somrita; Baura, Alendu; Bag, Bidhan Chandra

    2013-12-15

    In this article, we have studied the dynamics of a particle having charge in the presence of a magnetic field. The motion of the particle is confined in the x–y plane under a two dimensional nonlinear potential. We have shown that constant magnetic field induced dynamical chaos is possible even for a force which is derived from a simple potential. For a given strength of the magnetic field, initial position, and velocity of the particle, the dynamics may be regular, but it may become chaotic when the field is time dependent. Chaotic dynamics is very often if the field is time dependent. Origin of chaos has been explored using the Hamiltonian function of the dynamics in terms of action and angle variables. Applicability of the present study has been discussed with a few examples.

  1. High Spatial Resolution Cardiovascular Magnetic Resonance at 7.0 Tesla in Patients with Hypertrophic Cardiomyopathy – First Experiences: Lesson Learned from 7.0 Tesla

    PubMed Central

    Prothmann, Marcel; von Knobelsdorff-Brenkenhoff, Florian; Töpper, Agnieszka; Dieringer, Matthias A.; Shahid, Etham; Graessl, Andreas; Rieger, Jan; Lysiak, Darius; Thalhammer, C.; Huelnhagen, Till; Kellman, Peter; Niendorf, Thoralf; Schulz-Menger, Jeanette

    2016-01-01

    Background Cardiovascular Magnetic Resonance (CMR) provides valuable information in patients with hypertrophic cardiomyopathy (HCM) based on myocardial tissue differentiation and the detection of small morphological details. CMR at 7.0T improves spatial resolution versus today’s clinical protocols. This capability is as yet untapped in HCM patients. We aimed to examine the feasibility of CMR at 7.0T in HCM patients and to demonstrate its capability for the visualization of subtle morphological details. Methods We screened 131 patients with HCM. 13 patients (9 males, 56 ±31 years) and 13 healthy age- and gender-matched subjects (9 males, 55 ±31years) underwent CMR at 7.0T and 3.0T (Siemens, Erlangen, Germany). For the assessment of cardiac function and morphology, 2D CINE imaging was performed (voxel size at 7.0T: (1.4x1.4x2.5) mm3 and (1.4x1.4x4.0) mm3; at 3.0T: (1.8x1.8x6.0) mm3). Late gadolinium enhancement (LGE) was performed at 3.0T for detection of fibrosis. Results All scans were successful and evaluable. At 3.0T, quantification of the left ventricle (LV) showed similar results in short axis view vs. the biplane approach (LVEDV, LVESV, LVMASS, LVEF) (p = 0.286; p = 0.534; p = 0.155; p = 0.131). The LV-parameters obtained at 7.0T where in accordance with the 3.0T data (pLVEDV = 0.110; pLVESV = 0.091; pLVMASS = 0.131; pLVEF = 0.182). LGE was detectable in 12/13 (92%) of the HCM patients. High spatial resolution CINE imaging at 7.0T revealed hyperintense regions, identifying myocardial crypts in 7/13 (54%) of the HCM patients. All crypts were located in the LGE-positive regions. The crypts were not detectable at 3.0T using a clinical protocol. Conclusions CMR at 7.0T is feasible in patients with HCM. High spatial resolution gradient echo 2D CINE imaging at 7.0T allowed the detection of subtle morphological details in regions of extended hypertrophy and LGE. PMID:26863618

  2. Analysis of DNA Double-Strand Breaks and Cytotoxicity after 7 Tesla Magnetic Resonance Imaging of Isolated Human Lymphocytes.

    PubMed

    Reddig, Annika; Fatahi, Mahsa; Friebe, Björn; Guttek, Karina; Hartig, Roland; Godenschweger, Frank; Roggenbuck, Dirk; Ricke, Jens; Reinhold, Dirk; Speck, Oliver

    2015-01-01

    The global use of magnetic resonance imaging (MRI) is constantly growing and the field strengths increasing. Yet, only little data about harmful biological effects caused by MRI exposure are available and published research analyzing the impact of MRI on DNA integrity reported controversial results. This in vitro study aimed to investigate the genotoxic and cytotoxic potential of 7 T ultra-high-field MRI on isolated human peripheral blood mononuclear cells. Hence, unstimulated mononuclear blood cells were exposed to 7 T static magnetic field alone or in combination with maximum permissible imaging gradients and radiofrequency pulses as well as to ionizing radiation during computed tomography and γ-ray exposure. DNA double-strand breaks were quantified by flow cytometry and automated microscopy analysis of immunofluorescence stained γH2AX. Cytotoxicity was studied by CellTiter-Blue viability assay and [3H]-thymidine proliferation assay. Exposure of unstimulated mononuclear blood cells to 7 T static magnetic field alone or combined with varying gradient magnetic fields and pulsed radiofrequency fields did not induce DNA double-strand breaks, whereas irradiation with X- and γ-rays led to a dose-dependent induction of γH2AX foci. The viability assay revealed a time- and dose-dependent decrease in metabolic activity only among samples exposed to γ-radiation. Further, there was no evidence for altered proliferation response after cells were exposed to 7 T MRI or low doses of ionizing radiation (≤ 0.2 Gy). These findings confirm the acceptance of MRI as a safe non-invasive diagnostic imaging tool, but whether MRI can induce other types of DNA lesions or DNA double-strand breaks during altered conditions still needs to be investigated. PMID:26176601

  3. Analysis of DNA Double-Strand Breaks and Cytotoxicity after 7 Tesla Magnetic Resonance Imaging of Isolated Human Lymphocytes

    PubMed Central

    Guttek, Karina; Hartig, Roland; Godenschweger, Frank; Roggenbuck, Dirk; Ricke, Jens; Reinhold, Dirk; Speck, Oliver

    2015-01-01

    The global use of magnetic resonance imaging (MRI) is constantly growing and the field strengths increasing. Yet, only little data about harmful biological effects caused by MRI exposure are available and published research analyzing the impact of MRI on DNA integrity reported controversial results. This in vitro study aimed to investigate the genotoxic and cytotoxic potential of 7 T ultra-high-field MRI on isolated human peripheral blood mononuclear cells. Hence, unstimulated mononuclear blood cells were exposed to 7 T static magnetic field alone or in combination with maximum permissible imaging gradients and radiofrequency pulses as well as to ionizing radiation during computed tomography and γ-ray exposure. DNA double-strand breaks were quantified by flow cytometry and automated microscopy analysis of immunofluorescence stained γH2AX. Cytotoxicity was studied by CellTiter-Blue viability assay and [3H]-thymidine proliferation assay. Exposure of unstimulated mononuclear blood cells to 7 T static magnetic field alone or combined with varying gradient magnetic fields and pulsed radiofrequency fields did not induce DNA double-strand breaks, whereas irradiation with X- and γ-rays led to a dose-dependent induction of γH2AX foci. The viability assay revealed a time- and dose-dependent decrease in metabolic activity only among samples exposed to γ-radiation. Further, there was no evidence for altered proliferation response after cells were exposed to 7 T MRI or low doses of ionizing radiation (≤ 0.2 Gy). These findings confirm the acceptance of MRI as a safe non-invasive diagnostic imaging tool, but whether MRI can induce other types of DNA lesions or DNA double-strand breaks during altered conditions still needs to be investigated. PMID:26176601

  4. Magnetic field measurements of a superconducting undulator for a Harmonic Generation FEL experiment at the NSLS

    SciTech Connect

    Solomon, L.; Ingold, G.; Ben-Zvi, I.; Krinsky, S.; Yu, L.H.; Sampson, W.; Robins, K.

    1993-07-01

    An 18mm period, 0.54 Tesla, 8mm gap superconducting undulator with both horizontal and vertical focusing has been built and tested. This magnet, which is fabricated in 25 cm length sections, is being tested for use in the radiator section (total magnet length of 1.5 m) of the Harmonic Generation Free Electron Laser experiment at the National Synchrotron Light Source - Accelerator Test Facility at Brookhaven National Lab., in collaboration with Grumman Corp. The measurement system is outlined, sources and estimates of errors are described, and some magnetic field data are presented and discussed.

  5. Phase equilibria of Fe-C binary alloys in a magnetic field

    NASA Astrophysics Data System (ADS)

    England, Roger Dale

    The deployment of high flux magnetic processing in industry requires the ability to model the expected results of a proposed processing, and the current assumptions in the literature did not reflect the actual outcome in measurements of ductile iron. Simple binary iron-carbon alloys of less than one weight percent carbon were thermo-magnetically processed and then compared with Gibbs free energy phase transformation predictions. The data was used to quantify the change in the Gibbs free energy associated with the addition of a static high flux magnetic field, which is complicated by the change in magnetic response as the iron carbon alloys pass through the Curie point. A current common practice is to modify Gibbs free energy by -12J per mole per Tesla applied, as has been reported in the literature. This current prediction practice was employed in initial experiments for this work and the experimental data did not agree with these predicted values. This work suggests two specific influences that affect the model, chemistry and magnetic dipole changes. First, that the influence of alloying elements in the original chemistry, as the samples in the literature were a manganese alloy with 0.45 weight percent carbon, as well as not being precisely controlled for tramp elements that commonly occur in recycled material, created a change that was not predicted and therefore the temperatures were incorrect. Also, the phase transformation in a high flux magnetic field was measured to have a different response under warming versus cooling than the normal hysteresis under ambient magnetism. The change in Gibbs free energy for the binary alloys was calculated as -3J per mole per Tesla in warming, and -8J per mole per tesla in cooling. The change from these values to the -12J per mole per Tesla previously reported is attributed to the change in chemistry. This work attributes the published increase in physical properties to the Hall-Petch relation as a result of the finer product

  6. Muon g-2 at Fermilab: Magnetic Field Preparations for a New Physics Search

    NASA Astrophysics Data System (ADS)

    Kiburg, Brendan; Muon g-2 Collaboration

    2016-03-01

    The Muon g - 2 experiment at Fermilab will measure the muon's anomalous magnetic moment, aμ, to 140 parts-per-billion. Modern calculations for aμ differ from the current experimental value by 3.6 σ. Our effort will test this discrepancy by collecting 20 times more muons and implementing several upgrades to the well-established storage ring technique. The experiment utilizes a superconducting electromagnet with a 7-meter radius and a uniform 1.45-Tesla magnetic field to store ~104 muons at a time. The times, energies, and locations of the subsequent decay positrons are determined and combined with magnetic field measurements to extract aμ. This talk will provide a brief snapshot of the current discrepancy. The role and requirements of the precision magnetic field will be described. Recent progress to establish the required magnetic field uniformity will be highlighted.

  7. Magnetic fields in quiescent prominences

    NASA Technical Reports Server (NTRS)

    Van Ballegooijen, A. A.; Martens, P. C. H.

    1990-01-01

    The origin of the axial fields in high-latitude quiescent prominences is considered. The fact that almost all quiescent prominences obey the same hemisphere-dependent rule strongly suggests that the solar differential rotation plays an important role in producing the axial fields. However, the observations are inconsistent with the hypothesis that the axial fields are produced by differential rotation acting on an existing coronal magnetic field. Several possible explanations for this discrepancy are considered. The possibility that the sign of the axial field depends on the topology of the magnetic field in which the prominence is embedded is examined, as is the possibility that the neutral line is tilted with respect to the east-west direction, so that differential rotation causes the neutral line also to rotate with time. The possibility that the axial fields of quiescent prominences have their origin below the solar surface is also considered.

  8. Magnetic fields in ring galaxies

    NASA Astrophysics Data System (ADS)

    Moss, D.; Mikhailov, E.; Silchenko, O.; Sokoloff, D.; Horellou, C.; Beck, R.

    2016-07-01

    Context. Many galaxies contain magnetic fields supported by galactic dynamo action. The investigation of these magnetic fields can be helpful for understanding galactic evolution; however, nothing definitive is known about magnetic fields in ring galaxies. Aims: Here we investigate large-scale magnetic fields in a previously unexplored context, namely ring galaxies, and concentrate our efforts on the structures that appear most promising for galactic dynamo action, i.e. outer star-forming rings in visually unbarred galaxies. Methods: We use tested methods for modelling α-Ω galactic dynamos, taking into account the available observational information concerning ionized interstellar matter in ring galaxies. Results: Our main result is that dynamo drivers in ring galaxies are strong enough to excite large-scale magnetic fields in the ring galaxies studied. The variety of dynamo driven magnetic configurations in ring galaxies obtained in our modelling is much richer than that found in classical spiral galaxies. In particular, various long-lived transients are possible. An especially interesting case is that of NGC 4513, where the ring counter-rotates with respect to the disc. Strong shear in the region between the disc and the ring is associated with unusually strong dynamo drivers in such counter-rotators. The effect of the strong drivers is found to be unexpectedly moderate. With counter-rotation in the disc, a generic model shows that a steady mixed parity magnetic configuration that is unknown for classical spiral galaxies, may be excited, although we do not specifically model NGC 4513. Conclusions: We deduce that ring galaxies constitute a morphological class of galaxies in which identification of large-scale magnetic fields from observations of polarized radio emission, as well as dynamo modelling, may be possible. Such studies have the potential to throw additional light on the physical nature of rings, their lifetimes, and evolution.

  9. Magnetic Fields in Stellar Jets

    NASA Astrophysics Data System (ADS)

    Hartigan, Patrick; Frank, Adam; Varniére, Peggy; Blackman, Eric G.

    2007-06-01

    Although several lines of evidence suggest that jets from young stars are driven magnetically from accretion disks, existing observations of field strengths in the bow shocks of these flows imply that magnetic fields play only a minor role in the dynamics at these locations. To investigate this apparent discrepancy we performed numerical simulations of expanding magnetized jets with stochastically variable input velocities with the AstroBEAR MHD code. Because the magnetic field B is proportional to the density n within compression and rarefaction regions, the magnetic signal speed drops in rarefactions and increases in the compressed areas of velocity-variable flows. In contrast, B~n0.5 for a steady state conical flow with a toroidal field, so the Alfvén speed in that case is constant along the entire jet. The simulations show that the combined effects of shocks, rarefactions, and divergent flow cause magnetic fields to scale with density as an intermediate power 1>p>0.5. Because p>0.5, the Alfvén speed in rarefactions decreases on average as the jet propagates away from the star. Hence, a typical Alfvén velocity in the jet close to the star is significantly larger than it is in the rarefactions ahead of bow shocks at larger distances. We find that the observed values of weak fields at large distances are consistent with strong fields required to drive the observed mass loss close to the star. Typical velocity perturbations, which form shocks at large distances, will produce only magnetic waves close to the star. For a typical stellar jet the crossover point inside which velocity perturbations of 30-40 km s-1 no longer produce shocks is ~300 AU from the source.

  10. Hysteresis in rotation magnetic field

    NASA Astrophysics Data System (ADS)

    Ivanyi, Amalia

    2000-01-01

    The different properties of the vector Jiles-Atherton hysteresis operator is proved under forced H- and B-field supply. Feeding the magnetic material with alternating and circular polarised rotational excitation, the different properties of the model under the input field intensity and the flux density are investigated and the results are proved in figures.

  11. MAGNETIC FIELD MEASUREMENTS FOR FAST-CHANGING MAGNETIC FIELDS.

    SciTech Connect

    JAIN, A.; ESCALLIER, J.; GANETIS, G.; LOUIE, W.; MARONE, A.; THOMAS. R.; WANDERER, P.

    2004-10-03

    Several recent applications for fast ramped magnets have been found that require rapid measurement of the field quality during the ramp. (In one instance, accelerator dipoles will be ramped at 1 T/sec, with measurements needed to the accuracy typically required for accelerators.) We have built and tested a new type of magnetic field measuring system to meet this need. The system consists of 16 stationary pickup windings mounted on a cylinder. The signals induced in the windings in a changing magnetic field are sampled and analyzed to obtain the field harmonics. To minimize costs, printed circuit boards were used for the pickup windings and a combination of amplifiers and ADPs used for the voltage readout system. New software was developed for the analysis. Magnetic field measurements of a model dipole developed for the SIS200 accelerator at GSI are presented. The measurements are needed to insure that eddy currents induced by the fast ramps do not impact the field quality needed for successful accelerator operation.

  12. Diamagnetic cavitization of laser-produced barium plasma in transverse magnetic field.

    PubMed

    Raju, Makaraju Srinivasa; Singh, R K; Kumar, Ajai; Gopinath, Pramod

    2015-05-15

    Influence of uniform transverse magnetic field and ambient Ar pressure on the plasma plume produced by Nd:YAG laser ablation of barium has been investigated by time-of-flight optical emission spectroscopy. Experiments were carried out with laser pulse energy of 150 mJ and 0.45 Tesla magnetic field. The time-of-flight profiles showed ambient pressure independent behavior at 6-mm distance from the target, which is attributed to the diamagnetic behavior of the laser plasma. A theoretical model is proposed that may explain the compression of temporal profiles of the ionic lines. PMID:26393695

  13. Development of high temperature superconductors for magnetic field applications

    NASA Astrophysics Data System (ADS)

    Larbalestier, D. C.

    The key requirement for magnetic field applications of high temperature superconductor (HTS) materials is to have conductors with high transport critical current density available for magnet builders. After 3 or 4 years of being without any such object, conductor makers have had recent success in producing simple conductor prototypes. These have permitted the construction of simple HTS magnets having self fields exceeding 1 tesla at 4K. Thus the scientific feasibility of making powerful HTS magnets has been demonstrated. Attention to the technological aspects of making HTS conductors for magnets with strong flux pinning and reduced superconducting granularity is now sensible and attractive. However, extrinsic defects such as filament sausaging, cracking, misaligned grains and other perturbation to long range current flow must be controlled at a low level if the benefit of intrinsic improvements to the critical current density is to be maintained in the conductor form. Due to the great complexity of the HTS materials, there is sometimes confusion as to whether a given sample has an intrinsically or extrinsically limited critical current density. Systematic microstructure variation experiments and resistive transition analysis are shown to be particularly helpful in this phase of conductor development.

  14. Development of high temperature superconductors for magnetic field applications

    SciTech Connect

    Larbalestier, D.C.

    1991-12-31

    The key requirement for magnetic field applications of high temperature superconductor (HTS) materials is to have conductors with high transport critical current density available for magnet builders. After 3 or 4 years of being without any such object, conductor makers have had recent success in producing simple conductor prototypes. These have permitted the construction of simple HTS magnets having self fields exceeding 1 tesla at 4K. Thus the scientific feasibility of making powerful HTS magnets has been demonstrated. Attention to the technological aspects of making HTS conductors for magnets with strong flux pinning and reduced superconducting granularity is now sensible and attractive. However, extrinsic defects such as filament sausaging, cracking, misaligned grains and other perturbation to long range current flow must be controlled at a low level if the benefit of intrinsic improvements to the critical current density is to be maintained in the conductor form. Due to the great complexity of the HTS materials, there is sometimes confusion as to whether a given sample has an intrinsically or extrinsically limited critical current density. Systematic microstructure variation experiments and resistive transition analysis are shown to be particularly helpful in this phase of conductor development.

  15. Development of high temperature superconductors for magnetic field applications

    SciTech Connect

    Larbalestier, D.C.

    1991-01-01

    The key requirement for magnetic field applications of high temperature superconductor (HTS) materials is to have conductors with high transport critical current density available for magnet builders. After 3 or 4 years of being without any such object, conductor makers have had recent success in producing simple conductor prototypes. These have permitted the construction of simple HTS magnets having self fields exceeding 1 tesla at 4K. Thus the scientific feasibility of making powerful HTS magnets has been demonstrated. Attention to the technological aspects of making HTS conductors for magnets with strong flux pinning and reduced superconducting granularity is now sensible and attractive. However, extrinsic defects such as filament sausaging, cracking, misaligned grains and other perturbation to long range current flow must be controlled at a low level if the benefit of intrinsic improvements to the critical current density is to be maintained in the conductor form. Due to the great complexity of the HTS materials, there is sometimes confusion as to whether a given sample has an intrinsically or extrinsically limited critical current density. Systematic microstructure variation experiments and resistive transition analysis are shown to be particularly helpful in this phase of conductor development.

  16. Liquid neon heat transfer as applied to a 30 tesla cryomagnet

    NASA Technical Reports Server (NTRS)

    Papell, S. S.; Hendricks, R. C.

    1975-01-01

    Since superconducting magnets cooled by liquid helium are limited to magnetic fields of about 18 teslas, the design of a 30 tesla cryomagnet necessitates forced convection liquid neon heat transfer in small coolant channels. As these channels are too small to handle the vapor flow if the coolant were to boil, the design philosophy calls for suppressing boiling by subjecting the fluid to high pressures. Forced convection heat transfer data are obtained by using a blowdown technique to force the fluid vertically through a resistance-heated instrumented tube. The data are obtained at inlet temperatures between 28 and 34 K and system pressures between 28 to 29 bars. Data correlation is limited to a very narrow range of test conditions, since the tests were designed to simulate the heat transfer characteristics in the coolant channels of the 30 tesla cryomagnet concerned. The results can therefore be applied directly to the design of the magnet system.-

  17. Influence of magnetic fields on the voltammetric response of microelectrodes in highly concentrated organic redox solutions

    SciTech Connect

    Lee, J.; Gao, X.; Hardy, L.D.A.; White, H.S.

    1995-06-01

    The voltammetric response of Au and Pt microdisk electrodes (6.4, 12.5, and 25 {micro}m) in concentrated solutions of organic redox species (nitrobenzene, acetophenone, and benzophenone) has been measured as a function of the orientation and magnitude of an externally applied magnetic field (0--1 Tesla). A magnetic field effect on voltammetric currents is observed for redox concentrations greater than ca. 0.01 M, and is a strong function of the orientation of the field. Large enhancements (+100%) or diminishments ({minus}15%) of limiting currents can be induced by application of the magnetic field. The observed phenomena are discussed in terms of magnetic field-induced transport of electrogenerated products.

  18. Magnetic field fluctuations during substorms

    NASA Technical Reports Server (NTRS)

    Fairfield, D. H.

    1971-01-01

    Before a magnetospheric substorm and during its early phases the magnetic field magnitude in the geomagnetic tail increases and field lines in the nighttime hemisphere assume a more tail-like configuration. Before the substorm onset a minimum amount of magnetic flux is observed to cross the neutral sheet which means that the neutral sheet currents attain their most earthward locations and their greatest current densities. This configuration apparently results from an increased transport of magnetic flux to the tail caused by a southward interplanetary magnetic field. The field begins relaxing toward a more dipolar configuration at the time of a substorm onset with the recovery probably occurring first between 6 and 10 R sub E. This recovery must be associated with magnetospheric convection which restores magnetic flux to the dayside hemisphere. Field aligned currents appear to be required to connect magnetospheric currents to the auroral electrojets, implying that a net current flows in a limited range of longitudes. Space measurements supporting current systems are limited. More evidence exists for the occurrence of double current sheets which do not involve net current at a given longitude.

  19. Indoor localization using magnetic fields

    NASA Astrophysics Data System (ADS)

    Pathapati Subbu, Kalyan Sasidhar

    Indoor localization consists of locating oneself inside new buildings. GPS does not work indoors due to multipath reflection and signal blockage. WiFi based systems assume ubiquitous availability and infrastructure based systems require expensive installations, hence making indoor localization an open problem. This dissertation consists of solving the problem of indoor localization by thoroughly exploiting the indoor ambient magnetic fields comprising mainly of disturbances termed as anomalies in the Earth's magnetic field caused by pillars, doors and elevators in hallways which are ferromagnetic in nature. By observing uniqueness in magnetic signatures collected from different campus buildings, the work presents the identification of landmarks and guideposts from these signatures and further develops magnetic maps of buildings - all of which can be used to locate and navigate people indoors. To understand the reason behind these anomalies, first a comparison between the measured and model generated Earth's magnetic field is made, verifying the presence of a constant field without any disturbances. Then by modeling the magnetic field behavior of different pillars such as steel reinforced concrete, solid steel, and other structures like doors and elevators, the interaction of the Earth's field with the ferromagnetic fields is described thereby explaining the causes of the uniqueness in the signatures that comprise these disturbances. Next, by employing the dynamic time warping algorithm to account for time differences in signatures obtained from users walking at different speeds, an indoor localization application capable of classifying locations using the magnetic signatures is developed solely on the smart phone. The application required users to walk short distances of 3-6 m anywhere in hallway to be located with accuracies of 80-99%. The classification framework was further validated with over 90% accuracies using model generated magnetic signatures representing

  20. Magnetic field of the Earth

    NASA Astrophysics Data System (ADS)

    Popov, Aleksey

    2013-04-01

    The magnetic field of the Earth has global meaning for a life on the Earth. The world geophysical science explains: - occurrence of a magnetic field of the Earth it is transformation of kinetic energy of movements of the fused iron in the liquid core of Earth - into the magnetic energy; - the warming up of a kernel of the Earth occurs due to radioactive disintegration of elements, with excretion of thermal energy. The world science does not define the reasons: - drift of a magnetic dipole on 0,2 a year to the West; - drift of lithospheric slabs and continents. The author offers: an alternative variant existing in a world science the theories "Geodynamo" - it is the theory « the Magnetic field of the Earth », created on the basis of physical laws. Education of a magnetic field of the Earth occurs at moving the electric charge located in a liquid kernel, at rotation of the Earth. At calculation of a magnetic field is used law the Bio Savara for a ring electric current: dB = . Magnetic induction in a kernel of the Earth: B = 2,58 Gs. According to the law of electromagnetic induction the Faradey, rotation of a iron kernel of the Earth in magnetic field causes occurrence of an electric field Emf which moves electrons from the center of a kernel towards the mantle. So of arise the radial electric currents. The magnetic field amplifies the iron of mantle and a kernel of the Earth. As a result of action of a radial electric field the electrons will flow from the center of a kernel in a layer of an electric charge. The central part of a kernel represents the field with a positive electric charge, which creates inverse magnetic field Binv and Emfinv When ?mfinv = ?mf ; ?inv = B, there will be an inversion a magnetic field of the Earth. It is a fact: drift of a magnetic dipole of the Earth in the western direction approximately 0,2 longitude, into a year. Radial electric currents a actions with the basic magnetic field of a Earth - it turn a kernel. It coincides with laws

  1. Unambiguous identification of superparamagnetic iron oxide (SPIO) particles through quantitative susceptibility mapping of the nonlinear response to magnetic fields

    PubMed Central

    Liu, Tian; Spincemaille, Pascal; de Rochefort, Ludovic; Wong, Richard; Prince, Martin; Wang, Yi

    2010-01-01

    Superparamagnetic iron oxide (SPIO) particles generate signal void regions on gradient echo images due to their strong magnetization. In practice, the signal void region might be indistinguishable from that generated by air. However, the response of SPIO to an externally applied magnetic field is non-linear. Magnetization of SPIO saturates at around 1 Tesla while magnetization of water and air increase linearly with field strength. Phantom experiment and mice experiments demonstrated the feasibility of a non-ambiguous identification of superparamagnetic contrast agents. PMID:20688448

  2. Investigation of Parallel Radiofrequency Transmission for the Reduction of Heating in Long Conductive Leads in 3 Tesla Magnetic Resonance Imaging.

    PubMed

    McElcheran, Clare E; Yang, Benson; Anderson, Kevan J T; Golenstani-Rad, Laleh; Graham, Simon J

    2015-01-01

    Deep Brain Stimulation (DBS) is increasingly used to treat a variety of brain diseases by sending electrical impulses to deep brain nuclei through long, electrically conductive leads. Magnetic resonance imaging (MRI) of patients pre- and post-implantation is desirable to target and position the implant, to evaluate possible side-effects and to examine DBS patients who have other health conditions. Although MRI is the preferred modality for pre-operative planning, MRI post-implantation is limited due to the risk of high local power deposition, and therefore tissue heating, at the tip of the lead. The localized power deposition arises from currents induced in the leads caused by coupling with the radiofrequency (RF) transmission field during imaging. In the present work, parallel RF transmission (pTx) is used to tailor the RF electric field to suppress coupling effects. Electromagnetic simulations were performed for three pTx coil configurations with 2, 4, and 8-elements, respectively. Optimal input voltages to minimize coupling, while maintaining RF magnetic field homogeneity, were determined for all configurations using a Nelder-Mead optimization algorithm. Resulting electric and magnetic fields were compared to that of a 16-rung birdcage coil. Experimental validation was performed with a custom-built 4-element pTx coil. In simulation, 95-99% reduction of the electric field at the tip of the lead was observed between the various pTx coil configurations and the birdcage coil. Maximal reduction in E-field was obtained with the 8-element pTx coil. Magnetic field homogeneity was comparable to the birdcage coil for the 4- and 8-element pTx configurations. In experiment, a temperature increase of 2±0.15°C was observed at the tip of the wire using the birdcage coil, whereas negligible increase (0.2±0.15°C) was observed with the optimized pTx system. Although further research is required, these initial results suggest that the concept of optimizing pTx to reduce DBS

  3. Investigation of Parallel Radiofrequency Transmission for the Reduction of Heating in Long Conductive Leads in 3 Tesla Magnetic Resonance Imaging

    PubMed Central

    McElcheran, Clare E.; Yang, Benson; Anderson, Kevan J. T.; Golenstani-Rad, Laleh; Graham, Simon J.

    2015-01-01

    Deep Brain Stimulation (DBS) is increasingly used to treat a variety of brain diseases by sending electrical impulses to deep brain nuclei through long, electrically conductive leads. Magnetic resonance imaging (MRI) of patients pre- and post-implantation is desirable to target and position the implant, to evaluate possible side-effects and to examine DBS patients who have other health conditions. Although MRI is the preferred modality for pre-operative planning, MRI post-implantation is limited due to the risk of high local power deposition, and therefore tissue heating, at the tip of the lead. The localized power deposition arises from currents induced in the leads caused by coupling with the radiofrequency (RF) transmission field during imaging. In the present work, parallel RF transmission (pTx) is used to tailor the RF electric field to suppress coupling effects. Electromagnetic simulations were performed for three pTx coil configurations with 2, 4, and 8-elements, respectively. Optimal input voltages to minimize coupling, while maintaining RF magnetic field homogeneity, were determined for all configurations using a Nelder-Mead optimization algorithm. Resulting electric and magnetic fields were compared to that of a 16-rung birdcage coil. Experimental validation was performed with a custom-built 4-element pTx coil. In simulation, 95-99% reduction of the electric field at the tip of the lead was observed between the various pTx coil configurations and the birdcage coil. Maximal reduction in E-field was obtained with the 8-element pTx coil. Magnetic field homogeneity was comparable to the birdcage coil for the 4- and 8-element pTx configurations. In experiment, a temperature increase of 2±0.15°C was observed at the tip of the wire using the birdcage coil, whereas negligible increase (0.2±0.15°C) was observed with the optimized pTx system. Although further research is required, these initial results suggest that the concept of optimizing pTx to reduce DBS

  4. Observations of Mercury's magnetic field

    NASA Technical Reports Server (NTRS)

    Ness, N. F.; Behannon, K. W.; Lepping, R. P.; Whang, Y. C.

    1975-01-01

    Magnetic field data obtained by Mariner 10 during the third and final encounter with the planet Mercury on 16 March 1975 were studied. A well developed bow shock and modest magnetosphere, previously observed at first encounter on 29 March 1974, were again observed. In addition, a much stronger magnetic field near closest approach, 400 gamma versus 98 gamma, was observed at an altitude of 327 km and approximately 70 deg north Mercurian latitude. Spherical harmonic analysis of the data provide an estimate of the centered planetary magnetic dipole of 4.7 x 10 to the 22nd power Gauss/cu cm with the axis tilted 12 deg to the rotation axis and in the same sense as Earth's. The interplanetary field was sufficiently different between first and third encounters that in addition to the very large field magnitude observed, it argues strongly against a complex induction process generating the observed planetary field. While a possibility exists that Mercury possesses a remanent field due to magnetization early in its formation, a present day active dynamo seems to be a more likely candidate for its origin.

  5. Feasibility study of Nb3Al Rutherford cable for high field accelerator magnet application

    SciTech Connect

    Yamada, R.; Kikuchi, A.; Ambrosio, G.; Andreev, N.; Barzi, E.; Cooper, C.; Feher, S.; Kashikhin, V.V.; Lamm, M.; Novitski, I.; Takeuchi, T.; Tartaglia, M.; Turrioni, D.; Verweij, A.P.; Wake, M.; Willering, G; Zlobin, A.V.; /Fermilab

    2006-08-01

    Feasibility study of Cu stabilized Nb{sub 3}Al strand and Rutherford cable for the application to high field accelerator magnets are being done at Fermilab in collaboration with NIMS. The Nb{sub 3}Al strand, which was developed and manufactured at NIMS in Japan, has a non-copper Jc of about 844 A/mm{sup 2} at 15 Tesla at 4.2 K, a copper content of 50%, and filament size of about 50 microns. Rutherford cables with 27 Nb{sub 3}Al strands of 1.03 mm diameter were fabricated and tested. Quench tests on a short cable were done to study its stability with only its self field, utilizing a high current transformer. A pair of 2 meter long Nb{sub 3}Al cables was tested extensively at CERN at 4.3 and 1.9 K up to 11 Tesla including its self field with a high transport current of 20.2 kA. In the low field test we observed instability near splices and in the central region. This is related to the flux-jump like behavior, because of excessive amount of Nb in the Nb{sub 3}Al strand. There is possibility that the Nb in Nb{sub 3}Al can cause instability below 2 Tesla field regions. We need further investigation on this problem. Above 8 Tesla, we observed quenches near the critical surface at fast ramp rate from 1000 to 3000 A/sec, with quench velocity over 100 m/sec. A small racetrack magnet was made using a 14 m of Rutherford cable and successfully tested up to 21.8 kA, corresponding to 8.7 T.

  6. Galactic and Intergalactic Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Klein, U.; Fletcher, A.

    This course-tested textbook conveys the fundamentals of magnetic fields and relativistic plasma in diffuse cosmic media, with a primary focus on phenomena that have been observed at different wavelengths. Theoretical concepts are addressed wherever necessary, with derivations presented in sufficient detail to be generally accessible. In the first few chapters the authors present an introduction to various astrophysical phenomena related to cosmic magnetism, with scales ranging from molecular clouds in star-forming regions and supernova remnants in the Milky Way, to clusters of galaxies. Later chapters address the role of magnetic fields in the evolution of the interstellar medium, galaxies and galaxy clusters. The book is intended for advanced undergraduate and postgraduate students in astronomy and physics and will serve as an entry point for those starting their first research projects in the field.

  7. Magnetic-field-induced dose effects in MR-guided radiotherapy systems: dependence on the magnetic field strength

    NASA Astrophysics Data System (ADS)

    Raaijmakers, A. J. E.; Raaymakers, B. W.; Lagendijk, J. J. W.

    2008-02-01

    Several institutes are currently working on the development of a radiotherapy treatment system with online MR imaging (MRI) modality. The main difference between their designs is the magnetic field strength of the MRI system. While we have chosen a 1.5 Tesla (T) magnetic field strength, the Cross Cancer Institute in Edmonton will be using a 0.2 T MRI scanner and the company Viewray aims to use 0.3 T. The magnetic field strength will affect the severity of magnetic field dose effects, such as the electron return effect (ERE): considerable dose increase at tissue air boundaries due to returning electrons. This paper has investigated how the ERE dose increase depends on the magnetic field strength. Therefore, four situations where the ERE occurs have been simulated: ERE at the distal side of the beam, the lateral ERE, ERE in cylindrical air cavities and ERE in the lungs. The magnetic field comparison values were 0.2, 0.75, 1.5 and 3 T. Results show that, in general, magnetic field dose effects are reduced at lower magnetic field strengths. At the distal side, the ERE dose increase is largest for B = 0.75 T and depends on the irradiation field size for B = 0.2 T. The lateral ERE is strongest for B = 3 T but shows no effect for B = 0.2 T. Around cylindrical air cavities, dose inhomogeneities disappear if the radius of the cavity becomes small relative to the in-air radius of the secondary electron trajectories. At larger cavities (r > 1 cm), dose inhomogeneities exist for all magnetic field strengths. In water-lung-water phantoms, the ERE dose increase takes place at the water-lung transition and the dose decreases at the lung-water transition, but these effects are minimal for B = 0.2 T. These results will contribute to evaluating the trade-off between magnetic field dose effects and image quality of MR-guided radiotherapy systems.

  8. Innovative uses of X-ray FEL and the pulsed magnets: High magnetic field X-ray scattering studies on quantum materials

    NASA Astrophysics Data System (ADS)

    Jang, H.; Nojiri, H.; Gerber, S.; Lee, W.-S.; Zhu, D.; Lee, J.-S.; Kao, C.-C.

    X-ray scattering under high magnetic fields provides unique opportunities for solving many scientific puzzles in quantum materials, such as strongly correlated electron systems. Incorporating high magnetic field capability presents serious challenges at an x-ray facility, including the limitation on the maximum magnetic field even with a DC magnet (up to ~20 Tesla), expensive cost in development, radiation damage, and limited flexibility in the experimental configuration. These challenges are especially important when studying the symmetry broken state induced by the high magnetic field are necessary, for example, exploring intertwined orders between charge density wave (CDW) and high Tc superconductivity. Moreover, a gap in magnetic field strengths has led to many discrepancies and puzzling issues for understanding strongly correlated systems - is a CDW competing or more intimately intertwined with high-temperature superconductivity. To bridge this gap and resolve these experimental discrepancies, one needs an innovative experimental approach. Here, we will present a new approach to x-ray scattering under high magnetic field up to 28 Teals by taking advantage of brilliant x-ray free electron laser (FEL). The FEL generates sufficiently high photon flux for single shot x-ray scattering experiment. In this talk, we will also present the first demonstration about the field induced CDW order in YBCO Ortho-VIII with 28 Tesla, which show the totally unexpected three-dimensional behavior.

  9. Mars Crustal Magnetic Field Remnants

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The radial magnetic field measured is color coded on a global perspective view that shows measurements derived from spacecraft tracks below 200 km overlain on a monochrome shaded relief map of the topography.

    This image shows especially strong Martian magnetic fields in the southern highlands near the Terra Cimmeria and Terra Sirenum regions, centered around 180 degrees longitude from the equator to the pole. It is where magnetic stripes possibly resulting from crustal movement are most prominent. The bands are oriented approximately east - west and are about 100 miles wide and 600 miles long, although the longest band stretches more than 1200 miles.

    The false blue and red colors represent invisible magnetic fields in the Martian crust that point in opposite directions. The magnetic fields appear to be organized in bands, with adjacent bands pointing in opposite directions, giving these stripes a striking similarity to patterns seen in the Earth's crust at the mid-oceanic ridges.

    These data were compiled by the MGS Magnetometer Team led by Mario Acuna at the Goddard Space Flight Center in Greenbelt, MD.

  10. Neutron Scattering at Highest Magnetic Fields at the Helmholtz Centre Berlin

    NASA Astrophysics Data System (ADS)

    Smeibidl, P.; Tennant, A.; Ehmler, H.; Bird, M.

    2010-04-01

    The Helmholtz Centre Berlin (HZB), formerly Hahn-Meitner Institute is a user facility for the study of structure and dynamics with neutrons and synchrotron radiation with special emphasis on experiments under extreme conditions. Neutron scattering is uniquely suited to study magnetic properties on a microscopic length scale, because neutrons have comparable wavelengths and, due to their magnetic moment, they interact with the atomic magnetic moments. At HZB a dedicated instrument for neutron scattering at extreme fields is under construction, the Extreme Environment Diffractometer ExED. It is projected according to the “time-of-flight” principle for elastic and inelastic neutron scattering and for the special geometric constraints of analysing samples in a high field magnet. The new magnet will not only allow for novel experiments, it will be at the forefront of development in magnet technology itself. The design of the magnet will follow the Series Connected Hybrid System Technology (SCH) developed at the National High Magnetic Field Laboratory (NHMFL) in Tallahassee, Florida. To compromise between the needs of the magnet design for highest fields and the concept of the neutron instrument, the magnetic field will be generated by means of a coned solenoid with horizontal field orientation. By using resistive insert coils, which are mounted in the room temperature bore of a superconducting cable-in-conduit (CIC) magnet, fields above 30 Tesla can be obtained in a geometry optimised for the demands of neutron scattering.

  11. Study on technology of high-frequency pulsed magnetic field strength measurement.

    PubMed

    Chen, Yi-Mei; Liu, Zhi-Peng; Yin, Tao

    2012-01-01

    High-frequency transient weak magnetic field is always involved in researches about biomedical engineering field while common magnetic-field sensors cannot work properly at frequencies as high as MHz. To measure the value of MHz-level weak pulsed magnetic-field strength accurately, this paper designs a measurement and calibration method for pulsed magnetic-field. In this paper, a device made of Nonferromagnetic material was independently designed and applied to pulsed magnetic field measurement. It held an accurately relative position between the magnetic field generating coil and the detecting coil. By applying a sinusoidal pulse to the generator, collecting the induced electromotive force of the detector, the final magnetic field strength was worked out through algorithms written in Matlab according to Faraday's Law. Experiments were carried out for measurement and calibration. Experiments showed that, under good stability and consistency, accurate measurement of magnetic-field strength of a sinepulse magnetic-field can be achieved, with frequency at 0.5, 1, 1.5 MHz and strength level at micro-Tesla. Calibration results carried out a measuring relative error about 2.5%. PMID:23366106

  12. The magnetic field of the Milky Way

    NASA Astrophysics Data System (ADS)

    Reid, Mark J.

    Models of the magnetic field configuration of the Milky Way are reviewed. Current analyses of rotation measure data suggest that the Milky Way possesses a bisymmetric-like spiral magnetic field, that field reversals among spiral arms exist, and that the magnetic spiral may not closely match the mass spiral structure. Zeeman measurements of OH masers may provide alternative magnetic field information.

  13. Satellite to study earth's magnetic field

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The Magnetic Field Satellite (Magsat) designed to measure the near earth magnetic field and crustal anomalies is briefly described. A scalar magnetometer to measure the magnitude of the earth's crustal magnetic field and a vector magnetometer to measure magnetic field direction as well as magnitude are included. The mission and its objectives are summarized along with the data collection and processing system.

  14. Ensemble simulations of the ocean induced magnetic field

    NASA Astrophysics Data System (ADS)

    Irrgang, Christopher; Saynisch, Jan; Hagedoorn, Jan M.; Thomas, Maik

    2016-04-01

    The recent advent of new high-resolution datasets of electromagnetic induction allows novel combinations of observations and models. The ocean induced magnetic field provides the potential to indirectly observe the ocean general circulation and may be utilized by data assimilation techniques. The modelling of the ocean induced magnetic field is affected by various uncertainties that originate from errors in the input data and from the applied model itself. The amount of aggregated uncertainties and their effect on the modelling of electromagnetic induction in the ocean is unknown. However, the knowledge of model uncertainties is essential for many research questions. To investigate the uncertainty in the modelling of motional induction, ensemble simulations with an ocean general circulation model and an electromagnetic induction model are performed on the basis of different error scenarios. This approach allows to estimate both the spatial distribution and temporal variation of the uncertainty. The largest uncertainty in the motionally induced magnetic field occurs in the area of the Antarctic Circumpolar Current. Local maxima reach values of up to 0.7 nano Tesla (nT). The estimated global annual mean uncertainty in the motionally induced magnetic field ranges from 0.1 to 0.4 nT. The relative amount of uncertainty reaches up to 30 % of the induced magnetic signal strength with largest values in regions in the northern hemisphere. The major source of uncertainty is found to be introduced by the wind stress from the atmospheric forcing of the ocean model. In addition, the temporal evolution of the uncertainty in the motionally induced magnetic field shows distinct seasonal variations. Specific regions are identified which are robust with respect to the introduced uncertainties.

  15. Effect of a magnetic field on crack length measurement of 9NI steel by unloading compliance method

    NASA Astrophysics Data System (ADS)

    Nagasaki, C.; Matsui, K.; Shibata, K.

    2002-05-01

    In the fracture toughness measurement of ferro-magnetic materials in high magnetic fields, it has not been clarified whether we can use the same formulas as ones used in a non-magnetic field. Therefore, it is necessary to understand the magnetic effect in the fracture toughness measurement of ferro-magnetic materials. As the first step, crack length was measured at 4 K by unloading compliance method in the testing of CT specimen of 9% nickel steel. The same formula was used in the magnetic field of 0 and 8 Tesla. They were compared with the length measured by optical fractography. The magnetic field had little effect on the crack length measurement by the unloading compliance method. The small amount of retained austenite in Q T heat-treated specimen did not exhibit a magnetic effect on the crack length measurement by the unloading compliance method.

  16. Three-dimensional charge density wave order in YBCO at high magnetic field

    NASA Astrophysics Data System (ADS)

    Lee, Wei-Sheng

    Charge density wave (CDW) correlations have been shown to universally exist in cuprate superconductors. However, their nature at high magnetic fields, e . g . inferred from nuclear magnetic resonance, Hall coefficient, and sound velocity measurements, is distinct from that measured by x-ray scattering at zero and low fields. In this talk, I will discuss our recent experiment which combines a pulsed magnet with an x-ray free electron laser to characterize the CDW in YBa2Cu3O6.67 via x-ray scattering in fields up to 28 Tesla. While the zero-field CDW order, which develops below ~150 K, is essentially two dimensional, a three-dimensionally ordered CDW emerges at magnetic fields beyond 15 Tesla and at temperatures below the zero-field superconducting transition temperature. While the two CDW arrange differently along the c-axis, they share the same incommensurate periodicity in the CuO2plane. Our observations imply that the two forms of CDW and high-temperature superconductivity are intimately linked.

  17. Suppression of Ultracold Neutron Depolarization on Material Surfaces with Magnetic Holding Fields

    NASA Astrophysics Data System (ADS)

    Rios, Raymond

    2009-05-01

    The depolarization of Ultracold Neutrons(UCN) was measured within 1-m long, 2 3/4" diameter electropolished copper, diamondlike carbon-coated copper, and stainless steel guide tubes as a function of magnetic holding field. The UCN were trapped between a 6 Tesla solenoidal magnetic field and a 3/8" copper aperture. A series of Helmholtz coils produced a magnetic field over the length of the test guide of either 10 or 250 Gauss. The surface depolarization was observed to be suppressed at the higher holding field on the measured copper guides. These measurements will aid in the determination of the upper limit of depolarization of UCN in the UCN beta asymmetry measurement at LANL (UCNA) and in understanding the mechanisms for depolarization in non-magnetic guides.

  18. Photospheric and coronal magnetic fields

    SciTech Connect

    Sheeley, N.R., Jr. )

    1991-01-01

    Research on small-scale and large-scale photospheric and coronal magnetic fields during 1987-1990 is reviewed, focusing on observational studies. Particular attention is given to the new techniques, which include the correlation tracking of granules, the use of highly Zeeman-sensitive infrared spectral lines and multiple lines to deduce small-scale field strength, the application of long integration times coupled with good seeing conditions to study weak fields, and the use of high-resolution CCD detectors together with computer image-processing techniques to obtain images with unsurpassed spatial resolution. Synoptic observations of large-scale fields during the sunspot cycle are also discussed. 101 refs.

  19. Cryogenic properties of dispersion strengthened copper for high magnetic fields

    SciTech Connect

    Toplosky, V. J.; Han, K.; Walsh, R. P.; Swenson, C. A.

    2014-01-27

    Cold deformed copper matrix composite conductors, developed for use in the 100 tesla multi-shot pulsed magnet at the National High Magnetic Field Laboratory (NHMFL), have been characterized. The conductors are alumina strengthened copper which is fabricated by cold drawing that introduces high dislocation densities and high internal stresses. Both alumina particles and high density of dislocations provide us with high tensile strength and fatigue endurance. The conductors also have high electrical conductivities because alumina has limited solubility in Cu and dislocations have little scattering effect on conduction electrons. Such a combination of high strength and high conductivity makes it an excellent candidate over other resistive magnet materials. Thus, characterization is carried out by tensile testing and fully reversible fatigue testing. In tensile tests, the material exceeds the design criteria parameters. In the fatigue tests, both the load and displacement were measured and used to control the amplitude of the tests to simulate the various loading conditions in the pulsed magnet which is operated at 77 K in a non-destructive mode. In order to properly simulate the pulsed magnet operation, strain-controlled tests were more suitable than load controlled tests. For the dispersion strengthened coppers, the strengthening mechanism of the aluminum oxide provided better tensile and fatigue properties over convention copper.

  20. Cosmological magnetic fields from inflation

    NASA Astrophysics Data System (ADS)

    Motta, Leonardo

    In this thesis we review the methods for computation of cosmological correlations in the early universe known as the in-in formalism which are then applied to the problem of magnetogenesis from inflation. For this computation, a power-law single field slow- roll inflation is assumed together with a coupling of the form eφ/nuF μnuFμnu between the inflaton φ and the electrodynamical field strength Fμnu. For certain choice of parameters, the model produces a scale-invariant power spectrum that can be as high as 10-12 G at cosmological scales at present time. Finally, we compute the correlation between the magnetic field energy density and scalar metric fluctuations at tree-level from which the shape of the resulting non-gaussianity is analyzed.We show that the corresponding bispectrum is of order 10-5 times the power spectrum of magnetic fields.

  1. Theoretical analysis of magnetic field interactions with aortic blood flow

    SciTech Connect

    Kinouchi, Y.; Yamaguchi, H.; Tenforde, T.S.

    1996-04-01

    The flow of blood in the presence of a magnetic field gives rise to induced voltages in the major arteries of the central circulatory system. Under certain simplifying conditions, such as the assumption that the length of major arteries (e.g., the aorta) is infinite and that the vessel walls are not electrically conductive, the distribution of induced voltages and currents within these blood vessels can be calculated with reasonable precision. However, the propagation of magnetically induced voltages and currents from the aorta into neighboring tissue structures such as the sinuatrial node of the heart has not been previously determined by any experimental or theoretical technique. In the analysis presented in this paper, a solution of the complete Navier-Stokes equation was obtained by the finite element technique for blood flow through the ascending and descending aortic vessels in the presence of a uniform static magnetic field. Spatial distributions of the magnetically induced voltage and current were obtained for the aortic vessel and surrounding tissues under the assumption that the wall of the aorta is electrically conductive. Results are presented for the calculated values of magnetically induced voltages and current densities in the aorta and surrounding tissue structures, including the sinuatrial node, and for their field-strength dependence. In addition, an analysis is presented of magnetohydrodynamic interactions that lead to a small reduction of blood volume flow at high field levels above approximately 10 tesla (T). Quantitative results are presented on the offsetting effects of oppositely directed blood flows in the ascending and descending aortic segments, and a quantitative estimate is made of the effects of assuming an infinite vs. a finite length of the aortic vessel in calculating the magnetically induced voltage and current density distribution in tissue.

  2. Polymerization and processing of polymers in magnetic fields

    SciTech Connect

    Benicewicz, B.C.; Smith, M.E.; Douglas, E.P.

    1997-04-01

    Liquid crystalline thermosets (LCT`s) have become recognized over the past few years as an important class of materials. Numerous reports from the authors laboratory and others have described their synthesis and phase behavior. In particular, the authors have described important effects due to the orientation of the rodlike molecules in a liquid crystalline phase. They have found that curing rates are enhanced compared to reaction in an isotropic phase, and that the glass transition of the fully cured material can be significantly higher than the final cure temperature. For structural applications, orientation of LCT`s will allow maximum improvement in mechanical properties. A few studies have described use of magnetic fields to orient LCT`s. However, no measurements were made of the tensile properties of materials processed in magnetic fields. The authors have conducted experiments which describe the tensile modulus dependence of an LCT over the complete range of magnetic field strengths from 0 to 18 Tesla. Their work has focused on the system composed of the diglycidyl ether of dihydroxy-{alpha}-methylstilbene (DGE-DHAMS) cured with sulfanilamide (SAA).

  3. Transverse Magnetic Field Propellant Isolator

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2000-01-01

    An alternative high voltage isolator for electric propulsion and ground-based ion source applications has been designed and tested. This design employs a transverse magnetic field that increases the breakdown voltage. The design can greatly enhance the operating range of laboratory isolators used for high voltage applications.

  4. New Diagnostic Tool for Far Lateral Lumbar Disc Herniation : The Clinical Usefulness of 3-Tesla Magnetic Resonance Myelography Comparing with the Discography CT

    PubMed Central

    Kim, Duk-Gyu; Park, Jung-Soo

    2012-01-01

    Objective To prospectively assess the diagnostic and clinical value of a new technique (3-tesla magnetic resonance myelography, 3T MRM) as compared to computed tomographic discography (disco-CT) in patients with far lateral disc herniation. Methods We evaluated 3T MRM and disco-CT of 25 patients, whom we suspected of suffering from far lateral disc herniation. Using an assessment scale, 4 observers examined independently both 3T MRM and disco-CT images. We analyzed observer agreement and the accentuation of each image. Results We found complete matching, and observer agreement, between high resolution images of 3T MRM and disco-CT for diagnosing far lateral disc herniation. Conclusion We think noninvasive 3T MRM is an appropriate diagnostic tool for far lateral disc herniation as compared to disco-CT. PMID:23091667

  5. Magnetic fields in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Krause, Marita

    2015-03-01

    The magnetic field structure in edge-on galaxies observed so far shows a plane-parallel magnetic field component in the disk of the galaxy and an X-shaped field in its halo. The plane-parallel field is thought to be the projected axisymmetric (ASS) disk field as observed in face-on galaxies. Some galaxies addionionally exhibit strong vertical magnetic fields in the halo right above and below the central region of the disk. The mean-field dynamo theory in the disk cannot explain these observed fields without the action of a wind, which also probably plays an important role to keep the vertical scale heights constant in galaxies of different Hubble types and star formation activities, as has been observed in the radio continuum: At λ6 cm the vertical scale heights of the thin disk and the thick disk/halo in a sample of five edge-on galaxies are similar with a mean value of 300 +/- 50 pc for the thin disk and 1.8 +/- 0.2 kpc for the thick disk (a table and references are given in Krause 2011) with our sample including the brightest halo observed so far, NGC 253, with strong star formation, as well as one of the weakest halos, NGC 4565, with weak star formation. If synchrotron emission is the dominant loss process of the relativistic electrons the outer shape of the radio emission should be dumbbell-like as has been observed in several edge-on galaxies like e.g. NGC 253 (Heesen et al. 2009) and NGC 4565. As the synchrotron lifetime t syn at a single frequency is proportional to the total magnetic field strength B t -1.5, a cosmic ray bulk speed (velocity of a galactic wind) can be defined as v CR = h CR /t syn = 2 h z /t syn , where h CR and h z are the scale heights of the cosmic rays and the observed radio emission at this freqnency. Similar observed radio scale heights imply a self regulation mechanism between the galactic wind velocity, the total magnetic field strength and the star formation rate SFR in the disk: v CR ~ B t 1.5 ~ SFR ~ 0.5 (Niklas & Beck 1997).

  6. Biodegradation of phenol: a comparative study with and without applying magnetic fields.

    PubMed

    Jung, J; Sanji, B; Godbole, S; Sofer, S

    1993-01-01

    The objective of this work was to study the effect of magnetic fields on the rate of phenol biodegradation using immobilized activated sludge. A recirculation flow bioreactor employing immobilized bacterial beads was used with phenol as the substrate to study the biodegradation process. This study was conducted by applying separately the north pole and the south pole magnetic fields to the bioreactor. Rate of dissolved oxygen consumption, phenol concentration and extracellular protein concentration were the parameters monitored during the process. It was observed that by applying a magnetic south pole to the process, biodegradation in the form of biological oxidation was enhanced. A 30% increase in biodegradation rate was obtained by applying a magnetic south pole of strength of 0.45 Tesla to the bioreactor with immobilized microbial beads as compared to the control. Magnetic north pole irradiation inhibited this type of biooxidation. This process has potential for biological treatment of organic wastes. PMID:7763365

  7. Magnetic fields in the sun

    NASA Technical Reports Server (NTRS)

    Mullan, D. J.

    1974-01-01

    The observed properties of solar magnetic fields are reviewed, with particular reference to the complexities imposed on the field by motions of the highly conducting gas. Turbulent interactions between gas and field lead to heating or cooling of the gas according to whether the field energy density is less or greater than the maximum kinetic energy density in the convection zone. The field strength above which cooling sets in is 700 gauss. A weak solar dipole field may be primeval, but dynamo action is also important in generating new flux. The dynamo is probably not confined to the convection zone, but extends throughout most of the volume of the sun. Planetary tides appear to play a role in driving the dynamo.

  8. The magnetic field of Jupiter

    NASA Technical Reports Server (NTRS)

    Acuna, M. H.; Ness, N. F.

    1976-01-01

    The paper is concerned mainly with the intrinsic planetary field which dominates the inner magnetosphere up to a distance of 10 to 12 Jovian radii where other phenomena, such as ring currents and diamagnetic effects of trapped charged particles, become significant. The main magnetic field of Jupiter as determined by in-situ observations by Pioner 10 and 11 is found to be relatively more complex than a simple offset tilted dipole. Deviations from a simple dipole geometry lead to distortions of the charged particle L shells and warping of the magnetic equator. Enhanced absorption effects associated with Io and Amalthea are predicted. The results are consistent with the conclusions derived from extensive radio observations at decimetric and decametric wavelengths for the planetary field.

  9. Magnetic field of the Earth

    NASA Astrophysics Data System (ADS)

    Popov, Aleksey

    2013-04-01

    The magnetic field of the Earth has global meaning for a life on the Earth. The world geophysical science explains: - occurrence of a magnetic field of the Earth it is transformation of kinetic energy of movements of the fused iron in the liquid core of Earth - into the magnetic energy; - the warming up of a kernel of the Earth occurs due to radioactive disintegration of elements, with excretion of thermal energy. The world science does not define the reasons: - drift of a magnetic dipole on 0,2 a year to the West; - drift of lithospheric slabs and continents. The author offers: an alternative variant existing in a world science the theories "Geodynamo" - it is the theory « the Magnetic field of the Earth », created on the basis of physical laws. Education of a magnetic field of the Earth occurs at moving the electric charge located in a liquid kernel, at rotation of the Earth. At calculation of a magnetic field is used law the Bio Savara for a ring electric current: dB = . Magnetic induction in a kernel of the Earth: B = 2,58 Gs. According to the law of electromagnetic induction the Faradey, rotation of a iron kernel of the Earth in magnetic field causes occurrence of an electric field Emf which moves electrons from the center of a kernel towards the mantle. So of arise the radial electric currents. The magnetic field amplifies the iron of mantle and a kernel of the Earth. As a result of action of a radial electric field the electrons will flow from the center of a kernel in a layer of an electric charge. The central part of a kernel represents the field with a positive electric charge, which creates inverse magnetic field Binv and Emfinv When ?mfinv = ?mf ; ?inv = B, there will be an inversion a magnetic field of the Earth. It is a fact: drift of a magnetic dipole of the Earth in the western direction approximately 0,2 longitude, into a year. Radial electric currents a actions with the basic magnetic field of a Earth - it turn a kernel. It coincides with laws

  10. Oxide superconductors under magnetic field

    NASA Technical Reports Server (NTRS)

    Kitazawa, K.

    1990-01-01

    One of the current most serious problems for the oxide superconductors from the standpoint of practical application is the various novel features derived mainly from their extremely short coherence. In particular, the coherence length so far observed in the cuprate superconductors is in the range of 0.1 nm perpendicular to the CuO2 plane. This seems to be creating most of the difficulties in the device fabrication and in the performance under the magnetic field. Some of the superconducting properties under the magnetic field will be discussed in terms of the short coherence length. A model will be presented based on the gradual strengthening of the pinning force with decrease in temperature and the weak coupling at the grain boundaries. Secondly, the broadening of the superconducting transition under the magnetic field is discussed. This is observed significantly only when the field is applied perpendicular to the basal plane and the relative orientation of the current to the field is insignificant in determining the extent of the broadening. Besides, the change in the strength of the pinning force does not affect the width of the broadening. From these observations discussions will be made on a model based on the giant fluctuation. Based on this model, it is predicted that the coherence length along the c-axis will be the single most important material parameter to determine the performance of the superconductor under a strong magnetic field. It seems that BYCO is superior in this regard to Bi- or Tl-systems as far as the performance at 77 K is considered, although another material with the coherence length slightly longer along the c-axis is still highly desired.

  11. Oxide superconductors under magnetic field

    NASA Technical Reports Server (NTRS)

    Kitazawa, K.

    1991-01-01

    One of the current most serious problems for the oxide superconductors from the standpoint of practical application is the various novel features derived mainly from their extremely short coherence. In particular, the coherence length so far observed in the cuprate superconductors is in the range of 0.1 nm perpendicular to the CuO2 plane. This seems to be creating most of the difficulties in the device fabrication and in the performance under the magnetic field. Some of the superconducting properties under the magnetic field will be discussed in terms of the short coherence length. A model will be presented based on the gradual strengthening of the pinning force with decrease in temperature and the weak coupling at the grain boundaries. Secondly, the broadening of the superconducting transition under the magnetic field is discussed. This is observed significantly only when the field is applied perpendicular to the basal plane and the relative orientation of the current to the field is insignificant in determining the extent of broadening. Besides, the change in the strength of the pinning force does not affect the width of the broadening. From these observations discussions will be made on a model based on the giant fluctuation. Based on this model, it is predicted that the coherence length along the c-axis will be the single most important material parameter to determine the performance of the superconductor under a strong magnetic field. It seems that BYCO is superior in this regard to Bi- or Tl-systems as far as the performance at 77 K is considered, although another material with the coherence length slightly longer along the c-axis is still highly desired.

  12. Orientation by solidification in a magnetic field: A new process to texture SmCo compounds used as permanent magnets

    NASA Astrophysics Data System (ADS)

    Legrand, B. A.; Chateigner, D.; Perrier de la Bathie, R.; Tournier, R.

    1997-02-01

    The solidification of molten alloys in a static magnetic field is proposed as a new way of orienting polycrystalline materials. A high degree of orientation is obtained with samarium-cobalt compounds solidified in a static magnetic field. Whatever the cooling condition used from the liquid state, a magnetic field of several tesla induces crystallographic orientation in the solid. The easy magnetization axis of the polycrystal lies along the direction of the field applied during solidification. This texturing process is applied to the elaboration of Sm 2Co 17 permanent magnets. Anisotropic bulk magnets with a coercive field up to 2250 kA/m and energy product above 160 kJ/m 3 are obtained. This process provides an alternative to the currently used industrial technology which is based on powder metallurgy. The paramagnetic susceptibility of the substituted Sm 2Co 17 compounds is measured at high temperatures from which the susceptibility anisotropy at solidification temperature is determined. The orientation of the sample, solidified in a cold induction crucible, is analysed as a function of the applied magnetic field. Assuming a model in which particles are free to orient before complete solidification takes place, a critical size of these particles is deduced.

  13. Use of a radio frequency shield during 1.5 and 3.0 Tesla magnetic resonance imaging: experimental evaluation

    PubMed Central

    Favazza, Christopher P; King, Deirdre M; Edmonson, Heidi A; Felmlee, Joel P; Rossman, Phillip J; Hangiandreou, Nicholas J; Watson, Robert E; Gorny, Krzysztof R

    2014-01-01

    Radiofrequency (RF) shields have been recently developed for the purpose of shielding portions of the patient’s body during magnetic resonance imaging (MRI) examinations. We present an experimental evaluation of a commercially available RF shield in the MRI environment. All tests were performed on 1.5 T and 3.0 T clinical MRI scanners. The tests were repeated with and without the RF shield present in the bore, for comparison. Effects of the shield, placed within the scanner bore, on the RF fields generated by the scanner were measured directly using tuned pick-up coils. Attenuation, by as much as 35 dB, of RF field power was found inside the RF shield. These results were supported by temperature measurements of metallic leads placed inside the shield, in which no measurable RF heating was found. In addition, there was a small, simultaneous detectable increase (∼1 dB) of RF power just outside the edges of the shield. For these particular scanners, the autocalibrated RF power levels were reduced for scan locations prescribed just outside the edges of the shield, which corresponded with estimations based on the pick-up coil measurements. Additionally, no significant heating during MRI scanning was observed on the shield surface. The impact of the RF shield on the RF fields inside the magnet bore is likely to be dependent on the particular model of the RF shield or the MRI scanner. These results suggest that the RF shield could be a valuable tool for clinical MRI practices. PMID:25378957

  14. Magnetic Systems in Megagauss Magnetic Fields:. Results of Dirac and Kapitsa Experiments

    NASA Astrophysics Data System (ADS)

    Tatsenko, O. M.; Selemir, V. D.

    2004-11-01

    The paper discusses the experimental series of Dirac-II and Kapitsa to explore material properties in ultra-high magnetic fields. A set of Dirac experiments was performed in June 1996 at Los Alamos National Laboratory. Scientists from six countries and eight Universities tested more than 60 samples in five explosive experiments using magnetocumulative generators of ultra-high magnetic fields. Test measurements were made using a 50 Tesla magnet of the NHMFL user facility ot LANL. The first scientific and practical workshop, Kapitsa, was performed in 1997 at the Russian Nuclear Federal Center (Sarov). More than 15 samples were tested during three shots. The Kapitsa series is planned to be performed annually. In the Kapitsa and Dirac experiments we explored magnetization of high-spin clusters Mn12Ac, Mn6, Fe8, fulleren C60, metamagnetic transitions in ScCo2, valence transitions in EuNi2(Si1-xGex)2 and the transition semiconductor-metal in FeSi.

  15. Field errors in superconducting magnets

    SciTech Connect

    Barton, M. Q.

    1982-01-01

    The mission of this workshop is a discussion of the techniques for tracking particles through arbitrary accelerator field configurations to look for dynamical effects that are suggested by various theoretical models but are not amenable to detailed analysis. A major motivation for this type of study is that many of our accelerator projects are based on the use of superconducting magnets which have field imperfections that are larger and of a more complex nature than those of conventional magnets. Questions such as resonances, uncorrectable closed orbit effects, coupling between planes, and diffusion mechanisms all assume new importance. Since, simultaneously, we are trying to do sophisticated beam manipulations such as stacking, high current accelerator, long life storage, and low loss extraction, we clearly need efficient and accurate tracking programs to proceed with confidence.

  16. Magnetic fields in irregular galaxies

    NASA Astrophysics Data System (ADS)

    Chyzy, Krzysztof T.

    Radio data of large irregular galaxies reveal some extended synchrotron emission with a substantial degree of polarization. In the case of NGC 4449 strong galaxy-scale regular magnetic fields were found, in spite of the lack of ordered rotation required for the conventional dynamo action. The rigidly rotating large irregular NGC 55 shows vertical polarized spurs connected with a network of ionized gas filaments. Small dwarf irregulars show only isolated polarized spots.

  17. Some features of bulk melt-textured high-temperature superconductors subjected to alternating magnetic fields

    NASA Astrophysics Data System (ADS)

    Vanderbemden, P.; Molenberg, I.; Simeonova, P.; Lovchinov, V.

    2014-12-01

    Monolithic, large grain, (RE)Ba2Cu3O7 high-temperature superconductors (where RE denotes a rare-earth ion) are known to be able to trap fields in excess of several teslas and represent thus an extremely promising competing technology for permanent magnet in several applications, e.g. in motors and generators. In any rotating machine, however, the superconducting permanent magnet is subjected to variable (transient, or alternating) parasitic magnetic fields. These magnetic fields interact with the superconductor, which yields a reduction of the remnant magnetization. In the present work we quantify these effects by analysing selected experimental data on bulk melt-textured superconductors subjected to AC fields. Our results indicate that the non-uniformity of superconducting properties in rather large samples might lead to unusual features and need to be taken into account to analyse the experimental data. We also investigate the evolution of the DC remnant magnetization of the bulk sample when it is subjected to a large number of AC magnetic field cycles, and investigate the experimental errors that result from a misorientation of the sample or a mispositioning of the Hall probe. The time-dependence of the remnant magnetization over 100000 cycles of the AC field is shown to display distinct regimes which all differ strongly from the usual decay due to magnetic relaxation.

  18. Enhancement of the Initial Growth Rate of Agricultural Plants by Using Static Magnetic Fields.

    PubMed

    Kim, Seung C; Mason, Alex; Im, Wooseok

    2016-01-01

    Electronic devices and high-voltage wires induce magnetic fields. A magnetic field of 1,300-2,500 Gauss (0.2 Tesla) was applied to Petri dishes containing seeds of Garden Balsam (Impatiens balsamina), Mizuna (Brassica rapa var. japonica), Komatsuna (Brassica rapa var. perviridis), and Mescluns (Lepidium sativum). We applied magnets under the culture dish. During the 4 days of application, we observed that the stem and root length increased. The group subjected to magnetic field treatment (n = 10) showed a 1.4 times faster rate of growth compared with the control group (n = 11) in a total of 8 days (p <0.0005). This rate is 20% higher than that reported in previous studies. The tubulin complex lines did not have connecting points, but connecting points occur upon the application of magnets. This shows complete difference from the control, which means abnormal arrangements. However, the exact cause remains unclear. These results of growth enhancement of applying magnets suggest that it is possible to enhance the growth rate, increase productivity, or control the speed of germination of plants by applying static magnetic fields. Also, magnetic fields can cause physiological changes in plant cells and can induce growth. Therefore, stimulation with a magnetic field can have possible effects that are similar to those of chemical fertilizers, which means that the use of fertilizers can be avoided. PMID:27500712

  19. Applications of high dielectric materials in high field magnetic resonance

    NASA Astrophysics Data System (ADS)

    Haines, Kristina Noel

    At high magnetic fields, radiation losses, wavelength effects, self-resonance, and the high resistance of components all contribute to losses in conventional RF MRI coil designs. The hypothesis tested here is that these problems can be combated by the use of high permittivity ceramic materials at high fields. High permittivity ceramic dielectric resonators create strong uniform magnetic fields in compact structures at high frequencies and can potentially solve some of the challenges of high field coil design. In this study NMR probes were constructed for operation at 600 MHz (14.1 Tesla) and 900 MHz (21.1 Tesla) using inductively fed CaTiO3 (relative permittivity of 156-166) cylindrical hollow bore dielectric resonators. The designs showed the electric field is largely confined to the dielectric itself, with near zero values in the hollow bore, which accommodates the sample. The 600 MHz probe has an unmatched Q value greater than 2000. Experimental and simulation mapping of the RF field show good agreement, with the ceramic resonator giving a pulse width approximately 25% less than a loop gap resonator of similar inner dimensions. High resolution images, with voxel dimensions less than 50 microm3, have been acquired from fixed zebrafish samples, showing excellent delineation of several fine structures. The 900 MHz probe has an unmatched Q value of 940 and shows Q performance five times better than Alderman-Grant and loop-gap resonators of similar dimensions. High resolution images were acquired of an excised mouse spinal cord (25 microm 3) and an excised rat soleus muscle (20 microm3). The spatial distribution of electromagnetic fields within the human body can be tailored using external dielectric materials. Here, a new material is introduced with high dielectric constant and low background MRI signal. The material is based upon metal titanates, which can be made into geometrically formable suspensions in de-ionized water. The suspension's material properties are

  20. High magnetic field induced otolith fusion in the zebrafish larvae.

    PubMed

    Pais-Roldán, Patricia; Singh, Ajeet Pratap; Schulz, Hildegard; Yu, Xin

    2016-01-01

    Magnetoreception in animals illustrates the interaction of biological systems with the geomagnetic field (geoMF). However, there are few studies that identified the impact of high magnetic field (MF) exposure from Magnetic Resonance Imaging (MRI) scanners (>100,000 times of geoMF) on specific biological targets. Here, we investigated the effects of a 14 Tesla MRI scanner on zebrafish larvae. All zebrafish larvae aligned parallel to the B0 field, i.e. the static MF, in the MRI scanner. The two otoliths (ear stones) in the otic vesicles of zebrafish larvae older than 24 hours post fertilization (hpf) fused together after the high MF exposure as short as 2 hours, yielding a single-otolith phenotype with aberrant swimming behavior. The otolith fusion was blocked in zebrafish larvae under anesthesia or embedded in agarose. Hair cells may play an important role on the MF-induced otolith fusion. This work provided direct evidence to show that high MF interacts with the otic vesicle of zebrafish larvae and causes otolith fusion in an "all-or-none" manner. The MF-induced otolith fusion may facilitate the searching for MF sensors using genetically amenable vertebrate animal models, such as zebrafish. PMID:27063288

  1. High magnetic field induced otolith fusion in the zebrafish larvae

    PubMed Central

    Pais-Roldán, Patricia; Singh, Ajeet Pratap; Schulz, Hildegard; Yu, Xin

    2016-01-01

    Magnetoreception in animals illustrates the interaction of biological systems with the geomagnetic field (geoMF). However, there are few studies that identified the impact of high magnetic field (MF) exposure from Magnetic Resonance Imaging (MRI) scanners (>100,000 times of geoMF) on specific biological targets. Here, we investigated the effects of a 14 Tesla MRI scanner on zebrafish larvae. All zebrafish larvae aligned parallel to the B0 field, i.e. the static MF, in the MRI scanner. The two otoliths (ear stones) in the otic vesicles of zebrafish larvae older than 24 hours post fertilization (hpf) fused together after the high MF exposure as short as 2 hours, yielding a single-otolith phenotype with aberrant swimming behavior. The otolith fusion was blocked in zebrafish larvae under anesthesia or embedded in agarose. Hair cells may play an important role on the MF-induced otolith fusion. This work provided direct evidence to show that high MF interacts with the otic vesicle of zebrafish larvae and causes otolith fusion in an “all-or-none” manner. The MF-induced otolith fusion may facilitate the searching for MF sensors using genetically amenable vertebrate animal models, such as zebrafish. PMID:27063288

  2. Edison vs. Tesla

    ScienceCinema

    Hogan, Kathleen; Wallace, Hal; Ivestor, Rob

    2014-01-07

    As Edison vs. Tesla week heats up at the Energy Department, we are exploring the rivalry between Thomas Edison and Nikola Tesla and how their work is still impacting the way we use energy today. Whether you're on Team Tesla or Team Edison, both inventors were key players in creating things like batteries, power plants and wireless technologies -- all innovations we still use today. And as we move toward a clean energy future, energy efficient lighting, like LED bulbs, and more efficient electric motors not only help us save money on electricity costs but help combat climate change. For this, Tesla and Edison both deserve our recognition.

  3. Edison vs. Tesla

    SciTech Connect

    Hogan, Kathleen; Wallace, Hal; Ivestor, Rob

    2013-11-20

    As Edison vs. Tesla week heats up at the Energy Department, we are exploring the rivalry between Thomas Edison and Nikola Tesla and how their work is still impacting the way we use energy today. Whether you're on Team Tesla or Team Edison, both inventors were key players in creating things like batteries, power plants and wireless technologies -- all innovations we still use today. And as we move toward a clean energy future, energy efficient lighting, like LED bulbs, and more efficient electric motors not only help us save money on electricity costs but help combat climate change. For this, Tesla and Edison both deserve our recognition.

  4. Design and optimization of force-reduced high field magnets

    NASA Astrophysics Data System (ADS)

    Rembeczki, Szabolcs

    High field magnets have many important applications in different areas of research, in the power industry and also for military purposes. For example, high field magnets are particularly useful in: material sciences, high energy physics, plasma physics (as fusion magnets), high power applications (as energy storage devices), and space applications (in propulsion systems). One of the main issues with high-field magnets is the presence of very large electromagnetic stresses that must be counteracted and therefore require heavy support structures. In superconducting magnets, the problems caused by Lorentz forces are further complicated by the fact that superconductors for high field applications are pressure sensitive. The current carrying capacity is greatly reduced under stress and strain (especially in the case of Nb 3Sn and the new high temperature superconductors) so the reduction of the acting forces is of even greater importance. Different force-reduced magnet concepts have been studied in the past, both numerical and analytical methods have been used to solve this problem. The developed concepts are based on such complex winding geometries that the realization and manufacturing of such coils is extremely difficult and these concepts are mainly of theoretical interest. In the presented research, a novel concept for force-reduced magnets has been developed and analyzed which is easy to realize and therefore is of practical interest. The analysis has been performed with a new methodology, which does not require the time consuming finite element calculations. The developed computer models describe the 3-dimensional winding configuration by sets of filaments (filamentary approximation). This approach is much faster than finite element analysis and therefore allows rapid optimization of concepts. The method has been extensively tested on geometries of force-reduced solenoids where even analytical solutions exist. As a further cross check, the developed computer

  5. Biological effects of electromagnetic fields and recently updated safety guidelines for strong static magnetic fields.

    PubMed

    Yamaguchi-Sekino, Sachiko; Sekino, Masaki; Ueno, Shoogo

    2011-01-01

    Humans are exposed daily to artificial and naturally occurring magnetic fields that originate from many different sources. We review recent studies that examine the biological effects of and medical applications involving electromagnetic fields, review the properties of static and pulsed electromagnetic fields that affect biological systems, describe the use of a pulsed electromagnetic field in combination with an anticancer agent as an example of a medical application that incorporates an electromagnetic field, and discuss the recently updated safety guidelines for static electromagnetic fields. The most notable modifications to the 2009 International Commission on Non-Ionizing Radiation Protection guidelines are the increased exposure limits, especially for those who work with or near electromagnetic fields (occupational exposure limits). The recommended increases in exposure were determined using recent scientific evidence obtained from animal and human studies. Several studies since the 1994 publication of the guidelines have examined the effects on humans after exposure to high static electromagnetic fields (up to 9.4 tesla), but additional research is needed to ascertain further the safety of strong electromagnetic fields. PMID:21441722

  6. Comparing Magnetic Fields on Earth and Mars

    NASA Video Gallery

    This animation compares the magnetic fields on Earth and Mars. The Earth has a large-scale planetary magnetic field that can protect it from space weather and other hazards. Mars, on the other hand...

  7. Field quality aspects of CBA superconducting magnets

    SciTech Connect

    Kahn, S.; Engelmann, R.; Fernow, R.; Greene, A.F.; Herrera, J.; Kirk, H.; Skaritka, J.; Wanderer, P.; Willen, E.

    1983-01-01

    A series of superconducting dipole magnets for the BNL Colliding Beam Accelerator which were manufactured to have the proper field quality characteristics has been tested. This report presents the analysis of the field harmonics of these magnets.

  8. Anisotropic Magnetism in Field-Structured Composites

    SciTech Connect

    Anderson, Robert A.; Martin, James E.; Odinek, Judy; Venturini, Eugene

    1999-06-24

    Magnetic field-structured-composites (FSCs) are made by structuring magnetic particle suspensions in uniaxial or biaxial (e.g. rotating) magnetic fields, while polymerizing the suspending resin. A uniaxial field produces chain-like particle structures, and a biaxial field produces sheet-like particle structures. In either case, these anisotropic structures affect the measured magnetic hysteresis loops, with the magnetic remanence and susceptibility increased significantly along the axis of the structuring field, and decreased slightly orthogonal to the structuring field, relative to the unstructured particle composite. The coercivity is essentially unaffected by structuring. We present data for FSCs of magnetically soft particles, and demonstrate that the altered magnetism can be accounted for by considering the large local fields that occur in FSCs. FSCS of magnetically hard particles show unexpectedly large anisotropies in the remanence, and this is due to the local field effects in combination with the large crystalline anisotropy of this material.

  9. Measurements of Solar Vector Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Hagyard, M. J. (Editor)

    1985-01-01

    Various aspects of the measurement of solar magnetic fields are presented. The four major subdivisions of the study are: (1) theoretical understanding of solar vector magnetic fields; (3) techniques for interpretation of observational data; and (4) techniques for data display.

  10. Magnetic holes in the solar wind. [(interplanetary magnetic fields)

    NASA Technical Reports Server (NTRS)

    Turner, J. M.; Burlaga, L. F.; Ness, N. F.; Lemaire, J. F.

    1976-01-01

    An analysis is presented of high resolution interplanetary magnetic field measurements from the magnetometer on Explorer 43 which showed that low magnetic field intensities in the solar wind at 1 AU occur as distinct depressions or 'holes'. These magnetic holes are new kinetic-scale phenomena, having a characteristic dimension on the order of 20,000 km. They occurred at a rate of 1.5/day in the 18-day time span (March 18 to April 6, 1971) that was analyzed. Most of the magnetic holes are characterized by both a depression in the absolute value of the magnetic field, and a change in the magnetic field direction; some of these are possibly the result of magnetic merging. However, in other cases the magnetic field direction does not change; such holes are not due to magnetic merging, but might be a diamagnetic effect due to localized plasma inhomogeneities.

  11. Swarm: ESA's Magnetic Field Mission

    NASA Astrophysics Data System (ADS)

    Haagmans, R.; Menard, Y.; Floberghagen, R.; Plank, G.; Drinkwater, M. R.

    2010-12-01

    Swarm is the fifth Earth Explorer mission in ESA’s Living Planet Programme. The objective of the Swarm mission is to provide the best ever survey of the geomagnetic field and its temporal evolution. The Mission shall deliver data that allow access to new insights into the Earth system by improving our understanding of the Earth’s interior and near-Earth electro-magnetic environment. After release from a single launcher, a side-by-side flying slowly decaying lower pair of satellites will be released at an initial altitude of about 490 km together with a third satellite that will be lifted to 530 km to complete the Swarm constellation. High-precision and high-resolution measurements of the strength, direction and variation of the magnetic field, complemented by precise navigation, accelerometer and electric field measurements, will provide the observations that are required to separate and model various sources of the geomagnetic field and near-Earth current systems. The mission aims to provide a unique view into Earth core dynamics, mantle conductivity, crustal magnetisation, ionospheric and magnetospheric current systems and upper atmosphere dynamics - ranging from understanding the geodynamo to contributing to space weather. The scientific objectives and results from recent scientific studies will be presented. In addition the current status of the project, which is presently in the development phase, will be addressed. The mission is scheduled for launch in 2012.

  12. Rotating copper plasmoid in external magnetic field

    SciTech Connect

    Pandey, Pramod K.; Thareja, Raj K.

    2013-02-15

    Effect of nonuniform magnetic field on the expanding copper plasmoid in helium and argon gases using optical emission spectroscopy and fast imaging is presented. We report a peculiar oscillatory rotation of plasmoid in magnetic field and argon ambient. The temporal variation and appearance of the dip in the electron temperature show a direct evidence of the threading and expulsion of the magnetic field lines from the plasmoid. Rayleigh Taylor instability produced at the interface separating magnetic field and plasma is discussed.

  13. Field evolution of the magnetic phase transition in the helical magnet MnSi inferred from ultrasound studies

    NASA Astrophysics Data System (ADS)

    Petrova, A. E.; Stishov, S. M.

    2015-06-01

    The longitudinal and transverse ultrasound speeds and attenuation were measured in a MnSi single crystal in the temperature range of 2-40 K and magnetic fields up to 7 Tesla. The magnetic phase diagram of MnSi in applied magnetic field appears to depend on the experimental setups, which is related to a difference in demagnetization factors arising due to the disk shape of the sample. The magnetic phase transition in MnSi in zero magnetic field is signified by a quasidiscontinuity in the c11 elastic constant, which varies significantly with magnetic field. It is notable that the region where the c11 discontinuity almost vanishes closely corresponds to the extent of skyrmion phase along the magnetic to paramagnetic transition. This implies that the c11 elastic constant is almost continuous through the transition from the skyrmion to paramagnetic phases. A recovery of the discontinuity of c11 and enhanced sound absorption occur at the crossing of the phase transition line and the line of minima in c11. The powerful fluctuations at the minima of c11 make the mentioned crossing point similar to a critical end point, where a second order phase transition meets a first order one.

  14. Magnetic field perturbartions in closed-field-line systems with zero toroidal magnetic field

    SciTech Connect

    Mauel, M; Ryutov, D; Kesner, J

    2003-12-02

    In some plasma confinement systems (e.g., field-reversed configurations and levitated dipoles) the confinement is provided by a closed-field-line poloidal magnetic field. We consider the influence of the magnetic field perturbations on the structure of the magnetic field in such systems and find that the effect of perturbations is quite different from that in the systems with a substantial toroidal field. In particular, even infinitesimal perturbations can, in principle, lead to large radial excursions of the field lines in FRCs and levitated dipoles. Under such circumstances, particle drifts and particle collisions may give rise to significant neoclassical transport. Introduction of a weak regular toroidal magnetic field reduces radial excursions of the field lines and neoclassical transport.

  15. Primordial magnetic field limits from cosmological data

    SciTech Connect

    Kahniashvili, Tina; Tevzadze, Alexander G.; Sethi, Shiv K.; Pandey, Kanhaiya; Ratra, Bharat

    2010-10-15

    We study limits on a primordial magnetic field arising from cosmological data, including that from big bang nucleosynthesis, cosmic microwave background polarization plane Faraday rotation limits, and large-scale structure formation. We show that the physically relevant quantity is the value of the effective magnetic field, and limits on it are independent of how the magnetic field was generated.

  16. Superposition of DC magnetic fields by cascading multiple magnets in magnetic loops

    NASA Astrophysics Data System (ADS)

    Sun, Fei; He, Sailing

    2015-09-01

    A novel method that can effectively collect the DC magnetic field produced by multiple separated magnets is proposed. With the proposed idea of a magnetic loop, the DC magnetic field produced by these separated magnets can be effectively superimposed together. The separated magnets can be cascaded in series or in parallel. A novel nested magnetic loop is also proposed to achieve a higher DC magnetic field in the common air region without increasing the DC magnetic field in each magnetic loop. The magnetic loop can be made by a magnetic hose, which is designed by transformation optics and can be realized by the combination of super-conductors and ferromagnetic materials.

  17. Energetic and Cell Membrane Metabolic Products in Patients with Primary Insomnia: A 31-Phosphorus Magnetic Resonance Spectroscopy Study at 4 Tesla

    PubMed Central

    Harper, David G.; Plante, David T.; Jensen, J. Eric; Ravichandran, Caitlin; Buxton, Orfeu M.; Benson, Kathleen L.; O'Connor, Shawn P.; Renshaw, Perry F.; Winkelman, John W.

    2013-01-01

    Study Objectives: Primary insomnia (PI) is a sleep disorder characterized by difficulty with sleep initiation, maintenance, and/or the experience of nonrestorative sleep combined with a subsequent impairment of daytime functioning. The hyperarousal hypothesis has emerged as the leading candidate to explain insomnia symptoms in the absence of specific mental, physical, or substance-related causes. We hypothesized that the cellular energetic metabolites, including beta nucleoside triphosphate, which in magnetic resonance spectroscopy approximates adenosine triphosphate (ATP), and phosphocreatine (PCr), would show changes in PI reflecting increased energy demand. Design and Setting: Matched-groups, cross-sectional study performed at two university-based hospitals. Patients: Sixteen medication-free individuals (eight males, eight females; mean ± standard deviation (SD) age = 37.2 ± 8.4 y) with PI and 16 good sleepers (nine males, seven females; mean ± SD age = 37.6 ± 4.7 y). Measurements: Diagnosis was established for all individuals by unstructured clinical interview, Structured Clinical Interview for Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (SCID), sleep diary, and actigraphy. Polysomnography was collected in individuals with PI. Phosphorous magnetic resonance spectroscopy (31P MRS) data were collected on all individuals at 4 Tesla. We assessed cell membrane (anabolic precursors and catabolic metabolites) and bioenergetic (ATP, phosphocreatine) metabolites in gray matter and white matter to determine their relationship to the presence and severity of PI. Results: Individuals with PI showed lower phosphocreatine in gray matter and an unexpected decrease of phosphocholine, a precursor of the cell membrane compound phosphatidylcholine, in white matter. In addition, there was a trend toward a negative association between polysomnographically determined wake after sleep onset and gray matter beta-nucleoside triphosphate and white matter

  18. Effects of resistive magnetic field on fast electron divergence measured in experiments

    NASA Astrophysics Data System (ADS)

    Yang, X. H.; Zhuo, H. B.; Ma, Y. Y.; Xu, H.; Yu, T. P.; Zou, D. B.; Ge, Z. Y.; Xu, B. B.; Zhu, Q. J.; Shao, F. Q.; Borghesi, M.

    2015-02-01

    Transport of fast electrons driven by an ultraintense laser through a tracer layer buried in solid targets is studied by particle-in-cell simulations. It is found that intense resistive magnetic fields, having a magnitude of several thousand Tesla, are generated at the interfaces of the materials due to the steep resistivity gradient between the target and tracer layer. Such magnetic fields can significantly inhibit the fast electron propagation. The electrons that can penetrate the first interface are mostly confined in the buried layer by the magnetic fields and cause heating of the tracer layer. The lateral extent of the heated region can be significantly larger than that of the relativistic electron beam. This finding suggests that the relativistic electron divergence inferred from Kα x-ray emission in experiments might be overestimated.

  19. Interplanetary magnetic field data book

    NASA Technical Reports Server (NTRS)

    King, J. H.

    1975-01-01

    An interplanetary magnetic field (IMF) data set is presented that is uniform with respect to inclusion of cislunar IMF data only, and which has as complete time coverage as presently possible over a full solar cycle. Macroscale phenomena in the interplanetary medium (sector structure, heliolatitude variations, solar cycle variations, etc.) and other phenomena (e.g., ground level cosmic-ray events) for which knowledge of the IMF with hourly resolution is necessary, are discussed. Listings and plots of cislunar hourly averaged IMP parameters over the period November 27, 1963, to May 17, 1974, are presented along with discussion of the mutual consistency of the IMF data used herein. The magnetic tape from which the plots and listings were generated, which is available from the National Space Science Data Center (NSSDC), is also discussed.

  20. The Giotto magnetic field investigation

    NASA Technical Reports Server (NTRS)

    Neubauer, F. M.; Musmann, G.; Acuna, M. H.; Burlaga, L. F.; Ness, N. F.; Mariani, F.; Wallis, M.; Ungstrup, E.; Schmidt, H.

    1983-01-01

    The Giotto spacecraft will carry sensors for investigating the interplanetary magnetic field while en route and the interaction between the solar wind magnetoplasma and Halley's Comet neutral gas outflow during close approach. Giotto will carry an outboard biaxial fluxgate system and inboard electronics. The instrumentation draws 1.2 kW and weighs 1.31 kg. Sampling rates will be 28/sec during close encounter, covering selectable ranges from 16 nT to 65,535 nT. In-flight calibration techniques are under development to ensure magnetic cleanliness will be obtained. Measurements are also planned of the inbound bow shock, the magnetosheath and the cometary ionopause. The data will be collected as close as 1000 km from the comet surface.

  1. Suppression of magnetic relaxation by a transverse alternating magnetic field

    SciTech Connect

    Voloshin, I. F.; Kalinov, A. V.; Fisher, L. M. Yampol'skii, V. A.

    2007-07-15

    The evolution of the spatial distribution of the magnetic induction in a superconductor after the action of the alternating magnetic field perpendicular to the trapped magnetic flux has been analyzed. The observed stabilization of the magnetic induction profile is attributed to the increase in the pinning force, so that the screening current density becomes subcritical. The last statement is corroborated by direct measurements.

  2. Magnetic field sources and their threat to magnetic media

    NASA Technical Reports Server (NTRS)

    Jewell, Steve

    1993-01-01

    Magnetic storage media (tapes, disks, cards, etc.) may be damaged by external magnetic fields. The potential for such damage has been researched, but no objective standard exists for the protection of such media. This paper summarizes a magnetic storage facility standard, Publication 933, that ensures magnetic protection of data storage media.

  3. Crystallization of spin superlattices with pressure and field in the layered magnet SrCu2(BO3)2

    PubMed Central

    Haravifard, S.; Graf, D.; Feiguin, A. E.; Batista, C. D.; Lang, J. C.; Silevitch, D. M.; Srajer, G.; Gaulin, B. D.; Dabkowska, H. A.; Rosenbaum, T. F.

    2016-01-01

    An exact mapping between quantum spins and boson gases provides fresh approaches to the creation of quantum condensates and crystals. Here we report on magnetization measurements on the dimerized quantum magnet SrCu2(BO3)2 at cryogenic temperatures and through a quantum-phase transition that demonstrate the emergence of fractionally filled bosonic crystals in mesoscopic patterns, specified by a sequence of magnetization plateaus. We apply tens of Teslas of magnetic field to tune the density of bosons and gigapascals of hydrostatic pressure to regulate the underlying interactions. Simulations help parse the balance between energy and geometry in the emergent spin superlattices. The magnetic crystallites are the end result of a progression from a direct product of singlet states in each short dimer at zero field to preferred filling fractions of spin-triplet bosons in each dimer at large magnetic field, enriching the known possibilities for collective states in both quantum spin and atomic systems. PMID:27320787

  4. Crystallization of spin superlattices with pressure and field in the layered magnet SrCu2(BO3)2.

    PubMed

    Haravifard, S; Graf, D; Feiguin, A E; Batista, C D; Lang, J C; Silevitch, D M; Srajer, G; Gaulin, B D; Dabkowska, H A; Rosenbaum, T F

    2016-01-01

    An exact mapping between quantum spins and boson gases provides fresh approaches to the creation of quantum condensates and crystals. Here we report on magnetization measurements on the dimerized quantum magnet SrCu2(BO3)2 at cryogenic temperatures and through a quantum-phase transition that demonstrate the emergence of fractionally filled bosonic crystals in mesoscopic patterns, specified by a sequence of magnetization plateaus. We apply tens of Teslas of magnetic field to tune the density of bosons and gigapascals of hydrostatic pressure to regulate the underlying interactions. Simulations help parse the balance between energy and geometry in the emergent spin superlattices. The magnetic crystallites are the end result of a progression from a direct product of singlet states in each short dimer at zero field to preferred filling fractions of spin-triplet bosons in each dimer at large magnetic field, enriching the known possibilities for collective states in both quantum spin and atomic systems. PMID:27320787

  5. Crystallization of spin superlattices with pressure and field in the layered magnet SrCu2(BO3)2

    NASA Astrophysics Data System (ADS)

    Haravifard, S.; Graf, D.; Feiguin, A. E.; Batista, C. D.; Lang, J. C.; Silevitch, D. M.; Srajer, G.; Gaulin, B. D.; Dabkowska, H. A.; Rosenbaum, T. F.

    2016-06-01

    An exact mapping between quantum spins and boson gases provides fresh approaches to the creation of quantum condensates and crystals. Here we report on magnetization measurements on the dimerized quantum magnet SrCu2(BO3)2 at cryogenic temperatures and through a quantum-phase transition that demonstrate the emergence of fractionally filled bosonic crystals in mesoscopic patterns, specified by a sequence of magnetization plateaus. We apply tens of Teslas of magnetic field to tune the density of bosons and gigapascals of hydrostatic pressure to regulate the underlying interactions. Simulations help parse the balance between energy and geometry in the emergent spin superlattices. The magnetic crystallites are the end result of a progression from a direct product of singlet states in each short dimer at zero field to preferred filling fractions of spin-triplet bosons in each dimer at large magnetic field, enriching the known possibilities for collective states in both quantum spin and atomic systems.

  6. Computational studies of suppression of microwave gas breakdown by crossed dc magnetic field using electron fluid model

    NASA Astrophysics Data System (ADS)

    Zhao, Pengcheng; Guo, Lixin; Shu, Panpan

    2016-08-01

    The gas breakdown induced by a square microwave pulse with a crossed dc magnetic field is investigated using the electron fluid model, in which the accurate electron energy distribution functions are adopted. Simulation results show that at low gas pressures the dc magnetic field of a few tenths of a tesla can prolong the breakdown formation time by reducing the mean electron energy. With the gas pressure increasing, the higher dc magnetic field is required to suppress the microwave breakdown. The electric field along the microwave propagation direction generated due to the motion of electrons obviously increases with the dc magnetic field, but it is much less than the incident electric field. The breakdown predictions of the electron fluid model agree very well with the particle-in-cell-Monte Carlo collision simulations as well as the scaling law for the microwave gas breakdown.

  7. Permanent Magnet Ecr Plasma Source With Magnetic Field Optimization

    DOEpatents

    Doughty, Frank C.; Spencer, John E.

    2000-12-19

    In a plasma-producing device, an optimized magnet field for electron cyclotron resonance plasma generation is provided by a shaped pole piece. The shaped pole piece adjusts spacing between the magnet and the resonance zone, creates a convex or concave resonance zone, and decreases stray fields between the resonance zone and the workpiece. For a cylindrical permanent magnet, the pole piece includes a disk adjacent the magnet together with an annular cylindrical sidewall structure axially aligned with the magnet and extending from the base around the permanent magnet. The pole piece directs magnetic field lines into the resonance zone, moving the resonance zone further from the face of the magnet. Additional permanent magnets or magnet arrays may be utilized to control field contours on a local scale. Rather than a permeable material, the sidewall structure may be composed of an annular cylindrical magnetic material having a polarity opposite that of the permanent magnet, creating convex regions in the resonance zone. An annular disk-shaped recurve section at the end of the sidewall structure forms magnetic mirrors keeping the plasma off the pole piece. A recurve section composed of magnetic material having a radial polarity forms convex regions and/or magnetic mirrors within the resonance zone.

  8. Chiral plasmons without magnetic field.

    PubMed

    Song, Justin C W; Rudner, Mark S

    2016-04-26

    Plasmons, the collective oscillations of interacting electrons, possess emergent properties that dramatically alter the optical response of metals. We predict the existence of a new class of plasmons-chiral Berry plasmons (CBPs)-for a wide range of 2D metallic systems including gapped Dirac materials. As we show, in these materials the interplay between Berry curvature and electron-electron interactions yields chiral plasmonic modes at zero magnetic field. The CBP modes are confined to system boundaries, even in the absence of topological edge states, with chirality manifested in split energy dispersions for oppositely directed plasmon waves. We unveil a rich CBP phenomenology and propose setups for realizing them, including in anomalous Hall metals and optically pumped 2D Dirac materials. Realization of CBPs will offer a powerful paradigm for magnetic field-free, subwavelength optical nonreciprocity, in the mid-IR to terahertz range, with tunable splittings as large as tens of THz, as well as sensitive all-optical diagnostics of topological bands. PMID:27071090

  9. Chiral plasmons without magnetic field

    NASA Astrophysics Data System (ADS)

    Song, Justin C. W.

    2016-04-01

    Plasmons, the collective oscillations of interacting electrons, possess emergent properties that dramatically alter the optical response of metals. We predict the existence of a new class of plasmons—chiral Berry plasmons (CBPs)—for a wide range of 2D metallic systems including gapped Dirac materials. As we show, in these materials the interplay between Berry curvature and electron–electron interactions yields chiral plasmonic modes at zero magnetic field. The CBP modes are confined to system boundaries, even in the absence of topological edge states, with chirality manifested in split energy dispersions for oppositely directed plasmon waves. We unveil a rich CBP phenomenology and propose setups for realizing them, including in anomalous Hall metals and optically pumped 2D Dirac materials. Realization of CBPs will offer a powerful paradigm for magnetic field-free, subwavelength optical nonreciprocity, in the mid-IR to terahertz range, with tunable splittings as large as tens of THz, as well as sensitive all-optical diagnostics of topological bands.

  10. Magnetic Fields in Irregular Galaxies: NGC 4214

    NASA Astrophysics Data System (ADS)

    Kepley, Amanda A.; Wilcots, E. M.; Robishaw, T.; Heiles, C.; Zweibel, E.

    2006-12-01

    Magnetic fields are an important component of the interstellar medium of galaxies. They provide support, transfer energy from supernovae, provide a possible heating mechanism, and channel gas flows (Beck 2004). Despite the importance of magnetic fields in the ISM, it is not well known what generates and sustains galactic magnetic fields or how magnetic fields, gas, and stars interact in galaxies. The magnetic fields may be especially important in low-mass galaxies like irregulars where the magnetic pressure may be great enough for the field to be dynamically important. However, only four irregular galaxies besides the LMC and the SMC have observed magnetic field structures. The goal of our project is to significantly increase the number of irregular galaxies with observed magnetic field structure. Here we present preliminary results for one of the galaxies in our sample: NGC 4214. Using the VLA and the GBT, we have obtained 3cm, 6cm, and 20cm radio continuum polarization observations of this well-studied galaxy. Our observations allow us to investigate the effects of NGC 4214's high star formation rate, slow rotation rate, and weak bar on the structure of its magnetic field. We find that NGC 4214's magnetic field has an S-shaped structure, with the central field following the bar and the outer edges curving to follow the shape of the arms. The mechanism for generating these fields is still uncertain. A. Kepley is funded by an NSF Graduate Research Fellowship.

  11. Near-Field Magnetic Dipole Moment Analysis

    NASA Technical Reports Server (NTRS)

    Harris, Patrick K.

    2003-01-01

    This paper describes the data analysis technique used for magnetic testing at the NASA Goddard Space Flight Center (GSFC). Excellent results have been obtained using this technique to convert a spacecraft s measured magnetic field data into its respective magnetic dipole moment model. The model is most accurate with the earth s geomagnetic field cancelled in a spherical region bounded by the measurement magnetometers with a minimum radius large enough to enclose the magnetic source. Considerably enhanced spacecraft magnetic testing is offered by using this technique in conjunction with a computer-controlled magnetic field measurement system. Such a system, with real-time magnetic field display capabilities, has been incorporated into other existing magnetic measurement facilities and is also used at remote locations where transport to a magnetics test facility is impractical.

  12. Magnetic field waves at Uranus

    NASA Technical Reports Server (NTRS)

    Smith, Charles W.; Goldstein, Melvyn L.; Lepping, Ronald P.; Mish, William H.; Wong, Hung K.

    1994-01-01

    The research efforts funded by the Uranus Data Analysis Program (UDAP) grant to the Bartol Research Institute (BRI) involved the study of magnetic field waves associated with the Uranian bow shock. Upstream wave studies are motivated as a study of the physics of collisionless shocks. Collisionless shocks in plasmas are capable of 'reflecting' a fraction of the incoming thermal particle distribution and directing the resulting energetic particle motion back into the upstream region. Once within the upstream region, the backward streaming energetic particles convey information of the approaching shock to the supersonic flow. This particle population is responsible for the generation of upstream magnetic and electrostatic fluctuations known as 'upstream waves', for slowing the incoming wind prior to the formation of the shock ramp, and for heating of the upstream plasma. The waves produced at Uranus not only differed in several regards from the observations at other planetary bow shocks, but also gave new information regarding the nature of the reflected particle populations which were largely unmeasurable by the particle instruments. Four distinct magnetic field wave types were observed upstream of the Uranian bow shock: low-frequency Alfven or fast magnetosonic waves excited by energetic protons originating at or behind the bow shock; whistler wave bursts driven by gyrating ion distributions within the shock ramp; and two whistler wave types simultaneously observed upstream of the flanks of the shock and argued to arise from resonance with energetic electrons. In addition, observations of energetic particle distributions by the LECP experiment, thermal particle populations observed by the PLS experiment, and electron plasma oscillations recorded by the PWS experiment proved instrumental to this study and are included to some degree in the papers and presentations supported by this grant.

  13. Magnetic field observations in Comet Halley's coma

    NASA Astrophysics Data System (ADS)

    Riedler, W.; Schwingenschuh, K.; Yeroshenko, Ye. G.; Styashkin, V. A.; Russell, C. T.

    1986-05-01

    During the encounter with Comet Halley, the magnetometer (MISCHA) aboard the Vega 1 spacecraft observed an increased level of magnetic field turbulence, resulting from an upstream bow wave. Both Vega spacecraft measured a peak field strength of 70-80 nT and observed draping of magnetic field lines around the cometary obstacle. An unexpected rotation of the magnetic field vector was observed, which may reflect either penetration of magnetic field lines into a diffuse layer related to the contact surface separating the solar-wind and cometary plasma, or the persistence of pre-existing interplanetary field structures.

  14. Magnetic field effects on microwave absorbing materials

    NASA Technical Reports Server (NTRS)

    Goldberg, Ira; Hollingsworth, Charles S.; Mckinney, Ted M.

    1991-01-01

    The objective of this program was to gather information to formulate a microwave absorber that can work in the presence of strong constant direct current (DC) magnetic fields. The program was conducted in four steps. The first step was to investigate the electrical and magnetic properties of magnetic and ferrite microwave absorbers in the presence of strong magnetic fields. This included both experimental measurements and a literature survey of properties that may be applicable to finding an appropriate absorbing material. The second step was to identify those material properties that will produce desirable absorptive properties in the presence of intense magnetic fields and determine the range of magnetic field in which the absorbers remain effective. The third step was to establish ferrite absorber designs that will produce low reflection and adequate absorption in the presence of intense inhomogeneous static magnetic fields. The fourth and final step was to prepare and test samples of such magnetic microwave absorbers if such designs seem practical.

  15. RF Head Coil Design with Improved RF Magnetic Near-Fields Uniformity for Magnetic Resonance Imaging (MRI) Systems

    PubMed Central

    Sohn, Sung-Min; DelaBarre, Lance; Gopinath, Anand; Vaughan, John Thomas

    2015-01-01

    Higher magnetic field strength in magnetic resonance imaging (MRI) systems offers higher signal-to-noise ratio (SNR), contrast, and spatial resolution in MR images. However, the wavelength in ultra-high fields (7 tesla and beyond) becomes shorter than the human body at the Larmor frequency with increasing static magnetic field (B0) of MRI system. At short wavelengths, interference effect appears resulting in non- uniformity of the RF magnetic near-field (B1) over the subject and MR images may have spatially anomalous contrast. The B1 near-field generated by the transverse electromagnetic (TEM) RF coil’s microstrip line element has a maximum near the center of its length and falls off towards both ends. In this study, a double trapezoidal shaped microstrip transmission line element is proposed to obtain uniform B1 field distribution by gradual impedance variation. Two multi-channel RF head coils with uniform and trapezoidal shape elements were built and tested with a phantom at 7T MRI scanner for comparison. The simulation and experimental results show stronger and more uniform B1+ near-field with the trapezoidal shape. PMID:25892746

  16. Deformation of Water by a Magnetic Field

    ERIC Educational Resources Information Center

    Chen, Zijun; Dahlberg, E. Dan

    2011-01-01

    After the discovery that superconducting magnets could levitate diamagnetic objects, researchers became interested in measuring the repulsion of diamagnetic fluids in strong magnetic fields, which was given the name "The Moses Effect." Both for the levitation experiments and the quantitative studies on liquids, the large magnetic fields necessary…

  17. Exploring Magnetic Fields with a Compass

    ERIC Educational Resources Information Center

    Lunk, Brandon; Beichner, Robert

    2011-01-01

    A compass is an excellent classroom tool for the exploration of magnetic fields. Any student can tell you that a compass is used to determine which direction is north, but when paired with some basic trigonometry, the compass can be used to actually measure the strength of the magnetic field due to a nearby magnet or current-carrying wire. In this…

  18. Magnetic field effect on charged Brownian swimmers

    NASA Astrophysics Data System (ADS)

    Sandoval, M.; Velasco, R. M.; Jiménez-Aquino, J. I.

    2016-01-01

    We calculate the effective diffusion of a spherical self-propelled charged particle swimming at low Reynolds number, and subject to a time-dependent magnetic field and thermal agitation. We find that the presence of an external magnetic field may reduce or enhance (depending on the type of swimming and magnetic field applied) the swimmer's effective diffusion, hence we get another possible strategy to control its displacement. For swimmers performing reciprocal motion, and under an oscillating time-dependent magnetic field, mechanical resonance appears when the swimmer and magnetic frequencies coincide, thus enhancing the particle's effective diffusion. Our analytical results are compared with Brownian Dynamics simulations and we obtain excellent agreement.

  19. First evidence of detecting surface nuclear magnetic resonance signals using a compact B-field sensor

    NASA Astrophysics Data System (ADS)

    Davis, Aaron C.; Dlugosch, Raphael; Queitsch, Matthias; Macnae, James C.; Stolz, Ronny; Müller-Petke, Mike

    2014-06-01

    The noninvasive detection and characterization of subsurface aquifer structures demands geophysical techniques. Surface nuclear magnetic resonance (SNMR) is the only technique that is directly sensitive to hydrogen protons and, therefore, allows for unambiguous detection of subsurface water. Traditionally, SNMR utilizes large surface coils for both transmitting excitation pulses and recording the groundwater response. Recorded data are thus a voltage induced by the time derivative of the secondary magnetic field. For the first time, we demonstrate that the secondary magnetic field in a SNMR experiment can be directly detected using a superconducting quantum interference device magnetometer. Conducting measurements at a test site in Germany, we demonstrate not only the ability to detect SNMR signals on the order of femtoTesla but also we are able to satisfy the observed data by inverse modeling. This is expected to open up completely new applications for this exciting technology.

  20. Magnetic field calculation and measurement of active magnetic bearings

    NASA Astrophysics Data System (ADS)

    Ding, Guoping; Zhou, Zude; Hu, Yefa

    2006-11-01

    Magnetic Bearings are typical devices in which electric energy and mechanical energy convert mutually. Magnetic Field indicates the relationship between 2 of the most important parameters in a magnetic bearing - current and force. This paper presents calculation and measurement of the magnetic field distribution of a self-designed magnetic bearing. Firstly, the static Maxwell's equations of the magnetic bearing are presented and a Finite Element Analysis (FEA) is found to solve the equations and get post-process results by means of ANSYS software. Secondly, to confirm the calculation results a Lakeshore460 3-channel Gaussmeter is used to measure the magnetic flux density of the magnetic bearing in X, Y, Z directions accurately. According to the measurement data the author constructs a 3D magnetic field distribution digital model by means of MATLAB software. Thirdly, the calculation results and the measurement data are compared and analyzed; the comparing result indicates that the calculation results are consistent with the measurement data in allowable dimension variation, which means that the FEA calculation method of the magnetic bearing has high precision. Finally, it is concluded that the magnetic field calculation and measurement can accurately reflect the real magnetic distribution in the magnetic bearing and the result can guide the design and analysis of the magnetic bearing effectively.

  1. Magnetic Trapping of Bacteria at Low Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Wang, Z. M.; Wu, R. G.; Wang, Z. P.; Ramanujan, R. V.

    2016-06-01

    A suspension of non-magnetic entities in a ferrofluid is referred to as an inverse ferrofluid. Current research to trap non-magnetic entities in an inverse ferrofluid focuses on using large permanent magnets to generate high magnetic field gradients, which seriously limits Lab-on-a-Chip applications. On the other hand, in this work, trapping of non-magnetic entities, e.g., bacteria in a uniform external magnetic field was studied with a novel chip design. An inverse ferrofluid flows in a channel and a non-magnetic island is placed in the middle of this channel. The magnetic field was distorted by this island due to the magnetic susceptibility difference between this island and the surrounding ferrofluid, resulting in magnetic forces applied on the non-magnetic entities. Both the ferromagnetic particles and the non-magnetic entities, e.g., bacteria were attracted towards the island, and subsequently accumulate in different regions. The alignment of the ferrimagnetic particles and optical transparency of the ferrofluid was greatly enhanced by the bacteria at low applied magnetic fields. This work is applicable to lab-on-a-chip based detection and trapping of non-magnetic entities bacteria and cells.

  2. Magnetic Trapping of Bacteria at Low Magnetic Fields.

    PubMed

    Wang, Z M; Wu, R G; Wang, Z P; Ramanujan, R V

    2016-01-01

    A suspension of non-magnetic entities in a ferrofluid is referred to as an inverse ferrofluid. Current research to trap non-magnetic entities in an inverse ferrofluid focuses on using large permanent magnets to generate high magnetic field gradients, which seriously limits Lab-on-a-Chip applications. On the other hand, in this work, trapping of non-magnetic entities, e.g., bacteria in a uniform external magnetic field was studied with a novel chip design. An inverse ferrofluid flows in a channel and a non-magnetic island is placed in the middle of this channel. The magnetic field was distorted by this island due to the magnetic susceptibility difference between this island and the surrounding ferrofluid, resulting in magnetic forces applied on the non-magnetic entities. Both the ferromagnetic particles and the non-magnetic entities, e.g., bacteria were attracted towards the island, and subsequently accumulate in different regions. The alignment of the ferrimagnetic particles and optical transparency of the ferrofluid was greatly enhanced by the bacteria at low applied magnetic fields. This work is applicable to lab-on-a-chip based detection and trapping of non-magnetic entities bacteria and cells. PMID:27254771

  3. Magnetic Trapping of Bacteria at Low Magnetic Fields

    PubMed Central

    Wang, Z. M.; Wu, R. G.; Wang, Z. P.; Ramanujan, R. V.

    2016-01-01

    A suspension of non-magnetic entities in a ferrofluid is referred to as an inverse ferrofluid. Current research to trap non-magnetic entities in an inverse ferrofluid focuses on using large permanent magnets to generate high magnetic field gradients, which seriously limits Lab-on-a-Chip applications. On the other hand, in this work, trapping of non-magnetic entities, e.g., bacteria in a uniform external magnetic field was studied with a novel chip design. An inverse ferrofluid flows in a channel and a non-magnetic island is placed in the middle of this channel. The magnetic field was distorted by this island due to the magnetic susceptibility difference between this island and the surrounding ferrofluid, resulting in magnetic forces applied on the non-magnetic entities. Both the ferromagnetic particles and the non-magnetic entities, e.g., bacteria were attracted towards the island, and subsequently accumulate in different regions. The alignment of the ferrimagnetic particles and optical transparency of the ferrofluid was greatly enhanced by the bacteria at low applied magnetic fields. This work is applicable to lab-on-a-chip based detection and trapping of non-magnetic entities bacteria and cells. PMID:27254771

  4. Analysis of magnetic field levels at KSC

    NASA Technical Reports Server (NTRS)

    Christodoulou, Christos G.

    1994-01-01

    The scope of this work is to evaluate the magnetic field levels of distribution systems and other equipment at Kennedy Space Center (KSC). Magnetic fields levels in several operational areas and various facilities are investigated. Three dimensional mappings and contour are provided along with the measured data. Furthermore, the portion of magnetic fields generated by the 60 Hz fundamental frequency and the portion generated by harmonics are examined. Finally, possible mitigation techniques for attenuating fields from electric panels are discussed.

  5. Magnetizing technique for permanent magnets by intense static fields generated by HTS bulk magnets: Numerical Analysis

    NASA Astrophysics Data System (ADS)

    N. Kawasaki; Oka, T.; Fukui, S.; Ogawa, J.; Sato, T.; Terasawa, T.; Itoh, Y.

    A demagnetized Nd-Fe-B permanent magnet was scanned in the strong magnetic field space just above the magnetic pole containing a HTS bulk magnet which generates the magnetic field 3.4 T. The magnet sample was subsequently found to be fully magnetized in the open space of the static magnetic fields. The finite element method was carried out for the static field magnetization of a permanent magnet using a HTS bulk magnet. Previously, our research group experimentally demonstrated the possibility of full magnetization of rare earth permanent magnets with high-performance magnetic properties with use of the static field of HTS bulk magnets. In the present study, however, we succeeded for the first time in visualizing the behavior of the magnetizing field of the bulk magnet during the magnetization process and the shape of the magnetic field inside the body being magnetized. By applying this kind of numerical analysis to the magnetization for planned motor rotors which incorporate rare-earth permanent magnets, we hope to study the fully magnetized regions for the new magnetizing method using bulk magnets and to give motor designing a high degree of freedom.

  6. Magnetic field concentrator for probing optical magnetic metamaterials.

    PubMed

    Antosiewicz, Tomasz J; Wróbel, Piotr; Szoplik, Tomasz

    2010-12-01

    Development of all dielectric and plasmonic metamaterials with a tunable optical frequency magnetic response creates a need for new inspection techniques. We propose a method of measuring magnetic responses of such metamaterials within a wide range of optical frequencies with a single probe. A tapered fiber probe with a radially corrugated metal coating concentrates azimuthally polarized light in the near-field into a subwavelength spot the longitudinal magnetic field component which is much stronger than the perpendicular electric one. The active probe may be used in a future scanning near-field magnetic microscope for studies of magnetic responses of subwavelength elementary cells of metamaterials. PMID:21164936

  7. Frustrated magnets in high magnetic fields-selected examples.

    PubMed

    Wosnitza, J; Zvyagin, S A; Zherlitsyn, S

    2016-07-01

    An indispensable parameter to study strongly correlated electron systems is the magnetic field. Application of high magnetic fields allows the investigation, modification and control of different states of matter. Specifically for magnetic materials experimental tools applied in such fields are essential for understanding their fundamental properties. Here, we focus on selected high-field studies of frustrated magnetic materials that have been shown to host a broad range of fascinating new and exotic phases. We will give brief insights into the influence of geometrical frustration on the critical behavior of triangular-lattice antiferromagnets, the accurate determination of exchange constants in the high-field saturated state by use of electron spin resonance measurements, and the coupling of magnetic degrees of freedom to the lattice evidenced by ultrasound experiments. The latter technique as well allowed new, partially metastable phases in strong magnetic fields to be revealed. PMID:27310818

  8. Effects of static magnetic fields on light scattering in red chromatophore of goldfish scale

    NASA Astrophysics Data System (ADS)

    Iwasaka, M.

    2010-05-01

    Light scattering in a guanine crystal plate of goldfish scales was observed with and without static magnetic field exposure. Under a microscopic image with dark-field-illumination, the structural color of the scale by guanine plates was observed, and isolated chromatophores showed a twinkling which was the intermittent light scattering of the light from the side. The light scattering was quenched by static magnetic fields of more than 0.26 tesla (T). The quenching was reversibly occurred when the applied external magnetic fields were changed between ambient fields and 5 T. The quenched light scattering did not improve when the magnetic field was decreased from 5 to 0.3 T. It recovered to the original twinkling state about one minute after reaching an ambient geomagnetic field level. The mechanism of the quenched light scattering was speculated to be concerned with the possible magnetic orientation of guanine crystal plates, which were sustained by protein fibers in the red chromatophore. The diamagnetic complex of guanine crystal plates and protein fibers are the candidates for the nanosized light scattering controller based on the magnetic orientation mechanism.

  9. The TESLA RF System

    NASA Astrophysics Data System (ADS)

    Choroba, S.

    2003-12-01

    The TESLA project proposed by the TESLA collaboration in 2001 is a 500 to 800GeV e+/e- linear collider with integrated free electron laser facility. The accelerator is based on superconducting cavity technology. Approximately 20000 superconducting cavities operated at 1.3GHz with a gradient of 23.4MV/m or 35MV/m will be required to achieve the energy of 500GeV or 800GeV respectively. For 500GeV ˜600 RF stations each generating 10MW of RF power at 1.3GHz at a pulse duration of 1.37ms and a repetition rate of 5 or 10Hz are required. The original TESLA design was modified in 2002 and now includes a dedicated 20GeV electron accelerator in a separate tunnel for free electron laser application. The TESLA XFEL will provide XFEL radiation of unprecedented peak brilliance and full transverse coherence in the wavelength range of 0.1 to 6.4nm at a pulse duration of 100fs. The technology of both accelerators, the TESLA linear collider and the XFEL, will be identical, however the number of superconducting cavities and RF stations for the XFEL will be reduced to 936 and 26 respectively. This paper describes the layout of the entire RF system of the TESLA linear collider and the TESLA XFEL and gives an overview of its various subsystems and components.

  10. Photodetachment Spectroscopy of the Selenium Negative Ion in High Magnetic Field

    NASA Astrophysics Data System (ADS)

    Elmquist, Randolph Ellis

    Photodetachment spectroscopy of negative ions has determined that oscillatory structure is present in the region just above threshold when photodetachment occurs in a magnetic field. Photodetachment thresholds measured in a Penning ion trap at 6.33 Tesla and 7.83 Tesla magnetic field are reported here which show new structure. The threshold shape measured for Se- with varying levels of laser light intensity and three degrees of sigma polarization with light directed along the field axis is compared to the shape predicted by the theoretical analysis of Blumberg, Itano, and Larson. The measurements are found to be well represented by the theory; however, previously unresolved structure points out differences in the coupling weights of sub-level transitions from the predicted weights. The effect of collisional relaxation of the sub-level populations in the ('2)P(,3/2) state of the selenium ion is noted as the pressure of background gas is increased and the light is left on for longer periods of time. From the measurements a zero-field electron affinity EA(Se) = 16297.790(26) cm(' -1) is derived.

  11. Abnormal Magnetic Field Effects on Electrogenerated Chemiluminescence

    NASA Astrophysics Data System (ADS)

    Pan, Haiping; Shen, Yan; Wang, Hongfeng; He, Lei; Hu, Bin

    2015-03-01

    We report abnormal magnetic field effects on electrogenerated chemiluminescence (MFEECL) based on triplet emission from the Ru(bpy)3Cl2-TPrA electrochemical system: the appearance of MFEECL after magnetic field ceases. In early studies the normal MFEECL have been observed from electrochemical systems during the application of magnetic field. Here, the abnormal MFEECL suggest that the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes may become magnetized in magnetic field and experience a long magnetic relaxation after removing magnetic field. Our analysis indicates that the magnetic relaxation can gradually increase the density of charge-transfer complexes within reaction region due to decayed magnetic interactions, leading to a positive component in the abnormal MFEECL. On the other hand, the magnetic relaxation facilitates an inverse conversion from triplets to singlets within charge-transfer complexes. The inverse triplet --> singlet conversion reduces the density of triplet light-emitting states through charge-transfer complexes and gives rise to a negative component in the abnormal MFEECL. The combination of positive and negative components can essentially lead to a non-monotonic profile in the abnormal MFEECL after ceasing magnetic field. Nevertheless, our experimental studies may reveal un-usual magnetic behaviors with long magnetic relaxation from the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes in solution at room temperature.

  12. Abnormal magnetic field effects on electrogenerated chemiluminescence.

    PubMed

    Pan, Haiping; Shen, Yan; Wang, Hongfeng; He, Lei; Hu, Bin

    2015-01-01

    We report abnormal magnetic field effects on electrogenerated chemiluminescence (MFEECL) based on triplet emission from the Ru(bpy)3Cl2-TPrA electrochemical system: the appearance of MFEECL after magnetic field ceases. In early studies the normal MFEECL have been observed from electrochemical systems during the application of magnetic field. Here, the abnormal MFEECL suggest that the activated charge-transfer [Ru(bpy)3(3+) … TPrA(•)] complexes may become magnetized in magnetic field and experience a long magnetic relaxation after removing magnetic field. Our analysis indicates that the magnetic relaxation can gradually increase the density of charge-transfer complexes within reaction region due to decayed magnetic interactions, leading to a positive component in the abnormal MFEECL. On the other hand, the magnetic relaxation facilitates an inverse conversion from triplets to singlets within charge-transfer complexes. The inverse triplet → singlet conversion reduces the density of triplet light-emitting states through charge-transfer complexes and gives rise to a negative component in the abnormal MFEECL. The combination of positive and negative components can essentially lead to a non-monotonic profile in the abnormal MFEECL after ceasing magnetic field. Nevertheless, our experimental studies may reveal un-usual magnetic behaviors with long magnetic relaxation from the activated charge-transfer [Ru(bpy)3(3+) … TPrA(•)] complexes in solution at room temperature. PMID:25772580

  13. Abnormal Magnetic Field Effects on Electrogenerated Chemiluminescence

    PubMed Central

    Pan, Haiping; Shen, Yan; Wang, Hongfeng; He, Lei; Hu, Bin

    2015-01-01

    We report abnormal magnetic field effects on electrogenerated chemiluminescence (MFEECL) based on triplet emission from the Ru(bpy)3Cl2-TPrA electrochemical system: the appearance of MFEECL after magnetic field ceases. In early studies the normal MFEECL have been observed from electrochemical systems during the application of magnetic field. Here, the abnormal MFEECL suggest that the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes may become magnetized in magnetic field and experience a long magnetic relaxation after removing magnetic field. Our analysis indicates that the magnetic relaxation can gradually increase the density of charge-transfer complexes within reaction region due to decayed magnetic interactions, leading to a positive component in the abnormal MFEECL. On the other hand, the magnetic relaxation facilitates an inverse conversion from triplets to singlets within charge-transfer complexes. The inverse triplet → singlet conversion reduces the density of triplet light-emitting states through charge-transfer complexes and gives rise to a negative component in the abnormal MFEECL. The combination of positive and negative components can essentially lead to a non-monotonic profile in the abnormal MFEECL after ceasing magnetic field. Nevertheless, our experimental studies may reveal un-usual magnetic behaviors with long magnetic relaxation from the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes in solution at room temperature. PMID:25772580

  14. Bipolar pulse field for magnetic refrigeration

    DOEpatents

    Lubell, M.S.

    1994-10-25

    A magnetic refrigeration apparatus includes first and second steady state magnets, each having a field of substantially equal strength and opposite polarity, first and second bodies made of magnetocaloric material disposed respectively in the influence of the fields of the first and second steady state magnets, and a pulsed magnet, concentric with the first and second steady state magnets, and having a field which cycles between the fields of the first and second steady state magnets, thereby cyclically magnetizing and demagnetizing and thus heating and cooling the first and second bodies. Heat exchange apparatus of suitable design can be used to expose a working fluid to the first and second bodies of magnetocaloric material. A controller is provided to synchronize the flow of working fluid with the changing states of magnetization of the first and second bodies. 2 figs.

  15. Bipolar pulse field for magnetic refrigeration

    DOEpatents

    Lubell, Martin S.

    1994-01-01

    A magnetic refrigeration apparatus includes first and second steady state magnets, each having a field of substantially equal strength and opposite polarity, first and second bodies made of magnetocaloric material disposed respectively in the influence of the fields of the first and second steady state magnets, and a pulsed magnet, concentric with the first and second steady state magnets, and having a field which cycles between the fields of the first and second steady state magnets, thereby cyclically magnetizing and demagnetizing and thus heating and cooling the first and second bodies. Heat exchange apparatus of suitable design can be used to expose a working fluid to the first and second bodies of magnetocaloric material. A controller is provided to synchronize the flow of working fluid with the changing states of magnetization of the first and second bodies.

  16. Application peculiarities of magnetic materials for protection from magnetic fields

    NASA Astrophysics Data System (ADS)

    Wai, P.; Dmitrenko, V.; Grabchikov, S.; Vlasik, K.; Novikov, A.; Petrenko, D.; Trukhanov, V.; Ulin, S.; Uteshev, Z.; Chernysheva, V.; Shustov, A.

    2016-02-01

    In different materials for magnetic shields, the maximum permeability is achieved for different values of the magnetic field. This determines the choice of material. So for protection from magnetic fields strength of 10 - 150 A/m it is advisable to apply the amorphous ribbon 84KXCP. For stronger fields (more than 400 A/m) it is recommended to use MFS based on Ni20Fe80. Use of these materials allows creating an effective shield working in a wide range of magnetic field strengths.

  17. Magnetic field waves at Uranus

    NASA Technical Reports Server (NTRS)

    Smith, Charles W.; Goldstein, Melvyn L.; Lepping, Ronald P.; Mish, William H.; Wong, Hung K.

    1991-01-01

    The proposed research efforts funded by the UDAP grant to the BRI involve the study of magnetic field waves associated with the Uranian bow shock. This is a collaborative venture bringing together investigators at the BRI, Southwest Research Institute (SwRI), and Goddard Space Flight Center (GSFC). In addition, other collaborations have been formed with investigators granted UDAP funds for similar studies and with investigators affiliated with other Voyager experiments. These investigations and the corresponding collaborations are included in the report. The proposed effort as originally conceived included an examination of waves downstream from the shock within the magnetosheath. However, the observations of unexpected complexity and diversity within the upstream region have necessitated that we confine our efforts to those observations recorded upstream of the bow shock on the inbound and outbound legs of the encounter by the Voyager 2 spacecraft.

  18. A magnetic nanoparticles relaxation sensor for protein-protein interaction detection at ultra-low magnetic field.

    PubMed

    Wang, Wei; Ma, Peixiang; Dong, Hui; Krause, Hans-Joachim; Zhang, Yi; Willbold, Dieter; Offenhaeusser, Andreas; Gu, Zhongwei

    2016-06-15

    Functionalized magnetic nanoparticles (MNPs) can serve as magnetic relaxation sensors (MRSs) to detect different biological targets, because the clustering of magnetic particle may cause the spin-spin relaxation time (T2) decrease of the surrounding water protons. However, the application of MNPs in clinical NMR systems faces the challenge of poor stability at magnetic field strengths in the order of tesla. The recently developed ultra-low field (ULF) NMR technique working at microtesla (μT) range then becomes a candidate. Herein, we incorporated superconducting quantum interference device (SQUID) as the detector in the ultra-low field system to enhance the sensitivity. We functionalized the Fe3O4 nanoparticles with the gama-aminobutyrate type A receptor-associated proteins (GABARAP), which specifically interact with calreticulin (CRT). As a result of the interaction between GABARAP and CRT, the clustering of the functionalized MNPs generates local magnetic fields, which accelerate the dephasing of the water protons in the vicinity. We analyzed the relation between T2 values and the CRT concentrations at 211μT and the low detection limit for CRT is 10 pg/ml, which is superior to the immunoblot system. The high sensitivity of the ULF NMR system for protein-protein interaction detection demonstrates the potential to use this inexpensive, portable system for quick biochemical and clinical assays. PMID:26914374

  19. Lorentz force electrical impedance tomography using magnetic field measurements

    NASA Astrophysics Data System (ADS)

    Zengin, Reyhan; Güneri Gençer, Nevzat

    2016-08-01

    In this study, magnetic field measurement technique is investigated to image the electrical conductivity properties of biological tissues using Lorentz forces. This technique is based on electrical current induction using ultrasound together with an applied static magnetic field. The magnetic field intensity generated due to induced currents is measured using two coil configurations, namely, a rectangular loop coil and a novel xy coil pair. A time-varying voltage is picked-up and recorded while the acoustic wave propagates along its path. The forward problem of this imaging modality is defined as calculation of the pick-up voltages due to a given acoustic excitation and known body properties. Firstly, the feasibility of the proposed technique is investigated analytically. The basic field equations governing the behaviour of time-varying electromagnetic fields are presented. Secondly, the general formulation of the partial differential equations for the scalar and magnetic vector potentials are derived. To investigate the feasibility of this technique, numerical studies are conducted using a finite element method based software. To sense the pick-up voltages a novel coil configuration (xy coil pairs) is proposed. Two-dimensional numerical geometry with a 16-element linear phased array (LPA) ultrasonic transducer (1 MHz) and a conductive body (breast fat) with five tumorous tissues is modeled. The static magnetic field is assumed to be 4 Tesla. To understand the performance of the imaging system, the sensitivity matrix is analyzed. The sensitivity matrix is obtained for two different locations of LPA transducer with eleven steering angles from -{{25}\\circ} to {{25}\\circ} at intervals of {{5}\\circ} . The characteristics of the imaging system are shown with the singular value decomposition (SVD) of the sensitivity matrix. The images are reconstructed with the truncated SVD algorithm. The signal-to-noise ratio in measurements is assumed 80 dB. Simulation studies

  20. Lorentz force electrical impedance tomography using magnetic field measurements.

    PubMed

    Zengin, Reyhan; Gençer, Nevzat Güneri

    2016-08-21

    In this study, magnetic field measurement technique is investigated to image the electrical conductivity properties of biological tissues using Lorentz forces. This technique is based on electrical current induction using ultrasound together with an applied static magnetic field. The magnetic field intensity generated due to induced currents is measured using two coil configurations, namely, a rectangular loop coil and a novel xy coil pair. A time-varying voltage is picked-up and recorded while the acoustic wave propagates along its path. The forward problem of this imaging modality is defined as calculation of the pick-up voltages due to a given acoustic excitation and known body properties. Firstly, the feasibility of the proposed technique is investigated analytically. The basic field equations governing the behaviour of time-varying electromagnetic fields are presented. Secondly, the general formulation of the partial differential equations for the scalar and magnetic vector potentials are derived. To investigate the feasibility of this technique, numerical studies are conducted using a finite element method based software. To sense the pick-up voltages a novel coil configuration (xy coil pairs) is proposed. Two-dimensional numerical geometry with a 16-element linear phased array (LPA) ultrasonic transducer (1 MHz) and a conductive body (breast fat) with five tumorous tissues is modeled. The static magnetic field is assumed to be 4 Tesla. To understand the performance of the imaging system, the sensitivity matrix is analyzed. The sensitivity matrix is obtained for two different locations of LPA transducer with eleven steering angles from [Formula: see text] to [Formula: see text] at intervals of [Formula: see text]. The characteristics of the imaging system are shown with the singular value decomposition (SVD) of the sensitivity matrix. The images are reconstructed with the truncated SVD algorithm. The signal-to-noise ratio in measurements is assumed 80 d

  1. Magnetic field effects in a polymer/fullerene blend photovoltaic cell

    NASA Astrophysics Data System (ADS)

    Jang, Hyuk-Jae; Basham, James I.; Gundlach, David J.; Richter, Curt A.

    Organic photovoltaic (OPV) systems based on blends of conjugated polymers and fullerene derivatives have shown great promise for low-cost and efficient photovoltaic applications. Recent findings suggest that a weak external magnetic field can disturb the spin configuration of excited states and subsequently change properties of OPV cells such as photocurrent. These changes are referred to as magnetic field effects (MFEs). In order to have a better understanding of the underlying mechanisms responsible for the MFEs in polymer/fullerene blend photovoltaic systems, we fabricated poly-3-hexylthiophene (P3HT):phenyl-C61-butyric acid methyl ester (PC61BM) cells and carried out photovoltaic device performance and impedance spectroscopy measurements with and without an externally applied magnetic field. A significant reduction in short circuit current (JSC) as well as open circuit voltage (VOC) was observed with an applied magnetic field of a 0.1 tesla compared to those measured without a magnetic field under the same intensity of illumination. Impedance spectroscopy data gives insights into the influence of an external magnetic field on charge generation and recombination near normal photovoltaic operating conditions.

  2. Analytical solution for the diffusion of a capacitor discharge generated magnetic field pulse in a conductor

    NASA Astrophysics Data System (ADS)

    Grants, Ilmārs; Bojarevičs, Andris; Gerbeth, Gunter

    2016-06-01

    Powerful forces arise when a pulse of a magnetic field in the order of a few tesla diffuses into a conductor. Such pulses are used in electromagnetic forming, impact welding of dissimilar materials and grain refinement of solidifying alloys. Strong magnetic field pulses are generated by the discharge current of a capacitor bank. We consider analytically the penetration of such pulse into a conducting half-space. Besides the exact solution we obtain two simple self-similar approximate solutions for two sequential stages of the initial transient. Furthermore, a general solution is provided for the external field given as a power series of time. Each term of this solution represents a self-similar function for which we obtain an explicit expression. The validity range of various approximate analytical solutions is evaluated by comparison to the exact solution.

  3. Representation of magnetic fields in space

    NASA Technical Reports Server (NTRS)

    Stern, D. P.

    1975-01-01

    Several methods by which a magnetic field in space can be represented are reviewed with particular attention to problems of the observed geomagnetic field. Time dependence is assumed to be negligible, and five main classes of representation are described by vector potential, scalar potential, orthogonal vectors, Euler potentials, and expanded magnetic field.

  4. DC-based magnetic field controller

    DOEpatents

    Kotter, D.K.; Rankin, R.A.; Morgan, J.P.

    1994-05-31

    A magnetic field controller is described for laboratory devices and in particular to dc operated magnetic field controllers for mass spectrometers, comprising a dc power supply in combination with improvements to a Hall probe subsystem, display subsystem, preamplifier, field control subsystem, and an output stage. 1 fig.

  5. DC-based magnetic field controller

    DOEpatents

    Kotter, Dale K.; Rankin, Richard A.; Morgan, John P,.

    1994-01-01

    A magnetic field controller for laboratory devices and in particular to dc operated magnetic field controllers for mass spectrometers, comprising a dc power supply in combination with improvements to a hall probe subsystem, display subsystem, preamplifier, field control subsystem, and an output stage.

  6. Simulation of Time-Dependent Energy Modulation by Wake Fields and its Impact on Gain in the VUV free Electron Laser of the TESLA Test Facility

    NASA Astrophysics Data System (ADS)

    Reiche, S.; Schlarb, H.

    2000-05-01

    For shorter bunches and narrower undulator gaps the interaction between the electrons in the bunch and the wake fields becomes so large that the FEL amplification is affected. For a typical vacuum chamber of an X-ray or VUV Free Electron Laser three major sources of wake fields exist: a resistance of the beam pipe, a change in the geometric aperture and the surface roughness of the beam pipe. The generated wake fields, which move along with the electrons, change the electron energy and momentum, depending on the electron longitudinal and transverse position. In particular, the accumulated energy modulation shifts the electrons away from the resonance condition. Based on an analytic model the energy loss by the wake fields has been incorporated into the time-dependent FEL simulation code GENESIS 1.3. For the parameters of the TESLA Test Facility the influence of the bunch length, beam pipe diameter and surface roughness has been studied. The results are presented in this paper.

  7. Static uniform magnetic fields and amoebae

    SciTech Connect

    Berk, S.G.; Srikanth, S.; Mahajan, S.M.; Ventrice, C.A.

    1997-03-01

    Three species of potentially pathogenic amoebae were exposed to 71 and 106.5 mT from constant homogeneous magnetic fields and examined for inhibition of population growth. The number of amoebae for three species was significantly less than controls after a 72 h exposure to the magnetic fields when the temperature was 20 C or above. Axenic cultures, i.e., cultures grown without bacteria, were significantly affected after only 24 h. In 20 of 21 tests using the three species, the magnetic field significantly inhibited the growth of amoebae. In one test in which the temperature was 20 C for 48 h, exposure to the magnetic field was not inhibitory. Final numbers of magnetic field-exposed amoebae ranged from 9 to 72% lower than the final numbers of unexposed controls, depending on the species. This research may lead to disinfection strategies utilizing magnetic fields for surfaces on which pathogenic amoebae may proliferate.

  8. Magnetic field sensor for isotropically sensing an incident magnetic field in a sensor plane

    NASA Technical Reports Server (NTRS)

    Pant, Bharat B. (Inventor); Wan, Hong (Inventor)

    2001-01-01

    A magnetic field sensor that isotropically senses an incident magnetic field. This is preferably accomplished by providing a magnetic field sensor device that has one or more circular shaped magnetoresistive sensor elements for sensing the incident magnetic field. The magnetoresistive material used is preferably isotropic, and may be a CMR material or some form of a GMR material. Because the sensor elements are circular in shape, shape anisotropy is eliminated. Thus, the resulting magnetic field sensor device provides an output that is relatively independent of the direction of the incident magnetic field in the sensor plane.

  9. Nonlinear energy dissipation of magnetic nanoparticles in oscillating magnetic fields

    NASA Astrophysics Data System (ADS)

    Soto-Aquino, D.; Rinaldi, C.

    2015-11-01

    The heating of magnetic nanoparticle suspensions subjected to alternating magnetic fields enables a variety of emerging applications such as magnetic fluid hyperthermia and triggered drug release. Rosensweig (2002) [25] obtained a model for the heat dissipation rate of a collection of non-interacting particles. However, the assumptions made in this analysis make it rigorously valid only in the limit of small applied magnetic field amplitude and frequency (i.e., values of the Langevin parameter that are much less than unity and frequencies below the inverse relaxation time). In this contribution we approach the problem from an alternative point of view by solving the phenomenological magnetization relaxation equation exactly for the case of arbitrary magnetic field amplitude and frequency and by solving a more accurate magnetization relaxation equation numerically. We also use rotational Brownian dynamics simulations of non-interacting magnetic nanoparticles subjected to an alternating magnetic field to estimate the rate of energy dissipation and compare the results of the phenomenological theories to the particle-scale simulations. The results are summarized in terms of a normalized energy dissipation rate and show that Rosensweig's expression provides an upper bound on the energy dissipation rate achieved at high field frequency and amplitude. Estimates of the predicted dependence of energy dissipation rate, quantified as specific absorption rate (SAR), on magnetic field amplitude and frequency, and particle core and hydrodynamic diameter, are also given.

  10. High magnetic field MHD generator program. Final report, July 1, 1976-December 31, 1979

    SciTech Connect

    Eustis, R. H.; Kruger, C. H.; Mitchner, M.; Self, S. A.; Koester, J. K.; Nakamura, T.

    1980-04-01

    A theoretical and experimental program was undertaken to investigate MHD channel phenomena which are important at high magnetic fields. The areas studied were inhomogeneity effects, boundary layers, Hall field breakdown and electrode configuration and current concentrations. In addition, a program was undertaken to study steady-state combustion disk and linear channels in an existing 6 Tesla magnet of small dimensions. The structure of the inhomogeneities in the Stanford M-2 was characterized and compared with theoretical results from a linearized perturbation analysis. General agreement was obtained and the analysis was used to compute stability regions for large size generators. The Faraday electrical connection was found to be more stable than the Hall or diagonal wall connections. Boundary layer profile measurements were compared with theoretical calculations with good agreement. Extrapolation of the calculations to pilot scale MHD channels indicates that Hartmann effects are important in the analysis of the sidewall, and Joule heating is important in calculating heat transfer and voltage drops for the electrode wall. Hall field breakdown was shown to occur both in the plasma and through the interelectrode insulator with the insulator breakdown threshold voltage lower than the plasma value. The threshold voltage was shown to depend on the interelectrode gap but was relatively independent of plasma conditions. Experiments were performed at 5.5 Tesla with both disk and linear MHD channels.

  11. Operating a magnetic nozzle helicon thruster with strong magnetic field

    NASA Astrophysics Data System (ADS)

    Takahashi, Kazunori; Komuro, Atsushi; Ando, Akira

    2016-03-01

    A pulsed axial magnetic field up to ˜2.8 kG is applied to a 26-mm-inner-diameter helicon plasma thruster immersed in a vacuum chamber, and the thrust is measured using a pendulum target. The pendulum is located 30-cm-downstream of the thruster, and the thruster rf power and argon flow rate are fixed at 1 kW and 70 sccm (which gives a chamber pressure of 0.7 mTorr). The imparted thrust increases as the applied magnetic field is increased and saturates at a maximum value of ˜9.5 mN for magnetic field above ˜2 kG. At the maximum magnetic field, it is demonstrated that the normalized plasma density, and the ion flow energy in the magnetic nozzle, agree within ˜50% and of 10%, respectively, with a one-dimensional model that ignores radial losses from the nozzle. This magnetic nozzle model is combined with a simple global model of the thruster source that incorporates an artificially controlled factor α, to account for radial plasma losses to the walls, where α = 0 and 1 correspond to zero losses and no magnetic field, respectively. Comparison between the experiments and the model implies that the radial losses in the thruster source are experimentally reduced by the applied magnetic field to about 10% of that obtained from the no magnetic field model.

  12. Bats Respond to Very Weak Magnetic Fields

    PubMed Central

    Tian, Lan-Xiang; Pan, Yong-Xin; Metzner, Walter; Zhang, Jin-Shuo; Zhang, Bing-Fang

    2015-01-01

    How animals, including mammals, can respond to and utilize the direction and intensity of the Earth’s magnetic field for orientation and navigation is contentious. In this study, we experimentally tested whether the Chinese Noctule, Nyctalus plancyi (Vespertilionidae) can sense magnetic field strengths that were even lower than those of the present-day geomagnetic field. Such field strengths occurred during geomagnetic excursions or polarity reversals and thus may have played an important role in the evolution of a magnetic sense. We found that in a present-day local geomagnetic field, the bats showed a clear preference for positioning themselves at the magnetic north. As the field intensity decreased to only 1/5th of the natural intensity (i.e., 10 μT; the lowest field strength tested here), the bats still responded by positioning themselves at the magnetic north. When the field polarity was artificially reversed, the bats still preferred the new magnetic north, even at the lowest field strength tested (10 μT), despite the fact that the artificial field orientation was opposite to the natural geomagnetic field (P<0.05). Hence, N. plancyi is able to detect the direction of a magnetic field even at 1/5th of the present-day field strength. This high sensitivity to magnetic fields may explain how magnetic orientation could have evolved in bats even as the Earth’s magnetic field strength varied and the polarity reversed tens of times over the past fifty million years. PMID:25922944

  13. Magnetic vector field tag and seal

    DOEpatents

    Johnston, Roger G.; Garcia, Anthony R.

    2004-08-31

    One or more magnets are placed in a container (preferably on objects inside the container) and the magnetic field strength and vector direction are measured with a magnetometer from at least one location near the container to provide the container with a magnetic vector field tag and seal. The location(s) of the magnetometer relative to the container are also noted. If the position of any magnet inside the container changes, then the measured vector fields at the these locations also change, indicating that the tag has been removed, the seal has broken, and therefore that the container and objects inside may have been tampered with. A hollow wheel with magnets inside may also provide a similar magnetic vector field tag and seal. As the wheel turns, the magnets tumble randomly inside, removing the tag and breaking the seal.

  14. Ferroelectric Cathodes in Transverse Magnetic Fields

    SciTech Connect

    Alexander Dunaevsky; Yevgeny Raitses; Nathaniel J. Fisch

    2002-07-29

    Experimental investigations of a planar ferroelectric cathode in a transverse magnetic field up to 3 kGs are presented. It is shown that the transverse magnetic field affects differently the operation of ferroelectric plasma cathodes in ''bright'' and ''dark'' modes in vacuum. In the ''bright'' mode, when the surface plasma is formed, the application of the transverse magnetic field leads to an increase of the surface plasma density. In the ''dark'' mode, the magnetic field inhibits the development of electron avalanches along the surface, as it does similarly in other kinds of surface discharges in the pre-breakdown mode.

  15. Magnetic fields of the spinning bodies

    NASA Astrophysics Data System (ADS)

    Trenčevski, Kostadin

    2015-03-01

    In this paper we show that the Thomas precession of the spinning bodies, which is in general case constrained in all rigid bodies, induces magnetic field of the spinning bodies. This is one of the main reasons for the magnetic field of the spinning bodies. The general formula for this magnetic field is deduced and if it is applied to the Earth, its magnetic field changes between 0.295 G at the equator and 0.59 G at the poles, assuming that the density inside the Earth is uniform.

  16. Flow Transitions in a Rotating Magnetic Field

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Mazuruk, K.

    1996-01-01

    Critical Rayleigh numbers have been measured in a liquid metal cylinder of finite height in the presence of a rotating magnetic field. Several different stability regimes were observed, which were determined by the values of the Rayleigh and Hartmann numbers. For weak rotating magnetic fields and small Rayleigh numbers, the experimental observations can be explained by the existence of a single non-axisymmetric meridional roll rotating around the cylinder, driven by the azimuthal component of the magnetic field. The measured dependence of rotational velocity on magnetic field strength is consistent with the existence of laminar flow in this regime.

  17. Free oscillations of magnetic fluid in strong magnetic field

    NASA Astrophysics Data System (ADS)

    Polunin, V. M.; Ryapolov, P. A.; Platonov, V. B.; Kuz'ko, A. E.

    2016-05-01

    The paper presents the esults of measuring the elastic parameters of an oscillatory system (coefficient of pondermotive elasticity, damping factor, and oscillation frequency) whose viscous inertial element is represented by a magnetic fluid confined in a tube by magnetic levitation in a strong magnetic field. The role of elasticity is played by the pondermotive force acting on thin layers at the upper and lower ends of the fluid column. It is shown that, by measuring the elastic oscillation frequencies of the magnetic fluid column, it is possible to develop a fundamentally new absolute method for determining the saturation magnetization of a magnetic colloid.

  18. Reducing Field Distortion in Magnetic Resonance Imaging

    NASA Technical Reports Server (NTRS)

    Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob

    2010-01-01

    A concept for a magnetic resonance imaging (MRI) system that would utilize a relatively weak magnetic field provides for several design features that differ significantly from the corresponding features of conventional MRI systems. Notable among these features are a magnetic-field configuration that reduces (relative to the conventional configuration) distortion and blurring of the image, the use of a superconducting quantum interference device (SQUID) magnetometer as the detector, and an imaging procedure suited for the unconventional field configuration and sensor. In a typical application of MRI, a radio-frequency pulse is used to excite precession of the magnetic moments of protons in an applied magnetic field, and the decaying precession is detected for a short time following the pulse. The precession occurs at a resonance frequency proportional to the strengths of the magnetic field and the proton magnetic moment. The magnetic field is configured to vary with position in a known way; hence, by virtue of the aforesaid proportionality, the resonance frequency varies with position in a known way. In other words, position is encoded as resonance frequency. MRI using magnetic fields weaker than those of conventional MRI offers several advantages, including cheaper and smaller equipment, greater compatibility with metallic objects, and higher image quality because of low susceptibility distortion and enhanced spin-lattice-relaxation- time contrast. SQUID MRI is being developed into a practical MRI method for applied magnetic flux densities of the order of only 100 T

  19. Magnetic field evolution in interacting galaxies

    NASA Astrophysics Data System (ADS)

    Drzazga, R. T.; Chyży, K. T.; Jurusik, W.; Wiórkiewicz, K.

    2011-09-01

    Aims: Violent gravitational interactions can change the morphologies of galaxies and, by means of merging, transform them into elliptical galaxies. We aim to investigate how they affect the evolution of galactic magnetic fields. Methods: We selected 16 systems of interacting galaxies with available VLA archive radio data at 4.86 and 1.4 GHz and compared their radio emission and estimated magnetic field strengths with their star-forming activity, far-infrared emission, and the stage of tidal interaction. Results: The estimated mean of total magnetic field strength for our sample of interacting galaxies is 14 ± 5 μG, which is larger than for the non-interacting objects. The field regularity (of 0.27 ± 0.09) is lower than in typical spirals and indicates enhanced production of random magnetic fields in the interacting objects. We find a general evolution of magnetic fields: for weak interactions the strength of magnetic field is almost constant (10-15 μG) as interaction advances, then it increases up to 2× , peaks at the nuclear coalescence (25 μG), and decreases again, down to 5-6 μG, for the post-merger remnants. The main production of magnetic fields in colliding galaxies thus terminates somewhere close to the nuclear coalescence, after which magnetic field diffuses. The magnetic field strength for whole galaxies is weakly affected by the star formation rate (SFR), while the dependence is higher for galactic centres. We show that the morphological distortions visible in the radio total and polarized emission do not depend statistically on the global or local SFRs, while they do increase (especially in the polarization) with the advance of interaction. The constructed radio-far-infrared relations for interacting and non-interacting galaxies display a similar balance between the generation of cosmic rays, magnetic fields, and the production of the thermal energy and dust radiation. Conclusions: The regular magnetic fields are much more sensitive to

  20. Cosmic Magnetic Fields (IAU S259)

    NASA Astrophysics Data System (ADS)

    Strassmeier, Klaus G.; Kosovichev, Alexander G.; Beckman, John E.

    2009-06-01

    Preface K. G. Strassmeier, A. G. Kosovichev and J. E. Beckman; Organising committee; Conference photograph; Conference participants; Session 1. Interstellar magnetic fields, star-forming regions and the Death Valley Takahiro Kudoh and Elisabeta de Gouveia Dal Pino; Session 2. Multi-scale magnetic fields of the Sun; their generation in the interior, and magnetic energy release Nigel O. Weiss; Session 3. Planetary magnetic fields and the formation and evolution of planetary systems and planets; exoplanets Karl-Heinz Glassmeier; Session 4. Stellar magnetic fields: cool and hot stars Swetlana Hubrig; Session 5. From stars to galaxies and the intergalactic space Dimitry Sokoloff and Bryan Gaensler; Session 6. Advances in methods and instrumentation for measuring magnetic fields across all wavelengths and targets Tom Landecker and Klaus G. Strassmeier; Author index; Object index; Subject index.

  1. Calorimetric Study of Magnetic Field-Induced Phase Transitions in - Fulvalenium) -

    NASA Astrophysics Data System (ADS)

    Fortune, Nathanael Alexander

    The particular class of organic conductors known as the Bechgaard salts exhibit a variety of highly anisotropic magnetic, thermal, and electrical phenomena. At low temperatures (below 10 kelvin), the application of a strong magnetic field establishes an effectively lower-dimensional anisotropic Fermi surface, as manifested in a variety of quasi one dimensional and quasi two dimensional thermodynamic and transport properties. Most dramatically, an increasing magnetic field--after suppression of superconductivity, induces a second order phase transition from a metallic to a spin density wave semimetal, followed by a series of first order phase transitions between density wave semimetallic states. This thesis concerns the thermodynamic nature of the low temperature magnetic field induced phase transitions in the Bechgaard charge-transfer salt (TMTSF)2-Cl(O)4. Presented here are the first measurements of the specific heat in magnetic fields up to 30 tesla, as well as the design and construction of a small sample calorimeter capable of operating at dilution refrigerator temperatures in the challenging environment of the high field resistive Bitter magnets. From transport measurements, the existence of a magnetic field induced reentrance into the metallic state has previously been inferred. In this thesis, the unambiguous bulk thermodynamic character of the reentrance is calorimetrically demonstrated. The behavior of the electronic specific heat at the reentrant transition is shown to be consistent with magnetic field enhanced localization. Additionally, quantum oscillations in the high field semimetallic state and the presence of additional structure above the reentrant field are observed. Although these oscillations have also been observed in magnetoresistance and magnetization, the magnitude of the oscillations in the specific heat calls into question all known models for the physical origin of these oscillations.

  2. Proposed applications with implementation techniques of the upcoming renewable energy resource, The Tesla Turbine

    NASA Astrophysics Data System (ADS)

    Usman Saeed Khan, M.; Maqsood, M. Irfan; Ali, Ehsan; Jamal, Shah; Javed, M.

    2013-06-01

    Recent research has shown that tesla turbine can be one of the future efficient sources of renewable energy. Modern techniques used for designing of tesla turbine have given optimum results regarding efficiency and applications. In this paper we have suggested fully coordinated applications of tesla turbine in different fields particularly in power generation at both low level and high level generation. In Energy deficient countries the tesla turbine has wide range of applications and it can play an important role in energy management system. Our proposed applications includes, the use of tesla turbine as renewable energy resource using tesla turbine in distributed generation system use of tesla turbine at home for power generation use of tesla turbine in irrigation channels using tesla turbine in hybrid electric vehicles All applications are explained with the help of flow charts and block diagrams and their implementation techniques are also explained in details. The results of physical experiments and simulations are also included for some applications.

  3. The AGN origin of cluster magnetic fields

    NASA Astrophysics Data System (ADS)

    Xu, Hao

    The origin of magnetic fields in galaxy clusters is one of the most fascinating but challenging problems in astrophysics. In this dissertation, the possibility of an Active Galactic Nucleus (AGN) origin of cluster magnetic fields is studied through state of the art simulations of magnetic field evolution in large scale structure formation using a newly developed cosmological Adaptive Mesh Refinement (AMR) Magnetohydrodynamics (MHD) code -- EnzoMHD. After presenting a complete but concise description and verification of the code, we discuss the creation of magnetic fields through the Biermann Battery effect during first star formation and galaxy cluster formation. We find that magnetic fields are produced as predicted by theory in both cases. For the first star formation, we obtain a lower limit of (~ 10 -9 G) for magnetic fields when the first generation stars form. On the other hand, we find that the magnetic energy is amplified 4 orders of magnitude within ~ 10 Gyr during cluster formation. We then study magnetic field injection from AGN into the Intra- Cluster Medium (ICM) and their impact on the ICM. We reproduce the X-ray cavities as well as weak shocks seen in observations in the simulation, and further confirm the idea that AGN outburst must contain lots of magnetic energy (up to 10 61 ergs) and the magnetic fields play an important part in the formation of jet/lobe system. We present high resolution simulations of cluster formation with magnetic fields injected from high redshift AGN. We find that these local magnetic fields are spread quickly throughout the whole cluster by cluster mergers. The ICM is in a turbulent state with a Kolmogorov-like power spectrum. Magnetic fields are amplified to and maintained at the observational level of a few mG by bulk flows at large scale and the ICM turbulence at small scale. The total magnetic energy increases about 25 times to ~ 1.2 × 10^61 ergs at the present time. We conclude that magnetic fields from AGN at high

  4. Progress in HTS trapped field magnets: J(sub c), area, and applications

    NASA Technical Reports Server (NTRS)

    Weinstein, Roy; Ren, Yanru; Liu, Jianxiong; Sawh, Ravi; Parks, Drew; Foster, Charles; Obot, Victor; Arndt, G. Dickey; Crapo, Alan

    1995-01-01

    Progress in trapped field magnets is reported. Single YBCO grains with diameters of 2 cm are made in production quantities, while 3 cm, 4 1/2 cm and 6 cm diameters are being explored. For single grain tiles: J(sub c) is approximately 10,000 A/cm(exp 2) for melt textured grains; J(sub c) is approximately 40,000 A/cm2 for light ion irradiation; and J(sub c) is approximately 85,000 A/cm(exp 2) for heavy ion irradiation. Using 2 cm diameter tiles bombarded by light ions, we have fabricated a mini-magnet which trapped 2.25 Tesla at 77K, and 5.3 Tesla at 65K. A previous generation of tiles, 1 cm x 1 cm, was used to trap 7.0 Tesla at 55K. Unirradiated 2.0 cm tiles were used to provide 8 magnets for an axial gap generator, in a collaborative experiment with Emerson Electric Co. This generator delivered 100 Watts to a resistive load, at 2265 rpm. In this experiment activation of the TFMs was accomplished by a current pulse of 15 ms duration. Tiles have also been studied for application as a bumper-tether system for the soft docking of spacecraft. A method for optimizing tether forces, and mechanisms of energy dissipation are discussed. A bus bar was constructed by welding three crystals while melt-texturing, such that their a,b planes were parallel and interleaved. The bus bar, an area of approximately 2 cm(exp 2), carried a transport current of 1000 amps, the limit of the testing equipment available.

  5. Progress in HTS Trapped Field Magnets: J(sub c), Area, and Applications

    NASA Technical Reports Server (NTRS)

    Weinstein, Roy; Ren, Yanru; Liu, Jian-Xiong; Sawh, Ravi; Parks, Drew; Foster, Charles; Obot, Victor; Arndt, G. Dickey; Crapo, Alan

    1995-01-01

    Progress in trapped field magnets is reported. Single YBCO grains with diameters of 2 cm are made in production quantities, while 3 cm, 4 1/2 cm and 6 cm diameters are being explored. For single grain tiles: J(sub c) - 10,000 A/sq cm for melt textured grains; J(sub c) - 40,000 A/sq cm for light ion irradiation; and J(sub c) - 85,000 A/J(sub c) for heavy ion irradiation. Using 2 cm diameter tiles bombarded by light ions, we have fabricated a mini-magnet which trapped 2.25 Tesla at 77K, and 5.3 Tesla at 65K. A previous generation of tiles, 1 cm x 1 cm, was used to trap 7.0 Tesla at 55K. Unirradiated 2.0 cm tiles were used to provide 8 magnets for an axial gap generator, in a collaborative experiment with Emerson Electric Co. This generator delivered 100 Watts to a resistive load, at 2265 rpm. In this experiment, activation of the TFMs was accomplished by a current pulse of 15 ms duration. Tiles have also been studied for application as a bumper-tether system for the soft docking of spacecraft. A method for optimizing tether forces, and mechanisms of energy dissipation are discussed. A bus bar was constructed by welding three crystals while melt-texturing, such that their a,b planes were parallel and interleaved. The bus bar, of area approx. 2 sq cm, carried a transport current of 1000 amps, the limit of the testing equipment available.

  6. Simulation of magnetic drug targeting through tracheobronchial airways in the presence of an external non-uniform magnetic field using Lagrangian magnetic particle tracking

    NASA Astrophysics Data System (ADS)

    Pourmehran, O.; Rahimi-Gorji, M.; Gorji-Bandpy, M.; Gorji, T. B.

    2015-11-01

    Drug delivery technologies are an important area within biomedicine. Targeted drug delivery aims to reduce the undesired side effects of drug usage by directing or capturing the active agents near a desired site within the body. Herein, a numerical investigation of magnetic drug targeting (MDT) using aerosol drugs named polystyrene particle (PMS40) in human lung is presented considering one-way coupling on the transport and capture of the magnetic particle. A realistic 3D geometry based on CT scan images is provided for CFD simulation. An external non-uniform magnetic field is applied. Parametric investigation is conducted and the influence of particle diameter, magnetic source position, and magnetic number (Mn) on the deposition efficiency and particle behavior is reported. According to the results, the magnetic field increased deposition efficiency of particles in a target region, the efficiency of deposition and MDT technique has a direct relation with increasing the particle diameter for magnetic number of 1 Tesla (T) and lower (Mn≤1(T)). Also it can be seen that there is an inverse relation between the particle diameter and deposition efficiency when Mn is more than 1 (T).

  7. Designing an optimum pulsed magnetic field by a resistance/self-inductance/capacitance discharge system and alignment of carbon nanotubes embedded in polypyrrole matrix.

    PubMed

    Kazemikia, Kaveh; Bonabi, Fahimeh; Asadpoorchallo, Ali; Shokrzadeh, Majid

    2015-02-01

    In this work, an optimized pulsed magnetic field production apparatus is designed based on a RLC (Resistance/Self-inductance/Capacitance) discharge circuit. An algorithm for designing an optimum magnetic coil is presented. The coil is designed to work at room temperature. With a minor physical reinforcement, the magnetic flux density can be set up to 12 Tesla with 2 ms duration time. In our design process, the magnitude and the length of the magnetic pulse are the desired parameters. The magnetic field magnitude in the RLC circuit is maximized on the basis of the optimal design of the coil. The variables which are used in the optimization process are wire diameter and the number of coil layers. The coil design ensures the critically damped response of the RLC circuit. The electrical, mechanical, and thermal constraints are applied to the design process. A locus of probable magnetic flux density values versus wire diameter and coil layer is provided to locate the optimum coil parameters. Another locus of magnetic flux density values versus capacitance and initial voltage of the RLC circuit is extracted to locate the optimum circuit parameters. Finally, the application of high magnetic fields on carbon nanotube-PolyPyrrole (CNT-PPy) nano-composite is presented. Scanning probe microscopy technique is used to observe the orientation of CNTs after exposure to a magnetic field. The result shows alignment of CNTs in a 10.3 Tesla, 1.5 ms magnetic pulse. PMID:25725890

  8. Designing an optimum pulsed magnetic field by a resistance/self-inductance/capacitance discharge system and alignment of carbon nanotubes embedded in polypyrrole matrix

    NASA Astrophysics Data System (ADS)

    Kazemikia, Kaveh; Bonabi, Fahimeh; Asadpoorchallo, Ali; Shokrzadeh, Majid

    2015-02-01

    In this work, an optimized pulsed magnetic field production apparatus is designed based on a RLC (Resistance/Self-inductance/Capacitance) discharge circuit. An algorithm for designing an optimum magnetic coil is presented. The coil is designed to work at room temperature. With a minor physical reinforcement, the magnetic flux density can be set up to 12 Tesla with 2 ms duration time. In our design process, the magnitude and the length of the magnetic pulse are the desired parameters. The magnetic field magnitude in the RLC circuit is maximized on the basis of the optimal design of the coil. The variables which are used in the optimization process are wire diameter and the number of coil layers. The coil design ensures the critically damped response of the RLC circuit. The electrical, mechanical, and thermal constraints are applied to the design process. A locus of probable magnetic flux density values versus wire diameter and coil layer is provided to locate the optimum coil parameters. Another locus of magnetic flux density values versus capacitance and initial voltage of the RLC circuit is extracted to locate the optimum circuit parameters. Finally, the application of high magnetic fields on carbon nanotube-PolyPyrrole (CNT-PPy) nano-composite is presented. Scanning probe microscopy technique is used to observe the orientation of CNTs after exposure to a magnetic field. The result shows alignment of CNTs in a 10.3 Tesla, 1.5 ms magnetic pulse.

  9. Tilted Microstrip Phased Arrays With Improved Electromagnetic Decoupling for Ultrahigh-Field Magnetic Resonance Imaging

    PubMed Central

    Pang, Yong; Wu, Bing; Jiang, Xiaohua; Vigneron, Daniel B.; Zhang, Xiaoliang

    2014-01-01

    Abstract One of the technical challenges in designing a dedicated transceiver radio frequency (RF) array for MR imaging in humans at ultrahigh magnetic fields is how to effectively decouple the resonant elements of the array. In this work, we propose a new approach using tilted microstrip array elements for improving the decoupling performance and potentially parallel imaging capability. To investigate and validate the proposed design technique, an 8-channel volume array with tilted straight-type microstrip elements was designed, capable for human imaging at the ultrahigh field of 7 Tesla. In this volume transceiver array, its electromagnetic decoupling behavior among resonant elements, RF field penetration to biological samples, and parallel imaging performance were studied through bench tests and in vivo MR imaging experiments. In this specific tilted element array design, decoupling among array elements changes with the tilted angle of the elements and the best decoupling can be achieved at certain tilted angle. In vivo human knee MR images were acquired using the tilted volume array at 7 Tesla for method validation. Results of this study demonstrated that the electromagnetic decoupling between array elements and the B1 field strength can be improved by using the tilted element method in microstrip RF coil array designs at the ultrahigh field of 7T. PMID:25526481

  10. Coronal magnetic fields and the solar wind

    NASA Technical Reports Server (NTRS)

    Newkirk, G., Jr.

    1972-01-01

    Current information is presented on coronal magnetic fields as they bear on problems of the solar wind. Both steady state fields and coronal transient events are considered. A brief critique is given of the methods of calculating coronal magnetic fields including the potential (current free) models, exact solutions for the solar wind and field interaction, and source surface models. These solutions are compared with the meager quantitative observations which are available at this time. Qualitative comparisons between the shapes of calculated magnetic field lines and the forms visible in the solar corona at several recent eclipses are displayed. These suggest that: (1) coronal streamers develop above extended magnetic arcades which connect unipolar regions of opposite polarity; and (2) loops, arches, and rays in the corona correspond to preferentially filled magnetic tubes in the approximately potential field.

  11. The Evolution of the Earth's Magnetic Field.

    ERIC Educational Resources Information Center

    Bloxham, Jeremy; Gubbins, David

    1989-01-01

    Describes the change of earth's magnetic field at the boundary between the outer core and the mantle. Measurement techniques used during the last 300 years are considered. Discusses the theories and research for explaining the field change. (YP)

  12. Control of magnetism by electric fields.

    PubMed

    Matsukura, Fumihiro; Tokura, Yoshinori; Ohno, Hideo

    2015-03-01

    The electrical manipulation of magnetism and magnetic properties has been achieved across a number of different material systems. For example, applying an electric field to a ferromagnetic material through an insulator alters its charge-carrier population. In the case of thin films of ferromagnetic semiconductors, this change in carrier density in turn affects the magnetic exchange interaction and magnetic anisotropy; in ferromagnetic metals, it instead changes the Fermi level position at the interface that governs the magnetic anisotropy of the metal. In multiferroics, an applied electric field couples with the magnetization through electrical polarization. This Review summarizes the experimental progress made in the electrical manipulation of magnetization in such materials, discusses our current understanding of the mechanisms, and finally presents the future prospects of the field. PMID:25740132

  13. Entangled states of trapped ions allow measuring the magnetic field gradient produced by a single atomic spin

    NASA Astrophysics Data System (ADS)

    Schmidt-Kaler, F.; Gerritsma, R.

    2012-09-01

    We propose detecting the magnetic field gradient produced by the magnetic dipole moment of a single atom by using ions in an entangled state trapped a few μm from the dipole. This requires measuring magnetic field gradients of order 10-13 tesla/μm. We discuss applications in determining magnetic moments of a wide variety of ion species, for investigating the magnetic substructure of ions with level structures that are not suitable for laser cooling and detection, and for studying exotic or rare ions, and molecular ions. The scheme may also be used for measuring spin imbalances of neutral atoms or atomic ensembles trapped by optical dipole forces. As the proposed method relies on techniques that are well established in ion trap quantum information processing, it is within reach of current technology.

  14. Magnetic fields in Neutron Stars

    NASA Astrophysics Data System (ADS)

    Viganò, D.; Pons, J. A.; Miralles, J. A.; Rea, N.

    2015-05-01

    Isolated neutron stars show a diversity in timing and spectral properties, which has historically led to a classification in different sub-classes. The magnetic field plays a key role in many aspects of the neutron star phenomenology: it regulates the braking torque responsible for their timing properties and, for magnetars, it provides the energy budget for the outburst activity and high quiescent luminosities (usually well above the rotational energy budget). We aim at unifying this observational variety by linking the results of the state-of-the-art 2D magneto-thermal simulations with observational data. The comparison between theory and observations allows to place two strong constraints on the physical properties of the inner crust. First, strong electrical currents must circulate in the crust, rather than in the star core. Second, the innermost part of the crust must be highly resistive, which is in principle in agreement with the presence of a novel phase of matter so-called nuclear pasta phase.

  15. Coronal magnetic fields produced by photospheric shear

    NASA Technical Reports Server (NTRS)

    Sturrock, P. A.; Yang, W.-H.

    1987-01-01

    The magneto-frictional method is used for computing force free fields to examine the evolution of the magnetic field of a line dipole, when there is relative shearing motion between the two polarities. It found that the energy of the sheared field can be arbitrarily large compared with the potential field. It is also found that it is possible to fit the magnetic energy, as a function of shear, by a simple functional form.

  16. Quadrupole magnet field mapping for FRIB

    NASA Astrophysics Data System (ADS)

    Portillo, M.; Amthor, A. M.; Chouhan, S.; Cooper, K.; Gehring, A.; Hausmann, M.; Hitchcock, S.; Kwarsick, J.; Manikonda, S.; Sumithrarachchi, C.

    2013-12-01

    Extensive magnetic field map measurements have been done on a newly built superconducting quadrupole triplet with sextupole and octupole coils nested within every quadrupole. The magnetic field multipole composition and fringe field distributions have been analyzed and an improved parameterization of the field has been developed within the beam transport simulation framework. Parameter fits yielding standard deviations as low as 0.3% between measured and modeled values are reported here.

  17. Magnetic rotations of uric acid crystals and uratic crystals by static magnetic fields of up to 500 mT.

    PubMed

    Takeuchi, Yuka; Mizukawa, Yuri; Iwasaka, Masakazu

    2013-01-01

    In recent years, the disease concerning ureteral calculus is increasing possibly due to the changing lifestyles. For example, it is well known that the urinary calculi have a large impact to gout. As eating habitual diseases, gout and the hyper-uricemia are related to the formation of urinary calculus. In the previous studies, therapeutic agents were developed to enhance the uric acid excretion. From the viewpoint of side effects induction by the chemical agents, we are motivated to explore an alternative method to control the formation of ureteral crystals stimulator by physical stimulations. Therefore in the present study, we focused on the behaviors of uric acid crystals under magnetic fields of several hundreds of mT (Tesla). The uric acid crystals were re-crystallized from a suspension of uric acid powder, and the micro-crystals were prepared to be floating in the solution. We generated horizontal magnetic fields of maximum 500 mT by an electromagnet which contained a CCD microscope. A permanent magnet with magnetic fields of 200∼400 mT was also utilized. During the magnetic fields were applied to the uric acid crystals, we observed that the uric acid crystals were oriented by the magnetic fields down to 200 mT at the room temperature. It was speculated that the dimagnetic anisotropy in the uric acid crystals exhibited the rotational responses. The results indicate the possible remote control of the uric acid crystals in living body by the magnetic fields of 200 mT to 500 mT. PMID:24110424

  18. Extended Magnetization of Superconducting Pellets in Highly Inhomogeneous Magnetic Field

    NASA Astrophysics Data System (ADS)

    Maynou, R.; López, J.; Granados, X.; Torres, R.; Bosch, R.

    The magnetization of superconducting pellets is a worth point in the development of trapped flux superconducting motors. Experimental and simulated data have been reported extensively according to the framework of one or several pulses of a homogeneous magnetizing field applied to a pellet or a set of pellets. In case of cylindrical rotors of low power motors with radial excitation, however, the use of the copper coils to produce the starting magnetization of the pellets produces a highly inhomogeneous magnetic field which cannot be reduced to a 2D standard model. In this work we present an analysis of the magnetization of the superconducting cylindrical rotor of a small motor by using a commercial FEM program, being the rotor magnetized by the working copper coils of the motor. The aim of the study is a report of the magnetization obtained and theheat generated in the HTSC pellets.

  19. Homogenous BSCCO-2212 Round Wires for Very High Field Magnets

    SciTech Connect

    Dr. Scott Campbell Dr. Terry Holesinger Dr. Ybing Huang

    2012-06-30

    The performance demands on modern particle accelerators generate a relentless push towards higher field magnets. In turn, advanced high field magnet development places increased demands on superconducting materials. Nb3Sn conductors have been used to achieve 16 T in a prototype dipole magnet and are thought to have the capability for {approx}18 T for accelerator magnets (primarily dipoles but also higher order multipole magnets). However there have been suggestions and proposals for such magnets higher than 20 T. The High Energy Physics Community (HEP) has identified important new physics opportunities that are enabled by extremely high field magnets: 20 to 50 T solenoids for muon cooling in a muon collider (impact: understanding of neutrinos and dark matter); and 20+ T dipoles and quadrupoles for high energy hadron colliders (impact: discovery reach far beyond present). This proposal addresses the latest SBIR solicitation that calls for grant applications that seek to develop new or improved superconducting wire technologies for magnets that operate at a minimum of 12 Tesla (T) field, with increases up to 15 to 20 T sought in the near future (three to five years). The long-term development of accelerator magnets with fields greater than 20 T will require superconducting wires having significantly better high-field properties than those possessed by current Nb{sub 3}Sn or other A15 based wires. Given the existing materials science base for Bi-2212 wire processing, we believe that Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub y} (Bi-2212) round wires can be produced in km-long piece lengths with properties suitable to meet both the near term and long term needs of the HEP community. The key advance will be the translation of this materials science base into a robust, high-yield wire technology. While the processing and application of A15 materials have advanced to a much higher level than those of the copper oxide-based, high T{sub c} (HTS) counterparts, the HTS materials have

  20. Magnetic isotope and magnetic field effects on the DNA synthesis

    PubMed Central

    Buchachenko, Anatoly L.; Orlov, Alexei P.; Kuznetsov, Dmitry A.; Breslavskaya, Natalia N.

    2013-01-01

    Magnetic isotope and magnetic field effects on the rate of DNA synthesis catalysed by polymerases β with isotopic ions 24Mg2+, 25Mg2+ and 26Mg2+ in the catalytic sites were detected. No difference in enzymatic activity was found between polymerases β carrying 24Mg2+ and 26Mg2+ ions with spinless, non-magnetic nuclei 24Mg and 26Mg. However, 25Mg2+ ions with magnetic nucleus 25Mg were shown to suppress enzymatic activity by two to three times with respect to the enzymatic activity of polymerases β with 24Mg2+ and 26Mg2+ ions. Such an isotopic dependence directly indicates that in the DNA synthesis magnetic mass-independent isotope effect functions. Similar effect is exhibited by polymerases β with Zn2+ ions carrying magnetic 67Zn and non-magnetic 64Zn nuclei, respectively. A new, ion–radical mechanism of the DNA synthesis is suggested to explain these effects. Magnetic field dependence of the magnesium-catalysed DNA synthesis is in a perfect agreement with the proposed ion–radical mechanism. It is pointed out that the magnetic isotope and magnetic field effects may be used for medicinal purposes (trans-cranial magnetic treatment of cognitive deceases, cell proliferation, control of the cancer cells, etc). PMID:23851636

  1. The magnetic field of ζ Ori A

    NASA Astrophysics Data System (ADS)

    Blazère, A.; Neiner, C.; Bouret, J.-C.; Tkachenko, A.

    2015-01-01

    Magnetic fields play a significant role in the evolution of massive stars. About 7% of massive stars are found to be magnetic at a level detectable with current instrumentation (Wade et al. 2013) and only a few magnetic O stars are known. Detecting magnetic field in O stars is particularly challenging because they only have few, often broad, lines to measure the field, which leads to a deficit in the knowledge of the basic magnetic properties of O stars. We present new spectropolarimetric Narval observations of ζ Ori A. We also provide a new analysis of both the new and older data taking binarity into account. The aim of this study was to confirm the presence of a magnetic field in ζ Ori A. We identify that it belongs to ζ Ori Aa and characterize it.

  2. Two-axis magnetic field sensor

    NASA Technical Reports Server (NTRS)

    Jander, Albrecht (Inventor); Nordman, Catherine A. (Inventor); Qian, Zhenghong (Inventor); Smith, Carl H. (Inventor)

    2006-01-01

    A ferromagnetic thin-film based magnetic field sensor with first and second sensitive direction sensing structures each having a nonmagnetic intermediate layer with two major surfaces on opposite sides thereof having a magnetization reference layer on one and an anisotropic ferromagnetic material sensing layer on the other having a length in a selected length direction and a smaller width perpendicular thereto and parallel to the relatively fixed magnetization direction. The relatively fixed magnetization direction of said magnetization reference layer in each is oriented in substantially parallel to the substrate but substantially perpendicular to that of the other. An annealing process is used to form the desired magnetization directions.

  3. Diffusion of magnetic field via turbulent reconnection

    NASA Astrophysics Data System (ADS)

    Santos de Lima, Reinaldo; Lazarian, Alexander; de Gouveia Dal Pino, Elisabete M.; Cho, Jungyeon

    2010-05-01

    The diffusion of astrophysical magnetic fields in conducting fluids in the presence of turbulence depends on whether magnetic fields can change their topology via reconnection in highly conducting media. Recent progress in understanding fast magnetic reconnection in the presence of turbulence is reassuring that the magnetic field behavior in computer simulations and turbulent astrophysical environments is similar, as far as magnetic reconnection is concerned. This makes it meaningful to perform MHD simulations of turbulent flows in order to understand the diffusion of magnetic field in astrophysical environments. Our studies of magnetic field diffusion in turbulent medium reveal interesting new phenomena. First of all, our 3D MHD simulations initiated with anti-correlating magnetic field and gaseous density exhibit at later times a de-correlation of the magnetic field and density, which corresponds well to the observations of the interstellar media. While earlier studies stressed the role of either ambipolar diffusion or time-dependent turbulent fluctuations for de-correlating magnetic field and density, we get the effect of permanent de-correlation with one fluid code, i.e. without invoking ambipolar diffusion. In addition, in the presence of gravity and turbulence, our 3D simulations show the decrease of the magnetic flux-to-mass ratio as the gaseous density at the center of the gravitational potential increases. We observe this effect both in the situations when we start with equilibrium distributions of gas and magnetic field and when we follow the evolution of collapsing dynamically unstable configurations. Thus the process of turbulent magnetic field removal should be applicable both to quasi-static subcritical molecular clouds and cores and violently collapsing supercritical entities. The increase of the gravitational potential as well as the magnetization of the gas increases the segregation of the mass and magnetic flux in the saturated final state of the

  4. Fluctuating magnetic field induced resonant activation

    SciTech Connect

    Mondal, Shrabani; Das, Sudip; Baura, Alendu; Bag, Bidhan Chandra

    2014-12-14

    In this paper, we have studied the properties of a Brownian particle at stationary state in the presence of a fluctuating magnetic field. Time dependence of the field makes the system thermodynamically open. As a signature of that the steady state distribution function becomes function of damping strength, intensity of fluctuations and constant parts of the applied magnetic field. It also depends on the correlation time of the fluctuating magnetic field. Our another observation is that the random magnetic field can induce the resonant activation phenomenon. Here correlation time is increased under the fixed variance of the fluctuating field. But if the correlation time (τ) increases under the fixed field strength then the mean first passage time rapidly grows at low τ and it almost converges at other limit. This is sharp contrast to the usual colored noise driven open system case where the mean first passage time diverges exponentially. We have also observed that a giant enhancement of barrier crossing rate occurs particularly at large strength of constant parts of the applied magnetic field even for very weak fluctuating magnetic field. Finally, break down of the Arrhenius result and disappearance of the Kramers’ turn over phenomenon may occur in the presence of a fluctuating magnetic field.

  5. Interpretation of the magnetic anomaly over the Omaha Oil Field, Gallatin County, Illinois

    SciTech Connect

    Sparlin, M.A. ); Lewis, R.D. . Waterways Experiment Station)

    1994-07-01

    A 40 nanoTesla (nT) magnetic anomaly identified in an aeromagnetic survey over southern Illinois contours as a localized magnetic high on the west flank of a regional magnetic low. This magnetic anomaly is generally coincident with the Omaha Oil Field in northwest Gallatin County, Illinois. It was initially assumed that cultural sources of steel associated with this oil field were the primary source of the magnetic feature; however, similar oil fields overflown by the survey do not exhibit magnetic anomalies in the data set. The Luther Rister et ux [number sign]1 well, drilled near the apex of the Omaha structural dome, encountered two zones of ultramafic intrusive rock containing 9.0% by volume magnetite. These intrusives were identified to be alnoeites which are a class of mantle-derived ultramafic rock that can be associated with the incipient stages of crustal rifting. A ground magnetic survey verified the presence of the anomaly, and provided detailed data for 3-D modeling of the source. Petrophysical evaluations, magnetic susceptibility measurements and thin section modal analysis were made on drill cuttings from the ultramafic intrusives encountered in the Luther Rister [number sign]1 well. These measurements were made to constrain the 3-D magnetic modeling by the petrophysical characteristics of the source. After removal of the regional magnetic field, the resulting 140 nT residual magnetic anomaly was successfully modeled using two ultramafic sills with an igneous feeder plug. The two igneous sills adequately account for the structural closure exhibited in the Omaha Oil Field and raise the interesting possibility of other hydrocarbon trapping structures generated by intrusives emplaced into the sedimentary section.

  6. Magnetic Fields at the Center of Coils

    ERIC Educational Resources Information Center

    Binder, Philippe; Hui, Kaleonui; Goldman, Jesse

    2014-01-01

    In this note we synthesize and extend expressions for the magnetic field at the center of very short and very long current-carrying coils. Elementary physics textbooks present the following equation for the magnetic field inside a very long current-carrying coil (solenoid): B[subscript sol] = µ[subscript 0] (N/L) I, (1) where I is the current, N…

  7. Paramagnetic ellipsoidal microswimmer in a magnetic field

    NASA Astrophysics Data System (ADS)

    Sandoval, Mario; Fan, Louis; Pak, On Shun

    We study the two-dimensional Brownian dynamics of an ellipsoidal paramagnetic microswimmer moving at low-Reynolds-number and subject to a magnetic field. Its corresponding mean-square displacement tensor showing the effect of particles's shape, activity and magnetic field, on the microswimmer's diffusion is analytically obtained. A comparison among analytical and computational results is also made and we obtain excellent agreement.

  8. Solar Magnetic Field: Zeeman and Hanle Effects

    NASA Astrophysics Data System (ADS)

    Stenflo, J.; Murdin, P.

    2001-10-01

    An external magnetic field causes the atomic energy levels to split into different sublevels, and the emitted radiation becomes polarized. This phenomenon is called the ZEEMAN EFFECT. When atoms in a magnetic field scatter radiation via bound-bound transitions, the phase relations or quantum interferences between the Zeeman-split sublevels give rise to POLARIZATION phenomena that go under the nam...

  9. Modeling the evolution of galactic magnetic fields

    SciTech Connect

    Yar-Mukhamedov, D.

    2015-04-15

    An analytic model for evolution of galactic magnetic fields in hierarchical galaxy formation frameworks is introduced. Its major innovative components include explicit and detailed treatment of the physics of merger events, mass gains and losses, gravitational energy sources and delays associated with formation of large-scale magnetic fields. This paper describes the model, its implementation, and core results obtained by its means.

  10. Interplanetary stream magnetism: Kinematic effects. [solar magnetic fields and wind

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Barouch, E.

    1974-01-01

    The particle density, and the magnetic field intensity and direction are calculated in corotating streams of the solar wind, assuming that the solar wind velocity is constant and radial and that its azimuthal variations are not two rapid. The effects of the radial velocity profile in corotating streams on the magnetic fields were examined using kinematic approximation and a variety of field configurations on the inner boundary. Kinematic and dynamic effects are discussed.

  11. Permanent magnet edge-field quadrupole

    DOEpatents

    Tatchyn, Roman O.

    1997-01-01

    Planar permanent magnet edge-field quadrupoles for use in particle accelerating machines and in insertion devices designed to generate spontaneous or coherent radiation from moving charged particles are disclosed. The invention comprises four magnetized rectangular pieces of permanent magnet material with substantially similar dimensions arranged into two planar arrays situated to generate a field with a substantially dominant quadrupole component in regions close to the device axis.

  12. Permanent magnet edge-field quadrupole

    DOEpatents

    Tatchyn, R.O.

    1997-01-21

    Planar permanent magnet edge-field quadrupoles for use in particle accelerating machines and in insertion devices designed to generate spontaneous or coherent radiation from moving charged particles are disclosed. The invention comprises four magnetized rectangular pieces of permanent magnet material with substantially similar dimensions arranged into two planar arrays situated to generate a field with a substantially dominant quadrupole component in regions close to the device axis. 10 figs.

  13. Magnetic diode for measurement of magnetic-field strength

    SciTech Connect

    Fedotov, S.I.; Zalkind, V.M.

    1988-02-01

    The accuracy of fabrication and assembly of the elements of the magnetic systems of thermonuclear installations of the stellarator type is checked by study of the topography of the confining magnetic field and is determined by the space resolution and accuracy of the measuring apparatus. A magnetometer with a galvanomagnetic sensor is described that is used to adjust the magnetic system of the Uragan-3 stellarator. The magnetometer measure magnetic-field induction in the range of 6 x 10/sup -7/-10/sup -2/ T with high space resolution.

  14. Levitation of a magnet by an alternating magnetic field

    NASA Astrophysics Data System (ADS)

    Gough, W.; Hunt, M. O.; Summerskill, W. S. H.

    2013-01-01

    An experiment is described in which a small strong cylindrical magnet is levitated by a vertical non-uniform alternating magnetic field. Surprisingly, no superimposed constant field is necessary, but the levitation can be explained when the vertical motion of the magnet is taken into account. The theoretical mean levitation force is (0.26 ± 0.06) N, which is in good agreement with the levitated weight of (0.239 ± 0.001) N. This experiment is suitable for an undergraduate laboratory, particularly as a final year project. Students have found it interesting, and it sharpens up knowledge of basic magnetism.

  15. 3D FSE Cube and VIPR-aTR 3.0 Tesla magnetic resonance imaging predicts canine cranial cruciate ligament structural properties.

    PubMed

    Racette, Molly; Al saleh, Habib; Waller, Kenneth R; Bleedorn, Jason A; McCabe, Ronald P; Vanderby, Ray; Markel, Mark D; Brounts, Sabrina H; Block, Walter F; Muir, Peter

    2016-03-01

    Estimation of cranial cruciate ligament (CrCL) structural properties in client-owned dogs with incipient cruciate rupture would be advantageous. The objective of this study was to determine whether magnetic resonance imaging (MRI) measurement of normal CrCL volume in an ex-vivo canine model predicts structural properties. Stifles from eight dogs underwent 3.0 Tesla 3D MRI. CrCL volume and normalized median grayscale values were determined using 3D Fast Spin Echo (FSE) Cube and Vastly under-sampled Isotropic PRojection (VIPR)-alternative repetition time (aTR) sequences. Stifles were then mechanically tested. After joint laxity testing, CrCL structural properties were determined, including displacement at yield, yield load, load to failure, and stiffness. Yield load and load to failure (R(2)=0.56, P <0.01) were correlated with CrCL volume determined by VIPR-aTR. Yield load was also correlated with CrCL volume determined by 3D FSE Cube (R(2)=0.32, P <0.05). Structural properties were not related to median grayscale values. Joint laxity and CrCL stiffness were not related to MRI parameters, but displacement at yield load was related to CrCL volume for both sequences during testing (R(2)>0.57, P <0.005). In conclusion, 3D MRI offers a predictive method for estimating canine CrCL structural properties. 3D MRI may be useful for monitoring CrCL properties in clinical trials. PMID:26831152

  16. Orienting Paramecium with intense static magnetic fields

    NASA Astrophysics Data System (ADS)

    Valles, James M., Jr.; Guevorkian, Karine; Quindel, Carl

    2004-03-01

    Recent experiments on cell division suggest the application of intense static magnetic fields as a novel tool for the manipulation of biological systems [1]. The magnetic field appears to couple to the intrinsic anisotropies in the diamagnetic components of the cells. Here, we present measurements of the intrinsic average diamagnetic anisotropy of the whole single celled ciliate, Paramecium Caudatum. Magnetic fields, 2.5 T < B < 8 T were applied to immobilized (non-swimming) Paramecium Caudatum that were suspended in a density matched medium. The organisms align with their long axis parallel to the applied magnetic field. Their intrinsic diamagnetic anisotropy is 3x10-11 in cgs units. We will discuss the implications of these results for employing magnetic fields to probe the behavior of swimming Paramecium. [1] J. M. Valles, Jr. et al., Expt. Cell Res.274, 112-118 (2002).

  17. 3 Tesla magnetic resonance spectroscopy: cerebral gliomas vs. metastatic brain tumors. Our experience and review of the literature.

    PubMed

    Caivano, R; Lotumolo, A; Rabasco, P; Zandolino, A; D'Antuono, F; Villonio, A; Lancellotti, M I; Macarini, L; Cammarota, A

    2013-08-01

    The aim of the present study is to report about the value of magnetic resonance spectroscopy (MRS) in differentiating brain metastases, primary high-grade gliomas (HGG) and low-grade gliomas (LGG). MRI (magnetic resonance imaging) and MRS were performed in 60 patients with histologically verified brain tumors: 32 patients with HGG (28 glioblastomas multiforme [GBM] and 4 anaplastic astrocytomas), 14 patients with LGG (9 astrocytomas and 5 oligodendrogliomas) and 14 patients with metastatic brain tumors. The Cho/Cr (choline-containing compounds/creatine-phosphocreatine complex), Cho/NAA (N-acetyl aspartate) and NAA/Cr ratios were assessed from spectral maps in the tumoral core and peritumoral edema. The differences in the metabolite ratios between LGG, HGG and metastases were analyzed statistically. Lipids/lactate contents were also analyzed. Significant differences were noted in the tumoral and peritumoral Cho/Cr, Cho/NAA and NAA/Cr ratios between LGG, HGG and metastases. Lipids and lactate content revealed to be useful for discriminating gliomas and metastases. The results of this study demonstrate that MRS can differentiate LGG, HGG and metastases, therefore diagnosis could be allowed even in those patients who cannot undergo biopsy. PMID:23390934

  18. Magnetic Helicity and Large Scale Magnetic Fields: A Primer

    NASA Astrophysics Data System (ADS)

    Blackman, Eric G.

    2015-05-01

    Magnetic fields of laboratory, planetary, stellar, and galactic plasmas commonly exhibit significant order on large temporal or spatial scales compared to the otherwise random motions within the hosting system. Such ordered fields can be measured in the case of planets, stars, and galaxies, or inferred indirectly by the action of their dynamical influence, such as jets. Whether large scale fields are amplified in situ or a remnant from previous stages of an object's history is often debated for objects without a definitive magnetic activity cycle. Magnetic helicity, a measure of twist and linkage of magnetic field lines, is a unifying tool for understanding large scale field evolution for both mechanisms of origin. Its importance stems from its two basic properties: (1) magnetic helicity is typically better conserved than magnetic energy; and (2) the magnetic energy associated with a fixed amount of magnetic helicity is minimized when the system relaxes this helical structure to the largest scale available. Here I discuss how magnetic helicity has come to help us understand the saturation of and sustenance of large scale dynamos, the need for either local or global helicity fluxes to avoid dynamo quenching, and the associated observational consequences. I also discuss how magnetic helicity acts as a hindrance to turbulent diffusion of large scale fields, and thus a helper for fossil remnant large scale field origin models in some contexts. I briefly discuss the connection between large scale fields and accretion disk theory as well. The goal here is to provide a conceptual primer to help the reader efficiently penetrate the literature.

  19. SQUID-Detected Magnetic Resonance Imaging in MicroteslaFields

    SciTech Connect

    Moessle, Michael; Hatridge, Michael; Clarke, John

    2006-08-14

    Magnetic resonance imaging (MRI) has developed into a powerful clinical tool for imaging the human body (1). This technique is based on nuclear magnetic resonance (NMR) of protons (2, 3) in a static magnetic field B{sub 0}. An applied radiofrequency pulse causes the protons to precess about B{sub 0} at their Larmor frequency {nu}{sub 0} = ({gamma}/2{pi})B{sub 0}, where {gamma} is the gyromagnetic ratio; {gamma}/2{pi} = 42.58 MHz/tesla. The precessing protons generate an oscillating magnetic field and hence a voltage in a nearby coil that is amplified and recorded. The application of three-dimensional magnetic field gradients specifies a unique magnetic field and thus an NMR frequency in each voxel of the subject, so that with appropriate encoding of the signals one can acquire a complete image (4). Most clinical MRI systems involve magnetic fields generated by superconducting magnets, and the current trend is to higher magnetic fields than the widely used 1.5-T systems (5). Nonetheless, there is ongoing interest in the development of less expensive imagers operating at lower fields. Commercially available 0.2-T systems based on permanent magnets offer both lower cost and a more open access than their higher-field counterparts, at the expense of signal-to-noise-ratio (SNR) and spatial resolution. At the still lower field of 0.03 mT maintained by a conventional, room-temperature solenoid, Connolly and co-workers (6, 7) obtain good spatial resolution and signal-to-noise ratio (SNR) by prepolarizing the protons in a field B{sub p} of 0.3 T. Prepolarization (8) enhances the magnetic moment of an ensemble of protons over that produced by the lower precession field; after the polarizing field is removed, the higher magnetic moment produces a correspondingly larger signal during its precession in B{sub 0}. Using the same method, Stepisnik et al. (9) obtained MR images in the Earth's magnetic field ({approx} 50 {micro}T). Alternatively, one can enhance the signal amplitude

  20. Chaotic magnetic fields: Particle motion and energization

    SciTech Connect

    Dasgupta, Brahmananda; Ram, Abhay K.; Li, Gang; Li, Xiaocan

    2014-02-11

    Magnetic field line equations correspond to a Hamiltonian dynamical system, so the features of a Hamiltonian systems can easily be adopted for discussing some essential features of magnetic field lines. The integrability of the magnetic field line equations are discussed by various authors and it can be shown that these equations are, in general, not integrable. We demonstrate several examples of realistic chaotic magnetic fields, produced by asymmetric current configurations. Particular examples of chaotic force-free field and non force-free fields are shown. We have studied, for the first time, the motion of a charged particle in chaotic magnetic fields. It is found that the motion of a charged particle in a chaotic magnetic field is not necessarily chaotic. We also showed that charged particles moving in a time-dependent chaotic magnetic field are energized. Such energization processes could play a dominant role in particle energization in several astrophysical environments including solar corona, solar flares and cosmic ray propagation in space.

  1. How do galaxies get their magnetic fields?

    NASA Astrophysics Data System (ADS)

    Beck, Alexander; Dolag, Klaus; Lesch, Harald

    2015-08-01

    The origin of magnetic fields in high-redshift and present-day galaxies is a long-standing problem. In this talk, we present a model for the seeding and evolution of magnetic fields in protogalaxies. Supernova (SN) explosions during the assembly of a protogalaxy self-consistently provide magnetic seed fields, which are subsequently amplified by compression, shear flows and random motions.Our model explains the origin of strong magnetic fields of $\\mu$G amplitude within the first starforming protogalactic structures shortly after the first stars have formed.We present cosmological simulations with the GADGET code of Milky Way-like galactic halo formation using a standard LCDM cosmology and analyse the strength and distribution of the evolving magnetic field.Within starforming regions and given typical dimensions and magnetic field strengths in canonical SN remnants, we inject a dipole-shape magnetic field at a rate of nG/Gyr. Subsequently, the magnetic field strength increases exponentially on timescales of a few ten million years within the innermost regions of the halo.Furthermore, turbulent diffusion, shocks and gas motions transport the magnetic field towards the halo outskirts. At redshift z=0, the entire galactic structures are magnetized and the field amplitude is of the order of a few microG in the center of the halo and nG at the virial radius. Additionally, we analyse the intrinsic rotation measure (RM) of the forming galactic halo over redshift. The mean halo intrinsic RM peaks between redshifts z=4 and z=2 and reaches absolute values around 1000 rad/m^2. Towards redshift z=0, the intrinsic RM values decline to a mean value below 10 rad/m^2. At high redshifts, the distribution of individual starforming and thus magnetized regions is widespread leading to a widespread distribution of large intrinsic RMs. Our model for the evolution of galactic magnetic fields solves the joint problem of magnetic field seeding and subsequent amplification and distribution

  2. How do galaxies get their magnetic fields?

    NASA Astrophysics Data System (ADS)

    Beck, Alexander M.

    2016-06-01

    The origin of magnetic fields in high-redshift and present-day galaxies is a long-standing problem. In this talk, we present a model for the seeding and evolution of magnetic fields in protogalaxies. Supernova (SN) explosions during the assembly of a protogalaxy self-consistently provide magnetic seed fields, which are subsequently amplified by compression, shear flows and random motions.Our model explains the origin of strong magnetic fields of μG amplitude within the first starforming protogalactic structures shortly after the first stars have formed.We present cosmological simulations with the GADGET code of Milky Way-like galactic halo formation using a standard LCDM cosmology and analyse the strength and distribution of the evolving magnetic field.Within starforming regions and given typical dimensions and magnetic field strengths in canonical SN remnants, we inject a dipole-shape magnetic field at a rate of nG/Gyr. Subsequently, the magnetic field strength increases exponentially on timescales of a few ten million years within the innermost regions of the halo.Furthermore, turbulent diffusion, shocks and gas motions transport the magnetic field towards the halo outskirts. At redshift z=0, the entire galactic structures are magnetized and the field amplitude is of the order of a few microG in the center of the halo and nG at the virial radius. Additionally, we analyse the intrinsic rotation measure (RM) of the forming galactic halo over redshift. The mean halo intrinsic RM peaks between redshifts z=4 and z=2 and reaches absolute values around 1000 rad/m^2. Towards redshift z=0, the intrinsic RM values decline to a mean value below 10 rad/m^2. At high redshifts, the distribution of individual starforming and thus magnetized regions is widespread leading to a widespread distribution of large intrinsic RMs. Our model for the evolution of galactic magnetic fields solves the joint problem of magnetic field seeding and subsequent amplification and distribution. The

  3. Magnetic field amplification in young galaxies

    NASA Astrophysics Data System (ADS)

    Schober, J.; Schleicher, D. R. G.; Klessen, R. S.

    2013-12-01

    The Universe at present is highly magnetized, with fields of a few 10-5 G and coherence lengths greater than 10 kpc in typical galaxies like the Milky Way. We propose that the magnetic field was already amplified to these values during the formation and the early evolution of galaxies. Turbulence in young galaxies is driven by accretion, as well as by supernova (SN) explosions of the first generation of stars. The small-scale dynamo can convert the turbulent kinetic energy into magnetic energy and amplify very weak primordial seed fields on short timescales. Amplification takes place in two phases: in the kinematic phase the magnetic field grows exponentially, with the largest growth rate on the smallest nonresistive scale. In the following nonlinear phase the magnetic energy is shifted toward larger scales until the dynamo saturates on the turbulent forcing scale. To describe the amplification of the magnetic field quantitatively, we modeled the microphysics in the interstellar medium (ISM) of young galaxies and determined the growth rate of the small-scale dynamo. We estimated the resulting saturation field strengths and dynamo timescales for two turbulent forcing mechanisms: accretion-driven turbulence and SN-driven turbulence. We compare them to the field strength that is reached when only stellar magnetic fields are distributed by SN explosions. We find that the small-scale dynamo is much more efficient in magnetizing the ISM of young galaxies. In the case of accretion-driven turbulence, a magnetic field strength on the order of 10-6 G is reached after a time of 24-270 Myr, while in SN-driven turbulence the dynamo saturates at field strengths of typically 10-5 G after only 4-15 Myr. This is considerably shorter than the Hubble time. Our work can help for understanding why present-day galaxies are highly magnetized.

  4. Measurements of Heme Relaxation and Ligand Recombination in Strong Magnetic Fields

    PubMed Central

    Zhang, Zhenyu; Benabbas, Abdelkrim; Ye, Xiong; Yu, Anchi; Champion, Paul M.

    2009-01-01

    Heme cooling signals and diatomic ligand recombination kinetics are measured in strong magnetic fields (up to 10 Tesla). We examined diatomic ligand recombination to heme model compounds (NO and CO), myoglobin (NO and O2), and horseradish peroxidase (NO). No magnetic field induced rate changes in any of the samples were observed within the experimental detection limit. However, in the case of CO binding to heme in glycerol and O2 binding to myoglobin, we observe a small magnetic field dependent change in the early time amplitude of the optical response that is assigned to heme cooling. One possibility, consistent with this observation, is that there is a weak magnetic field dependence of the non-radiative branching ratio into the vibrationally hot electronic ground state during CO photolysis. Ancillary studies of the “spin-forbidden” CO binding reaction in a variety of heme compounds in the absence of magnetic field demonstrate a surprisingly wide range for the Arrhenius prefactor. We conclude that CO binding to heme is not always retarded by unfavorable spin selection rules involving a double spin-flip superexchange mechanism. In fact, it appears that the small prefactor (~109s−1) found for CO rebinding to Mb may be anomalous, rather than the general rule for heme-CO rebinding. These results point to unresolved fundamental issues that underlie the theory of heme-ligand photolysis and rebinding. PMID:19588986

  5. Exoplanet Magnetic Fields and Their Detectability

    NASA Astrophysics Data System (ADS)

    Stanley, S.; Tian, B. Y.; Vilim, R.

    2014-12-01

    The investigation of planetary magnetic fields in our solar system provides a wealth of information on planetary interior structure and dynamics. Satellite magnetic data demonstrates that planetary dynamos can produce a range of magnetic field morphologies and intensities. Numerical dynamo simulations are working towards determining relationships between planetary properties and the resulting magnetic field characteristics. However, with only a handful of planetary dynamos in our solar system, it is challenging to determine specific dependence of magnetic field properties on planetary characteristics. Extrasolar planets therefore provide a unique opportunity by significantly increasing the number of planets for study as well as offering a much larger range of planetary properties to investigate. Although detection of exoplanet magnetic fields is challenging at present, the increasing sophistication of observational tools available to astronomers implies these extrasolar planetary magnetic fields may eventually be detectable. This presentation will discuss potential observational trends for magnetic field strength and morphology for exoplanets based on numerical simulations and interior structure modeling. We will focus on the influence of planetary age, environment, composition and structure.

  6. Warm inflation in presence of magnetic fields

    SciTech Connect

    Piccinelli, Gabriella; Ayala, Alejandro; Mizher, Ana Julia

    2013-07-23

    We present preliminary results on the possible effects that primordial magnetic fields can have for a warm inflation scenario, based on global supersymmetry, with a new-inflation-type potential. This work is motivated by two considerations: first, magnetic fields seem to be present in the universe on all scales which rises de possibility that they could also permeate the early universe; second, the recent emergence of inflationary models where the inflaton is not assumed to be isolated but instead it is taken as an interacting field, even during the inflationary expansion. The effects of magnetic fields are included resorting to Schwinger's proper time method.

  7. Bending of magnetic filaments under a magnetic field

    NASA Astrophysics Data System (ADS)

    Shcherbakov, Valera P.; Winklhofer, Michael

    2004-12-01

    Magnetic beads and superparamagnetic (SP) colloid particles have successfully been employed for micromechanical manipulation of soft material, in situ probing of elastic properties, and design of smart materials (ferrogels). Here we derive analytical expressions for the equilibrium shape of magnetic fibers, considering two end-member cases, (a) SP or single-domain particles concentrated at the free end of cantilevered rods or tubes, and (b) filaments consisting of SP particles, with this case being mathematically equivalent to tubes containing SP particles. Our analysis yields also metastable equilibrium states (MES’s), which only exist above a critical filament length, but become more stable with increasing magnetic field. The MES’s for case (a) are, like the ground state, circular arcs, but more strongly bent. The multiform MES’s in case (b), which comprise hairpin, sinuous, or even closed shapes, have recently been observed in experiments, too. We also study the effect of gravity on the balance between bending and magnetic energy, which leads to curves with inflection point if the influence of gravity is stronger than that of the magnetic field. Because of their simple experimental realization, case (a) magnetic filaments are deemed highly suitable for micromechanical experiments on long chains of polymer molecules. Another potential application of cantilevered magnetic filaments with magnetic material attached to the free end is in scanning probe microscopes. Because the magnetic field due to the magnetic tip is comparatively weak, the magnetization structure of the sample to be investigated would not be affected by the probe. Thus, for the examination of magnetically soft materials, probes in the form of magnetic filaments may hold advantages over tips usually employed in magnetic force microscopy.

  8. The Measurement of Magnetic Fields

    ERIC Educational Resources Information Center

    Berridge, H. J. J.

    1973-01-01

    Discusses five experimental methods used by senior high school students to provide an accurate calibration curve of magnet current against the magnetic flux density produced by an electromagnet. Compares the relative merits of the five methods, both as measurements and from an educational viewpoint. (JR)

  9. The Role of Apparent Diffusion Coefficient Quantification in Differentiating Benign and Malignant Renal Masses by 3 Tesla Magnetic Resonance Imaging

    PubMed Central

    Göya, Cemil; Hamidi, Cihad; Bozkurt, Yaşar; Yavuz, Alpaslan; Kuday, Suzan; Gümüş, Hatice; Türkçü, Gül; Hattapoğlu, Salih; Bilici, Aslan

    2015-01-01

    Background: Diffusion-weighted magnetic resonance imaging (DWI) is a widely-accepted diagnostic modality whose efficacy has been investigated by numerous past studies in the differentiation of malignant lesions from benign entities. Aims: The aim of this study was to evaluate the efficiency of diffusion-weighted magnetic resonance imaging in the characterization of renal lesions. Study Design: Diagnostic accuracy study. Methods: A total of 137 patients with renal lesions were included in this study. The median apparent diffusion coefficient (ADC) values as well as the b 800 and b 1600 signal intensities of normal kidneys, solid components of mixed renal masses, and total cystic lesions were evaluated. Results: There were significant differences between the ADC values of lesions and normal renal parenchyma, and between the ADC values of benign and malignant renal lesions on DWIs at b values of 800 and 1600 s/mm2 (p<0.001 and p<0.001, respectively). There were significant differences between the ADC values of Bosniak Category 1 and 2 cysts and the ADC values of Bosniak Category 1 and 3 cysts on DWIs at b values of 800 s/mm2 (p<0.001) and 1600 s/mm2 (p<0.001). A cutoff value of 1.902 × 10−3 mm2/s for the ADC with a b value of 800 s/mm2 provided 88% sensitivity and 96% specificity for differentiation between benign and malignant renal lesions. A cutoff value of 1.623 × 10−3 mm2/s for the ADC with a b value of 1600 s/mm2 provided 79% sensitivity and 96% specificity (p<0.001) for the differentiation between benign and malignant renal lesions. Conclusion: Accurate assessment of renal masses is important for determining the necessity for surgical intervention. DWI provides additional value by differentiating benign from malignant renal tumors and can be added to routine kidney MRI protocols. PMID:26185715

  10. The magnetic field of ζ Orionis A

    NASA Astrophysics Data System (ADS)

    Blazère, A.; Neiner, C.; Tkachenko, A.; Bouret, J.-C.; Rivinius, Th.

    2015-10-01

    Context. ζ Ori A is a hot star claimed to host a weak magnetic field, but no clear magnetic detection was obtained so far. In addition, it was recently shown to be a binary system composed of a O9.5I supergiant and a B1IV star. Aims: We aim at verifying the presence of a magnetic field in ζ Ori A, identifying to which of the two binary components it belongs (or whether both stars are magnetic), and characterizing the field. Methods: Very high signal-to-noise spectropolarimetric data were obtained with Narval at the Bernard Lyot Telescope (TBL) in France. Archival HEROS, FEROS and UVES spectroscopic data were also used. The data were first disentangled to separate the two components. We then analyzed them with the least-squares deconvolution technique to extract the magnetic information. Results: We confirm that ζ Ori A is magnetic. We find that the supergiant component ζ Ori Aa is the magnetic component: Zeeman signatures are observed and rotational modulation of the longitudinal magnetic field is clearly detected with a period of 6.829 d. This is the only magnetic O supergiant known as of today. With an oblique dipole field model of the Stokes V profiles, we show that the polar field strength is ~140 G. Because the magnetic field is weak and the stellar wind is strong, ζ Ori Aa does not host a centrifugally supported magnetosphere. It may host a dynamical magnetosphere. Its companion ζ Ori Ab does not show any magnetic signature, with an upper limit on the undetected field of ~300 G. Based on observations obtained at the Télescope Bernard Lyot (USR5026) operated by the Observatoire Midi-Pyrénées, Université de Toulouse (Paul Sabatier), Centre National de la Recherche Scientifique of France.Appendix A is available in electronic form at http://www.aanda.org

  11. On the magnetic fields in voids

    NASA Astrophysics Data System (ADS)

    Beck, A. M.; Hanasz, M.; Lesch, H.; Remus, R.-S.; Stasyszyn, F. A.

    2013-02-01

    We study the possible magnetization of cosmic voids by void galaxies. Recently, observations revealed isolated star-forming galaxies within the voids. Furthermore, a major fraction of a voids volume is expected to be filled with magnetic fields of a minimum strength of about 10-15 G on Mpc scales. We estimate the transport of magnetic energy by cosmic rays (CR) from the void galaxies into the voids. We assume that CRs and winds are able to leave small isolated void galaxies shortly after they assembled, and then propagate within the voids. For a typical void, we estimate the magnetic field strength and volume-filling factor depending on its void galaxy population and possible contributions of strong active galactic nuclei (AGNs) which border the voids. We argue that the lower limit on the void magnetic field can be recovered, if a small fraction of the magnetic energy contained in the void galaxies or void bordering AGNs is distributed within the voids.

  12. Magnetic fields in noninvasive brain stimulation.

    PubMed

    Vidal-Dourado, Marcos; Conforto, Adriana Bastos; Caboclo, Luis Otávio Sales Ferreira; Scaff, Milberto; Guilhoto, Laura Maria de Figueiredo Ferreira; Yacubian, Elza Márcia Targas

    2014-04-01

    The idea that magnetic fields could be used therapeutically arose 2000 years ago. These therapeutic possibilities were expanded after the discovery of electromagnetic induction by the Englishman Michael Faraday and the American Joseph Henry. In 1896, Arsène d'Arsonval reported his experience with noninvasive brain magnetic stimulation to the scientific French community. In the second half of the 20th century, changing magnetic fields emerged as a noninvasive tool to study the nervous system and to modulate neural function. In 1985, Barker, Jalinous, and Freeston presented transcranial magnetic stimulation, a relatively focal and painless technique. Transcranial magnetic stimulation has been proposed as a clinical neurophysiology tool and as a potential adjuvant treatment for psychiatric and neurologic conditions. This article aims to contextualize the progress of use of magnetic fields in the history of neuroscience and medical sciences, until 1985. PMID:23787954

  13. INTERSTELLAR MAGNETIC FIELD SURROUNDING THE HELIOPAUSE

    SciTech Connect

    Whang, Y. C.

    2010-02-20

    This paper presents a three-dimensional analytical solution, in the limit of very low plasma beta-ratio, for the distortion of the interstellar magnetic field surrounding the heliopause. The solution is obtained using a line dipole method that is the integration of point dipole along a semi-infinite line; it represents the magnetic field caused by the presence of the heliopause. The solution allows the variation of the undisturbed magnetic field at any inclination angle. The heliosphere is considered as having blunt-nosed geometry on the upwind side and it asymptotically approaches a cylindrical geometry having an open exit for the continuous outflow of the solar wind on the downwind side. The heliopause is treated as a magnetohydrodynamic tangential discontinuity; the interstellar magnetic field lines at the boundary are tangential to the heliopause. The interstellar magnetic field is substantially distorted due to the presence of the heliopause. The solution shows the draping of the field lines around the heliopause. The magnetic field strength varies substantially near the surface of the heliopause. The effect on the magnetic field due to the presence of the heliopause penetrates very deep into the interstellar space; the depth of penetration is of the same order of magnitude as the scale length of the heliosphere.

  14. Dynamic Magnetic Field Applications for Materials Processing

    NASA Technical Reports Server (NTRS)

    Mazuruk, K.; Grugel, Richard N.; Motakef, S.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Magnetic fields, variable in time and space, can be used to control convection in electrically conducting melts. Flow induced by these fields has been found to be beneficial for crystal growth applications. It allows increased crystal growth rates, and improves homogeneity and quality. Particularly beneficial is the natural convection damping capability of alternating magnetic fields. One well-known example is the rotating magnetic field (RMF) configuration. RMF induces liquid motion consisting of a swirling basic flow and a meridional secondary flow. In addition to crystal growth applications, RMF can also be used for mixing non-homogeneous melts in continuous metal castings. These applied aspects have stimulated increasing research on RMF-induced fluid dynamics. A novel type of magnetic field configuration consisting of an axisymmetric magnetostatic wave, designated the traveling magnetic field (TMF), has been recently proposed. It induces a basic flow in the form of a single vortex. TMF may find use in crystal growth techniques such as the vertical Bridgman (VB), float zone (FZ), and the traveling heater method. In this review, both methods, RMF and TMF are presented. Our recent theoretical and experimental results include such topics as localized TMF, natural convection dumping using TMF in a vertical Bridgman configuration, the traveling heater method, and the Lorentz force induced by TMF as a function of frequency. Experimentally, alloy mixing results, with and without applied TMF, will be presented. Finally, advantages of the traveling magnetic field, in comparison to the more mature rotating magnetic field method, will be discussed.

  15. Ohm's law for mean magnetic fields

    SciTech Connect

    Boozer, A.H.

    1984-11-01

    Spatially complicated magnetic fields are frequently treated as the sum of a large, slowly varying, mean field and a small, rapidly varying, field. The primary effect of the small field is to modify the Ohm's law of the mean field. A set of plausible assumptions leads to a form of the mean field Ohm's law which is fundamentally different from the conventional alpha effect of dynamo theory.

  16. External-field-free magnetic biosensor

    SciTech Connect

    Li, Yuanpeng; Wang, Yi; Klein, Todd; Wang, Jian-Ping

    2014-03-24

    In this paper, we report a magnetic nanoparticle (MNP) detection scheme without the presence of any external magnetic field. The proposed magnetic sensor uses a patterned groove structure within the sensor so that no external magnetic field is needed to magnetize the MNPs. An example is given based on a giant magnetoresistance (GMR) sensing device with a spin valve structure. For this structure, the detection of MNPs located inside the groove and near the free layer is demonstrated under no external magnetic field. Micromagnetic simulations are performed to calculate the signal to noise level of this detection scheme. A maximum signal to noise ratio (SNR) of 18.6 dB from one iron oxide magnetic nanoparticle with 8 nm radius is achieved. As proof of concept, this external-field-free GMR sensor with groove structure of 200 nm × 200 nm is fabricated using a photo and an electron beam integrated lithography process. Using this sensor, the feasibility demonstration of the detection SNR of 9.3 dB is achieved for 30 μl magnetic nanoparticles suspension (30 nm iron oxide particles, 1 mg/ml). This proposed external-field-free sensor structure is not limited to GMR devices and could be applicable to other magnetic biosensing devices.

  17. Exploration of Traveling Waves in High Field Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Hernandez, Zachary

    2010-10-01

    MRI has been a remarkable means of medical imaging for the last three decades without exposure to ionizing radiation. The increase in MRI signal with the increase of magnetic field strength is the main motive in a move towards imaging at higher field strengths. However, the advent of higher field strength MRI has come with the challenge of maintaining homogeneous excitation fields (B1). One promising solution to this has been to transmit radio-frequency (RF) signals using a patch antenna instead of the usual RF coil. This technique exploits the theory of waveguides and traveling waves typically used in high frequency applications. In this particular study we have investigated this unique application by measuring B1 maps, geometric distortions, and signal-to-noise ratios (SNRs) in order to better quantify its potential in MRI. Using phantoms to match the similar physical features of the human head/torso region, we ran comparative scans using the traveling wave setup versus the conventional head volume coil setup on a Philips 7 Tesla MRI scanner. The goal of this experiment was to systematically measure B1 maps for flip angle efficiency and multi-planar rendering images for geometric distortion. Although the application of traveling wave in MRI does suffer from low excitation (small flip angles), there seems to be little to no correlation between traveling wave phase variability and frequency/phase encoding. Therefore, further experiments, if carried out, may enhance image quality such as RF shielding, the use of local receive coils, and/or the addition of a second patch antenna.

  18. Surface magnetic fields across the HR Diagram

    NASA Astrophysics Data System (ADS)

    Landstreet, John D.

    2015-10-01

    The past 20 years have seen remarkable advances in spectropolarimetric instrumentation that have allowed us, for the first time, to identify some magnetic stars in most major stages of stellar evolution. We are beginning to see the broad outline of how such fields change during stellar evolution, to confront theoretical hypotheses and models of magnetic field structure and evolution with detailed data, and to understand more of the ways in which the presence of a field in turn affects stellar structure and evolution.

  19. Quantitative modeling of planetary magnetospheric magnetic fields

    NASA Technical Reports Server (NTRS)

    Walker, R. J.

    1979-01-01

    Three new quantitative models of the earth's magnetospheric magnetic field have recently been presented: the Olson-Pfitzer model, the Tsyganenko model, and the Voigt model. The paper reviews these models in some detail with emphasis on the extent to which they have succeeded in improving on earlier models. The models are compared with the observed field in both magnitude and direction. Finally, the application to other planetary magnetospheres of the techniques used to model the earth's magnetospheric magnetic field is briefly discussed.

  20. Manipulating Cells with Static Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Valles, J. M.; Guevorkian, K.

    2005-07-01

    We review our investigations of the use of static magnetic fields, B, for manipulating cells and cellular processes. We describe how B fields modify the cell division pattern of frog embryos and consequently can be used to probe the pattern determinants. We also observe that magnetic fields modify the swimming behavior of Paramecium Caudatum. We describe these modifications and their potential application to investigations of their swimming behavior.

  1. Ohm's law for mean magnetic fields

    SciTech Connect

    Boozer, A.H.

    1986-05-01

    The magnetic fields associated with plasmas frequently exhibit small amplitude MHD fluctuations. It is useful to have equations for the magnetic field averaged over these fluctuations, the so-called mean field equations. Under very general assumptions it is shown that the effect of MHD fluctuations on a force-free plasma can be represented by one parameter in Ohm's law, which is effectively the coefficient of electric current viscosity.

  2. An Extraordinary Magnetic Field Map of Mars

    NASA Technical Reports Server (NTRS)

    Connerney, J. E. P.; Acuna, M. H.; Ness, N. F.; Mitchell, D. L.; Lin, R. P.

    2004-01-01

    The Mars Global Surveyor spacecraft has completed two Mars years in nearly circular polar orbit at a nominal altitude of 400 km. The Mars crust is at least an order of magnitude more intensely magnetized than that of the Earth [1], and intriguing in both its global distribution and geometric properties [2,3]. Measurements of the vector magnetic field have been used to map the magnetic field of crustal origin to high accuracy [4]. We present here a new map of the magnetic field with an order of magnitude increased sensitivity to crustal magnetization. The map is assembled from > 2 full years of MGS night-side observations, and uses along-track filtering to greatly reduce noise due to external field variations.

  3. Magnetocaloric effect in strong magnetic fields

    NASA Astrophysics Data System (ADS)

    Tishin, A. M.

    Calculations of magnetic entropy change, Δ SM, and magnetocaloric effect, Δ T, in 3d and 4f magnetics have been carried out, based on the molecular field theory. Δ SM and Δ T have been studied as a function of Debye temperature, θ D, Lande factor, gj, quantum number of total mechanical momentum, J, and also of magnetic phase transition temperatures. Limiting values of Δ SM and Δ T have been determined in extremely strong magnetic fields. The results obtained are compared with experimental data. It is shown that the use of ferromagnetic alloys Tb x Gd 1-x as operating devices of magnetic refrigerating machines in the room temperature range is more efficient than the use of pure Gd. These alloys have been found to have high specific refrigerant capacity over a wide range of fields from 0.1 to 6 T, which enables one to develop highly economic refrigeration devices in which weak fields are applied.

  4. Vector Magnetic Field in Emerging Flux Regions

    NASA Astrophysics Data System (ADS)

    Schmieder, B.; Pariat, E.

    A crucial phase in magnetic flux emergence is the rise of magnetic flux tubes through the solar photosphere, which represents a severe transition between the very different environments of the solar interior and corona. Multi-wavelength observations with Flare Genesis, TRACE, SoHO, and more recently with the vector magnetographs at THEMIS and Hida (DST) led to the following conclusions. The fragmented magnetic field in the emergence region - with dipped field lines or bald patches - is directly related with Ellerman bombs, arch filament systems, and overlying coronal loops. Measurements of vector magnetic fields have given evidence that undulating "serpentine" fields are present while magnetic flux tubes cross the photosphere. See the sketch below, and for more detail see Pariat et al. (2004, 2007); Watanabe et al. (2008):

  5. Magnetic field homogeneity perturbations in finite Halbach dipole magnets.

    PubMed

    Turek, Krzysztof; Liszkowski, Piotr

    2014-01-01

    Halbach hollow cylinder dipole magnets of a low or relatively low aspect ratio attract considerable attention due to their applications, among others, in compact NMR and MRI systems for investigating small objects. However, a complete mathematical framework for the analysis of magnetic fields in these magnets has been developed only for their infinitely long precursors. In such a case the analysis is reduced to two-dimensions (2D). The paper details the analysis of the 3D magnetic field in the Halbach dipole cylinders of a finite length. The analysis is based on three equations in which the components of the magnetic flux density Bx, By and Bz are expanded to infinite power series of the radial coordinate r. The zeroth term in the series corresponds to a homogeneous magnetic field Bc, which is perturbed by the higher order terms due to a finite magnet length. This set of equations is supplemented with an equation for the field profile B(z) along the magnet axis, presented for the first time. It is demonstrated that the geometrical factors in the coefficients of particular powers of r, defined by intricate integrals are the coefficients of the Taylor expansion of the homogeneity profile (B(z)-Bc)/Bc. As a consequence, the components of B can be easily calculated with an arbitrary accuracy. In order to describe perturbations of the field due to segmentation, two additional equations are borrowed from the 2D theory. It is shown that the 2D approach to the perturbations generated by the segmentation can be applied to the 3D Halbach structures unless r is not too close to the inner radius of the cylinder ri. The mathematical framework presented in the paper was verified with great precision by computations of B by a highly accurate integration of the magnetostatic Coulomb law and utilized to analyze the inhomogeneity of the magnetic field in the magnet with the accuracy better than 1 ppm. PMID:24316186

  6. MICE Spectrometer Solenoid Magnetic Field Measurements

    SciTech Connect

    Leonova, M.

    2013-09-01

    The Muon Ionization Cooling Experiment (MICE) is designed to demonstrate ionization cooling in a muon beam. Its goal is to measure a 10% change in transverse emittance of a muon beam going through a prototype Neutrino Factory cooling channel section with an absolute measurement accuracy of 0.1%. To measure emittances, MICE uses two solenoidal spectrometers, with Solenoid magnets designed to have 4 T fields, uniform at 3 per mil level in the tracking volumes. Magnetic field measurements of the Spectrometer Solenoid magnet SS2, and analysis of coil parameters for input into magnet models will be discussed.

  7. Efficient magnetic fields for supporting toroidal plasmas

    NASA Astrophysics Data System (ADS)

    Landreman, Matt; Boozer, Allen H.

    2016-03-01

    The magnetic field that supports tokamak and stellarator plasmas must be produced by coils well separated from the plasma. However, the larger the separation, the more difficult it is to produce a given magnetic field in the plasma region, so plasma configurations should be chosen that can be supported as efficiently as possible by distant coils. The efficiency of an externally generated magnetic field is a measure of the field's shaping component magnitude at the plasma compared to the magnitude near the coils; the efficiency of a plasma equilibrium can be measured using the efficiency of the required external shaping field. Counterintuitively, plasma shapes with low curvature and spectral width may have low efficiency, whereas plasma shapes with sharp edges may have high efficiency. Two precise measures of magnetic field efficiency, which correctly identify such differences in difficulty, will be examined. These measures, which can be expressed as matrices, relate the externally produced normal magnetic field on the plasma surface to the either the normal field or current on a distant control surface. A singular value decomposition (SVD) of either matrix yields an efficiency ordered basis for the magnetic field distributions. Calculations are carried out for both tokamak and stellarator cases. For axisymmetric surfaces with circular cross-section, the SVD is calculated analytically, and the range of poloidal and toroidal mode numbers that can be controlled to a given desired level is determined. If formulated properly, these efficiency measures are independent of the coordinates used to parameterize the surfaces.

  8. Magnetic drug targeting: biodistribution and dependency on magnetic field strength

    NASA Astrophysics Data System (ADS)

    Alexiou, Ch.; Schmidt, A.; Klein, R.; Hulin, P.; Bergemann, Ch.; Arnold, W.

    2002-11-01

    "Magnetic drug targeting," a model of locoregional chemotherapy showed encouraging results in treatment of VX2-squamous cell carcinoma in rabbits. In the present study we investigated the biokinetic behavior of Iod [123]-labelled ferrofluids in vivo and showed in vitro that the ferrofluid concentration is dependent on the magnetic field strength.

  9. Quark matter under strong magnetic fields

    NASA Astrophysics Data System (ADS)

    Peres Menezes, Débora; Laércio Lopes, Luiz

    2016-02-01

    We revisit three of the mathematical formalisms used to describe magnetized quark matter in compact objects within the MIT and the Nambu-Jona-Lasinio models and then compare their results. The tree formalisms are based on 1) isotropic equations of state, 2) anisotropic equations of state with different parallel and perpendicular pressures and 3) the assumption of a chaotic field approximation that results in a truly isotropic equation of state. We have seen that the magnetization obtained with both models is very different: while the MIT model produces well-behaved curves that are always positive for large magnetic fields, the NJL model yields a magnetization with lots of spikes and negative values. This fact has strong consequences on the results based on the existence of anisotropic equations of state. We have also seen that, while the isotropic formalism results in maximum stellar masses that increase considerably when the magnetic fields increase, maximum masses obtained with the chaotic field approximation never vary more than 5.5%. The effect of the magnetic field on the radii is opposed in the MIT and NJL models: with both formalisms, isotropic and chaotic field approximation, for a fixed mass, the radii increase with the increase of the magnetic field in the MIT bag model and decrease in the NJL, the radii of quark stars described by the NJL model being smaller than the ones described by the MIT model.

  10. Design of a Pellet Injector Diagnostic for Magnetic Field Tilt Measurements in PEGASUS*

    NASA Astrophysics Data System (ADS)

    Intrator, T.; Fonck, R.; Lewicki, B.; Nonn, P.; Probert, P.; Sontag, A.; Thorson, T.; Tritz, K.; Wilson, C.; Winz, G.

    1998-11-01

    Determination of the current density J(r) and safety factor q(r) profiles in spherical tokamaks will be necessary to understand and optimize the equilibrium and stability properties of the plasma. Motional Stark Effect techniques are problematic in P EGASUS due to the low toroidal magnetic field BT ≈ 0.1 Tesla. Since ions are constrained to stream along magnetic field lines, the line emission from an injected pellet (e.g. Li^+ at λ = 5485 Åforms a field aligned elongated cigar shape(E.S. Marmar and J.L. Terry, Review Sci. Instrum.normalfont , 61normalfont , 3081 (1990)). This magnetic field tilt information will constrain our magnetic reconstructions that use flux loops, magnetic coils, and soft X-ray emission data. Photo diode position sensitive detectors can determine the angle and position of the cigar shaped emission region with good time resolution (5-10 μ sec). * *Supported by U.S. DoE grant No. DE-FG02-96ER54375

  11. Persistence of magnetic field driven by relativistic electrons in a plasma

    NASA Astrophysics Data System (ADS)

    Flacco, A.; Vieira, J.; Lifschitz, A.; Sylla, F.; Kahaly, S.; Veltcheva, M.; Silva, L. O.; Malka, V.

    2015-05-01

    The onset and evolution of magnetic fields in laboratory and astrophysical plasmas is determined by several mechanisms, including instabilities, dynamo effects and ultrahigh-energy particle flows through gas, plasma and interstellar media. These processes are relevant over a wide range of conditions, from cosmic ray acceleration and gamma ray bursts to nuclear fusion in stars. The disparate temporal and spatial scales where each process operates can be reconciled by scaling parameters that enable one to emulate astrophysical conditions in the laboratory. Here we unveil a new mechanism by which the flow of ultra-energetic particles in a laser-wakefield accelerator strongly magnetizes the boundary between plasma and non-ionized gas. We demonstrate, from time-resolved large-scale magnetic-field measurements and full-scale particle-in-cell simulations, the generation of strong magnetic fields up to 10-100 tesla (corresponding to nT in astrophysical conditions). These results open new paths for the exploration and modelling of ultrahigh-energy particle-driven magnetic-field generation in the laboratory.

  12. Consistency evaluation between EGSnrc and Geant4 charged particle transport in an equilibrium magnetic field

    NASA Astrophysics Data System (ADS)

    Yang, Y. M.; Bednarz, B.

    2013-02-01

    Following the proposal by several groups to integrate magnetic resonance imaging (MRI) with radiation therapy, much attention has been afforded to examining the impact of strong (on the order of a Tesla) transverse magnetic fields on photon dose distributions. The effect of the magnetic field on dose distributions must be considered in order to take full advantage of the benefits of real-time intra-fraction imaging. In this investigation, we compared the handling of particle transport in magnetic fields between two Monte Carlo codes, EGSnrc and Geant4, to analyze various aspects of their electromagnetic transport algorithms; both codes are well-benchmarked for medical physics applications in the absence of magnetic fields. A water-air-water slab phantom and a water-lung-water slab phantom were used to highlight dose perturbations near high- and low-density interfaces. We have implemented a method of calculating the Lorentz force in EGSnrc based on theoretical models in literature, and show very good consistency between the two Monte Carlo codes. This investigation further demonstrates the importance of accurate dosimetry for MRI-guided radiation therapy (MRIgRT), and facilitates the integration of a ViewRay MRIgRT system in the University of Wisconsin-Madison's Radiation Oncology Department.

  13. Orientation within a high magnetic field determines swimming direction and laterality of c-Fos induction in mice

    PubMed Central

    Kwon, Bumsup; Houpt, Charles E.; Neth, Bryan; Smith, James C.

    2013-01-01

    High-strength static magnetic fields (>7 tesla) perturb the vestibular system causing dizziness, nystagmus, and nausea in humans; and head motion, locomotor circling, conditioned taste aversion, and c-Fos induction in brain stem vestibular nuclei in rodents. To determine the role of head orientation, mice were exposed for 15 min within a 14.1-tesla magnet at six different angles (mice oriented parallel to the field with the head toward B+ at 0°; or pitched rostrally down at 45°, 90°, 90° sideways, 135°, and 180°), followed by a 2-min swimming test. Additional mice were exposed at 0°, 90°, and 180° and processed for c-Fos immunohistochemistry. Magnetic field exposure induced circular swimming that was maximal at 0° and 180° but attenuated at 45° and 135°. Mice exposed at 0° and 45° swam counterclockwise, whereas mice exposed at 135° and 180° swam clockwise. Mice exposed at 90° (with their rostral-caudal axis perpendicular to the magnetic field) did not swim differently than controls. In parallel, exposure at 0° and 180° induced c-Fos in vestibular nuclei with left-right asymmetries that were reversed at 0° vs. 180°. No significant c-Fos was induced after 90° exposure. Thus, the optimal orientation for magnetic field effects is the rostral-caudal axis parallel to the field, such that the horizontal canal and utricle are also parallel to the field. These results have mechanistic implications for modeling magnetic field interactions with the vestibular apparatus of the inner ear (e.g., the model of Roberts et al. of an induced Lorenz force causing horizontal canal cupula deflection). PMID:23720133

  14. Microvascular obstruction assessed by 3-tesla magnetic resonance imaging in acute myocardial infarction is correlated with plasma troponin I levels

    PubMed Central

    2014-01-01

    Background Microvascular obstruction (MVO) at the acute phase of myocardial infarction (MI) is associated with poor prognosis. We aimed to evaluate the correlation between plasma cardiac troponin I (cTnI) at the acute phase of MI and extent of no-reflow, as assessed by 3-T cardiac magnetic resonance imaging (MRI). Secondly, we defined a cut-off value for cTnI predictive of no-reflow. Methods 51 consecutive patients with no previous history of cardiovascular disease, presenting ST elevation MI within <12 h. Infarct size and extent of no-reflow were evaluated by 3-T MRI at day 5. Extent of no-reflow at 15 minutes (MVO) was correlated with cTnI at admission, 6, 12, 24, 48 and 72 hours. At 6 months, MRI was performed to evaluate the impact of MVO on LV remodeling. Results MVO was diagnosed in 29 patients (57%). Extent of MVO was significantly correlated to peak troponin, cTnI (except admission values) and area under the curve. Using Receiver-operating characteristic (ROC) curve analysis, a cut-off cTnI value >89 ng/mL at 12 h seemed to best predict presence of early MVO (sensitivity 63%, specificity 88%). At 6 months, MVO was associated with left ventricular (LV) remodeling, resulting in higher LV volumes. Conclusion There is a relationship between cTnI at the acute phase of AMI and extent of MVO as assessed by 3-T cardiac MRI. A cut-off cTnI value of 89 ng/mL at 12 h seems to best predict presence of MVO, which contributes to LV remodeling. PMID:24886208

  15. Early detection of cervical spondylotic myelopathy using diffusion tensor imaging: Experiences in 1.5-tesla magnetic resonance imaging.

    PubMed

    Ahmadli, Uzeyir; Ulrich, Nils H; Yuqiang, Yao; Nanz, Daniel; Sarnthein, Johannes; Kollias, Spyros S

    2015-10-01

    The purpose of this study was to investigate the usefulness of diffusion tensor imaging (DTI) for early detection of pathological alterations in the myelon in patients with cervical spondylotic myelopathy (CSM) without T2-weighted imaging (T2W) signal abnormalities but with a narrowed spinal canal with corresponding clinical correlation. Axial DTI at 1.5T together with routine magnetic resonance imaging was performed on 18 patients fulfilling above mentioned criteria. Quantitative fractional anisotropy (FA) and apparent diffusion coefficient (ADC) maps were generated. Values at the narrowest cervical levels were compared to pre- and poststenotic levels and the interindividual means were tested for statistically significant differences by means of paired t-tests. The correlation between the grade and width of canal stenosis in the axial plane was measured. FA was significantly reduced at the stenotic level, compared to prestenotic level, whereas no significant differences were found when compared to poststenotic level. No significant differences between ADC values at stenotic level versus both adjacent non-stenotic levels were found, suggesting very early stage of degeneration. ADC values correlated significantly with the width of the spinal canal at the prestenotic level, but not at the poststenotic level. Findings indicate sufficient robustness of routine implementation of DTI at 1.5T to detect abnormalities in the spinal cord of CSM patients, before apparent T2W signal abnormalities and marked clinical deterioration. Therefore, larger and long-term studies should be conducted to establish the DTI scalar metrics that would indicate early intervention for a better clinical outcome in patients with clinical signs of CSM. PMID:26452521

  16. Accuracy and stability of measuring GABA, glutamate, and glutamine by proton magnetic resonance spectroscopy: A phantom study at 4 Tesla

    NASA Astrophysics Data System (ADS)

    Henry, Michael E.; Lauriat, Tara L.; Shanahan, Meghan; Renshaw, Perry F.; Jensen, J. Eric

    2011-02-01

    Proton magnetic resonance spectroscopy has the potential to provide valuable information about alterations in gamma-aminobutyric acid (GABA), glutamate (Glu), and glutamine (Gln) in psychiatric and neurological disorders. In order to use this technique effectively, it is important to establish the accuracy and reproducibility of the methodology. In this study, phantoms with known metabolite concentrations were used to compare the accuracy of 2D J-resolved MRS, single-echo 30 ms PRESS, and GABA-edited MEGA-PRESS for measuring all three aforementioned neurochemicals simultaneously. The phantoms included metabolite concentrations above and below the physiological range and scans were performed at baseline, 1 week, and 1 month time-points. For GABA measurement, MEGA-PRESS proved optimal with a measured-to-target correlation of R2 = 0.999, with J-resolved providing R2 = 0.973 for GABA. All three methods proved effective in measuring Glu with R2 = 0.987 (30 ms PRESS), R2 = 0.996 (J-resolved) and R2 = 0.910 (MEGA-PRESS). J-resolved and MEGA-PRESS yielded good results for Gln measures with respective R2 = 0.855 (J-resolved) and R2 = 0.815 (MEGA-PRESS). The 30 ms PRESS method proved ineffective in measuring GABA and Gln. When measurement stability at in vivo concentration was assessed as a function of varying spectral quality, J-resolved proved the most stable and immune to signal-to-noise and linewidth fluctuation compared to MEGA-PRESS and 30 ms PRESS.

  17. Determining the risks of magnetic resonance imaging at 1.5 tesla for patients with pacemakers and implantable cardioverter defibrillators.

    PubMed

    Cohen, Jennifer D; Costa, Heather S; Russo, Robert J

    2012-12-01

    Conventional pacemaker and implantable cardioverter-defibrillator product labeling currently cautions against exposure to magnetic resonance imaging (MRI). However, there is a growing clinical need for MRI, without an acceptable alternative imaging modality in many patients with cardiac devices. The purpose of this study was to determine the risk of MRI at 1.5 T for patients with cardiac devices by measuring the frequency of device failures and clinically relevant device parameter changes. Data from a single-center retrospective review of 109 patients with pacemakers and implantable cardioverter-defibrillators (the MRI group) who underwent 125 clinically indicated MRI studies were compared to data from a prospective cohort of 50 patients with cardiac devices who did not undergo MRI (the control group). In the MRI group, there were no deaths, device failures requiring generator or lead replacement, induced arrhythmias, losses of capture, or electrical reset episodes. Decreases in battery voltage of ≥0.04 V occurred in 4%, pacing threshold increases of ≥0.5 V in 3%, and pacing lead impedance changes of ≥50 Ω in 6%. Although there were statistically significant differences between the MRI and control groups for the mean change in pacing lead impedance (-6.2 ± 23.9 vs 3.0 ± 22.1 Ω) and left ventricular pacing threshold (-0.1 ± 0.3 vs 0.1 ± 0.2 V), these differences were not clinically important. In conclusion, MRI in patients with cardiac devices resulted in no device or lead failures. A small number of clinically relevant changes in device parameter measurements were noted. However, these changes were similar to those in a control group of patients who did not undergo MRI. PMID:22921995

  18. Evolution of the interplanetary magnetic field

    NASA Astrophysics Data System (ADS)

    McComas, D. J.

    Remote observations of magnetic field topologies in the solar corona and in situ observations of the solar wind and interplanetary magnetic field (IMF) in interplanetary space are used to examine the temporal evolution of the spatial distribution of open and closed field regions emanating from the Sun. The simple 'open' configuration of inward and outward pointing sectors in the IMF is periodically disrupted by magnetically distinct coronal mass ejections (CME's) which erupt from previously closed magnetic field regions in the corona into interplanetary space. At 1 AU, CME's contain counterstreaming halo electrons which indicate their distinct magnetic topologies. This topology is generally thought to be one of the following: plasmoids that are completely disconnected from the Sun; magnetic 'bottles,' still tied to the corona at both ends; or flux ropes which are only partially disconnected. Fully disconnected plasmoids would have no long term effect on the amount of open flux; however, both in situ observations of details of the halo electron distributions and remote coronagraph observations of radial fields following CME's indicate that CME's generally do retain at least partial attached to the Sun. Both the magnetic-bottle and flux rope geometries require some mitigating process to close off previously open fields in order to avoid a flux catastrophe. In addition, the average amount of magnetic flux observed in interplanetary space varies over the solar cycle, also indicating that there must be ways in which new flux is opened and previously open flux is closed off. The most likely scenario for closing off open magnetic fields is for reconnection to occur above helmet streamers, where oppositely directed field regions are juxtaposed in the corona. These events would serve to return closed field arches to the Sun and release open, U-shaped structures into the solar wind.

  19. Evolution of the interplanetary magnetic field

    SciTech Connect

    McComas, D.J.

    1993-01-01

    Remote observations of magnetic field topologies in the solar corona and in situ observations of the solar wind and interplanetary magnetic field (IMF) in interplanetary space are used to examine the temporal evolution of the spatial distribution of open and closed field regions emanating from the Sun. The simple open'' configuration of inward and outward pointing sectors in the IMF is periodically disrupted by magnetically distinct coronal mass ejections (CMEs) which erupt from previously closed magnetic field regions in the corona into interplanetary space. At 1 AU, CMEs contain counterstreaming halo electrons which indicate their distinct magnetic topologies. This topology is generally thought to be: plasmoids that are completely disconnected from the Sun; magnetic bottles,'' still tied to the corona at both ends; or flux ropes which are only partially disconnected. Fully disconnected plasmoids would have no long term effect on the amount of open flux; however, both in situ observations of details of the halo electron distributions and remote coronagraph observations of radial fields following CMEs indicate that CMEs generally do retain at least partial attached to the Sun. Both the magnetic-bottle and flux rope geometries require some mitigating process to close off previously open fields in order to avoid a flux catastrophe. In addition, the average amount of magnetic flux observed in interplanetary space varies over the solar cycle, also indicating that there must be ways in which new flux is opened and previously open flux is closed off. The most likely scenario for closing off open magnetic fields is for reconnection to occurs above helmet streamers, where oppositely directed field regions are juxtaposed in the corona. These events would serve to return closed field arches to the Sun and release open, U-shaped structures into the solar wind.

  20. Evolution of the interplanetary magnetic field

    SciTech Connect

    McComas, D.J.

    1993-05-01

    Remote observations of magnetic field topologies in the solar corona and in situ observations of the solar wind and interplanetary magnetic field (IMF) in interplanetary space are used to examine the temporal evolution of the spatial distribution of open and closed field regions emanating from the Sun. The simple ``open`` configuration of inward and outward pointing sectors in the IMF is periodically disrupted by magnetically distinct coronal mass ejections (CMEs) which erupt from previously closed magnetic field regions in the corona into interplanetary space. At 1 AU, CMEs contain counterstreaming halo electrons which indicate their distinct magnetic topologies. This topology is generally thought to be: plasmoids that are completely disconnected from the Sun; magnetic ``bottles,`` still tied to the corona at both ends; or flux ropes which are only partially disconnected. Fully disconnected plasmoids would have no long term effect on the amount of open flux; however, both in situ observations of details of the halo electron distributions and remote coronagraph observations of radial fields following CMEs indicate that CMEs generally do retain at least partial attached to the Sun. Both the magnetic-bottle and flux rope geometries require some mitigating process to close off previously open fields in order to avoid a flux catastrophe. In addition, the average amount of magnetic flux observed in interplanetary space varies over the solar cycle, also indicating that there must be ways in which new flux is opened and previously open flux is closed off. The most likely scenario for closing off open magnetic fields is for reconnection to occurs above helmet streamers, where oppositely directed field regions are juxtaposed in the corona. These events would serve to return closed field arches to the Sun and release open, U-shaped structures into the solar wind.

  1. Effects of strong magnetic fields on cell growth and radiation response of human T-lymphocytes in culture.

    PubMed

    Norimura, T; Imada, H; Kunugita, N; Yoshida, N; Nikaido, M

    1993-06-01

    Experiments were undertaken in order to verify whether or not a strong magnetic field would have any biological effects on the cell growth, viability and radiation response of mammalian cells. Magnetic field exposures were conducted using a superconducting magnet with freshly-isolated human peripheral blood T-lymphocytes maintained at their normal growing temperature of 37 degrees C. The static magnetic fields with intensities up to 6.3-tesla (T) exerted little influence on the cell growth and viability of actively-growing T-lymphocytes under normal cell-culture conditions. On the other hand, the T cells exposed to the magnetic fields (4 T-6.3 T) during PHA stimulation were inhibited in their cell growth when compared to controls. The effects of the magnetic fields with intensities up to 2 T on cell growth properties, however, were minimal in this system. Also, the radiosensitivity of T-lymphocytes previously exposed to the strong magnetic fields was more sensitive than that of control cells. These results suggest that exposure to a static magnetic field of 4 T or stronger might lead to physiological and growth abnormalities at the cellular level. PMID:8316709

  2. How are static magnetic fields detected biologically?

    NASA Astrophysics Data System (ADS)

    Finegold, Leonard

    2009-03-01

    There is overwhelming evidence that life, from bacteria to birds to bats, detects magnetic fields, using the fields for orientation or navigation. Indeed there are recent reports (based on Google Earth imagery) that cattle and deer align themselves with the earth's magnetic field. [1]. The development of frog and insect eggs are changed by high magnetic fields, probably through known physical mechanisms. However, the mechanisms for eukaryotic navigation and alignment are not clear. Persuasive published models will be discussed. Evidence, that static magnetic fields might produce therapeutic effects, will be updated [2]. [4pt] [1] S. Begall, et al., Proc Natl Acad Sci USA, 105:13451 (2008). [0pt] [2] L. Finegold and B.L. Flamm, BMJ, 332:4 (2006).

  3. The magnetic field of Mercury, part 1

    NASA Technical Reports Server (NTRS)

    Ness, N. F.; Behannon, K. W.; Lepping, R. P.; Whang, Y. C.

    1974-01-01

    An updated analysis and interpretation is presented of the magnetic field observations obtained during the Mariner 10 encounter with the planet Mercury. The combination of data relating to position of the detached bow shock wave and magnetopause, and the geometry and magnitude of the magnetic field within the magnetosphere-like region surrounding Mercury, lead to the conclusion that an internal planetary field exists with dipole moment approximately 5.1 x 10 the 22nd power Gauss sq cm. The dipole axis has a polarity sense similar to earth's and is tilted 7 deg from the normal to Mercury's orbital plane. The magnetic field observations reveal a significant distortion of the modest Hermean field (350 Gamma at the equator) by the solar wind flow and the formation of a magnetic tail and neutral sheet which begins close to the planet on the night side. The composite data is not consistent with a complex induction process driven by the solar wind flow.

  4. Normal glow discharge in axial magnetic field

    NASA Astrophysics Data System (ADS)

    Surzhikov, S.; Shang, J.

    2014-10-01

    Theory and results of mathematical modeling of a glow discharge in a parallel-plate configuration with axial magnetic field is presented. The model consists of continuity equations for electron and ion fluids, the Poisson equation for the self-consistent electric field. Numerical simulation results are presented for two-dimensional glow discharge at various initial conditions. The results are obtained for molecular nitrogen at pressure 1-5 Torr, emf of power supply 1-2 kV, and magnetic field induction B = 0-0.5 T. It is shown that in the presence of the axial magnetic field the glow discharge is rotated around its axis of symmetry. Nevertheless it is shown that in the investigated range of discharge parameters in an axial magnetic field the law of the normal current density is retained.

  5. Magnetic fields from heterotic cosmic strings

    SciTech Connect

    Gwyn, Rhiannon; Alexander, Stephon H.; Brandenberger, Robert H.; Dasgupta, Keshav

    2009-04-15

    Large-scale magnetic fields are observed today to be coherent on galactic scales. While there exists an explanation for their amplification and their specific configuration in spiral galaxies--the dynamo mechanism--a satisfying explanation for the original seed fields required is still lacking. Cosmic strings are compelling candidates because of their scaling properties, which would guarantee the coherence on cosmological scales of any resultant magnetic fields at the time of galaxy formation. We present a mechanism for the production of primordial seed magnetic fields from heterotic cosmic strings arising from M theory. More specifically, we make use of heterotic cosmic strings stemming from M5-branes wrapped around four of the compact internal dimensions. These objects are stable on cosmological time scales and carry charged zero modes. Therefore a scaling solution of such defects will generate seed magnetic fields which are coherent on galactic scales today.

  6. Magnetization and magnetic susceptibility of DyH3

    NASA Technical Reports Server (NTRS)

    Flood, D. J.

    1975-01-01

    The magnetization and differential magnetic susceptibility of powdered DyH3 samples are measured at a temperature of 4.2 K in applied magnetic fields ranging up to 9 Teslas. The differential magnetic susceptibility is also investigated in the zero applied field. Magnetization is plotted as a function of field strength, and differential susceptibility is described as a function of both field strength and temperature. A saturation magnetic moment of 5.12 Bohr magnetons per ion is derived from the magnetization data, and the zero-field susceptibility measurements are found to indicate antiferromagnetic ordering below 3.45 K. The susceptibility at 4.2 K is shown to have an inverse-square dependence on field strength for values of not less than 0.3 Tesla.

  7. The conductance of auroral magnetic field lines

    NASA Technical Reports Server (NTRS)

    Weimer, D. R.; Gurnett, D. A.; Goertz, C. K.

    1986-01-01

    DE-1 high-resolution double-probe electric-field data and simultaneous magnetic-field measurements are reported for two 1981 events with large electric fields which reversed over short distances. The data are presented graphically and analyzed in detail. A field-line conductance of about 1 nmho/sq m is determined for both upward and downward currents, and the ionospheric conductivity is shown, in the short-wavelength limit, to have little effect on the relationship between the (N-S) electric and (E-W) magnetic fields above the potential drop parallel to the magnetic-field lines. The results are found to be consistent with a linear relationship between the field-aligned current density and the parallel potential drop.

  8. Dissipative charged fluid in a magnetic field

    NASA Astrophysics Data System (ADS)

    Abbasi, Navid; Davody, Ali

    2016-05-01

    We study the collective excitations in a dissipative charged fluid at zero chemical potential when an external magnetic field is present. While in the absence of magnetic field, four collective excitations appear in the fluid, we find five hydrodynamic modes here. This implies that the magnetic field splits the degeneracy between the transverse shear modes. Using linear response theory, we then compute the retarded response functions. In particular, it turns out that the correlation between charge and the energy fluctuations will no longer vanish, even at zero chemical potential. By use of the response functions, we also derive the relevant Kubo formulas for the transport coefficients.

  9. Relativistic electron in curved magnetic fields

    NASA Technical Reports Server (NTRS)

    An, S.

    1985-01-01

    Making use of the perturbation method based on the nonlinear differential equation theory, the author investigates the classical motion of a relativistic electron in a class of curved magnetic fields which may be written as B=B(O,B sub phi, O) in cylindrical coordinates (R. phi, Z). Under general astrophysical conditions the author derives the analytical expressions of the motion orbit, pitch angle, etc., of the electron in their dependence upon parameters characterizing the magnetic field and electron. The effects of non-zero curvature of magnetic field lines on the motion of electrons and applicabilities of these results to astrophysics are also discussed.

  10. Magnetic field quality analysis using ANSYS

    SciTech Connect

    Dell'Orco, D.; Chen, Y.

    1991-03-01

    The design of superconducting magnets for particles accelerators requires a high quality of the magnetic field. This paper presents an ANSYS 4.4A Post 1 macro that computes the field quality performing a Fourier analysis of the magnetic field. The results show that the ANSYS solution converges toward the analytical solution and that the error on the multipole coefficients depends linearly on the square of the mesh size. This shows the good accuracy of ANSYS in computing the multipole coefficients. 2 refs., 16 figs., 4 tabs.

  11. Magnetic fields of the terrestrial planets

    NASA Technical Reports Server (NTRS)

    Russell, C. T.

    1993-01-01

    The four terrestrial planets, together with the Earth's Moon, provide a significant range of conditions under which dynamo action could occur. All five bodies have been visited by spacecraft, and from three of the five bodies (Earth, Moon and Mars) we have samples of planetary material upon which paleomagnetic studies have been undertaken. At the present time, only the Earth and Mercury appear to have a significant dipole magnetic field. However, the Moon, and possibly Mars, appear to have had ancient planetary dynamos. Venus does not now have a significant planetary magnetic field, and the high surface temperatures should have prevented the recording of evidence of any ancient magnetic field. Since the solidification of the solid inner core is thought to be the energy source for the terrestrial magnetic field, and since smaller bodies evolve thermally more rapidly than larger bodies, we conjecture that the terrestrial planets are today in three different phases of magnetic activity. Venus is in a predynamo phase, not having cooled to the point of core solidification. Mercury and the Earth are in the middle of their dynamo phase, with Mercury perhaps near the end of its activity. Mars and the Moon seem to be well past their dynamo phase. Much needs to be done in the study of the magnetism of the terrestrial planets. We need to characterize the multipole harmonic structure of the Mercury magnetic field plus its secular variation, and we need to analyze returned samples to attempt to unfold the long-term history of Mercury's dynamo. We need to more thoroughly map the magnetism of the lunar surface and to analyze samples obtained from a wider area of the lunar surface. We need a more complete survey of the present Martian magnetic field and samples from a range of different ages of Martian surface material. Finally, a better characterization of the secular variation of the terrestrial magnetic field is needed in order to unfold the workings of the terrestrial dynamo.

  12. Environmental magnetic fields: Influences on early embryogenesis

    SciTech Connect

    Cameron, I.L.; Hardman, W.E.; Winters, W.D.; Zimmerman, S.; Zimmerman, A.M. )

    1993-04-01

    A 10-mG, 50 to 60-Hz magnetic field is in the intensity and frequency range that people worldwide are often exposed to in homes and in the workplace. Studies about the effects of 50- to 100-Hz electromagnetic fields on various species of animal embryos (fish, chick, fly, sea urchin, rat, and mouse) indicate that early stages of embryonic development are responsive to fluctuating magnetic fields. Chick, sea urchin, and mouse embryos are responsive to magnetic field intensities of 10-100 mG. Results from studies on sea urchin embryos indicate that exposure to conditions of rotating 60-Hz magnetic fields, e.g., similar to those in our environment, interferes with cell proliferation at the morula stage in a manner dependent on field intensity. The cleavage stages, prior to the 64-cell stage, were not delayed by this rotating 60-Hz magnetic field suggesting that the ionic surges, DNA replication, and translational events essential for early cleavage stages were not significantly altered. Studies of histone synthesis in early sea urchin embryos indicated that the rotating 60-Hz magnetic field decreased zygotic expression of early histone genes at the morula stage and suggests that this decrease in early histone production was limiting to cell proliferation. Whether these comparative observations from animal development studies will be paralleled by results from studies of human embryogenesis, as suggested by some epidemiology studies, has yet to be established. 38 refs.

  13. The field of a screened magnetic dipole

    NASA Technical Reports Server (NTRS)

    Greene, J. M.; Miller, R. L.

    1994-01-01

    The purpose of this note is to quantitatively study the asymptotic behavior of the dipole magnetic field in the tail region of a paraboloidal or cylindrical model of the magnetosphere, assuming the complete screening of the internal field by magnetopause currents. This screening assumption is equivalent to imposing the boundary condition that the normal component of the magnetic field is zero at the magnetopause. With this boundary condition, the screened dipole field falls off exponentially with distance down the tail, in sharp constrast to the bare dipole field. Analytic expressions for a cylindrical and paraboloidal magnetopause are given.

  14. Assessment of global myocardial perfusion reserve using cardiovascular magnetic resonance of coronary sinus flow at 3 Tesla

    PubMed Central

    2014-01-01

    Background Despite increasing clinical use, there is limited data regarding regadenoson in stress perfusion cardiovascular magnetic resonance (CMR). In particular, given its long half-life the optimal stress protocol remains unclear. Although Myocardial Perfusion Reserve (MPR) may provide additive prognostic information, current techniques for its measurement are cumbersome and challenging for routine clinical practice. The aims of this study were: 1) To determine the feasibility of MPR quantification during regadenoson stress CMR by measurement of Coronary Sinus (CS) flow; and 2) to investigate the role of aminophylline reversal during regadenoson stress-CMR. Methods 117 consecutive patients with possible myocardial ischemia were prospectively enrolled. Perfusion imaging was performed at 1 minute and 15 minutes after administration of 0.4 mg regadenoson. A subgroup of 41 patients was given aminophylline (100 mg) after stress images were acquired. CS flow was measured using phase-contrast imaging at baseline (pre CS flow), and immediately after the stress (peak CS flow) and rest (post CS flow) perfusion images. Results CS flow measurements were obtained in 92% of patients with no adverse events. MPR was significantly underestimated when calculated as peak CS flow/post CS flow as compared to peak CS flow/pre CS flow (2.43 ± 0.20 vs. 3.28 ± 0.32, p = 0.03). This difference was abolished when aminophylline was administered (3.35 ± 0.44 vs. 3.30 ± 0.52, p = 0.95). Impaired MPR (peak CS flow/pre CS flow <2) was associated with advanced age, diabetes, current smoking and higher Framingham risk score. Conclusions Regadenoson stress CMR with MPR measurement from CS flow can be successfully performed in most patients. This measurement of MPR appears practical to perform in the clinical setting. Residual hyperemia is still present even 15 minutes after regadenoson administration, at the time of resting-perfusion acquisition, and is completely

  15. Whole-Body Magnetic Resonance Angiography at 3 Tesla Using a Hybrid Protocol in Patients with Peripheral Arterial Disease

    SciTech Connect

    Nielsen, Yousef W.; Eiberg, Jonas P.; Logager, Vibeke B.; Schroeder, Torben V.; Just, Sven; Thomsen, Henrik S.

    2009-09-15

    The purpose of this study was to determine the diagnostic performance of 3T whole-body magnetic resonance angiography (WB-MRA) using a hybrid protocol in comparison with a standard protocol in patients with peripheral arterial disease (PAD). In 26 consecutive patients with PAD two different protocols were used for WB-MRA: a standard sequential protocol (n = 13) and a hybrid protocol (n = 13). WB-MRA was performed using a gradient echo sequence, body coil for signal reception, and gadoterate meglumine as contrast agent (0.3 mmol/kg body weight). Two blinded observers evaluated all WB-MRA examinations with regard to presence of stenoses, as well as diagnostic quality and degree of venous contamination in each of the four stations used in WB-MRA. Digital subtraction angiography served as the method of reference. Sensitivity for detecting significant arterial disease (luminal narrowing {>=} 50%) using standard-protocol WB-MRA for the two observers was 0.63 (95%CI: 0.51-0.73) and 0.66 (0.58-0.78). Specificities were 0.94 (0.91-0.97) and 0.96 (0.92-0.98), respectively. In the hybrid protocol WB-MRA sensitivities were 0.75 (0.64-0.84) and 0.70 (0.58-0.8), respectively. Specificities were 0.93 (0.88-0.96) and 0.95 (0.91-0.97). Interobserver agreement was good using both the standard and the hybrid protocol, with {kappa} = 0.62 (0.44-0.67) and {kappa} = 0.70 (0.59-0.79), respectively. WB-MRA quality scores were significantly higher in the lower leg using the hybrid protocol compared to standard protocol (p = 0.003 and p = 0.03, observers 1 and 2). Distal venous contamination scores were significantly lower with the hybrid protocol (p = 0.02 and p = 0.01, observers 1 and 2). In conclusion, hybrid-protocol WB-MRA shows a better diagnostic performance than standard protocol WB-MRA at 3 T in patients with PAD.

  16. Comparison of Gross Body Fat-Water Magnetic Resonance Imaging at 3 Tesla to Dual Energy X-Ray Absorptiometry in Obese Women

    PubMed Central

    Silver, HJ; Niswender, KD; Kullberg, J; Berglund, J; Johansson, L; Bruvold, M; Avison, MJ; Welch, EB.

    2012-01-01

    Improved understanding of how depot-specific adipose tissue mass predisposes to obesity-related comorbidities could yield new insights into the pathogenesis and treatment of obesity as well as metabolic benefits of weight loss. We hypothesized that three-dimensional contiguous “fat-water” MR imaging (FWMRI) covering the majority of a whole-body field of view (FOV) acquired at 3 Tesla (3T) and coupled with automated segmentation and quantification of amount, type and distribution of adipose and lean soft tissue would show great promise in body composition methodology. Precision of adipose and lean soft tissue measurements in body and trunk regions were assessed for 3T FWMRI and compared to DEXA. Anthropometric, FWMRI and DEXA measurements were obtained in twelve women with BMI 30–39.9 kg/m2. Test-retest results found coefficients of variation for FWMRI that were all under 3%: gross body adipose tissue (GBAT) 0.80%, total trunk adipose tissue (TTAT) 2.08%, visceral adipose tissue (VAT) 2.62%, subcutaneous adipose tissue (SAT) 2.11%, gross body lean soft tissue (GBLST) 0.60%, and total trunk lean soft tissue (TTLST) 2.43%. Concordance correlation coefficients between FWMRI and DEXA were 0.978, 0.802, 0.629, and 0.400 for GBAT, TTAT, GBLST and TTLST, respectively. While Bland Altman plots demonstrated agreement between FWMRI and DEXA for GBAT and TTAT, a negative bias existed for GBLST and TTLST measurements. Differences may be explained by the FWMRI FOV length and potential for DEXA to overestimate lean soft tissue. While more development is necessary, the described 3T FWMRI method combined with fully-automated segmentation is fast (<30 minutes total scan and post-processing time), noninvasive, repeatable and cost effective. PMID:23712980

  17. Directed Plasma Flow across Magnetic Field

    NASA Astrophysics Data System (ADS)

    Presura, R.; Stepanenko, Y.; Neff, S.; Sotnikov, V. I.

    2008-04-01

    The Hall effect plays a significant role in the penetration of plasma flows across magnetic field. For example, its effect may become dominant in the solar wind penetration into the magnetosphere, in the magnetic field advection in wire array z-pinch precursors, or in the arcing of magnetically insulated transmission lines. An experiment performed at the Nevada Terawatt Facility explored the penetration of plasma with large Hall parameter (˜10) across ambient magnetic field. The plasma was produced by ablation with the short pulse high intensity laser Leopard (0.35 ps, 10^17W/cm^2) and the magnetic field with the pulsed power generator Zebra (50 T). The expanding plasma assumed a jet configuration and propagated beyond a distance consistent with a diamagnetic bubble model. Without magnetic field, the plasma expansion was close to hemispherical. The ability to produce the plasma and the magnetic field with distinct generators allows a controlled, quasi-continuous variation of the Hall parameter and other plasma parameters making the experiments useful for benchmarking numerical simulations.

  18. Magnetic Field Strengths in Photodissociation Regions

    NASA Astrophysics Data System (ADS)

    Balser, Dana S.; Anish Roshi, D.; Jeyakumar, S.; Bania, T. M.; Montet, Benjamin T.; Shitanishi, J. A.

    2016-01-01

    We measure carbon radio recombination line (RRL) emission at 5.3 {{GHz}} toward four H ii regions with the Green Bank Telescope to determine the magnetic field strength in the photodissociation region (PDR) that surrounds the ionized gas. Roshi suggests that the non-thermal line widths of carbon RRLs from PDRs are predominantly due to magneto-hydrodynamic waves, thus allowing the magnetic field strength to be derived. We model the PDR with a simple geometry and perform the non-LTE radiative transfer of the carbon RRL emission to solve for the PDR physical properties. Using the PDR mass density from these models and the carbon RRL non-thermal line width we estimate total magnetic field strengths of B∼ 100{--}300 μ {{G}} in W3 and NGC 6334A. Our results for W49 and NGC 6334D are less well constrained with total magnetic field strengths between B∼ 200{--}1000 μ {{G}}. H i and OH Zeeman measurements of the line of sight magnetic field strength ({B}{{los}}), taken from the literature, are between a factor of ∼ 0.5{--}1 of the lower bound of our carbon RRL magnetic field strength estimates. Since | {B}{{los}}| ≤slant B, our results are consistent with the magnetic origin of the non-thermal component of carbon RRL widths.

  19. Space applications of superconductivity - High field magnets

    NASA Technical Reports Server (NTRS)

    Fickett, F. R.

    1979-01-01

    The paper discusses developments in superconducting magnets and their applications in space technology. Superconducting magnets are characterized by high fields (to 15T and higher) and high current densities combined with low mass and small size. The superconducting materials and coil design are being improved and new high-strength composites are being used for magnet structural components. Such problems as maintaining low cooling temperatures (near 4 K) for long periods of time and degradation of existing high-field superconductors at low strain levels can be remedied by research and engineering. Some of the proposed space applications of superconducting magnets include: cosmic ray analysis with magnetic spectrometers, energy storage and conversion, energy generation by magnetohydrodynamic and thermonuclear fusion techniques, and propulsion. Several operational superconducting magnet systems are detailed.

  20. Magnetic field dependence of magnetic domains in Co doped Mn2Sb using magnetic force microscopy

    NASA Astrophysics Data System (ADS)

    Singh, Vikram; Saha, Pampi; Kushwaha, Pallavi; Thamizhavel, A.; Rawat, Rajeev

    2016-05-01

    Magnetic domains in the ferrimagnetic state of Co doped Mn2Sb single crystal has been visualized using Magnetic Force Microscopy. It shows fractal like domain structure. With the application of magnetic field, single domain state is achieved around 2000 Oe. The MFM images collected during field increasing and decreasing cycles show different morphology for same field value.

  1. Compact Electric- And Magnetic-Field Sensor

    NASA Technical Reports Server (NTRS)

    Winterhalter, Daniel; Smith, Edward

    1994-01-01

    Compact sensor measures both electric and magnetic fields. Includes both short electric-field dipole and search-coil magnetometer. Three mounted orthogonally providing triaxial measurements of electromagnetic field at frequencies ranging from near 0 to about 10 kHz.

  2. The topological description of coronal magnetic fields

    NASA Technical Reports Server (NTRS)

    Berger, Mitchell A.

    1986-01-01

    Determining the structure and behavior of solar coronal magnetic fields is a central problem in solar physics. At the photosphere, the field is believed to be strongly localized into discrete flux tubes. After providing a rigorous definition of field topology, how the topology of a finite collection of flux tubes may be classified is discussed.

  3. Recent biophysical studies in high magnetic fields

    NASA Astrophysics Data System (ADS)

    Maret, Georg

    1990-06-01

    A brief overview of biophysical effects of steady magnetic fields is given. The need of high field strength is illustrated by several recent diamagnetic orientation experiments. They include rod-like viruses, purple membranes and chromosomes. Results of various studies on bees, quails, rats and pigeons exposed to fields above 7 T are also resumed.

  4. Magnetization, Low Field Instability and Quench of RHQT Nb(3)Al Strands

    SciTech Connect

    Yamada, R.; Wake, M.; Kikuchi, A.; Velev, V.; /Fermilab

    2009-01-01

    Since 2005, we made and tested three RHQT Nb{sub 3}Al strands, one with Nb matrix and two with Ta matrix, which are fully stabilized with Cu electroplating. We observed anomalously large magnetization curves extending beyond 1 to 1.5 Tesla with the F1 Nb matrix strand at 4.2 K, when we measured its magnetization with a balanced coil magnetometer. This problem was eliminated with the Ta matrix strands operating at 4.2 K. But with these strands a similar but smaller anomalous magnetization was observed at 1.9 K. We studied these phenomena with FEM. With the F1 Nb matrix strand, it is explained that at low external field, inter-filamentary coupling currents in the outer layers of sub-elements create a shielding effect. It reduces the inside field, keeps the inside Nb matrix superconductive, and stands against a higher outside field beyond the Hc of Nb. At an even higher external field, the superconductivity of the whole Nb matrix collapses and releases a large amount of energy, which may cause a big quench. Depending on the size of the energy in the strand or the cable, a magnet could quench, causing the low field instability. Some attempt to analyze the anomaly with FEM is presented.

  5. Visualization of the deep cerebellar nuclei using quantitative T1 and rho magnetic resonance imaging at 3 Tesla.

    PubMed

    Deoni, Sean C L; Catani, Marco

    2007-10-01

    The cerebellum coordinates movement, thought and emotion through its feedback projections from the deep cerebellar nuclei. Despite recent advancement in our understanding of the functions of the cerebellar cortex, little is known about the functional correlates of the deep cerebellar nuclei in humans. This is mainly due to the inability of current MRI techniques to visualize the cerebellar nuclei and therefore perform in vivo clinico-anatomical correlation studies in patient populations. Here we visualize in vivo the detailed anatomy of the dentate nucleus and other cerebellar nuclei using quantitative T1 and proton density (rho) imaging. Compared to conventional qualitative T1, T2 or T2*-weighted imaging, quantitative T1 and proton density (rho) imaging facilitates direct visualization of the dentate and interposed nuclei, allowing us to perform segmentation and volumetric measurements of the dentate nucleus. Also the fine architecture of the microgyric and macrogyric dentate nucleus was visible on the high-resolution images. The high concentration of paramagnetic iron within the cerebellar nuclei and the resulting local field inhomogeneities surrounding the iron-containing nuclei is believed to be responsible for the observed effect on T1 and proton density signal. The application of this technique to disorders with cerebellar dysfunction could provide new insight into pathologies like autism and movement disorders. PMID:17702607

  6. High Field Pulse Magnets with New Materials

    NASA Astrophysics Data System (ADS)

    Li, L.; Lesch, B.; Cochran, V. G.; Eyssa, Y.; Tozer, S.; Mielke, C. H.; Rickel, D.; van Sciver, S. W.; Schneider-Muntau, H. J.

    2004-11-01

    High performance pulse magnets using the combination of CuNb conductor and Zylon fiber composite reinforcement with bore sizes of 24, 15 and 10 mm have been designed, manufactured and tested to destruction. The magnets successfully reached the peak fields of 64, 70 and 77.8 T respectively with no destruction. Failures occurred near the end flanges at the layer. The magnet design, manufacturing and testing, and the mode of the failure are described and analyzed.

  7. Constraints on primordial magnetic fields from inflation

    NASA Astrophysics Data System (ADS)

    Green, Daniel; Kobayashi, Takeshi

    2016-03-01

    We present generic bounds on magnetic fields produced from cosmic inflation. By investigating field bounds on the vector potential, we constrain both the quantum mechanical production of magnetic fields and their classical growth in a model independent way. For classical growth, we show that only if the reheating temperature is as low as Treh lesssim 102 MeV can magnetic fields of 10-15 G be produced on Mpc scales in the present universe. For purely quantum mechanical scenarios, even stronger constraints are derived. Our bounds on classical and quantum mechanical scenarios apply to generic theories of inflationary magnetogenesis with a two-derivative time kinetic term for the vector potential. In both cases, the magnetic field strength is limited by the gravitational back-reaction of the electric fields that are produced simultaneously. As an example of quantum mechanical scenarios, we construct vector field theories whose time diffeomorphisms are spontaneously broken, and explore magnetic field generation in theories with a variable speed of light. Transitions of quantum vector field fluctuations into classical fluctuations are also analyzed in the examples.

  8. On the helicity of open magnetic fields

    SciTech Connect

    Prior, C.; Yeates, A. R.

    2014-06-01

    We reconsider the topological interpretation of magnetic helicity for magnetic fields in open domains, and relate this to the relative helicity. Specifically, our domains stretch between two parallel planes, and each of these ends may be magnetically open. It is demonstrated that, while the magnetic helicity is gauge-dependent, its value in any gauge may be physically interpreted as the average winding number among all pairs of field lines with respect to some orthonormal frame field. In fact, the choice of gauge is equivalent to the choice of reference field in the relative helicity, meaning that the magnetic helicity is no less physically meaningful. We prove that a particular gauge always measures the winding with respect to a fixed frame, and propose that this is normally the best choice. For periodic fields, this choice is equivalent to measuring relative helicity with respect to a potential reference field. However, for aperiodic fields, we show that the potential field can be twisted. We prove by construction that there always exists a possible untwisted reference field.

  9. Juno and Jupiter's Magnetic Field (Invited)

    NASA Astrophysics Data System (ADS)

    Bloxham, J.; Connerney, J. E.; Jorgensen, J. L.

    2013-12-01

    The Juno spacecraft, launched in August 2011, will reach Jupiter in early July 2016, where it will enter a polar orbit, with an 11 day period and a perijove altitude of approximately 5000 km. The baseline mission will last for one year during which Juno will complete 32 orbits, evenly spaced in longitude. The baseline mission presents an unparalleled opportunity for investigating Jupiter's magnetic field. In many ways Jupiter is a better planet for studying dynamo-generated magnetic fields than the Earth: there are no crustal fields, of course, which otherwise mask the dynamo-generated field at high degree; and an orbiting spacecraft can get proportionately much closer to the dynamo region. Assuming Jupiter's dynamo extends to 0.8 Rj, Juno at closet approach is only 0.3 Rc above the dynamo, while Earth orbiting magnetic field missions sample the field at least 1 Rc above the dynamo (where Rc is the respective outer core or dynamo region radius). Juno's MAG Investigation delivers magnetic measurements with exceptional vector accuracy (100 ppm) via two FGM sensors, each co-located with a dedicated pair of non-magnetic star cameras for attitude determination at the sensor. We expect to image Jupiter's dynamo with unsurpassed resolution. Accordingly, we anticipate that the Juno magnetic field investigation may place important constraints on Jupiter's interior structure, and hence on the formation and evolution of Jupiter.

  10. Laminated magnet field coil sheath

    DOEpatents

    Skaritka, John R.

    1987-12-01

    a method for manufacturing a magnet cable trim coil in a sheath assembly for use in a cryogenic particle accelerator. A precisely positioned pattern of trim coil turns is bonded to a flexible substrate sheath that is capable of withstanding cryogenic operating conditions. In the method of the invention the flexible sheath, with the trim coil pattern precisely positioned thereon, is accurately positioned at a precise location relative to a bore tube assembly of an accelerator and is then bonded to the bore tube with a tape suitable for cryogenic application. The resultant assembly can be readily handled and installed within an iron magnet yoke assembly of a suitable cryogenic particle accelerator.

  11. Laminated magnet field coil sheath

    DOEpatents

    Skaritka, J.R.

    1987-05-15

    A method for manufacturing a magnetic cable trim coil in a sheath assembly for use in a cryogenic particle accelerator. A precisely positioned pattern of trim coil turns is bonded to a flexible substrate sheath that is capable of withstanding cryogenic operating conditions. In the method of the invention the flexible substrate sheath, with the trim coil pattern precisely location relative to a bore tube assembly of an accelerator and is then bonded to the bore tube with a tape suitable for cryogenic application. The resultant assembly can be readily handled and installed within an iron magnet yoke assembly of a suitable cryogenic particle accelerator. 1 fig.

  12. Photon collider at TESLA

    NASA Astrophysics Data System (ADS)

    Telnov, Valery

    2001-10-01

    High energy photon colliders ( γγ, γe) based on backward Compton scattering of laser light is a very natural addition to e +e - linear colliders. In this report, we consider this option for the TESLA project. Recent study has shown that the horizontal emittance in the TESLA damping ring can be further decreased by a factor of four. In this case, the γγ luminosity in the high energy part of spectrum can reach about (1/3) Le +e -. Typical cross-sections of interesting processes in γγ collisions are higher than those in e +e - collisions by about one order of magnitude, so the number of events in γγ collisions will be more than that in e +e - collisions. Photon colliders can, certainly, give additional information and they are the best for the study of many phenomena. The main question is now the technical feasibility. The key new element in photon colliders is a very powerful laser system. An external optical cavity is a promising approach for the TESLA project. A free electron laser is another option. However, a more straightforward solution is "an optical storage ring (optical trap)" with a diode pumped solid state laser injector which is today technically feasible. This paper briefly reviews the status of a photon collider based on the linear collider TESLA, its possible parameters and existing problems.

  13. MRS photodiode in strong magnetic field

    SciTech Connect

    Beznosko, D.; Blazey, G.; Dyshkant, A.; Francis, K.; Kubik, D.; Rykalin, V.; Tartaglia, M.A.; Zutshi, v.; /Northern Illinois U.

    2004-12-01

    The experimental results on the performance of the MRS (Metal/Resistor/Semiconductor) photodiode in the strong magnetic field of 4.4T, and the possible impact of the quench of the magnet at 4.5T on sensor's operation are reported.

  14. High-field superconducting nested coil magnet

    NASA Technical Reports Server (NTRS)

    Laverick, C.; Lobell, G. M.

    1970-01-01

    Superconducting magnet, employed in conjunction with five types of superconducting cables in a nested solenoid configuration, produces total, central magnetic field strengths approaching 70 kG. The multiple coils permit maximum information on cable characteristics to be gathered from one test.

  15. Magnetic tunnel junctions for low magnetic field sensing

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoyong

    In this thesis, we did a comprehensive investigation on the relationship between spin-dependent tunneling and structural variation in junction devices. Magnetic, microstructural, and transport studies have shown a significant improvement in exchange-bias, a reduced barrier roughness, and an enhanced magnetoresistance for samples after magnetic annealing. We have examined different magnetic configurations required for sensing applications and presented some results of using MTJ sensors to detect AC magnetic fields created by electrical current flow and DC stray field distributions of patterned magnetic materials. We have studied the low frequency noise in MTJ sensors. We have found that the 1/f noise in MTJs has magnetic as well as electrical origins, and is strongly affected by the junction's internal structure. The magnetic noise comes from magnetization fluctuations in the free FM layer and can be understood using the fluctuation-dissipation theorem. While the field-independent electrical noise due to charge trapping in the barrier, is observed in the less optimized MTJs sensors, and has an amplitude at least one order of magnitude higher than the noise component due to magnetization fluctuations. In addition, we have studied the magnetization switching of Cobalt rings with varying anisotropy utilizing scanning magnetoresistive microscopy. We have for the first time observed a complicated multi-domain intermediate phase during the transition between onion states for samples with strong anisotropy. This is in contrast to as deposited samples, which reverse by simple domain wall motion and feature an intermediate vortex state. The result is further analyzed by micro magnetic simulations.

  16. Magnetic space-based field measurements

    NASA Technical Reports Server (NTRS)

    Langel, R. A.

    1981-01-01

    Satellite measurements of the geomagnetic field began with the launch of Sputnik 3 in May 1958 and have continued sporadically in the intervening years. A list of spacecraft that have made significant contributions to an understanding of the near-earth geomagnetic field is presented. A new era in near-earth magnetic field measurements began with NASA's launch of Magsat in October 1979. Attention is given to geomagnetic field modeling, crustal magnetic anomaly studies, and investigations of the inner earth. It is concluded that satellite-based magnetic field measurements make global surveys practical for both field modeling and for the mapping of large-scale crustal anomalies. They are the only practical method of accurately modeling the global secular variation. Magsat is providing a significant contribution, both because of the timeliness of the survey and because its vector measurement capability represents an advance in the technology of such measurements.

  17. 3-D Magnetic Field Analysis of Permanent Magnet Motor Considering Magnetizing, Demagnetizing and Eddy Current Loss

    NASA Astrophysics Data System (ADS)

    Miyata, Koji; Aoyama, Yasuaki; Yokoyama, Tomonori; Ohashi, Ken; Kondo, Minoru; Matsuoka, Koichi

    Rare-earth magnets, which have high energy product, have been widely used in several industrial applications such as voice coil motors for hard disk drives, MRI for medical devices and motors for electric vehicle. In order to realize a small and high performance device, the magnetic field analysis techniques are required. In this paper, we applied the magnetic field analysis to design the permanent magnet synchronous motors into the rail traction system. In the inverter fed motor drive, the eddy current loss in the permanent magnet increased. We simulated the effect that eddy current was decreased by using a divided permanent magnet. Furthermore, the permanent magnet tends to be demagnetized due to the effect of a demagnetizing field formed at high temperatures. However, according to our analysis, demagnetization does not occur within the range of our design specifications. Also, we performed magnetic field analysis assuming a pulse-type magnetization process and designed an optimal magnetizing coil.

  18. Radio observations of the Jovian magnetic field

    NASA Technical Reports Server (NTRS)

    Barrow, C. H.; Carr, T. D.

    1992-01-01

    Radio observations of Jupiter are reviewed and discussed in relation to the planet's magnetic field. Early ground-based decameter- and decimeter-wave observations lead to a first estimate of the magnetic field strength which was subsequently confirmed by space-borne measurements. Decametric, hectometric and decimetric measurements of the Jovian rotation period offer the possibility of detecting a real change in the magnetic field structure within the next few decades. Solar wind control of the radio emission allows inferences to be made concerning the magnetic field and the emission regions at decametric, hectometric and kilometric frequencies. The decametric and the hectometric radiation may originate in hollow-cone emission sources at high (auroral) latitudes on Jupiter. The broad-band kilometric emission appears to originate at the outer edge of the Io torus.

  19. End fields of CBA superconducting magnets

    SciTech Connect

    Kirk, H.G.; Herrera, J.; Willen, E.

    1983-01-01

    Measurements of the two dimensional harmonic content of the end fields generated by the Brookhaven CBA dipole and quadrupole superconducting magnets are presented. Both the local longitudinal structure and the integrated end effects are examined.

  20. Local Magnetic Field Role in Star Formation

    NASA Astrophysics Data System (ADS)

    Koch, P. M.; Tang, Y. W.; Ho, P. T. P.; Zhang, Q.; Girart, J. M.; Chen, H. R. V.; Lai, S. P.; Li, H. B.; Li, Z. Y.; Liu, H. B.; Padovani, M.; Qiu, K.; Rao, R.; Yen, H. W.; Frau, P.; Chen, H. H.; Ching, T. C.

    2016-05-01

    We highlight distinct and systematic observational features of magnetic field morphologies in polarized submm dust continuum. We illustrate this with specific examples and show statistical trends from a sample of 50 star-forming regions.