Science.gov

Sample records for tesla mri scanner

  1. Human brain diffusion tensor imaging at submillimeter isotropic resolution on a 3Tesla clinical MRI scanner.

    PubMed

    Chang, Hing-Chiu; Sundman, Mark; Petit, Laurent; Guhaniyogi, Shayan; Chu, Mei-Lan; Petty, Christopher; Song, Allen W; Chen, Nan-kuei

    2015-09-01

    The advantages of high-resolution diffusion tensor imaging (DTI) have been demonstrated in a recent post-mortem human brain study (Miller et al., NeuroImage 2011;57(1):167-181), showing that white matter fiber tracts can be much more accurately detected in data at a submillimeter isotropic resolution. To our knowledge, in vivo human brain DTI at a submillimeter isotropic resolution has not been routinely achieved yet because of the difficulty in simultaneously achieving high resolution and high signal-to-noise ratio (SNR) in DTI scans. Here we report a 3D multi-slab interleaved EPI acquisition integrated with multiplexed sensitivity encoded (MUSE) reconstruction, to achieve high-quality, high-SNR and submillimeter isotropic resolution (0.85×0.85×0.85mm(3)) in vivo human brain DTI on a 3Tesla clinical MRI scanner. In agreement with the previously reported post-mortem human brain DTI study, our in vivo data show that the structural connectivity networks of human brains can be mapped more accurately and completely with high-resolution DTI as compared with conventional DTI (e.g., 2×2×2mm(3)). PMID:26072250

  2. Measurement of the weighted peak level for occupational exposure to gradient magnetic fields for 1.5 and 3 Tesla MRI body scanners.

    PubMed

    Bonutti, F; Tecchio, M; Maieron, M; Trevisan, D; Negro, C; Calligaris, F

    2016-03-01

    The purpose of this work is to give a contribution to the construction of a comprehensive knowledge of the exposure levels to gradient magnetic fields (GMF) in terms of the weighed peak (WP), especially for 3 Tesla scanners for which there are still few works available in the literature. A new generation probe for the measurement of electromagnetic fields in the range of 1 Hz-400 kHz was used to assess the occupational exposure levels to the GMF for 1.5 and 3.0 Tesla MRI body scanners, using the method of the WP according to the International Commission on Non-Ionizing Radiation Protection (ICNIRP) approach. The probe was placed at a height of 1.1 m, close to the MRI scanners, where operators could stay during some medical procedures with particular issues. The measurements were performed for a set of typical acquisition sequences for body (liver) and head exams. The measured values of WP were in compliance with ICNIRP 2010 reference levels for occupational exposures. PMID:25987585

  3. Reproducibility of Intra- and Inter-scanner Measurements of Liver Fat Using Complex Confounder-corrected Chemical Shift Encoded MRI at 3.0 Tesla

    PubMed Central

    Wu, Bing; Han, Wei; Li, Zhenhong; Zhao, Yonghua; Ge, Mingmei; Guo, Xueqing; Wu, Xinhuai

    2016-01-01

    The purpose of this study was to prospectively evaluate the reproducibility of the proton density fat-fraction (PDFF) of the liver using the IDEAL algorithm, a quantitative confounder-corrected chemical-shift-encoded MRI method. Data were obtained from 15 volunteers on four different days. The first and the third examinations were conducted on scanner one with one-week intervals, while the second and the fourth tests were performed on scanner two with same time interval. For each test, two MR scans were performed, one before and one after a meal. Regions-of-interest measurements were manually calculated to estimate the PDFF in the right and left lobes on the PDFF images. Reproducibility was measured using the intra-class correlation coefficient (ICC). The ICCs of the PDFF in the right and left lobes were 0.935 and 0.878, respectively. The intra-scanner ICCs of the right lobe before and after a meal or at a one-week interval were 0.924 and 0.953, respectively. The inter-scanner ICCs of PDFF the next day and at a one-week interval were 0.920 and 0.864, respectively. The PDFF of liver derived from IDEAL demonstrated high intra- and inter-scanner measurement reproducibility. The PDFF of the right lobe before a meal was more reproducible than after-meal measurements. PMID:26763303

  4. Dynamic Contrast-Enhanced MRI Parameters as Biomarkers in Assessing Head and Neck Lesions After Chemoradiotherapy Using a Wide-Bore 3 Tesla Scanner.

    PubMed

    Lerant, Gergely; Sarkozy, Peter; Takacsi-Nagy, Zoltan; Polony, Gabor; Tamas, Laszlo; Toth, Erika; Boer, Andras; Javor, Laszlo; Godeny, Maria

    2015-09-01

    Pilot studies have shown promising results in characterizing head and neck tumors (HNT) using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), differentiating between malignant and benign lesions and evaluating changes in response to chemoradiotherapy (CRT). Our aim was to find DCE-MRI parameters, biomarkers in evaluating the post-CRT status. Two hundred and five patients with head and neck lesions were examined with DCE-MRI sequences. The time intensity curves (TIC) were extracted and processed to acquire time-to-peak (TTP), relative maximum enhancement (RME), relative wash-out (RWO), and two new parameters attack and decay. These parameters were analyzed using univariate tests in SPSS (Statistical Package for the Social Sciences, version 17, SPSS Inc. Chicago, USA) to identify parameters that could be used to infer tumor malignancy and post-CRT changes. Multiple parameters of curve characteristics were significantly different between malignant tumors after CRT (MACRT) and changes caused by CRT. The best-performing biomarkers were the attack and the decay. We also found multiple significant (p < 0.05) parameters for both the benign and malignant status as well as pre- and post-CRT status. Our large cohort of data supports the increasing role of DCE-MRI in HNT differentiation, particularly for the assessment of post-CRT status along with accurate morphological imaging. PMID:25920367

  5. An RF dosimeter for independent SAR measurement in MRI scanners

    SciTech Connect

    Qian, Di; Bottomley, Paul A.; El-Sharkawy, AbdEl-Monem M.; Edelstein, William A.

    2013-12-15

    Purpose: The monitoring and management of radio frequency (RF) exposure is critical for ensuring magnetic resonance imaging (MRI) safety. Commercial MRI scanners can overestimate specific absorption rates (SAR) and improperly restrict clinical MRI scans or the application of new MRI sequences, while underestimation of SAR can lead to tissue heating and thermal injury. Accurate scanner-independent RF dosimetry is essential for measuring actual exposure when SAR is critical for ensuring regulatory compliance and MRI safety, for establishing RF exposure while evaluating interventional leads and devices, and for routine MRI quality assessment by medical physicists. However, at present there are no scanner-independent SAR dosimeters. Methods: An SAR dosimeter with an RF transducer comprises two orthogonal, rectangular copper loops and a spherical MRI phantom. The transducer is placed in the magnet bore and calibrated to approximate the resistive loading of the scanner's whole-body birdcage RF coil for human subjects in Philips, GE and Siemens 3 tesla (3T) MRI scanners. The transducer loop reactances are adjusted to minimize interference with the transmit RF field (B{sub 1}) at the MRI frequency. Power from the RF transducer is sampled with a high dynamic range power monitor and recorded on a computer. The deposited power is calibrated and tested on eight different MRI scanners. Whole-body absorbed power vs weight and body mass index (BMI) is measured directly on 26 subjects. Results: A single linear calibration curve sufficed for RF dosimetry at 127.8 MHz on three different Philips and three GE 3T MRI scanners. An RF dosimeter operating at 123.2 MHz on two Siemens 3T scanners required a separate transducer and a slightly different calibration curve. Measurement accuracy was ?3%. With the torso landmarked at the xiphoid, human adult whole?body absorbed power varied approximately linearly with patient weight and BMI. This indicates that whole-body torso SAR is on average independent of the imaging subject, albeit with fluctuations. Conclusions: Our 3T RF dosimeter and transducers accurately measure RF exposure in body-equivalent loads and provide scanner-independent assessments of whole-body RF power deposition for establishing safety compliance useful for MRI sequence and device testing.

  6. An RF dosimeter for independent SAR measurement in MRI scanners

    SciTech Connect

    Qian, Di; Bottomley, Paul A.; El-Sharkawy, AbdEl-Monem M.; Edelstein, William A.

    2013-12-15

    Purpose: The monitoring and management of radio frequency (RF) exposure is critical for ensuring magnetic resonance imaging (MRI) safety. Commercial MRI scanners can overestimate specific absorption rates (SAR) and improperly restrict clinical MRI scans or the application of new MRI sequences, while underestimation of SAR can lead to tissue heating and thermal injury. Accurate scanner-independent RF dosimetry is essential for measuring actual exposure when SAR is critical for ensuring regulatory compliance and MRI safety, for establishing RF exposure while evaluating interventional leads and devices, and for routine MRI quality assessment by medical physicists. However, at present there are no scanner-independent SAR dosimeters. Methods: An SAR dosimeter with an RF transducer comprises two orthogonal, rectangular copper loops and a spherical MRI phantom. The transducer is placed in the magnet bore and calibrated to approximate the resistive loading of the scanner's whole-body birdcage RF coil for human subjects in Philips, GE and Siemens 3 tesla (3T) MRI scanners. The transducer loop reactances are adjusted to minimize interference with the transmit RF field (B{sub 1}) at the MRI frequency. Power from the RF transducer is sampled with a high dynamic range power monitor and recorded on a computer. The deposited power is calibrated and tested on eight different MRI scanners. Whole-body absorbed power vs weight and body mass index (BMI) is measured directly on 26 subjects. Results: A single linear calibration curve sufficed for RF dosimetry at 127.8 MHz on three different Philips and three GE 3T MRI scanners. An RF dosimeter operating at 123.2 MHz on two Siemens 3T scanners required a separate transducer and a slightly different calibration curve. Measurement accuracy was ∼3%. With the torso landmarked at the xiphoid, human adult whole‑body absorbed power varied approximately linearly with patient weight and BMI. This indicates that whole-body torso SAR is on average independent of the imaging subject, albeit with fluctuations. Conclusions: Our 3T RF dosimeter and transducers accurately measure RF exposure in body-equivalent loads and provide scanner-independent assessments of whole-body RF power deposition for establishing safety compliance useful for MRI sequence and device testing.

  7. An RF dosimeter for independent SAR measurement in MRI scanners

    PubMed Central

    Qian, Di; El-Sharkawy, AbdEl-Monem M.; Bottomley, Paul A.; Edelstein, William A.

    2013-01-01

    Purpose: The monitoring and management of radio frequency (RF) exposure is critical for ensuring magnetic resonance imaging (MRI) safety. Commercial MRI scanners can overestimate specific absorption rates (SAR) and improperly restrict clinical MRI scans or the application of new MRI sequences, while underestimation of SAR can lead to tissue heating and thermal injury. Accurate scanner-independent RF dosimetry is essential for measuring actual exposure when SAR is critical for ensuring regulatory compliance and MRI safety, for establishing RF exposure while evaluating interventional leads and devices, and for routine MRI quality assessment by medical physicists. However, at present there are no scanner-independent SAR dosimeters. Methods: An SAR dosimeter with an RF transducer comprises two orthogonal, rectangular copper loops and a spherical MRI phantom. The transducer is placed in the magnet bore and calibrated to approximate the resistive loading of the scanner's whole-body birdcage RF coil for human subjects in Philips, GE and Siemens 3 tesla (3T) MRI scanners. The transducer loop reactances are adjusted to minimize interference with the transmit RF field (B1) at the MRI frequency. Power from the RF transducer is sampled with a high dynamic range power monitor and recorded on a computer. The deposited power is calibrated and tested on eight different MRI scanners. Whole-body absorbed power vs weight and body mass index (BMI) is measured directly on 26 subjects. Results: A single linear calibration curve sufficed for RF dosimetry at 127.8 MHz on three different Philips and three GE 3T MRI scanners. An RF dosimeter operating at 123.2 MHz on two Siemens 3T scanners required a separate transducer and a slightly different calibration curve. Measurement accuracy was ∼3%. With the torso landmarked at the xiphoid, human adult whole‑body absorbed power varied approximately linearly with patient weight and BMI. This indicates that whole-body torso SAR is on average independent of the imaging subject, albeit with fluctuations. Conclusions: Our 3T RF dosimeter and transducers accurately measure RF exposure in body-equivalent loads and provide scanner-independent assessments of whole-body RF power deposition for establishing safety compliance useful for MRI sequence and device testing. PMID:24320534

  8. Combined PET/MRI scanner

    DOEpatents

    Schlyer, David; Woody, Craig L.; Rooney, William; Vaska, Paul; Stoll, Sean; Pratte, Jean-Francois; O'Connor, Paul

    2007-10-23

    A combined PET/MRI scanner generally includes a magnet for producing a magnetic field suitable for magnetic resonance imaging, a radiofrequency (RF) coil disposed within the magnetic field produced by the magnet and a ring tomograph disposed within the magnetic field produced by the magnet. The ring tomograph includes a scintillator layer for outputting at least one photon in response to an annihilation event, a detection array coupled to the scintillator layer for detecting the at least one photon outputted by the scintillator layer and for outputting a detection signal in response to the detected photon and a front-end electronic array coupled to the detection array for receiving the detection signal, wherein the front-end array has a preamplifier and a shaper network for conditioning the detection signal.

  9. Seven-Tesla MRI and neuroimaging biomarkers for Alzheimer's disease.

    PubMed

    Ali, Rohaid; Goubran, Maged; Choudhri, Omar; Zeineh, Michael M

    2015-11-01

    The goal of this paper was to review the effectiveness of using 7-T MRI to study neuroimaging biomarkers for Alzheimer's disease (AD). The authors reviewed the literature for articles published to date on the use of 7-T MRI to study AD. Thus far, there are 3 neuroimaging biomarkers for AD that have been studied using 7-T MRI in AD tissue: 1) neuroanatomical atrophy; 2) molecular characterization of hypointensities; and 3) microinfarcts. Seven-Tesla MRI has had mixed results when used to study the 3 aforementioned neuroimaging biomarkers for AD. First, in the detection of neuroanatomical atrophy, 7-T MRI has exciting potential. Historically, noninvasive imaging of neuroanatomical atrophy during AD has been limited by suboptimal resolution. However, now there is compelling evidence that the high resolution of 7-T MRI may help overcome this hurdle. Second, in detecting the characterization of hypointensities, 7-T MRI has had varied success. PET scans will most likely continue to lead in the noninvasive imaging of amyloid plaques; however, there is emerging evidence that 7-T MRI can accurately detect iron deposits within activated microglia, which may help shed light on the role of the immune system in AD pathogenesis. Finally, in the detection of microinfarcts, 7-T MRI may also play a promising role, which may help further elucidate the relationship between cerebrovascular health and AD progression. PMID:26646928

  10. Speech Perception in MRI Scanner Noise by Persons with Aphasia

    ERIC Educational Resources Information Center

    Healy, Eric W.; Moser, Dana C.; Morrow-Odom, K. Leigh; Hall, Deborah A.; Fridriksson, Julius

    2007-01-01

    Purpose: To examine reductions in performance on auditory tasks by aphasic and neurologically intact individuals as a result of concomitant magnetic resonance imaging (MRI) scanner noise. Method: Four tasks together forming a continuum of linguistic complexity were developed. They included complex-tone pitch discrimination, same-different

  11. Speech Perception in MRI Scanner Noise by Persons with Aphasia

    ERIC Educational Resources Information Center

    Healy, Eric W.; Moser, Dana C.; Morrow-Odom, K. Leigh; Hall, Deborah A.; Fridriksson, Julius

    2007-01-01

    Purpose: To examine reductions in performance on auditory tasks by aphasic and neurologically intact individuals as a result of concomitant magnetic resonance imaging (MRI) scanner noise. Method: Four tasks together forming a continuum of linguistic complexity were developed. They included complex-tone pitch discrimination, same-different…

  12. The role of 1.5 tesla MRI and anesthetic regimen concerning cardiac analysis in mice with cardiomyopathy.

    PubMed

    Grabmaier, Ulrich; Theiss, Hans D; Keithahn, Alexandra; Kreiner, Julia; Brenner, Christoph; Huber, Bruno; von der Helm, Christine; Gross, Lisa; Klingel, Karin; Franz, Wolfgang-M; Brunner, Stefan

    2014-01-01

    Accurate assessment of left ventricular function in rodent models is essential for the evaluation of new therapeutic approaches for cardiac diseases. In our study, we provide new insights regarding the role of a 1.5 Tesla (T) magnetic resonance imaging (MRI) device and different anesthetic regimens on data validity. As dedicated small animal MRI and echocardiographic devices are not broadly available, we evaluated whether monitoring cardiac function in small rodents with a clinical 1.5 T MRI device is feasible. On a clinical electrocardiogram (ECG) synchronized 1.5 T MRI scanner we therefore studied cardiac function parameters of mice with chronic virus-induced cardiomyopathy. Thus, reduced left ventricular ejection fraction (LVEF) could be verified compared to healthy controls. However, our results showed a high variability. First, anesthesia with medetomidine, midazolam and fentanyl (MMF) led to depressed cardiac function parameters and more variability than isoflurane gas inhalation anesthesia, especially at high concentrations. Furthermore, calculation of an average ejection fraction value from sequenced scans significantly reduced the variance of the results. To sum up, we introduce the clinical 1.5 T MRI device as a new tool for effective analysis of left ventricular function in mice with cardiomyopathy. Besides, we suggest isoflurane gas inhalation anesthesia at high concentrations for variance reduction and recommend calculation of an average ejection fraction value from multiple sequenced MRI scans to provide valid data and a solid basis for further clinical testing. PMID:24747816

  13. In Vivo High-Resolution 7 Tesla MRI Shows Early and Diffuse Cortical Alterations in CADASIL

    PubMed Central

    De Guio, François; Reyes, Sonia; Vignaud, Alexandre; Duering, Marco; Ropele, Stefan; Duchesnay, Edouard; Chabriat, Hugues; Jouvent, Eric

    2014-01-01

    Background and Purpose Recent data suggest that early symptoms may be related to cortex alterations in CADASIL (Cerebral Autosomal-Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy), a monogenic model of cerebral small vessel disease (SVD). The aim of this study was to investigate cortical alterations using both high-resolution T2* acquisitions obtained with 7 Tesla MRI and structural T1 images with 3 Tesla MRI in CADASIL patients with no or only mild symptomatology (modified Rankin’s scale ≤1 and Mini Mental State Examination (MMSE) ≥24). Methods Complete reconstructions of the cortex using 7 Tesla T2* acquisitions with 0.7 mm isotropic resolution were obtained in 11 patients (52.1±13.2 years, 36% male) and 24 controls (54.8±11.0 years, 42% male). Seven Tesla T2* within the cortex and cortical thickness and morphology obtained from 3 Tesla images were compared between CADASIL and control subjects using general linear models. Results MMSE, brain volume, cortical thickness and global sulcal morphology did not differ between groups. By contrast, T2* measured by 7 Tesla MRI was significantly increased in frontal, parietal, occipital and cingulate cortices in patients after correction for multiple testing. These changes were not related to white matter lesions, lacunes or microhemorrhages in patients having no brain atrophy compared to controls. Conclusions Seven Tesla MRI, by contrast to state of the art post-processing of 3 Tesla acquisitions, shows diffuse T2* alterations within the cortical mantle in CADASIL whose origin remains to be determined. PMID:25165824

  14. fMRI Scanner Noise Interaction with Affective Neural Processes

    PubMed Central

    Skouras, Stavros; Gray, Marcus; Critchley, Hugo; Koelsch, Stefan

    2013-01-01

    The purpose of the present study was the investigation of interaction effects between functional MRI scanner noise and affective neural processes. Stimuli comprised of psychoacoustically balanced musical pieces, expressing three different emotions (fear, neutral, joy). Participants (N=34, 19 female) were split into two groups, one subjected to continuous scanning and another subjected to sparse temporal scanning that features decreased scanner noise. Tests for interaction effects between scanning group (sparse/quieter vs continuous/noisier) and emotion (fear, neutral, joy) were performed. Results revealed interactions between the affective expression of stimuli and scanning group localized in bilateral auditory cortex, insula and visual cortex (calcarine sulcus). Post-hoc comparisons revealed that during sparse scanning, but not during continuous scanning, BOLD signals were significantly stronger for joy than for fear, as well as stronger for fear than for neutral in bilateral auditory cortex. During continuous scanning, but not during sparse scanning, BOLD signals were significantly stronger for joy than for neutral in the left auditory cortex and for joy than for fear in the calcarine sulcus. To the authors' knowledge, this is the first study to show a statistical interaction effect between scanner noise and affective processes and extends evidence suggesting scanner noise to be an important factor in functional MRI research that can affect and distort affective brain processes. PMID:24260420

  15. 7-Tesla MRI demonstrates absence of structural lesions in patients with vestibular paroxysmia

    PubMed Central

    Rommer, Paulus S.; Wiest, Gerald; Kronnerwetter, Claudia; Zach, Heidemarie; Loader, Benjamin; Elwischger, Kirsten; Trattnig, Siegfried

    2015-01-01

    Vestibular parxoysmia (VP) is a rare vestibular disorder. A neurovascular cross-compression (NVCC) between the vestibulochochlear nerve and an artery seems to be responsible for short attacks of vertigo in this entity. An NVCC can be seen in up to every fourth subject. The significance of these findings is not clear, as not all subjects suffer from symptoms. The aim of the present study was to assess possible structural lesions of the vestibulocochlear nerve by means of high field magnetic resonance imaging (MRI), and whether high field MRI may help to differentiate symptomatic from asymptomatic subjects. 7 Tesla MRI was performed in six patients with VP and confirmed NVCC seen on 1.5 and 3.0 MRI. No structural abnormalities were detected in any of the patients in 7 Tesla MRI. These findings imply that high field MRI does not help to differentiate between symptomatic and asymptomatic NVCC and that the symptoms of VP are not caused by structural nerve lesions. This supports the hypothesis that the nystagmus associated with VP has to be conceived pathophysiologically as an excitatory vestibular phenomenon, being not related to vestibular hypofunction. 7 Tesla MRI outperforms conventional MRI in image resolution and may be useful in vestibular disorders. PMID:26106306

  16. Vestibular Effects of a 7 Tesla MRI Examination Compared to 1.5 T and 0 T in Healthy Volunteers

    PubMed Central

    Theysohn, Jens M.; Kraff, Oliver; Eilers, Kristina; Andrade, Dorian; Gerwig, Marcus; Timmann, Dagmar; Schmitt, Franz; Ladd, Mark E.; Ladd, Susanne C.; Bitz, Andreas K.

    2014-01-01

    Ultra-high-field MRI (7 Tesla (T) and above) elicits more temporary side-effects compared to 1.5 T and 3 T, e.g. dizziness or “postural instability” even after exiting the scanner. The current study aims to assess quantitatively vestibular performance before and after exposure to different MRI scenarios at 7 T, 1.5 T and 0 T. Sway path and body axis rotation (Unterberger's stepping test) were quantitatively recorded in a total of 46 volunteers before, 2 minutes after, and 15 minutes after different exposure scenarios: 7 T head MRI (n = 27), 7 T no RF (n = 22), 7 T only B0 (n = 20), 7 T in & out B0 (n = 20), 1.5 T no RF (n = 20), 0 T (n = 15). All exposure scenarios lasted 30 minutes except for brief one minute exposure in 7 T in & out B0. Both measures were documented utilizing a 3D ultrasound system. During sway path evaluation, the experiment was repeated with eyes both open and closed. Sway paths for all long-lasting 7 T scenarios (normal, no RF, only B0) with eyes closed were significantly prolonged 2 minutes after exiting the scanner, normalizing after 15 minutes. Brief exposure to 7 T B0 or 30 minutes exposure to 1.5 T or 0 T did not show significant changes. End positions after Unterberger's stepping test were significantly changed counter-clockwise after all 7 T scenarios, including the brief in & out B0 exposure. Shorter exposure resulted in a smaller alteration angle. In contrast to sway path, reversal of changes in body axis rotation was incomplete after 15 minutes. 1.5 T caused no rotational changes. The results show that exposure to the 7 Tesla static magnetic field causes only a temporary dysfunction or “over-compensation” of the vestibular system not measurable at 1.5 or 0 Tesla. Radiofrequency fields, gradient switching, and orthostatic dysregulation do not seem to play a role. PMID:24658179

  17. Absolute Temperature Monitoring Using RF Radiometry in the MRI Scanner

    PubMed Central

    El-Sharkawy, AbdEl-Monem M.; Sotiriadis, Paul P.; Bottomley, Paul A.; Atalar, Ergin

    2007-01-01

    Temperature detection using microwave radiometry has proven value for noninvasively measuring the absolute temperature of tissues inside the body. However, current clinical radiometers operate in the gigahertz range, which limits their depth of penetration. We have designed and built a noninvasive radiometer which operates at radio frequencies (64 MHz) with ∼100-kHz bandwidth, using an external RF loop coil as a thermal detector. The core of the radiometer is an accurate impedance measurement and automatic matching circuit of 0.05 Ω accuracy to compensate for any load variations. The radiometer permits temperature measurements with accuracy of ±0.1°K, over a tested physiological range of 28° C–40° C in saline phantoms whose electric properties match those of tissue. Because 1.5 T magnetic resonance imaging (MRI) scanners also operate at 64 MHz, we demonstrate the feasibility of integrating our radiometer with an MRI scanner to monitor RF power deposition and temperature dosimetry, obtaining coarse, spatially resolved, absolute thermal maps in the physiological range. We conclude that RF radiometry offers promise as a direct, noninvasive method of monitoring tissue heating during MRI studies and thereby providing an independent means of verifying patient-safe operation. Other potential applications include titration of hyper- and hypo-therapies. PMID:18026562

  18. MRI of the Hip at 7 Tesla: Feasibility of Bone Microarchitecture, High-Resolution Cartilage, and Clinical Imaging

    PubMed Central

    Chang, Gregory; Deniz, Cem M.; Honig, Stephen; Egol, Kenneth; Regatte, Ravinder R.; Zhu, Yudong; Sodickson, Daniel K.; Brown, Ryan

    2013-01-01

    Purpose To demonstrate the feasibility of performing bone microarchitecture, high- resolution cartilage, and clinical imaging of the hip at 7 Tesla. Materials and Methods This study had institutional review board approval. Using an 8-channel coil constructed in-house, we imaged the hips of 15 subjects on a 7 T MRI scanner. We applied: 1) a T1-weighted 3-dimensional fast low angle shot (3-D FLASH) sequence (0.23 × 0.23 × 1–1.5 mm3) for bone microarchitecture imaging; 2) T1-weighted 3-D FLASH (water excitation) and volumetric interpolated breath-hold examination (VIBE) sequences (0.23 × 0.23 × 1.5 mm3) with saturation or inversion recovery-based fat suppression for cartilage imaging; 3) 2-D intermediate-weighted fast spin-echo (FSE) sequences without and with fat saturation (0.27 mm × 0.27 mm × 2 mm) for clinical imaging. Results Bone microarchitecture images allowed visualization of individual trabeculae within the proximal femur. Cartilage was well-visualized and fat was well-suppressed on FLASH and VIBE sequences. FSE sequences allowed visualization of cartilage, the labrum (including cartilage and labral pathology), joint capsule, and tendons. Conclusion This is the first study to demonstrate the feasibility of performing a clinically-comprehensive hip MRI protocol at 7 T, including high-resolution imaging of bone microarchitecture and cartilage, as well as clinical imaging. PMID:24115554

  19. The impact of MRI scanner environment on perceptual decision-making.

    PubMed

    van Maanen, Leendert; Forstmann, Birte U; Keuken, Max C; Wagenmakers, Eric-Jan; Heathcote, Andrew

    2016-03-01

    Despite the widespread use of functional magnetic resonance imaging (fMRI), few studies have addressed scanner effects on performance. The studies that have examined this question show a wide variety of results. In this article we report analyses of three experiments in which participants performed a perceptual decision-making task both in a traditional setting as well as inside an MRI scanner. The results consistently show that response times increase inside the scanner. Error rates also increase, but to a lesser extent. To reveal the underlying mechanisms that drive the behavioral changes when performing a task inside the MRI scanner, the data were analyzed using the linear ballistic accumulator model of decision-making. These analyses show that, in the scanner, participants exhibit a slow down of the motor component of the response and have less attentional focus on the task. However, the balance between focus and motor slowing depends on the specific task requirements. PMID:25701105

  20. A new phantom and empirical formula for apparent diffusion coefficient measurement by a 3 Tesla magnetic resonance imaging scanner

    PubMed Central

    HARA, MARINA; KURODA, MASAHIRO; OHMURA, YUICHI; MATSUZAKI, HIDENOBU; KOBAYASHI, TOMOKI; MURAKAMI, JUN; KATASHIMA, KAZUNORI; ASHIDA, MASAKAZU; OHNO, SEIICHIRO; ASAUMI, JUN-ICHI

    2014-01-01

    The aim of this study was to create a new phantom for a 3 Tesla (3T) magnetic resonance imaging (MRI) device for the calculation of the apparent diffusion coefficient (ADC) using diffusion-weighted imaging (DWI), and to mimic the ADC values of normal and tumor tissues at various temperatures, including the physiological body temperature of 37°C. The phantom was produced using several concentrations of sucrose from 0 to 1.2 M, and the DWI was performed using various phantom temperatures. The accurate ADC values were calculated using the DWIs of the phantoms, and an empirical formula was developed to calculate the ADC values of the phantoms from an arbitrary sucrose concentration and arbitrary phantom temperature. The empirical formula was able to produce ADC values ranging between 0.33 and 3.02×10−3 mm2/sec, which covered the range of ADC values of the human body that have been measured clinically by 3T MRI in previous studies. The phantom and empirical formula developed in this study may be available to mimic the ADC values of the clinical human lesion by 3T MRI. PMID:25013504

  1. 7 Tesla MRI with a Transmit/Receive Loopless Antenna and B1-Insensitive Selective Excitation

    PubMed Central

    Erturk, M. Arcan; El-Sharkawy, AbdEl-Monem M.; Moore, Jay; Bottomley, Paul A.

    2014-01-01

    Purpose Use of external coils with internal detectors or conductors is challenging at 7 Tesla (T) due to radiofrequency (RF) field (B1) penetration, B1-inhomogeneity, mutual coupling, and potential local RF heating. The present study tests whether the near-quadratic gains in signal-to-noise ratio and field-of-view with field-strength previously reported for internal loopless antennae at 7T can suffice to perform MRI with an interventional transmit/receive antenna without using any external coils. Methods External coils were replaced by semi-rigid or biocompatible transmit/receive loopless antennae requiring only a few Watts of peak RF power. Slice selection was provided by spatially selective B1-insensitive composite RF pulses that compensate for the antenna’s intrinsically nonuniform B1-field. Power was adjusted to maintain local temperature rise ≤1° C. Fruit, intravascular MRI of diseased human vessels in vitro, and MRI of rabbit aorta in vivo are demonstrated. Results Scout MRI with the transmit/receive antennae yielded a ≤10 cm cylindrical field-of-view, enabling subsequent targeted localization at ~100 μm resolution in 10-50 s and/or 50 μm MRI in ~2 min in vitro, and 100–300 μm MRI of the rabbit aorta in vivo. Conclusion A simple, low-power, one-device approach to interventional MRI at 7T offers the potential of truly high-resolution MRI, while avoiding issues with external coil excitation and interactions at 7T. PMID:23963978

  2. Effect of 1. 5 tesla nuclear magnetic resonance imaging scanner on implanted permanent pacemakers

    SciTech Connect

    Hayes, D.L.; Holmes, D.R. Jr.; Gray, J.E.

    1987-10-01

    Patients with a permanent pacemaker are currently restricted from diagnostic nuclear magnetic resonance (NMR) imaging because of potential adverse effects on the pacemaker by the magnet. Previous work has shown that NMR imaging will result in asynchronous pacing of the pulse generator within a given distance of the magnet. The radiofrequency signal generated by the system may also result in rapid cardiac pacing, which may have deleterious effects. This study utilized a 1.5 tesla unit in an in vivo laboratory animal to evaluate the unit's effects on eight different pulse generators from two manufacturers. All pacemakers functioned in an asynchronous mode when placed within a certain distance of the magnet. In addition, transient reed switch inhibition was observed. Seven of the eight pulse generators paced rapidly when exposed to the radiofrequency signal and there was a dramatic decrease in arterial blood pressure. Whether effective rapid cardiac pacing would occur could not be predicted before exposure to the magnetic resonance unit. Nuclear magnetic resonance imaging with high magnetic fields in patients with a pacemaker should continue to be avoided until the mechanism of the rapid cardiac pacing can be further delineated and either predicted or prevented.

  3. Effect of 1.5 tesla nuclear magnetic resonance imaging scanner on implanted permanent pacemakers.

    PubMed

    Hayes, D L; Holmes, D R; Gray, J E

    1987-10-01

    Patients with a permanent pacemaker are currently restricted from diagnostic nuclear magnetic resonance (NMR) imaging because of potential adverse effects on the pacemaker by the magnet. Previous work has shown that NMR imaging will result in asynchronous pacing of the pulse generator within a given distance of the magnet. The radiofrequency signal generated by the system may also result in rapid cardiac pacing, which may have deleterious effects. This study utilized a 1.5 tesla unit in an in vivo laboratory animal to evaluate the unit's effects on eight different pulse generators from two manufacturers. All pacemakers functioned in an asynchronous mode when placed within a certain distance of the magnet. In addition, transient reed switch inhibition was observed. Seven of the eight pulse generators paced rapidly when exposed to the radiofrequency signal and there was a dramatic decrease in arterial blood pressure. Whether effective rapid cardiac pacing would occur could not be predicted before exposure to the magnetic resonance unit. Nuclear magnetic resonance imaging with high magnetic fields in patients with a pacemaker should continue to be avoided until the mechanism of the rapid cardiac pacing can be further delineated and either predicted or prevented. PMID:3655146

  4. Quantitative oxygen extraction fraction from 7-Tesla MRI phase: reproducibility and application in multiple sclerosis

    PubMed Central

    Fan, Audrey P; Govindarajan, Sindhuja T; Kinkel, R Philip; Madigan, Nancy K; Nielsen, A Scott; Benner, Thomas; Tinelli, Emanuele; Rosen, Bruce R; Adalsteinsson, Elfar; Mainero, Caterina

    2015-01-01

    Quantitative oxygen extraction fraction (OEF) in cortical veins was studied in patients with multiple sclerosis (MS) and healthy subjects via magnetic resonance imaging (MRI) phase images at 7 Tesla (7 T). Flow-compensated, three-dimensional gradient-echo scans were acquired for absolute OEF quantification in 23 patients with MS and 14 age-matched controls. In patients, we collected T2*-weighted images for characterization of white matter, deep gray matter, and cortical lesions, and also assessed cognitive function. Variability of OEF across readers and scan sessions was evaluated in a subset of volunteers. OEF was averaged from 2 to 3 pial veins in the sensorimotor, parietal, and prefrontal cortical regions for each subject (total of ~10 vessels). We observed good reproducibility of mean OEF, with intraobserver coefficient of variation (COV)=2.1%, interobserver COV=5.2%, and scan–rescan COV=5.9%. Patients exhibited a 3.4% reduction in cortical OEF relative to controls (P=0.0025), which was not different across brain regions. Although oxygenation did not relate with measures of structural tissue damage, mean OEF correlated with a global measure of information processing speed. These findings suggest that cortical OEF from 7-T MRI phase is a reproducible metabolic biomarker that may be sensitive to different pathologic processes than structural MRI in patients with MS. PMID:25352043

  5. 7 Tesla fMRI Reveals Systematic Functional Organization for Binocular Disparity in Dorsal Visual Cortex

    PubMed Central

    Goncalves, Nuno R.; Ban, Hiroshi; Sánchez-Panchuelo, Rosa M.; Francis, Susan T.; Schluppeck, Denis

    2015-01-01

    The binocular disparity between the views of the world registered by the left and right eyes provides a powerful signal about the depth structure of the environment. Despite increasing knowledge of the cortical areas that process disparity from animal models, comparatively little is known about the local architecture of stereoscopic processing in the human brain. Here, we take advantage of the high spatial specificity and image contrast offered by 7 tesla fMRI to test for systematic organization of disparity representations in the human brain. Participants viewed random dot stereogram stimuli depicting different depth positions while we recorded fMRI responses from dorsomedial visual cortex. We repeated measurements across three separate imaging sessions. Using a series of computational modeling approaches, we report three main advances in understanding disparity organization in the human brain. First, we show that disparity preferences are clustered and that this organization persists across imaging sessions, particularly in area V3A. Second, we observe differences between the local distribution of voxel responses in early and dorsomedial visual areas, suggesting different cortical organization. Third, using modeling of voxel responses, we show that higher dorsal areas (V3A, V3B/KO) have properties that are characteristic of human depth judgments: a simple model that uses tuning parameters estimated from fMRI data captures known variations in human psychophysical performance. Together, these findings indicate that human dorsal visual cortex contains selective cortical structures for disparity that may support the neural computations that underlie depth perception. PMID:25698743

  6. Multi-modal ultra-high resolution structural 7-Tesla MRI data repository

    PubMed Central

    Forstmann, Birte U; Keuken, Max C; Schafer, Andreas; Bazin, Pierre-Louis; Alkemade, Anneke; Turner, Robert

    2014-01-01

    Structural brain data is key for the understanding of brain function and networks, i.e., connectomics. Here we present data sets available from the ‘atlasing of the basal ganglia (ATAG)’ project, which provides ultra-high resolution 7 Tesla (T) magnetic resonance imaging (MRI) scans from young, middle-aged, and elderly participants. The ATAG data set includes whole-brain and reduced field-of-view MP2RAGE and T2*-weighted scans of the subcortex and brainstem with ultra-high resolution at a sub-millimeter scale. The data can be used to develop new algorithms that help building high-resolution atlases both relevant for the basic and clinical neurosciences. Importantly, the present data repository may also be used to inform the exact positioning of electrodes used for deep-brain-stimulation in patients with Parkinson’s disease and neuropsychiatric diseases. PMID:25977801

  7. Multi-modal ultra-high resolution structural 7-Tesla MRI data repository.

    PubMed

    Forstmann, Birte U; Keuken, Max C; Schafer, Andreas; Bazin, Pierre-Louis; Alkemade, Anneke; Turner, Robert

    2014-01-01

    Structural brain data is key for the understanding of brain function and networks, i.e., connectomics. Here we present data sets available from the 'atlasing of the basal ganglia (ATAG)' project, which provides ultra-high resolution 7 Tesla (T) magnetic resonance imaging (MRI) scans from young, middle-aged, and elderly participants. The ATAG data set includes whole-brain and reduced field-of-view MP2RAGE and T2*-weighted scans of the subcortex and brainstem with ultra-high resolution at a sub-millimeter scale. The data can be used to develop new algorithms that help building high-resolution atlases both relevant for the basic and clinical neurosciences. Importantly, the present data repository may also be used to inform the exact positioning of electrodes used for deep-brain-stimulation in patients with Parkinson's disease and neuropsychiatric diseases. PMID:25977801

  8. MRI from 400 gauss to 1.5 tesla and beyond

    NASA Astrophysics Data System (ADS)

    Edelstein, William

    2006-03-01

    Magnetic Resonance Imaging (MRI) is arguably the most novel and important medical imaging modality since the advent of the X-ray. MRI grew out of the long development of atomic spectroscopy, atomic and molecular beam resonance and, finally, nuclear magnetic resonance (NMR) in condensed matter. The operation and economics of MRI systems depend on the performance of magnets, pulsed magnetic field gradient windings and rf (radiofrequency) coils. Physics and physicists have made critical contributions to these technologies. Superconducting magnets have come to be the magnet of choice. Magnetic gradient windings present theoretical electromagnetic and practical challenges. The need for rf antennas that resonate at high frequencies while surrounding sizable spatial regions inspired large coils producing uniform rf magnetic fields while minimizing electric field interactions with the imaging subject. This development enabled MRI at high magnetic fields. Additionally it is possible to use arrays of small rf coils to obtain MRI images with the high signal-to-noise ratio of a small surface coil and the field of view of a large coil. We recently investigated the intense acoustic noise (110 dB or more) produced in MRI scanners. Surprisingly, eddy currents induced in the magnet cryostat inner bore make a major contribution to this noise. Calculations indicate that a thin layer of Cu on the outside of the gradient assembly could substantially decrease eddy currents and help reduce noise. GE R&D work was focused on the science underlying MRI, MRI technology and the MRI product. Corporate management sometimes discourages technical publication related to evolving products because it might help rivals. Our practice of extensive publication and participation in open scientific exchange---after filing appropriate patent applications---served as quality control for company science and technology. GE conference presentations and journal publications helped establish technical leadership and determine which ideas were most important. GE scientists built reputations leading to leadership prominent within the MRI technical community. Openness underpinned a highly effective development process that enabled GE to pull ahead of competitors.

  9. Clinical Evaluation of Stereotactic Target Localization Using 3-Tesla MRI for Radiosurgery Planning

    SciTech Connect

    MacFadden, Derek; Zhang Beibei; Brock, Kristy K.; Hodaie, Mojgan; Laperriere, Normand; Schwartz, Michael; Tsao, May; Stainsby, Jeffrey; Lockwood, Gina; Mikulis, David; Menard, Cynthia

    2010-04-15

    Purpose: Increasing the magnetic resonance imaging (MRI) field strength can improve image resolution and quality, but concerns remain regarding the influence on geometric fidelity. The objectives of the present study were to spatially investigate the effect of 3-Tesla (3T) MRI on clinical target localization for stereotactic radiosurgery. Methods and Materials: A total of 39 patients were enrolled in a research ethics board-approved prospective clinical trial. Imaging (1.5T and 3T MRI and computed tomography) was performed after stereotactic frame placement. Stereotactic target localization at 1.5T vs. 3T was retrospectively analyzed in a representative cohort of patients with tumor (n = 4) and functional (n = 5) radiosurgical targets. The spatial congruency of the tumor gross target volumes was determined by the mean discrepancy between the average gross target volume surfaces at 1.5T and 3T. Reproducibility was assessed by the displacement from an averaged surface and volume congruency. Spatial congruency and the reproducibility of functional radiosurgical targets was determined by comparing the mean and standard deviation of the isocenter coordinates. Results: Overall, the mean absolute discrepancy across all patients was 0.67 mm (95% confidence interval, 0.51-0.83), significantly <1 mm (p < .010). No differences were found in the overall interuser target volume congruence (mean, 84% for 1.5T vs. 84% for 3T, p > .4), and the gross target volume surface mean displacements were similar within and between users. The overall average isocenter coordinate discrepancy for the functional targets at 1.5T and 3T was 0.33 mm (95% confidence interval, 0.20-0.48), with no patient-specific differences between the mean values (p >.2) or standard deviations (p >.1). Conclusion: Our results have provided clinically relevant evidence supporting the spatial validity of 3T MRI for use in stereotactic radiosurgery under the imaging conditions used.

  10. Reproducibility of MRI-Determined Proton Density Fat Fraction Across Two Different MR Scanner Platforms

    PubMed Central

    Kang, Geraldine H.; Cruite, Irene; Shiehmorteza, Masoud; Wolfson, Tanya; Gamst, Anthony C.; Hamilton, Gavin; Bydder, Mark; Middleton, Michael S.; Sirlin, Claude B.

    2016-01-01

    Purpose To evaluate magnetic resonance imaging (MRI)-determined proton density fat fraction (PDFF) reproducibility across two MR scanner platforms and, using MR spectroscopy (MRS)-determined PDFF as reference standard, to confirm MRI-determined PDFF estimation accuracy. Materials and Methods This prospective, cross-sectional, crossover, observational pilot study was approved by an Institutional Review Board. Twenty-one subjects gave written informed consent and underwent liver MRI and MRS at both 1.5T (Siemens Symphony scanner) and 3T (GE Signa Excite HD scanner). MRI-determined PDFF was estimated using an axial 2D spoiled gradient-recalled echo sequence with low flip-angle to minimize T1 bias and six echo-times to permit correction of T2* and fat-water signal interference effects. MRS-determined PDFF was estimated using a stimulated-echo acquisition mode sequence with long repetition time to minimize T1 bias and five echo times to permit T2 correction. Interscanner reproducibility of MRI determined PDFF was assessed by correlation analysis; accuracy was assessed separately at each field strength by linear regression analysis using MRS-determined PDFF as reference standard. Results 1.5T and 3T MRI-determined PDFF estimates were highly correlated (r = 0.992). MRI-determined PDFF estimates were accurate at both 1.5T (regression slope/intercept = 0.958/−0.48) and 3T (slope/intercept = 1.020/0.925) against the MRS-determined PDFF reference. Conclusion MRI-determined PDFF estimation is reproducible and, using MRS-determined PDFF as reference standard, accurate across two MR scanner platforms at 1.5T and 3T. PMID:21769986

  11. Quasi-steady-state displacement response of whole human cadaveric knees in a MRI scanner.

    PubMed

    Martin, K J; Neu, C P; Hull, M L

    2009-08-01

    It is important to determine the three-dimensional nonuniform deformation of articular cartilage in its native environment. A new magnetic resonance imaging (MRI)-based technique (cartilage deformation by tag registration (CDTR)) has been developed, which can determine such deformations provided that the compressive load-displacement response of the knee reaches a quasi-steady state during cyclic loading. The objectives of this study were (1) to design and construct an apparatus to cyclically compress human cadaveric knees to physiological loads in a MRI scanner, (2) to determine the number of load cycles required to reach a quasi-steady-state load-displacement response for cyclic loading of human cadaveric knees, and (3) to collect sample MR images of undeformed and deformed states of tibiofemoral cartilage free of artifact while using the apparatus within a MRI scanner. An electropneumatic MRI-compatible apparatus was constructed to fit in a clinical MRI scanner, and a slope criterion was defined to indicate the point at which a quasi-steady-state load-displacement response, which would allow the use of CDTR, occurred during cyclic loading of a human knee. The average number of cycles required to reach a quasi-steady-state load-displacement response according to the slope criterion defined herein for three cadaveric knee joints was 356+/-69. This indicates that human knee joint specimens can be cyclically loaded such that deformation is repeatable according to MRI requirements of CDTR. Sample images of tibiofemoral cartilage were obtained for a single knee joint. These images demonstrate the usefulness of the apparatus in a MRI scanner. Thus the results of this study are a crucial step toward developing a MRI-based method to determine the deformations of articular cartilage in whole human cadaveric knees. PMID:19604016

  12. Comprehensive MRI simulation methodology using a dedicated MRI scanner in radiation oncology for external beam radiation treatment planning

    SciTech Connect

    Paulson, Eric S.; Erickson, Beth; Schultz, Chris; Allen Li, X.

    2015-01-15

    Purpose: The use of magnetic resonance imaging (MRI) in radiation oncology is expanding rapidly, and more clinics are integrating MRI into their radiation therapy workflows. However, radiation therapy presents a new set of challenges and places additional constraints on MRI compared to diagnostic radiology that, if not properly addressed, can undermine the advantages MRI offers for radiation treatment planning (RTP). The authors introduce here strategies to manage several challenges of using MRI for virtual simulation in external beam RTP. Methods: A total of 810 clinical MRI simulation exams were performed using a dedicated MRI scanner for external beam RTP of brain, breast, cervix, head and neck, liver, pancreas, prostate, and sarcoma cancers. Patients were imaged in treatment position using MRI-optimal immobilization devices. Radiofrequency (RF) coil configurations and scan protocols were optimized based on RTP constraints. Off-resonance and gradient nonlinearity-induced geometric distortions were minimized or corrected prior to using images for RTP. A multidisciplinary MRI simulation guide, along with window width and level presets, was created to standardize use of MR images during RTP. A quality assurance program was implemented to maintain accuracy and repeatability of MRI simulation exams. Results: The combination of a large bore scanner, high field strength, and circumferentially wrapped, flexible phased array RF receive coils permitted acquisition of thin slice images with high contrast-to-noise ratio (CNR) and image intensity uniformity, while simultaneously accommodating patient setup and immobilization devices. Postprocessing corrections and alternative acquisition methods were required to reduce or correct off-resonance and gradient nonlinearity induced geometric distortions. Conclusions: The methodology described herein contains practical strategies the authors have implemented through lessons learned performing clinical MRI simulation exams. In their experience, these strategies provide robust, high fidelity, high contrast MR images suitable for external beam RTP.

  13. Ultrahigh-Field MRI in Human Ischemic Stroke – a 7 Tesla Study

    PubMed Central

    Bauer, Miriam; Stengl, Katharina L.; Mutke, Matthias A.; Tovar-Martinez, Elena; Wuerfel, Jens; Endres, Matthias; Niendorf, Thoralf; Sobesky, Jan

    2012-01-01

    Introduction Magnetic resonance imaging (MRI) using field strengths up to 3 Tesla (T) has proven to be a powerful tool for stroke diagnosis. Recently, ultrahigh-field (UHF) MRI at 7 T has shown relevant diagnostic benefits in imaging of neurological diseases, but its value for stroke imaging has not been investigated yet. We present the first evaluation of a clinically feasible stroke imaging protocol at 7 T. For comparison an established stroke imaging protocol was applied at 3 T. Methods In a prospective imaging study seven patients with subacute and chronic stroke were included. Imaging at 3 T was immediately followed by 7 T imaging. Both protocols included T1-weighted 3D Magnetization-Prepared Rapid-Acquired Gradient-Echo (3D-MPRAGE), T2-weighted 2D Fluid Attenuated Inversion Recovery (2D-FLAIR), T2-weighted 2D Fluid Attenuated Inversion Recovery (2D-T2-TSE), T2* weighted 2D Fast Low Angle Shot Gradient Echo (2D-HemoFLASH) and 3D Time-of-Flight angiography (3D-TOF). Results The diagnostic information relevant for clinical stroke imaging obtained at 3 T was equally available at 7 T. Higher spatial resolution at 7 T revealed more anatomical details precisely depicting ischemic lesions and periinfarct alterations. A clear benefit in anatomical resolution was also demonstrated for vessel imaging at 7 T. RF power deposition constraints induced scan time prolongation and reduced brain coverage for 2D-FLAIR, 2D-T2-TSE and 3D-TOF at 7 T versus 3 T. Conclusions The potential of 7 T MRI for human stroke imaging is shown. Our pilot study encourages a further evaluation of the diagnostic benefit of stroke imaging at 7 T in a larger study. PMID:22701525

  14. MR Scanner Systems Should Be Adequately Characterized in Diffusion-MRI of the Breast

    PubMed Central

    Giannelli, Marco; Sghedoni, Roberto; Iacconi, Chiara; Iori, Mauro; Traino, Antonio Claudio; Guerrisi, Maria; Mascalchi, Mario; Toschi, Nicola; Diciotti, Stefano

    2014-01-01

    Breast imaging represents a relatively recent and promising field of application of quantitative diffusion-MRI techniques. In view of the importance of guaranteeing and assessing its reliability in clinical as well as research settings, the aim of this study was to specifically characterize how the main MR scanner system-related factors affect quantitative measurements in diffusion-MRI of the breast. In particular, phantom acquisitions were performed on three 1.5 T MR scanner systems by different manufacturers, all equipped with a dedicated multi-channel breast coil as well as acquisition sequences for diffusion-MRI of the breast. We assessed the accuracy, inter-scan and inter-scanner reproducibility of the mean apparent diffusion coefficient measured along the main orthogonal directions () as well as of diffusion-tensor imaging (DTI)-derived mean diffusivity (MD) measurements. Additionally, we estimated spatial non-uniformity of (NU) and MD (NUMD) maps. We showed that the signal-to-noise ratio as well as overall calibration of high strength diffusion gradients system in typical acquisition sequences for diffusion-MRI of the breast varied across MR scanner systems, introducing systematic bias in the measurements of diffusion indices. While and MD values were not appreciably different from each other, they substantially varied across MR scanner systems. The mean of the accuracies of measured and MD was in the range [−2.3%,11.9%], and the mean of the coefficients of variation for and MD measurements across MR scanner systems was 6.8%. The coefficient of variation for repeated measurements of both and MD was < 1%, while NU and NUMD values were <4%. Our results highlight that MR scanner system-related factors can substantially affect quantitative diffusion-MRI of the breast. Therefore, a specific quality control program for assessing and monitoring the performance of MR scanner systems for diffusion-MRI of the breast is highly recommended at every site, especially in multicenter and longitudinal studies. PMID:24489711

  15. Automated post-hoc noise cancellation tool for audio recordings acquired in an MRI scanner.

    PubMed

    Cusack, Rhodri; Cumming, Nick; Bor, Daniel; Norris, Dennis; Lyzenga, Johannes

    2005-04-01

    There are several types of experiment in which it is useful to have subjects speak overtly in a magnetic resonance imaging (MRI) scanner, including those studying the articulatory apparatus and the neural basis of speech production, and fMRI experiments in which speech is used as a response modality. Although it is relatively easy to record sound from the bore, it can be difficult to hear the speech over the very loud acoustic noise from the scanner. This is particularly a problem during echo-planar imaging, which is usually used for fMRI. We present a post-hoc sound cancellation algorithm, and describe a Windows-based tool that implements it. The tool is fast and operates with minimal user intervention. We evaluate cancellation performance in terms of the improvement in signal-to-noise ratio, and investigate the effect of the recording medium. A substantial improvement in audibility was obtained. PMID:15678480

  16. Small PET scanner based on MRI-compatible light sensor

    NASA Astrophysics Data System (ADS)

    Molnar, J.; Balkay, L.; Berenyi, E.

    2015-03-01

    Improving the quality of life of elderly people requires diagnostic and therapeutic capabilities for diseases of the central nervous system, such as Alzheimer's, Parkinson's, and epilepsy which have a rapidly growing impact on society. Minimallyinvasive imaging technologies such as PET and MRI allow for monitoring and tracking these illnesses, starting from their preliminary manifestations.

  17. Evaluation of Artifacts and Distortions of Titanium Applicators on 3.0-Tesla MRI: Feasibility of Titanium Applicators in MRI-Guided Brachytherapy for Gynecological Cancer

    SciTech Connect

    Kim, Yusung; Muruganandham, Manickam; Modrick, Joseph M.; Bayouth, John E.

    2011-07-01

    Purpose: The aim of this study was to characterize the levels of artifacts and distortions of titanium applicators on 3.0-Tesla magnetic resonance imaging (MRI). Methods and Materials: Fletcher-Suit-Delclos-style tandem and ovoids (T and O) and tandem and ring applicator (T and R) were examined. The quality assurance (QA) phantoms for each applicator were designed and filled with copper sulphate solution (1.5 g/l). The artifacts were quantified with the registration of corresponding computed tomography (CT) images. A favorable MR sequence was searched in terms of artifacts. Using the sequence, the artifacts were determined. The geometric distortions induced by the applicators were quantified through each registration of CT and MRI without applicators. The artifacts of T and O were also evaluated on in vivo MRI datasets of 5 patients. Results: T1-weighted MRI with 1-mm slice thickness was found as a favorable MR sequence. Applying the sequence, the artifacts at the tandem tip of T and O and T and R were determined as 1.5 {+-} 0.5 mm in a superior direction in phantom studies. In the ovoids of T and O, we found artifacts less than 1.5 {+-} 0.5 mm. The artifacts of a T and O tandem in vivo were found as less than 2.6 {+-} 1.3 mm on T1-weighted MRI, whereas less than 6.9 {+-} 3.4 mm on T2-weighted MRI. No more than 1.2 {+-} 0.6 mm (3.0 {+-} 1.5 mm) of distortions, due to a titanium applicator, were measured on T1-weighted MRI (T2-). Conclusion: In 3.0-Tesla MRI, we found the artifact widths at the tip of tandem were less than 1.5 {+-} 0.5 mm for both T and O and T and R when using T1-weighted MRI in phantom studies. However, exclusive 3.0-Tesla MRI-guided brachytherapy planning with a titanium applicator should be cautiously implemented.

  18. Development of a PET scanner for simultaneously imaging small animals with MRI and PET.

    PubMed

    Thompson, Christopher J; Goertzen, Andrew L; Thiessen, Jonathan D; Bishop, Daryl; Stortz, Greg; Kozlowski, Piotr; Retière, Fabrice; Zhang, Xuezhu; Sossi, Vesna

    2014-01-01

    Recently, positron emission tomography (PET) is playing an increasingly important role in the diagnosis and staging of cancer. Combined PET and X-ray computed tomography (PET-CT) scanners are now the modality of choice in cancer treatment planning. More recently, the combination of PET and magnetic resonance imaging (MRI) is being explored in many sites. Combining PET and MRI has presented many challenges since the photo-multiplier tubes (PMT) in PET do not function in high magnetic fields, and conventional PET detectors distort MRI images. Solid state light sensors like avalanche photo-diodes (APDs) and more recently silicon photo-multipliers (SiPMs) are much less sensitive to magnetic fields thus easing the compatibility issues. This paper presents the results of a group of Canadian scientists who are developing a PET detector ring which fits inside a high field small animal MRI scanner with the goal of providing simultaneous PET and MRI images of small rodents used in pre-clinical medical research. We discuss the evolution of both the crystal blocks (which detect annihilation photons from positron decay) and the SiPM array performance in the last four years which together combine to deliver significant system performance in terms of speed, energy and timing resolution. PMID:25120157

  19. Development of a PET Scanner for Simultaneously Imaging Small Animals with MRI and PET

    PubMed Central

    Thompson, Christopher J; Goertzen, Andrew L; Thiessen, Jonathan D; Bishop, Daryl; Stortz, Greg; Kozlowski, Piotr; Retière, Fabrice; Zhang, Xuezhu; Sossi, Vesna

    2014-01-01

    Recently, positron emission tomography (PET) is playing an increasingly important role in the diagnosis and staging of cancer. Combined PET and X-ray computed tomography (PET-CT) scanners are now the modality of choice in cancer treatment planning. More recently, the combination of PET and magnetic resonance imaging (MRI) is being explored in many sites. Combining PET and MRI has presented many challenges since the photo-multiplier tubes (PMT) in PET do not function in high magnetic fields, and conventional PET detectors distort MRI images. Solid state light sensors like avalanche photo-diodes (APDs) and more recently silicon photo-multipliers (SiPMs) are much less sensitive to magnetic fields thus easing the compatibility issues. This paper presents the results of a group of Canadian scientists who are developing a PET detector ring which fits inside a high field small animal MRI scanner with the goal of providing simultaneous PET and MRI images of small rodents used in pre-clinical medical research. We discuss the evolution of both the crystal blocks (which detect annihilation photons from positron decay) and the SiPM array performance in the last four years which together combine to deliver significant system performance in terms of speed, energy and timing resolution. PMID:25120157

  20. Voltage-based Device Tracking in a 1.5 Tesla MRI during Imaging: Initial validation in swine models

    PubMed Central

    Schmidt, Ehud J; Tse, Zion TH; Reichlin, Tobias R; Michaud, Gregory F; Watkins, Ronald D; Butts-Pauly, Kim; Kwong, Raymond Y; Stevenson, William; Schweitzer, Jeffrey; Byrd, Israel; Dumoulin, Charles L

    2013-01-01

    Purpose Voltage-based device-tracking (VDT) systems are commonly used for tracking invasive devices in electrophysiological (EP) cardiac-arrhythmia therapy. During EP procedures, electro-anatomic-mapping (EAM) workstations provide guidance by integrating VDT location and intra-cardiac-ECG information with X-ray, CT, Ultrasound, and MR images. MR assists navigation, mapping and radio-frequency-ablation. Multi-modality interventions require multiple patient transfers between an MRI and the X-ray/ultrasound EP suite, increasing the likelihood of patient-motion and image mis-registration. An MRI-compatible VDT system may increase efficiency, since there is currently no single method to track devices both inside and outside the MRI scanner. Methods An MRI-compatible VDT system was constructed by modifying a commercial system. Hardware was added to reduce MRI gradient-ramp and radio-frequency-unblanking-pulse interference. VDT patches and cables were modified to reduce heating. Five swine cardiac VDT EAM-mapping interventions were performed, navigating inside and thereafter outside the MRI. Results Three-catheter VDT interventions were performed at >12 frames-per-second both inside and outside the MRI scanner with <3mm error. Catheters were followed on VDT- and MRI-derived maps. Simultaneous VDT and imaging was possible in repetition-time (TR) >32 msec sequences with <0.5mm errors, and <5% MRI SNR loss. At shorter TRs, only intra-cardiac-ECG was reliable. RF Heating was <1.5C°. Conclusion An MRI-compatible VDT system is feasible. PMID:23580479

  1. Interventional and intraoperative MRI at low field scanner--a review.

    PubMed

    Blanco, Roberto T; Ojala, Risto; Kariniemi, Juho; Perälä, Jukka; Niinimäki, Jaakko; Tervonen, Osmo

    2005-11-01

    Magnetic resonance imaging (MRI) is a cutting edge imaging modality in detecting diseases and pathologic tissue. The superior soft tissue contrast in MRI allows better definition of the pathology. MRI is increasingly used for guiding, monitoring and controlling percutaneous procedures and surgery. The rapid development of interventional techniques in radiology has led to integration of imaging with computers, new therapy devices and operating room like conditions. This has projected as faster and more accurate imaging and hence more demanding procedures have been applied to the repertoire of the interventional radiologist. In combining features of various other imaging modalities and adding some more into them, interventional MRI (IMRI) has potential to take further the interventional radiology techniques, minimally invasive therapies and surgery. The term "Interventional MRI" consists in short all those procedures, which are performed under MRI guidance. These procedures can be either percutaneous or open surgical of nature. One of the limiting factors in implementing MRI as guidance modality for interventional procedures has been the fact, that most widely used magnet design, a cylindrical magnet, is not ideal for guiding procedures as it does not allow direct access to the patient. Open, low field scanners usually operating around 0.2 T, offer this feature. Clumsy hardware, bad patient access, slow image update frequency and strong magnetic fields have been other limiting factors for interventional MRI. However, the advantages of MRI as an imaging modality have been so obvious that considerable development has taken place in the 20-year history of MRI. The image quality has become better, ever faster software, new innovative sequences, better MRI hardware and increased computing power have accelerated imaging speed and image quality to a totally new level. Perhaps the most important feature in the recent development has been the introduction of open configuration low field MRI devices in the early 1990s; this enabled direct patient access and utilization of the MRI as an interventional device. This article reviews the current status of interventional and intraoperative MRI with special emphasis in low field surrounding. PMID:15908156

  2. The Interconnection of MRI Scanner and MR-Compatible Robotic Device: Synergistic Graphical User Interface to Form a Mechatronic System.

    PubMed

    Ozcan, Alpay; Tsekos, Nikolaos

    2008-06-01

    MRI scanner and magnetic resonance (MR)-compatible robotic devices are mechatronic systems. Without an interconnecting component, these two devices cannot be operated synergetically for medical interventions. In this paper, the design and properties of a graphical user interface (GUI) that accomplishes the task is presented. The GUI interconnects the two devices to obtain a larger mechatronic system by providing command and control of the robotic device based on the visual information obtained from the MRI scanner. Ideally, the GUI should also control imaging parameters of the MRI scanner. Its main goal is to facilitate image-guided interventions by acting as the synergistic component between the physician, the robotic device, the scanner, and the patient. PMID:21544216

  3. 2D Imaging in a Lightweight Portable MRI Scanner without Gradient Coils

    PubMed Central

    Cooley, Clarissa Zimmerman; Stockmann, Jason P.; Armstrong, Brandon D.; Sarracanie, Mathieu; Lev, Michael H.; Rosen, Matthew S.; Wald, Lawrence L.

    2014-01-01

    Purpose As the premiere modality for brain imaging, MRI could find wider applicability if lightweight, portable systems were available for siting in unconventional locations such as Intensive Care Units, physician offices, surgical suites, ambulances, emergency rooms, sports facilities, or rural healthcare sites. Methods We construct and validate a truly portable (<100kg) and silent proof-of-concept MRI scanner which replaces conventional gradient encoding with a rotating lightweight cryogen-free, low-field magnet. When rotated about the object, the inhomogeneous field pattern is used as a rotating Spatial Encoding Magnetic field (rSEM) to create generalized projections which encode the iteratively reconstructed 2D image. Multiple receive channels are used to disambiguate the non-bijective encoding field. Results The system is validated with experimental images of 2D test phantoms. Similar to other non-linear field encoding schemes, the spatial resolution is position dependent with blurring in the center, but is shown to be likely sufficient for many medical applications. Conclusion The presented MRI scanner demonstrates the potential for portability by simultaneously relaxing the magnet homogeneity criteria and eliminating the gradient coil. This new architecture and encoding scheme shows convincing proof of concept images that are expected to be further improved with refinement of the calibration and methodology. PMID:24668520

  4. Fully automated processing of fMRI data in SPM: from MRI scanner to PACS.

    PubMed

    Maldjian, Joseph A; Baer, Aaron H; Kraft, Robert A; Laurienti, Paul J; Burdette, Jonathan H

    2009-01-01

    Here we describe the Wake Forest University Pipeline, a fully automated method for the processing of fMRI data using SPM. The method includes fully automated data transfer and archiving from the point of acquisition, real-time batch script generation, distributed grid processing, interface to SPM in MATLAB, error recovery and data provenance, DICOM conversion and PACS insertion. It has been used for automated processing of fMRI experiments, as well as for the clinical implementation of fMRI and spin-tag perfusion imaging. The pipeline requires no manual intervention, and can be extended to any studies requiring offline processing. PMID:19156543

  5. Effect of scanner acoustic background noise on strict resting-state fMRI

    PubMed Central

    Rondinoni, C.; Amaro, E.; Cendes, F.; Santos, A.C.dos; Salmon, C.E.G.

    2013-01-01

    Functional MRI (fMRI) resting-state experiments are aimed at identifying brain networks that support basal brain function. Although most investigators consider a ‘resting-state’ fMRI experiment with no specific external stimulation, subjects are unavoidably under heavy acoustic noise produced by the equipment. In the present study, we evaluated the influence of auditory input on the resting-state networks (RSNs). Twenty-two healthy subjects were scanned using two similar echo-planar imaging sequences in the same 3T MRI scanner: a default pulse sequence and a reduced “silent” pulse sequence. Experimental sessions consisted of two consecutive 7-min runs with noise conditions (default or silent) counterbalanced across subjects. A self-organizing group independent component analysis was applied to fMRI data in order to recognize the RSNs. The insula, left middle frontal gyrus and right precentral and left inferior parietal lobules showed significant differences in the voxel-wise comparison between RSNs depending on noise condition. In the presence of low-level noise, these areas Granger-cause oscillations in RSNs with cognitive implications (dorsal attention and entorhinal), while during high noise acquisition, these connectivities are reduced or inverted. Applying low noise MR acquisitions in research may allow the detection of subtle differences of the RSNs, with implications in experimental planning for resting-state studies, data analysis, and ergonomic factors. PMID:23579634

  6. Preliminary studies of a simultaneous PET/MRI scanner based on the RatCAP small animal tomograph

    NASA Astrophysics Data System (ADS)

    Woody, C.; Schlyer, D.; Vaska, P.; Tomasi, D.; Solis-Najera, S.; Rooney, W.; Pratte, J.-F.; Junnarkar, S.; Stoll, S.; Master, Z.; Purschke, M.; Park, S.-J.; Southekal, S.; Kriplani, A.; Krishnamoorthy, S.; Maramraju, S.; O'Connor, P.; Radeka, V.

    2007-02-01

    We are developing a scanner that will allow simultaneous acquisition of high resolution anatomical data using magnetic resonance imaging (MRI) and quantitative physiological data using positron emission tomography (PET). The approach is based on the technology used for the RatCAP conscious small animal PET tomograph which utilizes block detectors consisting of pixelated arrays of LSO crystals read out with matching arrays of avalanche photodiodes and a custom-designed ASIC. The version of this detector used for simultaneous PET/MRI imaging will be constructed out of all nonmagnetic materials and will be situated inside the MRI field. We have demonstrated that the PET detector and its electronics can be operated inside the MRI, and have obtained MRI images with various detector components located inside the MRI field. The MRI images show minimal distortion in this configuration even where some components still contain traces of certain magnetic materials. We plan to improve on the image quality in the future using completely non-magnetic components and by tuning the MRI pulse sequences. The combined result will be a highly compact, low mass PET scanner that can operate inside an MRI magnet without distorting the MRI image, and can be retrofitted into existing MRI instruments.

  7. Ag/AgCl electrodes in the EEG/fMRI method in 3T MRI scanner

    NASA Astrophysics Data System (ADS)

    Akay, Cengiz; Kepceoğlu, Abdullah

    2013-10-01

    This study focuses on the comparison of two different types of EEG electrodes (the first B10-S-150 Ag/AgCl sintered ring electrode with 1, 5 mm touch proof safety socket and 150 cm heavy-duty lead wire and the second, B12-LS-100 Ag/AgCl sintered FE-electrode with 100 cm light-duty lead wire and 1, 5 mm touch proof safety socket with 5 kΩ resistor near sensor) used in the EEG/fMRI method in 3T MRI scanner. We compared these electrodes by their specific absorption rate (SAR) simulation values and the temperature change calculated by PRF method. The experimental setup of the study is described as follows: a phantom is prepared and the electrodes are placed on it. Then, a simulation for SAR values is realized. The temperature change is calculated by MR thermometer. As a result of this study, Ag/AgCl pin electrode is better to be use in EEG/fMRI; because the measured temperature change is expected to be low.

  8. Studies of the interactions of an MRI system with the shielding in a combined PET/MRI scanner

    PubMed Central

    Peng, Bo J.; Walton, Jeffrey H.; Cherry, Simon R.; Willig-Onwuachi, Jacob

    2010-01-01

    A positron emission tomography (PET) system or ‘insert’ has been constructed for placement and operation in the bore of a small animal magnetic resonance imaging (MRI) scanner to allow simultaneous MR and PET imaging. The insert contains electronics, components with a variety of magnetic properties, and large continuous sheets of metal— all characteristics of an object that should, by conventional wisdom, never be placed in the bore of an MR scanner, especially near the imaging volume. There are a variety of ways the two systems might be expected to interact that could negatively impact the performance of either or both. In this article, the interaction mechanisms, particularly the impacts of the PET insert and shielding on MR imaging, are defined and explored. Additionally, some of the difficulties in quantifying errors introduced into the MR images as a result of the presence of the PET components are demonstrated. Several different approaches are used to characterize image artifacts and determine optimal placement of the shielding. Data are also presented that suggest ways the shielding could be modified to reduce errors and enable placement closer to the isocenter of the magnet. PMID:20009193

  9. Studies of the interactions of an MRI system with the shielding in a combined PET/MRI scanner

    NASA Astrophysics Data System (ADS)

    Peng, Bo J.; Walton, Jeffrey H.; Cherry, Simon R.; Willig-Onwuachi, Jacob

    2010-01-01

    A positron emission tomography (PET) system or 'insert' has been constructed for placement and operation in the bore of a small animal magnetic resonance imaging (MRI) scanner to allow simultaneous MR and PET imaging. The insert contains electronics, components with a variety of magnetic properties and large continuous sheets of metal—all characteristics of an object that should, by conventional wisdom, never be placed in the bore of an MR scanner, especially near the imaging volume. There are a variety of ways the two systems might be expected to interact that could negatively impact the performance of either or both. In this article, the interaction mechanisms, particularly the impact of the PET insert and shielding on MR imaging, are defined and explored. Additionally, some of the difficulties in quantifying errors introduced into the MR images as a result of the presence of the PET components are demonstrated. Several different approaches are used to characterize image artifacts and determine optimal placement of the shielding. Data are also presented that suggest ways the shielding could be modified to reduce errors and enable placement closer to the isocenter of the magnet.

  10. Feasibility study using MRI and two optical CT scanners for readout of polymer gel and PresageTM

    NASA Astrophysics Data System (ADS)

    Svensson, H.; Skyt, P. S.; Ceberg, S.; Doran, S.; Muren, L. P.; Balling, P.; Petersen, J. B. B.; Bäck, S. Å. J.

    2013-06-01

    The aim of this study was to compare the conventional combination of three-dimensional dosimeter (nPAG gel) and readout method (MRI) with other combinations of three-dimensional dosimeters (nPAG gel/PresageTM) and readout methods (optical CT scanners). In the first experiment, the dose readout of a gel irradiated with a four field-box technique was performed with both an Octopus IQ scanner and MRI. It was seen that the MRI readout agreed slightly better to the TPS. In another experiment, a gel and a PresageTM sample were irradiated with a VMAT field and read out using MRI and a fast laser scanner, respectively. A comparison between the TPS and the volumes revealed that the MRI/gel readout had closer resemblance to the TPS than the optical CT/PresageTM readout. There are clearly potential in the evaluated optical CT scanners, but more time has to be invested in the particular scanning scenario than was possible in this study.

  11. The registration of signals from the nuclei other than protons at 0.5 T MRI scanner

    NASA Astrophysics Data System (ADS)

    Anisimov, N.; Volkov, D.; Gulyaev, M.; Pavlova, O.; Pirogov, Yu

    2016-02-01

    The practical aspects of the adaptation of the medical MRI scanner for multinuclear applications are considered. Examples of high resolution NMR spectra for nuclei 19F, 31P, 23Na, 11B, 13C, 2H, and also NQR spectrum for 35Cl are given. Possibilities of MRI for nuclei 19F, 31P, 23Na, 11B are shown. Experiments on registration of signals 19F from the fluorocarbons injected in laboratory animals are described.

  12. Iron Accumulation in Deep Cortical Layers Accounts for MRI Signal Abnormalities in ALS: Correlating 7 Tesla MRI and Pathology

    PubMed Central

    Kwan, Justin Y.; Jeong, Suh Young; Van Gelderen, Peter; Deng, Han-Xiang; Quezado, Martha M.; Danielian, Laura E.; Butman, John A.; Chen, Lingye; Bayat, Elham; Russell, James; Siddique, Teepu; Duyn, Jeff H.; Rouault, Tracey A.; Floeter, Mary Kay

    2012-01-01

    Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder characterized by cortical and spinal motor neuron dysfunction. Routine magnetic resonance imaging (MRI) studies have previously shown hypointense signal in the motor cortex on T2-weighted images in some ALS patients, however, the cause of this finding is unknown. To investigate the utility of this MR signal change as a marker of cortical motor neuron degeneration, signal abnormalities on 3T and 7T MR images of the brain were compared, and pathology was obtained in two ALS patients to determine the origin of the motor cortex hypointensity. Nineteen patients with clinically probable or definite ALS by El Escorial criteria and 19 healthy controls underwent 3T MRI. A 7T MRI scan was carried out on five ALS patients who had motor cortex hypointensity on the 3T FLAIR sequence and on three healthy controls. Postmortem 7T MRI of the brain was performed in one ALS patient and histological studies of the brains and spinal cords were obtained post-mortem in two patients. The motor cortex hypointensity on 3T FLAIR images was present in greater frequency in ALS patients. Increased hypointensity correlated with greater severity of upper motor neuron impairment. Analysis of 7T T2*-weighted gradient echo imaging localized the signal alteration to the deeper layers of the motor cortex in both ALS patients. Pathological studies showed increased iron accumulation in microglial cells in areas corresponding to the location of the signal changes on the 3T and 7T MRI of the motor cortex. These findings indicate that the motor cortex hypointensity on 3T MRI FLAIR images in ALS is due to increased iron accumulation by microglia. PMID:22529995

  13. Inner experience in the scanner: can high fidelity apprehensions of inner experience be integrated with fMRI?

    PubMed Central

    Kühn, Simone; Fernyhough, Charles; Alderson-Day, Benjamin; Hurlburt, Russell T.

    2014-01-01

    To provide full accounts of human experience and behavior, research in cognitive neuroscience must be linked to inner experience, but introspective reports of inner experience have often been found to be unreliable. The present case study aimed at providing proof of principle that introspection using one method, descriptive experience sampling (DES), can be reliably integrated with fMRI. A participant was trained in the DES method, followed by nine sessions of sampling within an MRI scanner. During moments where the DES interview revealed ongoing inner speaking, fMRI data reliably showed activation in classic speech processing areas including left inferior frontal gyrus. Further, the fMRI data validated the participant’s DES observations of the experiential distinction between inner speaking and innerly hearing her own voice. These results highlight the precision and validity of the DES method as a technique of exploring inner experience and the utility of combining such methods with fMRI. PMID:25538649

  14. Scanning fast and slow: current limitations of 3 Tesla functional MRI and future potential

    NASA Astrophysics Data System (ADS)

    Boubela, Roland N.; Kalcher, Klaudius; Nasel, Christian; Moser, Ewald

    2014-02-01

    Functional MRI at 3T has become a workhorse for the neurosciences, e.g., neurology, psychology, and psychiatry, enabling non-invasive investigation of brain function and connectivity. However, BOLD-based fMRI is a rather indirect measure of brain function, confounded by fluctuation related signals, e.g. head or brain motion, brain pulsation, blood flow, intermixed with susceptibility differences close or distant to the region of neuronal activity. Even though a plethora of preprocessing strategies have been published to address these confounds, their efficiency is still under discussion. In particular, physiological signal fluctuations closely related to brain supply may mask BOLD signal changes related to "true" neuronal activation. Here we explore recent technical and methodological advancements aimed at disentangling the various components, employing fast multiband vs. standard EPI, in combination with fast temporal ICA.Our preliminary results indicate that fast (TR< 0.5s) scanning may help to identify and eliminate physiologic components, increasing tSNR and functional contrast. In addition, biological variability can be studied and task performance better correlated to other measures. This should increase specificity and reliability in fMRI studies. Furthermore, physiological signal changes during scanning may then be recognized as a source of information rather than a nuisance. As we are currently still undersampling the complexity of the brain, even at a rather coarse macroscopic level, we should be very cautious in the interpretation of neuroscientific findings, in particular when comparing different groups (e.g., age, sex, medication, pathology, etc.). From a technical point of view our goal should be to sample brain activity at layer specific resolution with low TR, covering as much of the brain as possible without violating SAR limits. We hope to stimulate discussion towards a better understanding and a more quantitative use of fMRI.

  15. BOLD fMRI signal characteristics of S1- and S2-SSFP at 7 Tesla

    PubMed Central

    Goa, Pl E.; Koopmans, Peter J.; Poser, Benedikt A.; Barth, Markus; Norris, David G.

    2014-01-01

    Object: To compare the BOLD fMRI signal characteristics at in the cortex and on the pial surface for a non-balanced steady-state free precession sequence (nb-SSFP) at 7 T. Materials and Methods: A multi-echo nb-SSFP sequence was used for high resolution fMRI at 7 T. Two S1 (S+) echoes at different echo times were acquired together with an S2 (S?) echo. The primary visual cortex (V1) was examined using a reversing checkerboard paradigm at an isotropic resolution of 0.75 mm, with 35 volumes acquired and a total scan time of 27 min. Results: Significant activation was observed in all subjects for all three acquired echoes. For the S1 signal at the longer TE, the activation induced signal change was about 4% in the cortex and 10% at the cortical surface, while for S2 the corresponding values were 3 and 5%. Conclusion: For both S1 and S2 data, the BOLD signal peaks at the pial surface. The large pial surface signal change in S2 may be caused by dynamic averaging around post-capillary vessels embedded within CSF. This is made possible by the long diffusion times of the pathways contributing to the S2 signal and the relatively high diffusion coefficient of CSF. The results indicate that S2-SSFP might not be a suited alternative to spin-echo for high-resolution fMRI at 7 T. PMID:24659952

  16. A high-resolution 7-Tesla fMRI dataset from complex natural stimulation with an audio movie

    PubMed Central

    Hanke, Michael; Baumgartner, Florian J.; Ibe, Pierre; Kaule, Falko R.; Pollmann, Stefan; Speck, Oliver; Zinke, Wolf; Stadler, Jörg

    2014-01-01

    Here we present a high-resolution functional magnetic resonance (fMRI) dataset – 20 participants recorded at high field strength (7 Tesla) during prolonged stimulation with an auditory feature film (“Forrest Gump”). In addition, a comprehensive set of auxiliary data (T1w, T2w, DTI, susceptibility-weighted image, angiography) as well as measurements to assess technical and physiological noise components have been acquired. An initial analysis confirms that these data can be used to study common and idiosyncratic brain response patterns to complex auditory stimulation. Among the potential uses of this dataset are the study of auditory attention and cognition, language and music perception, and social perception. The auxiliary measurements enable a large variety of additional analysis strategies that relate functional response patterns to structural properties of the brain. Alongside the acquired data, we provide source code and detailed information on all employed procedures – from stimulus creation to data analysis. In order to facilitate replicative and derived works, only free and open-source software was utilized. PMID:25977761

  17. Corticospinal Tract Tracing in the Marmoset with a Clinical Whole-Body 3T Scanner Using Manganese-Enhanced MRI

    PubMed Central

    Plas, Benjamin; Bolan, Faye; Boulanouar, Kader; Renaud, Luc; Darmana, Robert; Vaysse, Laurence; Vieu, Christophe; Loubinoux, Isabelle

    2015-01-01

    Manganese-enhanced MRI (MEMRI) has been described as a powerful tool to depict the architecture of neuronal circuits. In this study we investigated the potential use of in vivo MRI detection of manganese for tracing neuronal projections from the primary motor cortex (M1) in healthy marmosets (Callithrix Jacchus). We determined the optimal dose of manganese chloride (MnCl2) among 800, 400, 40 and 8nmol that led to manganese-induced hyperintensity furthest from the injection site, as specific to the corticospinal tract as possible, and that would not induce motor deficit. A commonly available 3T human clinical MRI scanner and human knee coil were used to follow hyperintensity in the corticospinal tract 24h after injection. A statistical parametric map of seven marmosets injected with the chosen dose, 8 nmol, showed the corticospinal tract and M1 connectivity with the basal ganglia, substantia nigra and thalamus. Safety was determined for the lowest dose that did not induce dexterity and grip strength deficit, and no behavioral effects could be seen in marmosets who received multiple injections of manganese one month apart. In conclusion, our study shows for the first time in marmosets, a reliable and reproducible way to perform longitudinal ME-MRI experiments to observe the integrity of the marmoset corticospinal tract on a clinical 3T MRI scanner. PMID:26398500

  18. Pretreatment evaluation of distant-site status in patients with nasopharyngeal carcinoma: accuracy of whole-body MRI at 3-Tesla and FDG-PET-CT.

    PubMed

    Ng, Shu-Hang; Chan, Sheng-Chieh; Yen, Tzu-Chen; Chang, Joseph Tung-Chieh; Liao, Chun-Ta; Ko, Sheung-Fat; Wang, Hung-Ming; Wai, Yau-Yau; Wang, Jiun-Jie; Chen, Min-Chi

    2009-12-01

    We sought to prospectively evaluate the accuracy of 3.0-Tesla whole-body magnetic resonance imaging (WB-MRI) and integrated fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT) (FDG-PETCT), and their combined interpretation for the assessment of distant-site status in 150 patients with untreated nasopharyngeal carcinoma (NPC). Eighteen (12%) patients were diagnosed as having distant malignancies (15 patients had distant metastases, and three distant synchronous tumours). On a patient-based analysis, WB-MRI and FDG-PET-CT showed similar sensitivity (77.8% vs 72.2%, P>0.999), specificity (98.5% vs 97.7%, P > 0.999) and diagnostic capability (0.905 vs 0.878, P = 0.669). Combined interpretation of WB-MRI and FDGPET-CT showed no significant benefit over either technique alone. In conclusion, 3.0-Tesla WB-MRI is a feasible, non-ionising technique that showed similar diagnostic capacity to FDG-PET-CT in assessing distant-site status in patients with untreated NPC and can be recommended as the first-line imaging technique for comprehensive evaluation of such patients. PMID:19588148

  19. Evaluation of a filament perforation model for mouse subarachnoid hemorrhage using 7.0 Tesla MRI.

    PubMed

    Muroi, Carl; Kashiwagi, Yuto; Rokugawa, Takemi; Tonomura, Misato; Obata, Atsushi; Nevzati, Edin; Tsuboi, Akio; Okuchi, Kazuo; Mishima, Kenichi; Abe, Kohji; Fujioka, Masayuki

    2016-06-01

    The filament perforation model (FPM) in mice is becoming increasingly popular to elucidate the molecular pathogenesis of neuronal injury after subarachnoid hemorrhage (SAH). We evaluated brain MRI in a mouse FPM. A total of 28 male C57Bl/6J mice were used. Seventeen animals underwent SAH induction by FPM. In two animals, transient middle cerebral artery occlusion (MCAo) was induced. Nine mice served as controls. T1-weighted images (T1WI), T2-weighted images (T2WI), T2(∗)-weighted images (T2*WI) and apparent diffusion coefficient maps were acquired at day 0 and at various time points following SAH (range: day 1-6 after SAH). Cerebral blood flow (CBF) analysis by (14)C-iodoamphetamine ((14)C-IMP) autoradiography was conducted in nine animals. Hemorrhage could be best confirmed using T2*WI. The degree of hemorrhage varied. All animals evaluated for ⩾2days were hydrocephalic, which was best seen on T2WI. T2-hyperintensity of the corpus callosum and external capsule, indicating white matter (WM) injury, was present after SAH. Ventricle and WM injury volumes were statistically significantly higher at day 3 compared to day 0. Territorial ischemia was detectable in MCAo but not in SAH. Markedly hypointense cortical veins were visible in the hyperacute and delayed phase after SAH on T2*WI. The (14)C-IMP analysis indicated decreased CBF after SAH. MRI is feasible and useful in evaluating pathophysiological changes over time. T2*WI seems best for SAH detection and grading. The chronological change of hydrocephalus and WM injury could be analyzed. T2*WI illustrated specific signal changes of cortical veins, possibly caused by increased oxygen extraction fraction due to decreased CBF. PMID:27021225

  20. Breast MRI at 7 Tesla with a Bilateral Coil and Robust Fat Suppression

    PubMed Central

    Brown, Ryan; Storey, Pippa; Geppert, Christian; McGorty, KellyAnne; Leite, Ana Paula Klautau; Babb, James; Sodickson, Daniel K.; Wiggins, Graham C.; Moy, Linda

    2013-01-01

    Purpose To develop a bilateral coil and optimized fat suppressed T1-weighted sequence for 7T breast MRI. Materials and Methods A dual-solenoid coil and 3D T1w gradient echo sequence with B1+ insensitive fat suppression (FS) were developed for 7T. T1w FS image quality was characterized through image uniformity and fat/water contrast measurements in 11 subjects. Signal-to-noise ratio (SNR) and flip angle maps were acquired to assess the coil performance. Bilateral contrast-enhanced and unilateral high resolution (0.6 mm isotropic, 6.5 min acquisition time) imaging highlighted the 7 T SNR advantage. Results Reliable and effective FS and high image quality was observed in all subjects at 7T, indicating that the custom coil and pulse sequence were insensitive to high-field obstacles such as variable tissue loading. 7T and 3T T1w FS image uniformity was similar (P=0.24), indicating adequate 7T B1+ uniformity. High 7T SNR and fat/water contrast enabled 0.6 mm isotropic imaging and visualization of a high level of fibroglandular tissue detail. Conclusion 7T T1w FS bilateral breast imaging is feasible with a custom RF coil and pulse sequence. Similar image uniformity was achieved at 7T and 3T, despite different RF field behavior and variable coil-tissue interaction due to anatomic differences that might be expected to alter magnetic field patterns. PMID:24123517

  1. Visceral pain perception in patients with irritable bowel syndrome and healthy volunteers is affected by the MRI scanner environment

    PubMed Central

    Wong, Reuben K; Van Oudenhove, Lukas; Li, Xinhua; Cao, Yang; Ho, Khek Yu

    2015-01-01

    Background The MRI scanner environment induces marked psychological effects, but specific effects on pain perception and processing are unknown and relevant to all brain imaging studies. Objectives and methods We performed visceral and somatic quantitative sensory and pain testing and studied endogenous pain modulation by heterotopic stimulation outside and inside the functional MRI scanner in 11 healthy controls and 13 patients with irritable bowel syndrome. Results Rectal pain intensity (VAS 0–100) during identical distension pressures increased from 39 (95% confidence interval: 35–42) outside the scanner to 53 (43–63) inside the scanner in irritable bowel syndrome, and from 42 (31–52) to 49 (39–58), respectively, in controls (ANOVA for scanner effect: p = 0.006, group effect: p = 0.92). The difference in rectal pain outside versus inside correlated significantly with stress (r = −0.76, p = 0.006), anxiety (r = −0.68, p = 0.02) and depression scores (r = −0.67, p = 0.02) in controls, but not in irritable bowel syndrome patients, who a priori had significantly higher stress and anxiety scores. ANOVA analysis showed trends for effect of the scanner environment and subject group on endogenous pain modulation (p = 0.09 and p = 0.1, respectively), but not on somatic pain (p > 0.3). Conclusion The scanner environment significantly increased visceral, but not somatic, pain perception in irritable bowel syndrome patients and healthy controls in a protocol specifically aimed at investigating visceral pain. Psychological factors, including anxiety and stress, are the likely underlying causes, whereas classic endogenous pain modulation pathways activated by heterotopic stimulation play a lesser role. These results are highly relevant to a wide range of imaging applications and need to be taken into account in future pain research. Further controlled studies are indicated to clarify these findings. PMID:26966533

  2. Computational dosimetry of induced electric fields during realistic movements in the vicinity of a 3 T MRI scanner

    NASA Astrophysics Data System (ADS)

    Laakso, Ilkka; Kännälä, Sami; Jokela, Kari

    2013-04-01

    Medical staff working near magnetic resonance imaging (MRI) scanners are exposed both to the static magnetic field itself and also to electric currents that are induced in the body when the body moves in the magnetic field. However, there are currently limited data available on the induced electric field for realistic movements. This study computationally investigates the movement induced electric fields for realistic movements in the magnetic field of a 3 T MRI scanner. The path of movement near the MRI scanner is based on magnetic field measurements using a coil sensor attached to a human volunteer. Utilizing realistic models for both the motion of the head and the magnetic field of the MRI scanner, the induced fields are computationally determined using the finite-element method for five high-resolution numerical anatomical models. The results show that the time-derivative of the magnetic flux density (dB/dt) is approximately linearly proportional to the induced electric field in the head, independent of the position of the head with respect to the magnet. This supports the use of dB/dt measurements for occupational exposure assessment. For the path of movement considered herein, the spatial maximum of the induced electric field is close to the basic restriction for the peripheral nervous system and exceeds the basic restriction for the central nervous system in the international guidelines. The 99th percentile electric field is a considerably less restrictive metric for the exposure than the spatial maximum electric field; the former is typically 60-70% lower than the latter. However, the 99th percentile electric field may exceed the basic restriction for dB/dt values that can be encountered during tasks commonly performed by MRI workers. It is also shown that the movement-induced eddy currents may reach magnitudes that could electrically stimulate the vestibular system, which could play a significant role in the generation of vertigo-like sensations reported by people moving in a strong static magnetic field.

  3. Correction of inter-scanner and within-subject variance in structural MRI based automated diagnosing.

    PubMed

    Kostro, Daniel; Abdulkadir, Ahmed; Durr, Alexandra; Roos, Raymund; Leavitt, Blair R; Johnson, Hans; Cash, David; Tabrizi, Sarah J; Scahill, Rachael I; Ronneberger, Olaf; Klöppel, Stefan

    2014-09-01

    Automated analysis of structural magnetic resonance images is a promising way to improve early detection of neurodegenerative brain diseases. Clinical applications of such methods involve multiple scanners with potentially different hardware and/or acquisition sequences and demographically heterogeneous groups. To improve classification performance, we propose to correct effects of subject-specific covariates (such as age, total intracranial volume, and sex) as well as effects of scanner by using a non-linear Gaussian process model. To test the efficacy of the correction, we performed classification of carriers of the genetic mutation leading to Huntington's disease (HD) versus healthy controls. Half of the HD carriers were free of typical HD symptoms and had an estimated 5 to 20years before onset of clinical symptoms, thus providing a model for preclinical diagnosis of a neurodegenerative disease. Structural magnetic resonance brain images were acquired at four sites with pairs of sites which had the identical scanner type, equipment, and acquisition parameters. For automatic classification, we used spatially normalized probabilistic maps of gray matter, then removed confounding effects by Gaussian process regression, and then performed classification with a support vector machine. Voxel-based morphometry of gray matter maps showed disease effects that were spatially wider spread than effects of scanner, but no significant interactions between scanner and disease were found. A model trained with data from a single scanner generalized well to data from a different scanner. When confounding diagnostics groups and scanner during training, e.g. by using controls from one scanner and gene carriers from another, classification accuracy dropped significantly in many cases. By regressing out confounds with Gaussian process regression, the performance levels were comparable to those obtained in scenarios without confound. We conclude that models trained on data acquired with a single scanner generalized well to data acquired with a different same-generation scanner even when the vendor differed. When confounding grouping and scanner during training is unavoidable to gather training data, regressing out inter-scanner and between-subject variability can reduce the loss in accuracy due to the confound. PMID:24791746

  4. Commissioning of a new wide-bore MRI scanner for radiotherapy planning of head and neck cancer

    PubMed Central

    Liney, G P; Owen, S C; Beaumont, A K E; Lazar, V R; Manton, D J

    2013-01-01

    Objective: A combination of CT and MRI is recommended for radiotherapy planning of head and neck cancers, and optimal spatial co-registration is achieved by imaging in the treatment position using the necessary immobilisation devices on both occasions, something which requires wide-bore scanners. Quality assurance experiments were carried out to commission a newly installed 1.5-T wide-bore MRI scanner and a dedicated, flexible six-channel phased array head and neck coil. Methods: Signal-to-noise ratio (SNR) and spatial signal uniformity were quantified using a homogeneous aqueous phantom, and geometric distortion was quantified using a phantom with water-filled fiducials in a grid pattern. Volunteer scans were also used to determine the in vivo image quality. Clinically relevant T1 weighted and T2 weighted fat-suppressed sequences were assessed in multiple scan planes (both sequences fast spin echo based). The performance of two online signal uniformity correction schemes, one utilising low-resolution reference scans and the other not utilising low-resolution reference scans, was compared. Results: Geometric distortions, for a ±35-kHz bandwidth, were <1 mm for locations within 10 cm of the isocentre rising to 1.8 mm at 18 cm away. SNR was above 50, and uniformity in the axial plane was 71% and 95% before and after uniformity correction, respectively. Conclusion: The combined performance of the wide-bore scanner and the dedicated coil was adjudged adequate, although superior–inferior spatial coverage was slightly limited in the lower neck. Advances in knowledge: These results will be of interest to the increasing number of oncology centres that are seeking to incorporate MRI into planning practice using dedicated equipment. PMID:23690434

  5. Wrong detection of ventricular fibrillation in an implantable cardioverter defibrillator caused by the movement near the MRI scanner bore.

    PubMed

    Mattei, Eugenio; Censi, Federica; Triventi, Michele; Mancini, Matteo; Napolitano, Antonio; Genovese, Elisabetta; Cannata, Vittorio; Falsaperla, Rosaria; Calcagnini, Giovanni

    2015-08-01

    The static magnetic field generated by MRI systems is highly non-homogenous and rapidly decreases when moving away from the bore of the scanner. Consequently, the movement around the MRI scanner is equivalent to an exposure to a time-varying magnetic field at very low frequency (few Hz). For patients with an implanted cardiac stimulators, such as an implantable cardioverter/defibrillator (ICD), the movements inside the MRI environment may thus induce voltages on the loop formed by the leads of the device, with the potential to affect the behavior of the stimulator. In particular, the ICD's detection algorithms may be affected by the induced voltage and may cause inappropriate sensing, arrhythmia detections, and eventually inappropriate ICD therapy.We performed in-vitro measurements on a saline-filled humanshaped phantom (male, 170 cm height), equipped with an MRconditional ICD able to transmit in real-time the detected cardiac activity (electrograms). A biventricular implant was reproduced and the ICD was programmed in standard operating conditions, but with the shock delivery disabled. The electrograms recorded in the atrial, left and right ventricle channels were monitored during rotational movements along the vertical axis, in close proximity of the bore. The phantom was also equipped with an accelerometer and a magnetic field probe to measure the angular velocity and the magnetic field variation during the experiment. Pacing inhibition, inappropriate detection of tachyarrhythmias and of ventricular fibrillation were observed. Pacing inhibition began at an angular velocity of about 7 rad/s, (dB/dt of about 2 T/s). Inappropriate detection of ventricular fibrillation occurred at about 8 rad/s (dB/dt of about 3 T/s). These findings highlight the need for a specific risk assessment of workers with MR-conditional ICDs, which takes into account also effects that are generally not considered relevant for patients, such as the movement around the scanner bore. PMID:26737953

  6. Topography of Cortical Microbleeds in Alzheimer’s Disease with and without Cerebral Amyloid Angiopathy: A Post-Mortem 7.0-Tesla MRI Study

    PubMed Central

    De Reuck, J.; Auger, F.; Durieux, N.; Deramecourt, V.; Cordonnier, C.; Pasquier, F.; Maurage, C.A.; Leys, D.; Bordet, R.

    2015-01-01

    Cortical microbleeds (CMBs) detected on T2*-weighted gradient-echo (GRE) magnetic resonance imaging (MRI) are considered as a possible hallmark of cerebral amyloid angiopathy (CAA). The present post-mortem 7.0-tesla MRI study investigates whether topographic differences exist in Alzheimer’s brains without (AD) and with CAA (AD-CAA). The distribution of CMBs in thirty-two post-mortem brains, consisting of 12 AD, 8 AD-CAA and 12 controls, was mutually compared on T2*-GRE MRI of six coronal sections of a cerebral hemisphere. The mean numbers of CMBs were determined in twenty-two different gyri. As a whole there was a trend of more CMBs on GRE MRI in the prefrontal section of the AD, the AD-CAA as well as of the control brains. Compared to controls AD brains had significantly more CMBs in the superior frontal, the inferior temporal, the rectus and the cinguli gyrus, and in the insular cortex. In AD-CAA brains CMBs were increased in all gyri with exception of the medial parietal gyrus and the hippocampus. AD-CAA brains showed a highly significant increase of CMBs in the inferior parietal gyrus (p value: 0.001) and a significant increase in the precuneus and the cuneus (p value: 0.01) compared to the AD brains. The differences in topographic distribution of CMBs between AD and AD-CAA brains should be further investigated on MRI in clinically suspected patients. PMID:26618045

  7. A broadband phased-array system for direct phosphorus and sodium metabolic MRI on a clinical scanner.

    PubMed

    Lee, R F; Giaquinto, R; Constantinides, C; Souza, S; Weiss, R G; Bottomley, P A

    2000-02-01

    Despite their proven gains in signal-to-noise ratio and field-of-view for routine clinical MRI, phased-array detection systems are currently unavailable for nuclei other than protons (1H). A broadband phased-array system was designed and built to convert the 1H transmitter signal to the non-1H frequency for excitation and to convert non-1H phased-array MRI signals to the 1H frequency for presentation to the narrowband 1H receivers of a clinical whole-body 1.5 T MRI system. With this system, the scanner operates at the 1H frequency, whereas phased-array MRI occurs at the frequency of the other nucleus. Pulse sequences were developed for direct phased-array sodium (23Na) and phosphorus (31P) MRI of high-energy phosphates using chemical selective imaging, thereby avoiding the complex processing and reconstruction required for phased-array magnetic resonance spectroscopy data. Flexible 4-channel 31P and 23Na phased-arrays were built and the entire system tested in phantom and human studies. The array produced a signal-to-noise ratio improvement of 20% relative to the best-positioned single coil, but gains of 300-400% were realized in many voxels located outside the effective field-of-view of the single coil. Cardiac phosphorus and sodium MRI were obtained in 6-13 min with 16 and 0.5 mL resolution, respectively. Lower resolution human cardiac 23Na MRI were obtained in as little as 4 sec. The system provides a practical approach to realizing the advantages of phased-arrays for nuclei other than 1H, and imaging metabolites directly. PMID:10680691

  8. [Prospects of the use of mobile MRI scanner in medical service of the Armed Forces].

    PubMed

    Troyan, V N; Dydykin, A V; Rikun, A O; Filisteev, P A; Zayats, V V; Zhigalov, A A

    2015-10-01

    Computed tomography is currently one of the most informative methods of diagnostics of a broad range of injuries and diseases, as well as an effective additional mean for various surgical interventions thank to intraoperative use. In this regard, the question of the necessity of the use of this diagnostic technology in mobile hospitals is one of the current tasks. The article analyses the experience of the use of mobile CT scanners at the medical service of the armed forces of foreign states and provides calculations indicating the necessity of the introduction of mobile CT scanners into the hospital link. The review and classification of mobile CT scanners have allowed to formulate technical requirements for their hardware capabilities, as well as to draw conclusions about the conditions of their effective use. PMID:26827508

  9. Low-Cost High-Performance MRI

    PubMed Central

    Sarracanie, Mathieu; LaPierre, Cristen D.; Salameh, Najat; Waddington, David E. J.; Witzel, Thomas; Rosen, Matthew S.

    2015-01-01

    Magnetic Resonance Imaging (MRI) is unparalleled in its ability to visualize anatomical structure and function non-invasively with high spatial and temporal resolution. Yet to overcome the low sensitivity inherent in inductive detection of weakly polarized nuclear spins, the vast majority of clinical MRI scanners employ superconducting magnets producing very high magnetic fields. Commonly found at 1.5–3 tesla (T), these powerful magnets are massive and have very strict infrastructure demands that preclude operation in many environments. MRI scanners are costly to purchase, site, and maintain, with the purchase price approaching $1 M per tesla (T) of magnetic field. We present here a remarkably simple, non-cryogenic approach to high-performance human MRI at ultra-low magnetic field, whereby modern under-sampling strategies are combined with fully-refocused dynamic spin control using steady-state free precession techniques. At 6.5 mT (more than 450 times lower than clinical MRI scanners) we demonstrate (2.5 × 3.5 × 8.5) mm3 imaging resolution in the living human brain using a simple, open-geometry electromagnet, with 3D image acquisition over the entire brain in 6 minutes. We contend that these practical ultra-low magnetic field implementations of MRI (<10 mT) will complement traditional MRI, providing clinically relevant images and setting new standards for affordable (<$50,000) and robust portable devices. PMID:26469756

  10. Low-Cost High-Performance MRI

    NASA Astrophysics Data System (ADS)

    Sarracanie, Mathieu; Lapierre, Cristen D.; Salameh, Najat; Waddington, David E. J.; Witzel, Thomas; Rosen, Matthew S.

    2015-10-01

    Magnetic Resonance Imaging (MRI) is unparalleled in its ability to visualize anatomical structure and function non-invasively with high spatial and temporal resolution. Yet to overcome the low sensitivity inherent in inductive detection of weakly polarized nuclear spins, the vast majority of clinical MRI scanners employ superconducting magnets producing very high magnetic fields. Commonly found at 1.5-3 tesla (T), these powerful magnets are massive and have very strict infrastructure demands that preclude operation in many environments. MRI scanners are costly to purchase, site, and maintain, with the purchase price approaching $1 M per tesla (T) of magnetic field. We present here a remarkably simple, non-cryogenic approach to high-performance human MRI at ultra-low magnetic field, whereby modern under-sampling strategies are combined with fully-refocused dynamic spin control using steady-state free precession techniques. At 6.5 mT (more than 450 times lower than clinical MRI scanners) we demonstrate (2.5 × 3.5 × 8.5) mm3 imaging resolution in the living human brain using a simple, open-geometry electromagnet, with 3D image acquisition over the entire brain in 6 minutes. We contend that these practical ultra-low magnetic field implementations of MRI (<10 mT) will complement traditional MRI, providing clinically relevant images and setting new standards for affordable (<$50,000) and robust portable devices.

  11. A Two-dimensional Sixteen Channel Transmit/Receive Coil Array for Cardiac MRI at 7.0 Tesla: Design, Evaluation and Application

    PubMed Central

    Thalhammer, Christof; Renz, Wolfgang; Winter, Lukas; Hezel, Fabian; Rieger, Jan; Pfeiffer, Harald; Graessl, Andreas; Seifert, Frank; Hoffmann, Werner; von Knobelsdorff-Brenkenhoff, Florian; Tkachenko, Valeriy; Schulz-Menger, Jeanette; Kellman, Peter; Niendorf, Thoralf

    2012-01-01

    Purpose To design, evaluate and apply a two-dimensional 16 channel transmit/receive coil array tailored for cardiac MRI at 7.0 Tesla. Material and Methods The cardiac coil array consists of 2 sections each using 8 elements arranged in a 2 × 4 array. RF safety was validated by SAR simulations. Cardiac imaging was performed using 2D CINE FLASH imaging, T2* mapping and fat-water separation imaging. The characteristics of the coil array were analyzed including parallel imaging performance, left ventricular chamber quantification and overall image quality. Results RF characteristics were found to be appropriate for all subjects included in the study. The SAR values derived from the simulations fall well in the limits of legal guidelines. The baseline SNR advantage at 7.0 T was put to use to acquire 2D CINE images of the heart with a very high spatial resolution of (1 × 1 × 4) mm3. The proposed coil array supports 1D acceleration factors of up to R=4 without impairing image quality significantly. Conclusions The 16 channel TX/RX coil has the capability to acquire high contrast and high spatial resolution images of the heart at 7.0 Tesla. PMID:22706727

  12. New shielding configurations for a simultaneous PET/MRI scanner at 7T

    PubMed Central

    Peng, Bo J.; Wu, Yibao; Cherry, Simon R.; Walton, Jeffrey H.

    2014-01-01

    Understanding sources of electromagnetic interference are important in designing any electronic system. This is especially true when combining positron emission tomography (PET) and magnetic resonance imaging (MRI) in a multimodality system as coupling between the subsystems can degrade the performance of either modality. For this reason, eliminating radio frequency (RF) interference and gradient-induced eddy currents have been major challenges in building simultaneous hybrid PET/MRI systems. MRI requires negligible RF interference at the Larmor resonance frequency, while RF interference at almost any frequency may corrupt PET data. Moreover, any scheme that minimizes these interactions would, ideally, not compromise the performance of either subsystem. This paper lays out a plan to resolve these problems. A carbon fiber composite material is found to be a good RF shield at the Larmor frequency (300 MHz in this work) while introducing negligible gradient eddy currents. This carbon fiber composite also provides excellent structural support for the PET detector components. Low frequency electromagnetic radiation (81 kHz here) from the switching power supplies of the gradient amplifiers was also found to interfere with the PET detector. Placing the PET detector module between two carbon fiber tubes and grounding the inner carbon fiber tube to the PET detector module ground reduced this interference. Further reductions were achieved by adding thin copper (Cu) foil on the outer carbon fiber case and electrically grounding the PET detector module so that all 3 components had a common ground, i.e. with the PET detector in an electrostatic cage. Finally, gradient switching typical in MRI sequences can result in count losses in the particular PET detector design studied. Moreover, the magnitude of this effect depends on the location of the detector within the magnet bore and which MRI gradient is being switched. These findings have a bearing on future designs of PET/MRI systems. PMID:24380812

  13. New shielding configurations for a simultaneous PET/MRI scanner at 7T.

    PubMed

    Peng, Bo J; Wu, Yibao; Cherry, Simon R; Walton, Jeffrey H

    2014-02-01

    Understanding sources of electromagnetic interference are important in designing any electronic system. This is especially true when combining positron emission tomography (PET) and magnetic resonance imaging (MRI) in a multimodality system as coupling between the subsystems can degrade the performance of either modality. For this reason, eliminating radio frequency (RF) interference and gradient-induced eddy currents have been major challenges in building simultaneous hybrid PET/MRI systems. MRI requires negligible RF interference at the Larmor resonance frequency, while RF interference at almost any frequency may corrupt PET data. Moreover, any scheme that minimizes these interactions would, ideally, not compromise the performance of either subsystem. This paper lays out a plan to resolve these problems. A carbon fiber composite material is found to be a good RF shield at the Larmor frequency (300MHz in this work) while introducing negligible gradient eddy currents. This carbon fiber composite also provides excellent structural support for the PET detector components. Low frequency electromagnetic radiation (81kHz here) from the switching power supplies of the gradient amplifiers was also found to interfere with the PET detector. Placing the PET detector module between two carbon fiber tubes and grounding the inner carbon fiber tube to the PET detector module ground reduced this interference. Further reductions were achieved by adding thin copper (Cu) foil on the outer carbon fiber case and electrically grounding the PET detector module so that all 3 components had a common ground, i.e. with the PET detector in an electrostatic cage. Finally, gradient switching typical in MRI sequences can result in count losses in the particular PET detector design studied. Moreover, the magnitude of this effect depends on the location of the detector within the magnet bore and which MRI gradient is being switched. These findings have a bearing on future designs of PET/MRI systems. PMID:24380812

  14. New shielding configurations for a simultaneous PET/MRI scanner at 7T

    NASA Astrophysics Data System (ADS)

    Peng, Bo J.; Wu, Yibao; Cherry, Simon R.; Walton, Jeffrey H.

    2014-02-01

    Understanding sources of electromagnetic interference are important in designing any electronic system. This is especially true when combining positron emission tomography (PET) and magnetic resonance imaging (MRI) in a multimodality system as coupling between the subsystems can degrade the performance of either modality. For this reason, eliminating radio frequency (RF) interference and gradient-induced eddy currents have been major challenges in building simultaneous hybrid PET/MRI systems. MRI requires negligible RF interference at the Larmor resonance frequency, while RF interference at almost any frequency may corrupt PET data. Moreover, any scheme that minimizes these interactions would, ideally, not compromise the performance of either subsystem. This paper lays out a plan to resolve these problems. A carbon fiber composite material is found to be a good RF shield at the Larmor frequency (300 MHz in this work) while introducing negligible gradient eddy currents. This carbon fiber composite also provides excellent structural support for the PET detector components. Low frequency electromagnetic radiation (81 kHz here) from the switching power supplies of the gradient amplifiers was also found to interfere with the PET detector. Placing the PET detector module between two carbon fiber tubes and grounding the inner carbon fiber tube to the PET detector module ground reduced this interference. Further reductions were achieved by adding thin copper (Cu) foil on the outer carbon fiber case and electrically grounding the PET detector module so that all 3 components had a common ground, i.e. with the PET detector in an electrostatic cage. Finally, gradient switching typical in MRI sequences can result in count losses in the particular PET detector design studied. Moreover, the magnitude of this effect depends on the location of the detector within the magnet bore and which MRI gradient is being switched. These findings have a bearing on future designs of PET/MRI systems.

  15. A fast multiparameter MRI approach for acute stroke assessment on a 3T clinical scanner: preliminary results in a non-human primate model with transient ischemic occlusion.

    PubMed

    Zhang, Xiaodong; Tong, Frank; Li, Chun-Xia; Yan, Yumei; Nair, Govind; Nagaoka, Tsukasa; Tanaka, Yoji; Zola, Stuart; Howell, Leonard

    2014-04-01

    Many MRI parameters have been explored and demonstrated the capability or potential to evaluate acute stroke injury, providing anatomical, microstructural, functional, or neurochemical information for diagnostic purposes and therapeutic development. However, the application of multiparameter MRI approach is hindered in clinic due to the very limited time window after stroke insult. Parallel imaging technique can accelerate MRI data acquisition dramatically and has been incorporated in modern clinical scanners and increasingly applied for various diagnostic purposes. In the present study, a fast multiparameter MRI approach including structural T1-weighted imaging (T1W), T2-weighted imaging (T2W), diffusion tensor imaging (DTI), T2-mapping, proton magnetic resonance spectroscopy, cerebral blood flow (CBF), and magnetization transfer (MT) imaging, was implemented and optimized for assessing acute stroke injury on a 3T clinical scanner. A macaque model of transient ischemic stroke induced by a minimal interventional approach was utilized for evaluating the multiparameter MRI approach. The preliminary results indicate the surgical procedure successfully induced ischemic occlusion in the cortex and/or subcortex in adult macaque monkeys (n=4). Application of parallel imaging technique substantially reduced the scanning duration of most MRI data acquisitions, allowing for fast and repeated evaluation of acute stroke injury. Hence, the use of the multiparameter MRI approach with up to five quantitative measures can provide significant advantages in preclinical or clinical studies of stroke disease. PMID:24834423

  16. A fast multiparameter MRI approach for acute stroke assessment on a 3T clinical scanner: preliminary results in a non-human primate model with transient ischemic occlusion

    PubMed Central

    Tong, Frank; Li, Chun-Xia; Yan, Yumei; Nair, Govind; Nagaoka, Tsukasa; Tanaka, Yoji; Zola, Stuart; Howell, Leonard

    2014-01-01

    Many MRI parameters have been explored and demonstrated the capability or potential to evaluate acute stroke injury, providing anatomical, microstructural, functional, or neurochemical information for diagnostic purposes and therapeutic development. However, the application of multiparameter MRI approach is hindered in clinic due to the very limited time window after stroke insult. Parallel imaging technique can accelerate MRI data acquisition dramatically and has been incorporated in modern clinical scanners and increasingly applied for various diagnostic purposes. In the present study, a fast multiparameter MRI approach including structural T1-weighted imaging (T1W), T2-weighted imaging (T2W), diffusion tensor imaging (DTI), T2-mapping, proton magnetic resonance spectroscopy, cerebral blood flow (CBF), and magnetization transfer (MT) imaging, was implemented and optimized for assessing acute stroke injury on a 3T clinical scanner. A macaque model of transient ischemic stroke induced by a minimal interventional approach was utilized for evaluating the multiparameter MRI approach. The preliminary results indicate the surgical procedure successfully induced ischemic occlusion in the cortex and/or subcortex in adult macaque monkeys (n=4). Application of parallel imaging technique substantially reduced the scanning duration of most MRI data acquisitions, allowing for fast and repeated evaluation of acute stroke injury. Hence, the use of the multiparameter MRI approach with up to five quantitative measures can provide significant advantages in preclinical or clinical studies of stroke disease. PMID:24834423

  17. 1.5 Tesla MRI-Conditional 12-lead ECG for MR Imaging and Intra-MR Intervention

    PubMed Central

    Tse, Zion Tsz Ho; Dumoulin, Charles L.; Clifford, Gari D.; Schweitzer, Jeff; Qin, Lei; Oster, Julien; Jerosch-Herold, Michael; Kwong, Raymond Y.; Michaud, Gregory; Stevenson, William G.; Schmidt, Ehud J.

    2013-01-01

    Propose High-fidelity 12-lead Electrocardiogram (ECG) is important for physiological monitoring of patients during MR-guided intervention and cardiac MR imaging. Issues in obtaining non-corrupted ECGs inside MRI include a superimposed Magneto-Hydro-Dynamic (MHD) voltage, gradient-switching induced-voltages, and radiofrequency (RF) heating. These problems increase with magnetic field. We intended to develop and clinically validate a 1.5T MRI-conditional 12-lead ECG system. Methods The system was constructed, including transmission-lines to reduce radio-frequency induction, and switching-circuits to remove induced voltages. Adaptive filters, trained by 12-lead measurements outside MRI and in two orientations inside MRI, were used to remove MHD. The system was tested on ten (one exercising) volunteers and four arrhythmia patients. Results Switching circuits removed most imaging-induced voltages (residual noise <3% of the R-wave). MHD removal provided intra-MRI ECGs that varied by <3.8% from those outside the MRI, preserving the true ST segment. In premature-ventricular-contraction (PVC) patients, clean ECGs separated PVC and sinus-rhythm beats. Measured heating was <1.5 C0. The system reliably acquired multiphase (SSFP) wall-motion-cine and phase-contrast-cine scans, including in subjects where 4-lead gating failed. The system required a minimum TR of 4ms to allow robust ECG processing. Conclusion High-fidelity intra-MRI 12-lead ECG is possible. PMID:23580148

  18. Burns from ECG leads in an MRI scanner: Case series and discussion of mechanisms

    PubMed Central

    Abdel-Rehim, S.; Bagirathan, S.; Al-Benna, S.; O’Boyle, C.

    2014-01-01

    Summary Iatrogenic burns are rare and preventable. The authors present two cases of burns from ECG leads, sustained during magnetic resonance imaging (MRI). Common features included a long duration spinal MR scan (120 and 60 minutes) and high patient body mass index (BMI >30). Both patients were discharged within 24 hours of admission, but required a period of outpatient burn care. The causation of these injuries remains unclear but there are several possible mechanisms including: electromagnetic induction heating, antenna effects and closed-loop current induction. The authors provide a description of the injuries, discuss possible mechanisms that may lead to burn injury in the MRI environment and suggest ways to reduce the risks of such injuries. PMID:26336370

  19. Development of a MPPC-based prototype gantry for future MRI-PET scanners

    NASA Astrophysics Data System (ADS)

    Kurei, Y.; Kataoka, J.; Kato, T.; Fujita, T.; Ohshima, T.; Taya, T.; Yamamoto, S.

    2014-12-01

    We have developed a high spatial resolution, compact Positron Emission Tomography (PET) module designed for small animals and intended for use in magnetic resonance imaging (MRI) systems. This module consists of large-area, 4 × 4 ch MPPC arrays (S11830-3344MF; Hamamatsu Photonics K.K.) optically coupled with Ce-doped (Lu,Y)2(SiO4)O (Ce:LYSO) scintillators fabricated into 16 × 16 matrices of 0.5 × 0.5 mm2 pixels. We set the temperature sensor (LM73CIMK-0; National Semiconductor Corp.) at the rear of the MPPC acceptance surface, and apply optimum voltage to maintain the gain. The eight MPPC-based PET modules and coincidence circuits were assembled into a gantry arranged in a ring 90 mm in diameter to form the MPPC-based PET system. We have developed two types PET gantry: one made of non-magnetic metal and the other made of acrylonitrile butadiene styrene (ABS) resins. The PET gantry was positioned around the RF coil of the 4.7 T MRI system. We took an image of a point }22Na source under fast spin echo (FSE) and gradient echo (GE), in order to measure the interference between the MPPC-based PET and MRI. The spatial resolution of PET imaging in a transaxial plane of about 1 mm (FWHM) was achieved in all cases. Operating with PET made of ABS has no effect on MR images, while operating with PET made of non-magnetic metal has a significant detrimental effect on MR images. This paper describes our quantitative evaluations of PET images and MR images, and presents a more advanced version of the gantry for future MRI/DOI-PET systems.

  20. A six-channel pediatric coil array for detection of children spinal pathologies by MRI at 1.5 Tesla

    NASA Astrophysics Data System (ADS)

    López Terrones, Marcos Alonso; Solís-Nájera, Sergio Enrique

    2014-11-01

    Nowadays, magnetic resonance (MR) in Mexico has become a standard technique for clinical imaging. Although most of the times the MR systems contain only coils oriented for adults. Radiologists use these coils for children studies due to the non-availability of pediatric coils. Image quality is decreased due to the low signal to noise ratio delivered to the system. The development of RF coils is always focused towards increasing SNR and optimizing the RF penetration into the sample. Moreover, spinal pathologies in children, which are an important topic in pediatric care, cover congenital and neuromuscular disorders that occur in childhood. In this work, the design of a dedicated six-channel coil for detection of spinal pathologies at 1.5 Tesla is addressed. Numerical electromagnetic simulations were performed in order to evaluate their magnetic field performance at (63.6 MHz) 1.5 Tesla. The magnetic field uniformity as well as the RF penetration depth of the coil configurations was evaluated in order to find the best/optimized coil array configuration. The coil is comprised of three rows, one with 4 coil elements and two with only one coil element. Phantom and in vivo images were acquired with the six-channel pediatric coil array. The phantom images agree with the simulated data. In vivo images acquired with the 6-channel pediatric coil array have shown very good penetration depth and homogeneity, which allow better image quality throughout the whole FOV. In addition, the parallel imaging capabilities of the array allow the acceleration of the experiments avoiding possible motion artifacts.

  1. A six-channel pediatric coil array for detection of children spinal pathologies by MRI at 1.5 Tesla

    SciTech Connect

    López Terrones, Marcos Alonso; Solís-Nájera, Sergio Enrique

    2014-11-07

    Nowadays, magnetic resonance (MR) in Mexico has become a standard technique for clinical imaging. Although most of the times the MR systems contain only coils oriented for adults. Radiologists use these coils for children studies due to the non-availability of pediatric coils. Image quality is decreased due to the low signal to noise ratio delivered to the system. The development of RF coils is always focused towards increasing SNR and optimizing the RF penetration into the sample. Moreover, spinal pathologies in children, which are an important topic in pediatric care, cover congenital and neuromuscular disorders that occur in childhood. In this work, the design of a dedicated six-channel coil for detection of spinal pathologies at 1.5 Tesla is addressed. Numerical electromagnetic simulations were performed in order to evaluate their magnetic field performance at (63.6 MHz) 1.5 Tesla. The magnetic field uniformity as well as the RF penetration depth of the coil configurations was evaluated in order to find the best/optimized coil array configuration. The coil is comprised of three rows, one with 4 coil elements and two with only one coil element. Phantom and in vivo images were acquired with the six-channel pediatric coil array. The phantom images agree with the simulated data. In vivo images acquired with the 6-channel pediatric coil array have shown very good penetration depth and homogeneity, which allow better image quality throughout the whole FOV. In addition, the parallel imaging capabilities of the array allow the acceleration of the experiments avoiding possible motion artifacts.

  2. Interference with cardiac pacemakers by magnetic resonance imaging: are there irreversible changes at 0.5 Tesla?

    PubMed

    Vahlhaus, C; Sommer, T; Lewalter, T; Schimpf, R; Schumacher, B; Jung, W; Lüderitz, B

    2001-04-01

    The safety and feasibility of magnetic resonance imaging (MRI) in patients with cardiac pacemakers is an issue of gaining significance. The effect of MRI on patients' pacemaker systems has only been analyzed retrospectively in some case reports. Therefore, this study prospectively investigated if MRI causes irreversible changes in patients' pacemaker systems. The effect of MRI at 0.5 Tesla on sensing and stimulation thresholds, lead impedance and battery voltage, current, and impedance was estimated during 34 MRI examinations in 32 patients with implanted pacemakers. After measurements at baseline and with documentation of intrinsic rhythm and modification of the pacing mode, patients underwent MRI. The rest of the function time of the pacemaker was calculated. Measurements were again performed after 99.5 +/- 29.6 minutes (mean +/- SD), immediately after MRI examination, and 3 months later. Lead impedance and sensing and stimulation thresholds did not change after MRI. Battery voltage decreased immediately after MRI and recovered 3 months later. Battery current and impedance tended to increase. The calculated rest of function time did not change immediately after MRI. MRI affected neither pacemaker programmed data, nor the ability to interrogate, program, or use telemetry. Surprisingly, in the gantry of the scanner, temporary deactivation of the reed switch occurred in 12 of 32 patients when positioned in the center of the magnetic field. Missing activation of the reed switch through the static magnetic field at 0.5 Tesla is not unusual. MRI at 0.5 Tesla does not cause irreversible changes in patients' pacemaker systems. PMID:11341087

  3. Multi-channel metabolic imaging, with SENSE reconstruction, of hyperpolarized [1- 13C] pyruvate in a live rat at 3.0 tesla on a clinical MR scanner

    NASA Astrophysics Data System (ADS)

    Tropp, James; Lupo, Janine M.; Chen, Albert; Calderon, Paul; McCune, Don; Grafendorfer, Thomas; Ozturk-Isik, Esin; Larson, Peder E. Z.; Hu, Simon; Yen, Yi-Fen; Robb, Fraser; Bok, Robert; Schulte, Rolf; Xu, Duan; Hurd, Ralph; Vigneron, Daniel; Nelson, Sarah

    2011-01-01

    We report metabolic images of 13C, following injection of a bolus of hyperpolarized [1-13C] pyruvate in a live rat. The data were acquired on a clinical scanner, using custom coils for volume transmission and array reception. Proton blocking of all carbon resonators enabled proton anatomic imaging with the system body coil, to allow for registration of anatomic and metabolic images, for which good correlation was achieved, with some anatomic features (kidney and heart) clearly visible in a carbon image, without reference to the corresponding proton image. Parallel imaging with sensitivity encoding was used to increase the spatial resolution in the SI direction of the rat. The signal to noise ratio in was in some instances unexpectedly high in the parallel images; variability of the polarization among different trials, plus partial volume effects, are noted as a possible cause of this.

  4. Temperature quantification using the proton frequency shift technique: In vitro and in vivo validation in an open 0.5 tesla interventional MR scanner during RF ablation.

    PubMed

    Botnar, R M; Steiner, P; Dubno, B; Erhart, P; von Schulthess, G K; Debatin, J F

    2001-03-01

    Open magnetic resonance (MR) scanners allow MR-guided targeting of tumors, as well as temperature monitoring of radio frequency (RF) ablation. The proton frequency shift (PFS) technique, an accurate and fast imaging method for temperature quantification, was used to synthesize thermal maps after RF ablation in an open 0.5 T MR system under ex vivo and in vivo conditions. Calibration experiments with 1.5% agarose gel yielded a chemical shift factor of 0.011 +/- 0.001 ppm/ degrees C (r2 = 0.96). Three gradient echo (GRE) pulse sequences were tested for thermal mapping by comparison with fiberoptic thermometer (Luxtron Model 760) readings. Temperature uncertainty decreased from high to low bandwidths (BW): +/-5.9 degrees C at BW = 15.6 kHz, +/-1.4 degrees C at BW = 3.9 kHz, and +/-0.8 degrees C at BW = 2.5 kHz. In vitro experiments (N = 9) in the paraspinal muscle yielded a chemical shift factor of 0.008 +/- 0.001 ppm/ degrees C. Temperature uncertainty was determined as +/-2.7 degrees C (BW = 3.9 kHz, TE = 19.3 msec). The same experiments carried out in the paraspinal muscle (N = 9) of a fully anesthetized pig resulted in a temperature uncertainty of +/-4.3 degrees C (BW = 3.9 kHz, TE = 19.3 msec), which is higher than it is in vitro conditions (P < 0.15). Quantitative temperature monitoring of RF ablation is feasible in a 0.5 T open-configured MR scanner under ex vivo and in vivo conditions using the PFS technique. PMID:11241819

  5. Talking about social conflict in the MRI scanner: neural correlates of being empathized with.

    PubMed

    Seehausen, Maria; Kazzer, Philipp; Bajbouj, Malek; Heekeren, Hauke R; Jacobs, Arthur M; Klann-Delius, Gisela; Menninghaus, Winfried; Prehn, Kristin

    2014-01-01

    This study investigated the emotional effects and neural correlates of being empathized with while speaking about a currently experienced real-life social conflict during fMRI. Specifically, we focused on the effects of cognitive empathy in the form of paraphrasing, a technique regularly used in conflict resolution. 22 participants underwent fMRI while being interviewed on their social conflict and receiving empathic or unempathic responses from the interviewer. Skin conductance response (SCR) and self-report ratings of feeling understood and emotional valence were used to assess emotional responses. Results confirm previous findings indicating that cognitive empathy exerts a positive short-term effect on emotions in social conflict, while at the same time increasing autonomic arousal reflected by SCR. Effects of paraphrasing and unempathic interventions as indicated by self-report ratings varied depending on self-esteem, pre-interview negative affect, and participants' empathy quotient. Empathic responses engaged a fronto-parietal network with activity in the right precentral gyrus (PrG), left middle frontal gyrus (MFG), left inferior parietal gyrus (IPG), and right postcentral gyrus (PoG). Processing unempathic responses involved a fronto-temporal network with clusters peaking in the left inferior frontal gyrus, pars triangularis (IFGTr), and right temporal pole (TP). A specific modeling of feeling misunderstood activated a network consisting of the IFG, left TP, left Heschl gyrus, IFGTr, and right precuneus, extending to several limbic regions, such as the insula, amygdala, putamen, and anterior cingulate cortex/right middle cingulum (ACC/MCC). The results support the effectiveness of a widely used conflict resolution technique, which may also be useful for professionals who regularly deal with and have to de-escalate situations highly charged with negative emotion, e.g. physicians or judges. PMID:24099849

  6. Diffusion-Weighted Imaging of a Prostate Cancer Xenograft Model Seen on a 7 Tesla Animal MR Scanner: Comparison of ADC Values and Pathologic Findings

    PubMed Central

    Jung, Dae Chul; Seo, Jin Won; Park, So Yeon; Lee, Sang Jin; Lee, Joo Hyuk; Kim, In Hoo

    2012-01-01

    Objective To assess the relationship between apparent diffusion coefficient (ADC) values on diffusion-weighted magnetic resonance (MR) imaging and pathologic measures of a tumor using a prostate cancer xenograft model. Materials and Methods Eighteen athymic nude mice with 36 PC-3-induced tumors were sacrificed to obtain specimens immediately after MR imaging in order to compare the findings on MR images with those seen on pathological specimens. Using a high-field small-animal MR scanner, T1- and T2-weighted imaging and DW MR imaging was performed. Tumors were then processed for Hematoxylin and Eosin staining to evaluate tumor cellularity, intratumoral necrosis and immunostaining using antibodies directed against CD31 and vascular endothelial growth factor (VEGF) to determine the levels of microvessel density (MVD). Mean ADC values that were measured on the solid portion within each tumor were compared with tumor volume, cellularity, degree of necrosis, VEGF expression, and MVD in the corresponding section of the pathological specimen. Results Mean ADC values of the solid portion within the PC-3-induced high-grade tumors were significantly correlated with the degree of intratumoral necrosis (r = 0.63, p < 0.0001) and MVD (r = -0.44, p = 0.008) on pathologic slides. The ADC values were not significantly correlated with tumor cellularity, VEGF expression, or tumor volume in high-grade prostate cancer tissues. Conclusion In the xenografted prostate cancer model, the ADC values of the solid portion of the tumors are significantly correlated with tumor necrosis and MVD of the pathologic specimens. The ADC values may be utilized as surrogate markers for the noninvasive assessment of tumor necrosis and MVD in high-grade prostate cancer. PMID:22247640

  7. A job interview in the MRI scanner: How does indirectness affect addressees and overhearers?

    PubMed

    Bašnáková, Jana; van Berkum, Jos; Weber, Kirsten; Hagoort, Peter

    2015-09-01

    In using language, people not only exchange information, but also navigate their social world - for example, they can express themselves indirectly to avoid losing face. In this functional magnetic resonance imaging study, we investigated the neural correlates of interpreting face-saving indirect replies, in a situation where participants only overheard the replies as part of a conversation between two other people, as well as in a situation where the participants were directly addressed themselves. We created a fictional job interview context where indirect replies serve as a natural communicative strategy to attenuate one's shortcomings, and asked fMRI participants to either pose scripted questions and receive answers from three putative job candidates (addressee condition) or to listen to someone else interview the same candidates (overhearer condition). In both cases, the need to evaluate the candidate ensured that participants had an active interest in comprehending the replies. Relative to direct replies, face-saving indirect replies increased activation in medial prefrontal cortex, bilateral temporo-parietal junction (TPJ), bilateral inferior frontal gyrus and bilateral middle temporal gyrus, in active overhearers and active addressees alike, with similar effect size, and comparable to findings obtained in an earlier passive listening study (Bašnáková et al., 2014). In contrast, indirectness effects in bilateral anterior insula and pregenual ACC, two regions implicated in emotional salience and empathy, were reliably stronger in addressees than in active overhearers. Our findings indicate that understanding face-saving indirect language requires additional cognitive perspective-taking and other discourse-relevant cognitive processing, to a comparable extent in active overhearers and addressees. Furthermore, they indicate that face-saving indirect language draws upon affective systems more in addressees than in overhearers, presumably because the addressee is the one being managed by a face-saving reply. In all, face-saving indirectness provides a window on the cognitive as well as affect-related neural systems involved in human communication. PMID:25858603

  8. Functional subdivision of the human periaqueductal grey in respiratory control using 7 tesla fMRI

    PubMed Central

    Faull, Olivia K.; Jenkinson, Mark; Clare, Stuart; Pattinson, Kyle T.S.

    2015-01-01

    The periaqueductal grey (PAG) is a nucleus within the midbrain, and evidence from animal models has identified its role in many homeostatic systems including respiration. Animal models have also demonstrated a columnar structure that subdivides the PAG into four columns on each side, and these subdivisions have different functions with regard to respiration. In this study we used ultra-high field functional MRI (7 T) to image the brainstem and superior cortical areas at high resolution (1 mm3 voxels), aiming to identify activation within the columns of the PAG associated with respiratory control. Our results showed deactivation in the lateral and dorsomedial columns of the PAG corresponding with short (~ 10 s) breath holds, along with cortical activations consistent with previous respiratory imaging studies. These results demonstrate the involvement of the lateral and dorsomedial PAG in the network of conscious respiratory control for the first time in humans. This study also reveals the opportunities of 7 T functional MRI for non-invasively investigating human brainstem nuclei at high-resolutions. PMID:25703831

  9. Measurement of Parenchymal Extravascular R2* and Tissue Oxygen Extraction Fraction Using Multi-echo VASO MRI at 7 Tesla

    PubMed Central

    Cheng, Ying; van Zijl, Peter C. M.; Hua, Jun

    2014-01-01

    Parenchymal extravascular R2* is an important parameter for quantitative blood-oxygenation-level-dependent (BOLD) studies. Total and intravascular R2* values and changes in R2* values during functional stimulations have been reported in a number of studies. The purpose of this study was to measure absolute extravascular R2* values in human visual cortex and estimate the intra- and extravascular contributions in the BOLD effect at 7T. Vascular-space-occupancy (VASO) MRI was employed to separate out the extravascular tissue signal. Multi-echo VASO and BOLD fMRI with visual stimulation were performed at 7T for R2* measurement at a spatial resolution of 2.5×2.5×2.5 mm3 in healthy volunteers (n = 6). The ratio of changes in extravascular and total R2* (ΔR2*) was used to estimate the extravascular fraction of the BOLD effect. Extravascular R2* were found to be 44.66 ± 1.55 s−1 and 43.38 ± 1.51 s−1 (mean ± SEM, n = 6) at rest and activation, respectively, in human visual cortex at 7T. The extravascular BOLD fraction was estimated to be 91 ± 3%. Parenchymal oxygen extraction fraction (OEF) during activation was estimated to be 0.24 ± 0.01 based on the R2*measurements, indicating an approximately 37% decrease compared to OEF at rest. PMID:25521948

  10. Multicenter, Double-Blind, Randomized, Intra-individual Crossover Comparison of Gadobenate Dimeglumine and Gadopentetate Dimeglumine in MRI of Brain Tumors at 3 Tesla

    PubMed Central

    Rumboldt, Zoran; Rowley, Howard A.; Steinberg, Fred; Maldjian, Joseph A.; Ruscalleda, Jordi; Gustafsson, Lars; Bastianello, Stefano

    2009-01-01

    Purpose To prospectively compare 0.1 mmol/kg doses of gadobenate dimeglumine and gadopentetate dimeglumine for contrast-enhanced MRI of brain lesions at 3 Tesla (T). Materials and Methods Forty-six randomized patients underwent a first examination with gadobenate dimeglumine (n = 23) or gadopentetate dimeglumine (n = 23) and then, after 2–7 days, a second examination with the other agent. Contrast administration (volume, rate), sequence parameters (T1wSE; T1wGRE), and interval between injection and image acquisition were identical for examinations in each patient. Three blinded neuroradiologists evaluated images qualitatively (lesion delineation, lesion enhancement, global preference) and quantitatively (lesion-to-brain ratio [LBR], contrast-to-noise ratio [CNR],%lesion enhancement). Differences were assessed using Wilcoxon’s signed-rank test. Reader agreement was determined using kappa (κ) statistics. Results There were no demographic differences between groups. The three readers preferred gadobenate dimeglumine globally in 22 (53.7%), 21 (51.2%), and 27 (65.9%) patients, respectively, compared with 0, 1, and 0 patients for gadopentetate dimeglumine. Similar significant (P < 0.001) preference was expressed for lesion border delineation and enhancement. Reader agreement was consistently good (κ = 0.48–0.64). Significantly (P < 0.05) higher LBR (+43.5–61.2%), CNR (+51.3–147.6%), and % lesion enhancement (+45.9–49.5%) was noted with gadobenate dimeglumine. Conclusion Brain lesion depiction at 3T is significantly improved with 0.1 mmol/kg gadobenate dimeglumine. PMID:19306364

  11. Knee MRI

    MedlinePlus

    ... may have. top of page What does the equipment look like? The traditional MRI unit is a ... in a separate room from the scanner. Some facilities use smaller extremity scanners to image the joints ...

  12. Tesla MRI of bone microarchitecture discriminates between women without and with fragility fractures who do not differ by bone mineral density.

    PubMed

    Chang, Gregory; Honig, Stephen; Liu, Yinxiao; Chen, Cheng; Chu, Kevin K; Rajapakse, Chamith S; Egol, Kenneth; Xia, Ding; Saha, Punam K; Regatte, Ravinder R

    2015-05-01

    Osteoporosis is a disease of poor bone quality. Bone mineral density (BMD) has limited ability to discriminate between subjects without and with poor bone quality, and assessment of bone microarchitecture may have added value in this regard. Our goals were to use 7 T MRI to: (1) quantify and compare distal femur bone microarchitecture in women without and with poor bone quality (defined clinically by presence of fragility fractures); and (2) determine whether microarchitectural parameters could be used to discriminate between these two groups. This study had institutional review board approval, and we obtained written informed consent from all subjects. We used a 28-channel knee coil to image the distal femur of 31 subjects with fragility fractures and 25 controls without fracture on a 7 T MRI scanner using a 3-D fast low angle shot sequence (0.234 mm × 0.234 mm × 1 mm, parallel imaging factor = 2, acquisition time = 7 min 9 s). We applied digital topological analysis to quantify parameters of bone microarchitecture. All subjects also underwent standard clinical BMD assessment in the hip and spine. Compared to controls, fracture cases demonstrated lower bone volume fraction and markers of trabecular number, plate-like structure, and plate-to-rod ratio, and higher markers of trabecular isolation, rod disruption, and network resorption (p < 0.05 for all). There were no differences in hip or spine BMD T-scores between groups (p > 0.05). In receiver-operating-characteristics analyses, microarchitectural parameters could discriminate cases and controls (AUC = 0.66-0.73, p < 0.05). Hip and spine BMD T-scores could not discriminate cases and controls (AUC = 0.58-0.64, p ≥ 0.08). We conclude that 7 T MRI can detect bone microarchitectural deterioration in women with fragility fractures who do not differ by BMD. Microarchitectural parameters might some day be used as an additional tool to detect patients with poor bone quality who cannot be detected by dual-energy X-ray absorptiometry (DXA). PMID:24752823

  13. Association between in-scanner head motion with cerebral white matter microstructure: a multiband diffusion-weighted MRI study

    PubMed Central

    2014-01-01

    Diffusion-weighted Magnetic Resonance Imaging (DW-MRI) has emerged as the most popular neuroimaging technique used to depict the biological microstructural properties of human brain white matter. However, like other MRI techniques, traditional DW-MRI data remains subject to head motion artifacts during scanning. For example, previous studies have indicated that, with traditional DW-MRI data, head motion artifacts significantly affect the evaluation of diffusion metrics. Actually, DW-MRI data scanned with higher sampling rate are important for accurately evaluating diffusion metrics because it allows for full-brain coverage through the acquisition of multiple slices simultaneously and more gradient directions. Here, we employed a publicly available multiband DW-MRI dataset to investigate the association between motion and diffusion metrics with the standard pipeline, tract-based spatial statistics (TBSS). The diffusion metrics used in this study included not only the commonly used metrics (i.e., FA and MD) in DW-MRI studies, but also newly proposed inter-voxel metric, local diffusion homogeneity (LDH). We found that the motion effects in FA and MD seems to be mitigated to some extent, but the effect on MD still exists. Furthermore, the effect in LDH is much more pronounced. These results indicate that researchers shall be cautious when conducting data analysis and interpretation. Finally, the motion-diffusion association is discussed. PMID:24795856

  14. Preliminary evaluation of a monolithic detector module for integrated PET/MRI scanner with high spatial resolution

    NASA Astrophysics Data System (ADS)

    Pani, R.; Gonzalez, A. J.; Bettiol, M.; Fabbri, A.; Cinti, M. N.; Preziosi, E.; Borrazzo, C.; Conde, P.; Pellegrini, R.; Di Castro, E.; Majewski, S.

    2015-06-01

    The proposal of Mindview European Project concerns with the development of a very high resolution and high efficiency brain dedicated PET scanner simultaneously working with a Magnetic Resonance scanner, that expects to visualize neurotransmitter pathways and their disruptions in the quest to better diagnose schizophrenia. On behalf of this project, we propose a low cost PET module for the first prototype, based on monolithic crystals, suitable to be integrated with a head Radio Frequency (RF) coil. The aim of the suggested module is to achieve high performances in terms of efficiency, planar spatial resolution (expected about 1 mm) and discrimination of gamma Depth Of Interaction (DOI) in order to reduce the parallax error. Our preliminary results are very promising: a DOI resolution of about 3 mm, a spatial resolution ranging from about 1 to 1.5 mm and a good position linearity.

  15. Patient-induced susceptibility effect on geometric distortion of clinical brain MRI for radiation treatment planning on a 3T scanner

    NASA Astrophysics Data System (ADS)

    Wang, H.; Balter, J.; Cao, Y.

    2013-02-01

    Concerns about the geometric accuracy of MRI in radiation therapy (RT) have been present since its invention. Although modern scanners typically have system levels of geometric accuracy that meet requirements of RT, subject-specific distortion is variable, and methods to in vivo assess and control patient-induced geometric distortion are not yet resolved. This study investigated the nature and magnitude of the subject-induced susceptibility effect on geometric distortions in clinical brain MRI, and tested the feasibility of in vivo quality control using field inhomogeneity mapping. For 19 consecutive patients scanned on a dedicated 3T MR scanner, B0 field inhomogeneity maps were acquired and analyzed to determine subject-induced distortions. For 3D T1 weighted images frequency-encoded with a bandwidth of 180 Hz/pixel, 86.9% of the estimated displacements were <0.5 mm, 97.4% <1 mm, and only 0.1% of displacements > 2 mm. The maximum displacement was <4 mm. The greatest distortions were observed at the interfaces with air at the sinuses. Displacements decayed to less than 1 mm over a distance of 8 mm. Metal surgical wires generated smaller distortions, with an averaged maximum displacement of 0.76 mm. Repeat acquisition of the field maps in 17 patients revealed a within-subject standard deviation of 0.25 ppm, equivalent to 0.22 mm displacement in the frequency-encoding direction in the 3D T1 weighted images. Susceptibility-induced voxel displacements in the brain are generally small, but should be monitored for precision RT. These effects are manageable at 3T and lower fields, and the methods applied can be used to monitor for potential local errors in individual patients, as well as to correct for local distortions as needed.

  16. An Approach for Preoperative Planning and Performance of MR-guided Interventions Demonstrated With a Manual Manipulator in a 1.5T MRI Scanner

    SciTech Connect

    Seimenis, Ioannis; Tsekos, Nikolaos V.; Keroglou, Christoforos; Eracleous, Eleni; Pitris, Constantinos; Christoforou, Eftychios G.

    2012-04-15

    Purpose: The aim of this work was to develop and test a general methodology for the planning and performance of robot-assisted, MR-guided interventions. This methodology also includes the employment of software tools with appropriately tailored routines to effectively exploit the capabilities of MRI and address the relevant spatial limitations. Methods: The described methodology consists of: (1) patient-customized feasibility study that focuses on the geometric limitations imposed by the gantry, the robotic hardware, and interventional tools, as well as the patient; (2) stereotactic preoperative planning for initial positioning of the manipulator and alignment of its end-effector with a selected target; and (3) real-time, intraoperative tool tracking and monitoring of the actual intervention execution. Testing was performed inside a standard 1.5T MRI scanner in which the MR-compatible manipulator is deployed to provide the required access. Results: A volunteer imaging study demonstrates the application of the feasibility stage. A phantom study on needle targeting is also presented, demonstrating the applicability and effectiveness of the proposed preoperative and intraoperative stages of the methodology. For this purpose, a manually actuated, MR-compatible robotic manipulation system was used to accurately acquire a prescribed target through alternative approaching paths. Conclusions: The methodology presented and experimentally examined allows the effective performance of MR-guided interventions. It is suitable for, but not restricted to, needle-targeting applications assisted by a robotic manipulation system, which can be deployed inside a cylindrical scanner to provide the required access to the patient facilitating real-time guidance and monitoring.

  17. Probabilistic atlas-based segmentation of combined T1-weighted and DUTE MRI for calculation of head attenuation maps in integrated PET/MRI scanners.

    PubMed

    Poynton, Clare B; Chen, Kevin T; Chonde, Daniel B; Izquierdo-Garcia, David; Gollub, Randy L; Gerstner, Elizabeth R; Batchelor, Tracy T; Catana, Ciprian

    2014-01-01

    We present a new MRI-based attenuation correction (AC) approach for integrated PET/MRI systems that combines both segmentation- and atlas-based methods by incorporating dual-echo ultra-short echo-time (DUTE) and T1-weighted (T1w) MRI data and a probabilistic atlas. Segmented atlases were constructed from CT training data using a leave-one-out framework and combined with T1w, DUTE, and CT data to train a classifier that computes the probability of air/soft tissue/bone at each voxel. This classifier was applied to segment the MRI of the subject of interest and attenuation maps (μ-maps) were generated by assigning specific linear attenuation coefficients (LACs) to each tissue class. The μ-maps generated with this "Atlas-T1w-DUTE" approach were compared to those obtained from DUTE data using a previously proposed method. For validation of the segmentation results, segmented CT μ-maps were considered to the "silver standard"; the segmentation accuracy was assessed qualitatively and quantitatively through calculation of the Dice similarity coefficient (DSC). Relative change (RC) maps between the CT and MRI-based attenuation corrected PET volumes were also calculated for a global voxel-wise assessment of the reconstruction results. The μ-maps obtained using the Atlas-T1w-DUTE classifier agreed well with those derived from CT; the mean DSCs for the Atlas-T1w-DUTE-based μ-maps across all subjects were higher than those for DUTE-based μ-maps; the atlas-based μ-maps also showed a lower percentage of misclassified voxels across all subjects. RC maps from the atlas-based technique also demonstrated improvement in the PET data compared to the DUTE method, both globally as well as regionally. PMID:24753982

  18. Integrating a MRI scanner with a 6 MV radiotherapy accelerator: dose deposition in a transverse magnetic field

    NASA Astrophysics Data System (ADS)

    Raaymakers, B. W.; Raaijmakers, A. J. E.; Kotte, A. N. T. J.; Jette, D.; Lagendijk, J. J. W.

    2004-09-01

    Integrating magnetic resonance imaging (MRI) functionality with a radiotherapy accelerator can facilitate on-line, soft-tissue based, position verification. A technical feasibility study, in collaboration with Elekta Oncology Systems and Philips Medical Systems, led to the preliminary design specifications of a MRI accelerator. Basically the design is a 6 MV accelerator rotating around a 1.5 T MRI system. Several technical issues and the clinical rational are currently under investigation. The aim of this paper is to determine the impact of the transverse 1.5 T magnetic field on the dose deposition. Monte Carlo simulations were used to calculate the dose deposition kernel in the presence of 1.5 T. This kernel in turn was used to determine the dose deposition for larger fields. Also simulations and measurements were done in the presence of 1.1 T. The pencil beam dose deposition is asymmetric. For larger fields the asymmetry persists but decreases. For the latter the distance to dose maximum is reduced by approximately 5 mm, the penumbra is increased by approximately 1 mm, and the 50% isodose line is shifted approximately 1 mm. The dose deposition in the presence of 1.5 T is affected, but the effect can be taken into account in a conventional treatment planning procedure. The impact of the altered dose deposition for clinical IMRT treatments is the topic of further research.

  19. Real time MRI-ultrasound image guided stereotactic prostate biopsy.

    PubMed

    Kaplan, Irving; Oldenburg, Nicklas E; Meskell, Paul; Blake, Michael; Church, Paul; Holupka, Edward J

    2002-04-01

    To report a technique for target directed transperineal ultrasound guided biopsy using high resolution endorectal MRI images Ultrasound fusion. Two patients presented after external beam irradiation for prostate cancer with a rising PSA. An Endorectal MRI using a 1.5 Tesla scanner was obtained. Subsequently a Transrectal Ultrasound guided biopsy was performed. The Ultrasound probe was fixed to a stepper-stabilizer to provide a reference coordinate system for stereotaxic needle biopsy needle placement. The MRI image set was fused to the Ultrasound images in real time. Abnormal areas determined in the MR images were targeted for biopsy. Recurrent prostate carcinoma was detected pathologically in 3 of 4 stereotactic biopsies. Abnormal areas suspicious for cancer detected on T1 weighted images obtained in a strong field Endorectal MRI scan can be targeted for stereotactic biopsy using Transrectal Ultrasound. This image guide technique may be very useful in directing biopsies. PMID:12117612

  20. Slice profile distortions in single slice continuously moving table MRI

    NASA Astrophysics Data System (ADS)

    Sengupta, Saikat; Smith, David S.; Welch, E. B.

    2015-03-01

    Continuously Moving Table (CMT) MRI is a rapid imaging technique that allows scanning of extended fields of view (FOVs) such as the whole-body in a single continuous scan.1 A highly efficient approach to CMT MRI is single slice imaging, where data are continuously acquired from a single axial slice at isocenter with concurrent movement of the patient table.2 However, the continuous motion of the scanner table and supply of fresh magnetization into the excited slice can introduce deviations in the slice magnetization profile. The goal of this work is to investigate and quantify the distortion in the slice profile in CMT MRI. CMT MRI with a table speed of 20 mm/s was implemented on a 3 Tesla whole-body MRI scanner, with continuous radial data acquisition. Simulations were performed to characterize the transient and steady state slice profiles and magnetization effects. Simulated slice profiles were compared to actual slice profile measurements performed in the scanner. Both simulations and experiments revealed an asymmetric slice profile characterized by a skew towards the lagging edge of the moving table, in contrast to the nominal profiles associated with scanning a stationary object. The true excited slice width (FWHM) and pitch of the acquisition was observed to be dependent on table velocity, with larger table speeds resulting in larger slice profile deviations from the nominal shape.

  1. Integrating a MRI scanner with a 6 MV radiotherapy accelerator: dose increase at tissue air interfaces in a lateral magnetic field due to returning electrons

    NASA Astrophysics Data System (ADS)

    Raaijmakers, A. J. E.; Raaymakers, B. W.; Lagendijk, J. J. W.

    2005-04-01

    In the framework of the development of the integration of a MRI-scanner with a linear accelerator, the influence of a lateral, magnetic field on the dose distribution has to be determined. Dose increase is expected at tissue-air boundaries, due to the electron return effect (ERE): electrons entering air will describe a circular path and return into the phantom causing extra dose deposition. Using IMRT with many beam directions, this exit dose will not constitute a problem. Dose levels behind air cavities will decrease because of the absence of electrons crossing the cavity. The ERE has been demonstrated both by simulation and experiment. Monte Carlo simulations are performed with GEANT4, irradiating a water-air-water phantom in a lateral magnetic field. Also an air tube in water has been simulated, resulting in slightly twisted regions of dose increase and decrease. Experimental demonstration is achieved by film measurement in a perspex-air-perspex phantom in an electromagnet. Although the ERE causes dose increase before air cavities, relatively flat dose profiles can be obtained for the investigated cases using opposite beam configurations. More research will be necessary whether this holds for more realistic geometries with the use of IMRT and whether the ERE can be turned to our advantage when treating small tumour sites at air cavities.

  2. Edison vs. Tesla

    ScienceCinema

    Hogan, Kathleen; Wallace, Hal; Ivestor, Rob

    2014-01-07

    As Edison vs. Tesla week heats up at the Energy Department, we are exploring the rivalry between Thomas Edison and Nikola Tesla and how their work is still impacting the way we use energy today. Whether you're on Team Tesla or Team Edison, both inventors were key players in creating things like batteries, power plants and wireless technologies -- all innovations we still use today. And as we move toward a clean energy future, energy efficient lighting, like LED bulbs, and more efficient electric motors not only help us save money on electricity costs but help combat climate change. For this, Tesla and Edison both deserve our recognition.

  3. Edison vs. Tesla

    SciTech Connect

    Hogan, Kathleen; Wallace, Hal; Ivestor, Rob

    2013-11-20

    As Edison vs. Tesla week heats up at the Energy Department, we are exploring the rivalry between Thomas Edison and Nikola Tesla and how their work is still impacting the way we use energy today. Whether you're on Team Tesla or Team Edison, both inventors were key players in creating things like batteries, power plants and wireless technologies -- all innovations we still use today. And as we move toward a clean energy future, energy efficient lighting, like LED bulbs, and more efficient electric motors not only help us save money on electricity costs but help combat climate change. For this, Tesla and Edison both deserve our recognition.

  4. Layer-Specific Manganese-Enhanced MRI of the Diabetic Rat Retina in Light and Dark Adaptation at 11.7 Tesla

    PubMed Central

    Muir, Eric R.; Chandra, Saurav B.; De La Garza, Bryan H.; Velagapudi, Chakradhar; Abboud, Hanna E.; Duong, Timothy Q.

    2015-01-01

    Purpose. To employ high-resolution manganese-enhanced MRI (MEMRI) to study abnormal calcium activity in different cell layers in streptozotocin-induced diabetic rat retinas, and to determine whether MEMRI detects changes at earlier time points than previously reported. Methods. Sprague-Dawley rats were studied 14 days (n = 8) and 30 days (n = 5) after streptozotocin (STZ) or vehicle (n = 7) injection. Manganese-enhanced MRI at 20 × 20 × 700 μm, in which contrast is based on manganese as a calcium analogue and an MRI contrast agent, was obtained in light and dark adaptation of the retina in the same animals in which one eye was covered and the fellow eye was not. The MEMRI activity encoding of the light and dark adaptation was achieved in awake conditions and imaged under anesthesia. Results. Manganese-enhanced MRI showed three layers, corresponding to the inner retina, outer retina, and the choroid. In normal animals, the outer retina showed higher MEMRI activity in dark compared to light; the inner retina displayed lower activity in dark compared to light; and the choroid showed no difference in activity. Manganese-enhanced MRI activity changed as early as 14 days after hyperglycemia and decreased with duration of hyperglycemia in the outer retina in dark relative to light adaptation. The choroid also had altered MEMRI activity at 14 days, which returned to normal by 30 days. No differences in MEMRI activity were detected in the inner retina. Conclusions. Manganese-enhanced MRI detects progressive reduction in calcium activity with duration of hyperglycemia in the outer retina as early as 14 days after hyperglycemia, earlier than any other time point reported in the literature. PMID:26098468

  5. An fMRI-compatible multi-configurable handheld response system using an intensity-modulated fiber-optic sensor.

    PubMed

    Jarrahi, Behnaz; Wanek, Johann; Mehnert, Ulrich; Kollias, Spyros

    2013-01-01

    Functional magnetic resonance imaging (fMRI) data should be interpreted in combination and in the context of relevant behavioral measurements. However, the strong magnetic environment of MRI scanner and the supine position of participants in the scanner significantly limit how participants' behavioral responses are recorded. This paper presents the design of a low-cost handheld response system (HRS) with a multi-configurable optomechanical design that utilizes a reflective-type intensity modulated fiber-optic sensor (FOS) and a programmable visual interface to accurately gather participants' behavioral responses during an fMRI experiment. Considering the effects of an input unit design on the participants' performance efficiency across age groups and physical and neurological (dis)ability, the optomechanical system is designed to provide flexibility in the range of an input module with easy change-out feature. Specifically, the input unit can be configured as a binary module such as push buttons or as an analog input device including a scrolling wheel, and one-dimensional joystick (lever arm). To achieve MRI-compatibility, all parts of the unit that are used inside the scanner bore are built from nonferromagnetic and off-the-shelf plastic materials. The MRI compatibility was evaluated on a 3.0 Tesla MRI scanner running echo planar imaging (EPI) and the average time-variant signal-to-noise ratio (tSNR) loss is limited to 2%. PMID:24111193

  6. Non-Enhanced MR Imaging of Cerebral Aneurysms: 7 Tesla versus 1.5 Tesla

    PubMed Central

    Wrede, Karsten H.; Dammann, Philipp; Mönninghoff, Christoph; Johst, Sören; Maderwald, Stefan; Sandalcioglu, I. Erol; Müller, Oliver; Özkan, Neriman; Ladd, Mark E.; Forsting, Michael; Schlamann, Marc U.; Sure, Ulrich; Umutlu, Lale

    2014-01-01

    Purpose To prospectively evaluate 7 Tesla time-of-flight (TOF) magnetic resonance angiography (MRA) in comparison to 1.5 Tesla TOF MRA and 7 Tesla non-contrast enhanced magnetization-prepared rapid acquisition gradient-echo (MPRAGE) for delineation of unruptured intracranial aneurysms (UIA). Material and Methods Sixteen neurosurgical patients (male n = 5, female n = 11) with single or multiple UIA were enrolled in this trial. All patients were accordingly examined at 7 Tesla and 1.5 Tesla MRI utilizing dedicated head coils. The following sequences were obtained: 7 Tesla TOF MRA, 1.5 Tesla TOF MRA and 7 Tesla non-contrast enhanced MPRAGE. Image analysis was performed by two radiologists with regard to delineation of aneurysm features (dome, neck, parent vessel), presence of artifacts, vessel-tissue-contrast and overall image quality. Interobserver accordance and intermethod comparisons were calculated by kappa coefficient and Lin's concordance correlation coefficient. Results A total of 20 intracranial aneurysms were detected in 16 patients, with two patients showing multiple aneurysms (n = 2, n = 4). Out of 20 intracranial aneurysms, 14 aneurysms were located in the anterior circulation and 6 aneurysms in the posterior circulation. 7 Tesla MPRAGE imaging was superior over 1.5 and 7 Tesla TOF MRA in the assessment of all considered aneurysm and image quality features (e.g. image quality: mean MPRAGE7T: 5.0; mean TOF7T: 4.3; mean TOF1.5T: 4.3). Ratings for 7 Tesla TOF MRA were equal or higher over 1.5 Tesla TOF MRA for all assessed features except for artifact delineation (mean TOF7T: 4.3; mean TOF1.5T 4.4). Interobserver accordance was good to excellent for most ratings. Conclusion 7 Tesla MPRAGE imaging demonstrated its superiority in the detection and assessment of UIA as well as overall imaging features, offering excellent interobserver accordance and highest scores for all ratings. Hence, it may bear the potential to serve as a high-quality diagnostic tool for pretherapeutic assessment and follow-up of untreated UIA. PMID:24400100

  7. Can the Neural Basis of Repression Be Studied in the MRI Scanner? New Insights from Two Free Association Paradigms

    PubMed Central

    Kessler, Henrik; Do Lam, Anne T. A.; Fell, Juergen; Schmidt, Anna-Christine; Axmacher, Nikolai

    2013-01-01

    Background The psychodynamic theory of repression suggests that experiences which are related to internal conflicts become unconscious. Previous attempts to investigate repression experimentally were based on voluntary, intentional suppression of stimulus material. Unconscious repression of conflict-related material is arguably due to different processes, but has never been studied with neuroimaging methods. Methods We used functional magnetic resonance imaging (fMRI) in addition with skin conductance recordings during two free association paradigms to identify the neural mechanisms underlying forgetting of freely associated words according to repression theory. Results In the first experiment, free association to subsequently forgotten words was accompanied by increases in skin conductance responses (SCRs) and reaction times (RTs), indicating autonomic arousal, and by activation of the anterior cingulate cortex. These findings are consistent with the hypothesis that these associations were repressed because they elicited internal conflicts. To test this idea more directly, we conducted a second experiment in which participants freely associated to conflict-related sentences. Indeed, these associations were more likely to be forgotten than associations to not conflict-related sentences and were accompanied by increases in SCRs and RTs. Furthermore, we observed enhanced activation of the anterior cingulate cortex and deactivation of hippocampus and parahippocampal cortex during association to conflict-related sentences. Conclusions These two experiments demonstrate that high autonomic arousal during free association predicts subsequent memory failure, accompanied by increased activation of conflict-related and deactivation of memory-related brain regions. These results are consistent with the hypothesis that during repression, explicit memory systems are down-regulated by the anterior cingulate cortex. PMID:23638050

  8. Sodium-23 MRI of whole spine at 3 Tesla using a 5-channel receive-only phased-array and a whole-body transmit resonator.

    PubMed

    Malzacher, Matthias; Kalayciyan, Raffi; Konstandin, Simon; Haneder, Stefan; Schad, Lothar R

    2016-03-01

    Sodium magnetic resonance imaging ((23)Na MRI) is a unique and non-invasive imaging technique which provides important information on cellular level about the tissue of the human body. Several applications for (23)Na MRI were investigated with regard to the examination of the tissue viability and functionality for example in the brain, the heart or the breast. The (23)Na MRI technique can also be integrated as a potential monitoring instrument after radiotherapy or chemotherapy. The main contribution in this work was the adaptation of (23)Na MRI for spine imaging, which can provide essential information on the integrity of the intervertebral disks with respect to the early detection of disk degeneration. In this work, a transmit-only receive-only dual resonator system was designed and developed to cover the whole human spine using (23)Na MRI and increase the receive sensitivity. The resonator system consisted of an already presented (23)Na whole-body resonator and a newly developed 5-channel receive-only phased-array. The resonator system was first validated using bench top and phantom measurements. A threefold SNR improvement at the depth of the spine (∼7cm) over the whole-body resonator was achieved using the spine array. (23)Na MR measurements of the human spine using the transmit-only receive-only resonator system were performed on a healthy volunteer within an acquisition time of 10minutes. A density adapted 3D radial sequence was chosen with 6mm isotropic resolution, 49ms repetition time and a short echo time of 540μs. Furthermore, it was possible to quantify the tissue sodium concentration in the intervertebral discs in the lumbar region (120ms repetition time) using this setup. PMID:25891846

  9. Skin and proximity effects in the conductors of split gradient coils for a hybrid Linac-MRI scanner

    NASA Astrophysics Data System (ADS)

    Tang, Fangfang; Lopez, Hector Sanchez; Freschi, Fabio; Smith, Elliot; Li, Yu; Fuentes, Miguel; Liu, Feng; Repetto, Maurizio; Crozier, Stuart

    2014-05-01

    In magnetic resonance imaging (MRI), rapidly changing gradient fields are applied to encode the magnetic resonance signal with spatial position; however eddy currents are induced in the surrounding conducting structures depending on the geometry of the conductor and the excitation waveform. These alternating fields change the spatial profile of the current density within the coil track with the applied frequencies of the input waveform and by their proximity to other conductors. In this paper, the impact of the conductor width and the excited frequency over the parameters that characterise the performance of split transverse and longitudinal gradient coils are studied. Thirty x-gradient coils were designed using a “free-surface” coil design method and the track width was varied from 1 mm to 30 mm with an increment value of 1 mm; a frequency sweep analysis in the range of 100 Hz to 10 kHz was performed using the multi-layer integral method (MIM) and parameters such as power loss produced by the coil and generated in the cryostat, inductance, coil efficiency (field strength/operating current), magnetic field profile produced by the coil and the eddy currents were studied. An experimental validation of the theoretical model was performed on an example coil. Coils with filamentary conductor segments were also studied to compare the simulated parameters with those produced by coils with a finite track. There was found to be a significant difference between the parameters calculated using filamentary coils and those obtained when the coil is simulated using finite size tracks. A wider track width produces coil with superior efficiency and low resistance; however, due to the skin effect, the power loss increases faster in wider tracks than in those generated in coils with narrow tracks. It was demonstrated that rapidly changing current paths must be avoided in order to mitigate the power loss and the spatial asymmetry in the current density profile. The decision of using narrow or wider tracks in split coils should be carefully investigated using a temperature analysis which includes skin and proximity effects.

  10. A Prototype RF Dosimeter for Independent Measurement of the Average Specific Absorption Rate (SAR) During MRI

    PubMed Central

    Stralka, John P; Bottomley, Paul A

    2008-01-01

    Purpose To develop a scanner-independent dosimeter for measuring the average radio frequency (RF) power deposition and specific absorption rates (SAR) for human MRI exposure. Materials and Methods A prototype dosimeter has a transducer with orthogonal conducting loops surrounding a small signal-generating MRI sample. The loops contain resistors whose values are adjusted to load the scanner’s MRI coils equivalent to an average head or body during MRI. The scanner adjusts its power output to normal levels during setup, using the MRI sample. Following calibration, the total power and average SAR deposited in the transducer are measured from the root-mean-square (rms) power induced in the transducer during MRI. Results A 1.5 Tesla head transducer was adjusted to elicit the same load as the average of nine adult volunteers. Once adjusted, the transducer loads other head coils the same as the head does. The dosimeter is calibrated at up to 20 W total deposited power and 4.5 W/kg SAR in the average head, with about 5% accuracy. Conclusion This dosimeter provides a simple portable means of measuring the power deposited in a body-equivalent sample load, independent of the scanner. Further work will develop SAR dosimetry for the torso and for higher fields. PMID:17969145

  11. Integrating structural and functional imaging for computer assisted detection of prostate cancer on multi-protocol in vivo 3 Tesla MRI

    NASA Astrophysics Data System (ADS)

    Viswanath, Satish; Bloch, B. Nicolas; Rosen, Mark; Chappelow, Jonathan; Toth, Robert; Rofsky, Neil; Lenkinski, Robert; Genega, Elizabeth; Kalyanpur, Arjun; Madabhushi, Anant

    2009-02-01

    Screening and detection of prostate cancer (CaP) currently lacks an image-based protocol which is reflected in the high false negative rates currently associated with blinded sextant biopsies. Multi-protocol magnetic resonance imaging (MRI) offers high resolution functional and structural data about internal body structures (such as the prostate). In this paper we present a novel comprehensive computer-aided scheme for CaP detection from high resolution in vivo multi-protocol MRI by integrating functional and structural information obtained via dynamic-contrast enhanced (DCE) and T2-weighted (T2-w) MRI, respectively. Our scheme is fully-automated and comprises (a) prostate segmentation, (b) multimodal image registration, and (c) data representation and multi-classifier modules for information fusion. Following prostate boundary segmentation via an improved active shape model, the DCE/T2-w protocols and the T2-w/ex vivo histological prostatectomy specimens are brought into alignment via a deformable, multi-attribute registration scheme. T2-w/histology alignment allows for the mapping of true CaP extent onto the in vivo MRI, which is used for training and evaluation of a multi-protocol MRI CaP classifier. The meta-classifier used is a random forest constructed by bagging multiple decision tree classifiers, each trained individually on T2-w structural, textural and DCE functional attributes. 3-fold classifier cross validation was performed using a set of 18 images derived from 6 patient datasets on a per-pixel basis. Our results show that the results of CaP detection obtained from integration of T2-w structural textural data and DCE functional data (area under the ROC curve of 0.815) significantly outperforms detection based on either of the individual modalities (0.704 (T2-w) and 0.682 (DCE)). It was also found that a meta-classifier trained directly on integrated T2-w and DCE data (data-level integration) significantly outperformed a decision-level meta-classifier, constructed by combining the classifier outputs from the individual T2-w and DCE channels.

  12. Scanner Art

    ERIC Educational Resources Information Center

    Jaworski, Joy; Murphy, Kris

    2009-01-01

    In this article, the authors describe how they incorporated environmental awareness into their art curriculum. Here, they describe a digital photography project in which their students used flatbed scanners as cameras. Their students composed their objects directly on the scanner. The lesson enabled students to realize that artists have voices…

  13. Scanner Art

    ERIC Educational Resources Information Center

    Jaworski, Joy; Murphy, Kris

    2009-01-01

    In this article, the authors describe how they incorporated environmental awareness into their art curriculum. Here, they describe a digital photography project in which their students used flatbed scanners as cameras. Their students composed their objects directly on the scanner. The lesson enabled students to realize that artists have voices

  14. High-resolution diffusion-weighted imaging for the separation of benign from malignant BI-RADS 4/5 lesions found on breast MRI at 3 Tesla

    PubMed Central

    Wisner, Dorota J.; Rogers, Nathan; Deshpande, Vibhas S.; Newitt, David N.; Laub, Gerhard A.; Porter, David A.; Kornak, John; Joe, Bonnie N.; Hylton, Nola M.

    2013-01-01

    Purpose To determine whether readout-segmented echo-planar diffusion imaging (RESOLVE) improves separation of malignant versus benign lesions compared to standard single-shot echo-planar imaging (ss-EPI) on BI-RADS 4/5 lesions detected on breast MRI. Materials and Methods Consecutive 3T breast MRI studies with BI-RADS 4/5 designation and subsequent biopsy or benign mastectomy were retrospectively identified. Freehand ROI’s were drawn on lesions and also on normal background fibroglandular tissue for comparison. Lesion-to-background contrast was evaluated by normalizing signal intensity of the lesion ROI by the normal background tissue ROI at b=800. Statistical analysis used the Mann-Whitney/Wilcoxon rank-sum test for unpaired and Wilcoxon signed-rank for paired comparisons. Results Of 38 lesions in 32 patients,10 were malignant. Lesion-to-background contrast was higher on RESOLVE than ss-EPI (1.80±0.71 vs. 1.62±0.63, p=0.03). Mean ADC was the same or lower on RESOLVE than ss-EPI, and this effect was largest in malignant lesions (RESOLVE 0.90±0.13; ss-EPI 1.00±0.13; median difference −0.10 (95%CI: −0.17,−0.02) ×10−3mm2/sec; p=0.014). By either diffusion method, there was a statistically significant difference between benign and malignant mean ADC (p<0.001). Conclusion Increased lesion-to-background contrast and improved separation of benign from malignant lesions by RESOLVE compared to standard diffusion, suggest that RESOLVE may show promise as an adjunct to clinical breast MRI. PMID:24214467

  15. The TESLA RF System

    NASA Astrophysics Data System (ADS)

    Choroba, S.

    2003-12-01

    The TESLA project proposed by the TESLA collaboration in 2001 is a 500 to 800GeV e+/e- linear collider with integrated free electron laser facility. The accelerator is based on superconducting cavity technology. Approximately 20000 superconducting cavities operated at 1.3GHz with a gradient of 23.4MV/m or 35MV/m will be required to achieve the energy of 500GeV or 800GeV respectively. For 500GeV ˜600 RF stations each generating 10MW of RF power at 1.3GHz at a pulse duration of 1.37ms and a repetition rate of 5 or 10Hz are required. The original TESLA design was modified in 2002 and now includes a dedicated 20GeV electron accelerator in a separate tunnel for free electron laser application. The TESLA XFEL will provide XFEL radiation of unprecedented peak brilliance and full transverse coherence in the wavelength range of 0.1 to 6.4nm at a pulse duration of 100fs. The technology of both accelerators, the TESLA linear collider and the XFEL, will be identical, however the number of superconducting cavities and RF stations for the XFEL will be reduced to 936 and 26 respectively. This paper describes the layout of the entire RF system of the TESLA linear collider and the TESLA XFEL and gives an overview of its various subsystems and components.

  16. MRI

    MedlinePlus

    ... tunnel-shaped scanner. Some exams require a special dye (contrast). Most of the time, the dye will be given through a vein (IV) in your hand or forearm before the test. The dye helps the radiologist see certain areas more clearly. ...

  17. In Search Of Increased SNR: Opportunities and Challenges for MRI

    NASA Astrophysics Data System (ADS)

    Blackband, Stephen J.

    2004-10-01

    More than thiry years since its inception, Magnetic Resonance Imaging (MRI) continues to evolve, with improved capabilities driven by technological advances. Primary amongst these advances has been the use of ever increasing magnetic fields, and subsequent RF coil technology development. Higher field strengths bring with it benefits and challenges. Regarding benefits, improved SNR can be traded for spatial resolution that approaches the microscopic, and examples of microimaging of isolated tissues and single cells will be given. With improved sensitivity, exciting possibilities are being developed for discerning the origins of MR signals in tissues at the cellular level. Regarding challenges, it was initially predicted in the 1970s that human imaging above 10 MHz would be impractical. However MRI has evolved with human scanners operating above 200 MHz, with even higher field magnets in the planning stages. Some image inhomogeneities are manifested in proton images at 7 and 8 Tesla, but can be accomodated. We have recently demonstrated gross image distortions on MR images at 11.1 Tesla on samples the size of a human head. Signal nulls seriously impinge on the utility of proton MRI at these high fields for human studies. Without solutions, these effects may diminish the motivation to develop higher field magnets. Strategies for mitigating these effects will be discussed. The ultimate limits of high field MRI have yet to be reached.

  18. In Vivo13C Magnetic Resonance Spectroscopy of Human Brain on a Clinical 3 Tesla Scanner Using [2-13C]Glucose Infusion and Low Power Stochastic Decoupling

    PubMed Central

    Li, Shizhe; Zhang, Yan; Wang, Shumin; Yang, Jehoon; Araneta, Maria Ferraris; Farris, Amanda; Johnson, Christopher; Fox, Stephen; Innis, Robert; Shen, Jun

    2009-01-01

    This study presents the detection of [2-13C]glucose metabolism in the carboxylic/amide region in the human brain, and demonstrates that the cerebral metabolism of [2-13C]glucose can be studied in human subjects in the presence of severe hardware constraints of widely available 3 T clinical scanners and with low power stochastic decoupling. In the carboxylic/amide region of human brain, the primary products of 13C label incorporation from [2-13C]glucose into glutamate, glutamine, aspartate, γ-aminobutyric acid, and N-acetylaspartate were detected. Unlike the commonly used alkanyl region where lipid signals spread over a broad frequency range, the carboxylic carbon signal of lipids was found to be confined to a narrow range centered at 172.5 ppm and present no spectral interference in the absence of lipid suppression. Comparison using phantoms shows that stochastic decoupling is far superior than the commonly used WALTZ sequence at very low decoupling power at 3 T. It was found that glutamine C1 and C5 can be decoupled using stochastic decoupling at 2.2 W although glutamine protons span a frequency range of ∼700 Hz. Detailed specific absorption rate analysis was also performed using finite difference time domain numerical simulation. PMID:19526500

  19. Diffusion-Weighted Imaging in 3.0 Tesla Breast MRI: Diagnostic Performance and Tumor Characterization Using Small Subregions vs. Whole Tumor Regions of Interest

    PubMed Central

    Arponent, Otso; Sudah, Mazen; Masarwah, Amro; Taina, Mikko; Rautiainen, Suvi; Könönen, Mervi; Sironen, Reijo; Kosma, Veli-Matti; Sutela, Anna; Hakumäki, Juhana; Vanninen, Ritva

    2015-01-01

    Introduction Apparent diffusion coefficient (ADC) values are increasingly reported in breast MRI. As there is no standardized method for ADC measurements, we evaluated the effect of the size of region of interest (ROI) to diagnostic utility and correlation to prognostic markers of breast cancer. Methods This prospective study was approved by the Institutional Ethics Board; the need for written informed consent for the retrospective analyses of the breast MRIs was waived by the Chair of the Hospital District. We compared diagnostic accuracy of ADC measurements from whole-lesion ROIs (WL-ROIs) to small subregions (S-ROIs) showing the most restricted diffusion and evaluated correlations with prognostic factors in 112 consecutive patients (mean age 56.2±11.6 years, 137 lesions) who underwent 3.0-T breast MRI. Results Intra- and interobserver reproducibility were substantial (κ = 0.616–0.784; Intra-Class Correlation 0.589–0.831). In receiver operating characteristics analysis, differentiation between malignant and benign lesions was excellent (area under curve 0.957–0.962, cut-off ADC values for WL-ROIs: 0.87×10−3 mm2s-1; S-ROIs: 0.69×10−3 mm2s-1, P<0.001). WL-ROIs/S-ROIs achieved sensitivities of 95.7%/91.3%, specificities of 89.5%/94.7%, and overall accuracies of 89.8%/94.2%. In S-ROIs, lower ADC values correlated with presence of axillary metastases (P = 0.03), high histological grade (P = 0.006), and worsened Nottingham Prognostic Index Score (P<0.05). In both ROIs, ADC values correlated with progesterone receptors and advanced stage (P<0.01), but not with HER2, estrogen receptors, or Ki-67. Conclusions ADC values assist in breast tumor characterization. Small ROIs were more accurate than whole-lesion ROIs and more frequently associated with prognostic factors. Cut-off values differed significantly depending on measurement procedure, which should be recognized when comparing results from the literature. Instead of using a whole lesion covering ROI, a small ROI could be advocated in diffusion-weighted imaging. PMID:26458106

  20. 3.0 Tesla MRI in the early evaluation of inferior alveolar nerve neurological complications after mandibular third molar extraction: a prospective study

    PubMed Central

    Pranno, N; Barchetti, F; Sorrentino, V; Lo Mele, L

    2014-01-01

    Objectives: To evaluate the use of 3.0 T MRI in the prognosis of inferior alveolar nerve (IAN) sensory disorders after mandibular third molar extraction, in the early post-operative period. Methods: 343 IANs were examined before and 3 days after surgery. Two radiologists evaluated the course of the nerve and the relative signal intensity (RSI). Cohen's kappa coefficient (κ) and intraclass correlation coefficient (ICC) were used to evaluate the interobserver (k = 0.891) and intra-observer variability (ICC = 0.927; 0.914, respectively). The IANs were divided into four groups on the basis of neurosensory disorders recovery time. ANOVA was used to evaluate the differences among the RSIs of the four groups, and multiple comparisons were performed with Tukey's range test. Results: No differences in the course of IANs were found before and after surgery. In 280 IANs, no iatrogenic paraesthesia was found (Group A). 63 IANs showed a neurosensory impairment. 38 IANs showed recovery of post-operative paraesthesia at 3-month follow-up (Group B). 16 IANs showed a full recovery of iatrogenic paraesthesia at 6-month follow-up (Group C). Seven IANs displayed a full recovery at 12-month follow-up and two IANs showed persistence of neurosensory disorders at 18-month follow-up (Group D). The one-way ANOVA results indicated statistically significant difference among all groups (p < 0.05), except between Groups C and D (p = 0.504). Conclusions: The early evaluation of RSI values represents a valid tool to determine the prognosis of IAN sensory disorders after mandibular third molar extraction. PMID:24947977

  1. Functional MRI compliance in children with attention deficit hyperactivity disorder

    PubMed Central

    Karakaş, Sirel; Dinçer, Elvin Doğutepe; Ceylan, Arzu Özkan; Tileylioğlu, Emre; Karakaş, Hakkı Muammer; Talı, E. Turgut

    2015-01-01

    PURPOSE We aimed to test the effect of prescan training and orientation in functional magnetic resonance imaging (fMRI) in children with attention deficit hyperactivity disorder (ADHD) and to investigate whether fMRI compliance was modified by state anxiety. METHODS Subjects included 77 males aged 6–12 years; there were 53 patients in the ADHD group and 24 participants in the healthy control group. Exclusion criteria included neurological and/or psychiatric comorbidities (other than ADHD), the use of psychoactive drugs, and an intelligence quotient outside the normal range. Children were individually subjected to prescan orientation and training. Data were acquired using a 1.5 Tesla scanner and an 8-channel head coil. Functional scans were performed using a standard neurocognitive task. RESULTS The neurocognitive task led to reliable fMRI maps. Compliance was not significantly different between ADHD and control groups based on success, failure, and repetition rates of fMRI. Compliance of ADHD patients with extreme levels of anxiety was also not significantly different. CONCLUSION The fMRI compliance of ADHD children is typically lower than that of healthy children. However, compliance can be increased to the level of age-matched healthy control children by addressing concerns about the technical and procedural aspects of fMRI, providing orientation programs, and performing on-task training. In patients thus trained, compliance does not change with the level of state anxiety suggesting that the anxiety hypothesis of fMRI compliance is not supported. PMID:25519454

  2. MRI.

    PubMed

    Silvestri, Dianne

    2016-03-01

    This poem describes the experience of having an MRI performed. The writer describes the jolting magnets against her banging heart. She closes her eyes and remembers reclining against her husband in a gondola in Venice. (PsycINFO Database Record PMID:26963782

  3. Cylindrical Scanner

    Energy Science and Technology Software Center (ESTSC)

    1999-04-29

    The CS system is designed to provide a very fast imaging system in order to search for weapons on persons in an airport environment. The Cylindrical Scanner moves a vertical transceiver array rapidly around a person standing stationary. The software can be segmented in to three specific tasks. The first task is data acquisition and scanner control. At the operator's request, this task commands the scanner to move and the radar transceiver array to sendmore » data to the computer system in a known and well-ordered manner. The array is moved over the complete aperture in 10 to 12 seconds. At the completion of the array movement the second software task automatically reconstructs the high-resolution image from the radar data utilizing the integrated DSP boards. The third task displays the resulting images, as they become available, to the computer screen for user review and analysis.« less

  4. Cylindrical Scanner

    SciTech Connect

    Hall, Thomas E.

    1999-04-29

    The CS system is designed to provide a very fast imaging system in order to search for weapons on persons in an airport environment. The Cylindrical Scanner moves a vertical transceiver array rapidly around a person standing stationary. The software can be segmented in to three specific tasks. The first task is data acquisition and scanner control. At the operator's request, this task commands the scanner to move and the radar transceiver array to send data to the computer system in a known and well-ordered manner. The array is moved over the complete aperture in 10 to 12 seconds. At the completion of the array movement the second software task automatically reconstructs the high-resolution image from the radar data utilizing the integrated DSP boards. The third task displays the resulting images, as they become available, to the computer screen for user review and analysis.

  5. Photon collider at TESLA

    NASA Astrophysics Data System (ADS)

    Telnov, Valery

    2001-10-01

    High energy photon colliders ( γγ, γe) based on backward Compton scattering of laser light is a very natural addition to e +e - linear colliders. In this report, we consider this option for the TESLA project. Recent study has shown that the horizontal emittance in the TESLA damping ring can be further decreased by a factor of four. In this case, the γγ luminosity in the high energy part of spectrum can reach about (1/3) Le +e -. Typical cross-sections of interesting processes in γγ collisions are higher than those in e +e - collisions by about one order of magnitude, so the number of events in γγ collisions will be more than that in e +e - collisions. Photon colliders can, certainly, give additional information and they are the best for the study of many phenomena. The main question is now the technical feasibility. The key new element in photon colliders is a very powerful laser system. An external optical cavity is a promising approach for the TESLA project. A free electron laser is another option. However, a more straightforward solution is "an optical storage ring (optical trap)" with a diode pumped solid state laser injector which is today technically feasible. This paper briefly reviews the status of a photon collider based on the linear collider TESLA, its possible parameters and existing problems.

  6. Differences in Velopharyngeal Structure during Speech among Asians Revealed by 3-Tesla Magnetic Resonance Imaging Movie Mode

    PubMed Central

    Nunthayanon, Kulthida; Honda, Ei-ichi; Shimazaki, Kazuo; Ohmori, Hiroko; Inoue-Arai, Maristela Sayuri; Kurabayashi, Tohru; Ono, Takashi

    2015-01-01

    Objective. Different bony structures can affect the function of the velopharyngeal muscles. Asian populations differ morphologically, including the morphologies of their bony structures. The purpose of this study was to compare the velopharyngeal structures during speech in two Asian populations: Japanese and Thai. Methods. Ten healthy Japanese and Thai females (five each) were evaluated with a 3-Tesla (3 T) magnetic resonance imaging (MRI) scanner while they produced vowel-consonant-vowel syllable (/asa/). A gradient-echo sequence, fast low-angle shot with segmented cine and parallel imaging technique was used to obtain sagittal images of the velopharyngeal structures. Results. MRI was carried out in real time during speech production, allowing investigations of the time-to-time changes in the velopharyngeal structures. Thai subjects had a significantly longer hard palate and produced shorter consonant than Japanese subjects. The velum of the Thai participants showed significant thickening during consonant production and their retroglossal space was significantly wider at rest, whereas the dimensional change during task performance was similar in the two populations. Conclusions. The 3 T MRI movie method can be used to investigate velopharyngeal function and diagnose velopharyngeal insufficiency. The racial differences may include differences in skeletal patterns and soft-tissue morphology that result in functional differences for the affected structures. PMID:26273584

  7. Optical scanner

    NASA Technical Reports Server (NTRS)

    Finkel, Mitchell W. (Inventor)

    1987-01-01

    An optical scanner for imaging lines in an object plane onto a linear array in a focal plane either continuously or discretely is described. The scanner consists of a set of four mutually perpendicularly oriented plane corner mirrors which provide a reflecting path that describes a parallelogram. In addition, there is a plane parallel scanning mirror with a front and back reflecting surface located midway between the first and fourth corner mirrors. It is oriented so that in the mid-scan position it is parallel to the first corner mirror, and therefore perpendicular to the fourth corner mirror. As the scan mirror rotates, rays incident from a plurality of lines in the object plane are selectively directed through the optical system arriving at a common intersection on the back surface of the scanning mirror where the rays are colinearly directed toward a lens and then imaged onto the linear array in the focal plane. A set of compensating mirrors may be introduced just before the imaging lens to compensate for a small and generally negligible path difference delta sub l between the axial and marginal rays.

  8. Choroidal Blood Flow Decreases with Age: An MRI Study

    PubMed Central

    San Emeterio Nateras, Oscar; Harrison, Joseph M.; Muir, Eric R.; Zhang, Yi; Peng, Qi; Chalfin, Steven; Gutierrez, Juan E.; Johnson, Daniel A.; Kiel, Jeffrey W.; Duong, Timothy Q.

    2014-01-01

    Purpose To verify that a visual fixation protocol with cued eye blinks achieves sufficient stability for magnetic resonance imaging (MRI) blood-flow measurements and to determine if choroidal blood flow (ChBF) changes with age in humans. Methods The visual fixation stability achievable during an MRI scan was measured in five normal subjects using an eye-tracking camera outside the MRI scanner. Subjects were instructed to blink immediately after recorded MRI sound cues but to otherwise maintain stable visual fixation on a small target. Using this fixation protocol, ChBF was measured with MRI using a 3 Tesla clinical scanner in 17 normal subjects (24–68 years old). Arterial and intraocular pressures (IOP) were measured to calculate perfusion pressure in the same subjects. Results The mean temporal fluctuations (standard deviation) of the horizontal and vertical displacements were 29 ± 9 μm and 38 ± 11 μm within individual fixation periods, and 50 ± 34 μm and 48 ± 19 μm across different fixation periods. The absolute displacements were 67 ± 31 μm and 81 ± 26 μm. ChBF was negatively correlated with age (R =−0.7, p = 0.003), declining 2.7 ml/100 ml/min per year. There were no significant correlations between ChBF versus perfusion pressure, arterial pressure, or IOP. There were also no significant correlations between age versus perfusion pressure, arterial pressure, or IOP. Multiple regression analysis indicated that age was the only measured independent variable that was significantly correlated with ChBF (p = 0.03). Conclusions The visual fixation protocol with cued eye blinks was effective in achieving sufficient stability for MRI measurements. ChBF had a significant negative correlation with age. PMID:24655028

  9. Note: Tesla transformer damping.

    PubMed

    Reed, J L

    2012-07-01

    Unexpected heavy damping in the two winding Tesla pulse transformer is shown to be due to small primary inductances. A small primary inductance is a necessary condition of operability, but is also a refractory inefficiency. A 30% performance loss is demonstrated using a typical "spiral strip" transformer. The loss is investigated by examining damping terms added to the transformer's governing equations. A significant alteration of the transformer's architecture is suggested to mitigate these losses. Experimental and simulated data comparing the 2 and 3 winding transformers are cited to support the suggestion. PMID:22852736

  10. Note: Tesla transformer damping

    NASA Astrophysics Data System (ADS)

    Reed, J. L.

    2012-07-01

    Unexpected heavy damping in the two winding Tesla pulse transformer is shown to be due to small primary inductances. A small primary inductance is a necessary condition of operability, but is also a refractory inefficiency. A 30% performance loss is demonstrated using a typical "spiral strip" transformer. The loss is investigated by examining damping terms added to the transformer's governing equations. A significant alteration of the transformer's architecture is suggested to mitigate these losses. Experimental and simulated data comparing the 2 and 3 winding transformers are cited to support the suggestion.

  11. Resting-state fMRI in the Human Connectome Project

    PubMed Central

    Smith, Stephen M; Andersson, Jesper; Auerbach, Edward J.; Beckmann, Christian F; Bijsterbosch, Janine; Douaud, Gwenaëlle; Duff, Eugene; Feinberg, David A; Griffanti, Ludovica; Harms, Michael P; Kelly, Michael; Laumann, Timothy; Miller, Karla L; Moeller, Steen; Petersen, Steve; Power, Jonathan; Salimi-Khorshidi, Gholamreza; Snyder, Abraham Z; Vu, An; Woolrich, Mark W; Xu, Junqian; Yacoub, Essa; Ugurbil, Kamil; Van Essen, David; Glasser, Matthew F

    2013-01-01

    Resting-state functional magnetic resonance imaging (rfMRI) allows one to study functional connectivity in the brain by acquiring fMRI data while subjects lie inactive in the MRI scanner, and taking advantage of the fact that functionally related brain regions spontaneously co-activate. rfMRI is one of the two primary data modalities being acquired for the Human Connectome Project (the other being diffusion MRI). A key objective is to generate a detailed in vivo mapping of functional connectivity in a large cohort of healthy adults (over 1,000 subjects), and to make these datasets freely available for use by the neuroimaging community. In each subject we acquire a total of one hour of whole-brain rfMRI data at 3 Tesla, with a spatial resolution of 2×2×2mm and a temporal resolution of 0.7s, capitalizing on recent developments in slice-accelerated echo-planar imaging. We will also scan a subset of the cohort at higher field strength and resolution. In this paper we outline the work behind, and rationale for, decisions taken regarding the rfMRI data acquisition protocol and pre-processing pipelines, and present some initial results showing data quality and example functional connectivity analyses. PMID:23702415

  12. Prostate magnetic resonance imaging at 3 Tesla: Is administration of hyoscine-N-butyl-bromide mandatory?

    PubMed Central

    Roethke, Matthias C; Kuru, Timur H; Radbruch, Alexander; Hadaschik, Boris; Schlemmer, Heinz-Peter

    2013-01-01

    AIM: To evaluate the value of administration of hyoscine-N-butyl-bromide (HBB) for image quality magnetic resonance imaging (MRI) of the prostate. METHODS: Seventy patients were retrospectively included in the study. Thirty-five patients were examined with administration of 40 milligrams of HBB (Buscopan®; Boehringer, Ingelheim, Germany); 35 patients were examined without HBB. A multiparametric MRI protocol was performed on a 3.0 Tesla scanner without using an endorectal coil. The following criteria were evaluated independently by two experienced radiologists on a five-point Likert scale: anatomical details (delineation between peripheral and transitional zone of the prostate, visualisation of the capsule, depiction of the neurovascular bundles); visualisation of lymph nodes; motion related artefacts; and overall image quality. RESULTS: Comparison of anatomical details between the two cohorts showed no statistically significant difference (3.9 ± 0.7 vs 4.0 ± 0.9, P = 0.54, and 3.8 ± 0.7 vs 4.2 ± 0.6, P = 0.07) for both readers. There was no significant advantage regarding depiction of local and iliac lymph nodes (3.9 ± 0.6 vs 4.2 ± 0.6, P = 0.07, and 3.8 ± 0.9 vs 4.1 ± 0.8, P = 0.19). Motion artefacts were rated as “none” to “few” in both groups and showed no statistical difference (2.3 ± 1.0 vs 1.9 ± 0.9, P = 0.19, and 2.3 ± 1.1 vs 1.9 ± 0.7, P = 0.22). Overall image quality was rated “good” in average for both cohorts without significant difference (4.0 ± 0.6 vs 4.0 ± 0.9, P = 0.78, and 3.8 ± 0.8 vs 4.2 ± 0.6, P = 0.09). CONCLUSION: The results demonstrated no significant effect of HBB administration on image quality. The study suggests that use of HBB is not mandatory for MRI of the prostate at 3.0 Tesla. PMID:23908696

  13. Dynamic multi-coil technique (DYNAMITE) shimming for echo-planar imaging of the human brain at 7 Tesla.

    PubMed

    Juchem, Christoph; Umesh Rudrapatna, S; Nixon, Terence W; de Graaf, Robin A

    2015-01-15

    Gradient-echo echo-planar imaging (EPI) is the primary method of choice in functional MRI and other methods relying on fast MRI to image brain activation and connectivity. However, the high susceptibility of EPI towards B0 magnetic field inhomogeneity poses serious challenges. Conventional magnetic field shimming with low-order spherical harmonic (SH) functions is capable of compensating shallow field distortions, but performs poorly for global brain shimming or on specific areas with strong susceptibility-induced B0 distortions such as the prefrontal cortex (PFC). Excellent B0 homogeneity has been demonstrated recently in the human brain at 7 Tesla with the DYNAmic Multi-coIl TEchnique (DYNAMITE) for magnetic field shimming (J Magn Reson (2011) 212:280-288). Here, we report the benefits of DYNAMITE shimming for multi-slice EPI and T2* mapping. A standard deviation of 13Hz was achieved for the residual B0 distribution in the human brain at 7 Tesla with DYNAMITE shimming and was 60% lower compared to conventional shimming that employs static zero through third order SH shapes. The residual field inhomogeneity with SH shimming led to an average 8mm shift at acquisition parameters commonly used for fMRI and was reduced to 1.5-3mm with DYNAMITE shimming. T2* values obtained from the prefrontal and temporal cortices with DYNAMITE shimming were 10-50% longer than those measured with SH shimming. The reduction of the confounding macroscopic B0 field gradients with DYNAMITE shimming thereby promises improved access to the relevant microscopic T2* effects. The combination of high spatial resolution and DYNAMITE shimming allows largely artifact-free EPI and T2* mapping throughout the brain, including prefrontal and temporal lobe areas. DYNAMITE shimming is expected to critically benefit a wide range of MRI applications that rely on excellent B0 magnetic field conditions including EPI-based fMRI to study various cognitive processes and assessing large-scale brain connectivity in vivo. As such, DYNAMITE shimming has the potential to replace conventional SH shim systems in human MR scanners. PMID:25462795

  14. Dynamic Multi-Coil Technique (DYNAMITE) Shimming for Echo-Planar Imaging of the Human Brain at 7 Tesla

    PubMed Central

    Juchem, Christoph; Rudrapatna, S. Umesh; Nixon, Terence W.; de Graaf, Robin A.

    2014-01-01

    Gradient-echo echo-planar imaging (EPI) is the primary method of choice in functional MRI and other methods relying on fast MRI to image brain activation and connectivity. However, the high susceptibility of EPI towards B0 magnetic field inhomogeneity poses serious challenges. Conventional magnetic field shimming with low-order spherical harmonic (SH) functions is capable of compensating shallow field distortions, but performs poorly for global brain shimming or on specific areas with strong susceptibility-induced B0 distortions such as the prefrontal cortex (PFC). Excellent B0 homogeneity has been demonstrated recently in the human brain at 7 Tesla with the DYNAmic Multi-coIl TEchnique (DYNAMITE) for magnetic field shimming (Juchem et al., J Magn Reson (2011) 212:280-288). Here, we report the benefits of DYNAMITE shimming for multi-slice EPI and T2* mapping. A standard deviation of 13 Hz was achieved for the residual B0 distribution in the human brain at 7 Tesla with DYNAMITE shimming and was 60% lower compared to conventional shimming that employs static zero through third order SH shapes. The residual field inhomogeneity with SH shimming led to an average 8 mm shift at acquisition parameters commonly used for fMRI and was reduced to 1.5-3 mm with DYNAMITE shimming. T2* values obtained from the prefrontal and temporal cortices with DYNAMITE shimming were 10-50% longer than those measured with SH shimming. The reduction of the confounding macroscopic B0 field gradients with DYNAMITE shimming thereby promises improved access to the relevant microscopic T2* effects. The combination of high spatial resolution and DYNAMITE shimming allows largely artifact-free EPI and T2* mapping throughout the brain, including prefrontal and temporal lobe areas. DYNAMITE shimming is expected to critically benefit a wide range of MRI applications that rely on excellent B0 magnetic field conditions including EPI-based fMRI to study various cognitive processes and assessing large-scale brain connectivity in vivo. As such, DYNAMITE shimming has the potential to replace conventional SH shim systems in human MR scanners. PMID:25462795

  15. High resolution T2(*)-weighted Magnetic Resonance Imaging at 3 Tesla using PROPELLER-EPI.

    PubMed

    Krämer, Martin; Reichenbach, Jürgen R

    2014-05-01

    We report the application of PROPELLER-EPI for high resolution T2(*)-weighted imaging with sub-millimeter in-plane resolution on a clinical 3 Tesla scanner. Periodically rotated blades of a long-axis PROPELLER-EPI sequence were acquired with fast gradient echo readout and acquisition matrix of 320 × 50 per blade. Images were reconstructed by using 2D-gridding, phase and geometric distortion correction and compensation of resonance frequency drifts that occurred during extended measurements. To characterize these resonance frequency offsets, short FID calibration measurements were added to the PROPELLER-EPI sequence. Functional PROPELLER-EPI was performed with volunteers using a simple block design of right handed finger tapping. Results indicate that PROPELLER-EPI can be employed for fast, high resolution T2(*)-weighted imaging provided geometric distortions and possible resonance frequency drifts are properly corrected. Even small resonance frequency drifts below 10 Hz as well as non-corrected geometric distortions degraded image quality substantially. In the initial fMRI experiment image quality and signal-to-noise ratio was sufficient for obtaining high resolution functional activation maps. PMID:24439698

  16. TESLA & ILC Cryomodules

    SciTech Connect

    Peterson, T. J.; Weisend, II, J. G.

    2016-01-01

    The TESLA collaboration developed a unique variant of SRF cryomodule designs, the chief feature being use of the large, low pressure helium vapor return pipe as the structural support backbone of the cryomodule. Additional innovative features include all cryogenic piping within the cryomodule (no parallel external cryogenic transfer line), long strings of RF cavities within a single cryomodule, and cryomodules connected in series. Several projects, including FLASH and XFEL at DESY, LCLS-II at SLAC, and the ILC technical design have adopted this general design concept. Advantages include saving space by eliminating the external transfer line, relatively tight packing of RF cavities along the beamline due to fewer warm-cold transitions, and potentially lower costs. However, a primary disadvantage is the relative lack of independence for warm-up, replacement, and cool-down of individual cryomodules.

  17. Development of functional imaging in the human brain (fMRI); the University of Minnesota experience

    PubMed Central

    Uğurbil, Kâmil

    2012-01-01

    The human functional magnetic resonance imaging (fMRI) experiments performed in the Center for Magnetic Resonance Research (CMRR), University of Minnesota, were planned between two colleagues who had worked together previously in Bell Laboratories in the late nineteen seventies, namely myself and Seiji Ogawa. These experiments were motivated by the Blood Oxygenation Level Dependent (BOLD) contrast developed by Seiji. We discussed and planned human studies to explore imaging human brain activity using the BOLD mechanism on the 4 Tesla human system that I was expecting to receive for CMRR. We started these experiments as soon as this 4 Tesla instrument became marginally operational. These were the very first studies performed on the 4 Tesla scanner in CMRR; had the scanner became functional earlier, they would have been started earlier as well. We had positive results certainly by August 1991 annual meeting of the Society of Magnetic Resonance in Medicine (SMRM) and took some of the data with us to that meeting. I believe, however, that neither the MGH colleagues nor us, at the time, had enough data and/or conviction to publish these extraordinary observations; it took more or less another six months or so before the papers from these two groups were submitted for publication within five days of each other to the Proceedings of the National Academy of Sciences, USA, after rejections by Nature. Based on this record, it is fair to say that fMRI was achieved independently and at about the same time at MGH, in an effort credited largely to Ken Kwong, and in CMRR, University of Minnesota in an effort led by myself and Seiji Ogawa. PMID:22342875

  18. MR-Guided Freehand Biopsy of Liver Lesions With Fast Continuous Imaging Using a 1.0-T Open MRI Scanner: Experience in 50 Patients

    SciTech Connect

    Fischbach, Frank; Bunke, Juergen; Thormann, Markus; Gaffke, Gunnar; Jungnickel, Kerstin; Smink, Jouke; Ricke, Jens

    2011-02-15

    The purpose of this study was to assess a new open system with a field-strength of 1.0 T for the feasibility of liver biopsy using the freehand technique with fast continuous imaging. Fifty patients with focal liver lesions measuring 5 to 30 mm in diameter were included in the study. Guidance and monitoring was performed using a 1.0-T open magnetic resonance (MR) scanner (Panorama HFO; Philips Healthcare, Best, The Netherlands). With fast continuous imaging using a T1-weighted (T1W) gradient echo (GRE) sequence after administration of gadolinium (Gd)-EOB-DTPA, the needle was placed into the lesion. An interface for interactive dynamic viewing in two perpendicular planes prevented needle deviations T2-weighted turbo spin echo (TSE) fat-suppressed sequence was added to rule out postinterventional hematoma or biloma. All lesions were visible on the interventional images. Biopsy was technically successful, and solid specimens were obtained in all cases. Forty-six patients showed a histopathologic pattern other than native liver tissue, thus confirming correct position of the needle. Time between determination of the lesion and performance of the control scan was on average 18 min. No major complications were recorded. MR guidance with the new 1-T open system must be considered an attractive alternative for liver punction. An interface for dynamic imaging of needle guidance and T1W-GRE imaging with administration of Gd-EOB-DTPA for contrast enhancement allows the pinpoint puncture of liver lesions.

  19. MR-guided freehand biopsy of liver lesions with fast continuous imaging using a 1.0-T open MRI scanner: experience in 50 patients.

    PubMed

    Fischbach, Frank; Bunke, Jürgen; Thormann, Markus; Gaffke, Gunnar; Jungnickel, Kerstin; Smink, Jouke; Ricke, Jens

    2011-02-01

    The purpose of this study was to assess a new open system with a field-strength of 1.0 T for the feasibility of liver biopsy using the freehand technique with fast continuous imaging. Fifty patients with focal liver lesions measuring 5 to 30 mm in diameter were included in the study. Guidance and monitoring was performed using a 1.0-T open magnetic resonance (MR) scanner (Panorama HFO; Philips Healthcare, Best, The Netherlands). With fast continuous imaging using a T1-weighted (T1W) gradient echo (GRE) sequence after administration of gadolinium (Gd)-EOB-DTPA, the needle was placed into the lesion. An interface for interactive dynamic viewing in two perpendicular planes prevented needle deviations T2-weighted turbo spin echo (TSE) fat-suppressed sequence was added to rule out postinterventional hematoma or biloma. All lesions were visible on the interventional images. Biopsy was technically successful, and solid specimens were obtained in all cases. Forty-six patients showed a histopathologic pattern other than native liver tissue, thus confirming correct position of the needle. Time between determination of the lesion and performance of the control scan was on average 18 min. No major complications were recorded. MR guidance with the new 1-T open system must be considered an attractive alternative for liver punction. An interface for dynamic imaging of needle guidance and T1W-GRE imaging with administration of Gd-EOB-DTPA for contrast enhancement allows the pinpoint puncture of liver lesions. PMID:20358370

  20. [70 years of Nikola Tesla studies].

    PubMed

    Juznic, Stanislav

    2013-01-01

    Nikola Tesla's studies of chemistry are described including his not very scholarly affair in Maribor. After almost a century and half of hypothesis at least usable scenario of Tesla's life and "work" in Maribor is provided. The chemistry achievements of Tesla's most influential professors Martin Sekulić and Tesla's Graz professors are put into the limelight. The fact that Tesla in Graz studied on the technological chemistry Faculty of Polytechnic is focused. PMID:23878954

  1. Nikola Tesla: the Moon's rotation.

    NASA Astrophysics Data System (ADS)

    Tomić, A.; Jovanović, B. S.

    1993-09-01

    The review of three articles by N. Tesla, published in the year 1919 in the journal "Electrical experimenter" is given, with special reference to the astronomical contents and to circumstances in which they appeared.

  2. [Nikola Tesla in medicine, too].

    PubMed

    Hanzek, Branko; Jakobović, Zvonimir

    2007-12-01

    Using primary and secondary sources we have shown in this paper the influence of Nikola Tesla's work on the field of medicine. The description of his experiments conduced within secondary-school education programs aimed to present the popularization of his work in Croatia. Although Tesla was dedicated primarily to physics and was not directly involved in biomedical research, his work significantly contributed to paving the way of medical physics particularly radiology and high-frequency electrotherapy. PMID:18383745

  3. The Photon Collider at Tesla

    NASA Astrophysics Data System (ADS)

    Badelek, B.; Blöchinger, C.; Blümlein, J.; Boos, E.; Brinkmann, R.; Burkhardt, H.; Bussey, P.; Carimalo, C.; Chyla, J.; Çiftçi, A. K.; Decking, W.; de Roeck, A.; Fadin, V.; Ferrario, M.; Finch, A.; Fraas, H.; Franke, F.; Galynskii, M.; Gamp, A.; Ginzburg, I.; Godbole, R.; Gorbunov, D. S.; Gounaris, G.; Hagiwara, K.; Han, L.; Heuer, R.-D.; Heusch, C.; Illana, J.; Ilyin, V.; Jankowski, P.; Jiang, Y.; Jikia, G.; Jönsson, L.; Kalachnikow, M.; Kapusta, F.; Klanner, R.; Klassen, M.; Kobayashi, K.; Kon, T.; Kotkin, G.; Krämer, M.; Krawczyk, M.; Kuang, Y. P.; Kuraev, E.; Kwiecinski, J.; Leenen, M.; Levchuk, M.; Ma, W. F.; Martyn, H.; Mayer, T.; Melles, M.; Miller, D. J.; Mtingwa, S.; Mühlleitner, M.; Muryn, B.; Nickles, P. V.; Orava, R.; Pancheri, G.; Penin, A.; Potylitsyn, A.; Poulose, P.; Quast, T.; Raimondi, P.; Redlin, H.; Richard, F.; Rindani, S. D.; Rizzo, T.; Saldin, E.; Sandner, W.; Schönnagel, H.; Schneidmiller, E.; Schreiber, H. J.; Schreiber, S.; Schüler, K. P.; Serbo, V.; Seryi, A.; Shanidze, R.; da Silva, W.; Söldner-Rembold, S.; Spira, M.; Stasto, A. M.; Sultansoy, S.; Takahashi, T.; Telnov, V.; Tkabladze, A.; Trines, D.; Undrus, A.; Wagner, A.; Walker, N.; Watanabe, I.; Wengler, T.; Will, I.; Wipf, S.; Yavaş, Ö.; Yokoya, K.; Yurkov, M.; Zarnecki, A. F.; Zerwas, P.; Zomer, F.

    High energy photon colliders (γγ,γe) are based on e-e- linear colliders where high energy photons are produced using Compton scattering of laser light on high energy electrons just before the interaction point. This paper is a part of the Technical Design Report of the linear collider TESLA.1 Physics program, possible parameters and some technical aspects of the photon collider at TESLA are discussed.

  4. Integrating a MRI scanner with a 6 MV radiotherapy accelerator: impact of the surface orientation on the entrance and exit dose due to the transverse magnetic field

    NASA Astrophysics Data System (ADS)

    Raaijmakers, A. J. E.; Raaymakers, B. W.; van der Meer, S.; Lagendijk, J. J. W.

    2007-02-01

    At the UMC Utrecht, in collaboration with Elekta and Philips Research Hamburg, we are developing a radiotherapy accelerator with integrated MRI functionality. The radiation dose will be delivered in the presence of a lateral 1.5 T field. Although the photon beam is not affected by the magnetic field, the actual dose deposition is done by a cascade of secondary electrons and these electrons are affected by the Lorentz force. The magnetic field causes a reduced build-up distance: because the trajectory of the electrons between collisions is curved, the entrance depth in tissue decreases. Also, at tissue-air interfaces an increased dose occurs due to the so-called electron return effect (ERE): electrons leaving tissue will describe a circular path in air and re-enter the tissue yielding a local dose increase. In this paper the impact of a 1.5 T magnetic field on both the build-up distance and the dose increase due to the ERE will be investigated as a function of the angle between the surface and the incident beam. Monte Carlo simulations demonstrate that in the presence of a 1.5 T magnetic field, the surface dose, the build-up distance and the exit dose depend more heavily on the surface orientation than in the case without magnetic field. This is caused by the asymmetrical pointspread kernel in the presence of 1.5 T and the directional behaviour of the re-entering electrons. Simulations on geometrical phantoms show that ERE dose increase at air cavities can be avoided using opposing beams, also when the air-tissue boundary is not perpendicular to the beam. For the more general case in patient anatomies, more problems may arise. Future work will address the possibilities and limitations of opposing beams in combination with IMRT in a magnetic field.

  5. Role of HRCT and MRI of the Temporal Bone in Predicting and Grading the Degree of Difficulty of Cochlear Implant Surgery.

    PubMed

    Vaid, Sanjay; Vaid, Neelam; Manikoth, Manoj; Zope, Amit

    2015-06-01

    This study proposes a grading system based on a 10-point scoring chart of high resolution computed tomography (HRCT) and magnetic resonance imaging (MRI) imaging findings in patients being assessed preoperatively for cochlear implantation. This system helps in objectively assessing the degree of difficulty of the surgical procedure and alerts the surgeons to any potential intraoperative complications. This is a prospective study carried out at a tertiary referral center where 55 patients with bilateral profound sensorineural hearing loss were evaluated by HRCT and MRI and subsequently underwent cochlear implantation. HRCT examinations were performed on a 64 slice multidetector CT scanner. MRI examinations were performed on a 3.0 Tesla MRI scanner. A 10-point scoring chart was devised based on specific imaging findings and all patients were assigned potential difficulty scores (PDS) based on HRCT and MRI findings. Surgical times were documented in each case and each imaging point on the scoring chart was correlated with the surgical times. Eight out of theó ten points in the scoring chart proved to be statistically significant in predicting the degree of difficulty of the surgical procedure. After grading the pre-operative imaging examinations based on the 10-point scoring chart we concluded that patients who have PDS between 0 and 3 (Grade 1) have uneventful and uncomplicated surgery with the lowest intraoperative times. Patients with PDS between 4 and 7 alert the surgeon to moderate surgical difficulty and longer intraoperative times. PDS of 8 and above indicate prolonged and difficult surgery. PMID:26075170

  6. Murine orthostatic response during prolonged vertical studies: effect on cerebral blood flow measured by arterial spin-labeled MRI.

    PubMed

    Foley, Lesley M; Hitchens, T Kevin; Kochanek, Patrick M; Melick, John A; Jackson, Edwin K; Ho, Chien

    2005-10-01

    High-field MRI scanners are, in principle, well suited for mouse studies; however, many high-field magnets employ a vertical design that may influence the physiological state of the rodent. The purpose of this study was to investigate the orthostatic response of cerebral blood flow (CBF) in mice during a prolonged MR experiment in the vertical position. Arterial spin-labeled (ASL) MRI was performed at 4.7-Tesla with a 15-cm gradient insert that allowed horizontal and vertical CBF measurements to be obtained with the same scanner. For mice in the head-up (HU) vertical position, CBF decreased by approximately 40% compared to the horizontal position, although blood pressure did not differ. Furthermore, CBF values for vertically positioned mice treated with phenylephrine remained constant while blood pressure increased. These results support the conclusion that cerebral autoregulation was intact, albeit at a lower level. Since CBF recovers to near horizontal values by volume loading with saline, it appears that a decrease in central venous pressure (CVP) leading to an increase in sympathetic tone may be a contributing mechanism for lowered CBF. This suggests that using an HU vertical position for MRI in mice may have broader implications, especially for studies that rely on CBF (such as BOLD and fMRI). PMID:16142710

  7. Identification of normal and pathological posterior inter-malleolar ligament with dedicated high-field vs low-field MRI. A pilot study

    PubMed Central

    Sutera, Raffaello; Bianco, Antonino; Paoli, Antonino; Padulo, Johnny; Thomas, Ewan; Iovane, Angelo; Palma, Antonio

    2015-01-01

    Summary Aim: the aim of the study was to determine an objective measure of detection of posterior inter-malleolar ligament (PIML) through a magnetic resonance (MRI) of the ankle with two dedicated scanners: high-field (1-Tesla: HMF) and low-field (0.2-Tesla: LMF). Methods: two-hundred subjects were randomly recruited for the study and then divided in two groups (HMF and LMF). We retrospectively evaluated the MRI of the ankle in the two groups of patients. PIML evaluation was performed globally and separately using different scan planes. Results: in HMF and LMF, the PIML was identified respectively in 55 and 11% of cases. PIML was classified as “indeterminate” in 28 and 57% of patients, and “absent” in 17 and 32% of patients. In HMF and LMF the isolated evaluation on the coronal, axial and sagittal planes allowed PIML identification respectively in 100 and 100%, 67.27 and 45.45%, 45.45 and 12.4% of cases. In 5 cases (4/5 of HMF) we also observed a posterior ankle impingement syndrome (PAIS) determined by the PIML, with ligament changes (5/5) and associated synovial reactions (1/5), and an arthroscopic confirmation was obtained in 3/5 cases. Conclusion: the presence of the PIML seems to be a possible cause of PAIS and the use of a high-field MR scanner seems optimal for its identification. PMID:25878981

  8. Design of an fMRI-compatible optical touch stripe based on frustrated total internal reflection.

    PubMed

    Jarrahi, Behnaz; Wanek, Johann

    2014-01-01

    Previously we developed a low-cost, multi-configurable handheld response system, using a reflective-type intensity modulated fiber-optic sensor (FOS) to accurately gather participants' behavioral responses during functional magnetic resonance imaging (fMRI). Inspired by the popularity and omnipresence of the fingertip-based touch sensing user interface devices, in this paper we present the design of a prototype fMRI-compatible optical touch stripe (OTS) as an alternative configuration. The prototype device takes advantage of a proven frustrated total internal reflection (FTIR) technique. By using a custom-built wedge-shaped optically transparent acrylic prism as an optical waveguide, and a plano-concave lens to provide the required light beam profile, the position of a fingertip touching the surface of the wedge prism can be determined from the deflected light beams that become trapped within the prism by total internal reflection. To achieve maximum sensitivity, the optical design of the wedge prism and lens were optimized through a series of light beam simulations using WinLens 3D Basic software suite. Furthermore, OTS performance and MRI-compatibility were assessed on a 3.0 Tesla MRI scanner running echo planar imaging (EPI) sequences. The results show that the OTS can detect a touch signal at high spatial resolution (about 0.5 cm), and is well suited for use within the MRI environment with average time-variant signal-to-noise ratio (tSNR) loss < 3%. PMID:25571103

  9. A Functional MRI Study of Language Function in International Adoptees

    PubMed Central

    Rajagopal, Akila; Holland, Scott K.; Walz, Nicolay C.; Staat, Mary Allen; Altaye, Mekibib; Wade, Shari

    2013-01-01

    Objective To test the hypothesis that international adoption of Chinese and Eastern European girls after 9 months of age results in long term changes in the neural circuitry supporting monolingual English in later childhood. Study design Functional MRI (fMRI) was used to test this hypothesis by comparison with a control group of American-born English speakers (n=13). Girls now age 6–10 years adopted from China (n = 13) and Eastern Europe (n = 12) by English-speaking families were recruited through a pediatric hospital-based international adoption center after spending more than 6 months in an orphanage or other institution, a measure of early environmental deprivation. FMRI scans were performed on a 3 Tesla MRI scanner using a verb generation language fluency task. Composite activation maps were computed for each group using a general linear model with random effects analysis. Results Chinese born adoptees demonstrate atypical lateralization of language function with an apparent shift of Temporal-Parietal and Frontal areas of brain activity toward the right hemisphere. Eastern European adoptees exhibited a rightward shift relative to controls in both Frontal and Temporal-Parietal brain regions. Conclusions Significant differences in lateralization between the Chinese and American-born groups in Temporal-Parietal language areas highlight the possible impact of early tonal Asian language exposure on neural circuitry. Findings suggest that exposure to an Asian language during infancy can leave a long-term imprint on the neural circuitry supporting English language development. PMID:23896183

  10. [New aspects from legislation, guidelines and safety standards for MRI].

    PubMed

    Mühlenweg, M; Schaefers, G; Trattnig, S

    2015-08-01

    Many aspects of magnetic resonance (MR) operation are not directly regulated by law but in standards, guidelines and the operating instructions of the MR scanner. The mandatory contents of the operating instructions are regulated in a central standard of the International Electrotechnical Commission (IEC) 60601-2-33. In this standard, the application of static magnetic fields in MRI up to 8 Tesla (T) in the clinical routine (first level controlled mode) has recently been approved. Furthermore, the equally necessary CE certification of ultra-high field scanners (7-8 T) in Europe is expected for future devices. The existing installations will not be automatically certified but will retain their experimental status. The current extension of IEC 60601-2-33 introduces a new add-on option, the so-called fixed parameter option (FPO). This option might also be switched on in addition to the established operating modes and defines a fixed device constellation and certain parameters of the energy output of MR scanners designed to simplify the testing of patients with implants in the future.The employment of pregnant workers in an MRI environment is still not generally regulated in Europe. In parts of Germany and Austria pregnant and lactating employees were prohibited from working in the MR control zone (0.5 mT) in 2014. This is based on the mostly unresolved question of the applicability of limits for employees (exposure of extremities to static magnetic fields up to 8 T allowed) or the thresholds for the general population (maximum 400 mT). According to the European Society of Urogenital Radiology (ESUR), the discarding of breast milk after i.v. administration of gadolinium-based contrast agents in the case of a breastfeeding woman is only recommended when using contrast agents in the nephrogenic systemic fibrosis (NSF) high-risk category. PMID:26220129

  11. Simple RF design for human functional and morphological cardiac imaging at 7 tesla

    NASA Astrophysics Data System (ADS)

    Versluis, M. J.; Tsekos, N.; Smith, N. B.; Webb, A. G.

    2009-09-01

    Morphological and functional cardiac MRI can potentially benefit greatly from the recent advent of commercial high-field (7 tesla and above) MRI systems. However, conventional hardware configurations at lower field using a body-coil for homogeneous transmission are not available at these field strengths. Sophisticated multiple-transmit-channel systems have been shown to be able to image the human heart at 7 tesla but such systems are currently not widely available. In this paper, we empirically optimize the design of a simple quadrature coil for cardiac imaging at 7 tesla. The size, geometry, and position have been chosen to produce a B1 field with no tissue-induced signal voids within the heart. Standard navigator echoes for gating were adapted for operation at the heart/lung interface, directly along the head-foot direction. Using this setup, conventional and high-resolution cine functional imaging have been successfully performed, as has morphological imaging of the right coronary artery.

  12. Gd-EOB-DTPA-enhanced 3.0-Tesla MRI findings for the preoperative detection of focal liver lesions: Comparison with iodine-enhanced multi-detector computed tomography

    NASA Astrophysics Data System (ADS)

    Park, Hyong-Hu; Goo, Eun-Hoe; Im, In-Chul; Lee, Jae-Seung; Kim, Moon-Jib; Kwak, Byung-Joon; Chung, Woon-Kwan; Dong, Kyung-Rae

    2012-12-01

    The safety of gadolinium-ethoxybenzyl-diethylenetriamine-pentaacetic-acid (Gd-EOB-DTPA) has been confirmed, but more study is needed to assess the diagnostic accuracy of Gd-EOB-DTPA-enhanced magnetic resonance imaging (MRI) in patients with a hepatocellular carcinoma (HCC) for whom surgical treatment is considered or with a metastatic hepatoma. Research is also needed to examine the rate of detection of hepatic lesions compared to multi-detector computed tomography (MDCT), which is used most frequently to localize and characterize a HCC. Gd-EOB-DTPA-enhanced MRI and iodine-enhanced MDCT imaging were compared for the preoperative detection of focal liver lesions. The clinical usefulness of each method was examined. The current study enrolled 79 patients with focal liver lesions who preoperatively underwent MRI and MDCT. In these patients, there was less than one month between the two diagnostic modalities. Imaging data were taken before and after contrast enhancement in both methods. To evaluate the images, we analyzed the signal-to-noise ratio (SNR) and the contrast-to-noise ratio (CNR) in the lesions and the liver parenchyma. To compare the sensitivity of the two methods, we performed a quantitative analysis of the percentage signal intensity of the liver (PSIL) on a high resolution picture archiving and communication system (PACS) monitor (paired-samples t-test, p < 0.05). The enhancement was evaluated based on a consensus of four observers. The enhancement pattern and the morphological features during the arterial and the delayed phases were correlated between the Gd-EOB-DTPA-enhanced MRI findings and the iodine-enhanced MDCT by using an adjusted x2 test. The SNRs, CNRs, and PSIL all had a greater detection rate in Gd-EOB-DTPA enhanced MRI than in iodine-enhanced MDCT. Hepatocyte-selective uptake was observed 20 minutes after the injection in the focal nodular hyperplasia (FNH, 9/9), adenoma (9/10), and highly-differentiated HCC (grade G1, 27/30). Rim enhancement was detected in all metastases (30/30). During the arterial and the delayed phases, good overall agreement between the gadoxetic-acid-enhanced MR and CT was observed (x2 test, p < 0.05). For the preoperative detection of focal liver lesions, Gd-EOB-DTPA-enhanced MRI had a higher diagnostic value and higher detection rate than iodine-enhanced MDCT. The arterial and the delayed dynamic enhancement patterns, and the gadoxetic-acid-enhanced MR imaging can provide information on the possible degree of cellular differentiation of a HCC, adenoma or metastatic tumor.

  13. Sodium MRI: Methods and applications

    PubMed Central

    Madelin, Guillaume; Lee, Jae-Seung; Regatte, Ravinder R.; Jerschow, Alexej

    2014-01-01

    Sodium NMR spectroscopy and MRI have become popular in recent years through the increased availability of high-field MRI scanners, advanced scanner hardware and improved methodology. Sodium MRI is being evaluated for stroke and tumor detection, for breast cancer studies, and for the assessment of osteoarthritis and muscle and kidney functions, to name just a few. In this article, we aim to present an up-to-date review of the theoretical background, the methodology, the challenges and limitations, and current and potential new applications of sodium MRI. PMID:24815363

  14. Nikola Tesla Educational Opportunity School.

    ERIC Educational Resources Information Center

    Design Cost Data, 2001

    2001-01-01

    Describes the architectural design, costs, general description, and square footage data for the Nikola Tesla Educational Opportunity School in Colorado Springs, Colorado. A floor plan and photos are included along with a list of manufacturers and suppliers used for the project. (GR)

  15. The TESLA Free Electron Laser

    NASA Astrophysics Data System (ADS)

    Rossbach, Jörg

    1997-05-01

    The TESLA Free Electron Laser makes use of the high quality electron beam that can be provided by the superconducting TESLA linac to drive a single pass free electron laser (FEL) at wavelengths far below the visible. To reach a wavelength of 6 nanometers, the TESLA Test Facility (TTF) currently under construction at DESY will be extended to 1 GeV beam energy. Because there are no mirrors and seed-lasers in this wavelength regime, the principle of Self-Amplified-Spontaneous-Emission (SASE) will be employed. A first test of both the principle and technical components is foreseen at a photon wavelength larger than 42 nanometers. With respect to linac technology, the key prerequisite for such single-pass, high-gain FELs is a high intensity, diffraction limited, electron beam to be generated and accelerated without degradation. Key components are RF guns with photocathodes, bunch compressors, and related diagnostics. The status of design and construction as well as both electron and photon beam properties will be discussed. Once proven in the micrometer to nanometer regime, the SASE FEL scheme is considered applicable down to Angstrom wavelengths. It is pointed out that this latter option is particularly of interest in context with the construction of a linear collider, which requires very similar beam parameters. The status of conceptual design work on such a coherent X-ray user facility integrated into the TESLA linear collider design will be briefly sketched.

  16. Brain Activation in Response to Visually Evoked Sexual Arousal in Male-to-Female Transsexuals: 3.0 Tesla Functional Magnetic Resonance Imaging

    PubMed Central

    Oh, Seok-Kyun; Kim, Gwang-Won; Yang, Jong-Chul; Kim, Seok-Kwun; Kang, Heoung-Keun

    2012-01-01

    Objective This study used functional magnetic resonance imaging (fMRI) to contrast the differential brain activation patterns in response to visual stimulation with both male and female erotic nude pictures in male-to-female (MTF) transsexuals who underwent a sex reassignment surgery. Materials and Methods A total of nine healthy MTF transsexuals after a sex reassignment surgery underwent fMRI on a 3.0 Tesla MR Scanner. The brain activation patterns were induced by visual stimulation with both male and female erotic nude pictures. Results The sex hormone levels of the postoperative MTF transsexuals were in the normal range of healthy heterosexual females. The brain areas, which were activated by viewing male nude pictures when compared with viewing female nude pictures, included predominantly the cerebellum, hippocampus, putamen, anterior cingulate gyrus, head of caudate nucleus, amygdala, midbrain, thalamus, insula, and body of caudate nucleus. On the other hand, brain activation induced by viewing female nude pictures was predominantly observed in the hypothalamus and the septal area. Conclusion Our findings suggest that distinct brain activation patterns associated with visual sexual arousal in postoperative MTF transsexuals reflect their sexual orientation to males. PMID:22563262

  17. 3D GRASE pulsed arterial spin labeling at multiple inflow times in patients with long arterial transit times: comparison with dynamic susceptibility-weighted contrast-enhanced MRI at 3 Tesla

    PubMed Central

    Martin, Steve Z; Madai, Vince I; von Samson-Himmelstjerna, Federico C; Mutke, Matthias A; Bauer, Miriam; Herzig, Cornelius X; Hetzer, Stefan; Günther, Matthias; Sobesky, Jan

    2015-01-01

    Pulsed arterial spin labeling (PASL) at multiple inflow times (multi-TIs) is advantageous for the measurement of brain perfusion in patients with long arterial transit times (ATTs) as in steno-occlusive disease, because bolus-arrival-time can be measured and blood flow measurements can be corrected accordingly. Owing to its increased signal-to-noise ratio, a combination with a three-dimensional gradient and spin echo (GRASE) readout allows acquiring a sufficient number of multi-TIs within a clinically feasible acquisition time of 5 minutes. We compared this technique with the clinical standard dynamic susceptibility-weighted contrast-enhanced imaging–magnetic resonance imaging in patients with unilateral stenosis >70% of the internal carotid or middle cerebral artery (MCA) at 3 Tesla. We performed qualitative (assessment by three expert raters) and quantitative (region of interest (ROI)/volume of interest (VOI) based) comparisons. In 43 patients, multi-TI PASL-GRASE showed perfusion alterations with moderate accuracy in the qualitative analysis. Quantitatively, moderate correlation coefficients were found for the MCA territory (ROI based: r=0.52, VOI based: r=0.48). In the anterior cerebral artery (ACA) territory, a readout related right-sided susceptibility artifact impaired correlation (ROI based: r=0.29, VOI based: r=0.34). Arterial transit delay artifacts were found only in 12% of patients. In conclusion, multi-TI PASL-GRASE can correct for arterial transit delay in patients with long ATTs. These results are promising for the transfer of ASL to the clinical practice. PMID:25407272

  18. Piezoelectrically Actuated Robotic System for MRI-Guided Prostate Percutaneous Therapy

    PubMed Central

    Su, Hao; Shang, Weijian; Cole, Gregory; Li, Gang; Harrington, Kevin; Camilo, Alexander; Tokuda, Junichi; Tempany, Clare M.; Hata, Nobuhiko; Fischer, Gregory S.

    2014-01-01

    This paper presents a fully-actuated robotic system for percutaneous prostate therapy under continuously acquired live magnetic resonance imaging (MRI) guidance. The system is composed of modular hardware and software to support the surgical workflow of intra-operative MRI-guided surgical procedures. We present the development of a 6-degree-of-freedom (DOF) needle placement robot for transperineal prostate interventions. The robot consists of a 3-DOF needle driver module and a 3-DOF Cartesian motion module. The needle driver provides needle cannula translation and rotation (2-DOF) and stylet translation (1-DOF). A custom robot controller consisting of multiple piezoelectric motor drivers provides precision closed-loop control of piezoelectric motors and enables simultaneous robot motion and MR imaging. The developed modular robot control interface software performs image-based registration, kinematics calculation, and exchanges robot commands and coordinates between the navigation software and the robot controller with a new implementation of the open network communication protocol OpenIGTLink. Comprehensive compatibility of the robot is evaluated inside a 3-Tesla MRI scanner using standard imaging sequences and the signal-to-noise ratio (SNR) loss is limited to 15%. The image deterioration due to the present and motion of robot demonstrates unobservable image interference. Twenty-five targeted needle placements inside gelatin phantoms utilizing an 18-gauge ceramic needle demonstrated 0.87 mm root mean square (RMS) error in 3D Euclidean distance based on MRI volume segmentation of the image-guided robotic needle placement procedure. PMID:26412962

  19. Highest Resolution In Vivo Human Brain MRI Using Prospective Motion Correction

    PubMed Central

    Stucht, Daniel; Danishad, K. Appu; Schulze, Peter; Godenschweger, Frank; Zaitsev, Maxim; Speck, Oliver

    2015-01-01

    High field MRI systems, such as 7 Tesla (T) scanners, can deliver higher signal to noise ratio (SNR) than lower field scanners and thus allow for the acquisition of data with higher spatial resolution, which is often demanded by users in the fields of clinical and neuroscientific imaging. However, high resolution scans may require long acquisition times, which in turn increase the discomfort for the subject and the risk of subject motion. Even with a cooperative and trained subject, involuntary motion due to heartbeat, swallowing, respiration and changes in muscle tone can cause image artifacts that reduce the effective resolution. In addition, scanning with higher resolution leads to increased sensitivity to even very small movements. Prospective motion correction (PMC) at 3T and 7T has proven to increase image quality in case of subject motion. Although the application of prospective motion correction is becoming more popular, previous articles focused on proof of concept studies and technical descriptions, whereas this paper briefly describes the technical aspects of the optical tracking system, marker fixation and cross calibration and focuses on the application of PMC to very high resolution imaging without intentional motion. In this study we acquired in vivo MR images at 7T using prospective motion correction during long acquisitions. As a result, we present images among the highest, if not the highest resolution of in vivo human brain MRI ever acquired. PMID:26226146

  20. Volitional Reduction of Anterior Cingulate Cortex Activity Produces Decreased Cue Craving in Smoking Cessation: A Preliminary Real-Time fMRI Study

    PubMed Central

    Li, Xingbao; Hartwell, Karen J.; Borckardt, Jeffery; Prisciandaro, James J.; Saladin, Michael E.; Morgan, Paul S.; Johnson, Kevin A.; LeMatty, Todd; Brady, Kathleen T.; George, Mark S.

    2012-01-01

    Numerous research groups are now using analysis of blood-oxygen-level dependent (BOLD) functional magnetic resonance imaging (fMRI) results and relaying back information about regional activity in their brains to participants in the scanner in “real time”. In this study, we explored the feasibility of self-regulation of frontal cortical activation using real time fMRI (rtfMRI) neurofeedback in nicotine-dependent cigarette smokers during exposure to smoking cues. Ten cigarette smokers were shown smoking-related visual cues in a 3 Tesla MRI scanner to induce their nicotine craving. Participants were instructed to modify their craving using rtfMRI feedback with two different approaches. In a “reduce craving” paradigm, participants were instructed to “reduce” their craving, and decrease the anterior cingulate cortex (ACC) activity. In a separate “increase resistance” paradigm, participants were asked to increase their resistance to craving and to increase middle prefrontal cortex (mPFC) activity. We found that participants were able to significantly reduce the BOLD signal in the ACC during the “reduce craving” task (p=0.028). There was a significant correlation between decreased ACC activation and reduced craving ratings during the “reduce craving” session (p=0.011). In contrast, there was no modulation of the BOLD signal in mPFC during the “increase resistance” session. These preliminary results suggest that some smokers may be able to use neurofeedback via rtfMRI to voluntarily regulate ACC activation and temporarily reduce smoking cue-induced craving. Further research is needed to determine the optimal parameters of neurofeedback rtfMRI, and whether it might eventually become a therapeutic tool for nicotine dependence. PMID:22458676

  1. Effect of Acupuncture in Mild Cognitive Impairment and Alzheimer Disease: A Functional MRI Study

    PubMed Central

    Wang, Zhiqun; Nie, Binbin; Li, Donghong; Zhao, Zhilian; Han, Ying; Song, Haiqing; Xu, Jianyang; Shan, Baoci; Lu, Jie; Li, Kuncheng

    2012-01-01

    We aim to clarify the mechanisms of acupuncture in treating mild cognitive impairment (MCI) and Alzheimer disease (AD) by using functional magnetic resonance imaging (fMRI). Thirty-six right-handed subjects (8 MCI patients, 14 AD patients, and 14 healthy elders) participated in this study. Clinical and neuropsychological examinations were performed on all the subjects. MRI data acquisition was performed on a SIEMENS verio 3-Tesla scanner. The fMRI study used a single block experimental design. We first acquired the baseline resting state data in the initial 3 minutes; we then acquired the fMRI data during the procession of acupuncture stimulation on the acupoints of Tai chong and Hegu for the following 3 minutes. Last, we acquired fMRI data for another 10 minutes after the needle was withdrawn. The preprocessing and data analysis were performed using the statistical parametric mapping (SPM8) software. Then the two-sample t-tests were performed between each two groups of different states. We found that during the resting state, brain activities in AD and MCI patients were different from those of control subjects. During the acupuncture and the second resting state after acupuncture, when comparing to resting state, there are several regions showing increased or decreased activities in MCI, AD subjects compared to normal subjects. Most of the regions were involved in the temporal lobe and the frontal lobe, which were closely related to the memory and cognition. In conclusion, we investigated the effect of acupuncture in AD and MCI patients by combing fMRI and traditional acupuncture. Our fMRI study confirmed that acupuncture at Tai chong (Liv3) and He gu (LI4) can activate certain cognitive-related regions in AD and MCI patients. PMID:22916152

  2. Individual preferences modulate incentive values: Evidence from functional MRI

    PubMed Central

    Koeneke, Susan; Pedroni, Andreas F; Dieckmann, Anja; Bosch, Volker; Jäncke, Lutz

    2008-01-01

    Background In most studies on human reward processing, reward intensity has been manipulated on an objective scale (e.g., varying monetary value). Everyday experience, however, teaches us that objectively equivalent rewards may differ substantially in their subjective incentive values. One factor influencing incentive value in humans is branding. The current study explores the hypothesis that individual brand preferences modulate activity in reward areas similarly to objectively measurable differences in reward intensity. Methods A wheel-of-fortune game comprising an anticipation phase and a subsequent outcome evaluation phase was implemented. Inside a 3 Tesla MRI scanner, 19 participants played for chocolate bars of three different brands that differed in subjective attractiveness. Results Parametrical analysis of the obtained fMRI data demonstrated that the level of activity in anatomically distinct neural networks was linearly associated with the subjective preference hierarchy of the brands played for. During the anticipation phases, preference-dependent neural activity has been registered in premotor areas, insular cortex, orbitofrontal cortex, and in the midbrain. During the outcome phases, neural activity in the caudate nucleus, precuneus, lingual gyrus, cerebellum, and in the pallidum was influenced by individual preference. Conclusion Our results suggest a graded effect of differently preferred brands onto the incentive value of objectively equivalent rewards. Regarding the anticipation phase, the results reflect an intensified state of wanting that facilitates action preparation when the participants play for their favorite brand. This mechanism may underlie approach behavior in real-life choice situations. PMID:19032746

  3. A low cost color visual stimulator for fMRI.

    PubMed

    Rogers, Bill; Shih, Yen-Yu I; Garza, Bryan De La; Harrison, Joseph M; Roby, John; Duong, Timothy Q

    2012-03-15

    This low cost visual stimulator was developed for use in small animal imaging. The stimulator uses a single tri-color LED for each eye and can output red, green, or blue light or any combination of the three. When all three LED colors are illuminated at the same time achromatic light is the output. The stimulator is almost entirely implemented in software with only minimal electronics. The LEDs are controlled via the parallel port of a desktop computer. Flicker frequency, wavelength, intensity and waveform shape are under software control. The LEDs are coupled to fiber optic cables which run into the MRI scanner room leaving the LEDs and the power source in the control room. Calibration with a radiometer shows the light output to be very linear from zero to full intensity. The stimulator was used in fMRI visual stimulation studies performed on Sprague Dawley rats with an 11.7Tesla magnet. As the stimulator is software driven, modifications to accommodate other protocols and extensions for new functionality can be readily incorporated. With this in mind, the visual stimulator circuit diagram and software including source code are available upon request. PMID:22172916

  4. Tesla - A Flash of a Genius

    NASA Astrophysics Data System (ADS)

    Teodorani, M.

    2005-10-01

    This book, which is entirely dedicated to the inventions of scientist Nikola Tesla, is divided into three parts: a) all the most important innovative technological creations from the alternate current to the death ray, Tesla research in fundamental physics with a particular attention to the concept of "ether", ball lightning physics; b) the life and the bright mind of Nikola Tesla and the reasons why some of his most recent findings were not accepted by the establishment; c) a critical discussion of the most important work by Tesla followers.

  5. Investigation of Holographic Scanners

    NASA Astrophysics Data System (ADS)

    Xiang, Lian Qin

    Holographic scanners are capable of challenging both the speed and resolution of polygon scanners. This work investigates, in detail, the design and operation of a holographic scanner with an aspherical reflector. The characteristics of this holographic scanner are presented through theoretical analyses and computer simulation. The calculated data and the experimental results show that this system has excellent scan line straightness and scan linearity. The influence of the eccentricity and wobble of the hologram on the quality of the scan lines can be minimized by proper choice of system parameters. This unique system can readily perform 1-D, 2 -D, 3-D and selective scans. These features make suitable applications for robot vision, part inspection, high speed printing, and input/output devices for computers. If the hologram is operating in the reflective mode, there are no transmissive components in this scanner. It can be used with acoustic waves and electromagnetic waves with longer wavelengths, such as infrared, microwaves, millimeter waves. Since it is difficult to find a suitable recording material for these waves, a technique for making computer -generated holograms has also been developed here. The practical considerations for making quality holograms are summarized. An improved coating process for photoresist and a novel anti-reflection setup for the hologram plate are developed. The detailed experimental processes are included. The planar grating scanner for one dimensional, two-dimensional and cross-scanning patterns is analyzed and demonstrated. A comparison is made with two other two-dimensional scanners.

  6. Compound Holographic Scanners

    NASA Astrophysics Data System (ADS)

    Ih, C. S.; Xiang, Lian-Qin

    1984-11-01

    A high resolution and high speed 2-D holorgaphic scanner is described. In addition to straight scan lines and good linearity, the scanner can be designed to be insensitive to mechanical eccentricity and wobble. This scanner can be readily extended for high resolution 3-D and double-raster scans. The latter has a large field of view (with lower resolution) and at the same time a high resolution in a small central area. This is similar to human's eyes and thus can be explored for robot's vision

  7. High Resolution MRI Reveals Detailed Layer Structures in Early Human Fetal Stages: In Vitro Study with Histologic Correlation.

    PubMed

    Wang, Rongpin; Dai, Guangping; Takahashi, Emi

    2015-01-01

    An understanding of normal fetal brain development is essential in detecting the early onset of brain disorders. It is challenging to obtain high-quality images that show detailed local anatomy in the early fetal stages because the fetal brain is very small with rapidly-changing complex structures related to brain development, including neurogenesis, neuronal migration, and axonal elongation. Previous magnetic resonance imaging (MRI) studies detected three layers throughout the fetal cerebral wall that showed differences in MR contrasts at 10 gestational weeks (GW), which is one of the earliest ages studied using MRI. Contrary to the MRI studies, histological studies found more layers at this fetal age. The purpose of this work is to study the development of brain structures from an early fetal period to an early second trimester stage using ex vivo MRI and compare it to histology. Special attention was paid to laminar structures in the cerebral wall. T2-weighted imaging was performed on fetal brain specimens ranging from 10 GW to 18 GW on a 4.7 tesla MR scanner. We obtained standard grayscale as well as color-coded images using weighted red-green-blue scales, and compared them with the histological images. Our study confirmed laminar structure in the cerebral wall in all the fetal specimens studied. We found that MRI detected four layers within the cerebral wall as early as 10 GW during the early fetal period (10-13 GW). Early second trimester (15-18 GW) was characterized by the emergence of subplate structures and five layers within the cerebral wall. The color-coded images were more useful than the standard grayscale images in detecting the laminar structures. Scans with appropriate parameters from a high tesla MR scanner showed detailed laminar structures even through a very small and thin cerebral wall at 10 GW ex vivo. A combination of high-resolution structural imaging and color-coding processing with histological analysis may be a potential tool for studying detailed structures of typical developing fetal brains, as well as fetal brains with developmental disorders as references for clinical MRI. PMID:26834575

  8. High Resolution MRI Reveals Detailed Layer Structures in Early Human Fetal Stages: In Vitro Study with Histologic Correlation

    PubMed Central

    Wang, Rongpin; Dai, Guangping; Takahashi, Emi

    2015-01-01

    An understanding of normal fetal brain development is essential in detecting the early onset of brain disorders. It is challenging to obtain high-quality images that show detailed local anatomy in the early fetal stages because the fetal brain is very small with rapidly-changing complex structures related to brain development, including neurogenesis, neuronal migration, and axonal elongation. Previous magnetic resonance imaging (MRI) studies detected three layers throughout the fetal cerebral wall that showed differences in MR contrasts at 10 gestational weeks (GW), which is one of the earliest ages studied using MRI. Contrary to the MRI studies, histological studies found more layers at this fetal age. The purpose of this work is to study the development of brain structures from an early fetal period to an early second trimester stage using ex vivo MRI and compare it to histology. Special attention was paid to laminar structures in the cerebral wall. T2-weighted imaging was performed on fetal brain specimens ranging from 10 GW to 18 GW on a 4.7 tesla MR scanner. We obtained standard grayscale as well as color-coded images using weighted red-green-blue scales, and compared them with the histological images. Our study confirmed laminar structure in the cerebral wall in all the fetal specimens studied. We found that MRI detected four layers within the cerebral wall as early as 10 GW during the early fetal period (10–13 GW). Early second trimester (15–18 GW) was characterized by the emergence of subplate structures and five layers within the cerebral wall. The color-coded images were more useful than the standard grayscale images in detecting the laminar structures. Scans with appropriate parameters from a high tesla MR scanner showed detailed laminar structures even through a very small and thin cerebral wall at 10 GW ex vivo. A combination of high-resolution structural imaging and color-coding processing with histological analysis may be a potential tool for studying detailed structures of typical developing fetal brains, as well as fetal brains with developmental disorders as references for clinical MRI. PMID:26834575

  9. Silent cerebral emboli following percutaneous closure of atrial septal defect in pediatric patients: a diffusion-weighted MRI study

    PubMed Central

    Ko, Gonca; zyurt, Abdullah; Do?anay, Selim; Baykan, Ali; Grkem, S. Burcu; Do?an, M. Sait; Pamuku, zge; zm, Kaz?m; Co?kun, Abdulhakim; Narin, Nazmi

    2016-01-01

    PURPOSE The aim of this prospective study was to investigate the incidence of silent cerebrovascular embolic events associated with percutaneous closure of atrial septal defect (ASD) in pediatric patients. METHODS A total of 23 consecutive pediatric patients (mean age, 10.43.8 years; range, 417 years) admitted for transcatheter closure of ASD were recruited in the study. The patients were scanned with a 1.5 Tesla clinical scanner. Two cranial magnetic resonance imaging (MRI) examinations were acquired before the procedure and within 24 hours following the catheterization. MRI included turbo spin-echo fluid-attenuated inversion recovery (FLAIR) sequence and diffusion-weighted imaging technique with single-shot echo-planar spin-echo sequence. The transcatheter closure of ASD was performed by three expert interventional cardiologists. Amplatzer septal occluder device was implemented for the closure of the defect. No contrast medium was administered in the course of the procedure. RESULTS None of the patients had diffusion restricted cerebral lesions resembling microembolic infarctions on postprocedural MRI. Preprocedural MRI of two patients revealed nonspecific hyperintense white matter lesions on FLAIR images with increased diffusion, which were considered to be older ischemic lesions associated with previously occurred paradoxical embolism. CONCLUSION The current study suggests that percutaneous closure of the ASD, when performed by experienced hands, may be free of cerebral microembolization in pediatric patients. However, due to the relatively small sample size, further studies with larger patient groups are needed for the validation of our preliminary results. PMID:26394443

  10. Image quality and signal distribution in 1.5-T and 3-T MRI in mild traumatic brain injury patients

    NASA Astrophysics Data System (ADS)

    Rossi, Maija E.; Dastidar, Prasun; Ryymin, Pertti; Ylinen, Aarne; Öhman, Juha; Soimakallio, Seppo; Eskola, Hannu

    2009-02-01

    Clear standards are lacking in the imaging modalities of the deficit in mild traumatic brain injury (MTBI) patients. The purpose of this study is to compare the image quality by signal distribution between 1.5 Tesla and 3 Tesla MRI in turbo spin echo (TSE) and gradient echo (GRE) images in normal hospital settings and to find preferences for which field to use in MTBI patients. We studied 40 MTBI patients with TSE and GRE; 20 patients were imaged at 1.5 T and 20 at 3 T. The imaging parameters were optimized separately for the two scanners. Histograms of the signal distribution in 22 ROIs were fitted to a 1-peak Gaussian model and the resulting peak positions were scaled in respect to the peak positions of genu of the corpus callosum and the caudate nuclei. Correlation of the contrast of the ROIs in reference to genu of the corpus callosum between both the two scanners and the two imaging sequences was good. Image contrast was similar at both in the TSE images; in the GRE images contrast improved from 1.5 T to 3 T. However, based on peak positions and widths, a slight drawback in the separability between the ROIs was observed when 1.5 T MRI was replaced by 3 T. No clear improvement in tissue contrast or separability of 3 T was found compared to 1.5 T. Imaging of MTBI with 3 T should therefore be based on other advantages of high-field imaging, such as improved SNR and spatial resolution.

  11. Navigation of a telepresence robot via covert visuospatial attention and real-time fMRI.

    PubMed

    Andersson, Patrik; Pluim, Josien P W; Viergever, Max A; Ramsey, Nick F

    2013-01-01

    Brain-computer interfaces (BCIs) allow people with severe neurological impairment and without ability to control their muscles to regain some control over their environment. The BCI user performs a mental task to regulate brain activity, which is measured and translated into commands controlling some external device. We here show that healthy participants are capable of navigating a robot by covertly shifting their visuospatial attention. Covert Visuospatial Attention (COVISA) constitutes a very intuitive brain function for spatial navigation and does not depend on presented stimuli or on eye movements. Our robot is equipped with motors and a camera that sends visual feedback to the user who can navigate it from a remote location. We used an ultrahigh field MRI scanner (7 Tesla) to obtain fMRI signals that were decoded in real time using a support vector machine. Four healthy subjects with virtually no training succeeded in navigating the robot to at least three of four target locations. Our results thus show that with COVISA BCI, realtime robot navigation can be achieved. Since the magnitude of the fMRI signal has been shown to correlate well with the magnitude of spectral power changes in the gamma frequency band in signals measured by intracranial electrodes, the COVISA concept may in future translate to intracranial application in severely paralyzed people. PMID:22965825

  12. Magnetic resonance imaging investigation of the bone conduction implant – a pilot study at 1.5 Tesla

    PubMed Central

    Jansson, Karl-Johan Fredén; Håkansson, Bo; Reinfeldt, Sabine; Rigato, Cristina; Eeg-Olofsson, Måns

    2015-01-01

    Purpose The objective of this pilot study was to investigate if an active bone conduction implant (BCI) used in an ongoing clinical study withstands magnetic resonance imaging (MRI) of 1.5 Tesla. In particular, the MRI effects on maximum power output (MPO), total harmonic distortion (THD), and demagnetization were investigated. Implant activation and image artifacts were also evaluated. Methods and materials One implant was placed on the head of a test person at the position corresponding to the normal position of an implanted BCI and applied with a static pressure using a bandage and scanned in a 1.5 Tesla MRI camera. Scanning was performed both with and without the implant, in three orthogonal planes, and for one spin-echo and one gradient-echo pulse sequence. Implant functionality was verified in-between the scans using an audio processor programmed to generate a sequence of tones when attached to the implant. Objective verification was also carried out by measuring MPO and THD on a skull simulator as well as retention force, before and after MRI. Results It was found that the exposure of 1.5 Tesla MRI only had a minor effect on the MPO, ie, it decreased over all frequencies with an average of 1.1±2.1 dB. The THD remained unchanged above 300 Hz and was increased only at lower frequencies. The retention magnet was demagnetized by 5%. The maximum image artifacts reached a distance of 9 and 10 cm from the implant in the coronal plane for the spin-echo and the gradient-echo sequence, respectively. The test person reported no MRI induced sound from the implant. Conclusion This pilot study indicates that the present BCI may withstand 1.5 Tesla MRI with only minor effects on its performance. No MRI induced sound was reported, but the head image was highly distorted near the implant. PMID:26604836

  13. Application of 3.0 Tesla Magnetic Resonance Imaging for Diagnosis in the Orthotopic Nude Mouse Model of Pancreatic Cancer

    PubMed Central

    Wu, Li; Wang, Chen; Yao, Xiuzhong; Liu, Kai; Xu, Yanjun; Zhang, Haitao; Fu, Caixia; Wang, Xiaolin; Li, Yingyi

    2014-01-01

    The aim of this study was to successfully establish an orthotopic murine model using two different human pancreatic adenocarcinoma cell lines and to propose a 3.0 tesla MRI protocol for noninvasive characterization of this model. SW1990 and MIAPaca-2 tumor cells were injected into the pancreas of BALB/C nu/nu mice. Tumor growth rate and morphological information were assessed by 3.0 tesla MRI (T1WI, T2WI and DCE-MRI) and immunohistology. Proliferation of SW1990 was significantly faster than that of MIAPaca-2 (P=0.000), but MIAPaca-2 mice had a significantly shorter survival than SW1990 mice (41 days and 44 days respectively, P=0.027). MRI could reliably monitor tumor growth in both cell lines: the tumors exhibiting a spherical growth pattern showed a high-intensity signal, and the SW1990 group developed significantly larger tumors compared with the MIAPaCa-2 group. There were no statistical differences between the two groups in which tumor size was assessed using electronic calipers and an MRI scan (P=0.680). Both tumors showed a slow gradual enhancement pattern. Immunohistochemistry demonstrated tumor tissues showing high expression of Ki-67. This model closely mimics human pancreatic cancer and permits monitoring of tumor growth and morphological information by noninvasive 3.0 tesla MRI studies reducing the number of mice required. PMID:25048266

  14. [Nikola Tesla: flashes of inspiration].

    PubMed

    Villarejo-Galende, Albero; Herrero-San Martín, Alejandro

    2013-01-16

    Nikola Tesla (1856-1943) was one of the greatest inventors in history and a key player in the revolution that led to the large-scale use of electricity. He also made important contributions to such diverse fields as x-rays, remote control, radio, the theory of consciousness or electromagnetism. In his honour, the international unit of magnetic induction was named after him. Yet, his fame is scarce in comparison with that of other inventors of the time, such as Edison, with whom he had several heated arguments. He was a rather odd, reserved person who lived for his inventions, the ideas for which came to him in moments of inspiration. In his autobiography he relates these flashes with a number of neuropsychiatric manifestations, which can be seen to include migraine auras, synaesthesiae, obsessions and compulsions. PMID:23307357

  15. Liquid-explosives scanners stand trial in airports

    SciTech Connect

    Matthews, Jermey N. A.

    2010-07-15

    Air passengers may once more be allowed to pack beverages, lotions, and hair spray in their carry-on luggage, if imaging technologies to detect liquid explosives can prove their worth. Several competing systems, including multi-energy x-ray systems and a low-field magnetic resonance imaging (MRI) scanner, are undergoing field tests at some airports worldwide.

  16. MRI-powered Actuators for Robotic Interventions

    PubMed Central

    Vartholomeos, Panagiotis; Qin, Lei; Dupont, Pierre E.

    2012-01-01

    This paper presents a novel actuation technology for robotically assisted MRI-guided interventional procedures. Compact and wireless, the actuators are both powered and controlled by the MRI scanner. The design concept and performance limits are described and derived analytically. Simulation and experiments in a clinical MR scanner are used to validate the analysis and to demonstrate the capability of the approach for needle biopsies. The concepts of actuator locking mechanisms and multi-axis control are also introduced. PMID:22287082

  17. Portable biochip scanner device

    DOEpatents

    Perov, Alexander; Sharonov, Alexei; Mirzabekov, Andrei D.

    2002-01-01

    A portable biochip scanner device used to detect and acquire fluorescence signal data from biological microchips (biochips) is provided. The portable biochip scanner device employs a laser for emitting an excitation beam. An optical fiber delivers the laser beam to a portable biochip scanner. A lens collimates the laser beam, the collimated laser beam is deflected by a dichroic mirror and focused by an objective lens onto a biochip. The fluorescence light from the biochip is collected and collimated by the objective lens. The fluorescence light is delivered to a photomultiplier tube (PMT) via an emission filter and a focusing lens. The focusing lens focuses the fluorescence light into a pinhole. A signal output of the PMT is processed and displayed.

  18. Biochip scanner device

    DOEpatents

    Perov, Alexander; Belgovskiy, Alexander I.; Mirzabekov, Andrei D.

    2001-01-01

    A biochip scanner device used to detect and acquire fluorescence signal data from biological microchips or biochips and method of use are provided. The biochip scanner device includes a laser for emitting a laser beam. A modulator, such as an optical chopper modulates the laser beam. A scanning head receives the modulated laser beam and a scanning mechanics coupled to the scanning head moves the scanning head relative to the biochip. An optical fiber delivers the modulated laser beam to the scanning head. The scanning head collects the fluorescence light from the biochip, launches it into the same optical fiber, which delivers the fluorescence into a photodetector, such as a photodiode. The biochip scanner device is used in a row scanning method to scan selected rows of the biochip with the laser beam size matching the size of the immobilization site.

  19. Optical fuel pin scanner

    DOEpatents

    Kirchner, Tommy L.; Powers, Hurshal G.

    1983-01-01

    An optical scanner for indicia arranged in a focal plane at a cylindrical outside surface by use of an optical system including a rotatable dove prism. The dove prism transmits a rotating image of an encircled cylindrical surface area to a stationary photodiode array.

  20. Hybrid dispersion laser scanner.

    PubMed

    Goda, K; Mahjoubfar, A; Wang, C; Fard, A; Adam, J; Gossett, D R; Ayazi, A; Sollier, E; Malik, O; Chen, E; Liu, Y; Brown, R; Sarkhosh, N; Di Carlo, D; Jalali, B

    2012-01-01

    Laser scanning technology is one of the most integral parts of today's scientific research, manufacturing, defense, and biomedicine. In many applications, high-speed scanning capability is essential for scanning a large area in a short time and multi-dimensional sensing of moving objects and dynamical processes with fine temporal resolution. Unfortunately, conventional laser scanners are often too slow, resulting in limited precision and utility. Here we present a new type of laser scanner that offers ∼1,000 times higher scan rates than conventional state-of-the-art scanners. This method employs spatial dispersion of temporally stretched broadband optical pulses onto the target, enabling inertia-free laser scans at unprecedented scan rates of nearly 100 MHz at 800 nm. To show our scanner's broad utility, we use it to demonstrate unique and previously difficult-to-achieve capabilities in imaging, surface vibrometry, and flow cytometry at a record 2D raster scan rate of more than 100 kHz with 27,000 resolvable points. PMID:22685627

  1. Hybrid Dispersion Laser Scanner

    PubMed Central

    Goda, K.; Mahjoubfar, A.; Wang, C.; Fard, A.; Adam, J.; Gossett, D. R.; Ayazi, A.; Sollier, E.; Malik, O.; Chen, E.; Liu, Y.; Brown, R.; Sarkhosh, N.; Di Carlo, D.; Jalali, B.

    2012-01-01

    Laser scanning technology is one of the most integral parts of today's scientific research, manufacturing, defense, and biomedicine. In many applications, high-speed scanning capability is essential for scanning a large area in a short time and multi-dimensional sensing of moving objects and dynamical processes with fine temporal resolution. Unfortunately, conventional laser scanners are often too slow, resulting in limited precision and utility. Here we present a new type of laser scanner that offers ∼1,000 times higher scan rates than conventional state-of-the-art scanners. This method employs spatial dispersion of temporally stretched broadband optical pulses onto the target, enabling inertia-free laser scans at unprecedented scan rates of nearly 100 MHz at 800 nm. To show our scanner's broad utility, we use it to demonstrate unique and previously difficult-to-achieve capabilities in imaging, surface vibrometry, and flow cytometry at a record 2D raster scan rate of more than 100 kHz with 27,000 resolvable points. PMID:22685627

  2. Functional correlates of cognitive dysfunction in multiple sclerosis: A multicenter fMRI Study.

    PubMed

    Rocca, Maria A; Valsasina, Paola; Hulst, Hanneke E; Abdel-Aziz, Khaled; Enzinger, Christian; Gallo, Antonio; Pareto, Debora; Riccitelli, Gianna; Muhlert, Nils; Ciccarelli, Olga; Barkhof, Frederik; Fazekas, Franz; Tedeschi, Gioacchino; Arévalo, Maria J; Filippi, Massimo

    2014-12-01

    In this multicenter study, we applied functional magnetic resonance imaging (fMRI) to define the functional correlates of cognitive dysfunction in patients with multiple sclerosis (MS). fMRI scans during the performance of the N-back task were acquired from 42 right-handed relapsing remitting (RR) MS patients and 52 sex-matched right-handed healthy controls, studied at six European sites using 3.0 Tesla scanners. Patients with at least two abnormal (<2 standard deviations from the normative values) neuropsychological tests at a standardized evaluation were considered cognitively impaired (CI). FMRI data were analyzed using the SPM8 software, modeling regions showing load-dependent activations/deactivations with increasing task difficulty. Twenty (47%) MS patients were CI. During the N-back load condition, compared to controls and CI patients, cognitively preserved (CP) patients had increased recruitment of the right dorsolateral prefrontal cortex. As a function of increasing task difficulty, CI MS patients had reduced activations of several areas located in the fronto-parieto-temporal lobes as well as reduced deactivations of regions which are part of the default mode network compared to the other two groups. Significant correlations were found between abnormal fMRI patterns of activations and deactivations and behavioral measures, cognitive performance, and brain T2 and T1 lesion volumes. This multicenter study supports the theory that a preserved fMRI activity of the frontal lobe is associated with a better cognitive profile in MS patients. It also indicates the feasibility of fMRI to monitor disease evolution and treatment effects in future studies. PMID:25045065

  3. Design of an Electrically Automated RF Transceiver Head Coil in MRI.

    PubMed

    Sohn, Sung-Min; DelaBarre, Lance; Gopinath, Anand; Vaughan, John Thomas

    2015-10-01

    Magnetic resonance imaging (MRI) is a widely used nonionizing and noninvasive diagnostic instrument to produce detailed images of the human body. The radio-frequency (RF) coil is an essential part of MRI hardware as an RF front-end. RF coils transmit RF energy to the subject and receive the returning MR signal. This paper presents an MRI-compatible hardware design of the new automatic frequency tuning and impedance matching system. The system automatically corrects the detuned and mismatched condition that occurs due to loading effects caused by the variable subjects (i.e., different human heads or torsos). An eight-channel RF transceiver head coil with the automatic system has been fabricated and tested at 7 Tesla (T) MRI system. The automatic frequency tuning and impedance matching system uses digitally controlled capacitor arrays with real-time feedback control capability. The hardware design is not only compatible with current MRI scanners in all aspects but also it operates the tuning and matching function rapidly and accurately. The experimental results show that the automatic function increases return losses from 8.4 dB to 23.7 dB (maximum difference) and from 12.7 dB to 19.6 dB (minimum difference) among eight channels within 550 ms . The reflected RF power decrease from 23.1% to 1.5% (maximum difference) and from 5.3% to 1.1% (minimum difference). Therefore, these results improve signal-to-noise ratio (SNR) in MR images with phantoms. PMID:25361512

  4. Advances in Clinical PET/MRI Instrumentation.

    PubMed

    Herzog, Hans; Lerche, Christoph

    2016-04-01

    In 2010, the first whole-body PET/MRI scanners installed for clinical use were the sequential Philips PET/MRI with PMT-based, TOF-capable technology and the integrated simultaneous Siemens PET/MRI. Avalanche photodiodes as non-magneto-sensitive readout electronics allowed PET integrated within the MRI. The experiences with these scanners showed that improvements of software aspects, such as attenuation correction, were necessary and that efficient protocols combining optimally PET and MRI must be still developed. In 2014, General Electric issued an integrated PET/MRI with SiPM-based PET detectors, allowing TOF-PET. Looking at the MRI components of current PET/MR imaging systems, primary improvements come from sequences and new coils. PMID:26952724

  5. 3-Tesla MRI Response to TACE in HCC (Liver Cancer)

    ClinicalTrials.gov

    2014-03-20

    Adult Primary Hepatocellular Carcinoma; Advanced Adult Primary Liver Cancer; Localized Resectable Adult Primary Liver Cancer; Localized Unresectable Adult Primary Liver Cancer; Stage A Adult Primary Liver Cancer (BCLC); Stage B Adult Primary Liver Cancer (BCLC)

  6. Geographic Distribution of CT, MRI and PET Devices in Japan: A Longitudinal Analysis Based on National Census Data

    PubMed Central

    Matsumoto, Masatoshi; Koike, Soichi; Kashima, Saori; Awai, Kazuo

    2015-01-01

    Background Japan has the most CT and MRI scanners per unit population in the world; however, the geographic distribution of these technologies is currently unknown. Moreover, nothing is known of the cause-effect relationship between the number of diagnostic imaging devices and their geographic distribution. Methods Data on the number of CT, MRI and PET devices and that of their utilizations in all 1829 municipalities of Japan was generated, based on the Static Survey of Medical Institutions conducted by the government. The inter-municipality equity of the number of devices or utilizations was evaluated with Gini coefficient. Results Between 2005 and 2011, the number of CT, MRI and PET devices in Japan increased by 47% (8789 to 12945), 19% (5034 to 5990) and 70% (274 to 466), respectively. Gini coefficient of the number of devices was largest for PET and smallest for CT (p for PET-MRI difference <0.001; MRI-CT difference <0.001). For all three modalities, Gini coefficient steadily decreased (p for 2011-2005 difference: <0.001 for CT; 0.003 for MRI; and <0.001 for PET). The number of devices in old models (single-detector CT, MRI<1.5 tesla, and conventional PET) decreased, while that in new models (multi-detector CT, MRI≥1.5 tesla, and PET-CT) increased. Gini coefficient of the old models increased or remained unchanged (increase rate of 9%, 3%, and -1%; p for 2011-2008 difference <0.001, 0.072, and 0.562, respectively), while Gini coefficient of the new models decreased (-10%, -9%, and -10%; p for 2011-2008 difference <0.001, <0.001, and <0.001 respectively). Similar results were observed in terms of utilizations. Conclusions The more abundant a modality, the more equal the modality’s distribution. Any increase in the modality made its distribution more equal. The geographic distribution of the diagnostic imaging technology in Japan appears to be affected by spatial competition derived from a market force. PMID:25946125

  7. Evaluation of the WARP-turbo spin echo sequence for 3 Tesla magnetic resonance imaging of stifle joints in dogs with stainless steel tibial plateau leveling osteotomy implants.

    PubMed

    Simpler, Renee E; Kerwin, Sharon C; Eichelberger, Bunita M; Wall, Corey R; Thompson, James A; Padua, Abraham; Purdy, David; Griffin, John F

    2014-01-01

    Susceptibility artifacts caused by ferromagnetic implants compromise magnetic resonance imaging (MRI) of the canine stifle after tibial plateau leveling osteotomy (TPLO) procedures. The WARP-turbo spin echo sequence is being developed to mitigate artifacts and utilizes slice encoding for metal artifact reduction. The aim of the current study was to evaluate the WARP-turbo spin echo sequence for imaging post TPLO canine stifle joints. Proton density weighted images of 19 canine cadaver limbs were made post TPLO using a 3 Tesla MRI scanner. Susceptibility artifact sizes were recorded and compared for WARP vs. conventional turbo spin echo sequences. Three evaluators graded depiction quality for the tibial tuberosity, medial and lateral menisci, tibial osteotomy, and caudal cruciate ligament as sufficient or insufficient to make a diagnosis. Artifacts were subjectively smaller and local structures were better depicted in WARP-turbo spin echo images. Signal void area was also reduced by 75% (sagittal) and 49% (dorsal) in WARP vs. conventional turbo spin echo images. Evaluators were significantly more likely to grade local anatomy depiction as adequate for making a diagnosis in WARP-turbo spin echo images in the sagittal but not dorsal plane. The proportion of image sets with anatomic structure depiction graded adequate to make a diagnosis ranged from 28 to 68% in sagittal WARP-turbo spin echo images compared to 0-19% in turbo spin echo images. Findings indicated that the WARP-turbo spin echo sequence reduces the severity of susceptibility artifacts in canine stifle joints post TPLO. However, variable depiction of local anatomy warrants further refinement of the technique. PMID:24438513

  8. Conduction-coupled Tesla transformer.

    PubMed

    Reed, J L

    2015-03-01

    A proof-of-principle Tesla transformer circuit is introduced. The new transformer exhibits the high voltage-high power output signal of shock-excited transformers. The circuit, with specification of proper circuit element values, is capable of obtaining extreme oscillatory voltages. The primary and secondary portions of the circuit communicate solely by conduction. The destructive arcing between the primary and secondary inductors in electromagnetically coupled transformers is ubiquitous. Flashover is eliminated in the new transformer as the high-voltage inductors do not interpenetrate and so do not possess an annular volume of electric field. The inductors are remote from one another. The high voltage secondary inductor is isolated in space, except for a base feed conductor, and obtains earth by its self-capacitance to the surroundings. Governing equations, for the ideal case of no damping, are developed from first principles. Experimental, theoretical, and circuit simulator data are presented for the new transformer. Commercial high-temperature superconductors are discussed as a means to eliminate the counter-intuitive damping due to small primary inductances in both the electromagnetic-coupled and new conduction-coupled transformers. PMID:25832281

  9. Conduction-coupled Tesla transformer

    NASA Astrophysics Data System (ADS)

    Reed, J. L.

    2015-03-01

    A proof-of-principle Tesla transformer circuit is introduced. The new transformer exhibits the high voltage-high power output signal of shock-excited transformers. The circuit, with specification of proper circuit element values, is capable of obtaining extreme oscillatory voltages. The primary and secondary portions of the circuit communicate solely by conduction. The destructive arcing between the primary and secondary inductors in electromagnetically coupled transformers is ubiquitous. Flashover is eliminated in the new transformer as the high-voltage inductors do not interpenetrate and so do not possess an annular volume of electric field. The inductors are remote from one another. The high voltage secondary inductor is isolated in space, except for a base feed conductor, and obtains earth by its self-capacitance to the surroundings. Governing equations, for the ideal case of no damping, are developed from first principles. Experimental, theoretical, and circuit simulator data are presented for the new transformer. Commercial high-temperature superconductors are discussed as a means to eliminate the counter-intuitive damping due to small primary inductances in both the electromagnetic-coupled and new conduction-coupled transformers.

  10. Correlation of histological findings from a large ciliochoroidal melanoma with CT perfusion and 3T MRI dynamic enhancement studies

    PubMed Central

    Pulido, Jose S; Campeau, Norbert G; Klotz, Ernst; Primak, Andrew N; Saba, Osama; Gunduz, Kaan; Cantrill, Herbert; Salomão, Diva; McCollough, Cynthia H

    2008-01-01

    Background The initial use of a 64-slice computed tomography (CT) scanner for obtaining quantitative perfusion data from a large ciliochoroidal melanoma, and correlation with 3T magnetic resonance imaging (MRI) dynamic enhancement and tumor histology. Methods The CT perfusion scan was performed using 80 kVp, 250 mA and 1-sec rotation time for 40 sec. The analysis was performed using commercial perfusion analysis software with a prototype 3-dimensional motion correction tool. Dynamic contrast-enhanced 3-Tesla MRI measured the kinetics of enhancement to estimate the vascular permeability. The time-dependent enhancement patterns were obtained using the average signal intensity using Functool analysis software. The involved globe was enucleated and microscopic evaluation of the tumor was performed. Results The perfusion parameters blood flow, blood volume and permeability surface area product in the affected eye determined by CT perfusion analysis were 118 ml/100 ml/min, 11.3 ml/100 ml and 48 ml/100 ml/min. Dynamic MRI enhancement showed maximal intensity increase of 111%. The neoplasm was a ciliochoroidal spindle cell melanoma which was mitotically active (13 mitoses/40 hpf). Vascular loops and arcades were present throughout the tumor. The patient developed metastases within 9 months of presentation. Conclusion Quantitative CT perfusion analysis of ocular tumors is feasible with motion correction software. PMID:19668716

  11. RF Head Coil Design with Improved RF Magnetic Near-Fields Uniformity for Magnetic Resonance Imaging (MRI) Systems

    PubMed Central

    Sohn, Sung-Min; DelaBarre, Lance; Gopinath, Anand; Vaughan, John Thomas

    2015-01-01

    Higher magnetic field strength in magnetic resonance imaging (MRI) systems offers higher signal-to-noise ratio (SNR), contrast, and spatial resolution in MR images. However, the wavelength in ultra-high fields (7 tesla and beyond) becomes shorter than the human body at the Larmor frequency with increasing static magnetic field (B0) of MRI system. At short wavelengths, interference effect appears resulting in non- uniformity of the RF magnetic near-field (B1) over the subject and MR images may have spatially anomalous contrast. The B1 near-field generated by the transverse electromagnetic (TEM) RF coil’s microstrip line element has a maximum near the center of its length and falls off towards both ends. In this study, a double trapezoidal shaped microstrip transmission line element is proposed to obtain uniform B1 field distribution by gradual impedance variation. Two multi-channel RF head coils with uniform and trapezoidal shape elements were built and tested with a phantom at 7T MRI scanner for comparison. The simulation and experimental results show stronger and more uniform B1+ near-field with the trapezoidal shape. PMID:25892746

  12. Head MRI

    MedlinePlus

    ... the head; MRI - cranial; NMR - cranial; Cranial MRI; Brain MRI; MRI - brain; MRI - head ... tell your health care provider if you have: Brain aneurysm clips Certain types of artificial heart valves ...

  13. LIGA Scanner Control Software

    Energy Science and Technology Software Center (ESTSC)

    1999-02-01

    The LIGA Scanner Software is a graphical user interface package that facilitates controlling the scanning operation of x-rays from a synchrotron and sample manipulation for making LIGA parts. The process requires scanning of the LIGA mask and the PMMA resist through a stationary x-ray beam to provide an evenly distributed x-ray exposure over the wafer. This software package has been written specifically to interface with Aerotech motor controllers.

  14. Safety of localizing epilepsy monitoring intracranial electroencephalograph electrodes using MRI: Radiofrequency-induced heating

    PubMed Central

    Carmichael, David W; Thornton, John S; Rodionov, Roman; Thornton, Rachel; McEvoy, Andrew; Allen, Philip J; Lemieux, Louis

    2008-01-01

    Purpose To investigate heating during postimplantation localization of intracranial electroencephalograph (EEG) electrodes by MRI. Materials and Methods A phantom patient with a realistic arrangement of electrodes was used to simulate tissue heating during MRI. Measurements were performed using 1.5 Tesla (T) and 3T MRI scanners, using head- and body-transmit RF-coils. Two electrode-lead configurations were assessed: a “standard” condition with external electrode-leads physically separated and a “fault” condition with all lead terminations electrically shorted. Results Using a head-transmit–receive coil and a 2.4 W/kg head-average specific absorption rate (SAR) sequence, at 1.5T the maximum temperature change remained within safe limits (<1°C). Under “standard” conditions, we observed greater heating (≤2.0°C) at 3T on one system and similar heating (<1°C) on a second, compared with the 1.5T system. In all cases these temperature maxima occurred at the grid electrode. In the “fault” condition, larger temperature increases were observed at both field strengths, particularly for the depth electrodes. Conversely, with a body-transmit coil at 3T significant heating (+6.4°C) was observed (same sequence, 1.2/0.5 W/kg head/body-average) at the grid electrode under “standard” conditions, substantially exceeding safe limits. These temperature increases neglect perfusion, a major source of heat dissipation in vivo. Conclusion MRI for intracranial electrode localization can be performed safely at both 1.5T and 3T provided a head-transmit coil is used, electrode leads are separated, and scanner-reported SARs are limited as determined in advance for specific scanner models, RF coils and implant arrangements. Neglecting these restrictions may result in tissue injury. J. Magn. Reson. Imaging 2008;28:1233–1244. © 2008 Wiley-Liss, Inc. PMID:18972332

  15. Long-Term Effects of Neonatal Hypoxia-Ischemia on Structural and Physiological Integrity of the Eye and Visual Pathway by Multimodal MRI

    PubMed Central

    Chan, Kevin C.; Kancherla, Swarupa; Fan, Shu-Juan; Wu, Ed X.

    2015-01-01

    Purpose. Neonatal hypoxia-ischemia is a major cause of brain damage in infants and may frequently present visual impairments. Although advancements in perinatal care have increased survival, the pathogenesis of hypoxic-ischemic injury and the long-term consequences to the visual system remain unclear. We hypothesized that neonatal hypoxia-ischemia can lead to chronic, MRI-detectable structural and physiological alterations in both the eye and the brain's visual pathways. Methods. Eight Sprague-Dawley rats underwent ligation of the left common carotid artery followed by hypoxia for 2 hours at postnatal day 7. One year later, T2-weighted MRI, gadolinium-enhanced MRI, chromium-enhanced MRI, manganese-enhanced MRI, and diffusion tensor MRI (DTI) of the visual system were evaluated and compared between opposite hemispheres using a 7-Tesla scanner. Results. Within the eyeball, systemic gadolinium administration revealed aqueous-vitreous or blood-ocular barrier leakage only in the ipsilesional left eye despite comparable aqueous humor dynamics in the anterior chamber of both eyes. Binocular intravitreal chromium injection showed compromised retinal integrity in the ipsilesional eye. Despite total loss of the ipsilesional visual cortex, both retinocollicular and retinogeniculate pathways projected from the contralesional eye toward ipsilesional visual cortex possessed stronger anterograde manganese transport and less disrupted structural integrity in DTI compared with the opposite hemispheres. Conclusions. High-field, multimodal MRI demonstrated in vivo the long-term structural and physiological deficits in the eye and brain's visual pathways after unilateral neonatal hypoxic-ischemic injury. The remaining retinocollicular and retinogeniculate pathways appeared to be more vulnerable to anterograde degeneration from eye injury than retrograde, transsynaptic degeneration from visual cortex injury. PMID:25491295

  16. High throughput optical scanner

    DOEpatents

    Basiji, David A.; van den Engh, Gerrit J.

    2001-01-01

    A scanning apparatus is provided to obtain automated, rapid and sensitive scanning of substrate fluorescence, optical density or phosphorescence. The scanner uses a constant path length optical train, which enables the combination of a moving beam for high speed scanning with phase-sensitive detection for noise reduction, comprising a light source, a scanning mirror to receive light from the light source and sweep it across a steering mirror, a steering mirror to receive light from the scanning mirror and reflect it to the substrate, whereby it is swept across the substrate along a scan arc, and a photodetector to receive emitted or scattered light from the substrate, wherein the optical path length from the light source to the photodetector is substantially constant throughout the sweep across the substrate. The optical train can further include a waveguide or mirror to collect emitted or scattered light from the substrate and direct it to the photodetector. For phase-sensitive detection the light source is intensity modulated and the detector is connected to phase-sensitive detection electronics. A scanner using a substrate translator is also provided. For two dimensional imaging the substrate is translated in one dimension while the scanning mirror scans the beam in a second dimension. For a high throughput scanner, stacks of substrates are loaded onto a conveyor belt from a tray feeder.

  17. Science up to 100 tesla

    SciTech Connect

    Campbell, L.J.

    1995-05-01

    100 Tesla is the highest attainable field that can be held for milli-sec in a non-destructive magnet. The strongest steels turn soft under stresses of 4GPa, which is the magnetic pressure of 100 T. Until there is a breakthrough in materials, magnets having all the low temperature and high pressure trimmings will be limited to about 100 T. Within the field range 1-100 T far more resources are now devoted to producing the highest possible continuous fields (40+5 T) than to producing longer pulsed fields above 50 T. This illustrates that the utility of the field can be more important than the strength of the field to researchers in condensed matter. Discoveries are typically made in new territory, but this can be new combinations of pressure, temperature, and magnetic field, or new probes and new materials. If any activity has kept up with the proliferation of new experiments and new facilities in high magnetic field research it is the listing of experiments that could and should be done in high fields. Part of the reason for the vitality of high field research is that high fields provide a generic environment. Compared to particle accelerators and plasma machines a high field laboratory is a setting for generic science, like synchrotron light sources or neutron scattering centers. Although the latter two installations probes states, while a magnetic field creates a state. Because it is unrealistic to try to list all the science opportunities at high fields, the author list sources for lists in the public domain and gives a few examples.

  18. MRI Evaluation of Spinal Length and Vertebral Body Angle During Loading with a Spinal Compression Harness

    NASA Technical Reports Server (NTRS)

    Campbell, James A.; Hargens, Alan R.; Murthy, G.; Ballard, R. E.; Watenpaugh, D. E.; Hargens, Alan, R.; Sanchez, E.; Yang, C.; Mitsui, I.; Schwandt, D.; Fechner, K. P.; Holton, Emily M. (Technical Monitor)

    1998-01-01

    Weight bearing by the spinal column during upright posture often plays a role in the common problem of low back pain. Therefore, we developed a non-ferromagnetic spinal compression harness to enable MRI investigations of the spinal column during axial loading. Human subjects were fitted with a Nest and a footplate which were connected by adjustable straps to an analog load cell. MRI scans of human subjects (5 males and 1 female with age range of 27-53 yrs) during loaded and unloaded conditions were accomplished with a 1.5 Tesla GE Signa scanner. Studies of two subjects undergoing sequentially increasing spinal loads revealed significant decreases (r(sup 2) = 0.852) in spinal length between T4 and L5 culminating in a 1.5 to 2% length decrease during loading with 75% body weight. Sagittal vertebral body angles of four subjects placed under a constant 50% body weight load for one hour demonstrated increased lordotic and kyphotic curvatures. In the lumbar spine, the L2 vertebral body experienced the greatest angular change (-3 deg. to -5 deg.) in most subjects while in the thoracic spine, T4 angles increased from the unloaded state by +2 deg. to +9 deg. Overall, our studies demonstrate: 1) a progressive, although surprisingly small, decrease in spinal length with increasing load and 2) relatively large changes in spinal column angulation with 50% body weight.

  19. 51. View of upper radar scanner switch in radar scanner ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    51. View of upper radar scanner switch in radar scanner building 105 from upper catwalk level showing emanating waveguides from upper switch (upper one-fourth of photograph) and emanating waveguides from lower radar scanner switch in vertical runs. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  20. Integrated display scanner

    DOEpatents

    Veligdan, James T.

    2004-12-21

    A display scanner includes an optical panel having a plurality of stacked optical waveguides. The waveguides define an inlet face at one end and a screen at an opposite end, with each waveguide having a core laminated between cladding. A projector projects a scan beam of light into the panel inlet face for transmission from the screen as a scan line to scan a barcode. A light sensor at the inlet face detects a return beam reflected from the barcode into the screen. A decoder decodes the return beam detected by the sensor for reading the barcode. In an exemplary embodiment, the optical panel also displays a visual image thereon.

  1. Synergistic enhancement of iron oxide nanoparticle and gadolinium for dual-contrast MRI

    SciTech Connect

    Zhang, Fan; Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361005 ; Huang, Xinglu; Qian, Chunqi; Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361005 ; Zhu, Lei; Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361005 ; Hida, Naoki; Niu, Gang; Chen, Xiaoyuan

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer MR contrast agents exert influence on T{sub 1} or T{sub 2} relaxation time of the surrounding tissue. Black-Right-Pointing-Pointer Combined use of iron oxide and Gd-DTPA can improve the sensitivity/specificity of lesion detection. Black-Right-Pointing-Pointer Dual contrast MRI enhances the delineation of tumor borders and small lesions. Black-Right-Pointing-Pointer The effect of DC-MRI can come from the high paramagnetic susceptibility of Gd{sup 3+}. Black-Right-Pointing-Pointer The effect of DC-MRI can also come from the distinct pharmacokinetic distribution of SPIO and Gd-DTPA. -- Abstract: Purpose: The use of MR contrast agents allows accurate diagnosis by exerting an influence on the longitudinal (T{sub 1}) or transverse (T{sub 2}) relaxation time of the surrounding tissue. In this study, we combined the use of iron oxide (IO) particles and nonspecific extracellular gadolinium chelate (Gd) in order to further improve the sensitivity and specificity of lesion detection. Procedures: With a 7-Tesla scanner, pre-contrasted, IO-enhanced and dual contrast agent enhanced MRIs were performed in phantom, normal animals, and animal models of lymph node tumor metastases and orthotopic brain tumor. For the dual-contrast (DC) MRI, we focused on the evaluation of T{sub 2} weighted DC MRI with IO administered first, then followed by the injection of a bolus of gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA). Results: Based on the C/N ratios and MRI relaxometry, the synergistic effect of coordinated administration of Gd-DTPA and IO was observed and confirmed in phantom, normal liver and tumor models. At 30 min after administration of Feridex, Gd-DTPA further decreased T{sub 2} relaxation in liver immediately after the injection. Additional administration of Gd-DTPA also immediately increased the signal contrast between tumor and brain parenchyma and maximized the C/N ratio to -4.12 {+-} 0.71. Dual contrast MRI also enhanced the delineation of tumor borders and small lesions. Conclusions: DC-MRI will be helpful to improve diagnostic accuracy and decrease the threshold size for lesion detection.

  2. Magic Angle–Enhanced MRI of Fibrous Microstructures in Sclera and Cornea With and Without Intraocular Pressure Loading

    PubMed Central

    Ho, Leon C.; Sigal, Ian A.; Jan, Ning-Jiun; Squires, Alexander; Tse, Zion; Wu, Ed X.; Kim, Seong-Gi; Schuman, Joel S.; Chan, Kevin C.

    2014-01-01

    Purpose. The structure and biomechanics of the sclera and cornea are central to several eye diseases such as glaucoma and myopia. However, their roles remain unclear, partly because of limited noninvasive techniques to assess their fibrous microstructures globally, longitudinally, and quantitatively. We hypothesized that magic angle–enhanced magnetic resonance imaging (MRI) can reveal the structural details of the corneoscleral shell and their changes upon intraocular pressure (IOP) elevation. Methods. Seven ovine eyes were extracted and fixed at IOP = 50 mm Hg to mimic ocular hypertension, and another 11 eyes were unpressurized. The sclera and cornea were scanned at different angular orientations relative to the main magnetic field inside a 9.4-Tesla MRI scanner. Relative MRI signal intensities and intrinsic transverse relaxation times (T2 and T2*) were determined to quantify the magic angle effect on the corneoscleral shells. Three loaded and eight unloaded tendon samples were scanned as controls. Results. At magic angle, high-resolution MRI revealed distinct scleral and corneal lamellar fibers, and light/dark bands indicative of collagen fiber crimps in the sclera and tendon. Magic angle enhancement effect was the strongest in tendon and the least strong in cornea. Loaded sclera, cornea, and tendon possessed significantly higher T2 and T2* than unloaded tissues at magic angle. Conclusions. Magic angle–enhanced MRI can detect ocular fibrous microstructures without contrast agents or coatings and can reveal their MR tissue property changes with IOP loading. This technique may open up new avenues for assessment of the biomechanical and biochemical properties of ocular tissues in aging and in diseases involving the corneoscleral shell. PMID:25103267

  3. MRI driven magnetic microswimmers

    PubMed Central

    Jakab, Péter; Székely, Gábor; Hata, Nobuhiko

    2013-01-01

    Capsule endoscopy is a promising technique for diagnosing diseases in the digestive system. Here we design and characterize a miniature swimming mechanism that uses the magnetic fields of the MRI for both propulsion and wireless powering of the capsule. Our method uses both the static and the radio frequency (RF) magnetic fields inherently available in MRI to generate a propulsive force. Our study focuses on the evaluation of the propulsive force for different swimming tails and experimental estimation of the parameters that influence its magnitude. We have found that an approximately 20 mm long, 5 mm wide swimming tail is capable of producing 0.21 mN propulsive force in water when driven by a 20 Hz signal providing 0.85 mW power and the tail located within the homogeneous field of a 3 T MRI scanner. We also analyze the parallel operation of the swimming mechanism and the scanner imaging. We characterize the size of artifacts caused by the propulsion system. We show that while the magnetic micro swimmer is propelling the capsule endoscope, the operator can locate the capsule on the image of an interventional scene without being obscured by significant artifacts. Although this swimming method does not scale down favorably, the high magnetic field of the MRI allows self propulsion speed on the order of several millimeter per second and can propel an endoscopic capsule in the stomach. PMID:22037673

  4. Novel Contrast Mechanisms at 3 Tesla and 7 Tesla

    PubMed Central

    Regatte, Ravinder R.; Schweitzer, Mark E.

    2013-01-01

    Osteoarthritis (OA) is the most common musculoskeletal degenerative disease, affecting millions of people. Although OA has been considered primarily a cartilage disorder associated with focal cartilage degeneration, it is accompanied by well-known changes in subchondral and trabecular bone, including sclerosis and osteophyte formation. The exact cause of OA initiation and progression remains under debate, but OA typically first affects weightbearing joints such as the knee. Magnetic resonance imaging (MRI) has been recognized as a potential tool for quantitative assessment of cartilage abnormalities due to its excellent soft tissue contrast. Over the last two decades, several new MR biochemical imaging methods have been developed to characterize the disease process and possibly predict the progression of knee OA. These new MR biochemical methods play an important role not only for diagnosis of disease at an early stage, but also for their potential use in monitoring outcome of various drug therapies (success or failure). Recent advances in multicoil radiofrequency technology and high field systems (3 T and above) significantly improve the sensitivity and specificity of imaging studies for the diagnosis of musculoskeletal disorders. The current state-of-the-art MR imaging methods are briefly reviewed for the quantitative biochemical and functional imaging assessment of musculoskeletal systems. PMID:18850506

  5. Prevalence of Incidental Pancreatic Cysts on 3 Tesla Magnetic Resonance

    PubMed Central

    de Oliveira, Patricia Bedesco; Puchnick, Andrea; Szejnfeld, Jacob; Goldman, Suzan Menasce

    2015-01-01

    Objectives To ascertain the prevalence of pancreatic cysts detected incidentally on 3-Tesla magnetic resonance imaging (MRI) of the abdomen and correlate this prevalence with patient age and gender; assess the number, location, and size of these lesions, as well as features suspicious for malignancy; and determine the prevalence of incidentally detected dilatation of the main pancreatic duct (MPD). Methods Retrospective analysis of 2,678 reports of patients who underwent abdominal MRI between January 2012 and June 2013. Patients with a known history of pancreatic conditions or surgery were excluded, and the remaining 2,583 reports were examined for the presence of pancreatic cysts, which was then correlated with patient age and gender. We also assessed whether cysts were solitary or multiple, as well as their location within the pancreatic parenchyma, size, and features suspicious for malignancy. Finally, we calculated the prevalence of incidental MPD dilatation, defined as MPD diameter ≥ 2.5 mm. Results Pancreatic cysts were detected incidentally in 9.3% of patients (239/2,583). The prevalence of pancreatic cysts increased significantly with age (p<0.0001). There were no significant differences in prevalence between men and women (p=0.588). Most cysts were multiple (57.3%), distributed diffusely throughout the pancreas (41.8%), and 5 mm or larger (81.6%). In 12.1% of cases, cysts exhibited features suspicious for malignancy. Overall, 2.7% of subjects exhibited incidental MPD dilatation. Conclusions In this sample, the prevalence of pancreatic cysts detected incidentally on 3T MRI of the abdomen was 9.3%. Prevalence increased with age and was not associated with gender. The majority of cysts were multiple, diffusely distributed through the pancreatic parenchyma, and ≥ 5 mm in size; 12.1% were suspicious for malignancy. An estimated 2.7% of subjects had a dilated MPD. PMID:25798910

  6. Nikola Tesla, the Ether and his Telautomaton

    NASA Astrophysics Data System (ADS)

    Milar, Kendall

    2014-03-01

    In the nineteenth century physicists' understanding of the ether changed dramatically. New developments in thermodynamics, energy physics, and electricity and magnetism dictated new properties of the ether. These have traditionally been examined from the perspective of the scientists re-conceptualizing the ether. However Nikola Tesla, a prolific inventor and writer, presents a different picture of nineteenth century physics. Alongside the displays that showcased his inventions he presented alternative interpretations of physical, physiological and even psychical research. This is particularly evident in his telautomaton, a radio remote controlled boat. This invention and Tesla's descriptions of it showcase some of his novel interpretations of physical theories. He offered a perspective on nineteenth century physics that focused on practical application instead of experiment. Sometimes the understanding of physical theories that Tesla reached was counterproductive to his own inventive work; other times he offered new insights. Tesla's utilitarian interpretation of physical theories suggests a more scientifically curious and invested inventor than previously described and a connection between the scientific and inventive communities.

  7. Report on first TESLA window assembly test

    SciTech Connect

    Sun, D.; Koepke, K.

    1993-10-01

    RF input couplers for the superconducting cavities of the TESLA are under development at DESY and Fermilab. The coaxial part of the Fermilab input coupler has been tested up to 1.7 MW at Fermilab using 805 MHz rf power source. The test results, procedure and test setup are described.

  8. Multispectral scanner optical system

    NASA Technical Reports Server (NTRS)

    Stokes, R. C.; Koch, N. G. (Inventor)

    1980-01-01

    An optical system for use in a multispectral scanner of the type used in video imaging devices is disclosed. Electromagnetic radiation reflected by a rotating scan mirror is focused by a concave primary telescope mirror and collimated by a second concave mirror. The collimated beam is split by a dichroic filter which transmits radiant energy in the infrared spectrum and reflects visible and near infrared energy. The long wavelength beam is filtered and focused on an infrared detector positioned in a cryogenic environment. The short wavelength beam is dispersed by a pair of prisms, then projected on an array of detectors also mounted in a cryogenic environment and oriented at an angle relative to the optical path of the dispersed short wavelength beam.

  9. Laser Scanner Demonstration

    SciTech Connect

    Fuss, B.

    2005-09-06

    In the Summer of 2004 a request for proposals went out to potential vendors to offer a three-dimensional laser scanner for a number of unique metrology tasks at the Stanford Linear Accelerator Center (SLAC). Specifications were established including range, accuracy, scan density, resolution and field of view in consideration of anticipated department requirements. Four vendors visited the site to present their system and they were asked to perform three unique tests with their system on a two day visit to SLAC. Two of the three tests were created to emulate real-world applications at SLAC while the third was an accuracy and resolution series of experiments. The scope of these tests is presented and some of the vendor's results are included.

  10. A character string scanner

    NASA Technical Reports Server (NTRS)

    Enison, R. L.

    1971-01-01

    A computer program called Character String Scanner (CSS), is presented. It is designed to search a data set for any specified group of characters and then to flag this group. The output of the CSS program is a listing of the data set being searched with the specified group of characters being flagged by asterisks. Therefore, one may readily identify specific keywords, groups of keywords or specified lines of code internal to a computer program, in a program output, or in any other specific data set. Possible applications of this program include the automatic scan of an output data set for pertinent keyword data, the editing of a program to change the appearance of a certain word or group of words, and the conversion of a set of code to a different set of code.

  11. Space-multiplexed optical scanner.

    PubMed

    Riza, Nabeel A; Yaqoob, Zahid

    2004-05-01

    A low-loss two-dimensional optical beam scanner that is capable of delivering large (e.g., > 10 degrees) angular scans along the elevation as well as the azimuthal direction is presented. The proposed scanner is based on a space-switched parallel-serial architecture that employs a coarse-scanner module and a fine-scanner module that produce an ultrahigh scan space-fill factor, e.g., 900 x 900 distinguishable beams in a 10 degrees (elevation) x 10 degrees (azimuth) scan space. The experimentally demonstrated one-dimensional version of the proposed scanner has a supercontinuous scan, 100 distinguishable beam spots in a 2.29 degrees total scan range, and 1.5-dB optical insertion loss. PMID:15130010

  12. Partial epilepsy: A pictorial review of 3 TESLA magnetic resonance imaging features

    PubMed Central

    Abud, Lucas Giansante; Thivard, Lionel; Abud, Thiago Giansante; Nakiri, Guilherme Seizem; dos Santos, Antonio Carlos; Dormont, Didier

    2015-01-01

    Epilepsy is a disease with serious consequences for patients and society. In many cases seizures are sufficiently disabling to justify surgical evaluation. In this context, Magnetic Resonance Imaging (MRI) is one of the most valuable tools for the preoperative localization of epileptogenic foci. Because these lesions show a large variety of presentations (including subtle imaging characteristics), their analysis requires careful and systematic interpretation of MRI data. Several studies have shown that 3 Tesla (T) MRI provides a better image quality than 1.5 T MRI regarding the detection and characterization of structural lesions, indicating that high-field-strength imaging should be considered for patients with intractable epilepsy who might benefit from surgery. Likewise, advanced MRI postprocessing and quantitative analysis techniques such as thickness and volume measurements of cortical gray matter have emerged and in the near future, these techniques will routinely enable more precise evaluations of such patients. Finally, the familiarity with radiologic findings of the potential epileptogenic substrates in association with combined use of higher field strengths (3 T, 7 T, and greater) and new quantitative analytical post-processing techniques will lead to improvements regarding the clinical imaging of these patients. We present a pictorial review of the major pathologies related to partial epilepsy, highlighting the key findings of 3 T MRI. PMID:26375569

  13. Side scanner for supermarkets: a new scanner design standard

    NASA Astrophysics Data System (ADS)

    Cheng, Charles K.; Cheng, J. K.

    1996-09-01

    High speed UPC bar code has become a standard mode of data capture for supermarkets in the US, Europe, and Japan. The influence of the ergonomics community on the design of the scanner is evident. During the past decade the ergonomic issues of cashier in check-outs has led to occupational hand-wrist cumulative trauma disorders, in most cases causing carpal tunnel syndrome, a permanent hand injury. In this paper, the design of a side scanner to resolve the issues is discussed. The complex optical module and the sensor for aforesaid side scanner is described. The ergonomic advantages offer the old counter mounted vertical scanner has been experimentally proved by the industrial funded study at an independent university.

  14. Impairment of chondrocyte biosynthetic activity by exposure to 3-tesla high-field magnetic resonance imaging is temporary

    PubMed Central

    Sunk, Ilse-Gerlinde; Trattnig, Siegfried; Graninger, Winfried B; Amoyo, Love; Tuerk, Birgit; Steiner, Carl-Walter; Smolen, Josef S; Bobacz, Klaus

    2006-01-01

    The influence of magnetic resonance imaging (MRI) devices at high field strengths on living tissues is unknown. We investigated the effects of a 3-tesla electromagnetic field (EMF) on the biosynthetic activity of bovine articular cartilage. Bovine articular cartilage was obtained from juvenile and adult animals. Whole joints or cartilage explants were subjected to a pulsed 3-tesla EMF; controls were left unexposed. Synthesis of sulfated glycosaminoglycans (sGAGs) was measured by using [35S]sulfate incorporation; mRNA encoding the cartilage markers aggrecan and type II collagen, as well as IL-1β, were analyzed by RT–PCR. Furthermore, effects of the 3-tesla EMF were determined over the course of time directly after exposure (day 0) and at days 3 and 6. In addition, the influence of a 1.5-tesla EMF on cartilage sGAG synthesis was evaluated. Chondrocyte cell death was assessed by staining with Annexin V and TdT-mediated dUTP nick end labelling (TUNEL). Exposure to the EMF resulted in a significant decrease in cartilage macromolecule synthesis. Gene expression of both aggrecan and IL-1β, but not of collagen type II, was reduced in comparison with controls. Staining with Annexin V and TUNEL revealed no evidence of cell death. Interestingly, chondrocytes regained their biosynthetic activity within 3 days after exposure, as shown by proteoglycan synthesis rate and mRNA expression levels. Cartilage samples exposed to a 1.5-tesla EMF remained unaffected. Although MRI devices with a field strength of more than 1.5 T provide a better signal-to-noise ratio and thereby higher spatial resolution, their high field strength impairs the biosynthetic activity of articular chondrocytes in vitro. Although this decrease in biosynthetic activity seems to be transient, articular cartilage exposed to high-energy EMF may become vulnerable to damage. PMID:16831232

  15. Use of a radio frequency shield during 1.5 and 3.0 Tesla magnetic resonance imaging: experimental evaluation

    PubMed Central

    Favazza, Christopher P; King, Deirdre M; Edmonson, Heidi A; Felmlee, Joel P; Rossman, Phillip J; Hangiandreou, Nicholas J; Watson, Robert E; Gorny, Krzysztof R

    2014-01-01

    Radiofrequency (RF) shields have been recently developed for the purpose of shielding portions of the patient’s body during magnetic resonance imaging (MRI) examinations. We present an experimental evaluation of a commercially available RF shield in the MRI environment. All tests were performed on 1.5 T and 3.0 T clinical MRI scanners. The tests were repeated with and without the RF shield present in the bore, for comparison. Effects of the shield, placed within the scanner bore, on the RF fields generated by the scanner were measured directly using tuned pick-up coils. Attenuation, by as much as 35 dB, of RF field power was found inside the RF shield. These results were supported by temperature measurements of metallic leads placed inside the shield, in which no measurable RF heating was found. In addition, there was a small, simultaneous detectable increase (∼1 dB) of RF power just outside the edges of the shield. For these particular scanners, the autocalibrated RF power levels were reduced for scan locations prescribed just outside the edges of the shield, which corresponded with estimations based on the pick-up coil measurements. Additionally, no significant heating during MRI scanning was observed on the shield surface. The impact of the RF shield on the RF fields inside the magnet bore is likely to be dependent on the particular model of the RF shield or the MRI scanner. These results suggest that the RF shield could be a valuable tool for clinical MRI practices. PMID:25378957

  16. Intraoral 3D scanner

    NASA Astrophysics Data System (ADS)

    Kühmstedt, Peter; Bräuer-Burchardt, Christian; Munkelt, Christoph; Heinze, Matthias; Palme, Martin; Schmidt, Ingo; Hintersehr, Josef; Notni, Gunther

    2007-09-01

    Here a new set-up of a 3D-scanning system for CAD/CAM in dental industry is proposed. The system is designed for direct scanning of the dental preparations within the mouth. The measuring process is based on phase correlation technique in combination with fast fringe projection in a stereo arrangement. The novelty in the approach is characterized by the following features: A phase correlation between the phase values of the images of two cameras is used for the co-ordinate calculation. This works contrary to the usage of only phase values (phasogrammetry) or classical triangulation (phase values and camera image co-ordinate values) for the determination of the co-ordinates. The main advantage of the method is that the absolute value of the phase at each point does not directly determine the coordinate. Thus errors in the determination of the co-ordinates are prevented. Furthermore, using the epipolar geometry of the stereo-like arrangement the phase unwrapping problem of fringe analysis can be solved. The endoscope like measurement system contains one projection and two camera channels for illumination and observation of the object, respectively. The new system has a measurement field of nearly 25mm × 15mm. The user can measure two or three teeth at one time. So the system can by used for scanning of single tooth up to bridges preparations. In the paper the first realization of the intraoral scanner is described.

  17. Medical facial surface scanner

    NASA Astrophysics Data System (ADS)

    Vannier, Michael W.; Bhatia, Gulab H.; Commean, Paul K.; Pilgram, Thomas K.; Brunsden, Barry S.

    1992-05-01

    Optical, non-contact three-dimensional range surface digitizers are employed in the 360-degree examination of object surfaces, especially the heads and faces of individuals. The resultant 3- D surface data is suitable for computer graphics display and manipulation, for numerically controlled object replications, or for further processing such as surface measurement extraction. We employed a scanner with a basic active sensor element consisting of a synchronized pattern projector employing flashtubes that illuminate a surface, with a CID camera to detect, digitize, and transmit the sequence of 24 images (per camera) to a digital image processor for surface triangulation, calibration, and fusion into a single surface description of the headform. A major feature of this unit is its use of multiple (typically 6) stationary active sensor elements, with efficient calibration algorithms that achieve nearly seamless superposition of overlapping surface segments seen by individual cameras. The result is accurate and complete coverage of complex contoured surfaces. Application of this system to digitization of the human head in the planning and evaluation of facial plastic surgery is presented.

  18. Design and scaling of microscale Tesla turbines

    NASA Astrophysics Data System (ADS)

    Krishnan, Vedavalli G.; Romanin, Vince; Carey, Van P.; Maharbiz, Michel M.

    2013-12-01

    We report on the scaling properties and loss mechanisms of Tesla turbines and provide design recommendations for scaling such turbines to the millimeter scale. Specifically, we provide design, fabrication and experimental data for a low-pressure head hydro Tesla micro-turbine. We derive the analytical turbine performance for incompressible flow and then develop a more detailed model that predicts experimental performance by including a variety of loss mechanisms. We report the correlation between them and the experimental results. Turbines with 1 cm rotors, 36% peak efficiency (at 2 cm3 s-1 flow) and 45 mW unloaded peak power (at 12 cm3 s-1 flow) are demonstrated. We analyze the causes for head loss and shaft power loss and derive constraints on turbine design. We then analyze the effect of scaling down on turbine efficiency, power density and rotor revolutions/min. Based on the analysis, we make recommendations for the design of ˜1 mm microscale Tesla turbines.

  19. Retinotopic mapping with Spin Echo BOLD at 7 Tesla

    PubMed Central

    Olman, Cheryl A.; Van de Moortele, Pierre-Francois; Schumacher, Jennifer F.; Guy, Joe; Uğurbil, Kâmil; Yacoub, Essa

    2010-01-01

    For blood oxygenation level-dependent (BOLD) functional MRI experiments, contrast-to-noise ratio (CNR) increases with increasing field strength for both gradient echo (GE) and spin echo (SE) BOLD techniques. However, susceptibility artifacts and non-uniform coil sensitivity profiles complicate large field-of-view fMRI experiments (e.g., experiments covering multiple visual areas instead of focusing on a single cortical region). Here, we use SE BOLD to acquire retinotopic mapping data in early visual areas, testing the feasibility of SE BOLD experiments spanning multiple cortical areas at 7 Tesla. We also use a recently developed method for normalizing signal intensity in T1-weighted anatomical images to enable automated segmentation of the cortical gray matter for scans acquired at 7T with either surface or volume coils. We find that the CNR of the 7T GE data (average single-voxel, single-scan stimulus coherence: 0.41) is almost twice that of the 3T GE BOLD data (average coherence: 0.25), with the CNR of the SE BOLD data (average coherence: 0.23) comparable to that of the 3T GE data. Repeated measurements in individual subjects find that maps acquired with 1.8 mm resolution at 3T and 7T with GE BOLD and at 7T with SE BOLD show no systematic differences in either the area or the boundary locations for V1, V2 and V3, demonstrating the feasibility of high-resolution SE BOLD experiments with good sensitivity throughout multiple visual areas. PMID:20656431

  20. Multispectral-scanner image processing

    NASA Technical Reports Server (NTRS)

    Stein, M. I.

    1977-01-01

    QUIKLOOK program performs approximate geometric and radiometric corrections of Landsat multispectral-scanner digital data and calculates Earth rotation (skew) correction from format center latitude as given by annotation record of Landsat bulk computer-compatible tapes.

  1. Cardiac MRI

    MedlinePlus

    ... from the NHLBI on Twitter. What Is Cardiac MRI? Magnetic resonance imaging (MRI) is a safe, noninvasive test that creates detailed ... and no instruments are inserted into your body. MRI uses radio waves, magnets, and a computer to ...

  2. MSS D Multispectral Scanner System

    NASA Technical Reports Server (NTRS)

    Lauletta, A. M.; Johnson, R. L.; Brinkman, K. L. (Principal Investigator)

    1982-01-01

    The development and acceptance testing of the 4-band Multispectral Scanners to be flown on LANDSAT D and LANDSAT D Earth resources satellites are summarized. Emphasis is placed on the acceptance test phase of the program. Test history and acceptance test algorithms are discussed. Trend data of all the key performance parameters are included and discussed separately for each of the two multispectral scanner instruments. Anomalies encountered and their resolutions are included.

  3. MRI and low back pain

    MedlinePlus

    Backache - MRI; Low back pain - MRI; Lumbar pain - MRI; Back strain - MRI; Lumbar radiculopathy - MRI; Herniated intervertebral disk - MRI; Prolapsed intervertebral disk - MRI; Slipped disk - MRI; Ruptured ...

  4. Effect of coating thickness of iron oxide nanoparticles on their relaxivity in the MRI

    PubMed Central

    Hajesmaeelzadeh, Farzaneh; Shanehsazzadeh, Saeed; Grüttner, Cordula; Daha, Fariba Johari; Oghabian, Mohammad Ali

    2016-01-01

    Objective(s): Iron oxide nanoparticles have found prevalent applications in various fields including drug delivery, cell separation and as contrast agents. Super paramagnetic iron oxide (SPIO) nanoparticles allow researchers and clinicians to enhance the tissue contrast of an area of interest by increasing the relaxation rate of water. In this study, we evaluate the dependency of hydrodynamic size of iron oxide nanoparticles coated with Polyethylene glycol (PEG) on their relativities with 3 Tesla clinical MRI. Materials and Methods: We used three groups of nanoparticles with nominal sizes 20, 50 and 100 nm with a core size of 8.86 nm, 8.69 nm and 10.4 nm that they were covered with PEG 300 and 600 Da. A clinical magnetic resonance scanner determines the T1 and T2 relaxation times for various concentrations of PEG-coated nanoparticles. Results: The size measurement by photon correlation spectroscopy showed the hydrodynamic sizes of MNPs with nominal 20, 50 and 100 nm with 70, 82 and 116 nm for particles with PEG 600 coating and 74, 93 and 100 nm for particles with PEG 300 coating, respectively. We foud that the relaxivity decreased with increasing overall particle size (via coating thickness). Magnetic resonance imaging showed that by increasing the size of the nanoparticles, r2/r1 increases linearly. Conclusion: According to the data obtained from this study it can be concluded that increments in coating thickness have more influence on relaxivities compared to the changes in core size of magnetic nanoparticles. PMID:27081461

  5. White matter hyperintensities on MRI in high-altitude U-2 pilots

    PubMed Central

    Sherman, Paul; Profenna, Leonardo; Grogan, Patrick; Sladky, John; Brown, Anthony; Robinson, Andrew; Rowland, Laura; Hong, Elliot; Patel, Beenish; Tate, David; Kawano, Elaine S.; Fox, Peter; Kochunov, Peter

    2013-01-01

    Objective: To demonstrate that U-2 pilot occupational exposure to hypobaria leads to increased incidence of white matter hyperintensities (WMH) with a more uniform distribution throughout the brain irrespective of clinical neurologic decompression sickness history. Methods: We evaluated imaging findings in 102 U-2 pilots and 91 controls matched for age, health, and education levels. Three-dimensional, T2-weighted, high-resolution (1-mm isotropic) imaging data were collected using fluid-attenuated inversion recovery sequence on a 3-tesla MRI scanner. Whole-brain and regional WMH volume and number were compared between groups using a 2-tailed Wilcoxon rank sum test. Results: U-2 pilots demonstrated an increase in volume (394%; p = 0.004) and number (295%; p < 0.001) of WMH. Analysis of regional distribution demonstrated WMH more uniformly distributed throughout the brain in U-2 pilots compared with mainly frontal distribution in controls. Conclusion: Pilots with occupational exposure to hypobaria showed a significant increase in WMH lesion volume and number. Unlike the healthy controls with predominantly WMH in the frontal white matter, WMH in pilots were more uniformly distributed throughout the brain. This is consistent with our hypothesized pattern of damage produced by interaction between microemboli and cerebral tissue, leading to thrombosis, coagulation, inflammation, and/or activation of innate immune response, although further studies will be necessary to clarify the pathologic mechanisms responsible. PMID:23960192

  6. Three-dimensional dosimetry of TomoTherapy by MRI-based polymer gel technique.

    PubMed

    Watanabe, Yoichi; Gopishankar, N

    2011-01-01

    Verification of the dose calculation model and the software used for treatment planning is an important step for accurate radiation delivery in radiation therapy. Using BANG3 polymer gel dosimeter with a 3 Tesla magnetic resonance imaging (MRI) scanner, we examined the accuracy of TomoTherapy treatment planning and radiation delivery. We evaluated one prostate treatment case and found the calculated three-dimensional (3D) dose distributions agree with the measured 3D dose distributions with an exception in the regions where the dose was much smaller (25% or less) than the maximum dose (2.5 Gy). The analysis using the gamma-index (3% dose difference and 3 mm distance-to-agreement) for a volume of 12 cm × 11 cm × 9 cm containing the planning target volume showed that the gamma values were smaller than unity for 53% of the voxels. Our measurement protocol and analysis tools can be easily applied to the evaluation of other newer complex radiation delivery techniques, such as intensity-modulated arc therapy, with a reasonably low financial investment. PMID:21330972

  7. Undulator system for the VUV FEL at the TESLA test facility phase-2

    NASA Astrophysics Data System (ADS)

    Pflüger, J.; Hahn, U.; Faatz, B.; Tischer, M.

    2003-07-01

    The Phase-1 of the VUV Free Electron Laser at the TESLA Test Facility finishes in fall 2002. Phase-2, an extension of Phase-1 towards shorter wavelengths is under construction and will be ready for operation in 2003. A radiation wavelength as low as 6 nm will be obtained by raising the electron energy to 1 GeV. There will be only minor changes to the undulator system. Compared to Phase-1, six instead of three undulator segments will be installed. The integrated focusing system will be replaced by an electromagnetic doublet structure. We report about the changes of the undulator, the undulator vacuum system, the separated quadrupoles including a stretched wire alignment systems and the modifications to the beam diagnostic system consisting of pick up monitors and wire scanners.

  8. An MRI-Compatible Robotic System With Hybrid Tracking for MRI-Guided Prostate Intervention

    PubMed Central

    Krieger, Axel; Iordachita, Iulian I.; Guion, Peter; Singh, Anurag K.; Kaushal, Aradhana; Ménard, Cynthia; Pinto, Peter A.; Camphausen, Kevin; Fichtinger, Gabor

    2012-01-01

    This paper reports the development, evaluation, and first clinical trials of the access to the prostate tissue (APT) II system—a scanner independent system for magnetic resonance imaging (MRI)-guided transrectal prostate interventions. The system utilizes novel manipulator mechanics employing a steerable needle channel and a novel six degree-of-freedom hybrid tracking method, comprising passive fiducial tracking for initial registration and subsequent incremental motion measurements. Targeting accuracy of the system in prostate phantom experiments and two clinical human-subject procedures is shown to compare favorably with existing systems using passive and active tracking methods. The portable design of the APT II system, using only standard MRI image sequences and minimal custom scanner interfacing, allows the system to be easily used on different MRI scanners. PMID:22009867

  9. Post-mortem magnetic resonance microscopy (MRM) of the murine brain at 7 Tesla results in a gain of resolution as compared to in vivo MRM

    PubMed Central

    von Bohlen und Halbach, Oliver; Lotze, Martin; Pfannmller, Jrg P.

    2014-01-01

    Small-animal MRI with high field strength allows imaging of the living animal. However, spatial resolution in in vivo brain imaging is limited by the scanning time. Measurements of fixated mouse brains allow longer measurement time, but fixation procedures are time consuming, since the process of fixation may take several weeks. We here present a quick and simple post-mortem approach without fixation that allows high-resolution MRI even at 7 Tesla (T2-weighted MRI). This method was compared to in vivo scans with optimized spatial resolution for the investigation of anesthetized mice (T1-weighted MRI) as well as to ex situ scans of fixed brains (T1- and T2-weighted scans) by using standard MRI-sequences, along with anatomic descriptions of areas observable in the MRI, analysis of tissue shrinkage and post-processing procedures (intensity inhomogeneity correction, PCNN3D brain extract, SPMMouse segmentation, and volumetric measurement). Post-mortem imaging quality was sufficient to determine small brain substructures on the morphological level, provided fast possibilities for volumetric acquisition and for automatized processing without manual correction. Moreover, since no fixation was used, tissue shrinkage due to fixation does not occur as it is, e.g., the case by using ex vivo brains that have been kept in fixatives for several days. Thus, the introduced method is well suited for comparative investigations, since it allows determining small structural alterations in the murine brain at a reasonable high resolution even by MRI performed at 7 Tesla. PMID:24982617

  10. Jakob Narkiewicz-Jodko-Tesla ``Predecessor''

    NASA Astrophysics Data System (ADS)

    Samuilov, Vladimir; Kiselev, Vladimir

    2014-03-01

    Prof. Jakob Narkiewicz-Jodko (1947-1905) is a bright figure in the history of science of the XIXth century. His major discoveries are: Electrography - the method of the visualization of electric discharge from the bodies due to the application of high strength and high frequency electric fields, and one of the first observations of the propagation of the electromagnetic waives and information transfer over the distances. We review Prof. Jakob Narkiewicz-Jodko's research results and explain our point why we consider him as the predecessor of Nikola Tesla.

  11. [Optimal imaging parameters and the advantage of cerebrospinal fluid flow image using time-spatial labeling inversion pulse at 3 tesla magnetic resonance imaging: comparison of image quality for 1.5 tesla magnetic resonance imaging].

    PubMed

    Ozasa, Masaya; Yahata, Seiji; Yoshida, Ayako; Takeyama, Mamoru; Eshima, Mitsuhiro; Shinohara, Maiko; Yamamoto, Takao; Abe, Kayoko

    2014-12-01

    Cerebrospinal fluid (CSF) imaging by time-spatial labeling inversion pulse (Time-SLIP) technique is labeled by CSF with a selective inversion recovery (IR) pulse as internal tracer, thus making it possible to visualize CSF dynamics non-invasively. The purpose of this study was to clarify labeled CSF signals during various black blood time to inversion (BBTI) values at 3 tesla (T) and 1.5 T magnetic resonance imaging (MRI) and to determine appropriate CSF imaging parameters at 3 T MRI in 10 healthy volunteers. To calculate optimal BBTI values, ROIs were set in untagged cerebral parenchyma and CSF on the image of the CSF flow from the aqueduct to the fourth ventricle in 1.5 T and 3 T MRI. Visual evaluation of CSF flow also was assessed with changes of matrix and echo time (TE) at 3 T MRI. The mean BBTI value at null point of untagged CSF in 3 T MRI was longer than that of 1.5 T. The MR conditions of the highest visual evaluation were FOV, 14 cm×14 cm; Matrix, 192×192; and TE, 117 ms. CSF imaging using Time-SLIP at 3 T MRI is expected visualization of CSF flow and clarification of CSF dynamics in more detail by setting the optimal conditions because 3 T MRI has the advantage of high contrast and high signal-to-noise ratio. PMID:25672449

  12. Multispectral Scanner for Monitoring Plants

    NASA Technical Reports Server (NTRS)

    Gat, Nahum

    2004-01-01

    A multispectral scanner has been adapted to capture spectral images of living plants under various types of illumination for purposes of monitoring the health of, or monitoring the transfer of genes into, the plants. In a health-monitoring application, the plants are illuminated with full-spectrum visible and near infrared light and the scanner is used to acquire a reflected-light spectral signature known to be indicative of the health of the plants. In a gene-transfer- monitoring application, the plants are illuminated with blue or ultraviolet light and the scanner is used to capture fluorescence images from a green fluorescent protein (GFP) that is expressed as result of the gene transfer. The choice of wavelength of the illumination and the wavelength of the fluorescence to be monitored depends on the specific GFP.

  13. Development of an MRI-powered robotic system for cryoablation.

    PubMed

    Ouchi, Ryutaro; Saotome, Kousaku; Matsushita, Akira; Suzuki, Kenji

    2015-08-01

    This study proposes a novel MRI-powered robotic system controlled with the magnetic field generated by a magnetic resonance imaging (MRI) scanner. In the proposed system, we use an MRI-powered actuator unit proposed in the previous study and a spherical positioning mechanism. The actuator unit contains a ferromagnetic sphere, which acts as a power source and is used to control the positioning unit inside the MRI environment. These elements enable the development of a remote needle tip positioning system for use within the MRI scanner. Potential applications of the developed system include the automation of procedures during under MRI inspections, especially the cryoablation of breast cancer. In this paper, we report on the performance evaluation and the MR-safety of the proposed system and describe the newly developed spherical positioning mechanism, which can be activated by the actuator units. PMID:26736478

  14. GPU-based real-time structured light 3D scanner at 500 fps

    NASA Astrophysics Data System (ADS)

    Gao, Hao; Takaki, Takeshi; Ishii, Idaku

    2012-06-01

    In this study, we develop a real-time, structured light 3D scanner that can output 3D video of 512×512 pixels at 500 fps using a GPU-based, high-speed vision system synchronized with a high-speed DLP projector. Our 3D scanner projects eight pairs of positive and negative image patterns with 8-bit gray code on the measurement objects at 1000 fps. Synchronized with the high-speed vision platform, these images are simultaneously captured at 1000 fps and processed in real time for 3D image generation at 500 fps by introducing parallel pixel processing on a NVIDIA Tesla 1060 GPU board. Several experiments are performed for high-speed 3D objects that undergo sudden 3D shape deformation.

  15. A multichannel, real-time MRI RF power monitor for independent SAR determination

    SciTech Connect

    El-Sharkawy, AbdEl-Monem M.; Qian Di; Bottomley, Paul A.; Edelstein, William A.

    2012-05-15

    Purpose: Accurate measurements of the RF power delivered during clinical MRI are essential for safety and regulatory compliance, avoiding inappropriate restrictions on clinical MRI sequences, and for testing the MRI safety of peripheral and interventional devices at known RF exposure levels. The goal is to make independent RF power measurements to test the accuracy of scanner-reported specific absorption rate (SAR) over the extraordinary range of operating conditions routinely encountered in MRI. Methods: A six channel, high dynamic range, real-time power profiling system was designed and built for monitoring power delivery during MRI up to 440 MHz. The system was calibrated and used in two 3 T scanners to measure power applied to human subjects during MRI scans. The results were compared with the scanner-reported SAR. Results: The new power measurement system has highly linear performance over a 90 dB dynamic range and a wide range of MRI duty cycles. It has about 0.1 dB insertion loss that does not interfere with scanner operation. The measurements of whole-body SAR in volunteers showed that scanner-reported SAR was significantly overestimated by up to about 2.2 fold. Conclusions: The new power monitor system can accurately and independently measure RF power deposition over the wide range of conditions routinely encountered during MRI. Scanner-reported SAR values are not appropriate for setting exposure limits during device or pulse sequence testing.

  16. A multichannel, real-time MRI RF power monitor for independent SAR determination

    PubMed Central

    El-Sharkawy, AbdEl-Monem M.; Qian, Di; Bottomley, Paul A.; Edelstein, William A.

    2012-01-01

    Purpose: Accurate measurements of the RF power delivered during clinical MRI are essential for safety and regulatory compliance, avoiding inappropriate restrictions on clinical MRI sequences, and for testing the MRI safety of peripheral and interventional devices at known RF exposure levels. The goal is to make independent RF power measurements to test the accuracy of scanner-reported specific absorption rate (SAR) over the extraordinary range of operating conditions routinely encountered in MRI. Methods: A six channel, high dynamic range, real-time power profiling system was designed and built for monitoring power delivery during MRI up to 440 MHz. The system was calibrated and used in two 3 T scanners to measure power applied to human subjects during MRI scans. The results were compared with the scanner-reported SAR. Results: The new power measurement system has highly linear performance over a 90 dB dynamic range and a wide range of MRI duty cycles. It has about 0.1 dB insertion loss that does not interfere with scanner operation. The measurements of whole-body SAR in volunteers showed that scanner-reported SAR was significantly overestimated by up to about 2.2 fold. Conclusions: The new power monitor system can accurately and independently measure RF power deposition over the wide range of conditions routinely encountered during MRI. Scanner-reported SAR values are not appropriate for setting exposure limits during device or pulse sequence testing. PMID:22559603

  17. Nikola Tesla: the man behind the magnetic field unit.

    PubMed

    Roguin, Ariel

    2004-03-01

    The magnetic field strength of both the magnet and gradient coils used in MR imaging equipment is measured in Tesla units, which are named for Nikola Tesla. This article presents the life and achievements of this Serbian-American inventor and researcher who discovered the rotating magnetic field, the basis of most alternating-current machinery. Nikola Tesla had 700 patents in the United States and Europe that covered every aspect of science and technology. Tesla's discoveries include the Tesla coil, AC electrical conduction, improved lighting, newer forms of turbine engines, robotics, fluorescent light, wireless transmission of electrical energy, radio, remote control, discovery of cosmic radio waves, and the use of the ionosphere for scientific purposes. He was a genius whose discoveries had a pivotal role in advancing us into the modern era. PMID:14994307

  18. Ultrasonic scanner for footprint identification

    NASA Technical Reports Server (NTRS)

    Derr, L. J.

    1974-01-01

    Scanner includes transducer, acoustical drive, acoustical receiver, X and Y position indicators, and cathode-ray tube. Transducer sends ultrasonic pulses into shoe sole or shoeprint. Reflected signals are picked up by acoustic receiver and fed to cathode-ray tube. Resulting display intensity is directly proportional to reflected signal magnitude.

  19. Scanner as a Fine Art

    ERIC Educational Resources Information Center

    Fontes, Kris

    2008-01-01

    Not every art department is fortunate enough to have access to digital cameras and image-editing software, but if a scanner, computer, and printer are available, students can create some imaginative and surreal work. This high-school level lesson begins with a discussion of self-portraits, and then moves to students creating images by scanning…

  20. A study of quantification of aortic compliance in mice using radial acquisition phase contrast MRI

    NASA Astrophysics Data System (ADS)

    Zhao, Xuandong

    Spatiotemporal changes in blood flow velocity measured using Phase contrast Magnetic Resonance Imaging (MRI) can be used to quantify Pulse Wave Velocity (PWV) and Wall Shear Stress (WSS), well known indices of vessel compliance. A study was conducted to measure the PWV in the aortic arch in young healthy children using conventional phase contrast MRI and a post processing algorithm that automatically track the peak velocity in phase contrast images. It is shown that the PWV calculated using peak velocity-time data has less variability compared to that using mean velocity and flow. Conventional MR data acquisition techniques lack both the spatial and temporal resolution needed to accurately calculate PWV and WSS in in vivo studies using transgenic animal models of arterial diseases. Radial k-space acquisition can improve both spatial and temporal resolution. A major part of this thesis was devoted to developing technology for Radial Phase Contrast Magnetic Resonance (RPCMR) cine imaging on a 7 Tesla Animal scanner. A pulse sequence with asymmetric radial k-space acquisition was designed and implemented. Software developed to reconstruct the RPCMR images include gridding, density compensation and centering of k-Space that corrects the image ghosting introduced by hardware response time. Image processing software was developed to automatically segment the vessel lumen and correct for phase offset due to eddy currents. Finally, in vivo and ex vivo aortic compliance measurements were conducted in a well-established mouse model for atherosclerosis: Apolipoprotein E-knockout (ApoE-KO). Using RPCMR technique, a significantly higher PWV value as well as a higher average WSS was detected among 9 months old ApoE-KO mice compare to in wild type mice. A follow up ex-vivo test of tissue elasticity confirmed the impaired distensibility of aortic arteries among ApoE-KO mice.

  1. Nano-thermometers with thermo-sensitive polymer grafted USPIOs behaving as positive contrast agents in low-field MRI.

    PubMed

    Hannecart, Adeline; Stanicki, Dimitri; Vander Elst, Luce; Muller, Robert N; Lecommandoux, Sébastien; Thévenot, Julie; Bonduelle, Colin; Trotier, Aurélien; Massot, Philippe; Miraux, Sylvain; Sandre, Olivier; Laurent, Sophie

    2015-02-28

    Two commercial statistical copolymers of ethylene oxide and propylene oxide, Jeffamine® M-2005 (PEO5-st-PPO37) and M-2070 (PEO46-st-PPO13), exhibiting lower critical solution temperature (LCST) in water, were grafted onto the surface of ultra-small superparamagnetic iron oxide nanoparticles (USPIOs) using silanization and amide-bond coupling reactions. The LCSTs of the polymers in solution were measured by dynamic light scattering (DLS) and nuclear magnetic resonance (NMR). In accordance with the compositions of EO vs. PO, the transition temperature was measured to be 22 ± 2 °C for M-2005 by both DLS and NMR, while the LCST was much higher, 52 ± 2 °C, for M-2070 (a second transition was also detected above 80 °C by NMR in that case, ascribed to the full dehydration of chains at the molecular level). The resulting polymer-grafted USPIOs exhibit a temperature-responsive colloidal behaviour, their surface reversibly changing from hydrophilic below LCST to hydrophobic above it. This phenomenon was utilised to design thermo-sensitive contrast agents for MRI. Transverse relaxivities (r2) of the USPIO@PEO5-st-PPO37 core-shell nanoparticles were measured at 8.25, 20, 60, and 300 MHz. Nuclear magnetic resonance dispersion (NMRD) profiles, giving longitudinal relaxivities (r1) between 0.01 and 60 MHz, were acquired at temperatures ranging from 15 to 50 °C. For all tested frequencies except 300 MHz, both r1 and r2 decrease with temperature and show an inflection point at 25 °C, near the LCST. To illustrate the interest of such polymer-coated USPIOs for MRI thermometry, sample tubes were imaged on both low-field (8.25 MHz/0.194 Tesla) and high-field (300 MHz/7.05 Tesla) MRI scanners with either T1- or T2*-weighted spin echo sequences. The positive contrast on low-field MR images and the perfect linearity of the signal with a T2*-weighted sequence over the entire temperature range 15-50 °C render these LCST polymer coated USPIOs interesting positive contrast agents, also working as "nano-thermometers". PMID:25644780

  2. Improvements to Existing Jefferson Lab Wire Scanners

    SciTech Connect

    McCaughan, Michael D.; Tiefenback, Michael G.; Turner, Dennis L.

    2013-06-01

    This poster will detail the augmentation of selected existing CEBAF wire scanners with commercially available hardware, PMTs, and self created software in order to improve the scanners both in function and utility.

  3. Theory and Performance of Tesla Turbines

    NASA Astrophysics Data System (ADS)

    Romanin, Vincent Domenic

    This document summarizes the development of an integral perturbation solution of the equations governing momentum transport in microchannels between disks of multiple-disk drag turbines such as the Tesla turbine. This analysis allows a parametric study of turbine performance based on several nondimensional parameters. The results of this analysis are then compared to two sets of test data published in previous work and by other projects. The results are further compared to Computational Fluid Dynamics (CFD) simulations. Finally, expected performance and potential applications of these devices are discussed in light of the results developed. Analysis of this type of flow problem is a key element in the optimal design of Tesla drag-type turbines for geothermal, waste heat, energy harvesting, or solar alternative energy applications. In multiple-disk turbines, high speed flow enters tangentially at the outer radius of cylindrical microchannels formed by closely spaced parallel disks, spiraling through the channel to an exhaust at a small radius or at the center of the disk. Previous investigations have generally developed models based on simplifying idealizations of the flow in these circumstances. Here, beginning with the momentum and continuity equations for incompressible and steady flow in cylindrical coordinates, an integral solution scheme is developed that leads to a dimensionless perturbation series solution that retains the full complement of momentum and viscous effects to consistent levels of approximation in the series solution. This more rigorous approach indicates all dimensionless parameters that affect flow and transport, and allows a direct assessment of the relative importance of viscous, pressure, and momentum effects in different directions in the flow. The resulting lowest-order equations are solved explicitly and higher order terms in the series solutions are determined numerically. Enhancement of rotor drag in this type of turbine enhances energy conversion efficiency. A modified version of the integral perturbation analysis is presented that incorporates the effects of enhanced drag due to surface microstructuring. Results of the model analysis for smooth disk walls are shown to agree well with experimental performance data for two prototype Tesla turbines, and predictions of performance models developed in earlier investigations. Specifically, experimental efficiencies corelate well with those predicted by the integral perturbation solution, deviating by an average of 29% and a maximum of 52%. Model predictions indicate that enhancement of disk drag by strategic microstructuring of the disk surfaces can significantly increase turbine efficiency. Exploratory calculations with the model indicate that turbine efficiencies exceeding 75% can be achieved by designing for optimal ranges of the governing dimensionless parameters. The same parametric trends in performance are compared to test data for a micro-scale Tesla turbine with water as a working fluid. Experimental efficiencies again correlate well with those predicted by the integral perturbation solution. Exerimental efficiencies show a mean deviation of 52% with efficiencies predicted by the model, and a max deviation of 65%. A Computational Fluid Dynamics (CFD) model is then compared to both the analytical and experimental turbine efficiencies. The CFD solutions of the flow field are then used to help reconcile areas where the analytical predictions do not match experimental data. CFD predicted efficiencies match the efficiencies predicted by the integral perturbation solution very closely, deviating by an average of only 18%. Based on the results of the CFD simulations and experimental data, conclusions are made about the validity of the integral perturbation solution. The model accurately predicts the flow inside the rotor, but a better treatment of the flow in the inlet to the turbine is necessary. Despite this, the integral perturbation solution is shown to be capable of directing high efficiency turbine design, and design strategies and parameter ranges that result in high efficiency devices are outlined.

  4. MRI Scans

    MedlinePlus

    Magnetic resonance imaging (MRI) uses a large magnet and radio waves to look at organs and structures inside your body. Health care professionals use MRI scans to diagnose a variety of conditions, from ...

  5. Chest MRI

    MedlinePlus

    Nuclear magnetic resonance - chest; Magnetic resonance imaging - chest; NMR - chest; MRI of the thorax; Thoracic MRI ... used is gadolinium. It is very safe. Allergic reactions to the substance rarely occur. However, gadolinium can ...

  6. 21 CFR 892.1220 - Fluorescent scanner.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Fluorescent scanner. 892.1220 Section 892.1220 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1220 Fluorescent scanner. (a) Identification. A fluorescent scanner is a device intended...

  7. 21 CFR 892.1220 - Fluorescent scanner.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Fluorescent scanner. 892.1220 Section 892.1220 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1220 Fluorescent scanner. (a) Identification. A fluorescent scanner is a device intended...

  8. 21 CFR 892.1220 - Fluorescent scanner.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Fluorescent scanner. 892.1220 Section 892.1220 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1220 Fluorescent scanner. (a) Identification. A fluorescent scanner is a device intended...

  9. A Simple X-Y Scanner.

    ERIC Educational Resources Information Center

    Halse, M. R.; Hudson, W. J.

    1986-01-01

    Describes an X-Y scanner used to create acoustic holograms. Scanner is computer controlled and can be adapted to digitize pictures. Scanner geometry is discussed. An appendix gives equipment details. The control program in ATOM BASIC and 6502 machine code is available from the authors. (JM)

  10. 77 FR 22383 - Petition for Exemption From the Federal Motor Vehicle Motor Theft Prevention Standard; TESLA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-13

    ... Theft Prevention Standard; TESLA AGENCY: National Highway Traffic Safety Administration (NHTSA... full the petition of Tesla Motors Inc's. (Tesla) for an exemption of the Model S vehicle line in... Prevention Standard. Tesla requested confidential treatment for specific information in its petition....

  11. 76 FR 47639 - Tesla Motors, Inc.; Receipt of Petition for Temporary Exemption From the Electronic Stability...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-05

    ... National Highway Traffic Safety Administration Tesla Motors, Inc.; Receipt of Petition for Temporary... Stability Control Systems. SUMMARY: In accordance with the procedures in 49 CFR part 555, Tesla Motors, Inc... accordance with 49 U.S.C. 30113 and the procedures in 49 CFR part 555, Tesla Motors, Inc. (Tesla) submitted...

  12. Neurodegenerative changes in Alzheimer's disease: a comparative study of manual, semi-automated, and fully automated assessment using MRI

    NASA Astrophysics Data System (ADS)

    Fritzsche, Klaus H.; Giesel, Frederik L.; Heimann, Tobias; Thomann, Philipp A.; Hahn, Horst K.; Pantel, Johannes; Schröder, Johannes; Essig, Marco; Meinzer, Hans-Peter

    2008-03-01

    Objective quantification of disease specific neurodegenerative changes can facilitate diagnosis and therapeutic monitoring in several neuropsychiatric disorders. Reproducibility and easy-to-perform assessment are essential to ensure applicability in clinical environments. Aim of this comparative study is the evaluation of a fully automated approach that assesses atrophic changes in Alzheimer's disease (AD) and Mild Cognitive Impairment (MCI). 21 healthy volunteers (mean age 66.2), 21 patients with MCI (66.6), and 10 patients with AD (65.1) were enrolled. Subjects underwent extensive neuropsychological testing and MRI was conducted on a 1.5 Tesla clinical scanner. Atrophic changes were measured automatically by a series of image processing steps including state of the art brain mapping techniques. Results were compared with two reference approaches: a manual segmentation of the hippocampal formation and a semi-automated estimation of temporal horn volume, which is based upon interactive selection of two to six landmarks in the ventricular system. All approaches separated controls and AD patients significantly (10 -5 < p < 10 -4) and showed a slight but not significant increase of neurodegeneration for subjects with MCI compared to volunteers. The automated approach correlated significantly with the manual (r = -0.65, p < 10 -6) and semi automated (r = -0.83, p < 10 -13) measurements. It proved high accuracy and at the same time maximized observer independency, time reduction and thus usefulness for clinical routine.

  13. Nano-scanner for scanning probe microscopes

    NASA Astrophysics Data System (ADS)

    Park, Jae Hong; Lee, Dong-Yeon

    2012-11-01

    A two-axes nano-scanner for a scanning probe microscope (SPMs) was developed. The flexure-guided nano-scanner can move SPM samples or the probe itself along the x and y axes. The theoretical stiffness and resonant frequency of the flexure guide were obtained by using Castigliano's theorem. An optimal nano-scanner that maximize the scanning speed under appropriate constraints was designed. The optimal results were compared with the results of a finite element analysis. The scanner performance was evaluated by using various experiments and was compared with the optimal design results. Finally, atomic force microscope images obtained by using the proposed nano-scanner are presented.

  14. Optical scanner. [laser doppler velocimeters

    NASA Technical Reports Server (NTRS)

    Rhodes, D. B. (Inventor)

    1977-01-01

    An optical scanner that sequentially focuses optical energy (light) at selected points in space is described. The essential component is a scanning wheel including several glass windows with each window having a different thickness. Due to this difference in thickness, the displacement of the emerging light from the incident light is different for each window. The scanner transmits optical energy to a point in space while at the same time receiving any optical energy generated at that point and then moves on to the next selected point and repeats this transmit and receive operation. It fills the need for a system that permits a laser velocimeter to rapidly scan across a constantly changing flow field in an aerodynamic test facility.

  15. In vivo sensitivity estimation and imaging acceleration with rotating RF coil arrays at 7 Tesla

    NASA Astrophysics Data System (ADS)

    Li, Mingyan; Jin, Jin; Zuo, Zhentao; Liu, Feng; Trakic, Adnan; Weber, Ewald; Zhuo, Yan; Xue, Rong; Crozier, Stuart

    2015-03-01

    Using a new rotating SENSitivity Encoding (rotating-SENSE) algorithm, we have successfully demonstrated that the rotating radiofrequency coil array (RRFCA) was capable of achieving a significant reduction in scan time and a uniform image reconstruction for a homogeneous phantom at 7 Tesla. However, at 7 Tesla the in vivo sensitivity profiles (B1-) become distinct at various angular positions. Therefore, sensitivity maps at other angular positions cannot be obtained by numerically rotating the acquired ones. In this work, a novel sensitivity estimation method for the RRFCA was developed and validated with human brain imaging. This method employed a library database and registration techniques to estimate coil sensitivity at an arbitrary angular position. The estimated sensitivity maps were then compared to the acquired sensitivity maps. The results indicate that the proposed method is capable of accurately estimating both magnitude and phase of sensitivity at an arbitrary angular position, which enables us to employ the rotating-SENSE algorithm to accelerate acquisition and reconstruct image. Compared to a stationary coil array with the same number of coil elements, the RRFCA was able to reconstruct images with better quality at a high reduction factor. It is hoped that the proposed rotation-dependent sensitivity estimation algorithm and the acceleration ability of the RRFCA will be particularly useful for ultra high field MRI.

  16. In vivo sensitivity estimation and imaging acceleration with rotating RF coil arrays at 7 Tesla.

    PubMed

    Li, Mingyan; Jin, Jin; Zuo, Zhentao; Liu, Feng; Trakic, Adnan; Weber, Ewald; Zhuo, Yan; Xue, Rong; Crozier, Stuart

    2015-03-01

    Using a new rotating SENSitivity Encoding (rotating-SENSE) algorithm, we have successfully demonstrated that the rotating radiofrequency coil array (RRFCA) was capable of achieving a significant reduction in scan time and a uniform image reconstruction for a homogeneous phantom at 7 Tesla. However, at 7 Tesla the in vivo sensitivity profiles (B1(-)) become distinct at various angular positions. Therefore, sensitivity maps at other angular positions cannot be obtained by numerically rotating the acquired ones. In this work, a novel sensitivity estimation method for the RRFCA was developed and validated with human brain imaging. This method employed a library database and registration techniques to estimate coil sensitivity at an arbitrary angular position. The estimated sensitivity maps were then compared to the acquired sensitivity maps. The results indicate that the proposed method is capable of accurately estimating both magnitude and phase of sensitivity at an arbitrary angular position, which enables us to employ the rotating-SENSE algorithm to accelerate acquisition and reconstruct image. Compared to a stationary coil array with the same number of coil elements, the RRFCA was able to reconstruct images with better quality at a high reduction factor. It is hoped that the proposed rotation-dependent sensitivity estimation algorithm and the acceleration ability of the RRFCA will be particularly useful for ultra high field MRI. PMID:25635352

  17. Cervical spinal MRI in a patient with a vagus nerve stimulator (VNS).

    PubMed

    Roebling, Robert; Huch, Klaus; Kassubek, Jan; Lerche, Holger; Weber, Yvonne

    2009-04-01

    Cranial MRI has been shown to be a safe procedure in patients with a vagus nerve stimulator (VNS), but body MRI may cause overheating of the stimulator lead. Here we report a case of a patient with an implanted vagus nerve stimulator who required a cervical spinal MRI due to a rapidly progressive paraparesis. The spinal MRI was performed in a 1.5T scanner without complications showing a nearly complete compression of the spinal cord. PMID:19269790

  18. IR line scanner on UAV

    NASA Astrophysics Data System (ADS)

    Liu, Shi-chao; Qin, Jie-xin; Qi, Hong-xing; Xiao, Gong-hai

    2011-08-01

    This paper introduces the designing principle and method of the IR line scanner on UAV in three aspects of optical-mechanical system, electronics system and processing software. It makes the system achieve good results in practical application that there are many features in the system such as light weight, small size, low power assumption, wide field of view, high instantaneous field of view, high noise equivalent temperature difference, wirelessly controlled and so on. The entire system is designed as follows: Multi-element scanner is put into use for reducing the electrical noise bandwidth, and then improving SNR; Square split aperture scanner is put into use for solving the image ratation distortion, besides fit for large velocity to height ratio; DSP is put into use for non-uniformity correction and background nosie subtraction, and then improving the imagery quality; SD card is put into use as image data storage media instead of the hard disk; The image data is stored in SD card in FAT32 file system, easily playbacked by processing software on Windows and Linux operating system; wireless transceiver module is put into use for wirelessly controlled.

  19. Vacuum Attachment for XRF Scanner

    NASA Technical Reports Server (NTRS)

    Schramm, Harry F.; Kaiser, Bruce

    2005-01-01

    Vacuum apparatuses have been developed for increasing the range of elements that can be identified by use of x-ray fluorescent (XRF) scanners of the type mentioned in the two immediately preceding articles. As a consequence of the underlying physical principles, in the presence of air, such an XRF scanner is limited to analysis of chlorine and elements of greater atomic number. When the XRF scanner is operated in a vacuum, it extends the range of analysis to lower atomic numbers - even as far as aluminum and sodium. Hence, more elements will be available for use in XRF labeling of objects as discussed in the two preceding articles. The added benefits of the extended capabilities also have other uses for NASA. Detection of elements of low atomic number is of high interest to the aerospace community. High-strength aluminum alloys will be easily analyzed for composition. Silicon, a major contaminant in certain processes, will be detectable before the process is begun, possibly eliminating weld or adhesion problems. Exotic alloys will be evaluated for composition prior to being placed in service where lives depend on them. And in the less glamorous applications, such as bolts and fasteners, substandard products and counterfeit items will be evaluated at the receiving function and never allowed to enter the operation

  20. Nikola Tesla and the wireless transmission of energy

    SciTech Connect

    Marincic, A.S.

    1982-10-01

    Nikola Tesla, the inventor of the polyphase-current system, is best known for his contribution regarding induction and other types of alternating-current machines. His patents and his published and unpublished notes about wireless transmission of energy are less known and, if known to some extent, they are usually wrongly interpreted. For many years the author studied Tesla's works on wireless transmission of energy and that what is given here is a review of relevant documents, unpublished notes and letters from the archives of the Nikola Tesla Museum in Belgrade. An attempt is made to explain Tesla's physical model on the basis of which he concluded that the wireless transmission of energy on a global scale is possible. His model is critically examined in view of the present day knowledge of extremely low frequency propagation phenomena.

  1. Multi-contrast submillimetric 3 Tesla hippocampal subfield segmentation protocol and dataset

    PubMed Central

    Kulaga-Yoskovitz, Jessie; Bernhardt, Boris C.; Hong, Seok-Jun; Mansi, Tommaso; Liang, Kevin E.; van der Kouwe, Andre J.W.; Smallwood, Jonathan; Bernasconi, Andrea; Bernasconi, Neda

    2015-01-01

    The hippocampus is composed of distinct anatomical subregions that participate in multiple cognitive processes and are differentially affected in prevalent neurological and psychiatric conditions. Advances in high-field MRI allow for the non-invasive identification of hippocampal substructure. These approaches, however, demand time-consuming manual segmentation that relies heavily on anatomical expertise. Here, we share manual labels and associated high-resolution MRI data (MNI-HISUB25; submillimetric T1- and T2-weighted images, detailed sequence information, and stereotaxic probabilistic anatomical maps) based on 25 healthy subjects. Data were acquired on a widely available 3 Tesla MRI system using a 32 phased-array head coil. The protocol divided the hippocampal formation into three subregions: subicular complex, merged Cornu Ammonis 1, 2 and 3 (CA1-3) subfields, and CA4-dentate gyrus (CA4-DG). Segmentation was guided by consistent intensity and morphology characteristics of the densely myelinated molecular layer together with few geometry-based boundaries flexible to overall mesiotemporal anatomy, and achieved excellent intra-/inter-rater reliability (Dice index ≥90/87%). The dataset can inform neuroimaging assessments of the mesiotemporal lobe and help to develop segmentation algorithms relevant for basic and clinical neurosciences. PMID:26594378

  2. Reproducibility of subregional trabecular bone micro-architectural measures derived from 7-Tesla magnetic resonance images.

    PubMed

    Chang, Gregory; Wang, Ligong; Liang, Guoyuan; Babb, James S; Saha, Punam K; Regatte, Ravinder R

    2011-06-01

    High-resolution magnetic resonance imaging (MRI) of trabecular bone combined with quantitative image analysis represents a powerful technique to gain insight into trabecular bone micro-architectural derangements in osteoporosis and osteoarthritis. The increased signal-to-noise ratio of ultra high-field MR (≥7 Tesla) permits images to be obtained with higher resolution and/or decreased scan time compared to scanning at 1.5/3T. In this small feasibility study, we show high measurement precision for subregional trabecular bone micro-architectural analysis performed on 7T knee MR images. The results provide further support for the use of trabecular bone measures as biomarkers in clinical studies of bone disorders. PMID:21221706

  3. MRI Compatibility of Robot Actuation Techniques – A Comparative Study

    PubMed Central

    Fischer, Gregory S.; Krieger, Axel; Iordachita, Iulian; Csoma, Csaba; Whitcomb, Louis L.; Fichtinger, Gabor

    2010-01-01

    This paper reports an experimental evaluation of the following three different MRI-compatible actuators: a Shinsei ultrasonic motor, a Nanomotion ultrasonic motor and a pneumatic cylinder actuator. We report the results of a study comparing the effect of these actuators on the signal to noise ratio (SNR) of MRI images under a variety of experimental conditions. Evaluation was performed with the controller inside and outside the scanner room and with both 1.5T and 3T MRI scanners. Pneumatic cylinders function with no loss of SNR with controller both inside and outside of the scanner room. The Nanomotion motor performs with moderate loss of SNR when moving during imaging. The Shinsei is unsuitable for motion during imaging. All may be used when motion is appropriately interleaved with imaging cycles. PMID:18982643

  4. Characterization of acoustic noise in a neonatal intensive care unit MRI system

    PubMed Central

    Li, Yu; Pratt, Ronald G.; Baroch, Kelly A.; Loew, Wolfgang; Daniels, Barret R.; Giaquinto, Randy O.; Merhar, Stephanie L.; Kline-Fath, Beth M.; Dumoulin, Charles L.

    2014-01-01

    Background To eliminate the medical risks and logistical challenges of transporting infants from the neonatal intensive care unit (NICU) to the radiology department for magnetic resonance imaging, a small-footprint 1.5-T MRI scanner has been developed for neonatal imaging within the NICU. MRI is known to be noisy, and exposure to excessive acoustic noise has the potential to elicit physiological distress and impact development in the term and preterm infant. Objective To measure and compare the acoustic noise properties of the NICU MRI system against those of a conventional 1.5-T MRI system. Materials and methods We performed sound pressure level measurements in the NICU MRI scanner and in a conventional adult-size whole-body 1.5-T MRI system. Sound pressure level measurements were made for six standard clinical MR imaging protocols. Results The average sound pressure level value, reported in unweighted (dB) and A-weighted (dBA) decibels for all six imaging pulse sequences, was 73.8 dB and 88 dBA for the NICU scanner, and 87 dB and 98.4 dBA for the conventional MRI scanner. The sound pressure level values measured on the NICU scanner for each of the six MR imaging pulse sequences were consistently and significantly (P=0.03) lower, with an average difference of 14.2 dB (range 10–21 dB) and 11 dBA (range 5–18 dBA). The sound pressure level frequency response of the two MR systems showed a similar harmonic structure above 200 Hz for all imaging sequences. The amplitude, however, was appreciably lower for the NICU scanner, by as much as 30 dB, for frequencies below 200 Hz. Conclusion The NICU MRI system is quieter than conventional MRI scanners, improving safety for the neonate and facilitating siting of the unit within the NICU. PMID:24595878

  5. PET/MRI: challenges, solutions and perspectives.

    PubMed

    Herzog, Hans

    2012-12-01

    Already from the start of PET/CT integrating positron emission tomography (PET) and computed tomography (CT) in one instrument, there have been considerations how to combine PET and magnetic resonance imaging (MRI) so that their complementary abilities can be utilized in a single investigation. Since classical PET electronics fail in an even weak magnetic field and PET signal processing might disturb high-frequency signals of MRI, it soon became clear that new solutions had to be found to avoid mutual interferences. During the last fifteen years a number of different approaches towards PET/MRI for small animal imaging have been developed by research groups which together with their specific features are summarized in this review. Recently, PET/MRI for human imaging became available as well - this time by industrial initiatives. First some prototypes of BrainPET/MRI were developed followed by commercial products for simultaneous and non-simultaneous whole-body PET/MRI. Although only PET/MRI integrated in one scanner offers the full diversity of complementary multiparametric imaging, there are also promising applications of non-simultaneous sequential PET/MRI. While describing the present instrumentation for human PET/MRI, this review discusses the challenges and promises related to this new imaging technology. PMID:22925652

  6. Progress toward 10 tesla accelerator dipoles

    SciTech Connect

    Hassenzahl, W.; Gilbert, G.; Taylor, C.; Meuser, R.

    1983-08-01

    A 9.1 T central field has been achieved in a Nb-Ti dipole operating in pressurized helium II at 1.8 K. Three different Nb-Ti dipoles, without iron yokes, have achieved central fields of 8.0, 8.6, and 9.1 T - all short sample performance for the conductors at 1.8 K. In helium I, at 4.3 K, the maximum central fields are from 1.5 to 2.0 T lower. Ten-tesla magnets have been designed for both Nb-Ti operating at 1.8 K and Nb/sub 3/Sn operating at 4.2 K. They are based on a very small beam aperture, (40 to 45 mm), very high current density in the superconductors (over 1000 A/mm/sup 2/), and a very low ratio of stabilizing copper to superconductor (about 1). Both layer and block designs have been developed that utilize Rutherford Cable. Magnet cycling from 0 to 6 T has been carried out for field change rate up to 1 T/s; the cyclic heating at 1 T/s is 36 W per meter. At a more representative rate of 0.2 T/s the heating rate is only 2 W/m. Progress in the program to use Nb/sub 3/Sn and NbTi superconductor, in 10 T accelerator magnets is also discussed.

  7. fMRI evidence of improved visual function in patients with progressive retinitis pigmentosa by eye-movement training

    PubMed Central

    Yoshida, Masako; Origuchi, Maki; Urayama, Shin-ichi; Takatsuki, Akira; Kan, Shigeyuki; Aso, Toshihiko; Shiose, Takayuki; Sawamoto, Nobukatsu; Miyauchi, Satoru; Fukuyama, Hidenao; Seiyama, Akitoshi

    2014-01-01

    To evaluate changes in the visual processing of patients with progressive retinitis pigmentosa (RP) who acquired improved reading capability by eye-movement training (EMT), we performed functional magnetic resonance imaging (fMRI) before and after EMT. Six patients with bilateral concentric contraction caused by pigmentary degeneration of the retina and 6 normal volunteers were recruited. Patients were given EMT for 5 min every day for 8–10 months. fMRI data were acquired on a 3.0-Tesla scanner while subjects were performing reading tasks. In separate experiments (before fMRI scanning), visual performances for readings were measured by the number of letters read correctly in 5 min. Before EMT, activation areas of the primary visual cortex of patients were 48.8% of those of the controls. The number of letters read correctly in 5 min was 36.6% of those by the normal volunteers. After EMT, the activation areas of patients were not changed or slightly decreased; however, reading performance increased in 5 of 6 patients, which was 46.6% of that of the normal volunteers (p< 0.05). After EMT, increased activity was observed in the frontal eye fields (FEFs) of all patients; however, increases in the activity of the parietal eye fields (PEFs) were observed only in patients who showed greater improvement in reading capability. The improvement in reading ability of the patients after EMT is regarded as an effect of the increased activity of FEF and PEF, which play important roles in attention and working memory as well as the regulation of eye movements. PMID:25068106

  8. fMRI evidence of improved visual function in patients with progressive retinitis pigmentosa by eye-movement training.

    PubMed

    Yoshida, Masako; Origuchi, Maki; Urayama, Shin-Ichi; Takatsuki, Akira; Kan, Shigeyuki; Aso, Toshihiko; Shiose, Takayuki; Sawamoto, Nobukatsu; Miyauchi, Satoru; Fukuyama, Hidenao; Seiyama, Akitoshi

    2014-01-01

    To evaluate changes in the visual processing of patients with progressive retinitis pigmentosa (RP) who acquired improved reading capability by eye-movement training (EMT), we performed functional magnetic resonance imaging (fMRI) before and after EMT. Six patients with bilateral concentric contraction caused by pigmentary degeneration of the retina and 6 normal volunteers were recruited. Patients were given EMT for 5 min every day for 8-10 months. fMRI data were acquired on a 3.0-Tesla scanner while subjects were performing reading tasks. In separate experiments (before fMRI scanning), visual performances for readings were measured by the number of letters read correctly in 5 min. Before EMT, activation areas of the primary visual cortex of patients were 48.8% of those of the controls. The number of letters read correctly in 5 min was 36.6% of those by the normal volunteers. After EMT, the activation areas of patients were not changed or slightly decreased; however, reading performance increased in 5 of 6 patients, which was 46.6% of that of the normal volunteers (p< 0.05). After EMT, increased activity was observed in the frontal eye fields (FEFs) of all patients; however, increases in the activity of the parietal eye fields (PEFs) were observed only in patients who showed greater improvement in reading capability. The improvement in reading ability of the patients after EMT is regarded as an effect of the increased activity of FEF and PEF, which play important roles in attention and working memory as well as the regulation of eye movements. PMID:25068106

  9. MRI with an atomic magnetometer suitable for practical imaging applications.

    PubMed

    Savukov, I M; Zotev, V S; Volegov, P L; Espy, M A; Matlashov, A N; Gomez, J J; Kraus, R H

    2009-08-01

    Conventionally implemented MRI is performed in a strong magnetic field, typically >1T. The high fields, however, can lead to many limitations. To overcome these limitations, ultra-low field (ULF) [or microtesla] MRI systems have been proposed and implemented. To-date such systems rely on low-Tc Superconducting Quantum Interference Devices (SQUIDs) leading to the requirement of cryogens. In this letter, we report ULF-MRI obtained with a non-cryogenic atomic magnetometer. This demonstration creates opportunities for developing inexpensive and widely applicable MRI scanners. PMID:19435672

  10. Proposed applications with implementation techniques of the upcoming renewable energy resource, The Tesla Turbine

    NASA Astrophysics Data System (ADS)

    Usman Saeed Khan, M.; Maqsood, M. Irfan; Ali, Ehsan; Jamal, Shah; Javed, M.

    2013-06-01

    Recent research has shown that tesla turbine can be one of the future efficient sources of renewable energy. Modern techniques used for designing of tesla turbine have given optimum results regarding efficiency and applications. In this paper we have suggested fully coordinated applications of tesla turbine in different fields particularly in power generation at both low level and high level generation. In Energy deficient countries the tesla turbine has wide range of applications and it can play an important role in energy management system. Our proposed applications includes, the use of tesla turbine as renewable energy resource using tesla turbine in distributed generation system use of tesla turbine at home for power generation use of tesla turbine in irrigation channels using tesla turbine in hybrid electric vehicles All applications are explained with the help of flow charts and block diagrams and their implementation techniques are also explained in details. The results of physical experiments and simulations are also included for some applications.

  11. Advances in multimodality imaging through a hybrid PET/MRI system.

    PubMed

    Fatemi-Ardekani, Ali; Samavati, Navid; Tang, Jin; Kamath, Markad V

    2009-01-01

    The development of integrated imaging systems for magnetic resonance imaging (MRI) and positron emission tomography (PET) is currently being explored in a number of laboratories and industrial settings. PET/MRI scanners for both preclinical and human research applications are being developed. PET/MRI overcomes many limitations of PET/computed tomography (CT), such as limited tissue contrast and high radiation doses delivered to the patient or the animal being studied. In addition, recent PET/MRI designs allow for simultaneous rather than sequential acquisition of PET and MRI data, which could not have been achieved through a combination of PET and CT scanners. In a combined PET/CT scanner, while both scanners share a common patient bed, they are hard-wired back-to-back and therefore do not allow simultaneous data acquisition. While PET/MRI offers the possibility of novel imaging strategies, it also creates considerable challenges for acquiring artifact-free images from both modalities. In this review, we discuss motivations, challenges, and potential research applications of developing PET/MRI technology. A brief overview of both MRI and PET is presented and preclinical and clinical applications of PET/MRI are identified. Finally, issues and concerns about image quality, clinical practice, and economic feasibility are discussed. PMID:20565381

  12. The Transeurope Footrace Project: longitudinal data acquisition in a cluster randomized mobile MRI observational cohort study on 44 endurance runners at a 64-stage 4,486km transcontinental ultramarathon

    PubMed Central

    2012-01-01

    Background The TransEurope FootRace 2009 (TEFR09) was one of the longest transcontinental ultramarathons with an extreme endurance physical load of running nearly 4,500 km in 64 days. The aim of this study was to assess the wide spectrum of adaptive responses in humans regarding the different tissues, organs and functional systems being exposed to such chronic physical endurance load with limited time for regeneration and resulting negative energy balance. A detailed description of the TEFR project and its implemented measuring methods in relation to the hypotheses are presented. Methods The most important research tool was a 1.5 Tesla magnetic resonance imaging (MRI) scanner mounted on a mobile unit following the ultra runners from stage to stage each day. Forty-four study volunteers (67% of the participants) were cluster randomized into two groups for MRI measurements (22 subjects each) according to the project protocol with its different research modules: musculoskeletal system, brain and pain perception, cardiovascular system, body composition, and oxidative stress and inflammation. Complementary to the diverse daily mobile MR-measurements on different topics (muscle and joint MRI, T2*-mapping of cartilage, MR-spectroscopy of muscles, functional MRI of the brain, cardiac and vascular cine MRI, whole body MRI) other methods were also used: ice-water pain test, psychometric questionnaires, bioelectrical impedance analysis (BIA), skinfold thickness and limb circumference measurements, daily urine samples, periodic blood samples and electrocardiograms (ECG). Results Thirty volunteers (68%) reached the finish line at North Cape. The mean total race speed was 8.35 km/hour. Finishers invested 552 hours in total. The completion rate for planned MRI investigations was more than 95%: 741 MR-examinations with 2,637 MRI sequences (more than 200,000 picture data), 5,720 urine samples, 244 blood samples, 205 ECG, 1,018 BIA, 539 anthropological measurements and 150 psychological questionnaires. Conclusions This study demonstrates the feasibility of conducting a trial based centrally on mobile MR-measurements which were performed during ten weeks while crossing an entire continent. This article is the reference for contemporary result reports on the different scientific topics of the TEFR project, which may reveal additional new knowledge on the physiological and pathological processes of the functional systems on the organ, cellular and sub-cellular level at the limits of stress and strain of the human body. Please see related articles: http://www.biomedcentral.com/1741-7015/10/76 and http://www.biomedcentral.com/1741-7015/10/77 PMID:22812450

  13. Monogon laser scanner with no line wobble

    NASA Astrophysics Data System (ADS)

    Beiser, Leo

    1991-02-01

    A new optical scanner is described which serves as a monogon, or single-facet device, providing one scan per shaft rotation. It cancels cross-scan line placement errors automatically, yielding scan lines which are spaced precisely, independent of drive shaft wobble. This scanner is configured for simple fabrication, of low mass and size, allowing convenient dynamic balance for high-speed operation. This new scanner is identified as an open-mirror monogon.

  14. MRI: update on technology diffusion and acquisition.

    PubMed

    Hoppszallern, S; Hughes, C; Zimmerman, R A

    1991-04-01

    Over the past three years, magnetic resonance imaging (MRI) has become accepted as a valuable diagnostic tool, and its applications continue to expand. During this time, the number of units installed in the United States doubled. By 1990 about 2,000 MRI units were in place in the United States and nearly 20 percent of the MRI-installed base was mobile, according to a research study conducted by the Hadley Hart Group (Chicago) and Drew Consultants, Inc. (Concord, MA). With the introduction of the prospective payment system, many hospitals were hesitant to spend limited capital on new technology, such as MRI. At the same time, freestanding diagnostic imaging centers were on the rise. Some hospitals and entrepreneurs who foresaw the potential of MRI in health care pioneered its use in the clinical setting. Hospitals began to examine new partnership arrangements and alternative forms of financing, so that they too could offer MRI services. By the end of 1988, the majority of hospitals offering MRI services did not own their own unit and about 40 percent of the hospitals offering MRI services were in a mobile configuration according to the Hadley Hart Group. While the technology has been diffused into 100-bed hospitals via mobile service vendors in some parts of the country, many medium-sized and large hospitals also have entered the MRI services market in this fashion. In the larger hospitals, the patient demand or need for the service often would justify acquisition of MRI, but the expense of the technology, and in many areas restrictive state health planning policies, modified purchase of MRI systems by hospitals. Mobile service vendors offered hospitals a way to startup MRI services in a limited fashion without a major capital expenditure and its associated risk. As hospitals gain experience with mobile MRI and achieve or exceed their early utilization projections, administrators are reevaluating the need to expand services to a full-time fixed site. Early fixed-site MRI providers have been constantly upgrading their MRI capability while planning on adding more units. The technology itself has continued to improve, primarily through the implementation of new software that permits new techniques such as MR angiography (MRA) to be performed. Units are available in a wide price range, price usually reflecting both the field strength (0.5 tesla units cost less) as well as the additional capabilities beyond routine imaging (MRA, spectroscopy).(ABSTRACT TRUNCATED AT 400 WORDS) PMID:10110923

  15. Amide Proton Transfer Magnetic Resonance Imaging of Alzheimer's Disease at 3.0 Tesla: A Preliminary Study

    PubMed Central

    Wang, Rui; Li, Sa-Ying; Chen, Min; Zhou, Jin-Yuan; Peng, Dan-Tao; Zhang, Chen; Dai, Yong-Ming

    2015-01-01

    Background: Amide proton transfer (APT) imaging has recently emerged as an important contrast mechanism for magnetic resonance imaging (MRI) in the field of molecular and cellular imaging. The aim of this study was to evaluate the feasibility of APT imaging to detect cerebral abnormality in patients with Alzheimer's disease (AD) at 3.0 Tesla. Methods: Twenty AD patients (9 men and 11 women; age range, 67–83 years) and 20 age-matched normal controls (11 men and 9 women; age range, 63–82 years) underwent APT and traditional MRI examination on a 3.0 Tesla MRI system. The magnetic resonance ratio asymmetry (MTRasym) values at 3.5 ppm of bilateral hippocampi (Hc), temporal white matter regions, occipital white matter regions, and cerebral peduncles were measured on oblique axial APT images. MTRasym (3.5 ppm) values of the cerebral structures between AD patients and control subjects were compared with independent samples t-test. Controlling for age, partial correlation analysis was used to investigate the associations between mini-mental state examination (MMSE) and the various MRI measures among AD patients. Results: Compared with normal controls, MTRasym (3.5 ppm) values of bilateral Hc were significantly increased in AD patients (right 1.24% ± 0.21% vs. 0.83% ± 0.19%, left 1.18% ± 0.18% vs. 0.80%± 0.17%, t = 3.039, 3.328, P = 0.004, 0.002, respectively). MTRasym (3.5 ppm) values of bilateral Hc were significantly negatively correlated with MMSE (right r = −0.559, P = 0.013; left r = −0.461, P = 0.047). Conclusions: Increased MTRasym (3.5 ppm) values of bilateral Hc in AD patients and its strong correlations with MMSE suggest that APT imaging could potentially provide imaging biomarkers for the noninvasive molecular diagnosis of AD. PMID:25698192

  16. MRI-Monitored Intra-Tumoral Injection of Iron-Oxide Labeled Clostridium novyi-NT Anaerobes in Pancreatic Carcinoma Mouse Model

    PubMed Central

    Zheng, Linfeng; Zhang, Zhuoli; Khazaie, Khashayarsha; Saha, Saurabh; Lewandowski, Robert J.; Zhang, Guixiang; Larson, Andrew C.

    2014-01-01

    Objectives To validate the feasibility of labeling Clostridium novyi-NT (C.novyi-NT) anaerobes with iron-oxide nanoparticles for magnetic resonance imaging (MRI) and demonstrate the potential to use MRI to visualize intra-tumoral delivery of these iron-oxide labeled C.novyi-NT during percutaneous injection procedures. Materials and Methods All studies were approved by IACUC. C.novyi-NT were labeled with hybrid iron-oxide Texas red nanoparticles. Growth of labeled and control samples were evaluated with optical density. Labeling was confirmed with confocal fluorescence and transmission electron microscopy (TEM). MRI were performed using a 7 Tesla scanner with T2*-weighted (T2*W) sequence. Contrast-to-noise ratio (CNR) measurements were performed for phantoms and signal-to-noise ratio (SNR) measurements performed in C57BL/6 mice (n = 12) with Panc02 xenografts before and after percutaneous injection of iron-oxide labeled C.novyi-NT. MRI was repeated 3 and 7 days post-injection. Hematoxylin-eosin (HE), Prussian blue and Gram staining of tumor specimens were performed for confirmation of intra-tumoral delivery. Results Iron-oxide labeling had no influence upon C.novyi-NT growth. The signal intensity (SI) within T2*W images was significantly decreased for iron-oxide labeled C.novyi-NT phantoms compared to unlabeled controls. Under confocal fluorescence microscopy, the iron-oxide labeled C.novyi-NT exhibited a uniform red fluorescence consistent with observed regions of DAPI staining and overall labeling efficiency was 100% (all DAPI stained C.novyi-NT exhibited red fluorescence). Within TEM images, a large number iron granules were observed within the iron-oxide labeled C.novyi-NT; these were not observed within unlabeled controls. Intra-procedural MRI measurements permitted in vivo visualization of the intra-tumoral distribution of iron-oxide labeled C.novyi-NT following percutaneous injection (depicted as punctate regions of SI reductions within T2*-weighted images); tumor SNR decreased significantly following intra-tumoral injection of C.novyi-NT (p<0.05); these SNR reductions were maintained at 3 and 7 day follow-up intervals. Prussian blue and Gram staining confirmed presence of the iron-oxide labeled anaerobes. Conclusions C.novyi-NT can be labeled with iron-oxide nanoparticles for MRI visualization of intra-tumoral deposition following percutaneous injection during bacteriolytic therapy. PMID:25549324

  17. Report on the TESLA Engineering Study/Review

    SciTech Connect

    Cornuelle, John C.

    2002-08-30

    In March, 2001, the TESLA Collaboration published its Technical Design Report (TDR, see references and links in Appendix), the first sentence of which stated ''...TESLA (TeV-Energy Superconducting Linear Collider) (will be) a superconducting electron-positron collider of initially 500 GeV total energy, extendable to 800 GeV, and an integrated X-ray laser laboratory.'' The TDR included cost and manpower estimates for a 500 GeV e{sup +}e{sup -} collider (250 on 250 GeV) based on superconducting RF cavity technology. This was submitted as a proposal to the German government. The government asked the German Science Council to evaluate this proposal. The recommendation from this body is anticipated to be available by November 2002. The government has indicated that it will react on this recommendation by mid-2003. In June 2001, Steve Holmes, Fermilab's Associate Director for Accelerators, commissioned Helen Edwards and Peter Garbincius to organize a study of the TESLA Technical Design Report and the associated cost and manpower estimates. Since the elements and methodology used in producing the TESLA cost estimate were somewhat different from those used in preparing similar estimates for projects within the U.S., it is important to understand the similarities, differences, and equivalences between the TESLA estimate and U.S. cost estimates. In particular, the project cost estimate includes only purchased equipment, materials, and services, but not manpower from DESY or other TESLA collaborating institutions, which is listed separately. It does not include the R&D on the TESLA Test Facility (TTF) nor the costs of preparing the TDR nor the costs of performing the conceptual studies so far. The manpower for the pre-operations commissioning program (up to beam) is included in the estimate, but not the electrical power or liquid Nitrogen (for initial cooldown of the cryogenics plant). There is no inclusion of any contingency or management reserve. If the U.S. were to become involved with the TESLA project, either as a collaborator for an LC in Germany, or as host country for TESLA in the U.S., it is important to begin to understand the scope and technical details of the project, what R&D still needs to be done, and how the U.S. can contribute. The charge for this study is included in the Appendix to this report.

  18. Competitive Advantage of PET/MRI

    PubMed Central

    Jadvar, Hossein; Colletti, Patrick M.

    2013-01-01

    Multimodality imaging has made great strides in the imaging evaluation of patients with a variety of diseases. Positron emission tomography/computed tomography (PET/CT) is now established as the imaging modality of choice in many clinical conditions, particularly in oncology. While the initial development of combined PET/magnetic resonance imaging (PET/MRI) was in the preclinical arena, hybrid PET/MR scanners are now available for clinical use. PET/MRI combines the unique features of MRI including excellent soft tissue contrast, diffusion-weighted imaging, dynamic contrast-enhanced imaging, fMRI and other specialized sequences as well as MR spectroscopy with the quantitative physiologic information that is provided by PET. Most evidence for the potential clinical utility of PET/MRI is based on studies performed with side-by-side comparison or software-fused MRI and PET images. Data on distinctive utility of hybrid PET/MRI are rapidly emerging. There are potential competitive advantages of PET/MRI over PET/CT. In general, PET/MRI may be preferred over PET/CT where the unique features of MRI provide more robust imaging evaluation in certain clinical settings. The exact role and potential utility of simultaneous data acquisition in specific research and clinical settings will need to be defined. It may be that simultaneous PET/MRI will be best suited for clinical situations that are disease-specific, organ-specific, related to diseases of the children or in those patients undergoing repeated imaging for whom cumulative radiation dose must be kept as low as reasonably achievable. PET/MRI also offers interesting opportunities for use of dual modality probes. Upon clear definition of clinical utility, other important and practical issues related to business operational model, clinical workflow and reimbursement will also be resolved. PMID:23791129

  19. Magnetic Resonance Imaging (MRI)

    MedlinePlus

    ... How Can I Help a Friend Who Cuts? Magnetic Resonance Imaging (MRI) KidsHealth > For Teens > Magnetic Resonance Imaging (MRI) Print ... MRI Exam Safety Getting Your Results What Is MRI? Magnetic resonance imaging (MRI) is a type of ...

  20. A novel front-end chip for a human PET scanner based on monolithic detector blocks

    NASA Astrophysics Data System (ADS)

    Sarasola, I.; Rato Mendes, P.; Cuerdo, R.; García de Acilu, P.; Navarrete, J.; Cela, J. M.; Oller, J. C.; Romero, L.; Pérez, J. M.

    2011-01-01

    We are developing a positron emission tomography (PET) scanner based on avalanche photodiodes (APD), monolithic LYSO:Ce scintillator crystals and a dedicated readout chip. All these components allow operation inside a magnetic resonance imaging (MRI) scanner with the aim of building a PET/MRI hybrid imaging system for clinical human brain studies. Previous work verified the functional performance of our first chip (VATA240) based on a leading edge comparator and the principle of operation of our radiation sensors, which are capable of providing reconstructed images of positron point sources with spatial resolutions of 2.1 mm FWHM. The new VATA241 chip presented in this work has been designed with the aim of reducing the coincidence window of our final PET scanner by implementing an on-chip constant fraction discriminator (CFD), as well as providing a better robustness for its implementation in the full-scale PET scanner. Results from the characterization of the VATA241 chip are presented, together with the first results on coincidence performance, validating the new design for our application.

  1. Pushing spatial and temporal resolution for functional and diffusion MRI in the Human Connectome Project

    PubMed Central

    Uğurbil, Kamil; Xu, Junqian; Auerbach, Edward J.; Moeller, Steen; Vu, An; Duarte-Carvajalino, Julio M.; Lenglet, Christophe; Wu, Xiaoping; Schmitter, Sebastian; Van de Moortele, Pierre Francois; Strupp, John; Sapiro, Guillermo; De Martino, Federico; Wang, Dingxin; Harel, Noam; Garwood, Michael; Chen, Liyong; Feinberg, David A.; Smith, Stephen M.; Miller, Karla L.; Sotiropoulos, Stamatios N; Jbabdi, Saad; Andersson, Jesper L; Behrens, Timothy EJ; Glasser, Matthew F.; Van Essen, David; Yacoub, Essa

    2013-01-01

    The human connectome project (HCP) relies primarily on three complementary magnetic resonance (MR) methods. These are: 1) resting state functional MR imaging (rfMRI) which uses correlations in the temporal fluctuations in an fMRI time series to deduce ‘functional connectivity’; 2) diffusion imaging (dMRI), which provides the input for tractography algorithms used for the reconstruction of the complex axonal fiber architecture; and 3) task based fMRI (tfMRI), which is employed to identify functional parcellation in the human brain in order to assist analyses of data obtained with the first two methods. We describe technical improvements and optimization of these methods as well as instrumental choices that impact speed of acquisition of fMRI and dMRI images at 3 Tesla, leading to whole brain coverage with 2 mm isotropic resolution in 0.7 second for fMRI, and 1.25 mm isotropic resolution dMRI data for tractography analysis with three-fold reduction in total data acquisition time. Ongoing technical developments and optimization for acquisition of similar data at 7 Tesla magnetic field are also presented, targeting higher resolution, specificity of functional imaging signals, mitigation of the inhomogeneous radio frequency (RF) fields and power deposition. Results demonstrate that overall, these approaches represent a significant advance in MR imaging of the human brain to investigate brain function and structure. PMID:23702417

  2. Three-dimensional flow measurements in a tesla turbine rotor

    NASA Astrophysics Data System (ADS)

    Fuchs, Thomas; Schosser, Constantin; Hain, Rainer; Kaehler, Christian

    2015-11-01

    Tesla turbines are fluid mechanical devices converting flow energy into rotation energy by two physical effects: friction and adhesion. The advantages of the tesla turbine are its simple and robust design, as well as its scalability, which makes it suitable for custom power supply solutions, and renewable energy applications. To this day, there is a lack of experimental data to validate theoretical studies, and CFD simulations of these turbines. This work presents a comprehensive analysis of the flow through a tesla turbine rotor gap, with a gap height of only 0.5 mm, by means of three-dimensional Particle Tracking Velocimetry (3D-PTV). For laminar flows, the experimental results match the theory very well, since the measured flow profiles show the predicted second order parabolic shape in radial direction and a fourth order behavior in circumferential direction. In addition to these laminar measurements, turbulent flows at higher mass flow rates were investigated.

  3. Code-multiplexed optical scanner

    NASA Astrophysics Data System (ADS)

    Riza, Nabeel A.; Arain, Muzammil A.

    2003-03-01

    A three-dimensional (3-D) optical-scanning technique is proposed based on spatial optical phase code activation on an input beam. This code-multiplexed optical scanner (C-MOS) relies on holographically stored 3-D beam-forming information. Proof-of-concept C-MOS experimental results by use of a photorefractive crystal as a holographic medium generates eight beams representing a basic 3-D voxel element generated via a binary-code matrix of the Hadamard type. The experiment demonstrates the C-MOS features of no moving parts, beam-forming flexibility, and large centimeter-size apertures. A novel application of the C-MOS as an optical security lock is highlighted.

  4. Laser Scanner For Automatic Storage

    NASA Astrophysics Data System (ADS)

    Carvalho, Fernando D.; Correia, Bento A.; Rebordao, Jose M.; Rodrigues, F. Carvalho

    1989-01-01

    The automated magazines are beeing used at industry more and more. One of the problems related with the automation of a Store House is the identification of the products envolved. Already used for stock management, the Bar Codes allows an easy way to identify one product. Applied to automated magazines, the bar codes allows a great variety of items in a small code. In order to be used by the national producers of automated magazines, a devoted laser scanner has been develloped. The Prototype uses an He-Ne laser whose beam scans a field angle of 75 degrees at 16 Hz. The scene reflectivity is transduced by a photodiode into an electrical signal, which is then binarized. This digital signal is the input of the decodifying program. The machine is able to see barcodes and to decode the information. A parallel interface allows the comunication with the central unit, which is responsible for the management of automated magazine.

  5. X-ray microtomographic scanners

    NASA Astrophysics Data System (ADS)

    Syryamkin, V. I.; Klestov, S. A.

    2015-11-01

    The article studies the operating procedures of an X-ray microtomographic scanner and the module of reconstruction and analysis 3D-image of a test sample in particular. An algorithm for 3D-image reconstruction based on image shadow projections and mathematical methods of the processing are described. Chapter 1 describes the basic principles of X-ray tomography and general procedures of the device developed. Chapters 2 and 3 are devoted to the problem of resources saving by the system during the X-ray tomography procedure, which is achieved by preprocessing of the initial shadow projections. Preprocessing includes background noise removing from the images, which reduces the amount of shadow projections in general and increases the efficiency of the group shadow projections compression. In conclusion, the main applications of X-ray tomography are presented.

  6. Non-Destructive Testing Scanner

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Bio-Imaging Research's technology that originated in an aerospace program has come full circle with a new aerospace adaptation called the Advanced Computed Tomography Inspection System, or ACTIS. The medical version of CT scans the human body for tumors or other abnormalities, the ACTIS system finds imperfections in aerospace structures and components, such as castings, assemblies, rocket motors and nozzles. ACTIS is described by its developer as the most versatile CT scanner available for non-destructive testing applications. ACTIS is a variable geometry system. ACTIS source and detectors can be moved closer together or farther apart to optimize the geometry for different sizes of test objects. The combination of variable geometry, three sources, and focusing detectors makes ACTIS cost effective for a broad range of applications. System can scan anything from very small turbine blades to large rocket assemblies.

  7. 21 CFR 892.1220 - Fluorescent scanner.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Fluorescent scanner. 892.1220 Section 892.1220 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1220 Fluorescent scanner. (a) Identification....

  8. Cognitive Function and 3-Tesla Magnetic Resonance Imaging Tractography of White Matter Hyperintensities in Elderly Persons

    PubMed Central

    Reginold, William; Luedke, Angela C.; Tam, Angela; Itorralba, Justine; Fernandez-Ruiz, Juan; Reginold, Jennifer; Islam, Omar; Garcia, Angeles

    2015-01-01

    Background/Aims This study used 3-Tesla magnetic resonance imaging (MRI) tractography to determine if there was an association between tracts crossing white matter hyperintensities (WMH) and cognitive function in elderly persons. Methods Brain T2-weighted fluid-attenuated inversion recovery (FLAIR) and diffusion tensor MRI scans were acquired in participants above the age of 60 years. Twenty-six persons had WMH identified on T2 FLAIR scans. They completed a battery of neuropsychological tests and were classified as normal controls (n = 15) or with Alzheimer's dementia (n = 11). Tractography was generated by the Fiber Assignment by Continuous Tracking method. All tracts that crossed WMH were segmented. The average fractional anisotropy and average mean diffusivity of these tracts were quantified. We studied the association between cognitive test scores with the average mean diffusivity and average fractional anisotropy of tracts while controlling for age, total WMH volume and diagnosis. Results An increased mean diffusivity of tracts crossing WMH was associated with worse performance on the Wechsler Memory Scale-III Longest Span Forward (p = 0.02). There was no association between the fractional anisotropy of tracts and performance on cognitive testing. Conclusion The mean diffusivity of tracts crossing WMH measured by tractography is a novel correlate of performance on the Wechsler Memory Scale-III Longest Span Forward in elderly persons. PMID:26628897

  9. Estimation of the regional cerebral metabolic rate of oxygen consumption with proton detected 17O MRI during precision 17O2 inhalation in swine

    PubMed Central

    Mellon, Eric A.; Beesam, R. Shashank; Baumgardner, James E.; Borthakur, Arijitt; Witschey, Walter R.; Reddy, Ravinder

    2009-01-01

    Despite the importance of metabolic disturbances in many diseases, there are currently no clinically used methods for the detection of oxidative metabolism in vivo. To address this deficiency, 17O MRI techniques are scaled from small animals to swine as a large animal model of human inhalation and circulation. The hemispheric cerebral metabolic rate of oxygen consumption (CMRO2) is estimated in swine by detection of metabolically produced H217O by rapid T1?-weighted proton magnetic resonance imaging on a 1.5 Tesla clinical scanner. The 17O is delivered as oxygen gas by a custom, minimal-loss, precision-delivery breathing circuit and converted to H217O by oxidative metabolism. A model for gas arterial input is presented for the deeply breathing large animal. The arterial input function for recirculation of metabolic water is measured by arterial blood sampling and high field 17O spectroscopy. It is found that minimal metabolic water wash-in occurs before 60 seconds. A high temporal resolution pulse sequence is employed to measure CMRO2 during those 60 seconds after delivery begins. Only about one tidal volume of 17O enriched oxygen gas is used per measurement. Proton measurements of signal change due to metabolically produced water are correlated with 17O in vivo spectroscopy. Using these techniques, the hemispheric CMRO2 in swine is estimated to be 1.23 0.26 ?mol/g/min, consistent with existing literature values. All of the technology used to perform these CMRO2 estimates can easily be adapted to clinical MR scanners, and it is hoped that this work will lead to future studies of human disease. PMID:19428508

  10. Musculoskeletal MRI.

    PubMed

    Sage, Jaime E; Gavin, Patrick

    2016-05-01

    MRI has the unique ability to detect abnormal fluid content, and is therefore unparalleled in its role of detection, diagnosis, prognosis, treatment planning and follow-up evaluation of musculoskeletal disease. MRI in companion animals should be considered in the following circumstances: a definitive diagnosis cannot be made on radiographs; a patient is nonresponsive to medical or surgical therapy; prognostic information is desired; assessing surgical margins and traumatic and/or infectious joint and bone disease; ruling out subtle developmental or early aggressive bone lesions. The MRI features of common disorders affecting the shoulder, elbow, stifle, carpal, and tarsal joints are included in this chapter. PMID:26928749

  11. Paul Drude's prediction of nonreciprocal mutual inductance for Tesla transformers.

    PubMed

    McGuyer, Bart

    2014-01-01

    Inductors, transmission lines, and Tesla transformers have been modeled with lumped-element equivalent circuits for over a century. In a well-known paper from 1904, Paul Drude predicts that the mutual inductance for an unloaded Tesla transformer should be nonreciprocal. This historical curiosity is mostly forgotten today, perhaps because it appears incorrect. However, Drude's prediction is shown to be correct for the conditions treated, demonstrating the importance of constraints in deriving equivalent circuits for distributed systems. The predicted nonreciprocity is not fundamental, but instead is an artifact of the misrepresentation of energy by an equivalent circuit. The application to modern equivalent circuits is discussed. PMID:25542040

  12. Paul Drude's Prediction of Nonreciprocal Mutual Inductance for Tesla Transformers

    PubMed Central

    McGuyer, Bart

    2014-01-01

    Inductors, transmission lines, and Tesla transformers have been modeled with lumped-element equivalent circuits for over a century. In a well-known paper from 1904, Paul Drude predicts that the mutual inductance for an unloaded Tesla transformer should be nonreciprocal. This historical curiosity is mostly forgotten today, perhaps because it appears incorrect. However, Drude's prediction is shown to be correct for the conditions treated, demonstrating the importance of constraints in deriving equivalent circuits for distributed systems. The predicted nonreciprocity is not fundamental, but instead is an artifact of the misrepresentation of energy by an equivalent circuit. The application to modern equivalent circuits is discussed. PMID:25542040

  13. Time Synchronization in Hierarchical TESLA Wireless Sensor Networks

    SciTech Connect

    Jason L. Wright; Milos Manic

    2009-08-01

    Time synchronization and event time correlation are important in wireless sensor networks. In particular, time is used to create a sequence events or time line to answer questions of cause and effect. Time is also used as a basis for determining the freshness of received packets and the validity of cryptographic certificates. This paper presents secure method of time synchronization and event time correlation for TESLA-based hierarchical wireless sensor networks. The method demonstrates that events in a TESLA network can be accurately timestamped by adding only a few pieces of data to the existing protocol.

  14. A 10 tesla table-top controlled waveform magnet

    NASA Astrophysics Data System (ADS)

    Roy Choudhury, Aditya N.; Venkataraman, V.

    2012-06-01

    Controlled Waveform Magnets (CWMs) are a special class of pulsed magnets which provide semi-continuous, shape-controlled high magnetic field pulses. In this work we report a table-top CWM, driven by a capacitor bank, capable of producing virtually any user-shaped magnetic field waveform up to 10 Tesla. Insulated Gate Bipolar Transistor (IGBT) chips were paralleled to form the high current switch. Specimen pulse shapes including flat-tops up to 10 Tesla, and linear as well as some sinusoidal-top magnetic field waveforms have been successfully generated.

  15. Diffusion-weighted MRI for tumour volume delineation: comparison with morphological MRI.

    PubMed

    Wolf, G; Schindler, S; Koch, A; Abolmaali, N

    2010-06-01

    Diffusion-weighted magnetic resonance imaging (dwMRI) is sensitive to tissue microstructure on the cellular level and may therefore help to define biological tumour subvolumes and add complementary information to morphology-based cancer treatment protocols and therapy monitoring. The purpose of this study was therefore to evaluate the potential of dwMRI as compared with morphological MRI (mMRI) for tumour volume delineation using a nude rat human tumour xenograft model. Sixteen tumour-bearing rats (10 H1299, six FaDu) were examined with mMRI (T2-weighted true fast imaging with steady precession (TrueFISP), T1-weighted fast low angle shot (FLASH), T2-weighted dual echo steady state (DESS)) and echo-planar dwMRI in a clinical scanner at 1.5 T. For each method, we compared tumour volume and intra- and inter-observer variability of tumour outer edge delineation (disregarding intra-tumoural structure) as well as tumour signal-to-noise ratio (SNR) and tumour-to-muscle contrast-to-noise ratio (CNR). Tumours were visualised with significantly higher SNR and CNR in dwMRI. Median tumour volumes as measured by dwMRI (3.5 cm(3)) and mMRI (TrueFISP: 3.3 cm(3); FLASH: 3.3 cm(3); DESS: 3.2 cm(3)) were not significantly different and significantly correlated. Related to partial volume effects, the intra- and inter-observer variability of dwMRI (intra/inter: 12%/12%) was larger than for mMRI (TrueFISP: 4%/4%; FLASH: 5%/5%; DESS: 5%/5%). In conclusion, dwMRI allows tumour delineation with overall volume estimation comparable with mMRI approaches but slightly higher observer variability. Thus, besides tumour outline, it may potentially supplement morphology-based therapy planning and monitoring with additional biological information. PMID:20598006

  16. Use of scatterometry for scanner matching

    NASA Astrophysics Data System (ADS)

    Bald, Holger; Seltmann, Rolf; Bubke, Karsten; Ruhm, Matthias; Noot, Marc; Woischke, Dieter; van Adrichem, Paul; Luehrmann, Paul

    2011-03-01

    For the high volume manufacturing at the 45nm node and beyond it is crucial to match the OPC behaviour of all scanners used at a given process step. For this task the ASML LithoTuner PatternMatcher software was used. LithoTuner PatternMatcher is a tool to improve the proximity differences between a reference scanner and one or more so called 'to be matched' scanners. The optimization uses the concept of sensitivities of CDs of critical features towards adjustable scanner parameters in combination with the delta CD's of those critical features. To perform the scanner matching it is very important to have accurate and repeatable CD data. Therefore we investigated the use of scatterometry as a replacement for the traditional CDSEM measurement. Scatterometry significantly enhances the measurement precision while simultaneously reduces the measurement time. In a first step we determined the sensitivities of the structures by measuring the CD response to small perturbations of the individual scanner parameter settings. CD through pitch and repeating 2 dimensional line end structures were measured using the ASML YieldStar tool and a Hitachi CDSEM. The scatterometry- and CDSEM based sensitivities of the scanner parameter settings are compared. Finally a scanner matching based on both sets of sensitivities has been performed. In this article we will show that both methods are suited to perform the scanner matching. We will also present the differences between the two sets of sensitivities obtained with scatterometry and CDSEM. At the end we will present the results of the tool matching and show the results of a cross check. In the cross check sensitivities obtained with the use of scatterometry were used for the scanner matching next to SEM metrology used for verification.

  17. Assessment of Safety and Interference Issues of Radio Frequency Identification Devices in 0.3 Tesla Magnetic Resonance Imaging and Computed Tomography

    PubMed Central

    Periyasamy, M.; Dhanasekaran, R.

    2014-01-01

    The objective of this study was to evaluate two issues regarding magnetic resonance imaging (MRI) including device functionality and image artifacts for the presence of radio frequency identification devices (RFID) in association with 0.3 Tesla at 12.7 MHz MRI and computed tomography (CT) scanning. Fifteen samples of RFID tags with two different sizes (wristband and ID card types) were tested. The tags were exposed to several MR-imaging conditions during MRI examination and X-rays of CT scan. Throughout the test, the tags were oriented in three different directions (axial, coronal, and sagittal) relative to MRI system in order to cover all possible situations with respect to the patient undergoing MRI and CT scanning, wearing a RFID tag on wrist. We observed that the tags did not sustain physical damage with their functionality remaining unaffected even after MRI and CT scanning, and there was no alternation in previously stored data as well. In addition, no evidence of either signal loss or artifact was seen in the acquired MR and CT images. Therefore, we can conclude that the use of this passive RFID tag is safe for a patient undergoing MRI at 0.3 T/12.7 MHz and CT Scanning. PMID:24701187

  18. Effect of retrieval effort and switching demand on fMRI activation during semantic word generation in schizophrenia.

    PubMed

    Ragland, J D; Moelter, S T; Bhati, M T; Valdez, J N; Kohler, C G; Siegel, S J; Gur, R C; Gur, R E

    2008-02-01

    Verbal fluency deficits in schizophrenia are difficult to interpret because the tasks are multi-factorial and groups differ in total words generated. We manipulated retrieval and switching demands by requiring alternation between over-learned sequences in which retrieval is relatively automatic (OS) and semantic categories requiring increased retrieval effort (SC). Controlled processing was also manipulated by including switching and non-switching conditions, and formal thought disorder (FTD) was assessed with the communication disorders index (CDI). The OS/SC semantic fluency paradigm was administered during fMRI to 13 patients with schizophrenia and 14 matched controls. Images were acquired on a 3 Tesla Siemens scanner using compressed image acquisition to allow for cued overt word production. Subjects alternated between OS, SC, OS-switch, SC-switch, and baseline blocks. Images were pre-processed in SPM-2, and a two-stage random effects analysis tested within and between group contrasts. There were no group performance differences. fMRI analysis did not reveal any group differences during the OS non-switching condition. Both groups produced expected activation in bilateral prefrontal and inferior parietal regions. However, during the SC condition patients had greater activation than controls in left prefrontal, right anterior cingulate, right superior temporal, bilateral thalamus, and left parietal regions. There was also evidence of patient over-activation in prefrontal, superior temporal, superior parietal, and visual association areas when a switching component was added. FTD was negatively correlated with BOLD response in the right anterior cingulate, cuneus and superior frontal gyrus during increased retrieval demand, and positively correlated with fMRI activation in the left lingual gyrus, right fusiform gyrus and left superior parietal lobule during increased switching demand. These results indicate that patients are able to successfully perform effortful semantic fluency tasks during non-speeded conditions. When retrieval is relatively automatic there does not appear to be an effect of schizophrenia on fMRI response. However, when retrieval and controlled processing demands increase, patients have greater activation than controls despite unimpaired task performance. This inefficient BOLD response may explain why patients are slower and less accurate on standard self-paced fluency tasks. PMID:18155880

  19. Two-Slotted Surface Coil Array for Magnetic Resonance Imaging at 4 Tesla

    SciTech Connect

    Solis, S. E.; Hernandez, J. A.; Rodriguez, A. O.; Tomasi, D.

    2008-08-11

    Arrays of antennas have been widely accepted for magnetic resonance imaging applications due to their high signal-to-noise ratio (SNR) over large volumes of interest. A new surface coil based on the magnetron tube and called slotted surface coil, has been recently introduced by our group. This coil design experimentally demonstrated a significant improvement over the circular-shaped coil when used in the receive-only mode. The slotted coils formed a two-sheet structure with a 90 deg. separation and each coil had 6 circular slots. Numerical simulations were performed using the finite element method for this coil design to study the behaviour of the array magnetic field. Then, we developed a two-coil array for brain magnetic resonance imaging to be operated at the resonant frequency of 170 MHz in the transceiver mode. Phantom images were acquired with our coil array and standard pulse sequences on a research-dedicated 4 Tesla scanner. Numerical simulations demonstrated that electromagnetic interaction between the coil elements is negligible, and that the magnetic field showed a good uniformity. In vitro images showed the feasibility of this coil array for standard pulses for high field magnetic resonance imaging.

  20. Quantification of regurgitant lesions by MRI.

    PubMed

    Globits, S; Mayr, H; Frank, H; Neuhold, A; Glogar, D

    We examined 46 patients with angiographically documented regurgitant lesions (26 patients with mitral regurgitation, 20 patients with aortic regurgitation) using an 0.5 Tesla magnet. In each patient a multislice-multiphase spinecho sequence in sagittal-coronal double angulated plane was performed to assess left and right ventricular volumes, ejection fraction and regurgitant fraction. Additionally a blood flow sensitive gradient echo technique was done to visualize direction and extension of the regurgitant jet. MRI data were compared with quantitative and qualitative assessment of regurgitation by angiography and echocardiography. Using the gradient echo technique MRI could demonstrate the regurgitant jet in all patients. A linear correlation for volume parameters by MRI and angio was found with best correlation for the left ventricular stroke volume (r = 0.82, p less than 0.0001). Furthermore MRI regurgitant fraction correlated with angiographically determined regurgitant fraction in patients with aortic regurgitation (r = 0.91, p less than 0.0001) and mitral regurgitation (r = 0.67, p less than 0.001), respectively. Semiquantitative assessment of regurgitation by gradient echo technique showed an agreement with angiographic grading by Sellers in 70% of mitral and 75% of aortic regurgitation, respectively. The comparison of MRI and color Doppler sonography showed only moderate correlation of r = 0.72 (p less than 0.01). PMID:2097304

  1. Magnetic Resonance Imaging Techniques: fMRI, DWI, and PWI

    PubMed Central

    Holdsworth, Samantha J.; Bammer, Roland

    2012-01-01

    Magnetic resonance imaging (MRI) is a noninvasive technique which can acquire important quantitative and anatomical information from an individual in any plane or volume at comparatively high resolution. Over the past several years, developments in scanner hardware and software have enabled the acquisition of fast MRI imaging, proving extremely useful in various clinical and research applications such as in brain mapping or functional MRI (fMRI), perfusion-weighted imaging (PWI), and diffusion-weighted imaging (DWI). These techniques have revolutionized the use of MRI in the clinics, providing great insight into physiologic mechanisms and pathologic conditions. Since these relatively new areas of MRI have relied on fast scanning techniques, they have only recently been widely introduced to clinical sites. As such, this review article is devoted to the technological aspects of these techniques, as well as their roles and limitations in neuroimaging applications. PMID:18843569

  2. A comparison of film and phosphor scanners

    SciTech Connect

    Chancellor, T.; Morris, R.A.

    1993-10-01

    Signal-to-noise ratios (SNRs) and spatial distortions have been measured for three types of scanners: the Molecular Dynamics (MD) and DuPont film scanners and the MD phosphor scanner. The MD film scanner is a deployable and compact scanner that gives a peak SNR of 110 for low (< 2.0) optical densities (ODs), but the spatial distortions across the digitized film plane are significant. The authors compare this with the DuPont film scanner, which has equally good SNRs at low ODs, but very low spatial distortions. The DuPont also allows the user to define an OD range and contains a prescan function to find the suitable range if the user cannot input such a value; its scan times are quick, and the hardware allows for internal data averaging before being stored to disk. The MD phosphor imager has excellent low-dose capability, producing usable images at a 10-{mu}rad dose (from a 150-pkeV source) but its SNRs are low compared to the film scanner, but they can be increased by adjusting the photomultiplier tube voltage and laser radius across the scan arc.

  3. Auditory intensity processing: Effect of MRI background noise.

    PubMed

    Angenstein, Nicole; Stadler, Jörg; Brechmann, André

    2016-03-01

    Studies on active auditory intensity discrimination in humans showed equivocal results regarding the lateralization of processing. Whereas experiments with a moderate background found evidence for right lateralized processing of intensity, functional magnetic resonance imaging (fMRI) studies with background scanner noise suggest more left lateralized processing. With the present fMRI study, we compared the task dependent lateralization of intensity processing between a conventional continuous echo planar imaging (EPI) sequence with a loud background scanner noise and a fast low-angle shot (FLASH) sequence with a soft background scanner noise. To determine the lateralization of the processing, we employed the contralateral noise procedure. Linearly frequency modulated (FM) tones were presented monaurally with and without contralateral noise. During both the EPI and the FLASH measurement, the left auditory cortex was more strongly involved than the right auditory cortex while participants categorized the intensity of FM tones. This was shown by a strong effect of the additional contralateral noise on the activity in the left auditory cortex. This means a massive reduction in background scanner noise still leads to a significant left lateralized effect. This suggests that the reversed lateralization in fMRI studies with loud background noise in contrast to studies with softer background cannot be fully explained by the MRI background noise. PMID:26778471

  4. Multichannel Compressive Sensing MRI Using Noiselet Encoding

    PubMed Central

    Pawar, Kamlesh; Egan, Gary; Zhang, Jingxin

    2015-01-01

    The incoherence between measurement and sparsifying transform matrices and the restricted isometry property (RIP) of measurement matrix are two of the key factors in determining the performance of compressive sensing (CS). In CS-MRI, the randomly under-sampled Fourier matrix is used as the measurement matrix and the wavelet transform is usually used as sparsifying transform matrix. However, the incoherence between the randomly under-sampled Fourier matrix and the wavelet matrix is not optimal, which can deteriorate the performance of CS-MRI. Using the mathematical result that noiselets are maximally incoherent with wavelets, this paper introduces the noiselet unitary bases as the measurement matrix to improve the incoherence and RIP in CS-MRI. Based on an empirical RIP analysis that compares the multichannel noiselet and multichannel Fourier measurement matrices in CS-MRI, we propose a multichannel compressive sensing (MCS) framework to take the advantage of multichannel data acquisition used in MRI scanners. Simulations are presented in the MCS framework to compare the performance of noiselet encoding reconstructions and Fourier encoding reconstructions at different acceleration factors. The comparisons indicate that multichannel noiselet measurement matrix has better RIP than that of its Fourier counterpart, and that noiselet encoded MCS-MRI outperforms Fourier encoded MCS-MRI in preserving image resolution and can achieve higher acceleration factors. To demonstrate the feasibility of the proposed noiselet encoding scheme, a pulse sequences with tailored spatially selective RF excitation pulses was designed and implemented on a 3T scanner to acquire the data in the noiselet domain from a phantom and a human brain. The results indicate that noislet encoding preserves image resolution better than Fouirer encoding. PMID:25965548

  5. Tesla coil discharges guided by femtosecond laser filaments in air

    NASA Astrophysics Data System (ADS)

    Brelet, Yohann; Houard, Aurélien; Arantchouk, Leonid; Forestier, Benjamin; Liu, Yi; Prade, Bernard; Carbonnel, Jérôme; André, Yves-Bernard; Mysyrowicz, André

    2012-04-01

    A Tesla coil generator was designed to produce high voltage pulses oscillating at 100 kHz synchronisable with a nanosecond temporal jitter. Using this compact high voltage generator, we demonstrate reproducible meter long discharges in air at a repetition rate of 1 Hz. Triggering and guiding of the discharges are performed in air by femtosecond laser filaments.

  6. Identifying Needed Technical Standards: The LITA TESLA Committee at Work.

    ERIC Educational Resources Information Center

    Carter, Ruth C.

    1984-01-01

    Efforts of the Technical Standards for Library Automation Committee (TESLA), a division-wide committee of the Library Information and Technology Association (LITA) of the American Library Association, are described. The current status of suggested technical standards and recommended action are detailed. Five sources are given. (Author/EJS)

  7. Eddy current X-Y scanner system

    NASA Technical Reports Server (NTRS)

    Kurtz, G. W.

    1983-01-01

    The Nondestructive Evaluation Branch of the Materials and Processes Laboratory became aware of a need for a miniature, portable X-Y scanner capable of performing eddy current or other nondestructive testing scanning operations such as ultrasonic, or small areas of flat plate. The technical description and operational theory of the X-Y scanner system designed and built to fulfill this need are covered. The scanner was given limited testing and performs according to its design intent, which is to scan flat plate areas of approximately 412 sq cm (64 sq in) during each complete cycle of scanning.

  8. Flexure pivots for oscillatory scanners

    NASA Astrophysics Data System (ADS)

    Brown, David C.; Pruyn, Kristopher

    2002-06-01

    Flexures are quite ancient, and their use as pivots is also ancient. Long before the use of the most primitive sleeve bearings leather strap flexures were used as trunk lidhinges and the like. Early engines of war, including the ballista of the Romans, technically advanced hand bows, and the cross bows of the fourteenth century all employ flexure pivots as their enabling technology. Designers of modern scientific instruments, including optical and laser scanning equipment exploit the same attributes of the flexure which appealed to their forefathers: simplicity, reliability, lack of internal clearance, long service life, ease of construction, and often, it's high mechanical Q. A special case of the flexure pivot, the torsional pivot, has made possible very long lived scanners at speeds which are far out of the reach of other bearing types. Since success with flexures requires consideration of some simple but non-intuitive issues such as stress distribution and stress corrosion, this talk will emphasize the practicum of flexure design and application.

  9. Pulsed Doppler lidar airborne scanner

    NASA Technical Reports Server (NTRS)

    Dimarzio, C. A.; Mcvicker, D. B.; Morrow, C. E.; Negus, C. C.

    1985-01-01

    This report covers the work accomplished during the reporting period on Pulsed Doppler Lidar Airborne Scanner and describes plans for the next reporting period. The objectives during the current phase of the contract are divided into four phases. Phase 1 includes ground testing of the system and analysis of data from the 1981 Severe Storms Test Flights. Phase 2 consists of preflight preparation and planning for the 1983 flight series. The flight test itself will be performed during Phase 3, and Phase 4 consists of post-flight analysis and operation of the system after that flight test. The range profile from five samples taken during Flight 10, around 1700 Z is given. The lowest curve is taken from data collected upwind of Mt. Shasta at about 10,000 feet of altitude, in a clear atmosphere, where no signals were observed. It thus is a good representation of the noise level as a function of range. The next curve was taken downwind of the mountain, and shows evidence of atmospheric returns. There is some question as to whether the data are valid at all ranges, or some ranges are contaminated by the others.

  10. Imaging of the spine at 3 tesla.

    PubMed

    Shapiro, Marc

    2012-05-01

    Magnetic resonance (MR) imaging at 3 T has proved superior to 1.5 T in the brain for detecting numerous pathologic entities including hemosiderin, tiny metastases, subtle demyelinating plaques, active demyelinating plaques, and some epileptogenic foci, as well as small aneurysms with MR angiography. 3 T is superior to most advanced imaging techniques including diffusion, diffusion tensor imaging, perfusion, spectroscopy and functional MR imaging. The increased signal/noise ratio at 3 T permits higher spatial resolution. Initially spine imaging at 3 T proved more difficult with less successful results. During the past 7 years, technological advances in magnet and surface coil design as well as improved radio frequency transmitters and pulse sequence design in combination with the large body of knowledge accrued by radiologists and physicists during a nine year experience with clinical imaging of the spine with the doubled B0, has resulted in 3 T MRI of the spine achieving a reputation similar to that for brain imaging. PMID:22548935

  11. Information extraction techniques for multispectral scanner data

    NASA Technical Reports Server (NTRS)

    Malila, W. A.; Crane, R. B.; Turner, R. E.

    1972-01-01

    The applicability of recognition-processing procedures for multispectral scanner data from areas and conditions used for programming the recognition computers to other data from different areas viewed under different measurement conditions was studied. The reflective spectral region approximately 0.3 to 3.0 micrometers is considered. A potential application of such techniques is in conducting area surveys. Work in three general areas is reported: (1) Nature of sources of systematic variation in multispectral scanner radiation signals, (2) An investigation of various techniques for overcoming systematic variations in scanner data; (3) The use of decision rules based upon empirical distributions of scanner signals rather than upon the usually assumed multivariate normal (Gaussian) signal distributions.

  12. Hand-held optical fuel pin scanner

    DOEpatents

    Kirchner, T.L.; Powers, H.G.

    1980-12-07

    An optical scanner for indicia arranged in a focal plane perpendicular to an optical system including a rotatable dove prism. The dove prism transmits a rotating image to a stationary photodiode array.

  13. Hand-held optical fuel pin scanner

    DOEpatents

    Kirchner, Tommy L.; Powers, Hurshal G.

    1987-01-01

    An optical scanner for indicia arranged in a focal plane perpendicular to an optical system including a rotatable dove prism. The dove prism transmits a rotating image to a stationary photodiode array.

  14. 21 CFR 892.1220 - Fluorescent scanner.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... fluorescent scanner is a device intended to measure the induced fluorescent radiation in the body by exposing the body to certain x-rays or low-energy gamma rays. This generic type of device may include...

  15. Airport scanner firm bags engineering prize

    NASA Astrophysics Data System (ADS)

    Lavender, Gemma

    2014-08-01

    The firm behind a scanner that could see airports relax their ban on liquids in hand luggage has been awarded the prestigious 2014 MacRobert Award for engineering innovation from the Royal Academy of Engineering.

  16. Experience with wire scanners at SLC

    SciTech Connect

    Ross, M.C.; Bong, E.; Hendrickson, L.; McCormick, D.; Zolotorev, M.

    1992-12-01

    Fifty wire scanners are in use at SLC for phase space and beam optics monitoring. A large number of failures of the 50 [mu]m wire used in the scanners have occurred. Studies of these show strong electro-magnetic fields produced by the beam to be the probable cause. The problem has been cured with the adoption of a ceramic mounting scheme. Other improvements including very high dynamic range scans and scans of non-gaussian beams are described.

  17. Experience with wire scanners at SLC

    SciTech Connect

    Ross, M.C.; Bong, E.; Hendrickson, L.; McCormick, D.; Zolotorev, M.

    1992-12-01

    Fifty wire scanners are in use at SLC for phase space and beam optics monitoring. A large number of failures of the 50 {mu}m wire used in the scanners have occurred. Studies of these show strong electro-magnetic fields produced by the beam to be the probable cause. The problem has been cured with the adoption of a ceramic mounting scheme. Other improvements including very high dynamic range scans and scans of non-gaussian beams are described.

  18. How flatbed scanners upset accurate film dosimetry.

    PubMed

    van Battum, L J; Huizenga, H; Verdaasdonk, R M; Heukelom, S

    2016-01-21

    Film is an excellent dosimeter for verification of dose distributions due to its high spatial resolution. Irradiated film can be digitized with low-cost, transmission, flatbed scanners. However, a disadvantage is their lateral scan effect (LSE): a scanner readout change over its lateral scan axis. Although anisotropic light scattering was presented as the origin of the LSE, this paper presents an alternative cause. Hereto, LSE for two flatbed scanners (Epson 1680 Expression Pro and Epson 10000XL), and Gafchromic film (EBT, EBT2, EBT3) was investigated, focused on three effects: cross talk, optical path length and polarization. Cross talk was examined using triangular sheets of various optical densities. The optical path length effect was studied using absorptive and reflective neutral density filters with well-defined optical characteristics (OD range 0.2-2.0). Linear polarizer sheets were used to investigate light polarization on the CCD signal in absence and presence of (un)irradiated Gafchromic film. Film dose values ranged between 0.2 to 9 Gy, i.e. an optical density range between 0.25 to 1.1. Measurements were performed in the scanner's transmission mode, with red-green-blue channels. LSE was found to depend on scanner construction and film type. Its magnitude depends on dose: for 9 Gy increasing up to 14% at maximum lateral position. Cross talk was only significant in high contrast regions, up to 2% for very small fields. The optical path length effect introduced by film on the scanner causes 3% for pixels in the extreme lateral position. Light polarization due to film and the scanner's optical mirror system is the main contributor, different in magnitude for the red, green and blue channel. We concluded that any Gafchromic EBT type film scanned with a flatbed scanner will face these optical effects. Accurate dosimetry requires correction of LSE, therefore, determination of the LSE per color channel and dose delivered to the film. PMID:26689962

  19. Portable MRI

    SciTech Connect

    Espy, Michelle A.

    2012-06-29

    This project proposes to: (1) provide the power of MRI to situations where it presently isn't available; (2) perform the engineering required to move from lab to a functional prototype; and (3) leverage significant existing infrastructure and capability in ultra-low field MRI. The reasons for doing this: (1) MRI is the most powerful tool for imaging soft-tissue (e.g. brain); (2) Billions don't have access due to cost or safety issues; (3) metal will heat/move in high magnetic fields; (4) Millions of cases of traumatic brain injury in US alone; (5) even more of non-traumatic brain injury; (6) (e.g. stroke, infection, chemical exposure); (7) Need for early diagnostic; (8) 'Signature' wound of recent conflicts; (9) 22% of injuries; (10) Implications for post-traumatic stress disorder; and (11) chronic traumatic encephalopathy.

  20. Enhancing laser scanner accuracy by grid correction

    NASA Astrophysics Data System (ADS)

    Halme, Roni-Jussi; Kumpulainen, Tero; Tuokko, Reijo

    2010-02-01

    Lasers are used in micro manufacturing and microwelding applications. Manufacturing in micrometer scale features requires good laser beam properties, but also the axes of the laser machining system have to be accurate. One of the possible technologies is a scanner. Scanners are equipped often with galvanometric actuators, which enable accurate beam movement by changing the beam angle with mirrors and focusing the beam with a scanner lens. Both actuators and lens cause inaccuracy in the system. The optical shape of the lens is not ideal due to structure of the lens and lens grinding. Actuator performance is not ideal. One of the biggest reasons for scan angle error is drift, caused, for instance, by temperature changes. Because of these facts, laser scanner systems have to be calibrated regularly when at least some degree of accuracy is needed. In this paper is presented a solution to compensate the entire working field of the scanner accurately, and calibrate the scanner field to match the actual working field. In the calibration process, distortions are first compensated with parameter changes and after that more accurately by marking a point matrix, measuring the locations of points and generating a new correction file. According to experimental results good accuracy can be achieved using the method.

  1. Towards Truly Quiet MRI: animal MRI magnetic field gradients as a test platform for acoustic noise reduction

    NASA Astrophysics Data System (ADS)

    Edelstein, William; El-Sharkawy, Abdel-Monem

    2013-03-01

    Clinical MRI acoustic noise, often substantially exceeding 100 dB, causes patient anxiety and discomfort and interferes with functional MRI (fMRI) and interventional MRI. MRI acoustic noise reduction is a long-standing and difficult technical challenge. The noise is basically caused by large Lorentz forces on gradient windings--surrounding the patient bore--situated in strong magnetic fields (1.5 T, 3 T or higher). Pulsed currents of 300 A or more are switched through the gradient windings in sub-milliseconds. Experimenting with hardware noise reduction on clinical scanners is difficult and expensive because of the large scale and weight of clinical scanner components (gradient windings ~ 1000 kg) that require special handling equipment in large engineering test facilities. Our approach is to produce a Truly Quiet (<70 dB) small-scale animal imager. Results serve as a test platform for acoustic noise reduction measures that can be implemented in clinical scanners. We have so far decreased noise in an animal scale imager from 108 dB to 71 dB, a 37 dB reduction. Our noise reduction measures include: a gradient container that can be evacuated; inflatable antivibration mounts to prevent transmission of vibrations from gradient winding to gradient container; vibration damping of wires going from gradient to the outside world via the gradient container; and a copper passive shield to prevent the generation of eddy currents in the metal cryostat inner bore, which in turn can vibrate and produce noise.

  2. Tracking iron in multiple sclerosis: a combined imaging and histopathological study at 7 Tesla

    PubMed Central

    Hametner, Simon; Yao, Bing; van Gelderen, Peter; Merkle, Hellmut; Cantor, Fredric K.; Lassmann, Hans; Duyn, Jeff H.

    2011-01-01

    Previous authors have shown that the transverse relaxivity R2* and frequency shifts that characterize gradient echo signal decay in magnetic resonance imaging are closely associated with the distribution of iron and myelin in the brain's white matter. In multiple sclerosis, iron accumulation in brain tissue may reflect a multiplicity of pathological processes. Hence, iron may have the unique potential to serve as an in vivo magnetic resonance imaging tracer of disease pathology. To investigate the ability of iron in tracking multiple sclerosis-induced pathology by magnetic resonance imaging, we performed qualitative histopathological analysis of white matter lesions and normal-appearing white matter regions with variable appearance on gradient echo magnetic resonance imaging at 7 Tesla. The samples used for this study derive from two patients with multiple sclerosis and one non-multiple sclerosis donor. Magnetic resonance images were acquired using a whole body 7 Tesla magnetic resonance imaging scanner equipped with a 24-channel receive-only array designed for tissue imaging. A 3D multi-gradient echo sequence was obtained and quantitative R2* and phase maps were reconstructed. Immunohistochemical stainings for myelin and oligodendrocytes, microglia and macrophages, ferritin and ferritin light polypeptide were performed on 3- to 5-µm thick paraffin sections. Iron was detected with Perl's staining and 3,3′-diaminobenzidine-tetrahydrochloride enhanced Turnbull blue staining. In multiple sclerosis tissue, iron presence invariably matched with an increase in R2*. Conversely, R2* increase was not always associated with the presence of iron on histochemical staining. We interpret this finding as the effect of embedding, sectioning and staining procedures. These processes likely affected the histopathological analysis results but not the magnetic resonance imaging that was obtained before tissue manipulations. Several cellular sources of iron were identified. These sources included oligodendrocytes in normal-appearing white matter and activated macrophages/microglia at the edges of white matter lesions. Additionally, in white matter lesions, iron precipitation in aggregates typical of microbleeds was shown by the Perl's staining. Our combined imaging and pathological study shows that multi-gradient echo magnetic resonance imaging is a sensitive technique for the identification of iron in the brain tissue of patients with multiple sclerosis. However, magnetic resonance imaging-identified iron does not necessarily reflect pathology and may also be seen in apparently normal tissue. Iron identification by multi-gradient echo magnetic resonance imaging in diseased tissues can shed light on the pathological processes when coupled with topographical information and patient disease history. PMID:22171355

  3. Intraoperative MRI in pediatric brain tumors.

    PubMed

    Choudhri, Asim F; Siddiqui, Adeel; Klimo, Paul; Boop, Frederick A

    2015-09-01

    Intraoperative magnetic resonance imaging (iMRI) has emerged as an important tool in guiding the surgical management of children with brain tumors. Recent advances have allowed utilization of high field strength systems, including 3-tesla MRI, resulting in diagnostic-quality scans that can be performed while the child is on the operating table. By providing information about the possible presence of residual tumor, it allows the neurosurgeon to both identify and resect any remaining tumor that is thought to be safely accessible. By fusing the newly obtained images with the surgical guidance software, the images have the added value of aiding in navigation to any residual tumor. This is important because parenchyma often shifts during surgery. It also gives the neurosurgeon insight into whether any immediate postoperative complications have occurred. If any complications have occurred, the child is already in the operating room and precious minutes lost in transport and communications are saved. In this article we review the three main approaches to an iMRI system design. We discuss the possible roles for iMRI during intraoperative planning and provide guidance to help radiologists and neurosurgeons alike in the collaborative management of these children. PMID:26346145

  4. Value of PCA3 to predict biopsy outcome and its potential role in selecting patients for multiparametric MRI.

    PubMed

    Leyten, Gisele H J M; Wierenga, Elisabeth A; Sedelaar, J P Michiel; van Oort, Inge M; Futterer, Jurgen J; Barentsz, Jelle O; Schalken, Jack A; Mulders, Peter F A

    2013-01-01

    PCA3 (prostate cancer gene 3) and multiparametric 3 tesla MRI are new promising diagnostic tools in the detection of PCa. Our aim was to study the clinical value of the Progensa PCA3-test: its predictive value for biopsy outcome, Gleason score and MRI outcome. We evaluated, retrospectively, 591 patients who underwent a Progensa PCA3-test at the Radboud University Nijmegen Medical Centre between May 2006 and December 2009. Prostate biopsies were performed in 290 patients; a multiparametric 3 tesla MRI of the prostate was performed in 163/591 patients. The PCA3-score was correlated to biopsy results and MRI outcome. The results show that PCA3 was highly predictive for biopsy outcome (p < 0.001); there was no correlation with the Gleason score upon biopsy (p = 0.194). The PCA3-score of patients with a suspicious region for PCa on MRI was significantly higher (p < 0.001) than in patients with no suspicious region on MRI (52 vs. 21). In conclusion, PCA3 is a valuable diagnostic biomarker for PCa; it did not correlate with the Gleason score. Furthermore, multiparametric MRI outcome was significantly correlated with the PCA3-score. Thus, PCA3 could be used to select patients that require MRI. However, in patients with a negative PCA3 and high clinical suspicion of PCa, a multiparametric MRI should also be done. PMID:23759986

  5. Value of PCA3 to Predict Biopsy Outcome and Its Potential Role in Selecting Patients for Multiparametric MRI

    PubMed Central

    Leyten, Gisele H. J. M.; Wierenga, Elisabeth A.; Michiel Sedelaar, J. P.; van Oort, Inge M.; Futterer, Jurgen J.; Barentsz, Jelle O.; Schalken, Jack A.; Mulders, Peter F. A.

    2013-01-01

    PCA3 (prostate cancer gene 3) and multiparametric 3 tesla MRI are new promising diagnostic tools in the detection of PCa. Our aim was to study the clinical value of the Progensa PCA3-test: its predictive value for biopsy outcome, Gleason score and MRI outcome. We evaluated, retrospectively, 591 patients who underwent a Progensa PCA3-test at the Radboud University Nijmegen Medical Centre between May 2006 and December 2009. Prostate biopsies were performed in 290 patients; a multiparametric 3 tesla MRI of the prostate was performed in 163/591 patients. The PCA3-score was correlated to biopsy results and MRI outcome. The results show that PCA3 was highly predictive for biopsy outcome (p < 0.001); there was no correlation with the Gleason score upon biopsy (p = 0.194). The PCA3-score of patients with a suspicious region for PCa on MRI was significantly higher (p < 0.001) than in patients with no suspicious region on MRI (52 vs. 21). In conclusion, PCA3 is a valuable diagnostic biomarker for PCa; it did not correlate with the Gleason score. Furthermore, multiparametric MRI outcome was significantly correlated with the PCA3-score. Thus, PCA3 could be used to select patients that require MRI. However, in patients with a negative PCA3 and high clinical suspicion of PCa, a multiparametric MRI should also be done. PMID:23759986

  6. MRI-Safe Robot for Endorectal Prostate Biopsy

    PubMed Central

    Stoianovici, Dan; Kim, Chunwoo; Srimathveeravalli, Govindarajan; Sebrecht, Peter; Petrisor, Doru; Coleman, Jonathan; Solomon, Stephen B.; Hricak, Hedvig

    2014-01-01

    This paper reports the development of an MRI-Safe robot for direct (interventional) MRI-guided endorectal prostate biopsy. The robot is constructed of nonmagnetic and electrically nonconductive materials, and is electricity free, using pneumatic actuation and optical sensors. Targeting biopsy lesions of MRI abnormality presents substantial clinical potential for the management of prostate cancer. The paper describes MRI-Safe requirements, presents the kinematic architecture, design and construction of the robot, and a comprehensive set of preclinical tests for MRI compatibility and needle targeting accuracy. The robot has a compact and simple 3 degree-of-freedom (DoF) structure, two for orienting a needle-guide and one to preset the depth of needle insertion. The actual insertion is performed manually through the guide and up to the preset depth. To reduce the complexity and size of the robot next to the patient, the depth setting DoF is remote. Experimental results show that the robot is safe to use in any MRI environment (MRI-Safe). Comprehensive MRI tests show that the presence and motion of the robot in the MRI scanner cause virtually no image deterioration or signal to noise ratio (SNR) change. Robot’s accuracy in bench test, CT-guided in-vitro, MRI-guided in-vitro and animal tests are 0.37mm, 1.10mm, 2.09mm, and 2.58mm respectively. These values are acceptable for clinical use. PMID:25378897

  7. MRI-Safe Robot for Endorectal Prostate Biopsy.

    PubMed

    Stoianovici, Dan; Kim, Chunwoo; Srimathveeravalli, Govindarajan; Sebrecht, Peter; Petrisor, Doru; Coleman, Jonathan; Solomon, Stephen B; Hricak, Hedvig

    2013-09-16

    This paper reports the development of an MRI-Safe robot for direct (interventional) MRI-guided endorectal prostate biopsy. The robot is constructed of nonmagnetic and electrically nonconductive materials, and is electricity free, using pneumatic actuation and optical sensors. Targeting biopsy lesions of MRI abnormality presents substantial clinical potential for the management of prostate cancer. The paper describes MRI-Safe requirements, presents the kinematic architecture, design and construction of the robot, and a comprehensive set of preclinical tests for MRI compatibility and needle targeting accuracy. The robot has a compact and simple 3 degree-of-freedom (DoF) structure, two for orienting a needle-guide and one to preset the depth of needle insertion. The actual insertion is performed manually through the guide and up to the preset depth. To reduce the complexity and size of the robot next to the patient, the depth setting DoF is remote. Experimental results show that the robot is safe to use in any MRI environment (MRI-Safe). Comprehensive MRI tests show that the presence and motion of the robot in the MRI scanner cause virtually no image deterioration or signal to noise ratio (SNR) change. Robot's accuracy in bench test, CT-guided in-vitro, MRI-guided in-vitro and animal tests are 0.37mm, 1.10mm, 2.09mm, and 2.58mm respectively. These values are acceptable for clinical use. PMID:25378897

  8. A Novel MRI Marker for Prostate Brachytherapy

    SciTech Connect

    Frank, Steven J. Stafford, R. Jason; Bankson, James A.; Li Chun; Swanson, David A.; Kudchadker, Rajat J.; Martirosyan, Karen S.

    2008-05-01

    Purpose: Magnetic resonance imaging (MRI) is the optimal imaging modality for the prostate and surrounding critical organ structures. However, on MRI, the titanium radioactive seeds used for brachytherapy appear as black holes (negative contrast) and cannot be accurately localized. We sought to develop an encapsulated contrast agent marker (ECAM) with high-signal intensity on MRI to permit accurate localization of radioactive seeds with MRI during and after prostate brachytherapy. Methods and Materials: We investigated several agents with paramagnetic and superparamagnetic properties. The agents were injected into titanium, acrylic, and glass seeds, which were linked together in various combinations and imaged with MRI. The agent with the greatest T1-weighted signal was tested further in a canine prostate and agarose phantom. Studies were performed on a 1.5-T clinical MRI scanner. Results: The cobalt-chloride complex contrast (C4) agent with stoichiometry (CoCl{sub 2}){sub 0.8}(C{sub 2}H{sub 5}NO{sub 2}){sub 0.2} had the greatest T1-weighted signal (positive contrast) with a relaxivity ratio >1 (r{sub 2}/r{sub 1} = 1.21 {+-} 0.29). Acrylic-titanium and glass-titanium seed strands were clearly visualized with the encapsulated contrast agent marker. Conclusion: We have developed a novel ECAM that permits positive identification of the radioactive seeds used for prostate brachytherapy on MRI. Preclinical in vitro phantom studies and in vivo canine studies are needed to further optimize MRI sequencing techniques to facilitate MRI-based dosimetry.

  9. Diffusion MRI and its Role in Neuropsychology.

    PubMed

    Mueller, Bryon A; Lim, Kelvin O; Hemmy, Laura; Camchong, Jazmin

    2015-09-01

    Diffusion Magnetic Resonance Imaging (dMRI) is a popular method used by neuroscientists to uncover unique information about the structural connections within the brain. dMRI is a non-invasive imaging methodology in which image contrast is based on the diffusion of water molecules in tissue. While applicable to many tissues in the body, this review focuses exclusively on the use of dMRI to examine white matter in the brain. In this review, we begin with a definition of diffusion and how diffusion is measured with MRI. Next we introduce the diffusion tensor model, the predominant model used in dMRI. We then describe acquisition issues related to acquisition parameters and scanner hardware and software. Sources of artifacts are then discussed, followed by a brief review of analysis approaches. We provide an overview of the limitations of the traditional diffusion tensor model, and highlight several more sophisticated non-tensor models that better describe the complex architecture of the brain's white matter. We then touch on reliability and validity issues of diffusion measurements. Finally, we describe examples of ways in which dMRI has been applied to studies of brain disorders and how identified alterations relate to symptomatology and cognition. PMID:26255305

  10. MEMS temperature scanner: principles, advances, and applications

    NASA Astrophysics Data System (ADS)

    Otto, Thomas; Saupe, Ray; Stock, Volker; Gessner, Thomas

    2010-02-01

    Contactless measurement of temperatures has gained enormous significance in many application fields, ranging from climate protection over quality control to object recognition in public places or military objects. Thereby measurement of linear or spatially temperature distribution is often necessary. For this purposes mostly thermographic cameras or motor driven temperature scanners are used today. Both are relatively expensive and the motor drive devices are limited regarding to the scanning rate additionally. An economic alternative are temperature scanner devices based on micro mirrors. The micro mirror, attached in a simple optical setup, reflects the emitted radiation from the observed heat onto an adapted detector. A line scan of the target object is obtained by periodic deflection of the micro scanner. Planar temperature distribution will be achieved by perpendicularly moving the target object or the scanner device. Using Planck radiation law the temperature of the object is calculated. The device can be adapted to different temperature ranges and resolution by using different detectors - cooled or uncooled - and parameterized scanner parameters. With the basic configuration 40 spatially distributed measuring points can be determined with temperatures in a range from 350°C - 1000°C. The achieved miniaturization of such scanners permits the employment in complex plants with high building density or in direct proximity to the measuring point. The price advantage enables a lot of applications, especially new application in the low-price market segment This paper shows principle, setup and application of a temperature measurement system based on micro scanners working in the near infrared range. Packaging issues and measurement results will be discussed as well.

  11. A 10 tesla table-top controlled waveform magnet

    NASA Astrophysics Data System (ADS)

    Roy Choudhury, Aditya N.; Venkataraman, V.

    2012-04-01

    Controlled waveform magnets (CWMs) are a class of pulsed magnets whose pulse shape with time can be programmed by the user. With a CWM, the user gains control not only over the magnitude of the field but also over its rate of change. In this work we present a table-top CWM, driven by a capacitor bank, capable of producing virtually any user-shaped magnetic field waveform up to 10 tesla. Insulated gate bipolar transistor chips have been paralleled to form the high current switch and paralleled chips of SiC Schottky diodes form the crowbar diode module. Sample controlled waveforms including flat-tops up to 10 tesla and some triangular magnetic field pulses have been successfully generated for 10-20 ms with a ripple <1%.

  12. A 10 tesla table-top controlled waveform magnet.

    PubMed

    Roy Choudhury, Aditya N; Venkataraman, V

    2012-04-01

    Controlled waveform magnets (CWMs) are a class of pulsed magnets whose pulse shape with time can be programmed by the user. With a CWM, the user gains control not only over the magnitude of the field but also over its rate of change. In this work we present a table-top CWM, driven by a capacitor bank, capable of producing virtually any user-shaped magnetic field waveform up to 10 tesla. Insulated gate bipolar transistor chips have been paralleled to form the high current switch and paralleled chips of SiC Schottky diodes form the crowbar diode module. Sample controlled waveforms including flat-tops up to 10 tesla and some triangular magnetic field pulses have been successfully generated for 10-20 ms with a ripple <1%. PMID:22559572

  13. Six tesla analyzing magnet for heavy-ion beam transport

    SciTech Connect

    Smith, R.P.; Bollinger, L.; Erskine, J.; Genens, L.; Hoffman, J.

    1980-01-01

    A superconducting analyzer magnet for particle beam deflection has been designed and is being fabricated for use at the Argonne Tandem-Linac Accelerator System (ATLAS). This six tesla magnet will provide 45/sup 0/ of deflection for the heavy-ion beams from the ATLAS tandem electrostatic accelerator and together with its twin will replace the existing conventional 90/sup 0/ analyzer magnet which will become inadequate when ATLAS is completed.

  14. Tuning for the first 9-cell TESLA cavity of PKU

    NASA Astrophysics Data System (ADS)

    Yang, Liu; He, Fei-Si; Xu, Wen-Can; Zhu, Feng; Lu, Xiang-Yang; Zhao, Kui

    2010-04-01

    A method based on circuit model is used to tune the first home-made 9-cell TESLA type superconducting niobium cavity at Peking University. After tuning, a flat field profile with a final π-mode frequency within 3 kHz of target frequency is achieved. The field flatness is measured by a bead-pull method, and the relative electric field is calculated from the frequency shift perturbed by the bead stepping along the axis of the cavity.

  15. Directly detected 55Mn MRI: Application to phantoms for human hyperpolarized 13C MRI development

    PubMed Central

    von Morze, Cornelius; Carvajal, Lucas; Reed, Galen D.; Swisher, Christine Leon; Tropp, James; Vigneron, Daniel B.

    2014-01-01

    In this work we demonstrate for the first time directly detected manganese-55 (55Mn) MRI using a clinical 3T MRI scanner designed for human hyperpolarized 13C clinical studies with no additional hardware modifications. Due to the similar frequency of the 55Mn and 13C resonances, the use of aqueous permanganate for large, signal-dense, and cost-effective 13C MRI phantoms was investigated, addressing the clear need for new phantoms for these studies. Due to 100% natural abundance, higher intrinsic sensitivity, and favorable relaxation properties, 55Mn MRI of aqueous permanganate demonstrates dramatically increased sensitivity over typical 13C phantom MRI, at greatly reduced cost as compared with large 13C-enriched phantoms. A large sensitivity advantage (22-fold) was demonstrated. A cylindrical phantom (d= 8 cm) containing concentrated aqueous sodium permanganate (2.7M) was scanned rapidly by 55Mn MRI in a human head coil tuned for 13C, using a balanced SSFP acquisition. The requisite penetration of RF magnetic fields into concentrated permanganate was investigated by experiments and high frequency electromagnetic simulations, and found to be sufficient for 55Mn MRI with reasonably sized phantoms. A sub-second slice-selective acquisition yielded mean image SNR of ~60 at 0.5cm3 spatial resolution, distributed with minimum central signal ~40% of the maximum edge signal. We anticipate that permanganate phantoms will be very useful for testing HP 13C coils and methods designed for human studies. PMID:25179135

  16. RHQT Nb3Al 15-Tesla magnet design study

    SciTech Connect

    Yamada, R.; Ambrosio, G.; Barzi, E.; Kashikin, V.; Kikuchi, A.; Novitski, I.; Takeuchi, T.; Wake, M.; Zlobin, A.; /Fermilab /NIMC, Tsukuba /KEK, Tsukuba

    2005-09-01

    Feasibility study of 15-Tesla dipole magnets wound with a new copper stabilized RHQT Nb{sub 3}Al Rutherford cable is presented. A new practical long copper stabilized RHQT Nb{sub 3}Al strand is presented, which is being developed and manufactured at the National Institute of Material Science (NIMS) in Japan. It has achieved a non-copper J{sub c} of 1000A/mm{sup 2} at 15 Tesla at 4.2K, with a copper over non-copper ratio of 1.04, and a filament size less than 50 microns. For this design study a short Rutherford cable with 28 Nb{sub 3}Al strands of 1 mm diameter will be fabricated late this year. The cosine theta magnet cross section is designed using ROXIE, and the stress and strain in the coil is estimated and studied with the characteristics of the Nb{sub 3}Al strand. The advantages and disadvantages of the Nb{sub 3}Al cable are compared with the prevailing Nb{sub 3}Sn cable from the point of view of stress-strain, J{sub c}, and possible degradation of stabilizer due to cabling. The Nb{sub 3}Al coil of the magnet, which will be made by wind and react method, has to be heat treated at 800 degree C for 10 hours. As preparation for the 15 Tesla magnet, a series of tests on strand and Rutherford cables are considered.

  17. Management of a sandbag accident in an MRI unit.

    PubMed

    Lee, Chee Hwee; Lin, Ming-Fang; Chan, Wing P

    2015-11-01

    Our aim is to report the cause and management of a ferromagnetic sandbag accident that occurred when an unconscious patient was sent for brain MRI. A 2-kg sandbag had been placed in the vicinity of his right groin to aid hemostasis after a femoral venous puncture for thrombocytopenia. His clothing and blanket had not been examined thoroughly before he was moved to the scanner and the sandbag went unnoticed. Its attraction to the scanner and adherence to the scanner rim resulted in a minor abrasion and bruise on the patient's face. We decided to manually remove some of the pellets from the sandbag after cutting the vinyl bag at one corner with a nonferromagnetic screwdriver. Piece-meal removal of about two-thirds of the pellets facilitated removal of the remaining pellets and the sandbag as a whole. The word "sandbag" is misleading and led to a lack of communication between the clinical team and the MRI staff and failure by the MRI staff to recognize a sandbag as a ferromagnetic object. Careful manual removal of small amounts of pellets can be used to avoid more time- and labor-intensive strategies to deal with a sandbag accident (e.g., magnet quench or ramp-down). Installation of a ferromagnetic material detector to screen patients before entering the scanner room is recommended. PMID:26226646

  18. Precise Indoor Localization for Mobile Laser Scanner

    NASA Astrophysics Data System (ADS)

    Kaijaluoto, R.; Hyyppä, A.

    2015-05-01

    Accurate 3D data is of high importance for indoor modeling for various applications in construction, engineering and cultural heritage documentation. For the lack of GNSS signals hampers use of kinematic platforms indoors, TLS is currently the most accurate and precise method for collecting such a data. Due to its static single view point data collection, excessive time and data redundancy are needed for integrity and coverage of data. However, localization methods with affordable scanners are used for solving mobile platform pose problem. The aim of this study was to investigate what level of trajectory accuracies can be achieved with high quality sensors and freely available state of the art planar SLAM algorithms, and how well this trajectory translates to a point cloud collected with a secondary scanner. In this study high precision laser scanners were used with a novel way to combine the strengths of two SLAM algorithms into functional method for precise localization. We collected five datasets using Slammer platform with two laser scanners, and processed them with altogether 20 different parameter sets. The results were validated against TLS reference. The results show increasing scan frequency improves the trajectory, reaching 20 mm RMSE levels for the best performing parameter sets. Further analysis of the 3D point cloud showed good agreement with TLS reference with 17 mm positional RMSE. With precision scanners the obtained point cloud allows for high level of detail data for indoor modeling with accuracies close to TLS at best with vastly improved data collection efficiency.

  19. Cognition for robot scanner based remote welding

    NASA Astrophysics Data System (ADS)

    Thombansen, U.; Ungers, Michael

    2014-02-01

    The effort for reduced cycle times in manufacturing has supported the development of remote welding systems which use a combination of scanners for beam delivery and robots for scanner positioning. Herein, close coupling of both motions requires a precise command of the robot trajectory and the scanner positioning to end up with a combined beam delivery. Especially the path precision of the robot plays a vital role in this kinematic chain. In this paper, a sensor system is being presented which allows tracking the motion of the laser beam against the work piece. It is based on a camera system which is coaxially connected to the scanner thus observing the relative motion of the laser beam relative to the work piece. The acquired images are processed with computer vision algorithms from the field of motion detection. The suitability of the algorithms is being demonstrated with a motion tracking tool which visualizes the homogeneity of the tracking result. The reported solution adds cognitive capabilities to manufacturing systems for robot scanner based materials processing. It allows evaluation of the relative motion between work piece and the laser beam. Moreover, the system can be used to adapt system programming during set-up of a manufacturing task or to evaluate the functionality of a manufacturing system during production. The presented sensor system will assist in optimizing manufacturing processes.

  20. LANSCE-R WIRE-SCANNER SYSTEM

    SciTech Connect

    Gruchalla, Michael E.

    2011-01-01

    The National Instruments cRIO platform is used for the new LANSCE-R wire-scanner systems. All wire-scanner electronics are integrated into a single BiRa BiRIO 4U cRIO chassis specifically designed for the cRIO crate and all interface electronics. The BiRIO chassis, actuator and LabVIEW VIs provide a complete wire-scanner system integrated with EPICS. The new wire-scanner chassis includes an 8-slot cRIO crate with Virtex-5 LX 110 FPGA and Power-PC real-time controller, the LANL-developed cRIO 2-axis wire-sensor analog interface module (AFE), NI9222 cRIO 4-channel 16-bit digitizer, cRIO resolver demodulator, cRIO event receiver, front-panel touch panel display, motor driver, and all necessary software, interface wiring, connectors and ancillary components. This wirescanner system provides a complete, turn-key, 2-axis wire-scanner system including 2-channel low-noise sensewire interface with variable DC wire bias and wireintegrity monitor, 16-bit signal digitizers, actuator motor drive and control, actuator position sensing, limit-switch interfaces, event receiver, LabVIEW and EPICS interface, and both remote operation and full stand-alone operation using the touch panel.

  1. Development of a novel laser range scanner

    NASA Astrophysics Data System (ADS)

    Pheiffer, Thomas S.; Lennon, Brian; Simpson, Amber L.; Miga, Michael I.

    2011-03-01

    Laser range scanning an organ surface intraoperatively provides a cost effective and accurate means of measuring geometric changes in tissue. A novel laser range scanner with integrated tracking was designed, developed, and analyzed with the goal of providing intraoperative surface data during neurosurgery. The scanner is fitted with passive spheres to be optically tracked in the operating room. The design notably includes a single-lens system capable of acquiring the geometric information (as a Cartesian point cloud) via laser illumination and charge-coupled device (CCD) collection, as well as the color information via visible light collection on the same CCD. The geometric accuracy was assessed by scanning a machined phantom of known dimensions and comparing relative distances of landmarks from the point cloud to the known distances. The ability of the scanner to be tracked was first evaluated by perturbing its orientation in front of the optical tracking camera and recording the number of spheres visible to the camera at each orientation, and then by observing the variance in point cloud locations of a fixed object when the tracking camera is moved around the scanner. The scanning accuracy test resulted in an RMS error of 0.47 mm with standard deviation of 0.40 mm. The sphere visibility test showed that four diodes were visible in most of the probable operating orientations, and the overall tracking standard deviation was observed to be 1.49 mm. Intraoperative collection of cortical surface scans using the new scanner is currently underway.

  2. MRI Stealth” robot for prostate interventions

    PubMed Central

    STOIANOVICI, DAN; SONG, DANNY; PETRISOR, DORU; URSU, DANIEL; MAZILU, DUMITRU; MUTENER, MICHAEL; SCHAR, MICHAEL; PATRICIU, ALEXANDRU

    2011-01-01

    The paper reports an important achievement in MRI instrumentation, a pneumatic, fully actuated robot located within the scanner alongside the patient and operating under remote control based on the images. Previous MRI robots commonly used piezoelectric actuation limiting their compatibility. Pneumatics is an ideal choice for MRI compatibility because it is decoupled from electromagnetism, but pneumatic actuators were hardly controllable. This achievement was possible due to a recent technology breakthrough, the invention of a new type of pneumatic motor, PneuStep (1), designed for the robot reported here with uncompromised MRI compatibility, high-precision, and medical safety. MrBot is one of the “MRI stealth” robots today (the second is described in this issue by Zangos et al.). Both of these systems are also multi-imager compatible, being able to operate with the imager of choice or cross-imaging modalities. For MRI compatibility the robot is exclusively constructed of nonmagnetic and dielectric materials such as plastics, ceramics, crystals, rubbers and is electricity free. Light-based encoding is used for feedback, so that all electric components are distally located outside the imager’s room. MRI robots are modern, digital medical instruments in line with advanced imaging equipment and methods. These allow for accessing patients within closed bore scanners and performing interventions under direct (in scanner) imaging feedback. MRI robots could allow e.g. to biopsy small lesions imaged with cutting edge cancer imaging methods, or precisely deploy localized therapy at cancer foci. Our robot is the first to show the feasibility of fully automated in-scanner interventions. It is customized for the prostate and operates transperineally for needle interventions. It can accommodate various needle drivers for different percutaneous procedures such as biopsy, thermal ablations, or brachytherapy. The first needle driver is customized for fully automated low-dose radiation seed brachytherapy. This paper gives an introduction to the challenges of MRI robot compatibility and presents the solutions adopted in making the MrBot. Its multi-imager compatibility and other preclinical tests are included. The robot shows the technical feasibility of MRI-guided prostate interventions, yet its clinical utility is still to be determined. PMID:17763098

  3. Retrieval, Monitoring, and Control Processes: A 7 Tesla fMRI Approach to Memory Accuracy

    PubMed Central

    Risius, Uda-Mareke; Staniloiu, Angelica; Piefke, Martina; Maderwald, Stefan; Schulte, Frank P.; Brand, Matthias; Markowitsch, Hans J.

    2012-01-01

    Memory research has been guided by two powerful metaphors: the storehouse (computer) and the correspondence metaphor. The latter emphasizes the dependability of retrieved mnemonic information and draws upon ideas about the state dependency and reconstructive character of episodic memory. We used a new movie to unveil the neural correlates connected with retrieval, monitoring, and control processes, and memory accuracy (MAC), according to the paradigm of Koriat and Goldsmith (1996a,b). During functional magnetic resonance imaging, subjects performed a memory task which required (after an initial learning phase) rating true and false statements [retrieval phase (RP)], making confidence judgments in the respective statement [monitoring phase (MP)], and deciding for either venturing (volunteering) the respective answer or withholding the response [control phase (CP)]. Imaging data pointed to common and unique neural correlates. Activations in brain regions related to RP and MAC were observed in the precuneus, middle temporal gyrus, and left hippocampus. MP was associated with activation in the left anterior and posterior cingulate cortex along with bilateral medial temporal regions. If an answer was volunteered (as opposed to being withheld) during the CP, temporal, and frontal as well as middle and posterior cingulate areas and the precuneus revealed activations. Increased bilateral hippocampal activity was found during withholding compared to volunteering answers. The left caudate activation detected during withholding compared to venturing an answer supports the involvement of the left caudate in inhibiting unwanted responses. Contrary to expectations, we did not evidence prefrontal activations during withholding (as opposed to volunteering) answers. This may reflect our design specifications, but alternative interpretations are put forth. PMID:23580061

  4. Battlefield MRI

    SciTech Connect

    Espy, Michelle

    2015-06-01

    Magnetic Resonance Imaging is the best method for non-invasive imaging of soft tissue anatomy, saving countless lives each year. It is regarded as the gold standard for diagnosis of mild to moderate traumatic brain injuries. Furthermore, conventional MRI relies on very high, fixed strength magnetic fields (> 1.5 T) with parts-per-million homogeneity, which requires very large and expensive magnets.

  5. CT densitometry of the lungs: Scanner performance

    SciTech Connect

    Kemerink, G.J.; Lamers, R.J.S.; Thelissen, G.R.P.; Engelshoven, J.M.A. van

    1996-01-01

    Our goal was to establish the reproducibility and accuracy of the CT scanner in densitometry of the lungs. Scanner stability was assessed by analysis of daily quality checks. Studies using a humanoid phantom and polyethylene foams for lung were performed to measure reproducibility and accuracy. The dependence of the CT-estimated density on reconstruction filter, zoom factor, slice thickness, table height, data truncation, and objects outside the scan field was determined. Stability of the system at air density was within {approx}1 HU and at water density within {approx}2 HU. Reproducibility and accuracy for densities found for lung were within 2-3%. Dependence on the acquisition and reconstruction parameters was neglible, with the exceptions of the ultra high resolution reconstruction algorithm in the case of emphysema, and objects outside the scan field. The performance of the CT scanner tested is quite adequate for densitometry of the lungs. 26 refs., 5 figs., 4 tabs.

  6. How flatbed scanners upset accurate film dosimetry

    NASA Astrophysics Data System (ADS)

    van Battum, L. J.; Huizenga, H.; Verdaasdonk, R. M.; Heukelom, S.

    2016-01-01

    Film is an excellent dosimeter for verification of dose distributions due to its high spatial resolution. Irradiated film can be digitized with low-cost, transmission, flatbed scanners. However, a disadvantage is their lateral scan effect (LSE): a scanner readout change over its lateral scan axis. Although anisotropic light scattering was presented as the origin of the LSE, this paper presents an alternative cause. Hereto, LSE for two flatbed scanners (Epson 1680 Expression Pro and Epson 10000XL), and Gafchromic film (EBT, EBT2, EBT3) was investigated, focused on three effects: cross talk, optical path length and polarization. Cross talk was examined using triangular sheets of various optical densities. The optical path length effect was studied using absorptive and reflective neutral density filters with well-defined optical characteristics (OD range 0.2–2.0). Linear polarizer sheets were used to investigate light polarization on the CCD signal in absence and presence of (un)irradiated Gafchromic film. Film dose values ranged between 0.2 to 9 Gy, i.e. an optical density range between 0.25 to 1.1. Measurements were performed in the scanner’s transmission mode, with red–green–blue channels. LSE was found to depend on scanner construction and film type. Its magnitude depends on dose: for 9 Gy increasing up to 14% at maximum lateral position. Cross talk was only significant in high contrast regions, up to 2% for very small fields. The optical path length effect introduced by film on the scanner causes 3% for pixels in the extreme lateral position. Light polarization due to film and the scanner’s optical mirror system is the main contributor, different in magnitude for the red, green and blue channel. We concluded that any Gafchromic EBT type film scanned with a flatbed scanner will face these optical effects. Accurate dosimetry requires correction of LSE, therefore, determination of the LSE per color channel and dose delivered to the film.

  7. Ultrasound vs. MRI in the assessment of rotator cuff structure prior to shoulder arthroplasty

    PubMed Central

    Fischer, Christian Alexander; Weber, Marc-André; Neubecker, Clément; Bruckner, Thomas; Tanner, Michael; Zeifang, Felix

    2015-01-01

    Background/Aims We compared the accuracy of US to 3 T Tesla MRI for the detection of rotator cuff and long biceps tendon pathologies before joint replacement. Methods 45 patients were prospectively included. Results For the supraspinatus tendon, the accuracy of US when using MRI as reference was 91.1%. For the infraspinatus tendon, the accuracy with MRI as reference was 84.4%. The subscapularis tendon was consistently assessed by US and MRI in 35/45 patients (accuracy 77.8%). For the long biceps tendon the accuracy was 86.7%. Conclusion US detection of rotator cuff and biceps tendon integrity is comparable to MRI and should be preferred in revision cases. PMID:25829757

  8. Infrared scanner concept verification test report

    NASA Technical Reports Server (NTRS)

    Bachtel, F. D.

    1980-01-01

    The test results from a concept verification test conducted to assess the use of an infrared scanner as a remote temperature sensing device for the space shuttle program are presented. The temperature and geometric resolution limits, atmospheric attenuation effects including conditions with fog and rain, and the problem of surface emissivity variations are included. It is concluded that the basic concept of using an infrared scanner to determine near freezing surface temperatures is feasible. The major problem identified is concerned with infrared reflections which result in significant errors if not controlled. Action taken to manage these errors result in design and operational constraints to control the viewing angle and surface emissivity.

  9. LANSCE Wire Scanner System Prototype: Switchyard Test

    SciTech Connect

    Sedillo, James D

    2012-04-11

    On November 19, 2011, the beam diagnostics team of Los Alamos National Laboratory's LANSCE accelerator facility conducted a test of a prototype wire scanner system for future deployment within the accelerator's switchyard area. The primary focus of this test was to demonstrate the wire scanner control system's ability to extend its functionality beyond acquiring lower energy linac beam profile measurements to acquiring data in the switchyard. This study summarizes the features and performance characteristics of the electronic and mechanical implementation of this system with details focusing on the test results.

  10. The conical scanner evaluation system design

    NASA Technical Reports Server (NTRS)

    Cumella, K. E.; Bilanow, S.; Kulikov, I. B.

    1982-01-01

    The software design for the conical scanner evaluation system is presented. The purpose of this system is to support the performance analysis of the LANDSAT-D conical scanners, which are infrared horizon detection attitude sensors designed for improved accuracy. The system consists of six functionally independent subsystems and five interface data bases. The system structure and interfaces of each of the subsystems is described and the content, format, and file structure of each of the data bases is specified. For each subsystem, the functional logic, the control parameters, the baseline structure, and each of the subroutines are described. The subroutine descriptions include a procedure definition and the input and output parameters.

  11. Miniature rotating transmissive optical drum scanner

    NASA Technical Reports Server (NTRS)

    Lewis, Robert (Inventor); Parrington, Lawrence (Inventor); Rutberg, Michael (Inventor)

    2013-01-01

    A miniature rotating transmissive optical scanner system employs a drum of small size having an interior defined by a circumferential wall rotatable on a drum axis, an optical element positioned within the interior of the drum, and a light-transmissive lens aperture provided at an angular position in the circumferential wall of the drum for scanning a light beam to or from the optical element in the drum along a beam azimuth angle as the drum is rotated. The miniature optical drum scanner configuration obtains a wide scanning field-of-view (FOV) and large effective aperture is achieved within a physically small size.

  12. The technology of MRI--the next 10 years?

    PubMed

    Blamire, A M

    2008-08-01

    MRI is the most flexible of our diagnostic imaging modalities, possessing the ability to characterize a wide range of parameters in the living subject and provide exquisite spatial resolution. Here we first review the rise of MRI to its current clinical "state-of-the-art" status and then consider the future directions for this technique. The long-term impact on clinical practice of recent innovations in MRI scanner hardware and sequence design are also considered. Key changes in clinical practice that we predict for the coming 10 years include: a widespread shift to higher field imaging (3T); further improvements in MRI coil technology, including further increases in the number of channels; the introduction of ultra-short echo-time imaging; the introduction of combined modality methods (e.g. positron emission tomography (PET)-MRI and single photon emission CT (SPECT)-MRI); and significant advances in molecular MRI agents. Even after 30 years of continuing developments in human MRI, the coming decade will provide further major advances in diagnostic MRI. PMID:18628329

  13. Towards automatic quantitative quality control for MRI

    NASA Astrophysics Data System (ADS)

    Lauzon, Carolyn B.; Caffo, Brian C.; Landman, Bennett A.

    2012-02-01

    Quality and consistency of clinical and research data collected from Magnetic Resonance Imaging (MRI) scanners may become suspect due to a wide variety of common factors including, experimental changes, hardware degradation, hardware replacement, software updates, personnel changes, and observed imaging artifacts. Standard practice limits quality analysis to visual assessment by a researcher/clinician or a quantitative quality control based upon phantoms which may not be timely, cannot account for differing experimental protocol (e.g. gradient timings and strengths), and may not be pertinent to the data or experimental question at hand. This paper presents a parallel processing pipeline developed towards experiment specific automatic quantitative quality control of MRI data using diffusion tensor imaging (DTI) as an experimental test case. The pipeline consists of automatic identification of DTI scans run on the MRI scanner, calculation of DTI contrasts from the data, implementation of modern statistical methods (wild bootstrap and SIMEX) to assess variance and bias in DTI contrasts, and quality assessment via power calculations and normative values. For this pipeline, a DTI specific power calculation analysis is developed as well as the first incorporation of bias estimates in DTI data to improve statistical analysis.

  14. Techniques for fast stereoscopic MRI.

    PubMed

    Guttman, M A; McVeigh, E R

    2001-08-01

    Stereoscopic MRI can impart 3D perception with only two image acquisitions. This economy over standard multiplanar 3D volume renderings allows faster frame rates, which are needed for real-time imaging applications. Real-time 3D perception may enhance the appreciation of complex anatomical structures, and may improve hand-eye coordination while manipulating a medical device during an image-guided interventional procedure. To this goal, a system is being developed to acquire and display stereoscopic MR images in real-time. A clinically used, fast gradient-recalled echo-train sequence has been modified to produce stereo image pairs. Features have been added for depth cueing, view sharing, and bulk signal suppression. A workstation was attached to a clinical MR scanner for fast data extraction, image reconstruction and stereoscopic image display. PMID:11477636

  15. Mapping of cerebral oxidative metabolism with MRI

    PubMed Central

    Mellon, Eric A.; Beesam, R. Shashank; Elliott, Mark A.; Reddy, Ravinder

    2010-01-01

    Using a T1ρ MRI based indirect detection method, we demonstrate the detection of cerebral oxidative metabolism and its modulation by administration of the mitochondrial uncoupling agent 2,4-dinitrophenol (DNP) in a large animal model with minimum utilization of gas. The study was performed by inhalation in swine during imaging on clinical MRI scanners. Metabolic changes in swine were determined by two methods. First, in a series of animals, increased metabolism caused by DNP injection was measured by exhaled gas analysis. The average whole-body metabolic increase in seven swine was 11.9%+/-2.5% per mg/kg, stable over three hours. Secondly, hemispheric brain measurements of oxygen consumption stimulated by DNP injection were made in five swine using T1ρ MRI following administration of gas. Metabolism was calculated from the change in the T1ρ weighted MRI signal due to H217O generated from inhalation before and after doubling of metabolism by DNP. These results were confirmed by direct oxygen-17 MR spectroscopy, a gold standard for in vivo H217O measurement. Overall, this work underscores the ability of indirect oxygen-17 imaging to detect oxygen metabolism in an animal model with a lung capacity comparable to the human with minimal utilization of expensive gas. Given the demonstrated high efficiency in use of and the proven feasibility of performing such measurements on standard clinical MRI scanners, this work enables the adaption of this technique for human studies dealing with a broad array of metabolic derangements. PMID:20547874

  16. PET/MRI: paving the way for the next generation of clinical multimodality imaging applications.

    PubMed

    Pichler, Bernd J; Kolb, Armin; Nägele, Thomas; Schlemmer, Heinz-Peter

    2010-03-01

    Multimodality imaging and, more specifically, the combination of PET and CT has matured into an important diagnostic tool. During the same period, concepts for PET scanners integrated into an MR tomograph have emerged. The excellent soft-tissue contrast of MRI and the multifunctional imaging options it offers, such as spectroscopy, functional MRI, and arterial spin labeling, complement the molecular information of PET. The development of a fully integrated PET/MRI system is technologically challenging. It requires not only significant modifications of the PET detector to make it compact and insensitive to magnetic fields but also a major redesign of the MRI hardware. PMID:20150252

  17. Respective interest of T2 mapping and diffusion tensor imaging in assessing porcine knee cartilage with MR at 3 Teslas.

    PubMed

    Chen, Bailiang; Roeder, Emilie; Vuissoz, Pierre-André; Gillet, Pierre; Felblinger, Jacques; Beaumont, Marine; Pinzano, Astrid

    2013-01-01

    Non-invasive quantitative assessment of articular cartilage integrity is essential for early detection and evaluation of osteoarthritis (OA) and for the follow-up of stem-cell-driven cartilage engineering. In this study, we investigated the feasibility of exploiting diffusion tensor imaging (DTI) on porcine knee joints with a clinical magnetic resonance (MR) scanner to extract micro-structural information in order to complement biochemical information quantified by T2 maps. We propose an MR protocol for quantifying T2 and cartilage microstructure with diffusion MR on a clinical scanner. Preliminary results were obtained on four pig knee joints using a 3 T GE clinical MRI scanner and an 8-channel knee coil array. The measured cartilage volume, T2 values, apparent diffusion coefficient and fractional anisotropy (FA) of femoral and tibial cartilage were respectively 9.8/2.3 mm2, 67.0/56.1 ms, 1.3/1.3×10-3 mm2/s and 0.4/0.3. This new protocol has the potential to be combined in vivo with quantitative assessment of both cartilage degradation and restoration in osteoarthritis. PMID:23798647

  18. PET and MRI: The Odd Couple or a Match Made in Heaven?

    PubMed Central

    Catana, Ciprian; Guimaraes, Alexander R.; Rosen, Bruce R.

    2013-01-01

    Positron emission tomography (PET) and magnetic resonance imaging (MRI) are imaging modalities routinely used for clinical and research applications. Integrated scanners capable of acquiring PET and MRI data in the same imaging session, sequentially or simultaneously, have recently become available for human use. In this manuscript, we describe some of the technical advances that allowed the development of human PET/MR scanners, briefly discuss methodological challenges and opportunities provided by this novel technology and present potential oncologic, cardiac, and neuro-psychiatric applications. These examples range from studies that might immediately benefit from PET/MR to more advanced applications where future development might have an even broader impact. PMID:23492887

  19. Integrated physiological flow simulator and pulse sequence monitoring system for MRI.

    PubMed

    Wong, Pauline; Graves, Martin J; Lomas, David J

    2008-04-01

    A compact flow simulator for generating accurate pulsatile flow in a clinical magnetic resonance imaging (MRI) environment has been developed and integrated with a data acquisition (DAQ) system for recording scanner system activity and physiological waveforms. The flow simulator is relatively inexpensive, easy to construct and is controlled from a standard PC. The flow simulator is robust to repeated disassembly and reassembly (normalised cross-correlation 0.97) and generates accurate pulsatile flow (normalised cross-correlation 0.94). The DAQ system was used to monitor a standard MRI pulse sequence used in MR angiography and latent delays in the scanner gating subsystem. PMID:18293023

  20. Biomedical Applications of Sodium MRI In Vivo

    PubMed Central

    Madelin, Guillaume; Regatte, Ravinder R.

    2013-01-01

    In this article, we present an up-to-date overview of the potential biomedical applications of sodium MRI in vivo. Sodium MRI is a subject of increasing interest in translational imaging research as it can give some direct and quantitative biochemical information on the tissue viability, cell integrity and function, and therefore not only help the diagnosis but also the prognosis of diseases and treatment outcomes. It has already been applied in vivo in most of human tissues, such as brain for stroke or tumor detection and therapeutic response, in breast cancer, in articular cartilage, in muscle and in kidney, and it was shown in some studies that it could provide very useful new information not available through standard proton MRI. However, this technique is still very challenging due to the low detectable sodium signal in biological tissue with MRI and hardware/software limitations of the clinical scanners. The article is divided in three parts: (1) the role of sodium in biological tissues, (2) a short review on sodium magnetic resonance, and (3) a review of some studies on sodium MRI on different organs/diseases to date. PMID:23722972

  1. Wire scanner software and firmware issues

    SciTech Connect

    Gilpatrick, John Doug

    2008-01-01

    The Los Alamos Neutron Science Center facility presently has 110 slow wire scanning profile measurement instruments located along its various beam lines. These wire scanners were developed and have been operating for at least 30 years. While the wire scanners solved many problems to operate and have served the facility well they have increasingly suffered from several problems or limitations, such as maintenance and reliability problems, antiquated components, slow data acquisition, and etc. In order to refurbish these devices, these wire scanners will be replaced with newer versions. The replacement will consist of a completely new beam line actuator, new cables, new electronics and brand new software and firmware. This note describes the functions and modes of operation that LabVIEW VI software on the real time controller and FPGA LabVIEW firmware will be required. It will be especially interesting to understand the overall architecture of these LabVIEW VIs. While this note will endeavor to describe all of the requirements and issues for the wire scanners, undoubtedly, there will be missing details that will be added as time progresses.

  2. Learning and Teaching with a Computer Scanner

    ERIC Educational Resources Information Center

    Planinsic, G.; Gregorcic, B.; Etkina, E.

    2014-01-01

    This paper introduces the readers to simple inquiry-based activities (experiments with supporting questions) that one can do with a computer scanner to help students learn and apply the concepts of relative motion in 1 and 2D, vibrational motion and the Doppler effect. We also show how to use these activities to help students think like…

  3. Miniature 'Wearable' PET Scanner Ready for Use

    SciTech Connect

    Paul Vaska

    2011-03-09

    Scientists from BNL, Stony Brook University, and collaborators have demonstrated the efficacy of a "wearable," portable PET scanner they've developed for rats. The device will give neuroscientists a new tool for simultaneously studying brain function and behavior in fully awake, moving animals.

  4. Miniature 'Wearable' PET Scanner Ready for Use

    ScienceCinema

    Paul Vaska

    2013-07-22

    Scientists from BNL, Stony Brook University, and collaborators have demonstrated the efficacy of a "wearable," portable PET scanner they've developed for rats. The device will give neuroscientists a new tool for simultaneously studying brain function and behavior in fully awake, moving animals.

  5. Ultrasonic Scanner Control and Data Acquisition

    NASA Technical Reports Server (NTRS)

    Hemann, John

    2002-01-01

    The research accomplishments under this grant were very extensive in the areas of ULTRASONIC SCANNER CONTROL AND DATA ACQUISITION. Rather than try to summarize all this research I have enclosed research papers and reports which were completed with the hnding provided by the grant. These papers and reports are listed below:

  6. Biomedical Imaging and Sensing using Flatbed Scanners

    PubMed Central

    Göröcs, Zoltán; Ozcan, Aydogan

    2014-01-01

    In this Review, we provide an overview of flatbed scanner based biomedical imaging and sensing techniques. The extremely large imaging field-of-view (e.g., ~600–700 cm2) of these devices coupled with their cost-effectiveness provide unique opportunities for digital imaging of samples that are too large for regular optical microscopes, and for collection of large amounts of statistical data in various automated imaging or sensing tasks. Here we give a short introduction to the basic features of flatbed scanners also highlighting the key parameters for designing scientific experiments using these devices, followed by a discussion of some of the significant examples, where scanner-based systems were constructed to conduct various biomedical imaging and/or sensing experiments. Along with mobile phones and other emerging consumer electronics devices, flatbed scanners and their use in advanced imaging and sensing experiments might help us transform current practices of medicine, engineering and sciences through democratization of measurement science and empowerment of citizen scientists, science educators and researchers in resource limited settings. PMID:24965011

  7. Learning and Teaching with a Computer Scanner

    ERIC Educational Resources Information Center

    Planinsic, G.; Gregorcic, B.; Etkina, E.

    2014-01-01

    This paper introduces the readers to simple inquiry-based activities (experiments with supporting questions) that one can do with a computer scanner to help students learn and apply the concepts of relative motion in 1 and 2D, vibrational motion and the Doppler effect. We also show how to use these activities to help students think like

  8. Leg MRI scan

    MedlinePlus

    ... imaging - leg; Magnetic resonance imaging - lower extremity; MRI - ankle; Magnetic resonance imaging - ankle; MRI - femur; MRI - leg ... or bone scan Birth defects of the leg, ankle, or foot Bone pain and fever Broken bone ...

  9. Improved Cerebral Time-of-Flight Magnetic Resonance Angiography at 7 Tesla Feasibility Study and Preliminary Results Using Optimized Venous Saturation Pulses

    PubMed Central

    Wrede, Karsten H.; Johst, Sren; Dammann, Philipp; zkan, Neriman; Mnninghoff, Christoph; Kraemer, Markus; Maderwald, Stefan; Ladd, Mark E.; Sure, Ulrich; Umutlu, Lale; Schlamann, Marc

    2014-01-01

    Purpose Conventional saturation pulses cannot be used for 7 Tesla ultra-high-resolution time-of-flight magnetic resonance angiography (TOF MRA) due to specific absorption rate (SAR) limitations. We overcome these limitations by utilizing low flip angle, variable rate selective excitation (VERSE) algorithm saturation pulses. Material and Methods Twenty-five neurosurgical patients (male n?=?8, female n?=?17; average age 49.64 years; range 2670 years) with different intracranial vascular pathologies were enrolled in this trial. All patients were examined with a 7 Tesla (Magnetom 7 T, Siemens) whole body scanner system utilizing a dedicated 32-channel head coil. For venous saturation pulses a 35 flip angle was applied. Two neuroradiologists evaluated the delineation of arterial vessels in the Circle of Willis, delineation of vascular pathologies, presence of artifacts, vessel-tissue contrast and overall image quality of TOF MRA scans in consensus on a five-point scale. Normalized signal intensities in the confluence of venous sinuses, M1 segment of left middle cerebral artery and adjacent gray matter were measured and vessel-tissue contrasts were calculated. Results Ratings for the majority of patients ranged between good and excellent for most of the evaluated features. Venous saturation was sufficient for all cases with minor artifacts in arteriovenous malformations and arteriovenous fistulas. Quantitative signal intensity measurements showed high vessel-tissue contrast for confluence of venous sinuses, M1 segment of left middle cerebral artery and adjacent gray matter. Conclusion The use of novel low flip angle VERSE algorithm pulses for saturation of venous vessels can overcome SAR limitations in 7 Tesla ultra-high-resolution TOF MRA. Our protocol is suitable for clinical application with excellent image quality for delineation of various intracranial vascular pathologies. PMID:25232868

  10. Toward MRI microimaging of single biological cells

    NASA Astrophysics Data System (ADS)

    Seeber, Derek Allan

    There is a great advantage in signal to noise ratio (SNR) that can be obtained in nuclear magnetic resonance (NMR) on very small samples (having spatial dimensions ˜100 mum or less) if one employs NMR "microcoils" that are of similarly small dimensions. These gains in SNR could enable magnetic resonance imaging (MRI) microscopy with spatial resolutions of ˜1--2 mum, much better than currently available. We report the design and testing of a NMR microcoil receiver apparatus, employing solenoidal microcoils of dimensions of tens to hundreds of microns, using an applied field of 9 Tesla (proton frequency 383 MHz). For the smallest receiver coils we attain sensitivity sufficient to observe proton NMR with SNR one in a single scan applied to ˜10 mum3 (10 fl) water sample, containing 7 x 1011 total proton spins. In addition to the NMR applications, microcoils have been applied to MRI producing images with spatial resolutions as low as 2 mum x 3.5 mum x 14.8 mum on phantom images of rods and beads. This resolution can be further improved. MRI imaging of small sample volumes requires significant hardware modifications and improvements, all of which are discussed. Specifically, MRI microscopy requires very strong (>10 T/m), rapidly switchable triaxial magnetic field gradients. We report the design and construction of such a triaxial gradient system, producing gradient substantially greater than 15 T/m in all three directions, x, y, and z (as high as 50 T/m for the x direction). The gradients are power by a custom designed power supply capable of providing currents in excess of 200 amps and switching times of less than 5 mus corresponding to slew rates of greater that 107 T/m/s. The gradients are adequately uniform (within 5% over a volume of 600 mum3) and sufficient for microcoil MRI of small samples.

  11. Dynamic Shimming of the Human Brain at 7 Tesla.

    PubMed

    Juchem, Christoph; Nixon, Terence W; Diduch, Piotr; Rothman, Douglas L; Starewicz, Piotr; de Graaf, Robin A

    2010-07-01

    Dynamic shim updating (DSU) of the zero- to second-order spherical harmonic field terms has previously been shown to improve the magnetic field homogeneity in the human brain at 4 Tesla. The increased magnetic field inhomogeneity at 7 Tesla can benefit from inclusion of third-order shims during DSU. However, pulsed higher-order shims can generate a multitude of temporally varying magnetic fields arising from eddy-currents that can strongly degrade the magnetic field homogeneity.The first realization of zero- to third-order DSU with full preemphasis and B(0) compensation enabled improved shimming of the human brain at 7 Tesla not only in comparison with global (i.e. static) shimming, but also when compared to state-of-the-art zero- to second-order DSU. Temporal shim-to-shim interactions were measured for each of the 16 zero- to third-order shim coils along 1D column projections on a spherical phantom. The decomposition into up to 3 exponentials allowed full preemphasis and B(0) compensation of all 16 shims covering 67 potential shim-to-shim interactions. Despite the significant improvements achievable with DSU, the magnetic field homogeneity is still not perfect even when updating all zero- through third-order shims. This is because DSU is still inherently limited by the shallowness of the low order spherical harmonic fields and their inability to compensate the higher-order inhomogeneities encountered in vivo. However, DSU maximizes the usefulness of conventional shim coil systems and provides magnetic field homogeneity that is adequate for a wide range of applications. PMID:20657809

  12. Optimized magnetic resonance diffusion protocol for ex-vivo whole human brain imaging with a clinical scanner

    NASA Astrophysics Data System (ADS)

    Scherrer, Benoit; Afacan, Onur; Stamm, Aymeric; Singh, Jolene; Warfield, Simon K.

    2015-03-01

    Diffusion-weighted magnetic resonance imaging (DW-MRI) provides a novel insight into the brain to facilitate our understanding of the brain connectivity and microstructure. While in-vivo DW-MRI enables imaging of living patients and longitudinal studies of brain changes, post-mortem ex-vivo DW-MRI has numerous advantages. Ex-vivo imaging benefits from greater resolution and sensitivity due to the lack of imaging time constraints; the use of tighter fitting coils; and the lack of movement artifacts. This allows characterization of normal and abnormal tissues with unprecedented resolution and sensitivity, facilitating our ability to investigate anatomical structures that are inaccessible in-vivo. This also offers the opportunity to develop today novel imaging biomarkers that will, with tomorrow's MR technology, enable improved in-vivo assessment of the risk of disease in an individual. Post-mortem studies, however, generally rely on the fixation of specimen to inhibit tissue decay which starts as soon as tissue is deprived from its blood supply. Unfortunately, fixation of tissues substantially alters tissue diffusivity profiles. In addition, ex-vivo DW-MRI requires particular care when packaging the specimen because the presence of microscopic air bubbles gives rise to geometric and intensity image distortion. In this work, we considered the specific requirements of post-mortem imaging and designed an optimized protocol for ex-vivo whole brain DW-MRI using a human clinical 3T scanner. Human clinical 3T scanners are available to a large number of researchers and, unlike most animal scanners, have a bore diameter large enough to image a whole human brain. Our optimized protocol will facilitate widespread ex-vivo investigations of large specimen.

  13. 23. SITE BUILDING 002 SCANNER BUILDING RADAR CONTROL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. SITE BUILDING 002 - SCANNER BUILDING - RADAR CONTROL INTERFACE "RCL NO. 2" WITH COMPUTER CONTROL DISC DRIVE UNITS IN FOREGROUND. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  14. Occurrence and characteristics of mutual interference between LIDAR scanners

    NASA Astrophysics Data System (ADS)

    Kim, Gunzung; Eom, Jeongsook; Park, Seonghyeon; Park, Yongwan

    2015-05-01

    The LIDAR scanner is at the heart of object detection of the self-driving car. Mutual interference between LIDAR scanners has not been regarded as a problem because the percentage of vehicles equipped with LIDAR scanners was very rare. With the growing number of autonomous vehicle equipped with LIDAR scanner operated close to each other at the same time, the LIDAR scanner may receive laser pulses from other LIDAR scanners. In this paper, three types of experiments and their results are shown, according to the arrangement of two LIDAR scanners. We will show the probability that any LIDAR scanner will interfere mutually by considering spatial and temporal overlaps. It will present some typical mutual interference scenario and report an analysis of the interference mechanism.

  15. 11. SITE BUILDING 002 SCANNER BUILDING EVAPORATIVE COOLING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. SITE BUILDING 002 - SCANNER BUILDING - EVAPORATIVE COOLING TOWER SYSTEM IN FOREGROUND. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  16. 2. SITE BUILDING 002 SCANNER BUILDING VIEW IS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. SITE BUILDING 002 - SCANNER BUILDING - VIEW IS LOOKING NORTH 80° WEST "B" FACE ALONG BUILDING "A" FACE. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  17. 24. SITE BUILDING 002 SCANNER BUILDING OPERATIONS CENTER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. SITE BUILDING 002 - SCANNER BUILDING - OPERATIONS CENTER -- MWOC IN OPEARATION AT 1924 ZULU TIME. 26 OCTOBER, 1999. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  18. Status of the NHMFL 60 tesla quasi-continuous magnet

    SciTech Connect

    Campbell, L.J.; Boenig, H.J.; Rickel, D.G.; Schilig, J.B.; Sims, J.R.; Schneider-Muntau, H.J.

    1995-07-01

    All components of the National High Magnetic Field Laboratory`s (NHMFL) 60 T quasi-continuous magnet are now under construction, with complete delivery and installation expected in early 1996. This research magnet has a cold bore of 32 mm and will produce a constant 60 tesla for 100 ms plus a wide variety of other pulse shapes such as linear ramps, steps, crowbar decays, and longer flat-tops at lower fields. Fabrication and testing of prototype coils are described along with the layout, construction status, and protection philosophy of the 400 MW power supply. Examples of simulated pulse shapes are shown.

  19. Field quality measurements of a 2-Tesla transmission line magnet

    SciTech Connect

    Velev, G.V.; Foster, W.; Kashikhin, V.; Mazur, P.; Oleck, A.; Piekarz, H.; Schlabach, P.; Sylvester, C.; Wake, M.; /KEK, Tsukuba

    2005-09-01

    A prototype 2-Tesla superconducting transmission line magnet for future hadron colliders was designed, built and tested at Fermilab. The 1.5 m long, combined-function gradient-dipole magnet has a vertical pole aperture of 20 mm. To measure the magnetic field quality in such a small magnet aperture, a specialized rotating coil of 15.2 mm diameter, 0.69 m long was fabricated. Using this probe, a program of magnetic field quality measurements was successfully performed. Results of the measurements are presented and discussed.

  20. Preoperative 3-Tesla Multiparametric Endorectal Magnetic Resonance Imaging Findings and the Odds of Upgrading and Upstaging at Radical Prostatectomy in Men With Clinically Localized Prostate Cancer

    SciTech Connect

    Hegde, John V.; Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts ; Chen, Ming-Hui; Mulkern, Robert V.; Department of Radiology, Children's Hospital Boston, Boston, Massachusetts ; Fennessy, Fiona M.; Department of Imaging, Dana-Farber Cancer Institute, Boston, Massachusetts ; D'Amico, Anthony V.; Tempany, Clare M.C.

    2013-02-01

    Purpose: To investigate whether 3-T esla (3T) multiparametric endorectal MRI (erMRI) can add information to established predictors regarding occult extraprostatic or high-grade prostate cancer (PC) in men with clinically localized PC. Methods and Materials: At a single academic medical center, this retrospective study's cohort included 118 men with clinically localized PC who underwent 3T multiparametric erMRI followed by radical prostatectomy, from 2008 to 2011. Multivariable logistic regression analyses in all men and in 100 with favorable-risk PC addressed whether erMRI evidence of T3 disease was associated with prostatectomy T3 or Gleason score (GS) 8-10 (in patients with biopsy GS {<=}7) PC, adjusting for age, prostate-specific antigen level, clinical T category, biopsy GS, and percent positive biopsies. Results: The accuracy of erMRI prediction of extracapsular extension and seminal vesicle invasion was 75% and 95%, respectively. For all men, erMRI evidence of a T3 lesion versus T2 was associated with an increased odds of having pT3 disease (adjusted odds ratio [AOR] 4.81, 95% confidence interval [CI] 1.36-16.98, P=.015) and pGS 8-10 (AOR 5.56, 95% CI 1.10-28.18, P=.038). In the favorable-risk population, these results were AOR 4.14 (95% CI 1.03-16.56), P=.045 and AOR 7.71 (95% CI 1.36-43.62), P=.021, respectively. Conclusions: Three-Tesla multiparametric erMRI in men with favorable-risk PC provides information beyond that contained in known preoperative predictors about the presence of occult extraprostatic and/or high-grade PC. If validated in additional studies, this information can be used to counsel men planning to undergo radical prostatectomy or radiation therapy about the possible need for adjuvant radiation therapy or the utility of adding hormone therapy, respectively.

  1. Calibration and equivalency analysis of image plate scanners

    SciTech Connect

    Williams, G. Jackson Maddox, Brian R.; Chen, Hui; Kojima, Sadaoki; Millecchia, Matthew

    2014-11-15

    A universal procedure was developed to calibrate image plate scanners using radioisotope sources. Techniques to calibrate scanners and sources, as well as cross-calibrate scanner models, are described to convert image plate dosage into physical units. This allows for the direct comparison of quantitative data between any facility and scanner. An empirical relation was also derived to establish sensitivity response settings for arbitrary gain settings. In practice, these methods may be extended to any image plate scanning system.

  2. Nano-thermometers with thermo-sensitive polymer grafted USPIOs behaving as positive contrast agents in low-field MRI

    NASA Astrophysics Data System (ADS)

    Hannecart, Adeline; Stanicki, Dimitri; Vander Elst, Luce; Muller, Robert N.; Lecommandoux, Sébastien; Thévenot, Julie; Bonduelle, Colin; Trotier, Aurélien; Massot, Philippe; Miraux, Sylvain; Sandre, Olivier; Laurent, Sophie

    2015-02-01

    Two commercial statistical copolymers of ethylene oxide and propylene oxide, Jeffamine® M-2005 (PEO5-st-PPO37) and M-2070 (PEO46-st-PPO13), exhibiting lower critical solution temperature (LCST) in water, were grafted onto the surface of ultra-small superparamagnetic iron oxide nanoparticles (USPIOs) using silanization and amide-bond coupling reactions. The LCSTs of the polymers in solution were measured by dynamic light scattering (DLS) and nuclear magnetic resonance (NMR). In accordance with the compositions of EO vs. PO, the transition temperature was measured to be 22 +/- 2 °C for M-2005 by both DLS and NMR, while the LCST was much higher, 52 +/- 2 °C, for M-2070 (a second transition was also detected above 80 °C by NMR in that case, ascribed to the full dehydration of chains at the molecular level). The resulting polymer-grafted USPIOs exhibit a temperature-responsive colloidal behaviour, their surface reversibly changing from hydrophilic below LCST to hydrophobic above it. This phenomenon was utilised to design thermo-sensitive contrast agents for MRI. Transverse relaxivities (r2) of the USPIO@PEO5-st-PPO37 core-shell nanoparticles were measured at 8.25, 20, 60, and 300 MHz. Nuclear magnetic resonance dispersion (NMRD) profiles, giving longitudinal relaxivities (r1) between 0.01 and 60 MHz, were acquired at temperatures ranging from 15 to 50 °C. For all tested frequencies except 300 MHz, both r1 and r2 decrease with temperature and show an inflection point at 25 °C, near the LCST. To illustrate the interest of such polymer-coated USPIOs for MRI thermometry, sample tubes were imaged on both low-field (8.25 MHz/0.194 Tesla) and high-field (300 MHz/7.05 Tesla) MRI scanners with either T1- or T2*-weighted spin echo sequences. The positive contrast on low-field MR images and the perfect linearity of the signal with a T2*-weighted sequence over the entire temperature range 15-50 °C render these LCST polymer coated USPIOs interesting positive contrast agents, also working as ``nano-thermometers''.Two commercial statistical copolymers of ethylene oxide and propylene oxide, Jeffamine® M-2005 (PEO5-st-PPO37) and M-2070 (PEO46-st-PPO13), exhibiting lower critical solution temperature (LCST) in water, were grafted onto the surface of ultra-small superparamagnetic iron oxide nanoparticles (USPIOs) using silanization and amide-bond coupling reactions. The LCSTs of the polymers in solution were measured by dynamic light scattering (DLS) and nuclear magnetic resonance (NMR). In accordance with the compositions of EO vs. PO, the transition temperature was measured to be 22 +/- 2 °C for M-2005 by both DLS and NMR, while the LCST was much higher, 52 +/- 2 °C, for M-2070 (a second transition was also detected above 80 °C by NMR in that case, ascribed to the full dehydration of chains at the molecular level). The resulting polymer-grafted USPIOs exhibit a temperature-responsive colloidal behaviour, their surface reversibly changing from hydrophilic below LCST to hydrophobic above it. This phenomenon was utilised to design thermo-sensitive contrast agents for MRI. Transverse relaxivities (r2) of the USPIO@PEO5-st-PPO37 core-shell nanoparticles were measured at 8.25, 20, 60, and 300 MHz. Nuclear magnetic resonance dispersion (NMRD) profiles, giving longitudinal relaxivities (r1) between 0.01 and 60 MHz, were acquired at temperatures ranging from 15 to 50 °C. For all tested frequencies except 300 MHz, both r1 and r2 decrease with temperature and show an inflection point at 25 °C, near the LCST. To illustrate the interest of such polymer-coated USPIOs for MRI thermometry, sample tubes were imaged on both low-field (8.25 MHz/0.194 Tesla) and high-field (300 MHz/7.05 Tesla) MRI scanners with either T1- or T2*-weighted spin echo sequences. The positive contrast on low-field MR images and the perfect linearity of the signal with a T2*-weighted sequence over the entire temperature range 15-50 °C render these LCST polymer coated USPIOs interesting positive contrast agents, also working as ``nano-thermometers''. Electronic supplementary information (ESI) available: Fig. S1: (a) 1H NMR spectra vs. temperature for Jeffamine® M-2005, (b) and M-2070 at 30 mg mL-1 in D2O; Fig. S2: FT-IR spectra of iron oxide nanoparticles (a) just after coprecipitation and (b) after coating with TEPSA; Fig. S3: Thermogravimetric analyses (TGA) of USPIOs silanized by TEPSA (red curve) and after coupling with Jeffamine® M-2005 (green curve) and M-2070 (blue curve); Fig. S4: FT-IR spectra (a) of the difference between the normalised spectra of USPIOs coated with TEPSA before and after grafting of Jeffamine® M-2005 and (b) of Jeffamine® M-2005 alone; Fig. S5: FT-IR spectra (a) of the difference between the normalised spectra of USPIOs coated with TEPSA before and after grafting of Jeffamine® M-2070, and (b) of Jeffamine® M-2070 alone; Fig. S6: NMRD profiles of the longitudinal relaxivity vs. proton Larmor frequency for (a) TEPSA-coated USPIOs and (b) USPIOs grafted with Jeffamine® M-2070 as a function of temperature; Fig. S7: (a) Outer sphere radius RNMR and saturation magnetisation MSvs. temperature for USPIOs coated with Jeffamine® M-2070 (green markers) and TEPSA only (purple markers); Fig. S8: longitudinal r1 and transverse r2 relaxivities of USPIOs grafted with Jeffamine® M-2005, normalised by the corresponding r1 or r2 of TEPSA-coated USPIOs, as a function of temperature ranging from 10 to 50 °C, for clinically relevant frequencies: 8.25, 20, 60, and 300 MHz. Movie 1: 8.25 MHz MR image of Jeffamine® M-2005 NP-coated and NP-TEPSA control tubes during a temperature cycle with the T1-weighted sequence. Movie 2: 8.25 MHz MR image of Jeffamine® M-2005 NP-coated and NP-TEPSA control tubes during a temperature cycle with the T2*-weighted sequence. See DOI: 10.1039/c4nr07064j

  3. 21 CFR 892.1330 - Nuclear whole body scanner.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nuclear whole body scanner. 892.1330 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1330 Nuclear whole body scanner. (a) Identification. A nuclear whole body scanner is a device intended to measure and image the distribution...

  4. 21 CFR 892.1300 - Nuclear rectilinear scanner.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nuclear rectilinear scanner. 892.1300 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1300 Nuclear rectilinear scanner. (a) Identification. A nuclear rectilinear scanner is a device intended to image the distribution of radionuclides...

  5. 21 CFR 892.1300 - Nuclear rectilinear scanner.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nuclear rectilinear scanner. 892.1300 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1300 Nuclear rectilinear scanner. (a) Identification. A nuclear rectilinear scanner is a device intended to image the distribution of radionuclides...

  6. 21 CFR 892.1300 - Nuclear rectilinear scanner.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nuclear rectilinear scanner. 892.1300 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1300 Nuclear rectilinear scanner. (a) Identification. A nuclear rectilinear scanner is a device intended to image the distribution of radionuclides...

  7. 21 CFR 892.1330 - Nuclear whole body scanner.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nuclear whole body scanner. 892.1330 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1330 Nuclear whole body scanner. (a) Identification. A nuclear whole body scanner is a device intended to measure and image the distribution...

  8. 21 CFR 892.1300 - Nuclear rectilinear scanner.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nuclear rectilinear scanner. 892.1300 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1300 Nuclear rectilinear scanner. (a) Identification. A nuclear rectilinear scanner is a device intended to image the distribution of radionuclides...

  9. 21 CFR 892.1300 - Nuclear rectilinear scanner.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nuclear rectilinear scanner. 892.1300 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1300 Nuclear rectilinear scanner. (a) Identification. A nuclear rectilinear scanner is a device intended to image the distribution of radionuclides...

  10. 21 CFR 892.1330 - Nuclear whole body scanner.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nuclear whole body scanner. 892.1330 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1330 Nuclear whole body scanner. (a) Identification. A nuclear whole body scanner is a device intended to measure and image the distribution...

  11. 21 CFR 892.1330 - Nuclear whole body scanner.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nuclear whole body scanner. 892.1330 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1330 Nuclear whole body scanner. (a) Identification. A nuclear whole body scanner is a device intended to measure and image the distribution...

  12. 21 CFR 892.1330 - Nuclear whole body scanner.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nuclear whole body scanner. 892.1330 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1330 Nuclear whole body scanner. (a) Identification. A nuclear whole body scanner is a device intended to measure and image the distribution...

  13. Applications of Optical Scanners in an Academic Center.

    ERIC Educational Resources Information Center

    Molinari, Carol; Tannenbaum, Robert S.

    1995-01-01

    Describes optical scanners, including how the technology works; applications in data management and research; development of instructional materials; and providing community services. Discussion includes the three basic types of optical scanners: optical character recognition (OCR), optical mark readers (OMR), and graphic scanners. A sidebar…

  14. 21 CFR 882.1925 - Ultrasonic scanner calibration test block.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultrasonic scanner calibration test block. 882... Ultrasonic scanner calibration test block. (a) Identification. An ultrasonic scanner calibration test block is a block of material with known properties used to calibrate ultrasonic scanning devices (e.g.,...

  15. A High-Resolution Computational Atlas of the Human Hippocampus from Postmortem Magnetic Resonance Imaging at 9.4 Tesla

    PubMed Central

    Yushkevich, Paul A.; Avants, Brian B.; Pluta, John; Das, Sandhitsu; Minkoff, David; Mechanic-Hamilton, Dawn; Glynn, Simon; Pickup, Stephen; Liu, Weixia; Gee, James C.; Grossman, Murray; Detre, John A.

    2008-01-01

    This paper describes the construction of a computational anatomical atlas of the human hippocampus. The atlas is derived from high-resolution 9.4 Tesla MRI of postmortem samples. The main subfields of the hippocampus (cornu Ammonis fields CA1, CA2/3; the dentate gyrus; and the vestigial hippocampal sulcus) are labeled in the images manually using a combination of distinguishable image features and geometrical features. A synthetic average image is derived from the MRI of the samples using shape and intensity averaging in the diffeomorphic non-linear registration framework, and a consensus labeling of the template is generated. The agreement of the consensus labeling with manual labeling of each sample is measured, and the effect of aiding registration with landmarks and manually generated mask images is evaluated. The atlas is provided as an online resource with the aim of supporting subfield segmentation in emerging hippocampus imaging and image analysis techniques. An example application examining subfield-level hippocampal atrophy in temporal lobe epilepsy demonstrates the application of the atlas to in vivo studies. PMID:18840532

  16. Characterization of transceive surface element designs for 7 tesla magnetic resonance imaging of the prostate: radiative antenna and microstrip

    NASA Astrophysics Data System (ADS)

    Ipek, Ö.; Raaijmakers, A. J. E.; Klomp, D. W. J.; Lagendijk, J. J. W.; Luijten, P. R.; van den Berg, C. A. T.

    2012-01-01

    Ultra-high field magnetic resonance (⩾7 tesla) imaging (MRI) faces challenges with respect to efficient spin excitation and signal reception from deeply situated organs. Traditional radio frequency surface coil designs relying on near-field coupling are suboptimal at high field strengths. Better signal penetration can be obtained by designing a radiative antenna in which the energy flux is directed to the target location. In this paper, two different radiative antenna designs are investigated to be used as transceive elements, which employ different dielectric permittivities for the antenna substrate. Their transmit and receive performances in terms of B+1, local SAR (specific absorption rate) and SNR (signal-to-noise ratio) were compared using extensive electromagnetic simulations and MRI measurements with traditional surface microstrip coils. Both simulations and measurements demonstrated that the radiative element shows twofold gain in B+1 and SNR at 10 cm depth, and additionally a comparable SAR peak value. In terms of transmit performance, the radiative antenna with a dielectric permittivity of 37 showed a 24% more favorable local SAR10g avg/(B+1)2 ratio than the radiative antenna with a dielectric permittivity of 90. In receive, the radiative element with a dielectric permittivity of 90 resulted in a 20% higher SNR for shallow depths, but for larger depths this difference diminished compared to the radiative element with a dielectric permittivity of 37. Therefore, to image deep anatomical regions effectively, the radiative antenna with a dielectric permittivity of 37 is favorable.

  17. Correction of MRI-induced geometric distortions in whole-body small animal PET-MRI

    SciTech Connect

    Frohwein, Lynn J. Schäfers, Klaus P.; Hoerr, Verena; Faber, Cornelius

    2015-07-15

    Purpose: The fusion of positron emission tomography (PET) and magnetic resonance imaging (MRI) data can be a challenging task in whole-body PET-MRI. The quality of the registration between these two modalities in large field-of-views (FOV) is often degraded by geometric distortions of the MRI data. The distortions at the edges of large FOVs mainly originate from MRI gradient nonlinearities. This work describes a method to measure and correct for these kind of geometric distortions in small animal MRI scanners to improve the registration accuracy of PET and MRI data. Methods: The authors have developed a geometric phantom which allows the measurement of geometric distortions in all spatial axes via control points. These control points are detected semiautomatically in both PET and MRI data with a subpixel accuracy. The spatial transformation between PET and MRI data is determined with these control points via 3D thin-plate splines (3D TPS). The transformation derived from the 3D TPS is finally applied to real MRI mouse data, which were acquired with the same scan parameters used in the phantom data acquisitions. Additionally, the influence of the phantom material on the homogeneity of the magnetic field is determined via field mapping. Results: The spatial shift according to the magnetic field homogeneity caused by the phantom material was determined to a mean of 0.1 mm. The results of the correction show that distortion with a maximum error of 4 mm could be reduced to less than 1 mm with the proposed correction method. Furthermore, the control point-based registration of PET and MRI data showed improved congruence after correction. Conclusions: The developed phantom has been shown to have no considerable negative effect on the homogeneity of the magnetic field. The proposed method yields an appropriate correction of the measured MRI distortion and is able to improve the PET and MRI registration. Furthermore, the method is applicable to whole-body small animal imaging routines including different standard MRI sequences.

  18. 76 FR 60124 - Tesla Motors, Inc.; Grant of Petition for Temporary Exemption From the Electronic Stability...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-28

    ... Stability Control Systems. SUMMARY: This notice grants the petition of Tesla Motors, Inc. (Tesla) for the... exemption may be granted. II. Electronic Stability Control Systems Requirement In April 2007, NHTSA...) (10,000 pounds) or less be equipped with electronic stability control (ESC) systems. ESC systems...

  19. Searchers for a new energy source; Tesla, Moray, and Bearden

    SciTech Connect

    Johnson, G.L. )

    1992-01-01

    Tesla, Moray, Bearden, and others have claimed the existence of another source of energy besides those presently in use. Like sun and wind, this source is available without regard to political boundaries. If true, the development of this energy source would be one of the most important events of the century. It seems that every time mankind reaches a limit of growth due to exhaustion of inexpensive energy supplies, another energy sources is discovered and developed. England had essentially depleted its resources of timber when the technology to mine and burn coal was developed, for example. After coal, technologies for oil, gas, hydro, nuclear fission, wind, photovoltaic, etc. were developed. With each new development, the world was able to support a greater population at a higher standard of living than before. Today, however, many developing countries have reached a limit in improving the quality of life, due in part to the lack of an adequate and economical energy supply. The developed nations are worried about global warming, acid rain, and nuclear waste. The recent excitement about cold fusion illustrated the keen desire for a new energy source, one operating on scientific principles that perhaps are unknown or poorly developed at the present time. a number of researchers have claimed that such a new energy sources exists. This source would be in addition to cold fusion if cold fusion is shown to be valid. Three of the most famous researchers with this belief have been Tesla, Moray, and Bearden. This article discusses each of their concepts.

  20. Coaxial Coupling Scheme for TESLA/ILC-type Cavities

    SciTech Connect

    J.K. Sekutowicz, P. Kneisel

    2010-05-01

    This paper reports about our efforts to develop a flangeable coaxial coupler for both HOM and fundamental coupling for 9-cell TESLA/ILC-type cavities. The cavities were designed in early 90‘s for pulsed operation with a low duty factor, less than 1 %. The proposed design of the coupler has been done in a way, that the magnetic flux B at the flange connection is minimized and only a field of <5 mT would be present at the accelerating field Eacc of ~ 36 MV/m (B =150 mT in the cavity). Even though we achieved reasonably high Q-values at low field, the cavity/coupler combination was limited in the cw mode to only ~ 7 MV/m, where a thermally initiated degradation occurred. We have improved the cooling conditions by initially drilling radial channels every 30 degrees, then every 15 degrees into the shorting plate. The modified prototype performed well up to 9 MV/m in cw mode. This paper reports about our experiences with the further modified coaxial coupler and about test results in cw and low duty cycle pulsed mode, similar to the TESLA/ILC operation conditions.

  1. Computed Tomography and MRI of the Hepatobiliary System and Pancreas.

    PubMed

    Marolf, Angela J

    2016-05-01

    MRI and computed tomographic (CT) imaging are becoming more common in the diagnosis of hepatobiliary and pancreatic disorders in small animals. With the advent of multislice CT scanners, sedated examinations in veterinary patients are feasible increasing the use of this imaging modality. CT and MRI provide additional information for dogs and cats with hepatobiliary and pancreatic diseases because of lack of superimposition of structures, operator dependence, and through intravenous contrast administration. This added value provides more information for diagnosis, prognosis, and surgical planning. PMID:26838961

  2. Design of a Second Generation Firewire Based Data Acquisition System for Small Animal PET Scanners

    PubMed Central

    Lewellen, T.K.; Miyaoka, R.S.; MacDonald, L.R.; Haselman, M.; DeWitt, D.; Hunter, William; Hauck, S.

    2009-01-01

    The University of Washington developed a Firewire based data acquisition system for the MiCES small animal PET scanner. Development work has continued on new imaging scanners that require more data channels and need to be able to operate within a MRI imaging system. To support these scanners, we have designed a new version of our data acquisition system that leverages the capabilities of modern field programmable gate arrays (FPGA). The new design preserves the basic approach of the original system, but puts almost all functions into the FPGA, including the Firewire elements, the embedded processor, and pulse timing and pulse integration. The design has been extended to support implementation of the position estimation and DOl algorithms developed for the cMiCE detector module. The design is centered around an acquisition node board (ANB) that includes 65 ADC channels, Firewire 1394b support, the FPGA, a serial command bus and signal lines to support a rough coincidence window implementation to reject singles events from being sent on the Firewire bus. Adapter boards convert detector signals into differential paired signals to connect to the ANB. PMID:20228958

  3. Detector Position Estimation for PET Scanners.

    PubMed

    Pierce, Larry; Miyaoka, Robert; Lewellen, Tom; Alessio, Adam; Kinahan, Paul

    2012-06-11

    Physical positioning of scintillation crystal detector blocks in Positron Emission Tomography (PET) scanners is not always exact. We test a proof of concept methodology for the determination of the six degrees of freedom for detector block positioning errors by utilizing a rotating point source over stepped axial intervals. To test our method, we created computer simulations of seven Micro Crystal Element Scanner (MiCES) PET systems with randomized positioning errors. The computer simulations show that our positioning algorithm can estimate the positions of the block detectors to an average of one-seventh of the crystal pitch tangentially, and one-third of the crystal pitch axially. Virtual acquisitions of a point source grid and a distributed phantom show that our algorithm improves both the quantitative and qualitative accuracy of the reconstructed objects. We believe this estimation algorithm is a practical and accurate method for determining the spatial positions of scintillation detector blocks. PMID:22505789

  4. Electrothermal MEMS fiber scanner for optical endomicroscopy.

    PubMed

    Seo, Yeong-Hyeon; Hwang, Kyungmin; Park, Hyeon-Cheol; Jeong, Ki-Hun

    2016-02-22

    We report a novel MEMS fiber scanner with an electrothermal silicon microactuator and a directly mounted optical fiber. The microactuator comprises double hot arm and cold arm structures with a linking bridge and an optical fiber is aligned along a silicon fiber groove. The unique feature induces separation of resonant scanning frequencies of a single optical fiber in lateral and vertical directions, which realizes Lissajous scanning during the resonant motion. The footprint dimension of microactuator is 1.28 x 7 x 0.44 mm3. The resonant scanning frequencies of a 20 mm long optical fiber are 239.4 Hz and 218.4 Hz in lateral and vertical directions, respectively. The full scanned area indicates 451 μm x 558 μm under a 16 Vpp pulse train. This novel laser scanner can provide many opportunities for laser scanning endomicroscopic applications. PMID:26907043

  5. Compact conscious animal positron emission tomography scanner

    DOEpatents

    Schyler, David J.; O'Connor, Paul; Woody, Craig; Junnarkar, Sachin Shrirang; Radeka, Veljko; Vaska, Paul; Pratte, Jean-Francois; Volkow, Nora

    2006-10-24

    A method of serially transferring annihilation information in a compact positron emission tomography (PET) scanner includes generating a time signal for an event, generating an address signal representing a detecting channel, generating a detector channel signal including the time and address signals, and generating a composite signal including the channel signal and similarly generated signals. The composite signal includes events from detectors in a block and is serially output. An apparatus that serially transfers annihilation information from a block includes time signal generators for detectors in a block and an address and channel signal generator. The PET scanner includes a ring tomograph that mounts onto a portion of an animal, which includes opposing block pairs. Each of the blocks in a block pair includes a scintillator layer, detection array, front-end array, and a serial encoder. The serial encoder includes time signal generators and an address signal and channel signal generator.

  6. Ghost signals in Allison emittance scanners

    SciTech Connect

    Stockli, Martin P.; Leitner, M.; Moehs, D.P.; Keller, R.; Welton, R.F.; /SNS Project, Oak Ridge /Tennessee U.

    2004-12-01

    For over 20 years, Allison scanners have been used to measure emittances of low-energy ion beams. We show that scanning large trajectory angles produces ghost signals caused by the sampled beamlet impacting on an electric deflection plate. The ghost signal strength is proportional to the amount of beam entering the scanner. Depending on the ions, and their velocity, the ghost signals can have the opposite or the same polarity as the main beam signals. The ghost signals cause significant errors in the emittance estimates because they appear at large trajectory angles. These ghost signals often go undetected because they partly overlap with the real signals, are mostly below the 1% level, and often hide in the noise. A simple deflection plate modification is shown to reduce the ghost signal strength by over 99%.

  7. Ghost Signals In Allison Emittance Scanners

    SciTech Connect

    Stockli, Martin P.; Leitner, M.; Keller, R.; Moehs, D.P.; Welton, R. F.

    2005-03-15

    For over 20 years, Allison scanners have been used to measure emittances of low-energy ion beams. We show that scanning large trajectory angles produces ghost signals caused by the sampled beamlet impacting on an electric deflection plate. The ghost signal strength is proportional to the amount of beam entering the scanner. Depending on the ions, and their velocity, the ghost signals can have the opposite or the same polarity as the main beam signals. The ghost signals cause significant errors in the emittance estimates because they appear at large trajectory angles. These ghost signals often go undetected because they partly overlap with the real signals, are mostly below the 1% level, and often hide in the noise. A simple deflection plate modification is shown to reduce the ghost signal strength by over 99%.

  8. The Galileo star scanner observations at Amalthea

    NASA Astrophysics Data System (ADS)

    Fieseler, Paul D.; Adams, Olen W.; Vandermey, Nancy; Theilig, E. E.; Schimmels, Kathryn A.; Lewis, George D.; Ardalan, Shadan M.; Alexander, Claudia J.

    2004-06-01

    In November of 2002, the Galileo spacecraft passed within 250 km of Jupiter's moon Amalthea. An onboard telescope, the star scanner, observed a series of bright flashes near the moon. It is believed that these flashes represent sunlight reflected from 7 to 9 small moonlets located within about 3000 km of Amalthea. From star scanner geometry considerations and other arguments, we can constrain the diameter of the observed bodies to be between 0.5 m to several tens of kilometers. In September of 2003, while crossing Amalthea's orbit just prior to Galileo's destruction in the jovian atmosphere, a single additional body seems to have been observed. It is suspected that these bodies are part of a discrete rocky ring embedded within Jupiter's Gossamer ring system.

  9. 77 FR 2269 - Foreign-Trade Zone 18-San Jose, CA, Application for Subzone, Tesla Motors, Inc. (Electric...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-17

    ... Foreign-Trade Zones Board Foreign-Trade Zone 18--San Jose, CA, Application for Subzone, Tesla Motors, Inc... purpose subzone status for the electric passenger- vehicle manufacturing facilities of Tesla Motors, Inc. (Tesla), located in Palo Alto and Fremont, California. The application was submitted pursuant to...

  10. Improvement in measurement accuracy for hybrid scanner

    NASA Astrophysics Data System (ADS)

    Abbas, M. A.; Setan, H.; Majid, Z.; Chong, A. K.; Lichti, D. D.

    2014-02-01

    The capability to provide dense three-dimensional (3D) data (point clouds) at high speed and at high accuracy has made terrestrial laser scanners (TLS) widely used for many purposes especially for documentation, management and analysis. However, similar to other 3D sensors, proper understanding regarding the error sources is necessary to ensure high quality data. A procedure known as calibration is employed to evaluate these errors. This process is crucial for TLS in order to make it suitable for accurate 3D applications (e.g. industrial measurement, reverse engineering and monitoring). Two calibration procedures available for TLS: 1) component, and 2) system calibration. The requirements of special laboratories and tools which are not affordable by most TLS users have become principle drawback for component calibration. In contrast, system calibration only requires a room with appropriate targets. By employing optimal network configuration, this study has performed system calibration through self-calibration for Leica ScanStation C10 scanner. A laboratory with dimensions of 15.5 m × 9 m × 3 m and 138 well-distributed planar targets were used to derive four calibration parameters. Statistical analysis (e.g. t-test) has shown that only two calculated parameters, the constant rangefinder offset error (0.7 mm) and the vertical circle index error (-45.4") were significant for the calibrated scanner. Photogrammetric technique was utilised to calibrate the 3D test points at the calibration field. By using the test points, the residual pattern of raw data and self-calibration results were plotted into the graph to visually demonstrate the improvement in accuracy for Leica ScanStation C10 scanner.

  11. Learning and teaching with a computer scanner

    NASA Astrophysics Data System (ADS)

    Planinsic, G.; Gregorcic, B.; Etkina, E.

    2014-09-01

    This paper introduces the readers to simple inquiry-based activities (experiments with supporting questions) that one can do with a computer scanner to help students learn and apply the concepts of relative motion in 1 and 2D, vibrational motion and the Doppler effect. We also show how to use these activities to help students think like scientists. They will conduct simple experiments, construct different explanations for their observations, test their explanations in new experiments and represent their ideas in multiple ways.

  12. PET/MRI: THE NEXT GENERATION OF MULTI-MODALITY IMAGING?

    PubMed Central

    Pichler, Bernd; Wehrl, Hans F; Kolb, Armin; Judenhofer, Martin S

    2009-01-01

    Multi-modal imaging is now well-established in routine clinical practice. Especially in the field of Nuclear Medicine, new PET installations are comprised almost exclusively of combined PET/CT scanners rather than PET-only systems. However, PET/CT has certain notable shortcomings, including the inability to perform simultaneous data acquisition and the significant radiation dose to the patient contributed by CT. MRI offers, compared to CT, better contrast among soft tissues as well as functional-imaging capabilities. Therefore, the combination of PET with MRI provides many advantages which go far beyond simply combining functional PET information with structural MRI information. Many technical challenges, including possible interference between these modalities, have to be solved when combining PET and MRI and various approaches have been adapted to resolving these issues. Here we present an overview of current working prototypes of combined PET/MRI scanners from different groups. In addition, besides PET/MR images of mice, the first such images of a rat PET/MR, acquired with the first commercial clinical PET/MRI scanner, are presented. The combination of PET and MR is a promising tool in pre-clinical research and will certainly progress to clinical application. PMID:18396179

  13. Reproducibility of Brain Morphometry from Short-Term Repeat Clinical MRI Examinations: A Retrospective Study

    PubMed Central

    Liu, Hon-Man; Chen, Shan-Kai; Chen, Ya-Fang; Lee, Chung-Wei; Yeh, Lee-Ren

    2016-01-01

    Purpose To assess the inter session reproducibility of automatic segmented MRI-derived measures by FreeSurfer in a group of subjects with normal-appearing MR images. Materials and Methods After retrospectively reviewing a brain MRI database from our institute consisting of 14,758 adults, those subjects who had repeat scans and had no history of neurodegenerative disorders were selected for morphometry analysis using FreeSurfer. A total of 34 subjects were grouped by MRI scanner model. After automatic segmentation using FreeSurfer, label-wise comparison (involving area, thickness, and volume) was performed on all segmented results. An intraclass correlation coefficient was used to estimate the agreement between sessions. Wilcoxon signed rank test was used to assess the population mean rank differences across sessions. Mean-difference analysis was used to evaluate the difference intervals across scanners. Absolute percent difference was used to estimate the reproducibility errors across the MRI models. Kruskal-Wallis test was used to determine the across-scanner effect. Results The agreement in segmentation results for area, volume, and thickness measurements of all segmented anatomical labels was generally higher in Signa Excite and Verio models when compared with Sonata and TrioTim models. There were significant rank differences found across sessions in some labels of different measures. Smaller difference intervals in global volume measurements were noted on images acquired by Signa Excite and Verio models. For some brain regions, significant MRI model effects were observed on certain segmentation results. Conclusions Short-term scan-rescan reliability of automatic brain MRI morphometry is feasible in the clinical setting. However, since repeatability of software performance is contingent on the reproducibility of the scanner performance, the scanner performance must be calibrated before conducting such studies or before using such software for retrospective reviewing. PMID:26812647

  14. A near-infrared confocal scanner

    NASA Astrophysics Data System (ADS)

    Lee, Seungwoo; Yoo, Hongki

    2014-06-01

    In the semiconductor industry, manufacturing of three-dimensional (3D) packages or 3D integrated circuits is a high-performance technique that requires combining several functions in a small volume. Through-silicon vias, which are vertical electrical connections extending through a wafer, can be used to direct signals between stacked chips, thus increasing areal density by stacking and connecting multiple patterned chips. While defect detection is essential in the semiconductor manufacturing process, it is difficult to identify defects within a wafer or to monitor the bonding results between bonded surfaces because silicon and many other semiconductor materials are opaque to visible wavelengths. In this context, near-infrared (NIR) imaging is a promising non-destructive method to detect defects within silicon chips, to inspect bonding between chips and to monitor the chip alignment since NIR transmits through silicon. In addition, a confocal scanner provides high-contrast, optically-sectioned images of the specimen due to its ability to reject out-of-focus noise. In this study, we report an NIR confocal scanner that rapidly acquires high-resolution images with a large field of view through silicon. Two orthogonal line-scanning images can be acquired without rotating the system or the specimen by utilizing two orthogonally configured resonant scanning mirrors. This NIR confocal scanner can be efficiently used as an in-line inspection system when manufacturing semiconductor devices by rapidly detecting defects on and beneath the surface.

  15. Optical scanner characterization methods using bilevel scans

    NASA Astrophysics Data System (ADS)

    Barney Smith, Elisa Hope

    Text documents are printed, then may be photocopied and FAXed multiple times before they are scanned to generate pixel maps used by Optical Character Recognition (OCR) programs to create the ASCII text files. OCR systems perform well on text that is of high quality, but image quality can be degraded through the process of printing, photocopying, FAXing and scanning. OCR performance is significantly decreased well before the legibility is affected. This thesis focuses on the degradations that occur during scanning. Scans made in bilevel mode (no grey scale) from high contrast source patterns are the input to the estimation processes. Using models of the scanning process and bilevel source patterns four methods of estimating scanner system parameters from bilevel scans have been developed. One procedure estimates the amount of displacement of a scanned edge and the other three estimate the scanner's point spread function (PSF) width and the binarization threshold by using different features of the scanned images. These estimation algorithms were tested in simulation and with scanned test patterns. The resulting estimates are close in value to what is expected based on grey-level analysis. The results of estimation are used to produce synthetically scanned characters that in most cases bear a strong resemblance to the characters scanned on the scanner at the same settings as the test pattern used for estimation.

  16. Telescope with a wide field of view internal optical scanner

    NASA Technical Reports Server (NTRS)

    Degnan, III, John James (Inventor); Zheng, Yunhui (Inventor)

    2012-01-01

    A telescope with internal scanner utilizing either a single optical wedge scanner or a dual optical wedge scanner and a controller arranged to control a synchronous rotation of the first and/or second optical wedges, the wedges constructed and arranged to scan light redirected by topological surfaces and/or volumetric scatterers. The telescope with internal scanner further incorporates a first converging optical element that receives the redirected light and transmits the redirected light to the scanner, and a second converging optical element within the light path between the first optical element and the scanner arranged to reduce an area of impact on the scanner of the beam collected by the first optical element.

  17. The modular (twin) gradient coil--high resolution, high contrast, diffusion weighted EPI at 1.0 Tesla.

    PubMed

    Harvey, P R

    1999-03-01

    The modular (twin) gradient coil is a novel and effective approach to obtaining flexible and high power gradient performance without (i) peripheral nerve stimulation and (ii) the need for resonant or expensive high voltage gradient power supply units (PSU). This whole-body gradient system contains, on the same former, two independent sets of gradient coils, the conventional coil set and the short-body coil set. Each gradient axis is able to operate, independently, in any one of three modes. The third, combined, mode is realized by connecting the conventional coils and short-body coils in series. Through careful design of the shape and size of the linear volume of each mode of operation, the modular gradient coil is able to utilize the power, from a single gradient PSU, more efficiently and more appropriately, as determined by the application. In the short-body and combined modes the gradient fields are linear over a volume suitable for whole head/neck, liver and cardiovascular applications. In the conventional mode, a reduced performance is possible but over a much larger (conventional) imaging volume. Utilizing a semi-conductor switching arrangement it is possible to switch between modes in as little as 1 ms. By mixing different modes of operation on different gradient axes it is possible to utilize more efficiently, and safely, the properties of gradient performance best suited to the sequence requirements. Diffusion weighted EPI (DW-EPI) is a particular technique that demands the extremes of gradient system performance in terms of both amplitude and slew rate. DW-EPI has been implemented, using the modular gradient system, on a 1.0 Tesla whole-body MRI system. The preliminary results presented here serve to illustrate the advantages of the modular gradient coil in of itself as well as the direct benefits it provides for DW imaging at 1.0 Tesla. PMID:10383092

  18. Inversion Recovery at 7 Tesla in the human myocardium: measurement of T1, inversion efficiency and B1+

    PubMed Central

    Rodgers, Christopher T.; Piechnik, Stefan K.; DelaBarre, Lance J.; Van de Moortele, Pierre-Franois; Snyder, Carl J.; Neubauer, Stefan; Robson, Matthew D.; Vaughan, J. Thomas

    2014-01-01

    At clinical MRI field strengths (1.5 and 3T), quantitative maps of the longitudinal relaxation time T1 of the myocardium reveal diseased tissue without requiring contrast agents. Cardiac T1 maps can be measured by Look-Locker inversion recovery sequences such as ShMOLLI at 1.5 and 3T. Cardiovascular MRI at a field strength of 7T has recently become feasible, but doubts have remained as to whether magnetization inversion is possible in the heart because of subject heating and technical limitations. This work extends the repertoire of 7T cardiovascular MRI by implementing an adiabatic inversion pulse optimized for use in the heart at 7T. A ShMOLLI+IE adaptation of the ShMOLLI pulse sequence has been introduced together with new post-processing that accounts for the possibility of incomplete magnetization inversion. These methods were validated in phantoms and then used in a study of 6 healthy volunteers to determine the degree of magnetization inversion and the T1 of normal myocardium at 7T within a a 22 heartbeat breathhold. Using a scanner with 16 1kW radiofrequency outputs, inversion efficiencies ranging from ?0.79 to ?0.83 (intra-segment means; perfect 180 would give ?1) were attainable across the myocardium. The myocardial T1 was 1925 48ms (mean SD). PMID:23197329

  19. A Forced-Attention Dichotic Listening fMRI Study on 113 Subjects

    ERIC Educational Resources Information Center

    Kompus, Kristiina; Specht, Karsten; Ersland, Lars; Juvodden, Hilde T.; van Wageningen, Heidi; Hugdahl, Kenneth; Westerhausen, Rene

    2012-01-01

    We report fMRI and behavioral data from 113 subjects on attention and cognitive control using a variant of the classic dichotic listening paradigm with pairwise presentations of consonant-vowel syllables. The syllable stimuli were presented in a block-design while subjects were in the MR scanner. The subjects were instructed to pay attention to…

  20. Quantitative Clinical Evaluation of a Simultaneous PETI MRI Breast Imaging System

    SciTech Connect

    Schlyer D. J.; Schlyer, D.J.

    2013-04-03

    A prototype simultaneous PET-MRI breast scanner has been developed for conducting clinical studies with the goal of obtaining high resolution anatomical and functional information in the same scan which can lead to faster and better diagnosis, reduction of unwanted biopsies, and better patient care.

  1. A database for superconducting cavities for the TESLA Test Facility

    NASA Astrophysics Data System (ADS)

    Gall, P. D.; Goessel, A.; Gubarev, V.; Iversen, J.

    2006-07-01

    We look back on 10 years experience using a database for superconducting cavities for the TESLA Test Facility (TTF). The database was developed to collect data of every preparation step and measurement in order to optimize cavity production and preparation techniques to meet the ambitious goal of high accelerating gradients at high quality factors. Data from 110 superconducting 9-cell cavities, 50 single cell cavities, several 2- to 7-cell cavities and about 60 RF couplers were collected in the database. In addition, company measurements on sub-assemblies and parts forming the next 30 9-cell cavities were stored, thus establishing the database as part of a quality management system. This database is dynamically accessible via an extensive graphical web-interface based on ORACLE products, which enables the users to select and analyse the collected data easily from anywhere.

  2. Operating nanoliter scale NMR microcoils in a 1 tesla field

    NASA Astrophysics Data System (ADS)

    McDowell, Andrew F.; Adolphi, Natalie L.

    2007-09-01

    Microcoil probes enclosing sample volumes of 1.2, 3.3, 7.0, and 81 nanoliters are constructed as nuclear magnetic resonance (NMR) detectors for operation in a 1 tesla permanent magnet. The probes for the three smallest volumes utilize a novel auxiliary tuning inductor for which the design criteria are given. The signal-to-noise ratio (SNR) and line width of water samples are measured. Based on the measured DC resistance of the microcoils, together with the calculated radio frequency (RF) resistance of the tuning inductor, the SNR is calculated and shown to agree with the measured values. The details of the calculations indicate that the auxiliary inductor does not degrade the NMR probe performance. The diameter of the wire used to construct the microcoils is shown to affect the signal line widths.

  3. A Single Crystal Niobium RF Cavity of the TESLA Shape

    SciTech Connect

    Singer, W.; Singer, X.; Kneisel, P.

    2007-08-09

    A fabrication method for single crystal niobium cavities of the TESLA shape was proposed on the basis of metallographic investigations and electron beam welding tests on niobium single crystals. These tests showed that a cavity can be produced without grain boundaries even in the welding area. An appropriate annealing allows the outgassing of hydrogen and stress relaxation of the material without destruction of the single crystal. A prototype single crystal single cell cavity was build. An accelerating gradient of 37.5 MV/m was reached after approximately 110 {mu}m of Buffered Chemical Polishing (BCP) and in situ baking at 120 deg. C for 6 hrs with a quality factor exceeding 2x1010 at 1.8 K. The developed fabrication method can be extended to fabrication of multi cell cavities.

  4. A Single Crystal Niobium RF Cavity of the TESLA Shape

    SciTech Connect

    W. Singer; X. Singer; P. Kneisel

    2007-09-01

    A fabrication method for single crystal niobium cavities of the TESLA shape was proposed on the basis of metallographic investigations and electron beam welding tests on niobium single crystals. These tests showed that a cavity can be produced without grain boundaries even in the welding area. An appropriate annealing allows the outgassing of hydrogen and stress relaxation of the material without destruction of the single crystal. A prototype single crystal single cell cavity was built. An accelerating gradient of 37.5 MV/m was reached after approximately 110 mu-m of Buffered Chanical Polishing (BCP) and in situ baking at 120°C for 6 hrs with a quality factor exceeding 2x1010 at 1.8 K. The developed fabrication method can be extended to fabrication of multi cell cavities.

  5. Report on the TESLA engineering study/review

    SciTech Connect

    C. Boffo et al.

    2002-07-18

    A team from Argonne National Lab, Cornell, Fermilab, Jefferson Lab, and SLAC has studied the TESLA TDR and its associated cost and manpower estimates, concentrating on the five largest cost sub-systems (Main Linac Modules, Main Linac RF Systems, Civil Engineering, Machine Infrastructure, and XFEL Incremental). These elements were concerned mainly with providing energy reach. We did not study the lower cost, but still technically challenging elements providing luminosity and physics capability, namely damping rings, beam delivery system, beam injection system, positron production, polarized beams, etc. The study did not attempt to validate the TDR cost estimates, but rather its purpose was to understand the technology and status of the large cost items, and the methodology by which their estimated cost was determined. In addition, topics of project oversight were studied.

  6. Design and prototype fabrication of a 30 tesla cryogenic magnet

    NASA Technical Reports Server (NTRS)

    Prok, G. M.; Swanson, M. C.; Brown, G. V.

    1977-01-01

    A liquid neon cooled magnet was designed to produce 30 teslas in steady operation. To ensure the correctness of the heat transfer relationships used, supercritical neon heat transfer tests were made. Other tests made before the final design included tests on the effect of the magnetic field on pump motors, tensile shear tests on the cryogenic adhesives, and simulated flow studies for the coolant. The magnet will consist of two pairs of coils, cooled by forced convection of supercritical neon. Heat from the supercritical neon will be rejected through heat exchangers which are made of roll bonded copper panels and are submerged in a pool of saturated liquid neon. A partial mock up coil was wound to identify the tooling required to wind the magnet. This was followed by winding a prototype pair of coils. The prototype winding established procedures for fabricating the final magnet and revealed slight changes needed in the final design.

  7. Comparison of the TESLA, NLC and CLIC beam collimation performance

    SciTech Connect

    Alexandr I Drozhdin et al.

    2003-03-27

    This note describes studies performed in the framework of the Collimation Task Force organized to support the work of the International Linear Collider Technical Review Committee. The post-linac beam-collimation systems in the TESLA, JLC/NLC and CLIC linear-collider designs are compared using the same computer code under the same assumptions. Their performance is quantified in terms of beam-halo and synchrotron-radiation collimation efficiency. The performance of the current designs varies across projects, and does not always meet the original design goals. But these comparisons suggest that achieving the required performance in a future linear collider is feasible. The post-TRC plans of the Collimation Task Force are briefly outlined in closing.

  8. Recent micro-CT scanner developments at UGCT

    NASA Astrophysics Data System (ADS)

    Dierick, Manuel; Van Loo, Denis; Masschaele, Bert; Van den Bulcke, Jan; Van Acker, Joris; Cnudde, Veerle; Van Hoorebeke, Luc

    2014-04-01

    This paper describes two X-ray micro-CT scanners which were recently developed to extend the experimental possibilities of microtomography research at the Centre for X-ray Tomography (www.ugct.ugent.be) of the Ghent University (Belgium). The first scanner, called Nanowood, is a wide-range CT scanner with two X-ray sources (160 kVmax) and two detectors, resolving features down to 0.4 μm in small samples, but allowing samples up to 35 cm to be scanned. This is a sample size range of 3 orders of magnitude, making this scanner well suited for imaging multi-scale materials such as wood, stone, etc. Besides the traditional cone-beam acquisition, Nanowood supports helical acquisition, and it can generate images with significant phase-contrast contributions. The second scanner, known as the Environmental micro-CT scanner (EMCT), is a gantry based micro-CT scanner with variable magnification for scanning objects which are not easy to rotate in a standard micro-CT scanner, for example because they are physically connected to external experimental hardware such as sensor wiring, tubing or others. This scanner resolves 5 μm features, covers a field-of-view of about 12 cm wide with an 80 cm vertical travel range. Both scanners will be extensively described and characterized, and their potential will be demonstrated with some key application results.

  9. Spectral characterization of the LANDSAT-D multispectral scanner subsystems

    NASA Technical Reports Server (NTRS)

    Markham, B. L. (Principal Investigator); Barker, J. L.

    1982-01-01

    Relative spectral response data for the multispectral scanner subsystems (MSS) to be flown on LANDSAT-D and LANDSAT-D backup, the protoflight and flight models, respectively, are presented and compared to similar data for the Landsat 1,2, and 3 subsystems. Channel-bychannel (six channels per band) outputs for soil and soybean targets were simulated and compared within each band and between scanners. The two LANDSAT-D scanners proved to be nearly identical in mean spectral response, but they exhibited some differences from the previous MSS's. Principal differences between the spectral responses of the D-scanners and previous scanners were: (1) a mean upper-band edge in the green band of 606 nm compared to previous means of 593 to 598 nm; (2) an average upper-band edge of 697 nm in the red band compared to previous averages of 701 to 710 nm; and (3) an average bandpass for the first near-IR band of 702-814 nm compared to a range of 693-793 to 697-802 nm for previous scanners. These differences caused the simulated D-scanner outputs to be 3 to 10 percent lower in the red band and 3 to 11 percent higher in the first near-IR band than previous scanners for the soybeans target. Otherwise, outputs from soil and soybean targets were only slightly affected. The D-scanners were generally more uniform from channel to channel within bands than previous scanners.

  10. Design and control of a nanoprecision XY Theta scanner.

    PubMed

    Choi, Young-Man; Kim, Jung Jae; Kim, Jinwoo; Gweon, Dae-Gab

    2008-04-01

    This paper describes the design and control of a nanoprecision XY Theta scanner consisting of voice coil motors and air bearing guides. The proposed scanner can be installed on a conventional XY stage with long strokes to improve the positioning accuracy and settling performance. Major design considerations in developing a high precision scanner are sensor accuracy, actuator properties, structural stability, guide friction, and thermal expansion. Considering these factors, the proposed scanner is made of invar, which has a small thermal expansion coefficient and good structural stiffness. Four voice coil motors drive the scanner, which is suspended by four air bearing pads, in the x, y, and theta directions. The scanner's position is measured by three laser interferometers which decouple the scanner from the conventional stage. The mirror blocks reflecting the laser beams are fixed using viscoelastic sheets, ensuring that the scanner has a well-damped structural mode. A time delay control algorithm is implemented on the real-time controller to control the scanner. The effectiveness of the proposed scanner is verified experimentally. PMID:18447554

  11. Design, performance and production of the Fermilab TESLA RF input couplers

    SciTech Connect

    Champion, M.

    1996-10-01

    The TeV Energy Superconducting Linear Accelerator (TESLA) requires as one of its technical components a radiofrequency (rf) input coupler that transfers 1.3 GHz rf energy from the rf distribution system to a nine-cell superconducting accelerating cavity operating at a temperature of 1.8 K. The input coupler design is driven by numerous design criteria, which result in a rather complicated implementation. The production of twelve input couplers for the TESLA Test Facility (TTF) is underway at Fermilab, with the first two couplers having been delivered late in 1995. This paper discusses the Fermilab TESLA rf input coupler design, recent test results, and production issues.

  12. Small animal simultaneous PET/MRI: initial experiences in a 9.4 T microMRI

    NASA Astrophysics Data System (ADS)

    Harsha Maramraju, Sri; Smith, S. David; Junnarkar, Sachin S.; Schulz, Daniela; Stoll, Sean; Ravindranath, Bosky; Purschke, Martin L.; Rescia, Sergio; Southekal, Sudeepti; Pratte, Jean-François; Vaska, Paul; Woody, Craig L.; Schlyer, David J.

    2011-04-01

    We developed a non-magnetic positron-emission tomography (PET) device based on the rat conscious animal PET that operates in a small-animal magnetic resonance imaging (MRI) scanner, thereby enabling us to carry out simultaneous PET/MRI studies. The PET detector comprises 12 detector blocks, each being a 4 × 8 array of lutetium oxyorthosilicate crystals (2.22 × 2.22 × 5 mm3) coupled to a matching non-magnetic avalanche photodiode array. The detector blocks, housed in a plastic case, form a 38 mm inner diameter ring with an 18 mm axial extent. Custom-built MRI coils fit inside the positron-emission tomography (PET) device, operating in transceiver mode. The PET insert is integrated with a Bruker 9.4 T 210 mm clear-bore diameter MRI scanner. We acquired simultaneous PET/MR images of phantoms, of in vivo rat brain, and of cardiac-gated mouse heart using [11C]raclopride and 2-deoxy-2-[18F]fluoro-d-glucose PET radiotracers. There was minor interference between the PET electronics and the MRI during simultaneous operation, and small effects on the signal-to-noise ratio in the MR images in the presence of the PET, but no noticeable visual artifacts. Gradient echo and high-duty-cycle spin echo radio frequency (RF) pulses resulted in a 7% and a 28% loss in PET counts, respectively, due to high PET counts during the RF pulses that had to be gated out. The calibration of the activity concentration of PET data during MR pulsing is reproducible within less than 6%. Our initial results demonstrate the feasibility of performing simultaneous PET and MRI studies in adult rats and mice using the same PET insert in a small-bore 9.4 T MRI.

  13. Small animal simultaneous PET/MRI: initial experiences in a 9.4T microMRI

    SciTech Connect

    Maramraju, S.H.; Schlyer, D.; Maramraju, S.H.; Smith, S.D.; Junnarkar, S.S.; Schulz, D.; Stoll, S.; Ravindranath, B.; Purschke, M.L.; Rescia, S.; Southekal, S.; Pratte, J.-F.; Vaska, P.; Woody, C.L.; Schlyer, D.J.

    2011-03-25

    We developed a non-magnetic positron-emission tomography (PET) device based on the rat conscious animal PET that operates in a small-animal magnetic resonance imaging (MRI) scanner, thereby enabling us to carry out simultaneous PET/MRI studies. The PET detector comprises 12 detector blocks, each being a 4 x 8 array of lutetium oxyorthosilicate crystals (2.22 x 2.22 x 5 mm{sup 3}) coupled to a matching non-magnetic avalanche photodiode array. The detector blocks, housed in a plastic case, form a 38 mm inner diameter ring with an 18 mm axial extent. Custom-built MRI coils fit inside the positron-emission tomography (PET) device, operating in transceiver mode. The PET insert is integrated with a Bruker 9.4 T 210 mm clear-bore diameter MRI scanner. We acquired simultaneous PET/MR images of phantoms, of in vivo rat brain, and of cardiac-gated mouse heart using [{sup 11}C]raclopride and 2-deoxy-2-[{sup 18}F]fluoro-d-glucose PET radiotracers. There was minor interference between the PET electronics and the MRI during simultaneous operation, and small effects on the signal-to-noise ratio in the MR images in the presence of the PET, but no noticeable visual artifacts. Gradient echo and high-duty-cycle spin echo radio frequency (RF) pulses resulted in a 7% and a 28% loss in PET counts, respectively, due to high PET counts during the RF pulses that had to be gated out. The calibration of the activity concentration of PET data during MR pulsing is reproducible within less than 6%. Our initial results demonstrate the feasibility of performing simultaneous PET and MRI studies in adult rats and mice using the same PET insert in a small-bore 9.4 T MRI.

  14. Small animal simultaneous PET/MRI: initial experiences in a 9.4 T microMRI.

    PubMed

    Maramraju, Sri Harsha; Smith, S David; Junnarkar, Sachin S; Schulz, Daniela; Stoll, Sean; Ravindranath, Bosky; Purschke, Martin L; Rescia, Sergio; Southekal, Sudeepti; Pratte, Jean-François; Vaska, Paul; Woody, Craig L; Schlyer, David J

    2011-04-21

    We developed a non-magnetic positron-emission tomography (PET) device based on the rat conscious animal PET that operates in a small-animal magnetic resonance imaging (MRI) scanner, thereby enabling us to carry out simultaneous PET/MRI studies. The PET detector comprises 12 detector blocks, each being a 4 × 8 array of lutetium oxyorthosilicate crystals (2.22 × 2.22 × 5 mm(3)) coupled to a matching non-magnetic avalanche photodiode array. The detector blocks, housed in a plastic case, form a 38 mm inner diameter ring with an 18 mm axial extent. Custom-built MRI coils fit inside the positron-emission tomography (PET) device, operating in transceiver mode. The PET insert is integrated with a Bruker 9.4 T 210 mm clear-bore diameter MRI scanner. We acquired simultaneous PET/MR images of phantoms, of in vivo rat brain, and of cardiac-gated mouse heart using [(11)C]raclopride and 2-deoxy-2-[(18)F]fluoro-D-glucose PET radiotracers. There was minor interference between the PET electronics and the MRI during simultaneous operation, and small effects on the signal-to-noise ratio in the MR images in the presence of the PET, but no noticeable visual artifacts. Gradient echo and high-duty-cycle spin echo radio frequency (RF) pulses resulted in a 7% and a 28% loss in PET counts, respectively, due to high PET counts during the RF pulses that had to be gated out. The calibration of the activity concentration of PET data during MR pulsing is reproducible within less than 6%. Our initial results demonstrate the feasibility of performing simultaneous PET and MRI studies in adult rats and mice using the same PET insert in a small-bore 9.4 T MRI. PMID:21441651

  15. Accurate cortical tissue classification on MRI by modeling cortical folding patterns.

    PubMed

    Kim, Hosung; Caldairou, Benoit; Hwang, Ji-Wook; Mansi, Tommaso; Hong, Seok-Jun; Bernasconi, Neda; Bernasconi, Andrea

    2015-09-01

    Accurate tissue classification is a crucial prerequisite to MRI morphometry. Automated methods based on intensity histograms constructed from the entire volume are challenged by regional intensity variations due to local radiofrequency artifacts as well as disparities in tissue composition, laminar architecture and folding patterns. Current work proposes a novel anatomy-driven method in which parcels conforming cortical folding were regionally extracted from the brain. Each parcel is subsequently classified using nonparametric mean shift clustering. Evaluation was carried out on manually labeled images from two datasets acquired at 3.0 Tesla (n = 15) and 1.5 Tesla (n = 20). In both datasets, we observed high tissue classification accuracy of the proposed method (Dice index >97.6% at 3.0 Tesla, and >89.2% at 1.5 Tesla). Moreover, our method consistently outperformed state-of-the-art classification routines available in SPM8 and FSL-FAST, as well as a recently proposed local classifier that partitions the brain into cubes. Contour-based analyses localized more accurate white matter-gray matter (GM) interface classification of the proposed framework compared to the other algorithms, particularly in central and occipital cortices that generally display bright GM due to their highly degree of myelination. Excellent accuracy was maintained, even in the absence of correction for intensity inhomogeneity. The presented anatomy-driven local classification algorithm may significantly improve cortical boundary definition, with possible benefits for morphometric inference and biomarker discovery. PMID:26037453

  16. Minimally Invasive Magnetic Resonance Imaging-Guided Free-Hand Aspiration of Symptomatic Nerve Route Compressing Lumbosacral Cysts Using a 1.0-Tesla Open Magnetic Resonance Imaging System

    SciTech Connect

    Bucourt, Maximilian de Streitparth, Florian Collettini, Federico; Guettler, Felix; Rathke, Hendrik; Lorenz, Britta; Rump, Jens; Hamm, Bernd; Teichgraeber, U. K.

    2012-02-15

    Purpose: To evaluate the feasibility of minimally invasive magnetic resonance imaging (MRI)-guided free-hand aspiration of symptomatic nerve route compressing lumbosacral cysts in a 1.0-Tesla (T) open MRI system using a tailored interactive sequence. Materials and Methods: Eleven patients with MRI-evident symptomatic cysts in the lumbosacral region and possible nerve route compressing character were referred to a 1.0-T open MRI system. For MRI interventional cyst aspiration, an interactive sequence was used, allowing for near real-time position validation of the needle in any desired three-dimensional plane. Results: Seven of 11 cysts in the lumbosacral region were successfully aspirated (average 10.1 mm [SD {+-} 1.9]). After successful cyst aspiration, each patient reported speedy relief of initial symptoms. Average cyst size was 9.6 mm ({+-}2.6 mm). Four cysts (8.8 {+-} 3.8 mm) could not be aspirated. Conclusion: Open MRI systems with tailored interactive sequences have great potential for cyst aspiration in the lumbosacral region. The authors perceive major advantages of the MR-guided cyst aspiration in its minimally invasive character compared to direct and open surgical options along with consecutive less trauma, less stress, and also less side-effects for the patient.

  17. Positron Scanner for Locating Brain Tumors

    DOE R&D Accomplishments Database

    Rankowitz, S.; Robertson, J. S.; Higinbotham, W. A.; Rosenblum, M. J.

    1962-03-01

    A system is described that makes use of positron emitting isotopes for locating brain tumors. This system inherently provides more information about the distribution of radioactivity in the head in less time than existing scanners which use one or two detectors. A stationary circular array of 32 scintillation detectors scans a horizontal layer of the head from many directions simultaneously. The data, consisting of the number of counts in all possible coincidence pairs, are coded and stored in the memory of a Two-Dimensional Pulse-Height Analyzer. A unique method of displaying and interpreting the data is described that enables rapid approximate analysis of complex source distribution patterns. (auth)

  18. A laser scanner for 35mm film

    NASA Technical Reports Server (NTRS)

    Callen, W. R.; Weaver, J. E.

    1977-01-01

    The design, construction, and testing of a laser scanning system is described. The scanner was designed to deliver a scanned beam over a 2.54 cm by 2.54 cm or a 5.08 cm by 5.08 cm format. In order to achieve a scan resolution and rate comparable to that of standard television, an acousto-optic deflector was used for one axis of the scan, and a light deflecting galvanometer for deflection along the other axis. The acoustic optic deflector has the capability of random access scan controlled by a digital computer.

  19. LAPR: An experimental aircraft pushbroom scanner

    NASA Technical Reports Server (NTRS)

    Wharton, S. W.; Irons, J. I.; Heugel, F.

    1980-01-01

    A three band Linear Array Pushbroom Radiometer (LAPR) was built and flown on an experimental basis by NASA at the Goddard Space Flight Center. The functional characteristics of the instrument and the methods used to preprocess the data, including radiometric correction, are described. The radiometric sensitivity of the instrument was tested and compared to that of the Thematic Mapper and the Multispectral Scanner. The radiometric correction procedure was evaluated quantitatively, using laboratory testing, and qualitatively, via visual examination of the LAPR test flight imagery. Although effective radiometric correction could not yet be demonstrated via laboratory testing, radiometric distortion did not preclude the visual interpretation or parallel piped classification of the test imagery.

  20. Fast wire scanner for intense electron beams

    NASA Astrophysics Data System (ADS)

    Moore, T.; Agladze, N. I.; Bazarov, I. V.; Bartnik, A.; Dobbins, J.; Dunham, B.; Full, S.; Li, Y.; Liu, X.; Savino, J.; Smolenski, K.

    2014-02-01

    We have developed a cost-effective, fast rotating wire scanner for use in accelerators where high beam currents would otherwise melt even carbon wires. This new design uses a simple planetary gear setup to rotate a carbon wire, fixed at one end, through the beam at speeds in excess of 20 m/s. We present results from bench tests, as well as transverse beam profile measurements taken at Cornell's high-brightness energy recovery linac photoinjector, for beam currents up to 35 mA.

  1. Biomedical applications of a real-time terahertz color scanner.

    PubMed

    Schirmer, Markus; Fujio, Makoto; Minami, Masaaki; Miura, Jiro; Araki, Tsutomu; Yasui, Takeshi

    2010-01-01

    A real-time THz color scanner has the potential to further expand the application scope of THz spectral imaging based on its rapid image acquisition rate. We demonstrated three possible applications of a THz color scanner in the biomedical field: imaging of pharmaceutical tablets, human teeth, and human hair. The first application showed the scanner's potential in total inspection for rapid quality control of pharmaceutical tablets moving on a conveyor belt. The second application demonstrated that the scanner can be used to identify a potential indicator for crystallinity of dental tissue. In the third application, the scanner was successfully used to visualize the drying process of wet hairs. These demonstrations indicated the high potential of the THz color scanner for practical applications in the biomedical field. PMID:21258472

  2. CT-ED conversion on a GE Lightspeed-RT scanner: influence of scanner settings.

    PubMed

    Ebert, M A; Lambert, J; Greer, P B

    2008-06-01

    The influence of tube voltage (kV) and current (mA) on the resulting relationship of computed tomography number to electron density (CT-ED) was investigated for a wide-bore GE scanner. The influence of kV and mA scan settings were examined in combination with a 16-bit image reconstruction algorithm made available via the scanner software and which allowed resolution of CT numbers for high density materials. By using titanium and stainless steel inserts in an electron density phantom, mA variation was found to have minimal impact on the CT-ED relationship, whereas variation in kV led to significant differences in CT number for the high density materials. The scanner is also equipped with automatic tube-current modulation capabilities. The influence of automatic tube-current modulation on CT number was investigated for a range of materials in a phantom geometry. It was found that tube current modulation has negligible effect on CT number, though the changing dimension of the phantom did influence CT number of an aluminium insert for scans undertaken with both fixed and modulated tube currents. In light of evidence from other studies examining the influence of CT number on dose calculation, it is recommended that scanner settings and specific CT-ED look-up tables be considered when calculations will be required with high-density materials present. PMID:18697708

  3. Integrated Electro-optical Laser-Beam Scanners

    NASA Technical Reports Server (NTRS)

    Boord, Warren T.

    1990-01-01

    Scanners using solid-state devices compact, consume little power, and have no moving parts. Integrated electro-optical laser scanner, in conjunction with external lens, points outgoing beam of light in any number of different directions, depending on number of upper electrodes. Offers beam-deflection angles larger than those of acousto-optic scanners. Proposed for such diverse applications as nonimpact laser printing, color imaging, ranging, barcode reading, and robotic vision.

  4. 52. View from ground level showing lower radar scanner switch ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. View from ground level showing lower radar scanner switch with open port door in radar scanner building 105 showing emanating waveguides from lower switch in vertical run; photograph also shows catwalk to upper scanner switch in upper left side of photograph and structural supports. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  5. Effective arrangement of separated transmit-only/receive-only RF coil for improvement of B1 homogeneity at 7 Tesla

    NASA Astrophysics Data System (ADS)

    Im, Geun Ho; Seo, Jeong-Hoon; Kim, Kyoung-Nam; Heo, Phil; Chung, Julius Juhyun; Jang, Moon-Sun; Lee, Jung Hee; Kim, Jae-Hun; Kim, Sun I.

    2014-09-01

    This article presents an effective arrangement with shifted transmit (Tx)-only and receive (Rx)-only (TORO) radiofrequency (RF) coils in a single-channel surface coil for improving the magnetic flux ( B 1) homogeneity in an ultra-high field (UHF) magnetic resonance imaging (MRI) scanner. The proposed new methodology for the coil arrangement using the shifted TORO RF coils was demonstrated for coils with 50-mm, 100-mm, and 150-mm-square surfaces and the results were compared to those for general Tx/Rx surface coils with the same dimensions. The computational analysis indicated that a homogeneous B1 field was achieved when the Rx-only coil was shifted in the two-dimensional xy-plane away from the Tx-only coils. Because the proposed coil configuration provides a unique opportunity for increasing the B 1 homogeneity, this feature is likely to increase the feasibility via new coil arrangements of UHF surface design and fabrication.

  6. Reduction of EEG artifacts in simultaneous EEG-fMRI: Reference layer adaptive filtering (RLAF).

    PubMed

    Steyrl, David; Patz, Franz; Krausz, Gunther; Edlinger, Gunter; Muller-Putz, Gernot R

    2015-08-01

    Although simultaneous measurement of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) is one of the most valuable methods for studying human brain activity non-invasively, it remains challenging to measure high quality EEG inside the MRI scanner. Recently, a new approach for minimizing residual MRI scanner artifacts in the EEG was presented: reference layer artifact subtraction (RLAS). Here, reference electrodes capture only the artifacts, which are subsequently subtracted from the measurement electrodes. With the present work we demonstrate that replacing the subtraction by adaptive filtering statistically significantly outperforms RLAS. Reference layer adaptive filtering (RLAF) attenuates the average artifact root-mean-square (RMS) voltage of the passive MRI scanner to 0.7 ?V (-14.4 dB). RLAS achieves 0.78 ?V (-13.5 dB). The combination of average artifact subtraction (AAS) and RLAF reduces the residual average gradient artifact RMS voltage to 2.3 ?V (-49.2 dB). AAS alone achieves 5.7 ?V (-39.0 dB). All measurements were conducted with an MRI phantom, as the reference layer cap available to us was a prototype. PMID:26737122

  7. A 3D airborne ultrasound scanner

    NASA Astrophysics Data System (ADS)

    Capineri, L.; Masotti, L.; Rocchi, S.

    1998-06-01

    This work investigates the feasibility of an ultrasound scanner designed to reconstruct three-dimensional profiles of objects in air. There are many industrial applications in which it is important to obtain quickly and accurately the digital reconstruction of solid objects with contactless methods. The final aim of this project was the profile reconstruction of shoe lasts in order to eliminate the mechanical tracers from the reproduction process of shoe prototypes. The feasibility of an ultrasonic scanner was investigated in laboratory conditions on wooden test objects with axial symmetry. A bistatic system based on five airborne polyvinylidenedifluoride (PVDF) transducers was mechanically moved to emulate a cylindrical array transducer that can host objects of maximum width and height 20 cm and 40 cm respectively. The object reconstruction was based on a simplified version of the synthetic aperture focusing technique (SAFT): the time of flight (TOF) of the first in time echo for each receiving transducer was taken into account, a coarse spatial sampling of the ultrasonic field reflected on the array transducer was delivered and the reconstruction algorithm was based on the ellipsoidal backprojection. Measurements on a wooden cone section provided submillimetre accuracy in a controlled environment.

  8. Interferometric Laser Scanner for Direction Determination.

    PubMed

    Kaloshin, Gennady; Lukin, Igor

    2016-01-01

    In this paper, we explore the potential capabilities of new laser scanning-based method for direction determination. The method for fully coherent beams is extended to the case when interference pattern is produced in the turbulent atmosphere by two partially coherent sources. The performed theoretical analysis identified the conditions under which stable pattern may form on extended paths of 0.5-10 km in length. We describe a method for selecting laser scanner parameters, ensuring the necessary operability range in the atmosphere for any possible turbulence characteristics. The method is based on analysis of the mean intensity of interference pattern, formed by two partially coherent sources of optical radiation. Visibility of interference pattern is estimated as a function of propagation pathlength, structure parameter of atmospheric turbulence, and spacing of radiation sources, producing the interference pattern. It is shown that, when atmospheric turbulences are moderately strong, the contrast of interference pattern of laser scanner may ensure its applicability at ranges up to 10 km. PMID:26805841

  9. Interferometric Laser Scanner for Direction Determination

    PubMed Central

    Kaloshin, Gennady; Lukin, Igor

    2016-01-01

    In this paper, we explore the potential capabilities of new laser scanning-based method for direction determination. The method for fully coherent beams is extended to the case when interference pattern is produced in the turbulent atmosphere by two partially coherent sources. The performed theoretical analysis identified the conditions under which stable pattern may form on extended paths of 0.5–10 km in length. We describe a method for selecting laser scanner parameters, ensuring the necessary operability range in the atmosphere for any possible turbulence characteristics. The method is based on analysis of the mean intensity of interference pattern, formed by two partially coherent sources of optical radiation. Visibility of interference pattern is estimated as a function of propagation pathlength, structure parameter of atmospheric turbulence, and spacing of radiation sources, producing the interference pattern. It is shown that, when atmospheric turbulences are moderately strong, the contrast of interference pattern of laser scanner may ensure its applicability at ranges up to 10 km. PMID:26805841

  10. Antenna Near-Field Probe Station Scanner

    NASA Technical Reports Server (NTRS)

    Zaman, Afroz J. (Inventor); Lee, Richard Q. (Inventor); Darby, William G. (Inventor); Barr, Philip J. (Inventor); Lambert, Kevin M (Inventor); Miranda, Felix A. (Inventor)

    2011-01-01

    A miniaturized antenna system is characterized non-destructively through the use of a scanner that measures its near-field radiated power performance. When taking measurements, the scanner can be moved linearly along the x, y and z axis, as well as rotationally relative to the antenna. The data obtained from the characterization are processed to determine the far-field properties of the system and to optimize the system. Each antenna is excited using a probe station system while a scanning probe scans the space above the antenna to measure the near field signals. Upon completion of the scan, the near-field patterns are transformed into far-field patterns. Along with taking data, this system also allows for extensive graphing and analysis of both the near-field and far-field data. The details of the probe station as well as the procedures for setting up a test, conducting a test, and analyzing the resulting data are also described.

  11. Lumbar MRI scan

    MedlinePlus

    ... resonance imaging (MRI) scan uses energy from strong magnets to create pictures of the lower part of ... in your eyes) Because the MRI contains strong magnets, metal objects are not allowed into the room ...

  12. Arm MRI scan

    MedlinePlus

    ... arm MRI (magnetic resonance imaging) scan uses strong magnets to create pictures of the upper and lower ... in your eyes) Because the MRI contains strong magnets, metal objects are not allowed into the room ...

  13. Pelvis MRI scan

    MedlinePlus

    ... pelvis; MRI - hips; Pelvic MRI with prostate probe; Magnetic resonance imaging - pelvis ... nih.gov/pubmed/18381118 . Wilkinson ID, Graves MJ. Magnetic resonance imaging: basic principles In: Adam A, Dixon AK, Gillard ...

  14. A fast readout using switched current techniques for a DEPFET-pixel vertex detector at TESLA

    NASA Astrophysics Data System (ADS)

    Trimpl, M.; Andricek, L.; Fischer, P.; Lutz, G.; Richter, R. H.; Strüder, L.; Ulrici, J.; Wermes, N.

    2003-09-01

    A fully depleted silicon detector with a first amplifying transistor integrated in every pixel (DEPFET) is a promising proposal for the pixel-based vertex detector at TESLA. The DEPFET offers good spatial resolution, an excellent signal-to-noise ratio and low power consumption in a row-wise operation mode. A readout concept for a DEPFET pixel array matching the requirements at TESLA is described. In order to meet the operation specifications at TESLA ( 50 MHz row rate), a readout architecture based on current mode techniques (Switched Current) is presented. It contains stand alone zero suppression offering a triggerless operation. The core of the readout chip, a fast operating current memory cell, is discussed in detail. The results of a first prototype chip, CURO I (CUrrent ReadOut), show that the requirements for TESLA are achievable.

  15. 3D FSE Cube and VIPR-aTR 3.0 Tesla magnetic resonance imaging predicts canine cranial cruciate ligament structural properties.

    PubMed

    Racette, Molly; Al Saleh, Habib; Waller, Kenneth R; Bleedorn, Jason A; McCabe, Ronald P; Vanderby, Ray; Markel, Mark D; Brounts, Sabrina H; Block, Walter F; Muir, Peter

    2016-03-01

    Estimation of cranial cruciate ligament (CrCL) structural properties in client-owned dogs with incipient cruciate rupture would be advantageous. The objective of this study was to determine whether magnetic resonance imaging (MRI) measurement of normal CrCL volume in an ex-vivo canine model predicts structural properties. Stifles from eight dogs underwent 3.0 Tesla 3D MRI. CrCL volume and normalized median grayscale values were determined using 3D Fast Spin Echo (FSE) Cube and Vastly under-sampled Isotropic PRojection (VIPR)-alternative repetition time (aTR) sequences. Stifles were then mechanically tested. After joint laxity testing, CrCL structural properties were determined, including displacement at yield, yield load, load to failure, and stiffness. Yield load and load to failure (R(2)=0.56, P <0.01) were correlated with CrCL volume determined by VIPR-aTR. Yield load was also correlated with CrCL volume determined by 3D FSE Cube (R(2)=0.32, P <0.05). Structural properties were not related to median grayscale values. Joint laxity and CrCL stiffness were not related to MRI parameters, but displacement at yield load was related to CrCL volume for both sequences during testing (R(2)>0.57, P <0.005). In conclusion, 3D MRI offers a predictive method for estimating canine CrCL structural properties. 3D MRI may be useful for monitoring CrCL properties in clinical trials. PMID:26831152

  16. General algorithm for automated off-center MRI.

    PubMed

    Magland, J; Wehrli, F W

    2006-07-01

    A general formula was derived that automatically modifies any MRI pulse sequence to realize arbitrary field-of-view (FOV) shifts. Unlike conventional techniques for implementing off-center MRI, the new method is completely automatic and can therefore be incorporated into the scanner hardware or software, thereby simplifying the development of MRI pulse sequences. The algorithm was incorporated into a visual pulse sequence programming environment, and several pulse sequences were programmed and tested at various off-center locations using the new technique. Unless there is significant background field inhomogeneity or gradient nonlinearity, research sequences employing the automatic technique need only be programmed and tested at the gradient isocenter, whereas with conventional methods, artifacts can sometimes depend on the position of the FOV. PMID:16767765

  17. Studying brain organization via spontaneous fMRI signal

    PubMed Central

    Power, Jonathan D; Schlaggar, Bradley L; Petersen, Steven E

    2014-01-01

    In recent years, some substantial advances in understanding human (and non-human) brain organization have emerged from a relatively unusual approach: the observation of spontaneous activity, and correlated patterns in spontaneous activity, in the “resting” brain. Most commonly, spontaneous neural activity is measured indirectly via fMRI signal in subjects who are lying quietly in the scanner, the so-called “resting state”. This Primer introduces the fMRI-based study of spontaneous brain activity, some of the methodological issues active in the field, and some ways in which resting state fMRI has been used to delineate aspects of area-level and supra-areal brain organization. PMID:25459408

  18. Design and Preliminary Accuracy Studies of an MRI-Guided Transrectal Prostate Intervention System

    PubMed Central

    Krieger, Axel; Csoma, Csaba; Iordachita, Iulian I.; Guion, Peter; Singh, Anurag K.; Fichtinger, Gabor; Whitcomb, Louis L.

    2012-01-01

    This paper reports a novel system for magnetic resonance imaging (MRI) guided transrectal prostate interventions, such as needle biopsy, fiducial marker placement, and therapy delivery. The system utilizes a hybrid tracking method, comprised of passive fiducial tracking for initial registration and subsequent incremental motion measurement along the degrees of freedom using fiber-optical encoders and mechanical scales. Targeting accuracy of the system is evaluated in prostate phantom experiments. Achieved targeting accuracy and procedure times were found to compare favorably with existing systems using passive and active tracking methods. Moreover, the portable design of the system using only standard MRI image sequences and minimal custom scanner interfacing allows the system to be easily used on different MRI scanners. PMID:18044553

  19. Robot-assisted needle placement in open MRI: system architecture, integration and validation.

    PubMed

    DiMaio, S P; Pieper, S; Chinzei, K; Hata, N; Haker, S J; Kacher, D F; Fichtinger, G; Tempany, C M; Kikinis, R

    2007-01-01

    In prostate cancer treatment, there is a move toward targeted interventions for biopsy and therapy, which has precipitated the need for precise image-guided methods for needle placement. This paper describes an integrated system for planning and performing percutaneous procedures with robotic assistance under MRI guidance. A graphical planning interface allows the physician to specify the set of desired needle trajectories, based on anatomical structures and lesions observed in the patient's registered pre-operative and pre-procedural MR images, immediately prior to the intervention in an open-bore MRI scanner. All image-space coordinates are automatically computed, and are used to position a needle guide by means of an MRI-compatible robotic manipulator, thus avoiding the limitations of the traditional fixed needle template. Automatic alignment of real-time intra-operative images aids visualization of the needle as it is manually inserted through the guide. Results from in-scanner phantom experiments are provided. PMID:17364655

  20. Constructing Carbon Fiber Motion-Detection Loops for Simultaneous EEG–fMRI

    PubMed Central

    Abbott, David F.; Masterton, Richard A. J.; Archer, John S.; Fleming, Steven W.; Warren, Aaron E. L.; Jackson, Graeme D.

    2015-01-01

    One of the most significant impediments to high-quality EEG recorded in an MRI scanner is subject motion. Availability of motion artifact sensors can substantially improve the quality of the recorded EEG. In the study of epilepsy, it can also dramatically increase the confidence that one has in discriminating true epileptiform activity from artifact. This is due both to the reduction in artifact and the ability to visually inspect the motion sensor signals when reading the EEG, revealing whether or not head motion is present. We have previously described the use of carbon fiber loops for detecting and correcting artifact in EEG acquired simultaneously with MRI. The loops, attached to the subject’s head, are electrically insulated from the scalp. They provide a simple and direct measure of specific artifact that is contaminating the EEG, including both subject motion and residual artifact arising from magnetic field gradients applied during MRI. Our previous implementation was used together with a custom-built EEG–fMRI system that differs substantially from current commercially available EEG–fMRI systems. The present technical note extends this work, describing in more detail how to construct the carbon fiber motion-detection loops, and how to interface them with a commercially available simultaneous EEG–fMRI system. We hope that the information provided may help those wishing to utilize a motion-detection/correction solution to improve the quality of EEG recorded within an MRI scanner. PMID:25601852

  1. Multi-centre reproducibility of diffusion MRI parameters for clinical sequences in the brain

    PubMed Central

    Grech-Sollars, Matthew; Hales, Patrick W; Miyazaki, Keiko; Raschke, Felix; Rodriguez, Daniel; Wilson, Martin; Gill, Simrandip K; Banks, Tina; Saunders, Dawn E; Clayden, Jonathan D; Gwilliam, Matt N; Barrick, Thomas R; Morgan, Paul S; Davies, Nigel P; Rossiter, James; Auer, Dorothee P; Grundy, Richard; Leach, Martin O; Howe, Franklyn A; Peet, Andrew C; Clark, Chris A

    2015-01-01

    The purpose of this work was to assess the reproducibility of diffusion imaging, and in particular the apparent diffusion coefficient (ADC), intra-voxel incoherent motion (IVIM) parameters and diffusion tensor imaging (DTI) parameters, across multiple centres using clinically available protocols with limited harmonization between sequences. An ice–water phantom and nine healthy volunteers were scanned across fives centres on eight scanners (four Siemens 1.5T, four Philips 3T). The mean ADC, IVIM parameters (diffusion coefficient D and perfusion fraction f) and DTI parameters (mean diffusivity MD and fractional anisotropy FA), were measured in grey matter, white matter and specific brain sub-regions. A mixed effect model was used to measure the intra- and inter-scanner coefficient of variation (CV) for each of the five parameters. ADC, D, MD and FA had a good intra- and inter-scanner reproducibility in both grey and white matter, with a CV ranging between 1% and 7.4%; mean 2.6%. Other brain regions also showed high levels of reproducibility except for small structures such as the choroid plexus. The IVIM parameter f had a higher intra-scanner CV of 8.4% and inter-scanner CV of 24.8%. No major difference in the inter-scanner CV for ADC, D, MD and FA was observed when analysing the 1.5T and 3T scanners separately. ADC, D, MD and FA all showed good intra-scanner reproducibility, with the inter-scanner reproducibility being comparable or faring slightly worse, suggesting that using data from multiple scanners does not have an adverse effect compared with using data from the same scanner. The IVIM parameter f had a poorer inter-scanner CV when scanners of different field strengths were combined, and the parameter was also affected by the scan acquisition resolution. This study shows that the majority of diffusion MRI derived parameters are robust across 1.5T and 3T scanners and suitable for use in multi-centre clinical studies and trials. © 2015 The Authors NMR in Biomedicine Published by John Wiley & Sons Ltd. PMID:25802212

  2. Multi-centre reproducibility of diffusion MRI parameters for clinical sequences in the brain.

    PubMed

    Grech-Sollars, Matthew; Hales, Patrick W; Miyazaki, Keiko; Raschke, Felix; Rodriguez, Daniel; Wilson, Martin; Gill, Simrandip K; Banks, Tina; Saunders, Dawn E; Clayden, Jonathan D; Gwilliam, Matt N; Barrick, Thomas R; Morgan, Paul S; Davies, Nigel P; Rossiter, James; Auer, Dorothee P; Grundy, Richard; Leach, Martin O; Howe, Franklyn A; Peet, Andrew C; Clark, Chris A

    2015-04-01

    The purpose of this work was to assess the reproducibility of diffusion imaging, and in particular the apparent diffusion coefficient (ADC), intra-voxel incoherent motion (IVIM) parameters and diffusion tensor imaging (DTI) parameters, across multiple centres using clinically available protocols with limited harmonization between sequences. An ice-water phantom and nine healthy volunteers were scanned across fives centres on eight scanners (four Siemens 1.5T, four Philips 3T). The mean ADC, IVIM parameters (diffusion coefficient D and perfusion fraction f) and DTI parameters (mean diffusivity MD and fractional anisotropy FA), were measured in grey matter, white matter and specific brain sub-regions. A mixed effect model was used to measure the intra- and inter-scanner coefficient of variation (CV) for each of the five parameters. ADC, D, MD and FA had a good intra- and inter-scanner reproducibility in both grey and white matter, with a CV ranging between 1% and 7.4%; mean 2.6%. Other brain regions also showed high levels of reproducibility except for small structures such as the choroid plexus. The IVIM parameter f had a higher intra-scanner CV of 8.4% and inter-scanner CV of 24.8%. No major difference in the inter-scanner CV for ADC, D, MD and FA was observed when analysing the 1.5T and 3T scanners separately. ADC, D, MD and FA all showed good intra-scanner reproducibility, with the inter-scanner reproducibility being comparable or faring slightly worse, suggesting that using data from multiple scanners does not have an adverse effect compared with using data from the same scanner. The IVIM parameter f had a poorer inter-scanner CV when scanners of different field strengths were combined, and the parameter was also affected by the scan acquisition resolution. This study shows that the majority of diffusion MRI derived parameters are robust across 1.5T and 3T scanners and suitable for use in multi-centre clinical studies and trials. PMID:25802212

  3. Beamstrahlung Photon Load on the TESLA Extraction Septum Blade(LCC-0104)

    SciTech Connect

    Seryi, A

    2003-10-02

    This note describes work performed in the framework of the International Linear Collider Technical Review Committee [1] to estimate the power load on the TESLA extraction septum blade due to beamstrahlung photons. It is shown, that under realistic conditions the photon load can be several orders of magnitude higher than what was estimated in the TESLA TDR [2] for the ideal Gaussian beams, potentially representing a serious limitation of the current design.

  4. MRI atlas of the human hypothalamus.

    PubMed

    Baroncini, Marc; Jissendi, Patrice; Balland, Eglantine; Besson, Pierre; Pruvo, Jean-Pierre; Francke, Jean-Paul; Dewailly, Didier; Blond, Serge; Prevot, Vincent

    2012-01-01

    Gaining new insights into the anatomy of the human hypothalamus is crucial for the development of new treatment strategies involving functional stereotactic neurosurgery. Here, using anatomical comparisons between histology and magnetic resonance images of the human hypothalamus in the coronal plane, we show that discrete gray and white hypothalamic structures are consistently identifiable by MRI. Macroscopic and microscopic images were used to precisely annotate the MRI sequences realized in the coronal plane in twenty healthy volunteers. MRI was performed on a 1.5 T scanner, using a protocol including T1-weighted 3D fast field echo, T1-weighted inversion-recovery, turbo spin echo and T2-weighted 2D fast field echo imaging. For each gray matter structure as well as for white matter bundles, the different MRI sequences were analyzed in comparison to each other. The anterior commissure and the fornix were often identifiable, while the mammillothalamic tract was more difficult to spot. Qualitative analyses showed that MRI could also highlight finer structures such as the paraventricular nucleus, the ventromedial nucleus of the hypothalamus and the infundibular (arcuate) nucleus, brain nuclei that play key roles in the regulation of food intake and energy homeostasis. The posterior hypothalamic area, a target for deep brain stimulation in the treatment of cluster headaches, was readily identified, as was the lateral hypothalamic area, which similar to the aforementioned hypothalamic nuclei, could be a putative target for deep brain stimulation in the treatment of obesity. Finally, each of the identified structures was mapped to Montreal Neurological Institute (MNI) space. PMID:21777680

  5. Magnetic Resonance Imaging (MRI)

    MedlinePlus

    ... MRI) What is an MRI? MRI stands for Magnetic Resonance Imaging. It is an important tool used in many fields of medicine, and is capable of generating a detailed image of any part of the human body. As an analogy, think about a loaf of ...

  6. MRI in cranial tuberculosis.

    PubMed

    Just, M; Higer, H P; Betting, O; Bockenheimer, S; Pfannenstiel, P

    1987-11-01

    A case of multiple intracranial tuberculomas is presented. CT and MRI findings are discussed and compared. MRI showed multiple tuberculomas characterised by the same signal intensity as the surrounding brain parenchyma. Differentiation could be achieved only by the perifocal oedema of high signal intensity. Changes of the lesions during chemotherapy were monitored by CT and MRI and the results are presented. PMID:3691545

  7. Team one (GA/MCA) effort of the DOE 12 Tesla Coil Development Program. 12 Tesla ETF toroidal field coil helium bath cooled NbTi alloy concept

    SciTech Connect

    Not Available

    1980-07-01

    This report presents the conceptual design of an ETF compatible toroidal field coil, employing helium bath cooled NbTi alloy conductor. The ten TF-coil array generates a peak field of 11-1/2 tesla at 2.87 m radius, corresponding to a major axis field of 6.1 tesla. The 10 kA conductor is an uninsulated, unsoldered Rutherford cable, employing NbTiTa ally as developed in Phase I of this effort. The conductor is encased within a four element frame of stainless steel strips to provide hoop and bearing load support.

  8. Clinical applications of PET/MRI: current status and future perspectives.

    PubMed

    Nensa, Felix; Beiderwellen, Karsten; Heusch, Philipp; Wetter, Axel

    2014-01-01

    Fully integrated positron emission tomography (PET)/magnetic resonance imaging (MRI) scanners have been available for a few years. Since then, the number of scanner installations and published studies have been growing. While feasibility of integrated PET/MRI has been demonstrated for many clinical and preclinical imaging applications, now those applications where PET/MRI provides a clear benefit in comparison to the established reference standards need to be identified. The current data show that those particular applications demanding multiparametric imaging capabilities, high soft tissue contrast and/or lower radiation dose seem to benefit from this novel hybrid modality. Promising results have been obtained in whole-body cancer staging in non-small cell lung cancer and multiparametric tumor imaging. Furthermore, integrated PET/MRI appears to have added value in oncologic applications requiring high soft tissue contrast such as assessment of liver metastases of neuroendocrine tumors or prostate cancer imaging. Potential benefit of integrated PET/MRI has also been demonstrated for cardiac (i.e., myocardial viability, cardiac sarcoidosis) and brain (i.e., glioma grading, Alzheimer's disease) imaging, where MRI is the predominant modality. The lower radiation dose compared to PET/computed tomography will be particularly valuable in the imaging of young patients with potentially curable diseases.However, further clinical studies and technical innovation on scanner hard- and software are needed. Also, agreements on adequate refunding of PET/MRI examinations need to be reached. Finally, the translation of new PET tracers from preclinical evaluation into clinical applications is expected to foster the entire field of hybrid PET imaging, including PET/MRI. PMID:25010371

  9. Neurocardiovascular instability, hypotensive episodes, and MRI lesions in neurodegenerative dementia.

    PubMed

    Ballard, C; O'Brien, J; Barber, B; Scheltens, P; Shaw, F; McKeith, I; Kenny, R A

    2000-04-01

    We investigated whether carotid sinus hypersensitivity (CSH) and orthostatic hypotension (OH) were associated with a greater severity of hyperintensities on MRI scan in 30 patients with neurodegenerative dementia (17 dementia with Lewy bodies, 13 Alzheimer's disease), who had a detailed evaluation of OH and CSH during active standing and head-up tilt. Patients also underwent a 1.0 Tesla MRI scan, from which hyperintensities were rated on a standardized scale. A blood pressure (BP) drop > 30 mm Hg during carotid sinus massage or active standing was significantly associated with the severity of MRI hyperintensities in the deep white matter (OR 10.0, 95%; CI 1.8-55.7) and in the basal ganglia (OR 11.0, 95%; CI 1.2-99.5) but not in periventricular areas (OR 1.4, 95%; CI 0.3-1.8). Patients with the cardio-inhibitory form of CSH with the largest BP drops were the most at risk. Further longitudinal studies need to investigate the direction of causality to determine whether CSH or OH predispose to MRI hyperintensities and accelerate cognitive decline. PMID:10818535

  10. Quantifying fat and lean muscle in the lower legs of women with knee osteoarthritis using two different MRI systems.

    PubMed

    Beattie, Karen; Davison, Michael J; Noseworthy, Michael; Adachi, Jonathan D; Maly, Monica R

    2016-06-01

    Decreased muscle mass and increased fat mass are commonly seen in the thighs of individuals with knee osteoarthritis (OA). Despite the role of calf muscles in activities of daily living and knee mechanics, little work has investigated calf changes in knee OA. Unlike the thigh, muscle and fat in the lower leg can be imaged using a peripheral magnetic resonance imaging (MRI) scanner. We aimed to assess agreement between subcutaneous fat, intermuscular fat (IMF), intramuscular fat (intraMF), and lean muscle volumes acquired using a peripheral 1.0T as compared to a reference whole-body 3.0T MRI scanner. A calf MRI scan from each scanner was acquired from twenty women >55 years with knee OA. The different tissues were segmented on each of ten axial slices for every participant using SliceOmatic 5.0 (Tomovision, Magog, QC). Tissue volumes were determined for each outcome. Agreement between tissue volumes from the two scanners was assessed using intraclass correlation (ICC(2,1)) coefficients, standard error, and Bland-Altman plots. Agreement between tissue volumes was strong to very strong, with ICCs ranging from 0.842 to 0.991 for all outcomes. However, wide confidence intervals for IMF and intraMF suggest there is less confidence in agreement with segmentation of images from the 1.0T scanner generally underestimating fat volume relative to the 3.0T scanner. The 3.0T's superior between-tissue contrast likely resulted in more accurate segmentation of IMF and intraMF compared to the 1.0T scanner. Comparisons of tissue volume between studies using different scanners/sequences should be interpreted cautiously. PMID:26979605

  11. Scanner OPC signatures: automatic vendor-to-vendor OPE matching

    NASA Astrophysics Data System (ADS)

    Renwick, Stephen P.

    2009-03-01

    As 193nm lithography continues to be stretched and the k1 factor decreases, optical proximity correction (OPC) has become a vital part of the lithographer's tool kit. Unfortunately, as is now well known, the design variations of lithographic scanners from different vendors cause them to have slightly different optical-proximity effect (OPE) behavior, meaning that they print features through pitch in distinct ways. This in turn means that their response to OPC is not the same, and that an OPC solution designed for a scanner from Company 1 may or may not work properly on a scanner from Company 2. Since OPC is not inexpensive, that causes trouble for chipmakers using more than one brand of scanner. Clearly a scanner-matching procedure is needed to meet this challenge. Previously, automatic matching has only been reported for scanners of different tool generations from the same manufacturer. In contrast, scanners from different companies have been matched using expert tuning and adjustment techniques, frequently requiring laborious test exposures. Automatic matching between scanners from Company 1 and Company 2 has remained an unsettled problem. We have recently solved this problem and introduce a novel method to perform the automatic matching. The success in meeting this challenge required three enabling factors. First, we recognized the strongest drivers of OPE mismatch and are thereby able to reduce the information needed about a tool from another supplier to that information readily available from all modern scanners. Second, we developed a means of reliably identifying the scanners' optical signatures, minimizing dependence on process parameters that can cloud the issue. Third, we carefully employed standard statistical techniques, checking for robustness of the algorithms used and maximizing efficiency. The result is an automatic software system that can predict an OPC matching solution for scanners from different suppliers without requiring expert intervention.

  12. Fetal MRI: A Technical Update with Educational Aspirations

    PubMed Central

    Gholipour, Ali; Estroff, Judith A.; Barnewolt, Carol E.; Robertson, Richard L.; Grant, P. Ellen; Gagoski, Borjan; Warfield, Simon K.; Afacan, Onur; Connolly, Susan A.; Neil, Jeffrey J.; Wolfberg, Adam; Mulkern, Robert V.

    2015-01-01

    Fetal magnetic resonance imaging (MRI) examinations have become well-established procedures at many institutions and can serve as useful adjuncts to ultrasound (US) exams when diagnostic doubts remain after US. Due to fetal motion, however, fetal MRI exams are challenging and require the MR scanner to be used in a somewhat different mode than that employed for more routine clinical studies. Herein we review the techniques most commonly used, and those that are available, for fetal MRI with an emphasis on the physics of the techniques and how to deploy them to improve success rates for fetal MRI exams. By far the most common technique employed is single-shot T2-weighted imaging due to its excellent tissue contrast and relative immunity to fetal motion. Despite the significant challenges involved, however, many of the other techniques commonly employed in conventional neuro- and body MRI such as T1 and T2*-weighted imaging, diffusion and perfusion weighted imaging, as well as spectroscopic methods remain of interest for fetal MR applications. An effort to understand the strengths and limitations of these basic methods within the context of fetal MRI is made in order to optimize their use and facilitate implementation of technical improvements for the further development of fetal MR imaging, both in acquisition and post-processing strategies. PMID:26225129

  13. MRI Evaluation and Safety in the Developing Brain

    PubMed Central

    Tocchio, Shannon; Kline-Fath, Beth; Kanal, Emanuel; Schmithorst, Vincent J.; Panigrahy, Ashok

    2015-01-01

    Magnetic resonance imaging (MRI) evaluation of the developing brain has dramatically increased over the last decade. Faster acquisitions and the development of advanced MRI sequences such as magnetic resonance spectroscopy (MRS), diffusion tensor imaging (DTI), perfusion imaging, functional MR imaging (fMRI), and susceptibility weighted imaging (SWI), as well as the use of higher magnetic field strengths has made MRI an invaluable tool for detailed evaluation of the developing brain. This article will provide an overview of the use and challenges associated with 1.5T and 3T static magnetic fields for evaluation of the developing brain. This review will also summarize the advantages, clinical challenges and safety concerns specifically related to MRI in the fetus and newborn, including the implications of increased magnetic field strength, logistics related to transporting and monitoring of neonates during scanning, sedation considerations and a discussion of current technologies such as MRI-conditional neonatal incubators and dedicated small-foot print neonatal intensive care unit (NICU) scanners. PMID:25743582

  14. Transrectal Prostate Biopsy and Fiducial Marker Placement in a Standard 1.5T Magnetic Resonance Imaging Scanner

    PubMed Central

    Susil, Robert C.; Ménard, Cynthia; Krieger, Axel; Coleman, Jonathan A.; Camphausen, Kevin; Choyke, Peter; Fichtinger, Gabor; Whitcomb, Louis L.; Coleman, C. Norman; Atalar, Ergin

    2012-01-01

    Purpose We investigated the accuracy and feasibility of a system that provides transrectal needle access to the prostate concurrent with 1.5 Tesla MRI which previously has not been possible. Materials and Methods In 5 patients with previously diagnosed prostate cancer, MRI guided intraprostatic placement of gold fiducial markers (4 procedures) and/or prostate biopsy (3 procedures) was performed using local anesthesia. Results Mean procedure duration was 76 minutes and all patients tolerated the intervention well. Procedure related adverse events included self-limited hematuria and hematochezia following 3 of 8 procedures (all resolved in less than 1 week). Mean needle placement accuracy was 1.9 mm for the fiducial marker placement studies and 1.8 mm for the biopsy procedures. Mean fiducial marker placement accuracy was 4.8 mm and the mean fiducial marker placement accuracy transverse to the needle direction was 2.6 mm. All patients who underwent the procedure were able to complete their course of radiotherapy without delay or complication. Conclusions While studies of clinical usefulness are warranted, transrectal 1.5 T MRI guided prostate biopsy and fiducial marker placement is feasible using this system, providing new opportunities for image guided diagnostic and therapeutic prostate interventions. PMID:16406885

  15. Diffusion tensor MRI phantom exhibits anomalous diffusion.

    PubMed

    Ye, Allen Q; Hubbard Cristinacce, Penny L; Zhou, Feng-Lei; Yin, Ziying; Parker, Geoff J M; Magin, Richard L

    2014-01-01

    This paper reports diffusion weighted MRI measurements of cyclohexane in a novel diffusion tensor MRI phantom composed of hollow coaxial electrospun fibers (average diameter 10.2 ?m). Recent studies of the phantom demonstrated its potential as a calibration standard at low b values (less than 1000 s/mm<;sup>2<;/sup>) for mean diffusivity and fractional anisotropy. In this paper, we extend the characterization of cyclohexane diffusion in this heterogeneous, anisotropic material to high b values (up to 5000 s/mm<;sup>2<;/sup>), where the apparent diffusive motion of the cyclohexane exhibits anomalous behavior (i.e., the molecular mean squared displacement increases with time raised to the fractional power 2?/?). Diffusion tensor MRI was performed at 9.4 T using an Agilent imaging scanner and the data fit to a fractional order Mittag-Leffler (generalized exponential) decay model. Diffusion along the fibers was found to be Gaussian (2?/?=l), while diffusion across the fibers was sub-diffusive (2?/?<;l). Fiber tract reconstruction of the data was consistent with scanning electron micrograph images of the material. These studies suggest that this phantom material may be used to calibrate MR systems in both the normal (Gaussian) and anomalous diffusion regimes. PMID:25570066

  16. A method of switching the signal in an MRI phantom based on trace ion currents

    NASA Astrophysics Data System (ADS)

    Qiu, Yujie; Kwok, WingChi Edmund; Hornak, Joseph P.

    2014-08-01

    A method for electrically changing the hydrogen nuclear magnetic resonance (NMR) signal intensity in a magnetic resonance imaging (MRI) phantom is presented. The method is based on creating local magnetic field inhomogeneities from impurity ion currents in a polar hydrocarbon. The effect is demonstrated using the propylene carbonate on an NMR spectrometer and an MRI scanner. This effect is largest when the electric field is applied perpendicular to the static magnetic field in magnetic resonance, and is linear with applied voltage. The applicability of a switchable signal in an MRI phantom is demonstrated with a spin-echo, echo planar imaging sequence where the MRI signal is changed between blocks of 10 images in a series of 200 images. This technique may find applications in inter and intra platform fMRI quality control.

  17. A Passively-Suspended Tesla Pump Left Ventricular Assist Device

    PubMed Central

    Izraelev, Valentin; Weiss, William J.; Fritz, Bryan; Newswanger, Raymond K.; Paterson, Eric G.; Snyder, Alan; Medvitz, Richard B.; Cysyk, Joshua; Pae, Walter E.; Hicks, Dennis; Lukic, Branka; Rosenberg, Gerson

    2009-01-01

    The design and initial test results of a new passively suspended Tesla type LAVD blood pump are described. CFD analysis was used in the design of the pump. Overall size of the prototype device is 50 mm in diameter and 75 mm in length. The pump rotor has a density lower than that of blood and when spinning inside the stator in blood it creates a buoyant centering force that suspends the rotor in the radial direction. The axial magnetic force between the rotor and stator restrain the rotor in the axial direction. The pump is capable of pumping up to 10 liters/min at a 70 mmHg head rise at 8000 RPM. The pump has demonstrated a normalized index of hemolysis level below .02 mg/dL for flows between 2 and 9.7 L/min. An inlet pressure sensor has also been incorporated into the inlet cannula wall and will be used for control purposes. One initial in vivo study showed an encouraging result. Further CFD modeling refinements are planned as well as endurance testing of the device. PMID:19770799

  18. The upgraded photocathode laser of the TESLA Test Facility

    NASA Astrophysics Data System (ADS)

    Will, I.; Koss, G.; Templin, I.

    2005-04-01

    This paper describes the photocathode laser of the TESLA Test Facility (TTF). The laser system generates trains of ultraviolet picosecond pulses with 262 nm wavelength. Special measures were required to allow for stable and reliable generation of these pulse trains that are up to 800 μs long and can contain up to 800 micropulses at 1 MHz repetition rate, alternatively, up to 2400 micropulses at 3 MHz repetition rate within the train. The duration of the individual micropulses is 11 ps FWHM ( σ˜4.5 ps). In the 1 MHz mode the micropulse energy at 262 nm wavelength reaches 54 μJ. Laser pulses are generated synchronously to the RF system of the TTF-2 linear accelerators (linac) with synchronization accuracy better than 1 ps. The laser is able to run at 10 Hz repetition rate with full remote control. It illuminates the photocathode of an RF gun to generate the electron bunches which are subsequently accelerated in the TTF linac.

  19. Cascading Tesla Oscillating Flow Diode for Stirling Engine Gas Bearings

    NASA Technical Reports Server (NTRS)

    Dyson, Rodger

    2012-01-01

    Replacing the mechanical check-valve in a Stirling engine with a micromachined, non-moving-part flow diode eliminates moving parts and reduces the risk of microparticle clogging. At very small scales, helium gas has sufficient mass momentum that it can act as a flow controller in a similar way as a transistor can redirect electrical signals with a smaller bias signal. The innovation here forces helium gas to flow in predominantly one direction by offering a clear, straight-path microchannel in one direction of flow, but then through a sophisticated geometry, the reversed flow is forced through a tortuous path. This redirection is achieved by using microfluid channel flow to force the much larger main flow into this tortuous path. While microdiodes have been developed in the past, this innovation cascades Tesla diodes to create a much higher pressure in the gas bearing supply plenum. In addition, the special shape of the leaves captures loose particles that would otherwise clog the microchannel of the gas bearing pads.

  20. Feasibility Study of a HOM IOT for TESLA

    NASA Astrophysics Data System (ADS)

    Schütt, Petra; Weiland, Thomas; Gamp, Alexander; Lu, Fuhai

    1997-05-01

    For the TESLA linear collider 1.3 GHz RF sources with 10 MW peak power and about 70% efficiency are needed. As an alternative to the development of a Multibeam-Klystron, we investigate the feasibility of an IOT (Inductive Output Tube). This is a very compact RF source: The time structure of the beam is produced by a gated emission cathode and the output cavity is directly adjacent to the anode. Unlike IOTs, conventional klystrons lose some of their design efficiency when they are operated below saturation, because only the RF component of the beam is reduced and not the DC beam current. In contrast to this the cathode current of an IOT is controlled by the drive power. In order to keep the gun voltage low, we investigate a device with a hollow beam where the output cavity is excited in a higher order mode (HOM), as was recently suggested by CPI(E.Lien, H.Bohlen, US Patent Application Serial No. 08/413,034). Computer simulations are carried out with the CAD-system MAFIA. First, an existing Klystrode TM IOT built by CPI is analysed. Simulation results will be shown and compared to experimental data. Based upon this experience, a design strategy is discussed for the HOM IOT.

  1. Design and prototype fabrication of a 30 tesla cryogenic magnet

    NASA Technical Reports Server (NTRS)

    Prok, G. M.; Swanson, M. C.; Brown, G. V.

    1977-01-01

    A liquid-neon-cooled magnet has been designed to produce 30 teslas in steady operation. Its feasibility was established by a previously reported parametric study. To ensure the correctness of the heat transfer relationships used, supercritical neon heat transfer tests were made. Other tests made before the final design included tests on the effect of the magnetic field on pump motors; tensile-shear tests on the cryogenic adhesives; and simulated flow studies for the coolant. The magnet will be made of two pairs of coils, cooled by forced convection of supercritical neon. Heat from the supercritical neon will be rejected through heat exchangers which are made of roll-bonded copper panels and are submerged in a pool of saturated liquid neon. A partial mock-up coil was wound to identify the tooling required to wind the magnet. This was followed by winding a prototype pair of coils. The prototype winding established procedures for fabricating the final magnet and revealed slight changes needed in the final design.

  2. Cryogenic Positron Plasma in a 5 Tesla Field

    NASA Astrophysics Data System (ADS)

    Schmidt, P.; Sullivan, J. P.; Surko, C. M.

    2001-10-01

    We describe the design and construction of a new trap that will use a 5 Tesla magnetic field and a cryogenically cooled electrode structure (T ~5 K) to produce cold (Δɛ ~1 meV), high-density positron plasmas. Positrons are delivered by a three-stage, buffer-gas Penning-Malmberg trap that is fed by a radioactive source and a solid neon moderator [1]. Accumulated positrons are transferred in short bursts in time into the high-field trap. Using a 100 mCi ^22Na positron source, filling rates of 10^10 e^+/h and plasma densities of 10^10 cm-3 are expected. The positrons thermalize to less than 10 K by cyclotron radiation. Radial compression is achieved by applying a rotating electric field [2]. This trap is expected to be a nearly ideal reservoir of positron plasmas, with very long confinement and annihilation times. The trap design, operation, and its uses will be described, including the creation of a new generation of cold positron beams. [1] C.M. Surko, S.J. Gilbert, and R.G. Greaves, Non-Neutral Plasma Physics III, J.J. Bollinger, et al., eds., American Institute of Physics (1999), pp. 3--12. [2] R.G. Greaves and C.M. Surko, Phys. Plasmas, 8, 1879 (2001).

  3. Cryogenic Positron Plasma in a 5 Tesla Field

    NASA Astrophysics Data System (ADS)

    Schmidt, P.; Danielson, J. R.; Sullivan, J. P.; Surko, C. M.

    2002-11-01

    We present the first experimental results from a new Penning-Malmberg trap using a 5 Tesla magnetic field and a cryogenically cooled electrode structure (T ˜5 K) with the goal of producing cold (Δɛ ˜1 meV), high-density positron plasmas. Positron bunches will be delivered in short bunches from a separate accumulation trap that is fed by a radioactive source and a solid neon moderator [1]. Using a 100 mCi ^22Na positron source, filling rates of 10^10 e^+/h and plasma densities of 10^9 cm^-3 are expected. The positrons will thermalize to less than 10 K by cyclotron radiation. Radial compression is achieved by applying a rotating electric field [2]. This trap is designed to be a nearly ideal reservoir of positron plasmas, with very long confinement and annihilation times. The trap design, operation, its potential uses and first experimental results with electron plasmas will be discussed. [1] C.M. Surko, et al., Non-Neutral Plasma Physics III, J.J. Bollinger, et al., eds., American Institute of Physics (1999), pp. 3--12. [2] R.G. Greaves and C.M. Surko, Phys. Plasmas, 8, 1879 (2001).

  4. Wetlands mapping with spot multispectral scanner data

    SciTech Connect

    Mackey, H.E. Jr. ); Jensen, J.R. . Dept. of Geography)

    1989-01-01

    Government facilities such as the US Department of Energy's Savannah River Plant (SRP) near Aiken, South Carolina, often use remote sensing data to assist in environmental management. Airborne multispectral scanner (MSS) data have been acquired at SRP since 1981. Various types of remote sensing data have been used to map and characterize wetlands. Regional Landsat MSS and TM satellite data have been used for wetlands mapping by various government agencies and private organizations. Furthermore, SPOT MSS data are becoming available and provide opportunities for increased spacial resolution and temporal coverage for wetlands mapping. This paper summarizes the initial results from using five dates of SPOT MSS data from April through October, 1987, as a means to monitor seasonal wetland changes in freshwater wetlands of the SRP. 11 refs., 4 figs.

  5. New Control Software for CEBAF Wire Scanners

    SciTech Connect

    Pavel Chevtsov

    2005-03-01

    Wire scanners (WS) are the most popular beam profile measurement devices at Jefferson Lab. The WS for the CEBAF accelerator and beam extraction lines were created and supported by different user groups. As a result, they are not only implemented in different hardware standards (CAMAC and VME) but until recently also had different control functions that made them very difficult to use for accelerator beam diagnostic applications. To integrate all WS into one homogeneous system that is very easy to support and use for accelerator operations, new WS control software has been created. The software is implemented as a library of WS control and status modules. The control modules handle the WS hardware components and make their data available for beam diagnostic applications. The status modules monitor data communication channels between WS components and control computers and generate alarms in case of hardware failures. The paper presents the functionality of the new WS control software a nd its positive impact on accelerator operations.

  6. Development of scintillation materials for PET scanners

    NASA Astrophysics Data System (ADS)

    Korzhik, Mikhail; Fedorov, Andrei; Annenkov, Alexander; Borissevitch, Andrei; Dossovitski, Alexei; Missevitch, Oleg; Lecoq, Paul

    2007-02-01

    The growing demand on PET methodology for a variety of applications ranging from clinical use to fundamental studies triggers research and development of PET scanners providing better spatial resolution and sensitivity. These efforts are primarily focused on the development of advanced PET detector solutions and on the developments of new scintillation materials as well. However Lu containing scintillation materials introduced in the last century such as LSO, LYSO, LuAP, LuYAP crystals still remain the best PET species in spite of the recent developments of bright, fast but relatively low density lanthanum bromide scintillators. At the same time Lu based materials have several drawbacks which are high temperature of crystallization and relatively high cost compared to alkali-halide scintillation materials. Here we describe recent results in the development of new scintillation materials for PET application.

  7. Quadrupole resonance scanner for narcotics detection

    NASA Astrophysics Data System (ADS)

    Shaw, Julian D.; Moeller, C. R.; Magnuson, Erik E.; Sheldon, Alan G.

    1994-10-01

    Interest in non-invasive, non-hazardous, bulk detection technologies for narcotics interdiction has risen over the last few years. As part of our continuing research and development programs in detection of narcotics and explosives using sensitive magnetic measuring devices, we present the first commercially available prototype Quadrupole Resonance (QR) scanner for narcotics detection. The portable narcotics detection system was designed in modular form such that a single QR base system could be easily used with a variety of custom detection heads. The QR system presented in this paper is suitable for scanning items up to 61 X 35 X 13 cm in size, and was designed to scan mail packages and briefcase-sized items for the presence of narcotics. System tests have shown that detection sensitivity is comparable that obtained in laboratory systems.

  8. Temporal analysis of multispectral scanner data.

    NASA Technical Reports Server (NTRS)

    Richardson, A. J.; Wiegand, C. L.; Torline, R. J.

    1973-01-01

    Multispectral scanner reflectance data were sampled for bare soil, cotton, sorghum, corn, and citrus at four dates during a growing season (April, May, June, and July 1969) to develop a time-dependent signature for crop and soil discrimination. Discrimination tests were conducted for single-date and multidate formats using training and test data sets. For classifications containing several crops, the multidate or temporal approach improved discrimination compared with the single-date approach. The multidate approach also preserved recognition accuracy better in going from training fields to test fields than the single-date analysis. The spectral distinctiveness of bare soil versus vegetation resulted in essentially equal discrimination using single-date versus multidate data for those two categories.

  9. The Skylab lunar multispectral scanner data

    NASA Technical Reports Server (NTRS)

    Seeger, C. R.; Potter, A. E.

    1984-01-01

    Skylab S-192 multispectral scanner data, in 12 bands covering wavelengths from 0.41 to 2.3 microns, have been investigated to identify and classify geologic units of the lunar surface. Seventeen spectral cluster classes have been identified, seven in the highlands, seven in the maria, and three of which occur in both or in border regions. This finding may be roughly indicative of the relative heterogeneity of these regions. It implies that there is as much heterogeneity in the highlands as in the maria. This work extends the spectral and aerial coverage of similar studies of the lunar surface and provides useful data for comparison for most of the lunar near side.

  10. 20. SITE BUILDING 002 SCANNER BUILDING IN COMPUTER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. SITE BUILDING 002 - SCANNER BUILDING - IN COMPUTER ROOM LOOKING AT "CONSOLIDATED MAINTENANCE OPERATIONS CENTER" JOB AREA AND OPERATION WORK CENTER. TASKS INCLUDE RADAR MAINTENANCE, COMPUTER MAINTENANCE, CYBER COMPUTER MAINTENANCE AND RELATED ACTIVITIES. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  11. 21. SITE BUILDING 002 SCANNER BUILDING LOOKING AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. SITE BUILDING 002 - SCANNER BUILDING - LOOKING AT DISC STORAGE SYSTEMS A AND B (A OR B ARE REDUNDANT SYSTEMS), ONE MAINFRAME COMPUTER ON LINE, ONE ON STANDBY WITH STORAGE TAPE, ONE ON STANDBY WITHOUT TAPE INSTALLED. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  12. Convenient integrating sphere scanner for accurate luminous flux measurements

    NASA Astrophysics Data System (ADS)

    Winter, S.; Lindemann, M.; Jordan, W.; Binder, U.; Anokhin, M.

    2009-08-01

    Measurement results and applications of a recently developed device for the measurement of the spatial uniformity of integrating spheres are presented. Due to the complexity of their implementation, sphere scanners are mainly used by national metrology institutes to increase the accuracy of relative and absolute luminous flux measurements (Ohno et al 1997 J. IES 26 107-14, Ohno and Daubach 2001 J. IES 30 105-15, Ohno 1998 Metrologia 35 473-8, Hovila et al 2004 Metrologia 41 407-13). The major drawback of traditional scanners for integrating spheres is the necessity of a complex and time-consuming sphere modification, as the lamp holder has to be replaced by a new scanner holder with additional cables for power supply and for communication with the stepping motor control unit (Ohno et al 1997 J. IES 26 107-14). Therefore, with traditional scanners the relative spatial sphere responsivity already changes due to the installation of a special scanner holder. The new scanner simply substitutes the lamp under test: it can be screwed into an E27 lamp socket, as it needs only two electrical contacts. Two wires are simultaneously used for the power supply of the stepping motor control unit, the scanner light source (LED) and for the signal transmission of commands and results. The benefits of scanner-assisted measurements are shown for spotlight lamp calibrations.

  13. Quantitative Assay for Starch by Colorimetry Using a Desktop Scanner

    ERIC Educational Resources Information Center

    Matthews, Kurt R.; Landmark, James D.; Stickle, Douglas F.

    2004-01-01

    The procedure to produce standard curve for starch concentration measurement by image analysis using a color scanner and computer for data acquisition and color analysis is described. Color analysis is performed by a Visual Basic program that measures red, green, and blue (RGB) color intensities for pixels within the scanner image.

  14. Laser excited confocal microscope fluorescence scanner and method

    DOEpatents

    Mathies, R.A.; Peck, K.

    1992-02-25

    A fluorescent scanner is designed for scanning the fluorescence from a fluorescence labeled separated sample on a sample carrier. The scanner includes a confocal microscope for illuminating a predetermined volume of the sample carrier and/or receiving and processing fluorescence emissions from the volume to provide a display of the separated sample. 8 figs.

  15. 19. SITE BUILDING 002 SCANNER BUILDING AIR POLICE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. SITE BUILDING 002 - SCANNER BUILDING - AIR POLICE SITE SECURITY OFFICE WITH "SITE PERIMETER STATUS PANEL" AND REAL TIME VIDEO DISPLAY OUTPUT FROM VIDEO CAMERA SYSTEM AT SECURITY FENCE LOCATIONS. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  16. 9. SITE BUILDING 002 SCANNER BUILDING LOOKING AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. SITE BUILDING 002 - SCANNER BUILDING - LOOKING AT "C" FACE RADAR SYSTEM EMITTER/ANTENNA. VIEW IS LOOKING SOUTH 30° EAST (NOTE: "C" FACE NOT IN USE AT FACILITY). - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  17. 29. SITE BUILDING 002 SCANNER BUILDING FLOOR 3A ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. SITE BUILDING 002 - SCANNER BUILDING - FLOOR 3A ("A" FACE) AT SYSTEM LAYOUT GRID 17. GENERAL OBLIQUE VIEW OF "A" FACE INTERIOR SHOWING RADAR EMITTER/ANTENNA INTERFACE ELECTRONICS. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  18. 25. SITE BUILDING 002 SCANNER BUILDING OPERATIONS CENTER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. SITE BUILDING 002 - SCANNER BUILDING - OPERATIONS CENTER - MWOC IN OPERATION AT 1930 ZULU TIME, 26 OCTOBER, 1999. MWOC SCREEN ALSO SHOWS RADAR "FACE A" AND "FACE B" ACTIVE STATUS. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  19. 10. SITE BUILDING 002 SCANNER BUILDING LOOKING AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. SITE BUILDING 002 - SCANNER BUILDING - LOOKING AT SOUTHWEST CORNER "B" FACE AND "C" FACE ON WEST AND EVAPORATIVE COOLING TOWER AT NORTH. VIEW IS LOOKING NORTH 45° EAST. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  20. 5. SITE BUILDING 002 SCANNER BUILDING AT "A" ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. SITE BUILDING 002 - SCANNER BUILDING - AT "A" FACE (ON SOUTH SIDE) LOOKING DIRECTLY UP RADAR SYSTEM EMITTER/ANTENNA ARRAY FACE WITH 90MM STANDARD LENS. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA