Science.gov

Sample records for tesla mri scanner

  1. Human brain diffusion tensor imaging at submillimeter isotropic resolution on a 3Tesla clinical MRI scanner.

    PubMed

    Chang, Hing-Chiu; Sundman, Mark; Petit, Laurent; Guhaniyogi, Shayan; Chu, Mei-Lan; Petty, Christopher; Song, Allen W; Chen, Nan-kuei

    2015-09-01

    The advantages of high-resolution diffusion tensor imaging (DTI) have been demonstrated in a recent post-mortem human brain study (Miller et al., NeuroImage 2011;57(1):167-181), showing that white matter fiber tracts can be much more accurately detected in data at a submillimeter isotropic resolution. To our knowledge, in vivo human brain DTI at a submillimeter isotropic resolution has not been routinely achieved yet because of the difficulty in simultaneously achieving high resolution and high signal-to-noise ratio (SNR) in DTI scans. Here we report a 3D multi-slab interleaved EPI acquisition integrated with multiplexed sensitivity encoded (MUSE) reconstruction, to achieve high-quality, high-SNR and submillimeter isotropic resolution (0.85×0.85×0.85mm(3)) in vivo human brain DTI on a 3Tesla clinical MRI scanner. In agreement with the previously reported post-mortem human brain DTI study, our in vivo data show that the structural connectivity networks of human brains can be mapped more accurately and completely with high-resolution DTI as compared with conventional DTI (e.g., 2×2×2mm(3)). PMID:26072250

  2. Simulation Study on Active Noise Control for a 4 Tesla MRI Scanner

    PubMed Central

    Li, Mingfeng; Lim, Teik C.; Lee, Jing-Huei

    2008-01-01

    The purpose of this work is to study computationally the possibility of the application of a hybrid active noise control technique for MRI acoustic noise reduction. A hybrid control system combined with both feedforward and feedback loops embedded is proposed for potential application on active MRI noise reduction. A set of computational simulation studies were performed. Sets of MRI acoustic noise emissions measured at the patient's left ear location were recorded and used in the simulation study. By comparing three different control systems, namely the feedback, the feedforward and the hybrid control, our results revealed that the hybrid control system is the most effective. The hybrid control system achieved approximately a 20 dB reduction at the principal frequency component. We concluded that the proposed hybrid active control scheme could have a potential application for MRI scanner noise reduction. PMID:18060719

  3. MRI acquisition. Scanning was performed on a 3.0-Tesla Philips Intera Achieva scanner using a standard bird-cage 8-channel head coil at the Vanderbilt

    E-print Network

    Tong, Frank

    Methods MRI acquisition. Scanning was performed on a 3.0-Tesla Philips Intera Achieva scanner using a standard bird-cage 8-channel head coil at the Vanderbilt University Institute of Imaging Science. A high to the reliability of their responses to the visual field localizer using a t-statistic. To facilitate comparison

  4. In Situ Active Control of Noise in a 4-Tesla MRI Scanner

    PubMed Central

    Li, Mingfeng; Rudd, Brent; Lim, Teik C.; Lee, Jing-Huei

    2011-01-01

    Purpose To evaluate the effectiveness of the proposed active noise control (ANC) system for the reduction of the acoustic noise emission generated by a 4 T MRI scanner during operation and to assess the feasibility of developing an ANC device that can be deployed in situ. Materials and Methods Three typical scanning sequences, namely EPI (echo planar imaging), GEMS (gradient echo multi-slice) and MDEFT (Modified Driven Equilibrium Fourier Transform), were used for evaluating the performance of the ANC system, which was composed of a magnetic compatible headset and a multiple reference feedforward filtered-x least mean square controller. Results The greatest reduction, about 55 dB, was achieved at the harmonic at a frequency of 1.3 kHz in the GEMS case. Approximately 21 dB and 30 dBA overall reduction was achieved for GEMS noise across the entire audible frequency range. For the MDEFT sequence, the control system achieved 14 dB and 14 dBA overall reduction in the audible frequency range, while 13 dB and 14 dBA reduction was obtained for the EPI case. Conclusion The result is highly encouraging because it shows great potential for treating MRI noise with an ANC application during real time scanning. PMID:21751284

  5. An RF dosimeter for independent SAR measurement in MRI scanners

    SciTech Connect

    Qian, Di; Bottomley, Paul A.; El-Sharkawy, AbdEl-Monem M.; Edelstein, William A.

    2013-12-15

    Purpose: The monitoring and management of radio frequency (RF) exposure is critical for ensuring magnetic resonance imaging (MRI) safety. Commercial MRI scanners can overestimate specific absorption rates (SAR) and improperly restrict clinical MRI scans or the application of new MRI sequences, while underestimation of SAR can lead to tissue heating and thermal injury. Accurate scanner-independent RF dosimetry is essential for measuring actual exposure when SAR is critical for ensuring regulatory compliance and MRI safety, for establishing RF exposure while evaluating interventional leads and devices, and for routine MRI quality assessment by medical physicists. However, at present there are no scanner-independent SAR dosimeters. Methods: An SAR dosimeter with an RF transducer comprises two orthogonal, rectangular copper loops and a spherical MRI phantom. The transducer is placed in the magnet bore and calibrated to approximate the resistive loading of the scanner's whole-body birdcage RF coil for human subjects in Philips, GE and Siemens 3 tesla (3T) MRI scanners. The transducer loop reactances are adjusted to minimize interference with the transmit RF field (B{sub 1}) at the MRI frequency. Power from the RF transducer is sampled with a high dynamic range power monitor and recorded on a computer. The deposited power is calibrated and tested on eight different MRI scanners. Whole-body absorbed power vs weight and body mass index (BMI) is measured directly on 26 subjects. Results: A single linear calibration curve sufficed for RF dosimetry at 127.8 MHz on three different Philips and three GE 3T MRI scanners. An RF dosimeter operating at 123.2 MHz on two Siemens 3T scanners required a separate transducer and a slightly different calibration curve. Measurement accuracy was ?3%. With the torso landmarked at the xiphoid, human adult whole?body absorbed power varied approximately linearly with patient weight and BMI. This indicates that whole-body torso SAR is on average independent of the imaging subject, albeit with fluctuations. Conclusions: Our 3T RF dosimeter and transducers accurately measure RF exposure in body-equivalent loads and provide scanner-independent assessments of whole-body RF power deposition for establishing safety compliance useful for MRI sequence and device testing.

  6. Combined PET/MRI scanner

    DOEpatents

    Schlyer, David (Bellport, NY); Woody, Craig L. (Setauket, NY); Rooney, William (Miller Place, NY); Vaska, Paul (Sound Beach, NY); Stoll, Sean (Wading River, NY); Pratte, Jean-Francois (Stony Brook, NY); O'Connor, Paul (Bellport, NY)

    2007-10-23

    A combined PET/MRI scanner generally includes a magnet for producing a magnetic field suitable for magnetic resonance imaging, a radiofrequency (RF) coil disposed within the magnetic field produced by the magnet and a ring tomograph disposed within the magnetic field produced by the magnet. The ring tomograph includes a scintillator layer for outputting at least one photon in response to an annihilation event, a detection array coupled to the scintillator layer for detecting the at least one photon outputted by the scintillator layer and for outputting a detection signal in response to the detected photon and a front-end electronic array coupled to the detection array for receiving the detection signal, wherein the front-end array has a preamplifier and a shaper network for conditioning the detection signal.

  7. Dynamic Contrast-Enhanced MRI Parameters as Biomarkers in Assessing Head and Neck Lesions After Chemoradiotherapy Using a Wide-Bore 3 Tesla Scanner.

    PubMed

    Lerant, Gergely; Sarkozy, Peter; Takacsi-Nagy, Zoltan; Polony, Gabor; Tamas, Laszlo; Toth, Erika; Boer, Andras; Javor, Laszlo; Godeny, Maria

    2015-09-01

    Pilot studies have shown promising results in characterizing head and neck tumors (HNT) using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), differentiating between malignant and benign lesions and evaluating changes in response to chemoradiotherapy (CRT). Our aim was to find DCE-MRI parameters, biomarkers in evaluating the post-CRT status. Two hundred and five patients with head and neck lesions were examined with DCE-MRI sequences. The time intensity curves (TIC) were extracted and processed to acquire time-to-peak (TTP), relative maximum enhancement (RME), relative wash-out (RWO), and two new parameters attack and decay. These parameters were analyzed using univariate tests in SPSS (Statistical Package for the Social Sciences, version 17, SPSS Inc. Chicago, USA) to identify parameters that could be used to infer tumor malignancy and post-CRT changes. Multiple parameters of curve characteristics were significantly different between malignant tumors after CRT (MACRT) and changes caused by CRT. The best-performing biomarkers were the attack and the decay. We also found multiple significant (p < 0.05) parameters for both the benign and malignant status as well as pre- and post-CRT status. Our large cohort of data supports the increasing role of DCE-MRI in HNT differentiation, particularly for the assessment of post-CRT status along with accurate morphological imaging. PMID:25920367

  8. Mapping local hippocampal changes in Alzheimer's disease and normal ageing with MRI at 3 Tesla

    E-print Network

    Thompson, Paul

    Mapping local hippocampal changes in Alzheimer's disease and normal ageing with MRI at 3 Tesla and Alzheimer's disease based on high resolution MRI at 3 Tesla. T1-weighted images were acquired from 19

  9. BRIEF COMMUNICATION A 7 Tesla fMRI Study of Amygdala Responses to Fearful Faces

    E-print Network

    Hadjikhani, Nouchine

    BRIEF COMMUNICATION A 7 Tesla fMRI Study of Amygdala Responses to Fearful Faces Wietske van der field strength. In this study, the feasibility of fMRI in the amygdalae at 7 Tesla was investigated in a fearful face depends on stimulus duration. Keywords Amygdala Á fMRI Á 7 Tesla Á Fear Á Face perception

  10. Acute vertigo in an anesthesia provider during exposure to a 3T MRI scanner

    PubMed Central

    Gorlin, Andrew; Hoxworth, Joseph M; Pavlicek, William; Thunberg, Christopher A; Seamans, David

    2015-01-01

    Vertigo induced by exposure to the magnetic field of a magnetic resonance imaging (MRI) scanner is a well-known phenomenon within the radiology community but is not widely appreciated by other clinical specialists. Here, we describe a case of an anesthetist experiencing acute vertigo while providing sedation to a patient undergoing a 3 Tesla MRI scan. After discussing previous reports, and the evidence surrounding MRI-induced vertigo, we review potential etiologies that include the effects of both static and time-varying magnetic fields on the vestibular apparatus. We conclude our review by discussing the occupational standards that exist for MRI exposure and methods to minimize the risks of MRI-induced vertigo for clinicians working in the MRI environment. PMID:25792858

  11. Acute vertigo in an anesthesia provider during exposure to a 3T MRI scanner.

    PubMed

    Gorlin, Andrew; Hoxworth, Joseph M; Pavlicek, William; Thunberg, Christopher A; Seamans, David

    2015-01-01

    Vertigo induced by exposure to the magnetic field of a magnetic resonance imaging (MRI) scanner is a well-known phenomenon within the radiology community but is not widely appreciated by other clinical specialists. Here, we describe a case of an anesthetist experiencing acute vertigo while providing sedation to a patient undergoing a 3 Tesla MRI scan. After discussing previous reports, and the evidence surrounding MRI-induced vertigo, we review potential etiologies that include the effects of both static and time-varying magnetic fields on the vestibular apparatus. We conclude our review by discussing the occupational standards that exist for MRI exposure and methods to minimize the risks of MRI-induced vertigo for clinicians working in the MRI environment. PMID:25792858

  12. Speech Perception in MRI Scanner Noise by Persons with Aphasia

    ERIC Educational Resources Information Center

    Healy, Eric W.; Moser, Dana C.; Morrow-Odom, K. Leigh; Hall, Deborah A.; Fridriksson, Julius

    2007-01-01

    Purpose: To examine reductions in performance on auditory tasks by aphasic and neurologically intact individuals as a result of concomitant magnetic resonance imaging (MRI) scanner noise. Method: Four tasks together forming a continuum of linguistic complexity were developed. They included complex-tone pitch discrimination, same-different…

  13. Sodium MRI of the human kidney at 3 Tesla.

    PubMed

    Maril, Nimrod; Rosen, Yael; Reynolds, Glenn H; Ivanishev, Alex; Ngo, Long; Lenkinski, Robert E

    2006-12-01

    The sodium concentration gradient in the kidney (from the cortex to the medulla) serves to regulate fluid homeostasis and is tightly coupled to renal function. It was previously shown that renal function and pathophysiology can be characterized in rat kidneys by measuring the sodium gradient with (23)Na MRI. This study demonstrates for the first time the ability of (23)Na MRI to map the distribution of sodium in the human kidney and to quantify the corticomedullary sodium gradient. The study was performed on a 3T Signa LX scanner (GE) using an in-house-built quadrature surface coil. (23)Na images of volunteers were acquired using a 3D coronal gradient-echo sequence at a spatial resolution of 0.3 x 0.3 x 1.5 cm(3) in a 25-min scan time. The signal intensity (relative to the noise) increased linearly from the cortex to each of the medullae with a mean slope of 1.6 +/- 0.2 in relative arbitrary units per mm (Rel.u./mm, N = 6) and then decreased, as expected, toward the renal pelvis. Water deprivation (12 hr) induced a significant increase of 25% (P < 0.05) in this gradient. Based on these results, we suggest that sodium MRI can serve as a valuable noninvasive method for functional imaging of the human kidney. PMID:17089361

  14. fMRI Scanner Noise Interaction with Affective Neural Processes

    PubMed Central

    Skouras, Stavros; Gray, Marcus; Critchley, Hugo; Koelsch, Stefan

    2013-01-01

    The purpose of the present study was the investigation of interaction effects between functional MRI scanner noise and affective neural processes. Stimuli comprised of psychoacoustically balanced musical pieces, expressing three different emotions (fear, neutral, joy). Participants (N=34, 19 female) were split into two groups, one subjected to continuous scanning and another subjected to sparse temporal scanning that features decreased scanner noise. Tests for interaction effects between scanning group (sparse/quieter vs continuous/noisier) and emotion (fear, neutral, joy) were performed. Results revealed interactions between the affective expression of stimuli and scanning group localized in bilateral auditory cortex, insula and visual cortex (calcarine sulcus). Post-hoc comparisons revealed that during sparse scanning, but not during continuous scanning, BOLD signals were significantly stronger for joy than for fear, as well as stronger for fear than for neutral in bilateral auditory cortex. During continuous scanning, but not during sparse scanning, BOLD signals were significantly stronger for joy than for neutral in the left auditory cortex and for joy than for fear in the calcarine sulcus. To the authors' knowledge, this is the first study to show a statistical interaction effect between scanner noise and affective processes and extends evidence suggesting scanner noise to be an important factor in functional MRI research that can affect and distort affective brain processes. PMID:24260420

  15. MAPPING HUMAN BRAIN FUNCTION WITH MRI AT 7 TESLA Xiaoping HU, Essa YACOUB, Josef PFEUFFER, Amir SCHUMEL,

    E-print Network

    MAPPING HUMAN BRAIN FUNCTION WITH MRI AT 7 TESLA Xiaoping HU, Essa YACOUB, Josef PFEUFFER, Amir of the BOLD response to neural activity increase with the field strength. With the establishment of a 7 Tesla at a magnetic field strength that significantly exceeds 4 Tesla. Functional mapping using echo-planar imaging

  16. In Vivo High-Resolution 7 Tesla MRI Shows Early and Diffuse Cortical Alterations in CADASIL

    PubMed Central

    De Guio, François; Reyes, Sonia; Vignaud, Alexandre; Duering, Marco; Ropele, Stefan; Duchesnay, Edouard; Chabriat, Hugues; Jouvent, Eric

    2014-01-01

    Background and Purpose Recent data suggest that early symptoms may be related to cortex alterations in CADASIL (Cerebral Autosomal-Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy), a monogenic model of cerebral small vessel disease (SVD). The aim of this study was to investigate cortical alterations using both high-resolution T2* acquisitions obtained with 7 Tesla MRI and structural T1 images with 3 Tesla MRI in CADASIL patients with no or only mild symptomatology (modified Rankin’s scale ?1 and Mini Mental State Examination (MMSE) ?24). Methods Complete reconstructions of the cortex using 7 Tesla T2* acquisitions with 0.7 mm isotropic resolution were obtained in 11 patients (52.1±13.2 years, 36% male) and 24 controls (54.8±11.0 years, 42% male). Seven Tesla T2* within the cortex and cortical thickness and morphology obtained from 3 Tesla images were compared between CADASIL and control subjects using general linear models. Results MMSE, brain volume, cortical thickness and global sulcal morphology did not differ between groups. By contrast, T2* measured by 7 Tesla MRI was significantly increased in frontal, parietal, occipital and cingulate cortices in patients after correction for multiple testing. These changes were not related to white matter lesions, lacunes or microhemorrhages in patients having no brain atrophy compared to controls. Conclusions Seven Tesla MRI, by contrast to state of the art post-processing of 3 Tesla acquisitions, shows diffuse T2* alterations within the cortical mantle in CADASIL whose origin remains to be determined. PMID:25165824

  17. Improved assessment of ex vivo brainstem neuroanatomy with high-resolution MRI and DTI at 7 Tesla.

    PubMed

    Soria, Guadalupe; De Notaris, Matteo; Tudela, Raúl; Blasco, Gerard; Puig, Josep; Planas, Anna M; Pedraza, Salvador; Prats-Galino, Alberto

    2011-06-01

    The aim of the present work was to provide the topography of the main gray nuclei and white matter tracts of the human brainstem at 7 Tesla (7 T) high-field magnetic resonance imaging (MRI) using structural imaging (T1) and diffusion tensor imaging (DTI). Both imaging techniques represent a new field of increasing interest for its potential neuroanatomic and neuropathologic value. Brainstems were obtained postmortem from human donors, fixated by intracarotid perfusion of 10% neutral buffered formalin, and scanned in a Bruker BioSpec 7 T horizontal scanner. 3D-data sets were acquired using the modified driven equilibrium Fourier transform (MDEFT) sequence and Spin Echo-DTI (SE-DTI) sequence was used for DTI acquisition. High-resolution structural MRI and DTI of the human brainstem acquired postmortem reveals its basic cyto- and myeloar-chitectonic organization, only visualized to this moment by histological techniques and higher magnetic field strengths. Brainstem structures that are usually not observed with lower magnetic fields were now topographically identified at midbrain, pons, and medullar levels. The application of high-resolution structural MRI will contribute to precisely determine the extension and topography of brain lesions. Indeed, the current findings will be useful to interpret future high-resolution in vivo MRI studies in living humans. PMID:21542138

  18. Rapid Proton Density Weighted Abdominal MRI at 3 Tesla With RF Non-Uniformity Correction , and K. S. Nayak1

    E-print Network

    Southern California, University of

    on signal intensity is performed. This work presents a retrospective approach to correct RF transmit-gradient-echo (SPGR) MRI. We hypothesize that a set of rapid breath-hold scans can be acquired to provide RF transmitRapid Proton Density Weighted Abdominal MRI at 3 Tesla With RF Non-Uniformity Correction H. H. Hu1

  19. MRI compatible small animal monitoring and trigger system for whole body scanners.

    PubMed

    Herrmann, Karl-Heinz; Pfeiffer, Norman; Krumbein, Ines; Herrmann, Lutz; Reichenbach, Jürgen R

    2014-03-01

    Performing magnetic resonance imaging (MRI) experiments with small animals requires continuous monitoring of vital parameters, especially the respiration rate. Clinical whole-body MR scanners represent an attractive option for preclinical imaging as dedicated animal scanners are cost-intensive in both investment and maintenance, thus limiting their availability. Even though impressive image quality is achievable with clinical MR systems in combination with special coils, their built-in physiologic monitoring and triggering units are often not suited for small animal imaging. In this work, we present a simple, MRI compatible low cost solution to monitor the respiration and heart rate of small animals in a clinical whole-body MR scanner. The recording and processing of the biosignals as well as the optimisation of the respiratory trigger generation is decribed. Additionally rat and mouse in-vivo MRI experiments are presented to illustrate the effectiveness of the monitoring and respiratory trigger system in suppressing motion artifacts. PMID:23962379

  20. Comprehensive MRI simulation methodology using a dedicated MRI scanner in radiation oncology for external beam radiation treatment planning

    SciTech Connect

    Paulson, Eric S.; Erickson, Beth; Schultz, Chris; Allen Li, X.

    2015-01-15

    Purpose: The use of magnetic resonance imaging (MRI) in radiation oncology is expanding rapidly, and more clinics are integrating MRI into their radiation therapy workflows. However, radiation therapy presents a new set of challenges and places additional constraints on MRI compared to diagnostic radiology that, if not properly addressed, can undermine the advantages MRI offers for radiation treatment planning (RTP). The authors introduce here strategies to manage several challenges of using MRI for virtual simulation in external beam RTP. Methods: A total of 810 clinical MRI simulation exams were performed using a dedicated MRI scanner for external beam RTP of brain, breast, cervix, head and neck, liver, pancreas, prostate, and sarcoma cancers. Patients were imaged in treatment position using MRI-optimal immobilization devices. Radiofrequency (RF) coil configurations and scan protocols were optimized based on RTP constraints. Off-resonance and gradient nonlinearity-induced geometric distortions were minimized or corrected prior to using images for RTP. A multidisciplinary MRI simulation guide, along with window width and level presets, was created to standardize use of MR images during RTP. A quality assurance program was implemented to maintain accuracy and repeatability of MRI simulation exams. Results: The combination of a large bore scanner, high field strength, and circumferentially wrapped, flexible phased array RF receive coils permitted acquisition of thin slice images with high contrast-to-noise ratio (CNR) and image intensity uniformity, while simultaneously accommodating patient setup and immobilization devices. Postprocessing corrections and alternative acquisition methods were required to reduce or correct off-resonance and gradient nonlinearity induced geometric distortions. Conclusions: The methodology described herein contains practical strategies the authors have implemented through lessons learned performing clinical MRI simulation exams. In their experience, these strategies provide robust, high fidelity, high contrast MR images suitable for external beam RTP.

  1. MR Scanner Systems Should Be Adequately Characterized in Diffusion-MRI of the Breast

    PubMed Central

    Giannelli, Marco; Sghedoni, Roberto; Iacconi, Chiara; Iori, Mauro; Traino, Antonio Claudio; Guerrisi, Maria; Mascalchi, Mario; Toschi, Nicola; Diciotti, Stefano

    2014-01-01

    Breast imaging represents a relatively recent and promising field of application of quantitative diffusion-MRI techniques. In view of the importance of guaranteeing and assessing its reliability in clinical as well as research settings, the aim of this study was to specifically characterize how the main MR scanner system-related factors affect quantitative measurements in diffusion-MRI of the breast. In particular, phantom acquisitions were performed on three 1.5 T MR scanner systems by different manufacturers, all equipped with a dedicated multi-channel breast coil as well as acquisition sequences for diffusion-MRI of the breast. We assessed the accuracy, inter-scan and inter-scanner reproducibility of the mean apparent diffusion coefficient measured along the main orthogonal directions () as well as of diffusion-tensor imaging (DTI)-derived mean diffusivity (MD) measurements. Additionally, we estimated spatial non-uniformity of (NU) and MD (NUMD) maps. We showed that the signal-to-noise ratio as well as overall calibration of high strength diffusion gradients system in typical acquisition sequences for diffusion-MRI of the breast varied across MR scanner systems, introducing systematic bias in the measurements of diffusion indices. While and MD values were not appreciably different from each other, they substantially varied across MR scanner systems. The mean of the accuracies of measured and MD was in the range [?2.3%,11.9%], and the mean of the coefficients of variation for and MD measurements across MR scanner systems was 6.8%. The coefficient of variation for repeated measurements of both and MD was < 1%, while NU and NUMD values were <4%. Our results highlight that MR scanner system-related factors can substantially affect quantitative diffusion-MRI of the breast. Therefore, a specific quality control program for assessing and monitoring the performance of MR scanner systems for diffusion-MRI of the breast is highly recommended at every site, especially in multicenter and longitudinal studies. PMID:24489711

  2. MR scanner systems should be adequately characterized in diffusion-MRI of the breast.

    PubMed

    Giannelli, Marco; Sghedoni, Roberto; Iacconi, Chiara; Iori, Mauro; Traino, Antonio Claudio; Guerrisi, Maria; Mascalchi, Mario; Toschi, Nicola; Diciotti, Stefano

    2014-01-01

    Breast imaging represents a relatively recent and promising field of application of quantitative diffusion-MRI techniques. In view of the importance of guaranteeing and assessing its reliability in clinical as well as research settings, the aim of this study was to specifically characterize how the main MR scanner system-related factors affect quantitative measurements in diffusion-MRI of the breast. In particular, phantom acquisitions were performed on three 1.5 T MR scanner systems by different manufacturers, all equipped with a dedicated multi-channel breast coil as well as acquisition sequences for diffusion-MRI of the breast. We assessed the accuracy, inter-scan and inter-scanner reproducibility of the mean apparent diffusion coefficient measured along the main orthogonal directions () as well as of diffusion-tensor imaging (DTI)-derived mean diffusivity (MD) measurements. Additionally, we estimated spatial non-uniformity of (NU) and MD (NUMD) maps. We showed that the signal-to-noise ratio as well as overall calibration of high strength diffusion gradients system in typical acquisition sequences for diffusion-MRI of the breast varied across MR scanner systems, introducing systematic bias in the measurements of diffusion indices. While and MD values were not appreciably different from each other, they substantially varied across MR scanner systems. The mean of the accuracies of measured and MD was in the range [-2.3%,11.9%], and the mean of the coefficients of variation for and MD measurements across MR scanner systems was 6.8%. The coefficient of variation for repeated measurements of both and MD was < 1%, while NU and NUMD values were <4%. Our results highlight that MR scanner system-related factors can substantially affect quantitative diffusion-MRI of the breast. Therefore, a specific quality control program for assessing and monitoring the performance of MR scanner systems for diffusion-MRI of the breast is highly recommended at every site, especially in multicenter and longitudinal studies. PMID:24489711

  3. Small PET scanner based on MRI-compatible light sensor

    NASA Astrophysics Data System (ADS)

    Molnar, J.; Balkay, L.; Berenyi, E.

    2015-03-01

    Improving the quality of life of elderly people requires diagnostic and therapeutic capabilities for diseases of the central nervous system, such as Alzheimer's, Parkinson's, and epilepsy which have a rapidly growing impact on society. Minimallyinvasive imaging technologies such as PET and MRI allow for monitoring and tracking these illnesses, starting from their preliminary manifestations.

  4. Clinical Evaluation of Stereotactic Target Localization Using 3-Tesla MRI for Radiosurgery Planning

    SciTech Connect

    MacFadden, Derek; Zhang Beibei; Brock, Kristy K.; Hodaie, Mojgan; Laperriere, Normand; Schwartz, Michael; Tsao, May; Stainsby, Jeffrey; Lockwood, Gina; Mikulis, David; Menard, Cynthia

    2010-04-15

    Purpose: Increasing the magnetic resonance imaging (MRI) field strength can improve image resolution and quality, but concerns remain regarding the influence on geometric fidelity. The objectives of the present study were to spatially investigate the effect of 3-Tesla (3T) MRI on clinical target localization for stereotactic radiosurgery. Methods and Materials: A total of 39 patients were enrolled in a research ethics board-approved prospective clinical trial. Imaging (1.5T and 3T MRI and computed tomography) was performed after stereotactic frame placement. Stereotactic target localization at 1.5T vs. 3T was retrospectively analyzed in a representative cohort of patients with tumor (n = 4) and functional (n = 5) radiosurgical targets. The spatial congruency of the tumor gross target volumes was determined by the mean discrepancy between the average gross target volume surfaces at 1.5T and 3T. Reproducibility was assessed by the displacement from an averaged surface and volume congruency. Spatial congruency and the reproducibility of functional radiosurgical targets was determined by comparing the mean and standard deviation of the isocenter coordinates. Results: Overall, the mean absolute discrepancy across all patients was 0.67 mm (95% confidence interval, 0.51-0.83), significantly <1 mm (p < .010). No differences were found in the overall interuser target volume congruence (mean, 84% for 1.5T vs. 84% for 3T, p > .4), and the gross target volume surface mean displacements were similar within and between users. The overall average isocenter coordinate discrepancy for the functional targets at 1.5T and 3T was 0.33 mm (95% confidence interval, 0.20-0.48), with no patient-specific differences between the mean values (p >.2) or standard deviations (p >.1). Conclusion: Our results have provided clinically relevant evidence supporting the spatial validity of 3T MRI for use in stereotactic radiosurgery under the imaging conditions used.

  5. Layer-Specific Manganese-Enhanced MRI of the Diabetic Rat Retina in Light and Dark Adaptation at 11.7 Tesla

    E-print Network

    Duong, Timothy Q.

    Adaptation at 11.7 Tesla Eric R. Muir,1,2 Saurav B. Chandra,1 Bryan H. De La Garza,1 Chakradhar Velagapudi,3- enhanced MRI of the diabetic rat retina in light and dark adaptation at 11.7 tesla. Invest Ophthalmol Vis

  6. Development of a PET Scanner for Simultaneously Imaging Small Animals with MRI and PET

    PubMed Central

    Thompson, Christopher J; Goertzen, Andrew L; Thiessen, Jonathan D; Bishop, Daryl; Stortz, Greg; Kozlowski, Piotr; Retière, Fabrice; Zhang, Xuezhu; Sossi, Vesna

    2014-01-01

    Recently, positron emission tomography (PET) is playing an increasingly important role in the diagnosis and staging of cancer. Combined PET and X-ray computed tomography (PET-CT) scanners are now the modality of choice in cancer treatment planning. More recently, the combination of PET and magnetic resonance imaging (MRI) is being explored in many sites. Combining PET and MRI has presented many challenges since the photo-multiplier tubes (PMT) in PET do not function in high magnetic fields, and conventional PET detectors distort MRI images. Solid state light sensors like avalanche photo-diodes (APDs) and more recently silicon photo-multipliers (SiPMs) are much less sensitive to magnetic fields thus easing the compatibility issues. This paper presents the results of a group of Canadian scientists who are developing a PET detector ring which fits inside a high field small animal MRI scanner with the goal of providing simultaneous PET and MRI images of small rodents used in pre-clinical medical research. We discuss the evolution of both the crystal blocks (which detect annihilation photons from positron decay) and the SiPM array performance in the last four years which together combine to deliver significant system performance in terms of speed, energy and timing resolution. PMID:25120157

  7. Characterization of Ballistocardiogram Recorded at 1.5 and 3.0 Tesla in Simultaneous EEG-fMRI Zempel, J. M., Vincent, J. L., Larson-Prior, L. J., and Snyder, A. Z.

    E-print Network

    Larson-Prior, Linda

    Characterization of Ballistocardiogram Recorded at 1.5 and 3.0 Tesla in Simultaneous EEG of BKG at 1.5 and 3.0 Tesla: ·3 subjects Experimental protocol: ·Functional images were simultaneously in the scanner (1.5 and 3 Tesla) with the same EEG equipment (amplifier, cap, cables) in consecutive sessions. ·3

  8. Three-dimensional contrasted visualization of pancreas in rats using clinical MRI and CT scanners.

    PubMed

    Yin, Ting; Coudyzer, Walter; Peeters, Ronald; Liu, Yewei; Cona, Marlein Miranda; Feng, Yuanbo; Xia, Qian; Yu, Jie; Jiang, Yansheng; Dymarkowski, Steven; Huang, Gang; Chen, Feng; Oyen, Raymond; Ni, Yicheng

    2015-09-01

    The purpose of this work was to visualize the pancreas in post-mortem rats with local contrast medium infusion by three-dimensional (3D) magnetic resonance imaging (MRI) and computed tomography (CT) using clinical imagers. A total of 16 Sprague Dawley rats of about 300?g were used for the pancreas visualization. Following the baseline imaging, a mixed contrast medium dye called GadoIodo-EB containing optimized concentrations of Gd-DOTA, iomeprol and Evens blue was infused into the distally obstructed common bile duct (CBD) for post-contrast imaging with 3.0?T MRI and 128-slice CT scanners. Images were post-processed with the MeVisLab software package. MRI findings were co-registered with CT scans and validated with histomorphology, with relative contrast ratios quantified. Without contrast enhancement, the pancreas was indiscernible. After infusion of GadoIodo-EB solution, only the pancreatic region became outstandingly visible, as shown by 3D rendering MRI and CT and proven by colored dissection and histological examinations. The measured volume of the pancreas averaged 1.12?±?0.04?cm(3) after standardization. Relative contrast ratios were 93.28?±?34.61% and 26.45?±?5.29% for MRI and CT respectively. We have developed a multifunctional contrast medium dye to help clearly visualize and delineate rat pancreas in situ using clinical MRI and CT scanners. The topographic landmarks thus created with 3D demonstration may help to provide guidelines for the next in vivo pancreatic MRI research in rodents. Copyright © 2015 John Wiley & Sons, Ltd. PMID:25876187

  9. Qualification test of a MPPC-based PET module for future MRI-PET scanners

    NASA Astrophysics Data System (ADS)

    Kurei, Y.; Kataoka, J.; Kato, T.; Fujita, T.; Funamoto, H.; Tsujikawa, T.; Yamamoto, S.

    2014-11-01

    We have developed a high-resolution, compact Positron Emission Tomography (PET) module for future use in MRI-PET scanners. The module consists of large-area, 4×4 ch MPPC arrays (Hamamatsu S11827-3344MG) optically coupled with Ce:LYSO scintillators fabricated into 12×12 matrices of 1×1 mm2 pixels. At this stage, a pair of module and coincidence circuits was assembled into an experimental prototype gantry arranged in a ring of 90 mm in diameter to form the MPPC-based PET system. The PET detector ring was then positioned around the RF coil of the 4.7 T MRI system. We took an image of a point 22Na source under fast spin echo (FSE) and gradient echo (GE), in order to measure interference between the MPPC-based PET and the MRI. We only found a slight degradation in the spatial resolution of the PET image from 1.63 to 1.70 mm (FWHM; x-direction), or 1.48-1.55 mm (FWHM; y-direction) when operating with the MRI, while the signal-to-noise ratio (SNR) of the MRI image was only degraded by 5%. These results encouraged us to develop a more advanced version of the MRI-PET gantry with eight MPPC-based PET modules, whose detailed design and first qualification test are also presented in this paper.

  10. High resolution MRI anatomy of the cat brain at 3 Tesla

    PubMed Central

    Gray-Edwards, Heather L.; Salibi, Nouha; Josephson, Eleanor M.; Hudson, Judith A.; Cox, Nancy R.; Randle, Ashley N.; McCurdy, Victoria J.; Bradbury, Allison M.; Wilson, Diane U.; Beyers, Ronald J.; Denney, Thomas S.; Martin, Douglas R.

    2014-01-01

    Background Feline models of neurologic diseases, such as lysosomal storage diseases, leukodystrophies, Parkinson’s disease, stroke and NeuroAIDS, accurately recreate many aspects of human disease allowing for comparative study of neuropathology and the testing of novel therapeutics. Here we describe in vivo visualization of fine structures within the feline brain that were previously only visible post mortem. New Method 3 Tesla MR images were acquired using T1-weighted (T1w) 3D magnetization-prepared rapid gradient echo (MPRAGE) sequence (0.4mm isotropic resolution) and T2-weighted (T2w) turbo spin echo (TSE) images (0.3×0.3×1 mm3 resolution). Anatomic structures were identified based on feline and canine histology. Results T2w high resolution MR images with detailed structural identification are provided in transverse, sagittal and dorsal planes. T1w MR images are provided electronically in three dimensions for unrestricted spatial evaluation. Comparison with Existing Methods Many areas of the feline brain previously unresolvable on MRI are clearly visible in three orientations, including the dentate, interpositus and fastigial cerebellar nuclei, cranial nerves, lateral geniculate nucleus, optic radiation, cochlea, caudal colliculus, temporal lobe, precuneus, spinocerebellar tract, vestibular nuclei, reticular formation, pyramids and rostral and middle cerebral arteries. Additionally, the feline brain is represented in 3 dimensions for the first time. Conclusions These data establish normal appearance of detailed anatomical structures of the feline brain, which provide reference when evaluating neurologic disease or testing efficacy of novel therapeutics in animal models. PMID:24525327

  11. Evaluation of Artifacts and Distortions of Titanium Applicators on 3.0-Tesla MRI: Feasibility of Titanium Applicators in MRI-Guided Brachytherapy for Gynecological Cancer

    SciTech Connect

    Kim, Yusung; Muruganandham, Manickam; Modrick, Joseph M.; Bayouth, John E.

    2011-07-01

    Purpose: The aim of this study was to characterize the levels of artifacts and distortions of titanium applicators on 3.0-Tesla magnetic resonance imaging (MRI). Methods and Materials: Fletcher-Suit-Delclos-style tandem and ovoids (T and O) and tandem and ring applicator (T and R) were examined. The quality assurance (QA) phantoms for each applicator were designed and filled with copper sulphate solution (1.5 g/l). The artifacts were quantified with the registration of corresponding computed tomography (CT) images. A favorable MR sequence was searched in terms of artifacts. Using the sequence, the artifacts were determined. The geometric distortions induced by the applicators were quantified through each registration of CT and MRI without applicators. The artifacts of T and O were also evaluated on in vivo MRI datasets of 5 patients. Results: T1-weighted MRI with 1-mm slice thickness was found as a favorable MR sequence. Applying the sequence, the artifacts at the tandem tip of T and O and T and R were determined as 1.5 {+-} 0.5 mm in a superior direction in phantom studies. In the ovoids of T and O, we found artifacts less than 1.5 {+-} 0.5 mm. The artifacts of a T and O tandem in vivo were found as less than 2.6 {+-} 1.3 mm on T1-weighted MRI, whereas less than 6.9 {+-} 3.4 mm on T2-weighted MRI. No more than 1.2 {+-} 0.6 mm (3.0 {+-} 1.5 mm) of distortions, due to a titanium applicator, were measured on T1-weighted MRI (T2-). Conclusion: In 3.0-Tesla MRI, we found the artifact widths at the tip of tandem were less than 1.5 {+-} 0.5 mm for both T and O and T and R when using T1-weighted MRI in phantom studies. However, exclusive 3.0-Tesla MRI-guided brachytherapy planning with a titanium applicator should be cautiously implemented.

  12. Internal ventilation system of MR scanners induces specific EEG artifact during simultaneous EEG-fMRI.

    PubMed

    Nierhaus, Till; Gundlach, Christopher; Goltz, Dominique; Thiel, Sabrina D; Pleger, Burkhard; Villringer, Arno

    2013-07-01

    During simultaneous EEG-fMRI acquisition, the EEG signal suffers from tremendous artifacts caused by the scanner "environment". Particularly, gradient artifacts and the ballistocardiogram have been well characterized, along with methods to eliminate them. Here, we describe another systematic artifact in the EEG signal, which is induced by the internal ventilation system of Siemens TRIO and VERIO MR scanners. A ventilation-level dependent vibration induces specific peaks in the frequency spectrum of the EEG. These frequency peaks are in the range of physiologically relevant brain rhythms (gamma frequency range), and thus interfere with their reliable acquisition. This ventilation dependent artifact was most prominent on the electrodes placed directly on the subject's head, so it is not sufficient to simply place the EEG's amplifier outside the scanner tube. Instead, the ventilator must be switched off to fully eliminate the ventilator's artificial manipulation of EEG recordings. Without the internal ventilator system being on, the temperature within the scanner tube may rise, thus requiring shorter scanning sessions or an additional external ventilation system. PMID:23435207

  13. Validation of radiocarpal joint contact models based on images from a clinical MRI scanner

    PubMed Central

    Johnson, Joshua E.; McIff, Terence E.; Lee, Phil; Toby, E. Bruce; Fischer, Kenneth J.

    2012-01-01

    This study was undertaken to assess MRI-based radiocarpal surface contact models of functional loading in a clinical MRI scanner for future in vivo studies, by comparison with experimental measures from three cadaver forearm specimens. Experimental data was acquired using a Tekscan sensor during simulated light grasp. MR images were used to obtain model geometry and kinematics (image registration). Peak and average contact pressures, contact forces and contact areas were determined in the radiolunate and radioscaphoid joints. Contact area was also measured directly from MR images acquired with load and compared to model data. Based on the validation criteria (within 25% of experimental data), out of the six articulations (three specimens with two articulations each), two met the criterion for average contact pressure (0%, 14%); one for peak pressure (20%); one for contact force (5%); four for contact area with respect to experiment (8%, 13%, 19%, 23%), and three contact areas met the criterion with respect to direct measurements (14%, 21%, 21%). Absolute differences between model and experimental peak contact pressures were reasonably low (within 2.5 MPa). Overall, the results indicate that MRI-based models generated from 3T clinical MR scanner appear sufficient to obtain clinically relevant data. PMID:22631873

  14. Investigation of the initial dip in fMRI at 7 Tesla Essa Yacoub, Amir Shmuel, Josef Pfeuffer, Pierre-Francois Van De Moortele, Gregor Adriany, Kamil

    E-print Network

    Investigation of the initial dip in fMRI at 7 Tesla Essa Yacoub, Amir Shmuel, Josef Pfeuffer studies, previous fMRI studies have reported an initial decrease (i.e. the initial dip) in the BOLD. To date, experimental studies of the initial dip in humans have been performed at fields up to 4 T

  15. Preliminary studies of a simultaneous PET/MRI scanner based on the RatCAP small animal tomograph

    NASA Astrophysics Data System (ADS)

    Woody, C.; Schlyer, D.; Vaska, P.; Tomasi, D.; Solis-Najera, S.; Rooney, W.; Pratte, J.-F.; Junnarkar, S.; Stoll, S.; Master, Z.; Purschke, M.; Park, S.-J.; Southekal, S.; Kriplani, A.; Krishnamoorthy, S.; Maramraju, S.; O'Connor, P.; Radeka, V.

    2007-02-01

    We are developing a scanner that will allow simultaneous acquisition of high resolution anatomical data using magnetic resonance imaging (MRI) and quantitative physiological data using positron emission tomography (PET). The approach is based on the technology used for the RatCAP conscious small animal PET tomograph which utilizes block detectors consisting of pixelated arrays of LSO crystals read out with matching arrays of avalanche photodiodes and a custom-designed ASIC. The version of this detector used for simultaneous PET/MRI imaging will be constructed out of all nonmagnetic materials and will be situated inside the MRI field. We have demonstrated that the PET detector and its electronics can be operated inside the MRI, and have obtained MRI images with various detector components located inside the MRI field. The MRI images show minimal distortion in this configuration even where some components still contain traces of certain magnetic materials. We plan to improve on the image quality in the future using completely non-magnetic components and by tuning the MRI pulse sequences. The combined result will be a highly compact, low mass PET scanner that can operate inside an MRI magnet without distorting the MRI image, and can be retrofitted into existing MRI instruments.

  16. The Spinal Curvature of Three Different Sitting Positions Analysed in an Open MRI Scanner

    PubMed Central

    Baumgartner, Daniel; Zemp, Roland; List, Renate; Stoop, Mirjam; Naxera, Jaroslav; Elsig, Jean Pierre; Lorenzetti, Silvio

    2012-01-01

    Sitting is the most frequently performed posture of everyday life. Biomechanical interactions with office chairs have therefore a long-term effect on our musculoskeletal system and ultimately on our health and wellbeing. This paper highlights the kinematic effect of office chairs on the spinal column and its single segments. Novel chair concepts with multiple degrees of freedom provide enhanced spinal mobility. The angular changes of the spinal column in the sagittal plane in three different sitting positions (forward inclined, reclined, and upright) for six healthy subjects (aged 23 to 45 years) were determined using an open magnetic resonance imaging (MRI) scanner. An MRI-compatible and commercially available office chair was adapted for use in the scanner. The midpoint coordinates of the vertebral bodies, the wedge angles of the intervertebral discs, and the lumbar lordotic angle were analysed. The mean lordotic angles were 16.0 ± 8.5° (mean ± standard deviation) in a forward inclined position, 24.7 ± 8.3° in an upright position, and 28.7 ± 8.1° in a reclined position. All segments from T10-T11 to L5-S1 were involved in movement during positional changes, whereas the range of motion in the lower lumbar segments was increased in comparison to the upper segments. PMID:23226980

  17. Feasibility study using MRI and two optical CT scanners for readout of polymer gel and PresageTM

    NASA Astrophysics Data System (ADS)

    Svensson, H.; Skyt, P. S.; Ceberg, S.; Doran, S.; Muren, L. P.; Balling, P.; Petersen, J. B. B.; Bäck, S. Å. J.

    2013-06-01

    The aim of this study was to compare the conventional combination of three-dimensional dosimeter (nPAG gel) and readout method (MRI) with other combinations of three-dimensional dosimeters (nPAG gel/PresageTM) and readout methods (optical CT scanners). In the first experiment, the dose readout of a gel irradiated with a four field-box technique was performed with both an Octopus IQ scanner and MRI. It was seen that the MRI readout agreed slightly better to the TPS. In another experiment, a gel and a PresageTM sample were irradiated with a VMAT field and read out using MRI and a fast laser scanner, respectively. A comparison between the TPS and the volumes revealed that the MRI/gel readout had closer resemblance to the TPS than the optical CT/PresageTM readout. There are clearly potential in the evaluated optical CT scanners, but more time has to be invested in the particular scanning scenario than was possible in this study.

  18. Measuring and shimming the magnetic field of a 4 Tesla MRI magnet 

    E-print Network

    Kyriazis, Georgios

    1993-01-01

    The Biomedical Magnetic Resonance Laboratory (BMRL) of the University of Illinois at Urbana-Champaign (UIUC) has ordered from the Texas Accelerator Center (TAC) a superconducting, self-shielded, solenoidal magnet with a maximum field of 4 Tesla...

  19. An in vitro assessment of MRI issues at 3-Tesla for antimicrobial, silver-containing wound dressings?.

    PubMed

    Escher, Kirin B; Shellock, Frank G

    2012-11-01

    Although no reports of adverse events have been published to date, the presence of metallic dressing ingredients may present an magnetic resonance imaging (MRI) safety concern for patients using silver-containing wound dressings. The purpose of this in vitro study was to test magnetic field interactions (ie, translational attraction and torque), heating, artifacts, and conductivity (ie, electrical resistance) when using MRI at 3-Tesla for two (nonborder and border) silver-containing wound dressings. The results indicated the dressings displayed no magnetic field interactions (deflection angle 0?; no torque), and in each case, MRI-related heating effects were at the same levels as the background temperature increases (ie, <1.8?C). The dressings created extremely subtle artifacts (one-for-one relationship) on the MR images. With regard to the conductivity assessments, the average resistance values were 20 kOhm and 1.1 kOhm, respectively, for the nonborder and border wound dressings, which were acceptable levels. The findings show the two silver-containing wound dressings tested will not pose hazards or risks to patients and, thus, are considered "MR safe" according to the current labeling terminology used for medical products, and each dressing may be left in place when a patient undergoes an MRI examination. To date, only a hydrofiber silver-containing dressing has been tested for MRI safety. Because of potential variances in material characteristics, MRI test results are specific to the dressings tested and cannot be applied to other products. Future studies to define the level of silver concentration in dressings that may pose a hazard for performing an MRI are warranted. PMID:23134899

  20. Inner experience in the scanner: can high fidelity apprehensions of inner experience be integrated with fMRI?

    PubMed

    Kühn, Simone; Fernyhough, Charles; Alderson-Day, Benjamin; Hurlburt, Russell T

    2014-01-01

    To provide full accounts of human experience and behavior, research in cognitive neuroscience must be linked to inner experience, but introspective reports of inner experience have often been found to be unreliable. The present case study aimed at providing proof of principle that introspection using one method, descriptive experience sampling (DES), can be reliably integrated with fMRI. A participant was trained in the DES method, followed by nine sessions of sampling within an MRI scanner. During moments where the DES interview revealed ongoing inner speaking, fMRI data reliably showed activation in classic speech processing areas including left inferior frontal gyrus. Further, the fMRI data validated the participant's DES observations of the experiential distinction between inner speaking and innerly hearing her own voice. These results highlight the precision and validity of the DES method as a technique of exploring inner experience and the utility of combining such methods with fMRI. PMID:25538649

  1. Inner experience in the scanner: can high fidelity apprehensions of inner experience be integrated with fMRI?

    PubMed Central

    Kühn, Simone; Fernyhough, Charles; Alderson-Day, Benjamin; Hurlburt, Russell T.

    2014-01-01

    To provide full accounts of human experience and behavior, research in cognitive neuroscience must be linked to inner experience, but introspective reports of inner experience have often been found to be unreliable. The present case study aimed at providing proof of principle that introspection using one method, descriptive experience sampling (DES), can be reliably integrated with fMRI. A participant was trained in the DES method, followed by nine sessions of sampling within an MRI scanner. During moments where the DES interview revealed ongoing inner speaking, fMRI data reliably showed activation in classic speech processing areas including left inferior frontal gyrus. Further, the fMRI data validated the participant’s DES observations of the experiential distinction between inner speaking and innerly hearing her own voice. These results highlight the precision and validity of the DES method as a technique of exploring inner experience and the utility of combining such methods with fMRI. PMID:25538649

  2. Corticospinal Tract Tracing in the Marmoset with a Clinical Whole-Body 3T Scanner Using Manganese-Enhanced MRI

    PubMed Central

    Plas, Benjamin; Bolan, Faye; Boulanouar, Kader; Renaud, Luc; Darmana, Robert; Vaysse, Laurence; Vieu, Christophe; Loubinoux, Isabelle

    2015-01-01

    Manganese-enhanced MRI (MEMRI) has been described as a powerful tool to depict the architecture of neuronal circuits. In this study we investigated the potential use of in vivo MRI detection of manganese for tracing neuronal projections from the primary motor cortex (M1) in healthy marmosets (Callithrix Jacchus). We determined the optimal dose of manganese chloride (MnCl2) among 800, 400, 40 and 8nmol that led to manganese-induced hyperintensity furthest from the injection site, as specific to the corticospinal tract as possible, and that would not induce motor deficit. A commonly available 3T human clinical MRI scanner and human knee coil were used to follow hyperintensity in the corticospinal tract 24h after injection. A statistical parametric map of seven marmosets injected with the chosen dose, 8 nmol, showed the corticospinal tract and M1 connectivity with the basal ganglia, substantia nigra and thalamus. Safety was determined for the lowest dose that did not induce dexterity and grip strength deficit, and no behavioral effects could be seen in marmosets who received multiple injections of manganese one month apart. In conclusion, our study shows for the first time in marmosets, a reliable and reproducible way to perform longitudinal ME-MRI experiments to observe the integrity of the marmoset corticospinal tract on a clinical 3T MRI scanner. PMID:26398500

  3. A study-specific fMRI normalization approach that operates directly on high resolution functional EPI data at 7 Tesla.

    PubMed

    Grabner, Günther; Poser, Benedikt A; Fujimoto, Kyoko; Polimeni, Jonathan R; Wald, Lawrence L; Trattnig, Siegfried; Toni, Ivan; Barth, Markus

    2014-10-15

    Due to the availability of ultra-high field scanners and novel imaging methods, high resolution, whole brain functional MR imaging (fMRI) has become increasingly feasible. However, it is common to use extensive spatial smoothing to account for inter-subject anatomical variation when pooling over subjects. This reduces the spatial details of group level functional activation considerably, even when the original data was acquired with high resolution. In our study we used an accelerated 3D EPI sequence at 7 Tesla to acquire whole brain fMRI data with an isotropic spatial resolution of 1.1mm which shows clear gray/white matter contrast due to the stronger T1 weighting of 3D EPI. To benefit from the high spatial resolution on the group level, we develop a study specific, high resolution anatomical template which is facilitated by the good anatomical contrast that is present in the average functional EPI images. Different template generations with increasing accuracy were created by using a hierarchical linear and stepwise non-linear registration approach. As the template is based on the functional data themselves no additional co-registration step with the usual T1-weighted anatomical data is necessary which eliminates a potential source of misalignment. To test the improvement of functional localization and spatial details we performed a group level analysis of a finger tapping experiment in eight subjects. The most accurate template shows better spatial localization--such as a separation of somatosensory and motor areas and of single digit activation--compared to the simple linear registration. The number of activated voxels is increased by a factor of 1.2, 2.5, and 3.1 for somatosensory, supplementary motor area, and dentate nucleus, respectively, for the functional contrast between left versus right hand. Similarly, the number of activated voxels is increased 1.4- and 2.4-fold for right little versus right index finger and left little versus left index finger, respectively. The Euclidian distance between the activation (center of gravity) of the respective fingers was found to be 13.90 mm using the most accurate template. PMID:24973602

  4. MRI scanner environment increases pain perception in a standardized nociceptive paradigm.

    PubMed

    Ellerbrock, Isabel; May, Arne

    2015-12-01

    Functional magnetic resonance imaging (MRI) has been widely used in neuroscientific studies to investigate neural correlates of perception and higher cognitive functions. Early on, the MR-scanning procedure itself has been identified to create discomfort and anxiety in some individuals, which may influence task performance and perception. The present study analyzed behavioral differences in pain intensity ratings obtained in two distinct situations: MR environment and laboratory setting. Within our longitudinal study design twenty healthy volunteers were exposed daily to an identical paradigm consisting of 60 repeated noxious heat stimuli (46 °C) on 21 consecutive days. After each block of ten stimuli, participants were prompted to rate pain intensity on a visual analog scale (VAS). On days 1, 8, 14, and 21 ratings scores were obtained during a functional imaging scan, whereas on the remaining days the sessions were conducted in a laboratory. It has come to our attention that pain intensity ratings acquired in MR environment were significantly higher than behavioral data collected in the lab setting. Given that the stimuli were standardized and no task or distraction confounded the ratings, it is likely that the attentional focus on noxious stimulation was identical in both conditions. It seems that the highly artificial scanner environment as such is sufficient to increase awareness/alertness. Given that salience rather than pure nociceptive input has been suggested to explain functional imaging results in painful conditions, these findings highlight concerns regarding the comparability of behavioral data assembled across inconsistent settings. PMID:25527478

  5. Numerical field simulation for parallel transmission in MRI at 7 tesla

    E-print Network

    Bernier, Jessica A. (Jessica Ashley)

    2011-01-01

    Parallel transmission (pTx) is a promising improvement to coil design that has been demonstrated to mitigate B1* inhomogeneity, manifest as center brightening, for high-field magnetic resonance imaging (MRI). Parallel ...

  6. High resolution polymer gel dosimetry for small beam irradiation using a 7T micro-MRI scanner

    NASA Astrophysics Data System (ADS)

    Ding, Xuanfeng; Olsen, John; Best, Ryan; Bennett, Marcus; McGowin, Inna; Dorand, Jennifer; Link, Kerry; Bourland, J. Daniel

    2010-11-01

    The use of small field radiation beams has greatly increased with advanced radiation therapy techniques such as IMRT, rotational IMRT, and stereotactic body radiotherapy. In this work small field 3D dose distributions have been measured with high spatial resolution using polymer gels and 7T micro-MR imaging. A MAGIC (Methacrylic and Ascorbic acid in Gelatin Initiated by Copper) polymer gel [1] phantom was used to capture the 3D dose distributions for two small field (5 × 5 mm2 and 10 × 10 mm2) for a 6MV x-ray beam. High resolution 3D T2 maps were obtained with 7T micro-MRI (0.156mm × 0.156mm × 1mm, MSME pulse sequence). For comparison T2 maps, the gel phantom was scanned in a 3T MRI clinical scanner (0.254mm × 0.254mm × 2mm, FSE pulse sequence). Normalized 3D dose maps were calculated in Matlab. Results show that 7T micro-MRI 3D gel dosimetry measurements are much more stable, less noisy, and have higher spatial resolution than those obtained using a 3T clinical scanner for the same amount of scan time. In general, 3D gel dosimetry results also agree with simultaneously-obtained radiochromic film dosimetry. This study indicates that the MAGIC polymer gel with 7T micro-MRI for 3D dose readout could potentially be used for small radiation beams, including measurements for micro-beams (field size ~ 100um).

  7. Off-resonance and detuned surface coils for B? inhomogeneity in 7-Tesla MRI

    E-print Network

    Zakszewski, Elizabeth K

    2006-01-01

    A problem with high-field MRI is the lack of B1 homogeneity, particularly signal cancellation in the outer parts of the head. Here we attempt to correct this by adding surface coils. To adjust the mutual coupling, we vary ...

  8. Computational dosimetry of induced electric fields during realistic movements in the vicinity of a 3 T MRI scanner

    NASA Astrophysics Data System (ADS)

    Laakso, Ilkka; Kännälä, Sami; Jokela, Kari

    2013-04-01

    Medical staff working near magnetic resonance imaging (MRI) scanners are exposed both to the static magnetic field itself and also to electric currents that are induced in the body when the body moves in the magnetic field. However, there are currently limited data available on the induced electric field for realistic movements. This study computationally investigates the movement induced electric fields for realistic movements in the magnetic field of a 3 T MRI scanner. The path of movement near the MRI scanner is based on magnetic field measurements using a coil sensor attached to a human volunteer. Utilizing realistic models for both the motion of the head and the magnetic field of the MRI scanner, the induced fields are computationally determined using the finite-element method for five high-resolution numerical anatomical models. The results show that the time-derivative of the magnetic flux density (dB/dt) is approximately linearly proportional to the induced electric field in the head, independent of the position of the head with respect to the magnet. This supports the use of dB/dt measurements for occupational exposure assessment. For the path of movement considered herein, the spatial maximum of the induced electric field is close to the basic restriction for the peripheral nervous system and exceeds the basic restriction for the central nervous system in the international guidelines. The 99th percentile electric field is a considerably less restrictive metric for the exposure than the spatial maximum electric field; the former is typically 60-70% lower than the latter. However, the 99th percentile electric field may exceed the basic restriction for dB/dt values that can be encountered during tasks commonly performed by MRI workers. It is also shown that the movement-induced eddy currents may reach magnitudes that could electrically stimulate the vestibular system, which could play a significant role in the generation of vertigo-like sensations reported by people moving in a strong static magnetic field.

  9. Scanning fast and slow: current limitations of 3 Tesla functional MRI and future potential

    NASA Astrophysics Data System (ADS)

    Boubela, Roland N.; Kalcher, Klaudius; Nasel, Christian; Moser, Ewald

    2014-02-01

    Functional MRI at 3T has become a workhorse for the neurosciences, e.g., neurology, psychology, and psychiatry, enabling non-invasive investigation of brain function and connectivity. However, BOLD-based fMRI is a rather indirect measure of brain function, confounded by fluctuation related signals, e.g. head or brain motion, brain pulsation, blood flow, intermixed with susceptibility differences close or distant to the region of neuronal activity. Even though a plethora of preprocessing strategies have been published to address these confounds, their efficiency is still under discussion. In particular, physiological signal fluctuations closely related to brain supply may mask BOLD signal changes related to "true" neuronal activation. Here we explore recent technical and methodological advancements aimed at disentangling the various components, employing fast multiband vs. standard EPI, in combination with fast temporal ICA.Our preliminary results indicate that fast (TR< 0.5s) scanning may help to identify and eliminate physiologic components, increasing tSNR and functional contrast. In addition, biological variability can be studied and task performance better correlated to other measures. This should increase specificity and reliability in fMRI studies. Furthermore, physiological signal changes during scanning may then be recognized as a source of information rather than a nuisance. As we are currently still undersampling the complexity of the brain, even at a rather coarse macroscopic level, we should be very cautious in the interpretation of neuroscientific findings, in particular when comparing different groups (e.g., age, sex, medication, pathology, etc.). From a technical point of view our goal should be to sample brain activity at layer specific resolution with low TR, covering as much of the brain as possible without violating SAR limits. We hope to stimulate discussion towards a better understanding and a more quantitative use of fMRI.

  10. Gd-AAZTA-MADEC, an improved blood pool agent for DCE-MRI studies on mice on 1 T scanners.

    PubMed

    Longo, Dario Livio; Arena, Francesca; Consolino, Lorena; Minazzi, Paolo; Geninatti-Crich, Simonetta; Giovenzana, Giovanni Battista; Aime, Silvio

    2016-01-01

    A novel MRI blood-pool contrast agent (Gd-AAZTA-MADEC) has been compared with established blood pool agents for tumor contrast enhanced images and angiography. Synthesis, relaxometric properties, albumin binding affinity and pharmacokinetic profiles are reported. For in vivo studies, angiographic images and tumor contrast enhanced images were acquired on mice with benchtop 1T-MRI scanners and compared with MS-325, B22956/1 and B25716/1. The design of this contrast agent involved the elongation of the spacer between the targeting deoxycholic acid moiety and the Gd-AAZTA imaging reporting unit that drastically changed either the binding affinity to albumin (KA(HSA) = 8.3 × 10(5) M(-1)) and the hydration state of the Gd ion (q = 2) in comparison to the recently reported B25716/1. The very markedly high binding affinity towards mouse and human serum albumins resulted in peculiar pharmacokinetics and relaxometric properties. The NMRD profiles clearly indicated that maximum efficiency is attainable at magnetic field strength of 1 T. In vivo studies showed high enhancement of the vasculature and a prolonged accumulation inside tumor. The herein reported pre-clinical imaging studies show that a great benefit arises from the combination of a benchtop MRI scanner operating at 1 T and the albumin-binding Gd-AAZTA-MADEC complex, for pursuing enhanced angiography and improved characterization of tumor vascular microenvironment. PMID:26480471

  11. A high-resolution 7-Tesla fMRI dataset from complex natural stimulation with an audio movie.

    PubMed

    Hanke, Michael; Baumgartner, Florian J; Ibe, Pierre; Kaule, Falko R; Pollmann, Stefan; Speck, Oliver; Zinke, Wolf; Stadler, Jörg

    2014-01-01

    Here we present a high-resolution functional magnetic resonance (fMRI) dataset - 20 participants recorded at high field strength (7 Tesla) during prolonged stimulation with an auditory feature film ("Forrest Gump"). In addition, a comprehensive set of auxiliary data (T1w, T2w, DTI, susceptibility-weighted image, angiography) as well as measurements to assess technical and physiological noise components have been acquired. An initial analysis confirms that these data can be used to study common and idiosyncratic brain response patterns to complex auditory stimulation. Among the potential uses of this dataset are the study of auditory attention and cognition, language and music perception, and social perception. The auxiliary measurements enable a large variety of additional analysis strategies that relate functional response patterns to structural properties of the brain. Alongside the acquired data, we provide source code and detailed information on all employed procedures - from stimulus creation to data analysis. In order to facilitate replicative and derived works, only free and open-source software was utilized. PMID:25977761

  12. A high-resolution 7-Tesla fMRI dataset from complex natural stimulation with an audio movie

    PubMed Central

    Hanke, Michael; Baumgartner, Florian J.; Ibe, Pierre; Kaule, Falko R.; Pollmann, Stefan; Speck, Oliver; Zinke, Wolf; Stadler, Jörg

    2014-01-01

    Here we present a high-resolution functional magnetic resonance (fMRI) dataset – 20 participants recorded at high field strength (7 Tesla) during prolonged stimulation with an auditory feature film (“Forrest Gump”). In addition, a comprehensive set of auxiliary data (T1w, T2w, DTI, susceptibility-weighted image, angiography) as well as measurements to assess technical and physiological noise components have been acquired. An initial analysis confirms that these data can be used to study common and idiosyncratic brain response patterns to complex auditory stimulation. Among the potential uses of this dataset are the study of auditory attention and cognition, language and music perception, and social perception. The auxiliary measurements enable a large variety of additional analysis strategies that relate functional response patterns to structural properties of the brain. Alongside the acquired data, we provide source code and detailed information on all employed procedures – from stimulus creation to data analysis. In order to facilitate replicative and derived works, only free and open-source software was utilized. PMID:25977761

  13. Functional subdivision of the human periaqueductal grey in respiratory control using 7 tesla fMRI

    PubMed Central

    Faull, Olivia K.; Jenkinson, Mark; Clare, Stuart; Pattinson, Kyle T.S.

    2015-01-01

    The periaqueductal grey (PAG) is a nucleus within the midbrain, and evidence from animal models has identified its role in many homeostatic systems including respiration. Animal models have also demonstrated a columnar structure that subdivides the PAG into four columns on each side, and these subdivisions have different functions with regard to respiration. In this study we used ultra-high field functional MRI (7 T) to image the brainstem and superior cortical areas at high resolution (1 mm3 voxels), aiming to identify activation within the columns of the PAG associated with respiratory control. Our results showed deactivation in the lateral and dorsomedial columns of the PAG corresponding with short (~ 10 s) breath holds, along with cortical activations consistent with previous respiratory imaging studies. These results demonstrate the involvement of the lateral and dorsomedial PAG in the network of conscious respiratory control for the first time in humans. This study also reveals the opportunities of 7 T functional MRI for non-invasively investigating human brainstem nuclei at high-resolutions. PMID:25703831

  14. Low-Cost High-Performance MRI

    PubMed Central

    Sarracanie, Mathieu; LaPierre, Cristen D.; Salameh, Najat; Waddington, David E. J.; Witzel, Thomas; Rosen, Matthew S.

    2015-01-01

    Magnetic Resonance Imaging (MRI) is unparalleled in its ability to visualize anatomical structure and function non-invasively with high spatial and temporal resolution. Yet to overcome the low sensitivity inherent in inductive detection of weakly polarized nuclear spins, the vast majority of clinical MRI scanners employ superconducting magnets producing very high magnetic fields. Commonly found at 1.5–3 tesla (T), these powerful magnets are massive and have very strict infrastructure demands that preclude operation in many environments. MRI scanners are costly to purchase, site, and maintain, with the purchase price approaching $1?M per tesla (T) of magnetic field. We present here a remarkably simple, non-cryogenic approach to high-performance human MRI at ultra-low magnetic field, whereby modern under-sampling strategies are combined with fully-refocused dynamic spin control using steady-state free precession techniques. At 6.5?mT (more than 450 times lower than clinical MRI scanners) we demonstrate (2.5?×?3.5?×?8.5) mm3 imaging resolution in the living human brain using a simple, open-geometry electromagnet, with 3D image acquisition over the entire brain in 6?minutes. We contend that these practical ultra-low magnetic field implementations of MRI (<10?mT) will complement traditional MRI, providing clinically relevant images and setting new standards for affordable (<$50,000) and robust portable devices. PMID:26469756

  15. Low-Cost High-Performance MRI.

    PubMed

    Sarracanie, Mathieu; LaPierre, Cristen D; Salameh, Najat; Waddington, David E J; Witzel, Thomas; Rosen, Matthew S

    2015-01-01

    Magnetic Resonance Imaging (MRI) is unparalleled in its ability to visualize anatomical structure and function non-invasively with high spatial and temporal resolution. Yet to overcome the low sensitivity inherent in inductive detection of weakly polarized nuclear spins, the vast majority of clinical MRI scanners employ superconducting magnets producing very high magnetic fields. Commonly found at 1.5-3 tesla (T), these powerful magnets are massive and have very strict infrastructure demands that preclude operation in many environments. MRI scanners are costly to purchase, site, and maintain, with the purchase price approaching $1?M per tesla (T) of magnetic field. We present here a remarkably simple, non-cryogenic approach to high-performance human MRI at ultra-low magnetic field, whereby modern under-sampling strategies are combined with fully-refocused dynamic spin control using steady-state free precession techniques. At 6.5?mT (more than 450 times lower than clinical MRI scanners) we demonstrate (2.5?×?3.5?×?8.5) mm(3) imaging resolution in the living human brain using a simple, open-geometry electromagnet, with 3D image acquisition over the entire brain in 6?minutes. We contend that these practical ultra-low magnetic field implementations of MRI (<10?mT) will complement traditional MRI, providing clinically relevant images and setting new standards for affordable (<$50,000) and robust portable devices. PMID:26469756

  16. Low-Cost High-Performance MRI

    NASA Astrophysics Data System (ADS)

    Sarracanie, Mathieu; Lapierre, Cristen D.; Salameh, Najat; Waddington, David E. J.; Witzel, Thomas; Rosen, Matthew S.

    2015-10-01

    Magnetic Resonance Imaging (MRI) is unparalleled in its ability to visualize anatomical structure and function non-invasively with high spatial and temporal resolution. Yet to overcome the low sensitivity inherent in inductive detection of weakly polarized nuclear spins, the vast majority of clinical MRI scanners employ superconducting magnets producing very high magnetic fields. Commonly found at 1.5-3 tesla (T), these powerful magnets are massive and have very strict infrastructure demands that preclude operation in many environments. MRI scanners are costly to purchase, site, and maintain, with the purchase price approaching $1?M per tesla (T) of magnetic field. We present here a remarkably simple, non-cryogenic approach to high-performance human MRI at ultra-low magnetic field, whereby modern under-sampling strategies are combined with fully-refocused dynamic spin control using steady-state free precession techniques. At 6.5?mT (more than 450 times lower than clinical MRI scanners) we demonstrate (2.5?×?3.5?×?8.5) mm3 imaging resolution in the living human brain using a simple, open-geometry electromagnet, with 3D image acquisition over the entire brain in 6?minutes. We contend that these practical ultra-low magnetic field implementations of MRI (<10?mT) will complement traditional MRI, providing clinically relevant images and setting new standards for affordable (<$50,000) and robust portable devices.

  17. Topography of Cortical Microbleeds in Alzheimer’s Disease with and without Cerebral Amyloid Angiopathy: A Post-Mortem 7.0-Tesla MRI Study

    PubMed Central

    De Reuck, J.; Auger, F.; Durieux, N.; Deramecourt, V.; Cordonnier, C.; Pasquier, F.; Maurage, C.A.; Leys, D.; Bordet, R.

    2015-01-01

    Cortical microbleeds (CMBs) detected on T2*-weighted gradient-echo (GRE) magnetic resonance imaging (MRI) are considered as a possible hallmark of cerebral amyloid angiopathy (CAA). The present post-mortem 7.0-tesla MRI study investigates whether topographic differences exist in Alzheimer’s brains without (AD) and with CAA (AD-CAA). The distribution of CMBs in thirty-two post-mortem brains, consisting of 12 AD, 8 AD-CAA and 12 controls, was mutually compared on T2*-GRE MRI of six coronal sections of a cerebral hemisphere. The mean numbers of CMBs were determined in twenty-two different gyri. As a whole there was a trend of more CMBs on GRE MRI in the prefrontal section of the AD, the AD-CAA as well as of the control brains. Compared to controls AD brains had significantly more CMBs in the superior frontal, the inferior temporal, the rectus and the cinguli gyrus, and in the insular cortex. In AD-CAA brains CMBs were increased in all gyri with exception of the medial parietal gyrus and the hippocampus. AD-CAA brains showed a highly significant increase of CMBs in the inferior parietal gyrus (p value: 0.001) and a significant increase in the precuneus and the cuneus (p value: 0.01) compared to the AD brains. The differences in topographic distribution of CMBs between AD and AD-CAA brains should be further investigated on MRI in clinically suspected patients. PMID:26618045

  18. Topography of Cortical Microbleeds in Alzheimer's Disease with and without Cerebral Amyloid Angiopathy: A Post-Mortem 7.0-Tesla MRI Study.

    PubMed

    De Reuck, J; Auger, F; Durieux, N; Deramecourt, V; Cordonnier, C; Pasquier, F; Maurage, C A; Leys, D; Bordet, R

    2015-11-01

    Cortical microbleeds (CMBs) detected on T2*-weighted gradient-echo (GRE) magnetic resonance imaging (MRI) are considered as a possible hallmark of cerebral amyloid angiopathy (CAA). The present post-mortem 7.0-tesla MRI study investigates whether topographic differences exist in Alzheimer's brains without (AD) and with CAA (AD-CAA). The distribution of CMBs in thirty-two post-mortem brains, consisting of 12 AD, 8 AD-CAA and 12 controls, was mutually compared on T2*-GRE MRI of six coronal sections of a cerebral hemisphere. The mean numbers of CMBs were determined in twenty-two different gyri. As a whole there was a trend of more CMBs on GRE MRI in the prefrontal section of the AD, the AD-CAA as well as of the control brains. Compared to controls AD brains had significantly more CMBs in the superior frontal, the inferior temporal, the rectus and the cinguli gyrus, and in the insular cortex. In AD-CAA brains CMBs were increased in all gyri with exception of the medial parietal gyrus and the hippocampus. AD-CAA brains showed a highly significant increase of CMBs in the inferior parietal gyrus (p value: 0.001) and a significant increase in the precuneus and the cuneus (p value: 0.01) compared to the AD brains. The differences in topographic distribution of CMBs between AD and AD-CAA brains should be further investigated on MRI in clinically suspected patients. PMID:26618045

  19. A fast multiparameter MRI approach for acute stroke assessment on a 3T clinical scanner: preliminary results in a non-human primate model with transient ischemic occlusion.

    PubMed

    Zhang, Xiaodong; Tong, Frank; Li, Chun-Xia; Yan, Yumei; Nair, Govind; Nagaoka, Tsukasa; Tanaka, Yoji; Zola, Stuart; Howell, Leonard

    2014-04-01

    Many MRI parameters have been explored and demonstrated the capability or potential to evaluate acute stroke injury, providing anatomical, microstructural, functional, or neurochemical information for diagnostic purposes and therapeutic development. However, the application of multiparameter MRI approach is hindered in clinic due to the very limited time window after stroke insult. Parallel imaging technique can accelerate MRI data acquisition dramatically and has been incorporated in modern clinical scanners and increasingly applied for various diagnostic purposes. In the present study, a fast multiparameter MRI approach including structural T1-weighted imaging (T1W), T2-weighted imaging (T2W), diffusion tensor imaging (DTI), T2-mapping, proton magnetic resonance spectroscopy, cerebral blood flow (CBF), and magnetization transfer (MT) imaging, was implemented and optimized for assessing acute stroke injury on a 3T clinical scanner. A macaque model of transient ischemic stroke induced by a minimal interventional approach was utilized for evaluating the multiparameter MRI approach. The preliminary results indicate the surgical procedure successfully induced ischemic occlusion in the cortex and/or subcortex in adult macaque monkeys (n=4). Application of parallel imaging technique substantially reduced the scanning duration of most MRI data acquisitions, allowing for fast and repeated evaluation of acute stroke injury. Hence, the use of the multiparameter MRI approach with up to five quantitative measures can provide significant advantages in preclinical or clinical studies of stroke disease. PMID:24834423

  20. New shielding configurations for a simultaneous PET/MRI scanner at 7T

    NASA Astrophysics Data System (ADS)

    Peng, Bo J.; Wu, Yibao; Cherry, Simon R.; Walton, Jeffrey H.

    2014-02-01

    Understanding sources of electromagnetic interference are important in designing any electronic system. This is especially true when combining positron emission tomography (PET) and magnetic resonance imaging (MRI) in a multimodality system as coupling between the subsystems can degrade the performance of either modality. For this reason, eliminating radio frequency (RF) interference and gradient-induced eddy currents have been major challenges in building simultaneous hybrid PET/MRI systems. MRI requires negligible RF interference at the Larmor resonance frequency, while RF interference at almost any frequency may corrupt PET data. Moreover, any scheme that minimizes these interactions would, ideally, not compromise the performance of either subsystem. This paper lays out a plan to resolve these problems. A carbon fiber composite material is found to be a good RF shield at the Larmor frequency (300 MHz in this work) while introducing negligible gradient eddy currents. This carbon fiber composite also provides excellent structural support for the PET detector components. Low frequency electromagnetic radiation (81 kHz here) from the switching power supplies of the gradient amplifiers was also found to interfere with the PET detector. Placing the PET detector module between two carbon fiber tubes and grounding the inner carbon fiber tube to the PET detector module ground reduced this interference. Further reductions were achieved by adding thin copper (Cu) foil on the outer carbon fiber case and electrically grounding the PET detector module so that all 3 components had a common ground, i.e. with the PET detector in an electrostatic cage. Finally, gradient switching typical in MRI sequences can result in count losses in the particular PET detector design studied. Moreover, the magnitude of this effect depends on the location of the detector within the magnet bore and which MRI gradient is being switched. These findings have a bearing on future designs of PET/MRI systems.

  1. New shielding configurations for a simultaneous PET/MRI scanner at 7T

    PubMed Central

    Peng, Bo J.; Wu, Yibao; Cherry, Simon R.; Walton, Jeffrey H.

    2014-01-01

    Understanding sources of electromagnetic interference are important in designing any electronic system. This is especially true when combining positron emission tomography (PET) and magnetic resonance imaging (MRI) in a multimodality system as coupling between the subsystems can degrade the performance of either modality. For this reason, eliminating radio frequency (RF) interference and gradient-induced eddy currents have been major challenges in building simultaneous hybrid PET/MRI systems. MRI requires negligible RF interference at the Larmor resonance frequency, while RF interference at almost any frequency may corrupt PET data. Moreover, any scheme that minimizes these interactions would, ideally, not compromise the performance of either subsystem. This paper lays out a plan to resolve these problems. A carbon fiber composite material is found to be a good RF shield at the Larmor frequency (300 MHz in this work) while introducing negligible gradient eddy currents. This carbon fiber composite also provides excellent structural support for the PET detector components. Low frequency electromagnetic radiation (81 kHz here) from the switching power supplies of the gradient amplifiers was also found to interfere with the PET detector. Placing the PET detector module between two carbon fiber tubes and grounding the inner carbon fiber tube to the PET detector module ground reduced this interference. Further reductions were achieved by adding thin copper (Cu) foil on the outer carbon fiber case and electrically grounding the PET detector module so that all 3 components had a common ground, i.e. with the PET detector in an electrostatic cage. Finally, gradient switching typical in MRI sequences can result in count losses in the particular PET detector design studied. Moreover, the magnitude of this effect depends on the location of the detector within the magnet bore and which MRI gradient is being switched. These findings have a bearing on future designs of PET/MRI systems. PMID:24380812

  2. Burns from ECG leads in an MRI scanner: Case series and discussion of mechanisms

    PubMed Central

    Abdel-Rehim, S.; Bagirathan, S.; Al-Benna, S.; O’Boyle, C.

    2014-01-01

    Summary Iatrogenic burns are rare and preventable. The authors present two cases of burns from ECG leads, sustained during magnetic resonance imaging (MRI). Common features included a long duration spinal MR scan (120 and 60 minutes) and high patient body mass index (BMI >30). Both patients were discharged within 24 hours of admission, but required a period of outpatient burn care. The causation of these injuries remains unclear but there are several possible mechanisms including: electromagnetic induction heating, antenna effects and closed-loop current induction. The authors provide a description of the injuries, discuss possible mechanisms that may lead to burn injury in the MRI environment and suggest ways to reduce the risks of such injuries. PMID:26336370

  3. Burns from ECG leads in an MRI scanner: Case series and discussion of mechanisms.

    PubMed

    Abdel-Rehim, S; Bagirathan, S; Al-Benna, S; O'Boyle, C

    2014-12-31

    Iatrogenic burns are rare and preventable. The authors present two cases of burns from ECG leads, sustained during magnetic resonance imaging (MRI). Common features included a long duration spinal MR scan (120 and 60 minutes) and high patient body mass index (BMI >30). Both patients were discharged within 24 hours of admission, but required a period of outpatient burn care. The causation of these injuries remains unclear but there are several possible mechanisms including: electromagnetic induction heating, antenna effects and closed-loop current induction. The authors provide a description of the injuries, discuss possible mechanisms that may lead to burn injury in the MRI environment and suggest ways to reduce the risks of such injuries. PMID:26336370

  4. Development of a MPPC-based prototype gantry for future MRI-PET scanners

    NASA Astrophysics Data System (ADS)

    Kurei, Y.; Kataoka, J.; Kato, T.; Fujita, T.; Ohshima, T.; Taya, T.; Yamamoto, S.

    2014-12-01

    We have developed a high spatial resolution, compact Positron Emission Tomography (PET) module designed for small animals and intended for use in magnetic resonance imaging (MRI) systems. This module consists of large-area, 4 × 4 ch MPPC arrays (S11830-3344MF; Hamamatsu Photonics K.K.) optically coupled with Ce-doped (Lu,Y)2(SiO4)O (Ce:LYSO) scintillators fabricated into 16 × 16 matrices of 0.5 × 0.5 mm2 pixels. We set the temperature sensor (LM73CIMK-0; National Semiconductor Corp.) at the rear of the MPPC acceptance surface, and apply optimum voltage to maintain the gain. The eight MPPC-based PET modules and coincidence circuits were assembled into a gantry arranged in a ring 90 mm in diameter to form the MPPC-based PET system. We have developed two types PET gantry: one made of non-magnetic metal and the other made of acrylonitrile butadiene styrene (ABS) resins. The PET gantry was positioned around the RF coil of the 4.7 T MRI system. We took an image of a point }22Na source under fast spin echo (FSE) and gradient echo (GE), in order to measure the interference between the MPPC-based PET and MRI. The spatial resolution of PET imaging in a transaxial plane of about 1 mm (FWHM) was achieved in all cases. Operating with PET made of ABS has no effect on MR images, while operating with PET made of non-magnetic metal has a significant detrimental effect on MR images. This paper describes our quantitative evaluations of PET images and MR images, and presents a more advanced version of the gantry for future MRI/DOI-PET systems.

  5. In vivo imaging of pancreatic tumours and liver metastases using 7 Tesla MRI in a murine orthotopic pancreatic cancer model and a liver metastases model

    PubMed Central

    2011-01-01

    Background Pancreatic cancer is the fourth leading cause of tumour death in the western world. However, appropriate tumour models are scarce. Here we present a syngeneic murine pancreatic cancer model using 7 Tesla MRI and evaluate its clinical relevance and applicability. Methods 6606PDA murine pancreatic cancer cells were orthotopically injected into the pancreatic head. Liver metastases were induced through splenic injection. Animals were analyzed by MRI three and five weeks following injection. Tumours were detected using T2-weighted high resolution sequences. Tumour volumes were determined by callipers and MRI. Liver metastases were analyzed using gadolinium-EOB-DTPA and T1-weighted 3D-Flash sequences. Tumour blood flow was measured using low molecular gadobutrol and high molecular gadolinium-DTPA. Results MRI handling and applicability was similar to human systems, resolution as low as 0.1 mm. After 5 weeks tumour volumes differed significantly (p < 0.01) when comparing calliper measurments (n = 5, mean 1065 mm3+/-243 mm3) with MRI (mean 918 mm3+/-193 mm3) with MRI being more precise. Histology (n = 5) confirmed MRI tumour measurements (mean size MRI 38.5 mm2+/-22.8 mm2 versus 32.6 mm2+/-22.6 mm2 (histology), p < 0,0004) with differences due to fixation and processing of specimens. After splenic injection all mice developed liver metastases with a mean of 8 metastases and a mean volume of 173.8 mm3+/-56.7 mm3 after 5 weeks. Lymphnodes were also easily identified. Tumour accumulation of gadobutrol was significantly (p < 0.05) higher than gadolinium-DTPA. All imaging experiments could be done repeatedly to comply with the 3R-principle thus reducing the number of experimental animals. Conclusions This model permits monitoring of tumour growth and metastasis formation in longitudinal non-invasive high-resolution MR studies including using contrast agents comparable to human pancreatic cancer. This multidisciplinary environment enables radiologists, surgeons and physicians to further improve translational research and therapies of pancreatic cancer. PMID:21276229

  6. A Two-dimensional Sixteen Channel Transmit/Receive Coil Array for Cardiac MRI at 7.0 Tesla: Design, Evaluation and Application

    PubMed Central

    Thalhammer, Christof; Renz, Wolfgang; Winter, Lukas; Hezel, Fabian; Rieger, Jan; Pfeiffer, Harald; Graessl, Andreas; Seifert, Frank; Hoffmann, Werner; von Knobelsdorff-Brenkenhoff, Florian; Tkachenko, Valeriy; Schulz-Menger, Jeanette; Kellman, Peter; Niendorf, Thoralf

    2012-01-01

    Purpose To design, evaluate and apply a two-dimensional 16 channel transmit/receive coil array tailored for cardiac MRI at 7.0 Tesla. Material and Methods The cardiac coil array consists of 2 sections each using 8 elements arranged in a 2 × 4 array. RF safety was validated by SAR simulations. Cardiac imaging was performed using 2D CINE FLASH imaging, T2* mapping and fat-water separation imaging. The characteristics of the coil array were analyzed including parallel imaging performance, left ventricular chamber quantification and overall image quality. Results RF characteristics were found to be appropriate for all subjects included in the study. The SAR values derived from the simulations fall well in the limits of legal guidelines. The baseline SNR advantage at 7.0 T was put to use to acquire 2D CINE images of the heart with a very high spatial resolution of (1 × 1 × 4) mm3. The proposed coil array supports 1D acceleration factors of up to R=4 without impairing image quality significantly. Conclusions The 16 channel TX/RX coil has the capability to acquire high contrast and high spatial resolution images of the heart at 7.0 Tesla. PMID:22706727

  7. Functional MRI at 1.5 tesla: A comparison of the blood oxygenation level-dependent signal and electrophysiology

    PubMed Central

    Disbrow, Elizabeth A.; Slutsky, Daniel A.; Roberts, Timothy P. L.; Krubitzer, Leah A.

    2000-01-01

    How well does the functional MRI (fMRI) signal reflect underlying electrophysiology? Despite the ubiquity of the technique, this question has yet to be adequately answered. Therefore, we have compared cortical maps generated based on the indirect blood oxygenation level-dependent signal of fMRI with maps from microelectrode recording techniques, which directly measure neural activity. Identical somatosensory stimuli were used in both sets of experiments in the same anesthetized macaque monkeys. Our results demonstrate that fMRI can be used to determine the topographic organization of cortical fields with 55% concordance to electrophysiological maps. The variance in the location of fMRI activation was greatest in the plane perpendicular to local vessels. An appreciation of the limitations of fMRI improves our ability to use it effectively to study cortical organization. PMID:10931954

  8. Exposure to static and time-varying magnetic fields from working in the static magnetic stray fields of MRI scanners: a comprehensive survey in the Netherlands.

    PubMed

    Schaap, Kristel; Christopher-De Vries, Yvette; Crozier, Stuart; De Vocht, Frank; Kromhout, Hans

    2014-11-01

    Clinical and research staff who work around magnetic resonance imaging (MRI) scanners are exposed to the static magnetic stray fields of these scanners. Although the past decade has seen strong developments in the assessment of occupational exposure to electromagnetic fields from MRI scanners, there is insufficient insight into the exposure variability that characterizes routine MRI work practice. However, this is an essential component of risk assessment and epidemiological studies. This paper describes the results of a measurement survey of shift-based personal exposure to static magnetic fields (SMF) (B) and motion-induced time-varying magnetic fields (dB/dt) among workers at 15 MRI facilities in the Netherlands. With the use of portable magnetic field dosimeters, >400 full-shift and partial shift exposure measurements were collected among various jobs involved in clinical and research MRI. Various full-shift exposure metrics for B and motion-induced dB/dt exposure were calculated from the measurements, including instantaneous peak exposure and time-weighted average (TWA) exposures. We found strong correlations between levels of static (B) and time-varying (dB/dt) exposure (r = 0.88-0.92) and between different metrics (i.e. peak exposure, TWA exposure) to express full-shift exposure (r = 0.69-0.78). On average, participants were exposed to MRI-related SMFs during only 3.7% of their work shift. Average and peak B and dB/dt exposure levels during the work inside the MRI scanner room were highest among technical staff, research staff, and radiographers. Average and peak B exposure levels were lowest among cleaners, while dB/dt levels were lowest among anaesthesiology staff. Although modest exposure variability between workplaces and occupations was observed, variation between individuals of the same occupation was substantial, especially among research staff. This relatively large variability between workers with the same job suggests that exposure classification based solely on job title may not be an optimal grouping strategy for epidemiological purposes. PMID:25139484

  9. 1.5 Tesla MRI-Conditional 12-lead ECG for MR Imaging and Intra-MR Intervention

    PubMed Central

    Tse, Zion Tsz Ho; Dumoulin, Charles L.; Clifford, Gari D.; Schweitzer, Jeff; Qin, Lei; Oster, Julien; Jerosch-Herold, Michael; Kwong, Raymond Y.; Michaud, Gregory; Stevenson, William G.; Schmidt, Ehud J.

    2013-01-01

    Propose High-fidelity 12-lead Electrocardiogram (ECG) is important for physiological monitoring of patients during MR-guided intervention and cardiac MR imaging. Issues in obtaining non-corrupted ECGs inside MRI include a superimposed Magneto-Hydro-Dynamic (MHD) voltage, gradient-switching induced-voltages, and radiofrequency (RF) heating. These problems increase with magnetic field. We intended to develop and clinically validate a 1.5T MRI-conditional 12-lead ECG system. Methods The system was constructed, including transmission-lines to reduce radio-frequency induction, and switching-circuits to remove induced voltages. Adaptive filters, trained by 12-lead measurements outside MRI and in two orientations inside MRI, were used to remove MHD. The system was tested on ten (one exercising) volunteers and four arrhythmia patients. Results Switching circuits removed most imaging-induced voltages (residual noise <3% of the R-wave). MHD removal provided intra-MRI ECGs that varied by <3.8% from those outside the MRI, preserving the true ST segment. In premature-ventricular-contraction (PVC) patients, clean ECGs separated PVC and sinus-rhythm beats. Measured heating was <1.5 C0. The system reliably acquired multiphase (SSFP) wall-motion-cine and phase-contrast-cine scans, including in subjects where 4-lead gating failed. The system required a minimum TR of 4ms to allow robust ECG processing. Conclusion High-fidelity intra-MRI 12-lead ECG is possible. PMID:23580148

  10. Detection power, temporal response, and spatial resolution of IRON fMRI in awake, behaving monkeys at 3 Tesla

    E-print Network

    Leite, Francisca Maria Pais Horta

    2007-01-01

    The main goal of this thesis was to systematically characterize the detection sensitivity, temporal response, and spatial resolution of IRON contrast for fMRI within the awake, behaving monkey. Understanding these issues ...

  11. A job interview in the MRI scanner: How does indirectness affect addressees and overhearers?

    PubMed

    Bašnáková, Jana; van Berkum, Jos; Weber, Kirsten; Hagoort, Peter

    2015-09-01

    In using language, people not only exchange information, but also navigate their social world - for example, they can express themselves indirectly to avoid losing face. In this functional magnetic resonance imaging study, we investigated the neural correlates of interpreting face-saving indirect replies, in a situation where participants only overheard the replies as part of a conversation between two other people, as well as in a situation where the participants were directly addressed themselves. We created a fictional job interview context where indirect replies serve as a natural communicative strategy to attenuate one's shortcomings, and asked fMRI participants to either pose scripted questions and receive answers from three putative job candidates (addressee condition) or to listen to someone else interview the same candidates (overhearer condition). In both cases, the need to evaluate the candidate ensured that participants had an active interest in comprehending the replies. Relative to direct replies, face-saving indirect replies increased activation in medial prefrontal cortex, bilateral temporo-parietal junction (TPJ), bilateral inferior frontal gyrus and bilateral middle temporal gyrus, in active overhearers and active addressees alike, with similar effect size, and comparable to findings obtained in an earlier passive listening study (Bašnáková et al., 2014). In contrast, indirectness effects in bilateral anterior insula and pregenual ACC, two regions implicated in emotional salience and empathy, were reliably stronger in addressees than in active overhearers. Our findings indicate that understanding face-saving indirect language requires additional cognitive perspective-taking and other discourse-relevant cognitive processing, to a comparable extent in active overhearers and addressees. Furthermore, they indicate that face-saving indirect language draws upon affective systems more in addressees than in overhearers, presumably because the addressee is the one being managed by a face-saving reply. In all, face-saving indirectness provides a window on the cognitive as well as affect-related neural systems involved in human communication. PMID:25858603

  12. A six-channel pediatric coil array for detection of children spinal pathologies by MRI at 1.5 Tesla

    NASA Astrophysics Data System (ADS)

    López Terrones, Marcos Alonso; Solís-Nájera, Sergio Enrique

    2014-11-01

    Nowadays, magnetic resonance (MR) in Mexico has become a standard technique for clinical imaging. Although most of the times the MR systems contain only coils oriented for adults. Radiologists use these coils for children studies due to the non-availability of pediatric coils. Image quality is decreased due to the low signal to noise ratio delivered to the system. The development of RF coils is always focused towards increasing SNR and optimizing the RF penetration into the sample. Moreover, spinal pathologies in children, which are an important topic in pediatric care, cover congenital and neuromuscular disorders that occur in childhood. In this work, the design of a dedicated six-channel coil for detection of spinal pathologies at 1.5 Tesla is addressed. Numerical electromagnetic simulations were performed in order to evaluate their magnetic field performance at (63.6 MHz) 1.5 Tesla. The magnetic field uniformity as well as the RF penetration depth of the coil configurations was evaluated in order to find the best/optimized coil array configuration. The coil is comprised of three rows, one with 4 coil elements and two with only one coil element. Phantom and in vivo images were acquired with the six-channel pediatric coil array. The phantom images agree with the simulated data. In vivo images acquired with the 6-channel pediatric coil array have shown very good penetration depth and homogeneity, which allow better image quality throughout the whole FOV. In addition, the parallel imaging capabilities of the array allow the acceleration of the experiments avoiding possible motion artifacts.

  13. A six-channel pediatric coil array for detection of children spinal pathologies by MRI at 1.5 Tesla

    SciTech Connect

    López Terrones, Marcos Alonso; Solís-Nájera, Sergio Enrique

    2014-11-07

    Nowadays, magnetic resonance (MR) in Mexico has become a standard technique for clinical imaging. Although most of the times the MR systems contain only coils oriented for adults. Radiologists use these coils for children studies due to the non-availability of pediatric coils. Image quality is decreased due to the low signal to noise ratio delivered to the system. The development of RF coils is always focused towards increasing SNR and optimizing the RF penetration into the sample. Moreover, spinal pathologies in children, which are an important topic in pediatric care, cover congenital and neuromuscular disorders that occur in childhood. In this work, the design of a dedicated six-channel coil for detection of spinal pathologies at 1.5 Tesla is addressed. Numerical electromagnetic simulations were performed in order to evaluate their magnetic field performance at (63.6 MHz) 1.5 Tesla. The magnetic field uniformity as well as the RF penetration depth of the coil configurations was evaluated in order to find the best/optimized coil array configuration. The coil is comprised of three rows, one with 4 coil elements and two with only one coil element. Phantom and in vivo images were acquired with the six-channel pediatric coil array. The phantom images agree with the simulated data. In vivo images acquired with the 6-channel pediatric coil array have shown very good penetration depth and homogeneity, which allow better image quality throughout the whole FOV. In addition, the parallel imaging capabilities of the array allow the acceleration of the experiments avoiding possible motion artifacts.

  14. Quantitative assessment of visual cortex function with fMRI at 7 Tesla—test–retest variability

    PubMed Central

    Abd Hamid, Aini Ismafairus; Speck, Oliver; Hoffmann, Michael B.

    2015-01-01

    fMRI-based retinotopic mapping was used to assess systematic variations in activated cortical surface area, amplitude, and coherence across sessions. Seven healthy subjects were scanned at 7 T in three separate sessions with intervals of 51.4 ± 5.4 days (Sessions 1 and 2) and 167.9 ± 24.4 days (Sessions 2 and 3). We found a reduction between Sessions 1 and 2 for activated cortical surface area, between Sessions 1 and 3 for amplitude, and between Sessions 1 and 2/3 for coherence. The results do not support head motion as a major cause of the observed effect seen in Session 1, suggesting that cognitive effects were the underlying cause of change. The phase correlations for both eccentricity and polar angle mapping were highly correlated between sessions, demonstrating the stability of the maps. Furthermore, the sensitivity in determining inter-session changes of cortical surface area, response amplitude, and coherence were, at a 5% significance level, estimated to be 1.5, 6, and 5%, respectively. Any future longitudinal fMRI study should carefully evaluate activation across sessions to determine the eligibility of inclusion of all time points. This experimental design provides guidance in methodological issues of clinical longitudinal fMRI-studies, specifically regarding effects of subject experience. PMID:26388756

  15. A high resolution 7-Tesla resting-state fMRI test-retest dataset with cognitive and physiological measures

    PubMed Central

    Gorgolewski, Krzysztof J; Mendes, Natacha; Wilfling, Domenica; Wladimirow, Elisabeth; Gauthier, Claudine J; Bonnen, Tyler; Ruby, Florence J.M; Trampel, Robert; Bazin, Pierre-Louis; Cozatl, Roberto; Smallwood, Jonathan; Margulies, Daniel S

    2015-01-01

    Here we present a test-retest dataset of functional magnetic resonance imaging (fMRI) data acquired at rest. 22 participants were scanned during two sessions spaced one week apart. Each session includes two 1.5?mm isotropic whole-brain scans and one 0.75?mm isotropic scan of the prefrontal cortex, giving a total of six time-points. Additionally, the dataset includes measures of mood, sustained attention, blood pressure, respiration, pulse, and the content of self-generated thoughts (mind wandering). This data enables the investigation of sources of both intra- and inter-session variability not only limited to physiological changes, but also including alterations in cognitive and affective states, at high spatial resolution. The dataset is accompanied by a detailed experimental protocol and source code of all stimuli used. PMID:25977805

  16. Tesla MRI of bone microarchitecture discriminates between women without and with fragility fractures who do not differ by bone mineral density.

    PubMed

    Chang, Gregory; Honig, Stephen; Liu, Yinxiao; Chen, Cheng; Chu, Kevin K; Rajapakse, Chamith S; Egol, Kenneth; Xia, Ding; Saha, Punam K; Regatte, Ravinder R

    2015-05-01

    Osteoporosis is a disease of poor bone quality. Bone mineral density (BMD) has limited ability to discriminate between subjects without and with poor bone quality, and assessment of bone microarchitecture may have added value in this regard. Our goals were to use 7 T MRI to: (1) quantify and compare distal femur bone microarchitecture in women without and with poor bone quality (defined clinically by presence of fragility fractures); and (2) determine whether microarchitectural parameters could be used to discriminate between these two groups. This study had institutional review board approval, and we obtained written informed consent from all subjects. We used a 28-channel knee coil to image the distal femur of 31 subjects with fragility fractures and 25 controls without fracture on a 7 T MRI scanner using a 3-D fast low angle shot sequence (0.234 mm × 0.234 mm × 1 mm, parallel imaging factor = 2, acquisition time = 7 min 9 s). We applied digital topological analysis to quantify parameters of bone microarchitecture. All subjects also underwent standard clinical BMD assessment in the hip and spine. Compared to controls, fracture cases demonstrated lower bone volume fraction and markers of trabecular number, plate-like structure, and plate-to-rod ratio, and higher markers of trabecular isolation, rod disruption, and network resorption (p < 0.05 for all). There were no differences in hip or spine BMD T-scores between groups (p > 0.05). In receiver-operating-characteristics analyses, microarchitectural parameters could discriminate cases and controls (AUC = 0.66-0.73, p < 0.05). Hip and spine BMD T-scores could not discriminate cases and controls (AUC = 0.58-0.64, p ? 0.08). We conclude that 7 T MRI can detect bone microarchitectural deterioration in women with fragility fractures who do not differ by BMD. Microarchitectural parameters might some day be used as an additional tool to detect patients with poor bone quality who cannot be detected by dual-energy X-ray absorptiometry (DXA). PMID:24752823

  17. Patient-induced susceptibility effect on geometric distortion of clinical brain MRI for radiation treatment planning on a 3T scanner

    NASA Astrophysics Data System (ADS)

    Wang, H.; Balter, J.; Cao, Y.

    2013-02-01

    Concerns about the geometric accuracy of MRI in radiation therapy (RT) have been present since its invention. Although modern scanners typically have system levels of geometric accuracy that meet requirements of RT, subject-specific distortion is variable, and methods to in vivo assess and control patient-induced geometric distortion are not yet resolved. This study investigated the nature and magnitude of the subject-induced susceptibility effect on geometric distortions in clinical brain MRI, and tested the feasibility of in vivo quality control using field inhomogeneity mapping. For 19 consecutive patients scanned on a dedicated 3T MR scanner, B0 field inhomogeneity maps were acquired and analyzed to determine subject-induced distortions. For 3D T1 weighted images frequency-encoded with a bandwidth of 180 Hz/pixel, 86.9% of the estimated displacements were <0.5 mm, 97.4% <1 mm, and only 0.1% of displacements > 2 mm. The maximum displacement was <4 mm. The greatest distortions were observed at the interfaces with air at the sinuses. Displacements decayed to less than 1 mm over a distance of 8 mm. Metal surgical wires generated smaller distortions, with an averaged maximum displacement of 0.76 mm. Repeat acquisition of the field maps in 17 patients revealed a within-subject standard deviation of 0.25 ppm, equivalent to 0.22 mm displacement in the frequency-encoding direction in the 3D T1 weighted images. Susceptibility-induced voxel displacements in the brain are generally small, but should be monitored for precision RT. These effects are manageable at 3T and lower fields, and the methods applied can be used to monitor for potential local errors in individual patients, as well as to correct for local distortions as needed.

  18. An Approach for Preoperative Planning and Performance of MR-guided Interventions Demonstrated With a Manual Manipulator in a 1.5T MRI Scanner

    SciTech Connect

    Seimenis, Ioannis; Tsekos, Nikolaos V.; Keroglou, Christoforos; Eracleous, Eleni; Pitris, Constantinos; Christoforou, Eftychios G.

    2012-04-15

    Purpose: The aim of this work was to develop and test a general methodology for the planning and performance of robot-assisted, MR-guided interventions. This methodology also includes the employment of software tools with appropriately tailored routines to effectively exploit the capabilities of MRI and address the relevant spatial limitations. Methods: The described methodology consists of: (1) patient-customized feasibility study that focuses on the geometric limitations imposed by the gantry, the robotic hardware, and interventional tools, as well as the patient; (2) stereotactic preoperative planning for initial positioning of the manipulator and alignment of its end-effector with a selected target; and (3) real-time, intraoperative tool tracking and monitoring of the actual intervention execution. Testing was performed inside a standard 1.5T MRI scanner in which the MR-compatible manipulator is deployed to provide the required access. Results: A volunteer imaging study demonstrates the application of the feasibility stage. A phantom study on needle targeting is also presented, demonstrating the applicability and effectiveness of the proposed preoperative and intraoperative stages of the methodology. For this purpose, a manually actuated, MR-compatible robotic manipulation system was used to accurately acquire a prescribed target through alternative approaching paths. Conclusions: The methodology presented and experimentally examined allows the effective performance of MR-guided interventions. It is suitable for, but not restricted to, needle-targeting applications assisted by a robotic manipulation system, which can be deployed inside a cylindrical scanner to provide the required access to the patient facilitating real-time guidance and monitoring.

  19. Preliminary evaluation of a monolithic detector module for integrated PET/MRI scanner with high spatial resolution

    NASA Astrophysics Data System (ADS)

    Pani, R.; Gonzalez, A. J.; Bettiol, M.; Fabbri, A.; Cinti, M. N.; Preziosi, E.; Borrazzo, C.; Conde, P.; Pellegrini, R.; Di Castro, E.; Majewski, S.

    2015-06-01

    The proposal of Mindview European Project concerns with the development of a very high resolution and high efficiency brain dedicated PET scanner simultaneously working with a Magnetic Resonance scanner, that expects to visualize neurotransmitter pathways and their disruptions in the quest to better diagnose schizophrenia. On behalf of this project, we propose a low cost PET module for the first prototype, based on monolithic crystals, suitable to be integrated with a head Radio Frequency (RF) coil. The aim of the suggested module is to achieve high performances in terms of efficiency, planar spatial resolution (expected about 1 mm) and discrimination of gamma Depth Of Interaction (DOI) in order to reduce the parallax error. Our preliminary results are very promising: a DOI resolution of about 3 mm, a spatial resolution ranging from about 1 to 1.5 mm and a good position linearity.

  20. Towards undistorted and noise-free speech in an MRI scanner: correlation subtraction followed by spectral noise gating.

    PubMed

    Inouye, Joshua M; Blemker, Silvia S; Inouye, David I

    2014-03-01

    Noise cancellation in an MRI environment is difficult due to the high noise levels that are in the spectral range of human speech. This paper describes a two-step method to cancel MRI noise that combines operations in both the time domain (correlation subtraction) and the frequency domain (spectral noise gating). The resulting filtered recording has a noise power suppression of over 100?dB, a significant improvement over previously described techniques on MRI noise cancellation. The distortion is lower and the noise suppression higher than using spectral noise gating in isolation. Implementation of this method will aid in detailed studies of speech in relation to vocal tract and velopharyngeal function. PMID:24606243

  1. Slice profile distortions in single slice continuously moving table MRI

    NASA Astrophysics Data System (ADS)

    Sengupta, Saikat; Smith, David S.; Welch, E. B.

    2015-03-01

    Continuously Moving Table (CMT) MRI is a rapid imaging technique that allows scanning of extended fields of view (FOVs) such as the whole-body in a single continuous scan.1 A highly efficient approach to CMT MRI is single slice imaging, where data are continuously acquired from a single axial slice at isocenter with concurrent movement of the patient table.2 However, the continuous motion of the scanner table and supply of fresh magnetization into the excited slice can introduce deviations in the slice magnetization profile. The goal of this work is to investigate and quantify the distortion in the slice profile in CMT MRI. CMT MRI with a table speed of 20 mm/s was implemented on a 3 Tesla whole-body MRI scanner, with continuous radial data acquisition. Simulations were performed to characterize the transient and steady state slice profiles and magnetization effects. Simulated slice profiles were compared to actual slice profile measurements performed in the scanner. Both simulations and experiments revealed an asymmetric slice profile characterized by a skew towards the lagging edge of the moving table, in contrast to the nominal profiles associated with scanning a stationary object. The true excited slice width (FWHM) and pitch of the acquisition was observed to be dependent on table velocity, with larger table speeds resulting in larger slice profile deviations from the nominal shape.

  2. TESLA Polarimeters

    E-print Network

    V. Gharibyan; N. Meyners; K. P. Schuler

    2003-10-22

    We describe a study of high-energy Compton beam polarimeters for the future e+e- linear collider machine TESLA. A segment of the beam delivery system has been identified, which is aligned with the e+e- collision axis and which has a suitable configuration for high-quality beam polarization measurements. The laser envisaged for the polarimeter is similar to an existing facility at DESY. It delivers very short pulses in the 10 ps, 10-100uJ regime and operates with a pattern that matches the pulse and bunch structure of TESLA. This will permit very fast and accurate measurements and an expeditious tune-up of the spin manipulators at the low-energy end of the linac. Electron detection in the multi-event regime will be the principle operating mode of the polarimeter. Other possible operating modes include photon detection and single-event detection for calibration purposes. We expect an overall precision of dP/P=0.5% for the measurement of the beam polarization.

  3. Tumor Volume Changes on 1.5 Tesla Endorectal MRI During Neoadjuvant Androgen Suppression Therapy for Higher-Risk Prostate Cancer and Recurrence in Men Treated Using Radiation Therapy Results of the Phase II CALGB 9682 Study

    SciTech Connect

    D'Amico, Anthony V. Halabi, Susan; Tempany, Clare; Titelbaum, David; Philips, George K.; Loffredo, Marian; McMahon, Elizabeth; Sanford, Ben; Vogelzang, Nicholas J.; Small, Eric J.

    2008-05-01

    Purpose: We prospectively determined whether the change in tumor volume (TV) during 2 months of neoadjuvant androgen suppression therapy (nAST) measured using conventional 1.5 Tesla endorectal magnetic resonance imaging (eMRI) was associated with the risk of recurrence after radiation (RT) and 6 months of AST. Patients and Methods: Between 1997 and 2001, 180 men with clinical stage T1c-T3cN0M0 adenocarcinoma of the prostate were registered. Fifteen were found to be ineligible and the institutional MR radiologist could not assess the TV in 32, leaving 133 for analysis. Multivariable Cox regression analysis was used to assess whether a significant association existed between eMRI-defined TV progression during nAST and time to recurrence adjusting for prostate-specific antigen (PSA) level, Gleason score (8 to 10 or 7 vs. 6 or less) and stage (T3 vs. T1-2). Results: After a median follow up of 6.7 years and adjusting for known prognostic factors, there was a significant increase in the risk of PSA failure (HR, 2.3 [95% CI, 1.1-4.5; p = 0.025) in men with eMRI-defined TV progression during nAST. Specifically, adjusted estimates of PSA failure were significantly higher (p = 0.032) in men with, compared with men without, eMRI-defined TV progression reaching 38% vs. 19%, respectively, by 5 years. Conclusion: Eradicating intraprostatic hormone refractory prostate cancer (HRPC) by maximizing local control and randomized trials assessing whether survival is improved when agents active against HRPC are combined with maximal local therapy are needed in men who progress based on eMRI during nAST.

  4. A high-field 3He Metastability Exchange Optical Pumping polarizer operating in a 1.5 T medical scanner for lung MRI

    E-print Network

    Collier, G; Wojna, A; G?owacz, B; Suchanek, M; Olejniczak, Z; Dohnalik, T

    2013-01-01

    After being hyperpolarized using the technique of Metastability Exchange Optical Pumping (MEOP), 3He can be used as a contrast agent for lung magnetic resonance imaging (MRI). MEOP is usually performed at low magnetic field (~ 1 mT) and low pressure (~ 1 mbar), which results in a low magnetization production rate. A delicate polarization-preserving step of compression is also required. It was demonstrated in sealed cells that high nuclear polarization values can be obtained at higher pressures with MEOP, if performed at high magnetic field (non-standard conditions). In this work the feasibility of building a high-field polarizer that operates within a commercial 1.5 T scanner was evaluated. Preliminary measurements of nuclear polarization with sealed cells filled at different 3He gas pressures (1.33 to 267 mbar) were performed. The use of an annular shape for the laser beam increased by 25 % the achievable nuclear polarization equilibrium value (Meq) at 32 and 67 mbar as compared to a Gaussian beam shape. Meq...

  5. Response competition and response inhibition during different choice-discrimination tasks: evidence from ERP measured inside MRI scanner.

    PubMed

    Gonzalez-Rosa, Javier J; Inuggi, Alberto; Blasi, Valeria; Cursi, Marco; Annovazzi, Pietro; Comi, Giancarlo; Falini, Andrea; Leocani, Letizia

    2013-07-01

    We investigated the neural correlates underlying response inhibition and conflict detection processes using ERPs and source localization analyses simultaneously acquired during fMRI scanning. ERPs were elicited by a simple reaction time task (SRT), a Go/NoGo task, and a Stroop-like task (CST). The cognitive conflict was thus manipulated in order to probe the degree to which information processing is shared across cognitive systems. We proposed to dissociate inhibition and interference conflict effects on brain activity by using identical Stroop-like congruent/incongruent stimuli in all three task contexts and while varying the response required. NoGo-incongruent trials showed a larger N2 and enhanced activations of rostral anterior cingulate cortex (ACC) and pre-supplementary motor area, whereas Go-congruent trials showed a larger P3 and increased parietal activations. Congruent and incongruent conditions of the CST task also elicited similar N2, P3 and late negativity (LN) ERPs, though CST-incongruent trials revealed a larger LN and enhanced prefrontal and ACC activations. Considering the stimulus probability and experimental manipulation of our study, current findings suggest that NoGo N2 and frontal NoGo P3 appear to be more associated to response inhibition rather than a specific conflict monitoring, whereas occipito-parietal P3 of Go and CST conditions may be more linked to a planned response competition between the prepared and required response. LN, however, appears to be related to higher level conflict monitoring associated with response choice-discrimination but not when the presence of cognitive conflict is associated with response inhibition. PMID:23664841

  6. Scanner Art

    ERIC Educational Resources Information Center

    Jaworski, Joy; Murphy, Kris

    2009-01-01

    In this article, the authors describe how they incorporated environmental awareness into their art curriculum. Here, they describe a digital photography project in which their students used flatbed scanners as cameras. Their students composed their objects directly on the scanner. The lesson enabled students to realize that artists have voices…

  7. Simultaneous hyperpolarized 13C-pyruvate MRI and 18F-FDG-PET in cancer (hyperPET): feasibility of a new imaging concept using a clinical PET/MRI scanner

    PubMed Central

    Gutte, Henrik; Hansen, Adam E; Henriksen, Sarah T; Johannesen, Helle H; Ardenkjaer-Larsen, Jan; Vignaud, Alexandre; Hansen, Anders E; Børresen, Betina; Klausen, Thomas L; Wittekind, Anne-Mette N; Gillings, Nic; Kristensen, Annemarie T; Clemmensen, Andreas; Højgaard, Liselotte; Kjær, Andreas

    2015-01-01

    In this paper we demonstrate, for the first time, the feasibility of a new imaging concept - combined hyperpolarized 13C-pyruvate magnetic resonance spectroscopic imaging (MRSI) and 18F-FDG-PET imaging. This procedure was performed in a clinical PET/MRI scanner with a canine cancer patient. We have named this concept hyper PET. Intravenous injection of the hyperpolarized 13C-pyruvate results in an increase of 13C-lactate, 13C-alanine and 13C-CO2 (13C-HCO3) resonance peaks relative to the tissue, disease and the metabolic state probed. Accordingly, with dynamic nuclear polarization (DNP) and use of 13C-pyruvate it is now possible to directly study the Warburg Effect through the rate of conversion of 13C-pyruvate to 13C-lactate. In this study, we combined it with 18F-FDG-PET that studies uptake of glucose in the cells. A canine cancer patient with a histology verified local recurrence of a liposarcoma on the right forepaw was imaged using a combined PET/MR clinical scanner. PET was performed as a single-bed, 10 min acquisition, 107 min post injection of 310 MBq 18F-FDG. 13C-chemical shift imaging (CSI) was performed just after FDG-PET and 30 s post injection of 23 mL hyperpolarized 13C-pyruvate. Peak heights of 13C-pyruvate and 13C-lactate were quantified using a general linear model. Anatomic 1H-MRI included axial and coronal T1 vibe, coronal T2-tse and axial T1-tse with fat saturation following gadolinium injection. In the tumor we found clearly increased 13C-lactate production, which also corresponded to high 18F-FDG uptake on PET. This is in agreement with the fact that glycolysis and production of lactate are increased in tumor cells compared to normal cells. Yet, most interestingly, also in the muscle of the forepaw of the dog high 18F-FDG uptake was observed. This was due to activity in these muscles prior to anesthesia, which was not accompanied by a similarly high 13C-lactate production. Accordingly, this clearly demonstrates how the Warburg Effect directly can be demonstrated by hyperpolarized 13C-pyruvate MRSI. This was not possible with 18F-FDG-PET imaging due to inability to discriminate between causes of increased glucose uptake. We propose that this new concept of simultaneous hyperpolarized 13C-pyruvate MRSI and PET may be highly valuable for image-based non-invasive phenotyping of tumors. This methods may be useful for treatment planning and therapy monitoring. PMID:25625025

  8. Functional MRI compliance in children with attention deficit hyperactivity disorder

    PubMed Central

    Karaka?, Sirel; Dinçer, Elvin Do?utepe; Ceylan, Arzu Özkan; Tileylio?lu, Emre; Karaka?, Hakk? Muammer; Tal?, E. Turgut

    2015-01-01

    PURPOSE We aimed to test the effect of prescan training and orientation in functional magnetic resonance imaging (fMRI) in children with attention deficit hyperactivity disorder (ADHD) and to investigate whether fMRI compliance was modified by state anxiety. METHODS Subjects included 77 males aged 6–12 years; there were 53 patients in the ADHD group and 24 participants in the healthy control group. Exclusion criteria included neurological and/or psychiatric comorbidities (other than ADHD), the use of psychoactive drugs, and an intelligence quotient outside the normal range. Children were individually subjected to prescan orientation and training. Data were acquired using a 1.5 Tesla scanner and an 8-channel head coil. Functional scans were performed using a standard neurocognitive task. RESULTS The neurocognitive task led to reliable fMRI maps. Compliance was not significantly different between ADHD and control groups based on success, failure, and repetition rates of fMRI. Compliance of ADHD patients with extreme levels of anxiety was also not significantly different. CONCLUSION The fMRI compliance of ADHD children is typically lower than that of healthy children. However, compliance can be increased to the level of age-matched healthy control children by addressing concerns about the technical and procedural aspects of fMRI, providing orientation programs, and performing on-task training. In patients thus trained, compliance does not change with the level of state anxiety suggesting that the anxiety hypothesis of fMRI compliance is not supported. PMID:25519454

  9. Integrating structural and functional imaging for computer assisted detection of prostate cancer on multi-protocol in vivo 3 Tesla MRI

    NASA Astrophysics Data System (ADS)

    Viswanath, Satish; Bloch, B. Nicolas; Rosen, Mark; Chappelow, Jonathan; Toth, Robert; Rofsky, Neil; Lenkinski, Robert; Genega, Elizabeth; Kalyanpur, Arjun; Madabhushi, Anant

    2009-02-01

    Screening and detection of prostate cancer (CaP) currently lacks an image-based protocol which is reflected in the high false negative rates currently associated with blinded sextant biopsies. Multi-protocol magnetic resonance imaging (MRI) offers high resolution functional and structural data about internal body structures (such as the prostate). In this paper we present a novel comprehensive computer-aided scheme for CaP detection from high resolution in vivo multi-protocol MRI by integrating functional and structural information obtained via dynamic-contrast enhanced (DCE) and T2-weighted (T2-w) MRI, respectively. Our scheme is fully-automated and comprises (a) prostate segmentation, (b) multimodal image registration, and (c) data representation and multi-classifier modules for information fusion. Following prostate boundary segmentation via an improved active shape model, the DCE/T2-w protocols and the T2-w/ex vivo histological prostatectomy specimens are brought into alignment via a deformable, multi-attribute registration scheme. T2-w/histology alignment allows for the mapping of true CaP extent onto the in vivo MRI, which is used for training and evaluation of a multi-protocol MRI CaP classifier. The meta-classifier used is a random forest constructed by bagging multiple decision tree classifiers, each trained individually on T2-w structural, textural and DCE functional attributes. 3-fold classifier cross validation was performed using a set of 18 images derived from 6 patient datasets on a per-pixel basis. Our results show that the results of CaP detection obtained from integration of T2-w structural textural data and DCE functional data (area under the ROC curve of 0.815) significantly outperforms detection based on either of the individual modalities (0.704 (T2-w) and 0.682 (DCE)). It was also found that a meta-classifier trained directly on integrated T2-w and DCE data (data-level integration) significantly outperformed a decision-level meta-classifier, constructed by combining the classifier outputs from the individual T2-w and DCE channels.

  10. Edison vs. Tesla

    SciTech Connect

    Hogan, Kathleen; Wallace, Hal; Ivestor, Rob

    2013-11-20

    As Edison vs. Tesla week heats up at the Energy Department, we are exploring the rivalry between Thomas Edison and Nikola Tesla and how their work is still impacting the way we use energy today. Whether you're on Team Tesla or Team Edison, both inventors were key players in creating things like batteries, power plants and wireless technologies -- all innovations we still use today. And as we move toward a clean energy future, energy efficient lighting, like LED bulbs, and more efficient electric motors not only help us save money on electricity costs but help combat climate change. For this, Tesla and Edison both deserve our recognition.

  11. Edison vs. Tesla

    ScienceCinema

    Hogan, Kathleen; Wallace, Hal; Ivestor, Rob

    2014-01-07

    As Edison vs. Tesla week heats up at the Energy Department, we are exploring the rivalry between Thomas Edison and Nikola Tesla and how their work is still impacting the way we use energy today. Whether you're on Team Tesla or Team Edison, both inventors were key players in creating things like batteries, power plants and wireless technologies -- all innovations we still use today. And as we move toward a clean energy future, energy efficient lighting, like LED bulbs, and more efficient electric motors not only help us save money on electricity costs but help combat climate change. For this, Tesla and Edison both deserve our recognition.

  12. Multi-Channel Metabolic Imaging, with SENSE reconstruction, of Hyperpolarized [1-13C] Pyruvate in a Live Rat at 3.0 tesla on a Clinical MR Scanner*

    PubMed Central

    Tropp, James; Lupo, Janine M.; Chen, Albert; Calderon, Paul; McCune, Don; Grafendorfer, Thomas; Ozturk-Isik, Esin; Larson, Peder E. Z.; Hu, Simon; Yen, Yi-Fen; Robb, Fraser; Bok, Robert; Schulte, Rolf; Xu, Duan; Hurd, Ralph; Vigneron, Daniel; Nelson, Sarah

    2012-01-01

    We report metabolic images of 13C, following injection of a bolus of of hyperpolarized [1-13C] pyruvate in a live rat. The data were acquired on a clinical scanner, using custom coils for volume transmission and array reception. Proton blocking of all carbon resonators enabled proton anatomic imaging with the system body coil, to allow for registration of anatomic and metabolic images, for which good correlation was achieved, with some anatomic features (kidney and heart) clearly visible in a carbon image, without reference to the corresponding proton image. Parallel imaging with sensitivity encoding was used to increase the spatial resolution in the SI direction of the rat. The signal to noise ratio in was in some instances unexpectedly high in the parallel images; variability of the polarization among different trials, plus partial volume effects, are noted as a possible cause of this. PMID:21130012

  13. Cylindrical Scanner

    Energy Science and Technology Software Center (ESTSC)

    1999-04-29

    The CS system is designed to provide a very fast imaging system in order to search for weapons on persons in an airport environment. The Cylindrical Scanner moves a vertical transceiver array rapidly around a person standing stationary. The software can be segmented in to three specific tasks. The first task is data acquisition and scanner control. At the operator's request, this task commands the scanner to move and the radar transceiver array to sendmore »data to the computer system in a known and well-ordered manner. The array is moved over the complete aperture in 10 to 12 seconds. At the completion of the array movement the second software task automatically reconstructs the high-resolution image from the radar data utilizing the integrated DSP boards. The third task displays the resulting images, as they become available, to the computer screen for user review and analysis.« less

  14. Practical design of a 4 Tesla double-tuned RF surface coil for interleaved 1H and 23Na MRI of rat brain

    NASA Astrophysics Data System (ADS)

    Alecci, M.; Romanzetti, S.; Kaffanke, J.; Celik, A.; Wegener, H. P.; Shah, N. J.

    2006-08-01

    MRI is proving to be a very useful tool for sodium quantification in animal models of stroke, ischemia, and cancer. In this work, we present the practical design of a dual-frequency RF surface coil that provides 1H and 23Na images of the rat head at 4 T. The dual-frequency RF surface coil comprised of a large loop tuned to the 1H frequency and a smaller co-planar loop tuned to the 23Na frequency. The mutual coupling between the two loops was eliminated by the use of a trap circuit inserted in the smaller coil. This independent-loop design was versatile since it enabled a separate optimisation of the sensitivity and RF field distributions of the two coils. To allow for an easy extension of this simple double-tuned coil design to other frequencies (nuclei) and dimensions, we describe in detail the practical aspects of the workbench design and MRI testing using a phantom that mimics in vivo conditions. A comparison between our independent-loop, double-tuned coil and a single-tuned 23Na coil of equal size obtained with a phantom matching in vivo conditions, showed a reduction of the 23Na sensitivity (about 28 %) because of signal losses in the trap inductance. Typical congruent 1H and 23Na rat brain images showing good SNR ( 23Na: brain 7, ventricular cerebrospinal fluid 11) and spatial resolution ( 23Na: 1.25 × 1.25 × 5 mm 3) are also reported. The in vivo SNR values obtained with this coil were comparable to, if not better than, other contemporary designs in the literature.

  15. Physics at TESLA

    E-print Network

    Grahame A. Blair

    2001-04-25

    The physics at a 500-800 GeV electron positron linear collider, TESLA, is reviewed. The machine parameters that impact directly on the physics are discussed and a few key performance goals for a detector at TESLA are given. Emphasis is placed on precision measurements in the Higgs and top sectors and on extrapolation to high energy scales in the supersymmetric scenario.

  16. Diffusion-Weighted Imaging in 3.0 Tesla Breast MRI: Diagnostic Performance and Tumor Characterization Using Small Subregions vs. Whole Tumor Regions of Interest

    PubMed Central

    Arponent, Otso; Sudah, Mazen; Masarwah, Amro; Taina, Mikko; Rautiainen, Suvi; Könönen, Mervi; Sironen, Reijo; Kosma, Veli-Matti; Sutela, Anna; Hakumäki, Juhana; Vanninen, Ritva

    2015-01-01

    Introduction Apparent diffusion coefficient (ADC) values are increasingly reported in breast MRI. As there is no standardized method for ADC measurements, we evaluated the effect of the size of region of interest (ROI) to diagnostic utility and correlation to prognostic markers of breast cancer. Methods This prospective study was approved by the Institutional Ethics Board; the need for written informed consent for the retrospective analyses of the breast MRIs was waived by the Chair of the Hospital District. We compared diagnostic accuracy of ADC measurements from whole-lesion ROIs (WL-ROIs) to small subregions (S-ROIs) showing the most restricted diffusion and evaluated correlations with prognostic factors in 112 consecutive patients (mean age 56.2±11.6 years, 137 lesions) who underwent 3.0-T breast MRI. Results Intra- and interobserver reproducibility were substantial (? = 0.616–0.784; Intra-Class Correlation 0.589–0.831). In receiver operating characteristics analysis, differentiation between malignant and benign lesions was excellent (area under curve 0.957–0.962, cut-off ADC values for WL-ROIs: 0.87×10?3 mm2s-1; S-ROIs: 0.69×10?3 mm2s-1, P<0.001). WL-ROIs/S-ROIs achieved sensitivities of 95.7%/91.3%, specificities of 89.5%/94.7%, and overall accuracies of 89.8%/94.2%. In S-ROIs, lower ADC values correlated with presence of axillary metastases (P = 0.03), high histological grade (P = 0.006), and worsened Nottingham Prognostic Index Score (P<0.05). In both ROIs, ADC values correlated with progesterone receptors and advanced stage (P<0.01), but not with HER2, estrogen receptors, or Ki-67. Conclusions ADC values assist in breast tumor characterization. Small ROIs were more accurate than whole-lesion ROIs and more frequently associated with prognostic factors. Cut-off values differed significantly depending on measurement procedure, which should be recognized when comparing results from the literature. Instead of using a whole lesion covering ROI, a small ROI could be advocated in diffusion-weighted imaging. PMID:26458106

  17. The TESLA RF System

    NASA Astrophysics Data System (ADS)

    Choroba, S.

    2003-12-01

    The TESLA project proposed by the TESLA collaboration in 2001 is a 500 to 800GeV e+/e- linear collider with integrated free electron laser facility. The accelerator is based on superconducting cavity technology. Approximately 20000 superconducting cavities operated at 1.3GHz with a gradient of 23.4MV/m or 35MV/m will be required to achieve the energy of 500GeV or 800GeV respectively. For 500GeV ˜600 RF stations each generating 10MW of RF power at 1.3GHz at a pulse duration of 1.37ms and a repetition rate of 5 or 10Hz are required. The original TESLA design was modified in 2002 and now includes a dedicated 20GeV electron accelerator in a separate tunnel for free electron laser application. The TESLA XFEL will provide XFEL radiation of unprecedented peak brilliance and full transverse coherence in the wavelength range of 0.1 to 6.4nm at a pulse duration of 100fs. The technology of both accelerators, the TESLA linear collider and the XFEL, will be identical, however the number of superconducting cavities and RF stations for the XFEL will be reduced to 936 and 26 respectively. This paper describes the layout of the entire RF system of the TESLA linear collider and the TESLA XFEL and gives an overview of its various subsystems and components.

  18. Cheat Sheet Scanner class

    E-print Network

    Yates, Alexander

    Cheat Sheet Scanner class import java.util.Scanner; Scanner scan = new Scanner(System.in); Scanner scan = new Scanner((File) f); int num = scan.nextInt(); double d = scan.nextDouble(); String s = scan import java.awt.Point; Point p = new Point(); Point p = new Point(2, 3); p.setLocation(2, 4); p

  19. Development of functional imaging in the human brain (fMRI); the University of Minnesota experience.

    PubMed

    U?urbil, Kâmil

    2012-08-15

    The human functional magnetic resonance imaging (fMRI) experiments performed in the Center for Magnetic Resonance Research (CMRR), University of Minnesota, were planned between two colleagues who had worked together previously in Bell Laboratories in the late nineteen seventies, namely myself and Seiji Ogawa. These experiments were motivated by the Blood Oxygenation Level Dependent (BOLD) contrast developed by Seiji. We discussed and planned human studies to explore imaging human brain activity using the BOLD mechanism on the 4 Tesla human system that I was expecting to receive for CMRR. We started these experiments as soon as this 4 Tesla instrument became marginally operational. These were the very first studies performed on the 4 Tesla scanner in CMRR; had the scanner become functional earlier, they would have been started earlier as well. We were aware of the competing effort at the Massachusetts General Hospital (MGH) and we knew that they had been informed of our initiative in Minneapolis to develop fMRI. We had positive results certainly by August 1991 annual meeting of the Society of Magnetic Resonance in Medicine (SMRM). I believe, however, that neither the MGH colleagues nor us, at the time, had enough data and/or conviction to publish these extraordinary observations; it took more or less another six months or so before the papers from these two groups were submitted for publication within five days of each other to the Proceedings of the National Academy of Sciences, USA, after rejection by Nature in our case. Thus, fMRI was achieved independently and at about the same time at MGH, in an effort credited largely to Ken Kwong, and in CMRR, University of Minnesota in an effort led by myself and Seiji Ogawa. PMID:22342875

  20. Miniaturized fiber-optic transmission system for MRI signals.

    PubMed

    Memis, Omer Gokalp; Eryaman, Yigitcan; Aytur, Orhan; Atalar, Ergin

    2008-01-01

    Conventional MRI instruments transmit received MRI signals through electrical cables. Although this design has proved to be effective over the years, we report a fiber-optic system that addresses the needs of recent developments in MRI technology. One of these technologies is phased array coils with a high number of elements, where total size of interconnections is a primary problem, and other problem is internal MRI coils, where there is a need for improvements in safety. The Miniature Fiber-Optic Transmission (FOT) System was developed to address these issues. The system consists of a receiver coil with active detuning, a low-noise preamplifier, and a laser diode connected to a photodetector with fiber-optic cabling. The overall noise figure of the system is lower than 1 dB. Total power consumption is 50 mW, and the device is switchable with another fiber-optic line, which can also control active detuning. A prototype device was tested in a GE 1.5 Tesla MRI scanner, and several images were acquired with a signal to noise ratio similar to coaxial cabling. We believe that this design will reduce the cabling problems of arrays and enable placement of internal coils into body cavities with no safety hazard to the patient, such as electrical shock or burns. PMID:18098294

  1. Phantom for Diffusion MRI

    Cancer.gov

    Combining a Diffusion MRI phantom with a resolution phantom would allow the same device to be used to calibrate an MR scanner''s image quality and the accuracy and precision of its diffusion measurements. This would be useful particularly for Radiological QA and for use in assuring data quality in longitudinal and multi-subject studies.

  2. Differences in Velopharyngeal Structure during Speech among Asians Revealed by 3-Tesla Magnetic Resonance Imaging Movie Mode

    PubMed Central

    Nunthayanon, Kulthida; Honda, Ei-ichi; Shimazaki, Kazuo; Ohmori, Hiroko; Inoue-Arai, Maristela Sayuri; Kurabayashi, Tohru; Ono, Takashi

    2015-01-01

    Objective. Different bony structures can affect the function of the velopharyngeal muscles. Asian populations differ morphologically, including the morphologies of their bony structures. The purpose of this study was to compare the velopharyngeal structures during speech in two Asian populations: Japanese and Thai. Methods. Ten healthy Japanese and Thai females (five each) were evaluated with a 3-Tesla (3?T) magnetic resonance imaging (MRI) scanner while they produced vowel-consonant-vowel syllable (/asa/). A gradient-echo sequence, fast low-angle shot with segmented cine and parallel imaging technique was used to obtain sagittal images of the velopharyngeal structures. Results. MRI was carried out in real time during speech production, allowing investigations of the time-to-time changes in the velopharyngeal structures. Thai subjects had a significantly longer hard palate and produced shorter consonant than Japanese subjects. The velum of the Thai participants showed significant thickening during consonant production and their retroglossal space was significantly wider at rest, whereas the dimensional change during task performance was similar in the two populations. Conclusions. The 3?T MRI movie method can be used to investigate velopharyngeal function and diagnose velopharyngeal insufficiency. The racial differences may include differences in skeletal patterns and soft-tissue morphology that result in functional differences for the affected structures. PMID:26273584

  3. In-bore setup and Software for 3T MRI-guided Transperineal Prostate Biopsy

    PubMed Central

    Tokuda, Junichi; Tuncali, Kemal; Iordachita, Iulian; Song, Sang-Eun; Fedorov, Andriy; Oguro, Sota; Lasso, Andras; Fennessy, Fiona M; Tempany, Clare M; Hata, Nobuhiko

    2012-01-01

    MRI-guided prostate biopsy in conventional closed-bore scanners requires transferring the patient outside the bore during needle insertion due to the constrained in-bore space, causing a safety hazard and limiting image feedback. To address this issue, we present our custom-made in-bore setup and software to support MRI-guided transperineal prostate biopsy in a wide-bore 3 Tesla (T) MRI scanner. The setup consists of a specially designed tabletop and a needle-guiding template with Z-frame that give a physician access to the perineum of the patient at the imaging position and allow performance of MRI-guided transperineal biopsy without moving the patient out of the scanner. The software and Z-frame allow registration of the template, target planning, and biopsy guidance. Initially, we performed phantom experiments to assess the accuracy of template registration and needle placement in a controlled environment. Subsequently, we embarked on our clinical trial (N = 10). The phantom experiments showed that the translational errors of the template registration along the right-left (RP) and anterior-posterior (AP) axes were 1.1 ± 0.8 mm and 1.4 ± 1.1 mm respectively, while the rotational errors around the RL, AP, and superior-inferior axes were 0.8 ± 1.0 degrees, 1.7 ± 1.6 degrees, and 0.0 ± 0.0 degrees respectively. The 2D root-mean-square (RMS) needle placement error was 3.0 mm. The clinical biopsy procedures were safely carried out in all ten clinical cases with a needle placement error of 5.4 mm (2D RMS). In conclusion, transperineal prostate biopsy in a wide-bore 3T scanner is feasible using our custom-made tabletop set up and software, which supports manual needle placement without moving the patient out of the magnet. PMID:22951350

  4. Photon collider at TESLA

    E-print Network

    Valery Telnov

    2001-03-06

    High energy photon colliders (gamma-gamma, gamma-electron) based on backward Compton scattering of laser light is a very natural addition to e+e- linear colliders. In this report we consider this option for the TESLA project. Recent study has shown that the horizontal emittance in the TESLA damping ring can be further decreased by a factor of four. In this case the gamma-gamma luminosity luminosity in the high energy part of spectrum can reach (1/3)L_{e+e-}. Typical cross sections of interesting processes in gamma-gamma collisions are higher than those in e+e- collisions by about one order of magnitude, so the number of events in gamma-gamma collisions will be more than that in e+e- collisions. Photon colliders can, certainly, give additional information and they are the best for the study of many phenomena. The main question is now the technical feasibility. The key new element in photon colliders is a very powerful laser system. An external optical cavity is a promising approach for the TESLA project. A free electron laser is another option. However, a more straightforward solution is ``an optical storage ring (optical trap)'' with diode pumped solid state laser injector which is today technically feasible. This paper briefly reviews the status of a photon collider based at TESLA, its possible parameters and existing problems.

  5. The TESLA Detector

    E-print Network

    Klaus Moenig

    2001-11-05

    For the superconducting linear collider TESLA a multi purpose detector has been designed. This detector is optimised for the important physics processes expected at a next generation linear collider up to around 1 TeV and is designed for the specific environment of a superconducting collider.

  6. Photon collider at TESLA

    NASA Astrophysics Data System (ADS)

    Telnov, Valery

    2001-10-01

    High energy photon colliders ( ??, ?e) based on backward Compton scattering of laser light is a very natural addition to e +e - linear colliders. In this report, we consider this option for the TESLA project. Recent study has shown that the horizontal emittance in the TESLA damping ring can be further decreased by a factor of four. In this case, the ?? luminosity in the high energy part of spectrum can reach about (1/3) Le +e -. Typical cross-sections of interesting processes in ?? collisions are higher than those in e +e - collisions by about one order of magnitude, so the number of events in ?? collisions will be more than that in e +e - collisions. Photon colliders can, certainly, give additional information and they are the best for the study of many phenomena. The main question is now the technical feasibility. The key new element in photon colliders is a very powerful laser system. An external optical cavity is a promising approach for the TESLA project. A free electron laser is another option. However, a more straightforward solution is "an optical storage ring (optical trap)" with a diode pumped solid state laser injector which is today technically feasible. This paper briefly reviews the status of a photon collider based on the linear collider TESLA, its possible parameters and existing problems.

  7. Development of functional imaging in the human brain (fMRI); the University of Minnesota experience

    PubMed Central

    U?urbil, Kâmil

    2012-01-01

    The human functional magnetic resonance imaging (fMRI) experiments performed in the Center for Magnetic Resonance Research (CMRR), University of Minnesota, were planned between two colleagues who had worked together previously in Bell Laboratories in the late nineteen seventies, namely myself and Seiji Ogawa. These experiments were motivated by the Blood Oxygenation Level Dependent (BOLD) contrast developed by Seiji. We discussed and planned human studies to explore imaging human brain activity using the BOLD mechanism on the 4 Tesla human system that I was expecting to receive for CMRR. We started these experiments as soon as this 4 Tesla instrument became marginally operational. These were the very first studies performed on the 4 Tesla scanner in CMRR; had the scanner became functional earlier, they would have been started earlier as well. We had positive results certainly by August 1991 annual meeting of the Society of Magnetic Resonance in Medicine (SMRM) and took some of the data with us to that meeting. I believe, however, that neither the MGH colleagues nor us, at the time, had enough data and/or conviction to publish these extraordinary observations; it took more or less another six months or so before the papers from these two groups were submitted for publication within five days of each other to the Proceedings of the National Academy of Sciences, USA, after rejections by Nature. Based on this record, it is fair to say that fMRI was achieved independently and at about the same time at MGH, in an effort credited largely to Ken Kwong, and in CMRR, University of Minnesota in an effort led by myself and Seiji Ogawa. PMID:22342875

  8. MR-Guided Freehand Biopsy of Liver Lesions With Fast Continuous Imaging Using a 1.0-T Open MRI Scanner: Experience in 50 Patients

    SciTech Connect

    Fischbach, Frank; Bunke, Juergen; Thormann, Markus; Gaffke, Gunnar; Jungnickel, Kerstin; Smink, Jouke; Ricke, Jens

    2011-02-15

    The purpose of this study was to assess a new open system with a field-strength of 1.0 T for the feasibility of liver biopsy using the freehand technique with fast continuous imaging. Fifty patients with focal liver lesions measuring 5 to 30 mm in diameter were included in the study. Guidance and monitoring was performed using a 1.0-T open magnetic resonance (MR) scanner (Panorama HFO; Philips Healthcare, Best, The Netherlands). With fast continuous imaging using a T1-weighted (T1W) gradient echo (GRE) sequence after administration of gadolinium (Gd)-EOB-DTPA, the needle was placed into the lesion. An interface for interactive dynamic viewing in two perpendicular planes prevented needle deviations T2-weighted turbo spin echo (TSE) fat-suppressed sequence was added to rule out postinterventional hematoma or biloma. All lesions were visible on the interventional images. Biopsy was technically successful, and solid specimens were obtained in all cases. Forty-six patients showed a histopathologic pattern other than native liver tissue, thus confirming correct position of the needle. Time between determination of the lesion and performance of the control scan was on average 18 min. No major complications were recorded. MR guidance with the new 1-T open system must be considered an attractive alternative for liver punction. An interface for dynamic imaging of needle guidance and T1W-GRE imaging with administration of Gd-EOB-DTPA for contrast enhancement allows the pinpoint puncture of liver lesions.

  9. TESLA Linear-Collider Projekt Abbildung 134: Das hydrogeologische Profil entlang der TESLA-Trasse. Der TESLA-

    E-print Network

    TESLA Linear-Collider Projekt Abbildung 134: Das hydrogeologische Profil entlang der TESLA-Trasse. Der TESLA- Tunnel liegt in wasserdurchlässigen und -undurchlässigen Schichten. Die wasserdurch gesättigt. 230 #12;TESLA Linear-Collider Projekt Voruntersuchungen zum TESLA Linear-Collider Projekt Ein

  10. Design of an fMRI-compatible optical touch stripe based on frustrated total internal reflection.

    PubMed

    Jarrahi, Behnaz; Wanek, Johann

    2014-08-01

    Previously we developed a low-cost, multi-configurable handheld response system, using a reflective-type intensity modulated fiber-optic sensor (FOS) [1] to accurately gather participants' behavioral responses during functional magnetic resonance imaging (fMRI). Inspired by the popularity and omnipresence of the fingertip-based touch sensing user interface devices, in this paper we present the design of a prototype fMRI-compatible optical touch stripe (OTS) as an alternative configuration. The prototype device takes advantage of a proven frustrated total internal reflection (FTIR) technique. By using a custom-built wedge-shaped optically transparent acrylic prism as an optical waveguide, and a plano-concave lens to provide the required light beam profile, the position of a fingertip touching the surface of the wedge prism can be determined from the deflected light beams that become trapped within the prism by total internal reflection. To achieve maximum sensitivity, the optical design of the wedge prism and lens were optimized through a series of light beam simulations using WinLens 3D Basic software suite. Furthermore, OTS performance and MRI-compatibility were assessed on a 3.0 Tesla MRI scanner running echo planar imaging (EPI) sequences. The results show that the OTS can detect a touch signal at high spatial resolution (about 0.5 cm), and is well suited for use within the MRI environment with average time-variant signal-to-noise ratio (tSNR) loss <; 3%. PMID:25571103

  11. Sodium MRI: Methods and applications

    PubMed Central

    Madelin, Guillaume; Lee, Jae-Seung; Regatte, Ravinder R.; Jerschow, Alexej

    2014-01-01

    Sodium NMR spectroscopy and MRI have become popular in recent years through the increased availability of high-field MRI scanners, advanced scanner hardware and improved methodology. Sodium MRI is being evaluated for stroke and tumor detection, for breast cancer studies, and for the assessment of osteoarthritis and muscle and kidney functions, to name just a few. In this article, we aim to present an up-to-date review of the theoretical background, the methodology, the challenges and limitations, and current and potential new applications of sodium MRI. PMID:24815363

  12. High-Field fMRI for Human Applications: An Overview of Spatial Resolution and Signal Specificity

    PubMed Central

    Olman, Cheryl A; Yacoub, Essa

    2011-01-01

    In the last decade, dozens of 7 Tesla scanners have been purchased or installed around the world, while 3 Tesla systems have become a standard. This increased interest in higher field strengths is driven by a demonstrated advantage of high fields for available signal-to-noise ratio (SNR) in the magnetic resonance signal. Functional imaging studies have additional advantages of increases in both the contrast and the spatial specificity of the susceptibility based BOLD signal. One use of this resultant increase in the contrast to noise ratio (CNR) for functional MRI studies at high field is increased image resolution. However, there are many factors to consider in predicting exactly what kind of resolution gains might be made at high fields, and what the opportunity costs might be. The first part of this article discusses both hardware and image quality considerations for higher resolution functional imaging. The second part draws distinctions between image resolution, spatial specificity, and functional specificity of the fMRI signals that can be acquired at high fields, suggesting practical limitations for attainable resolutions of fMRI experiments at a given field, given the current state of the art in imaging techniques. Finally, practical resolution limitations and pulse sequence options for studies in human subjects are considered. PMID:22216080

  13. Identification of normal and pathological posterior inter-malleolar ligament with dedicated high-field vs low-field MRI. A pilot study

    PubMed Central

    Sutera, Raffaello; Bianco, Antonino; Paoli, Antonino; Padulo, Johnny; Thomas, Ewan; Iovane, Angelo; Palma, Antonio

    2015-01-01

    Summary Aim: the aim of the study was to determine an objective measure of detection of posterior inter-malleolar ligament (PIML) through a magnetic resonance (MRI) of the ankle with two dedicated scanners: high-field (1-Tesla: HMF) and low-field (0.2-Tesla: LMF). Methods: two-hundred subjects were randomly recruited for the study and then divided in two groups (HMF and LMF). We retrospectively evaluated the MRI of the ankle in the two groups of patients. PIML evaluation was performed globally and separately using different scan planes. Results: in HMF and LMF, the PIML was identified respectively in 55 and 11% of cases. PIML was classified as “indeterminate” in 28 and 57% of patients, and “absent” in 17 and 32% of patients. In HMF and LMF the isolated evaluation on the coronal, axial and sagittal planes allowed PIML identification respectively in 100 and 100%, 67.27 and 45.45%, 45.45 and 12.4% of cases. In 5 cases (4/5 of HMF) we also observed a posterior ankle impingement syndrome (PAIS) determined by the PIML, with ligament changes (5/5) and associated synovial reactions (1/5), and an arthroscopic confirmation was obtained in 3/5 cases. Conclusion: the presence of the PIML seems to be a possible cause of PAIS and the use of a high-field MR scanner seems optimal for its identification. PMID:25878981

  14. A Functional MRI Study of Language Function in International Adoptees

    PubMed Central

    Rajagopal, Akila; Holland, Scott K.; Walz, Nicolay C.; Staat, Mary Allen; Altaye, Mekibib; Wade, Shari

    2013-01-01

    Objective To test the hypothesis that international adoption of Chinese and Eastern European girls after 9 months of age results in long term changes in the neural circuitry supporting monolingual English in later childhood. Study design Functional MRI (fMRI) was used to test this hypothesis by comparison with a control group of American-born English speakers (n=13). Girls now age 6–10 years adopted from China (n = 13) and Eastern Europe (n = 12) by English-speaking families were recruited through a pediatric hospital-based international adoption center after spending more than 6 months in an orphanage or other institution, a measure of early environmental deprivation. FMRI scans were performed on a 3 Tesla MRI scanner using a verb generation language fluency task. Composite activation maps were computed for each group using a general linear model with random effects analysis. Results Chinese born adoptees demonstrate atypical lateralization of language function with an apparent shift of Temporal-Parietal and Frontal areas of brain activity toward the right hemisphere. Eastern European adoptees exhibited a rightward shift relative to controls in both Frontal and Temporal-Parietal brain regions. Conclusions Significant differences in lateralization between the Chinese and American-born groups in Temporal-Parietal language areas highlight the possible impact of early tonal Asian language exposure on neural circuitry. Findings suggest that exposure to an Asian language during infancy can leave a long-term imprint on the neural circuitry supporting English language development. PMID:23896183

  15. MRI gradient coil cylinder sound field simulation and measurement.

    PubMed

    Mechefske, Chris K; Wu, Yuhua; Rutt, Brian K

    2002-08-01

    High-field, high-speed Magnetic Resonance Imaging (MRI) generates high sound levels within and nearby the scanner. The mechanism and process that produces the gradient magnetic field (a cylindrical electro-magnet, called the gradient coil cylinder, which produces a spatially and temporally varying magnetic field inside a static background magnetic field) is the primary source of this noise. This noise can cause difficulties in verbal communication in and around the scanner, heightened patient anxiety, temporary hearing loss and possible permanent hearing impairment for health care workers and patients. In order to effectively suppress the sound radiation from the gradient coil cylinder the sound field within and nearby the gradient coil needs to be characterized This characterization may be made using an analytical solution of the sound pressure field, computational simulation, measurement analysis or some combination of these three methods. This paper presents the computational simulation and measurement results of a study of the sound radiation from a head and neck gradient coil cylinder within a 4 Tesla MRI whole body scanner. The measurement results for the sound pressure level distribution along the centerline of the gradient coil cylinder are presented. The sound pressure distributions predicted from Finite Element Analysis of the gradient coil movement during operation and subsequent Boundary Element Analysis of the sound field generated are also presented. A comparison of the measured results and the predicted results shows close agreement. Because of the extremely complex nature of the analytical solution for the gradient coil cylinder, a treatment of the analytical solution and comparison to the computational results for a simple cylinder vibrating in a purely radial direction are also presented and also show close agreement between the two methods thus validating the computational approach used with the more complex gradient coil cylinder. PMID:12188211

  16. TESLA'S VISION OF THE WIRELESS GLOBAL COMMUNICATIONS

    E-print Network

    Trajkovic, Ljiljana

    TESLA'S VISION OF THE WIRELESS GLOBAL COMMUNICATIONS Ljiljana Trajkovi Communication Networks;March 12, 2004 Kwantlen College Ljiljana Trajkovic, Simon Fraser University 2 Road map Tesla in 1890's Alternate currents Tesla left Edison in 1885. He formed his own laboratory "Tesla Electric Company" in 1887

  17. Tesla TechFair Call for Proposals

    E-print Network

    Tesla TechFair Call for Proposals Thayer School of Engineering and the Hopkins Center are celebrating Nikola Tesla, in conjunction with Tesla in New York, an opera by filmmaker Jim Jarmusch & composer Phil Kline. Thayer will host a Tesla TechFair, including a panel discussion and demonstrations

  18. Piezoelectrically Actuated Robotic System for MRI-Guided Prostate Percutaneous Therapy

    PubMed Central

    Su, Hao; Shang, Weijian; Cole, Gregory; Li, Gang; Harrington, Kevin; Camilo, Alexander; Tokuda, Junichi; Tempany, Clare M.; Hata, Nobuhiko; Fischer, Gregory S.

    2014-01-01

    This paper presents a fully-actuated robotic system for percutaneous prostate therapy under continuously acquired live magnetic resonance imaging (MRI) guidance. The system is composed of modular hardware and software to support the surgical workflow of intra-operative MRI-guided surgical procedures. We present the development of a 6-degree-of-freedom (DOF) needle placement robot for transperineal prostate interventions. The robot consists of a 3-DOF needle driver module and a 3-DOF Cartesian motion module. The needle driver provides needle cannula translation and rotation (2-DOF) and stylet translation (1-DOF). A custom robot controller consisting of multiple piezoelectric motor drivers provides precision closed-loop control of piezoelectric motors and enables simultaneous robot motion and MR imaging. The developed modular robot control interface software performs image-based registration, kinematics calculation, and exchanges robot commands and coordinates between the navigation software and the robot controller with a new implementation of the open network communication protocol OpenIGTLink. Comprehensive compatibility of the robot is evaluated inside a 3-Tesla MRI scanner using standard imaging sequences and the signal-to-noise ratio (SNR) loss is limited to 15%. The image deterioration due to the present and motion of robot demonstrates unobservable image interference. Twenty-five targeted needle placements inside gelatin phantoms utilizing an 18-gauge ceramic needle demonstrated 0.87 mm root mean square (RMS) error in 3D Euclidean distance based on MRI volume segmentation of the image-guided robotic needle placement procedure. PMID:26412962

  19. JOB OPENINGS MRI technical developments and applications

    E-print Network

    Duong, Timothy Q.

    : Projects: Successful applicants will work on: 1) MRI pulse sequence programming or hardware (Siemens, in pulse-sequence development, Bruker or Siemens scanners, OR 2) Expertise in stroke, TBI and/or retinalcm Pharmascan 4) MRI: 3T/90cm whole-body Siemens TIM Trio 5) MRI: 3T/90cm whole-body Siemens TIM Trio

  20. Volitional reduction of anterior cingulate cortex activity produces decreased cue craving in smoking cessation: a preliminary real-time fMRI study.

    PubMed

    Li, Xingbao; Hartwell, Karen J; Borckardt, Jeffery; Prisciandaro, James J; Saladin, Michael E; Morgan, Paul S; Johnson, Kevin A; Lematty, Todd; Brady, Kathleen T; George, Mark S

    2013-07-01

    Numerous research groups are now using analysis of blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) results and relaying back information about regional activity in their brains to participants in the scanner in 'real time'. In this study, we explored the feasibility of self-regulation of frontal cortical activation using real-time fMRI (rtfMRI) neurofeedback in nicotine-dependent cigarette smokers during exposure to smoking cues. Ten cigarette smokers were shown smoking-related visual cues in a 3 Tesla MRI scanner to induce their nicotine craving. Participants were instructed to modify their craving using rtfMRI feedback with two different approaches. In a 'reduce craving' paradigm, participants were instructed to 'reduce' their craving, and decrease the anterior cingulate cortex (ACC) activity. In a separate 'increase resistance' paradigm, participants were asked to increase their resistance to craving and to increase middle prefrontal cortex (mPFC) activity. We found that participants were able to significantly reduce the BOLD signal in the ACC during the 'reduce craving' task (P=0.028). There was a significant correlation between decreased ACC activation and reduced craving ratings during the 'reduce craving' session (P=0.011). In contrast, there was no modulation of the BOLD signal in mPFC during the 'increase resistance' session. These preliminary results suggest that some smokers may be able to use neurofeedback via rtfMRI to voluntarily regulate ACC activation and temporarily reduce smoking cue-induced craving. Further research is needed to determine the optimal parameters of neurofeedback rtfMRI, and whether it might eventually become a therapeutic tool for nicotine dependence. PMID:22458676

  1. [70 years of Nikola Tesla studies].

    PubMed

    Juznic, Stanislav

    2013-01-01

    Nikola Tesla's studies of chemistry are described including his not very scholarly affair in Maribor. After almost a century and half of hypothesis at least usable scenario of Tesla's life and "work" in Maribor is provided. The chemistry achievements of Tesla's most influential professors Martin Sekuli? and Tesla's Graz professors are put into the limelight. The fact that Tesla in Graz studied on the technological chemistry Faculty of Polytechnic is focused. PMID:23878954

  2. Highest Resolution In Vivo Human Brain MRI Using Prospective Motion Correction

    PubMed Central

    Stucht, Daniel; Danishad, K. Appu; Schulze, Peter; Godenschweger, Frank; Zaitsev, Maxim; Speck, Oliver

    2015-01-01

    High field MRI systems, such as 7 Tesla (T) scanners, can deliver higher signal to noise ratio (SNR) than lower field scanners and thus allow for the acquisition of data with higher spatial resolution, which is often demanded by users in the fields of clinical and neuroscientific imaging. However, high resolution scans may require long acquisition times, which in turn increase the discomfort for the subject and the risk of subject motion. Even with a cooperative and trained subject, involuntary motion due to heartbeat, swallowing, respiration and changes in muscle tone can cause image artifacts that reduce the effective resolution. In addition, scanning with higher resolution leads to increased sensitivity to even very small movements. Prospective motion correction (PMC) at 3T and 7T has proven to increase image quality in case of subject motion. Although the application of prospective motion correction is becoming more popular, previous articles focused on proof of concept studies and technical descriptions, whereas this paper briefly describes the technical aspects of the optical tracking system, marker fixation and cross calibration and focuses on the application of PMC to very high resolution imaging without intentional motion. In this study we acquired in vivo MR images at 7T using prospective motion correction during long acquisitions. As a result, we present images among the highest, if not the highest resolution of in vivo human brain MRI ever acquired. PMID:26226146

  3. Nikola Tesla: the Moon's rotation.

    NASA Astrophysics Data System (ADS)

    Tomi?, A.; Jovanovi?, B. S.

    1993-09-01

    The review of three articles by N. Tesla, published in the year 1919 in the journal "Electrical experimenter" is given, with special reference to the astronomical contents and to circumstances in which they appeared.

  4. [Nikola Tesla in medicine, too].

    PubMed

    Hanzek, Branko; Jakobovi?, Zvonimir

    2007-12-01

    Using primary and secondary sources we have shown in this paper the influence of Nikola Tesla's work on the field of medicine. The description of his experiments conduced within secondary-school education programs aimed to present the popularization of his work in Croatia. Although Tesla was dedicated primarily to physics and was not directly involved in biomedical research, his work significantly contributed to paving the way of medical physics particularly radiology and high-frequency electrotherapy. PMID:18383745

  5. Gd-EOB-DTPA-enhanced 3.0-Tesla MRI findings for the preoperative detection of focal liver lesions: Comparison with iodine-enhanced multi-detector computed tomography

    NASA Astrophysics Data System (ADS)

    Park, Hyong-Hu; Goo, Eun-Hoe; Im, In-Chul; Lee, Jae-Seung; Kim, Moon-Jib; Kwak, Byung-Joon; Chung, Woon-Kwan; Dong, Kyung-Rae

    2012-12-01

    The safety of gadolinium-ethoxybenzyl-diethylenetriamine-pentaacetic-acid (Gd-EOB-DTPA) has been confirmed, but more study is needed to assess the diagnostic accuracy of Gd-EOB-DTPA-enhanced magnetic resonance imaging (MRI) in patients with a hepatocellular carcinoma (HCC) for whom surgical treatment is considered or with a metastatic hepatoma. Research is also needed to examine the rate of detection of hepatic lesions compared to multi-detector computed tomography (MDCT), which is used most frequently to localize and characterize a HCC. Gd-EOB-DTPA-enhanced MRI and iodine-enhanced MDCT imaging were compared for the preoperative detection of focal liver lesions. The clinical usefulness of each method was examined. The current study enrolled 79 patients with focal liver lesions who preoperatively underwent MRI and MDCT. In these patients, there was less than one month between the two diagnostic modalities. Imaging data were taken before and after contrast enhancement in both methods. To evaluate the images, we analyzed the signal-to-noise ratio (SNR) and the contrast-to-noise ratio (CNR) in the lesions and the liver parenchyma. To compare the sensitivity of the two methods, we performed a quantitative analysis of the percentage signal intensity of the liver (PSIL) on a high resolution picture archiving and communication system (PACS) monitor (paired-samples t-test, p < 0.05). The enhancement was evaluated based on a consensus of four observers. The enhancement pattern and the morphological features during the arterial and the delayed phases were correlated between the Gd-EOB-DTPA-enhanced MRI findings and the iodine-enhanced MDCT by using an adjusted x2 test. The SNRs, CNRs, and PSIL all had a greater detection rate in Gd-EOB-DTPA enhanced MRI than in iodine-enhanced MDCT. Hepatocyte-selective uptake was observed 20 minutes after the injection in the focal nodular hyperplasia (FNH, 9/9), adenoma (9/10), and highly-differentiated HCC (grade G1, 27/30). Rim enhancement was detected in all metastases (30/30). During the arterial and the delayed phases, good overall agreement between the gadoxetic-acid-enhanced MR and CT was observed (x2 test, p < 0.05). For the preoperative detection of focal liver lesions, Gd-EOB-DTPA-enhanced MRI had a higher diagnostic value and higher detection rate than iodine-enhanced MDCT. The arterial and the delayed dynamic enhancement patterns, and the gadoxetic-acid-enhanced MR imaging can provide information on the possible degree of cellular differentiation of a HCC, adenoma or metastatic tumor.

  6. Screening for atherosclerotic plaques in the abdominal aorta in high-risk patients with multicontrast-weighted MRI: a prospective study at 3.0 and 1.5 tesla

    PubMed Central

    Buhk, J-H; Finck-Wedel, A-K; Buchert, R; Bannas, P; Schnackenburg, B; Beil, F U; Adam, G; Weber, C

    2011-01-01

    Objective This prospective study compares MRI of atherosclerotic plaque in the abdominal aorta at 3 T with that at 1.5 T in patients suffering from hereditary hyperlipidaemia, a major risk factor for atherosclerosis. Methods MRI of the abdominal aorta at 1.5 and 3 T was performed in 21 patients (mean age 58 years). The study protocol consisted of proton density (PD), T1, T2 and fat-saturated T2 weighted black blood images of the abdominal aorta in corresponding orientation. Two independent radiologists performed image rating. First, image quality was rated on a five-point scale. Second, atherosclerotic plaques were scored according to the modified American Heart Association (AHA) classification and analysed for field strength-related differences. Weighted ? statistics were calculated to assess interobserver agreement. Results Interobserver agreement was substantial for nearly all categories. MRI at 3 T offered superior image quality in all contrast weightings, most significantly in T1 and T2 weighted techniques. Plaque burden in the study collective was unexpectedly moderate. The majority of plaques were classified as AHA III lesions; no lesions were classified above AHA V. There was no significant influence of the field strength regarding the AHA classification. Conclusion Abdominal aortal plaque screening is basically feasible at both field strengths, whereas the image quality is rated superior at 3 T. However, the role of the method in clinical practice remains uncertain, since substantial findings in the high-risk collective were scarce. PMID:21081571

  7. Brief report 3 Tesla magnetic resonance imaging of the brain in newborns

    E-print Network

    Gerig, Guido

    February 2004; accepted 23 April 2004 Abstract While it has been hypothesized that brain development very early brain development in children. Twenty unsedated healthy newborns underwent 3 Tesla magnetic to study brain development in unsedated newborns using 3 T MRI. D 2004 Elsevier Ireland Ltd. All rights

  8. Abstract--Magnetic Resonance Imaging (MRI) guided nanorobotic systems that could perform diagnostic, curative

    E-print Network

    Mavroidis, Constantinos

    Abstract-- Magnetic Resonance Imaging (MRI) guided nanorobotic systems that could perform drug delivery systems guided by Magnetic Resonance Imaging (MRI) scanners have been proposed on the use of a MRI scanner to induce the required external driving forces to guide magnetic nanocapsules

  9. 1 of 5 Copyright 2007 Tesla Motors Updated: December 19, 2007 The Tesla Roadster Battery System

    E-print Network

    Laughlin, Robert B.

    1 of 5 Copyright © 2007 Tesla Motors Updated: December 19, 2007 The Tesla Roadster Battery System Tesla Motors August 16, 2006 By Gene Berdichevsky, Kurt Kelty, JB Straubel and Erik Toomre Summary This paper provides details about the design of the Tesla Roadster's lithium-ion (Li-ion) battery pack

  10. Navigation of a telepresence robot via covert visuospatial attention and real-time fMRI.

    PubMed

    Andersson, Patrik; Pluim, Josien P W; Viergever, Max A; Ramsey, Nick F

    2013-01-01

    Brain-computer interfaces (BCIs) allow people with severe neurological impairment and without ability to control their muscles to regain some control over their environment. The BCI user performs a mental task to regulate brain activity, which is measured and translated into commands controlling some external device. We here show that healthy participants are capable of navigating a robot by covertly shifting their visuospatial attention. Covert Visuospatial Attention (COVISA) constitutes a very intuitive brain function for spatial navigation and does not depend on presented stimuli or on eye movements. Our robot is equipped with motors and a camera that sends visual feedback to the user who can navigate it from a remote location. We used an ultrahigh field MRI scanner (7 Tesla) to obtain fMRI signals that were decoded in real time using a support vector machine. Four healthy subjects with virtually no training succeeded in navigating the robot to at least three of four target locations. Our results thus show that with COVISA BCI, realtime robot navigation can be achieved. Since the magnitude of the fMRI signal has been shown to correlate well with the magnitude of spectral power changes in the gamma frequency band in signals measured by intracranial electrodes, the COVISA concept may in future translate to intracranial application in severely paralyzed people. PMID:22965825

  11. Contribution of cortical lesion subtypes at 7T MRI to physical and cognitive performance in MS

    PubMed Central

    Nielsen, A. Scott; Kinkel, Revere P.; Madigan, Nancy; Tinelli, Emanuele; Benner, Thomas

    2013-01-01

    Objectives: Evaluate cross-sectionally the contribution of focal cortical lesion (CL) subtypes at ultra-high-field MRI and traditional MRI metrics of brain damage to neurologic disability and cognitive performance in a heterogeneous multiple sclerosis (MS) cohort. Methods: Thirty-four patients with early or established disease including clinically isolated syndrome, relapsing-remitting MS, and secondary progressive MS were scanned on a human 7-tesla (7T) (Siemens) scanner to acquire fast low-angle shot (FLASH) T2*-weighted images for characterization of white matter and deep gray matter lesion volume, and CL types. Patients also underwent anatomical 3T MRI for cortical thickness estimation, and neuropsychological testing within 1 week of the 7T scan. Twenty-seven patient scans were acceptable for further analysis. Neurologic disability was measured using the Expanded Disability Status Scale. Results: Type III-IV CLs had the strongest relationship to physical disability (? = 0.670, p < 0.0001). White matter lesion volume and type I CLs are each significantly associated with 6 of 11 neuropsychological test variables. Type III-IV CLs significantly correlate with 4 of 11 neuropsychological test variables whereas type II CLs, deep gray matter lesion volume, and cortical thickness metrics are less frequently associated with cognitive performance. Conclusions: Leukocortical (type I) and subpial (III-IV) CLs identified on 7T FLASH-T2* sequences are potential cortical biomarkers of cognitive and neurologic status in MS. PMID:23864311

  12. MRI-powered Actuators for Robotic Interventions

    PubMed Central

    Vartholomeos, Panagiotis; Qin, Lei; Dupont, Pierre E.

    2012-01-01

    This paper presents a novel actuation technology for robotically assisted MRI-guided interventional procedures. Compact and wireless, the actuators are both powered and controlled by the MRI scanner. The design concept and performance limits are described and derived analytically. Simulation and experiments in a clinical MR scanner are used to validate the analysis and to demonstrate the capability of the approach for needle biopsies. The concepts of actuator locking mechanisms and multi-axis control are also introduced. PMID:22287082

  13. TESLA'S VISION OF THE WIRELESS GLOBAL COMMUNICATIONS

    E-print Network

    Trajkovic, Ljiljana

    TESLA'S VISION OF THE WIRELESS GLOBAL COMMUNICATIONS Ljiljana Trajkovi Communication Networks;January 17, 2005 UBC Ljiljana Trajkovic, Simon Fraser University 2 Road map Tesla in 1890's First wireless;January 17, 2005 UBC Ljiljana Trajkovic, Simon Fraser University 4 Alternate currents Tesla left Edison

  14. FPGA-Based Data Acquisition System for a Positron Emission Tomography (PET) Scanner

    E-print Network

    Hauck, Scott

    techniques such as X-ray computer tomography (CT) and magnetic resonance imaging (MRI) have given doctorsFPGA-Based Data Acquisition System for a Positron Emission Tomography (PET) Scanner Michael acquisition system for positron emission tomography (PET) scanner. Our laboratory is producing a high

  15. Geographic Distribution of CT, MRI and PET Devices in Japan: A Longitudinal Analysis Based on National Census Data

    PubMed Central

    Matsumoto, Masatoshi; Koike, Soichi; Kashima, Saori; Awai, Kazuo

    2015-01-01

    Background Japan has the most CT and MRI scanners per unit population in the world; however, the geographic distribution of these technologies is currently unknown. Moreover, nothing is known of the cause-effect relationship between the number of diagnostic imaging devices and their geographic distribution. Methods Data on the number of CT, MRI and PET devices and that of their utilizations in all 1829 municipalities of Japan was generated, based on the Static Survey of Medical Institutions conducted by the government. The inter-municipality equity of the number of devices or utilizations was evaluated with Gini coefficient. Results Between 2005 and 2011, the number of CT, MRI and PET devices in Japan increased by 47% (8789 to 12945), 19% (5034 to 5990) and 70% (274 to 466), respectively. Gini coefficient of the number of devices was largest for PET and smallest for CT (p for PET-MRI difference <0.001; MRI-CT difference <0.001). For all three modalities, Gini coefficient steadily decreased (p for 2011-2005 difference: <0.001 for CT; 0.003 for MRI; and <0.001 for PET). The number of devices in old models (single-detector CT, MRI<1.5 tesla, and conventional PET) decreased, while that in new models (multi-detector CT, MRI?1.5 tesla, and PET-CT) increased. Gini coefficient of the old models increased or remained unchanged (increase rate of 9%, 3%, and -1%; p for 2011-2008 difference <0.001, 0.072, and 0.562, respectively), while Gini coefficient of the new models decreased (-10%, -9%, and -10%; p for 2011-2008 difference <0.001, <0.001, and <0.001 respectively). Similar results were observed in terms of utilizations. Conclusions The more abundant a modality, the more equal the modality’s distribution. Any increase in the modality made its distribution more equal. The geographic distribution of the diagnostic imaging technology in Japan appears to be affected by spatial competition derived from a market force. PMID:25946125

  16. Liquid-explosives scanners stand trial in airports

    SciTech Connect

    Matthews, Jermey N. A.

    2010-07-15

    Air passengers may once more be allowed to pack beverages, lotions, and hair spray in their carry-on luggage, if imaging technologies to detect liquid explosives can prove their worth. Several competing systems, including multi-energy x-ray systems and a low-field magnetic resonance imaging (MRI) scanner, are undergoing field tests at some airports worldwide.

  17. The TESLA Time Projection Chamber

    E-print Network

    Nabil Ghodbane

    2002-12-12

    A large Time Projection Chamber is proposed as part of the tracking system for a detector at the TESLA electron positron linear collider. Different ongoing R&D studies are reviewed, stressing progress made on a new type readout technique based on Micro-Pattern Gas Detectors.

  18. Nikola Tesla Educational Opportunity School.

    ERIC Educational Resources Information Center

    Design Cost Data, 2001

    2001-01-01

    Describes the architectural design, costs, general description, and square footage data for the Nikola Tesla Educational Opportunity School in Colorado Springs, Colorado. A floor plan and photos are included along with a list of manufacturers and suppliers used for the project. (GR)

  19. The TESLA Free Electron Laser

    NASA Astrophysics Data System (ADS)

    Rossbach, Jörg

    1997-05-01

    The TESLA Free Electron Laser makes use of the high quality electron beam that can be provided by the superconducting TESLA linac to drive a single pass free electron laser (FEL) at wavelengths far below the visible. To reach a wavelength of 6 nanometers, the TESLA Test Facility (TTF) currently under construction at DESY will be extended to 1 GeV beam energy. Because there are no mirrors and seed-lasers in this wavelength regime, the principle of Self-Amplified-Spontaneous-Emission (SASE) will be employed. A first test of both the principle and technical components is foreseen at a photon wavelength larger than 42 nanometers. With respect to linac technology, the key prerequisite for such single-pass, high-gain FELs is a high intensity, diffraction limited, electron beam to be generated and accelerated without degradation. Key components are RF guns with photocathodes, bunch compressors, and related diagnostics. The status of design and construction as well as both electron and photon beam properties will be discussed. Once proven in the micrometer to nanometer regime, the SASE FEL scheme is considered applicable down to Angstrom wavelengths. It is pointed out that this latter option is particularly of interest in context with the construction of a linear collider, which requires very similar beam parameters. The status of conceptual design work on such a coherent X-ray user facility integrated into the TESLA linear collider design will be briefly sketched.

  20. Head MRI

    MedlinePLUS

    ... the head; MRI - cranial; NMR - cranial; Cranial MRI; Brain MRI; MRI - brain; MRI - head ... tell your health care provider if you have: Brain aneurysm clips Certain types of artificial heart valves ...

  1. Technical Note Functional MRI of the Thoracic Spinal Cord During

    E-print Network

    Smith, Stephen D.

    Technical Note Functional MRI of the Thoracic Spinal Cord During Vibration Sensation Jennifer functional magnetic resonance images from thoracic spinal cord neurons. Materials and Methods: The lower spinal cord using a HASTE sequence on a 3 Tesla MRI system. Results: Signal increases were observed

  2. Design of an Electrically Automated RF Transceiver Head Coil in MRI.

    PubMed

    Sohn, Sung-Min; DelaBarre, Lance; Gopinath, Anand; Vaughan, John Thomas

    2015-10-01

    Magnetic resonance imaging (MRI) is a widely used nonionizing and noninvasive diagnostic instrument to produce detailed images of the human body. The radio-frequency (RF) coil is an essential part of MRI hardware as an RF front-end. RF coils transmit RF energy to the subject and receive the returning MR signal. This paper presents an MRI-compatible hardware design of the new automatic frequency tuning and impedance matching system. The system automatically corrects the detuned and mismatched condition that occurs due to loading effects caused by the variable subjects (i.e., different human heads or torsos). An eight-channel RF transceiver head coil with the automatic system has been fabricated and tested at 7 Tesla (T) MRI system. The automatic frequency tuning and impedance matching system uses digitally controlled capacitor arrays with real-time feedback control capability. The hardware design is not only compatible with current MRI scanners in all aspects but also it operates the tuning and matching function rapidly and accurately. The experimental results show that the automatic function increases return losses from 8.4 dB to 23.7 dB (maximum difference) and from 12.7 dB to 19.6 dB (minimum difference) among eight channels within 550 ms . The reflected RF power decrease from 23.1% to 1.5% (maximum difference) and from 5.3% to 1.1% (minimum difference). Therefore, these results improve signal-to-noise ratio (SNR) in MR images with phantoms. PMID:25361512

  3. Biochip scanner device

    DOEpatents

    Perov, Alexander (Troitsk, RU); Belgovskiy, Alexander I. (Mayfield Heights, OH); Mirzabekov, Andrei D. (Darien, IL)

    2001-01-01

    A biochip scanner device used to detect and acquire fluorescence signal data from biological microchips or biochips and method of use are provided. The biochip scanner device includes a laser for emitting a laser beam. A modulator, such as an optical chopper modulates the laser beam. A scanning head receives the modulated laser beam and a scanning mechanics coupled to the scanning head moves the scanning head relative to the biochip. An optical fiber delivers the modulated laser beam to the scanning head. The scanning head collects the fluorescence light from the biochip, launches it into the same optical fiber, which delivers the fluorescence into a photodetector, such as a photodiode. The biochip scanner device is used in a row scanning method to scan selected rows of the biochip with the laser beam size matching the size of the immobilization site.

  4. Correlation of histological findings from a large ciliochoroidal melanoma with CT perfusion and 3T MRI dynamic enhancement studies

    PubMed Central

    Pulido, Jose S; Campeau, Norbert G; Klotz, Ernst; Primak, Andrew N; Saba, Osama; Gunduz, Kaan; Cantrill, Herbert; Salomão, Diva; McCollough, Cynthia H

    2008-01-01

    Background The initial use of a 64-slice computed tomography (CT) scanner for obtaining quantitative perfusion data from a large ciliochoroidal melanoma, and correlation with 3T magnetic resonance imaging (MRI) dynamic enhancement and tumor histology. Methods The CT perfusion scan was performed using 80 kVp, 250 mA and 1-sec rotation time for 40 sec. The analysis was performed using commercial perfusion analysis software with a prototype 3-dimensional motion correction tool. Dynamic contrast-enhanced 3-Tesla MRI measured the kinetics of enhancement to estimate the vascular permeability. The time-dependent enhancement patterns were obtained using the average signal intensity using Functool analysis software. The involved globe was enucleated and microscopic evaluation of the tumor was performed. Results The perfusion parameters blood flow, blood volume and permeability surface area product in the affected eye determined by CT perfusion analysis were 118 ml/100 ml/min, 11.3 ml/100 ml and 48 ml/100 ml/min. Dynamic MRI enhancement showed maximal intensity increase of 111%. The neoplasm was a ciliochoroidal spindle cell melanoma which was mitotically active (13 mitoses/40 hpf). Vascular loops and arcades were present throughout the tumor. The patient developed metastases within 9 months of presentation. Conclusion Quantitative CT perfusion analysis of ocular tumors is feasible with motion correction software. PMID:19668716

  5. RF Head Coil Design with Improved RF Magnetic Near-Fields Uniformity for Magnetic Resonance Imaging (MRI) Systems

    PubMed Central

    Sohn, Sung-Min; DelaBarre, Lance; Gopinath, Anand; Vaughan, John Thomas

    2015-01-01

    Higher magnetic field strength in magnetic resonance imaging (MRI) systems offers higher signal-to-noise ratio (SNR), contrast, and spatial resolution in MR images. However, the wavelength in ultra-high fields (7 tesla and beyond) becomes shorter than the human body at the Larmor frequency with increasing static magnetic field (B0) of MRI system. At short wavelengths, interference effect appears resulting in non- uniformity of the RF magnetic near-field (B1) over the subject and MR images may have spatially anomalous contrast. The B1 near-field generated by the transverse electromagnetic (TEM) RF coil’s microstrip line element has a maximum near the center of its length and falls off towards both ends. In this study, a double trapezoidal shaped microstrip transmission line element is proposed to obtain uniform B1 field distribution by gradual impedance variation. Two multi-channel RF head coils with uniform and trapezoidal shape elements were built and tested with a phantom at 7T MRI scanner for comparison. The simulation and experimental results show stronger and more uniform B1+ near-field with the trapezoidal shape. PMID:25892746

  6. Optical fuel pin scanner

    DOEpatents

    Kirchner, Tommy L. (Richland, WA); Powers, Hurshal G. (Richland, WA)

    1983-01-01

    An optical scanner for indicia arranged in a focal plane at a cylindrical outside surface by use of an optical system including a rotatable dove prism. The dove prism transmits a rotating image of an encircled cylindrical surface area to a stationary photodiode array.

  7. Freestanding Complex Optical Scanners.

    ERIC Educational Resources Information Center

    Frisbie, David A.

    A complex freestanding optical mark recognition (OMR) scanner is one which is not on-line to an external processor; it has intelligence stemming from an internal processor located within the unit or system. The advantages and disadvantages of a complex OMR can best be assessed after identifying the scanning needs and constraints of the potential…

  8. Magnetic resonance imaging investigation of the bone conduction implant – a pilot study at 1.5 Tesla

    PubMed Central

    Jansson, Karl-Johan Fredén; Håkansson, Bo; Reinfeldt, Sabine; Rigato, Cristina; Eeg-Olofsson, Måns

    2015-01-01

    Purpose The objective of this pilot study was to investigate if an active bone conduction implant (BCI) used in an ongoing clinical study withstands magnetic resonance imaging (MRI) of 1.5 Tesla. In particular, the MRI effects on maximum power output (MPO), total harmonic distortion (THD), and demagnetization were investigated. Implant activation and image artifacts were also evaluated. Methods and materials One implant was placed on the head of a test person at the position corresponding to the normal position of an implanted BCI and applied with a static pressure using a bandage and scanned in a 1.5 Tesla MRI camera. Scanning was performed both with and without the implant, in three orthogonal planes, and for one spin-echo and one gradient-echo pulse sequence. Implant functionality was verified in-between the scans using an audio processor programmed to generate a sequence of tones when attached to the implant. Objective verification was also carried out by measuring MPO and THD on a skull simulator as well as retention force, before and after MRI. Results It was found that the exposure of 1.5 Tesla MRI only had a minor effect on the MPO, ie, it decreased over all frequencies with an average of 1.1±2.1 dB. The THD remained unchanged above 300 Hz and was increased only at lower frequencies. The retention magnet was demagnetized by 5%. The maximum image artifacts reached a distance of 9 and 10 cm from the implant in the coronal plane for the spin-echo and the gradient-echo sequence, respectively. The test person reported no MRI induced sound from the implant. Conclusion This pilot study indicates that the present BCI may withstand 1.5 Tesla MRI with only minor effects on its performance. No MRI induced sound was reported, but the head image was highly distorted near the implant. PMID:26604836

  9. Tesla - A Flash of a Genius

    NASA Astrophysics Data System (ADS)

    Teodorani, M.

    2005-10-01

    This book, which is entirely dedicated to the inventions of scientist Nikola Tesla, is divided into three parts: a) all the most important innovative technological creations from the alternate current to the death ray, Tesla research in fundamental physics with a particular attention to the concept of "ether", ball lightning physics; b) the life and the bright mind of Nikola Tesla and the reasons why some of his most recent findings were not accepted by the establishment; c) a critical discussion of the most important work by Tesla followers.

  10. Dynamics of fMRI signals during human brain activations to a stimulus

    NASA Astrophysics Data System (ADS)

    Liu, Haiying; Kato, Toshinori; Neves, Carlos

    2001-05-01

    In fMRI memory study, the temporal behavior of BOLD fMRI signals were consistently observed from various brain processing areas at 1.5 Tesla and consistent with the expected functions. Also, all the activations generally exhibit three types of temporal characteristics: short, sustained and delayed responses in relation to the primary stimuli. To address these cerebral multiphasic responses, a suitable functional data analysis scheme has been used, in which the neural response of a specific brain area to a pre-determined stimulation input of some sort was assumed to be linear. The visual memory study was performed on 6 normal subjects on a clinical MR scanner using a 5 min long rapid dynamical whole brain imaging using EPI acquisition during a single memory task, which involved a 45 sec visual presentation of three simple abstract geometric figures to the subject via LCD projector. The results showed that the activations in visual cortex were tightly correlated with the visual stimulus, while the activations detected in interior temporal, entorhinal cortex and inferior temporal area were delayed. Using the new technique, the brian activations were further characterized quantitatively in terms of delay and prolonged response. The resulting effective impulse response functions corresponding to these brain activations revealed much clearly all the temporal components.

  11. MRI Evaluation of Spinal Length and Vertebral Body Angle During Loading with a Spinal Compression Harness

    NASA Technical Reports Server (NTRS)

    Campbell, James A.; Hargens, Alan R.; Murthy, G.; Ballard, R. E.; Watenpaugh, D. E.; Hargens, Alan, R.; Sanchez, E.; Yang, C.; Mitsui, I.; Schwandt, D.; Fechner, K. P.; Holton, Emily M. (Technical Monitor)

    1998-01-01

    Weight bearing by the spinal column during upright posture often plays a role in the common problem of low back pain. Therefore, we developed a non-ferromagnetic spinal compression harness to enable MRI investigations of the spinal column during axial loading. Human subjects were fitted with a Nest and a footplate which were connected by adjustable straps to an analog load cell. MRI scans of human subjects (5 males and 1 female with age range of 27-53 yrs) during loaded and unloaded conditions were accomplished with a 1.5 Tesla GE Signa scanner. Studies of two subjects undergoing sequentially increasing spinal loads revealed significant decreases (r(sup 2) = 0.852) in spinal length between T4 and L5 culminating in a 1.5 to 2% length decrease during loading with 75% body weight. Sagittal vertebral body angles of four subjects placed under a constant 50% body weight load for one hour demonstrated increased lordotic and kyphotic curvatures. In the lumbar spine, the L2 vertebral body experienced the greatest angular change (-3 deg. to -5 deg.) in most subjects while in the thoracic spine, T4 angles increased from the unloaded state by +2 deg. to +9 deg. Overall, our studies demonstrate: 1) a progressive, although surprisingly small, decrease in spinal length with increasing load and 2) relatively large changes in spinal column angulation with 50% body weight.

  12. MRI driven magnetic microswimmers

    PubMed Central

    Jakab, Péter; Székely, Gábor; Hata, Nobuhiko

    2013-01-01

    Capsule endoscopy is a promising technique for diagnosing diseases in the digestive system. Here we design and characterize a miniature swimming mechanism that uses the magnetic fields of the MRI for both propulsion and wireless powering of the capsule. Our method uses both the static and the radio frequency (RF) magnetic fields inherently available in MRI to generate a propulsive force. Our study focuses on the evaluation of the propulsive force for different swimming tails and experimental estimation of the parameters that influence its magnitude. We have found that an approximately 20 mm long, 5 mm wide swimming tail is capable of producing 0.21 mN propulsive force in water when driven by a 20 Hz signal providing 0.85 mW power and the tail located within the homogeneous field of a 3 T MRI scanner. We also analyze the parallel operation of the swimming mechanism and the scanner imaging. We characterize the size of artifacts caused by the propulsion system. We show that while the magnetic micro swimmer is propelling the capsule endoscope, the operator can locate the capsule on the image of an interventional scene without being obscured by significant artifacts. Although this swimming method does not scale down favorably, the high magnetic field of the MRI allows self propulsion speed on the order of several millimeter per second and can propel an endoscopic capsule in the stomach. PMID:22037673

  13. Orthodontic scanners: what's available?

    PubMed

    Martin, Catherine B; Chalmers, Elsinore V; McIntyre, Grant T; Cochrane, Heather; Mossey, Peter A

    2015-06-01

    The popularity and availability of virtual technology in orthodontics for the replacement of hard-copy records with electronic records is growing rapidly, with a move towards a 'digital' patient for diagnosis, treatment planning, monitoring of treatment progress and outcome. As part of this ongoing development, three-dimensional digital models of the dental arches have the potential to replace traditional plaster models and their associated limitations for treatment planning, appliance construction and simulated treatment outcomes. This article provides the reader with a summary of the currently available benchtop model scanners and intraoral scanners. It is likely that this technology will become increasingly common-place within the orthodontic profession over the next decade. PMID:25939980

  14. Usefulness assessment of preoperative MRI fistulography in patients with perianal fistulas

    PubMed Central

    Waniczek, Dariusz; Adamczyk, Tomasz; Arendt, Jerzy; Kluczewska, Ewa; Kozi?ska-Marek, Ewa

    2011-01-01

    Summary Background: Accurate preoperative assessment of the perianal fistulous tract is the main purpose of the diagnostics and to a large extend determines surgery effectiveness. One of the useful diagnostic methods in perianal fistulas is magnetic resonance imaging. The authors presented experiences in the application of MRI fistulography for evaluation of cases of perianal fistulas difficult to diagnose and treat. Material/Methods: Own examination method was described; MRI fistulography findings were analyzed and compared with intraoperative conditions in 14 patients (11 men and 3 women) diagnosed in the years 2005– 2009. Eight patients had recurrent fistulas and 6 had primary fistulas. Imaging was performed with a GE SIGNA LX HS scanner with a 1.5-Tesla field strength and a dedicated surface coil placed at the level of hip joints. Contrast agent was a gadolinium-based solution. Results: Intraoperative findings were consistent with radiological descriptions of 13 MRI fistulographies. Only in one case, according to surgery findings, it was a transsphincteric fistula with an abscess in the ischioanal fossa, with an orifice in the posterior crypt; the radiologist described it as a transsphincteric, internal blind fistula. Conclusions: Due to its accuracy in the assessment of the perianal fistulous tracts in soft tissues, MRI fistulography becomes a useful and recommended diagnostic method in this pathology. It shows the location of the fistula regarding the system of anal sphincters, and identifies the internal orifice and branching of the fistula. It enables precise planning of surgical treatment. Authors suggest that this diagnostic method should be improved and applied more commonly. PMID:22802853

  15. LIGA Scanner Control Software

    Energy Science and Technology Software Center (ESTSC)

    1999-02-01

    The LIGA Scanner Software is a graphical user interface package that facilitates controlling the scanning operation of x-rays from a synchrotron and sample manipulation for making LIGA parts. The process requires scanning of the LIGA mask and the PMMA resist through a stationary x-ray beam to provide an evenly distributed x-ray exposure over the wafer. This software package has been written specifically to interface with Aerotech motor controllers.

  16. Synergistic enhancement of iron oxide nanoparticle and gadolinium for dual-contrast MRI

    SciTech Connect

    Zhang, Fan; Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361005 ; Huang, Xinglu; Qian, Chunqi; Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361005 ; Zhu, Lei; Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361005 ; Hida, Naoki; Niu, Gang; Chen, Xiaoyuan

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer MR contrast agents exert influence on T{sub 1} or T{sub 2} relaxation time of the surrounding tissue. Black-Right-Pointing-Pointer Combined use of iron oxide and Gd-DTPA can improve the sensitivity/specificity of lesion detection. Black-Right-Pointing-Pointer Dual contrast MRI enhances the delineation of tumor borders and small lesions. Black-Right-Pointing-Pointer The effect of DC-MRI can come from the high paramagnetic susceptibility of Gd{sup 3+}. Black-Right-Pointing-Pointer The effect of DC-MRI can also come from the distinct pharmacokinetic distribution of SPIO and Gd-DTPA. -- Abstract: Purpose: The use of MR contrast agents allows accurate diagnosis by exerting an influence on the longitudinal (T{sub 1}) or transverse (T{sub 2}) relaxation time of the surrounding tissue. In this study, we combined the use of iron oxide (IO) particles and nonspecific extracellular gadolinium chelate (Gd) in order to further improve the sensitivity and specificity of lesion detection. Procedures: With a 7-Tesla scanner, pre-contrasted, IO-enhanced and dual contrast agent enhanced MRIs were performed in phantom, normal animals, and animal models of lymph node tumor metastases and orthotopic brain tumor. For the dual-contrast (DC) MRI, we focused on the evaluation of T{sub 2} weighted DC MRI with IO administered first, then followed by the injection of a bolus of gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA). Results: Based on the C/N ratios and MRI relaxometry, the synergistic effect of coordinated administration of Gd-DTPA and IO was observed and confirmed in phantom, normal liver and tumor models. At 30 min after administration of Feridex, Gd-DTPA further decreased T{sub 2} relaxation in liver immediately after the injection. Additional administration of Gd-DTPA also immediately increased the signal contrast between tumor and brain parenchyma and maximized the C/N ratio to -4.12 {+-} 0.71. Dual contrast MRI also enhanced the delineation of tumor borders and small lesions. Conclusions: DC-MRI will be helpful to improve diagnostic accuracy and decrease the threshold size for lesion detection.

  17. File completed form with CFMRI UCSD Center for fMRI, 9500 Gilman Drive,

    E-print Network

    California at San Diego, University of

    scanner room. This form is valid only on the day it is completed. Signature of MRI scanner operator of the following items may be hazardous to your safety or may interfere with the MRI exam. Please check the correct work) 3. Yes No Is there a possibility of metal in your eyes or have you ever needed an eyewash having

  18. High throughput optical scanner

    DOEpatents

    Basiji, David A. (Seattle, WA); van den Engh, Gerrit J. (Seattle, WA)

    2001-01-01

    A scanning apparatus is provided to obtain automated, rapid and sensitive scanning of substrate fluorescence, optical density or phosphorescence. The scanner uses a constant path length optical train, which enables the combination of a moving beam for high speed scanning with phase-sensitive detection for noise reduction, comprising a light source, a scanning mirror to receive light from the light source and sweep it across a steering mirror, a steering mirror to receive light from the scanning mirror and reflect it to the substrate, whereby it is swept across the substrate along a scan arc, and a photodetector to receive emitted or scattered light from the substrate, wherein the optical path length from the light source to the photodetector is substantially constant throughout the sweep across the substrate. The optical train can further include a waveguide or mirror to collect emitted or scattered light from the substrate and direct it to the photodetector. For phase-sensitive detection the light source is intensity modulated and the detector is connected to phase-sensitive detection electronics. A scanner using a substrate translator is also provided. For two dimensional imaging the substrate is translated in one dimension while the scanning mirror scans the beam in a second dimension. For a high throughput scanner, stacks of substrates are loaded onto a conveyor belt from a tray feeder.

  19. Magic Angle–Enhanced MRI of Fibrous Microstructures in Sclera and Cornea With and Without Intraocular Pressure Loading

    PubMed Central

    Ho, Leon C.; Sigal, Ian A.; Jan, Ning-Jiun; Squires, Alexander; Tse, Zion; Wu, Ed X.; Kim, Seong-Gi; Schuman, Joel S.; Chan, Kevin C.

    2014-01-01

    Purpose. The structure and biomechanics of the sclera and cornea are central to several eye diseases such as glaucoma and myopia. However, their roles remain unclear, partly because of limited noninvasive techniques to assess their fibrous microstructures globally, longitudinally, and quantitatively. We hypothesized that magic angle–enhanced magnetic resonance imaging (MRI) can reveal the structural details of the corneoscleral shell and their changes upon intraocular pressure (IOP) elevation. Methods. Seven ovine eyes were extracted and fixed at IOP = 50 mm Hg to mimic ocular hypertension, and another 11 eyes were unpressurized. The sclera and cornea were scanned at different angular orientations relative to the main magnetic field inside a 9.4-Tesla MRI scanner. Relative MRI signal intensities and intrinsic transverse relaxation times (T2 and T2*) were determined to quantify the magic angle effect on the corneoscleral shells. Three loaded and eight unloaded tendon samples were scanned as controls. Results. At magic angle, high-resolution MRI revealed distinct scleral and corneal lamellar fibers, and light/dark bands indicative of collagen fiber crimps in the sclera and tendon. Magic angle enhancement effect was the strongest in tendon and the least strong in cornea. Loaded sclera, cornea, and tendon possessed significantly higher T2 and T2* than unloaded tissues at magic angle. Conclusions. Magic angle–enhanced MRI can detect ocular fibrous microstructures without contrast agents or coatings and can reveal their MR tissue property changes with IOP loading. This technique may open up new avenues for assessment of the biomechanical and biochemical properties of ocular tissues in aging and in diseases involving the corneoscleral shell. PMID:25103267

  20. Evaluation of the WARP-turbo spin echo sequence for 3 Tesla magnetic resonance imaging of stifle joints in dogs with stainless steel tibial plateau leveling osteotomy implants.

    PubMed

    Simpler, Renee E; Kerwin, Sharon C; Eichelberger, Bunita M; Wall, Corey R; Thompson, James A; Padua, Abraham; Purdy, David; Griffin, John F

    2014-01-01

    Susceptibility artifacts caused by ferromagnetic implants compromise magnetic resonance imaging (MRI) of the canine stifle after tibial plateau leveling osteotomy (TPLO) procedures. The WARP-turbo spin echo sequence is being developed to mitigate artifacts and utilizes slice encoding for metal artifact reduction. The aim of the current study was to evaluate the WARP-turbo spin echo sequence for imaging post TPLO canine stifle joints. Proton density weighted images of 19 canine cadaver limbs were made post TPLO using a 3 Tesla MRI scanner. Susceptibility artifact sizes were recorded and compared for WARP vs. conventional turbo spin echo sequences. Three evaluators graded depiction quality for the tibial tuberosity, medial and lateral menisci, tibial osteotomy, and caudal cruciate ligament as sufficient or insufficient to make a diagnosis. Artifacts were subjectively smaller and local structures were better depicted in WARP-turbo spin echo images. Signal void area was also reduced by 75% (sagittal) and 49% (dorsal) in WARP vs. conventional turbo spin echo images. Evaluators were significantly more likely to grade local anatomy depiction as adequate for making a diagnosis in WARP-turbo spin echo images in the sagittal but not dorsal plane. The proportion of image sets with anatomic structure depiction graded adequate to make a diagnosis ranged from 28 to 68% in sagittal WARP-turbo spin echo images compared to 0-19% in turbo spin echo images. Findings indicated that the WARP-turbo spin echo sequence reduces the severity of susceptibility artifacts in canine stifle joints post TPLO. However, variable depiction of local anatomy warrants further refinement of the technique. PMID:24438513

  1. IMMEDIATE JOB OPENING MRI technical developments and applications

    E-print Network

    Duong, Timothy Q.

    (Siemens and Bruker) 2) MRI applications in rodent/non-human primate models of stroke and retinal diseases-sequence development, Bruker or Siemens scanners, OR 2) Experience in hand hand-on RF and MRI hardware, OR 3) Expertisecm Pharmascan 4) MRI: 3T/90cm whole-body Siemens TIM Trio 5) MRI: 3T/90cm whole-body Siemens TIM Trio

  2. 51. View of upper radar scanner switch in radar scanner ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    51. View of upper radar scanner switch in radar scanner building 105 from upper catwalk level showing emanating waveguides from upper switch (upper one-fourth of photograph) and emanating waveguides from lower radar scanner switch in vertical runs. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  3. 3-Tesla MRI Response to TACE in HCC (Liver Cancer)

    ClinicalTrials.gov

    2014-03-20

    Adult Primary Hepatocellular Carcinoma; Advanced Adult Primary Liver Cancer; Localized Resectable Adult Primary Liver Cancer; Localized Unresectable Adult Primary Liver Cancer; Stage A Adult Primary Liver Cancer (BCLC); Stage B Adult Primary Liver Cancer (BCLC)

  4. Static field influences on transcranial magnetic stimulation: Considerations for TMS in the scanner environment

    PubMed Central

    Yau, Jeffrey M.; Jalinous, Reza; Cantarero, Gabriela L.; Desmond, John E.

    2014-01-01

    Background: Transcranial magnetic stimulation (TMS) can be combined with functional magnetic resonance imaging (fMRI) to simultaneously manipulate and monitor human cortical responses. Although tremendous efforts have been directed at characterizing the impact of TMS on image acquisition, the influence of the scanner’s static field on the TMS coil has received limited attention. Objective/Hypothesis: The aim of this study was to characterize the influence of the scanner’s static field on TMS. We hypothesized that spatial variations in the static field could account for TMS field variations in the scanner environment. Methods: Using a MRI-compatible TMS coil, we estimated TMS field strengths based on TMS-induced voltage changes measured in a search coil. We compared peak field strengths obtained with the TMS coil positioned at different locations (B0 field vs fringe field) and orientations in the static field. We also measured the scanner’s static field to derive a field map to account for TMS field variations. Results: TMS field strength scaled depending on coil location and orientation with respect to the static field. Larger TMS field variations were observed in fringe field regions near the gantry as compared to regions inside the bore or further removed from the bore. The scanner’s static field also exhibited the greatest spatial variations in fringe field regions near the gantry. Conclusions: The scanner’s static field influences TMS fields and spatial variations in the static field correlate with TMS field variations. TMS field variations can be minimized by delivering TMS in the bore or outside of the 0 - 70 cm region from the bore entrance. PMID:24656916

  5. Integrated display scanner

    DOEpatents

    Veligdan, James T.

    2004-12-21

    A display scanner includes an optical panel having a plurality of stacked optical waveguides. The waveguides define an inlet face at one end and a screen at an opposite end, with each waveguide having a core laminated between cladding. A projector projects a scan beam of light into the panel inlet face for transmission from the screen as a scan line to scan a barcode. A light sensor at the inlet face detects a return beam reflected from the barcode into the screen. A decoder decodes the return beam detected by the sensor for reading the barcode. In an exemplary embodiment, the optical panel also displays a visual image thereon.

  6. Multi-Level TESLA: Broadcast Authentication for Distributed Sensor Networks

    E-print Network

    Ning, Peng

    Multi-Level µTESLA: Broadcast Authentication for Distributed Sensor Networks DONGGANG LIU and PENG named multi-level µTESLA based on µTESLA, a broadcast authentication protocol whose scalability is limited by its unicast-based initial parameter distribution. Multi-level µTESLA satisfies several nice

  7. [Nikola Tesla: flashes of inspiration].

    PubMed

    Villarejo-Galende, Albero; Herrero-San Martín, Alejandro

    2013-01-16

    Nikola Tesla (1856-1943) was one of the greatest inventors in history and a key player in the revolution that led to the large-scale use of electricity. He also made important contributions to such diverse fields as x-rays, remote control, radio, the theory of consciousness or electromagnetism. In his honour, the international unit of magnetic induction was named after him. Yet, his fame is scarce in comparison with that of other inventors of the time, such as Edison, with whom he had several heated arguments. He was a rather odd, reserved person who lived for his inventions, the ideas for which came to him in moments of inspiration. In his autobiography he relates these flashes with a number of neuropsychiatric manifestations, which can be seen to include migraine auras, synaesthesiae, obsessions and compulsions. PMID:23307357

  8. The physics goals of the TESLA project

    E-print Network

    Klaus Moenig

    2001-12-03

    As next generation e+e- linear collider the superconducting accelerator project TESLA has been proposed. In this note the physics potential goals of this project, which is highly complementary to LHC, are described.

  9. MRI Meets MPI: a bimodal MPI-MRI tomograph.

    PubMed

    Vogel, Patrick; Lother, Steffen; Rückert, Martin A; Kullmann, Walter H; Jakob, Peter M; Fidler, Florian; Behr, Volker C

    2014-10-01

    While magnetic particle imaging (MPI) constitutes a novel biomedical imaging technique for tracking superparamagnetic nanoparticles in vivo, unlike magnetic resonance imaging (MRI), it cannot provide anatomical background information. Until now these two modalities have been performed in separate scanners and image co-registration has been hampered by the need to reposition the sample in both systems as similarly as possible. This paper presents a bimodal MPI-MRI-tomograph that combines both modalities in a single system.MPI and MRI images can thus be acquired without moving the sample or replacing any parts in the setup. The images acquired with the presented setup show excellent agreement between the localization of the nanoparticles in MPI and the MRI background data. A combination of two highly complementary imaging modalities has been achieved. PMID:25291350

  10. Multispectral scanner optical system

    NASA Technical Reports Server (NTRS)

    Stokes, R. C.; Koch, N. G. (inventors)

    1980-01-01

    An optical system for use in a multispectral scanner of the type used in video imaging devices is disclosed. Electromagnetic radiation reflected by a rotating scan mirror is focused by a concave primary telescope mirror and collimated by a second concave mirror. The collimated beam is split by a dichroic filter which transmits radiant energy in the infrared spectrum and reflects visible and near infrared energy. The long wavelength beam is filtered and focused on an infrared detector positioned in a cryogenic environment. The short wavelength beam is dispersed by a pair of prisms, then projected on an array of detectors also mounted in a cryogenic environment and oriented at an angle relative to the optical path of the dispersed short wavelength beam.

  11. Laser Scanner Demonstration

    SciTech Connect

    Fuss, B.

    2005-09-06

    In the Summer of 2004 a request for proposals went out to potential vendors to offer a three-dimensional laser scanner for a number of unique metrology tasks at the Stanford Linear Accelerator Center (SLAC). Specifications were established including range, accuracy, scan density, resolution and field of view in consideration of anticipated department requirements. Four vendors visited the site to present their system and they were asked to perform three unique tests with their system on a two day visit to SLAC. Two of the three tests were created to emulate real-world applications at SLAC while the third was an accuracy and resolution series of experiments. The scope of these tests is presented and some of the vendor's results are included.

  12. Space-Multiplexed Optical Scanner

    NASA Astrophysics Data System (ADS)

    Riza, Nabeel A.; Yaqoob, Zahid

    2004-05-01

    A low-loss two-dimensional optical beam scanner that is capable of delivering large (e.g., > 10°) angular scans along the elevation as well as the azimuthal direction is presented. The proposed scanner is based on a space-switched parallel-serial architecture that employs a coarse-scanner module and a fine-scanner module that produce an ultrahigh scan space-fill factor, e.g., 900 × 900 distinguishable beams in a 10° (elevation) × 10° (azimuth) scan space. The experimentally demonstrated one-dimensional version of the proposed scanner has a supercontinuous scan, 100 distinguishable beam spots in a 2.29° total scan range, and 1.5-dB optical insertion loss.

  13. Space-multiplexed optical scanner.

    PubMed

    Riza, Nabeel A; Yaqoob, Zahid

    2004-05-01

    A low-loss two-dimensional optical beam scanner that is capable of delivering large (e.g., > 10 degrees) angular scans along the elevation as well as the azimuthal direction is presented. The proposed scanner is based on a space-switched parallel-serial architecture that employs a coarse-scanner module and a fine-scanner module that produce an ultrahigh scan space-fill factor, e.g., 900 x 900 distinguishable beams in a 10 degrees (elevation) x 10 degrees (azimuth) scan space. The experimentally demonstrated one-dimensional version of the proposed scanner has a supercontinuous scan, 100 distinguishable beam spots in a 2.29 degrees total scan range, and 1.5-dB optical insertion loss. PMID:15130010

  14. [Investigation of radio frequency heating of dental implants made of titanium in 1.5 tesla and 3.0 tesla magnetic resonance procedure: measurement of the temperature by using tissue-equivalent phantom].

    PubMed

    Ideta, Takahiro; Yamazaki, Masaru; Kudou, Sadahiro; Higashida, Mitsuji; Mori, Shintarou; Kaneda, Takashi; Nakazawa, Masami

    2013-05-01

    Titanium (Ti) implants are increasingly being used for dental parts. There is no problem with the attraction of a static magnetic field for Ti in magnetic resonance imaging (MRI), since Ti is paramagnetic. However, there is a risk of radio frequency (RF) heat generation within Ti. 3.0 T-MRI scanners are becoming increasingly common. The specific absorption rate (SAR) of 3.0 T-MRI is quadruple that of SAR compared with 1.5 T-MRI due to its being proportional to the square of the strength of a static magnetic field. The effect of heat generation in 3.0 T-MRI can thus be greater than in 1.5 T-MRI. So, using 1.5 T and 3.0 T-MRI scanners, we measured the temperature of several Ti implants using the same scanning parameters during MRI scanning. Our measurements showed the rise in temperature of the Ti implants to be a maximum of 0.4 degrees C. In this study, however, Ti in a human mouth was not directly measured, so we need to attempt to perform MRI carefully on patients with Ti implants. PMID:23964532

  15. Layer-Specific Manganese-Enhanced MRI of the Retina in Light and Dark Adaptation

    E-print Network

    Duong, Timothy Q.

    and imaged under anesthesia. T1-weighted MRI at 11.7 tesla (T) was performed using two identical radiofrequency transceiver coils to allow interleaved MRI acquisitions of the two eyes. An intravascular contrast was not statistically different between light and dark adaptation (P > 0.05). CONCLUSIONS. This study demonstrated

  16. Conduction-coupled Tesla transformer

    NASA Astrophysics Data System (ADS)

    Reed, J. L.

    2015-03-01

    A proof-of-principle Tesla transformer circuit is introduced. The new transformer exhibits the high voltage-high power output signal of shock-excited transformers. The circuit, with specification of proper circuit element values, is capable of obtaining extreme oscillatory voltages. The primary and secondary portions of the circuit communicate solely by conduction. The destructive arcing between the primary and secondary inductors in electromagnetically coupled transformers is ubiquitous. Flashover is eliminated in the new transformer as the high-voltage inductors do not interpenetrate and so do not possess an annular volume of electric field. The inductors are remote from one another. The high voltage secondary inductor is isolated in space, except for a base feed conductor, and obtains earth by its self-capacitance to the surroundings. Governing equations, for the ideal case of no damping, are developed from first principles. Experimental, theoretical, and circuit simulator data are presented for the new transformer. Commercial high-temperature superconductors are discussed as a means to eliminate the counter-intuitive damping due to small primary inductances in both the electromagnetic-coupled and new conduction-coupled transformers.

  17. Conduction-coupled Tesla transformer.

    PubMed

    Reed, J L

    2015-03-01

    A proof-of-principle Tesla transformer circuit is introduced. The new transformer exhibits the high voltage-high power output signal of shock-excited transformers. The circuit, with specification of proper circuit element values, is capable of obtaining extreme oscillatory voltages. The primary and secondary portions of the circuit communicate solely by conduction. The destructive arcing between the primary and secondary inductors in electromagnetically coupled transformers is ubiquitous. Flashover is eliminated in the new transformer as the high-voltage inductors do not interpenetrate and so do not possess an annular volume of electric field. The inductors are remote from one another. The high voltage secondary inductor is isolated in space, except for a base feed conductor, and obtains earth by its self-capacitance to the surroundings. Governing equations, for the ideal case of no damping, are developed from first principles. Experimental, theoretical, and circuit simulator data are presented for the new transformer. Commercial high-temperature superconductors are discussed as a means to eliminate the counter-intuitive damping due to small primary inductances in both the electromagnetic-coupled and new conduction-coupled transformers. PMID:25832281

  18. MODEL-BASED IMAGE RECONSTRUCTION FOR MRI Jeffrey A. Fessler

    E-print Network

    Fessler, Jeffrey A.

    MRI scanners use a large static magnetic field B0(r) = B0(r) k (1) to induce a net magnetization M in MRI is to form images of aspects of this magnetization. By manip- ulating the applied field B0(r, t the static field strength B0(r) would be spatially uniform, i.e., a single constant B0. In practice

  19. An MRI-Compatible Robotic System With Hybrid Tracking for MRI-Guided Prostate Intervention

    PubMed Central

    Krieger, Axel; Iordachita, Iulian I.; Guion, Peter; Singh, Anurag K.; Kaushal, Aradhana; Ménard, Cynthia; Pinto, Peter A.; Camphausen, Kevin; Fichtinger, Gabor

    2012-01-01

    This paper reports the development, evaluation, and first clinical trials of the access to the prostate tissue (APT) II system—a scanner independent system for magnetic resonance imaging (MRI)-guided transrectal prostate interventions. The system utilizes novel manipulator mechanics employing a steerable needle channel and a novel six degree-of-freedom hybrid tracking method, comprising passive fiducial tracking for initial registration and subsequent incremental motion measurements. Targeting accuracy of the system in prostate phantom experiments and two clinical human-subject procedures is shown to compare favorably with existing systems using passive and active tracking methods. The portable design of the APT II system, using only standard MRI image sequences and minimal custom scanner interfacing, allows the system to be easily used on different MRI scanners. PMID:22009867

  20. Side scanner for supermarkets: a new scanner design standard

    NASA Astrophysics Data System (ADS)

    Cheng, Charles K.; Cheng, J. K.

    1996-09-01

    High speed UPC bar code has become a standard mode of data capture for supermarkets in the US, Europe, and Japan. The influence of the ergonomics community on the design of the scanner is evident. During the past decade the ergonomic issues of cashier in check-outs has led to occupational hand-wrist cumulative trauma disorders, in most cases causing carpal tunnel syndrome, a permanent hand injury. In this paper, the design of a side scanner to resolve the issues is discussed. The complex optical module and the sensor for aforesaid side scanner is described. The ergonomic advantages offer the old counter mounted vertical scanner has been experimentally proved by the industrial funded study at an independent university.

  1. Temperature mapping for ultrasound scanner using backscattered changes

    NASA Astrophysics Data System (ADS)

    Chenot, Jérémy; Melodelima, David; Chapelon, Jean-Yves

    2012-10-01

    MRI and ultrasound scanner are the two main methods used to guide thermal ablation. The superiority of MRI over ultrasound scanner comes from its ability to provide temperature mapping during thermal ablation. This paper describes the relationship between the changes in ultrasound backscattering and the temperature changes during HIFU treatments. Data was acquired during a 120s total treatment time with a duty cycle of 90% (1s HIFU on followed by a 0.1s ultrasound scanner acquisition). A thermocouple was placed at the focal point of the ablated area for correlation measurements. Twenty-three ablations were performed in in vitro livers. An increase in ultrasound backscattering as the tissue temperature increase was noted and correlates well with thermocouple measurements. Radiofrequency signals were used to estimate ultrasound backscattering changes in real-time. A linear relationship between changes in the radiofrequency signal and temperature was observed up to 90°C. These temperature measurements also correlate with the dimensions of ablations produced. This report describes the basics of processing that may be used to provide essential feedback to operators of the state of the tissue during treatment.

  2. Science up to 100 tesla

    SciTech Connect

    Campbell, L.J.

    1995-05-01

    100 Tesla is the highest attainable field that can be held for milli-sec in a non-destructive magnet. The strongest steels turn soft under stresses of 4GPa, which is the magnetic pressure of 100 T. Until there is a breakthrough in materials, magnets having all the low temperature and high pressure trimmings will be limited to about 100 T. Within the field range 1-100 T far more resources are now devoted to producing the highest possible continuous fields (40+5 T) than to producing longer pulsed fields above 50 T. This illustrates that the utility of the field can be more important than the strength of the field to researchers in condensed matter. Discoveries are typically made in new territory, but this can be new combinations of pressure, temperature, and magnetic field, or new probes and new materials. If any activity has kept up with the proliferation of new experiments and new facilities in high magnetic field research it is the listing of experiments that could and should be done in high fields. Part of the reason for the vitality of high field research is that high fields provide a generic environment. Compared to particle accelerators and plasma machines a high field laboratory is a setting for generic science, like synchrotron light sources or neutron scattering centers. Although the latter two installations probes states, while a magnetic field creates a state. Because it is unrealistic to try to list all the science opportunities at high fields, the author list sources for lists in the public domain and gives a few examples.

  3. MSS D Multispectral Scanner System

    NASA Technical Reports Server (NTRS)

    Lauletta, A. M.; Johnson, R. L.; Brinkman, K. L. (principal investigators)

    1982-01-01

    The development and acceptance testing of the 4-band Multispectral Scanners to be flown on LANDSAT D and LANDSAT D Earth resources satellites are summarized. Emphasis is placed on the acceptance test phase of the program. Test history and acceptance test algorithms are discussed. Trend data of all the key performance parameters are included and discussed separately for each of the two multispectral scanner instruments. Anomalies encountered and their resolutions are included.

  4. Use of a radio frequency shield during 1.5 and 3.0 Tesla magnetic resonance imaging: experimental evaluation.

    PubMed

    Favazza, Christopher P; King, Deirdre M; Edmonson, Heidi A; Felmlee, Joel P; Rossman, Phillip J; Hangiandreou, Nicholas J; Watson, Robert E; Gorny, Krzysztof R

    2014-01-01

    Radiofrequency (RF) shields have been recently developed for the purpose of shielding portions of the patient's body during magnetic resonance imaging (MRI) examinations. We present an experimental evaluation of a commercially available RF shield in the MRI environment. All tests were performed on 1.5 T and 3.0 T clinical MRI scanners. The tests were repeated with and without the RF shield present in the bore, for comparison. Effects of the shield, placed within the scanner bore, on the RF fields generated by the scanner were measured directly using tuned pick-up coils. Attenuation, by as much as 35 dB, of RF field power was found inside the RF shield. These results were supported by temperature measurements of metallic leads placed inside the shield, in which no measurable RF heating was found. In addition, there was a small, simultaneous detectable increase (?1 dB) of RF power just outside the edges of the shield. For these particular scanners, the autocalibrated RF power levels were reduced for scan locations prescribed just outside the edges of the shield, which corresponded with estimations based on the pick-up coil measurements. Additionally, no significant heating during MRI scanning was observed on the shield surface. The impact of the RF shield on the RF fields inside the magnet bore is likely to be dependent on the particular model of the RF shield or the MRI scanner. These results suggest that the RF shield could be a valuable tool for clinical MRI practices. PMID:25378957

  5. 3D ultrafast laser scanner

    NASA Astrophysics Data System (ADS)

    Mahjoubfar, A.; Goda, K.; Wang, C.; Fard, A.; Adam, J.; Gossett, D. R.; Ayazi, A.; Sollier, E.; Malik, O.; Chen, E.; Liu, Y.; Brown, R.; Sarkhosh, N.; Di Carlo, D.; Jalali, B.

    2013-03-01

    Laser scanners are essential for scientific research, manufacturing, defense, and medical practice. Unfortunately, often times the speed of conventional laser scanners (e.g., galvanometric mirrors and acousto-optic deflectors) falls short for many applications, resulting in motion blur and failure to capture fast transient information. Here, we present a novel type of laser scanner that offers roughly three orders of magnitude higher scan rates than conventional methods. Our laser scanner, which we refer to as the hybrid dispersion laser scanner, performs inertia-free laser scanning by dispersing a train of broadband pulses both temporally and spatially. More specifically, each broadband pulse is temporally processed by time stretch dispersive Fourier transform and further dispersed into space by one or more diffractive elements such as prisms and gratings. As a proof-of-principle demonstration, we perform 1D line scans at a record high scan rate of 91 MHz and 2D raster scans and 3D volumetric scans at an unprecedented scan rate of 105 kHz. The method holds promise for a broad range of scientific, industrial, and biomedical applications. To show the utility of our method, we demonstrate imaging, nanometer-resolved surface vibrometry, and high-precision flow cytometry with real-time throughput that conventional laser scanners cannot offer due to their low scan rates.

  6. Partial epilepsy: A pictorial review of 3 TESLA magnetic resonance imaging features

    PubMed Central

    Abud, Lucas Giansante; Thivard, Lionel; Abud, Thiago Giansante; Nakiri, Guilherme Seizem; dos Santos, Antonio Carlos; Dormont, Didier

    2015-01-01

    Epilepsy is a disease with serious consequences for patients and society. In many cases seizures are sufficiently disabling to justify surgical evaluation. In this context, Magnetic Resonance Imaging (MRI) is one of the most valuable tools for the preoperative localization of epileptogenic foci. Because these lesions show a large variety of presentations (including subtle imaging characteristics), their analysis requires careful and systematic interpretation of MRI data. Several studies have shown that 3 Tesla (T) MRI provides a better image quality than 1.5 T MRI regarding the detection and characterization of structural lesions, indicating that high-field-strength imaging should be considered for patients with intractable epilepsy who might benefit from surgery. Likewise, advanced MRI postprocessing and quantitative analysis techniques such as thickness and volume measurements of cortical gray matter have emerged and in the near future, these techniques will routinely enable more precise evaluations of such patients. Finally, the familiarity with radiologic findings of the potential epileptogenic substrates in association with combined use of higher field strengths (3 T, 7 T, and greater) and new quantitative analytical post-processing techniques will lead to improvements regarding the clinical imaging of these patients. We present a pictorial review of the major pathologies related to partial epilepsy, highlighting the key findings of 3 T MRI. PMID:26375569

  7. Macroscopic static field inhomogeneity in the human brain during MRI examination

    NASA Astrophysics Data System (ADS)

    Liu, Haiying; Michel, Edward; Casey, Sean O.; Hall, Walter A.; Truwit, Charles L.

    2002-05-01

    The macroscopic static field inhomogeneity is not only the source of MR signal loss in gradient echo based imaging techniques, but also the source of geometrical image distortion as well as a limitation of spectral resolution. This piece of information is useful for both active shimming coil design and clinical imaging application. In order to further understand the spatial variation of the macroscopic background static field in human brain during MRI examination, this static field inhomogeneity was measured from the adult human volunteers with a volumetric imaging scheme, which was based on a 3D gradient echo technique with two consecutive gradient echoes. All the human volunteers were scanned in supine position using a birdcage headcoil on a 1.5 T clinical whole body scanner. We have constructed a high resolution 3D static field map over the brain volume. All experimental results have shown consistently that there are mainly two spots in the brain tissue volume exhibiting relatively severe static magnetic field inhomogeneity . They are normally located in the brain areas in the inferior frontal lobe immediately anterior to the nasal cavity and in the inferior temporal lobe above the ear canals, where air spaces exist in the vicinity. At those locations, the observed offset frequency in the proton resonance reached about 50 Hz over 5 mm distance along the z direction at 1.5 Tesla, corresponding to 1.5 ppm/cm locally.

  8. RESEARCH ARTICLE Tumor Detection at 3 Tesla with an

    E-print Network

    Tsien, Roger Y.

    RESEARCH ARTICLE Tumor Detection at 3 Tesla with an Activatable Cell Penetrating Peptide Dendrimer, Olson ES, Mattrey RF, Jiang T, Tsien RY, Nguyen QT (2015) Tumor Detection at 3 Tesla with an Activatable

  9. TESLA: Temporally Enhanced System Logic Assertions Jonathan Anderson

    E-print Network

    Haddadi, Hamed

    TESLA: Temporally Enhanced System Logic Assertions Jonathan Anderson Robert N. M. Watson David and are not easily expressed in assertions. TESLA is a description, analysis, and validation tool that allows systems can span the interfaces between libraries and even lan- guages. TESLA exposes run-time behaviour using

  10. TESLA: A Formally Defined Event Specification Language Gianpaolo Cugola

    E-print Network

    Cugola, Gianpaolo

    TESLA: A Formally Defined Event Specification Language Gianpaolo Cugola Dip. di Elettronica e to clearly state how the system should behave. Moving from these premises, we present TESLA, a complex event specification language. Each TESLA rule considers incoming data items as notifi- cations of events and defines

  11. Multicore Platforms for Scientific Computing: Cell BE and NVIDIA Tesla

    E-print Network

    Acacio, Manuel

    Multicore Platforms for Scientific Computing: Cell BE and NVIDIA Tesla J. Fern´andez, M.E. Acacio Tesla computing solutions. The former is a re- cent heterogeneous chip-multiprocessor (CMP) architecture, multicore, Cell BE, NVIDIA Tesla, CUDA 1 Introduction Nowadays, multicore architectures are omnipresent

  12. Scattering E#ects in the TESLA Colllimation Adriana Bungau

    E-print Network

    Scattering E#ects in the TESLA Colllimation System Adriana Bungau University of Manchester scattering angles and random output direction. In the TESLA TDR simulations, the collimation depth was set of the particles which strike the TESLA collima­ tors can not be possible without taking into consideration

  13. Hydrodynamic Tesla Wheel Flume for Model and Prototype Testing

    E-print Network

    Wood, Stephen L.

    Hydrodynamic Tesla Wheel Flume for Model and Prototype Testing Spencer Jenkins, Chris Scott, Jacob Engineering department at Florida Institute of Technology (Florida Tech) has developed a Hydrodynamic Tesla, hydrodynamic, laminar, fluid, flow, model, prototype testing, Tesla wheel. I. INTRODUCTION The southeast region

  14. Chest MRI

    MedlinePLUS

    Nuclear magnetic resonance - chest; Magnetic resonance imaging - chest; NMR - chest; MRI of the thorax; Thoracic MRI ... radiation. To date, no side effects from the magnetic fields and radio waves have been reported. The ...

  15. Nikola Tesla, the Ether and his Telautomaton

    NASA Astrophysics Data System (ADS)

    Milar, Kendall

    2014-03-01

    In the nineteenth century physicists' understanding of the ether changed dramatically. New developments in thermodynamics, energy physics, and electricity and magnetism dictated new properties of the ether. These have traditionally been examined from the perspective of the scientists re-conceptualizing the ether. However Nikola Tesla, a prolific inventor and writer, presents a different picture of nineteenth century physics. Alongside the displays that showcased his inventions he presented alternative interpretations of physical, physiological and even psychical research. This is particularly evident in his telautomaton, a radio remote controlled boat. This invention and Tesla's descriptions of it showcase some of his novel interpretations of physical theories. He offered a perspective on nineteenth century physics that focused on practical application instead of experiment. Sometimes the understanding of physical theories that Tesla reached was counterproductive to his own inventive work; other times he offered new insights. Tesla's utilitarian interpretation of physical theories suggests a more scientifically curious and invested inventor than previously described and a connection between the scientific and inventive communities.

  16. Multispectral Scanner for Monitoring Plants

    NASA Technical Reports Server (NTRS)

    Gat, Nahum

    2004-01-01

    A multispectral scanner has been adapted to capture spectral images of living plants under various types of illumination for purposes of monitoring the health of, or monitoring the transfer of genes into, the plants. In a health-monitoring application, the plants are illuminated with full-spectrum visible and near infrared light and the scanner is used to acquire a reflected-light spectral signature known to be indicative of the health of the plants. In a gene-transfer- monitoring application, the plants are illuminated with blue or ultraviolet light and the scanner is used to capture fluorescence images from a green fluorescent protein (GFP) that is expressed as result of the gene transfer. The choice of wavelength of the illumination and the wavelength of the fluorescence to be monitored depends on the specific GFP.

  17. A study of quantification of aortic compliance in mice using radial acquisition phase contrast MRI

    NASA Astrophysics Data System (ADS)

    Zhao, Xuandong

    Spatiotemporal changes in blood flow velocity measured using Phase contrast Magnetic Resonance Imaging (MRI) can be used to quantify Pulse Wave Velocity (PWV) and Wall Shear Stress (WSS), well known indices of vessel compliance. A study was conducted to measure the PWV in the aortic arch in young healthy children using conventional phase contrast MRI and a post processing algorithm that automatically track the peak velocity in phase contrast images. It is shown that the PWV calculated using peak velocity-time data has less variability compared to that using mean velocity and flow. Conventional MR data acquisition techniques lack both the spatial and temporal resolution needed to accurately calculate PWV and WSS in in vivo studies using transgenic animal models of arterial diseases. Radial k-space acquisition can improve both spatial and temporal resolution. A major part of this thesis was devoted to developing technology for Radial Phase Contrast Magnetic Resonance (RPCMR) cine imaging on a 7 Tesla Animal scanner. A pulse sequence with asymmetric radial k-space acquisition was designed and implemented. Software developed to reconstruct the RPCMR images include gridding, density compensation and centering of k-Space that corrects the image ghosting introduced by hardware response time. Image processing software was developed to automatically segment the vessel lumen and correct for phase offset due to eddy currents. Finally, in vivo and ex vivo aortic compliance measurements were conducted in a well-established mouse model for atherosclerosis: Apolipoprotein E-knockout (ApoE-KO). Using RPCMR technique, a significantly higher PWV value as well as a higher average WSS was detected among 9 months old ApoE-KO mice compare to in wild type mice. A follow up ex-vivo test of tissue elasticity confirmed the impaired distensibility of aortic arteries among ApoE-KO mice.

  18. Acoustic noise reduction in MRI using Silent Scan: an initial experience

    PubMed Central

    Alibek, Sedat; Vogel, Mika; Sun, Wei; Winkler, David; Baker, Christopher A.; Burke, Michael; Gloger, Hubertus

    2014-01-01

    PURPOSE Acoustic noise during magnetic resonance imaging (MRI) is the main source for patient discomfort and leads to verbal communication problems, difficulties in sedation, and hearing impairment. Silent Scan technology uses less changes in gradient excitation levels, which is directly related to noise levels. Here, we report our preliminary experience with this technique in neuroimaging with regard to subjective and objective noise levels and image quality. MATERIALS AND METHODS Ten patients underwent routine brain MRI with 3 Tesla MR750w system and 12-channel head coil. T1-weighted gradient echo (BRAVO) and Silenz pulse sequence (TE=0, 3D radial center-out k-space filling and data sampling with relatively small gradient steps) were performed. Patients rated subjective sound impression for both sequences on a 6-point scale. Objective sound level measurements were performed with a dedicated device in gantry at different operation modes. Image quality was subjectively assessed in consensus by two radiologists on a 3-point scale. RESULTS Readers rated image quality as fully diagnostic in all patients. Measured mean noise was reduced significantly with Silenz sequence (68.8 dB vs. 104.65 dB with BRAVO, P = 0.024) corresponding to 34.3% reduction in sound intensity and 99.97% reduction in sound pressure. No significant difference was observed between Silenz sound levels and ambient sounds (i.e., background noise in the scanner room, 68.8 dB vs. 68.73 dB, P = 0.5). The patients’ subjective sound level score was lower for Silenz compared with conventional sequence (1.1 vs. 2.3, P = 0.003). CONCLUSION T1-weighted Silent Scan is a promising technique for acoustic noise reduction and improved patient comfort. PMID:24808439

  19. The Impact of the fMRI Environment on Cognitive Function: A Visual Working Memory Study 

    E-print Network

    Dunbar, Jill

    2008-12-04

    The environment within an fMRI scanner can be intimidating, featuring characteristics such as extreme noise levels, postural constraints, and claustrophobic conditions. It is likely that these external pressures can have ...

  20. MRI of Blood Flow of the Human Retina Qi Peng,1,2

    E-print Network

    Duong, Timothy Q.

    on a 3-T MRI scanner. Pseudo- continuous arterial spin labeling technique with static tissue suppression angiography (4), indocyanin-green an- giography (5), laser Doppler flowmetry (LDF) (6), and laser speckle

  1. Post-mortem magnetic resonance microscopy (MRM) of the murine brain at 7 Tesla results in a gain of resolution as compared to in vivo MRM

    PubMed Central

    von Bohlen und Halbach, Oliver; Lotze, Martin; Pfannmöller, Jörg P.

    2014-01-01

    Small-animal MRI with high field strength allows imaging of the living animal. However, spatial resolution in in vivo brain imaging is limited by the scanning time. Measurements of fixated mouse brains allow longer measurement time, but fixation procedures are time consuming, since the process of fixation may take several weeks. We here present a quick and simple post-mortem approach without fixation that allows high-resolution MRI even at 7 Tesla (T2-weighted MRI). This method was compared to in vivo scans with optimized spatial resolution for the investigation of anesthetized mice (T1-weighted MRI) as well as to ex situ scans of fixed brains (T1- and T2-weighted scans) by using standard MRI-sequences, along with anatomic descriptions of areas observable in the MRI, analysis of tissue shrinkage and post-processing procedures (intensity inhomogeneity correction, PCNN3D brain extract, SPMMouse segmentation, and volumetric measurement). Post-mortem imaging quality was sufficient to determine small brain substructures on the morphological level, provided fast possibilities for volumetric acquisition and for automatized processing without manual correction. Moreover, since no fixation was used, tissue shrinkage due to fixation does not occur as it is, e.g., the case by using ex vivo brains that have been kept in fixatives for several days. Thus, the introduced method is well suited for comparative investigations, since it allows determining small structural alterations in the murine brain at a reasonable high resolution even by MRI performed at 7 Tesla. PMID:24982617

  2. Post-mortem magnetic resonance microscopy (MRM) of the murine brain at 7 Tesla results in a gain of resolution as compared to in vivo MRM.

    PubMed

    von Bohlen Und Halbach, Oliver; Lotze, Martin; Pfannmöller, Jörg P

    2014-01-01

    Small-animal MRI with high field strength allows imaging of the living animal. However, spatial resolution in in vivo brain imaging is limited by the scanning time. Measurements of fixated mouse brains allow longer measurement time, but fixation procedures are time consuming, since the process of fixation may take several weeks. We here present a quick and simple post-mortem approach without fixation that allows high-resolution MRI even at 7 Tesla (T2-weighted MRI). This method was compared to in vivo scans with optimized spatial resolution for the investigation of anesthetized mice (T1-weighted MRI) as well as to ex situ scans of fixed brains (T1- and T2-weighted scans) by using standard MRI-sequences, along with anatomic descriptions of areas observable in the MRI, analysis of tissue shrinkage and post-processing procedures (intensity inhomogeneity correction, PCNN3D brain extract, SPMMouse segmentation, and volumetric measurement). Post-mortem imaging quality was sufficient to determine small brain substructures on the morphological level, provided fast possibilities for volumetric acquisition and for automatized processing without manual correction. Moreover, since no fixation was used, tissue shrinkage due to fixation does not occur as it is, e.g., the case by using ex vivo brains that have been kept in fixatives for several days. Thus, the introduced method is well suited for comparative investigations, since it allows determining small structural alterations in the murine brain at a reasonable high resolution even by MRI performed at 7 Tesla. PMID:24982617

  3. 3.0 Tesla imaging of the musculoskeletal system.

    PubMed

    Kuo, Raymond; Panchal, Mahendra; Tanenbaum, Larry; Crues, John V

    2007-02-01

    High-field MRI at 3.0T is rapidly gaining clinical acceptance and experiencing more widespread use. The superiority of high-field imaging has clearly been demonstrated for neurological imaging. The impact of 3.0T imaging of the musculoskeletal system has been less dramatic due to complex optimization issues. Areas under consideration include coil technology, protocol modification, artifact reduction, and patient safety. In this article we review these issues and describe our experience with 3.0T musculoskeletal MRI. Fundamentally, an increased signal-to-noise ratio (SNR) is responsible for improved imaging at higher field strength. Increased SNR allows more headroom to adjust parameters that affect image resolution and examination time. It has been established that T1 relaxation time increases at 3.0T, while T2 time decreases. Consequently, scanner parameters require adjustment for optimization of images. Chemical shift and magnetic susceptibility artifacts are more pronounced and require special techniques to minimize the effect on image quality. Spectral fat saturation techniques can take advantage of the increased chemical shift. The specific absorption rate (SAR) and acoustic noise thresholds must be kept in mind at these higher fields. We additionally present some of the clinical issues we have experienced at 3.0T. A decision must be made as to whether to trade higher resolution for reduced scanning time. In general, we believe that routine imaging at 3.0T increases diagnostic confidence, especially for evaluations of cartilaginous and ligamentous structures. PMID:17260407

  4. Retinotopic mapping with Spin Echo BOLD at 7 Tesla

    PubMed Central

    Olman, Cheryl A.; Van de Moortele, Pierre-Francois; Schumacher, Jennifer F.; Guy, Joe; U?urbil, Kâmil; Yacoub, Essa

    2010-01-01

    For blood oxygenation level-dependent (BOLD) functional MRI experiments, contrast-to-noise ratio (CNR) increases with increasing field strength for both gradient echo (GE) and spin echo (SE) BOLD techniques. However, susceptibility artifacts and non-uniform coil sensitivity profiles complicate large field-of-view fMRI experiments (e.g., experiments covering multiple visual areas instead of focusing on a single cortical region). Here, we use SE BOLD to acquire retinotopic mapping data in early visual areas, testing the feasibility of SE BOLD experiments spanning multiple cortical areas at 7 Tesla. We also use a recently developed method for normalizing signal intensity in T1-weighted anatomical images to enable automated segmentation of the cortical gray matter for scans acquired at 7T with either surface or volume coils. We find that the CNR of the 7T GE data (average single-voxel, single-scan stimulus coherence: 0.41) is almost twice that of the 3T GE BOLD data (average coherence: 0.25), with the CNR of the SE BOLD data (average coherence: 0.23) comparable to that of the 3T GE data. Repeated measurements in individual subjects find that maps acquired with 1.8 mm resolution at 3T and 7T with GE BOLD and at 7T with SE BOLD show no systematic differences in either the area or the boundary locations for V1, V2 and V3, demonstrating the feasibility of high-resolution SE BOLD experiments with good sensitivity throughout multiple visual areas. PMID:20656431

  5. Scanner as a Fine Art

    ERIC Educational Resources Information Center

    Fontes, Kris

    2008-01-01

    Not every art department is fortunate enough to have access to digital cameras and image-editing software, but if a scanner, computer, and printer are available, students can create some imaginative and surreal work. This high-school level lesson begins with a discussion of self-portraits, and then moves to students creating images by scanning…

  6. Improvements to Existing Jefferson Lab Wire Scanners

    SciTech Connect

    McCaughan, Michael D.; Tiefenback, Michael G.; Turner, Dennis L.

    2013-06-01

    This poster will detail the augmentation of selected existing CEBAF wire scanners with commercially available hardware, PMTs, and self created software in order to improve the scanners both in function and utility.

  7. [Optimal imaging parameters and the advantage of cerebrospinal fluid flow image using time-spatial labeling inversion pulse at 3 tesla magnetic resonance imaging: comparison of image quality for 1.5 tesla magnetic resonance imaging].

    PubMed

    Ozasa, Masaya; Yahata, Seiji; Yoshida, Ayako; Takeyama, Mamoru; Eshima, Mitsuhiro; Shinohara, Maiko; Yamamoto, Takao; Abe, Kayoko

    2014-12-01

    Cerebrospinal fluid (CSF) imaging by time-spatial labeling inversion pulse (Time-SLIP) technique is labeled by CSF with a selective inversion recovery (IR) pulse as internal tracer, thus making it possible to visualize CSF dynamics non-invasively. The purpose of this study was to clarify labeled CSF signals during various black blood time to inversion (BBTI) values at 3 tesla (T) and 1.5 T magnetic resonance imaging (MRI) and to determine appropriate CSF imaging parameters at 3 T MRI in 10 healthy volunteers. To calculate optimal BBTI values, ROIs were set in untagged cerebral parenchyma and CSF on the image of the CSF flow from the aqueduct to the fourth ventricle in 1.5 T and 3 T MRI. Visual evaluation of CSF flow also was assessed with changes of matrix and echo time (TE) at 3 T MRI. The mean BBTI value at null point of untagged CSF in 3 T MRI was longer than that of 1.5 T. The MR conditions of the highest visual evaluation were FOV, 14 cm×14 cm; Matrix, 192×192; and TE, 117 ms. CSF imaging using Time-SLIP at 3 T MRI is expected visualization of CSF flow and clarification of CSF dynamics in more detail by setting the optimal conditions because 3 T MRI has the advantage of high contrast and high signal-to-noise ratio. PMID:25672449

  8. 21 CFR 892.1220 - Fluorescent scanner.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Fluorescent scanner. 892.1220 Section 892.1220 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1220 Fluorescent scanner. (a) Identification. A fluorescent scanner is a device intended...

  9. A Laser Range Scanner Designed for Minimum

    E-print Network

    Stanford University

    and Modeling3D Digital Imaging and Modeling 3DIM 20013DIM 2001 #12;2 Scanner Designs #12;3 Scanner DesignXing ChenChen Stanford Computer Graphics LaboratoryStanford Computer Graphics Laboratory 3D Digital ImagingA Laser Range Scanner Designed for Minimum Calibration Complexity James Davis,James Davis, Xing

  10. A Simple X-Y Scanner.

    ERIC Educational Resources Information Center

    Halse, M. R.; Hudson, W. J.

    1986-01-01

    Describes an X-Y scanner used to create acoustic holograms. Scanner is computer controlled and can be adapted to digitize pictures. Scanner geometry is discussed. An appendix gives equipment details. The control program in ATOM BASIC and 6502 machine code is available from the authors. (JM)

  11. Human perception of faces and face cartoons: an fMRI study Jorge Jovicich1,2

    E-print Network

    Peters, Rob

    acquired using the manufacturer's head birdcage coil on a 1.5-Tesla scanner (General Electric Signa). Before statistical analysis, data were motion corrected, Tailarach normalized, and spatially smoothed. The data were analyzed using a fixed-effects statistical model comprising subject-specific effects (signal

  12. Electron Scattering with Polarized Targets at TESLA

    E-print Network

    The TESLA-N Study Group; :; M. Anselmino; E. C. Aschenauer; S. Belostotski; W. Bialowons; J. Bluemlein; V. Braun; R. Brinkmann; M. Dueren; F. Ellinghaus; K. Goeke; St. Goertz; A. Gute; J. Harmsen; D. v. Harrach; R. Jakob; E. M. Kabuss; R. Kaiser; V. Korotkov; P. Kroll; E. Leader; B. Lehmann-Dronke; L. Mankiewicz; A. Meier; W. Meyer; N. Meyners; D. Mueller; P. J. Mulders; W. -D. Nowak; L. Niedermeier; K. Oganessyan; P. V. Pobilitsa; M. V. Polyakov; G. Reicherz; K. Rith; D. Ryckbosch; A. Schaefer; K. Sinram; G. v. d. Steenhoven; E. Steffens; J. Steijger; C. Weiss

    2000-11-24

    Measurements of polarized electron-nucleon scattering can be realized at the TESLA linear collider facility with projected luminosities that are about two orders of magnitude higher than those expected of other experiments at comparable energies. Longitudinally polarized electrons, accelerated as a small fraction of the total current in the e+ arm of TESLA, can be directed onto a solid state target that may be either longitudinally or transversely polarized. A large variety of polarized parton distribution and fragmentation functions can be determined with unprecedented accuracy, many of them for the first time. A main goal of the experiment is the precise measurement of the x- and Q^2-dependence of the experimentally totally unknown quark transversity distributions that will complete the information on the nucleon's quark spin structure as relevant for high energy processes. Comparing their Q^2-evolution to that of the corresponding helicity distributions constitutes an important precision test of the predictive power of QCD in the spin sector. Measuring transversity distributions and tensor charges allows access to the hitherto unmeasured chirally odd operators in QCD which are of great importance to understand the role of chiral symmetry. The possibilities of using unpolarized targets and of experiments with a real photon beam turn TESLA-N into a versatile next-generation facility at the intersection of particle and nuclear physics.

  13. Undulator system for the VUV FEL at the TESLA test facility phase-2

    NASA Astrophysics Data System (ADS)

    Pflüger, J.; Hahn, U.; Faatz, B.; Tischer, M.

    2003-07-01

    The Phase-1 of the VUV Free Electron Laser at the TESLA Test Facility finishes in fall 2002. Phase-2, an extension of Phase-1 towards shorter wavelengths is under construction and will be ready for operation in 2003. A radiation wavelength as low as 6 nm will be obtained by raising the electron energy to 1 GeV. There will be only minor changes to the undulator system. Compared to Phase-1, six instead of three undulator segments will be installed. The integrated focusing system will be replaced by an electromagnetic doublet structure. We report about the changes of the undulator, the undulator vacuum system, the separated quadrupoles including a stretched wire alignment systems and the modifications to the beam diagnostic system consisting of pick up monitors and wire scanners.

  14. A New Proton CT Scanner

    E-print Network

    Coutrakon, G; Boi, S; Dyshkant, A; Erdelyi, B; Hedin, D; Johnson, E; Krider, J; Rykalin, V; Uzunyan, S A; Zutshi, V; Fordt, R; Sellberg, G; Rauch, J E; Roman, M; Rubinov, P; Wilson, P; Naimuddin, M

    2014-01-01

    The design, construction, and preliminary testing of a second generation proton CT scanner is presented. All current treatment planning systems at proton therapy centers use X-ray CT as the primary imaging modality for treatment planning to calculate doses to tumor and healthy tissues. One of the limitations of X-ray CT is in the conversion of X-ray attenuation coefficients to relative (proton) stopping powers, or RSP. This results in more proton range uncertainty, larger target volumes and therefore, more dose to healthy tissues. To help improve this, we present a novel scanner capable of high dose rates, up to 2~MHz, and large area coverage, 20~x~24~cm$^2$, for imaging an adult head phantom and reconstructing more accurate RSP values.

  15. Optical scanner. [laser doppler velocimeters

    NASA Technical Reports Server (NTRS)

    Rhodes, D. B. (inventor)

    1977-01-01

    An optical scanner that sequentially focuses optical energy (light) at selected points in space is described. The essential component is a scanning wheel including several glass windows with each window having a different thickness. Due to this difference in thickness, the displacement of the emerging light from the incident light is different for each window. The scanner transmits optical energy to a point in space while at the same time receiving any optical energy generated at that point and then moves on to the next selected point and repeats this transmit and receive operation. It fills the need for a system that permits a laser velocimeter to rapidly scan across a constantly changing flow field in an aerodynamic test facility.

  16. The Transeurope Footrace Project: longitudinal data acquisition in a cluster randomized mobile MRI observational cohort study on 44 endurance runners at a 64-stage 4,486km transcontinental ultramarathon

    PubMed Central

    2012-01-01

    Background The TransEurope FootRace 2009 (TEFR09) was one of the longest transcontinental ultramarathons with an extreme endurance physical load of running nearly 4,500 km in 64 days. The aim of this study was to assess the wide spectrum of adaptive responses in humans regarding the different tissues, organs and functional systems being exposed to such chronic physical endurance load with limited time for regeneration and resulting negative energy balance. A detailed description of the TEFR project and its implemented measuring methods in relation to the hypotheses are presented. Methods The most important research tool was a 1.5 Tesla magnetic resonance imaging (MRI) scanner mounted on a mobile unit following the ultra runners from stage to stage each day. Forty-four study volunteers (67% of the participants) were cluster randomized into two groups for MRI measurements (22 subjects each) according to the project protocol with its different research modules: musculoskeletal system, brain and pain perception, cardiovascular system, body composition, and oxidative stress and inflammation. Complementary to the diverse daily mobile MR-measurements on different topics (muscle and joint MRI, T2*-mapping of cartilage, MR-spectroscopy of muscles, functional MRI of the brain, cardiac and vascular cine MRI, whole body MRI) other methods were also used: ice-water pain test, psychometric questionnaires, bioelectrical impedance analysis (BIA), skinfold thickness and limb circumference measurements, daily urine samples, periodic blood samples and electrocardiograms (ECG). Results Thirty volunteers (68%) reached the finish line at North Cape. The mean total race speed was 8.35 km/hour. Finishers invested 552 hours in total. The completion rate for planned MRI investigations was more than 95%: 741 MR-examinations with 2,637 MRI sequences (more than 200,000 picture data), 5,720 urine samples, 244 blood samples, 205 ECG, 1,018 BIA, 539 anthropological measurements and 150 psychological questionnaires. Conclusions This study demonstrates the feasibility of conducting a trial based centrally on mobile MR-measurements which were performed during ten weeks while crossing an entire continent. This article is the reference for contemporary result reports on the different scientific topics of the TEFR project, which may reveal additional new knowledge on the physiological and pathological processes of the functional systems on the organ, cellular and sub-cellular level at the limits of stress and strain of the human body. Please see related articles: http://www.biomedcentral.com/1741-7015/10/76 and http://www.biomedcentral.com/1741-7015/10/77 PMID:22812450

  17. Vacuum Attachment for XRF Scanner

    NASA Technical Reports Server (NTRS)

    Schramm, Harry F.; Kaiser, Bruce

    2005-01-01

    Vacuum apparatuses have been developed for increasing the range of elements that can be identified by use of x-ray fluorescent (XRF) scanners of the type mentioned in the two immediately preceding articles. As a consequence of the underlying physical principles, in the presence of air, such an XRF scanner is limited to analysis of chlorine and elements of greater atomic number. When the XRF scanner is operated in a vacuum, it extends the range of analysis to lower atomic numbers - even as far as aluminum and sodium. Hence, more elements will be available for use in XRF labeling of objects as discussed in the two preceding articles. The added benefits of the extended capabilities also have other uses for NASA. Detection of elements of low atomic number is of high interest to the aerospace community. High-strength aluminum alloys will be easily analyzed for composition. Silicon, a major contaminant in certain processes, will be detectable before the process is begun, possibly eliminating weld or adhesion problems. Exotic alloys will be evaluated for composition prior to being placed in service where lives depend on them. And in the less glamorous applications, such as bolts and fasteners, substandard products and counterfeit items will be evaluated at the receiving function and never allowed to enter the operation

  18. MRI: update on technology diffusion and acquisition.

    PubMed

    Hoppszallern, S; Hughes, C; Zimmerman, R A

    1991-04-01

    Over the past three years, magnetic resonance imaging (MRI) has become accepted as a valuable diagnostic tool, and its applications continue to expand. During this time, the number of units installed in the United States doubled. By 1990 about 2,000 MRI units were in place in the United States and nearly 20 percent of the MRI-installed base was mobile, according to a research study conducted by the Hadley Hart Group (Chicago) and Drew Consultants, Inc. (Concord, MA). With the introduction of the prospective payment system, many hospitals were hesitant to spend limited capital on new technology, such as MRI. At the same time, freestanding diagnostic imaging centers were on the rise. Some hospitals and entrepreneurs who foresaw the potential of MRI in health care pioneered its use in the clinical setting. Hospitals began to examine new partnership arrangements and alternative forms of financing, so that they too could offer MRI services. By the end of 1988, the majority of hospitals offering MRI services did not own their own unit and about 40 percent of the hospitals offering MRI services were in a mobile configuration according to the Hadley Hart Group. While the technology has been diffused into 100-bed hospitals via mobile service vendors in some parts of the country, many medium-sized and large hospitals also have entered the MRI services market in this fashion. In the larger hospitals, the patient demand or need for the service often would justify acquisition of MRI, but the expense of the technology, and in many areas restrictive state health planning policies, modified purchase of MRI systems by hospitals. Mobile service vendors offered hospitals a way to startup MRI services in a limited fashion without a major capital expenditure and its associated risk. As hospitals gain experience with mobile MRI and achieve or exceed their early utilization projections, administrators are reevaluating the need to expand services to a full-time fixed site. Early fixed-site MRI providers have been constantly upgrading their MRI capability while planning on adding more units. The technology itself has continued to improve, primarily through the implementation of new software that permits new techniques such as MR angiography (MRA) to be performed. Units are available in a wide price range, price usually reflecting both the field strength (0.5 tesla units cost less) as well as the additional capabilities beyond routine imaging (MRA, spectroscopy).(ABSTRACT TRUNCATED AT 400 WORDS) PMID:10110923

  19. Enhancement of Temporal Resolution and BOLD Sensitivity in Real-Time fMRI using Multi-Slab Echo-Volumar Imaging

    PubMed Central

    Posse, Stefan; Ackley, Elena; Mutihac, Radu; Rick, Jochen; Shane, Matthew; Murray-Krezan, Cristina; Zaitsev, Maxim; Speck, Oliver

    2012-01-01

    In this study, a new approach to high-speed fMRI using multi-slab echo-volumar imaging (EVI) is developed that minimizes geometrical image distortion and spatial blurring, and enables nonaliased sampling of physiological signal fluctuation to increase BOLD sensitivity compared to conventional echo-planar imaging (EPI). Real-time fMRI using whole brain 4-slab EVI with 286 ms temporal resolution (4 mm isotropic voxel size) and partial brain 2-slab EVI with 136 ms temporal resolution (4×4×6 mm3 voxel size) was performed on a clinical 3 Tesla MRI scanner equipped with 12-channel head coil. Four-slab EVI of visual and motor tasks significantly increased mean (visual: 96%, motor: 66%) and maximum t-score (visual: 263%, motor: 124%) and mean (visual: 59%, motor: 131%) and maximum (visual: 29%, motor: 67%) BOLD signal amplitude compared with EPI. Time domain moving average filtering (2 s width) to suppress physiological noise from cardiac and respiratory fluctuations further improved mean (visual: 196%, motor: 140%) and maximum (visual: 384%, motor: 200%) t-scores and increased extents of activation (visual: 73%, motor: 70%) compared to EPI. Similar sensitivity enhancement, which is attributed to high sampling rate at only moderately reduced temporal signal-to-noise ratio (mean: ? 52%) and longer sampling of the BOLD effect in the echo-time domain compared to EPI, was measured in auditory cortex. Two-slab EVI further improved temporal resolution for measuring task-related activation and enabled mapping of five major resting state networks (RSNs) in individual subjects in 5 min scans. The bilateral sensorimotor, the default mode and the occipital RSNs were detectable in time frames as short as 75 s. In conclusion, the high sampling rate of real-time multi-slab EVI significantly improves sensitivity for studying the temporal dynamics of hemodynamic responses and for characterizing functional networks at high field strength in short measurement times. PMID:22398395

  20. Ultrahigh field MRI in clinical neuroimmunology: a potential contribution to improved diagnostics and personalised disease management.

    PubMed

    Sinnecker, Tim; Kuchling, Joseph; Dusek, Petr; Dörr, Jan; Niendorf, Thoralf; Paul, Friedemann; Wuerfel, Jens

    2015-01-01

    Conventional magnetic resonance imaging (MRI) at 1.5 Tesla (T) is limited by modest spatial resolution and signal-to-noise ratio (SNR), impeding the identification and classification of inflammatory central nervous system changes in current clinical practice. Gaining from enhanced susceptibility effects and improved SNR, ultrahigh field MRI at 7 T depicts inflammatory brain lesions in great detail. This review summarises recent reports on 7 T MRI in neuroinflammatory diseases and addresses the question as to whether ultrahigh field MRI may eventually improve clinical decision-making and personalised disease management. PMID:26312125

  1. 77 FR 22383 - Petition for Exemption From the Federal Motor Vehicle Motor Theft Prevention Standard; TESLA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-13

    ...Federal Motor Vehicle Motor Theft Prevention Standard; TESLA AGENCY: National Highway Traffic Safety Administration...SUMMARY: This document grants in full the petition of Tesla Motors Inc's. (Tesla) for an exemption of the Model S vehicle line...

  2. Heart MRI

    MedlinePLUS

    ... pictures of the heart. It does not use radiation (x-rays). Single MRI images are called slices. The images can be stored on a computer or printed on film. One exam produces dozens or sometimes hundreds of images. The test may be done as part of a chest MRI .

  3. COMPUTATIONAL STUDIES OF CONTROLLED NANOPARTICLE AGGLOMERATIONS FOR MRI-GUIDED NANOROBOTIC DRUG-DELIVERY SYSTEMS

    E-print Network

    Mavroidis, Constantinos

    COMPUTATIONAL STUDIES OF CONTROLLED NANOPARTICLE AGGLOMERATIONS FOR MRI-GUIDED NANOROBOTIC DRUG-DELIVERY in nanorobotic drug delivery. INTRODUCTION Nanorobotic drug delivery systems guided by Magnetic Resonance Imaging (MRI) scanners have been proposed for localized drug delivery in the human body. The expectation

  4. MRI-Monitored Intra-Tumoral Injection of Iron-Oxide Labeled Clostridium novyi-NT Anaerobes in Pancreatic Carcinoma Mouse Model

    PubMed Central

    Zheng, Linfeng; Zhang, Zhuoli; Khazaie, Khashayarsha; Saha, Saurabh; Lewandowski, Robert J.; Zhang, Guixiang; Larson, Andrew C.

    2014-01-01

    Objectives To validate the feasibility of labeling Clostridium novyi-NT (C.novyi-NT) anaerobes with iron-oxide nanoparticles for magnetic resonance imaging (MRI) and demonstrate the potential to use MRI to visualize intra-tumoral delivery of these iron-oxide labeled C.novyi-NT during percutaneous injection procedures. Materials and Methods All studies were approved by IACUC. C.novyi-NT were labeled with hybrid iron-oxide Texas red nanoparticles. Growth of labeled and control samples were evaluated with optical density. Labeling was confirmed with confocal fluorescence and transmission electron microscopy (TEM). MRI were performed using a 7 Tesla scanner with T2*-weighted (T2*W) sequence. Contrast-to-noise ratio (CNR) measurements were performed for phantoms and signal-to-noise ratio (SNR) measurements performed in C57BL/6 mice (n?=?12) with Panc02 xenografts before and after percutaneous injection of iron-oxide labeled C.novyi-NT. MRI was repeated 3 and 7 days post-injection. Hematoxylin-eosin (HE), Prussian blue and Gram staining of tumor specimens were performed for confirmation of intra-tumoral delivery. Results Iron-oxide labeling had no influence upon C.novyi-NT growth. The signal intensity (SI) within T2*W images was significantly decreased for iron-oxide labeled C.novyi-NT phantoms compared to unlabeled controls. Under confocal fluorescence microscopy, the iron-oxide labeled C.novyi-NT exhibited a uniform red fluorescence consistent with observed regions of DAPI staining and overall labeling efficiency was 100% (all DAPI stained C.novyi-NT exhibited red fluorescence). Within TEM images, a large number iron granules were observed within the iron-oxide labeled C.novyi-NT; these were not observed within unlabeled controls. Intra-procedural MRI measurements permitted in vivo visualization of the intra-tumoral distribution of iron-oxide labeled C.novyi-NT following percutaneous injection (depicted as punctate regions of SI reductions within T2*-weighted images); tumor SNR decreased significantly following intra-tumoral injection of C.novyi-NT (p<0.05); these SNR reductions were maintained at 3 and 7 day follow-up intervals. Prussian blue and Gram staining confirmed presence of the iron-oxide labeled anaerobes. Conclusions C.novyi-NT can be labeled with iron-oxide nanoparticles for MRI visualization of intra-tumoral deposition following percutaneous injection during bacteriolytic therapy. PMID:25549324

  5. Accuracy of MRI technique in measuring tendon cross-sectional area.

    PubMed

    Couppé, C; Svensson, R B; Sødring-Elbrønd, V; Hansen, P; Kjaer, M; Magnusson, S P

    2014-05-01

    Magnetic resonance imaging (MRI) has commonly been applied to determine tendon cross-sectional area (CSA) and length either to measure structural changes or to normalize mechanical measurements to stress and strain. The ability to reproduce CSA measurements on MRI images has been reported, but the accuracy in relation to actual tendon dimensions has never been investigated. The purpose of this study was to compare tendon CSA measured by MRI with that measured in vitro with the mould casting technique. The knee of a horse was MRI-scanned with 1.5 and 3 tesla, and two examiners measured the patellar tendon CSA. Thereafter, the patellar tendon of the horse was completely dissected and embedded in an alginate cast. The CSA of the embedded tendon was measured directly by optical imaging of the cast impression. 1.5 tesla grey tendon CSA and 3 tesla grey tendon CSA were 16.5% and 13.2% lower than the mould tendon CSA, respectively. Also, 3 tesla tendon CSA, based on the red-green border on the National Institute of Health (NIH) colour scale, was lower than the mould tendon CSA by 2.8%. The typical error between examiners was below 2% for all the measured CSA. The typical error between examiners was below 2% for all the measured CSA. These data show that measuring tendon CSA on the grey-scale MRI images is associated with an underestimation, but by optimizing the measurement using a 3 tesla MRI and the appropriate NIH colour scale, this underestimation could be reduced to 2.8% compared with the direct measurements on the mould. PMID:24119143

  6. Jakob Narkiewicz-Jodko-Tesla ``Predecessor''

    NASA Astrophysics Data System (ADS)

    Samuilov, Vladimir; Kiselev, Vladimir

    2014-03-01

    Prof. Jakob Narkiewicz-Jodko (1947-1905) is a bright figure in the history of science of the XIXth century. His major discoveries are: Electrography - the method of the visualization of electric discharge from the bodies due to the application of high strength and high frequency electric fields, and one of the first observations of the propagation of the electromagnetic waives and information transfer over the distances. We review Prof. Jakob Narkiewicz-Jodko's research results and explain our point why we consider him as the predecessor of Nikola Tesla.

  7. Nano-thermometers with thermo-sensitive polymer grafted USPIOs behaving as positive contrast agents in low-field MRI

    NASA Astrophysics Data System (ADS)

    Hannecart, Adeline; Stanicki, Dimitri; Vander Elst, Luce; Muller, Robert N.; Lecommandoux, Sébastien; Thévenot, Julie; Bonduelle, Colin; Trotier, Aurélien; Massot, Philippe; Miraux, Sylvain; Sandre, Olivier; Laurent, Sophie

    2015-02-01

    Two commercial statistical copolymers of ethylene oxide and propylene oxide, Jeffamine® M-2005 (PEO5-st-PPO37) and M-2070 (PEO46-st-PPO13), exhibiting lower critical solution temperature (LCST) in water, were grafted onto the surface of ultra-small superparamagnetic iron oxide nanoparticles (USPIOs) using silanization and amide-bond coupling reactions. The LCSTs of the polymers in solution were measured by dynamic light scattering (DLS) and nuclear magnetic resonance (NMR). In accordance with the compositions of EO vs. PO, the transition temperature was measured to be 22 +/- 2 °C for M-2005 by both DLS and NMR, while the LCST was much higher, 52 +/- 2 °C, for M-2070 (a second transition was also detected above 80 °C by NMR in that case, ascribed to the full dehydration of chains at the molecular level). The resulting polymer-grafted USPIOs exhibit a temperature-responsive colloidal behaviour, their surface reversibly changing from hydrophilic below LCST to hydrophobic above it. This phenomenon was utilised to design thermo-sensitive contrast agents for MRI. Transverse relaxivities (r2) of the USPIO@PEO5-st-PPO37 core-shell nanoparticles were measured at 8.25, 20, 60, and 300 MHz. Nuclear magnetic resonance dispersion (NMRD) profiles, giving longitudinal relaxivities (r1) between 0.01 and 60 MHz, were acquired at temperatures ranging from 15 to 50 °C. For all tested frequencies except 300 MHz, both r1 and r2 decrease with temperature and show an inflection point at 25 °C, near the LCST. To illustrate the interest of such polymer-coated USPIOs for MRI thermometry, sample tubes were imaged on both low-field (8.25 MHz/0.194 Tesla) and high-field (300 MHz/7.05 Tesla) MRI scanners with either T1- or T2*-weighted spin echo sequences. The positive contrast on low-field MR images and the perfect linearity of the signal with a T2*-weighted sequence over the entire temperature range 15-50 °C render these LCST polymer coated USPIOs interesting positive contrast agents, also working as ``nano-thermometers''.Two commercial statistical copolymers of ethylene oxide and propylene oxide, Jeffamine® M-2005 (PEO5-st-PPO37) and M-2070 (PEO46-st-PPO13), exhibiting lower critical solution temperature (LCST) in water, were grafted onto the surface of ultra-small superparamagnetic iron oxide nanoparticles (USPIOs) using silanization and amide-bond coupling reactions. The LCSTs of the polymers in solution were measured by dynamic light scattering (DLS) and nuclear magnetic resonance (NMR). In accordance with the compositions of EO vs. PO, the transition temperature was measured to be 22 +/- 2 °C for M-2005 by both DLS and NMR, while the LCST was much higher, 52 +/- 2 °C, for M-2070 (a second transition was also detected above 80 °C by NMR in that case, ascribed to the full dehydration of chains at the molecular level). The resulting polymer-grafted USPIOs exhibit a temperature-responsive colloidal behaviour, their surface reversibly changing from hydrophilic below LCST to hydrophobic above it. This phenomenon was utilised to design thermo-sensitive contrast agents for MRI. Transverse relaxivities (r2) of the USPIO@PEO5-st-PPO37 core-shell nanoparticles were measured at 8.25, 20, 60, and 300 MHz. Nuclear magnetic resonance dispersion (NMRD) profiles, giving longitudinal relaxivities (r1) between 0.01 and 60 MHz, were acquired at temperatures ranging from 15 to 50 °C. For all tested frequencies except 300 MHz, both r1 and r2 decrease with temperature and show an inflection point at 25 °C, near the LCST. To illustrate the interest of such polymer-coated USPIOs for MRI thermometry, sample tubes were imaged on both low-field (8.25 MHz/0.194 Tesla) and high-field (300 MHz/7.05 Tesla) MRI scanners with either T1- or T2*-weighted spin echo sequences. The positive contrast on low-field MR images and the perfect linearity of the signal with a T2*-weighted sequence over the entire temperature range 15-50 °C render these LCST polymer coated USPIOs interesting positive contrast agents, also working as ``nano-thermometers''. Electronic supplement

  8. Pushing spatial and temporal resolution for functional and diffusion MRI in the Human Connectome Project

    PubMed Central

    U?urbil, Kamil; Xu, Junqian; Auerbach, Edward J.; Moeller, Steen; Vu, An; Duarte-Carvajalino, Julio M.; Lenglet, Christophe; Wu, Xiaoping; Schmitter, Sebastian; Van de Moortele, Pierre Francois; Strupp, John; Sapiro, Guillermo; De Martino, Federico; Wang, Dingxin; Harel, Noam; Garwood, Michael; Chen, Liyong; Feinberg, David A.; Smith, Stephen M.; Miller, Karla L.; Sotiropoulos, Stamatios N; Jbabdi, Saad; Andersson, Jesper L; Behrens, Timothy EJ; Glasser, Matthew F.; Van Essen, David; Yacoub, Essa

    2013-01-01

    The human connectome project (HCP) relies primarily on three complementary magnetic resonance (MR) methods. These are: 1) resting state functional MR imaging (rfMRI) which uses correlations in the temporal fluctuations in an fMRI time series to deduce ‘functional connectivity’; 2) diffusion imaging (dMRI), which provides the input for tractography algorithms used for the reconstruction of the complex axonal fiber architecture; and 3) task based fMRI (tfMRI), which is employed to identify functional parcellation in the human brain in order to assist analyses of data obtained with the first two methods. We describe technical improvements and optimization of these methods as well as instrumental choices that impact speed of acquisition of fMRI and dMRI images at 3 Tesla, leading to whole brain coverage with 2 mm isotropic resolution in 0.7 second for fMRI, and 1.25 mm isotropic resolution dMRI data for tractography analysis with three-fold reduction in total data acquisition time. Ongoing technical developments and optimization for acquisition of similar data at 7 Tesla magnetic field are also presented, targeting higher resolution, specificity of functional imaging signals, mitigation of the inhomogeneous radio frequency (RF) fields and power deposition. Results demonstrate that overall, these approaches represent a significant advance in MR imaging of the human brain to investigate brain function and structure. PMID:23702417

  9. Abstract--This paper presents a novel actuation technology for robotically assisted MRI-guided interventional procedures.

    E-print Network

    Dupont, Pierre

    and also offers the possibility for remote operation. The high quality images and the well-defined 3D-guided interventional procedures. Compact and wireless, the actuators are both powered and controlled by the MRI scanner in a clinical MR scanner are used to validate the analysis and to demonstrate the capability of the approach

  10. Nikola Tesla: the man behind the magnetic field unit.

    PubMed

    Roguin, Ariel

    2004-03-01

    The magnetic field strength of both the magnet and gradient coils used in MR imaging equipment is measured in Tesla units, which are named for Nikola Tesla. This article presents the life and achievements of this Serbian-American inventor and researcher who discovered the rotating magnetic field, the basis of most alternating-current machinery. Nikola Tesla had 700 patents in the United States and Europe that covered every aspect of science and technology. Tesla's discoveries include the Tesla coil, AC electrical conduction, improved lighting, newer forms of turbine engines, robotics, fluorescent light, wireless transmission of electrical energy, radio, remote control, discovery of cosmic radio waves, and the use of the ionosphere for scientific purposes. He was a genius whose discoveries had a pivotal role in advancing us into the modern era. PMID:14994307

  11. Microtesla MRI with a superconducting quantum interference device

    E-print Network

    Saffman, Mark

    are reconstructed from NMR signals generated by nuclear spins that precess in a static magnetic field B0 in the presence of magnetic field gradients. Most clinical MRI scanners operate at a magnetic field B0 1.5 T signal strength scales as B0 2. The quadratic dependence of NMR signal on magnetic field has fuelled

  12. Multichannel Compressive Sensing MRI Using Noiselet Encoding

    PubMed Central

    Pawar, Kamlesh; Egan, Gary; Zhang, Jingxin

    2015-01-01

    The incoherence between measurement and sparsifying transform matrices and the restricted isometry property (RIP) of measurement matrix are two of the key factors in determining the performance of compressive sensing (CS). In CS-MRI, the randomly under-sampled Fourier matrix is used as the measurement matrix and the wavelet transform is usually used as sparsifying transform matrix. However, the incoherence between the randomly under-sampled Fourier matrix and the wavelet matrix is not optimal, which can deteriorate the performance of CS-MRI. Using the mathematical result that noiselets are maximally incoherent with wavelets, this paper introduces the noiselet unitary bases as the measurement matrix to improve the incoherence and RIP in CS-MRI. Based on an empirical RIP analysis that compares the multichannel noiselet and multichannel Fourier measurement matrices in CS-MRI, we propose a multichannel compressive sensing (MCS) framework to take the advantage of multichannel data acquisition used in MRI scanners. Simulations are presented in the MCS framework to compare the performance of noiselet encoding reconstructions and Fourier encoding reconstructions at different acceleration factors. The comparisons indicate that multichannel noiselet measurement matrix has better RIP than that of its Fourier counterpart, and that noiselet encoded MCS-MRI outperforms Fourier encoded MCS-MRI in preserving image resolution and can achieve higher acceleration factors. To demonstrate the feasibility of the proposed noiselet encoding scheme, a pulse sequences with tailored spatially selective RF excitation pulses was designed and implemented on a 3T scanner to acquire the data in the noiselet domain from a phantom and a human brain. The results indicate that noislet encoding preserves image resolution better than Fouirer encoding. PMID:25965548

  13. Multichannel compressive sensing MRI using noiselet encoding.

    PubMed

    Pawar, Kamlesh; Egan, Gary; Zhang, Jingxin

    2015-01-01

    The incoherence between measurement and sparsifying transform matrices and the restricted isometry property (RIP) of measurement matrix are two of the key factors in determining the performance of compressive sensing (CS). In CS-MRI, the randomly under-sampled Fourier matrix is used as the measurement matrix and the wavelet transform is usually used as sparsifying transform matrix. However, the incoherence between the randomly under-sampled Fourier matrix and the wavelet matrix is not optimal, which can deteriorate the performance of CS-MRI. Using the mathematical result that noiselets are maximally incoherent with wavelets, this paper introduces the noiselet unitary bases as the measurement matrix to improve the incoherence and RIP in CS-MRI. Based on an empirical RIP analysis that compares the multichannel noiselet and multichannel Fourier measurement matrices in CS-MRI, we propose a multichannel compressive sensing (MCS) framework to take the advantage of multichannel data acquisition used in MRI scanners. Simulations are presented in the MCS framework to compare the performance of noiselet encoding reconstructions and Fourier encoding reconstructions at different acceleration factors. The comparisons indicate that multichannel noiselet measurement matrix has better RIP than that of its Fourier counterpart, and that noiselet encoded MCS-MRI outperforms Fourier encoded MCS-MRI in preserving image resolution and can achieve higher acceleration factors. To demonstrate the feasibility of the proposed noiselet encoding scheme, a pulse sequences with tailored spatially selective RF excitation pulses was designed and implemented on a 3T scanner to acquire the data in the noiselet domain from a phantom and a human brain. The results indicate that noislet encoding preserves image resolution better than Fouirer encoding. PMID:25965548

  14. Multi-contrast submillimetric 3?Tesla hippocampal subfield segmentation protocol and dataset

    PubMed Central

    Kulaga-Yoskovitz, Jessie; Bernhardt, Boris C.; Hong, Seok-Jun; Mansi, Tommaso; Liang, Kevin E.; van der Kouwe, Andre J.W.; Smallwood, Jonathan; Bernasconi, Andrea; Bernasconi, Neda

    2015-01-01

    The hippocampus is composed of distinct anatomical subregions that participate in multiple cognitive processes and are differentially affected in prevalent neurological and psychiatric conditions. Advances in high-field MRI allow for the non-invasive identification of hippocampal substructure. These approaches, however, demand time-consuming manual segmentation that relies heavily on anatomical expertise. Here, we share manual labels and associated high-resolution MRI data (MNI-HISUB25; submillimetric T1- and T2-weighted images, detailed sequence information, and stereotaxic probabilistic anatomical maps) based on 25 healthy subjects. Data were acquired on a widely available 3?Tesla MRI system using a 32 phased-array head coil. The protocol divided the hippocampal formation into three subregions: subicular complex, merged Cornu Ammonis 1, 2 and 3 (CA1-3) subfields, and CA4-dentate gyrus (CA4-DG). Segmentation was guided by consistent intensity and morphology characteristics of the densely myelinated molecular layer together with few geometry-based boundaries flexible to overall mesiotemporal anatomy, and achieved excellent intra-/inter-rater reliability (Dice index ?90/87%). The dataset can inform neuroimaging assessments of the mesiotemporal lobe and help to develop segmentation algorithms relevant for basic and clinical neurosciences. PMID:26594378

  15. 7 tesla FMRI reveals systematic functional organization for binocular disparity in dorsal visual cortex.

    PubMed

    Goncalves, Nuno R; Ban, Hiroshi; Sánchez-Panchuelo, Rosa M; Francis, Susan T; Schluppeck, Denis; Welchman, Andrew E

    2015-02-18

    The binocular disparity between the views of the world registered by the left and right eyes provides a powerful signal about the depth structure of the environment. Despite increasing knowledge of the cortical areas that process disparity from animal models, comparatively little is known about the local architecture of stereoscopic processing in the human brain. Here, we take advantage of the high spatial specificity and image contrast offered by 7 tesla fMRI to test for systematic organization of disparity representations in the human brain. Participants viewed random dot stereogram stimuli depicting different depth positions while we recorded fMRI responses from dorsomedial visual cortex. We repeated measurements across three separate imaging sessions. Using a series of computational modeling approaches, we report three main advances in understanding disparity organization in the human brain. First, we show that disparity preferences are clustered and that this organization persists across imaging sessions, particularly in area V3A. Second, we observe differences between the local distribution of voxel responses in early and dorsomedial visual areas, suggesting different cortical organization. Third, using modeling of voxel responses, we show that higher dorsal areas (V3A, V3B/KO) have properties that are characteristic of human depth judgments: a simple model that uses tuning parameters estimated from fMRI data captures known variations in human psychophysical performance. Together, these findings indicate that human dorsal visual cortex contains selective cortical structures for disparity that may support the neural computations that underlie depth perception. PMID:25698743

  16. Preoperative staging of rectal cancer: accuracy of 3-Tesla magnetic resonance imaging.

    PubMed

    Kim, Chan Kyo; Kim, Seung Hoon; Chun, Ho Kyung; Lee, Woo-Yong; Yun, Seong-Hyeon; Song, Sang-Yong; Choi, Dongil; Lim, Hyo Keun; Kim, Min Ju; Lee, Jongmee; Lee, Soon Jin

    2006-05-01

    The purpose of this study was to evaluate the accuracy of 3-Tesla magnetic resonance imaging (MRI) for the preoperative staging of rectal cancer. Thirty-five patients with a primary rectal cancer who underwent preoperative 3-T MRI using a phased-array coil and had a surgical resection were enrolled in the study group. Preoperatively, three experienced radiologists independently assessed the T and N staging. A confidence level scoring system was used to determine if there was any perirectal invasion, and receiver operating characteristic (ROC) curves were generated. The interobserver agreement was estimated using kappa statistics. The overall accuracy rate of T staging for rectal cancer was 92%. The diagnostic accuracy was 97% for T1, 89% for T2 and 91% for T3, respectively. The predictive accuracy for perirectal invasion by the three observers was high (Az>0.92). The interobserver agreement for T staging was moderate to substantial. The overall sensitivity, specificity, and accuracy for the detection of mesorectal nodal metastases were 80%, 98%, and 95%, respectively. In conclusion, preoperative 3-T MRI using a phase-array coil accurately indicates the depth of tumor invasion for rectal cancer with a low variability. PMID:16416276

  17. Safety Guidelines for Conducting Magnetic Resonance Imaging (MRI) Experiments Involving Human Subjects UCSD Center for Functional MRI, April 4, 2008

    E-print Network

    California at San Diego, University of

    's thigh. 2) We expect to install an MRI-compatible video monitoring system within each magnet room later with the child throughout scanning. In addition, an adult monitor must remain in the magnet room with any child, the operator should ask the child if they would prefer to be accompanied in the scanner. Furthermore

  18. In vivo sensitivity estimation and imaging acceleration with rotating RF coil arrays at 7 Tesla

    NASA Astrophysics Data System (ADS)

    Li, Mingyan; Jin, Jin; Zuo, Zhentao; Liu, Feng; Trakic, Adnan; Weber, Ewald; Zhuo, Yan; Xue, Rong; Crozier, Stuart

    2015-03-01

    Using a new rotating SENSitivity Encoding (rotating-SENSE) algorithm, we have successfully demonstrated that the rotating radiofrequency coil array (RRFCA) was capable of achieving a significant reduction in scan time and a uniform image reconstruction for a homogeneous phantom at 7 Tesla. However, at 7 Tesla the in vivo sensitivity profiles (B1-) become distinct at various angular positions. Therefore, sensitivity maps at other angular positions cannot be obtained by numerically rotating the acquired ones. In this work, a novel sensitivity estimation method for the RRFCA was developed and validated with human brain imaging. This method employed a library database and registration techniques to estimate coil sensitivity at an arbitrary angular position. The estimated sensitivity maps were then compared to the acquired sensitivity maps. The results indicate that the proposed method is capable of accurately estimating both magnitude and phase of sensitivity at an arbitrary angular position, which enables us to employ the rotating-SENSE algorithm to accelerate acquisition and reconstruct image. Compared to a stationary coil array with the same number of coil elements, the RRFCA was able to reconstruct images with better quality at a high reduction factor. It is hoped that the proposed rotation-dependent sensitivity estimation algorithm and the acceleration ability of the RRFCA will be particularly useful for ultra high field MRI.

  19. In vivo sensitivity estimation and imaging acceleration with rotating RF coil arrays at 7 Tesla.

    PubMed

    Li, Mingyan; Jin, Jin; Zuo, Zhentao; Liu, Feng; Trakic, Adnan; Weber, Ewald; Zhuo, Yan; Xue, Rong; Crozier, Stuart

    2015-03-01

    Using a new rotating SENSitivity Encoding (rotating-SENSE) algorithm, we have successfully demonstrated that the rotating radiofrequency coil array (RRFCA) was capable of achieving a significant reduction in scan time and a uniform image reconstruction for a homogeneous phantom at 7 Tesla. However, at 7 Tesla the in vivo sensitivity profiles (B1(-)) become distinct at various angular positions. Therefore, sensitivity maps at other angular positions cannot be obtained by numerically rotating the acquired ones. In this work, a novel sensitivity estimation method for the RRFCA was developed and validated with human brain imaging. This method employed a library database and registration techniques to estimate coil sensitivity at an arbitrary angular position. The estimated sensitivity maps were then compared to the acquired sensitivity maps. The results indicate that the proposed method is capable of accurately estimating both magnitude and phase of sensitivity at an arbitrary angular position, which enables us to employ the rotating-SENSE algorithm to accelerate acquisition and reconstruct image. Compared to a stationary coil array with the same number of coil elements, the RRFCA was able to reconstruct images with better quality at a high reduction factor. It is hoped that the proposed rotation-dependent sensitivity estimation algorithm and the acceleration ability of the RRFCA will be particularly useful for ultra high field MRI. PMID:25635352

  20. Scanner characterization for color measurement and diagnostics

    E-print Network

    Sharma, Gaurav

    and can be exploited in characterization. An indexed family of 3D scanner characterizations is created that the proposed 4D scanner character- ization technique can significantly outperform standard 3D ap- proaches constituting the index for the char- acterization. Combined together, the family of 3D characterizations

  1. 76 FR 47639 - Tesla Motors, Inc.; Receipt of Petition for Temporary Exemption From the Electronic Stability...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-05

    ...Administration [Docket No. NHTSA-2011-0110] Tesla Motors, Inc.; Receipt of Petition for...with the procedures in 49 CFR part 555, Tesla Motors, Inc., has petitioned the agency...and the procedures in 49 CFR part 555, Tesla Motors, Inc. (Tesla) submitted a...

  2. 77 FR 22383 - Petition for Exemption From the Federal Motor Vehicle Motor Theft Prevention Standard; TESLA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-13

    ... Theft Prevention Standard; TESLA AGENCY: National Highway Traffic Safety Administration (NHTSA... full the petition of Tesla Motors Inc's. (Tesla) for an exemption of the Model S vehicle line in... Prevention Standard. Tesla requested confidential treatment for specific information in its petition....

  3. 76 FR 47639 - Tesla Motors, Inc.; Receipt of Petition for Temporary Exemption From the Electronic Stability...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-05

    ... National Highway Traffic Safety Administration Tesla Motors, Inc.; Receipt of Petition for Temporary... Stability Control Systems. SUMMARY: In accordance with the procedures in 49 CFR part 555, Tesla Motors, Inc... accordance with 49 U.S.C. 30113 and the procedures in 49 CFR part 555, Tesla Motors, Inc. (Tesla) submitted...

  4. Laser Scanner For Automatic Storage

    NASA Astrophysics Data System (ADS)

    Carvalho, Fernando D.; Correia, Bento A.; Rebordao, Jose M.; Rodrigues, F. Carvalho

    1989-01-01

    The automated magazines are beeing used at industry more and more. One of the problems related with the automation of a Store House is the identification of the products envolved. Already used for stock management, the Bar Codes allows an easy way to identify one product. Applied to automated magazines, the bar codes allows a great variety of items in a small code. In order to be used by the national producers of automated magazines, a devoted laser scanner has been develloped. The Prototype uses an He-Ne laser whose beam scans a field angle of 75 degrees at 16 Hz. The scene reflectivity is transduced by a photodiode into an electrical signal, which is then binarized. This digital signal is the input of the decodifying program. The machine is able to see barcodes and to decode the information. A parallel interface allows the comunication with the central unit, which is responsible for the management of automated magazine.

  5. Non-Destructive Testing Scanner

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Bio-Imaging Research's technology that originated in an aerospace program has come full circle with a new aerospace adaptation called the Advanced Computed Tomography Inspection System, or ACTIS. The medical version of CT scans the human body for tumors or other abnormalities, the ACTIS system finds imperfections in aerospace structures and components, such as castings, assemblies, rocket motors and nozzles. ACTIS is described by its developer as the most versatile CT scanner available for non-destructive testing applications. ACTIS is a variable geometry system. ACTIS source and detectors can be moved closer together or farther apart to optimize the geometry for different sizes of test objects. The combination of variable geometry, three sources, and focusing detectors makes ACTIS cost effective for a broad range of applications. System can scan anything from very small turbine blades to large rocket assemblies.

  6. X-ray microtomographic scanners

    NASA Astrophysics Data System (ADS)

    Syryamkin, V. I.; Klestov, S. A.

    2015-11-01

    The article studies the operating procedures of an X-ray microtomographic scanner and the module of reconstruction and analysis 3D-image of a test sample in particular. An algorithm for 3D-image reconstruction based on image shadow projections and mathematical methods of the processing are described. Chapter 1 describes the basic principles of X-ray tomography and general procedures of the device developed. Chapters 2 and 3 are devoted to the problem of resources saving by the system during the X-ray tomography procedure, which is achieved by preprocessing of the initial shadow projections. Preprocessing includes background noise removing from the images, which reduces the amount of shadow projections in general and increases the efficiency of the group shadow projections compression. In conclusion, the main applications of X-ray tomography are presented.

  7. 21 CFR 882.1925 - Ultrasonic scanner calibration test block.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...2012-04-01 2012-04-01 false Ultrasonic scanner calibration test block...Diagnostic Devices § 882.1925 Ultrasonic scanner calibration test block. (a) Identification. An ultrasonic scanner calibration test...

  8. 21 CFR 882.1925 - Ultrasonic scanner calibration test block.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...2013-04-01 2013-04-01 false Ultrasonic scanner calibration test block...Diagnostic Devices § 882.1925 Ultrasonic scanner calibration test block. (a) Identification. An ultrasonic scanner calibration test...

  9. 21 CFR 882.1925 - Ultrasonic scanner calibration test block.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...2011-04-01 2011-04-01 false Ultrasonic scanner calibration test block...Diagnostic Devices § 882.1925 Ultrasonic scanner calibration test block. (a) Identification. An ultrasonic scanner calibration test...

  10. 21 CFR 882.1925 - Ultrasonic scanner calibration test block.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...2014-04-01 2014-04-01 false Ultrasonic scanner calibration test block...Diagnostic Devices § 882.1925 Ultrasonic scanner calibration test block. (a) Identification. An ultrasonic scanner calibration test...

  11. 21 CFR 882.1925 - Ultrasonic scanner calibration test block.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...2010-04-01 2010-04-01 false Ultrasonic scanner calibration test block...Diagnostic Devices § 882.1925 Ultrasonic scanner calibration test block. (a) Identification. An ultrasonic scanner calibration test...

  12. Neuroscience at Royal Holloway Research Facilities

    E-print Network

    Royal Holloway, University of London

    for molecular modelling and digital image-processing. · X-ray fluorescence spectrometer · Multi-collector plasma Siemens Trio Magnetic Resonance Imaging (MRI) Scanner (see page 3) · A range of MRI-compatible equipment Holloway houses a Siemens 3 Tesla Trio MRI scanner. It is research-dedicated, and located adjacent

  13. [Combined PET-MRI of the abdomen].

    PubMed

    Vag, Tibor; Eiber, M; Schwaiger, M

    2015-12-01

    The first fully integrated combined positron emission tomography-magnetic resonance imaging (PET-MRI) scanners have been clinically available since 2010. Large prospective studies regarding indications and diagnostic accuracy of this new modality are not yet available; however, preliminary studies have shown a higher diagnostic accuracy and confidence compared to PET-computed tomography (PET-CT) in regions where MRI is known to be superior to CT, such as the liver. The benefit of MRI in accurate lesion characterization and the additional value of diffusion-weighted imaging (DWI) as a complementary functional modality by means of the apparent diffusion coefficient (ADC) is apparent in entities with low tracer uptake (e.?g. due to small size) and a decreased or absent accumulation pattern on PET. PMID:26610681

  14. Post-processing speech recordings during MRI

    E-print Network

    Kuortti, Juha

    2015-01-01

    We discuss post-processing of speech that has been recorded during Magnetic Resonance Imaging (MRI) of the vocal tract. Such speech recordings are contaminated by high levels of acoustic noise from the MRI scanner. Also, the frequency response of the sound signal path is not flat as a result of severe restrictions on recording instrumentation due to MRI technology. The post-processing algorithm for noise reduction is based on adaptive spectral filtering. The speech material consists of samples of prolonged vowel productions that are used for validation of the post-processing algorithm. The comparison data is recorded in anechoic chamber from the same test subject. Formant analysis is carried out for the post-processed speech and the comparison data. Artificially noise-contaminated vowel samples are used for validation experiments to determine performance of the algorithm where using true data would be difficult. The properties of recording instrumentation or the post-processing algorithm do not explain the co...

  15. MRI-Safe Robot for Endorectal Prostate Biopsy

    PubMed Central

    Stoianovici, Dan; Kim, Chunwoo; Srimathveeravalli, Govindarajan; Sebrecht, Peter; Petrisor, Doru; Coleman, Jonathan; Solomon, Stephen B.; Hricak, Hedvig

    2014-01-01

    This paper reports the development of an MRI-Safe robot for direct (interventional) MRI-guided endorectal prostate biopsy. The robot is constructed of nonmagnetic and electrically nonconductive materials, and is electricity free, using pneumatic actuation and optical sensors. Targeting biopsy lesions of MRI abnormality presents substantial clinical potential for the management of prostate cancer. The paper describes MRI-Safe requirements, presents the kinematic architecture, design and construction of the robot, and a comprehensive set of preclinical tests for MRI compatibility and needle targeting accuracy. The robot has a compact and simple 3 degree-of-freedom (DoF) structure, two for orienting a needle-guide and one to preset the depth of needle insertion. The actual insertion is performed manually through the guide and up to the preset depth. To reduce the complexity and size of the robot next to the patient, the depth setting DoF is remote. Experimental results show that the robot is safe to use in any MRI environment (MRI-Safe). Comprehensive MRI tests show that the presence and motion of the robot in the MRI scanner cause virtually no image deterioration or signal to noise ratio (SNR) change. Robot’s accuracy in bench test, CT-guided in-vitro, MRI-guided in-vitro and animal tests are 0.37mm, 1.10mm, 2.09mm, and 2.58mm respectively. These values are acceptable for clinical use. PMID:25378897

  16. MRI-Safe Robot for Endorectal Prostate Biopsy.

    PubMed

    Stoianovici, Dan; Kim, Chunwoo; Srimathveeravalli, Govindarajan; Sebrecht, Peter; Petrisor, Doru; Coleman, Jonathan; Solomon, Stephen B; Hricak, Hedvig

    2013-09-16

    This paper reports the development of an MRI-Safe robot for direct (interventional) MRI-guided endorectal prostate biopsy. The robot is constructed of nonmagnetic and electrically nonconductive materials, and is electricity free, using pneumatic actuation and optical sensors. Targeting biopsy lesions of MRI abnormality presents substantial clinical potential for the management of prostate cancer. The paper describes MRI-Safe requirements, presents the kinematic architecture, design and construction of the robot, and a comprehensive set of preclinical tests for MRI compatibility and needle targeting accuracy. The robot has a compact and simple 3 degree-of-freedom (DoF) structure, two for orienting a needle-guide and one to preset the depth of needle insertion. The actual insertion is performed manually through the guide and up to the preset depth. To reduce the complexity and size of the robot next to the patient, the depth setting DoF is remote. Experimental results show that the robot is safe to use in any MRI environment (MRI-Safe). Comprehensive MRI tests show that the presence and motion of the robot in the MRI scanner cause virtually no image deterioration or signal to noise ratio (SNR) change. Robot's accuracy in bench test, CT-guided in-vitro, MRI-guided in-vitro and animal tests are 0.37mm, 1.10mm, 2.09mm, and 2.58mm respectively. These values are acceptable for clinical use. PMID:25378897

  17. Towards Truly Quiet MRI: animal MRI magnetic field gradients as a test platform for acoustic noise reduction

    NASA Astrophysics Data System (ADS)

    Edelstein, William; El-Sharkawy, Abdel-Monem

    2013-03-01

    Clinical MRI acoustic noise, often substantially exceeding 100 dB, causes patient anxiety and discomfort and interferes with functional MRI (fMRI) and interventional MRI. MRI acoustic noise reduction is a long-standing and difficult technical challenge. The noise is basically caused by large Lorentz forces on gradient windings--surrounding the patient bore--situated in strong magnetic fields (1.5 T, 3 T or higher). Pulsed currents of 300 A or more are switched through the gradient windings in sub-milliseconds. Experimenting with hardware noise reduction on clinical scanners is difficult and expensive because of the large scale and weight of clinical scanner components (gradient windings ~ 1000 kg) that require special handling equipment in large engineering test facilities. Our approach is to produce a Truly Quiet (<70 dB) small-scale animal imager. Results serve as a test platform for acoustic noise reduction measures that can be implemented in clinical scanners. We have so far decreased noise in an animal scale imager from 108 dB to 71 dB, a 37 dB reduction. Our noise reduction measures include: a gradient container that can be evacuated; inflatable antivibration mounts to prevent transmission of vibrations from gradient winding to gradient container; vibration damping of wires going from gradient to the outside world via the gradient container; and a copper passive shield to prevent the generation of eddy currents in the metal cryostat inner bore, which in turn can vibrate and produce noise.

  18. Portable MRI

    SciTech Connect

    Espy, Michelle A.

    2012-06-29

    This project proposes to: (1) provide the power of MRI to situations where it presently isn't available; (2) perform the engineering required to move from lab to a functional prototype; and (3) leverage significant existing infrastructure and capability in ultra-low field MRI. The reasons for doing this: (1) MRI is the most powerful tool for imaging soft-tissue (e.g. brain); (2) Billions don't have access due to cost or safety issues; (3) metal will heat/move in high magnetic fields; (4) Millions of cases of traumatic brain injury in US alone; (5) even more of non-traumatic brain injury; (6) (e.g. stroke, infection, chemical exposure); (7) Need for early diagnostic; (8) 'Signature' wound of recent conflicts; (9) 22% of injuries; (10) Implications for post-traumatic stress disorder; and (11) chronic traumatic encephalopathy.

  19. Deteco de Ativao em Ressonncia Nuclear Magntica Funcional do Crebro PEDRO PAULO DE M. OLIVEIRA JR

    E-print Network

    de Figueiredo, Luiz Henrique

    images collected with a 1,5 Tesla MRI Scanner. Results, also presented here, indicate the feasibility de sinal em exames funcionais é da ordem de 5%, num aparelho de 1.5 Tesla. Isto #12;significa que Philips de 1,5 Tesla cujo software proprietário da Philips

  20. Nikola Tesla and the wireless transmission of energy

    SciTech Connect

    Marincic, A.S.

    1982-10-01

    Nikola Tesla, the inventor of the polyphase-current system, is best known for his contribution regarding induction and other types of alternating-current machines. His patents and his published and unpublished notes about wireless transmission of energy are less known and, if known to some extent, they are usually wrongly interpreted. For many years the author studied Tesla's works on wireless transmission of energy and that what is given here is a review of relevant documents, unpublished notes and letters from the archives of the Nikola Tesla Museum in Belgrade. An attempt is made to explain Tesla's physical model on the basis of which he concluded that the wireless transmission of energy on a global scale is possible. His model is critically examined in view of the present day knowledge of extremely low frequency propagation phenomena.

  1. Neurochemical and BOLD responses during neuronal activation measured in the human visual cortex at 7 Tesla.

    PubMed

    Bedna?ík, Petr; Tká?, Ivan; Giove, Federico; DiNuzzo, Mauro; Deelchand, Dinesh K; Emir, Uzay E; Eberly, Lynn E; Mangia, Silvia

    2015-04-01

    Several laboratories have consistently reported small concentration changes in lactate, glutamate, aspartate, and glucose in the human cortex during prolonged stimuli. However, whether such changes correlate with blood oxygenation level-dependent functional magnetic resonance imaging (BOLD-fMRI) signals have not been determined. The present study aimed at characterizing the relationship between metabolite concentrations and BOLD-fMRI signals during a block-designed paradigm of visual stimulation. Functional magnetic resonance spectroscopy (fMRS) and fMRI data were acquired from 12 volunteers. A short echo-time semi-LASER localization sequence optimized for 7 Tesla was used to achieve full signal-intensity MRS data. The group analysis confirmed that during stimulation lactate and glutamate increased by 0.26 ± 0.06 ?mol/g (~30%) and 0.28 ± 0.03 ?mol/g (~3%), respectively, while aspartate and glucose decreased by 0.20 ± 0.04 ?mol/g (~5%) and 0.19 ± 0.03 ?mol/g (~16%), respectively. The single-subject analysis revealed that BOLD-fMRI signals were positively correlated with glutamate and lactate concentration changes. The results show a linear relationship between metabolic and BOLD responses in the presence of strong excitatory sensory inputs, and support the notion that increased functional energy demands are sustained by oxidative metabolism. In addition, BOLD signals were inversely correlated with baseline ?-aminobutyric acid concentration. Finally, we discussed the critical importance of taking into account linewidth effects on metabolite quantification in fMRS paradigms. PMID:25564236

  2. Assessment of safety and interference issues of radio frequency identification devices in 0.3 Tesla magnetic resonance imaging and computed tomography.

    PubMed

    Periyasamy, M; Dhanasekaran, R

    2014-01-01

    The objective of this study was to evaluate two issues regarding magnetic resonance imaging (MRI) including device functionality and image artifacts for the presence of radio frequency identification devices (RFID) in association with 0.3 Tesla at 12.7 MHz MRI and computed tomography (CT) scanning. Fifteen samples of RFID tags with two different sizes (wristband and ID card types) were tested. The tags were exposed to several MR-imaging conditions during MRI examination and X-rays of CT scan. Throughout the test, the tags were oriented in three different directions (axial, coronal, and sagittal) relative to MRI system in order to cover all possible situations with respect to the patient undergoing MRI and CT scanning, wearing a RFID tag on wrist. We observed that the tags did not sustain physical damage with their functionality remaining unaffected even after MRI and CT scanning, and there was no alternation in previously stored data as well. In addition, no evidence of either signal loss or artifact was seen in the acquired MR and CT images. Therefore, we can conclude that the use of this passive RFID tag is safe for a patient undergoing MRI at 0.3 T/12.7 MHz and CT Scanning. PMID:24701187

  3. Pulsed Doppler lidar airborne scanner

    NASA Technical Reports Server (NTRS)

    Dimarzio, C. A.; Mcvicker, D. B.; Morrow, C. E.; Negus, C. C.

    1985-01-01

    This report covers the work accomplished during the reporting period on Pulsed Doppler Lidar Airborne Scanner and describes plans for the next reporting period. The objectives during the current phase of the contract are divided into four phases. Phase 1 includes ground testing of the system and analysis of data from the 1981 Severe Storms Test Flights. Phase 2 consists of preflight preparation and planning for the 1983 flight series. The flight test itself will be performed during Phase 3, and Phase 4 consists of post-flight analysis and operation of the system after that flight test. The range profile from five samples taken during Flight 10, around 1700 Z is given. The lowest curve is taken from data collected upwind of Mt. Shasta at about 10,000 feet of altitude, in a clear atmosphere, where no signals were observed. It thus is a good representation of the noise level as a function of range. The next curve was taken downwind of the mountain, and shows evidence of atmospheric returns. There is some question as to whether the data are valid at all ranges, or some ranges are contaminated by the others.

  4. Management of a sandbag accident in an MRI unit.

    PubMed

    Lee, Chee Hwee; Lin, Ming-Fang; Chan, Wing P

    2015-11-01

    Our aim is to report the cause and management of a ferromagnetic sandbag accident that occurred when an unconscious patient was sent for brain MRI. A 2-kg sandbag had been placed in the vicinity of his right groin to aid hemostasis after a femoral venous puncture for thrombocytopenia. His clothing and blanket had not been examined thoroughly before he was moved to the scanner and the sandbag went unnoticed. Its attraction to the scanner and adherence to the scanner rim resulted in a minor abrasion and bruise on the patient's face. We decided to manually remove some of the pellets from the sandbag after cutting the vinyl bag at one corner with a nonferromagnetic screwdriver. Piece-meal removal of about two-thirds of the pellets facilitated removal of the remaining pellets and the sandbag as a whole. The word "sandbag" is misleading and led to a lack of communication between the clinical team and the MRI staff and failure by the MRI staff to recognize a sandbag as a ferromagnetic object. Careful manual removal of small amounts of pellets can be used to avoid more time- and labor-intensive strategies to deal with a sandbag accident (e.g., magnet quench or ramp-down). Installation of a ferromagnetic material detector to screen patients before entering the scanner room is recommended. PMID:26226646

  5. ScannerS: constraining the phase diagram of a complex scalar singlet at the LHC

    NASA Astrophysics Data System (ADS)

    Coimbra, Rita; Sampaio, Marco O. P.; Santos, Rui

    2013-05-01

    We present the first version of a new tool to scan the parameter space of generic scalar potentials, ScannerS (Coimbra et al., ScannerS project., 2013). The main goal of ScannerS is to help distinguish between different patterns of symmetry breaking for each scalar potential. In this work we use it to investigate the possibility of excluding regions of the phase diagram of several versions of a complex singlet extension of the Standard Model, with future LHC results. We find that if another scalar is found, one can exclude a phase with a dark matter candidate in definite regions of the parameter space, while predicting whether a third scalar to be found must be lighter or heavier. The first version of the code is publicly available and contains various generic core routines for tree level vacuum stability analysis, as well as implementations of collider bounds, dark matter constraints, electroweak precision constraints and tree level unitarity.

  6. 21 CFR 892.1220 - Fluorescent scanner.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1220 Fluorescent scanner. (a) Identification. A fluorescent...

  7. Hand-held optical fuel pin scanner

    DOEpatents

    Kirchner, Tommy L. (Richland, WA); Powers, Hurshal G. (Richland, WA)

    1987-01-01

    An optical scanner for indicia arranged in a focal plane perpendicular to an optical system including a rotatable dove prism. The dove prism transmits a rotating image to a stationary photodiode array.

  8. Hand-held optical fuel pin scanner

    DOEpatents

    Kirchner, T.L.; Powers, H.G.

    1980-12-07

    An optical scanner for indicia arranged in a focal plane perpendicular to an optical system including a rotatable dove prism. The dove prism transmits a rotating image to a stationary photodiode array.

  9. Information extraction techniques for multispectral scanner data

    NASA Technical Reports Server (NTRS)

    Malila, W. A.; Crane, R. B.; Turner, R. E.

    1972-01-01

    The applicability of recognition-processing procedures for multispectral scanner data from areas and conditions used for programming the recognition computers to other data from different areas viewed under different measurement conditions was studied. The reflective spectral region approximately 0.3 to 3.0 micrometers is considered. A potential application of such techniques is in conducting area surveys. Work in three general areas is reported: (1) Nature of sources of systematic variation in multispectral scanner radiation signals, (2) An investigation of various techniques for overcoming systematic variations in scanner data; (3) The use of decision rules based upon empirical distributions of scanner signals rather than upon the usually assumed multivariate normal (Gaussian) signal distributions.

  10. High voltage battery cell scanner development

    NASA Technical Reports Server (NTRS)

    Lepisto, J. W.; Decker, D. K.; Graves, J.

    1983-01-01

    Battery cell voltage scanners have been previously used in low voltage spacecraft applications. In connection with future missions involving an employment of high-power high voltage power subsystems and/or autonomous power subsystem management for unattended operation, it will be necessary to utilize battery cell voltage scanners to provide battery cell voltage information for early detection of impending battery cell degradation/failures. In preparation for such missions, a novel battery cell voltage scanner design has been developed. The novel design makes use of low voltage circuit modules which can be applied to high voltage batteries in a building block fashion. A description is presented of the design concept and test results of the high voltage battery cell scanner, and its operation with an autonomously managed power subsystem is discussed.

  11. Solid targetry at the TESLA Accelerator Installation

    NASA Astrophysics Data System (ADS)

    ?omor, J. J.; Dakovi?, M.; Raj?evi?, M.; Košuti?, ?.; Spasi?, M.; Vidovi?, A.; ?uri?i?, J.; Nedeljkovi?, N.

    2002-03-01

    According to the concept of the TESLA Accelerator Installation, the channel for production of radioisotopes has to routinely produce 201Tl, 111In, 67Ga, 123I and 18F, and a number of other radionuclides for experimental purposes. The production of 123I and 18F will be performed in dedicated, commercial target stations, while a versatile solid target irradiation system is designed for the routine and experimental production of all other radioisotopes. The solid target station is designed to accept targets for both the 7° and 90° irradiation geometry. The targets used for the routine production will be prepared by electroplating on a silver substrate. They can be irradiated with a 1.5 kW beam using the 7° geometry. The cooling of these targets is enhanced by fins on the back of the silver substrate designed so that the highest temperature on the surface of the target does not exceed 110°C. The irradiation procedures will conform to the GMP requirements for the production of radiopharmaceuticals. The irradiated targets will be transported directly into the appropriate hot cell for radiochemical processing. All cells will be equipped with a target dissolution unit for etching the irradiated, electroplated film. After decontamination and sufficient cooling down, these targets will be reused several times.

  12. Noise in 3D Laser Range Scanner Data Xianfang Sun

    E-print Network

    Martin, Ralph R.

    Noise in 3D Laser Range Scanner Data Xianfang Sun Cardiff University, UK Beihang University, China scanner. Previous papers considering denoising 3D mesh data have often used artificial data comprising denoising algorithms are required to effectively remove real scanner noise. Keywords: 3D laser scanner

  13. Noise Analysis and Synthesis for 3D Laser Depth Scanners

    E-print Network

    Martin, Ralph R.

    Noise Analysis and Synthesis for 3D Laser Depth Scanners Xianfang Sun a,b,, Paul L. Rosin a , Ralph characterise real scanner noise. Methods for denoising 3D mesh data have often assumed the noise to be Gaussian laser scanner, scanner noise analysis, noise modeling, 3D surface denoising 1 Introduction Surface mesh

  14. Cognitive Function and 3-Tesla Magnetic Resonance Imaging Tractography of White Matter Hyperintensities in Elderly Persons

    PubMed Central

    Reginold, William; Luedke, Angela C.; Tam, Angela; Itorralba, Justine; Fernandez-Ruiz, Juan; Reginold, Jennifer; Islam, Omar; Garcia, Angeles

    2015-01-01

    Background/Aims This study used 3-Tesla magnetic resonance imaging (MRI) tractography to determine if there was an association between tracts crossing white matter hyperintensities (WMH) and cognitive function in elderly persons. Methods Brain T2-weighted fluid-attenuated inversion recovery (FLAIR) and diffusion tensor MRI scans were acquired in participants above the age of 60 years. Twenty-six persons had WMH identified on T2 FLAIR scans. They completed a battery of neuropsychological tests and were classified as normal controls (n = 15) or with Alzheimer's dementia (n = 11). Tractography was generated by the Fiber Assignment by Continuous Tracking method. All tracts that crossed WMH were segmented. The average fractional anisotropy and average mean diffusivity of these tracts were quantified. We studied the association between cognitive test scores with the average mean diffusivity and average fractional anisotropy of tracts while controlling for age, total WMH volume and diagnosis. Results An increased mean diffusivity of tracts crossing WMH was associated with worse performance on the Wechsler Memory Scale-III Longest Span Forward (p = 0.02). There was no association between the fractional anisotropy of tracts and performance on cognitive testing. Conclusion The mean diffusivity of tracts crossing WMH measured by tractography is a novel correlate of performance on the Wechsler Memory Scale-III Longest Span Forward in elderly persons. PMID:26628897

  15. Towards Automatic Quantitative Quality Control for MRI.

    PubMed

    Lauzon, Carolyn B; Caffo, Brian C; Landman, Bennett A

    2012-02-23

    Quality and consistency of clinical and research data collected from Magnetic Resonance Imaging (MRI) scanners may become suspect due to a wide variety of common factors including, experimental changes, hardware degradation, hardware replacement, software updates, personnel changes, and observed imaging artifacts. Standard practice limits quality analysis to visual assessment by a researcher/clinician or a quantitative quality control based upon phantoms which may not be timely, cannot account for differing experimental protocol (e.g. gradient timings and strengths), and may not be pertinent to the data or experimental question at hand. This paper presents a parallel processing pipeline developed towards experiment specific automatic quantitative quality control of MRI data using diffusion tensor imaging (DTI) as an experimental test case. The pipeline consists of automatic identification of DTI scans run on the MRI scanner, calculation of DTI contrasts from the data, implementation of modern statistical methods (wild bootstrap and SIMEX) to assess variance and bias in DTI contrasts, and quality assessment via power calculations and normative values. For this pipeline, a DTI specific power calculation analysis is developed as well as the first incorporation of bias estimates in DTI data to improve statistical analysis. PMID:23087586

  16. Women are more strongly affected by dizziness in static magnetic fields of magnetic resonance imaging scanners.

    PubMed

    Heinrich, Angela; Szostek, Anne; Meyer, Patric; Reinhard, Iris; Gilles, Maria; Paslakis, Georgios; Rauschenberg, Jaane; Gröbner, Jens; Semmler, Wolfhard; Deuschle, Michael; Meyer-Lindenberg, Andreas; Flor, Herta; Nees, Frauke

    2014-10-01

    Increasing field strengths in MRI necessitate the examination of potential side effects. Previously reported results have been contradictory, possibly caused by imbalanced samples. We aimed to examine whether special groups of people are more prone to develop side effects that might have led to contradictory results in previous studies. We examined the occurrence of sensory side effects in static magnetic fields of MRI scanners of 1.5, 3, and 7?T and a mock scanner in 41 healthy participants. The contribution of field strength, sex, age, and attention to bodily processes, and stress hormone levels to the sensation of dizziness was examined in separate univariate analyses and in a joint analysis that included all variables. Field strength and sex were significant factors in the joint analysis (P=0.001), with women being more strongly affected than men by dizziness in higher static magnetic fields. This effect was not mediated by the other variables such as attention to bodily symptoms or stress hormones. Further research needs to elucidate the underlying factors of increased dizziness in women in static magnetic fields in MRI. We hypothesize that imbalanced samples of earlier studies might be one reason for previous contradictory results on the side effects of static magnetic fields. PMID:25089803

  17. 76 FR 60118 - Tesla Motors, Inc. Grant of Petition for Renewal of a Temporary Exemption From the Advanced Air...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-28

    ...Administration [Docket No. NHTSA-2011-0070] Tesla Motors, Inc. Grant of Petition for Renewal of a...SUMMARY: This notice grants the petition of Tesla Motors, Inc. (Tesla) for the renewal of a temporary exemption of...

  18. A versatile thermostatted glass tube MRI rheometer

    NASA Astrophysics Data System (ADS)

    Sun, Li; Gao Amin, M. H.; Hall, Laurie D.; Wolf, Bettina; Frith, William J.; Ablett, Steve

    1999-12-01

    A glass tube rheometer optimized for use with a magnetic resonance imaging (MRI) scanner has been developed. Mounted on a trolley, its `plug-and-play' design allows flow- and temperature-equilibria to be attained before the rheometer is inserted in the magnet without disruption of the flow of fluids. Design principles, construction details and rheological test results for water, and aqueous solutions of sucrose (50% w/w) and xanthan gum (0.5% w/w) are presented. Results for water and aqueous sucrose in the temperature range 10-60 °C, which showed that measured shear viscosity was independent of the radial position, demonstrate that the temperature control is reliable. The good agreement of MRI measured viscosities with those produced by classical rheometry indicates the accuracy of the MRI rheometer. Results for 0.5% w/w aqueous xanthan gum reveal an initial time dependency before the flow reached a steady state. The initial time dependency was predominant for the fluid flowing in the central region of the tube; in contrast, the flow in the region near the wall showed the time-independent characteristic of power law fluid. Comparisons with data from cone-and-plate rheometry demonstrate the complementary power of MRI for studies of rheologically complex fluids; importantly, the MRI method can be used to measure the effects of `shear history' on the flow rheology.

  19. PET and MRI: The Odd Couple or a Match Made in Heaven?

    PubMed Central

    Catana, Ciprian; Guimaraes, Alexander R.; Rosen, Bruce R.

    2013-01-01

    Positron emission tomography (PET) and magnetic resonance imaging (MRI) are imaging modalities routinely used for clinical and research applications. Integrated scanners capable of acquiring PET and MRI data in the same imaging session, sequentially or simultaneously, have recently become available for human use. In this manuscript, we describe some of the technical advances that allowed the development of human PET/MR scanners, briefly discuss methodological challenges and opportunities provided by this novel technology and present potential oncologic, cardiac, and neuro-psychiatric applications. These examples range from studies that might immediately benefit from PET/MR to more advanced applications where future development might have an even broader impact. PMID:23492887

  20. Pharmacological MRI (phMRI) of the Human Central Nervous System.

    PubMed

    Lanfermann, H; Schindler, C; Jordan, J; Krug, N; Raab, P

    2015-10-01

    Pharmacological magnetic resonance imaging (phMRI) of the central nervous system (CNS) addresses the increasing demands in the biopharma industry for new methods that can accurately predict, as early as possible, whether novel CNS agents will be effective and safe. Imaging of physiological and molecular-level function can provide a more direct measure of a drug mechanism of action, enabling more predictive measures of drug activity. The availability of phMRI of the nervous system within the professional infrastructure of the Clinical Research Center (CRC) Hannover as proof of concept center ensures that advances in basic science progress swiftly into benefits for patients. Advanced standardized MRI techniques including quantitative MRI, kurtosis determination, functional MRI, and spectroscopic imaging of the entire brain are necessary for phMRI. As a result, MR scanners will evolve into high-precision measuring instruments for assessment of desirable and undesirable effects of drugs as the basic precondition for individually tailored therapy. The CRC's Imaging Unit with high-end large-scale equipment will allow the following unique opportunities: for example, identification of MR-based biomarkers to assess the effect of drugs (surrogate parameters), establishment of normal levels and reference ranges for MRI-based biomarkers, evaluation of the most relevant MRI sequences for drug monitoring in outpatient care. Another very important prerequisite for phMRI is the MHH Core Facility as the scientific and operational study unit of the CRC partner Hannover Medical School. This unit is responsible for the study coordination, conduction, complete study logistics, administration, and application of the quality assurance system based on required industry standards. PMID:26329611

  1. Report on the TESLA Engineering Study/Review

    SciTech Connect

    Cornuelle, John C.

    2002-08-30

    In March, 2001, the TESLA Collaboration published its Technical Design Report (TDR, see references and links in Appendix), the first sentence of which stated ''...TESLA (TeV-Energy Superconducting Linear Collider) (will be) a superconducting electron-positron collider of initially 500 GeV total energy, extendable to 800 GeV, and an integrated X-ray laser laboratory.'' The TDR included cost and manpower estimates for a 500 GeV e{sup +}e{sup -} collider (250 on 250 GeV) based on superconducting RF cavity technology. This was submitted as a proposal to the German government. The government asked the German Science Council to evaluate this proposal. The recommendation from this body is anticipated to be available by November 2002. The government has indicated that it will react on this recommendation by mid-2003. In June 2001, Steve Holmes, Fermilab's Associate Director for Accelerators, commissioned Helen Edwards and Peter Garbincius to organize a study of the TESLA Technical Design Report and the associated cost and manpower estimates. Since the elements and methodology used in producing the TESLA cost estimate were somewhat different from those used in preparing similar estimates for projects within the U.S., it is important to understand the similarities, differences, and equivalences between the TESLA estimate and U.S. cost estimates. In particular, the project cost estimate includes only purchased equipment, materials, and services, but not manpower from DESY or other TESLA collaborating institutions, which is listed separately. It does not include the R&D on the TESLA Test Facility (TTF) nor the costs of preparing the TDR nor the costs of performing the conceptual studies so far. The manpower for the pre-operations commissioning program (up to beam) is included in the estimate, but not the electrical power or liquid Nitrogen (for initial cooldown of the cryogenics plant). There is no inclusion of any contingency or management reserve. If the U.S. were to become involved with the TESLA project, either as a collaborator for an LC in Germany, or as host country for TESLA in the U.S., it is important to begin to understand the scope and technical details of the project, what R&D still needs to be done, and how the U.S. can contribute. The charge for this study is included in the Appendix to this report.

  2. Play the MRI Game

    MedlinePLUS

    ... Teachers' Questionnaire MRI Play MRI the Magnetic Miracle Game About the game In the MRI imaging technique, strong magnets and ... last will in Paris. Play the Blood Typing Game Try to save some patients and learn about ...

  3. Leg MRI scan

    MedlinePLUS

    ... imaging - leg; Magnetic resonance imaging - lower extremity; MRI - ankle; Magnetic resonance imaging - ankle; MRI - femur; MRI - leg ... or bone scan Birth defects of the leg, ankle, or foot Bone pain and fever Broken bone ...

  4. Precise Indoor Localization for Mobile Laser Scanner

    NASA Astrophysics Data System (ADS)

    Kaijaluoto, R.; Hyyppä, A.

    2015-05-01

    Accurate 3D data is of high importance for indoor modeling for various applications in construction, engineering and cultural heritage documentation. For the lack of GNSS signals hampers use of kinematic platforms indoors, TLS is currently the most accurate and precise method for collecting such a data. Due to its static single view point data collection, excessive time and data redundancy are needed for integrity and coverage of data. However, localization methods with affordable scanners are used for solving mobile platform pose problem. The aim of this study was to investigate what level of trajectory accuracies can be achieved with high quality sensors and freely available state of the art planar SLAM algorithms, and how well this trajectory translates to a point cloud collected with a secondary scanner. In this study high precision laser scanners were used with a novel way to combine the strengths of two SLAM algorithms into functional method for precise localization. We collected five datasets using Slammer platform with two laser scanners, and processed them with altogether 20 different parameter sets. The results were validated against TLS reference. The results show increasing scan frequency improves the trajectory, reaching 20 mm RMSE levels for the best performing parameter sets. Further analysis of the 3D point cloud showed good agreement with TLS reference with 17 mm positional RMSE. With precision scanners the obtained point cloud allows for high level of detail data for indoor modeling with accuracies close to TLS at best with vastly improved data collection efficiency.

  5. LANSCE-R WIRE-SCANNER SYSTEM

    SciTech Connect

    Gruchalla, Michael E.

    2011-01-01

    The National Instruments cRIO platform is used for the new LANSCE-R wire-scanner systems. All wire-scanner electronics are integrated into a single BiRa BiRIO 4U cRIO chassis specifically designed for the cRIO crate and all interface electronics. The BiRIO chassis, actuator and LabVIEW VIs provide a complete wire-scanner system integrated with EPICS. The new wire-scanner chassis includes an 8-slot cRIO crate with Virtex-5 LX 110 FPGA and Power-PC real-time controller, the LANL-developed cRIO 2-axis wire-sensor analog interface module (AFE), NI9222 cRIO 4-channel 16-bit digitizer, cRIO resolver demodulator, cRIO event receiver, front-panel touch panel display, motor driver, and all necessary software, interface wiring, connectors and ancillary components. This wirescanner system provides a complete, turn-key, 2-axis wire-scanner system including 2-channel low-noise sensewire interface with variable DC wire bias and wireintegrity monitor, 16-bit signal digitizers, actuator motor drive and control, actuator position sensing, limit-switch interfaces, event receiver, LabVIEW and EPICS interface, and both remote operation and full stand-alone operation using the touch panel.

  6. Cognition for robot scanner based remote welding

    NASA Astrophysics Data System (ADS)

    Thombansen, U.; Ungers, Michael

    2014-02-01

    The effort for reduced cycle times in manufacturing has supported the development of remote welding systems which use a combination of scanners for beam delivery and robots for scanner positioning. Herein, close coupling of both motions requires a precise command of the robot trajectory and the scanner positioning to end up with a combined beam delivery. Especially the path precision of the robot plays a vital role in this kinematic chain. In this paper, a sensor system is being presented which allows tracking the motion of the laser beam against the work piece. It is based on a camera system which is coaxially connected to the scanner thus observing the relative motion of the laser beam relative to the work piece. The acquired images are processed with computer vision algorithms from the field of motion detection. The suitability of the algorithms is being demonstrated with a motion tracking tool which visualizes the homogeneity of the tracking result. The reported solution adds cognitive capabilities to manufacturing systems for robot scanner based materials processing. It allows evaluation of the relative motion between work piece and the laser beam. Moreover, the system can be used to adapt system programming during set-up of a manufacturing task or to evaluate the functionality of a manufacturing system during production. The presented sensor system will assist in optimizing manufacturing processes.

  7. SEX DIFFERENCES IN THE HUMAN CONNECTOME: 4-TESLA HIGH ANGULAR RESOLUTION DIFFUSION IMAGING (HARDI)

    E-print Network

    Thompson, Paul

    SEX DIFFERENCES IN THE HUMAN CONNECTOME: 4-TESLA HIGH ANGULAR RESOLUTION DIFFUSION IMAGING (HARDI diffusion imaging at 4 Tesla, we scanned 234 young adult twins and siblings (mean age: 23.4 ± 2.0 SD years

  8. LEFT VERSUS RIGHT HEMISPHERE DIFFERENCES IN BRAIN CONNECTIVITY: 4-TESLA HARDI TRACTOGRAPHY IN 569 TWINS

    E-print Network

    Thompson, Paul

    LEFT VERSUS RIGHT HEMISPHERE DIFFERENCES IN BRAIN CONNECTIVITY: 4-TESLA HARDI TRACTOGRAPHY IN 569) and 112 adolescents (age 12-16) with 4-Tesla 105-gradient high- angular resolution diffusion imaging. We

  9. A Pixel Vertex Tracker for the TESLA Detector

    E-print Network

    M. Battaglia; M. Caccia; S. Borghi; R. Campagnolo; K. Domanski; P. Grabiec; B. Jaroszewicz; J. Marczewski; D. Tomaszewski; W. Kucewicz; A. Zalewska; K. Tammi

    2001-02-23

    In order to fully exploit the physics potential of a e+e- linear collider, such as TESLA, a Vertex Tracker providing high resolution track reconstruction is required. Hybrid Silicon pixel sensors are an attractive sensor technology option due to their read-out speed and radiation hardness, favoured in the high rate TESLA environment, but have been so far limited by the achievable single point space resolution. A novel layout of pixel detectors with interleaved cells to improve their spatial resolution is introduced and the results of the characterisation of a first set of test structures are discussed. In this note, a conceptual design of the TESLA Vertex Tracker, based on hybrid pixel sensors is presented

  10. Data Collection and Analysis Strategies for phMRI

    PubMed Central

    Mandeville, Joseph B.; Liu, Christina H.; Vanduffel, Wim; Marota, John J.A.; Jenkins, Bruce G.

    2014-01-01

    Although functional MRI traditionally has been applied mainly to study changes in task-induced brain function, evolving acquisition methodologies and improved knowledge of signal mechanisms have increased the utility of this method for studying responses to pharmacological stimuli, a technique often dubbed “phMRI”. The proliferation of higher magnetic field strengths and the use of exogenous contrast agent have boosted detection power, a critical factor for successful phMRI due to the restricted ability to average multiple stimuli within subjects. Receptor-based models of neurovascular coupling, including explicit pharmacological models incorporating receptor densities and affinities and data-driven models that incorporate weak biophysical constraints, have demonstrated compelling descriptions of phMRI signal induced by dopaminergic stimuli. This report describes phMRI acquisition and analysis methodologies, with an emphasis on data-driven analyses. As an example application, statistically efficient data-driven regressors were used to describe the biphasic response to the mu-opioid agonist remifentanil, and antagonism using dopaminergic and GABAergic ligands revealed modulation of the mesolimbic pathway. Results illustrate the power of phMRI as well as our incomplete understanding of mechanisms underlying the signal. Future directions are discussed for phMRI acquisitions in human studies, for evolving analysis methodologies, and for interpretative studies using the new generation of simultaneous PET/MRI scanners. PMID:24613447

  11. Correction of MRI-induced geometric distortions in whole-body small animal PET-MRI

    SciTech Connect

    Frohwein, Lynn J. Schäfers, Klaus P.; Hoerr, Verena; Faber, Cornelius

    2015-07-15

    Purpose: The fusion of positron emission tomography (PET) and magnetic resonance imaging (MRI) data can be a challenging task in whole-body PET-MRI. The quality of the registration between these two modalities in large field-of-views (FOV) is often degraded by geometric distortions of the MRI data. The distortions at the edges of large FOVs mainly originate from MRI gradient nonlinearities. This work describes a method to measure and correct for these kind of geometric distortions in small animal MRI scanners to improve the registration accuracy of PET and MRI data. Methods: The authors have developed a geometric phantom which allows the measurement of geometric distortions in all spatial axes via control points. These control points are detected semiautomatically in both PET and MRI data with a subpixel accuracy. The spatial transformation between PET and MRI data is determined with these control points via 3D thin-plate splines (3D TPS). The transformation derived from the 3D TPS is finally applied to real MRI mouse data, which were acquired with the same scan parameters used in the phantom data acquisitions. Additionally, the influence of the phantom material on the homogeneity of the magnetic field is determined via field mapping. Results: The spatial shift according to the magnetic field homogeneity caused by the phantom material was determined to a mean of 0.1 mm. The results of the correction show that distortion with a maximum error of 4 mm could be reduced to less than 1 mm with the proposed correction method. Furthermore, the control point-based registration of PET and MRI data showed improved congruence after correction. Conclusions: The developed phantom has been shown to have no considerable negative effect on the homogeneity of the magnetic field. The proposed method yields an appropriate correction of the measured MRI distortion and is able to improve the PET and MRI registration. Furthermore, the method is applicable to whole-body small animal imaging routines including different standard MRI sequences.

  12. Laser scanners: from industrial to biomedical applications

    NASA Astrophysics Data System (ADS)

    Duma, Virgil-Florin

    2013-11-01

    We present a brief overview of our contributions in the field of laser scanning technologies, applied for a variety of applications, from industrial, dimensional measurements to high-end biomedical imaging, such as Optical Coherence Tomography (OCT). Polygon Mirror (PM) scanners are presented, as applied from optical micrometers to laser sources scanned in frequency for Swept Sources (SSs) OCT. Galvanometer-based scanners (GSs) are approached to determine the optimal scanning function in order to obtain the highest possible duty cycle. We demonstrated that this optimal scanning function is linear plus parabolic, and not linear plus sinusoidal, as it has been previously considered in the literature. Risley prisms (rotational double wedges) scanners are pointed out, with our exact approach to determine and simulate their scan patterns in order to optimize their use in several types of applications, including OCT. A discussion on the perspectives of scanning in biomedical imaging, with a focus on OCT concludes the study.

  13. CT densitometry of the lungs: Scanner performance

    SciTech Connect

    Kemerink, G.J.; Lamers, R.J.S.; Thelissen, G.R.P.; Engelshoven, J.M.A. van

    1996-01-01

    Our goal was to establish the reproducibility and accuracy of the CT scanner in densitometry of the lungs. Scanner stability was assessed by analysis of daily quality checks. Studies using a humanoid phantom and polyethylene foams for lung were performed to measure reproducibility and accuracy. The dependence of the CT-estimated density on reconstruction filter, zoom factor, slice thickness, table height, data truncation, and objects outside the scan field was determined. Stability of the system at air density was within {approx}1 HU and at water density within {approx}2 HU. Reproducibility and accuracy for densities found for lung were within 2-3%. Dependence on the acquisition and reconstruction parameters was neglible, with the exceptions of the ultra high resolution reconstruction algorithm in the case of emphysema, and objects outside the scan field. The performance of the CT scanner tested is quite adequate for densitometry of the lungs. 26 refs., 5 figs., 4 tabs.

  14. Paul Drude's Prediction of Nonreciprocal Mutual Inductance for Tesla Transformers

    PubMed Central

    McGuyer, Bart

    2014-01-01

    Inductors, transmission lines, and Tesla transformers have been modeled with lumped-element equivalent circuits for over a century. In a well-known paper from 1904, Paul Drude predicts that the mutual inductance for an unloaded Tesla transformer should be nonreciprocal. This historical curiosity is mostly forgotten today, perhaps because it appears incorrect. However, Drude's prediction is shown to be correct for the conditions treated, demonstrating the importance of constraints in deriving equivalent circuits for distributed systems. The predicted nonreciprocity is not fundamental, but instead is an artifact of the misrepresentation of energy by an equivalent circuit. The application to modern equivalent circuits is discussed. PMID:25542040

  15. Time Synchronization in Hierarchical TESLA Wireless Sensor Networks

    SciTech Connect

    Jason L. Wright; Milos Manic

    2009-08-01

    Time synchronization and event time correlation are important in wireless sensor networks. In particular, time is used to create a sequence events or time line to answer questions of cause and effect. Time is also used as a basis for determining the freshness of received packets and the validity of cryptographic certificates. This paper presents secure method of time synchronization and event time correlation for TESLA-based hierarchical wireless sensor networks. The method demonstrates that events in a TESLA network can be accurately timestamped by adding only a few pieces of data to the existing protocol.

  16. Optimized magnetic resonance diffusion protocol for ex-vivo whole human brain imaging with a clinical scanner

    NASA Astrophysics Data System (ADS)

    Scherrer, Benoit; Afacan, Onur; Stamm, Aymeric; Singh, Jolene; Warfield, Simon K.

    2015-03-01

    Diffusion-weighted magnetic resonance imaging (DW-MRI) provides a novel insight into the brain to facilitate our understanding of the brain connectivity and microstructure. While in-vivo DW-MRI enables imaging of living patients and longitudinal studies of brain changes, post-mortem ex-vivo DW-MRI has numerous advantages. Ex-vivo imaging benefits from greater resolution and sensitivity due to the lack of imaging time constraints; the use of tighter fitting coils; and the lack of movement artifacts. This allows characterization of normal and abnormal tissues with unprecedented resolution and sensitivity, facilitating our ability to investigate anatomical structures that are inaccessible in-vivo. This also offers the opportunity to develop today novel imaging biomarkers that will, with tomorrow's MR technology, enable improved in-vivo assessment of the risk of disease in an individual. Post-mortem studies, however, generally rely on the fixation of specimen to inhibit tissue decay which starts as soon as tissue is deprived from its blood supply. Unfortunately, fixation of tissues substantially alters tissue diffusivity profiles. In addition, ex-vivo DW-MRI requires particular care when packaging the specimen because the presence of microscopic air bubbles gives rise to geometric and intensity image distortion. In this work, we considered the specific requirements of post-mortem imaging and designed an optimized protocol for ex-vivo whole brain DW-MRI using a human clinical 3T scanner. Human clinical 3T scanners are available to a large number of researchers and, unlike most animal scanners, have a bore diameter large enough to image a whole human brain. Our optimized protocol will facilitate widespread ex-vivo investigations of large specimen.

  17. Convenient synthesis of (68)Ga-labeled gadolinium(III) complexes: towards bimodal responsive probes for functional imaging with PET/MRI.

    PubMed

    Notni, Johannes; Hermann, Petr; Dregely, Isabel; Wester, Hans-Jürgen

    2013-09-16

    A killer application? Recently, fully integrated full-body positron-emission tomography (PET) and magnetic-resonance imaging (MRI) scanners were brought to market, allowing simultaneous recording of complementary 3D data sets. By using bimodal PET/MRI probes (see figure), in vivo 3D mapping of various parameters with medical relevance could become feasible. PMID:24175335

  18. Newark's four public institutions of higher learning, which together

    E-print Network

    Neimark, Alexander V.

    -powered (3-Tesla) functional magnetic resonance imaging (fMRI) scanner that provides detailed pictures in Newark Global Financial Market Center Opens pg. 2A Better Way to Look at the Brain Campus Information

  19. Decliners > Stables Episodic Memory Task

    E-print Network

    Wisconsin at Madison, University of

    , and age. fMRI recognition task: In a GE 3.0 Tesla MR750 scanner using an 8 channel head coil, subjects; cDecliners significantly different from MCI. *Values are statistically adjusted for age and gender

  20. Forschung an Lepton Collidern Abbildung 49: Perspektivische Ansicht des TESLA-Detektors.

    E-print Network

    Forschung an Lepton Collidern Abbildung 49: Perspektivische Ansicht des TESLA-Detektors. 86 #12An- strengung vieler Gruppen und Institute der ,,Tech- nical Design Report" für TESLA veröffentlicht wer- den von TESLA, besonders in Bereichen, die im TDR nicht ausreichend behandelt werden konnten, und die

  1. TESLA: A Transparent, Extensible Session-Layer Architecture for End-to-end Network Services

    E-print Network

    TESLA: A Transparent, Extensible Session-Layer Architecture for End-to-end Network Services Jon describes TESLA, a transparent and extensible framework allowing session- layer services to be developed using a high-level ¤ow- based abstraction. TESLA services can be deployed transparently using dynamic

  2. Tesla: A Transparent, Extensible Session-Layer Framework for End-to-end Network Services

    E-print Network

    Tesla: A Transparent, Extensible Session-Layer Framework for End-to-end Network Services by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Arthur C. Smith Chairman, Department Committee on Graduate Students #12; 2 #12; Tesla: A Transparent of these services, we describe Tesla, a transparent and extensible framework that allows session-layer services

  3. The TESLA Broadcast Authentication Protocol Adrian Perrig Ran Canetti J. D. Tygar Dawn Song

    E-print Network

    Perrig, Adrian

    The TESLA Broadcast Authentication Protocol Adrian Perrig Ran Canetti J. D. Tygar Dawn Song presents the TESLA (Timed Efficient Stream Loss-tolerant Authentication) broadcast au- thentication numbers of receivers, and tolerates packet loss. TESLA is based on loose time synchro- nization between

  4. The TESLA Broadcast Authentication Protocol Adrian Perrig Ran Canetti J. D. Tygar Dawn Song

    E-print Network

    Tygar, Doug

    The TESLA Broadcast Authentication Protocol Adrian Perrig Ran Canetti J. D. Tygar Dawn Song presents the TESLA (Timed Efficient Stream Loss-tolerant Authentication) broadcast authentication protocol of receivers, and tolerates packet loss. TESLA is based on loose time synchronization between the sender

  5. 76 FR 60124 - Tesla Motors, Inc.; Grant of Petition for Temporary Exemption From the Electronic Stability...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-28

    ... entering the fleet. IV. Notice of Receipt On August 5, 2011, we published in the Federal Register (76 FR... National Highway Traffic Safety Administration Tesla Motors, Inc.; Grant of Petition for Temporary... Stability Control Systems. SUMMARY: This notice grants the petition of Tesla Motors, Inc. (Tesla) for...

  6. TESLA: Tightly-Secure Efficient Signatures from Standard Erdem Alkim1

    E-print Network

    International Association for Cryptologic Research (IACR)

    TESLA: Tightly-Secure Efficient Signatures from Standard Lattices Erdem Alkim1 , Nina Bindel2-based signature scheme TESLA to be tightly se- cure based on the learning with errors problem over standard assumptions. Remarkably, by enhancing the security we can improve TESLA's performance by a factor of two

  7. TESLA-Based Defense Against Pollution Attacks in P2P Systems with Network Coding

    E-print Network

    Markopoulou, Athina

    TESLA-Based Defense Against Pollution Attacks in P2P Systems with Network Coding Anh Le, Athina and time asymmetry (as in TESLA [1]) to provide source authentication for the detection scheme and non; pollution; detection; identification; TESLA; homomorphic MAC. I. INTRODUCTION Peer-to-peer (P2P) systems

  8. Proving Correctness of the Basic TESLA Multicast Stream Authentication Protocol with TAME

    E-print Network

    Proving Correctness of the Basic TESLA Multicast Stream Authentication Protocol with TAME Presented, Washington, DC 20375 E-mail: archer@itd.nrl.navy.mil The TESLA multicast stream authentication protocol just been revealed. While an informal argument for the correctness of TESLA has been published

  9. The TESLA Broadcast Authentication Protocol # Adrian Perrig Ran Canetti J. D. Tygar Dawn Song

    E-print Network

    Perrig, Adrian

    The TESLA Broadcast Authentication Protocol # Adrian Perrig Ran Canetti J. D. Tygar Dawn Song presents the TESLA (Timed Efficient Stream Loss­tolerant Authentication) broadcast au­ thentication numbers of receivers, and tolerates packet loss. TESLA is based on loose time synchro­ nization between

  10. Bunch Compressor for the TESLA Linear Collider W. Decking, G. Hoffstaetter, T. Limberg

    E-print Network

    Hoffstaetter, Georg

    Bunch Compressor for the TESLA Linear Collider W. Decking, G. Hoffstaetter, T. Limberg DESY, Notkestraße 85, 22603 Hamburg, Germany September 2000 Abstract TESLA-2000-40 (2000) We discuss different bunch compression systems for the TESLA collider. The best alternative is a wiggler type compressor, where we list

  11. Tesla: A Transparent, Extensible Session-Layer Framework for End-to-end Network Services

    E-print Network

    Tesla: A Transparent, Extensible Session-Layer Framework for End-to-end Network Services by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Arthur C. Smith Chairman, Department Committee on Graduate Students #12;2 #12;Tesla: A Transparent of these services, we describe Tesla, a transparent and extensible framework that allows session-layer services

  12. TESLA: A Transparent, Extensible Session-Layer Architecture for End-to-end Network Services

    E-print Network

    TESLA: A Transparent, Extensible Session-Layer Architecture for End-to-end Network Services Jon describes TESLA, a transparent and extensible framework allowing session- layer services to be developed using a high-level flow- based abstraction. TESLA services can be deployed transparently using dynamic

  13. Infrared scanner concept verification test report

    NASA Technical Reports Server (NTRS)

    Bachtel, F. D.

    1980-01-01

    The test results from a concept verification test conducted to assess the use of an infrared scanner as a remote temperature sensing device for the space shuttle program are presented. The temperature and geometric resolution limits, atmospheric attenuation effects including conditions with fog and rain, and the problem of surface emissivity variations are included. It is concluded that the basic concept of using an infrared scanner to determine near freezing surface temperatures is feasible. The major problem identified is concerned with infrared reflections which result in significant errors if not controlled. Action taken to manage these errors result in design and operational constraints to control the viewing angle and surface emissivity.

  14. Miniature rotating transmissive optical drum scanner

    NASA Technical Reports Server (NTRS)

    Lewis, Robert (Inventor); Parrington, Lawrence (Inventor); Rutberg, Michael (Inventor)

    2013-01-01

    A miniature rotating transmissive optical scanner system employs a drum of small size having an interior defined by a circumferential wall rotatable on a drum axis, an optical element positioned within the interior of the drum, and a light-transmissive lens aperture provided at an angular position in the circumferential wall of the drum for scanning a light beam to or from the optical element in the drum along a beam azimuth angle as the drum is rotated. The miniature optical drum scanner configuration obtains a wide scanning field-of-view (FOV) and large effective aperture is achieved within a physically small size.

  15. LANSCE Wire Scanner System Prototype: Switchyard Test

    SciTech Connect

    Sedillo, James D

    2012-04-11

    On November 19, 2011, the beam diagnostics team of Los Alamos National Laboratory's LANSCE accelerator facility conducted a test of a prototype wire scanner system for future deployment within the accelerator's switchyard area. The primary focus of this test was to demonstrate the wire scanner control system's ability to extend its functionality beyond acquiring lower energy linac beam profile measurements to acquiring data in the switchyard. This study summarizes the features and performance characteristics of the electronic and mechanical implementation of this system with details focusing on the test results.

  16. Currents induced by fast movements inside the MRI room may cause inhibition in an implanted pacemaker.

    PubMed

    Mattei, Eugenio; Censi, Federica; Mancini, Matteo; Napolitano, Antonio; Genovese, Elisabetta; Cannata, Vittorio; Burriesci, Giancarlo; Falsaperla, Rosaria; Calcagnini, Giovanni

    2014-08-01

    The static magnetic field generated by MRI systems is highly non-homogenous and rapidly decreases when moving away from the bore of the scanner. Consequently, the movement around the MRI scanner is equivalent to an exposure to a time-varying magnetic field at very low frequency (few Hz). If people with an implanted pacemaker (PM) enter the MRI room, fast movements may thus induce voltages on the loop formed by the PM lead, with the potential to modify the correct behavior of the stimulator. In this study, we performed in-vitro measurements on a human-shaped phantom, equipped with an implantable PM and with a current sensor, able to monitor the activity of the PM while moving the phantom in the MRI room. Fast rotational movements in close proximity of the bore of the scanner caused the inappropriate inhibition of the PM, programmed in VVI modality, maximum sensitivity, unipolar sensing and pacing. The inhibition occurred for a variation of the magnetic field of about 3 T/s. These findings demonstrate that great care must be paid when extending PM MRI compatibility from patients to healthcare personnel, since the safety procedures and the MRI-conditional PM programming (e.g. asynchronous stimulation or bipolar sensing) used for patients cannot be applied. PMID:25570102

  17. Miniature 'Wearable' PET Scanner Ready for Use

    ScienceCinema

    Paul Vaska

    2013-07-22

    Scientists from BNL, Stony Brook University, and collaborators have demonstrated the efficacy of a "wearable," portable PET scanner they've developed for rats. The device will give neuroscientists a new tool for simultaneously studying brain function and behavior in fully awake, moving animals.

  18. Biomedical Imaging and Sensing using Flatbed Scanners

    PubMed Central

    Göröcs, Zoltán; Ozcan, Aydogan

    2014-01-01

    In this Review, we provide an overview of flatbed scanner based biomedical imaging and sensing techniques. The extremely large imaging field-of-view (e.g., ~600–700 cm2) of these devices coupled with their cost-effectiveness provide unique opportunities for digital imaging of samples that are too large for regular optical microscopes, and for collection of large amounts of statistical data in various automated imaging or sensing tasks. Here we give a short introduction to the basic features of flatbed scanners also highlighting the key parameters for designing scientific experiments using these devices, followed by a discussion of some of the significant examples, where scanner-based systems were constructed to conduct various biomedical imaging and/or sensing experiments. Along with mobile phones and other emerging consumer electronics devices, flatbed scanners and their use in advanced imaging and sensing experiments might help us transform current practices of medicine, engineering and sciences through democratization of measurement science and empowerment of citizen scientists, science educators and researchers in resource limited settings. PMID:24965011

  19. Wire scanner software and firmware issues

    SciTech Connect

    Gilpatrick, John Doug

    2008-01-01

    The Los Alamos Neutron Science Center facility presently has 110 slow wire scanning profile measurement instruments located along its various beam lines. These wire scanners were developed and have been operating for at least 30 years. While the wire scanners solved many problems to operate and have served the facility well they have increasingly suffered from several problems or limitations, such as maintenance and reliability problems, antiquated components, slow data acquisition, and etc. In order to refurbish these devices, these wire scanners will be replaced with newer versions. The replacement will consist of a completely new beam line actuator, new cables, new electronics and brand new software and firmware. This note describes the functions and modes of operation that LabVIEW VI software on the real time controller and FPGA LabVIEW firmware will be required. It will be especially interesting to understand the overall architecture of these LabVIEW VIs. While this note will endeavor to describe all of the requirements and issues for the wire scanners, undoubtedly, there will be missing details that will be added as time progresses.

  20. Miniature 'Wearable' PET Scanner Ready for Use

    SciTech Connect

    Paul Vaska

    2011-03-09

    Scientists from BNL, Stony Brook University, and collaborators have demonstrated the efficacy of a "wearable," portable PET scanner they've developed for rats. The device will give neuroscientists a new tool for simultaneously studying brain function and behavior in fully awake, moving animals.

  1. Learning and Teaching with a Computer Scanner

    ERIC Educational Resources Information Center

    Planinsic, G.; Gregorcic, B.; Etkina, E.

    2014-01-01

    This paper introduces the readers to simple inquiry-based activities (experiments with supporting questions) that one can do with a computer scanner to help students learn and apply the concepts of relative motion in 1 and 2D, vibrational motion and the Doppler effect. We also show how to use these activities to help students think like…

  2. Ultrasonic Scanner Control and Data Acquisition

    NASA Technical Reports Server (NTRS)

    Hemann, John

    2002-01-01

    The research accomplishments under this grant were very extensive in the areas of ULTRASONIC SCANNER CONTROL AND DATA ACQUISITION. Rather than try to summarize all this research I have enclosed research papers and reports which were completed with the hnding provided by the grant. These papers and reports are listed below:

  3. Identifying Needed Technical Standards: The LITA TESLA Committee at Work.

    ERIC Educational Resources Information Center

    Carter, Ruth C.

    1984-01-01

    Efforts of the Technical Standards for Library Automation Committee (TESLA), a division-wide committee of the Library Information and Technology Association (LITA) of the American Library Association, are described. The current status of suggested technical standards and recommended action are detailed. Five sources are given. (Author/EJS)

  4. RF generalization and control for the TESLA TEST FACILITY

    NASA Astrophysics Data System (ADS)

    Gamp, Alexander

    1995-07-01

    The RF needs for the TESLA Test Facility a DESY are described. Possible klystron-modulator schemes, the waveguide RF distribution system, phase and amplitude control, beam loading, and a scheme to cope with detuning of the cavities due to Lorentz forces are described. Finally, some persectives for the development of new RF sources are discussed. (AIP)

  5. Nuclear Physics at the TESLA*HERA Complex

    E-print Network

    S. Sultansoy

    2000-10-26

    Construction of the TESLA linear electron-positron collider tangentially to the HERA proton ring will provide a number of new facilities for particle and nuclear physics research. In this paper main parameters and physics goals of eA, gamma-A and FEK gamma-A colliders, as well as fixed target experiments are discussed.

  6. Impact of Factors Affecting the Residual Tumor Size Diagnosed by MRI Following Neoadjuvant Chemotherapy in Comparison to Pathology

    PubMed Central

    CHEN, JEON-HOR; BAHRI, SHADFAR; MEHTA, RITA S.; CARPENTER, PHILIP M.; MCLAREN, CHRISTINE E.; CHEN, WEN-PIN; FWU, PETER T.; HSIANG, DAVID J. B.; LANE, KAREN T.; BUTLER, JOHN A.; SU, MIN-YING

    2014-01-01

    Background and Objectives To investigate accuracy of magnetic resonance imaging (MRI) for measuring residual tumor size in breast cancer patients receiving neoadjuvant chemotherapy (NAC). Methods Ninety-eight patients were studied. Several MRI were performed during NAC for response monitoring, and the residual tumor size was measured on last MRI after completing NAC. Covariates, including age, tumor characteristics, biomarkers, NAC regimens, MRI scanners, and time from last MRI to operation, were analyzed. Univariate and Multivariate linear regression models were used to determine the predictive value of these covariates for MRI-pathology size discrepancy as the outcome measure. Results The mean (±SD) of the absolute difference between MRI and pathological residual tumor size was 1.0 ± 2.0 cm (range, 0–14 cm). Univariate regression analysis showed tumor type, morphology, HR status, HER2 status, and MRI scanner (1.5 T or 3.0 T) were significantly associated with MRI-pathology size discrepancy (all P < 0.05). Multivariate regression analyses demonstrated that only tumor type, tumor morphology, and biomarker status considering both HR and HER-2 were independent predictors (P = 0.0014, 0.0032, and 0.0286, respectively). Conclusion The accuracy of MRI in evaluating residual tumor size depends on tumor type, morphology, and biomarker status. The information may be considered in surgical planning for NAC patients. PMID:24166728

  7. Neutron Strain Scanner a Modern Tool for Materials Engineering

    E-print Network

    New South Wales, University of

    analysis using neutron and synchrotron X-ray diffraction with the goal of relating them to manufacturing scanner Stressrig on the Engin-X beamline. #12;Neutron Strain Scanner a Modern Tool for Materials Engineering Anna M. Paradowska The Bragg

  8. 31. SITE BUILDING 002 SCANNER BUILDING AT INTERIOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. SITE BUILDING 002 - SCANNER BUILDING AT INTERIOR - BACK OF POWER SUPPLY UNITS 3045-17 AND 3046-29. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  9. 21 CFR 892.1300 - Nuclear rectilinear scanner.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...rectilinear scanner. (a) Identification. A nuclear rectilinear scanner is a device intended to image the distribution of radionuclides in the body by means of a detector (or detectors) whose position moves in two directions with...

  10. 21 CFR 892.1300 - Nuclear rectilinear scanner.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...rectilinear scanner. (a) Identification. A nuclear rectilinear scanner is a device intended to image the distribution of radionuclides in the body by means of a detector (or detectors) whose position moves in two directions with...

  11. 21 CFR 892.1330 - Nuclear whole body scanner.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...Diagnostic Devices § 892.1330 Nuclear whole body scanner. (a) Identification. A nuclear whole body scanner is a device intended to measure and image the distribution of radionuclides in the body by means of a wide-aperture...

  12. 21 CFR 892.1300 - Nuclear rectilinear scanner.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...rectilinear scanner. (a) Identification. A nuclear rectilinear scanner is a device intended to image the distribution of radionuclides in the body by means of a detector (or detectors) whose position moves in two directions with...

  13. 21 CFR 892.1300 - Nuclear rectilinear scanner.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...rectilinear scanner. (a) Identification. A nuclear rectilinear scanner is a device intended to image the distribution of radionuclides in the body by means of a detector (or detectors) whose position moves in two directions with...

  14. 21 CFR 892.1330 - Nuclear whole body scanner.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...Diagnostic Devices § 892.1330 Nuclear whole body scanner. (a) Identification. A nuclear whole body scanner is a device intended to measure and image the distribution of radionuclides in the body by means of a wide-aperture...

  15. 21 CFR 892.1330 - Nuclear whole body scanner.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...Diagnostic Devices § 892.1330 Nuclear whole body scanner. (a) Identification. A nuclear whole body scanner is a device intended to measure and image the distribution of radionuclides in the body by means of a wide-aperture...

  16. 21 CFR 892.1330 - Nuclear whole body scanner.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...Diagnostic Devices § 892.1330 Nuclear whole body scanner. (a) Identification. A nuclear whole body scanner is a device intended to measure and image the distribution of radionuclides in the body by means of a wide-aperture...

  17. 23. SITE BUILDING 002 SCANNER BUILDING RADAR CONTROL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. SITE BUILDING 002 - SCANNER BUILDING - RADAR CONTROL INTERFACE "RCL NO. 2" WITH COMPUTER CONTROL DISC DRIVE UNITS IN FOREGROUND. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  18. 24. SITE BUILDING 002 SCANNER BUILDING OPERATIONS CENTER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. SITE BUILDING 002 - SCANNER BUILDING - OPERATIONS CENTER -- MWOC IN OPEARATION AT 1924 ZULU TIME. 26 OCTOBER, 1999. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  19. Occurrence and characteristics of mutual interference between LIDAR scanners

    NASA Astrophysics Data System (ADS)

    Kim, Gunzung; Eom, Jeongsook; Park, Seonghyeon; Park, Yongwan

    2015-05-01

    The LIDAR scanner is at the heart of object detection of the self-driving car. Mutual interference between LIDAR scanners has not been regarded as a problem because the percentage of vehicles equipped with LIDAR scanners was very rare. With the growing number of autonomous vehicle equipped with LIDAR scanner operated close to each other at the same time, the LIDAR scanner may receive laser pulses from other LIDAR scanners. In this paper, three types of experiments and their results are shown, according to the arrangement of two LIDAR scanners. We will show the probability that any LIDAR scanner will interfere mutually by considering spatial and temporal overlaps. It will present some typical mutual interference scenario and report an analysis of the interference mechanism.

  20. 11. SITE BUILDING 002 SCANNER BUILDING EVAPORATIVE COOLING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. SITE BUILDING 002 - SCANNER BUILDING - EVAPORATIVE COOLING TOWER SYSTEM IN FOREGROUND. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  1. Calibration and equivalency analysis of image plate scanners

    SciTech Connect

    Williams, G. Jackson Maddox, Brian R.; Chen, Hui; Kojima, Sadaoki; Millecchia, Matthew

    2014-11-15

    A universal procedure was developed to calibrate image plate scanners using radioisotope sources. Techniques to calibrate scanners and sources, as well as cross-calibrate scanner models, are described to convert image plate dosage into physical units. This allows for the direct comparison of quantitative data between any facility and scanner. An empirical relation was also derived to establish sensitivity response settings for arbitrary gain settings. In practice, these methods may be extended to any image plate scanning system.

  2. Imaging of the spine at 3 tesla.

    PubMed

    Shapiro, Marc

    2012-05-01

    Magnetic resonance (MR) imaging at 3 T has proved superior to 1.5 T in the brain for detecting numerous pathologic entities including hemosiderin, tiny metastases, subtle demyelinating plaques, active demyelinating plaques, and some epileptogenic foci, as well as small aneurysms with MR angiography. 3 T is superior to most advanced imaging techniques including diffusion, diffusion tensor imaging, perfusion, spectroscopy and functional MR imaging. The increased signal/noise ratio at 3 T permits higher spatial resolution. Initially spine imaging at 3 T proved more difficult with less successful results. During the past 7 years, technological advances in magnet and surface coil design as well as improved radio frequency transmitters and pulse sequence design in combination with the large body of knowledge accrued by radiologists and physicists during a nine year experience with clinical imaging of the spine with the doubled B0, has resulted in 3 T MRI of the spine achieving a reputation similar to that for brain imaging. PMID:22548935

  3. 76 FR 33402 - Tesla Motors, Inc.; Receipt of Petition for Renewal of Temporary Exemption from the Advanced Air...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-08

    ...Administration [Docket No. NHTSA-2011-0070] Tesla Motors, Inc.; Receipt of Petition for...with the procedures in 49 CFR Part 555, Tesla Motors, Inc., has petitioned the agency...and the procedures in 49 CFR Part 555, Tesla Motors, Inc., (Tesla) has...

  4. A Tree-Based TESLA Broadcast Authentication for Sensor Networks Donggang Liu Peng Ning Sencun Zhu Sushil Jajodia

    E-print Network

    Zhu, Sencun

    A Tree-Based µTESLA Broadcast Authentication for Sensor Networks Donggang Liu Peng Ning Sencun Zhu to multiple nodes in an authenticated way. µTESLA and multi-level µTESLA have been proposed to provide of senders. Though multi-level µTESLA schemes can scale up to large sensor networks (in terms of receivers

  5. RECENT ELECTRON-CLOUD SIMULATION RESULTS FOR THE MAIN DAMPING RINGS OF THE NLC AND TESLA LINEAR COLLIDERS

    E-print Network

    Furman, Miguel

    RECENT ELECTRON-CLOUD SIMULATION RESULTS FOR THE MAIN DAMPING RINGS OF THE NLC AND TESLA LINEAR for the TESLA main damping rings, obtained with the code POSINST that has been developed at LBNL, and lately for the NLC and TESLA positron damping rings. Parameter Symbol NLC TESLA Beam energy E, GeV 1.98 5.0 Bunch

  6. Toward a Flexible and Portable CT Scanner Jeff Orchard1

    E-print Network

    Orchard, Jeffery J.

    and flexible CT scanner made up of an addressable array of tiny x-ray emitters and detectors. In this paper, we to build such a scanner. Keywords: computed tomography, x-ray, reconstruction, carbon nanotubes. 1 power than x-ray emitters in current CT scanners [1]. Moreover, work is being done to integrate

  7. 21 CFR 892.1330 - Nuclear whole body scanner.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nuclear whole body scanner. 892.1330 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1330 Nuclear whole body scanner. (a) Identification. A nuclear whole body scanner is a device intended to measure and image the distribution...

  8. 21 CFR 892.1300 - Nuclear rectilinear scanner.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nuclear rectilinear scanner. 892.1300 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1300 Nuclear rectilinear scanner. (a) Identification. A nuclear rectilinear scanner is a device intended to image the distribution of radionuclides...

  9. 21 CFR 892.1330 - Nuclear whole body scanner.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nuclear whole body scanner. 892.1330 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1330 Nuclear whole body scanner. (a) Identification. A nuclear whole body scanner is a device intended to measure and image the distribution...

  10. 21 CFR 892.1330 - Nuclear whole body scanner.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nuclear whole body scanner. 892.1330 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1330 Nuclear whole body scanner. (a) Identification. A nuclear whole body scanner is a device intended to measure and image the distribution...

  11. 21 CFR 892.1300 - Nuclear rectilinear scanner.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nuclear rectilinear scanner. 892.1300 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1300 Nuclear rectilinear scanner. (a) Identification. A nuclear rectilinear scanner is a device intended to image the distribution of radionuclides...

  12. 21 CFR 892.1300 - Nuclear rectilinear scanner.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nuclear rectilinear scanner. 892.1300 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1300 Nuclear rectilinear scanner. (a) Identification. A nuclear rectilinear scanner is a device intended to image the distribution of radionuclides...

  13. 21 CFR 892.1330 - Nuclear whole body scanner.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nuclear whole body scanner. 892.1330 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1330 Nuclear whole body scanner. (a) Identification. A nuclear whole body scanner is a device intended to measure and image the distribution...

  14. 21 CFR 892.1300 - Nuclear rectilinear scanner.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nuclear rectilinear scanner. 892.1300 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1300 Nuclear rectilinear scanner. (a) Identification. A nuclear rectilinear scanner is a device intended to image the distribution of radionuclides...

  15. 21 CFR 892.1300 - Nuclear rectilinear scanner.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nuclear rectilinear scanner. 892.1300 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1300 Nuclear rectilinear scanner. (a) Identification. A nuclear rectilinear scanner is a device intended to image the distribution of radionuclides...

  16. 21 CFR 892.1330 - Nuclear whole body scanner.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nuclear whole body scanner. 892.1330 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1330 Nuclear whole body scanner. (a) Identification. A nuclear whole body scanner is a device intended to measure and image the distribution...

  17. NECR analysis of 3D brain PET scanner designs

    SciTech Connect

    Stearns, C.W.; Cherry, S.R.; Thompson, C.J.

    1995-08-01

    A dedicated 3D brain PET scanner has several advantages, most notably increased sensitivity, over a whole body scanner for neurological studies. However brain scanners have higher scatter fractions, random count-rates and deadtime for the same activity concentration. The authors have used noise effective count-rate (NECR) analysis to compare brain scanners of 53, 60, and 66 cm diameter with the GE Advance whole body scanner (93 cm diameter). Monte Carlo simulations of a brain-sized phantom (16 cm diameter, 13 cm length) in the Advance geometry were used to develop a model for NECR performance, which was reconciled to results from a decay series measurement. The model was then used to predict the performance of the brain scanner designs. The brain scanners have noise effective sensitivities (the slope of the NECR curve at zero activity) as much as 40% higher than the body scanner. However, their NECR advantage diminishes quickly as the activity concentration increases. The brain scanners` NECR equals the body scanner with about 0.7--0.8 mCi in the phantom; the body scanner has superior NECR performance at higher activity levels. An imaging center concentrating on only very low activity imaging tasks would find the efficiency advantage of a smaller detector diameter valuable, while a center performing higher activity studies such as bolus water injections or 5 mCi FDG injections might prefer the count rate performance of a whole body scanner.

  18. George Gollin, Investigation of TESLA Damping Ring Kickers using the A0 Photoinjector Beam 1 Investigation of TESLA Damping

    E-print Network

    Gollin, George

    ... A faster kicker (of a different design) would allow a smaller DR design. Fast kicker must eject beam/off fast enough. Fast kicker specs (à la TDR): · Bdl = 100 Gauss-meter = 3 MeV/c (= 30 MeV/m × 10 cmGeorge Gollin, Investigation of TESLA Damping Ring Kickers using the A0 Photoinjector Beam 1

  19. Tracking iron in multiple sclerosis: a combined imaging and histopathological study at 7 Tesla

    PubMed Central

    Hametner, Simon; Yao, Bing; van Gelderen, Peter; Merkle, Hellmut; Cantor, Fredric K.; Lassmann, Hans; Duyn, Jeff H.

    2011-01-01

    Previous authors have shown that the transverse relaxivity R2* and frequency shifts that characterize gradient echo signal decay in magnetic resonance imaging are closely associated with the distribution of iron and myelin in the brain's white matter. In multiple sclerosis, iron accumulation in brain tissue may reflect a multiplicity of pathological processes. Hence, iron may have the unique potential to serve as an in vivo magnetic resonance imaging tracer of disease pathology. To investigate the ability of iron in tracking multiple sclerosis-induced pathology by magnetic resonance imaging, we performed qualitative histopathological analysis of white matter lesions and normal-appearing white matter regions with variable appearance on gradient echo magnetic resonance imaging at 7 Tesla. The samples used for this study derive from two patients with multiple sclerosis and one non-multiple sclerosis donor. Magnetic resonance images were acquired using a whole body 7 Tesla magnetic resonance imaging scanner equipped with a 24-channel receive-only array designed for tissue imaging. A 3D multi-gradient echo sequence was obtained and quantitative R2* and phase maps were reconstructed. Immunohistochemical stainings for myelin and oligodendrocytes, microglia and macrophages, ferritin and ferritin light polypeptide were performed on 3- to 5-µm thick paraffin sections. Iron was detected with Perl's staining and 3,3?-diaminobenzidine-tetrahydrochloride enhanced Turnbull blue staining. In multiple sclerosis tissue, iron presence invariably matched with an increase in R2*. Conversely, R2* increase was not always associated with the presence of iron on histochemical staining. We interpret this finding as the effect of embedding, sectioning and staining procedures. These processes likely affected the histopathological analysis results but not the magnetic resonance imaging that was obtained before tissue manipulations. Several cellular sources of iron were identified. These sources included oligodendrocytes in normal-appearing white matter and activated macrophages/microglia at the edges of white matter lesions. Additionally, in white matter lesions, iron precipitation in aggregates typical of microbleeds was shown by the Perl's staining. Our combined imaging and pathological study shows that multi-gradient echo magnetic resonance imaging is a sensitive technique for the identification of iron in the brain tissue of patients with multiple sclerosis. However, magnetic resonance imaging-identified iron does not necessarily reflect pathology and may also be seen in apparently normal tissue. Iron identification by multi-gradient echo magnetic resonance imaging in diseased tissues can shed light on the pathological processes when coupled with topographical information and patient disease history. PMID:22171355

  20. Technical Note High-Resolution Real-Time Spiral MRI for Guiding

    E-print Network

    Southern California, University of

    several advantages over x-ray fluoroscopy. MRI is not limited to projection imaging and provides excellent.5­0.7 mm over 14 heartbeats for coronary MRA (1­3)) compared to x-ray fluoroscopy (0.2 mm, 30 frames per on a 1.5 T GE Signa scanner (GE Healthcare, Milwaukee, WI, USA) equipped with high-performance gradients

  1. Robust Non-Rigid Registration to Capture Brain Shift from Intra-Operative MRI

    E-print Network

    Ayache, Nicholas

    these systems, the 0.5T intra- operative magnetic resonance scanner of the Brigham and Women's Hospital (Signa.5 T open magnet system (Signa SP, GE Medical Systems) of the Brigham and Women's Hospital The intra1 Robust Non-Rigid Registration to Capture Brain Shift from Intra-Operative MRI Olivier Clatz, Herv

  2. Quantitative Clinical Evaluation of a Simultaneous PETI MRI Breast Imaging System

    SciTech Connect

    Schlyer D. J.; Schlyer, D.J.

    2013-04-03

    A prototype simultaneous PET-MRI breast scanner has been developed for conducting clinical studies with the goal of obtaining high resolution anatomical and functional information in the same scan which can lead to faster and better diagnosis, reduction of unwanted biopsies, and better patient care.

  3. A Forced-Attention Dichotic Listening fMRI Study on 113 Subjects

    ERIC Educational Resources Information Center

    Kompus, Kristiina; Specht, Karsten; Ersland, Lars; Juvodden, Hilde T.; van Wageningen, Heidi; Hugdahl, Kenneth; Westerhausen, Rene

    2012-01-01

    We report fMRI and behavioral data from 113 subjects on attention and cognitive control using a variant of the classic dichotic listening paradigm with pairwise presentations of consonant-vowel syllables. The syllable stimuli were presented in a block-design while subjects were in the MR scanner. The subjects were instructed to pay attention to…

  4. Small animal simultaneous PET/MRI: initial experiences in a 9.4T microMRI

    SciTech Connect

    Maramraju, S.H.; Schlyer, D.; Maramraju, S.H.; Smith, S.D.; Junnarkar, S.S.; Schulz, D.; Stoll, S.; Ravindranath, B.; Purschke, M.L.; Rescia, S.; Southekal, S.; Pratte, J.-F.; Vaska, P.; Woody, C.L.; Schlyer, D.J.

    2011-03-25

    We developed a non-magnetic positron-emission tomography (PET) device based on the rat conscious animal PET that operates in a small-animal magnetic resonance imaging (MRI) scanner, thereby enabling us to carry out simultaneous PET/MRI studies. The PET detector comprises 12 detector blocks, each being a 4 x 8 array of lutetium oxyorthosilicate crystals (2.22 x 2.22 x 5 mm{sup 3}) coupled to a matching non-magnetic avalanche photodiode array. The detector blocks, housed in a plastic case, form a 38 mm inner diameter ring with an 18 mm axial extent. Custom-built MRI coils fit inside the positron-emission tomography (PET) device, operating in transceiver mode. The PET insert is integrated with a Bruker 9.4 T 210 mm clear-bore diameter MRI scanner. We acquired simultaneous PET/MR images of phantoms, of in vivo rat brain, and of cardiac-gated mouse heart using [{sup 11}C]raclopride and 2-deoxy-2-[{sup 18}F]fluoro-d-glucose PET radiotracers. There was minor interference between the PET electronics and the MRI during simultaneous operation, and small effects on the signal-to-noise ratio in the MR images in the presence of the PET, but no noticeable visual artifacts. Gradient echo and high-duty-cycle spin echo radio frequency (RF) pulses resulted in a 7% and a 28% loss in PET counts, respectively, due to high PET counts during the RF pulses that had to be gated out. The calibration of the activity concentration of PET data during MR pulsing is reproducible within less than 6%. Our initial results demonstrate the feasibility of performing simultaneous PET and MRI studies in adult rats and mice using the same PET insert in a small-bore 9.4 T MRI.

  5. Stroking or Buzzing? A Comparison of Somatosensory Touch Stimuli Using 7 Tesla fMRI

    PubMed Central

    van der Zwaag, Wietske; Gruetter, Rolf; Martuzzi, Roberto

    2015-01-01

    Studying body representations in the brain helps us to understand how we humans relate to our own bodies. The in vivo mapping of the somatosensory cortex, where these representations are found, is greatly facilitated by the high spatial resolution and high sensitivity to brain activation available at ultra-high field. In this study, the use of different stimulus types for somatotopic mapping of the digits at ultra-high field, specifically manual stroking and mechanical stimulation, was compared in terms of sensitivity and specificity of the brain responses. Larger positive responses in digit regions of interest were found for manual stroking than for mechanical stimulation, both in terms of average and maximum t-value and in terms of number of voxels with significant responses to the tactile stimulation. Responses to manual stroking were higher throughout the entire post-central sulcus, but the difference was especially large on its posterior wall, i.e. in Brodmann area 2. During mechanical stimulation, cross-digit responses were more negative than during manual stroking, possibly caused by a faster habituation to the stimulus. These differences indicate that manual stroking is a highly suitable stimulus for fast somatotopic mapping procedures, especially if Brodmann area 2 is of interest. PMID:26285027

  6. 7 Tesla fMRI Reveals Systematic Functional Organization for Binocular Disparity in Dorsal Visual Cortex

    E-print Network

    Goncalves, Nuno R.; Ban, Hiroshi; Sánchez-Panchuelo, Rosa M.; Francis, Susan T.; Schluppeck, Denis; Welchman, Andrew E.

    2015-02-18

    further minimizes the influence of superficial veins (Sa´nchez-Panchuelo et al., 2012) and improves spatial localization (Polimeni et al., 2010). Nevertheless, we also quantified vas- cular influences by calculating the mean BOLD signal amplitude across... of large veins. C, The sameROI in Participant 2, but now represented across 11 relative points through the entire range of the cortical sheet (0 to 1 relative depth, sampled at increments of 0.1). The flattened representations for each cortical depth were...

  7. Retrieval, Monitoring, and Control Processes: A 7 Tesla fMRI Approach to Memory Accuracy

    PubMed Central

    Risius, Uda-Mareke; Staniloiu, Angelica; Piefke, Martina; Maderwald, Stefan; Schulte, Frank P.; Brand, Matthias; Markowitsch, Hans J.

    2012-01-01

    Memory research has been guided by two powerful metaphors: the storehouse (computer) and the correspondence metaphor. The latter emphasizes the dependability of retrieved mnemonic information and draws upon ideas about the state dependency and reconstructive character of episodic memory. We used a new movie to unveil the neural correlates connected with retrieval, monitoring, and control processes, and memory accuracy (MAC), according to the paradigm of Koriat and Goldsmith (1996a,b). During functional magnetic resonance imaging, subjects performed a memory task which required (after an initial learning phase) rating true and false statements [retrieval phase (RP)], making confidence judgments in the respective statement [monitoring phase (MP)], and deciding for either venturing (volunteering) the respective answer or withholding the response [control phase (CP)]. Imaging data pointed to common and unique neural correlates. Activations in brain regions related to RP and MAC were observed in the precuneus, middle temporal gyrus, and left hippocampus. MP was associated with activation in the left anterior and posterior cingulate cortex along with bilateral medial temporal regions. If an answer was volunteered (as opposed to being withheld) during the CP, temporal, and frontal as well as middle and posterior cingulate areas and the precuneus revealed activations. Increased bilateral hippocampal activity was found during withholding compared to volunteering answers. The left caudate activation detected during withholding compared to venturing an answer supports the involvement of the left caudate in inhibiting unwanted responses. Contrary to expectations, we did not evidence prefrontal activations during withholding (as opposed to volunteering) answers. This may reflect our design specifications, but alternative interpretations are put forth. PMID:23580061

  8. Novel 16-Channel Receive Coil Array for Accelerated Upper Airway MRI at 3 Tesla

    E-print Network

    Southern California, University of

    a noninvasive assessment of speech and swallowing disorders and sleep apnea. Recent work has demonstrated with obstructive sleep apnea (1,2) and swallowing disorders (3). In sleep apnea stud- ies, rapid volumetric imaging disorders. This enables improved assessment of the dynamics of a bolus of food without introducing motion

  9. The Galileo star scanner observations at Amalthea

    NASA Astrophysics Data System (ADS)

    Fieseler, Paul D.; Adams, Olen W.; Vandermey, Nancy; Theilig, E. E.; Schimmels, Kathryn A.; Lewis, George D.; Ardalan, Shadan M.; Alexander, Claudia J.

    2004-06-01

    In November of 2002, the Galileo spacecraft passed within 250 km of Jupiter's moon Amalthea. An onboard telescope, the star scanner, observed a series of bright flashes near the moon. It is believed that these flashes represent sunlight reflected from 7 to 9 small moonlets located within about 3000 km of Amalthea. From star scanner geometry considerations and other arguments, we can constrain the diameter of the observed bodies to be between 0.5 m to several tens of kilometers. In September of 2003, while crossing Amalthea's orbit just prior to Galileo's destruction in the jovian atmosphere, a single additional body seems to have been observed. It is suspected that these bodies are part of a discrete rocky ring embedded within Jupiter's Gossamer ring system.

  10. Compact conscious animal positron emission tomography scanner

    DOEpatents

    Schyler, David J. (Bellport, NY); O'Connor, Paul (Bellport, NY); Woody, Craig (Setauket, NY); Junnarkar, Sachin Shrirang (Sound Beach, NY); Radeka, Veljko (Bellport, NY); Vaska, Paul (Sound Beach, NY); Pratte, Jean-Francois (Stony Brook, NY); Volkow, Nora (Chevy Chase, MD)

    2006-10-24

    A method of serially transferring annihilation information in a compact positron emission tomography (PET) scanner includes generating a time signal for an event, generating an address signal representing a detecting channel, generating a detector channel signal including the time and address signals, and generating a composite signal including the channel signal and similarly generated signals. The composite signal includes events from detectors in a block and is serially output. An apparatus that serially transfers annihilation information from a block includes time signal generators for detectors in a block and an address and channel signal generator. The PET scanner includes a ring tomograph that mounts onto a portion of an animal, which includes opposing block pairs. Each of the blocks in a block pair includes a scintillator layer, detection array, front-end array, and a serial encoder. The serial encoder includes time signal generators and an address signal and channel signal generator.

  11. Ghost signals in Allison emittance scanners

    SciTech Connect

    Stockli, Martin P.; Leitner, M.; Moehs, D.P.; Keller, R.; Welton, R.F.; /SNS Project, Oak Ridge /Tennessee U.

    2004-12-01

    For over 20 years, Allison scanners have been used to measure emittances of low-energy ion beams. We show that scanning large trajectory angles produces ghost signals caused by the sampled beamlet impacting on an electric deflection plate. The ghost signal strength is proportional to the amount of beam entering the scanner. Depending on the ions, and their velocity, the ghost signals can have the opposite or the same polarity as the main beam signals. The ghost signals cause significant errors in the emittance estimates because they appear at large trajectory angles. These ghost signals often go undetected because they partly overlap with the real signals, are mostly below the 1% level, and often hide in the noise. A simple deflection plate modification is shown to reduce the ghost signal strength by over 99%.

  12. Ghost Signals In Allison Emittance Scanners

    SciTech Connect

    Stockli, Martin P.; Leitner, M.; Keller, R.; Moehs, D.P.; Welton, R. F.

    2005-03-15

    For over 20 years, Allison scanners have been used to measure emittances of low-energy ion beams. We show that scanning large trajectory angles produces ghost signals caused by the sampled beamlet impacting on an electric deflection plate. The ghost signal strength is proportional to the amount of beam entering the scanner. Depending on the ions, and their velocity, the ghost signals can have the opposite or the same polarity as the main beam signals. The ghost signals cause significant errors in the emittance estimates because they appear at large trajectory angles. These ghost signals often go undetected because they partly overlap with the real signals, are mostly below the 1% level, and often hide in the noise. A simple deflection plate modification is shown to reduce the ghost signal strength by over 99%.

  13. Telescope with a wide field of view internal optical scanner

    NASA Technical Reports Server (NTRS)

    Degnan, III, John James (Inventor); Zheng, Yunhui (Inventor)

    2012-01-01

    A telescope with internal scanner utilizing either a single optical wedge scanner or a dual optical wedge scanner and a controller arranged to control a synchronous rotation of the first and/or second optical wedges, the wedges constructed and arranged to scan light redirected by topological surfaces and/or volumetric scatterers. The telescope with internal scanner further incorporates a first converging optical element that receives the redirected light and transmits the redirected light to the scanner, and a second converging optical element within the light path between the first optical element and the scanner arranged to reduce an area of impact on the scanner of the beam collected by the first optical element.

  14. Flexible scanner-based laser surface treatment

    NASA Astrophysics Data System (ADS)

    Klocke, Fritz; Brecher, Christian; Heinen, Daniel; Rosen, Chris-Jörg; Breitbach, Tobias

    New innovative deposition technologies are requested by many companies to improve the properties and effectiveness of wear resistant layers to achieve higher life-times of highly stressed components. Therefore this paper presents investigations and results from Fraunhofer Institute for Production Technology IPT concerning the enhanced melting deposition rate and the improved flexibility of the scanner-based laser cladding process, by keeping the benefits of the usual laser cladding process.

  15. Thermal ablation system using high intensity focused ultrasound (HIFU) and guided by MRI

    NASA Astrophysics Data System (ADS)

    Damianou, C.; Ioannides, K.; HadjiSavas, V.; Milonas, N.; Couppis, A.; Iosif, D.; Komodromos, M.; Vrionides, F.

    2009-04-01

    In this paper magnetic resonance imaging (MRI) is investigated for monitoring lesions created by high intensity focused ultrasound (HIFU) in kidney, liver and brain in vitro and in vivo. Spherically focused transducers of 4 cm diameter, focusing at 10 cm and operating at 1 and 4 MHz were used. An MRI compatible positioning device was developed in order to scan the HIFU transducer. The MRI compatibility of the system was successfully demonstrated in a clinical high-field MRI scanner. The ability of the positioning device to accurately move the transducer thus creating discrete and overlapping lesions in biological tissue was tested successfully. A simple, cost effective, portable positioning device has been developed which can be used in virtually any clinical MRI scanner since it can be sited on the scanner's table. The propagation of HIFU can use either a lateral or superior-inferior approach. Both T1-w FSE and T2-w FSE imaged successfully lesions in kidney and liver. T1-w FSE and T2-w FSE and FLAIR shows better anatomical details in brain than T1-w FSE, but with T1-w FSE the contrast between lesion and brain is higher for both thermal and bubbly lesion. With this system we were able to create large lesions (by producing overlapping lesions). The length of the lesions in vivo brain was much higher than the length in vitro, proving that the penetration in the in vitro brain is limited by reflection due to trapped bubbles in the blood vessels.

  16. Preoperative 3-Tesla Multiparametric Endorectal Magnetic Resonance Imaging Findings and the Odds of Upgrading and Upstaging at Radical Prostatectomy in Men With Clinically Localized Prostate Cancer

    SciTech Connect

    Hegde, John V.; Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts ; Chen, Ming-Hui; Mulkern, Robert V.; Department of Radiology, Children's Hospital Boston, Boston, Massachusetts ; Fennessy, Fiona M.; Department of Imaging, Dana-Farber Cancer Institute, Boston, Massachusetts ; D'Amico, Anthony V.; Tempany, Clare M.C.

    2013-02-01

    Purpose: To investigate whether 3-T esla (3T) multiparametric endorectal MRI (erMRI) can add information to established predictors regarding occult extraprostatic or high-grade prostate cancer (PC) in men with clinically localized PC. Methods and Materials: At a single academic medical center, this retrospective study's cohort included 118 men with clinically localized PC who underwent 3T multiparametric erMRI followed by radical prostatectomy, from 2008 to 2011. Multivariable logistic regression analyses in all men and in 100 with favorable-risk PC addressed whether erMRI evidence of T3 disease was associated with prostatectomy T3 or Gleason score (GS) 8-10 (in patients with biopsy GS {<=}7) PC, adjusting for age, prostate-specific antigen level, clinical T category, biopsy GS, and percent positive biopsies. Results: The accuracy of erMRI prediction of extracapsular extension and seminal vesicle invasion was 75% and 95%, respectively. For all men, erMRI evidence of a T3 lesion versus T2 was associated with an increased odds of having pT3 disease (adjusted odds ratio [AOR] 4.81, 95% confidence interval [CI] 1.36-16.98, P=.015) and pGS 8-10 (AOR 5.56, 95% CI 1.10-28.18, P=.038). In the favorable-risk population, these results were AOR 4.14 (95% CI 1.03-16.56), P=.045 and AOR 7.71 (95% CI 1.36-43.62), P=.021, respectively. Conclusions: Three-Tesla multiparametric erMRI in men with favorable-risk PC provides information beyond that contained in known preoperative predictors about the presence of occult extraprostatic and/or high-grade PC. If validated in additional studies, this information can be used to counsel men planning to undergo radical prostatectomy or radiation therapy about the possible need for adjuvant radiation therapy or the utility of adding hormone therapy, respectively.

  17. Constructing Carbon Fiber Motion-Detection Loops for Simultaneous EEG–fMRI

    PubMed Central

    Abbott, David F.; Masterton, Richard A. J.; Archer, John S.; Fleming, Steven W.; Warren, Aaron E. L.; Jackson, Graeme D.

    2015-01-01

    One of the most significant impediments to high-quality EEG recorded in an MRI scanner is subject motion. Availability of motion artifact sensors can substantially improve the quality of the recorded EEG. In the study of epilepsy, it can also dramatically increase the confidence that one has in discriminating true epileptiform activity from artifact. This is due both to the reduction in artifact and the ability to visually inspect the motion sensor signals when reading the EEG, revealing whether or not head motion is present. We have previously described the use of carbon fiber loops for detecting and correcting artifact in EEG acquired simultaneously with MRI. The loops, attached to the subject’s head, are electrically insulated from the scalp. They provide a simple and direct measure of specific artifact that is contaminating the EEG, including both subject motion and residual artifact arising from magnetic field gradients applied during MRI. Our previous implementation was used together with a custom-built EEG–fMRI system that differs substantially from current commercially available EEG–fMRI systems. The present technical note extends this work, describing in more detail how to construct the carbon fiber motion-detection loops, and how to interface them with a commercially available simultaneous EEG–fMRI system. We hope that the information provided may help those wishing to utilize a motion-detection/correction solution to improve the quality of EEG recorded within an MRI scanner. PMID:25601852

  18. Towards MRI-guided linear accelerator control: gating on an MRI accelerator

    NASA Astrophysics Data System (ADS)

    Crijns, S. P. M.; Kok, J. G. M.; Lagendijk, J. J. W.; Raaymakers, B. W.

    2011-08-01

    To boost the possibilities of image guidance in radiotherapy by providing images with superior soft-tissue contrast during treatment, we pursue diagnostic quality MRI functionality integrated with a linear accelerator. Large respiration-induced semi-periodic target excursions hamper treatment of cancer of the abdominal organs. Methods to compensate in real time for such motion are gating and tracking. These strategies are most effective in cases where anatomic motion can be visualized directly, which supports the use of an integrated MRI accelerator. We establish here an infrastructure needed to realize gated radiation delivery based on MR feedback and demonstrate its potential as a first step towards more advanced image guidance techniques. The position of a phantom subjected to one-dimensional periodic translation is tracked with the MR scanner. Real-time communication with the MR scanner and control of the radiation beam are established. Based on the time-resolved position of the phantom, gated radiation delivery to the phantom is realized. Dose distributions for dynamic delivery conditions with varying gating windows are recorded on gafchromic film. The similarity between dynamically and statically obtained dose profiles gradually increases as the gating window is decreased. With gating windows of 5 mm, we obtain sharp dose profiles. We validate our gating implementation by comparing measured dose profiles to theoretical profiles calculated using the knowledge of the imposed motion pattern. Excellent correspondence is observed. At the same time, we show that real-time on-line reconstruction of the accumulated dose can be performed using time-resolved target position information. This facilitates plan adaptation not only on a fraction-to-fraction scale but also during one fraction, which is especially valuable in highly accelerated treatment strategies. With the currently established framework and upcoming improvements to our prototype-integrated MRI accelerator, we will realize more intricate MRI-guided linear accelerator control in the near future.

  19. Design and preliminary accuracy studies of an MRI-guided transrectal prostate intervention system.

    PubMed

    Krieger, Axel; Csoma, Csaba; Iordachital, Iulian I; Guion, Peter; Singh, Anurag K; Fichtinger, Gabor; Whitcomb, Louis L

    2007-01-01

    This paper reports a novel system for magnetic resonance imaging (MRI) guided transrectal prostate interventions, such as needle biopsy, fiducial marker placement, and therapy delivery. The system utilizes a hybrid tracking method, comprised of passive fiducial tracking for initial registration and subsequent incremental motion measurement along the degrees of freedom using fiber-optical encoders and mechanical scales. Targeting accuracy of the system is evaluated in prostate phantom experiments. Achieved targeting accuracy and procedure times were found to compare favorably with existing systems using passive and active tracking methods. Moreover, the portable design of the system using only standard MRI image sequences and minimal custom scanner interfacing allows the system to be easily used on different MRI scanners. PMID:18044553

  20. A direct modulated optical link for MRI RF receive coil interconnection.

    PubMed

    Yuan, Jing; Wei, Juan; Shen, G X

    2007-11-01

    Optical glass fiber is a promising alternative to traditional coaxial cables for MRI RF receive coil interconnection to avoid any crosstalk and electromagnetic interference between multiple channels. A direct modulated optical link is proposed for MRI coil interconnection in this paper. The link performances of power gain, frequency response and dynamic range are measured. Phantom and in vivo human head images have been demonstrated by the connection of this direct modulated optical link to a head coil on a 0.3T MRI scanner for the first time. Comparable image qualities to coaxial cable link verify the feasibility of using the optical link for imaging with minor modification on the existing scanners. This optical link could also be easily extended for multi-channel array interconnections at high field of 1.5 T. PMID:17889578

  1. Studying brain organization via spontaneous fMRI signal

    PubMed Central

    Power, Jonathan D; Schlaggar, Bradley L; Petersen, Steven E

    2014-01-01

    In recent years, some substantial advances in understanding human (and non-human) brain organization have emerged from a relatively unusual approach: the observation of spontaneous activity, and correlated patterns in spontaneous activity, in the “resting” brain. Most commonly, spontaneous neural activity is measured indirectly via fMRI signal in subjects who are lying quietly in the scanner, the so-called “resting state”. This Primer introduces the fMRI-based study of spontaneous brain activity, some of the methodological issues active in the field, and some ways in which resting state fMRI has been used to delineate aspects of area-level and supra-areal brain organization. PMID:25459408

  2. Magnetic Resonance Imaging (MRI)

    MedlinePLUS

    ... Your Best Self Smart Snacking Losing Weight Safely Magnetic Resonance Imaging (MRI) KidsHealth > Teens > Cancer Center > Diagnostic Tests > Magnetic Resonance Imaging (MRI) Print A A A Text Size What's ...

  3. Sinus MRI scan

    MedlinePLUS

    MRI of the sinuses; Magnetic resonance imaging - sinuses; Maxillary sinus MRI ... Mosby; 2015:chap 41. Wilkinson ID, Graves MJ.. Magnetic resonance imaging: basic principles In: Adam A, Dixon AK, Gillard ...

  4. MRI (Magnetic Resonance Imaging)

    MedlinePLUS

    ... Radiation-Emitting Products and Procedures Medical Imaging MRI (Magnetic Resonance Imaging) Share Tweet Linkedin Pin it More ... MB) Also available in Other Language versions . Description Magnetic resonance imaging (MRI) is a medical imaging procedure ...

  5. Top quark physics and QCD: Progress since the TESLA TDR

    E-print Network

    A. Brandenburg

    2003-09-08

    I review progress on investigations concerning top quark physics and QCD at a future linear e+e- collider that has been achieved since the presentation of the TESLA technical design report in spring 2001. I concentrate on studies that have been presented during the workshop series of the Extended Joint ECFA/DESY Study on Physics and Detectors for a Linear Electron-Positron Collider.

  6. RHQT Nb3Al 15-Tesla magnet design study

    SciTech Connect

    Yamada, R.; Ambrosio, G.; Barzi, E.; Kashikin, V.; Kikuchi, A.; Novitski, I.; Takeuchi, T.; Wake, M.; Zlobin, A.; /Fermilab /NIMC, Tsukuba /KEK, Tsukuba

    2005-09-01

    Feasibility study of 15-Tesla dipole magnets wound with a new copper stabilized RHQT Nb{sub 3}Al Rutherford cable is presented. A new practical long copper stabilized RHQT Nb{sub 3}Al strand is presented, which is being developed and manufactured at the National Institute of Material Science (NIMS) in Japan. It has achieved a non-copper J{sub c} of 1000A/mm{sup 2} at 15 Tesla at 4.2K, with a copper over non-copper ratio of 1.04, and a filament size less than 50 microns. For this design study a short Rutherford cable with 28 Nb{sub 3}Al strands of 1 mm diameter will be fabricated late this year. The cosine theta magnet cross section is designed using ROXIE, and the stress and strain in the coil is estimated and studied with the characteristics of the Nb{sub 3}Al strand. The advantages and disadvantages of the Nb{sub 3}Al cable are compared with the prevailing Nb{sub 3}Sn cable from the point of view of stress-strain, J{sub c}, and possible degradation of stabilizer due to cabling. The Nb{sub 3}Al coil of the magnet, which will be made by wind and react method, has to be heat treated at 800 degree C for 10 hours. As preparation for the 15 Tesla magnet, a series of tests on strand and Rutherford cables are considered.

  7. Primal 3D MRI

    E-print Network

    Kim, Panki

    ANATOMY.TV #12;- Primal 3D . 3D , , , , , , , MRI - , , , , - , , , , - , 3D Anatomy.TV #12;3D ATLAS #12;Home #12;3D ATLAS - 1 3D -Anatomy: 3D - MRI: MRI Anatomy - Slides: - Movies: #12;3D ATLAS - 2 Layers

  8. Fetal MRI: A Technical Update with Educational Aspirations

    PubMed Central

    Gholipour, Ali; Estroff, Judith A.; Barnewolt, Carol E.; Robertson, Richard L.; Grant, P. Ellen; Gagoski, Borjan; Warfield, Simon K.; Afacan, Onur; Connolly, Susan A.; Neil, Jeffrey J.; Wolfberg, Adam; Mulkern, Robert V.

    2015-01-01

    Fetal magnetic resonance imaging (MRI) examinations have become well-established procedures at many institutions and can serve as useful adjuncts to ultrasound (US) exams when diagnostic doubts remain after US. Due to fetal motion, however, fetal MRI exams are challenging and require the MR scanner to be used in a somewhat different mode than that employed for more routine clinical studies. Herein we review the techniques most commonly used, and those that are available, for fetal MRI with an emphasis on the physics of the techniques and how to deploy them to improve success rates for fetal MRI exams. By far the most common technique employed is single-shot T2-weighted imaging due to its excellent tissue contrast and relative immunity to fetal motion. Despite the significant challenges involved, however, many of the other techniques commonly employed in conventional neuro- and body MRI such as T1 and T2*-weighted imaging, diffusion and perfusion weighted imaging, as well as spectroscopic methods remain of interest for fetal MR applications. An effort to understand the strengths and limitations of these basic methods within the context of fetal MRI is made in order to optimize their use and facilitate implementation of technical improvements for the further development of fetal MR imaging, both in acquisition and post-processing strategies. PMID:26225129

  9. Design and control of a nanoprecision XY Theta scanner.

    PubMed

    Choi, Young-Man; Kim, Jung Jae; Kim, Jinwoo; Gweon, Dae-Gab

    2008-04-01

    This paper describes the design and control of a nanoprecision XY Theta scanner consisting of voice coil motors and air bearing guides. The proposed scanner can be installed on a conventional XY stage with long strokes to improve the positioning accuracy and settling performance. Major design considerations in developing a high precision scanner are sensor accuracy, actuator properties, structural stability, guide friction, and thermal expansion. Considering these factors, the proposed scanner is made of invar, which has a small thermal expansion coefficient and good structural stiffness. Four voice coil motors drive the scanner, which is suspended by four air bearing pads, in the x, y, and theta directions. The scanner's position is measured by three laser interferometers which decouple the scanner from the conventional stage. The mirror blocks reflecting the laser beams are fixed using viscoelastic sheets, ensuring that the scanner has a well-damped structural mode. A time delay control algorithm is implemented on the real-time controller to control the scanner. The effectiveness of the proposed scanner is verified experimentally. PMID:18447554

  10. Spectral characterization of the LANDSAT-D multispectral scanner subsystems

    NASA Technical Reports Server (NTRS)

    Markham, B. L. (principal investigator); Barker, J. L.

    1982-01-01

    Relative spectral response data for the multispectral scanner subsystems (MSS) to be flown on LANDSAT-D and LANDSAT-D backup, the protoflight and flight models, respectively, are presented and compared to similar data for the Landsat 1,2, and 3 subsystems. Channel-bychannel (six channels per band) outputs for soil and soybean targets were simulated and compared within each band and between scanners. The two LANDSAT-D scanners proved to be nearly identical in mean spectral response, but they exhibited some differences from the previous MSS's. Principal differences between the spectral responses of the D-scanners and previous scanners were: (1) a mean upper-band edge in the green band of 606 nm compared to previous means of 593 to 598 nm; (2) an average upper-band edge of 697 nm in the red band compared to previous averages of 701 to 710 nm; and (3) an average bandpass for the first near-IR band of 702-814 nm compared to a range of 693-793 to 697-802 nm for previous scanners. These differences caused the simulated D-scanner outputs to be 3 to 10 percent lower in the red band and 3 to 11 percent higher in the first near-IR band than previous scanners for the soybeans target. Otherwise, outputs from soil and soybean targets were only slightly affected. The D-scanners were generally more uniform from channel to channel within bands than previous scanners.

  11. Multi-centre reproducibility of diffusion MRI parameters for clinical sequences in the brain.

    PubMed

    Grech-Sollars, Matthew; Hales, Patrick W; Miyazaki, Keiko; Raschke, Felix; Rodriguez, Daniel; Wilson, Martin; Gill, Simrandip K; Banks, Tina; Saunders, Dawn E; Clayden, Jonathan D; Gwilliam, Matt N; Barrick, Thomas R; Morgan, Paul S; Davies, Nigel P; Rossiter, James; Auer, Dorothee P; Grundy, Richard; Leach, Martin O; Howe, Franklyn A; Peet, Andrew C; Clark, Chris A

    2015-04-01

    The purpose of this work was to assess the reproducibility of diffusion imaging, and in particular the apparent diffusion coefficient (ADC), intra-voxel incoherent motion (IVIM) parameters and diffusion tensor imaging (DTI) parameters, across multiple centres using clinically available protocols with limited harmonization between sequences. An ice-water phantom and nine healthy volunteers were scanned across fives centres on eight scanners (four Siemens 1.5T, four Philips 3T). The mean ADC, IVIM parameters (diffusion coefficient D and perfusion fraction f) and DTI parameters (mean diffusivity MD and fractional anisotropy FA), were measured in grey matter, white matter and specific brain sub-regions. A mixed effect model was used to measure the intra- and inter-scanner coefficient of variation (CV) for each of the five parameters. ADC, D, MD and FA had a good intra- and inter-scanner reproducibility in both grey and white matter, with a CV ranging between 1% and 7.4%; mean 2.6%. Other brain regions also showed high levels of reproducibility except for small structures such as the choroid plexus. The IVIM parameter f had a higher intra-scanner CV of 8.4% and inter-scanner CV of 24.8%. No major difference in the inter-scanner CV for ADC, D, MD and FA was observed when analysing the 1.5T and 3T scanners separately. ADC, D, MD and FA all showed good intra-scanner reproducibility, with the inter-scanner reproducibility being comparable or faring slightly worse, suggesting that using data from multiple scanners does not have an adverse effect compared with using data from the same scanner. The IVIM parameter f had a poorer inter-scanner CV when scanners of different field strengths were combined, and the parameter was also affected by the scan acquisition resolution. This study shows that the majority of diffusion MRI derived parameters are robust across 1.5T and 3T scanners and suitable for use in multi-centre clinical studies and trials. PMID:25802212

  12. Multi-centre reproducibility of diffusion MRI parameters for clinical sequences in the brain

    PubMed Central

    Grech-Sollars, Matthew; Hales, Patrick W; Miyazaki, Keiko; Raschke, Felix; Rodriguez, Daniel; Wilson, Martin; Gill, Simrandip K; Banks, Tina; Saunders, Dawn E; Clayden, Jonathan D; Gwilliam, Matt N; Barrick, Thomas R; Morgan, Paul S; Davies, Nigel P; Rossiter, James; Auer, Dorothee P; Grundy, Richard; Leach, Martin O; Howe, Franklyn A; Peet, Andrew C; Clark, Chris A

    2015-01-01

    The purpose of this work was to assess the reproducibility of diffusion imaging, and in particular the apparent diffusion coefficient (ADC), intra-voxel incoherent motion (IVIM) parameters and diffusion tensor imaging (DTI) parameters, across multiple centres using clinically available protocols with limited harmonization between sequences. An ice–water phantom and nine healthy volunteers were scanned across fives centres on eight scanners (four Siemens 1.5T, four Philips 3T). The mean ADC, IVIM parameters (diffusion coefficient D and perfusion fraction f) and DTI parameters (mean diffusivity MD and fractional anisotropy FA), were measured in grey matter, white matter and specific brain sub-regions. A mixed effect model was used to measure the intra- and inter-scanner coefficient of variation (CV) for each of the five parameters. ADC, D, MD and FA had a good intra- and inter-scanner reproducibility in both grey and white matter, with a CV ranging between 1% and 7.4%; mean 2.6%. Other brain regions also showed high levels of reproducibility except for small structures such as the choroid plexus. The IVIM parameter f had a higher intra-scanner CV of 8.4% and inter-scanner CV of 24.8%. No major difference in the inter-scanner CV for ADC, D, MD and FA was observed when analysing the 1.5T and 3T scanners separately. ADC, D, MD and FA all showed good intra-scanner reproducibility, with the inter-scanner reproducibility being comparable or faring slightly worse, suggesting that using data from multiple scanners does not have an adverse effect compared with using data from the same scanner. The IVIM parameter f had a poorer inter-scanner CV when scanners of different field strengths were combined, and the parameter was also affected by the scan acquisition resolution. This study shows that the majority of diffusion MRI derived parameters are robust across 1.5T and 3T scanners and suitable for use in multi-centre clinical studies and trials. © 2015 The Authors NMR in Biomedicine Published by John Wiley & Sons Ltd. PMID:25802212

  13. Dynamic contrast MRI

    Cancer.gov

    Recommendations for MR measurement methods at 1.5-Tesla and endpoints for use in Phase 1/2a trials of anti-cancer therapeutics affecting tumor vascular function Type of measurement • Study design should incorporate quality assurance of the MR system,

  14. Wafer scale packaging for a MEMS video scanner

    NASA Astrophysics Data System (ADS)

    Helsel, Mark P.; Barger, Jon; Wine, David W.; Osborn, Thor D.

    2001-04-01

    Miniaturized scanners have proven their usefulness in a host of applications including video display, bar code reading, image capture, laser printing and optical switching. In order for these applications to reach fruition, however, the MEMS scanner component must be packaged in a manner that is compatible with the volume manufacturing capabilities of the technology. This paper describes a process that was developed to package an SVGA resolution (800 X 600) biaxial video scanner. The scanner is designed for a head mounted display product, targeted to the medical and industrial markets. The scanner is driven magnetically on one axis and capacitively on the other axis. The first level wafer scale package described here incorporates the capacitive drive electrodes into the mounting substrate. The substrate wafer and the device wafer are then bonded using a glass frit sealing technique. Finally, the scanner and substrate are hermetically sealed into a metal can at reduced pressure.

  15. Initial coastal zone color scanner imagery

    NASA Technical Reports Server (NTRS)

    Gordon, H. R.; Clark, D. K.

    1980-01-01

    The characteristics of the Nimbus-7 Coastal Zone Color Scanner are presented and the atmospheric correction and bio-optical algorithms are reviewed. Comparison of imagery before and after atmospheric correction shows that water features such as color fronts and small scale eddies can be retrieved even through a hazy and horizontally inhomogeneous atmosphere. Imagery is also presented to show that features revealed in color are sometimes completely absent from simultaneous thermal imagery implying that color and thermal imagery can provide complementary rather than redundant information.

  16. Fast wire scanner for intense electron beams

    NASA Astrophysics Data System (ADS)

    Moore, T.; Agladze, N. I.; Bazarov, I. V.; Bartnik, A.; Dobbins, J.; Dunham, B.; Full, S.; Li, Y.; Liu, X.; Savino, J.; Smolenski, K.

    2014-02-01

    We have developed a cost-effective, fast rotating wire scanner for use in accelerators where high beam currents would otherwise melt even carbon wires. This new design uses a simple planetary gear setup to rotate a carbon wire, fixed at one end, through the beam at speeds in excess of 20 m/s. We present results from bench tests, as well as transverse beam profile measurements taken at Cornell's high-brightness energy recovery linac photoinjector, for beam currents up to 35 mA.

  17. A laser scanner for 35mm film

    NASA Technical Reports Server (NTRS)

    Callen, W. R.; Weaver, J. E.

    1977-01-01

    The design, construction, and testing of a laser scanning system is described. The scanner was designed to deliver a scanned beam over a 2.54 cm by 2.54 cm or a 5.08 cm by 5.08 cm format. In order to achieve a scan resolution and rate comparable to that of standard television, an acousto-optic deflector was used for one axis of the scan, and a light deflecting galvanometer for deflection along the other axis. The acoustic optic deflector has the capability of random access scan controlled by a digital computer.

  18. Polarization characteristics of an altazimuth sky scanner

    NASA Technical Reports Server (NTRS)

    Garrison, L. M.; Blaszczak, Z.; Green, A. E. S.

    1980-01-01

    A theoretical description of the polarization characteristics of an altazimuth sky scanner optical system based on Mueller-Stokes calculus is presented. This computer-driven optical system was designed to perform laboratory studies of skylight and of celestial objects during day or night, and has no space limitations; however, the two parallel 45 deg tilt mirrors introduce some intrinsic polarization. Therefore, proper data interpretation requires a theoretical understanding of the polarization features of the instrument and accurate experimental determination of the Mueller-Stokes matrix elements describing the polarizing and depolarizing action of the system.

  19. LAPR: An experimental aircraft pushbroom scanner

    NASA Technical Reports Server (NTRS)

    Wharton, S. W.; Irons, J. I.; Heugel, F.

    1980-01-01

    A three band Linear Array Pushbroom Radiometer (LAPR) was built and flown on an experimental basis by NASA at the Goddard Space Flight Center. The functional characteristics of the instrument and the methods used to preprocess the data, including radiometric correction, are described. The radiometric sensitivity of the instrument was tested and compared to that of the Thematic Mapper and the Multispectral Scanner. The radiometric correction procedure was evaluated quantitatively, using laboratory testing, and qualitatively, via visual examination of the LAPR test flight imagery. Although effective radiometric correction could not yet be demonstrated via laboratory testing, radiometric distortion did not preclude the visual interpretation or parallel piped classification of the test imagery.

  20. Biopsy Needle Artifact Localization in MRI-guided Robotic Transrectal Prostate Intervention

    PubMed Central

    Song, Sang-Eun; Cho, Nathan B.; Iordachita, Iulian; Guion, Peter; Fichtinger, Gabor; Kaushal, Aradhana; Camphausen, Kevin; Whitcomb, Louis L.

    2013-01-01

    Recently a number of robotic intervention systems for magnetic resonance image (MRI) guided needle placement in the prostate have been reported. In MRI-guided needle interventions, after a needle is inserted, the needle position is often confirmed with a volumetric MRI scan. Commonly used titanium needles are not directly visible in an MR image, but they generate a susceptibility artifact in the immediate neighborhood of the needle. This paper reports the results of a quantitative study of the relationship between the true position of titanium biopsy needle and the corresponding needle artifact position in MR images, thereby providing a better understanding of the influence of needle artifact on targeting errors. The titanium needle tip artifact extended 9 mm beyond the actual needle tip location with tendency to bend towards the scanner’s B0 magnetic field direction, and axially displaced 0.38 mm and 0.32 mm (mean) in scanner’s frequency and phase encoding direction, respectively. PMID:22481805

  1. 52. View from ground level showing lower radar scanner switch ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. View from ground level showing lower radar scanner switch with open port door in radar scanner building 105 showing emanating waveguides from lower switch in vertical run; photograph also shows catwalk to upper scanner switch in upper left side of photograph and structural supports. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  2. Integrated Electro-optical Laser-Beam Scanners

    NASA Technical Reports Server (NTRS)

    Boord, Warren T.

    1990-01-01

    Scanners using solid-state devices compact, consume little power, and have no moving parts. Integrated electro-optical laser scanner, in conjunction with external lens, points outgoing beam of light in any number of different directions, depending on number of upper electrodes. Offers beam-deflection angles larger than those of acousto-optic scanners. Proposed for such diverse applications as nonimpact laser printing, color imaging, ranging, barcode reading, and robotic vision.

  3. Optimization of Brain T2 Mapping Using Standard CPMG Sequence In A Clinical Scanner

    NASA Astrophysics Data System (ADS)

    Hnilicová, P.; Bittšanský, M.; Dobrota, D.

    2014-04-01

    In magnetic resonance imaging, transverse relaxation time (T2) mapping is a useful quantitative tool enabling enhanced diagnostics of many brain pathologies. The aim of our study was to test the influence of different sequence parameters on calculated T2 values, including multi-slice measurements, slice position, interslice gap, echo spacing, and pulse duration. Measurements were performed using standard multi-slice multi-echo CPMG imaging sequence on a 1.5 Tesla routine whole body MR scanner. We used multiple phantoms with different agarose concentrations (0 % to 4 %) and verified the results on a healthy volunteer. It appeared that neither the pulse duration, the size of interslice gap nor the slice shift had any impact on the T2. The measurement accuracy was increased with shorter echo spacing. Standard multi-slice multi-echo CPMG protocol with the shortest echo spacing, also the smallest available interslice gap (100 % of slice thickness) and shorter pulse duration was found to be optimal and reliable for calculating T2 maps in the human brain.

  4. Octopus visual system: a functional MRI model for detecting neuronal electric currents without a BOLD confound

    PubMed Central

    Jiang, Xia; Lu, Hanbing; Shigeno, Shuichi; Tan, Li-Hai; Yang, Yihong; Ragsdale, Clifton W.; Gao, Jia-Hong

    2014-01-01

    Purpose Despite the efforts that have been devoted to detecting the transient magnetic fields generated by neuronal firing, the conclusion that a functionally relevant signal can be measured with magnetic resonance imaging (MRI) is still controversial. For human studies of neuronal current MRI (nc-MRI), the blood-oxygen-level-dependent (BOLD) effect remains an irresolvable confound. For tissue studies where hemoglobin is removed, natural sensory stimulation is not possible. This study investigates the feasibility of detecting a physiologically induced nc-MRI signal in vivo in a BOLD-free environment. Methods The cephalopod mollusc Octopus bimaculoides has vertebrate-like eyes, large optic lobes (OLs) and blood that does not contain hemoglobin. Visually evoked potentials were measured in the octopus retina and OL by electroretinogram and local field potential. nc-MRI scans were conducted at 9.4 Tesla to capture these activities. Results Electrophysiological recording detected strong responses in the retina and OL in vivo; however, nc-MRI failed to demonstrate any statistically significant signal change with a detection threshold of 0.2° for phase and 0.2% for magnitude. Experiments in a dissected eye-OL preparation yielded similar results. Conclusion These findings in a large hemoglobin-free nervous system suggest that sensory evoked neuronal magnetic fields are too weak for direct detection with current MRI technology. PMID:24301336

  5. Precision pointing using a dual-wedge scanner

    NASA Technical Reports Server (NTRS)

    Amirault, C. T.; Dimarzio, C. A.

    1985-01-01

    A system was developed for calibrating and precisely pointing a germanium dual-wedge scanner for a CO2 Doppler lidar from an airborne platform. The equations implemented in pointing the scanner and those in the iterative calibration program, which combines available data with estimated parameters of the scanner orientation relative to the axes of the aircraft's inertial navigation system to arrive at corrected scanner parameters are described. The effect of specific error conditions on program performance and the results of the program when used on 1981 test data are investigated.

  6. Incorporating MRI structural information into bioluminescence tomography: system, heterogeneous reconstruction and in vivo quantification

    PubMed Central

    Zhang, Jun; Chen, Duofang; Liang, Jimin; Xue, Huadan; Lei, Jing; Wang, Qin; Chen, Dongmei; Meng, Ming; Jin, Zhengyu; Tian, Jie

    2014-01-01

    Combining two or more imaging modalities to provide complementary information has become commonplace in clinical practice and in preclinical and basic biomedical research. By incorporating the structural information provided by computed tomography (CT) or magnetic resonance imaging (MRI), the ill poseness nature of bioluminescence tomography (BLT) can be reduced significantly, thus improve the accuracies of reconstruction and in vivo quantification. In this paper, we present a small animal imaging system combining multi-view and multi-spectral BLT with MRI. The independent MRI-compatible optical device is placed at the end of the clinical MRI scanner. The small animal is transferred between the light tight chamber of the optical device and the animal coil of MRI via a guide rail during the experiment. After the optical imaging and MRI scanning procedures are finished, the optical images are mapped onto the MRI surface by interactive registration between boundary of optical images and silhouette of MRI. Then, incorporating the MRI structural information, a heterogeneous reconstruction algorithm based on finite element method (FEM) with L 1 normalization is used to reconstruct the position, power and region of the light source. In order to validate the feasibility of the system, we conducted experiments of nude mice model implanted with artificial light source and quantitative analysis of tumor inoculation model with MDA-231-GFP-luc. Preliminary results suggest the feasibility and effectiveness of the prototype system. PMID:24940545

  7. Design of a Teleoperated Needle Steering System for MRI-guided Prostate Interventions

    PubMed Central

    Seifabadi, Reza; Iordachita, Iulian; Fichtinger, Gabor

    2013-01-01

    Accurate needle placement plays a key role in success of prostate biopsy and brachytherapy. During percutaneous interventions, the prostate gland rotates and deforms which may cause significant target displacement. In these cases straight needle trajectory is not sufficient for precise targeting. Although needle spinning and fast insertion may be helpful, they do not entirely resolve the issue. We propose robot-assisted bevel-tip needle steering under MRI guidance as a potential solution to compensate for the target displacement. MRI is chosen for its superior soft tissue contrast in prostate imaging. Due to the confined workspace of the MRI scanner and the requirement for the clinician to be present inside the MRI room during the procedure, we designed a MRI-compatible 2-DOF haptic device to command the needle steering slave robot which operates inside the scanner. The needle steering slave robot was designed to be integrated with a previously developed pneumatically actuated transperineal robot for MRI-guided prostate needle placement. We describe design challenges and present the conceptual design of the master and slave robots and the associated controller. PMID:24649480

  8. Elastic registration for airborne multispectral line scanners

    NASA Astrophysics Data System (ADS)

    Li, Feng; Li, ChuanRong; Tang, LingLi; Guo, Yi

    2014-01-01

    The multispectral line scanner is one of the most popular payloads for aerial remote sensing (RS) applications. Scanners with large field of view (FOV) improve efficiency in Earth observation. Small-volume instruments with a short focal length and a large FOV, however, may bring a problem: different nonlinear warping and local transformation exist between bands. Alignment accuracy of bands is a criterion impacting product quality in RS. A band-to-band elastic image registration method is proposed for solving the problem. Rather than ignoring the intensity variation and carrying out an intensity-based registration between bands straightforwardly, we construct feature images and use them to conduct an intensity-based elastic image registration. In this method, the idea of the inverse compositional algorithm is employed and expanded when dealing with local warping, and a smoothness constraint is also added in this procedure. Experimental results show that the proposed band-to-band registration method works well both visually and quantitatively. The outstanding performance of the method also encourages potential applications for other new types of airborne multispectral imagers.

  9. An empirical study of scanner system parameters

    NASA Technical Reports Server (NTRS)

    Landgrebe, D.; Biehl, L.; Simmons, W.

    1976-01-01

    The selection of the current combination of parametric values (instantaneous field of view, number and location of spectral bands, signal-to-noise ratio, etc.) of a multispectral scanner is a complex problem due to the strong interrelationship these parameters have with one another. The study was done with the proposed scanner known as Thematic Mapper in mind. Since an adequate theoretical procedure for this problem has apparently not yet been devised, an empirical simulation approach was used with candidate parameter values selected by the heuristic means. The results obtained using a conventional maximum likelihood pixel classifier suggest that although the classification accuracy declines slightly as the IFOV is decreased this is more than made up by an improved mensuration accuracy. Further, the use of a classifier involving both spatial and spectral features shows a very substantial tendency to resist degradation as the signal-to-noise ratio is decreased. And finally, further evidence is provided of the importance of having at least one spectral band in each of the major available portions of the optical spectrum.

  10. Antenna Near-Field Probe Station Scanner

    NASA Technical Reports Server (NTRS)

    Zaman, Afroz J. (Inventor); Lee, Richard Q. (Inventor); Darby, William G. (Inventor); Barr, Philip J. (Inventor); Lambert, Kevin M (Inventor); Miranda, Felix A. (Inventor)

    2011-01-01

    A miniaturized antenna system is characterized non-destructively through the use of a scanner that measures its near-field radiated power performance. When taking measurements, the scanner can be moved linearly along the x, y and z axis, as well as rotationally relative to the antenna. The data obtained from the characterization are processed to determine the far-field properties of the system and to optimize the system. Each antenna is excited using a probe station system while a scanning probe scans the space above the antenna to measure the near field signals. Upon completion of the scan, the near-field patterns are transformed into far-field patterns. Along with taking data, this system also allows for extensive graphing and analysis of both the near-field and far-field data. The details of the probe station as well as the procedures for setting up a test, conducting a test, and analyzing the resulting data are also described.

  11. Multi-site characterization of an fMRI working memory paradigm: Reliability of activation indices

    PubMed Central

    Yendiki, Anastasia; Greve, Douglas N.; Wallace, Stuart; Vangel, Mark; Bockholt, Jeremy; Mueller, Bryon A.; Magnotta, Vince; Andreasen, Nancy; Manoach, Dara S.; Gollub, Randy L.

    2013-01-01

    Neuroimaging studies are facilitated significantly when it is possible to recruit subjects and acquire data at multiple sites. However, the use of different scanners and acquisition protocols is a potential source of variability in multi-site data. In this work we present a multi-site study of the reliability of fMRI activation indices, where 10 healthy volunteers were scanned at 4 different sites while performing a working memory paradigm. Our results indicate that, even with different scanner manufacturers and field strengths, activation variability due to site differences is small compared to variability due to subject differences in this cognitive task, provided we choose an appropriate activation measure. PMID:20451631

  12. Dynamic Shimming of the Human Brain at 7 Tesla.

    PubMed

    Juchem, Christoph; Nixon, Terence W; Diduch, Piotr; Rothman, Douglas L; Starewicz, Piotr; de Graaf, Robin A

    2010-07-01

    Dynamic shim updating (DSU) of the zero- to second-order spherical harmonic field terms has previously been shown to improve the magnetic field homogeneity in the human brain at 4 Tesla. The increased magnetic field inhomogeneity at 7 Tesla can benefit from inclusion of third-order shims during DSU. However, pulsed higher-order shims can generate a multitude of temporally varying magnetic fields arising from eddy-currents that can strongly degrade the magnetic field homogeneity.The first realization of zero- to third-order DSU with full preemphasis and B(0) compensation enabled improved shimming of the human brain at 7 Tesla not only in comparison with global (i.e. static) shimming, but also when compared to state-of-the-art zero- to second-order DSU. Temporal shim-to-shim interactions were measured for each of the 16 zero- to third-order shim coils along 1D column projections on a spherical phantom. The decomposition into up to 3 exponentials allowed full preemphasis and B(0) compensation of all 16 shims covering 67 potential shim-to-shim interactions. Despite the significant improvements achievable with DSU, the magnetic field homogeneity is still not perfect even when updating all zero- through third-order shims. This is because DSU is still inherently limited by the shallowness of the low order spherical harmonic fields and their inability to compensate the higher-order inhomogeneities encountered in vivo. However, DSU maximizes the usefulness of conventional shim coil systems and provides magnetic field homogeneity that is adequate for a wide range of applications. PMID:20657809

  13. Dynamic Shimming of the Human Brain at 7 Tesla

    PubMed Central

    Juchem, Christoph; Nixon, Terence W.; Diduch, Piotr; Rothman, Douglas L.; Starewicz, Piotr; de Graaf, Robin A.

    2010-01-01

    Dynamic shim updating (DSU) of the zero- to second-order spherical harmonic field terms has previously been shown to improve the magnetic field homogeneity in the human brain at 4 Tesla. The increased magnetic field inhomogeneity at 7 Tesla can benefit from inclusion of third-order shims during DSU. However, pulsed higher-order shims can generate a multitude of temporally varying magnetic fields arising from eddy-currents that can strongly degrade the magnetic field homogeneity. The first realization of zero- to third-order DSU with full preemphasis and B0 compensation enabled improved shimming of the human brain at 7 Tesla not only in comparison with global (i.e. static) shimming, but also when compared to state-of-the-art zero- to second-order DSU. Temporal shim-to-shim interactions were measured for each of the 16 zero- to third-order shim coils along 1D column projections on a spherical phantom. The decomposition into up to 3 exponentials allowed full preemphasis and B0 compensation of all 16 shims covering 67 potential shim-to-shim interactions. Despite the significant improvements achievable with DSU, the magnetic field homogeneity is still not perfect even when updating all zero- through third-order shims. This is because DSU is still inherently limited by the shallowness of the low order spherical harmonic fields and their inability to compensate the higher-order inhomogeneities encountered in vivo. However, DSU maximizes the usefulness of conventional shim coil systems and provides magnetic field homogeneity that is adequate for a wide range of applications. PMID:20657809

  14. Minimally Invasive Magnetic Resonance Imaging-Guided Free-Hand Aspiration of Symptomatic Nerve Route Compressing Lumbosacral Cysts Using a 1.0-Tesla Open Magnetic Resonance Imaging System

    SciTech Connect

    Bucourt, Maximilian de Streitparth, Florian Collettini, Federico; Guettler, Felix; Rathke, Hendrik; Lorenz, Britta; Rump, Jens; Hamm, Bernd; Teichgraeber, U. K.

    2012-02-15

    Purpose: To evaluate the feasibility of minimally invasive magnetic resonance imaging (MRI)-guided free-hand aspiration of symptomatic nerve route compressing lumbosacral cysts in a 1.0-Tesla (T) open MRI system using a tailored interactive sequence. Materials and Methods: Eleven patients with MRI-evident symptomatic cysts in the lumbosacral region and possible nerve route compressing character were referred to a 1.0-T open MRI system. For MRI interventional cyst aspiration, an interactive sequence was used, allowing for near real-time position validation of the needle in any desired three-dimensional plane. Results: Seven of 11 cysts in the lumbosacral region were successfully aspirated (average 10.1 mm [SD {+-} 1.9]). After successful cyst aspiration, each patient reported speedy relief of initial symptoms. Average cyst size was 9.6 mm ({+-}2.6 mm). Four cysts (8.8 {+-} 3.8 mm) could not be aspirated. Conclusion: Open MRI systems with tailored interactive sequences have great potential for cyst aspiration in the lumbosacral region. The authors perceive major advantages of the MR-guided cyst aspiration in its minimally invasive character compared to direct and open surgical options along with consecutive less trauma, less stress, and also less side-effects for the patient.

  15. High-Performance 3D Compressive Sensing MRI Reconstruction Using Many-Core Architectures

    PubMed Central

    Kim, Daehyun; Trzasko, Joshua; Smelyanskiy, Mikhail; Haider, Clifton; Dubey, Pradeep; Manduca, Armando

    2011-01-01

    Compressive sensing (CS) describes how sparse signals can be accurately reconstructed from many fewer samples than required by the Nyquist criterion. Since MRI scan duration is proportional to the number of acquired samples, CS has been gaining significant attention in MRI. However, the computationally intensive nature of CS reconstructions has precluded their use in routine clinical practice. In this work, we investigate how different throughput-oriented architectures can benefit one CS algorithm and what levels of acceleration are feasible on different modern platforms. We demonstrate that a CUDA-based code running on an NVIDIA Tesla C2050 GPU can reconstruct a 256 × 160 × 80 volume from an 8-channel acquisition in 19 seconds, which is in itself a significant improvement over the state of the art. We then show that Intel's Knights Ferry can perform the same 3D MRI reconstruction in only 12 seconds, bringing CS methods even closer to clinical viability. PMID:21922017

  16. Status of the NHMFL 60 tesla quasi-continuous magnet

    SciTech Connect

    Campbell, L.J.; Boenig, H.J.; Rickel, D.G.; Schilig, J.B.; Sims, J.R.; Schneider-Muntau, H.J.

    1995-07-01

    All components of the National High Magnetic Field Laboratory`s (NHMFL) 60 T quasi-continuous magnet are now under construction, with complete delivery and installation expected in early 1996. This research magnet has a cold bore of 32 mm and will produce a constant 60 tesla for 100 ms plus a wide variety of other pulse shapes such as linear ramps, steps, crowbar decays, and longer flat-tops at lower fields. Fabrication and testing of prototype coils are described along with the layout, construction status, and protection philosophy of the 400 MW power supply. Examples of simulated pulse shapes are shown.

  17. Probing top flavour-changing neutral couplings at TESLA

    E-print Network

    J. A. Aguilar-Saavedra; T. Riemann

    2001-02-20

    We present a comprehensive analysis of the sensitivity of the TESLA e+ e- collider to top flavour-changing neutral couplings to the Z boson and photon. We study single top production and top decay processes, and we consider the cases without beam polarization, with only e- polarization and with e- and e+ polarization. We show that the use of the latter substantially enhances the sensitivity to discover or bound these vertices, and for some of the couplings the expected LHC limits could be improved by factors 2-14 for equal running times.

  18. Field quality measurements of a 2-Tesla transmission line magnet

    SciTech Connect

    Velev, G.V.; Foster, W.; Kashikhin, V.; Mazur, P.; Oleck, A.; Piekarz, H.; Schlabach, P.; Sylvester, C.; Wake, M.; /KEK, Tsukuba

    2005-09-01

    A prototype 2-Tesla superconducting transmission line magnet for future hadron colliders was designed, built and tested at Fermilab. The 1.5 m long, combined-function gradient-dipole magnet has a vertical pole aperture of 20 mm. To measure the magnetic field quality in such a small magnet aperture, a specialized rotating coil of 15.2 mm diameter, 0.69 m long was fabricated. Using this probe, a program of magnetic field quality measurements was successfully performed. Results of the measurements are presented and discussed.

  19. Status of the NHMFL 60 tesla quasi-continuous magnet

    SciTech Connect

    Campbell, L.J.; Boenig, H.J.; Rickel, D.G.; Schillig, J.B.; Sims, J.R.; Schneider-Muntau, H.J.

    1996-07-01

    All components of the National High Magnetic Field Laboratory`s (NHMFL) 60 T quasi-continuous magnet are now under construction, with complete delivery and installation expected in early 1996. This research magnet has a cold bore of 32 mm and will produce a constant 60 tesla for 100 ms plus a wide variety of other pulse shapes such as liner ramps, steps, crossbar decays, and longer flat-tops at lower fields. Fabrication and testing of prototype coils are described along with the layout, construction status, and protection philosophy of the 400 MW power supply. Examples of simulated pulse shapes are shown.

  20. Magnetic Particle Imaging (MPI) for NMR and MRI researchers

    NASA Astrophysics Data System (ADS)

    Saritas, Emine U.; Goodwill, Patrick W.; Croft, Laura R.; Konkle, Justin J.; Lu, Kuan; Zheng, Bo; Conolly, Steven M.

    2013-04-01

    Magnetic Particle Imaging (MPI) is a new tracer imaging modality that is gaining significant interest from NMR and MRI researchers. While the physics of MPI differ substantially from MRI, it employs hardware and imaging concepts that are familiar to MRI researchers, such as magnetic excitation and detection, pulse sequences, and relaxation effects. Furthermore, MPI employs the same superparamagnetic iron oxide (SPIO) contrast agents that are sometimes used for MR angiography and are often used for MRI cell tracking studies. These SPIOs are much safer for humans than iodine or gadolinium, especially for Chronic Kidney Disease (CKD) patients. The weak kidneys of CKD patients cannot safely excrete iodine or gadolinium, leading to increased morbidity and mortality after iodinated X-ray or CT angiograms, or after gadolinium-MRA studies. Iron oxides, on the other hand, are processed in the liver, and have been shown to be safe even for CKD patients. Unlike the “black blood” contrast generated by SPIOs in MRI due to increased T2? dephasing, SPIOs in MPI generate positive, “bright blood” contrast. With this ideal contrast, even prototype MPI scanners can already achieve fast, high-sensitivity, and high-contrast angiograms with millimeter-scale resolutions in phantoms and in animals. Moreover, MPI shows great potential for an exciting array of applications, including stem cell tracking in vivo, first-pass contrast studies to diagnose or stage cancer, and inflammation imaging in vivo. So far, only a handful of prototype small-animal MPI scanners have been constructed worldwide. Hence, MPI is open to great advances, especially in hardware, pulse sequence, and nanoparticle improvements, with the potential to revolutionize the biomedical imaging field.

  1. Simultaneous fMRI and EEG during the Multi-Source Interference Task

    PubMed Central

    Robertson, John A.; Thomas, Alex W.; Prato, Frank S.; Johansson, Mikael; Nittby, Henrietta

    2014-01-01

    Background fMRI and EEG are two non-invasive functional imaging techniques within cognitive neuroscience that have complementary advantages to obtain both temporal and spatial information. The multi-source interference task (MSIT) has been shown to generate robust activations of the dorsal anterior cingulate cortex (dACC) on both a single-subject level and in group averages, in fMRI studies. We have now simultaneously acquired fMRI and EEG during a cognitive interference task. Materials and Methods Healthy volunteers were tested in an MRI scanner with simultaneous EEG and fMRI recordings during the MSIT. Results The interference condition significantly increased the reaction time in the task. The fMRI analyses revealed activation of dACC as expected, in all subjects at the individual level and in group analyses. The posterior cingulate cortex was de-activated. Simultaneous EEG showed the expected anterior distribution of the interference effect, as it was restricted to frontal sites within a time frame of 80–120 ms post response. Conclusion The MSIT task is a reliable task for interference evaluation. fMRI shows robust activation of dACC and by adding EEG, an interference effect can be noticed within a temporal interval of 80–120 ms after the response, as a CRN (correct response negativity). This means that EEG could add a more detailed temporal aspect to the fMRI data from an interference task, and that despite the hostile environment within an MRI scanner, EEG data could be used. PMID:25490131

  2. Histology-derived volumetric annotation of the human hippocampal subfields in postmortem MRI.

    PubMed

    Adler, Daniel H; Pluta, John; Kadivar, Salmon; Craige, Caryne; Gee, James C; Avants, Brian B; Yushkevich, Paul A

    2014-01-01

    Recently, there has been a growing effort to analyze the morphometry of hippocampal subfields using both in vivo and postmortem magnetic resonance imaging (MRI). However, given that boundaries between subregions of the hippocampal formation (HF) are conventionally defined on the basis of microscopic features that often lack discernible signature in MRI, subfield delineation in MRI literature has largely relied on heuristic geometric rules, the validity of which with respect to the underlying anatomy is largely unknown. The development and evaluation of such rules are challenged by the limited availability of data linking MRI appearance to microscopic hippocampal anatomy, particularly in three dimensions (3D). The present paper, for the first time, demonstrates the feasibility of labeling hippocampal subfields in a high resolution volumetric MRI dataset based directly on microscopic features extracted from histology. It uses a combination of computational techniques and manual post-processing to map subfield boundaries from a stack of histology images (obtained with 200?m spacing and 5?m slice thickness; stained using the Kluver-Barrera method) onto a postmortem 9.4Tesla MRI scan of the intact, whole hippocampal formation acquired with 160?m isotropic resolution. The histology reconstruction procedure consists of sequential application of a graph-theoretic slice stacking algorithm that mitigates the effects of distorted slices, followed by iterative affine and diffeomorphic co-registration to postmortem MRI scans of approximately 1cm-thick tissue sub-blocks acquired with 200?m isotropic resolution. These 1cm blocks are subsequently co-registered to the MRI of the whole HF. Reconstruction accuracy is evaluated as the average displacement error between boundaries manually delineated in both the histology and MRI following the sequential stages of reconstruction. The methods presented and evaluated in this single-subject study can potentially be applied to multiple hippocampal tissue samples in order to construct a histologically informed MRI atlas of the hippocampal formation. PMID:24036353

  3. Relaxation Time Constants and Apparent Diffusion Coefficients of Rat Retina at 7 Tesla

    E-print Network

    Duong, Timothy Q.

    Relaxation Time Constants and Apparent Diffusion Coefficients of Rat Retina at 7 Tesla Govind Nair* and ADC of the rat eyes were measured at 50 3 50 3 800 lm at 7 Tesla. Profiles of T1, T2, T2* and ADC

  4. Speculations About a Fourier Series Kicker for the TESLA Damping Ring George D. Gollin*

    E-print Network

    Gollin, George

    circumference damping ring; a fast kicker will deflect individual bunches on injection or extraction, leaving1 Speculations About a Fourier Series Kicker for the TESLA Damping Ring George D. Gollin* , Thomas, 2002 We describe a scheme for a damping ring kicker for TESLA which uses a set of rf cavities

  5. MRI-Compatible Pneumatic Robot for Transperineal Prostate Needle Placement

    PubMed Central

    Fischer, Gregory S.; Iordachita, Iulian; Csoma, Csaba; Tokuda, Junichi; DiMaio, Simon P.; Tempany, Clare M.; Hata, Nobuhiko; Fichtinger, Gabor

    2010-01-01

    Magnetic resonance imaging (MRI) can provide high-quality 3-D visualization of prostate and surrounding tissue, thus granting potential to be a superior medical imaging modality for guiding and monitoring prostatic interventions. However, the benefits cannot be readily harnessed for interventional procedures due to difficulties that surround the use of high-field (1.5T or greater) MRI. The inability to use conventional mechatronics and the confined physical space makes it extremely challenging to access the patient. We have designed a robotic assistant system that overcomes these difficulties and promises safe and reliable intraprostatic needle placement inside closed high-field MRI scanners. MRI compatibility of the robot has been evaluated under 3T MRI using standard prostate imaging sequences and average SNR loss is limited to 5%. Needle alignment accuracy of the robot under servo pneumatic control is better than 0.94 mm rms per axis. The complete system workflow has been evaluated in phantom studies with accurate visualization and targeting of five out of five 1 cm targets. The paper explains the robot mechanism and controller design, the system integration, and presents results of preliminary evaluation of the system. PMID:21057608

  6. Resolution and Reconstruction for a Helical CT-Scanner

    E-print Network

    Münster, Westfälische Wilhelms-Universität

    as the x-ray source spins around the patient, allowing for 3D imaging 2]. We give the conditions of radius around the axes (the x1 axes) of the scanner, and that the source sits on a concentric circle-Breath-Hold Technique, Continuous Transport and Continuous Scanner Rotation, Radiology 176, 181-183 (1990). 0LaTeX: berg

  7. 29. SITE BUILDING 002 SCANNER BUILDING FLOOR 3A ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. SITE BUILDING 002 - SCANNER BUILDING - FLOOR 3A ("A" FACE) AT SYSTEM LAYOUT GRID 17. GENERAL OBLIQUE VIEW OF "A" FACE INTERIOR SHOWING RADAR EMITTER/ANTENNA INTERFACE ELECTRONICS. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  8. 27. SITE BUILDING 002 SCANNER BUILDING OPERATIONS CENTER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. SITE BUILDING 002 - SCANNER BUILDING - OPERATIONS CENTER - MWOC MONITOR NO. 4 IN OPERATION AT 2002 ZULU, OCTOBER 26, 1999 CAPE COD, AS PAVE PAWS. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  9. 19. SITE BUILDING 002 SCANNER BUILDING AIR POLICE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. SITE BUILDING 002 - SCANNER BUILDING - AIR POLICE SITE SECURITY OFFICE WITH "SITE PERIMETER STATUS PANEL" AND REAL TIME VIDEO DISPLAY OUTPUT FROM VIDEO CAMERA SYSTEM AT SECURITY FENCE LOCATIONS. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  10. PeneloPET study of the biograph PET scanner

    NASA Astrophysics Data System (ADS)

    Abushab, K. M.; Herraiz, J. L.; Vicente, E.; España, S.; Vaquero, J. J.; Jakoby, B. W.; Udias, J. M.

    2013-06-01

    In this work we use PeneloPET to simulate the Biograph scanners B-TP, B-TPTV and mCT. Simulations were adjusted to reproduce some experimental results from the actual scanners and validated by comparing their predictions to further experimental results. Sensitivity, spatial resolution, NEC rate and scatter fraction (SF) were estimated.

  11. Maximum Likelihood Remission Calibration for Groups of Heterogeneous Laser Scanners

    E-print Network

    Teschner, Matthias

    ) Uncalibrated 3D point cloud captured using a combination of three different 3D scanners, a Velodyne HDL-32E values: (a) Observed scene. (b) Uncalibrated 3D point cloud of one scan from a single tilting Hokuyo UTMMaximum Likelihood Remission Calibration for Groups of Heterogeneous Laser Scanners Bastian Steder

  12. MEMS-Based Scanner Dedicated for Ultrasound Medical Imaging

    E-print Network

    Peter, Yves-Alain

    in 3D. Actually, there are two main scanning techniques that are used in order to plot 3D images [1MEMS-Based Scanner Dedicated for Ultrasound Medical Imaging M. Hajj Hassan and M. Sawan Polystim, the development of a micro electromechanical scanner incorporating high frequency ultrasound transducer operating

  13. Quantitative Assay for Starch by Colorimetry Using a Desktop Scanner

    ERIC Educational Resources Information Center

    Matthews, Kurt R.; Landmark, James D.; Stickle, Douglas F.

    2004-01-01

    The procedure to produce standard curve for starch concentration measurement by image analysis using a color scanner and computer for data acquisition and color analysis is described. Color analysis is performed by a Visual Basic program that measures red, green, and blue (RGB) color intensities for pixels within the scanner image.

  14. 21. SITE BUILDING 002 SCANNER BUILDING LOOKING AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. SITE BUILDING 002 - SCANNER BUILDING - LOOKING AT DISC STORAGE SYSTEMS A AND B (A OR B ARE REDUNDANT SYSTEMS), ONE MAINFRAME COMPUTER ON LINE, ONE ON STANDBY WITH STORAGE TAPE, ONE ON STANDBY WITHOUT TAPE INSTALLED. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  15. 20. SITE BUILDING 002 SCANNER BUILDING IN COMPUTER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. SITE BUILDING 002 - SCANNER BUILDING - IN COMPUTER ROOM LOOKING AT "CONSOLIDATED MAINTENANCE OPERATIONS CENTER" JOB AREA AND OPERATION WORK CENTER. TASKS INCLUDE RADAR MAINTENANCE, COMPUTER MAINTENANCE, CYBER COMPUTER MAINTENANCE AND RELATED ACTIVITIES. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  16. Laser excited confocal microscope fluorescence scanner and method

    DOEpatents

    Mathies, R.A.; Peck, K.

    1992-02-25

    A fluorescent scanner is designed for scanning the fluorescence from a fluorescence labeled separated sample on a sample carrier. The scanner includes a confocal microscope for illuminating a predetermined volume of the sample carrier and/or receiving and processing fluorescence emissions from the volume to provide a display of the separated sample. 8 figs.

  17. 26. SITE BUILDING 002 SCANNER BUILDING OPERATIONS CENTER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. SITE BUILDING 002 - SCANNER BUILDING - OPERATIONS CENTER - MWOC IN OPERATION AT 1945 ZULU TIME, 26 OCTOBER, 1999. "SPACE TRACK BOARD" DATA SHOWING ITEMS #16609 MIR (RUSSIA) AND #25544 ISS (INTERNATIONAL SPACE STATION) BEING TRACKED. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  18. 25. SITE BUILDING 002 SCANNER BUILDING OPERATIONS CENTER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. SITE BUILDING 002 - SCANNER BUILDING - OPERATIONS CENTER - MWOC IN OPERATION AT 1930 ZULU TIME, 26 OCTOBER, 1999. MWOC SCREEN ALSO SHOWS RADAR "FACE A" AND "FACE B" ACTIVE STATUS. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  19. 10. SITE BUILDING 002 SCANNER BUILDING LOOKING AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. SITE BUILDING 002 - SCANNER BUILDING - LOOKING AT SOUTHWEST CORNER "B" FACE AND "C" FACE ON WEST AND EVAPORATIVE COOLING TOWER AT NORTH. VIEW IS LOOKING NORTH 45° EAST. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  20. Study of PET scanner designs using clinical metrics to optimize the scanner axial FOV and crystal thickness.

    PubMed

    Surti, S; Werner, M E; Karp, J S

    2013-06-21

    The aim of this study is to understand the trade-off between crystal thickness and scanner axial field-of-view FOV (AFOV) for clinical PET imaging. Clinical scanner design has evolved towards 20-25 mm thick crystals and 16-22 cm long scanner AFOV, as well as time-of-flight (TOF) imaging. While Monte Carlo studies demonstrate that longer AFOV and thicker crystals will lead to higher scanner sensitivity, cost has prohibited the building of commercial scanners with >22 cm AFOV. In this study, we performed a series of system simulations to optimize the use of a given amount of crystal material by evaluating the impact on system sensitivity and noise equivalent counts (NEC), as well as image quality in terms of lesion detectability. We evaluated two crystal types (LSO and LaBr3) and fixed the total crystal volume used for each type (8.2 L of LSO and 17.1 L of LaBr3) while varying the crystal thickness and scanner AFOV. In addition, all imaging times were normalized so that the total scan time needed to scan a 100 cm long object with multiple bed positions was kept constant. Our results show that the highest NEC cm(-1) in a 35 cm diameter ×70 cm long line source cylinder is achieved for an LSO scanner with 10 mm long crystals and AFOV of 36 cm, while for LaBr3 scanners, the highest NEC cm(-1) is obtained with 20 mm long crystals and an AFOV of 38 cm. Lesion phantom simulations show that the best lesion detection performance is achieved in scanners with long AFOV (?36 cm) and using thin crystals (?10 mm of LSO and ?20 mm of LaBr3). This is due to a combination of improved NEC, as well as improved lesion contrast estimation due to better spatial resolution in thinner crystals. Alternatively, for lesion detection performance similar to that achieved in standard clinical scanner designs, the long AFOV scanners can be used to reduce the total scan time without increasing the amount of crystal used in the scanner. In addition, for LaBr3 based scanners, the reduced lesion contrast relative to LSO based scanners requires improved timing resolution and longer scan times in order to achieve lesion detectability similar to that achieved in an LSO scanner with similar NEC cm(-1). PMID:23685783

  1. Study of PET scanner designs using clinical metrics to optimize the scanner axial FOV and crystal thickness

    PubMed Central

    Surti, S; Werner, M E; Karp, J S

    2013-01-01

    The aim of this study is to understand the trade-off between crystal thickness and scanner axial FOV (AFOV) for clinical PET imaging. Clinical scanner design has evolved towards 20–25 mm thick crystals and 16–22 cm long scanner AFOV, as well as time-of-flight (TOF) imaging. While Monte Carlo studies demonstrate that longer AFOV and thicker crystals will lead to higher scanner sensitivity, cost has prohibited the building of commercial scanners with > 22 cm AFOV. In this study, we performed a series of system simulations to optimize the use of a given amount of crystal material by evaluating the impact on system sensitivity and NEC, as well image quality in terms of lesion detectability. We evaluated two crystal types (LSO and LaBr3) and fixed the total crystal volume used for each type (8.2 liters of LSO and 17.1 liters of LaBr3) while varying the crystal thickness and scanner AFOV. In addition, all imaging times were normalized so that the total scan time needed to scan a 100 cm long object with multiple bed positions was kept constant. Our results show that the highest NEC/cm in a 35 cm diameter×70 cm long line source cylinder is achieved for an LSO scanner with 10 mm long crystals and AFOV of 36 cm while for LaBr3 scanners, the highest NEC/cm is obtained with 20 mm long crystals and an AFOV of 38 cm. Lesion phantom simulations show best lesion detection performance is achieved in scanners with long AFOV (? 36 cm) and using thin crystals (? 10 mm of LSO and ? 20 mm of LaBr3). This is due to a combination of improved NEC, as well as improved lesion contrast estimation due to better spatial resolution in thinner crystals. Alternatively, for lesion detection performance similar to that achieved in standard clinical scanner designs, the long AFOV scanners can be used to reduce the total scan time without increasing the amount of crystal used in the scanner. In addition, for LaBr3 based scanners, the reduced lesion contrast relative to LSO based scanners requires improved timing resolution and longer scan times in order to achieve lesion detectability similar to that achieved in an LSO scanner with similar NEC/cm. PMID:23685783

  2. Study of PET scanner designs using clinical metrics to optimize the scanner axial FOV and crystal thickness

    NASA Astrophysics Data System (ADS)

    Surti, S.; Werner, M. E.; Karp, J. S.

    2013-06-01

    The aim of this study is to understand the trade-off between crystal thickness and scanner axial field-of-view FOV (AFOV) for clinical PET imaging. Clinical scanner design has evolved towards 20-25 mm thick crystals and 16-22 cm long scanner AFOV, as well as time-of-flight (TOF) imaging. While Monte Carlo studies demonstrate that longer AFOV and thicker crystals will lead to higher scanner sensitivity, cost has prohibited the building of commercial scanners with >22 cm AFOV. In this study, we performed a series of system simulations to optimize the use of a given amount of crystal material by evaluating the impact on system sensitivity and noise equivalent counts (NEC), as well as image quality in terms of lesion detectability. We evaluated two crystal types (LSO and LaBr3) and fixed the total crystal volume used for each type (8.2 L of LSO and 17.1 L of LaBr3) while varying the crystal thickness and scanner AFOV. In addition, all imaging times were normalized so that the total scan time needed to scan a 100 cm long object with multiple bed positions was kept constant. Our results show that the highest NEC cm-1 in a 35 cm diameter ×70 cm long line source cylinder is achieved for an LSO scanner with 10 mm long crystals and AFOV of 36 cm, while for LaBr3 scanners, the highest NEC cm-1 is obtained with 20 mm long crystals and an AFOV of 38 cm. Lesion phantom simulations show that the best lesion detection performance is achieved in scanners with long AFOV (?36 cm) and using thin crystals (?10 mm of LSO and ?20 mm of LaBr3). This is due to a combination of improved NEC, as well as improved lesion contrast estimation due to better spatial resolution in thinner crystals. Alternatively, for lesion detection performance similar to that achieved in standard clinical scanner designs, the long AFOV scanners can be used to reduce the total scan time without increasing the amount of crystal used in the scanner. In addition, for LaBr3 based scanners, the reduced lesion contrast relative to LSO based scanners requires improved timing resolution and longer scan times in order to achieve lesion detectability similar to that achieved in an LSO scanner with similar NEC cm-1.

  3. 300 MHz RF coils for MR studies of Macaca mulatta brain at 7 Tesla Hellmut Merkle2

    E-print Network

    300 MHz RF coils for MR studies of Macaca mulatta brain at 7 Tesla Hellmut Merkle2 , Josef Pfeuffer, customized for a vertical ultra high field 7 Tesla system develop for vision research in the alert, trained macaque. Methods A prototype primate chair was designed and built for the vertical 7-Tesla/60-cm BRUKER

  4. 77 FR 2269 - Foreign-Trade Zone 18-San Jose, CA, Application for Subzone, Tesla Motors, Inc. (Electric...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-17

    ...-Trade Zones Board Foreign-Trade Zone 18--San Jose, CA, Application for Subzone, Tesla Motors, Inc... purpose subzone status for the electric passenger- vehicle manufacturing facilities of Tesla Motors, Inc. (Tesla), located in Palo Alto and Fremont, California. The application was submitted pursuant to...

  5. Probabilistic Non-Repudiation for Source Authentication with TESLA Certificates in Hybrid Satellite/Wireless Networks and

    E-print Network

    Baras, John S.

    Probabilistic Non-Repudiation for Source Authentication with TESLA Certificates in Hybrid Satellite describe a novel non-repudiation mechanism for an authentication protocol based on the extended TESLA to this problem, we have proposed a new class of lightweight, symmetric key certificates called extended TESLA

  6. Temporal analysis of multispectral scanner data.

    NASA Technical Reports Server (NTRS)

    Richardson, A. J.; Wiegand, C. L.; Torline, R. J.

    1973-01-01

    Multispectral scanner reflectance data were sampled for bare soil, cotton, sorghum, corn, and citrus at four dates during a growing season (April, May, June, and July 1969) to develop a time-dependent signature for crop and soil discrimination. Discrimination tests were conducted for single-date and multidate formats using training and test data sets. For classifications containing several crops, the multidate or temporal approach improved discrimination compared with the single-date approach. The multidate approach also preserved recognition accuracy better in going from training fields to test fields than the single-date analysis. The spectral distinctiveness of bare soil versus vegetation resulted in essentially equal discrimination using single-date versus multidate data for those two categories.

  7. Wetlands mapping with spot multispectral scanner data

    SciTech Connect

    Mackey, H.E. Jr. ); Jensen, J.R. . Dept. of Geography)

    1989-01-01

    Government facilities such as the US Department of Energy's Savannah River Plant (SRP) near Aiken, South Carolina, often use remote sensing data to assist in environmental management. Airborne multispectral scanner (MSS) data have been acquired at SRP since 1981. Various types of remote sensing data have been used to map and characterize wetlands. Regional Landsat MSS and TM satellite data have been used for wetlands mapping by various government agencies and private organizations. Furthermore, SPOT MSS data are becoming available and provide opportunities for increased spacial resolution and temporal coverage for wetlands mapping. This paper summarizes the initial results from using five dates of SPOT MSS data from April through October, 1987, as a means to monitor seasonal wetland changes in freshwater wetlands of the SRP. 11 refs., 4 figs.

  8. Quadrupole resonance scanner for narcotics detection

    NASA Astrophysics Data System (ADS)

    Shaw, Julian D.; Moeller, C. R.; Magnuson, Erik E.; Sheldon, Alan G.

    1994-10-01

    Interest in non-invasive, non-hazardous, bulk detection technologies for narcotics interdiction has risen over the last few years. As part of our continuing research and development programs in detection of narcotics and explosives using sensitive magnetic measuring devices, we present the first commercially available prototype Quadrupole Resonance (QR) scanner for narcotics detection. The portable narcotics detection system was designed in modular form such that a single QR base system could be easily used with a variety of custom detection heads. The QR system presented in this paper is suitable for scanning items up to 61 X 35 X 13 cm in size, and was designed to scan mail packages and briefcase-sized items for the presence of narcotics. System tests have shown that detection sensitivity is comparable that obtained in laboratory systems.

  9. B > 1 Tesla low mass magnetic field sweep assembly

    NASA Astrophysics Data System (ADS)

    Cadieu, F. J.; Heremans, J. J.; Griffin, J.; Caldwell, C.; von Molnar, S.

    1997-03-01

    We have designed, modeled and tested a variable magnetic field sweep unit over a wide temperature range, from cryogenic to 100 C. The unit provides a sweepable uniform magnetic field, independent of temperature, over an air gap of 2 mm and spatial extent of 4 mm x 4 mm. It consists of a small magnet yoke structure and a spur gear driven rotatable magnet to vary the gap field in a nearly sinusoidal manner as a function of the magnet rotation angle. In the present design a 20 g SmCo magnet has been used, which allows for low temperature operation to 15 K when attached to a cryogenic refrigerator cold finger. The shape of the magnetic yoke structure has been modeled and optimized using 3-D magnetic field software. The gap field uniformity can thus be modeled and tested experimentally. In a present working model (2 mm gap) the field B(?) = 1.0 sin(?) (Tesla) where ? is the magnet rotation angle. With 0.25 mm thick permunder pole tips the field amplitude has been increased to 1.2 Tesla over a gap of 1.5 mm.

  10. The Effective Fine Structure Constant at TESLA Energies

    E-print Network

    F. Jegerlehner

    2001-05-27

    We present a new estimate of the hadronic contribution to the shift in the fine structure constant at LEP and TESLA energies and calculate the effective fine structure constant. Substantial progress in a precise determination of this important parameter is a consequence of substantially improved total cross section measurements by the BES II collaboration and an improved theoretical understanding. In the standard approach which relies to a large extend on experimental data we find $\\Delta \\al_{\\rm hadrons}^{(5)}(\\mz) = 0.027896 \\pm 0.000395$ which yields $\\alpha^{-1}(\\mz) = 128.907 \\pm 0.054$. Another approach, using the Adler function as a tool to compare theory and experiment, allows us to to extend the applicability of perturbative QCD in a controlled manner. The result in this case reads $\\Delta\\alpha^{(5)}_{\\rm had}(M_Z^2) = 0.027730 \\pm 0.000209$ and hence $\\alpha^{-1}(\\mz) = 128.930 \\pm 0.029$. At TESLA energies a new problem shows up with the definition of an effective charge. A possible solution of the problem is presented. Prospects for further progress in a precise determination of the effective fine structure constant are discussed.

  11. Coaxial Coupling Scheme for TESLA/ILC-type Cavities

    SciTech Connect

    J.K. Sekutowicz, P. Kneisel

    2010-05-01

    This paper reports about our efforts to develop a flangeable coaxial coupler for both HOM and fundamental coupling for 9-cell TESLA/ILC-type cavities. The cavities were designed in early 90‘s for pulsed operation with a low duty factor, less than 1 %. The proposed design of the coupler has been done in a way, that the magnetic flux B at the flange connection is minimized and only a field of <5 mT would be present at the accelerating field Eacc of ~ 36 MV/m (B =150 mT in the cavity). Even though we achieved reasonably high Q-values at low field, the cavity/coupler combination was limited in the cw mode to only ~ 7 MV/m, where a thermally initiated degradation occurred. We have improved the cooling conditions by initially drilling radial channels every 30 degrees, then every 15 degrees into the shorting plate. The modified prototype performed well up to 9 MV/m in cw mode. This paper reports about our experiences with the further modified coaxial coupler and about test results in cw and low duty cycle pulsed mode, similar to the TESLA/ILC operation conditions.

  12. Ultra-Miniature Lidar Scanner for Launch Range Data Collection

    NASA Technical Reports Server (NTRS)

    Geng, Jason

    2012-01-01

    The most critical component in lidar is its laser scanner, which delivers pulsed or CW laser to target with desirable field of view (FOV). Most existing lidars use a rotating or oscillating mirror for scanning, resulting in several drawbacks. A lidar scanning technology was developed that could achieve very high scanning speed, with an ultra-miniature size and much lighter weight. This technology promises at least a 10x performance improvement in these areas over existing lidar scanners. Features of the proposed ultra-miniature lidar scanner include the ability to make the entire scanner <2 mm in diameter; very high scanning speed (e.g. 5 - 20 kHz, in contrast to several hundred Hz in existing scanners); structure design to meet stringent requirements on size, weight, power, and compactness for various applications; and the scanning speed and FOV can be altered for obtaining high image resolutions of targeted areas and for diversified uses.

  13. A Laser Range Scanner Designed for Minimum Calibration Complexity James Davis, Xing Chen

    E-print Network

    Stanford University

    A Laser Range Scanner Designed for Minimum Calibration Complexity James Davis, Xing Chen Computer Graphics Lab, Stanford University {jedavis, xcchen}@graphics.stanford.edu Abstract Laser range scanners reduce the costs associated with calibration. 1 Introduction Laser triangulation scanners

  14. An Open-Source Hardware and Software System for Acquisition and Real-Time Processing of Electrophysiology during High Field MRI

    PubMed Central

    Purdon, Patrick L.; Millan, Hernan; Fuller, Peter L.; Bonmassar, Giorgio

    2008-01-01

    Simultaneous recording of electrophysiology and functional magnetic resonance imaging (fMRI) is a technique of growing importance in neuroscience. Rapidly evolving clinical and scientific requirements have created a need for hardware and software that can be customized for specific applications. Hardware may require customization to enable a variety of recording types (e.g., electroencephalogram, local field potentials, or multi-unit activity) while meeting the stringent and costly requirements of MRI safety and compatibility. Real-time signal processing tools are an enabling technology for studies of learning, attention, sleep, epilepsy, neurofeedback, and neuropharmacology, yet real-time signal processing tools are difficult to develop. We describe an open source system for simultaneous electrophysiology and fMRI featuring low-noise (< 0.6 uV p-p input noise), electromagnetic compatibility for MRI (tested up to 7 Tesla), and user-programmable real-time signal processing. The hardware distribution provides the complete specifications required to build an MRI-compatible electrophysiological data acquisition system, including circuit schematics, print circuit board (PCB) layouts, Gerber files for PCB fabrication and robotic assembly, a bill of materials with part numbers, data sheets, and vendor information, and test procedures. The software facilitates rapid implementation of real-time signal processing algorithms. This system has used in human EEG/fMRI studies at 3 and 7 Tesla examining the auditory system, visual system, sleep physiology, and anesthesia, as well as in intracranial electrophysiological studies of the non-human primate visual system during 3 Tesla fMRI, and in human hyperbaric physiology studies at depths of up to 300 feet below sea level. PMID:18761038

  15. Design Optimization of a TOF, Breast PET Scanner.

    PubMed

    Lee, Eunsin; Werner, Matthew E; Karp, Joel S; Surti, Suleman

    2013-06-01

    A dedicated breast positron emission tomography (PET) scanner with limited angle geometry can provide flexibility in detector placement around the patient as well as the ability to combine it with other imaging modalities. A primary challenge of a stationary limited angle scanner is the reduced image quality due to artifacts present in the reconstructed image leading to a loss in quantitative information. Previously it has been shown that using time-of-flight (TOF) information in image reconstruction can help reduce these image artifacts arising due to missing angular projections. Our goal in this work is to optimize the TOF, breast scanner design by performing studies for estimating image uniformity and lesion activity uptake as a function of system timing resolution, scanner angular coverage and shape. Our results show that (i) 1.5 × 1.5 × 15 mm(3) lutetium oxy-orthosilicate (LSO) crystals provide a high spatial resolution and system sensitivity relative to clinical scanners, (ii) 2/3 angular coverage scanner design with TOF timing resolution less than 600 ps is appropriate for providing a tomographic image with fewer artifacts and good lesion uptake estimation relative to other partial ring designs studied in this work, (iii) a flat scanner design with 2/3 angular coverage is affected more by larger parallax error than a curved scanner geometry with the same angular coverage, but provides more uniform lesion contrast estimate over the imaging field-of-view (FOV), (iv) 2/3 angular coverage, flat, 300 ps TOF scanner design (for short, practical scan times of ? 5 mins per breast) provides similar precision of contrast recovery coefficient (CRC) values to a full curved, non-TOF scanner, and (v) employing depth-of-interaction (DOI) measuring detector and/or implementing resolution modeling (RM) in image reconstruction lead to improved and more uniform spatial resolution and lesion contrast over the whole FOV. PMID:24078744

  16. Design Optimization of a TOF, Breast PET Scanner

    PubMed Central

    Lee, Eunsin; Werner, Matthew E.; Karp, Joel S.; Surti, Suleman

    2013-01-01

    A dedicated breast positron emission tomography (PET) scanner with limited angle geometry can provide flexibility in detector placement around the patient as well as the ability to combine it with other imaging modalities. A primary challenge of a stationary limited angle scanner is the reduced image quality due to artifacts present in the reconstructed image leading to a loss in quantitative information. Previously it has been shown that using time-of-flight (TOF) information in image reconstruction can help reduce these image artifacts arising due to missing angular projections. Our goal in this work is to optimize the TOF, breast scanner design by performing studies for estimating image uniformity and lesion activity uptake as a function of system timing resolution, scanner angular coverage and shape. Our results show that (i) 1.5 × 1.5 × 15 mm3 lutetium oxy-orthosilicate (LSO) crystals provide a high spatial resolution and system sensitivity relative to clinical scanners, (ii) 2/3 angular coverage scanner design with TOF timing resolution less than 600 ps is appropriate for providing a tomographic image with fewer artifacts and good lesion uptake estimation relative to other partial ring designs studied in this work, (iii) a flat scanner design with 2/3 angular coverage is affected more by larger parallax error than a curved scanner geometry with the same angular coverage, but provides more uniform lesion contrast estimate over the imaging field-of-view (FOV), (iv) 2/3 angular coverage, flat, 300 ps TOF scanner design (for short, practical scan times of ? 5 mins per breast) provides similar precision of contrast recovery coefficient (CRC) values to a full curved, non-TOF scanner, and (v) employing depth-of-interaction (DOI) measuring detector and/or implementing resolution modeling (RM) in image reconstruction lead to improved and more uniform spatial resolution and lesion contrast over the whole FOV. PMID:24078744

  17. A PC-based multispectral scanner data evaluation workstation: Application to Daedalus scanners

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.; James, Mark W.; Smith, Matthew R.; Atkinson, Robert J.

    1991-01-01

    In late 1989, a personal computer (PC)-based data evaluation workstation was developed to support post flight processing of Multispectral Atmospheric Mapping Sensor (MAMS) data. The MAMS Quick View System (QVS) is an image analysis and display system designed to provide the capability to evaluate Daedalus scanner data immediately after an aircraft flight. Even in its original form, the QVS offered the portability of a personal computer with the advanced analysis and display features of a mainframe image analysis system. It was recognized, however, that the original QVS had its limitations, both in speed and processing of MAMS data. Recent efforts are presented that focus on overcoming earlier limitations and adapting the system to a new data tape structure. In doing so, the enhanced Quick View System (QVS2) will accommodate data from any of the four spectrometers used with the Daedalus scanner on the NASA ER2 platform. The QVS2 is designed around the AST 486/33 MHz CPU personal computer and comes with 10 EISA expansion slots, keyboard, and 4.0 mbytes of memory. Specialized PC-McIDAS software provides the main image analysis and display capability for the system. Image analysis and display of the digital scanner data is accomplished with PC-McIDAS software.

  18. Initial tests of a prototype MRI-compatible PET imager

    NASA Astrophysics Data System (ADS)

    Raylman, Raymond R.; Majewski, Stan; Lemieux, Susan; Velan, S. Sendhil; Kross, Brain; Popov, Vladimir; Smith, Mark F.; Weisenberger, Andrew G.; Wojcik, Randy

    2006-12-01

    Multi-modality imaging is rapidly becoming a valuable tool in the diagnosis of disease and in the development of new drugs. Functional images produced with PET fused with anatomical structure images created by MRI, will allow the correlation of form with function. Our group (a collaboration of West Virginia University and Jefferson Lab) is developing a system to acquire MRI and PET images contemporaneously. The prototype device consists of two opposed detector heads, operating in coincidence mode with an active FOV of 5×5×4 cm 3. Each MRI-PET detector module consists of an array of LSO detector elements (2.5×2.5×15 mm 3) coupled through a long fiber optic light guide to a single Hamamatsu flat panel PSPMT. The fiber optic light guide is made of a glued assembly of 2 mm diameter acrylic fibers with a total length of 2.5 m. The use of a light guides allows the PSPMTs to be positioned outside the bore of the 3 T General Electric MRI scanner used in the tests. Photon attenuation in the light guides resulted in an energy resolution of ˜60% FWHM, interaction of the magnetic field with PSPMT further reduced energy resolution to ˜85% FWHM. Despite this effect, excellent multi-plane PET and MRI images of a simple disk phantom were acquired simultaneously. Future work includes improved light guides, optimized magnetic shielding for the PSPMTs, construction of specialized coils to permit high-resolution MRI imaging, and use of the system to perform simultaneous PET and MRI or MR-spectroscopy .

  19. A Digital Preclinical PET/MRI Insert and Initial Results.

    PubMed

    Weissler, Bjoern; Gebhardt, Pierre; Dueppenbecker, Peter M; Wehner, Jakob; Schug, David; Lerche, Christoph W; Goldschmidt, Benjamin; Salomon, Andre; Verel, Iris; Heijman, Edwin; Perkuhn, Michael; Heberling, Dirk; Botnar, Rene M; Kiessling, Fabian; Schulz, Volkmar

    2015-11-01

    Combining Positron Emission Tomography (PET) with Magnetic Resonance Imaging (MRI) results in a promising hybrid molecular imaging modality as it unifies the high sensitivity of PET for molecular and cellular processes with the functional and anatomical information from MRI. Digital Silicon Photomultipliers (dSiPMs) are the digital evolution in scintillation light detector technology and promise high PET SNR. DSiPMs from Philips Digital Photon Counting (PDPC) were used to develop a preclinical PET/RF gantry with 1-mm scintillation crystal pitch as an insert for clinical MRI scanners. With three exchangeable RF coils, the hybrid field of view has a maximum size of 160 mm × 96.6 mm (transaxial × axial). 0.1 ppm volume-root-mean-square B 0-homogeneity is kept within a spherical diameter of 96 mm (automatic volume shimming). Depending on the coil, MRI SNR is decreased by 13% or 5% by the PET system. PET count rates, energy resolution of 12.6% FWHM, and spatial resolution of 0.73 mm (3) (isometric volume resolution at isocenter) are not affected by applied MRI sequences. PET time resolution of 565 ps (FWHM) degraded by 6 ps during an EPI sequence. Timing-optimized settings yielded 260 ps time resolution. PET and MR images of a hot-rod phantom show no visible differences when the other modality was in operation and both resolve 0.8-mm rods. Versatility of the insert is shown by successfully combining multi-nuclei MRI ( (1)H/(19)F) with simultaneously measured PET ( (18) F-FDG). A longitudinal study of a tumor-bearing mouse verifies the operability, stability, and in vivo capabilities of the system. Cardiac- and respiratory-gated PET/MRI motion-capturing (CINE) images of the mouse heart demonstrate the advantage of simultaneous acquisition for temporal and spatial image registration. PMID:25935031

  20. Magnetic Resonance Imaging (MRI)

    Cancer.gov

    Different tissues (including tumors) emit a more or less intense signal based on their chemical makeup, so a picture of the body organs can be displayed on a computer screen. Much like CT scans, MRI can produce three-dimensional images of sections of the body, but MRI is sometimes more sensitive than CT scans for distinguishing soft tissues.

  1. Added value of diffusion-weighted MRI in detection of cervical cancer recurrence: comparison with morphologic and dynamic contrast-enhanced MRI sequences

    PubMed Central

    Lucas, Rita; Dias, João Lopes; Cunha, Teresa Margarida

    2015-01-01

    PURPOSE We aimed to evaluate the added value of diffusion-weighted imaging (DWI) to standard magnetic resonance imaging (MRI) for detecting post-treatment cervical cancer recurrence. The detection accuracy of T2-weighted (T2W) images was compared with that of T2W MRI combined with either dynamic contrast-enhanced (DCE) MRI or DWI. METHODS Thirty-eight women with clinically suspected uterine cervical cancer recurrence more than six months after treatment completion were examined with 1.5 Tesla MRI including T2W, DCE, and DWI sequences. Disease was confirmed histologically and correlated with MRI findings. The diagnostic performance of T2W imaging and its combination with either DCE or DWI were analyzed. Sensitivity, positive predictive value, and accuracy were calculated. RESULTS Thirty-six women had histologically proven recurrence. The accuracy for recurrence detection was 80% with T2W/DCE MRI and 92.1% with T2W/DWI. The addition of DCE sequences did not significantly improve the diagnostic ability of T2W imaging, and this sequence combination misclassified two patients as falsely positive and seven as falsely negative. The T2W/DWI combination revealed a positive predictive value of 100% and only three false negatives. CONCLUSION The addition of DWI to T2W sequences considerably improved the diagnostic ability of MRI. Our results support the inclusion of DWI in the initial MRI protocol for the detection of cervical cancer recurrence, leaving DCE sequences as an option for uncertain cases. PMID:26200480

  2. Removing ballistocardiogram (BCG) artifact from full-scalp EEG acquired inside the MR scanner with Orthogonal Matching Pursuit (OMP).

    PubMed

    Xia, Hongjing; Ruan, Dan; Cohen, Mark S

    2014-01-01

    Ballistocardiogram (BCG) artifact remains a major challenge that renders electroencephalographic (EEG) signals hard to interpret in simultaneous EEG and functional MRI (fMRI) data acquisition. Here, we propose an integrated learning and inference approach that takes advantage of a commercial high-density EEG cap, to estimate the BCG contribution in noisy EEG recordings from inside the MR scanner. To estimate reliably the full-scalp BCG artifacts, a near-optimal subset (20 out of 256) of channels first was identified using a modified recording setup. In subsequent recordings inside the MR scanner, BCG-only signal from this subset of channels was used to generate continuous estimates of the full-scalp BCG artifacts via inference, from which the intended EEG signal was recovered. The reconstruction of the EEG was performed with both a direct subtraction and an optimization scheme. We evaluated the performance on both synthetic and real contaminated recordings, and compared it to the benchmark Optimal Basis Set (OBS) method. In the challenging non-event-related-potential (non-ERP) EEG studies, our reconstruction can yield more than fourteen-fold improvement in reducing the normalized RMS error of EEG signals, compared to OBS. PMID:25120421

  3. Removing ballistocardiogram (BCG) artifact from full-scalp EEG acquired inside the MR scanner with Orthogonal Matching Pursuit (OMP)

    PubMed Central

    Xia, Hongjing; Ruan, Dan; Cohen, Mark S.

    2014-01-01

    Ballistocardiogram (BCG) artifact remains a major challenge that renders electroencephalographic (EEG) signals hard to interpret in simultaneous EEG and functional MRI (fMRI) data acquisition. Here, we propose an integrated learning and inference approach that takes advantage of a commercial high-density EEG cap, to estimate the BCG contribution in noisy EEG recordings from inside the MR scanner. To estimate reliably the full-scalp BCG artifacts, a near-optimal subset (20 out of 256) of channels first was identified using a modified recording setup. In subsequent recordings inside the MR scanner, BCG-only signal from this subset of channels was used to generate continuous estimates of the full-scalp BCG artifacts via inference, from which the intended EEG signal was recovered. The reconstruction of the EEG was performed with both a direct subtraction and an optimization scheme. We evaluated the performance on both synthetic and real contaminated recordings, and compared it to the benchmark Optimal Basis Set (OBS) method. In the challenging non-event-related-potential (non-ERP) EEG studies, our reconstruction can yield more than fourteen-fold improvement in reducing the normalized RMS error of EEG signals, compared to OBS. PMID:25120421

  4. Progress on detection of liquid explosives using ultra-low field MRI

    SciTech Connect

    Espy, Michelle A; Matlashov, Andrei N; Volegov, Petr L; Schuttz, Larry M; Baguisa, Shermiyah; Dunkerley, David; Magnelind, Per; Owens, Tuba; Sandin, Henrik; Urbaitis, Algis

    2010-01-01

    Nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) methods are widely used in medicine, chemistry and industry. Over the past several years there has been increasing interest in performing NMR and MRI in the ultra-low field (ULF) regime, with measurement field strengths of 10-100 microTesla and pre-polarization fields of 30-50 mTesla. The real-time signal-to-noise ratio for such measurements is about 100. Our group at LANL has built and demonstrated the performance of SQUID-based ULF NMR/MRI instrumentation for classification of materials and detection of liquid explosives via their relaxation properties measured at ULF, using T{sub 1}, and T{sub 2}, and T{sub 1} frequency dispersion. We are also beginning to investigate the performance of induction coils as sensors. Here we present recent progress on the applications of ULF MR to the detection of liquid explosives, in imaging and relaxometry.

  5. PET/MRI for Preoperative Planning in Patients with Soft Tissue Sarcoma: A Technical Report of Two Patients

    PubMed Central

    Loft, Annika; Jensen, Karl Erik; Daugaard, Søren; Petersen, Michael M.

    2013-01-01

    Clinical positron emission tomography (PET)/magnetic resonance imaging (MRI) acquisition protocols may improve the evaluation of soft tissue sarcomas (STS) prior to surgical planning. We examined two patients with lower extremity STS using a Siemens Biograph mMR PET/MRI scanner and the glucose analogue 18F-fluoro-deoxyglucose (FDG). We investigated clinically relevant tumor volumes and evaluated the relations to skeletal periosteum and nerve bundles. The patient scans suggest that FDG PET/MRI improved the edge detection, and invasion of tumor tissue into important adjacent anatomical structures can be evaluated. FDG PET/MRI also provided additional information compared to conventional Gadolinium enhanced MR imaging. The findings were proven by subsequent pathological examination of the resected tumor tissue. In the future, clinical FDG PET/MRI may be an important modality for preoperative planning, including radiation therapy planning in patients with STS. PMID:24368921

  6. PET/MRI for Preoperative Planning in Patients with Soft Tissue Sarcoma: A Technical Report of Two Patients.

    PubMed

    Loft, Annika; Jensen, Karl Erik; Löfgren, Johan; Daugaard, Søren; Petersen, Michael M

    2013-01-01

    Clinical positron emission tomography (PET)/magnetic resonance imaging (MRI) acquisition protocols may improve the evaluation of soft tissue sarcomas (STS) prior to surgical planning. We examined two patients with lower extremity STS using a Siemens Biograph mMR PET/MRI scanner and the glucose analogue 18F-fluoro-deoxyglucose (FDG). We investigated clinically relevant tumor volumes and evaluated the relations to skeletal periosteum and nerve bundles. The patient scans suggest that FDG PET/MRI improved the edge detection, and invasion of tumor tissue into important adjacent anatomical structures can be evaluated. FDG PET/MRI also provided additional information compared to conventional Gadolinium enhanced MR imaging. The findings were proven by subsequent pathological examination of the resected tumor tissue. In the future, clinical FDG PET/MRI may be an important modality for preoperative planning, including radiation therapy planning in patients with STS. PMID:24368921

  7. High field functional MRI.

    PubMed

    Di Salle, F; Esposito, F; Elefante, A; Scarabino, T; Volpicelli, A; Cirillo, S; Elefante, R; Seifritz, E

    2003-11-01

    Functional magnetic resonance imaging (fMRI) has become the most widely used approach for studying brain functions in humans. The rapid and widespread diffusion of fMRI has been favoured by the properties this technique presents, and particularly by its sensitivity in analysing brain functional phenomena and by the lack of biological invasiveness, resulting in an unprecedented and unparalleled flexibility of use. These properties of fMRI brought the functional examination of the brain within the reach of the whole neuroscience community and have appreciably stimulated the research on the functional processes of the living brain. Among the main features of fMRI, its spatial and temporal resolution represents clear advantages compared with the other methods of functional neuroimaging. In fact, the high spatial resolution of fMRI permits to produce more precise and better localised information, and its temporal resolution provides the potential of a better understanding of neural dynamics at the level of single functional areas and of the neural constituents of functional patterns. A fundamental possibility of improving spatial and temporal resolution without excessively degrading signal-to-noise ratio consists in the use of high magnetic field intensity fMRI units. Besides, high field units make the use of more demanding fMRI paradigms, like single trial event related studies, much more compatible with the need of a solid statistical evaluation. This has notably promoted the diffusion of high field MRI units for human studies throughout the world, with very high field MRI units, up to 8 T, working in a few research centres, and a larger number of MRI units with field intensity ranging between 3 and 5 T. PMID:14680904

  8. Magnetic resonance imaging (MRI) anatomy of the ovine lumbar spine.

    PubMed

    Nisolle, J F; Wang, X Q; Squélart, M; Hontoir, F; Kirschvink, N; Clegg, P; Vandeweerd, J M

    2014-06-01

    Although the ovine spine is a useful research model for intervertebral disc pathology and vertebral surgery, there is little peer-reviewed information regarding the MRI anatomy of the ovine spine. To describe the lumbar spine MRI anatomy, 10 lumbar segments of cadaver ewes were imaged by 1.5-Tesla MR. Sagittal and transverse sequences were performed in T1 and T2 weighting (T1W, T2W), and the images were compared to gross anatomic sagittal and transverse sections performed through frozen spines. MRI was able to define most anatomic structures of the ovine spine in a similar way as can be imaged in humans. In both T1W and T2W, the signals of ovine IVDs were similar to those observed in humans. Salient anatomic features were identified: (1) a 2- to 3-mm linear zone of hypersignal was noticed on both extremities of the vertebral body parallel to the vertebral plates in sagittal planes; (2) the tendon of the crura of the diaphragm appeared as a hypointense circular structure between hypaxial muscles and the aorta and caudal vena cava; (3) dorsal and ventral longitudinal ligaments and ligamentum flavum were poorly imaged; (4) no ilio-lumbar ligament was present; (5) the spinal cord ended between S1-S2 level, and the peripheral white matter and central grey matter were easily distinguished on T1W and T2W images. This study provides useful reference images to researchers working with ovine models. PMID:23668479

  9. David B. Comber Graduate Research Assistant

    E-print Network

    modalities such as ultrasound, X-ray fluoroscopy, and computed tomography. Providing excellent soft tissue, respectively. MRI-compatibility testing in a 3-Tesla closed- bore scanner has shown that the robot has limits for the scanner. These results demonstrate that pneumatic actuation is a promising solution

  10. Component based normalization method for rotating dual head PET scanner

    NASA Astrophysics Data System (ADS)

    Efthimiou, N.; Loudos, G.; Panayiotakis, G. S.

    2015-09-01

    Component based normalization is a well-established method to calculate correction factors for unbiased and reliable PET reconstruction. Several methods have been studied and validated for cylindrical PET scanners. In this work we adapted a method already presented for cylindrical scanners to rotating dual head PET scanners. The model included corrections for detector efficiency, axial and transaxial geometric effects, crystal interference and attenuation corrections. Results from a simulated realistic dual head PET showed that the adaptation is valid. The images are significantly improved in terms of homogeneity, resolution and background contribution.

  11. A general solution for the registration of optical multispectral scanners

    NASA Technical Reports Server (NTRS)

    Rader, M. L.

    1974-01-01

    The paper documents a general theory for registration (mapping) of data sets gathered by optical scanners such as the ERTS satellite MSS and the Skylab S-192 MSS. This solution is generally applicable to scanners which have rotating optics. Navigation data and ground control points are used in a statistically weighted adjustment based on a mathematical model of the dynamics of the spacecraft and the scanner system. This adjustment is very similar to the well known photogrammetric adjustments used in aerial mapping. Actual tests have been completed on NASA aircraft 24 channel MSS data, and the results are very encouraging.

  12. Design study for Thermal Infrared Multispectral Scanner (TIMS)

    NASA Technical Reports Server (NTRS)

    Stanich, C. G.; Osterwisch, F. G.; Szeles, D. M.; Houtman, W. H.

    1981-01-01

    The feasibility of dividing the 8-12 micrometer thermal infrared wavelength region into six spectral bands by an airborne line scanner system was investigated. By combining an existing scanner design with a 6 band spectrometer, a system for the remote sensing of Earth resources was developed. The elements in the spectrometer include an off axis reflective collimator, a reflective diffraction grating, a triplet germanium imaging lens, a photoconductive mercury cadmium telluride sensor array, and the mechanical assembly to hold these parts and maintain their optical alignment across a broad temperature range. The existing scanner design was modified to accept the new spectrometer and two field filling thermal reference sources.

  13. Validation of Radiocarpal Joint Contact Models Based On Images from a Clinical MRI Scanner

    E-print Network

    Johnson, Joshua

    2008-01-01

    result in shortening or misalignment of the distal radius, with damage to the median nerve that may ultimately lead to carpal tunnel syndrome. About 70% of carpal bone fractures occur at the scaphoid, and this fracture is most prominent in men between... common carpal instability syndrome known as scapholunate instability or radial perilunate instability. 1.2.2. Kienbock?s Disease Overloading of the lunate can lead to a disruption in blood supply resulting in a disorder known as Kienbock?s disease [17...

  14. Photon collider at TESLA: parameters and interaction region issues

    E-print Network

    Valery Telnov

    2001-01-04

    Photon colliders (gamma-gamma, gamma-e) are based on backward Compton scattering of laser light off the high energy electrons of linear colliders. Recent study has shown that the gamma-gamma luminosity in the high energy peak can reach 0.3--0.5 L (e+e-). Typical cross sections of interesting processes in gamma-gamma collisions are higher than those in e+e- collisions by about one order of magnitude, so the number of events in gamma-gamma collisions will be more than that in e+e- collisions. In this paper possible parameters of a photon collider at TESLA and a laser scheme are briefly discussed.

  15. Design and prototype fabrication of a 30 tesla cryogenic magnet

    NASA Technical Reports Server (NTRS)

    Prok, G. M.; Swanson, M. C.; Brown, G. V.

    1977-01-01

    A liquid neon cooled magnet was designed to produce 30 teslas in steady operation. To ensure the correctness of the heat transfer relationships used, supercritical neon heat transfer tests were made. Other tests made before the final design included tests on the effect of the magnetic field on pump motors, tensile shear tests on the cryogenic adhesives, and simulated flow studies for the coolant. The magnet will consist of two pairs of coils, cooled by forced convection of supercritical neon. Heat from the supercritical neon will be rejected through heat exchangers which are made of roll bonded copper panels and are submerged in a pool of saturated liquid neon. A partial mock up coil was wound to identify the tooling required to wind the magnet. This was followed by winding a prototype pair of coils. The prototype winding established procedures for fabricating the final magnet and revealed slight changes needed in the final design.

  16. Measuring Resonance Parameters of Heavy Higgs Bosons at TESLA

    E-print Network

    Niels Meyer

    2003-08-13

    This study investigates the potential of the TESLA Linear Collider for measuring resonance parameters of Higgs bosons beyond the mass range studied so far. The analysis is based on the reconstruction of events from the Higgsstrahlung process e+e- -> HZ. It is shown that the total width, the mass and the event rate for Higgs production can be measured from the mass spectrum in a model independent fit. Also, the branching ratios to W- and Z-bosons can be measured, assuming these are the only relevant Higgs decay modes. The simulation includes realistic detector effects and all relevant Standard Model background processes. Results are given for mH=200-320 GeV assuming 500 fb^-1 integrated luminosity at collision energies of 500 GeV.

  17. The NHMFL 60 tesla, 100 millisecond pulsed magnet

    SciTech Connect

    Boenig, H.J.; Campbell, L.J.; Rickel, D.G.; Rogers, J.D.; Schillig, J.B.; Sims, J.R. ); Pernambuco-Wise, P.; Schneider-Muntau, H.J. . National High Magnetic Field Lab.)

    1992-11-09

    Among the new facilities to be offered by the National Science Foundation through the National High Magnetic Field Laboratory (NHMFL) are pulsed fields that can only be achieved at a national user facility by virtue of their strength, duration, and volume. In particular, a 44 mm bore pulsed magnet giving a 60 tesla field for 100 ms is in the final design stage. This magnet will be powered by a 1.4 GW motor-generator at Los Alamos and is an important step toward proving design principles that will be needed for the higher field quasi-stationary pulsed magnets that this power source is capable of driving. This report will discuss specifications and parameters of this magnet.

  18. Report on the TESLA engineering study/review

    SciTech Connect

    C. Boffo et al.

    2002-07-18

    A team from Argonne National Lab, Cornell, Fermilab, Jefferson Lab, and SLAC has studied the TESLA TDR and its associated cost and manpower estimates, concentrating on the five largest cost sub-systems (Main Linac Modules, Main Linac RF Systems, Civil Engineering, Machine Infrastructure, and XFEL Incremental). These elements were concerned mainly with providing energy reach. We did not study the lower cost, but still technically challenging elements providing luminosity and physics capability, namely damping rings, beam delivery system, beam injection system, positron production, polarized beams, etc. The study did not attempt to validate the TDR cost estimates, but rather its purpose was to understand the technology and status of the large cost items, and the methodology by which their estimated cost was determined. In addition, topics of project oversight were studied.

  19. Design, performance and production of the Fermilab TESLA RF input couplers

    SciTech Connect

    Champion, M.

    1996-10-01

    The TeV Energy Superconducting Linear Accelerator (TESLA) requires as one of its technical components a radiofrequency (rf) input coupler that transfers 1.3 GHz rf energy from the rf distribution system to a nine-cell superconducting accelerating cavity operating at a temperature of 1.8 K. The input coupler design is driven by numerous design criteria, which result in a rather complicated implementation. The production of twelve input couplers for the TESLA Test Facility (TTF) is underway at Fermilab, with the first two couplers having been delivered late in 1995. This paper discusses the Fermilab TESLA rf input coupler design, recent test results, and production issues.

  20. A low cost MRI permanent magnet prototype

    NASA Astrophysics Data System (ADS)

    Esparza-Coss, Emilio; Cole, David M.

    1998-08-01

    Here we present the proceedings in designing and constructing a low cost, friendly use, Magnetic Resonance Imaging (MRI) prototype magnet; 55 cm×45 cm×30 cm in size scaleable to full body; with a C-shaped assembly to provide open access to the 10 cm C-gap; operational at 0.22 Tesla where the low field increments the tissue contrast; structured with methodically selected and strategically positioned permanent magnets to reach the required field homogeneity as well as to be practically free of maintenance; and having iron flux return to leave an extremely low fringe field. The magnetic flux is funneled through the iron and focused by carefully designed and finely machined iron pole faces of 8.9 cm radius to create a homogeneity of less than 20 parts per million (PPM), without shimming, in a roughly 1.3 cm by 2 cm main axes oval region. An image of an okra plant was taken to test its performance.

  1. A low cost MRI permanent magnet prototype

    SciTech Connect

    Esparza-Coss, Emilio; Cole, David M.

    1998-08-28

    Here we present the proceedings in designing and constructing a low cost, friendly use, Magnetic Resonance Imaging (MRI) prototype magnet; 55 cmx45 cmx30 cm in size scaleable to full body; with a C-shaped assembly to provide open access to the 10 cm C-gap; operational at 0.22 Tesla where the low field increments the tissue contrast; structured with methodically selected and strategically positioned permanent magnets to reach the required field homogeneity as well as to be practically free of maintenance; and having iron flux return to leave an extremely low fringe field. The magnetic flux is funneled through the iron and focused by carefully designed and finely machined iron pole faces of 8.9 cm radius to create a homogeneity of less than 20 parts per million (PPM), without shimming, in a roughly 1.3 cm by 2 cm main axes oval region. An image of an okra plant was taken to test its performance.

  2. LANDSAT-4 horizon scanner performance evaluation

    NASA Technical Reports Server (NTRS)

    Bilanow, S.; Chen, L. C.; Davis, W. M.; Stanley, J. P.

    1984-01-01

    Representative data spans covering a little more than a year since the LANDSAT-4 launch were analyzed to evaluate the flight performance of the satellite's horizon scanner. High frequency noise was filtered out by 128-point averaging. The effects of Earth oblateness and spacecraft altitude variations are modeled, and residual systematic errors are analyzed. A model for the predicted radiance effects is compared with the flight data and deficiencies in the radiance effects modeling are noted. Correction coefficients are provided for a finite Fourier series representation of the systematic errors in the data. Analysis of the seasonal dependence of the coefficients indicates the effects of some early mission problems with the reference attitudes which were computed by the onboard computer using star trackers and gyro data. The effects of sun and moon interference, unexplained anomalies in the data, and sensor noise characteristics and their power spectrum are described. The variability of full orbit data averages is shown. Plots of the sensor data for all the available data spans are included.

  3. Polarization characteristics of an altazimuth sky scanner.

    PubMed

    Garrison, L M; Blaszczak, Z; Green, A E

    1980-05-01

    A theoretical description of the polarization characteristics of an altazimuth sky scanner optical system is presented based on Mueller-Stokes calculus. The theoretical results are verified experimentally. This unique computer-driven optical system was designed to perform laboratory studies of skylight as well as celestial objects during day or night and has the advantage that there are no space or weight limitations in the use of additional apparatus. The two parallel 45 degrees tilt mirrors that bring the light from any point of the sky down to the laboratory introduce some amount of intrinsic polarization, however. For that reason proper interpretation of the raw data requires a theoretical understanding of the polarization features of the instrument and accurate experimental determination of the elements of the Mueller-Stokes matrix describing the polarizing and depolarizing action of the system. This is especially true in the case of skylight intensity and polarization studies. A comparison of the theoretical and experimental results is given with an indication of the possible reasons for slight differences found between them. PMID:20221052

  4. Fast and High Accuracy Wire Scanner

    E-print Network

    Koujili, M; Koopman, J; Ramos, D; Sapinski, M; De Freitas, J; Ait Amira, Y; Djerdir, A

    2009-01-01

    Scanning of a high intensity particle beam imposes challenging requirements on a Wire Scanner system. It is expected to reach a scanning speed of 20 m.s-1 with a position accuracy of the order of 1 ?m. In addition a timing accuracy better than 1 millisecond is needed. The adopted solution consists of a fork holding a wire rotating by a maximum of 200°. Fork, rotor and angular position sensor are mounted on the same axis and located in a chamber connected to the beam vacuum. The requirements imply the design of a system with extremely low vibration, vacuum compatibility, radiation and temperature tolerance. The adopted solution consists of a rotary brushless synchronous motor with the permanent magnet rotor installed inside of the vacuum chamber and the stator installed outside. The accurate position sensor will be mounted on the rotary shaft inside of the vacuum chamber, has to resist a bake-out temperature of 200°C and ionizing radiation up to a dozen of kGy/year. A digital feedback controller allows maxi...

  5. Focal plane scanner with reciprocating spatial window

    NASA Technical Reports Server (NTRS)

    Mao, Chengye (Inventor)

    2000-01-01

    A focal plane scanner having a front objective lens, a spatial window for selectively passing a portion of the image therethrough, and a CCD array for receiving the passed portion of the image. All embodiments have a common feature whereby the spatial window and CCD array are mounted for simultaneous relative reciprocating movement with respect to the front objective lens, and the spatial window is mounted within the focal plane of the front objective. In a first embodiment, the spatial window is a slit and the CCD array is one-dimensional, and successive rows of the image in the focal plane of the front objective lens are passed to the CCD array by an image relay lens interposed between the slit and the CCD array. In a second embodiment, the spatial window is a slit, the CCD array is two-dimensional, and a prism-grating-prism optical spectrometer is interposed between the slit and the CCD array so as to cause the scanned row to be split into a plurality of spectral separations onto the CCD array. In a third embodiment, the CCD array is two-dimensional and the spatial window is a rectangular linear variable filter (LVF) window, so as to cause the scanned rows impinging on the LVF to be bandpass filtered into spectral components onto the CCD array through an image relay lens interposed between the LVF and the CCD array.

  6. Fingerprint scanner using digital interference holography

    NASA Astrophysics Data System (ADS)

    Potcoava, Mariana C.; Kim, Myung K.

    2009-05-01

    We present three-dimensional imaging of artificial fingerprints using the Digital Interference Holography (DIH) scanner. DIH is based on a multiwavelength optical sensing technique that can be used to build holographically the three dimensional structure of the fingerprints. Many holograms (~50) were acquired by a CCD camera by scanning a range of wavelengths. Each hologram was numerically reconstructed and then superposed yielding tomographic images which represented the artificial fingerprint structure. The axial resolution is a parameter that depends on the wavelength scanning range and is about 5 ?m. The light source was a solid state pumped dye laser with a tunable wavelength range of 550 nm to 600 nm. Holograms were captured by a monochrome CCD camera (Sony XC-ST50, with 780 × 640 pixels and a pixel size of ~ 9 ?m). An image acquisition board (NI IMAQ PCI-1407) digitized the image with 8 bit resolution. All software was developed in house with the NI LabView. We used a Michelson interferometer in a backscattering geometry and the reconstruction of the optical field was done using the angular spectrum algorithm. Our goal is to identify and quantify, Level 1 (pattern), Level 2 (minutia points), and Level 3 (ridge contours) features from the amplitude images, using the DIH technique and fingerprints recognition. The results could be used in the two fingerprint matching phases, identification and verification.

  7. MRI in perianal fistulae

    PubMed Central

    Khera, Pushpinder S; Badawi, Hesham A; Afifi, Ahmed H

    2010-01-01

    MRI has become the method of choice for evaluating perianal fistulae due to its ability to display the anatomy of the sphincter muscles orthogonally, with good contrast resolution. In this article we give an outline of the classification of perianal fistulae and present a pictorial assay of sphincter anatomy and the MRI findings in perianal fistulae. This study is based on a retrospective analysis of 43 patients with a clinical diagnosis of perianal fistula. MRI revealed a total of 44 fistulae in 35 patients; eight patients had only perianal sinuses. PMID:20351996

  8. Determination of noise equivalent reflectance for a multispectral scanner: A scanner sensitivity study

    NASA Technical Reports Server (NTRS)

    Gibbons, D. E.; Richard, R. R.

    1979-01-01

    The methods used to calculate the sensitivity parameter noise equivalent reflectance of a remote-sensing scanner are explored, and the results are compared with values measured over calibrated test sites. Data were acquired on four occasions covering a span of 4 years and providing various atmospheric conditions. One of the calculated values was based on assumed atmospheric conditions, whereas two others were based on atmospheric models. Results indicate that the assumed atmospheric conditions provide useful answers adequate for many purposes. A nomograph was developed to indicate sensitivity variations due to geographic location, time of day, and season.

  9. Agricultural Applications and Requirements for Thermal Infrared Scanners

    NASA Technical Reports Server (NTRS)

    Wiegand, C. L.

    1971-01-01

    Some of the applications of thermal scanner data in agriculture are presented along with illustrations of some of the factors affecting the temperature of plants, soil, and water. Examples of thermal imagery are included.

  10. 21 CFR 892.1300 - Nuclear rectilinear scanner.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1300 Nuclear rectilinear scanner. (a) Identification. A nuclear...

  11. 21 CFR 892.1330 - Nuclear whole body scanner.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1330 Nuclear whole body scanner. (a) Identification. A nuclear...

  12. High-performance horizontal side scanner using holographic technology

    NASA Astrophysics Data System (ADS)

    Cheng, Charles C. K.

    1998-06-01

    A new holographic technique has been used to make a compact, accurate and reliable POS scanner. The holo-window technology permits compact POS scanner optical scanning in horizontal plan while maintaining excellent performance in changing the scan direction, equalizing the scan velocity and collecting the signal light. The holo-window design and fabrication in the holographic optical element (HOE) for such a compact POS scanner are described in this paper. Additionally this new horizontal side scanning possesses large depth of field (greater than 10 inches), allows the grocery items to be scanned horizontally thus eliminating the commonly experienced carpal tunnel syndrome (CTS) hand injuries of the checkers. This newly designed POS scanner has been recognized by industry as the standard for the future POS scanning configuration.

  13. The WISE telescope and scanner: design choices and hardware results

    NASA Astrophysics Data System (ADS)

    Sampath, Deepak; Akerstrom, Alan; Barry, Mark; Guregian, Jim; Schwalm, Mark; Ugolini, Virginia

    2010-08-01

    L-3 Integrated Optical Systems/SSG designed and built the telescope, aft imager, and scanner for the Widefield Infrared Survey Explorer (WISE) under subcontract to Utah State University/Space Dynamics Laboratory. The WISE mission and collection scheme imparted several driving requirements on the telescope and scanner, including the need for low cost implementation, <11 Kelvin operation, and the need to back-scan by half a degree during detector integration in order to freeze the line of sight on the sky as the spacecraft pitched in orbit. These requirements led to several unique design and implementation choices for the telescope and scanner. In this paper we highlight several of those design choices as well as lessons learned from the telescope and scanner design, fabrication, and test. WISE, a NASA MIDEX mission within the Explorers program, was managed by the Jet Propulsion Laboratory. WISE launched on December 14, 2009 and is currently operating successfully.

  14. Geometric theory of horizon scanners. [onboard spacecraft for attitude determination

    NASA Technical Reports Server (NTRS)

    Fang, B. T.

    1975-01-01

    The note presents a general geometrical theory of spacecraft horizon scanners for the purpose of actual attitude determination, as opposed to just attitude stabilization. Analysis is carried out in terms of the scanning angles and three sets of auxiliary axes: the scanner axes, the nonscanning axes, and the orbital axes. Euler angles (yaw, pitch, and roll) transform the orbital axes to the nonscanning axes, and spacecraft attitude is determined directly from the attitude of the nonscanning axes relative to the orbital axes. In most applications the scanning speed is fast, so that it can be assumed that the attitude of the spacecraft does not change during a scan; however, a perturbation analysis is provided for errors committed by neglecting attitude changes. The analysis is valid for all types of scanners; in addition, the case where two scanners with different half-cone angles are used is considered.

  15. Experiments and simulations on a metamaterial based ultrasonic scanner

    E-print Network

    Hizir, Fahri Erinc

    2013-01-01

    Fingerprint scanning is one form of biometrics used to identify individuals. Ultrasonic fingerprint scanners use acoustic waves to obtain the fingerprint image and their performance is invariant to the surface conditions ...

  16. Ultrasonic recording scanner used for nondestructive weld inspection

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Portable ultrasonic recording scanner is used for nondestructive inspection of welds. It is adaptable to continuous operation in one direction while maintaining oscillatory motion at a right angle to this direction. The scanning speed and oscillation frequency are independently adjustable.

  17. Superwide-angle coverage code-multiplexed optical scanner.

    PubMed

    Riza, Nabeel A; Arain, Muzammil A

    2004-05-01

    A superwide-angle coverage code-multiplexed optical scanner is presented that has the potential to provide 4 pi-sr coverage. As a proof-of-concept experiment, an angular scan range of 288 degrees for six randomly distributed beams is demonstrated. The proposed scanner achieves its superwide coverage by exploiting a combination of phase-encoded transmission and reflection holography within an in-line hologram recording-retrieval geometry. The basic scanner unit consists of one phase-only digital mode spatial light modulator for code entry (i.e., beam scan control) and a holographic material from which we obtained what we believe is the first-of-a-kind extremely wide coverage, low component count, high speed (e.g., microsecond domain), and large aperture (e.g., > 1-cm diameter) scanner. PMID:15143655

  18. Scanners and drillers: Characterizing expert visual search through volumetric images

    E-print Network

    Francine Jacobson $ Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA Steven E to a small region of the lung while quickly scrolling through depth. Scanners move more slowly through depth

  19. NOAA-9 Earth Radiation Budget Experiment (ERBE) scanner offsets determination

    NASA Technical Reports Server (NTRS)

    Avis, Lee M.; Paden, Jack; Lee, Robert B., III; Pandey, Dhirendra K.; Stassi, Joseph C.; Wilson, Robert S.; Tolson, Carol J.; Bolden, William C.

    1994-01-01

    The Earth Radiation Budget Experiment (ERBE) instruments are designed to measure the components of the radiative exchange between the Sun, Earth and space. ERBE is comprised of three spacecraft, each carrying a nearly identical set of radiometers: a three-channel narrow-field-of-view scanner, a two-channel wide-field-of-view (limb-to-limb) non-scanning radiometer, a two-channel medium field-of view (1000 km) non-scanning radiometer, and a solar monitor. Ground testing showed the scanners to be susceptible to self-generated and externally generated electromagnetic noise. This paper describes the pre-launch corrective measures taken and the post-launch corrections to the NOAA-9 scanner data. The NOAA-9 scanner has met the mission objectives in accuracy and precision, in part because of the pre-launch reductions of and post-launch data corrections for the electromagnetic noise.

  20. Best Current Practice for Obtaining High Quality EEG Data During Simultaneous fMRI

    PubMed Central

    Mullinger, Karen J.; Castellone, Pierluigi; Bowtell, Richard

    2013-01-01

    Simultaneous EEG-fMRI allows the excellent temporal resolution of EEG to be combined with the high spatial accuracy of fMRI. The data from these two modalities can be combined in a number of ways, but all rely on the acquisition of high quality EEG and fMRI data. EEG data acquired during simultaneous fMRI are affected by several artifacts, including the gradient artefact (due to the changing magnetic field gradients required for fMRI), the pulse artefact (linked to the cardiac cycle) and movement artifacts (resulting from movements in the strong magnetic field of the scanner, and muscle activity). Post-processing methods for successfully correcting the gradient and pulse artifacts require a number of criteria to be satisfied during data acquisition. Minimizing head motion during EEG-fMRI is also imperative for limiting the generation of artifacts. Interactions between the radio frequency (RF) pulses required for MRI and the EEG hardware may occur and can cause heating. This is only a significant risk if safety guidelines are not satisfied. Hardware design and set-up, as well as careful selection of which MR sequences are run with the EEG hardware present must therefore be considered. The above issues highlight the importance of the choice of the experimental protocol employed when performing a simultaneous EEG-fMRI experiment. Based on previous research we describe an optimal experimental set-up. This provides high quality EEG data during simultaneous fMRI when using commercial EEG and fMRI systems, with safety risks to the subject minimized. We demonstrate this set-up in an EEG-fMRI experiment using a simple visual stimulus. However, much more complex stimuli can be used. Here we show the EEG-fMRI set-up using a Brain Products GmbH (Gilching, Germany) MRplus, 32 channel EEG system in conjunction with a Philips Achieva (Best, Netherlands) 3T MR scanner, although many of the techniques are transferable to other systems. PMID:23770804