Note: This page contains sample records for the topic tesla magnetic field from Science.gov.
While these samples are representative of the content of Science.gov,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of Science.gov
to obtain the most current and comprehensive results.
Last update: November 12, 2013.
1

Magnetic Field Interactions of Orthodontic Wires during Magnetic Resonance Imaging (MRI) at 1.5 Tesla  

Microsoft Academic Search

Background: Orthodontic appliances pose a potential risk during magnetic resonance imaging (MRI) due to forces on metallic objects within the static magnetic field of MRI systems. The aim of the present investigation was to measure forces on orthodontic wires caused by the static magnetic field of a 1.5-Tesla MRI system, and to assess the safety hazards associated with these forces.

Dirk Schulze; Gerhard Adam; Bärbel Kahl-Nieke

2005-01-01

2

Magnetic Semiconductor Quantum Wells in High Fields to 60 Tesla: Photoluminescence Linewidth Annealing at Magnetization Steps  

SciTech Connect

Magnetic semiconductors offer a unique possibility for strongly tuning the intrinsic alloy disorder potential with applied magnetic field. We report the direct observation of a series of step-like reductions in the magnetic alloy disorder potential in single ZnSe/Zn(Cd,Mn)Se quantum wells between O and 60 Tesla. This disorder, measured through the linewidth of low temperature photoluminescence spectra drops abruptly at -19, 36, and 53 Tesla, in concert with observed magnetization steps. Conventional models of alloy disorder (developed for nonmagnetic semiconductors) reproduce the general shape of the data, but markedly underestimate the size of the linewidth reduction.

Awschalom, D.D.; Crooker, S.A.; Lyo, S.K.; Rickel, D.G.; Samarth, N.

1999-05-24

3

Magnetic Forces on Orthodontic Wires in High Field Magnetic Resonance Imaging (MRI) at 3 Tesla  

Microsoft Academic Search

\\u000a Abstract\\u000a \\u000a \\u000a Background:\\u000a   In a previous investigation we reported on magnetic forces in the static magnetic field of a 1.5 Tesla MRI system. The aim\\u000a of the present investigation was to assess forces on orthodontic wires in a high field strength MRI system at 3 Tesla.\\u000a \\u000a \\u000a \\u000a \\u000a Materials and Methods:\\u000a   Thirty-two different orthodontic wires (21 archwires, eight ligature wires and three retainer

Arndt Klocke; Bärbel Kahl-Nieke; Gerhard Adam; Jörn Kemper

2006-01-01

4

FUNCTIONALITY OF VETERINARY IDENTIFICATION MICROCHIPS FOLLOWING LOW- (0.5 TESLA) AND HIGH-FIELD (3 TESLA) MAGNETIC RESONANCE IMAGING.  

PubMed

The ability to read patient identification microchips relies on the use of radiofrequency pulses. Since radiofrequency pulses also form an integral part of the magnetic resonance imaging (MRI) process, the possibility of loss of microchip function during MRI scanning is of concern. Previous clinical trials have shown microchip function to be unaffected by MR imaging using a field strength of 1 Tesla and 1.5. As veterinary MRI scanners range widely in field strength, this study was devised to determine whether exposure to lower or higher field strengths than 1 Tesla would affect the function of different types of microchip. In a phantom study, a total of 300 International Standards Organisation (ISO)-approved microchips (100 each of three different types: ISO FDX-B 1.4 × 9 mm, ISO FDX-B 2.12 × 12 mm, ISO HDX 3.8 × 23 mm) were tested in a low field (0.5) and a high field scanner (3.0 Tesla). A total of 50 microchips of each type were tested in each scanner. The phantom was composed of a fluid-filled freezer pack onto which a plastic pillow and a cardboard strip with affixed microchips were positioned. Following an MRI scan protocol simulating a head study, all of the microchips were accurately readable. Neither 0.5 nor 3 Tesla imaging affected microchip function in this study. PMID:23763334

Piesnack, Susann; Frame, Mairi E; Oechtering, Gerhard; Ludewig, Eberhard

2013-06-13

5

Optical Signatures from Magnetic 2-D Electron Gases in High Magnetic Fields to 60 Tesla  

SciTech Connect

We present experiments in the 60 Tesla Long-Pulse magnet at the Los Alamos National High Magnetic Field Lab (NHMFL) focusing on the high-field, low temperature photoluminescence (PL) from modulation-doped ZnSe/Zn(Cd,Mn)Se single quantum wells. High-speed charge-coupled array detectors and the long (2 second) duration of the magnet pulse permit continuous acquisition of optical spectra throughout a single magnet shot. High-field PL studies of the magnetic 2D electron gases at temperatures down to 350mK reveal clear intensity oscillations corresponding to integer quantum Hall filling factors, from which we determine the density of the electron gas. At very high magnetic fields, steps in the PL energy are observed which correspond to the partial unlocking of antiferromagnetically bound pairs of Mn2+ spins.

Crooker, S.A.; Kikkawa, J.M.; Awschalom, D.D.; Smorchikova, I.P.; Samarth, N.

1998-11-08

6

A high-field (30 Tesla) pulsed magnet instrument for single-crystal scattering studies  

Microsoft Academic Search

Pulsed magnets have emerged as a viable approach at synchrotron x-ray facilities for studying materials in high magnetic fields. We are developing a new high-field (30 Tesla) pulsed magnet system for single-crystal x-ray diffraction studies. It consists of a single 18mm-bore solenoid, designed and built at Tohoku University using high-tensile-strength and high conductivity CuAg wires. A dual-cryostat scheme has been

Zahirul Islam; Hiroyuki Nojiri; Yasuo Narumi; Jonathan Lang

2010-01-01

7

A high-field (30 Tesla) pulsed magnet instrument for single-crystal scattering studies  

NASA Astrophysics Data System (ADS)

Pulsed magnets have emerged as a viable approach at synchrotron x-ray facilities for studying materials in high magnetic fields. We are developing a new high-field (30 Tesla) pulsed magnet system for single-crystal x-ray diffraction studies. It consists of a single 18mm-bore solenoid, designed and built at Tohoku University using high-tensile-strength and high conductivity CuAg wires. A dual-cryostat scheme has been developed at Advanced Photon Source in order to cool the coil using liquid nitrogen and the sample using a closed-cycle cryostat independently. Liquid nitrogen cooling allows repetition rate of a few minutes for peak fields near 30 Tesla. This scheme is unique in that it allows the applied magnetic field to be parallel to the scattering plane. Time-resolved scattering data are typically collected using a fast one-dimensional strip detector. Opportunities and challenges for experiments and instrumentation will be discussed.

Islam, Zahirul; Nojiri, Hiroyuki; Narumi, Yasuo; Lang, Jonathan

2010-03-01

8

Magnetic field sensors applied to electropolishing of superconducting RF TESLA-type cavities  

Microsoft Academic Search

In this work an electromagnetic non-invasive and contact-less technique using Flux-Gate first-order gradiometer is proposed to detect the magnetic field distribution during electropolishing of copper surface. The electropolishing of the copper surface employed in superconducting RF TESLA-type cavities has been monitored using magnetic field sensors. Local information regarding the dissolved copper surface during the electropolishing process has been obtained. An

C. Bonavolontà; M. Valentino; V. Palmieri; V. Rampazzo

2006-01-01

9

Magnetic field sensors applied to electropolishing of superconducting RF TESLA-type cavities  

NASA Astrophysics Data System (ADS)

In this work an electromagnetic non-invasive and contact-less technique using Flux-Gate first-order gradiometer is proposed to detect the magnetic field distribution during electropolishing of copper surface. The electropolishing of the copper surface employed in superconducting RF TESLA-type cavities has been monitored using magnetic field sensors. Local information regarding the dissolved copper surface during the electropolishing process has been obtained. An electromagnetic inversion of the magnetic field imaging have been implemented to better understand the effect of the cathode geometry on the electropolishing process.

Bonavolontà, C.; Valentino, M.; Palmieri, V.; Rampazzo, V.

2006-07-01

10

Innovating approaches to the generation of intense magnetic fields : design and optimization of a 4 Tesla permanent magnet flux source  

Microsoft Academic Search

An original permanent magnet flux source is designed in order to generate a magnetic field of several Tesla. The magnet configuration and discretization of the structure are optimized with the help of numerical simulation software developed at LEG (DIPOLE-3D, FLUX2D & FLUX3D). The model of spheroidal flux source presented in the paper creates a field in excess of 4.3 T

F. Bloch; O. Cugat; G. Meunier; J. C. Toussaint

1998-01-01

11

4.5 Tesla magnetic field reduces range of high-energy positrons -- Potential implications for positron emission tomography  

SciTech Connect

The authors have theoretically and experimentally investigated the extent to which homogeneous magnetic fields up to 7 Tesla reduce the spatial distance positrons travel before annihilation (positron range). Computer simulations of a noncoincident detector design using a Monte Carlo algorithm calculated the positron range as a function of positron energy and magnetic field strength. The simulation predicted improvements in resolution, defined as full-width at half-maximum (FWHM) of the line-spread function (LSF) for a magnetic field strength up to 7 Tesla: negligible for F-18, from 3.35 mm to 2.73 mm for Ga-68 and from 3.66 mm to 2.68 mm for Rb-82. Also a substantial noise suppression was observed, described by the full-width at tenth-maximum (FWTM) for higher positron energies. The experimental approach confirmed an improvement in resolution for Ga-68 from 3.54 mm at 0 Tesla to 2.99 mm FWHM at 4.5 Tesla and practically no improvement for F-18 (2.97 mm at 0 Tesla and 2.95 mm at 4.5 Tesla). It is concluded that the simulation model is appropriate and that a homogeneous static magnetic field of 4.5 Tesla reduces the range of high-energy positrons to an extent that may improve spatial resolution in positron emission tomography.

Wirrwar, A.; Vosberg, H. [Nuklearmedizinische Klinik Heinrich-Heine Univ. Duesseldorf (Germany); Herzog, H.; Halling, H.; Weber, S. [Forschungszentrum Juelich GmbH (Germany); Mueller-Gaertner, H.W. [Nuklearmedizinische Klinik Heinrich-Heine Univ. Duesseldorf (Germany)]|[Forschungszentrum Juelich GmbH (Germany). Inst. fuer Medizin

1997-04-01

12

Low-noise nano superconducting quantum interference device operating in Tesla magnetic fields.  

PubMed

Superconductivity in the cuprate YBa(2)Cu(3)O(7) (YBCO) persists up to huge magnetic fields (B) up to several tens of Teslas, and sensitive direct current (dc) superconducting quantum interference devices (SQUIDs) can be realized in epitaxially grown YBCO films by using grain boundary Josephson junctions (GBJs). Here we present the realization of high-quality YBCO nanoSQUIDs, patterned by focused ion beam milling. We demonstrate low-noise performance of such a SQUID up to B = 1 T applied parallel to the plane of the SQUID loop at the temperature T = 4.2 K. The GBJs are shunted by a thin Au layer to provide nonhysteretic current voltage characteristics, and the SQUID incorporates a 90 nm wide constriction which is used for on-chip modulation of the magnetic flux through the SQUID loop. The white flux noise of the device increases only slightly from 1.3 ??(0)/(Hz)(1/2) at B = 0 to 2.3 ??(0)/(Hz))(1/2) at 1 T. Assuming that a point-like magnetic particle with magnetization in the plane of the SQUID loop is placed directly on top of the constriction and taking into account the geometry of the SQUID, we calculate a spin sensitivity S(?)(1/2) = 62 ?(B)/(Hz))(1/2) at B = 0 and 110 ?(B)/(Hz))(1/2) at 1 T. The demonstration of low noise of such a SQUID in Tesla fields is a decisive step toward utilizing the full potential of ultrasensitive nanoSQUIDs for direct measurements of magnetic hysteresis curves of magnetic nanoparticles and molecular magnets. PMID:23252846

Schwarz, Tobias; Nagel, Joachim; Wölbing, Roman; Kemmler, Matthias; Kleiner, Reinhold; Koelle, Dieter

2012-12-27

13

High-temperature superconductor bulk magnets that can trap magnetic fields of over 17 tesla at 29 K.  

PubMed

Large-grain high-temperature superconductors of the form RE-Ba-Cu-O (where RE is a rare-earth element) can trap magnetic fields of several tesla at low temperatures, and so can be used for permanent magnet applications. The magnitude of the trapped field is proportional to the critical current density and the volume of the superconductor. Various potential engineering applications for such magnets have emerged, and some have already been commercialized. However, the range of applications is limited by poor mechanical stability and low thermal conductivity of the bulk superconductors; RE-Ba-Cu-O magnets have been found to fracture during high-field activation, owing to magnetic pressure. Here we present a post-fabrication treatment that improves the mechanical properties as well as thermal conductivity of a bulk Y-Ba-Cu-O magnet, thereby increasing its field-trapping capacity. First, resin impregnation and wrapping the materials in carbon fibre improves the mechanical properties. Second, a small hole drilled into the centre of the magnet allows impregnation of Bi-Pb-Sn-Cd alloy into the superconductor and inclusion of an aluminium wire support, which results in a significant enhancement of thermal stability and internal mechanical strength. As a result, 17.24 T could be trapped, without fracturing, in a bulk Y-Ba-Cu-O sample of 2.65 cm diameter at 29 K. PMID:12556888

Tomita, Masaru; Murakami, Masato

2003-01-30

14

Functional Magnetic Resonance Imaging of Eye Dominance at 4 Tesla  

Microsoft Academic Search

We studied eye dominance in visual cortex and lateral geniculate nucleus (LGN) using functional magnetic resonance imaging (fMRI) at a very high magnetic field (4 tesla). Eight normal volunteers were studied with fMRI at 4 tesla during alternating monocular visual stimulation. The acquisition was repeated twice in 4 subjects to confirm reproducibility. In addition, magnetic resonance signal intensities during three

Atsushi Miki; Grant T. Liu; Sarah A. Englander; Theo G. M. van Erp; Gabrielle R. Bonhomme; David O. Aleman; Chia-Shang J. Liu; John C. Haselgrove

2001-01-01

15

Thirteen Tesla magnet constructed with MJR wire  

SciTech Connect

The authors have constructed an insert booster superconducting magnet of 20 mm clear bore and outside diameter of 100 mm and height 130 mm, wound and reacted from the Teledyne patented foraminous layered foil (jelly roll) wire fabricated by low cost, non-rebundled reduction to wire. This magnet was placed inside the 101 mm bore of a NbTi wound solenoid which was operated at 8.5 Tesla. The total field achieved was 13.0 Tesla with no training quench observed; although training was initially observed when the magnet was first tested alone up to 4.6 Tesla at American Magnets, Inc. (AMI). The magnet winding techniques utilize Airco's fiberglass type wire insulation, an AMI proprietary cement, argon atmosphere 700/sup 0/C for 100 hour reaction, followed by a postreaction potting impregnation. The MJR wire lot used (M22) was short sample tested and the Ln (J /SUB c/ ) -vs-H line intersected the insert magnet operating curve at 13.5 Tesla. The wire lot used has a 34 volume % copper external sheath for quench protection. The wire was fabricated with 15.4 volume % niobium and bronze/niobium ratio of 3.0 with 13.% Sn bronze.

Siddall, M.; Efferson, K.; Mcdonald, W.

1983-05-01

16

Magnetic field measurements of a clinical MR imager at 1.5 tesla  

NASA Astrophysics Data System (ADS)

In the clinical environment is mandatory to run periodically measurements of uniformity of the magnetic field produced by the magnet to assure good image quality. The phase difference method was used to measure the magnetic field uniformity of the 1.5 T scanner of the Instituto Nacional de Neurologia y Neurocirugia MVS. The uniformity field values showed that the imager performance is reasonably good for clinical imaging. Some concern was raised since results may not be good enough for magnetic resonance spectroscopy runs.

Muhech, A.; Tellez, I.; Esteva, M.; Marrufo, O.; Jimenez, L.; Vazquez, F.; Taboada, J.; Rodriguez, A. O.

2012-10-01

17

A 10 tesla table-top controlled waveform magnet  

NASA Astrophysics Data System (ADS)

Controlled Waveform Magnets (CWMs) are a special class of pulsed magnets which provide semi-continuous, shape-controlled high magnetic field pulses. In this work we report a table-top CWM, driven by a capacitor bank, capable of producing virtually any user-shaped magnetic field waveform up to 10 Tesla. Insulated Gate Bipolar Transistor (IGBT) chips were paralleled to form the high current switch. Specimen pulse shapes including flat-tops up to 10 Tesla, and linear as well as some sinusoidal-top magnetic field waveforms have been successfully generated.

Roy Choudhury, Aditya N.; Venkataraman, V.

2012-06-01

18

Conceptual approach to the design of 50-tesla hyper-field superconducting magnetic coils  

NASA Astrophysics Data System (ADS)

Perhaps one of the principle advantages of the open-ended geometry afforded by the mirror fusion reactor designs, in contrast to that of the tokamak proposals, is the potential future upgradability of these systems to also encompass advanced fusion fuel cycles. This is the combined result of both the ability to convert the energy of the escaping charged particles directly into electricity and from a magnet design viewpoint; the much higher required containment field strengths (between 40 to 50 T in the mirror choke coils and approximately 12 T in the central cell magnets) dictate that the tokamak geometry lacks adequate real estate for structural support against the resulting electromagnetic stresses. The latter consideration is highlighted by F. Moon's report on the Virial Theorem, which states that the minimal amount of structural mass needed for a magnet scales as both the magnetic stored energy and a multiplicative factor that increases with the geometric complexity of the proposed magnet system. Solenoids are, of course, the simplest source of fields, which implies that if strengths of 40 to 50 T are indeed possible, we should first seek their production in this geometry.

Hoard, R. W.

1985-08-01

19

Dobutamine stress cardiovascular magnetic resonance at 3 Tesla  

Microsoft Academic Search

PURPOSE: The assessment of inducible wall motion abnormalities during high-dose dobutamine-stress cardiovascular magnetic resonance (DCMR) is well established for the identification of myocardial ischemia at 1.5 Tesla. Its feasibility at higher field strengths has not been reported. The present study was performed to prospectively determine the feasibility and diagnostic accuracy of DCMR at 3 Tesla for depicting hemodynamically significant coronary

S Kelle; A Hamdan; B Schnackenburg; U Köhler; C Klein; E Nagel; E Fleck

2008-01-01

20

Endometrium evaluation with high-field (3-Tesla) magnetic resonance imaging in patients submitted to uterine leiomyoma embolization.  

PubMed

OBJECTIVE: To evaluate the endometrial alterations related to embolization of uterine arteries for the treatment of symptomatic uterine leiomyomatosis (pelvic pain and/or uterine bleeding) by means of high-field (3-Tesla) magnetic resonance. METHODS: This is a longitudinal and prospective study that included 94 patients with a clinical and imaging diagnosis of symptomatic uterine leiomyomatosis, all of them treated by embolization of the uterine arteries. The patients were submitted to evaluations by high-field magnetic resonance of the pelvis before and 6 months after the procedure. Specific evaluations were made of the endometrium on the T2-weighted sequences, and on the T1-weighted sequences before and after the intravenous dynamic infusion of the paramagnetic contrast. In face of these measures, statistical analyses were performed using Student's t test for comparison of the results obtained before and after the procedure. RESULTS: An average increase of 20.9% was noted in the endometrial signal on T2-weighted images obtained after the uterine artery embolization procedure when compared to the pre-procedure evaluation (p=0.0004). In the images obtained with the intravenous infusion of paramagnetic contrast, an average increase of 18.7% was noted in the post-embolization intensity of the endometrial signal, compared to the pre-embolization measure (p<0.035). CONCLUSION: After embolization of the uterine arteries, there was a significant increase of the endometrial signal on the T2-weighted images and on the post-contrast images, inferring possible edema and increased endometrial flow. Future studies are needed to assess the clinical impact of these findings. PMID:23579745

Jacobs, Monica Amadio Piazza; Nasser, Felipe; Zlotnik, Eduardo; Messina, Marcos de Lorenzo; Baroni, Ronaldo Hueb

2013-03-01

21

Conspicuous histomorphological anomalies in the hippocampal formation of rats exposed prenatally to a complex sequenced magnetic field within the nanoTesla range.  

PubMed

The brains of adult rats, exposed prenatally to one of four intensities (between 10 nanoTesla and 1.2 microTesla) of either a frequency-modulated magnetic field or a complex sequenced field designed to affect brain development, were examined histologically. Although from each intensity some rats that had been exposed to the complex sequenced magnetic field showed minor anomalies, those exposed to intensities between 30 nT and 180 nT exhibited conspicuous anomalous organizations of cells within the hippocampal formation. In other studies, rats that had been exposed during their entire prenatal development to the complex sequenced field displayed significantly more activity in the open field and poorer spatial memory during maze learning. Photomicrographs are shown of one conspicuous morphological anomaly within the right hippocampus of an adult rat exposed prenatally to the complex sequenced magnetic field with intensities between .3 mG and .5 mG (30 nT to 50 nT). The results suggest that complex magnetic fields, whose temporal structures approach the time constants of normal biochemical processes, can permanently alter the development of the brain. PMID:15002875

St-Pierre, Linda S; Persinger, Michael A

2003-12-01

22

A 1MV Magnetically Insulated Tesla Transformer  

Microsoft Academic Search

This paper describes the successful development of a 1-MV magnetically insulated Tesla transformer. Full details of the construction are provided, together with the basis of the design procedure. Preliminary results for the prototype transformer are presented and discussed, and future paper is outlined.

M. Istenic; Bucur M. Novac; Jing Luo; Rajesh Kumar; Ivor R. Smith

2008-01-01

23

A 10 tesla table-top controlled waveform magnet.  

PubMed

Controlled waveform magnets (CWMs) are a class of pulsed magnets whose pulse shape with time can be programmed by the user. With a CWM, the user gains control not only over the magnitude of the field but also over its rate of change. In this work we present a table-top CWM, driven by a capacitor bank, capable of producing virtually any user-shaped magnetic field waveform up to 10 tesla. Insulated gate bipolar transistor chips have been paralleled to form the high current switch and paralleled chips of SiC Schottky diodes form the crowbar diode module. Sample controlled waveforms including flat-tops up to 10 tesla and some triangular magnetic field pulses have been successfully generated for 10-20 ms with a ripple <1%. PMID:22559572

Roy Choudhury, Aditya N; Venkataraman, V

2012-04-01

24

A 10 tesla table-top controlled waveform magnet  

NASA Astrophysics Data System (ADS)

Controlled waveform magnets (CWMs) are a class of pulsed magnets whose pulse shape with time can be programmed by the user. With a CWM, the user gains control not only over the magnitude of the field but also over its rate of change. In this work we present a table-top CWM, driven by a capacitor bank, capable of producing virtually any user-shaped magnetic field waveform up to 10 tesla. Insulated gate bipolar transistor chips have been paralleled to form the high current switch and paralleled chips of SiC Schottky diodes form the crowbar diode module. Sample controlled waveforms including flat-tops up to 10 tesla and some triangular magnetic field pulses have been successfully generated for 10-20 ms with a ripple <1%.

Roy Choudhury, Aditya N.; Venkataraman, V.

2012-04-01

25

Ultrashort Echo Time Magnetic Resonance Imaging of Cortical Bone at 7 Tesla Field Strength: A Feasibility Study  

PubMed Central

Purpose To implement and examine the feasibility of a 3D ultra-short TE (UTE) sequence on a 7T clinical MR scanner in comparison with 3T MRI at high isotropic resolution. Materials and Methods Using an in-house built saddle coil at both field strengths we have imaged mid-diaphysial sections of five fresh cadaveric specimen of the distal tibia. An additional in vivo scan was performed at 7 Tesla using a quadrature knee coil. Results Using the same type of saddle coil at both field strengths a significant increase in SNR at 7T compared to 3T (factor 1.7) was found. Significantly shorter T2* values were found at the higher field strength (T2*=552.2±126µs at 7T versus T2*=1163±391µs at 3T). Conclusions UHF MRI at 7T has great potential for imaging tissues with short T2.

Krug, Roland; Larson, Peder Eric Zufall; Wang, Chunsheng; Burghardt, Andrew J.; Kelley, Douglas A. C.; Link, Thomas M.; Zhang, Xiaoliang; Vigneron, Daniel B.; Majumdar, Sharmila

2011-01-01

26

The effects of exposure to a 1.5-tesla magnetic field on intravitreous metallic foreign bodies in rabbits  

Microsoft Academic Search

Background: The study was performed to determine (1) whether intravitreous ferromagnetic foreign bodies (FBs) are sufficiently mobile in a magnetic field to induce acute injury in vivo, and (2) whether the length of time from implantation of the intravitreous FB affects mobility. Methods: A 3 mm 2 0.72 mm magnetic FB (MFB) and a non-magnetic metallic FB (NMFB) of similar

Cheryl Cullen; Edward Kendall; Jie Cui; Kevin Colleaux; Bruce Grahn

2002-01-01

27

Specific patterns of weak (1 microTesla) transcerebral complex magnetic fields differentially affect depression, fatigue, and confusion in normal volunteers.  

PubMed

Normal young adults were exposed for 20 min once per week for a total of 3 sessions to 1 of 7 configurations of weak (1 microTesla) magnetic fields or to a sham field. The fields were spatially rotated and applied through the brain at the level of the temporoparietal lobes. The Profile of Mood States was taken before and after each session. Before, during, and after the treatments, heart rate, plethysmographic activity, and skin conductance were measured by computer. The results indicated that the burst-firing pattern previously demonstrated to be effective for clinical depression, improved mood and vigour compared to the sham-field or other treatments. Subjects who were exposed to a burst-firing pattern, a complex-sequenced pattern, and a pattern whose electrical equivalents stimulate long-term potential in hippocampus slices also exhibited less psychometric fatigue after the sessions compared to subjects who received the sham field or random-sequenced fields. These results replicate previous studies and indicate that rationally designed complex patterns of magnetic fields may simulate pharmacological treatments. PMID:20017627

Tsang, Eric W; Koren, Stanley A; Persinger, Michael A

2009-01-01

28

Intermittent burst-firing weak (1 microTesla) magnetic fields reduce psychometric depression in patients who sustained closed head injuries: a replication and electroencephalographic validation.  

PubMed

14 patients who reported chronic depression more than one year after closed head injuries were exposed to weak (1 microTesla), burst-firing magnetic fields either across the temporal lobes or over the left frontal lobe. The treatment was for 30 min. once per week for 6 wk. The reduction in depression scores after 5 wk. of treatments and after 6 wk. of no treatment (follow-up) accommodated 54% of the variance for both groups. The changes in depression scores did not differ significantly between the two groups (temporal vs frontal). Following treatment, the frequency of complex partial epileptic-like experiences decreased significantly only for the 7 who received the bilateral stimulation over the temporal lobes. Quantitative bipolar electroencephalographic measurements over the occipital, prefrontal, and temporal regions showed increased power within the 16-Hz to 18-Hz range 6 wk. after termination of treatment for those 7 patients who received the burst-firing magnetic fields bilaterally over the temporal lobes but not over the left prefrontal region. PMID:12831278

Baker-Price, Laura; Persinger, M A

2003-06-01

29

High field (9.4 Tesla) magnetic resonance imaging of cortical grey matter lesions in multiple sclerosis.  

PubMed

Multiple sclerosis is an inflammatory, degenerative disease of the central nervous system. The most obvious pathological change in multiple sclerosis is multifocal demyelination of the white matter, but grey matter demyelination may be of equal or even greater importance for its clinical manifestations. In order to assess the pathogenetic role of lesions in the grey and white matter, and to explore the association between demyelinated and non-lesional brain tissue, tools are needed to depict each of these tissue components accurately in vivo. Due to its sensitivity in detecting white matter lesions, T(2)-weighted magnetic resonance imaging at 1.5 T is important in the diagnosis of multiple sclerosis. However, magnetic resonance imaging at 1.5 T largely fails to detect grey matter lesions. In this study, we used T(2)-weighted magnetic resonance imaging at 9.4 T to detect grey matter lesions in fixed post-mortem multiple sclerosis motor cortex. Furthermore, we produced T(1), T(2) and magnetization transfer ratio maps, and correlated these indices with quantitative histology [neuronal density, intensity of immunostaining for myelin basic protein (reflecting myelin content) and phosphorylated neurofilament (reflecting axonal area)] using t-tests and multivariate regression. In 21 tissue samples, 28 cortical grey matter lesions were visible on both T(2)-weighted magnetic resonance imaging and sections immunostained for myelin basic protein, 15/28 being mixed white and grey matter and 11/28 subpial cortical grey matter lesions; 2/28 cortical grey matter lesions involved all layers of the cortex. Compared with non-lesional cortex, cortical grey matter lesions showed reduction of neuronal density (98/mm(2), SD = 34/mm(2;) versus 129/mm(2), SD = 44; P < 0.01), phosphorylated neurofilament (1/transmittance = 1.16; SD = 0.09 versus 1.24; SD = 0.1; P < 0.01) and magnetization transfer ratio (31.1 pu; SD = 11.9 versus 37.5 pu; SD = 8.7; P = 0.01), and an increase of T(2) (25.9; SD = 5 versus 22.6 ms; SD = 4.7; P < 0.01). Associations were detected between phosphorylated neurofilament and myelin basic protein (r = 0.58, P < 0.01), myelin basic protein and T(2) (r = -0.59, P < 0.01), and neuronal density and T(1) (r = -0.57, P < 0.01). All indices correlated with duration of tissue fixation, however, including the latter in the analysis did not fundamentally affect the associations described. Our data show that T(2)-weighted magnetic resonance imaging at 9.4 T enables detection of cortical grey matter lesion in post-mortem multiple sclerosis brain. The quantitative associations suggest that in cortical grey matter T(1) may be a predictor of neuronal density, and T(2) of myelin content (and-secondarily-axons). Successful translation of these results into in vivo studies using high field magnetic resonance imaging (e.g. 3 T and 7 T) will improve the assessment of cortical pathology and thereby have an impact on the diagnosis and natural history studies of patients with multiple sclerosis, as well as clinical trial designs for putative treatments to prevent cortical demyelination and neuronal loss. PMID:20123726

Schmierer, Klaus; Parkes, Harold G; So, Po-Wah; An, Shu F; Brandner, Sebastian; Ordidge, Roger J; Yousry, Tarek A; Miller, David H

2010-01-31

30

Persistent currents at fields above 23 Tesla.  

SciTech Connect

Experimental studies made on organic conducting salts of the composition {alpha}-(BEDT-TTF) 2MHg(SCN)4 (where M = K, Tl and Rb) indicate that they exhibit persistent currents at magnetic fields exceeding 23 T. The presence of currents cannot be explained by the quantum Hall effect, while superconductivity seems unlikely. All indications point towards a new type of dissipationless current flow involving relative gradients in the pinning of a CDW and quantized orbital magnetism.

Harrison, N. (Neil)

2001-01-01

31

Matching field effects at tesla-level magnetic fields in critical current density in high-Tc superconductors containing self-assembled columnar defects  

NASA Astrophysics Data System (ADS)

We have investigated the superconductive transport properties of Y Ba2Cu3O7 films containing self-assembled columnar arrays of second phase SrZrO3 or BaSnO3 precipitates. A matching condition between columnar pinning sites (aligned at or near the c axis) and external magnetic flux, tilted with respect to them, is identified in the critical current JC(H) data. The results for the material containing SrZrO3-based pins are analyzed within a simple intuitive model. At matching, the critical current is enhanced above the model prediction. In complementary contact-free investigations of BaSnO3-doped material, matching effects are observed over a wide range of temperatures in the field dependence of JC(H). The deduced matching fields agree reasonably well with the densities of columnar pins directly observed by scanning electron microscopy.

Sinclair, J. W.; Zuev, Y. L.; Cantoni, C.; Wee, S. H.; Varanasi, C.; Thompson, J. R.; Christen, D. K.

2012-11-01

32

RHQT Nb3Al 15-Tesla magnet design study  

SciTech Connect

Feasibility study of 15-Tesla dipole magnets wound with a new copper stabilized RHQT Nb{sub 3}Al Rutherford cable is presented. A new practical long copper stabilized RHQT Nb{sub 3}Al strand is presented, which is being developed and manufactured at the National Institute of Material Science (NIMS) in Japan. It has achieved a non-copper J{sub c} of 1000A/mm{sup 2} at 15 Tesla at 4.2K, with a copper over non-copper ratio of 1.04, and a filament size less than 50 microns. For this design study a short Rutherford cable with 28 Nb{sub 3}Al strands of 1 mm diameter will be fabricated late this year. The cosine theta magnet cross section is designed using ROXIE, and the stress and strain in the coil is estimated and studied with the characteristics of the Nb{sub 3}Al strand. The advantages and disadvantages of the Nb{sub 3}Al cable are compared with the prevailing Nb{sub 3}Sn cable from the point of view of stress-strain, J{sub c}, and possible degradation of stabilizer due to cabling. The Nb{sub 3}Al coil of the magnet, which will be made by wind and react method, has to be heat treated at 800 degree C for 10 hours. As preparation for the 15 Tesla magnet, a series of tests on strand and Rutherford cables are considered.

Yamada, R.; Ambrosio, G.; Barzi, E.; Kashikin, V.; Kikuchi, A.; Novitski, I.; Takeuchi, T.; Wake, M.; Zlobin, A.; /Fermilab /NIMC, Tsukuba /KEK, Tsukuba

2005-09-01

33

A 4 Tesla Superconducting Magnet Developed for a 6 Circle Huber Diffractometer at the XMaS Beamline  

Microsoft Academic Search

We report here on the development and testing of a 4 Tesla cryogen free superconducting magnet designed to fit within the Euler cradle of a 6 circle Huber diffractometer, allowing scattering in both the vertical and horizontal planes. The geometry of this magnet allows the field to be applied in three orientations. The first being along the beam direction, the

P. B. J. Thompson; S. D. Brown; L. Bouchenoire; D. Mannix; D. F. Paul; C. A. Lucas; J. Kervin; M. J. Cooper; P. Arakawa; G. Laughon

2007-01-01

34

Dobutamine stress cardiovascular magnetic resonance at 3 Tesla  

PubMed Central

Purpose The assessment of inducible wall motion abnormalities during high-dose dobutamine-stress cardiovascular magnetic resonance (DCMR) is well established for the identification of myocardial ischemia at 1.5 Tesla. Its feasibility at higher field strengths has not been reported. The present study was performed to prospectively determine the feasibility and diagnostic accuracy of DCMR at 3 Tesla for depicting hemodynamically significant coronary artery stenosis (? 50% diameter stenosis) in patients with suspected or known coronary artery disease (CAD). Materials and methods Thirty consecutive patients (6 women) (66 ± 9.3 years) were scheduled for DCMR between January and May 2007 for detection of coronary artery disease. Patients were examined with a Philips Achieva 3 Tesla system (Philips Healthcare, Best, The Netherlands), using a spoiled gradient echo cine sequence. Technical parameters were: spatial resolution 2 × 2 × 8 mm3, 30 heart phases, spoiled gradient echo TR/TE: 4.5/2.6 msec, flip angle 15°. Images were acquired at rest and stress in accordance with a standardized high-dose dobutamine-atropine protocol during short breath-holds in three short and three long-axis views. Dobutamine was administered using a standard protocol (10 ?g increments every 3 minutes up to 40 ?g dobutamine/kg body weight/minute plus atropine if required to reach target heart rate). The study protocol included administration of 0.1 mmol/kg/body weight Gd-DTPA before the cine images at rest were acquired to improve the image quality. The examination was terminated if new or worsening wall-motion abnormalities or chest pain occurred or when > 85% of age-predicted maximum heart rate was reached. Myocardial ischemia was defined as new onset of wall-motion abnormality in at least one segment. In addition, late gadolinium enhancement (LGE) was performed. Images were evaluated by two blinded readers. Diagnostic accuracy was determined with coronary angiography as the reference standard. Image quality and wall-motion at rest and maximum stress level were evaluated using a four-point scale. Results In 27 patients DCMR was performed successfully, no patient had to be excluded due to insufficient image quality. Twenty-two patients were examined by coronary angiography, which depicted significant stenosis in 68.2% of the patients. Patient-based sensitivity and specificity were 80.0% and 85.7% respectively and accuracy was 81.8%. Interobserver variability for assessment of wall motion abnormalities was 88% (? = 0.760; p < 0.0001). Negative and positive predictive values were 66.7% and 92.3%, respectively. No significant differences in average image quality at rest versus stress for short or long-axis cine images were found. Conclusion High-dose DCMR at 3T is feasible and an accurate method to depict significant coronary artery stenosis in patients with suspected or known CAD.

Kelle, S; Hamdan, A; Schnackenburg, B; Kohler, U; Klein, C; Nagel, E; Fleck, E

2008-01-01

35

Superconductivity in Strong Magnetic Field (Greater Than Upper Critical Field)  

SciTech Connect

The National High Magnetic Field Laboratory, funded by the National Science Foundation and other US federal Agencies, has in recent years built a wide range of magnetic fields, DC 25 to 35 Tesla, short pulse 50 - 60 Tesla, and quasi-continuous 60 Tesla. Future plans are to push the frontiers to 45 Tesla DC and 70 to 100 Tesla pulse. This user facility, is open for national and international users, and creates an excellent tool for materials research (metals, semiconductors, superconductors, biological systems ..., etc). Here we present results of a systematic study of the upper critical field of a novel superconducting material which is considered a promising candidate for the search for superconductivity beyond H{sub c2} as proposed by several new theories. These theories predict that superconductors with low carrier density can reenter the superconducting phase beyond the conventional upper critical field H{sub c2}. This negates the conventional thinking that superconductivity and magnetic fields are antagonistic.

Tessema, G.X.; Gamble, B.K.; Skove, M.J.; Lacerda, A.H.; Mielke, C.H.

1998-08-22

36

Magnetic Field Problem: Measuring Current  

NSDL National Science Digital Library

A cross section of two circular wire loops carrying the exact same current is shown above (position given in centimeters and magnetic field given in milli-Tesla). You can click-drag to read the magnitude of the magnetic field.

Christian, Wolfgang; Belloni, Mario

2007-03-03

37

Design and Evaluation of a Hybrid Radiofrequency Applicator for Magnetic Resonance Imaging and RF Induced Hyperthermia: Electromagnetic Field Simulations up to 14.0 Tesla and Proof-of-Concept at 7.0 Tesla  

PubMed Central

This work demonstrates the feasibility of a hybrid radiofrequency (RF) applicator that supports magnetic resonance (MR) imaging and MR controlled targeted RF heating at ultrahigh magnetic fields (B0?7.0T). For this purpose a virtual and an experimental configuration of an 8-channel transmit/receive (TX/RX) hybrid RF applicator was designed. For TX/RX bow tie antenna electric dipoles were employed. Electromagnetic field simulations (EMF) were performed to study RF heating versus RF wavelength (frequency range: 64 MHz (1.5T) to 600 MHz (14.0T)). The experimental version of the applicator was implemented at B0?=?7.0T. The applicators feasibility for targeted RF heating was evaluated in EMF simulations and in phantom studies. Temperature co-simulations were conducted in phantoms and in a human voxel model. Our results demonstrate that higher frequencies afford a reduction in the size of specific absorption rate (SAR) hotspots. At 7T (298 MHz) the hybrid applicator yielded a 50% iso-contour SAR (iso-SAR-50%) hotspot with a diameter of 43 mm. At 600 MHz an iso-SAR-50% hotspot of 26 mm in diameter was observed. RF power deposition per RF input power was found to increase with B0 which makes targeted RF heating more efficient at higher frequencies. The applicator was capable of generating deep-seated temperature hotspots in phantoms. The feasibility of 2D steering of a SAR/temperature hotspot to a target location was demonstrated by the induction of a focal temperature increase (?T?=?8.1 K) in an off-center region of the phantom. Temperature simulations in the human brain performed at 298 MHz showed a maximum temperature increase to 48.6C for a deep-seated hotspot in the brain with a size of (19×23×32)mm3 iso-temperature-90%. The hybrid applicator provided imaging capabilities that facilitate high spatial resolution brain MRI. To conclude, this study outlines the technical underpinnings and demonstrates the basic feasibility of an 8-channel hybrid TX/RX applicator that supports MR imaging, MR thermometry and targeted RF heating in one device.

Winter, Lukas; Ozerdem, Celal; Hoffmann, Werner; Santoro, Davide; Muller, Alexander; Waiczies, Helmar; Seemann, Reiner; Graessl, Andreas; Wust, Peter; Niendorf, Thoralf

2013-01-01

38

A unique 30 Tesla single-solenoid pulsed magnet instrument for x-ray studies  

NASA Astrophysics Data System (ADS)

We present a dual-cryostat pulsed-magnet instrument at the Advanced Photon Source (APS) with unique capabilities. The dual-cryostat independently cools the solenoid (Tohoku design) using liquid nitrogen and the sample using a closed-cycle refrigerator, respectively. Liquid nitrogen (LN) cooling allows a repetition rate of seven minutes for peak fields of 30 Tesla. The system is unique in that the LN cryostat incorporates a double-funnel vacuum tube passing through the solenoid's bore preserving the entire angular range allowed by the magnet. This scheme is advantageous in that it allows the applied magnetic field to be parallel to the scattering plane complementing typical split-pair magnets with fields normal to the scattering plane. Performance of the coils along with preliminary x-ray diffraction and spectroscopic studies will be presented.

Islam, Zahirul; Capatina, Dana; Ruff, Jacob; Das, Ritesh; Nojiri, Hiroyuki; Narumi, Yasuo

2011-03-01

39

3D calculations of the Superconducting Super Collider (SSC) 3 Tesla magnet  

SciTech Connect

A 20 TeV Superconducting Super Collider (SSC) proton accelerator is being proposed by the High Energy Physics Community. One proposal would consist of a ring of magnets 164 km in circumference with a field strength of 3 Tesla and would cost 2.7 billion dollars. The magnet consists of stacked steel laminations with superconducting coils. The desired field uniformity is obtained for all fields from 0.2 to 3 Tesla by using three (or more) different pole shapes. These three different laminations are stacked in the order 1-2-3-1-2-3-... creating a truly three dimensional geometry. A three laminated stack 1-2-3 with periodic boundary conditions at 1 and 3 was assigned about 5000 finite elements per lamination and solved using the computer program TOSCA. To check the TOSCA results, the field of each of the three different shaped laminations was calculated separately using periodic boundary conditions and compared to the two dimensional field calculations using TRIM. This was done for a constant permeability of 2000 and using the B-H table for fully annealed 1010 steel. The difference of the field calculations in the region of interest was always less than +-.2%

Lari, R.J.

1984-01-01

40

Operating nanoliter scale NMR microcoils in a 1 tesla field  

NASA Astrophysics Data System (ADS)

Microcoil probes enclosing sample volumes of 1.2, 3.3, 7.0, and 81 nanoliters are constructed as nuclear magnetic resonance (NMR) detectors for operation in a 1 tesla permanent magnet. The probes for the three smallest volumes utilize a novel auxiliary tuning inductor for which the design criteria are given. The signal-to-noise ratio (SNR) and line width of water samples are measured. Based on the measured DC resistance of the microcoils, together with the calculated radio frequency (RF) resistance of the tuning inductor, the SNR is calculated and shown to agree with the measured values. The details of the calculations indicate that the auxiliary inductor does not degrade the NMR probe performance. The diameter of the wire used to construct the microcoils is shown to affect the signal line widths.

McDowell, Andrew F.; Adolphi, Natalie L.

2007-09-01

41

High spatial resolution and temporally resolved T2* mapping of normal human myocardium at 7.0 Tesla: an ultrahigh field magnetic resonance feasibility study.  

PubMed

Myocardial tissue characterization using T(2)(*) relaxation mapping techniques is an emerging application of (pre)clinical cardiovascular magnetic resonance imaging. The increase in microscopic susceptibility at higher magnetic field strengths renders myocardial T(2)(*) mapping at ultrahigh magnetic fields conceptually appealing. This work demonstrates the feasibility of myocardial T(2)(*) imaging at 7.0 T and examines the applicability of temporally-resolved and high spatial resolution myocardial T(2)(*) mapping. In phantom experiments single cardiac phase and dynamic (CINE) gradient echo imaging techniques provided similar T(2)(*) maps. In vivo studies showed that the peak-to-peak B(0) difference following volume selective shimming was reduced to approximately 80 Hz for the four chamber view and mid-ventricular short axis view of the heart and to 65 Hz for the left ventricle. No severe susceptibility artifacts were detected in the septum and in the lateral wall for T(2)(*) weighting ranging from TE = 2.04 ms to TE = 10.2 ms. For TE >7 ms, a susceptibility weighting induced signal void was observed within the anterior and inferior myocardial segments. The longest T(2)(*) values were found for anterior (T(2)(*) = 14.0 ms), anteroseptal (T(2)(*) = 17.2 ms) and inferoseptal (T(2)(*) = 16.5 ms) myocardial segments. Shorter T(2)(*) values were observed for inferior (T(2)(*) = 10.6 ms) and inferolateral (T(2)(*) = 11.4 ms) segments. A significant difference (p = 0.002) in T(2)(*) values was observed between end-diastole and end-systole with T(2)(*) changes of up to approximately 27% over the cardiac cycle which were pronounced in the septum. To conclude, these results underscore the challenges of myocardial T(2)(*) mapping at 7.0 T but demonstrate that these issues can be offset by using tailored shimming techniques and dedicated acquisition schemes. PMID:23251708

Hezel, Fabian; Thalhammer, Christof; Waiczies, Sonia; Schulz-Menger, Jeanette; Niendorf, Thoralf

2012-12-14

42

Extreme Material Physical Properties and Measurements above 100 tesla  

Microsoft Academic Search

The National High Magnetic Field Laboratory (NHMFL) Pulsed Field Facility (PFF) at Los Alamos National Laboratory (LANL) offers extreme environments of ultra high magnetic fields above 100 tesla by use of the Single Turn method as well as fields approaching 100 tesla with more complex methods. The challenge of metrology in the extreme magnetic field generating devices is complicated by

Charles Mielke

2011-01-01

43

Si-N membrane microcalorimetry: Thermal conductivity and specific heat of thin films from 2-500K in magnetic fields to 8 Tesla.  

NASA Astrophysics Data System (ADS)

Understanding the thermal behavior of mesoscopic systems and thin films is a critical issue of both fundamental and technological solid state science. Despite the wealth of knowledge in principle available from accurate measurement of specific heat and thermal conductivity of thin films, there are relatively few results of this type, due to the difficulty of isolating the small heat capacities and thermal conductivities from the typically large background contribution of conventional apparatus. Our group at UC San Diego uses amorphous Si-N membranes to thermally isolate small samples from their environment and allow accurate thermal measurements. Recent work adds the ability to measure thermal conductivity of films as thin as 150 Angstrom over a broad temperature range [1] to our well-established techniques for measuring Cp of small samples.[2] Our microcalorimeter is also particularly well-suited for measurements of both Cp and k in high magnetic fields [3]. The micromachining techniques used to fabricate the calorimeter allow production of significant numbers of calorimeters with well-controlled dimensions and highly reproducible properties which facilitates studies of the thermal properties of thin film and tiny crystals. In this talk I will briefly review the fabrication of our microcalorimeter and the techniques for measuring Cp and k. I will present example data and results of numerical heat flow simulations used to further our understanding of heat flow in the microcalorimeter [1] B. L. Zink, B. Revaz, J. J. Cherry and F. Hellman, Submitted to RSI, Sept. 2002 [2] D. W. Denlinger et al., Rev. Sci. Inst 65, 946-59 (1994) [3] B. L. Zink, B. Revaz, R. Sappey and F. Hellman, Rev. Sci. Instrum. 73, 1841 (2002)

Zink, Barry

2003-03-01

44

Magnetic field decay in model SSC dipoles  

Microsoft Academic Search

The authors have observed that some of our model SSC dipoles have long time constant decays of the magnetic field harmonics with amplitudes large enough to result in significant beam loss, if they are not corrected. The magnets were run at constant current at the SSC injection field level of 0.3 tesla for one to three hours and changes in

W. S. Gilbert; R. F. Althaus; P. J. Barale; R. W. Benjegerdes; M. A. Green; M. I. Green; R. M. Scanlan

1989-01-01

45

Effect of 1. 5 tesla nuclear magnetic resonance imaging scanner on implanted permanent pacemakers  

SciTech Connect

Patients with a permanent pacemaker are currently restricted from diagnostic nuclear magnetic resonance (NMR) imaging because of potential adverse effects on the pacemaker by the magnet. Previous work has shown that NMR imaging will result in asynchronous pacing of the pulse generator within a given distance of the magnet. The radiofrequency signal generated by the system may also result in rapid cardiac pacing, which may have deleterious effects. This study utilized a 1.5 tesla unit in an in vivo laboratory animal to evaluate the unit's effects on eight different pulse generators from two manufacturers. All pacemakers functioned in an asynchronous mode when placed within a certain distance of the magnet. In addition, transient reed switch inhibition was observed. Seven of the eight pulse generators paced rapidly when exposed to the radiofrequency signal and there was a dramatic decrease in arterial blood pressure. Whether effective rapid cardiac pacing would occur could not be predicted before exposure to the magnetic resonance unit. Nuclear magnetic resonance imaging with high magnetic fields in patients with a pacemaker should continue to be avoided until the mechanism of the rapid cardiac pacing can be further delineated and either predicted or prevented.

Hayes, D.L.; Holmes, D.R. Jr.; Gray, J.E.

1987-10-01

46

Advanced High-Field Coil Designs: 20 TESLA.  

National Technical Information Service (NTIS)

This study of the technology required for producing large high-field coils has shown that, with some extensions to our present technological base, feasible designs are achievable. The resulting magnets could well make a paramount contribution to the natio...

R. W. Hoard D. N. Cornish R. M. Scanlan J. P. Zbasnik R. L. Leber

1983-01-01

47

Development of the 19 T high field magnet system  

Microsoft Academic Search

A high field magnet system, up to 19 tesla at 1.8K, with magnet bore of 75mm was developed. The magnet consists of Nb3Sn solenoids (3 sections) and NbTi solenoids (2 sections). A liquid helium vessel is divided into two parts (4.2K upper part and 1.8K lower part) by a fiberglass reinforced plastics separator. The central field is 17 tesla at

T. Kamikado; M. Taneda; O. Ozaki; M. Sugimoto; Y. Murakami; M. Yoshikawa; K. Matsumoto; R. Ogawa; Y. Kawate

1994-01-01

48

Reproducibility of subregional trabecular bone micro-architectural measures derived from 7-Tesla magnetic resonance images  

PubMed Central

High-resolution magnetic resonance imaging (MRI) of trabecular bone combined with quantitative image analysis represents a powerful technique to gain insight into trabecular bone micro-architectural derangements in osteoporosis and osteoarthritis. The increased signal-to-noise ratio of ultra high-field MR (?7 Tesla) permits images to be obtained with higher resolution and/or decreased scan time compared to scanning at 1.5/3T. In this small feasibility study, we show high measurement precision for subregional trabecular bone micro-architectural analysis performed on 7T knee MR images. The results provide further support for the use of trabecular bone measures as biomarkers in clinical studies of bone disorders.

Wang, Ligong; Liang, Guoyuan; Babb, James S.; Saha, Punam K.; Regatte, Ravinder R.

2013-01-01

49

6. 4 Tesla dipole magnet for the SSC  

SciTech Connect

A design is presented for a dipole magnet suitable for the proposed SSC facility. Test results are given for model magnets of this design 1 m long and 4.5 m long. Flattened wedge-shaped cables (''keystoned'') are used in a graded, two-layer ''cos theta'' configuration with three wedges to provide sufficient field uniformity and mechanical rigidity. Stainless steel collars 15 mm wide, fastened with rectangular keys, provide structural support, and there is a ''cold'' iron flux return. The outer-layer cable has 30 strands of 0.0255 in. dia NbTi multifilamentary wire with Cu/S.C. = 1.8, and the inner has 23 strands of .0318 in. dia wire with Cu/S.C. = 1.3. Performance data is given including training behavior, winding stresses, collar deformation, and field uniformity.

Taylor, C.E.; Caspi, S.; Gilbert, W.; Meuser, R.; Mirk, K.; Peters, C.; Scanlan, R.; Dahl, P.; Cottingham, J.; Hassenzahl, W.

1985-05-01

50

Test Results of HD1b, an upgraded 16 Tesla Nb3Sn DipoleMagnet  

SciTech Connect

The Superconducting Magnet Group at Lawrence Berkeley National Laboratory has been developing high-field, brittle-superconductor, accelerator magnet technology, in which the conductor's support system can significantly impact conductor performance (as well as magnet training). A recent H-dipole coil test (HD1) achieved a peak bore-field of 16 Tesla, using two, flat-racetrack, double-layer Nb{sub 3}Sn coils. However, its 4.5 K training was slow, with an erratic plateau at {approx}92% of its un-degraded ''short-sample'' expectation ({approx}16.6 T). Quench-origins correlated with regions where low conductor pre-stress had been expected (3-D FEM predictions and variations in 300 K coil-size). The coils were re-assembled with minor coil-support changes and re-tested as ''HD1b'', with a 185 MPa average pre-stress (30 MPa higher than HD1, with a 15-20 MPa pole-turn margin expected at 17 T). Training started higher (15.1 T), and quickly reached a stable, negligibly higher plateau at 16 T. After a thermal cycle, training started at 15.4 T, but peaked at 15.8 T, on the third attempt, before degrading to a 15.7 T plateau. The temperature dependence of this plateau was explored in a sub-atmospheric LHe bath to 3.0 K. Magnet performance data for both thermal cycles is presented and discussed, along with issues for future high-field accelerator magnet development.

Lietzke, A.F.; Bartlett, S.E.; Bish, P.; Caspi, S.; Dietderich,D.; Ferracin, P.; Gourlay, S.; Hafalia, A.R.; Hannaford, C.R.; Higley,H.; Lau, W.; Liggins, N.; Mattafirri, S.; Nyman, M.; Sabbi, G.; Scanlan,R.; Swanson, J.

2005-04-16

51

Alterations in the rat electrocardiogram induced by stationary magnetic fields  

SciTech Connect

A field strength dependent increase in the amplitude of the T-wave signal in the rat electrocardiogram (ECG) was observed during exposure to homogeneous, stationary magnetic fields. For 24 adult Sprague-Dswley and Buffalo rats of both sexes, the T-wave amplitude was found to increase by an average of 408% in a 2.0 Tesla (1 Tesla = 10/sup 4/ Gauss) field. No significant magnetically induced changes were observed in other components of the ECG record, including the P wave and the QRS complex. The minimum field level at which augmentation of the T wave could be detected was 0.3 Tesla. The magnetically induced increase in T-wave amplitude occurred instantaneously, and was immediately reversible after exposure to fields as high as 2.0 Tesla. No abnormalities in any component of the ECG record, including the T wave, were noted during a period of 3 weeks following cessation of a continuous 5-h exposure of rats to a 1.5-Tesla field. The heart rate and breathing rate of adult rats were not altered during, or subsequent to, application of fields up to 2.0 Tesla. The effect of animal orientation within the field was tested using juvenile rats 3-14 days old. The maximum increase in T-wave amplitude was observed when subjects were placed with the long axis of the body perpendicular to the lines of magnetic induction. (JMT)

Gaffey, C.T.; Tenforde, T.S.

1981-01-01

52

Team one (GA/MCA) effort of the DOE 12 Tesla Coil Development Program. 12 Tesla ETF toroidal field coil helium bath cooled NbTi alloy concept  

SciTech Connect

This report presents the conceptual design of an ETF compatible toroidal field coil, employing helium bath cooled NbTi alloy conductor. The ten TF-coil array generates a peak field of 11-1/2 tesla at 2.87 m radius, corresponding to a major axis field of 6.1 tesla. The 10 kA conductor is an uninsulated, unsoldered Rutherford cable, employing NbTiTa ally as developed in Phase I of this effort. The conductor is encased within a four element frame of stainless steel strips to provide hoop and bearing load support.

Not Available

1980-07-01

53

Heat Capacity Measurements in Pulsed Magnetic Fields  

SciTech Connect

The new NHMFL 60T quasi-continuous magnet produces a flat-top field for a period of 100 ms at 60 Tesla, and for longer time at lower fields, e.g. 0.5 s at 45 Tesla. We have developed for the first time the capability to measure heat capacity at very high magnetic fields in the NHMFL 60T quasi-continuous magnet at LANL, using a probe built out of various plastic materials. The field plateau allows us to utilize a heat-pulse method to obtain heat capacity data. Proof-of-principle heat capacity experiments were performed on a variety of correlated electron systems. Both magnet performance characteristics and physical properties of various materials studied hold out a promise of wide application of this new tool.

Jaime, M.; Movshovich, R.; Sarrao, J.L.; Kim, J.; Stewart, G.; Beyermann, W.P.; Canfield, P.C.

1998-10-23

54

Torsional oscillator for high magnetic field experiments  

NASA Astrophysics Data System (ADS)

A new type of torsional oscillator for experiments in the high magnetic field of 12 Tesla is reported. A beryllium copper alloy (BeCu25) was chosen as a torsion rod for its reliable mechanical properties. Two non-metallic materials were tested for a torsion head except a small amount of silver paste for the electrode. For a quartz glass head, liquid3He was successfully cooled down below 0.5 mK at 12 Tesla. The quality factor was 2 × 104 even at the highest field. On the other hand, a Stycast 1266 head in a field of 12 Tesla caused a large temperature difference between the liquid in the head and in the open space, in spite of a comparable quality factor with the quartz head.

Akimoto, Hikota; Okuda, Tetsuji; Ishimoto, Hidehiko

1995-11-01

55

In vivo estimation of bone stiffness at the distal femur and proximal tibia using ultra-high-field 7-Tesla magnetic resonance imaging and micro-finite element analysis  

PubMed Central

The goal of this study was to demonstrate the feasibility of using 7-Tesla (7T) magnetic resonance imaging (MRI) and micro-finite element analysis (?FEA) to evaluate mechanical and structural properties of whole, cortical, and trabecular bone at the distal femur and proximal tibia in vivo. 14 healthy subjects were recruited (age 40.7 ± 15.7 years). The right knee was scanned on a 7T MRI scanner using a 28 channel-receive knee coil and a three-dimensional fast low-angle shot sequence (TR/TE 20 ms/5.02 ms, 0.234 mm × 0.234 mm × 1 mm, 80 axial images, 7 min 9 s). Bone was analyzed at the distal femoral metaphysis, femoral condyles, and tibial plateau. Whole, cortical, and trabecular bone stiffness was computed using ?FEA. Bone volume fraction (BVF), bone areas, and cortical thickness were measured. Trabecular bone stiffness (933.7 ± 433.3 MPa) was greater than cortical bone stiffness (216 ± 152 MPa) at all three locations (P < 0.05). Across locations, there were no differences in bone stiffness (whole, cortical, or trabecular). Whole, cortical, and trabecular bone stiffness correlated with BVF (R ? 0.69, P < 0.05) and inversely correlated with corresponding whole, cortical, and trabecular areas (R ? ?0.54, P < 0.05), but not with cortical thickness (R < ?0.11, P > 0.05). Whole, cortical, and trabecular stiffness correlated with body mass index (R ? 0.62, P < 0.05). In conclusion, at the distal femur and proximal tibia, trabecular bone contributes 66–74% of whole bone stiffness. 7T MRI and ?FEA may be used as a method to provide insight into how structural properties of cortical or trabecular bone affect bone mechanical competence in vivo.

Rajapakse, Chamith S.; Babb, James S.; Honig, Stephen P.; Recht, Michael P.; Regatte, Ravinder R.

2013-01-01

56

Novel magnetic textures in SrCu2(BO3)2 from magnetostriction up to 97.4 tesla  

NASA Astrophysics Data System (ADS)

Quantum magnets are model systems wherein strongly frustrated spin interactions generate a variety of exotic magnetic phases of current interest, including quantum spin ices, spin liquids, spin supersolids and complex magnetic superstructures. SrCu2(BO3)2, the only classic realization of the spin-1/2 Heisenberg antiferromagnet in the Shastry-Sutherland (orthogonal spin dimer) lattice is known to exhibit numerous magnetization plateaus due formation of stripe-like magnetic textures in high fields. However, the fine structure of these plateaus remains controversial on both experimental and theoretical fronts due to the existing limits for achievable magnetic fields in the laboratory, the sensitivity of current magnetization techniques, and the uncontrolled nature of available theoretical approaches for highly frustrated magnetic lattices. This talk will describe how we probe magnetic textures in SrCu2(BO3)2 via a recently-developed magnetostriction technique based on optical fiber Bragg gratings [1]. We achieve microstrain (nm-resolution) sensitivity in ultrahigh pulsed fields to 97.4 T using the NHMFL 100 tesla multi-pulse magnet system [2]. The magnetostriction data reveal fine structure corresponding to all magnetization plateaus, and a significant lattice response to the long-predicted 1/2-saturation plateau at 82 T, as well as a new feature at 73.6 T that we attribute to a never before observed structure corresponding to 2/5 of magnetization saturation [3]. These data are complemented by simultaneous magnetocaloric-effect measurements, and are supported by numerical results obtained using a controlled density matrix renormalization group method.[4pt] [1] Daou R. et al., Rev. Sci. Instrum. 81, 033909 (2010).[0pt] [2] Sims J.R., et al. IEEE Trans. Appl. Supercond. 18, 587-591 (2008).[0pt] [3] M. Jaime et al., submitted. In collaboration with R. Daou, S.A. Crooker, F. Weickert, A. Uchida, A. Feiguin, C.D. Batista, H. Dabkowska, and B. Gaulin.

Jaime, Marcelo

2012-02-01

57

Orientation by solidification in a magnetic field: A new process to texture SmCo compounds used as permanent magnets  

Microsoft Academic Search

The solidification of molten alloys in a static magnetic field is proposed as a new way of orienting polycrystalline materials. A high degree of orientation is obtained with samarium-cobalt compounds solidified in a static magnetic field. Whatever the cooling condition used from the liquid state, a magnetic field of several tesla induces crystallographic orientation in the solid. The easy magnetization

B. A. Legrand; R. Perrier de La Bathie; R. Tournier; D. Chateigner

1997-01-01

58

Orientation by solidification in a magnetic field A new process to texture SmCo compounds used as permanent magnets  

Microsoft Academic Search

The solidification of molten alloys in a static magnetic field is proposed as a new way of orienting polycrystalline materials. A high degree of orientation is obtained with samarium-cobalt compounds solidified in a static magnetic field. Whatever the cooling condition used from the liquid state, a magnetic field of several tesla induces crystallographic orientation in the solid. The easy magnetization

B. A. Legrand; D. Chateigner; R. Perrier de la Bathie; R. Tournier

1997-01-01

59

Ultrahigh-Field MRI in Human Ischemic Stroke - a 7 Tesla Study  

PubMed Central

Introduction Magnetic resonance imaging (MRI) using field strengths up to 3 Tesla (T) has proven to be a powerful tool for stroke diagnosis. Recently, ultrahigh-field (UHF) MRI at 7 T has shown relevant diagnostic benefits in imaging of neurological diseases, but its value for stroke imaging has not been investigated yet. We present the first evaluation of a clinically feasible stroke imaging protocol at 7 T. For comparison an established stroke imaging protocol was applied at 3 T. Methods In a prospective imaging study seven patients with subacute and chronic stroke were included. Imaging at 3 T was immediately followed by 7 T imaging. Both protocols included T1-weighted 3D Magnetization-Prepared Rapid-Acquired Gradient-Echo (3D-MPRAGE), T2-weighted 2D Fluid Attenuated Inversion Recovery (2D-FLAIR), T2-weighted 2D Fluid Attenuated Inversion Recovery (2D-T2-TSE), T2* weighted 2D Fast Low Angle Shot Gradient Echo (2D-HemoFLASH) and 3D Time-of-Flight angiography (3D-TOF). Results The diagnostic information relevant for clinical stroke imaging obtained at 3 T was equally available at 7 T. Higher spatial resolution at 7 T revealed more anatomical details precisely depicting ischemic lesions and periinfarct alterations. A clear benefit in anatomical resolution was also demonstrated for vessel imaging at 7 T. RF power deposition constraints induced scan time prolongation and reduced brain coverage for 2D-FLAIR, 2D-T2-TSE and 3D-TOF at 7 T versus 3 T. Conclusions The potential of 7 T MRI for human stroke imaging is shown. Our pilot study encourages a further evaluation of the diagnostic benefit of stroke imaging at 7 T in a larger study.

Bauer, Miriam; Stengl, Katharina L.; Mutke, Matthias A.; Tovar-Martinez, Elena; Wuerfel, Jens; Endres, Matthias; Niendorf, Thoralf; Sobesky, Jan

2012-01-01

60

Alterations in the rat electrocardiogram induced by stationary magnetic fields  

SciTech Connect

A field strength dependent increase in the amplitude of the T-wave signal in the rat electrocardiogram (ECG) was observed during exposure to homogeneous, stationary magnetic fields. For 24 adult Sprague-Dawley and Buffalo rats of both sexes, the T-wave amplitude was found to increase by an average of 408% in a 2.0 Tesla (1 Tesla - 10(4) Gauss) field. No significant magnetically induced changes were observed in other components of the ECG record, including the P wave and the QRS complex. The minimum field level at which augmentation of the T wave could be detected was 0.3 Tesla. The magnetically induced increase in T-wave amplitude occurred instantaneously, and was immediately reversible after exposure to fields as high as 2.0 Tesla. No abnormalities in any component of the ECG record, including the T wave, were noted during a period of 3 weeks following cessation of a continuous 5-h exposure of rats to a 1.5-Tesla field. The heart rate and breathing rate of adult rats were not altered during, or subsequent to, application of fields up to 2.0 Tesla. The effect of animal orientation within the field was tested using juvenile rats 3-14 days old. The maximum increase in T-wave amplitude was observed when subjects were placed with the long axis of the body perpendicular to the lines of magnetic induction. These experimental observations, as well as theoretical considerations, suggest that augmentation of the signal amplitude in the T-wave segment of the ECG may result from a superimposed electrical potential generated by aortic blood flow in the presence of a stationary magnetic field.

Gaffey, C.T.; Tenforde, T.S.

1981-01-01

61

Torsional oscillator for high magnetic field experiments  

Microsoft Academic Search

A new type of torsional oscillator for experiments in the high magnetic field of 12 Tesla is reported. A beryllium copper alloy (BeCu25) was chosen as a torsion rod for its reliable mechanical properties. Two non-metallic materials were tested for a torsion head except a small amount of silver paste for the electrode. For a quartz glass head, liquid3He was

Hikota Akimoto; Tetsuji Okuda; Hidehiko Ishimoto

1995-01-01

62

Interpretation of the magnetic anomaly over the Omaha Oil Field, Gallatin County, Illinois  

Microsoft Academic Search

A 40 nanoTesla (nT) magnetic anomaly identified in an aeromagnetic survey over southern Illinois contours as a localized magnetic high on the west flank of a regional magnetic low. This magnetic anomaly is generally coincident with the Omaha Oil Field in northwest Gallatin County, Illinois. It was initially assumed that cultural sources of steel associated with this oil field were

Mark A. Sparlin; R. D. Lewis

1994-01-01

63

Phonon spectroscopy in high magnetic fields: The B + center in Si  

Microsoft Academic Search

Normal-state tunnel junctions have been used for phonon spectroscopY in high magnetic fields for the first time. The binding energy of the positively charged acceptor B+ in Si has been measured as a function of magnetic field up to 12 Tesla. It is found to increase linearly with magnetic field. This linear dependence originates from the energy increase of the

S. Roshko; W. Dietsche

1996-01-01

64

Magnetic fields in astrophysics  

Microsoft Academic Search

The evidence of cosmic magnetism is examined, taking into account the Zeeman effect, beats in atomic transitions, the Hanle effect, Faraday rotation, gyro-lines, and the strength and scale of magnetic fields in astrophysics. The origin of magnetic fields is considered along with dynamos, the conditions for magnetic field generation, the topology of flows, magnetic fields in stationary flows, kinematic turbulent

Ia. B. Zeldovich; A. A. Ruzmaikin; D. D. Sokolov

1983-01-01

65

Interaction mechanisms and biological effects of static magnetic fields  

SciTech Connect

Mechanisms through which static magnetic fields interact with living systems are described and illustrated by selected experimental observations. These mechanisms include electrodynamic interactions with moving, ionic charges (blood flow and nerve impulse conduction), magnetomechanical interactions (orientation and translation of molecules structures and magnetic particles), and interactions with electronic spin states in charge transfer reactions (photo-induced electron transfer in photosynthesis). A general summary is also presented of the biological effects of static magnetic fields. There is convincing experimental evidence for magnetoreception mechanisms in several classes of lower organisms, including bacteria and marine organisms. However, in more highly evolved species of animals, there is no evidence that the interactions of static magnetic fields with flux densities up to 2 Tesla (1 Tesla [T] = 10{sup 4} Gauss) produce either behavioral or physiolocical alterations. These results, based on controlled studies with laboratory animals, are consistent with the outcome of recent epidemiological surveys on human populations exposed occupationally to static magnetic fields.

Tenforde, T.S.

1994-06-01

66

Time-Varying Magnetic Fields: Effect on DNA Synthesis  

NASA Astrophysics Data System (ADS)

Human fibroblasts have exhibited enhanced DNA synthesis when exposed to sinusoidally varying magnetic fields for a wide range of frequencies (15 hertz to 4 kilohertz) and amplitudes (2.3 × 10-6 to 5.6 × 10-4 tesla). This effect, which is at maximum during the middle of the S phase of the cell cycle, appears to be independent of the time derivative of the magnetic field, suggesting an underlying mechanism other than Faraday's law. The threshold is estimated to be between 0.5 × 10-5 and 2.5 × 10-5 tesla per second. These results bring into question the allegedly specific magnetic wave shapes now used in therapeutic devices for bone nonunion. The range of magnetic field amplitudes tested encompass the geomagnetic field, suggesting the possibility of mutagenic interactions directly arising from short-term changes in the earth's field.

Liboff, A. R.; Williams, T.; Strong, D. M.; Wistar, R.

1984-02-01

67

The National High Magnetic Field Laboratory  

NASA Astrophysics Data System (ADS)

The National High Magnetic Field Laboratory (NHMFL) is a collaboration between Florida State University, the University of Florida, and the Los Alamos National Laboratory. The DC Field Facilities are located at the main campus for the NHMFL in Tallahassee, Florida and are described in this paper. The DC Field Facility has a variety of resistive and superconducting magnets. The DC Field Facility infrastructure, the most powerful in the world, is able to provide 57 MW of continuous low noise DC power. Constant magnetic fields of up to 45 tesla in a 32 mm bore and 20 tesla in 195 mm bore are available at no charge to the user community. The users of the facility are selected by a peer reviewed process. Roughly 400 research groups visit the lab to conduct experiments each year. Experimental capabilities provided by the NHMFL are magneto-optics, millimeter wave spectroscopy, magnetization, dilatometry, specific heat, electrical transport, ultrasound, low to medium resolution NMR, EMR, and materials processing. Measurements of properties can be made on samples at temperatures from 20 mK to 1000 K, pressures from ambient to 10 GPa, orientation and currents from 1 pA to 10 kA.

Hannahs, S. T.; Palm, E. C.

2010-04-01

68

Orientation of samarium–cobalt compounds by solidification in a magnetic field  

Microsoft Academic Search

The solidification from the liquid state in a magnetic field produces oriented polycrystalline materials. A high degree of orientation is obtained with Sm–Co compounds solidified in several Tesla. The samples are crystallographically oriented with their easy-magnetization axes lying along the direction of the magnetic field applied during solidification. The process can be applied to the production of bulk anisotropic permanent

B. A. Legrand; D. Chateigner; R. Perrier de la Bathie; R. Tournier

1998-01-01

69

Super strong permanent dipole magnet  

Microsoft Academic Search

The authors have been developing very strong permanent magnets. In the past, our magnets could generate greater than 5 Tesla dipole fields. We are now in a process of reaching much higher fields. The present paper is devoted to describing magnetic design developments in order to obtain super strong magnetic fields (of order of several Tesla magnitudes) with permanent magnets

Masayuki Kumada; Evgeny I. Antokhin; Yoshihisa Iwashita; Masaaki Aoki; Eiji Sugiyama

2004-01-01

70

Design parameters for a 7.2 tesla bending magnet for a 1.5 GeV compact light source  

SciTech Connect

This report describes the design for a 7.2 tesla superconducting dipole magnet for a compact synchrotron light source. The proposed magnet is a Vobly type modified picture frame dipole that has the flux returned through unsaturated iron. In this magnet, The iron in the pole pieces is highly saturated, Separately powered coils around the pole pieces are used to direct the flux lines until the flux can be returned through the unsaturated iron. The proposed dipole will develop a uniform field over a region that is 80 mm high by 130 mm wide over a range of central induction from 0.4 T to almost 8 T. Each dipole for the compact light source will have a magnetic length of about 0.38 meters.

Green, M.A. [Lawrence Berkeley Lab., CA (United States); Madura, D. [ADO Lockheed Martin, Rancho Bernardo, CA (United States)

1995-06-01

71

Magnetic Fields Matter  

NSDL National Science Digital Library

This lesson introduces students to the effects of magnetic fields in matter addressing permanent magnets, diamagnetism, paramagnetism, ferromagnetism, and magnetization. First students must compare the magnetic field of a solenoid to the magnetic field of a permanent magnet. Students then learn the response of diamagnetic, paramagnetic, and ferromagnetic material to a magnetic field. Now aware of the mechanism causing a solid to respond to a field, students learn how to measure the response by looking at the net magnetic moment per unit volume of the material.

VU Bioengineering RET Program, School of Engineering,

72

D-zero rototrack: first stage of D-zero 2 Tesla solenoid field mapping device  

SciTech Connect

A simple and portable field mapping device was developed at Fermilab and successfully used to test the D0 2 Tesla solenoid at Toshiba Works in Japan. A description of the mechanical structure, electric driving and control system, and software of the field mapping device is given. Four Hall probe elements of Group3 Digital Gaussmeters are mounted on the radial extension arm of a carriage, which is mounted on a central rotating beam. The system gives two dimensional motions (axial and rotational) to the Hall probes. To make the system compact and portable, we used a laptop computer with PCMCIA cards. For the control system we used commercially available software LabVIEW and Motion Toolbox, and for the data analysis we used Microsoft Excel.

Yamada, R.; Korienek, J.; Krider, J.; Lindenmeyer, C.; Miksa, D.; Miksa, R.

1997-09-01

73

Magnetic field line Hamiltonian  

SciTech Connect

The basic properties of the Hamiltonian representation of magnetic fields in canonical form are reviewed. The theory of canonical magnetic perturbation theory is then developed and applied to the time evolution of a magnetic field embedded in a toroidal plasma. Finally, the extension of the energy principle to tearing modes, utilizing the magnetic field line Hamiltonian, is outlined.

Boozer, A.H.

1985-02-01

74

Evaluation of intraorbital prosthetic pigmentation using 0.3 and 1.5 Tesla magnetic resonance imaging and computed tomography.  

PubMed

PURPOSE: To investigate the magnetic susceptibility artifact associated with pigmented intraorbital prosthetics when performing magnetic resonance imaging (MRI) and computed tomography (CT). Potential artifact reduction techniques were also investigated. STUDY DESIGN: Prospective study. METHODS: Five different-colored 20-millimeter small animal silicone intraorbital prosthetics and two equine prosthetics were evaluated using 0.3 and 1.5 Tesla (T) MRI and CT. MRI sequences included T1- (T1WI) and T2-weighted spin echo (T2WI), T2 gradient echo (T2*), short tau inversion recovery (STIR), and fluid-attenuated inversion recovery (FLAIR). When present, artifact size was measured using computerized software by three separate observers. Artifact reduction techniques included alterations in receiver bandwidth, field of view, slice thickness, and matrix size. RESULTS: The ferrous brown-pigmented prosthetic resulted in a magnetic susceptibility artifact with MRI. No artifact was observed on CT images. Interobserver variability was not statistically significant. For both the 0.3T and 1.5T MRI, the T2* sequence exhibited the largest artifact surface area followed by T2WI, T1WI, STIR, and FLAIR. Decreasing slice thickness showed a decrease in artifact size; however, this difference was not statistically significant. CONCLUSIONS: The ferrous substances in the brown intraorbital prosthetic resulted in a significant magnetic susceptibility artifact when performing MRI. Artifact reduction techniques did not significantly decrease artifact surface area. The use of ferrous brown-pigmented prosthetics and their potential to affect future MR imaging studies should be adequately discussed with pet owners. PMID:23738745

Dustin Dees, D; Maclaren, Nicole E; Fritz, Kevin J; Broome, Michael R; Esson, Douglas W

2013-06-01

75

Genotoxic Effects of Superconducting Static Magnetic Fields (SMFs) on Wheat (Triticum aestivum) Pollen Mother Cells (PMCs)  

NASA Astrophysics Data System (ADS)

The effects of superconducting static magnetic fields (SMFs) on the pollen mother cells (PMCs) of wheat were investigated in order to evaluate the possible genotoxic effect of such non-ionizing radiation. The seeds of wheat were exposed to static magnetic fields with either different magnetic flux densities (0, 1, 3, 5 and 7 Tesla) for 5 h or different durations (1, 3 and 5 h) at a magnetic flux density of 7 Tesla. The seeds were germinated at 23oC after exposure and the seedlings were transplanted into the field. The PMCs from young wheat ears were taken and slides were made following the conventional method. The genotoxic effect was evaluated in terms of micronucleus (MN), chromosomal bridge, lagging chromosome and fragments in PMCs. Although the exposed groups of a low field intensity (below 5 Tesla) showed no statistically significant difference in the aberration frequency compared with the unexposed control groups and sham exposed groups, a significant increase in the chromosomal bridge, lagging chromosome, triple-polar segregation or micronucleus was observed at a field strength of 5 Tesla or 7 Tesla, respectively. The analysis of dose-effect relationships indicated that the increased frequency of meiotic abnormal cells correlated with the flux density of the magnetic field and duration, but no linear relationship was observed. Such statistically significant differences indicated a potential genotoxic effect of high static magnetic fields above 5 T.

Zhang, Pingping; Yin, Ruochun; Chen, Zhiyou; Wu, Lifang; Yu, Zengliang

2007-04-01

76

Effects of Magnetic Field on Biological Cells and Applications  

NASA Astrophysics Data System (ADS)

While there has been extensive research performed in the physics of magnetic fields and the physics and chemistry in life sciences, independent of each other, there has been a paucity of scientific research and development investigating the possible applications of magnetic fields in life sciences. The focus of this presentation is to present the stimulation mechanism by which magnetic fields affect (a) yeast cells (b) plant cells and (c) mammalian normal and cancer cells. Recently we have found that the Saccharomyces Cerevsa yeast growth increases by about 30to a 1 tesla field and the production of CO2 increases by about 30of yeast metabolism may be due to an increase in intercellular interaction and protein channel alignment, the introduction of an alteration in the DNA from the magnetic field exposure or a combination of these mechanisms. We also have found that the application of high magnetic fields (1 tesla and above) can have marked effects on the germination and growth of plants, especially corn, beans and peas. This finding has opened up the possibility of technology developments in botanical growth systems to accelerate seed germination and crop harvesting. Most recently we have investigated the application of high magnetic fields on leukemia, CaCoII and HEP G2 cancer cell lines. We found that when leukemia are exposed to a 12 tesla field for 2 hours has an increase in cell death by about 30that were not exposed to the magnetic field. Viability of CaCoII cells sandwiched between permanent magnets of maximum strength of 1.2 tesla was measured. A decrease in viable cells by 33unexposed cells. HSP 70 was measured for HEPG2 cells that were exposed to permanent magnetic field of 1.2 tesla for 40 minutes and for unexposed cells. It was found that the exposed cells produce 19 times more HSP70 compared to unexposed cells. Our results together with other investigators report suggest a strong evidence of a reduction in the cell growth rate for cancer cells when subjected to high magnetic field. Devices that utilize an applied steady magnetic filed in it operation such as devices for blood component separation and diagnostic sensors have been developed.

Chen, Ching-Jen

2001-03-01

77

Firefly flashing under strong static magnetic field.  

PubMed

Firefly flashing has been the subject of numerous scientific investigations. Here we present in vivo flashes from male specimens of three species of fireflies-two Japanese species Luciola cruciata, Luciola lateralis and one Indian species Luciola praeusta-positioned under a superconducting magnet. When the OFF state of the firefly becomes long after flashing in an immobile state under the strong static magnetic field of strength 10 Tesla for a long time, which varies widely from species to species as well as from specimen to specimen, the effect of the field becomes noticeable. The flashes in general are more rapid, and occasionally overlap to produce broad compound flashes. We present the broadest flashes recorded to date, and propose that the strong static magnetic field affects the neural activities of fireflies, especially those in the spent up or 'exhausted' condition. PMID:22131061

Barua, Anurup Gohain; Iwasaka, Masakazu; Miyashita, Yuito; Kurita, Satoru; Owada, Norio

2011-12-01

78

Design status of the US 100 tesla non-destructive magnet system  

SciTech Connect

A collaborative effort is now underway in the US between the Department of Energy and the National Science Foundation to design, build, and use a 100 T non-destructive magnet for studying the properties of materials at high fields. The National High Magnetic Field Laboratory (NHMFL) at Tallahassee, Florida, and Los Alamos, New Mexico, where the magnet will be sited, is carrying out this task. This magnet will join other pulsed magnets at NHMFL, to provide magnetic fields at strengths, time durations, and volumes that are longer (in combination) than any now available. In particular, the goal for the 100 T magnet is a time duration above 80 T of about 15 ms in a cold bore of 24 mm. The present status of the design effort and various design issues are presented here.

Schneider-Muntau, H.; Eyssa, Y.; Pernambuco-Wise, P. [Florida State Univ., Tallahassee, FL (United States). National High Magnetic Field Lab.; Boenig, H.; Campbell, L.J.; Eberl, K.R.; Parkin, D.M.; Schillig, J.; Sims, J. [Los Alamos National Lab., NM (United States)

1996-09-01

79

Design considerations of a power supply system for fast cycling superconducting accelerator magnets of 2 Tesla b-field generated by a conductor of 100 kA current  

SciTech Connect

Recently proposed fast cycling accelerators for proton drivers (SF-SPS, CERN and SF-MR, SF-BOOSTER, FNAL) neutrino sources require development of new magnet technology. In support of this magnet development a power supply system will need to be developed that can support the high current and high rate of power swing required by the fast cycling (1 sec rise and fall in the SF-MR, 5Hz in Booster). This paper will outline a design concept for a +/- 2000 V and 100,000 A fast ramping power supply system. This power supply design is in support of a 6.44 km magnet system at 0.020 H and 330 m 5 Hz, 0.00534 H superconducting loads. The design description will include the layout and plan for extending the present FNAL Main Injector style ramping power supply to the higher currents needed for this operation. This will also include the design for a harmonic filter and power factor corrector that will be needed to control the large power swings caused by the fast cycle time. A conceptual design for the current regulation system and control will also be outlined. The power circuit design will include the bridge, filter and transformer plan based on existing designs.

Hays, Steve; Piekarz, Henryk; Pfeffer, Howie; Claypool, Brad; /Fermilab

2007-06-01

80

Assessment of cardiac iron deposition in sickle cell disease using 3.0 Tesla cardiovascular magnetic resonance.  

PubMed

Many patients with sickle cell disease receive blood transfusions as a life-saving treatment. However, excess transfusions may lead to increased body iron burden. Specifically, heart failure due to cardiac iron overload is the leading cause of death in these patients. The purpose of this study was to investigate the potential role of high-field 3.0-Tesla (T) cardiovascular magnetic resonance (CMR) for assessment of cardiac iron content by measuring the transverse relaxivity rate R2*. The R2* was measured in calibrated phantoms with different iron concentrations at 3.0T and 1.5T using optimized pulse sequences. Myocardial R2* was measured at 3.0T in a group of sickle cell disease patients with different disease stages, and the results were compared to the serum ferritin levels and hepatic R2*. The phantom R2* measurements at 3.0T were double those at 1.5T, and the measurements of both systems showed linear relationships with iron concentration. The 3.0T R2* was more sensitive than 1.5T in detecting low iron concentration. In patients, myocardial R2* had weak and good correlations with hepatic R2* and serum ferritin levels, respectively. Bland-Altman analysis showed low inter- and intra-observer variabilities. In conclusion, measuring myocardial R2* at 3.0T is a promising technique with high sensitivity and reproducibility for evaluating cardiac iron overload in sickle cell disease patients. PMID:22563880

Ibrahim, El-Sayed H; Rana, Fauzia N; Johnson, Kevin R; White, Richard D

2012-05-07

81

Lithium ion "cyclotron resonance" magnetic fields decrease seizure onset times in lithium-pilocarpine seized rats.  

PubMed

The cyclotron resonance equation predicts that the frequency of an applied magnetic field that might optimally interact with a single ion species may be computed as a function of the charge-to-mass ratio of the ion and the strength of the background static magnetic field. The present study was undertaken to discern the applicability of this equation for optimizing lithium ion utilization in the rat, as inferred by the predicted magnetic "ion resonance "field-induced shift of lithium's dose-dependent curve for seizure onset times (SOTs) when combined with the cholinergic agent pilocarpine. Groups of rats were administered 1.5 thru 3 mEq/kg lithium chloride (in 0.5 mEq/kg increments) and exposed to reference conditions or to one of three intensities (70 nanoTesla, 0.8 microTesla, or 25 microTesla) of a 85 Hz magnetic field calculated to resonate with lithium ions given the background static geomagnetic field of approximately 38,000 nanoTesla (0.38 Gauss). A statistically significant quadratic relationship for SOT as a function of magnetic field intensity (irrespective of lithium dose) was noted: this U-shaped function was characterized by equal SOTs for the reference and 25 microTesla groups, with a trend toward shorter SOTs for the 70 nanoTesla and 0.8 microTesla groups. Although not predicted by the equations, this report extends other findings suggestive of discrete intensity windows for which magnetic field frequencies derived from the cyclotron ion resonance equation may affect ion activity. PMID:15527207

McKay, B E; Persinger, M A

2004-08-01

82

Perivenular brain lesions in a primate multiple sclerosis model at 7-tesla magnetic resonance imaging.  

PubMed

BACKGROUND Magnetic resonance imaging (MRI) can provide in vivo assessment of tissue damage, allowing evaluation of multiple sclerosis (MS) lesion evolution over time - a perspective not obtainable with postmortem histopathology. Relapsing-remitting experimental autoimmune encephalomyelitis (EAE) is an experimental model of MS that can be induced in the common marmoset, a small new world primate, and that causes perivenular white matter (WM) lesions similar to those observed in MS. METHODS Brain lesion development and evolution were studied in vivo and postmortem in four marmosets with EAE through serial T2- and T2*-weighted scans at 7-tesla. Supratentorial WM lesions were identified and characterized. RESULTS Of 97 lesions observed, 86 (88%) were clearly perivenular, and 62 (72%) developed around veins that were visible even prior to EAE induction. The perivenular configuration was confirmed by postmortem histopathology. Most affected veins, and their related perivascular Virchow-Robin spaces, passed into the subarachnoid space rather than the ventricles. CONCLUSION As in human MS, the intimate association between small veins and EAE lesions in the marmoset can be studied with serial in vivo MRI. This further strengthens the usefulness of this model for understanding the process of perivenular lesion development and accompanying tissue destruction in MS. PMID:23773983

Gaitán, María I; Maggi, Pietro; Wohler, Jillian; Leibovitch, Emily; Sati, Pascal; Calandri, Ismael L; Merkle, Hellmut; Massacesi, Luca; Silva, Afonso C; Jacobson, Steven; Reich, Daniel S

2013-06-17

83

Magnetic resonance elastography in the liver at 3 Tesla using a second harmonic approach.  

PubMed

Magnetic resonance elastography (MRE) using mechanical stimulation has demonstrated diagnostic value and clinical promise in breast, liver, and kidney at 1.5 Tesla (T). However, MRE at 1.5T suffers from long imaging times and would benefit from greater signal-to-noise for more robust postprocessing. We present an MRE sequence modified for liver imaging at 3.0T. To avoid artifacts in the phase images, the sequence maintains a short TE by using a second harmonic approach, including stronger motion encoding gradients, shorter radio frequency pulses and an echo-planar readout. Scan time was decreased by a factor of approximately 2 relative to 1.5T by using an EPI readout and a higher density sampling of the phase waveform was used to calculate shear stiffness and viscosity. Localized (small region of interest) and global (whole-liver region of interest) measurements in normal healthy subjects compared very favorably with previously published results at 1.5T. There was no significant difference between global and localized measures. PMID:19449374

Herzka, D A; Kotys, M S; Sinkus, R; Pettigrew, R I; Gharib, A M

2009-08-01

84

Solar Magnetic Field  

NASA Astrophysics Data System (ADS)

Electrical currents flowing in the solar plasma generate a magnetic field, which is detected in the SOLAR ATMOSPHERE by spectroscopic and polarization measurements (SOLAR MAGNETIC FIELD: INFERENCE BY POLARIMETRY). The SOLAR WIND carries the magnetic field into interplanetary space where it can be measured directly by instruments on space probes....

Schüssler, M.; Murdin, P.

2000-11-01

85

Variable field magnetic extraction channel for ORIC  

SciTech Connect

An improved magnetic beam extraction channel for the Oak Ridge Isochronous Cyclotron (ORIC) has been designed to significantly reduce the external field disturbance and provide uniform in-channel field. This will make beam extraction near nu/sub r/ = 1 more predictable. The new channel consists of an iron tube of constant cross section with independently adjustable windings, both inside and outside the iron. The windings have a cos theta current density distribution. The iron tube is 1 meter long with a bore of 6 cm; aperture for beam is 4 cm. The external field is negligible except for small perturbations in the field arising from the geometry modifications required at the ends so that the beam can enter and leave. The field reduction inside the channel is variable from 0.4 to 0.6 Tesla without significant change in either the internal field uniformity or the external field level. 4 refs., 8 figs., 1 tab.

Hudson, E.D.; Martin, J.A.; Lord, R.S.

1985-01-01

86

Present and Future Applications for Advanced Superconducting Materials in High Field Magnets  

Microsoft Academic Search

Advances in high field magnets are driven primarily by the availability of high current density conductors. The restack rod process (RRP), internal Sn superconductors have achieved engineering current densities nearly five times that of bronze route conductors at high fields. Careful utilization of this low temperature superconductor (LTS) enables the production of magnets beyond the previous benchmark of 21 Tesla

Andrew Twin; Joe Brown; Fred Domptail; Rod Bateman; Robert Harrison; M. Lakrimi; Z. Melhem; P. Noonan; M. Field; Seung Hong; K. Marken; Hanping Miao; J. Parrell; Youzhu Zhang

2007-01-01

87

Scalarized photon analysis of spontaneous emission in the uniform magnetic field free-electron laser  

Microsoft Academic Search

The recently developed concept of scalarized photons (formally photons of any polarization) is used to analyze the spontaneous emission in the uniform magnetic field free-electron laser in the microwave spectral region. With the electron beam energy of up to 10 MeV and the uniform magnetic field of up to 4 Tesla, the radiation (occurring with the fundamental and higher harmonic

Josip Soln

1990-01-01

88

The Magnetic Field  

NSDL National Science Digital Library

This demonstration of the magnetic field lines of Earth uses a bar magnet, iron filings, and a compass. The site explains how to measure the magnetic field of the Earth by measuring the direction a compass points from various points on the surface. There is also an explanation of why the north magnetic pole on Earth is actually, by definition, the south pole of a magnet.

Barker, Jeffrey

89

Cardiovascular alterations in Macaca monkeys exposed to stationary magnetic fields: experimental observations and theoretical analysis  

SciTech Connect

Simultaneous measurements were made of the electrocardiogram (ECG) and the intraarterial blood pressure of adult male Macaca monkeys during acute exposure to homogeneous stationary magnetic fields ranging in strength up to 1.5 tesla. An instantaneous, field strength-dependent increase in the ECG signal amplitude at the locus of the T wave was observed in fields greater than 0.1 tesla. The temporal sequence of this signal in the ECG record and its reversibility following termination of the magnetic field exposure are consistent with an earlier suggestion that it arises from a magnetically induced aortic blood flow potential superimposed on the native T-wave signal. No measurable alterations in blood pressure resulted from exposure to fields up to 1.5 tesla. This experimental finding is in agreement with theoretical calculations of the magnetohydrodynamic effect on blood flow in the major arteries of the cardiovascular system. 27 references, 1 figure, 1 table.

Tenforde, T.S.; Gaffey, C.T.; Moyer, B.R.; Budinger, T.F.

1983-01-01

90

Magnetic resonance angiography at 3.0 Tesla: initial clinical experience.  

PubMed

Magnetic resonance (MR) angiography has undergone significant development over the past decade. It has gone from being a novelty application of MR with limited clinical use to replacing catheter angiography in some clinical applications. One of the principal limitations inherent to all MR angiographic techniques is that they remain signal limited when pushed to the limits of higher resolution and short acquisition time. Developments in magnetic gradient hardware, coil design, and pulse sequences now are well optimized for MR angiography obtained at 1.5-T main magnetic field (B-field) strength, with acquisition times and imaging matrix size near their optimal limits, respectively. Recently, the United States Food and Drug Administration (FDA) approved use of clinical magnetic resonance imaging with main magnetic field strengths of up to 4 T. Before FDA approval, use of MR with magnetic field strengths much greater than 1.5 T was essentially reserved for investigational or research applications. The main advantage of high B-field imaging is a significant improvement in the signal-to-noise ratio (SNR), which increases in an approximately linear fashion with field strength in the range of 1.5 to 3.0 T. This increased SNR is directly available when performing MR angiographic acquisitions at higher magnetic field strengths, allowing for better resolution and conspicuity of vessels with similar acquisition times. Little has been reported on the benefits of performing MR angiography at magnetic field strengths >1.5 T. The purpose of this article is to summarize our current experience with intracranial and cervical MR angiographic techniques at 3.0 T. PMID:11432577

Campeau, N G; Huston, J; Bernstein, M A; Lin, C; Gibbs, G F

2001-06-01

91

Gas Phase Xenon131 Quadrupolar Splitting at High Magnetic Fields  

Microsoft Academic Search

At very high magnetic fields strengths (14 Tesla and higher) the xenon-131 gas phase NMR spectrum shows a well resolved quadrupolar splitting. Quadrupolar coupling between a non-spherical (S>1\\/2) nuclei and an electric field gradient will occur when the electrical isotropy of the surrounding electron cloud is disturbed. The experimental results suggest that the origin of the observed splitting in the

Thomas Meersmann

1998-01-01

92

Magnetic Field Problem: Determining Current  

NSDL National Science Digital Library

A wire carrying an unknown current out of the page is shown above. You may also double-click in the animation to create a field line. Assume that the distance given is in cm and B is given in milli Tesla.

Christian, Wolfgang; Belloni, Mario

2007-03-03

93

Magnetic Field Problem  

NSDL National Science Digital Library

The above animations represent two typical bar magnets each with a North and South pole. The arrows represent the direction of the magnetic field. The color of the arrows represents the magnitude of the field with magnitude increasing as the color changes from blue to green to red to black. You may drag either magnet and double-click anywhere inside the animation to add a magnetic field line, and mouse-down to read the magnitude of the magnetic field at that point.

Christian, Wolfgang; Belloni, Mario

2007-03-03

94

The U.S. NHMFL 100 tesla multi-shot magnet  

SciTech Connect

The design, analysis and fabrication progress of the 100 T Multi-Shot Magnet is described. The description includes the structural analysis of the outer coil set, the fabrication of the 100 T prototype coil 1, the fabrication of a coil 1 test shell, and the analysis of the electrical busbar assembly. Fabrication issues and their solutions are presented. This magnet will be installed as part of the user facility research equipment at the U.S. National High Magnetic Field Laboratory (NHMFL) Pulsed Field Facility at Los Alamos National Laboratory.

Ammerman, C. N. (Curtt N.); Coe, H. (Hideyoshi); Ellis, G. G. (Gretchen G.); Lesch, B. L. (Bernard L.); Sims, J. R. (James R.); Schillig, J. B. (Josef B.); Swenson, C. A. (Charles A.); Bacon, J. L. (James L.)

2001-01-01

95

Radiofrequency-induced Heating near Fixed Orthodontic Appliances in High Field MRI Systems at 3.0 Tesla  

Microsoft Academic Search

\\u000a Abstract\\u000a \\u000a \\u000a Objective:\\u000a   To assess radiofrequency (RF)-induced heating of\\u000a fixed orthodontic appliances during acquisition of three different\\u000a sequences in magnetic resonance imaging (MRI) at 3 Tesla.\\u000a \\u000a \\u000a \\u000a \\u000a Materials and Methods:\\u000a   Ten commonly used fixed orthodontic\\u000a appliances were investigated utilizing a phantom head and simulating\\u000a the in vivo intraoral situation. A 3 Tesla MRI system (Intera,\\u000a Philips Medical Systems, Best, The Netherlands) was

Marc Regier; Jörn Kemper; Michael G. Kaul; Markus Feddersen; Gerhard Adam; Bärbel Kahl-Nieke; Arndt Klocke

2009-01-01

96

Coronary Artery Flow Measurement Using Navigator Echo Gated Phase Contrast Magnetic Resonance Velocity Mapping at 3.0 Tesla  

PubMed Central

A validation study and early results for noninvasive, in vivo measurement of coronary artery blood flow using phase contrast magnetic resonance imaging (PC-MRI) at 3.0 Tesla is presented. Accuracy of coronary artery blood flow measurements by phase contrast MRI is limited by heart and respiratory motion as well as the small size of the coronary arteries. In this study, a navigator-echo gated, cine phase velocity mapping technique is described to obtain time-resolved velocity and flow waveforms of small diameter vessels at 3.0 Tesla. Phantom experiments using steady, laminar flow are presented to validate the technique and show flow rates measured by 3.0 Tesla phase contrast MRI to be accurate within 15% of true flow rates. Subsequently, in vivo scans on healthy volunteers yield velocity measurements for blood flow in the right, left anterior descending, and left circumflex arteries. Measurements of average, cross-sectional velocity were obtainable in 224/243 (92%) of the cardiac phases. Time-averaged, cross-sectional velocity of the blood flow was 6.8±4.3 cm/s in the LAD, 8.0±3.8 cm/s in the LCX, and 6.0±1.6 cm/s in the RCA.

Johnson, Kevin; Sharma, Puneet; Oshinski, John

2009-01-01

97

Magnetic Fields in Galaxies  

NASA Astrophysics Data System (ADS)

Most of the visible matter in the Universe is ionized so that cosmic magnetic fields are quite easy to generate and, due to the lack of magnetic monopoles, hard to destroy. Magnetic fields have been measured in or around practically all celestial objects, either by in situ measurements of spacecrafts or by the electromagnetic radiation of embedded cosmic rays, gas, or dust. The Earth, the Sun, solar planets, stars, pulsars, the Milky Way, nearby galaxies, more distant (radio) galaxies, quasars, and even intergalactic space in clusters of galaxies have significant magnetic fields, and even larger volumes of the Universe may be permeated by "dark" magnetic fields. Information on cosmic magnetic fields has increased enormously as the result of the rapid development of observational methods, especially in radio astronomy. In the Milky Way, a wealth of magnetic phenomena was discovered, which are only partly related to objects visible in other spectral ranges. The large-scale structure of the Milky Way's magnetic field is still under debate. The available data for external galaxies can well be explained by field amplification and ordering via the dynamo mechanism. The measured field strengths and the similarity of field patterns and flow patterns of the diffuse ionized gas give strong indication that galactic magnetic fields are dynamically important. They may affect the formation of spiral arms, outflows, and the general evolution of galaxies. In spite of our increasing knowledge on magnetic fields, many important questions on the origin and evolution of magnetic fields, their first occurrence in young galaxies, or the existence of large-scale intergalactic fields remained unanswered. The present upgrades of existing instruments and several planned radio astronomy projects have defined cosmic magnetism as one of their key science projects.

Beck, Rainer; Wielebinski, Richard

98

Intergalactic magnetic fields  

Microsoft Academic Search

There is no observational support to the hypothesis of the most large-scale homogeneous magnetic field in the Universe. The best upper limit is given by interpretation of the Faraday rotation from the extragalactic radio sources. However the magnetic fields can be generated in the clusters of galaxies by a turbulence in the wakes of moving galaxies. These fields have an

A. A. Ruzmajkin

1991-01-01

99

Magnetic Field Example 1  

NSDL National Science Digital Library

Clicking on the different links below will produce different magnetic fields in the box above. The wires (perpendicular to the screen) or coils (in and out of the screen) are not visible, but you can determine what they are from the field. You can also click on a point to read off the magnetic field at that place.

Christian, Wolfgang; Belloni, Mario

2008-02-19

100

The Magnetic Field  

NSDL National Science Digital Library

This webpage is part of the University Corporation for Atmospheric Research (UCAR) Windows to the Universe program. It describes the nature and configuration of magnetic fields, which are the result of moving electric charges, including how they cause magnetic objects to orient themselves along the direction of the magnetic force points, which are illustrated as lines. Magnetic field lines by convention point outwards at the north magnetic pole and inward at the south magnetic pole. The site features text, scientific illustrations and an animation. Text and vocabulary are selectable for the beginning, intermediate, or advanced reader.

Universe, Windows T.

1997-12-03

101

Semimagnetic semiconductors in high magnetic fields  

NASA Astrophysics Data System (ADS)

Semimagnetic Semiconductors define a new class of materials, whose electronic energy band structure can be tuned via the external parameters of magnetic field and temperature. The basic physical mechanism involved is the exchange interaction between the quasi-free band electrons and the localized electrons of paramagnetic ions substituted into the host material. Despite the actual lack of translation invariance of the system, the concept of energy bands can be maintained. Experimental data of magneto transport, FIR-magneto spectroscopy, and magnetization in strong fields up to 150 Tesla are presented. Special attention is given to the possible combination of Semimagnetic Semiconductors and Q2D-systems in form of the "spin superlattice", the transition from the Q2D- to Q3D-quantum Hall effect, as well as the "scattering superlattice".

von Ortenberg, Michael

102

Melatonin and magnetic fields.  

PubMed

There is public health concern raised by epidemiological studies indicating that extremely low frequency electric and magnetic fields generated by electric power distribution systems in the environment may be hazardous. Possible carcinogenic effects of magnetic field in combination with suggested oncostatic action of melatonin lead to the hypothesis that the primary effects of electric and magnetic fields exposure is a reduction of melatonin synthesis which, in turn, may promote cancer growth. In this review the data on the influence of magnetic fields on melatonin synthesis, both in the animals and humans, are briefly presented and discussed. PMID:12019358

Karasek, Michal; Lerchl, Alexander

2002-04-01

103

Magnetic Field Problem: Determining Magnetic Fields  

NSDL National Science Digital Library

Two wires with current flowing through them perpendicular to the page are shown (position is given in meters and the integral is given in 10-10 Tesla-meters). Also shown is a choice of two detectors that displays the integral, . Choose a detector and observe readings. You may drag a detector from its original position if you wish.

Christian, Wolfgang; Belloni, Mario

2007-03-03

104

Comparative magnetic resonance imaging at 1.5 and 3 Tesla for the evaluation of traumatic microbleeds.  

PubMed

Traumatic microbleeds (TMBs) can be regarded as a radiological marker of diffuse axonal injury (DAI). We sought to investigate the impact of the field strengths on the depiction of TMBs by T2*-weighted gradient echo magnetic resonance imaging (MRI). By the use of comparative MRI of 14 patients (age range, 22-62 years) on 1.5- and a 3 T (Tesla) systems at a median time interval of 61 months after traumatic brain injury (TBI), we found 239 (range 0.5-48.5, median 7.5) TMBs at 1.5 T, and 470 (range 2-118, median 18.5) TMBs at 3 T, respectively (p=0.001). However, in all but one patients MRI at 1.5 T also clearly showed TMBs. A significant negative correlation between the number of TMBs and the time interval TBI-MRI was observed, which was weaker for the imaging at 3 T (r(s)=-0.798; p=0.001; and r(s)=-0.649; p=0.012, respectively). In conclusion, T2*-weighted gradient-echo MRI at 3 T is superior as compared to MRI at 1.5 T for the detection of TMBs. Nevertheless, in clinical practice, MRI at 1.5 T seems to be sufficient for this purpose. MRI at 3 T may be appropriate if there is a strong clinical suspicion of DAI, despite unremarkable routine MRI, and possibly also if evidence of DAI is sought after a long interval from trauma. PMID:18159992

Scheid, Rainer; Ott, Derek V; Roth, Henrik; Schroeter, Matthias L; von Cramon, D Yves

2007-12-01

105

Magnetic resonance microscopy at 17.6Tesla on chicken embryos in vitro  

Microsoft Academic Search

The non-destructive nature and the rapid acquisition of a three-dimensional image makes magnetic resonance mi- croscopy (MRM) very attractive and suitable for functional imaging investigations. We explored the use of an ultra high magnetic field for MRM to increase image quality per image acquisition time. Improved image quality was char- acterized by a better signal-to-noise ratio (SNR), better image contrast,

Bianca Hogers; Dieter Gross; Volker Lehmann; Huub J. M. de Groot; Albert de Roos; Adriana C. Gittenberger-de Groot; Robert E. Poelmann

2001-01-01

106

HTS Magnetic Field Damper for Short-Term Fluctuations in the Driven-Mode  

Microsoft Academic Search

Although high-temperature superconductors (HTS) are very promising for high-field generation over 25 Tesla, it is difficult to apply them to an NMR magnet because of their low index values and the difficulty caused by superconducting joints. The properties of HTS appear to cause poor magnetic field stability in the persistent-mode operation. Therefore, in this study, a high-field NMR magnet including

A. Otsuka; T. Kiyoshi; S. Matsumoto

2008-01-01

107

Metal-Insulator transition at very high magnetic fields in an organic conductor  

Microsoft Academic Search

Tau-phase organic conductors based on the P-(S,S)-DMEDT-TTF donor molecule exhibit a first order phase transition in high magnetic fields. Low temperature magnetoresistance measurements of tau-(P-(S,S)-DMEDT-TTF)_2(AuBr_2)_1_+y show an abrupt upturn when fields are swept beyond 35 tesla. Observations of sample current indicate that conduction ceases completely in the insulating state. Skin depth, magnetocaloric, and magnetization measurements in pulsed magnetic fields were

D. Graf; E. S. Choi; J. S. Brooks; C. Mielke; N. Harrison; K. Murata; T. Konoike; G. C. Papavassiliou

2003-01-01

108

The use of high magnetic fields at the study of magnetism and superconductivity in intermetallic compounds  

SciTech Connect

Magnetic fields have a large impact on the magnetic and superconducting properties of solids. High magnetic fields are required to reach magnetic saturation along a hard magnetic direction in a variety of rare-earth intermetallics, to break the ferrimagnetic moment configuration in specific 3d-4f intermetallics, to quench the strongly correlated electron states in heavy fermion compounds, to reach the upper critical fields in several classes of superconductors, to study flux-pinning phenomena in the high-{Tc} superconductors, etc. In the present review, the attention is focused to the field interval 20--50 tesla. Experiments in this field range are the privilege of specialized high magnetic field laboratories. There is a lively activity in this area of research with the number of participating institutes continuously growing.

Franse, J.J.M.; Boer, F.R. de; Frings, P.H.; Visser, A. de [Univ. of Amsterdam (Netherlands). Van der Waals-Zeeman Lab.

1994-03-01

109

Magnetic field generator  

DOEpatents

A magnetic field generating device provides a useful magnetic field within a specific retgion, while keeping nearby surrounding regions virtually field free. By placing an appropriate current density along a flux line of the source, the stray field effects of the generator may be contained. One current carrying structure may support a truncated cosine distribution, and it may be surrounded by a current structure which follows a flux line that would occur in a full coaxial double cosine distribution. Strong magnetic fields may be generated and contained using superconducting cables to approximate required current surfaces.

Krienin, Frank (Shoreham, NY)

1990-01-01

110

On Cosmic Magnetic Fields  

NASA Astrophysics Data System (ADS)

Magnetic fields are present in all astrophysical media. However, many models and interpretations of observations often ignore them, because magnetic fields are difficult to handle and because they produce complicated morphological features. Here we will comment on the basic intuitive properties, which even if not completely true, provide a first guiding insight on the physics of a particular astrophysical problem. These magnetic properties are not mathematically demonstrated here. How magnetic fields evolve and how they introduce dynamical effects are considered, also including a short comment on General Relativity Magnetohydrodynamics. In a second part we consider some audacious and speculative matters. They are answers to three questions: a) How draw a cube without lifting the pencil from the paper so that when the pen passes through the same side do in the same direction? B) Are MILAGRO anisotropies miraculous? C) Do cosmic magnetic lenses exist?. The last two questions deal with issues related with the interplay between magnetic fields and cosmic ray propagation.

Florido, E.; Battaner, E.

2010-12-01

111

Magnetic fields at Uranus  

Microsoft Academic Search

The conclusions drawn regarding the structure, behavior and composition of the Uranian magnetic field and magnetosphere as revealed by Voyager 2 data are summarized. The planet had a bipolar magnetotail and a bow shock wave which was observed 23.7 Uranus radii (UR) upstream and a magnetopause at 18.0 UR. The magnetic field observed can be represented by a dipole offset

N. F. Ness; M. H. Acuna; K. W. Behannon; L. F. Burlaga; J. E. P. Connerney; R. P. Lepping

1986-01-01

112

THE INTERPLANETARY MAGNETIC FIELD  

Microsoft Academic Search

A new analysis of magnetic and concurrent plasma data collected from the ; space probes Pionecr 5, Explorer 10, and Mariner 2 yields a new model of the ; interplanetary magnetic field. It is hypothesized that the observed ; interplanetary field F\\/sub i\\/ is due to motion of the magnetometer relative to a ; negatively charged rotating sun from which

V. A. BAILEY

1963-01-01

113

Cosmic Magnetic Fields  

Microsoft Academic Search

Most of the visible matter in the Universe is in a plasma state, or more specifically is composed of ionized or partially ionized gas permeated by magnetic fields. Thanks to recent advances on the theory and detection of cosmic magnetic fields there has been a worldwide growing interest in the study of their role on the formation of astrophysical sources

Elisabete M. de Gouveia Dal Pino; Dal Pino

2006-01-01

114

The Earth's Magnetic Field  

NSDL National Science Digital Library

The magnetic field of the Earth is contained in a region called the magnetosphere. The magnetosphere prevents most of the particles from the sun, carried in solar wind, from hitting the Earth. This site, produced by the University Corporation for Atmospheric Research (UCAR), uses text, scientific illustrations,and remote imagery to explain the occurrence and nature of planetary magnetic fields and magnetospheres, how these fields interact with the solar wind to produce phenomena like auroras, and how magnetic fields of the earth and other planets can be detected and measured by satellite-borne magnetometers.

115

MAGNET ENGINEERING AND TEST RESULTS OF THE HIGH FIELD MAGNET R AND D PROGRAM AT BNL.  

SciTech Connect

The Superconducting Magnet Division at Brookhaven National Laboratory (BNL) has been carrying out design, engineering, and technology development of high performance magnets for future accelerators. High Temperature Superconductors (HTS) play a major role in the BNL vision of a few high performance interaction region (IR) magnets that would be placed in a machine about ten years from now. This paper presents the engineering design of a ''react and wind'' Nb{sub 3}Sn magnet that will provide a 12 Tesla background field on HTS coils. In addition, the coil production tooling as well as the most recent 10-turn R&D coil test results will be discussed.

COZZOLINO,J.; ANERELLA,M.; ESCALLIER,J.; GANETIS,G.; GHOSH,A.; GUPTA,R.; HARRISON,M.; JAIN,A.; MARONE,A.; MURATORE,J.; PARKER,B.; SAMPSON,W.; SOIKA,R.; WANDERER,P.

2002-08-04

116

Decreased chemotaxis of human peripheral phagocytes exposed to a strong static magnetic field.  

PubMed

The chemotaxis of human peripheral phagocytes, neutrophils and monocytes was examined in a strong static magnetic field (0.317+/-0.012 Tesla). The chemotaxis of the suspension of purified neutrophils and monocytes was tested in the Boyden chamber using C5a as a chemotactic signal. The chambers were placed into a temperature regulated (36.6 degrees C) equipment producing a strong static magnetic field (0.317 Tesla) for 60 minutes. The movement of cells proceeded into a nitrocellulose membrane toward the north-pole of the magnet, i.e. in the direction of the Earth's gravitational pull. The C5a induced chemotaxis of human neutrophils decreased significantly in the strong static magnetic field. Monocytes were not significantly effected. The strong static magnetic field decreased the chemotactic movement of neutrophils and this phenomenon may have implications when humans are exposed to magnetic resonance imaging for extended periods of time. PMID:15334831

Sipka, S; Szöllosi, I; Batta, Gy; Szegedi, Gy; Illés, A; Bakó, Gy; Novák, D

2004-01-01

117

Giant Coercive Fields of 2.5 Tesla in Nanostructured MnxGa Films  

NASA Astrophysics Data System (ADS)

There is a growing interest in designing new magnetic materials that are free of rare-earth elements. The magnetism of the Heusler ferrimagnet MnxGa [1] was found to be enhanced when fabricated with nanoscale structural disorder. Films of MnxGa (x=2 to 3) with thicknesses of 20 to 40 nm were grown using molecular beam epitaxy at 100 C then annealed at 400 C. Disordered films were grown on lattice mismatched Si (001) substrates, then compared to epitaxially grown films on desorbed GaAs (001) substrates. While the epitaxial films have small hysteresis in the magnetization with coercive fields in the range ?oHC = 10-2 - 10-1 T, the disordered films exhibited surprisingly wide hysteresis with record high coercive fields as large as ?oHC = 2.5 T. These magnitudes are comparable to those of rare-earth-based magnets. This hysteresis was also present in the anomalous Hall effect. The enhanced coercive field in the disordered material arises from a combination of the exceptionally large magnetocrystalline anisotropy and nanoscale structural disorder. These results point out a new opportunity for developing rare-earth-free magnetic materials. Discovery of this unusually high coercive field is outlined and its sources discussed. [1] J. Winterlik, et al., Phys. Rev. B 77, 054406 (2008).

Bennett, Steven; Nummy, Thomas; Cardinal, Thomas; Nowak, Welville; Heiman, Don

2012-02-01

118

AC Heat capacity and magnetocaloric effect measurements for pulsed magnetic fields  

Microsoft Academic Search

A new calorimeter for measurements of the AC heat capacity and magnetocaloric effect of small samples in pulsed magnetic fields is discussed for the exploration of thermal and thermodynamic properties at temperatures down to 2 K. We tested the method up to \\\\mu 0H = 50 Tesla, but it could be extended to higher fields. For these measurements we used

Yoshimitsu Kohama; Christophe Marcenat; Thierry Klein; Marcelo Jaime

2010-01-01

119

Hyperemic stress myocardial perfusion cardiovascular magnetic resonance in mice at 3 Tesla: initial experience and validation against microspheres  

PubMed Central

Background Dynamic first pass contrast-enhanced myocardial perfusion is the standard CMR method for the estimation of myocardial blood flow (MBF) and MBF reserve in man, but it is challenging in rodents because of the high temporal and spatial resolution requirements. Hyperemic first pass myocardial perfusion CMR during vasodilator stress in mice has not been reported. Methods Five C57BL/6 J mice were scanned on a clinical 3.0 Tesla Achieva system (Philips Healthcare, Netherlands). Vasodilator stress was induced via a tail vein catheter with an injection of dipyridamole. Dynamic contrast-enhanced perfusion imaging (Gadobutrol 0.1 mmol/kg) was based on a saturation recovery spoiled gradient echo method with 10-fold k-space and time domain undersampling (k-t PCA). One week later the mice underwent repeat anaesthesia and LV injections of fluorescent microspheres at rest and at stress. Microspheres were analysed using confocal microscopy and fluorescence-activated cell sorting. Results Mean MBF at rest measured by Fermi-function constrained deconvolution was 4.1?±?0.5 ml/g/min and increased to 9.6?±?2.5 ml/g/min during dipyridamole stress (P?=?0.005). The myocardial perfusion reserve was 2.4 ±?0.54. The mean count ratio of stress to rest microspheres was 2.4 ±?0.51 using confocal microscopy and 2.6?±?0.46 using fluorescence. There was good agreement between cardiovascular magnetic resonance CMR and microspheres with no significant difference (P?=?0.84). Conclusion First-pass myocardial stress perfusion CMR in a mouse model is feasible at 3 Tesla. Rest and stress MBF values were consistent with existing literature and perfusion reserve correlated closely to microsphere analysis. Data were acquired on a 3 Tesla scanner using an approach similar to clinical acquisition protocols, potentially facilitating translation of imaging findings between rodent and human studies.

2013-01-01

120

Seeding magnetic fields for laser-driven flux compression in high-energy-density plasmas  

Microsoft Academic Search

A compact, self-contained magnetic-seed-field generator (5 to 16 T) is the enabling technology for a novel laser-driven flux-compression scheme in laser-driven targets. A magnetized target is directly irradiated by a kilojoule or megajoule laser to compress the preseeded magnetic field to thousands of teslas. A fast (300 ns), 80 kA current pulse delivered by a portable pulsed-power system is discharged

O. V. Gotchev; J. P. Knauer; P. Y. Chang; N. W. Jang; M. J. Shoup; D. D. Meyerhofer; R. Betti

2009-01-01

121

The First Magnetic Fields  

NASA Astrophysics Data System (ADS)

We review current ideas on the origin of galactic and extragalactic magnetic fields. We begin by summarizing observations of magnetic fields at cosmological redshifts and on cosmological scales. These observations translate into constraints on the strength and scale magnetic fields must have during the early stages of galaxy formation in order to seed the galactic dynamo. We examine mechanisms for the generation of magnetic fields that operate prior during inflation and during subsequent phase transitions such as electroweak symmetry breaking and the quark-hadron phase transition. The implications of strong primordial magnetic fields for the reionization epoch as well as the first generation of stars are discussed in detail. The exotic, early-Universe mechanisms are contrasted with astrophysical processes that generate fields after recombination. For example, a Biermann-type battery can operate in a proto-galaxy during the early stages of structure formation. Moreover, magnetic fields in either an early generation of stars or active galactic nuclei can be dispersed into the intergalactic medium.

Widrow, Lawrence M.; Ryu, Dongsu; Schleicher, Dominik R. G.; Subramanian, Kandaswamy; Tsagas, Christos G.; Treumann, Rudolf A.

2012-05-01

122

ROLE FOR THE MAGNETIC FIELD IN THE RADIATION-INDUCED EFFLUX OF CALCIUM IONS FROM BRAIN TISSUE 'IN VITRO'  

EPA Science Inventory

Two independent laboratories have demonstrated that specific frequencies of electromagnetic radiation can cause a change in the efflux of calcium ions from brain tissue in vitro. Under a static magnetic field intensity of 38 microTesla (microT) due to the earth's magnetic field, ...

123

Magnetic exchange bias of more than 1 Tesla in a natural mineral intergrowth.  

PubMed

Magnetic exchange bias is a phenomenon whereby the hysteresis loop of a 'soft' magnetic phase is shifted by an amount H(E) along the applied field axis owing to its interaction with a 'hard' magnetic phase. Since the discovery of exchange bias fifty years ago, the development of a general theory has been hampered by the uncertain nature of the interfaces between the hard and soft phases, commonly between an antiferromagnetic phase and a ferro- or ferrimagnetic phase. Exchange bias continues to be the subject of investigation because of its technological applications and because it is now possible to manipulate magnetic materials at the nanoscale. Here we present the first documented example of exchange bias of significant magnitude (>1 T) in a natural mineral. We demonstrate that exchange bias in this system is due to the interaction between coherently intergrown magnetic phases formed through a natural process of phase separation during slow cooling over millions of years. Transmission electron microscopy studies show that these intergrowths have a known crystallographic orientation with a known crystallographic structure and that the interfaces are coherent. PMID:18654388

McEnroe, Suzanne A; Carter-Stiglitz, Brian; Harrison, Richard J; Robinson, Peter; Fabian, Karl; McCammon, Catherine

2007-09-16

124

Magnetic Field Lines  

NSDL National Science Digital Library

This activity will introduce students to the idea of magnetic field lines--a concept they have probably encountered but may not fully grasp. Completing this activity and reading the corresponding background information should enable students to understand

Horton, Michael

2009-05-30

125

Magnetic field dosimeter development  

SciTech Connect

In recent years there has been increased concern over potential health hazards related to exposure of personnel to magnetic fields. If exposure standards are to be established, then a means for measuring magnetic field dose must be available. To meet this need, the Department of Energy has funded development of prototype dosimeters at the Battelle Pacific Northwest Laboratory. This manual reviews the principle of operation of the dosimeter and also contains step-by-step instructions for its operation.

Lemon, D.K.; Skorpik, J.R.; Eick, J.L.

1980-09-01

126

Magnetic field confinement for magnetically levitated vehicles  

SciTech Connect

A magnetically levitated vehicle adapted for movement along a guide way, comprising: a passenger compartment; first and second primary magnet means secured on the vehicle to produce a magnetic field having a magnetic flux density extending outward from the primary magnet means, to support the vehicle above and spaced from the guide way; and a plurality of confining magnets disposed on the vehicle to confine the magnetic flux extending outward from the primary magnet means and to reduce the strength of the primary magnetic field in the passenger compartment; wherein the primary magnet means has a capacity to produce a primary magnetic field having a maximum strength of at least 200 gauss in the passenger compartment, and the confining magnets maintain the strength of the primary magnetic field in the passenger compartment below 5 gauss.

Proise, M.

1993-05-25

127

Improved capacitive stress transducers for high-field superconducting magnets  

NASA Astrophysics Data System (ADS)

High-field (12-18 Tesla) superconducting magnets are required to enable an increase in the energy of future colliders. Such field strength requires the use of Nb3Sn superconductor, which has limited tolerance for compressive and shear strain. A strategy for stress management has been developed at Texas A&M University and is being implemented in TAMU3, a short-model 14 Tesla stress-managed Nb3Sn block dipole. The strategy includes the use of laminar capacitive stress transducers to monitor the stresses within the coil package. We have developed fabrication techniques and fixtures, which improve the reproducibility of the transducer response both at room temperature and during cryogenic operation. This is a report of the status of transducer development.

Benson, Christopher Pete; Holik, Eddie Frank, III; Jaisle, Andrew; McInturff, A.; McIntyre, P.

2012-06-01

128

Planetary magnetic fields  

Microsoft Academic Search

The past several years have seen dramatic developments in the study of planetary magnetic fields, including a wealth of new data, mainly from the Galilean satellites and Mars, together with major improvements in our theoretical modeling effort of the dynamo process believed responsible for large planetary fields. These dynamos arise from thermal or compositional convection in fluid regions of large

David J. Stevenson

2003-01-01

129

Magnetic Multipole Field Model  

NSDL National Science Digital Library

The EJS Magnetic Multipole Field Model shows the field of a magnetic dipole or quadrupole with little compasses that indicate direction and relative field strength. A slider changes the angular orientation of the dipole and a movable compass shows the magnetic field direction and magnitude. Compass values can be recorded into a data table and analyzed using a built-in data analysis tool. You can modify this simulation if you have Ejs installed by right-clicking within the plot and selecting âOpen Ejs Modelâ from the pop-up menu item. The Magnetic Multipole Field model was created using the Easy Java Simulations (Ejs) modeling tool. It is distributed as a ready-to-run (compiled) Java archive. Double clicking the ejs_em_MagneticMultipoleField.jar file will run the program if Java is installed. Ejs is a part of the Open Source Physics Project and is designed to make it easier to access, modify, and generate computer models. Additional Ejs models are available. They can be found by searching ComPADRE for Open Source Physics, OSP, or Ejs.

Christian, Wolfgang; Cox, Anne; Franciscouembre

2010-02-14

130

Magnetic Field Measurement System  

SciTech Connect

A magnetic field measurement system was designed, built and installed at MAX Lab, Sweden for the purpose of characterizing the magnetic field produced by Insertion Devices (see Figure 1). The measurement system consists of a large granite beam roughly 2 feet square and 14 feet long that has been polished beyond laboratory grade for flatness and straightness. The granite precision coupled with the design of the carriage yielded minimum position deviations as measured at the probe tip. The Hall probe data collection and compensation technique allows exceptional resolution and range while taking data on the fly to programmable sample spacing. Additional flip coil provides field integral data.

Kulesza, Joe; Johnson, Eric; Lyndaker, Aaron; Deyhim, Alex; Waterman, Dave; Blomqvist, K. Ingvar [Advanced Design Consulting USA, 126 Ridge Road, P.O. Box 187, Lansing, NY 14882 (United States); Dunn, Jonathan Hunter [MAX-lab, SE-221 00 Lund (Sweden)

2007-01-19

131

Magnetic Field Problem: Current  

NSDL National Science Digital Library

A cross section of a circular wire loop carrying an unknown current is shown above. The arrows represent the direction of the magnetic field. The color of the arrows represents the magnitude of the field with magnitude increasing as the color changes from blue to green to red to black. You can double-click in the animation to add magnetic field lines, click-drag the center of the loop to reposition it, and click-drag the top or bottom of the loop to change its size.

Christian, Wolfgang; Belloni, Mario

2007-03-03

132

Crustal magnetic field of Mars  

Microsoft Academic Search

The equivalent source dipole technique is used to model the three components of the Martian lithospheric magnetic field. We use magnetic field measurements made on board the Mars Global Surveyor spacecraft. Different input dipole meshes are presented and evaluated. Because there is no global, Earth-like, inducing magnetic field, the magnetization directions are solved for together with the magnetization intensity. A

B. Langlais; M. E. Purucker; M. Mandea

2004-01-01

133

[Mesial temporal sclerosis in temporal lobe epilepsy: quantitative magnetic resonance imaging assesment with 3.0 Tesla].  

PubMed

Recent studies show that up to 70% of patients with temporal lobe epilepsy (TLE) have a hippocampal deficit known as temporal mesial sclerosis (TME) characterized by neuron loss and gliosis, and considered the main epileptogenic focus among this type of patients. The magnetic resonance imaging (MRI) features of TME include atrophy and hippocampus hyperintensitY in the long TR sequences (Flair and T2). The 3.0 Tesla MRI allows the study of the brain's anatomy and physiology using different sequences and post processing mechanisms. Volumetry can determine the accurate volume and, together with spectroscopy, makes possible a quantitative assessment of the hyppocampus. Both techniques help to locate cerebral areas with epileptogenic activity. We describe the imaging findings from spectroscopy and volumetry in a patient with TLE and briefly review the related literature. PMID:18246939

Roldán-Valadez, Ernesto; Corona-Cedillo, Roberto; Cosme-Labarthe, Juan; Martínez-López, Manuel

134

Magnetic Fields in Galaxies  

NASA Astrophysics Data System (ADS)

Radio synchrotron emission, its polarization and its Faraday rotation are powerful tools to study the strength and structure of magnetic fields in galaxies. Unpolarized emission traces turbulent fields which are strongest in spiral arms and bars (20-30 ?G) and in central starburst regions (50-100 ?G). Such fields are dynamically important, e.g. they can drive gas inflows in central regions. Polarized emission traces ordered fields which can be regular or anisotropic random, generated from isotropic random fields by compression or shear. The strongest ordered fields of 10-15 ?G strength are generally found in interarm regions and follow the orientation of adjacent gas spiral arms. Ordered fields with spiral patterns exist in grand-design, barred and flocculent galaxies, and in central regions of starburst galaxies. Faraday rotation measures (RM) of the diffuse polarized radio emission from the disks of several spiral galaxies reveal large-scale patterns, which are signatures of regular fields generated by a mean-field dynamo. However, in most spiral galaxies observed so far the field structure is more complicated. Ordered fields in interacting galaxies have asymmetric distributions and are an excellent tracer of past interactions between galaxies or with the intergalactic medium. Ordered magnetic fields are also observed in radio halos around edge-on galaxies, out to large distances from the plane, with X-shaped patterns. Future observations of polarized emission at high frequencies, with the EVLA, the SKA and its precursors, will trace galactic magnetic fields in unprecedented detail. Low-frequency telescopes (e.g. LOFAR and MWA) are ideal to search for diffuse emission and small RMs from weak interstellar and intergalactic fields.

Beck, Rainer

2012-05-01

135

Effect of a high-intensity static magnetic field on sciatic nerve regeneration in the rat  

SciTech Connect

The effect of a high-intensity static magnetic field on peripheral nerve regeneration is evaluated in rat sciatic nerve. Forty-four rats underwent sciatic nerve repair using polyethylene nerve guides. Postoperatively, the animals were exposed to a 1-tesla magnetic field for 12 hours per day for 4 weeks with appropriate controls. Our results demonstrate that a 1-tesla static magnetic field has no statistically significant effect on nerve regeneration as determined by myelinated axon counts and electrophysiologic studies. Also, the specific orientation of the sciatic nerve with respect to the magnetic field has no influence on axonal growth or nerve conduction. Periods of restraint of 12 hours per day for 4 weeks significantly inhibit weight gain but have no effect on peripheral nerve regeneration.

Cordeiro, P.G.; Seckel, B.R.; Miller, C.D.; Gross, P.T.; Wise, R.E.

1989-02-01

136

The induced magnetic field.  

PubMed

Aromaticity is indispensable for explaining a variety of chemical behaviors, including reactivity, structural features, relative energetic stabilities, and spectroscopic properties. When interpreted as the spatial delocalization of ?-electrons, it represents the driving force for the stabilization of many planar molecular structures. A delocalized electron system is sensitive to an external magnetic field; it responds with an induced magnetic field having a particularly long range. The shape of the induced magnetic field reflects the size and strength of the system of delocalized electrons and can have a large influence on neighboring molecules. In 2004, we proposed using the induced magnetic field as a means of estimating the degree of electron delocalization and aromaticity in planar as well as in nonplanar molecules. We have since tested the method on aromatic, antiaromatic, and nonaromatic compounds, and a refinement now allows the individual treatment of core-, ?-, and ?-electrons. In this Account, we describe the use of the induced magnetic field as an analytical probe for electron delocalization and its application to a large series of uncommon molecules. The compounds include borazine; all-metal aromatic systems Al(4)(n-); molecular stars Si(5)Li(n)(6-n); electronically stabilized planar tetracoordinate carbon; planar hypercoordinate atoms inside boron wheels; and planar boron wheels with fluxional internal boron cluster moieties. In all cases, we have observed that planar structures show a high degree of electron delocalization in the ?-electrons and, in some examples, also in the ?-framework. Quantitatively, the induced magnetic field has contributions from the entire electronic system of a molecule, but at long range the contributions arising from the delocalized electronic ?-system dominate. The induced magnetic field can only indirectly be confirmed by experiment, for example, through intermolecular contributions to NMR chemical shifts. We show that calculating the induced field is a useful method for understanding any planar organic or inorganic system, as it corresponds to the intuitive Pople model for explaining the anomalous proton chemical shifts in aromatic molecules. Indeed, aromatic, antiaromatic, and nonaromatic molecules show differing responses to an external field; that is, they reduce, augment, or do not affect the external field at long range. The induced field can be dissected into different orbital contributions, in the same way that the nucleus-independent chemical shift or the shielding function can be separated into component contributions. The result is a versatile tool that is particularly useful in the analysis of planar, densely packed systems with strong orbital contributions directly atop individual atoms. PMID:21848282

Islas, Rafael; Heine, Thomas; Merino, Gabriel

2011-08-17

137

Development of a 3 tesla - 10 Hz pulsed magnet-modulator system  

SciTech Connect

In order to support the experimental work done at the Los Alamos Meson Physics Facility new instrumentation and data collection systems of advanced design are developed on a regular basis. Within the instrumentation system for an experiment at LAMPF, The Photo-Excitation of the H/sup -/ Ion Resonances, there exists a need for a pulsed air-core electromagnet and modulator system. The magnet must be capable of producing a field strength of 0 to 3T in a volume of 3.5 cm/sup 3/. In addition it must be radiation resistant, have a uniform field, operate in a high vacuum with little or no outgassing, and the physical layout of the magnet must provide minimal azimuthal obstruction to both the ion and laser beams. The modulator must be capable of producing up to a 15KA pulse with duration of two ..mu..s at a maximum repetition rate of 10 Hz. Modulator layout must be extremely reliable so that data collection time is not lost during the experiment. This paper describes in detail the development of the system.

Krausse, G.J.; Butterfield, K.B.

1984-01-01

138

Mechanical design of a high field common coil magnet  

SciTech Connect

A common coil design for high field 2-in-1 accelerator magnets has been previously presented as a 'conductor-friendly' option for high field magnets applicable for a Very Large Hadron Collider. This paper presents the mechanical design for a 14 tesla 2-in-1 dipole based on the common coil design approach. The magnet will use a high current density Nb{sub 3}Sn conductor. The design addresses mechanical issues particular to the common coil geometry: horizontal support against coil edges, vertical preload on coil faces, end loading and support, and coil stresses and strains. The magnet is the second in a series of racetrack coil magnets that will provide experimental verification of the common coil design approach.

Caspi, S.; Chow, K.; Dietderich, D.; Gourlay, S.; Gupta, R.; McInturff, A.; Millos, G.; Scanlan, R.

1999-03-18

139

New magnetic field-enhanced process for the treatment of aqueous wastes  

Microsoft Academic Search

A new magnetic adsorbent material, called magnetic polyamine-epichlorohydrin (MPE) resin, was prepared by attaching activated magnetite to the outer surface of polyamine-epichlorohydrin resin beads. Experiments were carried out in the presence of a 0.3-tesla magnetic field to investigate the removal of actinides (plutonium and americium) from pH 12 wastewater using this new resin. The results demonstrated that the MPE resin

Armin Ebner; James Ritter; Harry Ploehn; Robert Kochen; James Navratil

1999-01-01

140

NEW MAGNETIC FIELD-ENHANCED PROCESS FOR THE TREATMENT OF AQUEOUS WASTES  

Microsoft Academic Search

A new magnetic adsorbent material, called magnetic polyamine-epichlorohydrin (MPE) resin, was prepared by attaching activated magnetite to the outer surface of polyamine-epichlorohydrin resin beads. Experiments were carried out in the presence of a 0.3-tesla magnetic field to investigate the removal of actinides (plutonium and americium) from pH 12 wastewater using this new resin. The results demonstrated that the MPE resin

Armin D. Ebner; James A. Ritter; Harry J. Ploehn; Robert L. Kochen; James D. Navratil

1999-01-01

141

Magnetic field annihilators: invisible magnetization at the magnetic equator  

Microsoft Academic Search

Some distributions of magnetization give rise to magnetic fields that vanish everywhere above the surface, rendering these distributions of magnetization completely invisible. They are the annihilators of the magnetic inverse problem. Known examples are the infinite sheet with constant magnetization and the spherical shell of constant susceptibility magnetized by an arbitrary internal field. Here, we show that remarkably more interesting

S. Maus; V. Haak

2003-01-01

142

Scalarized photon analysis of spontaneous emission in the uniform magnetic field free-electron laser  

NASA Astrophysics Data System (ADS)

The recently developed concept of scalarized photons (formally photons of any polarization) is used to analyze the spontaneous emission in the uniform magnetic field free-electron laser in the microwave spectral region. With the electron beam energy of up to 10 MeV and the uniform magnetic field of up to 4 Tesla, the radiation (occurring with the fundamental and higher harmonic frequencies) can easily cover a 10- to 10,000 GHz spectral region.

Soln, Josip

1990-04-01

143

PBS: Tesla - Master of Lightning  

NSDL National Science Digital Library

This web site explores the life and legacy of Nikola Tesla, an important contributor to the field of electromagnetism. Although the significance of his work is often minimized, Tesla's work formed the basis of modern alternating current power systems and wireless transmission of energy. He was the first to receive a patent for the invention of the radio, though Marconi is more often given credit for the discovery. The web site includes interactive explorations of Tesla's key inventions and lesson plans for grades 6-12 on electric potential and conversion of electrical energy into mechanical energy. Users will also find selected articles on Tesla, timelines of electricity and radio, and a link to view selected Tesla patents.

2010-06-24

144

Gradient-induced acoustic and magnetic field fluctuations in a 4T whole-body MR imager  

Microsoft Academic Search

Both the acoustic and magnetic fluctuation frequency response functions for a Siemens AS25 body gradient coil inside a 4 Tesla whole-body MR system were measured and analyzed in this study. In an attempt to correlate the acoustic noise inside the gradient coil with magnetic field oscillations, triangular and trap- ezoidal gradient impulses of varying amplitudes and widths were used to

Yuhua Wu; Blaine A. Chronik; Chris Bowen; Chris K. Mechefske; Brian K. Rutt

2000-01-01

145

Detailing radio frequency heating induced by coronary stents: a 7.0 Tesla magnetic resonance study.  

PubMed

The sensitivity gain of ultrahigh field Magnetic Resonance (UHF-MR) holds the promise to enhance spatial and temporal resolution. Such improvements could be beneficial for cardiovascular MR. However, intracoronary stents used for treatment of coronary artery disease are currently considered to be contra-indications for UHF-MR. The antenna effect induced by a stent together with RF wavelength shortening could increase local radiofrequency (RF) power deposition at 7.0 T and bears the potential to induce local heating, which might cause tissue damage. Realizing these constraints, this work examines RF heating effects of stents using electro-magnetic field (EMF) simulations and phantoms with properties that mimic myocardium. For this purpose, RF power deposition that exceeds the clinical limits was induced by a dedicated birdcage coil. Fiber optic probes and MR thermometry were applied for temperature monitoring using agarose phantoms containing copper tubes or coronary stents. The results demonstrate an agreement between RF heating induced temperature changes derived from EMF simulations versus MR thermometry. The birdcage coil tailored for RF heating was capable of irradiating power exceeding the specific-absorption rate (SAR) limits defined by the IEC guidelines by a factor of three. This setup afforded RF induced temperature changes up to +27 K in a reference phantom. The maximum extra temperature increase, induced by a copper tube or a coronary stent was less than 3 K. The coronary stents examined showed an RF heating behavior similar to a copper tube. Our results suggest that, if IEC guidelines for local/global SAR are followed, the extra RF heating induced in myocardial tissue by stents may not be significant versus the baseline heating induced by the energy deposited by a tailored cardiac transmit RF coil at 7.0 T, and may be smaller if not insignificant than the extra RF heating observed under the circumstances used in this study. PMID:23185498

Santoro, Davide; Winter, Lukas; Müller, Alexander; Vogt, Julia; Renz, Wolfgang; Ozerdem, Celal; Grässl, Andreas; Tkachenko, Valeriy; Schulz-Menger, Jeanette; Niendorf, Thoralf

2012-11-21

146

Detailing Radio Frequency Heating Induced by Coronary Stents: A 7.0 Tesla Magnetic Resonance Study  

PubMed Central

The sensitivity gain of ultrahigh field Magnetic Resonance (UHF-MR) holds the promise to enhance spatial and temporal resolution. Such improvements could be beneficial for cardiovascular MR. However, intracoronary stents used for treatment of coronary artery disease are currently considered to be contra-indications for UHF-MR. The antenna effect induced by a stent together with RF wavelength shortening could increase local radiofrequency (RF) power deposition at 7.0 T and bears the potential to induce local heating, which might cause tissue damage. Realizing these constraints, this work examines RF heating effects of stents using electro-magnetic field (EMF) simulations and phantoms with properties that mimic myocardium. For this purpose, RF power deposition that exceeds the clinical limits was induced by a dedicated birdcage coil. Fiber optic probes and MR thermometry were applied for temperature monitoring using agarose phantoms containing copper tubes or coronary stents. The results demonstrate an agreement between RF heating induced temperature changes derived from EMF simulations versus MR thermometry. The birdcage coil tailored for RF heating was capable of irradiating power exceeding the specific-absorption rate (SAR) limits defined by the IEC guidelines by a factor of three. This setup afforded RF induced temperature changes up to +27 K in a reference phantom. The maximum extra temperature increase, induced by a copper tube or a coronary stent was less than 3 K. The coronary stents examined showed an RF heating behavior similar to a copper tube. Our results suggest that, if IEC guidelines for local/global SAR are followed, the extra RF heating induced in myocardial tissue by stents may not be significant versus the baseline heating induced by the energy deposited by a tailored cardiac transmit RF coil at 7.0 T, and may be smaller if not insignificant than the extra RF heating observed under the circumstances used in this study.

Santoro, Davide; Winter, Lukas; Muller, Alexander; Vogt, Julia; Renz, Wolfgang; Ozerdem, Celal; Grassl, Andreas; Tkachenko, Valeriy; Schulz-Menger, Jeanette; Niendorf, Thoralf

2012-01-01

147

Magnetic Field Measurements in Beam Guiding Magnets  

Microsoft Academic Search

Electromagnets used as beam guiding elements in particle accelerators and colliders require very tight tole-rances on their magnetic fields and on their alignment along the particle path. This article describes the methods and equipment used for magnetic measurements in beam transport magnets. Descriptions are given of magnetic resonance techniques, various induction coil methods, Hall generator measurements, the fluxgate magnetometer as

K. N. Henrichsen

1998-01-01

148

The Conceptual Design of a 20 Tesla Pulsed Solenoid for a Laser Solenoid Fusion Reactor  

Microsoft Academic Search

Design considerations are described for a strip wound solenoid which is pulsed to 20 tesla while immersed in a 20 tesla bias field so as to achieve within the bore of the pulsed solenoid a net field sequence starting at 20 tesla and going first down to zero, then up to 40 tesla, and finally back to 20 tesla in

J. J. Nolan; R. J. Averill

1977-01-01

149

Magnetic cumulative effect upon the explosion of a shaped charge with an axial magnetic field in its sheath  

Microsoft Academic Search

Experiments on creating an axial magnetic field in the metallic sheath of a shaped charge immediately before explosion are\\u000a reported. Under such conditions, the penetrability of the charge is shown to decrease substantially. For instance, the penetration\\u000a into a steel target is reduced more than twice when the initial field in the sheath is several tenths of a tesla. The

S. V. Fedorov; A. V. Babkin; S. V. Ladov

2003-01-01

150

The Heliospheric Magnetic Field  

NASA Astrophysics Data System (ADS)

The Heliospheric Magnetic Field (HMF) is the physical framework in which energetic particles and cosmic rays propagate. Changes in the large scale structure of the magnetic field lead to short- and long term changes in cosmic ray intensities, in particular in anti-phase with solar activity. The origin of the HMF in the corona is well understood and inner heliospheric observations can generally be linked to their coronal sources. The structure of heliospheric magnetic polarities and the heliospheric current sheet separating the dominant solar polarities are reviewed here over longer than a solar cycle, using the three dimensional heliospheric observations by Ulysses. The dynamics of the HMF around solar minimum activity is reviewed and the development of stream interaction regions following the stable flow patterns of fast and slow solar wind in the inner heliosphere is described. The complex dynamics that affects the evolution of the stream interaction regions leads to a more chaotic structure of the HMF in the outer heliosphere is described and discussed on the basis of the Voyager observations. Around solar maximum, solar activity is dominated by frequent transients, resulting in the interplanetary counterparts of Coronal Mass Ejections (ICMEs). These produce a complex aperiodic pattern of structures in the inner heliosphere, at all heliolatitudes. These structures continue to interact and evolve as they travel to the outer heliosphere. However, linking the observations in the inner and outer heliospheres is possible in the case of the largest solar transients that, despite their evolutions, remain recognizably large structures and lead to the formation of Merged Interaction Regions (MIRs) that may well form a quasi-spherical, "global" shell of enhanced magnetic fields around the Sun at large distances. For the transport of energetic particles and cosmic rays, the fluctuations in the magnetic field and their description in alternative turbulent models remains a very important research topic. These are also briefly reviewed in this paper.

Balogh, André; Erdõs, Géza

2013-06-01

151

Magnetic Field Dependent Charge Transport Studies in Organic Semiconducting Materials  

NASA Astrophysics Data System (ADS)

Organic magnetoresistance is a phenomenon that is exhibited by many organic semiconductors. The resistance can change by more than 10 % at room temperature and as little as 10 milli-Tesla (mT) applied magnetic field. The change can be either positive or negative, and is angle invariant with respect to magnetic field orientation. Several theories have been presented to account for this anomalous magnetoresistance, but thus far the magnetoresistance by interconversion of singlets and triplets (MIST) model has been the most successful in explaining the behavior. Despite all the research that has gone into this effect, very few reports have gone to fields above 1 Tesla (T). In this manuscript, several specific predictions made by the MIST mechanism will be tested including qualitative behaviors and a quantitative fitting. Studies have been performed up to 35 T to explore the high field behavior. It will be demonstrated that for the low field regime, the MIST model is in excellent agreement with experiment, but that the high field regime is caused by a separate mechanism, not described by any current theory.

Martin, Jesse

152

Characterization and manipulation of a high-magnetic field trap  

NASA Astrophysics Data System (ADS)

We report on the characterization of an efficient atom trap within a background magnetic field of 2.6 Tesla. Up to 10?8 Rubidium atoms are recaptured from a cold atomic beam with a 2-3% collection efficiency, in a cigar-shaped volume and cooled with a six-beam optical molasses. The aspect ratio of the trap is measured as a function of the magnetic field curvature, which can be varied to produce a range of trap shapes. The trapping lineshape is both narrow and asymmetric, as is characteristic of laser-cooling of atoms or ions in an external trapping potential. Additional features of the high magnetic field trap include cooling onto hollow shell-like structures. Simulation results are also presented.

Paradis, Eric; Raithel, Georg

2012-06-01

153

Magnetic fields and cancer  

SciTech Connect

This letter is a response to an article by Savitz and Kaune, EHP 101:76-80. W-L wire code was applied to data from a 1988 Denver study, and an association was reported between high W-L wire code and childhood cancer. This author discusses several studies and provides explanations which weakens the argument that classification error resulted in an appreciable reduction in the association between W-L high wire code and childhood cancer. In conclusion, the fact that new wire code is only weakly correlated with magnetic field measurements (in the same manner as the original W-L wire code) suggests that the newly reported stronger association with childhood cancer is likely due to factors other than magnetic fields. Differential residential mobility and differential residential age are two possible explanations and are suggestive that the reported association may be false.

Jones, T.L.

1993-10-01

154

Hepatic Iron Quantification on 3 Tesla (3 T) Magnetic Resonance (MR): Technical Challenges and Solutions  

PubMed Central

MR has become a reliable and noninvasive method of hepatic iron quantification. Currently, most of the hepatic iron quantification is performed on 1.5?T MR, and the biopsy measurements have been paired with R2 and R2* values for 1.5?T MR. As the use of 3?T MR scanners is steadily increasing in clinical practice, it has become important to evaluate the practicality of calculating iron burden at 3?T MR. Hepatic iron quantification on 3?T MR requires a better understanding of the process and more stringent technical considerations. The purpose of this work is to focus on the technical challenges in establishing a relationship between T2* values at 1.5?T MR and 3?T MR for hepatic iron concentration (HIC) and to develop an appropriately optimized MR protocol for the evaluation of T2* values in the liver at 3?T magnetic field strength. We studied 22 sickle cell patients using multiecho fast gradient-echo sequence (MFGRE) 3?T MR and compared the results with serum ferritin and liver biopsy results. Our study showed that the quantification of hepatic iron on 3?T MRI in sickle cell disease patients correlates well with clinical blood test results and biopsy results. 3?T MR liver iron quantification based on MFGRE can be used for hepatic iron quantification in transfused patients.

Anwar, Muhammad; Wood, John; Manwani, Deepa; Oyeku, Suzette O.; Peng, Qi

2013-01-01

155

A fossil origin for the magnetic field in A stars and white dwarfs  

Microsoft Academic Search

Some main-sequence stars of spectral type A are observed to have a strong (0.03-3tesla), static, large-scale magnetic field, of a chiefly dipolar shape: they are known as `Ap stars', such as Alioth, the fifth star in the Big Dipper. Following the discovery of these fields, it was proposed that they are remnants of the star's formation, a `fossil' field. An

Jonathan Braithwaite; Hendrik C. Spruit

2004-01-01

156

Effect of super high magnetic field on the growth of Escherichia coli  

Microsoft Academic Search

Summary Auxotrophic mutants ofEscherichia coli were grown under the super high magnetic field (11.7 Tesla) and the effect of the field both on the growth and mutation frequency of the bacteria was investigated. When the bacteria were cultivated in complex media, the growth was stimulated under 11.7T in comparison with that in geomagnetic field. When the bacteria were grown in

Kazumasa Okuno; Takashi Ano; Makoto Shoda

1991-01-01

157

Transformative effects of higher magnetic field in Fourier transform ion cyclotron mass spectrometry  

PubMed Central

The relationship of magnetic field strength and Fourier transform ion cyclotron resonance mass spectrometry performance was tested using three instruments with the same designs but different fields of 4.7, 7 and 9.4 tesla. We found that the theoretically predicted “transformative” effects of magnetic field are indeed observed experimentally. The most striking effects were that mass accuracy demonstrated approximately 2nd–3rd-order improvement with the magnetic field, depending upon the charge state of the analyte, and that peak splitting, which prohibited automated data analysis at 4.7 T, was not observed at 9.4 T.

Karabacak, N. Murat; Easterling, Michael L.; Agar, N.Y.R.; Agar, Jeffrey N.

2010-01-01

158

Magnetization reversal in ultrashort magnetic field pulses  

NASA Astrophysics Data System (ADS)

We report the switching properties of a thin magnetic film subject to an ultrashort, laterally localized magnetic field pulse, obtained by numerical investigations. The magnetization distribution in the film is calculated on a grid assuming Stoner-like coherent rotation within the grid square size. Perpendicularly and in-plane magnetized films exhibit a magnetization reversal due to a 4ps magnetic field pulse. Outside the central region the pulse duration is short compared to the precession period. In this area the evolution of the magnetization during the field pulse does not depend strongly on magnetic damping and/or pulse shape. However, the final magnetization distribution is affected by the magnetic damping. Although the pulse duration is short compared to the precession period, the time needed for the relaxation of the magnetization to the equilibrium state is rather large. The influence of the different magnetic anisotropy contributions and the magnetic damping parameter enters into the magnetization reversal process. Comparing the case of perpendicular anisotropy with different kinds of in-plane anisotropies, a principal difference is found due to the symmetry of the shape anisotropy with respect to the anisotropy in question.

Bauer, M.; Lopusnik, R.; Fassbender, J.; Hillebrands, B.

2000-08-01

159

Magnetic Field Problem: Current and Magnets  

NSDL National Science Digital Library

The above animations represent two typical bar magnets each with a North and South pole. The arrows represent the direction of the magnetic field. A wire is placed between the magnets and a current that comes out of the page can be turned on.

Christian, Wolfgang; Belloni, Mario

2007-03-03

160

Magnetic Field Issues in Magnetic Resonance Imaging  

Microsoft Academic Search

Advances in Magnetic Resonance Imaging depend on the capability of the available hardware. Specifically, for the main magnet configuration, using derivative constraints, we can create a static magnetic field with reduced levels of inhomogeneity over a prescribed imaging volume. In the gradient coil, the entire design for the axial elliptical coil, and the mathematical foundation for the transverse elliptical coil

Labros Spiridon Petropoulos

1993-01-01

161

Examining the McGurk illusion using high-field 7 Tesla functional MRI.  

PubMed

In natural communication speech perception is profoundly influenced by observable mouth movements. The additional visual information can greatly facilitate intelligibility but incongruent visual information may also lead to novel percepts that neither match the auditory nor the visual information as evidenced by the McGurk effect. Recent models of audiovisual (AV) speech perception accentuate the role of speech motor areas and the integrative brain sites in the vicinity of the superior temporal sulcus (STS) for speech perception. In this event-related 7 Tesla fMRI study we used three naturally spoken syllable pairs with matching AV information and one syllable pair designed to elicit the McGurk illusion. The data analysis focused on brain sites involved in processing and fusing of AV speech and engaged in the analysis of auditory and visual differences within AV presented speech. Successful fusion of AV speech is related to activity within the STS of both hemispheres. Our data supports and extends the audio-visual-motor model of speech perception by dissociating areas involved in perceptual fusion from areas more generally related to the processing of AV incongruence. PMID:22529797

Szycik, Gregor R; Stadler, Jörg; Tempelmann, Claus; Münte, Thomas F

2012-04-19

162

Integrated semiconductor magnetic field sensors  

Microsoft Academic Search

Recent developments in integrated silicon magnetic devices are reviewed, with particular attention given to integrated Hall plates, magnetic field-effect transistors, vertical and lateral bipolar magnetotransistors, magnetodiodes, and current-domain magnetometers. Also described are current developments in integrated magnetic field sensors based on III-V semiconductors and bulk Hall-effect devices. The discussion also covers magnetic device modeling and the incorporation of magnetic devices

H. P. Baltes; R. S. Popovic

1986-01-01

163

Planetary magnetic fields  

NASA Astrophysics Data System (ADS)

The past several years have seen dramatic developments in the study of planetary magnetic fields, including a wealth of new data, mainly from the Galilean satellites and Mars, together with major improvements in our theoretical modeling effort of the dynamo process believed responsible for large planetary fields. These dynamos arise from thermal or compositional convection in fluid regions of large radial extent. The relevant electrical conductivities range from metallic values to values that may be only about 1% or less that of a typical metal, appropriate to ionic fluids and semiconductors. In all planets, the Coriolis force is dynamically important, but slow rotation may be more favorable for a dynamo than fast rotation. The maintenance and persistence of convection appears to be easy in gas giants and ice-rich giants, but is not assured in terrestrial planets because the quite high electrical conductivity of iron-rich cores guarantees a high thermal conductivity (through the Wiedemann-Franz law), which allows for a large core heat flow by conduction alone. In this sense, high electrical conductivity is unfavorable for a dynamo in a metallic core. Planetary dynamos mostly appear to operate with an internal field ~(2??/?)1/2 where ? is the fluid density, ? is the planetary rotation rate and ? is the conductivity (SI units). Earth, Ganymede, Jupiter, Saturn, Uranus, Neptune, and maybe Mercury have dynamos, Mars has large remanent magnetism from an ancient dynamo, and the Moon might also require an ancient dynamo. Venus is devoid of a detectable global field but may have had a dynamo in the past. The presence or absence of a dynamo in a terrestrial body (including Ganymede) appears to depend mainly on the thermal histories and energy sources of these bodies, especially the convective state of the silicate mantle and the existence and history of a growing inner solid core. Induced fields observed in Europa and Callisto indicate the strong likelihood of water oceans in these bodies.

Stevenson, David J.

2003-03-01

164

Influence of strong static magnetic field on human cancer HT 1080 cells  

NASA Astrophysics Data System (ADS)

The aim of this study was to investigate strong uniform magnetic field influence on the human cancer cells HT 1080. The cells were treated with magnetic field of intensity 1,16 Tesla and with anticancer agent - cis-platinum 0.025 mg/ml or vincristinum 2-3 ng/ml. The intact and the treated cell samples were incubated in a medium with acridine orange (AO). The magnetic field after 15 minutes of influence significantly increased cytoplasmic red fluorescence. Increased AO accumulation in lysosomes suggested to cancer cell metabolic activity stimulation.

Rodins, Juris; Korhovs, Vadims; Freivalds, Talivaldis; Buikis, Indulis; Ivanova, Tatjana

2001-10-01

165

The Phase Diagram of Superfluid 3HELIUM in High Magnetic Fields  

Microsoft Academic Search

Measurements of the A(,1) and A(,2) superfluid transitions in ('3)He are reported. The transitions were measured in magnetic fields up to 9.4 Tesla and at pressures ranging from 2 bar to 29 bar. The measurements were made in an adiabatic demagnitization cryostat. A ('3)He melting curve thermometer located in a field free region was used for thermometry and ultrasound attenuation

David Carl Sagan

1985-01-01

166

2 Tesla Full Scale High Performance Periodic Permanent Magnet Model for Attractive (228 KN) and repulsive Maglev.  

National Technical Information Service (NTIS)

Two 214.5 cm. long high performance periodic (26 cm period) permanent magnet half-assemblies were designed and constructed for use as a wiggler using Nd-B-Fe and vanadium permendur as hard and soft magnetic materials by Field Effects, a division of Interm...

Z. J. J. Stekly C. Gardner P. Domigan J. Baker M. Hass C. McDonald C. Wu R. A. Farrell

1996-01-01

167

Extreme Material Physical Properties and Measurements above 100 tesla  

NASA Astrophysics Data System (ADS)

The National High Magnetic Field Laboratory (NHMFL) Pulsed Field Facility (PFF) at Los Alamos National Laboratory (LANL) offers extreme environments of ultra high magnetic fields above 100 tesla by use of the Single Turn method as well as fields approaching 100 tesla with more complex methods. The challenge of metrology in the extreme magnetic field generating devices is complicated by the millions of amperes of current and tens of thousands of volts that are required to deliver the pulsed power needed for field generation. Methods of detecting physical properties of materials are essential parts of the science that seeks to understand and eventually control the fundamental functionality of materials in extreme environments. De-coupling the signal of the sample from the electro-magnetic interference associated with the magnet system is required to make these state-of-the-art magnetic fields useful to scientists studying materials in high magnetic fields. The cutting edge methods that are being used as well as methods in development will be presented with recent results in Graphene and High-Tc superconductors along with the methods and challenges.

Mielke, Charles

2011-03-01

168

Fast superconducting magnetic field switch  

DOEpatents

The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles. 6 figs.

Goren, Y.; Mahale, N.K.

1996-08-06

169

Evolution of twisted magnetic fields  

SciTech Connect

The magnetic field of the solar corona evolves quasistatically in response to slowly changing photospheric boundary conditions. The magnetic topology is preserved by the low resistivity of the solar atmosphere. We show that a magnetic flux coordinate system simplifies the problem of calculating field evolution with invariant topology. As an example, we calculate the equilibrium of a thin magnetic flux tube with small twist per unit length.

Zweibel, E.G.; Boozer, A.H.

1985-02-01

170

Reactivation and operation of the large six-tesla CFFF superconducting magnet  

SciTech Connect

The second MHD superconducting magnet system constructed at the Argonne National Laboratory, originally intended for use in the coal-fired plasma MHD power generation program, has been in storage at Argonne since its assembly and short-term testing a decade ago. At that time it was energized for only a few days and then decommissioned. The magnet, a 6-T dipole having an effective length of 300 cm and a tapered warm bore of 80 to 100 cm, has recently been reactivated and put into service for sea water MHD propulsion research. This report describes the technical aspects of the reactivation process, as well as the operational characterization of the reconstituted system.

Hill, D.; Libera, J.; Petrick, M.

1992-01-01

171

Reactivation and operation of the large six-tesla CFFF superconducting magnet  

SciTech Connect

The second MHD superconducting magnet system constructed at the Argonne National Laboratory, originally intended for use in the coal-fired plasma MHD power generation program, has been in storage at Argonne since its assembly and short-term testing a decade ago. At that time it was energized for only a few days and then decommissioned. The magnet, a 6-T dipole having an effective length of 300 cm and a tapered warm bore of 80 to 100 cm, has recently been reactivated and put into service for sea water MHD propulsion research. This report describes the technical aspects of the reactivation process, as well as the operational characterization of the reconstituted system.

Hill, D.; Libera, J.; Petrick, M.

1992-07-01

172

Exposure guidelines for magnetic fields  

SciTech Connect

The powerful magnetic fields produced by a controlled fusion experiment at Lawrence Livermore National Laboratory (LLNL) necessitated the development of personnel-exposure guidelines for steady magnetic fields. A literature search and conversations with active researchers showed that it is currently possible to develop preliminary exposure guidelines for steady magnetic fields. An overview of the results of past research into the bioeffects of magnetic fields was compiled, along with a discussion of hazards that may be encountered by people with sickle-cell anemia or medical electronic and prosthetic implants. The LLNL steady magnetic-field exposure guidelines along with a review of developments concerning the safety of time-varying fields were also presented in this compilation. Guidelines developed elsewhere for time varying fields were also given. Further research is needed to develop exposure standards for both steady or time-varying fields.

Miller, G.

1987-12-01

173

Development of ultra-low magnetic field sensors with magnetic tunneling junctions  

NASA Astrophysics Data System (ADS)

The discovery of tunneling magnetoresistance (TMR) has enhanced the magnetoresistance (MR) ratio from the giant magnetoresistance (GMR) regime of around 10% to over 400% at room temperature. A combination of magnetic tunnel junctions with high magnetoresistance ratio and soft magnetic layers enables the development of ultra-low magnetic field sensor with sensitivity down to the scale of picoTesla. A magnetic field sensor with such high sensitivity would have important applications in biomedicine, information storage, and remote sensing such as higher resolution images for cardiograph and magnetic resonance imaging and thus earlier detection of abnormal health condition; higher hard-disk density; and remote sensing of metallic objects. We have constructed an automated four-probe electrical measurement system for measuring TMR of magnetic tunnel junctions with high throughput, enabling us to optimize the properties of the devices. Magnetron sputtering is used to deposit thin films with thickness ranged from angstroms to nanometers. Photolithography and ion plasma etching are applied to pattern the devices. The devices have a range of size from 10 ?m x 10 ?m to 80 ?m x 80 ?m. The device is composed of the bottom electrode, free soft magnetic layer, insulating oxide layer, pinned layer, pinning layer, and top electrode. The magnetization of the free layer can be rotated by the external magnetic field which in turn changes the resistance of the device and provide the sensing capability. The system structure, design consideration, fabrication process, and preliminary experimental results are discussed and presented in this paper.

Pong, Philip W. T.; Bonevich, John E.; Egelhoff, William F., Jr.

2007-09-01

174

Stellar atmospheres with magnetic field  

Microsoft Academic Search

It is proposed that the most probable configuration of the magnetic field in the atmosphere of an Ap star is an almost force-free, poloidal field, close to a low-order multipole. Such a magnetic field can not change the structure of the atmosphere to any great extent, but the vertical component of the Lorentz force can decrease the effective gravity by

K. Stepien

1980-01-01

175

Microprobe for Measuring Magnetic Fields  

Microsoft Academic Search

The Hall effect has been widely utilized to measure magnetic fields. The relatively simple geometry of a Hall element suggested the use of such a device on a microscale as a probe to examine magnetic fields of small structures. Hall probes are described which were constructed with a sensitive area about 10×10 ?. Fields of less than 0.01 gauss were

D. D. Roshon Jr.

1962-01-01

176

Magnetic fields in galactic jets  

Microsoft Academic Search

The jet region of M87 is discussed to illustrate the astrophysical observations of radio sources, with note made of magnetic field phenomena contributing to radio frequency emissions. The jet appearing in M87 has been modelled as a continuous supersonic flow of plasma embedded in a self-consistent, ordered magnetic field. The field has both parallel and helical components, and may work

A. Ferrari

1982-01-01

177

Protogalactic evolution and magnetic fields  

Microsoft Academic Search

We show that the relatively strong magnetic fields ($\\\\ge 1 \\\\mu$G) in high\\u000aredshift objects can be explained by the combined action of an evolving\\u000aprotogalactic fluctuation and electrodynamic processes providing the magnetic\\u000aseed fields. Three different seed field mechanisms are reviewed and\\u000aincorporated into a spherical \\

Harald Lesch; Masashi Chiba

1994-01-01

178

Protogalactic evolution and magnetic fields  

Microsoft Academic Search

We show that the relatively strong magnetic fields (>=1muG) in high redshift objects can be explained by the combined action of an evolving protogalactic fluctuation and electrodynamic processes providing the magnetic seed fields. Three different seed field mechanisms are reviewed and incorporated into a spherical \\

H. Lesch; M. Chiba

1995-01-01

179

Magnetic-field-dosimetry system  

DOEpatents

A device is provided for measuring the magnetic field dose and peak field exposure. The device includes three Hall-effect sensors all perpendicular to each other, sensing the three dimensional magnetic field and associated electronics for data storage, calculating, retrieving and display.

Lemon, D.K.; Skorpik, J.R.; Eick, J.L.

1981-01-21

180

Investigation of Phase transformaton Kinetics and Microstructural Evolution in 1045 and 52100 Steel under Large Magnetic Fields  

Microsoft Academic Search

Magnetic fields varying from ambient to 30 tesla were applied during austenite decomposition in 1045 and 52100 steels. Thermal recalescence due to the release of latent heat during austenite decomposition is observed in temperature measurements and provides an estimate of transformation temperatures. Microstructural analysis was performed using and electron microscopy along with microhardness measurements. The shift in transformation temperature was

Roger A Jaramillo; Gerard Michael Ludtka; Roger A Kisner; Don M Nicholson; John B Wilgen; Gail Mackiewicz-Ludtka; N. Bembridge; Peter K. Kalu

2005-01-01

181

Comparison of Pelvic Phased-Array versus Endorectal Coil Magnetic Resonance Imaging at 3 Tesla for Local Staging of Prostate Cancer  

PubMed Central

Purpose Several studies have demonstrated the superiority of endorectal coil magnetic resonance imaging (MRI) over pelvic phased-array coil MRI at 1.5 Tesla for local staging of prostate cancer. However, few have studied which evaluation is more accurate at 3 Tesla MRI. In this study, we compared the accuracy of local staging of prostate cancer using pelvic phased-array coil or endorectal coil MRI at 3 Tesla. Materials and Methods Between January 2005 and May 2010, 151 patients underwent radical prostatectomy. All patients were evaluated with either pelvic phased-array coil or endorectal coil prostate MRI prior to surgery (63 endorectal coils and 88 pelvic phased-array coils). Tumor stage based on MRI was compared with pathologic stage. We calculated the specificity, sensitivity and accuracy of each group in the evaluation of extracapsular extension and seminal vesicle invasion. Results Both endorectal coil and pelvic phased-array coil MRI achieved high specificity, low sensitivity and moderate accuracy for the detection of extracapsular extension and seminal vesicle invasion. There were statistically no differences in specificity, sensitivity and accuracy between the two groups. Conclusion Overall staging accuracy, sensitivity and specificity were not significantly different between endorectal coil and pelvic phased-array coil MRI.

Kim, Bum Soo; Kim, Tae-Hwan; Kwon, Tae Gyun

2012-01-01

182

Inter-observer agreement and diagnostic accuracy of myocardial perfusion reserve quantification by cardiovascular magnetic resonance at 3 Tesla in comparison to quantitative coronary angiography  

PubMed Central

Background Quantification of cardiovascular magnetic resonance (CMR) myocardial perfusion reserve (MPR) at 1.5 Tesla has been shown to correlate to invasive evaluation of coronary artery disease (CAD) and to yield good inter-observer agreement. However, little is known about quantitative adenosine-perfusion CMR at 3 Tesla and no data about inter-observer agreement is available. Aim of our study was to evaluate inter-observer agreement and to assess the diagnostic accuracy in comparison to quantitative coronary angiography (QCA). Methods Fifty-three patients referred for coronary x-ray angiography were previously examined in a 3 Tesla whole-body scanner. Adenosine and rest perfusion CMR were acquired for the quantification of MPR in all segments. Two blinded and independent readers analyzed all images. QCA was performed in case of coronary stenosis. QCA data was used to assess diagnostic accuracy of the MPR measurements. Results Inter-observer agreement was high for all myocardial perfusion territories (??=?0.92 for LAD, ??=?0.93 for CX and RCA perfused segments). Compared to QCA receiver-operating characteristics yielded an area under the curve of 0.78 and 0.73 for RCA, 0.66 and 0.69 for LAD, and 0.52 and 0.53 for LCX perfused territories. Conclusions Inter-observer agreement of MPR quantification at 3 Tesla CMR is very high for all myocardial segments. Diagnostic accuracy in comparison to QCA yields good values for the RCA and LAD perfused territories, but moderate values for the posterior LCX perfused myocardial segments.

2013-01-01

183

The Sun's global magnetic field.  

PubMed

Our present-day understanding of solar and stellar magnetic fields is discussed from both an observational and theoretical viewpoint. To begin with, observations of the Sun's large-scale magnetic field are described, along with recent advances in measuring the spatial distribution of magnetic fields on other stars. Following this, magnetic flux transport models used to simulate photospheric magnetic fields and the wide variety of techniques used to deduce global coronal magnetic fields are considered. The application and comparison of these models to the Sun's open flux, hemispheric pattern of solar filaments and coronal mass ejections are then discussed. Finally, recent developments in the construction of steady-state global magnetohydrodynamic models are considered, along with key areas of future research. PMID:22665897

Mackay, Duncan H

2012-07-13

184

Anisotropic magnetoelastic coupling in iron arsenide superconductors: an x-ray diffraction study in high magnetic field  

NASA Astrophysics Data System (ADS)

We report high-resolution single crystal x-ray diffraction measurements of underdoped Ba(Fe1-xCox)2As2 in pulsed magnetic fields as high as 28 Tesla. Our direct measurements confirm earlier reports of strong and highly anisotropic magnetoelastic coupling in iron arsenides. We observe magnetic field induced de-twinning of orthorhombic samples, and characterize the magnitude of the effect as a function of temperature and field. We identify a range of field and temperature where samples can be 100% de-twinned by magnetic fields less than 30 Tesla. The effect shows a notable insensitivity to SDW ordering, but varies rapidly in the vicinity of the superconducting transition.

Ruff, J. P. C.; Das, R. K.; Islam, Z.; Chu, J.-H.; Kuo, H.-H.; Fisher, I. R.; Nojiri, H.

2012-02-01

185

Microwave Measurements of Coronal Magnetic Field  

Microsoft Academic Search

Magnetic field measurements of the solar corona using microwave observation are reviewed. The solar corona is filled with highly ionised plasma and magnetic field. Moving charged particles interact with magnetic field due to Lorentz force. This results in gyration motion perpendicular to the magnetic field and free motion along the magnetic field. Circularly polarized electro-magnetic waves interact with gyrating electrons

K. Shibasaki

2006-01-01

186

Magnetic Field of Mars  

NASA Astrophysics Data System (ADS)

An internal potential function was created using the averaged MGS vector data released by Mario Acuna for altitudes from 95 to 209 km above the Martian geoid, all longitudes, and latitudes from 87 degrees south to 78 degrees north. Even with some gaps in coverage it is found that a consistent internal potential function can be derived up to spherical harmonic terms of n = 65 using all three components of the data. Weighting the data according to the standard errors given, the model fits to 7-8 nT rms. The energy density spectrum of the harmonics is seen to peak near n = 39 with a value of 7 J/cu km and fall off to less than 0.5 J/cu km below n = 15 and above n = 55. Contour maps of the X (north) component drawn for 100 km altitude show the strongly anomalous region centered at 60 degrees S latitude and 180 degrees longitude, as well as the alternating east-west trends already observed by other groups. Maps of the other components show the anomalous region, but not the east-west trends. The dichotomy is also maintained with much weaker anomalies bounding the northern plains. The results herein as as well as those of others is limited by the sparse low-altitude data coverage as well as the accuracy of the observations in the face of significant spacecraft fields. Work by Connerney and Acuna have mitigated these sources somewhat, but the design of the spacecraft did not lend itself to accurate observations. Recent results reported by David Mitchell of the ER group have shown that the field observations are significantly influenced by the solar wind with the possibility that the present results may only reflect that portion of the internal field visible above 95 km altitude. Depending on the solar wind, the anomaly field may be shielded or distorted to produce spurious results. The spectrum we have obtained so far may only see the stronger portion of the signal with a significant weaker component hidden. Measurements of crustal anomalies versus relative ages of source bodies combined with later absolute dating of Martian geologic units could lead to a quantitative constraint on the thermal history of the planet, i.e. the time when convective dynamo generation ceased in the core. Determination of directions of magnetization of anomaly sources as a function of age combined with the expectation that the Martian dynamo field was roughly aligned with the rotation axis would lead to a means of investigating polar wandering for Mars. Preliminary analysis of two magnetic anomalies in the northern polar region has yielded paleomagnetic pole positions near 50 N, 135 W, about 30 degrees north of Olympus Mons. This location is roughly consistent with the orientation of the planet expected theoretically prior to the formation of the Tharsis region. In the future, more accurate observations of the vector field at the lowest possible altitudes would significantly improve our understanding of Martian thermal history, polar wandering, and upper crustal evolution. Mapping potential resources (e.g., iron-rich source bodies) for future practical use would also be a side benefit. Additional information is contained in the original abstract.

Cain, J. C.; Ferguson, B.; Mozzoni, D.; Hood, L.

2000-07-01

187

Evolution of primordial magnetic fields  

NASA Astrophysics Data System (ADS)

Here we briefly summarise the main phases which determine the dynamical evolution of primordial magnetic fields in the early universe. On the one hand, strong fields undergo damping due to excitations of plasma fluctuations, and, on the other hand, weak magnetic fields will be strongly amplified by the small-scale dynamo in a turbulent environment. We find that, under reasonable assumptions concerning the efficiency of a putative magnetogenesis era during cosmic phase transitions, surprisingly strong magnetic fields 10-13-10-11 G on comparatively small scales 100 pc -10 kpc may survive to prior to structure formation. Additionally, any weak magnetic field will be exponentially amplified during the collapse of the first minihalos until they reach equipartition with the turbulent kinetic energy. Hence, we argue that it seems possible for cluster magnetic fields to be entirely of primordial origin.

Banerjee, R.

2013-06-01

188

A proposal for the surface roughness wake field measurement at the TESLA Test Facility  

Microsoft Academic Search

The wake fields due to the rough surface of the vacuum chamber have a major influence on the beam dynamics in linear colliders and free electron lasers. These wake fields mainly consists of the fundamental tube mode, modified by the rough boundary condition, which decreases its phase velocity to the speed of light. Its wavelength is proportional to the square

A. Novokhatsky; M. Timm; T. Weiland; H. Schlarb

1999-01-01

189

Cosmic Magnetic Fields - An Overview  

NASA Astrophysics Data System (ADS)

Magnetic fields have been known in antiquity. Aristotle attributes the first of what could be called a scientific discussion on magnetism to Thales, who lived from about 625 BC. In China “magnetic carts” were in use to help the Emperor in his journeys of inspection. Plinius comments that in the Asia Minor province of Magnesia shepherds' staffs get at times “glued” to a stone, a alodestone. In Europe the magnetic compass came through the Arab sailors who met the Portuguese explorers. The first scientific treatise on magnetism, “De Magnete”, was published by William Gilbert who in 1600 described his experiments and suggested that the Earth was a huge magnet. Johannes Kepler was a correspondent of Gilbert and at times suggested that planetary motion was due to magnetic forces. Alas, this concept was demolished by Isaac Newton,who seeing the falling apple decided that gravity was enough. This concept of dealing with gravitational forces only remains en vogue even today. The explanations why magnetic effects must be neglected go from “magnetic energy is only 1% of gravitation” to “magnetic fields only complicate the beautiful computer solutions”. What is disregarded is the fact that magnetic effects are very directional(not omni-directional as gravity) and also the fact that magnetic fields are seen every where in our cosmic universe.

Wielebinski, Richard; Beck, Rainer

190

Measurements of magnetic field alignment  

SciTech Connect

The procedure for installing Superconducting Super Collider (SSC) dipoles in their respective cryostats involves aligning the average direction of their field with the vertical to an accuracy of 0.5 mrad. The equipment developed for carrying on these measurements is described and the measurements performed on the first few prototypes SSC magnets are presented. The field angle as a function of position in these 16.6 m long magnets is a characteristic of the individual magnet with possible feedback information to its manufacturing procedure. A comparison of this vertical alignment characteristic with a magnetic field intensity (by NMR) characteristic for one of the prototypes is also presented. 5 refs., 7 figs.

Kuchnir, M.; Schmidt, E.E.

1987-11-06

191

Origin of cosmic magnetic fields.  

PubMed

We calculate, in the free Maxwell theory, the renormalized quantum vacuum expectation value of the two-point magnetic correlation function in de Sitter inflation. We find that quantum magnetic fluctuations remain constant during inflation instead of being washed out adiabatically, as usually assumed in the literature. The quantum-to-classical transition of super-Hubble magnetic modes during inflation allow us to treat the magnetic field classically after reheating, when it is coupled to the primeval plasma. The actual magnetic field is scale independent and has an intensity of few×10(-12)??G if the energy scale of inflation is few×10(16)??GeV. Such a field accounts for galactic and galaxy cluster magnetic fields. PMID:23971556

Campanelli, Leonardo

2013-08-06

192

Free Breathing Single Navigator Gated Cine Cardiac Magnetic Resonance at 3 Tesla: Feasibility Study in Patients  

PubMed Central

Background Cardiac magnetic resonance imaging (CMRI) is an important tool to assess cardiac function. However, one of the limitations of CMRI is the need for frequent breath holding steps. This may be inconvenient to some patients and limit the use of this modality in patients unable to cooperate because of cognitive reasons or, physically incapable of perform the required breath-holding steps. The purpose of this study is to overcome intrinsic timing and computation limitations of dual-navigator cine imaging and demonstrate the feasibility of free-breathing (FB) cine cardiac left ventricular function with a single respiratory navigator gating at 3T. Results Eight participants underwent cine CMRI with both the conventional 2D cine BH and FB navigator gated technique. Scan parameters were identical, except in the FB technique, in which a respiratory navigator and only two signal averages were used. Images were scored for quality. Left ventricular end-systolic volume (ESV) and end-diastolic volume (EDV) were calculated. The difference in the ESV and EDV assessed by the BH, and FB were not statistically significant (P-value =0.9, and 0.2) respectively. There was good agreement between LV volumes with the limits of agreement (±2SD = ±22.36ml). Image quality score was not significantly different (p-value =0.76). Conclusion FB cine imaging utilizing a single respiratory navigator gating technique is comparable to conventional BH techniques in both qualitative and quantitative imaging measures. Therefore the FB cine technique can be used as an alternative for children and patients who are unable to hold their breath.

Abd-Elmoniem, Khaled Z.; Obele, Chika C.; Sibley, Christopher T.; Matta, Jatin R.; Pettigrew, Roderic I.; Gharib, Ahmed M.

2011-01-01

193

Static Magnetic Field Exposure Reproduces Cellular Effects of the Parkinson's Disease Drug Candidate ZM241385  

Microsoft Academic Search

BackgroundThis study was inspired by coalescing evidence that magnetic therapy may be a viable treatment option for certain diseases. This premise is based on the ability of moderate strength fields (i.e., 0.1 to 1 Tesla) to alter the biophysical properties of lipid bilayers and in turn modulate cellular signaling pathways. In particular, previous results from our laboratory (Wang et al.,

Zhiyun Wang; Pao-Lin Che; Jian Du; Barbara Ha; Kevin J. Yarema; Howard E. Gendelman

2010-01-01

194

Feasibility Study of Nb3Al Rutherford Cable for High Field Accelerator Magnet Application  

Microsoft Academic Search

Feasibility study of Cu stabilized Nb3Al strand and Rutherford cable for the application to high field accelerator magnets are being done at Fermilab in collaboration with NIMS. The Nb3Al strand, which was developed and manufactured at NIMS in Japan, has a non-copper Jc of about 844 A\\/mm2 at 15 Tesla at 4.2 K, a copper content of 50%, and filament

R. Yamada; A. Kikuchi; G. Ambrosio; N. Andreev; E. Barzi; C. Cooper; S. Feher; V. V. Kashikin; M. Lamm; I. Novitski; T. Takeuchi; M. Tartaglia; D. Turrioni; A. P. Verweij; M. Wake; G. Willering; A. V. Zlobin

2007-01-01

195

High-Current Vacuum Arc in a Strong Axial Magnetic Field  

Microsoft Academic Search

The high-current vacuum arcs (HCVA) with high average current densities (J0 les 3 kA\\/cm2) in strong axial magnetic fields (AMFs) Bn les 1.2 T were studied. The typical V-shape of Volt-Tesla characteristic (VTC) has been shown to retain in strong AMF and at raising the current density, the quantitative parameters change, though. The nature and causes of the changes are

Alexey M. Chaly; Alexander A. Logatchev; Konstantin K. Zabello; Sergey M. Shkol'nik

2007-01-01

196

Accuracy and stability of measuring GABA, glutamate, and glutamine by proton magnetic resonance spectroscopy: A phantom study at 4 Tesla  

Microsoft Academic Search

Proton MRS phantom experiments conducted at 4 Tesla allow for an accurate assessment of measurement performance of several MRS techniques in their ability to detect and quantify the coupled resonances of GABA, glutamate and glutamine. In this work, we present a series of phantoms experiments and simulations in order to quantitatively determine which MRS method simultaneously provides the most stable

Michael E. Henry; Tara L. Lauriat; Meghan Shanahan; Perry F. Renshaw; J. Eric Jensen

2011-01-01

197

Magnetic field in a finite toroidal domain  

SciTech Connect

The magnetic field structure in a domain surrounded by a closed toroidal magnetic surface is analyzed. It is shown that ergodization of magnetic field lines is possible even in a regular field configuration (with nonvanishing toroidal component). A unified approach is used to describe magnetic fields with nested toroidal (possibly asymmetric) flux surfaces, magnetic islands, and ergodic field lines.

Ilgisonis, V. I.; Skovoroda, A. A., E-mail: skovorod@nfi.kiae.r [Russian Research Centre Kurchatov Institute (Russian Federation)

2010-05-15

198

A simulation study of a method to reduce positron annihilation spread distributions using a strong magnetic field in positron emission tomography  

SciTech Connect

The positron trajectories have been three-dimensionally simulated using a Monte-Carlo method under various strength of the magnetic field. More than 5 tesla of the field confined the positrons effectively, resulting in increase of the probability of the annihilation within a limited small region, hence the higher spatial resolution in positron emission tomography.

Iida, H.; Kanno, I.; Miura, S.; Murakami, M.; Takahashi, V.; Kemura, K.

1986-02-01

199

Magnetic fields and scintillator performance  

SciTech Connect

Experimental data have shown that the light output of a scintillator depends on the magnitude of the externally applied magnetic fields, and that this variation can affect the calorimeter calibration and possibly resolution. The goal of the measurements presented here is to study the light yield of scintillators in high magnetic fields in conditions that are similar to those anticipated for the LHC CMS detector. Two independent measurements were performed, the first at Fermilab and the second at the National High Magnetic Field Laboratory at Florida State University.

Green, D.; Ronzhin, A. [Fermi National Accelerator Lab., Batavia, IL (United States); Hagopian, V. [Florida State Univ., Tallahasse, FL (United States)

1995-06-01

200

Photoluminescence studies of modulation doped coupled double quantum wells in magnetic fields  

SciTech Connect

We have studied the photoluminescence spectra of a series of mudulation doped couple double quantum well structures in parallel and perpendicular magnetic fields to 62 tesla at 4K and 77K, for B{parallel}a, the spectra display distinct Landau level transitions which show anti-crossing with the e1-hh1 exciton. At high fields, the lowest conduction band-valence exciton approaches the extrapolated 0- 0 Landau level. About 25 Tesla, there is valence band mixing of the e1-lh1, e1-hh2, e1-hh1 transitions. The spectral peaks display a diamagnetic shift in low in-plane magnetic fields which become linear in high fields. At magnetic fields beyond 40T, spin splitting is observed for both B{parallel}z and B{perpendicular} geometries. The partial energy gap discovered in conductance measurements in in-plane fields was not conclusively observed using photoluminescence spectroscopy, although anomalies in the energy dependence of the lowest level with magnetic field were evident at similar field values.

Kim, Y.; Perry, C.H. [Northeastern Univ., Boston, MA (United States)]|[Los Alamos National Lab., NM (United States); Simmons, J.A.; Klem, J.F.; Jones, E.D. [Sandia National Labs., Albuquerque, NM (United States); Rickel, D.G. [Los Alamos National Lab., NM (United States)

1996-09-01

201

Magnetic field structure of Mercury  

NASA Astrophysics Data System (ADS)

Recently planet Mercury—an unexplored territory in our solar system—has been of much interest to the scientific community due to recent flybys of the spacecraft MESSENGER that discovered its intrinsic stationary and large-scale dipole like magnetic field structure with an intensity of ˜300nT confirming Mariner 10 observations. In the present study, with the observed constraint of Mercury's atmospheric magnetic field structure, internal magnetic field structure is modeled as a solution of magnetic diffusion equation. In this study, Mercury's internal structure mainly consists of a stable stratified fluid core and the convective mantle. For simplicity, magnetic diffusivity in both parts of the structure is considered to be uniform and constant with a value represented by a suitable averages. It is further assumed that vigorous convection in the mantle disposes of the electric currents leading to a very high diffusivity in that region. Thus, in order to satisfy observed atmospheric magnetic field structure, Mercury's most likely magnetic field structure consists of a solution of MHD diffusion equation in the core and a combined multipolar (dipole and quadrupole like magnetic field structures embedded in the uniform field) solution of a current free like magnetic field structure in the mantle and in the atmosphere. With imposition of appropriate boundary conditions at the core-mantle boundary for the first two diffusion eigen modes, in order to satisfy the observed field structure, present study puts the constraint on Mercury's core radius to be ˜2000km.From the estimated magnetic diffusivity and the core radius, it is also possible to estimate the two diffusion eigen modes with their diffusion time scales of ˜8.6 and 3.7 billion years respectively suggesting that the planet inherits its present-day magnetic field structure from the solar Nebula. It is proposed that permanency of such a large-scale magnetic field structure of the planet is attained during Mercury's early evolutionary history of heavy bombardments by the asteroids and comets supporting the giant impact hypothesis for the formation of Mercury.

Hiremath, K. M.

2012-04-01

202

Cosmic Magnetic Fields – An Overview  

Microsoft Academic Search

\\u000a Magnetic fields have been known in antiquity. Aristotle attributes the first of what could be called a scientific discussion\\u000a on magnetism to Thales, who lived from about 625 BC. In China “magnetic carts” were in use to help the Emperor in his journeys\\u000a of inspection. Plinius comments that in the Asia Minor province of Magnesia shepherds’ staffs get at times

Richard Wielebinski; Rainer Beck

2010-01-01

203

Capability of Identifying Red Nuclei in Different Pulse Sequences of Regular 1.5Tesla Magnetic Resonance Images  

Microsoft Academic Search

Objective: To investigate the optimal pulse sequences of commonly used 1.5-tesla MRI for identifying the red nucleus (RN) to aid targeting of the subthalamic nucleus (STN). Methods: Forty-six healthy adults were enrolled for this prospective study. All subjects underwent MR studies of 5 sequences: diffusion-weighted imaging (DWI), T1-weighted fluid-attenuated inversion recovery (T1IR), fast spin echo T2-weighted imaging (FSE-T2WI), T2-weighted fluid-attenuated

Shang-Ming Chiou; Yu-Chien Lo; Hung-Lin Lin

2012-01-01

204

Measurements of Rayleigh-Taylor-Induced Magnetic Fields in the Linear and Non-linear Regimes  

NASA Astrophysics Data System (ADS)

Magnetic fields are generated in plasmas by the Biermann-battery, or thermoelectric, source driven by non-collinear temperature and density gradients. The ablation front in laser-irradiated targets is susceptible to Rayleigh-Taylor (RT) growth that produces gradients capable of generating magnetic fields. Measurements of these RT-induced magnetic fields in planar foils have been made using a combination of x-ray and monoenergetic-proton radiography techniques. At a perturbation wavelength of 120 ?m, proton radiographs indicate an increase of the magnetic-field strength from ˜1 to ˜10 Tesla during the linear growth phase. A characteristic change in field structure was observed later in time for irradiated foils of different initial surface perturbations. Proton radiographs show a regular cellular configuration initiated at the same time during the drive, independent of the initial foil conditions. This non-linear behavior has been experimentally investigated and the source of these characteristic features will be discussed.

Manuel, Mario

2012-10-01

205

Magnetic Pumping in Spatially Inhomogeneous Magnetic Fields.  

National Technical Information Service (NTIS)

Magnetic pumping by major-radius oscillation of a toroidal plasma can be made more practical by introducing a major-radius range within which the vertical-field gradient is sufficiently great so that major-radius perturbations are marginally stable or, be...

H. P. Furth R. A. Ellis

1972-01-01

206

Simulations of Photospheric Magnetic Fields  

Microsoft Academic Search

We have run plots of artificial data, which mimic solar magnetograms, through standard algorithms to critique several results reported in the literature. In studying correlation algorithms, we show that the differences in the profiles for the differential rotation of the photospheric magnetic field stem from different methods of averaging. We verify that the lifetimes of small magnetic features, or of

A. A. Smith; H. B. Snodgrass

1999-01-01

207

Measuring Earth's Magnetic Field Simply.  

ERIC Educational Resources Information Center

|Describes a method for measuring the earth's magnetic field using an empty toilet paper tube, copper wire, clear tape, a battery, a linear variable resistor, a small compass, cardboard, a protractor, and an ammeter. (WRM)|

Stewart, Gay B.

2000-01-01

208

Magnetic Field Waves at Uranus.  

National Technical Information Service (NTIS)

The proposed research efforts funded by the UDAP grant to the BRI involve the study of magnetic field waves associated with the Uranian bow shock. This is a collaborative venture bringing together investigators at the BRI, Southwest Research Institute (Sw...

C. W. Smith M. L. Goldstein R. P. Lepping W. H. Mish H. K. Wong

1991-01-01

209

Thermometers in Low Magnetic Fields  

Microsoft Academic Search

In this article the effect of low amplitude DC magnetic fields on different types of thermometers is discussed. By means of\\u000a a precision water-cooled electromagnet, the effect of a magnetic field on platinum resistance thermometers, thermistors, and\\u000a type T, J, and K thermocouples was investigated, while thermometers were thermally stabilized in thermostatic baths. Four\\u000a different baths were used for temperatures

G. Gersak; S. Begus

2010-01-01

210

Feasibility study of Nb3Al Rutherford cable for high field accelerator magnet application  

SciTech Connect

Feasibility study of Cu stabilized Nb{sub 3}Al strand and Rutherford cable for the application to high field accelerator magnets are being done at Fermilab in collaboration with NIMS. The Nb{sub 3}Al strand, which was developed and manufactured at NIMS in Japan, has a non-copper Jc of about 844 A/mm{sup 2} at 15 Tesla at 4.2 K, a copper content of 50%, and filament size of about 50 microns. Rutherford cables with 27 Nb{sub 3}Al strands of 1.03 mm diameter were fabricated and tested. Quench tests on a short cable were done to study its stability with only its self field, utilizing a high current transformer. A pair of 2 meter long Nb{sub 3}Al cables was tested extensively at CERN at 4.3 and 1.9 K up to 11 Tesla including its self field with a high transport current of 20.2 kA. In the low field test we observed instability near splices and in the central region. This is related to the flux-jump like behavior, because of excessive amount of Nb in the Nb{sub 3}Al strand. There is possibility that the Nb in Nb{sub 3}Al can cause instability below 2 Tesla field regions. We need further investigation on this problem. Above 8 Tesla, we observed quenches near the critical surface at fast ramp rate from 1000 to 3000 A/sec, with quench velocity over 100 m/sec. A small racetrack magnet was made using a 14 m of Rutherford cable and successfully tested up to 21.8 kA, corresponding to 8.7 T.

Yamada, R.; /Fermilab; Kikuchi, A.; /Tsukuba Magnet Lab.; Ambrosio, G.; Andreev, N.; Barzi, E.; Cooper, C.; Feher, S.; Kashikhin, V.V.; Lamm, M.; Novitski, I.; /Fermilab; Takeuchi, T.; /Tsukuba Magnet Lab.; Tartaglia, M.; Turrioni, D.; /Fermilab; Verweij, A.P.; /CERN; Wake, M.; Willering, G; /Tsukuba Magnet Lab.; Zlobin, A.V.; /Fermilab

2006-08-01

211

Theorem on magnet fringe field  

SciTech Connect

Transverse particle motion in particle accelerators is governed almost totally by non-solenoidal magnets for which the body magnetic field can be expressed as a series expansion of the normal (b{sub n}) and skew (a{sub n}) multipoles, B{sub y} + iB{sub x} = {summation}(b{sub n} + ia{sub n})(x + iy){sup n}, where x, y, and z denote horizontal, vertical, and longitudinal (along the magnet) coordinates. Since the magnet length L is necessarily finite, deflections are actually proportional to ``field integrals`` such as {bar B}L {equivalent_to} {integral} B(x,y,z)dz where the integration range starts well before the magnet and ends well after it. For {bar a}{sub n}, {bar b}{sub n}, {bar B}{sub x}, and {bar B}{sub y} defined this way, the same expansion Eq. 1 is valid and the ``standard`` approximation is to neglect any deflections not described by this expansion, in spite of the fact that Maxwell`s equations demand the presence of longitudinal field components at the magnet ends. The purpose of this note is to provide a semi-quantitative estimate of the importance of {vert_bar}{Delta}p{sub {proportional_to}}{vert_bar}, the transverse deflection produced by the ion-gitudinal component of the fringe field at one magnet end relative to {vert_bar}{Delta}p{sub 0}{vert_bar}, the total deflection produced by passage through the whole magnet. To emphasize the generality and simplicity of the result it is given in the form of a theorem. The essence of the proof is an evaluation of the contribution of the longitudinal field B{sub x} from the vicinity of one magnet end since, along a path parallel to the magnet axis such as path BC.

Wei, Jie [Brookhaven National Lab., Upton, NY (United States); Talman, R. [Cornell Univ., Ithaca, NY (United States). Lab. of Nuclear Studies

1995-12-31

212

Magnetostriction and magnetic texture to 100.75 Tesla in frustrated SrCu2(BO3)2  

NASA Astrophysics Data System (ADS)

SrCu2(BO3)2, a spin-1/2 Heisenberg antiferromagnet in the archetypical Shastry-Sutherland lattice, exhibits a rich spectrum of magnetization plateaus and stripe-like magnetic textures in applied fields. The structure of these plateaus is still highly controversial due to the intrinsic complexity associated with frustration and competing length scales. We discover magnetic textures in SrCu2(BO3)2 via FBG-optical fiber based magnetostriction and magnetocaloric measurements in fields up to 100.75 T. In addition to observing low-field fine structure with unprecedented resolution, the data also reveal lattice responses at 73.6 T and at 82 T that we attribute, using a controlled density matrix renormalization group approach, to a unanticipated 2/5 plateau and to the long-predicted 1/2 plateau. Research supported by NSF, State of Florida and the US DOE Basic Energy Science project ``Science at 100T.'' ref: M. Jaime et al., PNAS 109, 120404 (2012).

Jaime, M.; Daou, R.; Crooker, S. A.; Weickert, F.; Uchida, A.; Feiguin, A. E.; Batista, C. D.; Dabkowska, H. A.; Gaulin, B. D.

2013-03-01

213

Study on technology of high-frequency pulsed magnetic field strength measurement.  

PubMed

High-frequency transient weak magnetic field is always involved in researches about biomedical engineering field while common magnetic-field sensors cannot work properly at frequencies as high as MHz. To measure the value of MHz-level weak pulsed magnetic-field strength accurately, this paper designs a measurement and calibration method for pulsed magnetic-field. In this paper, a device made of Nonferromagnetic material was independently designed and applied to pulsed magnetic field measurement. It held an accurately relative position between the magnetic field generating coil and the detecting coil. By applying a sinusoidal pulse to the generator, collecting the induced electromotive force of the detector, the final magnetic field strength was worked out through algorithms written in Matlab according to Faraday's Law. Experiments were carried out for measurement and calibration. Experiments showed that, under good stability and consistency, accurate measurement of magnetic-field strength of a sinepulse magnetic-field can be achieved, with frequency at 0.5, 1, 1.5 MHz and strength level at micro-Tesla. Calibration results carried out a measuring relative error about 2.5%. PMID:23366106

Chen, Yi-Mei; Liu, Zhi-Peng; Yin, Tao

2012-01-01

214

Neutron Scattering at Highest Magnetic Fields at the Helmholtz Centre Berlin  

NASA Astrophysics Data System (ADS)

The Helmholtz Centre Berlin (HZB), formerly Hahn-Meitner Institute is a user facility for the study of structure and dynamics with neutrons and synchrotron radiation with special emphasis on experiments under extreme conditions. Neutron scattering is uniquely suited to study magnetic properties on a microscopic length scale, because neutrons have comparable wavelengths and, due to their magnetic moment, they interact with the atomic magnetic moments. At HZB a dedicated instrument for neutron scattering at extreme fields is under construction, the Extreme Environment Diffractometer ExED. It is projected according to the “time-of-flight” principle for elastic and inelastic neutron scattering and for the special geometric constraints of analysing samples in a high field magnet. The new magnet will not only allow for novel experiments, it will be at the forefront of development in magnet technology itself. The design of the magnet will follow the Series Connected Hybrid System Technology (SCH) developed at the National High Magnetic Field Laboratory (NHMFL) in Tallahassee, Florida. To compromise between the needs of the magnet design for highest fields and the concept of the neutron instrument, the magnetic field will be generated by means of a coned solenoid with horizontal field orientation. By using resistive insert coils, which are mounted in the room temperature bore of a superconducting cable-in-conduit (CIC) magnet, fields above 30 Tesla can be obtained in a geometry optimised for the demands of neutron scattering.

Smeibidl, P.; Tennant, A.; Ehmler, H.; Bird, M.

2010-04-01

215

Suppression of Ultracold Neutron Depolarization on Material Surfaces with Magnetic Holding Fields  

NASA Astrophysics Data System (ADS)

The depolarization of Ultracold Neutrons(UCN) was measured within 1-m long, 2 3/4" diameter electropolished copper, diamondlike carbon-coated copper, and stainless steel guide tubes as a function of magnetic holding field. The UCN were trapped between a 6 Tesla solenoidal magnetic field and a 3/8" copper aperture. A series of Helmholtz coils produced a magnetic field over the length of the test guide of either 10 or 250 Gauss. The surface depolarization was observed to be suppressed at the higher holding field on the measured copper guides. These measurements will aid in the determination of the upper limit of depolarization of UCN in the UCN beta asymmetry measurement at LANL (UCNA) and in understanding the mechanisms for depolarization in non-magnetic guides.

Rios, Raymond

2009-05-01

216

High field magnetic resonance  

US Patent & Trademark Office Database

A magnetic resonance system is disclosed. The system includes a transceiver having a multichannel receiver and a multichannel transmitter, where each channel of the transmitter is configured for independent selection of frequency, phase, time, space, and magnitude, and each channel of the receiver is configured for independent selection of space, time, frequency, phase and gain. The system also includes a magnetic resonance coil having a plurality of current elements, with each element coupled in one to one relation with a channel of the receiver and a channel of the transmitter. The system further includes a processor coupled to the transceiver, such that the processor is configured to execute instructions to control a current in each element and to perform a non-linear algorithm to shim the coil.

2010-09-21

217

Magnetic-field-induced dose effects in MR-guided radiotherapy systems: dependence on the magnetic field strength  

NASA Astrophysics Data System (ADS)

Several institutes are currently working on the development of a radiotherapy treatment system with online MR imaging (MRI) modality. The main difference between their designs is the magnetic field strength of the MRI system. While we have chosen a 1.5 Tesla (T) magnetic field strength, the Cross Cancer Institute in Edmonton will be using a 0.2 T MRI scanner and the company Viewray aims to use 0.3 T. The magnetic field strength will affect the severity of magnetic field dose effects, such as the electron return effect (ERE): considerable dose increase at tissue air boundaries due to returning electrons. This paper has investigated how the ERE dose increase depends on the magnetic field strength. Therefore, four situations where the ERE occurs have been simulated: ERE at the distal side of the beam, the lateral ERE, ERE in cylindrical air cavities and ERE in the lungs. The magnetic field comparison values were 0.2, 0.75, 1.5 and 3 T. Results show that, in general, magnetic field dose effects are reduced at lower magnetic field strengths. At the distal side, the ERE dose increase is largest for B = 0.75 T and depends on the irradiation field size for B = 0.2 T. The lateral ERE is strongest for B = 3 T but shows no effect for B = 0.2 T. Around cylindrical air cavities, dose inhomogeneities disappear if the radius of the cavity becomes small relative to the in-air radius of the secondary electron trajectories. At larger cavities (r > 1 cm), dose inhomogeneities exist for all magnetic field strengths. In water-lung-water phantoms, the ERE dose increase takes place at the water-lung transition and the dose decreases at the lung-water transition, but these effects are minimal for B = 0.2 T. These results will contribute to evaluating the trade-off between magnetic field dose effects and image quality of MR-guided radiotherapy systems.

Raaijmakers, A. J. E.; Raaymakers, B. W.; Lagendijk, J. J. W.

2008-02-01

218

Increase in the mitotic recombination frequency in Drosophila melanogaster by magnetic field exposure and its suppression by vitamin E supplement  

Microsoft Academic Search

In order to estimate possible mutagenic and\\/or carcinogenic activity of electromagnetic fields, wing spot tests were performed in Drosophila melanogaster. A DNA repair defective mutation mei-41D5 was introduced into the conventional mwh\\/flr test system to enhance mutant spot frequency. Third instar larvae were exposed to a 5-Tesla static magnetic field for 24 h, and after molting, wings were examined under

Takao Koana; Mikie O Okada; Masateru Ikehata; Masayoshi Nakagawa

1997-01-01

219

MAGNETIC FIELD MEASUREMENTS FOR FAST-CHANGING MAGNETIC FIELDS.  

SciTech Connect

Several recent applications for fast ramped magnets have been found that require rapid measurement of the field quality during the ramp. (In one instance, accelerator dipoles will be ramped at 1 T/sec, with measurements needed to the accuracy typically required for accelerators.) We have built and tested a new type of magnetic field measuring system to meet this need. The system consists of 16 stationary pickup windings mounted on a cylinder. The signals induced in the windings in a changing magnetic field are sampled and analyzed to obtain the field harmonics. To minimize costs, printed circuit boards were used for the pickup windings and a combination of amplifiers and ADPs used for the voltage readout system. New software was developed for the analysis. Magnetic field measurements of a model dipole developed for the SIS200 accelerator at GSI are presented. The measurements are needed to insure that eddy currents induced by the fast ramps do not impact the field quality needed for successful accelerator operation.

JAIN, A.; ESCALLIER, J.; GANETIS, G.; LOUIE, W.; MARONE, A.; THOMAS. R.; WANDERER, P.

2004-10-03

220

Magnetic fields in neutron stars  

NASA Astrophysics Data System (ADS)

This work aims at studying how magnetic fields affect the observational properties and the long-term evolution of isolated neutron stars, which are the strongest magnets in the universe. The extreme physical conditions met inside these astronomical sources complicate their theoretical study, but, thanks to the increasing wealth of radio and X-ray data, great advances have been made over the last years. A neutron star is surrounded by magnetized plasma, the so-called magnetosphere. Modeling its global configuration is important to understand the observational properties of the most magnetized neutron stars, magnetars. On the other hand, magnetic fields in the interior are thought to evolve on long time-scales, from thousands to millions of years. The magnetic evolution is coupled to the thermal one, which has been the subject of study in the last decades. An important part of this thesis presents the state-of-the-art of the magneto-thermal evolution models of neutron stars during the first million of years, studied by means of detailed simulations. The numerical code here described is the first one to consistently consider the coupling of magnetic field and temperature, with the inclusion of both the Ohmic dissipation and the Hall drift in the crust.

Viganò, Daniele

2013-09-01

221

Measurement of the magnetic field of resin-impregnated bulk superconductor annuli  

NASA Astrophysics Data System (ADS)

Large single-grain bulk RE-Ba-Cu-O (RE: rare earth elements) superconductors can trap large fields exceeding several teslas and thus can function as very strong quasi-permanent magnets. We have found that the resin can penetrate into a bulk superconductor, when the sample was immersed in molten resin. Hence, resin impregnation was effective in improving mechanical properties. Three bulk superconductors‘ annuli with resin impregnation, each 50-mm i.d. and 80-mm o.d. was built and energized, by a field-cool method, to generate, in a bath of liquid nitrogen, a persistent trapped field of 1.62 T.

Tomita, Masaru; Fukumoto, Yusuke; Suzuki, Kenji; Iwasa, Yukikazu

2010-12-01

222

Black holes and magnetic fields  

NASA Astrophysics Data System (ADS)

The exact mechanism of formation of highly relativistic jets from galactic nuclei and microquasars remains unknown but most accepted models involve a central black hole and a strong external magnetic field. This idea is based on assumption that the black hole rotates and the magnetic field threads its horizon. Magnetic torques provide a link between the hole and the surrounding plasma which then becomes accelerated. We first review our work on black holes immersed in external stationary vacuum (electro)magnetic fields in both test-field approximation and within exact general-relativistic solutions. A special attention will be paid to the Meissner-type effect of the expulsion of the flux of external axisymmetric stationary fields across rotating (or charged) black holes when they approach extremal states. This is a potential threat to any electromagnetic mechanism launching the jets at the account of black-hole rotation because it inhibits the extraction of black-hole rotational energy. We show that the otherwise very useful "membrane viewpoint of black holes" advocated by Thorne, Price and Macdonald does not represent an adequate formalism in the context of the field expulsion from extreme black holes. After briefly summarizing the results for black holes in magnetic fields in higher dimensions - the expulsion of stationary axisymmetric fields was demonstrated to occur also for extremal black-hole solutions in string theory and Kaluza-Klein theory - we shall review astrophysically relevant axisymmetric numerical simulations reported recently by Gammie, Komissarov, Krolik and others. Although the field expulsion has not yet been observed in these time-dependent simulations, they may still be too far away from the extreme limit at which the black-hole Meissner effect should show up. We mention some open problems which, according to our view, deserve further investigation.

Bi?ák, Ji?í; Karas, Vladimír; Ledvinka, Tomáš

2007-04-01

223

Simulations of magnetic fields in the cosmos  

Microsoft Academic Search

The origin of large-scale magnetic fields in clusters of galaxies remains controversial. The intergalactic magnetic field within filaments should be less polluted by magnetised outflows from active galaxies than magnetic fields in clusters. Therefore, filaments may be a better laboratory to study magnetic field amplification by structure formation than galaxy clusters, which typically host many more active galaxies. We present

M. Brüggen; M. Hoeft

2006-01-01

224

Indoor localization using magnetic fields  

NASA Astrophysics Data System (ADS)

Indoor localization consists of locating oneself inside new buildings. GPS does not work indoors due to multipath reflection and signal blockage. WiFi based systems assume ubiquitous availability and infrastructure based systems require expensive installations, hence making indoor localization an open problem. This dissertation consists of solving the problem of indoor localization by thoroughly exploiting the indoor ambient magnetic fields comprising mainly of disturbances termed as anomalies in the Earth's magnetic field caused by pillars, doors and elevators in hallways which are ferromagnetic in nature. By observing uniqueness in magnetic signatures collected from different campus buildings, the work presents the identification of landmarks and guideposts from these signatures and further develops magnetic maps of buildings - all of which can be used to locate and navigate people indoors. To understand the reason behind these anomalies, first a comparison between the measured and model generated Earth's magnetic field is made, verifying the presence of a constant field without any disturbances. Then by modeling the magnetic field behavior of different pillars such as steel reinforced concrete, solid steel, and other structures like doors and elevators, the interaction of the Earth's field with the ferromagnetic fields is described thereby explaining the causes of the uniqueness in the signatures that comprise these disturbances. Next, by employing the dynamic time warping algorithm to account for time differences in signatures obtained from users walking at different speeds, an indoor localization application capable of classifying locations using the magnetic signatures is developed solely on the smart phone. The application required users to walk short distances of 3-6 m anywhere in hallway to be located with accuracies of 80-99%. The classification framework was further validated with over 90% accuracies using model generated magnetic signatures representing hallways with different kinds of pillars, doors and elevators. All in all, this dissertation contributes the following: 1) provides a framework for understanding the presence of ambient magnetic fields indoors and utilizing them to solve the indoor localization problem; 2) develops an application that is independent of the user and the smart phones and 3) requires no other infrastructure since it is deployed on a device that encapsulates the sensing, computing and inferring functionalities, thereby making it a novel contribution to the mobile and pervasive computing domain.

Pathapati Subbu, Kalyan Sasidhar

225

Low frequency AC losses in multi filamentary superconductors up to 15 Tesla  

SciTech Connect

Low frequency (1 Hz) ac losses were measured in a variety of A15 superconducting wires having different fiber geometries. Field modulations ofless than or equal to 1 tesla were superimposed on a fixed background field up to 15 tesla. Losses were measured for Nb/sub 3/Sn in continuous fiber, modified jelly-roll, In Situ, and powder metallurgy processed materials, and for Nb/sub 3/Al powder metallurgy processed materials. The results are compared with dc magnetization measurements. The losses are purely hysteretic at these low frequencies, scale with J /SUB c/ (above about 3 tesla), and are reduced substantially by twisting for all the materials. The lowest losses are observed for the Nb/sub 3/Al wires.

Orlando, T.; Braun, C.; Foner, S.; Schwartz, B.; Zieba, A.

1983-05-01

226

New Diagnostic Tool for Far Lateral Lumbar Disc Herniation : The Clinical Usefulness of 3-Tesla Magnetic Resonance Myelography Comparing with the Discography CT  

PubMed Central

Objective To prospectively assess the diagnostic and clinical value of a new technique (3-tesla magnetic resonance myelography, 3T MRM) as compared to computed tomographic discography (disco-CT) in patients with far lateral disc herniation. Methods We evaluated 3T MRM and disco-CT of 25 patients, whom we suspected of suffering from far lateral disc herniation. Using an assessment scale, 4 observers examined independently both 3T MRM and disco-CT images. We analyzed observer agreement and the accentuation of each image. Results We found complete matching, and observer agreement, between high resolution images of 3T MRM and disco-CT for diagnosing far lateral disc herniation. Conclusion We think noninvasive 3T MRM is an appropriate diagnostic tool for far lateral disc herniation as compared to disco-CT.

Kim, Duk-Gyu; Park, Jung-Soo

2012-01-01

227

High-magnetic-field-tuned insulating state in single-crystal BaIrO3  

NASA Astrophysics Data System (ADS)

BaIrO3 is a novel magnetic insulator associated with the spin-orbit interaction. It magnetically orders at TC=182 K, with an extremely small saturation moment MS< 0.03 ?B/Ir. Application of high magnetic field up to 35 Tesla results in an exotic behavior characterized by: (1) a drastic rise in electrical resistivity by 250% at low temperatures and (2) highly anisotropic magnetoresistivity with unusually strong hysteretic behavior. Our first principle calculations suggest a band structure near Fermi surface extremely sensitive to slight changes in lattice parameters, which captures underlying physical properties observed experimentally. The giant positive magnetoresistivity along with the extremely small saturation moment signals a delicate interplay between the structural and the electronic degrees of freedom in this compound. The electrical transport and magnetic properties in high magnetic field will be presented and discussed.

Korneta, O. B.; Qi, T. F.; Li, L.; Butrouna, K.; Cao, G.; Choi, E. S.; Wan, Xiangang

2013-03-01

228

HMI Magnetic Field Data Products  

NASA Astrophysics Data System (ADS)

The Helioseismic and Magnetic Imager (HMI) instrument on the Solar Dynamics Observatory (SDO) spacecraft will begin observing the solar photospheric magnetic field continuously after commissioning in early 2009. This paper describes the HMI magnetic processing pipeline and the expected data products that will be available. The full disk line-of-sight magnetic field will be available every minute with 1" resolution. Comparable vector measurements collected over a three-minute time interval will ordinarily be averaged for at least 10 minutes before inversion. Useful Quick Look products for forecasting purposes will be available a few minutes after observation. Final products will be computed within 36 hours and made available through the SDO Joint Science Operations Center (JSOC). Three kinds of magnetic data products have been defined - standard, on-demand, and on-request. Standard products, such as frequently updated synoptic charts, are made all the time on a fixed cadence. On-demand products, such as high cadence full-disk disambiguated vector magnetograms, will be generated whenever a user asks for them. On-request products, such as high-resolution time series of MHD model solutions, will be generated as resources allow. This paper describes the observations, magnetograms, synoptic and synchronic products, and field model calculations that will be produced by the HMI magnetic pipeline.

Hoeksema, J.; Hmi, M. T.

2008-05-01

229

Tunneling in a magnetic field  

SciTech Connect

Quantum tunneling across a static potential barrier in a static magnetic field is very sensitive to an analytical form of the potential barrier. Depending on that, the oscillatory structure of the modulus of the wave function can be formed in the direction of tunneling. Due to an underbarrier interference, the probability of tunneling through a higher barrier can be larger than through a lower one. For some barriers the quantum interference of underbarrier cyclotron paths results in a strong enhancement of tunneling. This occurs in the vicinity of the certain magnetic field and is referred to as Euclidean resonance. This strongly contrasts to the Wentzel, Kramers, and Brillouin type tunneling which occurs with no magnetic field.

Ivlev, B. [Department of Physics and Astronomy and NanoCenter, University of South Carolina, Columbia, South Carolina 29208 (United States) and Instituto de Fisica, Universidad Autonoma de San Luis Potosi, San Luis Potosi, San Luis Potosi 78000 Mexico

2006-05-15

230

Thermalization in external magnetic field  

NASA Astrophysics Data System (ADS)

In the AdS/CFT framework meson thermalization in the presence of a constant external magnetic field in a strongly coupled gauge theory has been studied. In the gravitational description the thermalization of mesons corresponds to the horizon formation on the flavour D7-brane which is embedded in the AdS 5 × S 5 background in the probe limit. The apparent horizon forms due to the time-dependent change in the baryon number chemical potential, the injection of baryons in the gauge theory. We will numerically show that the thermalization happens even faster in the presence of the magnetic field on the probe brane. We observe that this reduction in the thermalization time sustains up to a specific value of the magnetic field.

Ali-Akbari, Mohammad; Ebrahim, Hajar

2013-03-01

231

Toroidal magnetic field system for a 2-MA reversed-field pinch experiment  

SciTech Connect

The engineering design of the toroidal magnetic field (TF) system for a 2-MA Reversed-Field Pinch experiment (ZT-H) is described. ZT-H is designed with major radius 2.15 meters, minor radius 0.40 meters, and a peak toroidal magnetic field of 0.85 Tesla. The requirement for highly uniform fields, with spatial ripple <0.2% leads to a design with 72 equally spaced circular TF coils, located at minor radius 0.6 meters, carrying a maximum current of 9.0 MA. The coils are driven by a 12-MJ capacitor bank which is allowed to ring in order to aid the reversal of magnetic field. A stress analysis is presented, based upon calculated hoop tension, centering force, and overturning moment, treating these as a combination of static loads and considering that the periodic nature of the loading causes little amplification. The load transfer of forces and moments is considered as a stress distribution resisted by the coils, support structures, wedges, and the structural shell.

Melton, J.G.; Linton, T.W.

1983-01-01

232

Photospheric Magnetic Field: Quiet Sun  

NASA Astrophysics Data System (ADS)

The solar photosphere is the layer in which the magnetic field has been most reliably and most often measured. Zeeman- and Hanle-effect based probes have revealed many details of a rich variety of structures and dynamic processes, but the number of open and debated questions has remained large. The magnetic field in the quiet Sun has maintained a particularly large number of secrets and has been a topic of a particularly lively debate as new observations and analysis techniques have revealed new and often unexpected aspects of its organization, physical structure and origin.

Solanki, S. K.

2009-06-01

233

Magnetic Field Problem: Ampere's Law  

NSDL National Science Digital Library

A wire with current flowing through it perpendicular to the page is shown (position is given in meters and the integral is given in 10-10 Tesla-meters). Also shown is a choice of two detectors that displays the integral,

Christian, Wolfgang; Belloni, Mario

2007-03-03

234

Study of the effect of magnetic field in positron range using GATE simulation toolkit  

NASA Astrophysics Data System (ADS)

In simultaneous PET-MR systems, the emitted positrons trajectory is influenced by the magnetic field. The aim of this study is to define that influence to the positron annihilation distribution. Monte Carlo methods have been applied, using GATE. Several isotopes were studied, in various types of materials and with different magnetic field strengths. The results showed variations in the positron range between different components and especially between the lung and water. Measurements of the 1-D positron annihilation distance indicated a reduction of the mean positron annihilation distance for 82Rb of ~25%, 68Ga of 19% and 18F of 3.5%, at 3 Tesla. When the magnetic field was increased to 9.5 Tesla, the reduction was significant for all isotopes, and mainly for 68Ga and 82Rb, with approximately 41% reduction of the mean positron annihilation distance in water. Finally, the positron annihilation distribution varies according to the alignment with the magnetic field lines. The results of this study could be used to improve positron annihilation correction algorithms for simultaneous PET-MR acquisition, by taking under consideration the non-isotropic distribution.

Soultanidis, G.; Karakatsanis, N.; Nikiforidis, G.; Loudos, G.

2011-09-01

235

High-resolution MRI of the wrist and finger joints in patients with rheumatoid arthritis: comparison of 1.5 Tesla and 3.0 Tesla  

Microsoft Academic Search

The goal of this study was to compare magnetic resonance (MR) image quality at different field strengths for evaluating lesions\\u000a in wrist and finger joints of patients with rheumatoid arthritis (RA) in order to determine whether the higher field strength\\u000a provides diagnostic gain. The hand mainly affected in 17 RA patients was examined at 1.5 Tesla (T) and 3.0 T with comparable

Gero Wieners; Jacqueline Detert; Florian Streitparth; Maciej Pech; Frank Fischbach; Gerd Burmester; Jens Ricke; Marina Backhaus; Harald Bruhn

2007-01-01

236

Orientation by solidification in a magnetic field: A new process to texture SmCo compounds used as permanent magnets  

NASA Astrophysics Data System (ADS)

The solidification of molten alloys in a static magnetic field is proposed as a new way of orienting polycrystalline materials. A high degree of orientation is obtained with samarium-cobalt compounds solidified in a static magnetic field. Whatever the cooling condition used from the liquid state, a magnetic field of several tesla induces crystallographic orientation in the solid. The easy magnetization axis of the polycrystal lies along the direction of the field applied during solidification. This texturing process is applied to the elaboration of Sm2Co17 permanent magnets. Anisotropic bulk magnets with a coercive field up to 2250 kA/m and energy product above 160 kJ/m3 are obtained. This process provides an alternative to the currently used industrial technology which is based on powder metallurgy. The paramagnetic susceptibility of the substituted Sm2Co17 compounds is measured at high temperatures from which the susceptibility anisotropy at solidification temperature is determined. The orientation of the sample, solidified in a cold induction crucible, is analysed as a function of the applied magnetic field. Assuming a model in which particles are free to orient before complete solidification takes place, a critical size of these particles is deduced.

Legrand, B. A.; Perrier de La Bathie, R.; Tournier, R.; Chateigner, D.

1997-02-01

237

Photospheric and coronal magnetic fields  

SciTech Connect

Research on small-scale and large-scale photospheric and coronal magnetic fields during 1987-1990 is reviewed, focusing on observational studies. Particular attention is given to the new techniques, which include the correlation tracking of granules, the use of highly Zeeman-sensitive infrared spectral lines and multiple lines to deduce small-scale field strength, the application of long integration times coupled with good seeing conditions to study weak fields, and the use of high-resolution CCD detectors together with computer image-processing techniques to obtain images with unsurpassed spatial resolution. Synoptic observations of large-scale fields during the sunspot cycle are also discussed. 101 refs.

Sheeley, N.R., Jr. (USAF, Geophysics Laboratory, Hanscom AFB, MA (United States))

1991-01-01

238

Magnetic Field from Loops Model  

NSDL National Science Digital Library

The EJSMagnetic Field from Loops model computes the B-field created by an electric current through a straight wire, a closed loop, and a solenoid. Users can adjust the vertical position of the slice through the 3D field. The Magnetic Field from Loops model was created using the Easy Java Simulations (Ejs) modeling tool. It is distributed as a ready-to-run (compiled) Java archive. Double clicking the ejs_ntnu_MagneticFielfFromLoops.jar file will run the program if Java is installed. Ejs is a part of the Open Source Physics Project and is designed to make it easier to access, modify, and generate computer models. Additional Ejs models for classical mechanics are available. They can be found by searching ComPADRE for Open Source Physics, OSP, or Ejs.

Christian, Wolfgang; Hwang, Fu-Kwun

2008-11-17

239

Magnetic field generation in Galactic molecular clouds  

NASA Astrophysics Data System (ADS)

We investigate the magnetic field which is generated by turbulent motions of a weakly ionized gas. Galactic molecular clouds give us an example of such a medium. As in the Kazantsev-Kraichnan model we assume a medium to be homogeneous and a neutral gas velocity field to be isotropic and ? correlated in time. We take into consideration the presence of a mean magnetic field, which defines a preferred direction in space and eliminates isotropy of magnetic field correlators. Evolution equations for the anisotropic correlation function are derived. Isotropic cases with zero mean magnetic field as well as with small mean magnetic field are investigated. It is shown that stationary bounded solutions exist only in the presence of the mean magnetic field for the Kolmogorov neutral gas turbulence. The dependence of the magnetic field fluctuations amplitude on the mean field is calculated. The stationary anisotropic solution for the magnetic turbulence is also obtained for large values of the mean magnetic field.

Istomin, Ya. N.; Kiselev, A.

2013-10-01

240

FIELD CHARACTERIZATION OF XFEL QUADRUPOLE MAGNETS  

Microsoft Academic Search

A rotating coil setup for magnetic field characterization and fiducialization of XFEL quadrupole magnets is pre- sented. The instrument allows measurement of the rel- ative position of the magnetic axis with accuracy better than 1 ?m and measurement of weak magnetic error field components. Tests and evaluation based on a FLASH quadrupole magnet are presented together with a discus- sion

A. Hedqvist; H. Danared; F. Hellberg; J. Pfluger

241

EXPLORER 10 MAGNETIC FIELD MEASUREMENTS  

Microsoft Academic Search

Magnetic field measurements made by means of Explorer 10 over geocentric ; distances of 1.8 to 42.6R\\/sub e\\/ on March 25experiment on the same satellite are ; referenced in interpretations. The close-in data are consistent with the ; existence of a very weak ring current below 3R\\/sub e\\/ along the trajectory, but ; alternative explanations for the field deviations are

J. P. Heppner; N. F. Ness; C. S. Scearce; T. L. Skillman

1963-01-01

242

Magnetic fields in extragalactic jets  

Microsoft Academic Search

Observations indicate that jets (i.e., charged particle beams) are emitted from the central black hole sources of active galactic nuclei and quasars. Magnetic fields are produced in e(-)-p or e(-)-e(+)-p jets when electrons (and positrons) are slowed with respect to protons in the jets. Interaction with an ambient interstellar gas or external radiation field can cause such drift velocities. Calculations

William K. Rose

1987-01-01

243

Magnetic fields in extragalactic jets  

Microsoft Academic Search

Observations indicate that jets are emitted from the central black hole sources of active galactic nuclei and quasars. Magnetic fields are produced in e--p or e--e+-p jets when electrons and positrons are slowed with respect to protons in the jets. Interaction with an ambient interstellar gas or external radiation field can cause such drift velocities. In this paper calculations for

William K. Rose

1987-01-01

244

The somatosensory evoked magnetic fields  

Microsoft Academic Search

Averaged magnetoencephalography (MEG) following somatosensory stimulation, somatosensory evoked magnetic field(s) (SEF), in humans are reviewed. The equivalent current dipole(s) (ECD) of the primary and the following middle-latency components of SEF following electrical stimulation within 80–100 ms are estimated in area 3b of the primary somatosensory cortex (SI), the posterior bank of the central sulcus, in the hemisphere contralateral to the

Ryusuke Kakigi; Minoru Hoshiyama; Motoko Shimojo; Daisuke Naka; Hiroshi Yamasaki; Shoko Watanabe; Jing Xiang; Kazuaki Maeda; Khanh Lam; Kazuya Itomi; Akinori Nakamura

2000-01-01

245

Magnetic Field Issues in Magnetic Resonance Imaging.  

NASA Astrophysics Data System (ADS)

Advances in Magnetic Resonance Imaging depend on the capability of the available hardware. Specifically, for the main magnet configuration, using derivative constraints, we can create a static magnetic field with reduced levels of inhomogeneity over a prescribed imaging volume. In the gradient coil, the entire design for the axial elliptical coil, and the mathematical foundation for the transverse elliptical coil have been presented. Also, the design of a self-shielded cylindrical gradient coil with a restricted length has been presented. In order to generate gradient coils adequate for head imaging without including the human shoulders in the design, asymmetric cylindrical coils in which the gradient center is shifted axially towards the end of a finite cylinder have been introduced and theoretical as well as experimental results have been presented. In order to eliminate eddy current effects in the design of the non-shielded asymmetric gradient coils, the self-shielded asymmetric cylindrical gradient coil geometry has been introduced. Continuing the development of novel geometries for the gradient coils, the complete set of self-shielded cylindrical gradient coils, which are designed such that the x component of the magnetic field varies linearly along the three traditional gradient axes, has been presented. In order to understand the behavior of the rf field inside a dielectric object, a mathematical model is briefly presented. Although specific methods can provide an indication of the rf behavior inside a loosely dielectric object, finite element methodology is the ultimate approach for modeling the human torso and generating an accurate picture for the shape of the rf field inside this dielectric object. For this purpose we have developed a 3D finite element model, using the Coulomb gauge condition as a constraint. Agreement with the heterogeneous multilayer planar model has been established, while agreement with theoretical results from the spherical model and experimental results from the cylindrical model at 170 M H z is very good and provides an encouraging sign for using this finite element approach for modeling the rf inside the human body. (Abstract shortened by UMI.).

Petropoulos, Labros Spiridon

246

Advances in Magnetic Field Sensors  

Microsoft Academic Search

The most important milestone in the field of magnetic sensors was when AMR sensors started to replace Hall sensors in many applications where the greater sensitivity of AMRs was an advantage. GMR and SDT sensors finally found applications. We also review the development of miniaturization of fluxgate sensors and refer briefly to SQUIDs, resonant sensors, GMIs, and magnetomechanical sensors.

Pavel Ripka; Michal Janosek

2010-01-01

247

Random Field Effect in Magnets.  

National Technical Information Service (NTIS)

In order to explore the consequences of random field effects we have carried out a series of neutron scattering experiments on three prototypical diluted Ising magnets. The systems studied are Rb sub 2 Co sub 7 Mg sub 3 F sub 4 which is a model two dimens...

R. J. Birgeneau

1982-01-01

248

Magnetic Field Waves at Uranus.  

National Technical Information Service (NTIS)

The research efforts funded by the Uranus Data Analysis Program (UDAP) grant to the Bartol Research Institute (BRI) involved the study of magnetic field waves associated with the Uranian bow shock. Upstream wave studies are motivated as a study of the phy...

C. W. Smith M. L. Goldstein R. P. Lepping W. H. Mish H. K. Wong

1994-01-01

249

Increase conductivity in UNiSn with the application of magnetic fields  

SciTech Connect

We report on the frequency dependent conductivity of the modified Huesler alloy UNiSn in the antiferromagnetic state and in the presence of a magnetic field. UNiSn is paramagnetic above 43 K and has a semiconducting gap of about 65 meV. Below 43 K, the compound is in an itinerant antiferromagnetic state. The reflectance of UNiSn is measured from 4 meV to 0.4 eV and in fields up to 16 Tesla. At 5 K, there is a shift in spectral weight from the gap region to lower frequencies as the applied magnetic field is increased. This shift in spectral weight gives rise to increase conductivity with applied field in the metallic state. However, the gap value is unaffected by the field. No field dependence is observed for the isostructural compound, ThNiSn, which does not undergo an antiferromagnetic transition. {copyright} {ital 1997 American Institute of Physics.}

Ng, H.K.; Love, B.; Cope, C.J. [Department of Physics, Center for Materials Research and Technology, Florida State University, Tallahassee, Florida 32306-3016 (United States); Wang, Y.J. [NHMFL, Florida State University, Tallahassee, Florida 32306 (United States); Yuen, T.; Lin, C.L. [Department of Physics, Temple University, Philadelphia, Pennsylvania 19122 (United States)

1997-04-01

250

NMR imaging in the earth's magnetic field.  

PubMed

The most important and very expensive part of a magnetic resonance imaging set-up is the magnet, which is capable of generating a constant and highly homogeneous magnetic field. Here a new MR imaging technique without the magnet is introduced. This technique uses the earth's magnetic field instead of a magnetic field created by a magnet. This new method has not yet reached the stage of medical application, but the first images obtained by MRIE (magnetic resonance imaging in the earth's field) show that the resolution is close to that expected based on sensitivity estimations. PMID:2233218

Stepisnik, J; Erzen, V; Kos, M

1990-09-01

251

Separation of magnetic field lines  

SciTech Connect

The field lines of magnetic fields that depend on three spatial coordinates are shown to have a fundamentally different behavior from those that depend on two coordinates. Unlike two-coordinate cases, a flux tube in a magnetic field that depends on all three spatial coordinates that has a circular cross section at one location along the tube characteristically has a highly distorted cross section at other locations. In an ideal evolution of a magnetic field, the current densities typically increase. Crudely stated, if the current densities increase by a factor {sigma}, the ratio of the long to the short distance across a cross section of a flux tube characteristically increases by e{sup 2{sigma}}, and the ratio of the longer distance to the initial radius increases as e{sup {sigma}}. Electron inertia prevents a plasma from isolating two magnetic field structures on a distance scale shorter than c/{omega}{sub pe}, which is about 10 cm in the solar corona, and reconnection must be triggered if {sigma} becomes sufficiently large. The radius of the sun, R{sub Circled-Dot-Operator }=7 Multiplication-Sign 10{sup 10}cm is about e{sup 23} times larger, so when {sigma} Greater-Than-Or-Equivalent-To 23, two lines separated by c/{omega}{sub pe} at one location can be separated by the full scale of any magnetic structures in the corona at another. The conditions for achieving a large exponentiation, {sigma}, are derived, and the importance of exponentiation is discussed.

Boozer, Allen H. [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States)

2012-11-15

252

Active Region Magnetic Fields. I. Plage Fields  

NASA Astrophysics Data System (ADS)

We present observations taken with the Advanced Stokes Polarimeter (ASP) in active-region plages and study the frequency distribution of the magnetic field strength (B), inclination with respect to vertical ( gamma ), azimuthal orientation ( chi ), and filling factor (f). The most common values at disk center are B = 1400 G, gamma < 10 deg, no preferred east-west orientation, and f = 15%. At disk center, there is a component of weak (<1000 G), more horizontal fields that corresponds to arching field lines connecting footpoints of different polarities. The center-to-limb variation (CLV) of the field strength shows that, close to the limb ( mu = 0.3), the field strength is reduced to 800 G from its disk-center value. This can be interpreted as a gradient of B with height in solar plages of around -3 G km-1. From this CLV study, we also deduce that magnetic field lines remain vertical for the entire range of heights involved. A similar analysis is performed for structures found in active regions that show a continuous distribution of azimuths (resembling sunspots) but that do not have a darkening in continuum. These "azimuth centers" show slightly larger values of B than normal plages, in particular at their magnetic center. Filling factors are also larger on average for these structures. The velocities in the magnetic component of active regions have been studied for both averaged Stokes profiles over the entire active region and for the spatially resolved data. The averaged profiles (more representative of high filling factor regions) do not show any significant mean velocities. However, the spatial average of Doppler velocities derived from the spatially resolved profiles (i.e., unweighted by filling factor) show a net redshift at disk center of 200 m s-1. The spatially resolved velocities show a strong dependence on filling factor. Both mean velocities and standard deviations are reduced when the filling factor increases. This is interpreted as a reduction of the p-mode amplitude within the magnetic component. Strong evidence for velocities transverse to the magnetic field lines has been found. Typical rms values are between 200 and 300 m s-1, depending on the filling factor. The possible importance of these transverse motions for the dynamics of the upper atmospheric layers is discussed. The asymmetries of the Stokes profiles and their CLV have been studied. The averaged Stokes V profiles show amplitude and area asymmetries that are positive at disk center and become negative at the limb. Both asymmetries, and for the two Fe I lines, are maximized away from disk center. The spatially resolved amplitude asymmetries show a clear dependence on filling factor: the larger the filling factor, the smaller the amplitude asymmetry. On the other hand, the area asymmetry is almost independent of the filling factor. The only observed dependence is the existence of negative area-asymmetry profiles at disk center for filling factors smaller than 0.2. Around 20% of the observed points in a given plage have negative area asymmetry. The amplitude asymmetry of Stokes V is, on the other hand, always positive. The amplitude asymmetries of the linear polarization profiles are observed to have the same sign as the Stokes V profiles. Similarly, the same CLV variation of the linear polarization amplitude asymmetries as for Stokes V has been found. The scenarios in which this similarity can exist are studied in some detail.

Martinez Pillet, V.; Lites, B. W.; Skumanich, A.

1997-01-01

253

Minimally Invasive Magnetic Resonance Imaging-Guided FreeHand Aspiration of Symptomatic Nerve Route Compressing Lumbosacral Cysts Using a 1.0Tesla Open Magnetic Resonance Imaging System  

Microsoft Academic Search

Purpose  To evaluate the feasibility of minimally invasive magnetic resonance imaging (MRI)-guided free-hand aspiration of symptomatic\\u000a nerve route compressing lumbosacral cysts in a 1.0-Tesla (T) open MRI system using a tailored interactive sequence.\\u000a \\u000a \\u000a \\u000a \\u000a Materials and Methods  Eleven patients with MRI-evident symptomatic cysts in the lumbosacral region and possible nerve route compressing character\\u000a were referred to a 1.0-T open MRI system. For MRI

Maximilian de Bucourt; Florian Streitparth; Federico Collettini; Felix Guettler; Hendrik Rathke; Britta Lorenz; Jens Rump; Bernd Hamm; U. K. Teichgräber

254

Electron dynamics in inhomogeneous magnetic fields.  

PubMed

This review explores the dynamics of two-dimensional electrons in magnetic potentials that vary on scales smaller than the mean free path. The physics of microscopically inhomogeneous magnetic fields relates to important fundamental problems in the fractional quantum Hall effect, superconductivity, spintronics and graphene physics and spins out promising applications which will be described here. After introducing the initial work done on electron localization in random magnetic fields, the experimental methods for fabricating magnetic potentials are presented. Drift-diffusion phenomena are then described, which include commensurability oscillations, magnetic channelling, resistance resonance effects and magnetic dots. We then review quantum phenomena in magnetic potentials including magnetic quantum wires, magnetic minibands in superlattices, rectification by snake states, quantum tunnelling and Klein tunnelling. The third part is devoted to spintronics in inhomogeneous magnetic fields. This covers spin filtering by magnetic field gradients and circular magnetic fields, electrically induced spin resonance, spin resonance fluorescence and coherent spin manipulation. PMID:21393794

Nogaret, Alain

2010-06-04

255

Magnetic fields in the cosmos  

SciTech Connect

Although only a small part of available energy in the universe is invested in magnetic fields, they are responsible for most of the continual violent activity in the cosmos. There is a single, generic explanation for the ability of bodies as different as a dense, cold planet and a tenuous hot galactic disk to generate a magnetic field. The explanation, first worked out for the earth, comes from the discipline of magnetohydrodynamics. The cosmos is filled with fluids capable of carrying electric currents. The magnetic fields entrained in these fluids are stretched and folded by the fluid motion, gaining energy in the process. In other words, the turbulent fluids function as dynamos. However, the dynamo mechanism by itself cannot account for the exceptionally strong field of some stars. Because of such gaps in information, the rival hypothesis that there are primordial fields cannot be disproved. The balance of evidence, however, indicates that the planets, sun, most stars and the galaxy function as colossal dynamos. (SC)

Parker, E.N.

1983-08-01

256

Behavior of magnetic liquids in an inhomogeneous magnetic field  

SciTech Connect

The authors present experimental results from the investigation of the behavior of certain magnetic liquids differeing in the degree of stability in inhomogenous magnetic fields. The growth of holding presure of sealing step at rest is reviewed and the increase of effective viscosity in inhomogeneous magnetic fields is studied. The behaviors of magnetic liquids in an inhomogeneous magnetic field are sensitive to structural changes caused by the field. Significant differences are demonstrated between magnetic liquids with the same saturation magnetization but different particle size distribution.

Anton, I.; Bika, D.; Potents, I.; Vekash, L.

1986-01-01

257

Inevitability of a magnetic field in the Sun's radiative interior  

NASA Astrophysics Data System (ADS)

The gas in the convective outer layers of the Sun rotates faster at the equator than in the polar regions, yet deeper inside (in the radiative zone) the gas rotates almost uniformly. There is a thin transition layer between these zones, called the tachocline. This structure has been measured seismologically, but no purely fluid-dynamical mechanism can explain its existence. Here we argue that a self-consistent model requires a large-scale magnetic field in the Sun's interior, as well as consideration of the Coriolis effects in the convection zone and in the tachocline. Turbulent stresses in the convection zone induce (through Coriolis effects) a meridional circulation, causing the gas from the convection zone to burrow downwards, thereby generating the horizontal and vertical shear that characterizes the tachocline. The interior magnetic field stops the burrowing, and confines the shear, as demanded by the observed structure of the tachocline. We outline a dynamical theory of the flow, from which we estimate a field strength of about 10-4 tesla just beneath the tachocline. An important test of this picture, after numerical refinement, will be quantitative consistency between the predicted and observed interior angular velocities.

Gough, D. O.; McIntyre, M. E.

1998-08-01

258

SQUID-Detected Magnetic Resonance Imaging in Microtesla Magnetic Fields  

Microsoft Academic Search

We describe studies of nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) of liquid samples at room temperature in microtesla magnetic fields. The nuclear spins are prepolarized in a strong transient field. The magnetic signals generated by the precessing spins, which range in frequency from tens of Hz to several kHz, are detected by a low-transition temperature dc

R. McDermott; N. Kelso; S. K. Lee; M. MöBetale; M. Mück; W. Myers; B. ten Haken; H. C. Seton; A. H. Trabesinger; A. Pines; J. Clarke

2004-01-01

259

Two dimensional frustrated magnets in high magnetic field  

Microsoft Academic Search

Frustrated magnets in high magnetic field have a long history of offering beautiful surprises to the patient investigator. Here we present the results of extensive classical Monte Carlo simulations of a variety of models of two dimensional magnets in magnetic field, together with complementary spin wave analysis. Striking results include (i) a massively enhanced magnetocaloric effect in antiferromagnets bordering on

L. Seabra; N. Shannon; P. Sindzingre; T. Momoi; B. Schmidt; P. Thalmeier

2009-01-01

260

Head tilt in rats during exposure to a high magnetic field  

PubMed Central

During exposure to high strength static magnetic fields, humans report vestibular symptoms such as vertigo, apparent motion, and nausea. Rodents also show signs of vestibular perturbation after magnetic field exposure at 7 tesla (T) and above, such as locomotor circling, activation of vestibular nuclei, and acquisition of conditioned taste aversions. We hypothesized that the acute effects of the magnetic field might be seen as changes in head position during exposure within the magnet. Using a yoked restraint tube that allowed movement of the head and neck, we found that rats showed an immediate and persistent deviation of the head during exposure to a static 14.1 T magnetic field. The direction of the head tilt was dependent on the orientation of the rat in the magnetic field (B), such that rats oriented head-up (snout towards B+) showed a rightward tilt of the head, while rats oriented head–down (snout towards B?) showed a leftward tilt of the head. The tilt of the head during magnet exposure was opposite to the direction of locomotor circling immediately after exposure observed previously. Rats exposed in the yoked restraint tube showed significantly more locomotor circling compared to rats exposed with the head restrained. There was little difference in CTA magnitude or extinction rate, however. The deviation of the head was seen when the rats were motionless within the homogenous static field; movement through the field or exposure to the steep gradients of the field was not necessary to elicit the apparent vestibulo-collic reflex.

Houpt, Thomas A.; Cassell, Jennifer; Carella, Lee; Neth, Bryan; Smith, James C.

2011-01-01

261

Photon collider at TESLA  

Microsoft Academic Search

High energy photon colliders (??,?e) based on backward Compton scattering of laser light is a very natural addition to e+e? linear colliders. In this report, we consider this option for the TESLA project. Recent study has shown that the horizontal emittance in the TESLA damping ring can be further decreased by a factor of four. In this case, the ??

Valery Telnov

2001-01-01

262

The HMI Magnetic Field Pipeline  

NASA Astrophysics Data System (ADS)

The Helioseismic and Magnetic Imager (HMI) will provide frequent full-disk magnetic field data after launch of the Solar Dynamics Observatory (SDO), currently scheduled for fall 2009. 16 megapixel line-of-sight magnetograms (Blos) will be recorded every 45 seconds. A full set of polarized filtergrams needed to determine the vector magnetic field requires 90 seconds. Quick-look data will be available within a few minutes of observation. Quick-look space weather and browse products must have identified users, and the list currently includes full disk magnetograms, feature identification and movies, 12-minute disambiguated vector fields in active region patches, time evolution of AR indices, synoptic synchronic frames, potential and MHD model results, and 1 AU predictions. A more complete set of definitive science data products will be offered about a day later and come in three types. "Pipeline” products, such as full disk vector magnetograms, will be computed for all data on an appropriate cadence. A larger menu of "On Demand” products, such as Non-Linear Force Free Field snapshots of an evolving active region, will be produced whenever a user wants them. Less commonly needed "On Request” products that require significant project resources, such as a high resolution MHD simulation of the global corona, will be created subject to availability of resources. Further information can be found at the SDO Joint Science Operations Center web page, jsoc.stanford.edu

Hoeksema, Jon Todd; Liu, Y.; Schou, J.; Scherrer, P.; HMI Science Team

2009-05-01

263

A Large Volume Double Channel 1H-X RF Probe for Hyperpolarized Magnetic Resonance at 0.0475 Tesla  

PubMed Central

In this work we describe a large volume 340 mL 1H-X magnetic resonance (MR) probe for studies of hyperpolarized compounds at 0.0475 T. 1H/13C and 1H/15N probe configurations are demonstrated with the potential for extension to 1H/129Xe. The primary applications of this probe are preparation and quality assurance of 13C and 15N hyperpolarized contrast agents using PASADENA (parahydrogen and synthesis allow dramatically enhanced nuclear alignment) and other parahydrogen-based methods of hyperpolarization. The probe is efficient and permits 62 ?s 13C excitation pulses at 5.3 Watts, making it suitable for portable operation. The sensitivity and detection limits of this probe, tuned to 13C, are compared with a commercial radio frequency (RF) coil operating at 4.7 T. We demonstrate that low field MR of hyperpolarized contrast agents could be as sensitive as conventional high field detection and outline potential improvements and optimization of the probe design for preclinical in vivo MRI. PASADENA application of this low-power probe is exemplified with 13C hyperpolarized 2-hydroxyethyl propionate-1-13C,2,3,3-d3.

Coffey, Aaron M.; Shchepin, Roman V.; Wilkens, Ken; Waddell, Kevin W.; Chekmenev, Eduard Y.

2012-01-01

264

Energetic and Cell Membrane Metabolic Products in Patients with Primary Insomnia: A 31-Phosphorus Magnetic Resonance Spectroscopy Study at 4 Tesla  

PubMed Central

Study Objectives: Primary insomnia (PI) is a sleep disorder characterized by difficulty with sleep initiation, maintenance, and/or the experience of nonrestorative sleep combined with a subsequent impairment of daytime functioning. The hyperarousal hypothesis has emerged as the leading candidate to explain insomnia symptoms in the absence of specific mental, physical, or substance-related causes. We hypothesized that the cellular energetic metabolites, including beta nucleoside triphosphate, which in magnetic resonance spectroscopy approximates adenosine triphosphate (ATP), and phosphocreatine (PCr), would show changes in PI reflecting increased energy demand. Design and Setting: Matched-groups, cross-sectional study performed at two university-based hospitals. Patients: Sixteen medication-free individuals (eight males, eight females; mean ± standard deviation (SD) age = 37.2 ± 8.4 y) with PI and 16 good sleepers (nine males, seven females; mean ± SD age = 37.6 ± 4.7 y). Measurements: Diagnosis was established for all individuals by unstructured clinical interview, Structured Clinical Interview for Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (SCID), sleep diary, and actigraphy. Polysomnography was collected in individuals with PI. Phosphorous magnetic resonance spectroscopy (31P MRS) data were collected on all individuals at 4 Tesla. We assessed cell membrane (anabolic precursors and catabolic metabolites) and bioenergetic (ATP, phosphocreatine) metabolites in gray matter and white matter to determine their relationship to the presence and severity of PI. Results: Individuals with PI showed lower phosphocreatine in gray matter and an unexpected decrease of phosphocholine, a precursor of the cell membrane compound phosphatidylcholine, in white matter. In addition, there was a trend toward a negative association between polysomnographically determined wake after sleep onset and gray matter beta-nucleoside triphosphate and white matter phosphocholine in the primary insomnia group. Conclusions: These results support the hyperarousal hypothesis in PI based on lower phosphocreatine in gray matter in the PI group. Citation: Harper DG; Plante DT; Jensen JE; Ravichandran C; Buxton OM; Benson KL; O'Connor SP; Renshaw PF; Winkelman JW. Energetic and cell membrane metabolic products in patients with primary insomnia: a 31-phosphorus magnetic resonance spectroscopy study at 4 tesla. SLEEP 2013;36(4):493-500.

Harper, David G.; Plante, David T.; Jensen, J. Eric; Ravichandran, Caitlin; Buxton, Orfeu M.; Benson, Kathleen L.; O'Connor, Shawn P.; Renshaw, Perry F.; Winkelman, John W.

2013-01-01

265

Construction and test results of a compact 0.8 meter warm bore 1.5-tesla high-homogeneity superconducting magnet for MR-spectroscopy  

Microsoft Academic Search

A superconducting magnet aimed at whole body MRI (magnetic resonance imaging) and spectroscopic studies was designed, constructed, and tested. The magnet was wound with a 2-mm-diameter NbTi\\/Cu multifilamentary composite conductor. The design field was B 0=1.5 T; the design value for field homogeneity ?B \\/B0=0.1 ppm over a 20-cm-diameter spherical volume; and the design value for the field stability dB0

S. Nenonen; E. Friman; O. Ikkala; S. Islander; H. Seppala; J. Pekola; A. Sarjala; H. K. Collan

1992-01-01

266

Magnetic Resonance Imaging System Based on Earth's Magnetic Field  

Microsoft Academic Search

This article describes both the setup and the use of a system for magnetic resonance imaging (MRI) in the Earth's magnetic field. Phase instability caused by temporal fluctuations of Earth's field can be successfully improved by using a reference signal from a separate Earth's field nuclear magnetic resonance (NMR) spectrometer\\/magnetometer. In imaging, it is important to correctly determine the phase

Ales Mohoric; Gorazd Planinsic; Miha Kos; Andrej Duh; Janez Stepisnik

2004-01-01

267

Spatial heterogeneity not homogeneity of the magnetic field during exposures to complex frequency-modulated patterns facilitates analgesia.  

PubMed

24 young (4 mo.) and 24 old (8 mo.) male Wistar rats were exposed for 30 min. on two consecutive days to either a sham-field or to a frequency-modulated magnetic field applied through a pair of solenoids (spatially heterogeneous strength) or a Helmholtz coil (spatially homogeneous strength). The maximum field strength was about 2 microTesla. The rats exposed to the spatially heterogeneous magnetic field but not the homogeneous magnetic field exhibited strong analgesia to thermal stimuli applied to the footpads immediately after the treatment and 30 min. later. The effect accommodated 38% of the variance in the latency to respond to the thermal stimuli. These results suggest that the practice by many researchers in bioelectromagnetism to design coils to generate maximum spatial homogeneity of intensities within the exposure volume when applying complex weak magnetic fields may actually diminish any biological effects. PMID:12831282

Martin, L J; Persinger, M A

2003-06-01

268

Magnetic field of atrial depolarization.  

PubMed

The isomagnetic maps of normal subjects and patients with right and left atrial overloading were recorded to determine the characteristic features of the magnetic field of atrial depolarization. The isomagnetic maps examined in this study indicated the instantaneous current source, which specifically localizes the current sources due to the right and left atria, respectively. The magnetic field recorded with a second derivative gradiometer clearly detected the cardiac current source from the right atrium, which is located close to the anterior chest wall, thus this method improved the diagnostic sensitivity for right atrial overloading. In patients with left atrial overloading, the isomagnetic map showed multiple dipoles due to the right and left atria, respectively, which are difficult to be detected by the electrocardiogram or isopotential map. These results suggest that the magnetocardiogram provides useful information on the current source to supplement information obtained by the conventional electrocardiogram. PMID:2978585

Takeuchi, A; Watanabe, K; Katayama, M; Nomura, M; Nakaya, Y; Mori, H

269

In Vivo 1H NMR Spectroscopy of the Human Brain at 9.4 Tesla: Initial Results  

PubMed Central

In vivo proton NMR spectroscopy allows non-invasive detection and quantification of a wide range of biochemical compounds in the brain. Higher field strength is generally considered advantageous for spectroscopy due to increased signal-to-noise and increased spectral dispersion. So far 1H NMR spectra have been reported in the human brain up to 7 Tesla. In this study we show that excellent quality short echo time STEAM and LASER 1H NMR spectra can be measured in the human brain at 9.4 Tesla. The information content of the human brain spectra appears very similar to that measured in the past decade in rodent brains at the same field strength, in spite of broader linewidth in human brain. Compared to lower fields, the T1 relaxation times of metabolites were slightly longer while T2 relaxation values of metabolites were shorter (< 100 ms) at 9.4 Tesla. The linewidth of the total creatine (tCr) resonance at 3.03 ppm increased linearly with magnetic field (1.35 Hz/Tesla from 1.5 T to 9.4 T), with a minimum achievable tCr linewidth of around 12.5 Hz at 9.4 Tesla. At very high-field, B0 microsusceptibility effects are the main contributor to the minimum achievable linewidth.

Deelchand, Dinesh Kumar; Van de Moortele, Pierre-Francois; Adriany, Gregor; Iltis, Isabelle; Andersen, Peter; Strupp, John P.; Vaughan, J. Thomas; Ugurbil, Kamil; Henry, Pierre-Gilles

2010-01-01

270

Anisotropic Magnetism in Field-Structured Composites  

SciTech Connect

Magnetic field-structured-composites (FSCs) are made by structuring magnetic particle suspensions in uniaxial or biaxial (e.g. rotating) magnetic fields, while polymerizing the suspending resin. A uniaxial field produces chain-like particle structures, and a biaxial field produces sheet-like particle structures. In either case, these anisotropic structures affect the measured magnetic hysteresis loops, with the magnetic remanence and susceptibility increased significantly along the axis of the structuring field, and decreased slightly orthogonal to the structuring field, relative to the unstructured particle composite. The coercivity is essentially unaffected by structuring. We present data for FSCs of magnetically soft particles, and demonstrate that the altered magnetism can be accounted for by considering the large local fields that occur in FSCs. FSCS of magnetically hard particles show unexpectedly large anisotropies in the remanence, and this is due to the local field effects in combination with the large crystalline anisotropy of this material.

Anderson, Robert A.; Martin, James E.; Odinek, Judy; Venturini, Eugene

1999-06-24

271

Studies on Somatosensory Evoked Magnetic Fields.  

National Technical Information Service (NTIS)

Spatiotemporal patterns of somatosensory evoked magnetic fields to stimulation of upper and lower limb nerves were examined in healthy humans. The studies summarized here provide the first magnetic field maps over the primary foot projection area after li...

J. Huttunen

1987-01-01

272

Luminescence in applied magnetic fields  

NASA Astrophysics Data System (ADS)

Metal complexes and solids were synthesized and subjected to photoexcitation measurements under the influence of externally applied magnetic fields. The photoluminescence of complexes of rhodium (I) and iridium (I) displayed both field induced emission bands and a many fold shortening of the excited state lifetime. Both the decay rates and the induced emission band intensities showed a quadratic dependence on the applied field. A several fold shortening of the phosphorescence from the octaphosphitoplatinum (II) anion under an applied field (50 T) was also observed. Spectroscopic studies of several bis (N-heterocyclic) complexes of copper (I) were also concluded and complete group theoretic assignments of the charge transfer excited states were made. The technique of Thermal Modulation was perfected and applied to the study of the exited states of transition metal complexes with near degenerate emitting states.

Crosby, G. A.

1989-08-01

273

Simulations of Photospheric Magnetic Fields  

NASA Astrophysics Data System (ADS)

We have run plots of artificial data, which mimic solar magnetograms, through standard algorithms to critique several results reported in the literature. In studying correlation algorithms, we show that the differences in the profiles for the differential rotation of the photospheric magnetic field stem from different methods of averaging. We verify that the lifetimes of small magnetic features, or of small patterns of these features in the large-scale background field, are on the order of months, rather than a few days. We also show that a meridional flow which is cycle dependent creates an artifact in the correlation-determined magnetic rotation which looks like a torsional oscillation; and we compare this artifact to the torsional patterns that have been reported. Finally, we simulate the time development of a large-scale background field created solely from an input of artifical, finite-lifetime 'sunspot' bipoles. In this simulation, we separately examine the effects of differential rotation, meridional flow and Brownian motion (random walk, which we use rather than diffusion), and the inclination angles of the sunspot bipoles (Joy's law). We find, concurring with surface transport equation models, that a critical factor for producing the patterns seen on the Sun is the inclination angle of the bipolar active regions. This work was supported by NSF grant 9416999.

Smith, A. A.; Snodgrass, H. B.

1999-05-01

274

Accuracy and stability of measuring GABA, glutamate, and glutamine by proton magnetic resonance spectroscopy: A phantom study at 4 Tesla  

NASA Astrophysics Data System (ADS)

Proton MRS phantom experiments conducted at 4 Tesla allow for an accurate assessment of measurement performance of several MRS techniques in their ability to detect and quantify the coupled resonances of GABA, glutamate and glutamine. In this work, we present a series of phantoms experiments and simulations in order to quantitatively determine which MRS method simultaneously provides the most stable and accurate measures of GABA, glutamate and glutamine under simulated in vivo conditions. When three MRS methods: i) MEGAPRESS GABA-editing, ii) 30 ms PRESS and iii) J-resolved PRESS were quantitatively compared, J-resolved PRESS yielded the best performance in simultaneously and reliably detecting GABA, glutamate and glutamine. Display OmittedResearch highlightsJ-resolved MRS is a suitable method for simultaneous quantification of glutamate, glutamine, and GABA. The J-resolved approach is superior to standard 30 ms PRESS in glutamine and GABA. Although MEGA-PRESS is the optimal approach to measuring GABA, J-resolved PRESS also provides accurate results. Glutamine is particularly challenging to measure in phantoms due to its lack of stability.

Henry, Michael E.; Lauriat, Tara L.; Shanahan, Meghan; Renshaw, Perry F.; Jensen, J. Eric

2011-02-01

275

Field Concentrator Based Resonant Magnetic Sensor  

Microsoft Academic Search

A novel resonant magnetic sensor based on the combination of a mechanical resonator and a magnetic field concentrator with two gaps is reported. In contrast to previous Lorentz force based resonant magnetic sensors, a high sensitivity is achieved without modulated driving current and complex feedback electronics. Furthermore, compared to magnetic moment based resonant magnetic sensors, the new concept requires no

S. Brugger; P. Simon; O. Paul

2006-01-01

276

Color Superconducting Matter in a Magnetic Field  

SciTech Connect

We investigate the effect of a magnetic field on cold dense quark matter using an effective model with four-Fermi interactions. We find that the gap parameters representing the predominant pairing between the different quark flavors show oscillatory behavior as a function of the magnetic field. We point out that due to electric and color neutrality constraints the magnetic fields as strong as presumably existing inside magnetars might induce significant deviations from the gap structure at a zero magnetic field.

Fukushima, Kenji [RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973 (United States); Warringa, Harmen J. [Department of Physics, Bldg. 510A, Brookhaven National Laboratory, Upton, New York 11973 (United States)

2008-01-25

277

Numerical Simulation In Magnetic Drug Targeting. Magnetic Field Source Optimization  

Microsoft Academic Search

\\u000a This paper presents numerical simulation model and results on magnetic drug targeting therapy. The study aims at investigating\\u000a the aggregate blood - magnetic carrier flow interaction with an external magnetic field. Another objective was finding the\\u000a optimal magnetic field source configuration that provides for flows that best assist in magnetic drug targeting. In order\\u000a to evaluate the effects we used

A. Dobre; A. M. Morega

278

Magnetic field gradient measurement on magnetic cards using magnetic force microscopy  

NASA Astrophysics Data System (ADS)

The magnetic field gradients of magnetic stripe cards, which are developed for classifying magnetic particles used in magnetic particle inspections, have been measured using a magnetic force microscope (MFM). The magnetic force exerted on a MFM probe by the stray field emanating from the card was measured to determine the field gradients. The results are in good agreement with the field gradients estimated from the magnetizing field strengths used in the encoding process. .

Lo, C. C. H.; Leib, J.; Jiles, D. C.; Chedister, W. C.

2002-05-01

279

TESLA: Large Signal Simulation Code for Klystrons  

NASA Astrophysics Data System (ADS)

TESLA (Telegraphist's Equations Solution for Linear Beam Amplifiers) is a new code designed to simulate linear beam vacuum electronic devices with cavities, such as klystrons, extended interaction klystrons, twistrons, and coupled cavity amplifiers. The model includes a self-consistent, nonlinear solution of the three-dimensional electron equations of motion and the solution of time-dependent field equations. The model differs from the conventional Particle in Cell approach in that the field spectrum is assumed to consist of a carrier frequency and its harmonics with slowly varying envelopes. Also, fields in the external cavities are modeled with circuit like equations and couple to fields in the beam region through boundary conditions on the beam tunnel wall. The model in TESLA is an extension of the model used in gyrotron code MAGY. The TESLA formulation has been extended to be capable to treat the multiple beam case, in which each beam is transported inside its own tunnel. The beams interact with each other as they pass through the gaps in their common cavities. The interaction is treated by modification of the boundary conditions on the wall of each tunnel to include the effect of adjacent beams as well as the fields excited in each cavity. The extended version of TESLA for the multiple beam case, TESLA-MB, has been developed for single processor machines, and can run on UNIX machines and on PC computers with a large memory (above 2GB). The TESLA-MB algorithm is currently being modified to simulate multiple beam klystrons on multiprocessor machines using the MPI (Message Passing Interface) environment. The code TESLA has been verified by comparison with MAGIC for single and multiple beam cases. The TESLA code and the MAGIC code predict the same power within 1% for a simple two cavity klystron design while the computational time for TESLA is orders of magnitude less than for MAGIC 2D. In addition, recently TESLA was used to model the L-6048 klystron, code predictions agree with measured data in saturated output power very well, while there is difference in gain, the predicted gain is slightly higher than measured. These discrepancies will be explored in future simulations on better-diagnosed devices.

Vlasov, Alexander N.; Antonsen, Thomas M.; Cooke, Simon J.; Nguyen, Khanh T.; Chernin, David P.; Levush, Baruch

2003-12-01

280

Magnetic fields in the early Universe  

Microsoft Academic Search

This review concerns the origin and the possible effects of magnetic fields in the early Universe. We start by providing the reader with a short overview of the current state of the art of observations of cosmic magnetic fields. We then illustrate the arguments in favor of a primordial origin of magnetic fields in the galaxies and in the clusters

Dario Grasso; Hector R. Rubinstein

2001-01-01

281

Primordial magnetic field limits from cosmological data  

SciTech Connect

We study limits on a primordial magnetic field arising from cosmological data, including that from big bang nucleosynthesis, cosmic microwave background polarization plane Faraday rotation limits, and large-scale structure formation. We show that the physically relevant quantity is the value of the effective magnetic field, and limits on it are independent of how the magnetic field was generated.

Kahniashvili, Tina [McWilliams Center for Cosmology and Department of Physics, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213 (United States); Department of Physics, Laurentian University, Ramsey Lake Road, Sudbury, Ontario P3E 2C (Canada); Abastumani Astrophysical Observatory, Ilia State University, 2A Kazbegi Ave, Tbilisi, GE-0160 (Georgia); Tevzadze, Alexander G. [Abastumani Astrophysical Observatory, Ilia State University, 2A Kazbegi Ave, Tbilisi, GE-0160 (Georgia); Faculty of Exact and Natural Sciences, Tbilisi State University, 1 Chavchavadze Avenue, Tbilisi, GE-0128 (Georgia); Sethi, Shiv K. [McWilliams Center for Cosmology and Department of Physics, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213 (United States); Raman Research Institute, Sadashivanagar, Bangalore 560080 (India); Pandey, Kanhaiya [Raman Research Institute, Sadashivanagar, Bangalore 560080 (India); Ratra, Bharat [Department of Physics, Kansas State University, 116 Cardwell Hall, Manhattan, Kansas 66506 (United States)

2010-10-15

282

Penetration of plasma across a magnetic field  

NASA Astrophysics Data System (ADS)

Experiments were performed at the Nevada Terawatt Facility to investigate the plasma penetration across an externally applied magnetic field. In experiment, a short-pulse laser ablates a polyethylene laser target, producing a plasma which interacts with an external magnetic field. The mechanism which allows the plasma to penetrate the applied magnetic field in experiment will be discussed.

Plechaty, C.; Presura, R.; Wright, S.; Neff, S.; Haboub, A.

2009-08-01

283

Magnetic field reversals in the Milky Way  

Microsoft Academic Search

Radio observations of nearby spiral galaxies have tremendously enhanced our knowledge of their global magnetic field distributions. Recent theoretical developments in the area of dynamos have also helped in the interpretation of magnetic field data in spiral galaxies. When it comes to the magnetic field in the Milky Way galaxy, our position in the Milky Way's galactic disk hinders our

J. P. Vallee

1996-01-01

284

Transmission line magnetic fields; Measurements and calculations  

Microsoft Academic Search

Recent controversy over 60 Hz magnetic fields has heightened public awareness of overhead transmission lines. As a result, there is increasing motivation to study the magnetic fields form transmission lines. The most cost effective means to conduct research into transmission line magnetic fields is with computer or reduced-scale line models. However, from the standpoint of public perception and acceptance, it

B. A. Clairmont; G. B. Johnson; J. H. Dunlap

1992-01-01

285

Primordial magnetic field limits from cosmological data  

NASA Astrophysics Data System (ADS)

We study limits on a primordial magnetic field arising from cosmological data, including that from big bang nucleosynthesis, cosmic microwave background polarization plane Faraday rotation limits, and large-scale structure formation. We show that the physically relevant quantity is the value of the effective magnetic field, and limits on it are independent of how the magnetic field was generated.

Kahniashvili, Tina; Tevzadze, Alexander G.; Sethi, Shiv K.; Pandey, Kanhaiya; Ratra, Bharat

2010-10-01

286

In Vivo 7.0-Tesla Magnetic Resonance Imaging of the Wrist and Hand: Technical Aspects and Applications  

PubMed Central

Magnetic resonance imaging (MRI) at 7.0 T has the potential for higher signal-to-noise ratio (SNR), improved spectral resolution, and faster imaging compared with 1.5-T and 3.0-T MR systems. This is especially interesting for challenging imaging regions like the wrist and the hand because of the small size of the visualized anatomical structures; the increase in SNR could then be directly converted into higher spatial resolution of the images. Practically, imaging at 7.0 T poses a variety of technical challenges such as static (B0) and radiofrequency (B1) homogeneities, shimming, chemical shift artifacts, susceptibility artifacts, alterations in tissue contrast, specific absorption rate limitations, coil construction, and pulse sequence tuning. Despite these limitations, this first experience in anatomical imaging of the wrist and the hand at 7.0 T is very promising. Functional imaging techniques will gain importance at ultra-high-field MRI and need to be assessed in detail in the future.

Friedrich, Klaus M.; Chang, Gregory; Vieira, Renata L. R.; Wang, Ligong; Wiggins, Graham C.; Schweitzer, Mark E.; Regatte, Ravinder R.

2013-01-01

287

Accelerated cardiac magnetic resonance imaging in the mouse using an eight-channel array at 9.4 Tesla.  

PubMed

MRI has become an important tool to noninvasively assess global and regional cardiac function, infarct size, or myocardial blood flow in surgically or genetically modified mouse models of human heart disease. Constraints on scan time due to sensitivity to general anesthesia in hemodynamically compromised mice frequently limit the number of parameters available in one imaging session. Parallel imaging techniques to reduce acquisition times require coil arrays, which are technically challenging to design at ultrahigh magnetic field strengths. This work validates the use of an eight-channel volume phased-array coil for cardiac MRI in mice at 9.4 T. Two- and three-dimensional sequences were combined with parallel imaging techniques and used to quantify global cardiac function, T(1)-relaxation times and infarct sizes. Furthermore, the rapid acquisition of functional cine-data allowed for the first time in mice measurement of left-ventricular peak filling and ejection rates under intravenous infusion of dobutamine. The results demonstrate that a threefold accelerated data acquisition is generally feasible without compromising the accuracy of the results. This strategy may eventually pave the way for routine, multiparametric phenotyping of mouse hearts in vivo within one imaging session of tolerable duration. PMID:20740650

Schneider, Jürgen E; Lanz, Titus; Barnes, Hannah; Stork, Lee-Anne; Bohl, Steffen; Lygate, Craig A; Ordidge, Roger J; Neubauer, Stefan

2011-01-01

288

The TESLA RF System  

NASA Astrophysics Data System (ADS)

The TESLA project proposed by the TESLA collaboration in 2001 is a 500 to 800GeV e+/e- linear collider with integrated free electron laser facility. The accelerator is based on superconducting cavity technology. Approximately 20000 superconducting cavities operated at 1.3GHz with a gradient of 23.4MV/m or 35MV/m will be required to achieve the energy of 500GeV or 800GeV respectively. For 500GeV ~600 RF stations each generating 10MW of RF power at 1.3GHz at a pulse duration of 1.37ms and a repetition rate of 5 or 10Hz are required. The original TESLA design was modified in 2002 and now includes a dedicated 20GeV electron accelerator in a separate tunnel for free electron laser application. The TESLA XFEL will provide XFEL radiation of unprecedented peak brilliance and full transverse coherence in the wavelength range of 0.1 to 6.4nm at a pulse duration of 100fs. The technology of both accelerators, the TESLA linear collider and the XFEL, will be identical, however the number of superconducting cavities and RF stations for the XFEL will be reduced to 936 and 26 respectively. This paper describes the layout of the entire RF system of the TESLA linear collider and the TESLA XFEL and gives an overview of its various subsystems and components.

Choroba, S.

2003-12-01

289

Evolution of normal pulsar magnetic fields  

NASA Astrophysics Data System (ADS)

Results and new progress of the origin and evolution of pulsar magnetic fields are reviewed. Lots of models about how such strong magnetic fields were generated, mainly two kinds of structures were proposed for initial magnetic fields: fields confined in the cores and fields confined in the crusts of neutron stars. No consensus has been reached on whether the magnetic fields decay or not, despite some observational evidence for the evolution of magnetic fields. The discrepancy between characteristic ages and kinematic ages indicates that the magnetic fields decay exponentially. On the other hand, the braking indices of several young pulsars and the comparison between pulsar characteristic ages and the ages of associated supernova remnants suggest that the magnetic fields of young pulsars grow like a power-law. Pulsar population synthesis is one of the most important methods to investigate the evolution of magnetic fields. Many simulations show that if magnetic fields do decay exponentially, the e-folding decay time should be 100 Myr or longer. The numerical calculations of the Ohmic decay in the crust indicate that the scenario of exponential decay is oversimple, and the evolution could be divided into four possible phases approximately: exponential decay, no decay, power-law decay and exponential decay again. The model of magnetic fields expulsion induced by spin-down suggests that the magnetic fields decay only in a period between 107yr and 108yr.

Sun, Xiaohui; Han, Jinlin

2002-06-01

290

Proposed applications with implementation techniques of the upcoming renewable energy resource, The Tesla Turbine  

NASA Astrophysics Data System (ADS)

Recent research has shown that tesla turbine can be one of the future efficient sources of renewable energy. Modern techniques used for designing of tesla turbine have given optimum results regarding efficiency and applications. In this paper we have suggested fully coordinated applications of tesla turbine in different fields particularly in power generation at both low level and high level generation. In Energy deficient countries the tesla turbine has wide range of applications and it can play an important role in energy management system. Our proposed applications includes, the use of tesla turbine as renewable energy resource using tesla turbine in distributed generation system use of tesla turbine at home for power generation use of tesla turbine in irrigation channels using tesla turbine in hybrid electric vehicles All applications are explained with the help of flow charts and block diagrams and their implementation techniques are also explained in details. The results of physical experiments and simulations are also included for some applications.

Usman Saeed Khan, M.; Maqsood, M. Irfan; Ali, Ehsan; Jamal, Shah; Javed, M.

2013-06-01

291

Crustal Magnetic Fields of Terrestrial Planets  

NASA Astrophysics Data System (ADS)

Magnetic field measurements are very valuable, as they provide constraints on the interior of the telluric planets and Moon. The Earth possesses a planetary scale magnetic field, generated in the conductive and convective outer core. This global magnetic field is superimposed on the magnetic field generated by the rocks of the crust, of induced (i.e. aligned on the current main field) or remanent (i.e. aligned on the past magnetic field). The crustal magnetic field on the Earth is very small scale, reflecting the processes (internal or external) that shaped the Earth. At spacecraft altitude, it reaches an amplitude of about 20 nT. Mars, on the contrary, lacks today a magnetic field of core origin. Instead, there is only a remanent magnetic field, which is one to two orders of magnitude larger than the terrestrial one at spacecraft altitude. The heterogeneous distribution of the Martian magnetic anomalies reflects the processes that built the Martian crust, dominated by igneous and cratering processes. These latter processes seem to be the driving ones in building the lunar magnetic field. As Mars, the Moon has no core-generated magnetic field. Crustal magnetic features are very weak, reaching only 30 nT at 30-km altitude. Their distribution is heterogeneous too, but the most intense anomalies are located at the antipodes of the largest impact basins. The picture is completed with Mercury, which seems to possess an Earth-like, global magnetic field, which however is weaker than expected. Magnetic exploration of Mercury is underway, and will possibly allow the Hermean crustal field to be characterized. This paper presents recent advances in our understanding and interpretation of the crustal magnetic field of the telluric planets and Moon.

Langlais, Benoit; Lesur, Vincent; Purucker, Michael E.; Connerney, Jack E. P.; Mandea, Mioara

2010-05-01

292

Nuclear magnetic resonance apparatus for pulsed high magnetic fields  

NASA Astrophysics Data System (ADS)

A nuclear magnetic resonance apparatus for experiments in pulsed high magnetic fields is described. The magnetic field pulses created together with various magnet coils determine the requirements such an apparatus has to fulfill to be operated successfully in pulsed fields. Independent of the chosen coil it is desirable to operate the entire experiment at the highest possible bandwidth such that a correspondingly large temporal fraction of the magnetic field pulse can be used to probe a given sample. Our apparatus offers a bandwidth of up to 20 MHz and has been tested successfully at the Hochfeld-Magnetlabor Dresden, even in a very fast dual coil magnet that has produced a peak field of 94.2 T. Using a medium-sized single coil with a significantly slower dependence, it is possible to perform advanced multi-pulse nuclear magnetic resonance experiments. As an example we discuss a Carr-Purcell spin echo sequence at a field of 62 T.

Meier, Benno; Kohlrautz, Jonas; Haase, Jürgen; Braun, Marco; Wolff-Fabris, Frederik; Kampert, Erik; Herrmannsdörfer, Thomas; Wosnitza, Joachim

2012-08-01

293

A modified protocol using half-dose gadolinium in dynamic 3-Tesla magnetic resonance imaging for detection of ACTH-secreting pituitary tumors.  

PubMed

ACTH-secreting tumors represent 10% of functioning pituitary adenomas, and most of them are microadenomas. It is generally accepted that only half of these tumors are correctly identified with current magnetic resonance imaging (MRI) techniques. The objective of the paper is to report a method for detecting suspected ACTH-secreting pituitary tumors undetectable by conventional dynamic MRI using dynamic 3-Tesla MRI (3T MRI) and half-dose gadopentetate dimeglumine (0.05 mmol/Kg). Eight patients were included (5 men and 3 women) with a mean age of 29.12 years. Each of them had a confirmed diagnosis of Cushing disease and a negative dynamic MRI for microadenoma using full-dose gadopentetate dimeglumine. A second MRI was then performed using only half the usual dose of contrast material. Images from the second MRI where compared with the first study. Microadenomas were detected in 100% of the patients using a half dose of the contrast. All were recognized on the basis of the presence of a hypointense nodular lesion surrounded by normal contrast-enhanced tissue. Six patients were submitted to surgery, and the results were confirmed by immunohistochemistry in all of them. The remaining subject had a sinus sample catheterization coincident with the MRI results. Conclusion: A half dose of dynamic resonance imaging contrast material increases the sensitivity of MRI detection of ACTH-secreting pituitary tumors. PMID:20182808

Portocarrero-Ortiz, Lesly; Bonifacio-Delgadillo, Dulce; Sotomayor-González, Arturo; Garcia-Marquez, Arturo; Lopez-Serna, Raul

2010-09-01

294

The Role of Magnetic Resonance Imaging (MRI) in Prostate Cancer Imaging and Staging at 1.5 and 3 Tesla : The Beth Israel Deaconess Medical Center (BIDMC) Approach  

PubMed Central

Management decisions for patients with prostate cancer present a dilemma for both patients and their clinicians because prostate cancers demonstrate a wide range in biologic activity, with the majority of cases not leading to a prostate cancer related death. Furthermore, the current treatment options have significant side effects, such as incontinence, rectal injury and impotence. Key elements for guiding appropriate treatment include: distinction of organ-confined disease from extracapsular extension (ECE); and determination of tumor volume and tumor grade, none of which have been satisfactorily accomplished in today’s pre-treatment paradigm. Magnetic resonance imaging (MRI) has the capability to assess prostate tissue, both functionally and morphologically. MRI as a staging tool has not shown enough consistency or sufficient accuracy for widespread adoption in clinical practice; yet, recent technical developments in MRI have yielded improved results. At our institution we have combined the use of new endorectal 3 Tesla MRI technology, T2-weighted, and high spatial resolution dynamic-contrast enhanced (DCE) MRI to non-invasively assess the prostate with higher signal-to-noise ratio and spatial resolution than previously achieved. This approach allows assessment of prostate-tissue morphology and kinetics, thus providing a non-invasive tool for tumor detection and staging and, consequently, directing biopsy and treatment specifically to diseased areas for a pre-treatment evaluation that can assist in the rational selection of patients for appropriate prostate cancer therapy.

Bloch, B. Nicolas; Lenkinski, Robert. E.; Rofsky, Neil M.

2009-01-01

295

Simulation of Time-Dependent Energy Modulation by Wake Fields and its Impact on Gain in the VUV free Electron Laser of the TESLA Test Facility  

NASA Astrophysics Data System (ADS)

For shorter bunches and narrower undulator gaps the interaction between the electrons in the bunch and the wake fields becomes so large that the FEL amplification is affected. For a typical vacuum chamber of an X-ray or VUV Free Electron Laser three major sources of wake fields exist: a resistance of the beam pipe, a change in the geometric aperture and the surface roughness of the beam pipe. The generated wake fields, which move along with the electrons, change the electron energy and momentum, depending on the electron longitudinal and transverse position. In particular, the accumulated energy modulation shifts the electrons away from the resonance condition. Based on an analytic model the energy loss by the wake fields has been incorporated into the time-dependent FEL simulation code GENESIS 1.3. For the parameters of the TESLA Test Facility the influence of the bunch length, beam pipe diameter and surface roughness has been studied. The results are presented in this paper.

Reiche, S.; Schlarb, H.

2000-05-01

296

Near Field Spectroscopy of Quantum Dots Under Magnetic Field  

Microsoft Academic Search

We present the basic steps for the study of the linear near field absorption spectra of semiconductor quantum dots under magnetic field of variable orientation. We show that the application of the magnetic field alone is sufficient to induce -increasing the spot illuminated by the near field probe- interesting features to the absorption spectra.

Anna Zora; Constantinos Simserides; Georgios Triberis

2005-01-01

297

Near Field Spectroscopy of Quantum Dots Under Magnetic Field  

Microsoft Academic Search

We present the basic steps for the study of the linear near field absorption spectra of semiconductor quantum dots under magnetic field of variable orientation. We show that the application of the magnetic field alone is sufficient to induce -increasing the spot illuminated by the near field probe- interesting features to the absorption spectra.

Anna Zora; Constantinos Simserides; Georgios Triberis

2004-01-01

298

The origins of lunar crustal magnetic fields  

NASA Astrophysics Data System (ADS)

This thesis is devoted to understanding the origins of lunar crustal magnetism. We wish to understand the processes which have created and modified the crustal magnetic field distribution that we observe today, and to determine whether the Moon ever had an active magnetohydrodynamic dynamo. Previously, our only measurements of lunar magnetic fields came from the Explorer 35 and Apollo missions. Data coverage was incomplete, but sufficient to establish some systematics of the crustal field distribution. With new data from the Magnetometer and Electron Reflectometer instrument on Lunar Prospector, we have generated the first completely global maps of the lunar crustal fields. We use measurements of electrons magnetically reflected above the lunar surface, which we then correct for the effects of electrostatic fields (which also reflect electrons), and convert to estimates of surface magnetic fields. The resulting global map shows that impact basins and craters (especially the youngest) generally have low magnetic fields, suggesting impact demagnetization, primarily by shock effects. A secondary signature of some large lunar basins (especially older ones) is the presence of a more localized central magnetic anomaly. Meanwhile, the largest regions of strong crustal fields lie antipodal to young large impact basins, suggesting shock remanent magnetization due to a combination of antipodal focussing of seismic energy and/or ejecta and plasma compression of ambient magnetic fields. Smaller regions of strong magnetic fields are sometimes associated with basin ejecta, and basin and crater ejecta terranes have the strongest average fields outside of the antipodal regions. This implies that impact-generated magnetization may extend beyond the antipodal regions. The antipodal, non-antipodal, and central basin magnetic fields, as well as returned samples, can all be used to estimate the lunar magnetic field history and place constraints on a possible lunar dynamo. All of these quantities provide evidence for stronger magnetic fields early in the Moon's history, and thereby suggest the existence of an ancient core dynamo.

Halekas, Jasper S.

299

MnAs: magnetic-field-induced structural phase transformation and associated magnetoresistance  

NASA Astrophysics Data System (ADS)

MnAs, a commercially available material first studied a century ago, exhibits a first-order phase transition from a ferromagnetic, high-spin metal NiAs-type hexagonal phase to a paramagnetic, lower-spin insulator MnP-type orthorhombic phase at T_C= 313 K. We report the results of neutron diffraction experiments showing that an external magnetic field, B, stabilizes the hexagonal metallic phase above T_C. The phase transformation is reversible and constitutes the first demonstration of a bond-breking transition induced by a magnetic field. At 322 K the hexagonal structure is restored for B > 4 tesla. The field-induced phase transition is accompanied by an enhanced magnetoresistance of about 17 % at 310 K. We discuss the origig of this phenomenon, which appears to be similar to that of the colossal magnetoresistance response observed in some members of the manganese perovskite family.

Mira, Jorge; Rivadulla, Francisco; Rivas, Jose; Fondado, Alfonso; Caciuffo, Roberto G. M. C.; Carsughi, F.; Guidi, Tatiana; Goodenough, John B.

2003-03-01

300

Superconducting TESLA cavities  

Microsoft Academic Search

The conceptional design of the proposed linear electron-positron collider TESLA is based on 9-cell 1.3 GHz superconducting niobium cavities with an accelerating gradient of Eacc>=25 MV\\/m at a quality factor Q0>=5×109. The design goal for the cavities of the TESLA Test Facility (TTF) linac was set to the more moderate value of Eacc>=15 MV\\/m. In a first series of 27

B. Aune; R. Bandelmann; D. Bloess; B. Bonin; A. Bosotti; M. Champion; C. Crawford; G. Deppe; B. Dwersteg; D. A. Edwards; H. T. Edwards; M. Ferrario; M. Fouaidy; P.-D. Gall; A. Gamp; A. Gössel; J. Graber; D. Hubert; M. Hüning; M. Juillard; T. Junquera; H. Kaiser; G. Kreps; M. Kuchnir; R. Lange; M. Leenen; M. Liepe; L. Lilje; A. Matheisen; W.-D. Möller; A. Mosnier; H. Padamsee; C. Pagani; M. Pekeler; H.-B. Peters; O. Peters; D. Proch; K. Rehlich; D. Reschke; H. Safa; T. Schilcher; P. Schmüser; J. Sekutowicz; S. Simrock; W. Singer; M. Tigner; D. Trines; K. Twarowski; G. Weichert; J. Weisend; J. Wojtkiewicz; S. Wolff; K. Zapfe

2000-01-01

301

Magnetic field observations in Comet Halley's coma  

NASA Astrophysics Data System (ADS)

During the encounter with Comet Halley, the magnetometer (MISCHA) aboard the Vega 1 spacecraft observed an increased level of magnetic field turbulence, resulting from an upstream bow wave. Both Vega spacecraft measured a peak field strength of 70-80 nT and observed draping of magnetic field lines around the cometary obstacle. An unexpected rotation of the magnetic field vector was observed, which may reflect either penetration of magnetic field lines into a diffuse layer related to the contact surface separating the solar-wind and cometary plasma, or the persistence of pre-existing interplanetary field structures.

Riedler, W.; Schwingenschuh, K.; Yeroshenko, Ye. G.; Styashkin, V. A.; Russell, C. T.

1986-05-01

302

High frequency probes of superconductivity and magnetism in anisotropic materials in very high magnetic field  

NASA Astrophysics Data System (ADS)

In this dissertation, I present a study of a wide range of organic and inorganic materials using radio frequency (rf) measurement methods. The organic samples under study were lambda-(BETS)2 GaCl4 and lambda-(BETS)2 FeCl4. In the lambda-(BETS)2 GaCl4, the H-T superconductivity phase diagram was studied using the tunnel diode oscillator (TDO) method and compared with simultaneous four terminals resistivity measurements. These simultaneous measurements show signs of para-conductivity in this material. The same method was used to study the lambda-(BETS)2 FeCl4 sample which is a field induced superconductor (FISC). The inorganic materials that I have studied include Ba 0.55K0.45Fe2 As2 and USb2. In Ba0.55K0.45Fe 2As2 (which belongs to the recently discovered Pnictide superconductors family), I have studied the H-T phase diagram for magnetic fields applied parallel and perpendicular to the crystallographic c-axis up to 65 tesla and in temperature as low as 4 K. Ba0.55K0.45 Fe2As2 was studied by a new rf technique that I have developed recently (PDO?Proximity Detector Oscillator). The rf measurements of Ba0.55 K0.45Fe2 As2 from my work support the prediction of an unconventional multigap superconductivity in this material. In the USb 2 sample, a Fermi surfaces measurement was performed by the TDO rf probe and by a torque magnetometer for comparison purposes in high magnetic fields up to 65 tesla and in temperatures above 0.5 K. I found that both the rf and the torque measurements reveal a cylindrical Fermi surface with approximately the same effective mass. However, the rf and the torque measurements reveal some differences in the frequencies obtained from the FFT obtained for each method. In this dissertation, most of the measurements were performed using rf probes like the TDO or the PDO. The PDO method has successfully replaced the TDO method to perform rf measurements in all different kinds of magnets (dc and pulsed).

Altarawneh, Moaz

303

Effects of external and self-generated magnetic fields on laser-driven implosions  

NASA Astrophysics Data System (ADS)

The magnetized laser-driven implosions are studied using ALE hydro-code DRACO coupled with the newly developed MHD block (with anisotropic, B-dependent transport coefficients). Considered: i) compression of an externally imposed magnetic field and ii) self-generation of the magnetic field by non-collinear density and pressure gradients. For the first case, it is shown that the moderate external magnetic field of (<10 Tesla) can be compressed to hundreds of Mega-Gauss at the implosion stagnation [O. Gotchev et al., submitted to PRL, (2009)]. The field of such amplitude can influence the thermal flux from the target core and results in noticeable effects on the target hydro-dynamics. For the second case, it is shown that the self-generated magnetic field can be amplified to the multi-mega-gauss level at the different implosion stages by at least three MHD-related mechanisms: i) the Tidman instability due to a lateral B-dependent heat flux, ii) the Rayleigh-Taylor instability at the ablation front and, iii) the corrugation instability of spherical shock fronts. It is also shown that the magnetic field initially produced at the critical surface significantly reduces the imprinting of laser irradiation non-uniformities onto the ablation surface.

Polomarov, O.; Chang, P.; Gotchev, O.; Betti, R.

2009-11-01

304

[Investigation of radio frequency heating of dental implants made of titanium in 1.5 tesla and 3.0 tesla magnetic resonance procedure: measurement of the temperature by using tissue-equivalent phantom].  

PubMed

Titanium (Ti) implants are increasingly being used for dental parts. There is no problem with the attraction of a static magnetic field for Ti in magnetic resonance imaging (MRI), since Ti is paramagnetic. However, there is a risk of radio frequency (RF) heat generation within Ti. 3.0 T-MRI scanners are becoming increasingly common. The specific absorption rate (SAR) of 3.0 T-MRI is quadruple that of SAR compared with 1.5 T-MRI due to its being proportional to the square of the strength of a static magnetic field. The effect of heat generation in 3.0 T-MRI can thus be greater than in 1.5 T-MRI. So, using 1.5 T and 3.0 T-MRI scanners, we measured the temperature of several Ti implants using the same scanning parameters during MRI scanning. Our measurements showed the rise in temperature of the Ti implants to be a maximum of 0.4 degrees C. In this study, however, Ti in a human mouth was not directly measured, so we need to attempt to perform MRI carefully on patients with Ti implants. PMID:23964532

Ideta, Takahiro; Yamazaki, Masaru; Kudou, Sadahiro; Higashida, Mitsuji; Mori, Shintarou; Kaneda, Takashi; Nakazawa, Masami

2013-05-01

305

4 Tesla MRI for Neurodegenerative Diseases.  

National Technical Information Service (NTIS)

During the past year, nine research projects have used the 4Tesla magnet (for a total of 398 scans), and 55 developmental scans had been completed. Since the last progress report, we upgraded the shim currents which substantially improved the quality of i...

M. W. Weiner

2005-01-01

306

N-doped ZnO thin film for development of magnetic field sensor based on surface plasmon resonance.  

PubMed

Magnetic-field-dependent optical properties of nitrogen-doped ZnO (ZnO:N) thin films were investigated using surface plasmon resonance (SPR) and a highly sensitive (4.65/Tesla) magnetic field sensor has been realized. The refractive index (RI) of ZnO:N film increases from 1.949 to 2.025 with increase in N doping from 0% to 10% demonstrating tunable RI. In contrast to pure ZnO, SPR curves for ZnO:N films exhibit a shift toward lower angles with increasing applied magnetic field from 0 to 35 mT due to change in reflectance of light upon reflection from ferromagnetic surface. Results indicate promising application of ferromagnetic ZnO:N film as a magnetic field sensor. PMID:24104809

Jindal, Kajal; Tomar, Monika; Katiyar, R S; Gupta, Vinay

2013-09-15

307

Magnetic field seeding by galactic winds  

Microsoft Academic Search

The origin of intergalactic magnetic fields is still a mystery and several scenarios have been proposed so far: among them, primordial phase transitions, structure-formation shocks and galactic outflows. In this work, we investigate how efficiently galactic winds can provide an intense and widespread `seed' magnetization. This may be used to explain the magnetic fields observed today in clusters of galaxies

Serena Bertone; Corina Vogt; Torsten Enßlin

2006-01-01

308

Invited Safety of Strong, Static Magnetic Fields  

Microsoft Academic Search

Issues associated with the exposure of patients to strong, static magnetic fields during magnetic resonance imaging (MRI) are reviewed and discussed. The history of human exposure to magnetic fields is reviewed, and the contra- dictory nature of the literature regarding effects on human health is described. In the absence of ferromagnetic for- eign bodies, there is no replicated scientific study

John F. Schenck

2000-01-01

309

Intergalactic Magnetic Fields from Quasar Outflows  

Microsoft Academic Search

Outflows from quasars inevitably pollute the intergalactic medium (IGM) with magnetic fields. The short-lived activity of a quasar leaves behind an expanding magnetized bubble in the IGM. We model the expansion of the remnant quasar bubbles and calculate their distribution as a function of size and magnetic field strength at different redshifts. We generically find that by a redshift z~3,

Steven R. Furlanetto; Abraham Loeb

2001-01-01

310

Magnetic fields in Local Group dwarf irregulars  

Microsoft Academic Search

Aims: We wish to clarify whether strong magnetic fields can be effectively generated in typically low-mass dwarf galaxies and to assess the role of dwarf galaxies in the magnetization of the Universe. Methods: We performed a search for radio emission and magnetic fields in an unbiased sample of 12 Local Group (LG) irregular and dwarf irregular galaxies with the 100-m

K. T. Chyzy; M. Wezgowiec; R. Beck; D. J. Bomans

2011-01-01

311

Deformation of Water by a Magnetic Field  

ERIC Educational Resources Information Center

|After the discovery that superconducting magnets could levitate diamagnetic objects, researchers became interested in measuring the repulsion of diamagnetic fluids in strong magnetic fields, which was given the name "The Moses Effect." Both for the levitation experiments and the quantitative studies on liquids, the large magnetic fields necessary…

Chen, Zijun; Dahlberg, E. Dan

2011-01-01

312

Baking a magnetic-field display  

NASA Astrophysics Data System (ADS)

Copy machine developer powder is an alternative for creating permanent displays of magnetic fields. A thin layer of developer powder on a sheet of paper placed over a magnet can be baked in the oven, producing a lasting image of a magnetic field.

Cavanaugh, Terence; Cavanaugh, Catherine

1998-02-01

313

Exploring Magnetic Fields with a Compass  

ERIC Educational Resources Information Center

|A compass is an excellent classroom tool for the exploration of magnetic fields. Any student can tell you that a compass is used to determine which direction is north, but when paired with some basic trigonometry, the compass can be used to actually measure the strength of the magnetic field due to a nearby magnet or current-carrying wire. In…

Lunk, Brandon; Beichner, Robert

2011-01-01

314

Cluster magnetic fields from galactic outflows  

Microsoft Academic Search

We performed cosmological, magnetohydrodynamical simulations to follow the evolution of magnetic fields in galaxy clusters, exploring the possibility that the origin of the magnetic seed fields is galactic outflows during the starburst phase of galactic evolution. To do this, we coupled a semi-analytical model for magnetized galactic winds as suggested by Bertone, Vogt & Enßlin to our cosmological simulation. We

J. Donnert; K. Dolag; H. Lesch; E. Müller

2009-01-01

315

Sub arcsec evolution of solar magnetic fields  

Microsoft Academic Search

Context: .The evolution of the concentrated magnetic field in flux tubes is one challenge of the nowadays Solar physics which requires time sequence with high spatial resolution. Aims: .Our objective is to follow the properties of the magnetic concentrations during their life, in intensity (continuum and line core), magnetic field and Doppler velocity. Methods: .We have observed solar region NOAA

Th. Roudier; J. M. Malherbe; J. Moity; S. Rondi; P. Mein; Ch. Coutard

2006-01-01

316

An Extraordinary Magnetic Field Map of Mars  

NASA Astrophysics Data System (ADS)

A new global map of the magnetic field of Mars, with an order of magnitude improved sensitivity to crustal magnetization, is derived from Mars Global Surveyor mapping orbit magnetic field data. With this comes greatly improved spatial resolution and geologic intrpretation.

Connerney, J. E. P.; Acuna, M. H.; Ness, N. F.; Mitchell, D. L.; Lin, R. P.

2004-03-01

317

Conduction-Cooled Superconducting Magnet for Material Control Application  

Microsoft Academic Search

The conduction-cooled superconducting magnet with operating current of 180 A is designed, fabricated, and tested for material control application. The superconducting magnet has the effective standard warm bore of 52 mm and the maximum central field of 3 Tesla. Since magnetic field gradient should be larger at the end rather than at the center of the magnet for material control,

Yeon Suk Choi; Dong Lak Kim; Byoung Seob Lee; Hyung Suk Yang; Thomas A. Painter

2009-01-01

318

Rotating magnetic beacons magnetic field strength size in SAGD  

Microsoft Academic Search

Rotation magnetic beacons magnetic field strength is very important to drill parallel horizontal twin wells in steam assisted\\u000a gravity drainage (SAGD). This paper analyzes a small magnet with a diameter of 25.4 mm. At each end, there is a length of\\u000a 12.6 mm with permanent magnet, and in the middle, there is a length of 78mm with magnetic materials. The

Bing Tu; Desheng Li; Enhuai Lin; Bin Luo; Jian He; Lezhi Ye; Jiliang Liu; Yuezhong Wang

2010-01-01

319

Unique topological characterization of braided magnetic fields  

NASA Astrophysics Data System (ADS)

We introduce a topological flux function to quantify the topology of magnetic braids: non-zero, line-tied magnetic fields whose field lines all connect between two boundaries. This scalar function is an ideal invariant defined on a cross-section of the magnetic field, and measures the average poloidal magnetic flux around any given field line, or the average pairwise crossing number between a given field line and all others. Moreover, its integral over the cross-section yields the relative magnetic helicity. Using the fact that the flux function is also an action in the Hamiltonian formulation of the field line equations, we prove that it uniquely characterizes the field line mapping and hence the magnetic topology.

Yeates, A. R.; Hornig, G.

2013-01-01

320

Boston University Physics Applets: Magnetic Field Demonstration  

NSDL National Science Digital Library

This web page is an interactive physics simulation that explores magnetic fields. The user can add currents coming into or out of a simulated grid, and see the fields created. There is also a selection of pre-created fields, including bar magnets, loops, opposing magnets, and coils in uniform fields. Double-clicking on any point displays the full loop created by the magnetic field. This item is part of a larger collection of introductory physics simulations developed by the author. This is part of a collection of similar simulation-based student activities.

Duffy, Andrew

2008-08-23

321

Bipolar pulse field for magnetic refrigeration  

DOEpatents

A magnetic refrigeration apparatus includes first and second steady state magnets, each having a field of substantially equal strength and opposite polarity, first and second bodies made of magnetocaloric material disposed respectively in the influence of the fields of the first and second steady state magnets, and a pulsed magnet, concentric with the first and second steady state magnets, and having a field which cycles between the fields of the first and second steady state magnets, thereby cyclically magnetizing and demagnetizing and thus heating and cooling the first and second bodies. Heat exchange apparatus of suitable design can be used to expose a working fluid to the first and second bodies of magnetocaloric material. A controller is provided to synchronize the flow of working fluid with the changing states of magnetization of the first and second bodies.

Lubell, Martin S. (Oak Ridge, TN)

1994-01-01

322

Bipolar pulse field for magnetic refrigeration  

DOEpatents

A magnetic refrigeration apparatus includes first and second steady state magnets, each having a field of substantially equal strength and opposite polarity, first and second bodies made of magnetocaloric material disposed respectively in the influence of the fields of the first and second steady state magnets, and a pulsed magnet, concentric with the first and second steady state magnets, and having a field which cycles between the fields of the first and second steady state magnets, thereby cyclically magnetizing and demagnetizing and thus heating and cooling the first and second bodies. Heat exchange apparatus of suitable design can be used to expose a working fluid to the first and second bodies of magnetocaloric material. A controller is provided to synchronize the flow of working fluid with the changing states of magnetization of the first and second bodies. 2 figs.

Lubell, M.S.

1994-10-25

323

Near-Field Magnetic Dipole Moment Analysis.  

National Technical Information Service (NTIS)

This paper describes the data analysis technique used for magnetic testing at the NASA Goddard Space Flight Center (GSFC). Excellent results have been obtained using this technique to convert a spacecraft s measured magnetic field data into its respective...

P. K. Harris

2003-01-01

324

Constant Current Source for Stable Magnetic Fields.  

National Technical Information Service (NTIS)

An electronic control system for stabilization of currents in magnetic fields is described. Three superimposed control stages with different characteristics provide optimum elimination of all interfering factors. The use of electrostatic and magnetic shie...

K. Weyand

1976-01-01

325

A potential multiple resonance mechanism by which weak magnetic fields affect molecules and medical problems: the example of melatonin and experimental "multiple sclerosis".  

PubMed

A biophysical hypothesis to explain the powerful ameliorating effects of weak (nanoTesla range) magnetic fields on melatonin-related diseases is presented. The effects are dependent upon the molarity of the melatonin within specific organ spaces. The optimal ameliorating effects upon experimental allergic encephalomyelitis for both the derived intensities (about 35 and 70 nT) and the frequency (7 Hz) were congruent with the empirical observations from previously published and unpublished experiments with rats involving about 1-5000 nT strengths of either 0.5, 7, 40, or 60 Hz magnetic fields. The hypothesis predicts that weaker magnetic fields within the nanoTesla to picoTesla range would optimally affect concentrations of melatonin (in this situation) within the micromolar range and that neurological states (epilepsy) or conditions (ethanol, antidepressants, sleep deprivation) that affect nocturnal melatonin levels in human beings would determine the optimal effective intensity within the 7 Hz range. The resonance solution also suggests that mitochondrial proton gradients may be critical to the process. The model offers an alternative explanation to the variations of Faraday's Law and the Boltzmann constant that have been employed to explain and to dismiss biological effects from weak magnetic fields. PMID:16321472

Persinger, Michael A

2006-01-01

326

THE EARTH'S YOUNG MAGNETIC FIELD  

Microsoft Academic Search

Invisible lines of magnetic force enclose our planet in what scientists call adipolarmagneticfield. Today these lines go from magnetic south to magnetic north, which are offset a few degrees from the geographic poles. Some minerals, like magnetite, can \\

Trevor Major

327

Distortion correction in whole-body imaging of live mice using a 1Tesla compact magnetic resonance imaging system  

Microsoft Academic Search

Purpose  The aim of this study was to establish a distortion correction applicable to whole-body imaging of live mice.\\u000a \\u000a \\u000a \\u000a Materials and methods  All magnetic resonance imaging (MRI) scans were acquired on a compact 1-T permanent magnet unit for mouse imaging using a\\u000a T1-weighted, three-dimensional (3D) fast low-angle shot sequence. We assessed geometric distortion in MR images of a small\\u000a 3D grid phantom

Shigeru Kiryu; Yusuke Inoue; Yoshitaka Masutani; Tomoyuki Haishi; Kohki Yoshikawa; Makoto Watanabe; Kuni Ohtomo

2011-01-01

328

Arc Discharges in a Curved Magnetic Field.  

National Technical Information Service (NTIS)

An experiment on arc discharges in hydrogen in a curved magnetic field is described. For a few milliseconds the discharge current flowed between two electrodes along the field lines of a toroidal magnetic field over an angle of 258 deg. The plasma was not...

F. C. Schueller

1974-01-01

329

Is the intergalactic magnetic field primordial?  

Microsoft Academic Search

We consider the various methods used to constrain the possible field strength of the present day intergalactic field and findB0(G)-10 as a probable upper bound. It is suggested that the observed intergalactic magnetic field might not be primordial in origin but rather the result of magnetic flux leakage from galaxies and clusters of galaxies.

Martin Beech

1985-01-01

330

Intergalactic magnetic field and galactic WARPS  

Microsoft Academic Search

An alternative explanation of galactic warps is proposed, in which the intergalactic magnetic field (IGMF) is responsible for these structures. The model predicts that, to be efficient, the magnetic field must have a direction not much different from 45 deg with the galactic plane. The required values of the field strength are uncertain, of about 10 nG, higher values being

E. Battaner; E. Florido; M. L. Sanchez-Saavedra

1990-01-01

331

Fiber Bragg Grating Magnetic Field Sensor  

Microsoft Academic Search

In this paper we demonstrate experimentally a magnetic field sensor using a fiber Bragg grating. The shift in the Bragg condition as a result of strain applied on the fiber mounted on a nickel base by the magnetic field gives an indirect measure of the field. The proposed method overcomes the need for long fiber lengths required in methods such

K. V. Madhav; K. Ravi Kumar; T. Srinivas; S. Asokan

2006-01-01

332

Is the intergalactic magnetic field primordial?  

NASA Astrophysics Data System (ADS)

The various methods used to constrain the possible field strength of the present day intergalactic field are considered, and Bzero (G) less than 10 to the -10th is found as a probable upper bound. It is suggested that the observed intergalactic magnetic field might not be primordial in origin but rather the result of magnetic flux leakage from galaxies and clusters of galaxies.

Beech, M.

1985-11-01

333

Entangled states of trapped ions allow measuring the magnetic field gradient produced by a single atomic spin  

NASA Astrophysics Data System (ADS)

We propose detecting the magnetic field gradient produced by the magnetic dipole moment of a single atom by using ions in an entangled state trapped a few ?m from the dipole. This requires measuring magnetic field gradients of order 10-13 tesla/?m. We discuss applications in determining magnetic moments of a wide variety of ion species, for investigating the magnetic substructure of ions with level structures that are not suitable for laser cooling and detection, and for studying exotic or rare ions, and molecular ions. The scheme may also be used for measuring spin imbalances of neutral atoms or atomic ensembles trapped by optical dipole forces. As the proposed method relies on techniques that are well established in ion trap quantum information processing, it is within reach of current technology.

Schmidt-Kaler, F.; Gerritsma, R.

2012-09-01

334

Accuracy and stability of measuring GABA, glutamate, and glutamine by proton magnetic resonance spectroscopy: A phantom study at 4 Tesla  

Microsoft Academic Search

Proton magnetic resonance spectroscopy has the potential to provide valuable information about alterations in gamma-aminobutyric acid (GABA), glutamate (Glu), and glutamine (Gln) in psychiatric and neurological disorders. In order to use this technique effectively, it is important to establish the accuracy and reproducibility of the methodology. In this study, phantoms with known metabolite concentrations were used to compare the accuracy

Michael E. Henry; Tara L. Lauriat; Meghan Shanahan; Perry F. Renshaw; J. Eric Jensen

2011-01-01

335

Static uniform magnetic fields and amoebae  

SciTech Connect

Three species of potentially pathogenic amoebae were exposed to 71 and 106.5 mT from constant homogeneous magnetic fields and examined for inhibition of population growth. The number of amoebae for three species was significantly less than controls after a 72 h exposure to the magnetic fields when the temperature was 20 C or above. Axenic cultures, i.e., cultures grown without bacteria, were significantly affected after only 24 h. In 20 of 21 tests using the three species, the magnetic field significantly inhibited the growth of amoebae. In one test in which the temperature was 20 C for 48 h, exposure to the magnetic field was not inhibitory. Final numbers of magnetic field-exposed amoebae ranged from 9 to 72% lower than the final numbers of unexposed controls, depending on the species. This research may lead to disinfection strategies utilizing magnetic fields for surfaces on which pathogenic amoebae may proliferate.

Berk, S.G.; Srikanth, S.; Mahajan, S.M.; Ventrice, C.A. [Tennessee Technological Univ., Cookeville, TN (United States)

1997-03-01

336

Influence of the external magnetic field on pinch evolution and neutron production in plasma-focus discharge  

NASA Astrophysics Data System (ADS)

In this paper, the results of the study of the influence of the applied external axial magnetic field on the dynamics of pinch and neutron production are presented, following from measurements using x-ray, interferometry and neutron diagnostics performed on the plasma-focus PF-1000 device with deuterium as the filling gas at the current of 2 MA and neutron yield above 1010. The permanent magnets with a magnetic field of a few hundredths of tesla were used both inside the anode body and in front of the end of the dense column. This magnetic field decreases the neutron yield, depresses the implosion velocity and the velocity of the transformations of internal structures, stabilizes the pinch column, increases its axial symmetry and indirectly confirms the existence of internal closed currents inside the pinch structures.

Paduch, M.; Zielinska, E.; Kubes, P.; Klir, D.; Kravarik, J.; Rezac, K.; Cikhardt, J.; Kortanek, J.; Scholz, M.; Karpinski, L.

2013-11-01

337

Extraterrestrial Magnetic Fields: Achievements and Opportunities  

Microsoft Academic Search

The major scientific achievements associated with the measurement of magnetic fields in space over the past decade and a half are reviewed. Aspects of space technology relevant to magnetic-field observations are discussed, including the different types of magnetometers used and how they operate, problems arising from spacecraft-generated magnetic fields and the appropriate countermeasures that have been developed and on-board processing

EDWARD J. SMITHAND; Charles Sonett

1976-01-01

338

Modeling solar force-free magnetic fields  

Microsoft Academic Search

A class of nonlinear force-free magnetic fields is presented, described in terms of the solutions to a second-order, nonlinear ordinary differential equation. These magnetic fields are three-dimensional, filling the infinite half-space above a plane where the lines of force are anchored. They model the magnetic fields of the sun over active regions with a striking geometric realism. The total energy

B. C. Low; Y. Q. Lou

1990-01-01

339

Induced Magnetic Anisotropy of Ferrofluid Frozen in Magnetic Fields  

Microsoft Academic Search

The magnetization process of a ferrofluid whose carrier fluid is paraffin was investigated in the temperature range from 77 K to 300 K, as a function of the cooling field intensity and freezing rate. Phase transitions between the liquid and solid states can be simulated by using the ferrofluids as a magnetic probe. A uniaxial magnetic anisotropy was induced by

N. Inaba; H. Miyajima; S. Taketomi; S. Chikazumi

1989-01-01

340

Swarm: ESA's Magnetic Field Mission  

NASA Astrophysics Data System (ADS)

Swarm is the fifth Earth Explorer mission in ESA's Living Planet Programme, and is scheduled for launch in 2013. The objective of the Swarm mission is to provide the best-ever survey of the geomagnetic field and its temporal evolution using a constellation of 3 identical satellites. The Mission shall deliver data that allow access to new insights into the Earth system by improved scientific understanding of the Earth's interior and near-Earth electromagnetic environment. After launch and triple satellite release at an initial altitude of about 490 km, a pair of the satellites will fly side-by-side with slowly decaying altitude, while the third satellite will be lifted to 530 km to complete the Swarm constellation. High-precision and high-resolution measurements of the strength, direction and variation of the magnetic field, complemented by precise navigation, accelerometer and electric field measurements, will provide the observations required to separate and model various sources of the geomagnetic field and near-Earth current systems. The mission science goals are to provide a unique view into Earth's core dynamics, mantle conductivity, crustal magnetisation, ionospheric and magnetospheric current systems and upper atmosphere dynamics - ranging from understanding the geodynamo to contributing to space weather. The scientific objectives and results from recent scientific studies will be presented. In addition the current status of the project, which is presently in the final stage of the development phase, will be addressed. A consortium of European scientific institutes is developing a distributed processing system to produce geophysical (Level 2) data products for the Swarm user community. The setup of the Swarm ground segment and the contents of the data products will be addressed. More information on Swarm can be found at www.esa.int/esaLP/LPswarm.html.

Plank, Gernot; Haagmans, Roger; Floberghagen, Rune; Menard, Yvon

2013-04-01

341

Five years of magnetic field management  

SciTech Connect

The extensive publicity of epidemiological studies inferring correlation between 60 Hz magnetic fields and childhood leukemia prompted world wide research programs that have as a goal to determine if low frequency magnetic fields represent any risk for the general population, children or utility workers. While supporting this research effort through EPRI, Con Edison embarked on a technical research program aimed to: characterize magnetic fields as to intensity and variation in time; and investigate practical means to manage these magnetic fields through currently known methods. The final goal of these research projects is to establish viable methods to reduce magnetic field intensity to desired values at reasonable distances from the sources. This goal was pursued step by step, starting with an inventory of the main sources of magnetic fields in substations, distribution and transmission facilities and generating plants. The characterization of the sources helped to identify typical cases and select specific cases, far practical applications. The next step was to analyze the specific cases and develop design criteria for managing the magnetic fields in new installations. These criteria included physical arrangement of equipment based oil calculation of magnetic fields, cancellation effect, desired maximum field intensity at specific points and shielding with high magnetic permeability metals (mu-metal and steel). This paper summarizes the authors` experiences and shows the results of the specific projects completed in recent years.

Durkin, C.J.; Fogarty, R.P.; Halleran, T.M.; Mark, Dr. D.A.; Mukhopadhyay, A.

1995-01-01

342

Quark matter in a strong magnetic field  

SciTech Connect

The effect of a strong magnetic field on the stability and gross properties of bulk as well as quasibulk quark matter is investigated using the conventional MIT bag model. Both the Landau diamagnetism and the paramagnetism of quark matter are studied. How the quark hadron phase transition is affected by the presence of a strong magnetic field is also investigated. The equation of state of strange quark matter changes significantly in a strong magnetic field. It is also shown that the thermal nucleation of quark bubbles in a compact metastable state of neutron matter is completely forbidden in the presence of a strong magnetic field. {copyright} {ital 1996 The American Physical Society.}

Chakrabarty, S. [Department of Physics, University of Kalyani, District: Nadia, West Bengal 741 235 (India)]|[Inter-University Centre for Astronomy and Astrophysics, Post Bag 4, Ganeshkhind, Pune 411 007 (India)

1996-07-01

343

Two dimensional frustrated magnets in high magnetic field  

NASA Astrophysics Data System (ADS)

Frustrated magnets in high magnetic field have a long history of offering beautiful surprises to the patient investigator. Here we present the results of extensive classical Monte Carlo simulations of a variety of models of two dimensional magnets in magnetic field, together with complementary spin wave analysis. Striking results include (i) a massively enhanced magnetocaloric effect in antiferromagnets bordering on ferromagnetic order, (ii) a route to an m = 1/3 magnetization plateau on a square lattice, and (iii) a cascade of phase transitions in a simple model of AgNiO2.

Seabra, L.; Shannon, N.; Sindzingre, P.; Momoi, T.; Schmidt, B.; Thalmeier, P.

2009-01-01

344

The Magnetic Fields of the Quiet Sun  

NASA Astrophysics Data System (ADS)

This work reviews our understanding of the magnetic fields observed in the quiet Sun. The subject has undergone a major change during the last decade (quiet revolution), and it will remain changing since the techniques of diagnostic employed so far are known to be severely biased. Keeping these caveats in mind, our work covers the main observational properties of the quiet Sun magnetic fields: magnetic field strengths, unsigned magnetic flux densities, magnetic field inclinations, as well as the temporal evolution on short time-scales (loop emergence), and long time-scales (solar cycle). We also summarize the main theoretical ideas put forward to explain the origin of the quiet Sun magnetism. A final prospective section points out various areas of solar physics where the quiet Sun magnetism may have an important physical role to play (chromospheric and coronal structure, solar wind acceleration, and solar elemental abundances).

Sánchez Almeida, J.; Martínez González, M.

2011-04-01

345

Intraoperative Low-Field Magnetic Resonance Imaging in Pediatric Neurosurgery  

Microsoft Academic Search

Background: Since the mid-1990s, the feasibility and indications of intraoperative magnetic resonance (MR) imaging have been investigated by different groups. The majority of examinations were carried out in adults. The aim of this study was to summarize our experience of over 5 years of intraoperative MR imaging in pediatric neurosurgery. Methods: For scanning, we used a 0.2-Tesla Magnetom Open, which

Christopher Nimsky; Oliver Ganslandt; Jan Gralla; Michael Buchfelder; Rudolf Fahlbusch

2003-01-01

346

Diagnostic accuracy of a short-duration 3 Tesla magnetic resonance protocol for diagnosing stifle joint lesions in dogs with non-traumatic cranial cruciate ligament rupture  

PubMed Central

Background Magnetic resonance (MR) imaging is the preferred diagnostic tool to evaluate internal disorders of many joints in humans; however, the usefulness of MR imaging in the context of osteoarthritis, and joint disease in general, has yet to be characterized in veterinary medicine. The objective of this study was to assess the diagnostic accuracy of short-duration 3 Tesla MR imaging for the evaluation of cranial and caudal cruciate ligament, meniscal and cartilage damage, as well as the degree of osteoarthritis, in dogs affected by non-traumatic, naturally-occurring cranial cruciate ligament rupture (CCLR). Diagnoses made from MR images were compared to those made during surgical exploration. Twenty-one client-owned dogs were included in this study, and one experienced evaluator assessed all images. Results All cranial cruciate ligaments were correctly identified as ruptured. With one exception, all caudal cruciate ligaments were correctly identified as intact. High sensitivities and specificities were obtained when diagnosing meniscal rupture. MR images revealed additional subclinical lesions in both the cranial and caudal cruciate ligaments and in the menisci. There was a “clear” statistical (kappa) agreement between the MR and the surgical findings for both cartilage damage and degree of osteoarthritis. However, the large 95% confidence intervals indicated that evaluation of cartilage damage and of degree of osteoarthritis is not clinically satisfactory. Conclusions The presence of cruciate ligament damage and meniscal tears could be accurately assessed using the MR images obtained with our protocol. However, in the case of meniscal evaluation, occasional misdiagnosis did occur. The presence of cartilage damage and the degree of osteoarthritis could not be properly evaluated.

2013-01-01

347

PRINCIPLE OF CORRECTION OF ASYMMETRIC MAGNETIC FIELDS IN BENDING MAGNETS  

Microsoft Academic Search

The generation of a high quality electron beam by a race- track microtron (RTM) requires highly precise magnetic fields in the two reversing magnets. At the RTM cascade MAMI (Mainz Microtron), a precision of 10 ?4 for the ver- tical field component By was achieved by symmetrical sur- face coils placed at the upper and lower pole surface in each

F. Hagenbuck; P. Jennewein; K.-H. Kaiser; H.-J. Kreidel; U. Ludwig-Mertin; M. Seidl

2002-01-01

348

Optimized radiofrequency resonators for high field NMR clinical imaging  

Microsoft Academic Search

In high field (>4 Tesla) magnetic resonance imaging (MRI) systems, a major challenge is the design of radiofrequency (RF) coils that exhibit a good signal to noise ratio, tangential magnetic field (B 1) uniformity, and low specific absorption rate (SAR) in the biological tissues. As the static magnetic field increases, the frequency of operation rises and consequently the electrical dimensions

T. S. Ibrahim; R. Lee; B. B. Baertlein; P. M. L. Robitaille

2000-01-01

349

Measurements of Heme Relaxation and Ligand Recombination in Strong Magnetic Fields  

PubMed Central

Heme cooling signals and diatomic ligand recombination kinetics are measured in strong magnetic fields (up to 10 Tesla). We examined diatomic ligand recombination to heme model compounds (NO and CO), myoglobin (NO and O2), and horseradish peroxidase (NO). No magnetic field induced rate changes in any of the samples were observed within the experimental detection limit. However, in the case of CO binding to heme in glycerol and O2 binding to myoglobin, we observe a small magnetic field dependent change in the early time amplitude of the optical response that is assigned to heme cooling. One possibility, consistent with this observation, is that there is a weak magnetic field dependence of the non-radiative branching ratio into the vibrationally hot electronic ground state during CO photolysis. Ancillary studies of the “spin-forbidden” CO binding reaction in a variety of heme compounds in the absence of magnetic field demonstrate a surprisingly wide range for the Arrhenius prefactor. We conclude that CO binding to heme is not always retarded by unfavorable spin selection rules involving a double spin-flip superexchange mechanism. In fact, it appears that the small prefactor (~109s?1) found for CO rebinding to Mb may be anomalous, rather than the general rule for heme-CO rebinding. These results point to unresolved fundamental issues that underlie the theory of heme-ligand photolysis and rebinding.

Zhang, Zhenyu; Benabbas, Abdelkrim; Ye, Xiong; Yu, Anchi; Champion, Paul M.

2009-01-01

350

Homogenous BSCCO-2212 Round Wires for Very High Field Magnets  

SciTech Connect

The performance demands on modern particle accelerators generate a relentless push towards higher field magnets. In turn, advanced high field magnet development places increased demands on superconducting materials. Nb3Sn conductors have been used to achieve 16 T in a prototype dipole magnet and are thought to have the capability for {approx}18 T for accelerator magnets (primarily dipoles but also higher order multipole magnets). However there have been suggestions and proposals for such magnets higher than 20 T. The High Energy Physics Community (HEP) has identified important new physics opportunities that are enabled by extremely high field magnets: 20 to 50 T solenoids for muon cooling in a muon collider (impact: understanding of neutrinos and dark matter); and 20+ T dipoles and quadrupoles for high energy hadron colliders (impact: discovery reach far beyond present). This proposal addresses the latest SBIR solicitation that calls for grant applications that seek to develop new or improved superconducting wire technologies for magnets that operate at a minimum of 12 Tesla (T) field, with increases up to 15 to 20 T sought in the near future (three to five years). The long-term development of accelerator magnets with fields greater than 20 T will require superconducting wires having significantly better high-field properties than those possessed by current Nb{sub 3}Sn or other A15 based wires. Given the existing materials science base for Bi-2212 wire processing, we believe that Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub y} (Bi-2212) round wires can be produced in km-long piece lengths with properties suitable to meet both the near term and long term needs of the HEP community. The key advance will be the translation of this materials science base into a robust, high-yield wire technology. While the processing and application of A15 materials have advanced to a much higher level than those of the copper oxide-based, high T{sub c} (HTS) counterparts, the HTS materials have the very significant advantage of an extremely high H{sub c2}. For this reason, Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub y} (Bi-2212, or 2212) in the form of a multifilamentary Ag alloy matrix composite is beginning to attract the interest of the magnet community for future extremely high-field magnets or magnet-insert coils for 4.2K operation. Fig. 1 shows an example of excellent JE (engineering current density) in Bi-2212 round wire at fields up to 45 T, demonstrating the potential for high field applications of this material. For comparison, the Nb{sub 3}Sn wires used in magnets in the 16-18 T range typically perform with J{sub E} in the range 200-500 A/mm{sup 2}; the Bi-2212 wire retains this level of performance to fields at least as high as 45 T, and probably significantly higher. Bi-2212 conductors have in fact been used to generate a 25 T field in a superconducting insert magnet. These two factors- the very high field critical current performance of Bi-2212, and the already demonstrated capability of this material for high field magnets up to 25 T, strongly suggest this material as a leading contender for the next generation high field superconducting (HFS) wire. This potential was recognized by the US Academy of Science's Committee on Opportunities in High Magnetic Field Science. Their report of the same name specifically calls out the high field potential for this material, and suggests that 30 T magnets appear feasible based on the performance of 2212. There are several requirements for HFS conductors. The most obvious is J{sub E} (B, T), the engineering current density at the field and temperature of operation. As shown in Fig. 1, Bi-2212 excels in this regard. Stability requirements for magnets dictate that the effective filament diameter should be less than 30 micrometers, something that Bi-2212 multifilamentary wire can uniquely satisfy among the HFS superconducting wire technologies. Additional requirements include mechanical properties that prevent stress limitation of J{sub E} at the operating conditions, resistive transition index (n-value) suffic

Dr. Scott Campbell Dr. Terry Holesinger Dr. Ybing Huang

2012-06-30

351

Three tesla magnetic resonance imaging of the anterior cruciate ligament of the knee: can we differentiate complete from partial tears?  

Microsoft Academic Search

Purpose  To determine the ability of 3.0T magnetic resonance (MR) imaging to identify partial tears of the anterior cruciate ligament\\u000a (ACL) and to allow distinction of complete from partial ACL tears.\\u000a \\u000a \\u000a \\u000a \\u000a Materials and methods  One hundred seventy-two patients were prospectively studied by 3.0T MR imaging and arthroscopy in our institution. MR images\\u000a were interpreted in consensus by two experienced reviewers, and the

Pieter Van Dyck; Filip M. Vanhoenacker; Jan L. Gielen; Lieven Dossche; Jozef Van Gestel; Kristien Wouters; Paul M. Parizel

2011-01-01

352

Magnetic-field effects in non-magnetic glasses  

NASA Astrophysics Data System (ADS)

Recently, it was found that the multi-component glass a-BaO-Al2O3-SiO2 exhibits unusual magnetic properties at very low temperatures. Thus the question arises whether this is a specialty of that particular glass or a more general phenomenon. We report here on our studies of the magnetic-field dependence of the dielectric properties of the borosilicate glass BK7 which contains only a negligible amount of magnetic impurities. Since this glass also responds sensitively to magnetic fields, our investigations demonstrate that the reaction of glasses to magnetic fields is not caused by magnetic impurities but reflects a more general phenomenon. In addition, we have observed that the variation of the dielectric constant and the loss angle with magnetic field depend on the amplitude of the electric field that is used to measure the glass capacitance. We present the data and discuss possible origins of the magnetic-field phenomena in non-magnetic glasses.

Wohlfahrt, M.; Strehlow, P.; Enss, C.; Hunklinger, S.

2001-12-01

353

Magnetohydrodynamics of the Earth'S Magnetic Field.  

National Technical Information Service (NTIS)

A survey of observational and theoretical work pertaining to the origin of planetary magnetic fields is given with special emphasis on the dynamo theory which attempts to explain these fields as arising from magnetohydrodynamic regenerative action. Some p...

G. Venezian

1967-01-01

354

Cosmic Rays in the Earth'S Magnetic Field.  

National Technical Information Service (NTIS)

Studies are presented of the behavior of cosmic rays in the earth's magnetic field. It discusses the theory of motion of charged particles in an idealized field model and presents results of trajectory calculations of asymptotic directions and cutoff rigi...

L. I. Dorman V. S. Smirnov M. I. Tyasto

1973-01-01

355

The Evolution of the Earth's Magnetic Field.  

ERIC Educational Resources Information Center

|Describes the change of earth's magnetic field at the boundary between the outer core and the mantle. Measurement techniques used during the last 300 years are considered. Discusses the theories and research for explaining the field change. (YP)|

Bloxham, Jeremy; Gubbins, David

1989-01-01

356

Tracing magnetic fields with ground state alignment  

NASA Astrophysics Data System (ADS)

Observational studies of magnetic fields are vital as magnetic fields play a crucial role in various astrophysical processes, including star formation, accretion of matter, transport processes (e.g. transport of heat), and cosmic rays. The existing ways of magnetic field studies have their limitations. Therefore, it is important to explore new effects that can bring information about magnetic field. We identified a process “ground state alignment” as a new way to determine the magnetic field direction in diffuse medium. The consequence of the process is the polarization of spectral lines resulting from scattering and absorption from aligned atomic/ionic species with fine or hyperfine structure. The alignment is due to anisotropic radiation impinging on the atom/ion, while the magnetic field induces precession and realign the atom/ion and therefore the polarization of the emitted or absorbed radiation reflects the direction of the magnetic field. The atoms get aligned at their low levels and, as the life-time of the atoms/ions we deal with is long, the alignment induced by anisotropic radiation is susceptible to extremely weak magnetic fields (1G?B?10-15G). Compared to the upper level Hanle effect, atomic realignment is most suitable for the studies of magnetic field in the diffuse medium, where magnetic field is relatively weak. The corresponding physics of alignment is based on solid foundations of quantum electrodynamics and in a different physical regime the alignment has become a part of solar spectroscopy. In fact, the effects of atomic/ionic alignment, including the realignment in magnetic field, were studied in the laboratory decades ago, mostly in relation to the maser research. Recently, the atomic effect has been already detected in observations from circumstellar medium and this is a harbinger of future extensive magnetic field studies. It is very encouraging that a variety of atoms with fine or hyperfine splitting of the ground or metastable states exhibit the alignment and the resulting polarization degree in some cases exceeds 20%. A unique feature of the atomic realignment is that they can reveal the 3D orientation of magnetic field. In this paper, we shall review the basic physical processes involved in atomic realignment. We shall also discuss its applications to interplanetary, circumstellar and interstellar magnetic fields. In addition, our research reveals that the polarization of the radiation arising from the transitions between fine and hyperfine states of the ground level can provide a unique diagnostics of magnetic fields, including those in the early universe.

Yan, Huirong; Lazarian, A.

2012-08-01

357

Spin injection, transport, and relaxation in spin light-emitting diodes: magnetic field effects  

NASA Astrophysics Data System (ADS)

Efficient electrical spin injection into semiconductor based devices at room temperature is one of the most important requirements for the development of applicable spintronic devices in the near future and is thus an important and very active research field. Here we report experimental results for the electrical spin injection in spin light-emitting diodes (spin-LEDs) without external magnetic fields at room temperature. Our devices consist of a Fe/Tb multilayer spin injector with remanent out-of-plane magnetization, an MgO tunnel barrier for efficient spin injection and an InAs quantum dot light-emitting diode. Using a series of samples with different injection path lengths allows us to experimentally determine the spin relaxation during vertical transport from the spin injector to the active region at room temperature. In combination with our concept for remanent spin injection, we are additionally able to investigate the influence of an external magnetic field on the spin relaxation process during transport. While the spin relaxation length at room temperature without external magnetic field is determined to be 27 nm, this value almost doubles if an external magnetic field of 2 Tesla is applied in Faraday geometry. This demonstrates that the results for spin injection and spin relaxation obtained with or without magnetic field can hardly be compared. The efficiency of spin-induced effects is overestimated as long as magnetic fields are involved. Since strong magnetic fields are not acceptable in application settings, this may lead to wrong conclusions and potentially impairs proper device development.

Höpfner, Henning; Fritsche, Carola; Ludwig, Arne; Ludwig, Astrid; Stromberg, Frank; Wende, Heiko; Keune, Werner; Reuter, Dirk; Wieck, Andreas D.; Gerhardt, Nils C.; Hofmann, Martin R.

2013-09-01

358

The TESLA RF System  

Microsoft Academic Search

The TESLA project proposed by the TESLA collaboration in 2001 is a 500 to 800GeV e+\\/e- linear collider with integrated free electron laser facility. The accelerator is based on superconducting cavity technology. Approximately 20000 superconducting cavities operated at 1.3GHz with a gradient of 23.4MV\\/m or 35MV\\/m will be required to achieve the energy of 500GeV or 800GeV respectively. For 500GeV

S. Choroba

2003-01-01

359

The TESLA free electron laser  

Microsoft Academic Search

The TESLA free Electron Laser (FEL) makes use of the high electron beam quality that can be provided by the superconducting TESLA linac to drive a single pass FEL at wavelengths far below the visible. To reach a wavelength of 6 nanometers, the TESLA Test Facility (TTF) currently under construction at DESY is extended to 1 GeV beam energy. Because

Jörg Rossbach

1997-01-01

360

The TESLA free electron laser  

Microsoft Academic Search

The TESLA Free Electron Laser (FEL) makes use of the high electron beam quality that can be provided by the su- perconducting TESLA linac to drive a single pass FEL at wavelengths far below the visible. To reach a wavelength of 6 nanometers, the TESLA Test Facility (TTF) currently under construction at DESY will be extended to 1 GeV beam

J. Rossbach

1998-01-01

361

Magnetic Field Investigations During ROSETTA's Steins Flyby  

NASA Astrophysics Data System (ADS)

During the recent Steins flyby of the ROSETTA spacecraft magnetic field measurements have been made with both, the RPC orbiter magnetometer and the ROMAP lander magnetometer. These combined magnetic field measurements allow a detailed examination of any magnetic signatures caused either directly by the asteroid or indirectly by Steins different modes of interaction with the solar wind. Comparing our measurements with simulation results show that Steins does not possess a significant remanent magnetization. The magnetization is estimated at less than 1 mAm2/kg. This is significantly different from results at Braille and Gaspra.

Glassmeier, K.; Auster, H.; Richter, I.; Motschmann, U.; RPC/ROMAP Teams

2009-05-01

362

Modeling Magnetic Field Topology at Jupiter with the Khurana Magnetic Field Model  

NASA Astrophysics Data System (ADS)

To explore the degree of coupling between the interplanetary magnetic field (IMF) and Jupiter's magnetosphere, we traced magnetic field lines from the polar region of the planet using the Khurana [1997, 2005] magnetic field model. We used a parameterized definition of the Jovian magnetopause created by Joy et al. [2002] that varies with the value of the solar wind dynamic pressure. We searched for field lines that cross the magnetopause and that potentially connect to the interplanetary magnetic field. We further explored the variation on magnetic field structure with local time orientation of Jupiter's dipole (i.e. Central Meridian Longitude) as well as upstream solar wind and IMF conditions.

Cohen, I.; Bagenal, F.

2008-12-01

363

Constrained superfields and supersymmetric magnetic field systems  

SciTech Connect

After Lancaster the authors examine chiral constraints in N = 2 superspace formulation for supersymmetric magnetic field systems. Such odd constraints are connected with the so-called spin-orbit coupling procedure of supersymmetrization. They propose new even constraints for magnetic supersymmetric systems and relate them to the standard procedure enhanced by Witten. These models describing spin-one half particles moving in a plane with a transverse magnetic field are compared and discussed. The cases of a constant magnetic field and of the harmonic oscillator are connected through different correspondences.

Dehin, D.; Hussin, V. (Universite de Liege, Physique Theorique et Mathematique, Institut de Physique au Sart Tilman, Batiment B.5, B-4000 Liege (BE))

1988-01-01

364

Scyllo-inositol in normal aging human brain: 1H magnetic resonance spectroscopy study at 4 Tesla.  

PubMed

The scyllo-inositol and myo-inositol concentrations of 24 normal human subjects were measured in vivo using 1H magnetic resonance spectroscopy at 4 T. Single-voxel short-echo (TE = 15 ms) metabolite spectra were collected from the white matter region of the corona radiata. Test-retest studies performed on 10 normal subjects demonstrated coefficient of variation for scyllo-inositol measurement of 37%, compared with 6% for N-acetyl aspartate. Comparisons between old and young subjects showed higher concentration of scyllo-inositol and myo-inositol in older subjects and a trend for a correlation between scyllo-inositol and myo-inositol levels across subjects. PMID:15468140

Kaiser, Lana G; Schuff, Norbert; Cashdollar, Nathan; Weiner, Michael W

2005-02-01

365

Ionospheric electric fields, currents, and resulting magnetic fields variations  

NASA Astrophysics Data System (ADS)

This thesis uses an equivalent circuit model to calculate ionospheric electric fields, current densities and introduced magnetic fields variations on the ground. The role of the field aligned current is examined. Using different wind models, we studied the electric field variations with altitude, season and solar activity. The ionospheric eastward electric field changes very little within the whole ionosphere. The southward (equatorward) electric field is large and changes quickly with height in the E region although it is nearly constant in the F region. The prereversal enhancement of the eastward electric field is produced by the F region dynamo. We conclude that the Forbes and Gillette tidal wind can reproduce most features of the Jicamarca experiment and the AE-E and DE-2 satellite observations of the electric fields. The HWM90 empirical wind model failed to produce the observed electric field and it seems the semidiurnal wind in HWM90 is too strong. The field aligned current is located mainly in the E and low F region. The non-coincidence of the geomagnetic and geographic equators has a strong effect on the field aligned current in the equatorial zone. The field aligned currents driven by Forbes' winds for March equinox and December solstice flow mainly from the southern to northern hemisphere in the morning and vice versa in the afternoon at F region heights. The observed magnetic field variations on the ground are well reproduced in our simulations. The field aligned current is the main contributor to the eastward magnetic field component in the equatorial zone. The longitudinal inequality of the northward magnetic field is introduced mainly by the variations of the local magnetic field intensity. The electric field variations have only a minor effect. The northward magnetic field variations with the solar activity are introduced by changes of the E region equatorward electric field and the Hall conductivity.

Du, Junhu

366

Radiation-Induced Microbleeds after Cranial Irradiation: Evaluation by Phase-Sensitive Magnetic Resonance Imaging with 3.0 Tesla  

PubMed Central

Background Although there are many reports regarding radiation-induced microbleeds, its frequency, relation to dose and latency after radiation are not fully elucidated. The purpose of this study was to evaluate the frequency, latency, patient factors and dose relation of radiation-induced microbleeds after cranial irradiation using phase-sensitive magnetic resonance imaging (PSI) at 3.0 T. Methods Retrospective evaluation of 34 patients (age range, 13–78 years; mean, 49 years; follow-up period, 3–169 months; mean 29 months) who had undergone cranial irradiation using magnetic resonance (MR) imaging including PSI was performed. Twenty-three patients received high-dose irradiation (44–60 Gy), and 11 patients received 24–30 Gy whole brain irradiation. When microbleeds were detected on MR imaging in these high-dose irradiation patients, dose distribution maps were reproduced by reviewing the clinical records. Then the irradiated areas were divided into 6 radiation-dose classes: regions > 55 Gy, 45–55 Gy, 35–45 Gy, 25–35 Gy, 15–25 Gy and 5–15 Gy. The frequency of microbleeds in each radiation-dose class was analyzed. Results Microbleeds were detected in 7 (21%) of 34 patients on T2-weighted imaging, whereas they were detected in 16 (47%) of the 34 patients on PSIs. The frequency of microbleeds was higher than previously reported. The latency of radiation-induced microbleeds after radiation was 3 months to 9 years (mean, 33 months). In high-dose irradiation patients, the frequency of microbleeds significantly was associated with radiation dose. There were no foci that were observed in regions that had received < 25 Gy. Conclusion Radiation-induced microbleeds occurred more frequently in the present study than has been previously reported. PSI can be used to detect these vascular changes earlier than other conventional MR imaging techniques.

Tanino, Tomohiko; Kanasaki, Yoshiko; Tahara, Takatoshi; Michimoto, Koichi; Kodani, Kazuhiko; Kakite, Suguru; Kaminou, Toshio; Watanabe, Takashi; Ogawa, Toshihide

2013-01-01

367

Magnetic field associated with active electrochemical corrosion  

Microsoft Academic Search

The purpose of this work is to provide a better understanding of the underlying sources of the magnetic field associated with ongoing electrochemical corrosion, to investigate the spatio-temporal information content of the corrosion magnetic field, and to evaluate its potential utility in non-invasive quantification of hidden corrosion. The importance of this work lies in the fact that conventional electrochemical instruments

Afshin Abedi

2000-01-01

368

Coronal Heating and the Photospheric Magnetic Field  

Microsoft Academic Search

Since magnetic field typically plays a role (either active or passive) in coronal heating theories, it may be possible to evaluate these theories by investigating the relationship between the coronal energy budget (the total power requirement of the corona) and measurable properties of the photospheric magnetic field. The X-ray flux is a useful proxy for the total power required to

C. E. Parnell; P. A. Sturrock

1997-01-01

369

Variability and topology of solar magnetic field  

Microsoft Academic Search

Observations of the large scale magnetic field in the photosphere taken at the Wilcox Solar Observatory since 1976 up to 2005 have been analyzed to deduce its latitudinal and longitudinal structures, its differential rotation, and their variability in time. The main results are the following: - The latitudinal structure of the solar magnetic field with a period of polarity change

E. A. Gavryuseva

2006-01-01

370

Astrophysical magnetic fields and nonlinear dynamo theory  

Microsoft Academic Search

The current understanding of astrophysical magnetic fields is reviewed, focusing on their generation and maintenance by turbulence. In the astrophysical context this generation is usually explained by a self-excited dynamo, which involves flows that can amplify a weak ‘seed’ magnetic field exponentially fast. Particular emphasis is placed on the nonlinear saturation of the dynamo. Analytic and numerical results are discussed

Axel Brandenburg; Kandaswamy Subramanian

2005-01-01

371

Coulomb crystals in the magnetic field  

NASA Astrophysics Data System (ADS)

The body-centered-cubic Coulomb crystal of ions in the presence of a uniform magnetic field is studied using the rigid electron background approximation. The phonon mode spectra are calculated for a wide range of magnetic-field strengths and for several orientations of the field in the crystal. The phonon spectra are used to calculate the phonon contribution to the crystal energy, entropy, specific heat, Debye-Waller factor of ions, and the rms ion displacements from the lattice nodes for a broad range of densities, temperatures, chemical compositions, and magnetic fields. Strong magnetic field dramatically alters the properties of quantum crystals. The phonon specific heat increases by many orders of magnitude. The ion displacements from their equilibrium positions become strongly anisotropic. The results can be relevant for dusty plasmas, ion plasmas in Penning traps, and especially for the crust of magnetars (neutron stars with superstrong magnetic fields B?1014G ). The effect of the magnetic field on ion displacements in a strongly magnetized neutron star crust can suppress the nuclear reaction rates and make them extremely sensitive to the magnetic-field direction.

Baiko, D. A.

2009-10-01

372

Biological effects of high DC magnetic fields  

Microsoft Academic Search

The principal focus of the program is the analysis of magnetic field effects on physiological functions in experimental animals and selected organ and tissue systems. A major research effort has involved the use of electrical recording techniques to detect functional alterations in the cardiovascular, neural, and visual systems during the application of DC magnetic fields. These systems involve ionic conduction

Tenforde

1981-01-01

373

Magnetic fields and the solar corona  

Microsoft Academic Search

Coronal magnetic fields calculated by the methods developed in Paper I (Altschuler and Newkirk, 1969) and the empirical description of the solar corona of November 1966 derived in Paper II (Newkirket al., 1970) are combined in order to investigate what connection exists between the magnetic fields and the density structure of the corona.

Gordon Newkirk; Martin D. Altschuler

1970-01-01

374

Pure phase encode magnetic field gradient monitor  

Microsoft Academic Search

Numerous methods have been developed to measure MRI gradient waveforms and k-space trajectories. The most promising new strategy appears to be magnetic field monitoring with RF microprobes. Multiple RF microprobes may record the magnetic field evolution associated with a wide variety of imaging pulse sequences. The method involves exciting one or more test samples and measuring the time evolution of

Hui Han; Rodney P. MacGregor; Bruce J. Balcom

2009-01-01

375

Efficient Characterization of Magnetic Field Sources  

Microsoft Academic Search

A technique for the estimation of the magnetic field intensity emitted by industrial installations is presented. The method is best-suited for investigation of environmental magnetic field for health purposes. Simulation and measurement case-studies supporting the provided theoretical results are discussed

M. Bertocco; F. Dughiero; C. Greggio; E. Sieni; A. Sona

2006-01-01

376

Magnetic fields, branes, and noncommutative geometry  

Microsoft Academic Search

We construct a simple physical model of a particle moving on the infinite noncommutative 2-plane. The model consists of a pair of opposite charges moving in a strong magnetic field. In addition, the charges are connected by a spring. In the limit of large magnetic field, the charges are frozen into the lowest Landau levels. Interactions of such particles include

Daniela Bigatti; Leonard Susskind

2000-01-01

377

Directional discontinuities in the interplanetary magnetic field  

Microsoft Academic Search

It is shown that the interplanetary magnetic field has different characteristics on different scales, and it is noted that a given physical theory may not be applicable or relevant on all scales. Four scales are defined in terms of time intervals on which the data may be viewed. Many discontinuities in the magnetic-field direction are seen on the mesoscale (˜

Leonard F. Burlaga

1969-01-01

378

Magnetic Fields, Ball Lightning and Campanology  

Microsoft Academic Search

WOODING suggests1 that ball lightning is a plasma vortex ring structure produced by a process similar to the ablation of a solid surface by a high power laser pulse. A plasma vortex ring structure requires a magnetic field; here I present two pieces of evidence to show that a magnetic field is associated with ball lightning, and which may help

A. J. F. Blair

1973-01-01

379

Magnetic field propagation in a stellar dynamo  

Microsoft Academic Search

Numerical simulations of stellar dynamos are reviewed. Dynamic dynamo models solve the nonlinear, three-dimensional, time-dependent, magnetohydrodynamic equations for the convective velocity, the thermodynamic variables, and the generated magnetic field in a rotating, spherical shell of ionized gas. When the dynamo operates in the convection zone, the simulated magnetic fields propagate away from the equator in the opposite direction inferred from

Gary A. Glatzmaier

1985-01-01

380

Ground Vehicle Navigation Using Magnetic Field Variation  

NASA Astrophysics Data System (ADS)

The Earth's magnetic field has been the bedrock of navigation for centuries. The latest research highlights the uniqueness of magnetic field measurements based on position due to large scale variations as well as localized perturbations. These observable changes in the Earth's magnetic field as a function of position provide distinct information which can be used for navigation. This dissertation describes ground vehicle navigation exploiting variation in Earth's magnetic field using a self-contained navigation system consisting of only a magnetometer and magnetic field maps. In order to achieve navigation, effective calibration enables repeatable magnetic field measurements from different vehicles and facilitates mapping of the observable magnetic field as a function of position. A new modified ellipsoid calibration technique for strapdown magnetometers in large vehicles is described, as well as analysis of position measurement generation comparing a multitude of measurement compositions using existing and newly developed likelihood techniques. Finally, navigation solutions are presented using both a position measurement and direct incorporation of the magnetometer measurements via a particle filter to demonstrate road navigation in three different environments. Emphatically, the results affirm that navigation using magnetic field variation in ground vehicles is viable and achieves adequate performance for road level navigation.

Shockley, Jeremiah A.

381

Space Quantization in a Gyrating Magnetic Field  

Microsoft Academic Search

The nonadiabatic transitions which a system with angular momentum J makes in a magnetic field which is rotating about an axis inclined with respect to the field are calculated. It is shown that the effects depend on the sign of the magnetic moment of the system. We therefore have an absolute method for measuring the sign and magnitude of the

I. I. Rabi

1937-01-01

382

Hydrogen atom moving across a magnetic field  

SciTech Connect

A hydrogen atom moving across a magnetic field is considered in a wide region of magnitudes of magnetic field and atom momentum. We solve the Schroedinger equation of the system numerically using an imaginary time method and find wave functions of the lowest states of atom. We calculate the energy and the mean electron-nucleus separation as a function of atom momentum and magnetic field. All the results obtained could be summarized as a phase diagram on the 'atom-momentum - magnetic-field' plane. There are transformations of wave-function structure at critical values of atom momentum and magnetic field that result in a specific behavior of dependencies of energy and mean interparticle separation on the atom momentum P. We discuss a transition from the Zeeman regime to the high magnetic field regime. A qualitative analysis of the complicated behavior of wave functions vs P based on the effective potential examination is given. We analyze a sharp transition at the critical momentum from a Coulomb-type state polarized due to atom motion to a strongly decentered (Landau-type) state at low magnetic fields. A crossover occurring at intermediate magnetic fields is also studied.

Lozovik, Yu.E.; Volkov, S.Yu. [Institute of Spectroscopy, Troitsk, Moscow region, 142190 (Russian Federation)

2004-08-01

383

Magnetic isotope and magnetic field effects on the DNA synthesis.  

PubMed

Magnetic isotope and magnetic field effects on the rate of DNA synthesis catalysed by polymerases ? with isotopic ions (24)Mg(2+), (25)Mg(2+) and (26)Mg(2+) in the catalytic sites were detected. No difference in enzymatic activity was found between polymerases ? carrying (24)Mg(2+) and (26)Mg(2+) ions with spinless, non-magnetic nuclei (24)Mg and (26)Mg. However, (25)Mg(2+) ions with magnetic nucleus (25)Mg were shown to suppress enzymatic activity by two to three times with respect to the enzymatic activity of polymerases ? with (24)Mg(2+) and (26)Mg(2+) ions. Such an isotopic dependence directly indicates that in the DNA synthesis magnetic mass-independent isotope effect functions. Similar effect is exhibited by polymerases ? with Zn(2+) ions carrying magnetic (67)Zn and non-magnetic (64)Zn nuclei, respectively. A new, ion-radical mechanism of the DNA synthesis is suggested to explain these effects. Magnetic field dependence of the magnesium-catalysed DNA synthesis is in a perfect agreement with the proposed ion-radical mechanism. It is pointed out that the magnetic isotope and magnetic field effects may be used for medicinal purposes (trans-cranial magnetic treatment of cognitive deceases, cell proliferation, control of the cancer cells, etc). PMID:23851636

Buchachenko, Anatoly L; Orlov, Alexei P; Kuznetsov, Dmitry A; Breslavskaya, Natalia N

2013-07-13

384

Magnetic isotope and magnetic field effects on the DNA synthesis  

PubMed Central

Magnetic isotope and magnetic field effects on the rate of DNA synthesis catalysed by polymerases ? with isotopic ions 24Mg2+, 25Mg2+ and 26Mg2+ in the catalytic sites were detected. No difference in enzymatic activity was found between polymerases ? carrying 24Mg2+ and 26Mg2+ ions with spinless, non-magnetic nuclei 24Mg and 26Mg. However, 25Mg2+ ions with magnetic nucleus 25Mg were shown to suppress enzymatic activity by two to three times with respect to the enzymatic activity of polymerases ? with 24Mg2+ and 26Mg2+ ions. Such an isotopic dependence directly indicates that in the DNA synthesis magnetic mass-independent isotope effect functions. Similar effect is exhibited by polymerases ? with Zn2+ ions carrying magnetic 67Zn and non-magnetic 64Zn nuclei, respectively. A new, ion–radical mechanism of the DNA synthesis is suggested to explain these effects. Magnetic field dependence of the magnesium-catalysed DNA synthesis is in a perfect agreement with the proposed ion–radical mechanism. It is pointed out that the magnetic isotope and magnetic field effects may be used for medicinal purposes (trans-cranial magnetic treatment of cognitive deceases, cell proliferation, control of the cancer cells, etc).

Buchachenko, Anatoly L.; Orlov, Alexei P.; Kuznetsov, Dmitry A.; Breslavskaya, Natalia N.

2013-01-01

385

Vehicle detection using a magnetic field sensor  

Microsoft Academic Search

The measurement of vehicle magnetic moments and the results from use of a fluxgate magnetic sensor to actuate a lighting system from the magnetic fields of passing vehicles is reported. A typical U.S. automobile has a magnetic moment of about 200 A-m2(Ampere-meters2), while for a school bus it is about 2000 A-m2. When the vehicle is modeled as an ideal

S. V. Marshall

1978-01-01

386

Intergalactic Magnetic Fields from Quasar Outflows  

Microsoft Academic Search

Outflows from quasars inevitably pollute the intergalactic medium (IGM) with magnetic fields. The short-lived activity of\\u000a a quasar leaves behind an expanding magnetized bubble in the IGM. We model the expansion of the remnant quasar bubbles and\\u000a calculate their distribution as a function magnetic field strength at different redshifts. We find that by a redshift \\u000a z ~ <\\/font\\u000a>3z \\\\sim

Steven Furlanetto; Abraham Loeb

2002-01-01

387

Permanent magnet edge-field quadrupole  

DOEpatents

Planar permanent magnet edge-field quadrupoles for use in particle accelerating machines and in insertion devices designed to generate spontaneous or coherent radiation from moving charged particles are disclosed. The invention comprises four magnetized rectangular pieces of permanent magnet material with substantially similar dimensions arranged into two planar arrays situated to generate a field with a substantially dominant quadrupole component in regions close to the device axis. 10 figs.

Tatchyn, R.O.

1997-01-21

388

High Field Magnets With HTS Conductors  

Microsoft Academic Search

Development of high-field magnets using high temperature superconductors (HTS) is a core activity at the NHMFL. Magnet technology based on both YBCO-coated tape conductors and Bi-2212 round wires is being pursued. Two specific projects are underway. The first is a user magnet with a 17 T YBCO coil set which, inside an LTS outsert, will generate a combined field of

H. W. Weijers; U. P. Trociewitz; W. D. Markiewicz; J. Jiang; D. Myers; E. E. Hellstrom; A. Xu; J. Jaroszynski; P. Noyes; Y. Viouchkov; D. C. Larbalestier

2010-01-01

389

Magnetic Instabilities in High Field Superconductors  

Microsoft Academic Search

In the process of magnetizing cylindrical specimens of a typical high field superconductor Nb-50 at.%Ti, flux jumps were induced by magnetic disturbances. The stability limit field Hfj increased steadily with increasing temperature, and no magnetic instability occurred for temperatures in excess of about 6.5 K. The calculation of Hfj was performed taking into account the cylindrical sample geometry and the

Tatsuo Akachi; Takeshi Ogasawara; Ko Yasukochi

1981-01-01

390

Seeding magnetic fields for laser-driven flux compression in high-energy-density plasmas.  

PubMed

A compact, self-contained magnetic-seed-field generator (5 to 16 T) is the enabling technology for a novel laser-driven flux-compression scheme in laser-driven targets. A magnetized target is directly irradiated by a kilojoule or megajoule laser to compress the preseeded magnetic field to thousands of teslas. A fast (300 ns), 80 kA current pulse delivered by a portable pulsed-power system is discharged into a low-mass coil that surrounds the laser target. A >15 T target field has been demonstrated using a <100 J capacitor bank, a laser-triggered switch, and a low-impedance (<1 Omega) strip line. The device has been integrated into a series of magnetic-flux-compression experiments on the 60 beam, 30 kJ OMEGA laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. The initial application is a novel magneto-inertial fusion approach [O. V. Gotchev et al., J. Fusion Energy 27, 25 (2008)] to inertial confinement fusion (ICF), where the amplified magnetic field can inhibit thermal conduction losses from the hot spot of a compressed target. This can lead to the ignition of massive shells imploded with low velocity-a way of reaching higher gains than is possible with conventional ICF. PMID:19405657

Gotchev, O V; Knauer, J P; Chang, P Y; Jang, N W; Shoup, M J; Meyerhofer, D D; Betti, R

2009-04-01

391

Orienting Paramecium with intense static magnetic fields  

NASA Astrophysics Data System (ADS)

Recent experiments on cell division suggest the application of intense static magnetic fields as a novel tool for the manipulation of biological systems [1]. The magnetic field appears to couple to the intrinsic anisotropies in the diamagnetic components of the cells. Here, we present measurements of the intrinsic average diamagnetic anisotropy of the whole single celled ciliate, Paramecium Caudatum. Magnetic fields, 2.5 T < B < 8 T were applied to immobilized (non-swimming) Paramecium Caudatum that were suspended in a density matched medium. The organisms align with their long axis parallel to the applied magnetic field. Their intrinsic diamagnetic anisotropy is 3x10-11 in cgs units. We will discuss the implications of these results for employing magnetic fields to probe the behavior of swimming Paramecium. [1] J. M. Valles, Jr. et al., Expt. Cell Res.274, 112-118 (2002).

Valles, James M., Jr.; Guevorkian, Karine; Quindel, Carl

2004-03-01

392

Materials Processing in Magnetic Fields  

NASA Astrophysics Data System (ADS)

The latest in lattice QCD -- Quark-gluon plasma physics -- String theory and exact results in quantum field theory -- The status of local supersymmetry.Supersymmetry in nuclei -- Inflation, dark matter, dark energy -- How many dimensions are really compactified? -- Horizons -- Neutrino oscillations physics -- Fundamental constants and their possible time dependence.Highlights from BNL. new phenomena at RHIC -- Highlights from BABAR -- Diffraction studied with a hard scale at HERA -- The large hadron collider: a status report -- Status of non-LHC experiments at CERN -- Highlights from Gran Sass.Fast automatic systems for nuclear emulsion scanning: technique and experiments -- Probing the QGP with charm at ALICE-LHC -- magnetic screening length in hot QCD -- Non-supersymmetric deformation of the Klebanov-Strassler model and the related plane wave theory -- Holographic renormalization made simple: an example -- The kamLAND impact on neutrino oscillations -- Particle identification with the ALIC TOF detector at very high multiplicity -- Superpotentials of N = 1 SUSY gauge theories -- Measurement of the proton structure function F2 in QED compton scattering at HERA -- Yang-Mills effective action at high temperature -- The time of flight (TOF) system of the ALICE experiment -- Almost product manifolds as the low energy geometry of Dirichlet Brane.

Schneider-Muntau, Hans J.; Wada, Hitoshi

393

Photon collider at TESLA  

NASA Astrophysics Data System (ADS)

High energy photon colliders (??,?e) based on backward Compton scattering of laser light is a very natural addition to e+e- linear colliders. In this report, we consider this option for the TESLA project. Recent study has shown that the horizontal emittance in the TESLA damping ring can be further decreased by a factor of four. In this case, the /?? luminosity in the high energy part of spectrum can reach about (1/3)Le+e-. Typical cross-sections of interesting processes in /?? collisions are higher than those in e+e- collisions by about one order of magnitude, so the number of events in /?? collisions will be more than that in e+e- collisions. Photon colliders can, certainly, give additional information and they are the best for the study of many phenomena. The main question is now the technical feasibility. The key new element in photon colliders is a very powerful laser system. An external optical cavity is a promising approach for the TESLA project. A free electron laser is another option. However, a more straightforward solution is ``an optical storage ring (optical trap)'' with a diode pumped solid state laser injector which is today technically feasible. This paper briefly reviews the status of a photon collider based on the linear collider TESLA, its possible parameters and existing problems.

Telnov, Valery

2001-10-01

394

Warm inflation in presence of magnetic fields  

NASA Astrophysics Data System (ADS)

We present preliminary results on the possible effects that primordial magnetic fields can have for a warm inflation scenario, based on global supersymmetry, with a new-inflation-type potential. This work is motivated by two considerations: first, magnetic fields seem to be present in the universe on all scales which rises de possibility that they could also permeate the early universe; second, the recent emergence of inflationary models where the inflaton is not assumed to be isolated but instead it is taken as an interacting field, even during the inflationary expansion. The effects of magnetic fields are included resorting to Schwinger's proper time method.

Piccinelli, Gabriella; Sánchez, Ángel; Ayala, Alejandro; Mizher, Ana Julia

2013-07-01

395

Ohm's law for mean magnetic fields  

SciTech Connect

Spatially complicated magnetic fields are frequently treated as the sum of a large, slowly varying, mean field and a small, rapidly varying, field. The primary effect of the small field is to modify the Ohm's law of the mean field. A set of plausible assumptions leads to a form of the mean field Ohm's law which is fundamentally different from the conventional alpha effect of dynamo theory.

Boozer, A.H.

1984-11-01

396

Analysis of the uniform magnetic field free-electron laser with scalarized photons in the microwave-spectral region  

NASA Astrophysics Data System (ADS)

The recently developed concept of scalarized photons (formally photons of any polarization) is used to analyze the spontaneous and stimulated emission in the uniform magnetic field free-electron laser in the microwave spectral region. In fact, this free-electron laser is the simplest of many other, wiggler and wiggler-free free-electron lasers whose analyses could be done with scalarized photons in the small signal regime and whose physical parameters can be conveniently chosen for radiation to be generated in the microwave spectral region. As to the uniform magnetic field free-electron laser, which is treated here in some detail, with the electron beam energy of up to 10 MeV and the uniform magnetic field of up to 4 Tesla, the radiation (occurring with the fundamental and higher harmonic frequencies) can cover easily a 10 to 10,000 GHz spectral region.

Soln, Josip

1990-06-01

397

3 Tesla Dynamic Contrast Enhanced Magnetic Resonance Imaging of the Breast: Pharmacokinetic Parameters versus Conventional Kinetic Curve Analysis  

PubMed Central

Purpose To evaluate the incremental value of pharmacokinetic analysis of dynamic contrast enhanced (DCE) magnetic resonance imaging (MRI) compared to conventional breast MRI (morphology plus kinetic curve type analysis) in characterizing breast lesions as malignant or benign. Patients and Methods The study was approved by our institutional review board. Patients underwent 3D high resolution T1 (3DT1) contrast enhanced MRI and dynamic contrast enhancement (DCE) MRI at 3T, and had pathology proven diagnosis (95%) or more than 2 years follow up confirming lesion stability (5%). Lesions were identified using the high-spatial resolution post-contrast MRI. Morphologic features (margin, enhancement pattern) and conventional DCE-MRI results (kinetic curve types I, II or III) or pharmacokinetic parameters (wash-in rate Ktrans, washout rate Kep, and leakage space volume Ve), were included in multivariate models for prediction of benign versus malignant diagnosis. Results 95 patients with 101 lesions were included: 52% of patients were pre-menopausal and 48% post-menopausal. Sixty eight lesions (67.3%) were malignant and 33 (32.7%) were benign. There was a significant association between Ktrans and Kep and the diagnosis of benign versus malignant (p<0.001). The AUC for morphologic features (lesion margin and enhancement pattern) was 0.85, while inclusion of Ktrans or Kep in the model showed similar modest improvement in performance (AUC, 0.88–0.89). Conclusion The use of kinetic curve type assessment or pharmacokinetic modeling in conjunction with high resolution 3D breast MRI appears to offer similar improvement in diagnostic performance..

El Khouli, Riham H.; Macura, Katarzyna J.; Kamel, Ihab R.; Jacobs, Michael A.; Bluemke, David A.

2012-01-01

398

Accuracy and stability of measuring GABA, glutamate, and glutamine by proton magnetic resonance spectroscopy: a phantom study at 4 Tesla.  

PubMed

Proton magnetic resonance spectroscopy has the potential to provide valuable information about alterations in gamma-aminobutyric acid (GABA), glutamate (Glu), and glutamine (Gln) in psychiatric and neurological disorders. In order to use this technique effectively, it is important to establish the accuracy and reproducibility of the methodology. In this study, phantoms with known metabolite concentrations were used to compare the accuracy of 2D J-resolved MRS, single-echo 30 ms PRESS, and GABA-edited MEGA-PRESS for measuring all three aforementioned neurochemicals simultaneously. The phantoms included metabolite concentrations above and below the physiological range and scans were performed at baseline, 1 week, and 1 month time-points. For GABA measurement, MEGA-PRESS proved optimal with a measured-to-target correlation of R(2)=0.999, with J-resolved providing R(2)=0.973 for GABA. All three methods proved effective in measuring Glu with R(2)=0.987 (30 ms PRESS), R(2)=0.996 (J-resolved) and R(2)=0.910 (MEGA-PRESS). J-resolved and MEGA-PRESS yielded good results for Gln measures with respective R(2)=0.855 (J-resolved) and R(2)=0.815 (MEGA-PRESS). The 30 ms PRESS method proved ineffective in measuring GABA and Gln. When measurement stability at in vivo concentration was assessed as a function of varying spectral quality, J-resolved proved the most stable and immune to signal-to-noise and linewidth fluctuation compared to MEGA-PRESS and 30 ms PRESS. PMID:21130670

Henry, Michael E; Lauriat, Tara L; Shanahan, Meghan; Renshaw, Perry F; Jensen, J Eric

2010-11-13

399

Determining the risks of magnetic resonance imaging at 1.5 tesla for patients with pacemakers and implantable cardioverter defibrillators.  

PubMed

Conventional pacemaker and implantable cardioverter-defibrillator product labeling currently cautions against exposure to magnetic resonance imaging (MRI). However, there is a growing clinical need for MRI, without an acceptable alternative imaging modality in many patients with cardiac devices. The purpose of this study was to determine the risk of MRI at 1.5 T for patients with cardiac devices by measuring the frequency of device failures and clinically relevant device parameter changes. Data from a single-center retrospective review of 109 patients with pacemakers and implantable cardioverter-defibrillators (the MRI group) who underwent 125 clinically indicated MRI studies were compared to data from a prospective cohort of 50 patients with cardiac devices who did not undergo MRI (the control group). In the MRI group, there were no deaths, device failures requiring generator or lead replacement, induced arrhythmias, losses of capture, or electrical reset episodes. Decreases in battery voltage of ?0.04 V occurred in 4%, pacing threshold increases of ?0.5 V in 3%, and pacing lead impedance changes of ?50 ? in 6%. Although there were statistically significant differences between the MRI and control groups for the mean change in pacing lead impedance (-6.2 ± 23.9 vs 3.0 ± 22.1 ?) and left ventricular pacing threshold (-0.1 ± 0.3 vs 0.1 ± 0.2 V), these differences were not clinically important. In conclusion, MRI in patients with cardiac devices resulted in no device or lead failures. A small number of clinically relevant changes in device parameter measurements were noted. However, these changes were similar to those in a control group of patients who did not undergo MRI. PMID:22921995

Cohen, Jennifer D; Costa, Heather S; Russo, Robert J

2012-08-23

400

Probing Primordial Magnetic Fields Using Ly? Clouds  

NASA Astrophysics Data System (ADS)

From previous studies of the effect of primordial magnetic fields on early structure formation, we know that the presence of primordial magnetic fields during early structure formation could induce more perturbations at small scales (at present 1-10 h -1 Mpc) as compared to the usual ?CDM theory. Matter power spectra over these scales are effectively probed by cosmological observables such as shear correlation and Ly? clouds. In this paper we discuss the implications of primordial magnetic fields on the distribution of Ly? clouds. We simulate the line-of-sight density fluctuation including the contribution coming from the primordial magnetic fields. We compute the evolution of Ly? opacity for this case and compare our theoretical estimates of Ly? opacity with the existing data to constrain the parameters of the primordial magnetic fields. We also discuss the case when the two density fields are correlated. Our analysis yields an upper bound of roughly 0.3-0.6 nG on the magnetic field strength for a range of nearly scale-invariant models, corresponding to a magnetic field power spectrum index n ~= -3.

Pandey, Kanhaiya L.; Sethi, Shiv K.

2013-01-01

401

Mercury's internal magnetic field: Constraints on fields of crustal origin  

NASA Astrophysics Data System (ADS)

Observations of Mercury's internal magnetic field during MESSENGER's first flyby (M1) and the first and third flybys of Mariner 10 (M10-I, M10-III) suggest that small-scale crustal magnetic fields, if they exist, are at the limit of resolution. Small-scale crustal fields are most easily identified near closest approach (CA) as features with wavelengths comparable to, or larger than, the spacecraft altitude. One small feature (< 4 nT in magnitude) encountered near CA during MESSENGER's first flyby may be either a crustal magnetic field or a plasma pressure effect. By means of Parker's constrained optimization approach, with no assumptions on the direction of magnetization, we can place constraints on the product of magnetization and magnetized layer thickness from such observations. The second flyby (M2) will allow additional constraints to be placed on the presence of small-scale fields, and correlations will be possible among topographic profiles measured by the Mercury Laser Altimeter (MLA), features seen on MESSENGER and Mariner 10 images, and any variations in the internal field. This flyby will acquire the first images of the CA region of M10-III, which has been pivotal in establishing the dipolar character of Mercury's magnetic field. Our ability to isolate small-scale crustal magnetic fields has been hindered by the limited coverage to date, as well as the difficulty in isolating the internal field. Across the terrestrial planets and the Moon, minimum magnetization contrast and iron abundance in the crust show a positive correlation. This correlation suggests that crustal iron content plays a determining role in the strength of crustal magnetization.

Purucker, M. E.; Sabaka, T. J.; Solomon, S. C.; Anderson, B. J.; Korth, H.; Zuber, M. T.; Neumann, G. A.; Head, J. W.; Johnson, C. L.; Uno, H.

2008-12-01

402

The Protogalactic Origin for Cosmic Magnetic Fields  

Microsoft Academic Search

It is demonstrated that strong magnetic fields are produced from a zero\\u000ainitial magnetic field during the pregalactic era, when galaxies are first\\u000aforming. Their development proceeds in three phases. In the first phase, weak\\u000amagnetic fields are created by the Biermann battery mechanism, acting in\\u000ashocked parts of the intergalactic medium where caustics form and intersect. In\\u000athe second

Russell M. Kulsrud; Renyue Cen; Jeremiah P. Ostriker; Dongsu Ryu

1996-01-01

403

Turbulence and Magnetic Fields in Astrophysical Plasmas  

Microsoft Academic Search

Magnetic fields permeate the Universe. They are found in planets, stars, accretion discs, galaxies, clusters of galaxies,\\u000a and the intergalactic medium. While there is often a component of the field that is spatially coherent at the scale of the\\u000a astrophysical object, the field lines are tangled chaotically and there are magnetic fluctuations at scales that range over\\u000a orders of magnitude.

Alexander A. Schekochihin; Steven C Cowley

2007-01-01

404

Ohm's law for mean magnetic fields  

SciTech Connect

The magnetic fields associated with plasmas frequently exhibit small amplitude MHD fluctuations. It is useful to have equations for the magnetic field averaged over these fluctuations, the so-called mean field equations. Under very general assumptions it is shown that the effect of MHD fluctuations on a force-free plasma can be represented by one parameter in Ohm's law, which is effectively the coefficient of electric current viscosity.

Boozer, A.H.

1986-05-01

405

Emittance measurement in a magnetic field  

SciTech Connect

Emittance can be measured by intercepting an electron beam on a range thick plate and then observing the expansion of beamlets transmitted through small holes. The hole size is selected to minimize space charge effects. In the presence of a magnetic field the beamlets have a spiral trajectory and the usual field free formulation must be modified. To interpret emittance in the presence of a magnetic field an envelope equation is derived in the appropriate rotating frame. 1 ref.

Boyd, J.K.

1991-04-15

406

Manipulating Cells with Static Magnetic Fields  

NASA Astrophysics Data System (ADS)

We review our investigations of the use of static magnetic fields, B, for manipulating cells and cellular processes. We describe how B fields modify the cell division pattern of frog embryos and consequently can be used to probe the pattern determinants. We also observe that magnetic fields modify the swimming behavior of Paramecium Caudatum. We describe these modifications and their potential application to investigations of their swimming behavior.

Valles, J. M.; Guevorkian, K.

2005-07-01

407

Whole-Body Magnetic Resonance Angiography at 3 Tesla Using a Hybrid Protocol in Patients with Peripheral Arterial Disease  

SciTech Connect

The purpose of this study was to determine the diagnostic performance of 3T whole-body magnetic resonance angiography (WB-MRA) using a hybrid protocol in comparison with a standard protocol in patients with peripheral arterial disease (PAD). In 26 consecutive patients with PAD two different protocols were used for WB-MRA: a standard sequential protocol (n = 13) and a hybrid protocol (n = 13). WB-MRA was performed using a gradient echo sequence, body coil for signal reception, and gadoterate meglumine as contrast agent (0.3 mmol/kg body weight). Two blinded observers evaluated all WB-MRA examinations with regard to presence of stenoses, as well as diagnostic quality and degree of venous contamination in each of the four stations used in WB-MRA. Digital subtraction angiography served as the method of reference. Sensitivity for detecting significant arterial disease (luminal narrowing {>=} 50%) using standard-protocol WB-MRA for the two observers was 0.63 (95%CI: 0.51-0.73) and 0.66 (0.58-0.78). Specificities were 0.94 (0.91-0.97) and 0.96 (0.92-0.98), respectively. In the hybrid protocol WB-MRA sensitivities were 0.75 (0.64-0.84) and 0.70 (0.58-0.8), respectively. Specificities were 0.93 (0.88-0.96) and 0.95 (0.91-0.97). Interobserver agreement was good using both the standard and the hybrid protocol, with {kappa} = 0.62 (0.44-0.67) and {kappa} = 0.70 (0.59-0.79), respectively. WB-MRA quality scores were significantly higher in the lower leg using the hybrid protocol compared to standard protocol (p = 0.003 and p = 0.03, observers 1 and 2). Distal venous contamination scores were significantly lower with the hybrid protocol (p = 0.02 and p = 0.01, observers 1 and 2). In conclusion, hybrid-protocol WB-MRA shows a better diagnostic performance than standard protocol WB-MRA at 3 T in patients with PAD.

Nielsen, Yousef W., E-mail: yujwni01@heh.regionh.d [University Hospital at Herlev, Department of Radiology (Denmark); Eiberg, Jonas P., E-mail: Eiberg@dadlnet.d [Rigshospitalet, Department of Vascular Surgery (Denmark); Logager, Vibeke B., E-mail: viloe@heh.regionh.d [University Hospital at Herlev, Department of Radiology (Denmark); Schroeder, Torben V., E-mail: tvs@dadlnet.d [Rigshospitalet, Department of Vascular Surgery (Denmark); Just, Sven, E-mail: svju@geh.regionh.d [University Hospital at Gentofte, Department of Radiology (Denmark); Thomsen, Henrik S., E-mail: hentho01@heh.regionh.d [University Hospital at Herlev, Department of Radiology (Denmark)

2009-09-15

408

Magnetic field effects on dielectrophoresis in manganites  

NASA Astrophysics Data System (ADS)

Perovskite-type manganese oxides (manganites) are of interest for many of the different properties they possess, including colossal magnetoresistance (CMR) and ferroelectric behavior. With the application of an electric field, large resistance decreases have been noted near the insulator-to-metal transition temperature in samples of (La1-yPry)1-xCaxMnO3 (LPCMO). Two proposed models have emerged to explain the behavior, dielectric breakdown and dielectrophoresis, with experimental evidence showing some aspects of the dielectrophoresis model to be correct. However, neither model accounts for magnetic interactions among the ferromagnetic metallic regions and the effects of a magnetic field applied in conjunction with an electric field. We have performed measurements on LPCMO samples by varying the strength and orientation of the magnetic field and the applied voltage. Cross-shaped microstructures have been made on LPCMO samples to allow us to investigate the effects of sample size on dielectrophoresis. We will present resistance and magnetization data obtained on LPCMO samples at various magnetic field strengths, magnetic field orientations, and sample sizes to elucidate the effect of magnetic interactions on dielectrophoresis induced transport and magnetic properties.

Grant, Daniel; Dragiev, Galin; Biswas, Amlan

2013-03-01

409

Vector Magnetic Field in Emerging Flux Regions  

NASA Astrophysics Data System (ADS)

A crucial phase in magnetic flux emergence is the rise of magnetic flux tubes through the solar photosphere, which represents a severe transition between the very different environments of the solar interior and corona. Multi-wavelength observations with Flare Genesis, TRACE, SoHO, and more recently with the vector magnetographs at THEMIS and Hida (DST) led to the following conclusions. The fragmented magnetic field in the emergence region - with dipped field lines or bald patches - is directly related with Ellerman bombs, arch filament systems, and overlying coronal loops. Measurements of vector magnetic fields have given evidence that undulating "serpentine" fields are present while magnetic flux tubes cross the photosphere. See the sketch below, and for more detail see Pariat et al. (2004, 2007); Watanabe et al. (2008):

Schmieder, B.; Pariat, E.

410

Magnetic field considerations in fusion power plant environs  

Microsoft Academic Search

A summary of magnetic field production mechanisms and effects is given. Discussions are included on the following areas: (1) stray magnetic and electric fields from tokamaks, (2) methods for reducing magnetic fields, (3) economics of magnetic field reductions, (4) forces on magnetizable objects near magnetic confinement fusion reactors, (5) electric field transients in tokamaks, (6) attenuation and decay of electromagnetic

H. B. Liemohn; D. L. Lessor; B. H. Duane

1976-01-01

411

Magnetic Field Extrapolations And Current Sheets  

NASA Astrophysics Data System (ADS)

Solar flares and coronal mass ejections (CMEs) --- phenomena which impact our society, but are scientifically interesting in themselves --- are driven by free magnetic energy in the coronal magnetic field. Since the coronal magnetic field cannot be directly measured, modelers often extrapolate the coronal field from the photospheric magnetograms --- the only field measurements routinely available. The best extrapolation techniques assume that the field is force free (coronal currents parallel the magnetic field), but that currents are not simply a linear function of the magnetic field. Recent tests, however, suggest that such non-linear force-free field (NLFFF) extrapolation techniques often underestimate free magnetic energy. We hypothesize that, since relaxation-based NLFFF techniques tend to smooth field discontinuities, such approaches will fail when current sheets are present. Here, we test this hypothesis by applying the Optimization NLFFF method to two configurations from an MHD simulation --- one with strong current concentrations, and one with weak concentrations. This work is supported by a NASA Sun-Earth Connections Theory grant to UC-Berkeley.

Welsch, Brian; De Moortel, I.; McTiernan, J. M.

2007-05-01

412

Neutron Star Crust in Strong Magnetic Fields  

NASA Astrophysics Data System (ADS)

We discuss the effects of strong magnetic fields through Landau quantization of electrons on the structure and stability of nuclei in neutron star crust. In strong magnetic fields, this leads to the enhancement of the electron number density with respect to the zero field case. We obtain the sequence of equilibrium nuclei of the outer crust in the presence of strong magnetic fields adopting most recent versions of the experimental and theoretical nuclear mass tables. For B ~ 1016G, it is found that some new nuclei appear in the sequence and some nuclei disappear from the sequence compared with the zero field case. Further we investigate the stability of nuclei in the inner crust in the presence of strong magnetic fields using the Thomas-Fermi model. The coexistence of two phases of nuclear matter - liquid and gas, is considered in this case. The proton number density is significantly enhanced in strong magnetic fields B ~ 1017G through the charge neutrality. We find nuclei with larger mass number in the presence of strong magnetic fields than those of the zero field. These results might have important implications for the transport properties of the crust in magnetars.

Nandi, Rana; Bandyopadhyay, Debades

2011-09-01

413

Global magnetic fields: variation of solar minima  

NASA Astrophysics Data System (ADS)

The topology of the large-scale magnetic field of the Sun and its role in the development of magnetic activity were investigated using H ? charts of the Sun in the period 1887-2011. We have considered the indices characterizing the minimum activity epoch, according to the data of large-scale magnetic fields. Such indices include: dipole-octopole index, area and average latitude of the field with dominant polarity in each hemisphere and others. We studied the correlation between these indices and the amplitude of the following sunspot cycle, and the relation between the duration of the cycle of large-scale magnetic fields and the duration of the sunspot cycle. The comparative analysis of the solar corona during the minimum epochs in activity cycles 12 to 24 shows that the large-scale magnetic field has been slow and steadily changing during the past 130 years. The reasons for the variations in the solar coronal structure and its relation with long-term variations in the geomagnetic indices, solar wind and Gleissberg cycle are discussed. We also discuss the origin of the large-scale magnetic field. Perhaps the large-scale field leads to the generation of small-scale bipolar ephemeral regions, which in turn support the large-scale field. The existence of two dynamos: a dynamo of sunspots and a surface dynamo can explain phenomena such as long periods of sunspot minima, permanent dynamo in stars and the geomagnetic field.

Tlatov, Andrey G.; Obridko, Vladimir N.

2012-07-01

414

"Non-Contact Ultrasonic Treatment of Metals in a Magnetic Field"  

SciTech Connect

A concept has been originated for non-contact ultrasonic treatment of metals based on the use of an induction coil located in a high-field superconducting magnet. An advantage of using a high magnetic field environment (> 9 T) is that this allows the induced surface current in the sample to be decreased proportionately. As a result, the incidental induction heating associated with the use of the EMAT (Electromagnetic Acoustical Transducer) is greatly reduced, which improves the energy efficiency of the EMAT approach. The method can be coupled with high-field magnetic processing, but can also be used where only ultrasonic treatment is beneficial. In the proof-of-principle experiments, a high-field EMAT was used for non-contact ultrasonic processing of aluminum samples during solidification. The magnetic field for the EMAT was supplied by a high-field (20 Tesla) resistive magnet, and the current was provided by an induction coil. This resulted in a highly efficient EMAT that delivered 0.5 MPa (~5 atmospheres) of acoustic drive to the surface of the sample while coupling less than 100 watts of incidental induction heating. The exceptionally high energy efficiency of the electromagnetic transducer is due to the use of the high magnetic field, which reduces the current needed to achieve the same acoustic pressure. In these initial experiments, aluminum samples of A356 alloy were heated to the liquid state and allowed to solidify at a controlled cooling rate while subjected to the non-contact ultrasonic stimulation (0.5 MPa @ 165 kHz) provided by an induction coil located within the 200 mm (~8-inch) bore of a 20-T Bitter resistive magnet.

Ludtka, Gerard Michael [ORNL; Wilgen, John B [ORNL; Kisner, Roger A [ORNL; Jaramillo, Roger A [ORNL; Ludtka, Gail Mackiewicz- [ORNL

2007-01-01

415

Ultrafast heating and magnetic switching with weak external magnetic field  

NASA Astrophysics Data System (ADS)

The TbFeCo magneto-optical media with the coercivity of bigger than 1.0 kOe are used for the investigation of ultrafast heating and magnetic switching with the weak external magnetic field. It has been found that the laser-induced active region becomes larger with an external magnetic field because the boundary of the active region is magnetized with the assistance of the external field during the ultrafast heating. According to this physical phenomenon, the so called ``mark expansion method'' has been proposed for visual observation of ultrafast switching marks. Using this method, the ultrafast magnetic switching in TbFeCo media has been studied using 40 fs laser pulse with linear polarization. The result shows that the ultrafast magnetic switching can be implemented by the laser pulse with assistance of the weak external field of about 0.7 kOe. Further studies show that the area percentage of the magnetic mark expansion relative to its thermal mark decreases with the increasing of the laser pulse energy. There exists the threshold pulse energy that the active region is fully magnetized. The theoretical analysis of electron, spin, and lattice temperatures has been conducted to the active region of the media where the maximum spin temperature is close to the Curie temperature of the media. The result indicates that the media become active at 4.137 ps and the ultrafast heating plays a key role for the ultrafast magnetic switching. The weak external magnetic field provides sufficient driving force to control the magnetization direction in the media.

Li, J. M.; Xu, B. X.; Zhang, J.; Ye, K. D.

2013-01-01

416

Polarization Diagnostics of Solar Magnetic Fields  

NASA Astrophysics Data System (ADS)

The solar atmosphere is a highly ionized medium which is the playground of magnetic fields. In the deepest layer (the photosphere), magnetic fields disturb the 'normal' fluid motions forcing the plasma to behave incounterintuitive ways; in the outer layers (the chromosphere and the corona) magnetic fields rule, making the plasma levitate or even ejecting it out of the gravitational well of the Sun, with important consequences for us here on Earth. However, magnetic fields are elusive. The only quantitative evidence of their presence is through the polarization state of the light emitted by the plasma they are playing with. Remote sensing of magnetic fields from 150 million km away through spectropolarimetry is a challenge on applied physics as well as an art. It requires the application of quantum mechanics, radiative transfer theory, and advanced optics to the interpretation and analysis of spectropolarimetric observations. I will review standard diagnostic techniques and recent developments on this field. I will discuss their limitations and how to overcome them through the complementary aspects of different diagnostic techniques, spectral regions, and statistical analysis. Finally, I will review what are the main areas for progress in this regard: most notably, the 'measurement' of magnetic fields in the extremely dilute and weakly magnetized outer layers of the sun.

Manso Sainz, R.

2011-12-01

417

Development of NMR (Nuclear Magnetic Resonance) Tomographs with Superconducting Magnets for Use in In-vivo Magnetic Resonance. Final Report.  

National Technical Information Service (NTIS)

For the application of MR in medicine the following superconducting magnet systems have been developed: a) A research system with magnetic field strength of 2.4 Tesla and room temperature bore of 400 mm. b) A whole body system with a field strength of 1.5...

W. Mueller B. Knuettel

1987-01-01

418

New Magnetic phases of holmium in a magnetic field  

SciTech Connect

We have examined the behavior of two well-characterized single crystals ofholmium in a magnetic field applied along the /ital c/ axis in a temperaturerange from 90 to 140 K, using magnetization and dilatometric measurements. Wehave found several new phases in this previously unexplored region of the phasediagram.

Steinitz, M. O.; Kahrizi, M.; Tindall, D. A.; Ali, N.

1989-07-01

419

Relationship between the magnetic hyperfine field and the magnetic moment  

Microsoft Academic Search

Based on experimental data it is shown, for some chosen alloys and compounds of iron, that there is no unique relationship between the 57Fe-site magnetic hyperfine field, Bhf, and the magnetic moment per Fe atom, ?. Instead, the Bhf–? plot consists of several branches, each of them being characteristic of a given alloy or compound. Consequently, the effective proportionality constant

S. M. Dubiel

2009-01-01

420

How are static magnetic fields detected biologically?  

NASA Astrophysics Data System (ADS)

There is overwhelming evidence that life, from bacteria to birds to bats, detects magnetic fields, using the fields for orientation or navigation. Indeed there are recent reports (based on Google Earth imagery) that cattle and deer align themselves with the earth's magnetic field. [1]. The development of frog and insect eggs are changed by high magnetic fields, probably through known physical mechanisms. However, the mechanisms for eukaryotic navigation and alignment are not clear. Persuasive published models will be discussed. Evidence, that static magnetic fields might produce therapeutic effects, will be updated [2]. [4pt] [1] S. Begall, et al., Proc Natl Acad Sci USA, 105:13451 (2008). [0pt] [2] L. Finegold and B.L. Flamm, BMJ, 332:4 (2006).

Finegold, Leonard

2009-03-01

421

Central Gland and Peripheral Zone Prostate Tumors have Significantly Different Quantitative Imaging Signatures on 3 Tesla Endorectal, In Vivo T2-Weighted Magnetic Resonance Imagery  

PubMed Central

Purpose To identify and evaluate textural quantitative imaging signatures (QISes) for tumors occurring within the central gland (CG) and peripheral zone (PZ) of the prostate, respectively, as seen on in vivo 3 Tesla endorectal T2-weighted (T2w) Magnetic Resonance Imaging (MRI). Materials and Methods This study utilized 22 pre-operative prostate MRI datasets (16 PZ, 6 CG) acquired from men with confirmed prostate cancer (CaP) and scheduled for radical prostatectomy (RP). The prostate region-of-interest (ROI) was automatically delineated on T2w MRI, following which it was corrected for intensity-based acquisition artifacts. An expert pathologist manually delineated the dominant tumor regions on ex vivo sectioned and stained RP specimens as well as identified each of the studies as either a CG or PZ CaP. A non-linear registration scheme was employed to spatially align and then map CaP extent from the ex vivo RP sections onto the corresponding MRI slices. 110 texture features were then extracted on a per-voxel basis from all T2w MRI datasets. An information theoretic feature selection procedure was then applied to identify QISes comprising T2w MRI textural features specific to CG and PZ CaP, respectively. The QISes for CG and PZ CaP were evaluated via Quadratic Discriminant Analysis (QDA) on a per-voxel basis against the ground truth for CaP on T2w MRI, mapped from corresponding histology. Results The QDA classifier yielded an area under the Receiver Operating characteristic curve of 0.86 for the CG CaP studies, and 0.73 for the PZ CaP studies over 25 runs of randomized 3-fold cross-validation. By comparison, the accuracy of the QDA classifier was significantly lower when (a) using all 110 texture features (with no feature selection applied), as well as (b) a randomly selected combination of texture features. Conclusion CG and PZ prostate cancers have significantly differing textural quantitative imaging signatures on T2w endorectal in vivo MRI.

Viswanath, Satish E.; Bloch, Nicolas B.; Chappelow, Jonathan C.; Toth, Robert; Rofsky, Neil M.; Genega, Elizabeth M.; Lenkinski, Robert E.; Madabhushi, Anant

2012-01-01

422

Quantification of Trabecular Bone Structure Using Magnetic Resonance Imaging at 3 Tesla--Calibration Studies Using Microcomputed Tomography as a Standard of Reference  

PubMed Central

The purpose of this study is to use high-resolution magnetic resonance (MR) imaging at 3 Tesla (3T) to quantify trabecular bone structure in vitro using femoral head specimens, and to correlate the calculated structure measures with those that were determined using microcomputed tomography (?CT), the standard of reference. Fifteen cylindrical cores were obtained from fresh femoral heads after total hip arthroplasty. MR images were obtained at 3T using a transmit–receive wrist coil. High-resolution coronal images were acquired using a modified three-dimensional (3D) fast-gradient echo sequence. From these data sets two-dimensional (2D) structural parameters analogous to bone histomorphometry were derived by using both mean intercept length (MIL) methods based on the plate model and the more recent model-assumption free 3D distance-transformation (DT) methods. The parameters measured by the 2D plate model-based MIL method and the DT method included apparent (App). BV/TV (bone volume/total volume), App. Tb.Th (trabecular thickness), App. Tb.Sp (trabecular separation), and App. Tb.N (trabecular number). Identical regions of interest were analyzed in the MR images and the ?CT data sets, and similar structure measures were derived. The means and standard deviations of the parameters over all slices were calculated and MR-derived measures were correlated with those derived from the ?CT data sets using linear regression analyses. Structure measures were overestimated with MRI, for example, the mean App. BV/TV was 0.45 for MRI and 0.20 for ?CT, and the slope of the graph was 1.45. App. Tb.Th was overestimated by a factor of 1.9, whereas App. Tb.Sp was underestimated; Tb.N showed the smallest effect. Correlations between the individual parameters were excellent (App. BV/TV, r2= 0.82; App. Tb.Sp, r2 = 0.84; App. Tb.N, r2 = 0.81), except for App. Tb.Th (r2 = 0.67). The results of this study show that trabecular bone structure measures may be obtained using 3T MR imaging. These measures, although higher than the standard of reference, show a highly significant correlation with true structure measures obtained by ?CT.

Sell, C. A.; Masi, J. N.; Burghardt, A.; Newitt, D.; Link, T. M.; Majumdar, S.

2010-01-01

423

XUV harmonic enhancement by magnetic fields  

SciTech Connect

We examine three ways to enhance harmonic output of an XUV planar free-electron laser (FEL) operating in the Compton regime. The first method is to increase the rms static magnetic field, making it as large as possible. The second is by adding effective magnetic fields at the harmonics, thereby increasing the coupling to the harmonics. The third is by phase programming; i.e. programming the magnetic field to introduce jumps in the phase of the electrons as they move through phase space.

Elliott, C.J.; Schmitt, M.J.

1986-09-01

424

Magnetic field dependent tunneling in glasses  

PubMed

We report on experiments giving evidence for quantum effects of electromagnetic flux in barium alumosilicate glass. In contrast to expectation, below 100 mK the dielectric response becomes sensitive to magnetic fields. The experimental findings include both lifting of the dielectric saturation by weak magnetic fields and oscillations of the dielectric response in the low temperature resonant regime. As the origin of these effects we suggest that the magnetic induction field violates the time reversal invariance leading to a flux periodicity in the energy levels of tunneling systems. At low temperatures, this effect is strongly enhanced by the interaction between tunneling systems and thus becomes measurable. PMID:11017665

Strehlow; Wohlfahrt; Jansen; Haueisen; Weiss; Enss; Hunklinger

2000-02-28

425

Magnetic field structures in chemically peculiar stars  

NASA Astrophysics Data System (ADS)

We report the results of magnetic field modelling of around 50 CP stars, performed using the "magnetic charges" technique. The modelling shows that the sample reveals four main types of magnetic configurations: 1) a central dipole, 2) a dipole, shifted along the axis, 3) a dipole, shifted across the axis, and 4) complex structures. The vast majority of stars has the field structure of a dipole, shifted from the center of the star. This shift can have any direction, both along and across the axis. A small percentage of stars possess field structures, formed by two or more dipoles.

Glagolevskij, Yu. V.

2011-04-01

426

Magnetic field quality analysis using ANSYS  

SciTech Connect

The design of superconducting magnets for particles accelerators requires a high quality of the magnetic field. This paper presents an ANSYS 4.4A Post 1 macro that computes the field quality performing a Fourier analysis of the magnetic field. The results show that the ANSYS solution converges toward the analytical solution and that the error on the multipole coefficients depends linearly on the square of the mesh size. This shows the good accuracy of ANSYS in computing the multipole coefficients. 2 refs., 16 figs., 4 tabs.

Dell'Orco, D.; Chen, Y.

1991-03-01

427

Magnetic Field Dependent Tunneling in Glasses  

NASA Astrophysics Data System (ADS)

We report on experiments giving evidence for quantum effects of electromagnetic flux in barium alumosilicate glass. In contrast to expectation, below 100 mK the dielectric response becomes sensitive to magnetic fields. The experimental findings include both lifting of the dielectric saturation by weak magnetic fields and oscillations of the dielectric response in the low temperature resonant regime. As the origin of these effects we suggest that the magnetic induction field violates the time reversal invariance leading to a flux periodicity in the energy levels of tunneling systems. At low temperatures, this effect is strongly enhanced by the interaction between tunneling systems and thus becomes measurable.

Strehlow, P.; Wohlfahrt, M.; Jansen, A. G. M.; Haueisen, R.; Weiss, G.; Enss, C.; Hunklinger, S.

2000-02-01

428

[Weak magnetic fields and cognitive activity].  

PubMed

The influence of natural level of uniform magnetic field (to 200 microT) on Wistar rat cognition was studied in this work. It was found that influence of disturbed Earth magnetic field has caused a long depression of explorative activity only in the presence of information loading. Such depression was removed only after short external stimulation. After this stimulation rats were able to learn by themselves and it took them twice less time than in the control (nootropic effect). It is suggested that a weak magnetic field disturbances may be considered as a negative psychogenic factor which distorts normal conditions for cognitive activity. PMID:8962888

Nikol'skaia, K A; Shtemler, A V; Savonenko, A V; Osipov, A I; Nikol'ski?, S V

429

Environmental magnetic fields: Influences on early embryogenesis  

SciTech Connect

A 10-mG, 50 to 60-Hz magnetic field is in the intensity and frequency range that people worldwide are often exposed to in homes and in the workplace. Studies about the effects of 50- to 100-Hz electromagnetic fields on various species of animal embryos (fish, chick, fly, sea urchin, rat, and mouse) indicate that early stages of embryonic development are responsive to fluctuating magnetic fields. Chick, sea urchin, and mouse embryos are responsive to magnetic field intensities of 10-100 mG. Results from studies on sea urchin embryos indicate that exposure to conditions of rotating 60-Hz magnetic fields, e.g., similar to those in our environment, interferes with cell proliferation at the morula stage in a manner dependent on field intensity. The cleavage stages, prior to the 64-cell stage, were not delayed by this rotating 60-Hz magnetic field suggesting that the ionic surges, DNA replication, and translational events essential for early cleavage stages were not significantly altered. Studies of histone synthesis in early sea urchin embryos indicated that the rotating 60-Hz magnetic field decreased zygotic expression of early histone genes at the morula stage and suggests that this decrease in early histone production was limiting to cell proliferation. Whether these comparative observations from animal development studies will be paralleled by results from studies of human embryogenesis, as suggested by some epidemiology studies, has yet to be established. 38 refs.

Cameron, I.L.; Hardman, W.E.; Winters, W.D.; Zimmerman, S.; Zimmerman, A.M. (Univ. of Texas Health Science Center, San Antonio (United States))

1993-04-01

430

Experimental studies of protozoan response to intense magnetic fields and forces  

NASA Astrophysics Data System (ADS)

Intense static magnetic fields of up to 31 Tesla were used as a novel tool to manipulate the swimming mechanics of unicellular organisms. It is shown that homogenous magnetic fields alter the swimming trajectories of the single cell protozoan Paramecium caudatum, by aligning them parallel to the applied field. Immobile neutrally buoyant paramecia also oriented in magnetic fields with similar rates as the motile ones. It was established that the magneto-orientation is mostly due to the magnetic torques acting on rigid structures in the