Sample records for tetrachloroethylene toluene trichloroethylene

  1. Dose-excretion relationship in tetrachloroethylene-exposed workers and the effect of tetrachloroethylene co-exposure on trichloroethylene metabolism

    SciTech Connect

    Seiji, K.; Inoue, O.; Jin, C.; Liu, Y.T.; Cai, S.X.; Ohashi, M.; Watanabe, T.; Nakatsuka, H.; Kawai, T.; Ikeda, M. (Tohoku Univ. School of Medicine, Sendai (Japan))

    1989-01-01

    Personal monitoring of 8-hour time-weighted average intensity of exposure with diffuse samplers and analysis of shift-end urine for total trichloro-compounds (TTC) and other metabolites were conducted in two groups of workers in China, one (121 subjects) exposed to tetrachloroethylene (TETRA) alone, and the other (38 subjects) exposed to a mixture of TETRA and trichloroethylene (TRI). Urinalysis was also performed on samples from 103 non-exposed controls. A linear exposure-excretion relationship could be observed in both groups of workers. Comparison of these results with those of Japanese TETRA-workers suggested the presence of ethnic difference in TETRA metabolism. Urinary metabolite levels were markedly lower in the mixed (TETRA + TRI) exposure group as compared to previous findings in a group exposed to TRI alone. The observation indicates that metabolism of TRI is suppressed by the co-exposure to TETRA in humans.

  2. Use of Mini-Sprinklers to Strip Trichloroethylene and Tetrachloroethylene from Contaminated Ground Water.

    SciTech Connect

    Brerisford, Yvette, C.; Bush, Parshall, B.; Blake, John, I.; Bayer, Cassandra L.

    2003-01-01

    Berisford, Y.C., P.B. Bush, J.I. Blake, and C.L. Bayer. 2003. Use of mini-sprinklers to strip trichloroethylene and tetrachloroethylene from contaminated ground water. J. Env. Qual. 32:801-815. Three low-volume mini-sprinklers were tested for their efficacy to strip trichloroethylene (TCE) and tetrachloroethylene (PCE) from water. Deionized water spiked with TCE and PCE was pumped through a mini-sprinkler supported on top of a 1.8-m-tall. Water was collected in collection vessels at 0.61 and 1.22 m above the ground on support columns that were spaced at 0.61-m intervals from the riser base, and samples were composited per height and distance from the riser. Overall, air-stripping reduced dissolved concentrations of TCE and PCE by 99.1 to 100 and 96.9 to 100%, respectively. Mini-sprinklers offer the advantages of (i) easy setup in series that can be used on practically any terrain; (ii) operation over a long period of time that does not threaten aquifer depletion; (iii) use in small or confined aquifers in which the capacity is too low to support large irrigation or pumping systems; and (iv) use in forests in which the small, low-impact droplets of the mini-sprinklers do not damage bark and in which trees can help manage (via evapotransporation) excess waste water.

  3. ADVANCED OXIDATION PROCESSES FOR TREATING GROUNDWATER CONTAMINATED WITH TCE (TRICHLOROETHYLENE) AND PCE (TETRACHLOROETHYLENE): LABORATORY STUDIES (JOURNAL VERSION)

    EPA Science Inventory

    Oxidation of trichloroethylene (TCE) and tetrachloroethylene (PCE) with various dosages of ozone or ozone plus hydrogen peroxide was studied in laboratory experiments. The results show that hydrogen peroxide accelerates the oxidation of TCE and PCE by ozone. At peroxide-to-ozone ...

  4. Excretion of organic chlorine compounds in the urine of persons exposed to vapours of trichloroethylene and tetrachloroethylene

    PubMed Central

    Ogata, Masana; Takatsuka, Yoshiko; Tomokuni, Katsumaro

    1971-01-01

    Ogata, M., Yoshiko, T., and Tomokuni, K. (1971).Brit. J. industr. Med.,28, 386-391. Excretion of organic chlorine compounds in the urine of persons exposed to vapours of trichloroethylene and tetrachloroethylene. Male volunteers were exposed to 170 p.p.m. of trichloroethylene vapour either for 3 hours or for 7 hours with one break of 1 hour; or to 87 p.p.m. of tetrachloroethylene vapour for 3 hours. Urine was collected frequently up to 100 hours after the start of exposure, and was analysed for trichloroethanol and trichloroacetic acid. After trichloroethylene exposure, trichloroethanol was excreted most rapidly shortly after exposure ceased, and trichloroacetic acid most rapidly 42 to 69 hours after exposure ceased. Total recoveries of trichloroethylene inhaled, up to 100 hours, were: trichloroethanol, after 3 hours' exposure, 53·1%; after 7 hours' exposure, 44%; trichloroacetic acid, similarly: 21·9% and 18·1%. The effects of exposure on blood pressure, pulse rate, flicker value, and reaction time were measured. The diastolic blood pressure was decreased significantly after 3 hours' exposure to 170 p.p.m. trichloroethylene. After tetrachloroethylene exposure, in 67 hours trichloroacetic acid was excreted to 1·8% tetrachloroethylene retained and an unknown chloride equivalent to 1·0%. Urine samples from 10 workers in an automobile parts factory were analysed for trichloroethanol and trichloroacetic acid. Trichloroethanol concentrations in the urine taken after work were higher than in the urine taken before work while for trichloroacetic acid the concentrations were reversed, due to the difference in the time course of excretion. The urinary levels of trichloroethanol, trichloroacetic acid, and total trichloro compounds were almost proportional to the environmental concentration of trichloroethylene. PMID:5124840

  5. Kinetics of trichloroethylene cometabolism and toluene biodegradation: Model application to soil batch experiments

    SciTech Connect

    El-Farhan, Y.H.; Scow, K.M.; Fan, S.; Rolston, D.E.

    2000-06-01

    Trichloroethylene (TCE) biodegradation in soil under aerobic conditions requires the presence of another compound, such as toluene, to support growth of microbial populations and enzyme induction. The biodegradation kinetics of TCE and toluene were examined by conducting three groups of experiments in soil: toluene only, toluene combined with low TCE concentrations, and toluene with TCE concentrations similar to or higher than toluene. The biodegradation of TCE and toluene and their interrelationships were modeled using a combination of several biodegradation functions. In the model, the pollutants were described as existing in the solid, liquid, and gas phases of soil, with biodegradation occurring only in the liquid phase. The distribution of the chemicals between the solid and liquid phase was described by a linear sorption isotherm, whereas liquid-vapor partitioning was described by Henry's law. Results from 12 experiments with toluene only could be described by a single set of kinetic parameters. The same set of parameters could describe toluene degradation in 10 experiments where low TCE concentrations were present. From these 10 experiments a set of parameters describing TCE cometabolism induced by toluene also was obtained. The complete set of parameters was used to describe the biodegradation of both compounds in 15 additional experiments, where significant TCE toxicity and inhibition effects were expected. Toluene parameters were similar to values reported for pure culture systems. Parameters describing the interaction of TCE with toluene and biomass were different from reported values for pure cultures, suggesting that the presence of soil may have affected the cometabolic ability of the indigenous soil microbial populations.

  6. Contrasting carbon isotope fractionation during biodegradation of trichloroethylene and toluene: Implications for intrinsic bioremediation

    Microsoft Academic Search

    B. Sherwood Lollar; G. F. Slater; J. Ahad; B. Sleep; J. Spivack; M. Brennan; P. MacKenzie

    1999-01-01

    In experiments involving anaerobic biodegradation of trichloroethylene (TCE), ?13C values for residual TCE changed from ?30.4‰ to values more enriched than ?16‰. All data exhibit a consistent correlation between ?13C value of the residual TCE and the extent of biodegradation of TCE, described by a fractionation factor (?) of 0.9929. In contrast, during aerobic biodegradation of toluene by two separate

  7. Effect of Trichloroethylene on the Competitive Behavior of Toluene-Degrading Bacteria

    PubMed Central

    Mars, Astrid E.; Prins, Gjalt T.; Wietzes, Pieter; de Koning, Wim; Janssen, Dick B.

    1998-01-01

    The influence of trichloroethylene (TCE) on a mixed culture of four different toluene-degrading bacterial strains (Pseudomonas putida mt-2, P. putida F1, P. putida GJ31, and Burkholderia cepacia G4) was studied with a fed-batch culture. The strains were competing for toluene, which was added at a very low rate (31 nmol mg of cells [dry weight]?1 h?1). All four strains were maintained in the mixed culture at comparable numbers when TCE was absent. After the start of the addition of TCE, the viabilities of B. cepacia G4 and P. putida F1 and GJ31 decreased 50- to 1,000-fold in 1 month. These bacteria can degrade TCE, although at considerably different rates. P. putida mt-2, which did not degrade TCE, became the dominant organism. Kinetic analysis showed that the presence of TCE caused up to a ninefold reduction in the affinity for toluene of the three disappearing strains, indicating that inhibition of toluene degradation by TCE occurred. While P. putida mt-2 took over the culture, mutants of this strain which could no longer grow on p-xylene arose. Most of them had less or no meta-cleavage activity and were able to grow on toluene with a higher growth rate. The results indicate that cometabolic degradation of TCE has a negative effect on the maintenance and competitive behavior of toluene-utilizing organisms that transform TCE. PMID:16349481

  8. Toluene-Degrading Bacteria Are Chemotactic towards the Environmental Pollutants Benzene, Toluene, and Trichloroethylene

    Microsoft Academic Search

    REBECCA E. PARALES; JAYNA L. DITTY; CAROLINE S. HARWOOD

    2000-01-01

    The bioremediation of polluted groundwater and toxic waste sites requires that bacteria come into close physical contact with pollutants. This can be accomplished by chemotaxis. Five motile strains of bacteria that use five different pathways to degrade toluene were tested for their ability to detect and swim towards this pollutant. Three of the five strains (Pseudomonas putida F1, Ralstonia pickettii

  9. Degradation of Toluene and Trichloroethylene by Burkholderia cepacia G4 in Growth-Limited Fed-Batch Culture

    PubMed Central

    Mars, A. E.; Houwing, J.; Dolfing, J.; Janssen, D. B.

    1996-01-01

    Burkholderia (Pseudomonas) cepacia G4 was cultivated in a fed-batch bioreactor on either toluene or toluene plus trichloroethylene (TCE). The culture was allowed to reach a constant cell density under conditions in which the amount of toluene supplied equals the maintenance energy demand of the culture. Compared with toluene only, the presence of TCE at a toluene/TCE ratio of 2.3 caused a fourfold increase in the specific maintenance requirement for toluene from 22 to 94 nmol mg of cells (dry weight)(sup-1) h(sup-1). During a period of 3 weeks, approximately 65% of the incoming TCE was stably converted to unidentified products from which all three chlorine atoms were liberated. When toluene was subsequently omitted from the culture feed while TCE addition continued, mutants which were no longer able to grow on toluene or to degrade TCE appeared. These mutants were also unable to grow on phenol or m- or o-cresol but were still able to grow on catechol and benzoate. Plasmid analysis showed that the mutants had lost the plasmid involved in toluene monooxygenase formation (pTOM). Thus, although strain G4 is much less sensitive to TCE toxicity than methanotrophs, deleterious effects may still occur, namely, an increased maintenance energy demand in the presence of toluene and plasmid loss when no toluene is added. PMID:16535277

  10. Oxidation of trichloroethylene, toluene, and ethanol vapors by a partially saturated permeable reactive barrier

    NASA Astrophysics Data System (ADS)

    Mahmoodlu, Mojtaba G.; Hassanizadeh, S. Majid; Hartog, Niels; Raoof, Amir

    2014-08-01

    The mitigation of volatile organic compound (VOC) vapors in the unsaturated zone largely relies on the active removal of vapor by ventilation. In this study we considered an alternative method involving the use of solid potassium permanganate to create a horizontal permeable reactive barrier for oxidizing VOC vapors. Column experiments were carried out to investigate the oxidation of trichloroethylene (TCE), toluene, and ethanol vapors using a partially saturated mixture of potassium permanganate and sand grains. Results showed a significant removal of VOC vapors due to the oxidation. We found that water saturation has a major effect on the removal capacity of the permeable reactive layer. We observed a high removal efficiency and reactivity of potassium permanganate for all target compounds at the highest water saturation (Sw = 0.6). A change in pH within the reactive layer reduced oxidation rate of VOCs. The use of carbonate minerals increased the reactivity of potassium permanganate during the oxidation of TCE vapor by buffering the pH. Reactive transport of VOC vapors diffusing through the permeable reactive layer was modeled, including the pH effect on the oxidation rates. The model accurately described the observed breakthrough curve of TCE and toluene vapors in the headspace of the column. However, miscibility of ethanol in water in combination with produced water during oxidation made the modeling results less accurate for ethanol. A linear relationship was found between total oxidized mass of VOC vapors per unit volume of permeable reactive layer and initial water saturation. This behavior indicates that pH changes control the overall reactivity and longevity of the permeable reactive layer during oxidation of VOCs. The results suggest that field application of a horizontal permeable reactive barrier can be a viable technology against upward migration of VOC vapors through the unsaturated zone.

  11. Oxidation of trichloroethylene, 1,1-dichloroethylene, and chloroform by toluene/o-xylene monooxygenase from Pseudomonas stutzeri OX1

    SciTech Connect

    Chauhan, S.; Wood, T.K. [Univ. of California, Irvine, CA (United States). Dept. of Chemical and Biochemical Engineering; Barbieri, P. [Univ. degli Studi di Milano, Milan (Italy). Dept. di Genetica e di Biologia dei Microrganismi

    1998-08-01

    Toluene/o-xylene monooxygenase (ToMO) from Pseudomonas stutzeri OX1, which oxidizes toluene and o-xylene, was examined for its ability to degrade the environmental pollutants trichloroethylene (TCE), 1,1-dichloroethylene (1,1-DCE), cis-1,2-DCE, trans-1,2-DCE, chloroform, dichloromethane, phenol, 2,4-dichlorophenol, 2,4,5-trichlorophenol, 2,4,6-trichlorophenol, 2,3,5,6-tetrachlorophenol, and 2,3,4,5,6-pentachlorophenol. Escherichia coli JM109 that expressed ToMO from genes on plasmid pBZ1260 under control of the lac promoter degraded TCE, 1,1-DCE, and chloroform at initial rates of 3.1, 3.6, and 1.6 nmol, respectively. Stoichiometric amounts of chloride release were seen, indicating mineralization. Thus, the substrate range of ToMO is extended to include aliphatic chlorinated compounds.

  12. Activity-Dependent Enzymatic Assay for the Detection of Toluene-Oxidizing Bacteria Capable of Trichloroethylene Degradation

    NASA Astrophysics Data System (ADS)

    Kauffman, M. E.; Kauffman, M. E.; Keener, W. K.; Watwood, M. E.; Lehman, R. M.

    2001-12-01

    Toluene-oxidizing bacteria produce enzymes that cometabolically degrade trichloroethylene (TCE). These inducible enzymes are produced only in the presence of certain aromatic substrates such as toluene or phenol. Recent laboratory studies have utilized analog chemical substrates to identify production of bacterial enzymes capable of degrading trichloroethylene. These analog substrates produce chromogenic and/or fluorescent products when biotransformed by the enzymes of interest. In this study, 3-hydroxyphenylacetylene (3-HPA) was identified as an activity-dependent enzymatic probe for the detection of three of the four known toluene oxygenase enzymes capable of TCE degradation. Laboratory studies were conducted using pure cultures of Burkholderia cepacia G4, Burkholderia pickettii PKO1, and Pseudomonas putida F1. Cell cultures grown on lactate (non-enzyme inducing) or lactate and toluene (inducing) were trapped trapped on black polycarbonate filters, exposed to 3-HPA, and examined for fluorescence using an epifluorescent microscope. Additionally, B. cepacia G4 cells were grown under the same conditions, but in the presence of mineral and basalt specimens to allow for bacterial attachment. The specimens were then exposed to 3-HPA and examined under an epifluorescent microscope. Our results demonstrate that cells induced for the production of oxygenase enzymes, both unattached and attached, are able to transform 3-HPA to a fluorescent product, although cells attached to geologic materials, such as basalt, take substantially longer to transform the probe. Cells grown under non-inducing conditions do not transform the probe, regardless of their attachment status. Additionally, well water samples taken from a TCE-contaminated aquifer were successfully assayed using the 3-HPA enzymatic probe. The development of this enzyme activity-dependent enzymatic assay provides a fast and reliable method to assess the potential for TCE and aromatic contaminant bioremediation.

  13. Cometabolic degradation of trichloroethylene by Pseudomonas cepacia G4 in a chemostat with toluene as the primary substrate.

    PubMed Central

    Landa, A S; Sipkema, E M; Weijma, J; Beenackers, A A; Dolfing, J; Janssen, D B

    1994-01-01

    Pseudomonas cepacia G4 is capable of cometabolic degradation of trichloroethylene (TCE) if the organism is grown on certain aromatic compounds. To obtain more insight into the kinetics of TCE degradation and the effect of TCE transformation products, we have investigated the simultaneous conversion of toluene and TCE in steady-state continuous culture. The organism was grown in a chemostat with toluene as the carbon and energy source at a range of volumetric TCE loading rates, up to 330 mumol/liter/h. The specific TCE degradation activity of the cells and the volumetric activity increased, but the efficiency of TCE conversion dropped when the TCE loading was elevated from 7 to 330 mumol/liter/h. At TCE loading rates of up to 145 mumol/liter/h, the specific toluene conversion rate and the molar growth yield of the cells were not affected by the presence of TCE. The response of the system to varying TCE loading rates was accurately described by a mathematical model based on Michaelis-Menten kinetics and competitive inhibition. A high load of 3,400 mumol of TCE per liter per h for 12 h caused inhibition of toluene and TCE conversion, but reduction of the TCE load to the original nontoxic level resulted in complete recovery of the system within 2 days. These results show that P. cepacia can stably and continuously degrade toluene and TCE simultaneously in a single-reactor system without biomass retention and that the organism is more resistant to high concentrations and shock loadings of TCE than Methylosinus trichosporium OB3b. PMID:7524444

  14. BIOTRANSFORMATION OF TRICHLOROETHYLENE IN SOIL

    EPA Science Inventory

    The organic contaminants that are most commonly detected in groundwater are low-molecular-weight, chlorinated aliphatic hydrocarbons such as trichloroethylene (TCE), tetrachloroethylene (PCE), 1,1,1-trichloroethane, carbon tetrachloride, and chloroform. The authors exposed unsatu...

  15. Modeling trichloroethylene degradation by a recombinant pseudomonad expressing toluene ortho-monooxygenase in a fixed-film bioreactor

    SciTech Connect

    Sun, A.K.; Hong, J.; Wood, T.K. [Univ. of California, Irvine, CA (United States). Dept. of Chemical and Biochemical Engineering] [Univ. of California, Irvine, CA (United States). Dept. of Chemical and Biochemical Engineering

    1998-07-05

    Burkholderia cepacia PR1{sub 23}(TOM{sub 23C}), expressing constitutively the TCE-degrading enzyme toluene ortho-monooxygenase (Tom), was immobilized on SIRAN{trademark} glass beads in a biofilter for the degradation and mineralization of gas-phase trichloroethylene (TCE). To interpret the experimental results, a mathematical model has been developed which includes axial dispersion, convection, film mass-transfer, and biodegradation coupled with deactivation of the TCE-degrading enzyme. Parameters used for numerical simulation were determined from either independent experiments or values reported in the literature. The model was compared with the experimental data, and there was good agreement between the predicted and measured TCE breakthrough curves. The simulations indicated that TCE degradation in the biofilter was not limited by mass transfer of TCE or oxygen from the gas phase to the liquid/biofilm phase (biodegradation limits), and predicts that improving the specific TCE degradation rates of bacteria will not significantly enhance long-term biofilter performance. The most important factors for prolonging the performance of biofilter are increasing the amount of active biomass and the transformation capacity enhancing resistance to TCE metabolism.

  16. SURFACTANT-ENHANCED SOLUBILIZATION OF TETRACHLOROETHYLENE AND DEGRADATION PRODUCTS IN PUMP AND TREAT REMEDIATION

    EPA Science Inventory

    Experiments were conducted to investigate the enhanced solubilization of tetrachloroethylene (PCE), trichloroethylene (TCE), and 1,2-dichloroethylene (DCE) in nonionic surfactant solutions of Triton X-100, Brij-30, Igepal CA-720, and Tergitol NP-10 (alkylpolyoxyethylenes). urfact...

  17. TRICHLOROETHYLENE IHIBITS VOLTAGE-SENSITIVE CALCIUM CURRENTS IN DIFFERENTIATED PC 12 CELLS.

    EPA Science Inventory

    ABSTRACT BODY: It has been demonstrated recently that volatile organic compounds (VOCs)such as toluene, perchloroethylene and trichloroethylene inhibit function of voltage-sensitive calcium channels (VSSC). Such actions are hypothesized to contribute to the acute neurotoxicity of...

  18. ACUTE TOXICITY OF TETRACHLOROETHYLENE AND TETRACHLOROETHYLENE WITH DIMETHYLFORMAMIDE TO RAINBOW TROUT (SALMO GAIRDNERI)

    EPA Science Inventory

    In this study, two acute toxicity tests were conducted with tetrachloroethylene (TCE) using rainbow trout. DMF was used as an additive in one of the tests and was proportionally diluted with the toxicant. The 96 hr LC50 was 4.99 mg/l in the test without DMF and 5.84 mg/l for DMF ...

  19. TRICHLOROETHYLENE (TCE) ISSUE PAPERS

    EPA Science Inventory

    These issue papers are a part of EPA's effort to develop a trichloroethylene (TCE) human health risk assessment. These issue papers were developed by EPA to provide scientific and technical information to the National Academy of Sciences (NAS) for use in developing their advice ...

  20. ROUTE-DEPENDENT EFFECTS OF TOLUENE ON SIGNAL DETECTION BEHAVIOR IN RATS.

    EPA Science Inventory

    The acute effects of toluene and other solvents on behavior are thought to depend upon their concentration in the brain. We have shown previously that inhaled toluene and trichloroethylene disrupt sustained attention in rats as assessed with a visual signal detection task (SDT). ...

  1. SELECTION OF A PSEUDOMONAS CEPACIA STRAIN CONSTITUTIVE FOR THE DEGRADATION OF TRICHLOROETHYLENE

    EPA Science Inventory

    Tn5 insertion mutants of pseudomonas cepacia G4 were produced and were unable to degrade trichloroethylene (TCE), toluene, or phenol or to transform m-trifluoromethyl phenol (TEMP) to 7,7,7-trifluoro2-hydroxy-6-oxo-2,4-heptadienoic acid (TFHA). pontaneous reversion to growth on p...

  2. Surfactant-enhanced solubilization of tetrachloroethylene and degradation products in pump-and-treat remediation. Book chapter

    SciTech Connect

    West, C.C.

    1992-01-01

    Experiments were conducted to investigate the enhanced solubilization of tetrachloroethylene (PCE), trichloroethylene (TCE), and 1,2-dichloroethylene (DCE) in nonionic surfactant solutions of Triton X-100, Brij-30, Igepal CA-720, and Tergitol NP-10 (alkylpolyoxyethylenes). Surfactant solubilization is being considered as a means to enhance mobile phase solubilities of ground-water contaminants for the purpose of improving the efficiency of pump and treat remediation. The primary objectives of the study were to observe the solubilization of relatively hydrophilic organic solutes at system temperatures similar to ground-water conditions and to determine if solubilization can be linearly correlated to the octanol/water partition coefficient, as has been observed by others for hydrophobic organic solutes. The results of the study show that surfactant solubilization of hydrophilic solutes is highly correlated with their octanol/water partition coefficient when corrected for temperature effects. It was also observed that there appears to be little difference in solubilizing efficiency between the four surfactants.

  3. Trichloroethylene-promoted photocatalytic oxidation of air contaminants

    SciTech Connect

    d`Hennezel, O.; Ollis, D.F. [North Carolina State Univ., Raleigh, NC (United States)] [North Carolina State Univ., Raleigh, NC (United States)

    1997-04-01

    The prospects for photocatalytic purification and treatment of air depend centrally on finding conditions for which the apparent photoefficiency for contaminant disappearance is near or above 100%. The authors recently demonstrated that destruction of a low photoefficiency contaminant, toluene, by addition of a high photoefficiency compound, trichloroethylene, could raise the toluene photoefficiency to provide 100% conversion in a single pass, fixed bed illuminated catalyst, using a residence time of about 5-6 ms. The present paper establishes the generality of this TCE enhancement of contaminant rate and photoefficiency by examining the photocatalytic oxidation of various common contaminants at 50 mg/m{sup 3} in air, including alcohols, aldehydes, ketones, aromatics, and chloroalkanes using near-UV-illuminated titanium dioxide powder in a flow reactor, in the absence and presence of trichloroethylene (TCE). Compounds exhibiting TCE rate promotion were toluene, ethylbenzene, m-xylene, methyl ethyl ketone (MEK), acetaldehyde, butyraidehyde, methyl tert-butyl ether (MTBE), methyl acrylate, 1,4-dioxane, and hexane. Rate inhibition by TCE was exhibited for acetone, methylene chloride, chloroform, and 1,1,1-trichloroethane. TCE presence had almost no effect on the benzene and methanol rates. Butanol and vinyl acetate single component conversions were 100% under standard low flow rate conditions; increasing the flow rate quenched TCE conversion in the presence of butanol, and therefore no TCE enhancement effect could be noted. 19 refs., 9 figs., 2 tabs.

  4. Formation of perchloroaromatics during trichloroethylene pyrolysis

    SciTech Connect

    Mulholland, J.A.; Sarofim, A.F.; Sosothikul, P.; Monchamp, P.A.; Lafleur, A.L.; Plummer, E.F. (Dept. of Chemical Engineering, Center for Environmental Health Sciences, and Energy Lab., Massachusetts Inst. of Technology, Cambridge, MA (US))

    1992-04-01

    This paper reports on measurements of condensed-phase products of trichloroethylene (C{sub 2}HCl{sub 3}) pyrolysis in a drop-tube reactor that were obtained over a temperature range of 1100 - 1500 K. A predominance of perchloroaromatics was found, in sharp contrast to the largely unsubstituted polycyclic aromatic hydrocarbon obtained from the pyrolysis of a mixture of C{sub 2}HCl{sub 3} and toluene under similar conditions. A second major difference in the products of these fuels was the much lower carbon number distribution in the pure C{sub 2}HCl{sub 3} pyrolysis tars (ranging from C{sub 4} to C{sub 14}), indicative of a significantly reduced rate of carbon growth in the highly chlorinated system. The perchloroaromatic-containing pyrolysis tars were not found to be active using the S. typhimurium cell mutation assay in the presence of enzymes that simulate metabolism, whereas the C{sub 2}HCl{sub 3}/toluene high-temperature pyrolysis tars were strongly mutagenic.

  5. UNCERTAINTIES IN TRICHLOROETHYLENE PHARMACOKINETIC MODELS

    EPA Science Inventory

    Understanding the pharmacokinetics of a chemical¯its absorption, distribution, metabolism, and excretion in humans and laboratory animals ¯ is critical to the assessment of its human health risks. For trichloroethylene (TCE), numerous physiologically-based pharmacokinetic (PBPK)...

  6. Metabolism of trichloroethylene.

    PubMed Central

    Lash, L H; Fisher, J W; Lipscomb, J C; Parker, J C

    2000-01-01

    A major focus in the study of metabolism and disposition of trichloroethylene (TCE) is to identify metabolites that can be used reliably to assess flux through the various pathways of TCE metabolism and to identify those metabolites that are causally associated with toxic responses. Another important issue involves delineation of sex- and species-dependent differences in biotransformation pathways. Defining these differences can play an important role in the utility of laboratory animal data for understanding the pharmacokinetics and pharmacodynamics of TCE in humans. Sex-, species-, and strain-dependent differences in absorption and distribution of TCE may play some role in explaining differences in metabolism and susceptibility to toxicity from TCE exposure. The majority of differences in susceptibility, however, are likely due to sex-, species-, and strain-dependent differences in activities of the various enzymes that can metabolize TCE and its subsequent metabolites. An additional factor that plays a role in human health risk assessment for TCE is the high degree of variability in the activity of certain enzymes. TCE undergoes metabolism by two major pathways, cytochrome P450 (P450)-dependent oxidation and conjugation with glutathione (GSH). Key P450-derived metabolites of TCE that have been associated with specific target organs, such as the liver and lungs, include chloral hydrate, trichloroacetate, and dichloroacetate. Metabolites derived from the GSH conjugate of TCE, in contrast, have been associated with the kidney as a target organ. Specifically, metabolism of the cysteine conjugate of TCE by the cysteine conjugate ss-lyase generates a reactive metabolite that is nephrotoxic and may be nephrocarcinogenic. Although the P450 pathway is a higher activity and higher affinity pathway than the GSH conjugation pathway, one should not automatically conclude that the latter pathway is only important at very high doses. A synthesis of this information is then presented to assess how experimental data, from either animals or from (italic)in vitro (/italic)studies, can be extrapolated to humans for risk assessment. (italic)Key words(/italic): conjugate beta-lyase, cysteine glutathione, cytochrome P450, glutathione (italic)S(/italic)-transferases, metabolism, sex dependence, species dependence, tissue dependence, trichloroethylene. Images Figure 2 Figure 3 PMID:10807551

  7. Health Assessment Document for Tetrachloroethylene (Perchloroethylene) (Final Report)

    EPA Science Inventory

    Tetrachloroethylene (PCE) is a volatile solvent with important commercial applications. It has been detected in the ambient air of a variety of urban and nonurban areas of the United States. It has less frequently been detected in water but has been monitored generally at levels ...

  8. SURFACTANT ENHANCED REMEDIATION OF SOIL COLUMNS CONTAMINATED BY RESIDUAL TETRACHLOROETHYLENE

    EPA Science Inventory

    The ability of aqueous surfactant solutions to recover tetrachloroethylene (PCE) entrapped in Ottawa sand was evaluated in four column experiments. Residual PCE was emplaced by injecting 14C-labeled PCE into water-saturated soil columns and displacing the free product ...

  9. SURFACTANT ENHANCED REMEDIATION OF SOIL COLUMNS CONTAMINATED BY RESIDUAL TETRACHLOROETHYLENE

    EPA Science Inventory

    The ability of aqueous surfactant solutions to recover tetrachloroethylene (PCE) entrapped in Ottawa and was evaluated in four column experiments. esidual PCE was emplaced by injecting 14 C-labeled PCE into water-saturated soil columns and displacing the free product with water. ...

  10. Removal of gaseous trichloroethylene (TCE) in a composite membrane biofilm reactor

    Microsoft Academic Search

    Amit Kumar; Aline Vercruyssen; Jo Dewulf; Piet Lens; Herman Van Langenhove

    2012-01-01

    A membrane biofilm reactor (MBfR) was investigated for the degradation of trichloroethylene (TCE) vapors inoculated by Burkholderia vietnamiensis G4. Toluene (TOL) was used as the primary substrate. The MBfR was loaded sequentially with TOL, TCE (or both) during 110 days. In this study, a maximum steady-state TCE removal efficiency of 23% and a maximum volumetric elimination capacity (EC) of 2.1

  11. Trichloroethylene and cancer: epidemiologic evidence.

    PubMed Central

    Wartenberg, D; Reyner, D; Scott, C S

    2000-01-01

    Trichloroethylene is an organic chemical that has been used in dry cleaning, for metal degreasing, and as a solvent for oils and resins. It has been shown to cause liver and kidney cancer in experimental animals. This article reviews over 80 published papers and letters on the cancer epidemiology of people exposed to trichloroethylene. Evidence of excess cancer incidence among occupational cohorts with the most rigorous exposure assessment is found for kidney cancer (relative risk [RR] = 1.7, 95% confidence interval [CI] 1.1-2.7), liver cancer (RR = 1.9, 95% CI(1.0-3.4), and non-Hodgkin's lymphoma (RR = 1.5, 95% CI 0.9-2.3) as well as for cervical cancer, Hodgkin's disease, and multiple myeloma. However, since few studies isolate trichloroethylene exposure, results are likely confounded by exposure to other solvents and other risk factors. Although we believe that solvent exposure causes cancer in humans and that trichloroethylene likely is one of the active agents, we recommend further study to better specify the specific agents that confer this risk and to estimate the magnitude of that risk. PMID:10807550

  12. Surfactant enhanced remediation of soil columns contaminated by residual tetrachloroethylene

    Microsoft Academic Search

    K. D. Pennell; M. Jin; L. M. Abriola; G. A. Pope

    1994-01-01

    The ability of aqueous surfactant solutions to recover tetrachloroethylene (PCE) entrapped in Ottawa sand was evaluated in four column experiments. Residual PCE was emplaced by injecting (14)C-labeled PCE into water-saturated soil columns and displacing the free product with water. Miscible displacement experiments were conducted before and after PCE entrapment to determine the influence or residual PCE on column dispersivities. The

  13. Cytotoxicity Associated with Trichloroethylene Oxidation in Burkholderia cepacia G4

    PubMed Central

    Yeager, Chris M.; Bottomley, Peter J.; Arp, Daniel J.

    2001-01-01

    The effects of trichloroethylene (TCE) oxidation on toluene 2-monooxygenase activity, general respiratory activity, and cell culturability were examined in the toluene-oxidizing bacterium Burkholderia cepacia G4. Nonspecific damage outpaced inactivation of toluene 2-monooxygenase in B. cepacia G4 cells. Cells that had degraded approximately 0.5 ?mol of TCE (mg of cells?1) lost 95% of their acetate-dependent O2 uptake activity (a measure of general respiratory activity), yet toluene-dependent O2 uptake activity decreased only 35%. Cell culturability also decreased upon TCE oxidation; however, the extent of loss varied greatly (up to 3 orders of magnitude) with the method of assessment. Addition of catalase or sodium pyruvate to the surfaces of agar plates increased enumeration of TCE-injured cells by as much as 100-fold, indicating that the TCE-injured cells were ultrasensitive to oxidative stress. Cell suspensions that had oxidized TCE recovered the ability to grow in liquid minimal medium containing lactate or phenol, but recovery was delayed substantially when TCE degradation approached 0.5 ?mol (mg of cells?1) or 66% of the cells' transformation capacity for TCE at the cell density utilized. Furthermore, among B. cepacia G4 cells isolated on Luria-Bertani agar plates from cultures that had degraded approximately 0.5 ?mol of TCE (mg of cells?1), up to 90% were Tol? variants, no longer capable of TCE degradation. These results indicate that a toxicity threshold for TCE oxidation exists in B. cepacia G4 and that once a cell suspension has exceeded this toxicity threshold, the likelihood of reestablishing an active, TCE-degrading biomass from the cells will decrease significantly. PMID:11319088

  14. TCE degradation by toluene/benzene monooxygenase of Pseudomonas aeruginosa JI104 and Escherichia coli recombinant

    SciTech Connect

    Koizumi, Junichi [National Univ. of Yokohama (Japan). Div. of Bioengineering; Kitayama, Atsushi [Univ. of Tokyo (Japan). Dept. of Biochemistry and Biotechnology

    1995-12-31

    Pseudomonas aeruginosa JI104 incorporates more than three degradation pathways for aromatic compounds such as benzene, toluene, and xylene. A dioxygenase and two monooxygenases were cloned in Escherichia coli XL1-Blue. The dioxygenase yielding cis-toluene dihydrodiol and one of the monooxygenases producing o-cresol from toluene did not exhibit conspicuous activity in trichloroethylene (TCE) oxygenation, although DNA sequencing proved that the former enzyme was an isozyme of toluene dioxygenase of the known TCE decomposer P.putida F1. The other toluene/benzene monooxygenase that could generate o-, m-, and p-cresol simultaneously from toluene showed TCE oxygenation activity resulting in TCE decomposition in E. coli. The activity was inhibited competitively by toluene, ethylbenzene, and o- and m-xylene: their inhibition constants were greater than those of propylbenzene and p-xylene. When the E. coli recombinant harboring the monooxygenase was induced by isopropyl {beta}-D-thiogalactopyranoside (IPTG) and incubated in the absence of toluene, TCE degradation activity decreased during incubation, compared to that with toluene. Toluene probably controlled the lifetime of the enzyme.

  15. Human Health Effects of Tetrachloroethylene: Key Findings and Scientific Issues

    PubMed Central

    Hogan, Karen A.; Scott, Cheryl Siegel; Cooper, Glinda S.; Bale, Ambuja S.; Kopylev, Leonid; Barone, Stanley; Makris, Susan L.; Glenn, Barbara; Subramaniam, Ravi P.; Gwinn, Maureen R.; Dzubow, Rebecca C.; Chiu, Weihsueh A.

    2014-01-01

    Background: The U.S. Environmental Protection Agency (EPA) completed a toxicological review of tetrachloroethylene (perchloroethylene, PCE) in February 2012 in support of the Integrated Risk Information System (IRIS). Objectives: We reviewed key findings and scientific issues regarding the human health effects of PCE described in the U.S. EPA’s Toxicological Review of Tetrachloroethylene (Perchloroethylene). Methods: The updated assessment of PCE synthesized and characterized a substantial database of epidemiological, experimental animal, and mechanistic studies. Key scientific issues were addressed through modeling of PCE toxicokinetics, synthesis of evidence from neurological studies, and analyses of toxicokinetic, mechanistic, and other factors (tumor latency, severity, and background rate) in interpreting experimental animal cancer findings. Considerations in evaluating epidemiological studies included the quality (e.g., specificity) of the exposure assessment methods and other essential design features, and the potential for alternative explanations for observed associations (e.g., bias or confounding). Discussion: Toxicokinetic modeling aided in characterizing the complex metabolism and multiple metabolites that contribute to PCE toxicity. The exposure assessment approach—a key evaluation factor for epidemiological studies of bladder cancer, non-Hodgkin lymphoma, and multiple myeloma—provided suggestive evidence of carcinogenicity. Bioassay data provided conclusive evidence of carcinogenicity in experimental animals. Neurotoxicity was identified as a sensitive noncancer health effect, occurring at low exposures: a conclusion supported by multiple studies. Evidence was integrated from human, experimental animal, and mechanistic data sets in assessing adverse health effects of PCE. Conclusions: PCE is likely to be carcinogenic to humans. Neurotoxicity is a sensitive adverse health effect of PCE. Citation: Guyton KZ, Hogan KA, Scott CS, Cooper GS, Bale AS, Kopylev L, Barone S Jr, Makris SL, Glenn B, Subramaniam RP, Gwinn MR, Dzubow RC, Chiu WA. 2014. Human health effects of tetrachloroethylene: key findings and scientific issues. Environ Health Perspect 122:325–334;?http://dx.doi.org/10.1289/ehp.1307359 PMID:24531164

  16. Visual contrast sensitivity in children exposed to tetrachloroethylene.

    PubMed

    Storm, Jan E; Mazor, Kimberly A; Aldous, Kenneth M; Blount, Benjamin C; Brodie, Scott E; Serle, Janet B

    2011-01-01

    This study examined relationships between indoor air, breath, and blood tetrachloroethylene (perc) levels and visual contrast sensitivity (VCS) among adult and child residents of buildings with or without a colocated dry cleaner using perc. Decreasing trends in proportions of adults or children with maximum VCS scores indicated decreased VCS at a single spatial frequency (12 cycles per degree [cpd]) among children residing in buildings with colocated dry cleaners when indoor air perc level averaged 336 ?g/m³; breath perc level averaged 159.5 ?g/m³; and blood perc level averaged 0.51 ?g/L. Adjusted logistic regression indicated that increases in indoor air, breath, and blood perc levels among all child participants significantly increased the odds for decreased VCS at 12 cpd. Adult VCS was not significantly decreased by increasing indoor air, breath, or blood perc level. These results suggest that elevated residential perc exposures may alter children's VCS, a possible subclinical central nervous system effect. PMID:21864105

  17. Degradation of Trichloroethylene Using Advanced Reduction Processes 

    E-print Network

    Farzaneh, Hajar

    2014-10-27

    This research investigates degradation of trichloroethylene (TCE) using a new treatment method called advanced reduction processes (ARPs). This new set of water treatment processes employ a source of activation energy to activate reducing agents...

  18. DECHLORINATION OF TRICHLOROETHYLENE USING ELECTROCHEMICAL METHODS

    EPA Science Inventory

    Electrochemical degradation (ECD) is used to decontaminate organic and inorganic contaminants through oxidative or reductive processes. The ECD of Trichloroethylene (TCE) dechlorinates TCE through electric reduction. TCE dechlorination presented in the literature utilized electro...

  19. RESPONSE TO ISSUES AND DATA SUBMISSIONS ON THE CARCINOGENICITY OF TETRACHLOROETHYLENE (PERCHLOROETHYLENE)

    EPA Science Inventory

    The scientific debate over the potential carcinogenicity of tetrachloroethylene (perchloroethylene, perc, PCE) spans several years. his document reviews the issues considered by the EPA's Science Advisory Board (SAB) during its review of the Draft Addendum to the Health Assessmen...

  20. SUMMARY REPORT OF THE PEER REVIEW WORKSHOP ON THE NEUROTOXICITY OF TETRACHLOROETHYLENE (PERCHLOROETHYLENE) DISCUSSION PAPER

    EPA Science Inventory

    The report, Summary Report of the Peer Review Workshop on the Neurotoxicity of Tetrachloroethylene (Perchloroethylene) Discussion , summarizes the discussions at a February 25, 2004, workshop that brought together recognized scientific experts to engage in a public discussi...

  1. THE ADDITION OF CYCLIC ETHERS TO TETRACHLOROETHYLENE BY THE $gamma$RAY IRRADIATION

    Microsoft Academic Search

    T. Matsuda; T. Yumoto; K. Iseda

    1963-01-01

    The radiation-induced addition reaction between tetrachloroethylene and ; cyclic ethers, tetrahydrofuran and paradioxane, was studied. In a glass ampule ; tetrachloroethylene and cyclic ether were placed and the ampule was deaerated, ; sealed, and then irradiated with gamma rays at a dose rate of 1.2 to 6.0 x 10\\/sup ; 4\\/ r\\/hr at room temperature. The reaction mixture was distilled

  2. Prenatal and Early Childhood Exposure to Tetrachloroethylene and Adult Vision

    PubMed Central

    Getz, Kelly D.; Janulewicz, Patricia A.; Rowe, Susannah; Weinberg, Janice M.; Winter, Michael R.; Martin, Brett R.; Vieira, Veronica M.; White, Roberta F.

    2012-01-01

    Background: Tetrachloroethylene (PCE; or perchloroethylene) has been implicated in visual impairments among adults with occupational and environmental exposures as well as children born to women with occupational exposure during pregnancy. Objectives: Using a population-based retrospective cohort study, we examined the association between prenatal and early childhood exposure to PCE-contaminated drinking water on Cape Cod, Massachusetts, and deficits in adult color vision and contrast sensitivity. Methods: We estimated the amount of PCE that was delivered to the family residence from participants’ gestation through 5 years of age. We administered to this now adult study population vision tests to assess acuity, contrast sensitivity, and color discrimination. Results: Participants exposed to higher PCE levels exhibited lower contrast sensitivity at intermediate and high spatial frequencies compared with unexposed participants, although the differences were generally not statistically significant. Exposed participants also exhibited poorer color discrimination than unexposed participants. The difference in mean color confusion indices (CCI) was statistically significant for the Farnsworth test but not Lanthony’s D-15d test [Farnsworth CCI mean difference = 0.05, 95% confidence interval (CI): 0.003, 0.10; Lanthony CCI mean difference = 0.07, 95% CI: –0.02, 0.15]. Conclusions: Prenatal and early childhood exposure to PCE-contaminated drinking water may be associated with long-term subclinical visual dysfunction in adulthood, particularly with respect to color discrimination. Further investigation of this association in similarly exposed populations is necessary. PMID:22784657

  3. Trichloroethylene: Parkinsonism and complex 1 mitochondrial neurotoxicity

    Microsoft Academic Search

    Don M. Gash; Kathryn Rutland; Naomi L. Hudson; Patrick G. Sullivan; Guoying Bing; Wayne A. Cass; Jignesh D. Pandya; Mei Liu; Dong-Yong Choi; Randy L. Hunter; Greg A. Gerhardt; Charlie D. Smith; John T. Slevin; T. Scott Prince

    2008-01-01

    Objective: To analyze a cluster of 30 industrial coworkers with Parkinson's disease and parkinsonism subjected to long-term (8 -33 years) chronic exposure to trichloroethylene. Methods: Neurological evaluations were conducted on the 30 coworkers, including a general physical and neurological exam- ination and the Unified Parkinson's Disease Rating Scale. In addition, fine motor speed was quantified and an occupational history survey

  4. Silylene- and disilyleneacetylene polymers from trichloroethylene

    DOEpatents

    Barton, Thomas J. (Ames, IA); Ijadi-Maghsoodi, Sina (Ames, IA)

    1990-07-10

    Organosilane polymers having recurring silyleneacetylene and/or disilyleneacetylene units are prepared in a one-pot synthesis from trichloroethylene. Depending on the organic substituents (R and R'), these polymers have useful film-forming properties, and are converted to the ceramic, silicon carbide upon heating in very uniform high yields. They can also be pulled into fibers.

  5. Silylene- and disilyleneacetylene polymers from trichloroethylene

    DOEpatents

    Barton, T.J.; Ijadi-Maghsoodi, S.

    1990-07-10

    Organosilane polymers having recurring silyleneacetylene and/or disilyleneacetylene units are prepared in a one-pot synthesis from trichloroethylene. Depending on the organic substituents (R and R[prime]), these polymers have useful film-forming properties, and are converted to the ceramic, silicon carbide upon heating in very uniform high yields. They can also be pulled into fibers.

  6. Photoinduced decomposition of trichloroethylene in soil components

    SciTech Connect

    Tao, T.; Yang, J.J.; Maciel, G.E. [Colorado State Univ., Fort Collins, CO (United States). Dept. of Chemistry] [Colorado State Univ., Fort Collins, CO (United States). Dept. of Chemistry

    1999-01-01

    The photoinduced decomposition of trichloroethylene adsorbed on Ca-montmorillonite by long-wavelength UV irradiation has been studied in a quartz tube open to air or through which air or oxygen is passed. Solid-sample and liquid-solution NMR techniques were used to identify apparent products or intermediates of the photodecomposition. Dichloroacetic acid was identified as a major organic product/intermediate; substantial amounts of pentachloroethane and trichloroacetic acid were also identified. The formation of CO{sub 2} was characterized quantitatively by wet chemical analysis. About 40% and 57%, respectively, of the total carbon of trichloroethylene was converted to carbon dioxide in air and O{sub 2} environments over a period of 16 days. Phosgene and HCl were also detected. The photodecomposition of trichloroethylene adsorbed on whole soil, on Zn{sup 2+}-exchanged and Cu{sup 2+}-exchanged montmorillonites, on kaolinite, and on silica gel was also examined in less detail; qualitatively, the conversion of trichloroethylene to dichloroacetic acid in a 48-h period occurred with the following order of decreasing efficiencies: Zn{sup 2+}-montmorillonite > silica gel > kaolinite > Ca{sup 2+}-montmorillonite > whole soil > Cu{sup 2+}-montmorillonite. These results show that the photoinduced decomposition of adsorbed trichloroethylene occurs on a variety of adsorbents, generating products and intermediates that are similar to what have been reported previously for TiO{sub 2}-based photodecomposition but with much longer time scales. These conversions can, therefore, be expected to occur in sunlight at the air-soil interface.

  7. Tetrachloroethylene Exposure and Bladder Cancer Risk: A Meta-Analysis of Dry-Cleaning-Worker Studies

    PubMed Central

    Vlaanderen, Jelle; Straif, Kurt; Ruder, Avima; Blair, Aaron; Hansen, Johnni; Lynge, Elsebeth; Charbotel, Barbara; Loomis, Dana; Kauppinen, Timo; Kyyronen, Pentti; Pukkala, Eero; Weiderpass, Elisabete

    2014-01-01

    Background: In 2012, the International Agency for Research on Cancer classified tetrachloroethylene, used in the production of chemicals and the primary solvent used in dry cleaning, as “probably carcinogenic to humans” based on limited evidence of an increased risk of bladder cancer in dry cleaners. Objectives: We assessed the epidemiological evidence for the association between tetrachloroethylene exposure and bladder cancer from published studies estimating occupational exposure to tetrachloroethylene or in workers in the dry-cleaning industry. Methods: Random-effects meta-analyses were carried out separately for occupational exposure to tetrachloroethylene and employment as a dry cleaner. We qualitatively summarized exposure–response data because of the limited number of studies available. Results: The meta-relative risk (mRR) among tetrachloroethylene-exposed workers was 1.08 (95% CI: 0.82, 1.42; three studies; 463 exposed cases). For employment as a dry cleaner, the overall mRR was 1.47 (95% CI: 1.16, 1.85; seven studies; 139 exposed cases), and for smoking-adjusted studies, the mRR was 1.50 (95% CI: 0.80, 2.84; 4 case–control studies). Conclusions: Our meta-analysis demonstrates an increased risk of bladder cancer in dry cleaners, reported in both cohort and case–control studies, and some evidence for an exposure–response relationship. Although dry cleaners incur mixed exposures, tetrachloroethylene could be responsible for the excess risk of bladder cancer because it is the primary solvent used and it is the only chemical commonly used by dry cleaners that is currently identified as a potential bladder carcinogen. Relatively crude approaches in exposure assessment in the studies of “tetrachloroethylene-exposed workers” may have attenuated the relative risks. Citation: Vlaanderen J, Straif K, Ruder A, Blair A, Hansen J, Lynge E, Charbotel B, Loomis D, Kauppinen T, Kyyronen P, Pukkala E, Weiderpass E, Guha N. 2014. Tetrachloroethylene exposure and bladder cancer risk: a meta-analysis of dry-cleaning-worker studies. Environ Health Perspect 122:661–666;?http://dx.doi.org/10.1289/ehp.1307055 PMID:24659585

  8. SUBCHRONIC TOXICITY OF TETRACHLOROETHYLENE (PERCHLOROETHYLENE) ADMINISTERED IN THE DRINKING WATER OF RATS

    EPA Science Inventory

    The study provides data on the effects of tetrachloroethylene in drinking solutions. The acute oral LD(50) was determined in male and female Charles River rats and found to be 3835 mg/kg for males and 3005 mg/kg for females. Male and female rats received theoretical daily doses o...

  9. EVALUATION OF GEOPHYSICAL METHODS FOR THE DETECTION OF SUBSURFACE TETRACHLOROETHYLENE (PCE) IN CONTROLLED SPILL EXPERIMENTS

    EPA Science Inventory

    Tetrachloroethylene (PCE), typically used as a dry cleaning solvent, is a predominant contaminant in the subsurface at Superfund Sites. PCE is a dense non-aqueous phase liquid (DNAPL) that migrates downward into the earth, leaving behind areas of residual saturation and free prod...

  10. A first French assessment of population exposure to tetrachloroethylene from small dry cleaning facilities

    E-print Network

    Paris-Sud XI, Université de

    -integrated concentrations on a 7 days sampling period. It has obviously shown the degradation of indoor air quality: tetrachloroethylene, dry cleaning facilities, indoor air quality, passive sampling, population exposure. Practical of residential indoor air, which can cause long term harmful exposures because of its neurotoxicity and probable

  11. Continuous Determination of High-Vapor Phase Concentrations of Tetrachloroethylene Using On-Line Mass Spectrometry

    EPA Science Inventory

    A method was developed to determine the vapor concentration of tetrachloroethylene (PCE) at and below its equilibrium vapor phase concentration, 168,000 µg/L (25°C). Vapor samples were drawn by vacuum into a six-port sampling valve and injected through a jet separator into an io...

  12. Pulmonary reactions caused by welding-induced decomposed trichloroethylene

    SciTech Connect

    Sjoegren, B.P.; Plato, N.; Alexandersson, R.; Eklund, A.; Falkenberg, C. (Karolinska Hospital, Stockholm (Sweden))

    1991-01-01

    This is the report of a welder who performed argon-shielded electric arc welding in an atmosphere containing trichloroethylene. He developed immediate respiratory symptoms, pulmonary edema 12 hours after exposure, and recurring dyspnea ten days after exposure. These pulmonary reactions might be explained by inhalation of decomposition products of trichloroethylene such as dichloroacetyl chloride and phosgene.

  13. Induction of toluene oxidation activity in pseudomonas mendocina KR1 and pseudomonas sp. strain ENVPC5 by chlorinated solvents and alkanes

    SciTech Connect

    McClay, K.; Streger, S.H.; Steffan, R.J. [Envirogen Inc., Lawrenceville, NJ (United States)

    1995-09-01

    Toluene oxidation activity in Pseudomonas mendocina KR1 and Pseudomonas sp. strain ENVPC5 was induced by trichloroethylene (TCE), and induction was followed by the degradation of TCE. Higher levels of toluene oxidation activity were achieved in the presence of a supplemental growth substrate such as glutamate, with levels of activity of up to 86% of that observed with toluene-induced cells. Activity in P. mendocina KR1 was also induced by cis-1,2-dichloroethylene, perchloroethylene, chloroethane, hexane, pentane, and octane, but not by trans-1,2-dichloroethylene. Toluene oxidation was not induced by TCE in Burkholderia (Pseudomonas) cepacia G4, P. putida F1, Pseudomonas sp. strain ENV110, or Pseudomonas sp. strain ENV113. 22 refs., 4 tabs.

  14. Mineralization of trichloroethylene by heterotrophic enrichment cultures

    SciTech Connect

    Phelps, T.J.; Ringelberg, D.; Mikell, A.T.; White, D.C. [Univ. of Tennessee, Knoxville, TN (United States). Inst. for Applied Microbiology]|[Oak Ridge National Lab., Knoxville, TN (United States); Fliermans, C.B. [E.I. DuPont de Nemours and Co., Aiken, SC (United States). Savannah River Lab.

    1988-12-31

    Microbial consortia capable of aerobically degrading greater than 99% of 50 mg/l exogenous trichloroethylene (TCE) have been enriched from TCE contaminated subsurface sediments. Concentrations of TCE greater than 300 mg/l were not degraded nor was TCE used as a sole energy source. Successful electron donors for growth included tryptone-yeast extract, methanol, methane or propane. The optimum temperature for growth was 22--37 C and the ph optimum was 7.0--8.1. Utilization of TCE occurred only after apparent microbial growth had ceased. The major end products recovered were hydrochloric acid and carbon dioxide. Minor products included dichloroethylene, vinylidine chloride and possibly chloroform.

  15. Selection of a Pseudomonas cepacia strain constitutive for the degradation of trichloroethylene.

    PubMed Central

    Shields, M S; Reagin, M J

    1992-01-01

    Tn5 insertion mutants of Pseudomonas cepacia G4 that were unable to degrade trichloroethylene (TCE), toluene, or phenol or to transform m-trifluoromethyl phenol (TFMP) to 7,7,7-trifluoro-2-hydroxy-6-oxo-2,4-heptadienoic acid (TFHA) were produced. Spontaneous reversion to growth on phenol or toluene as the sole source of carbon was observed in one mutant strain, G4 5223, at a frequency of approximately 1 x 10(-4) per generation. One such revertant, G4 5223-PR1, metabolized TFMP to TFHA and degraded TCE. Unlike wild-type G4, G4 5223-PR1 constitutively metabolized both TFMP and TCE without aromatic induction. G4 5223-PR1 also degraded cis-1,2-dichloroethylene, trans-1,2-dichloroethylene, and 1,1-dichloroethylene and oxidized naphthalene to alpha naphthol constitutively. G4 5223-PR1 exhibited a slight retardation in growth rate at TCE concentrations of > or = 530 microM, whereas G4 (which was unable to metabolize TCE under the same noninducing growth conditions) remained unaffected. The constitutive degradative phenotype of G4 5223-PR1 was completely stable through 100 generations of nonselective growth. PMID:1282314

  16. Use of specific gene analysis to assess the effectiveness of surfactant-enhanced trichloroethylene cometabolism.

    PubMed

    Liang, S H; Liu, J K; Lee, K H; Kuo, Y C; Kao, C M

    2011-12-30

    The objective of this study was to evaluate the effectiveness of in situ bioremediation of trichloroethylene (TCE)-contaminated groundwater using specific gene analyses under the following conditions: (1) pretreatment with biodegradable surfactants [Simple Green™ (SG) and soya lecithin (SL)] to enhance TCE desorption and dissolution, and (2) supplementation with SG, SL, and cane molasses as primary substrates to enhance the aerobic cometabolism of TCE. Polymerase chain reaction (PCR), denaturing gradient gel electrophoresis (DGGE), and nucleotide sequence analysis were applied to monitor the variations in specific activity-dependent enzymes and dominant microorganisms. Results show that TCE-degrading enzymes, including toluene monooxygenase, toluene dioxygenase, and phenol monooxygenase, were identified from sediment samples collected from a TCE-spill site. Results from the microcosm study show that addition of SG, SL, or cane molasses can enhance the aerobic cometabolism of TCE. The TCE degradation rates were highest in microcosms with added SL, the second highest in microcosms containing SG, and lowest in microcosms containing cane molasses. This indicates that SG and SL can serve as TCE dissolution agents and act as primary substrates for indigenous microorganisms. Four dominant microorganisms (Rhodobacter sp., Methyloversatilis sp., Beta proteobacterium sp., and Hydrogenophaga pseudoflava) observed in microcosms might be able to produce TCE-degrading enzymes for TCE cometabolic processes. PMID:22071259

  17. Characterization of the methanotrophic bacterial community present in a trichloroethylene-contaminated subsurface groundwater site.

    PubMed Central

    Bowman, J P; Jiménez, L; Rosario, I; Hazen, T C; Sayler, G S

    1993-01-01

    Groundwater, contaminated with trichloroethylene (TCE) and tetrachloroethylene (PCE), was collected from 13 monitoring wells at Area M on the U.S. Department of Energy Savannah River Site near Aiken, S.C. Filtered groundwater samples were enriched with methane, leading to the isolation of 25 methanotrophic isolates. The phospholipid fatty acid profiles of all the isolates were dominated by 18:1 omega 8c (60 to 80%), a signature lipid for group II methanotrophs. Subsequent phenotypic testing showed that most of the strains were members of the genus Methylosinus and one isolate was a member of the genus Methylocystis. Most of the methanotroph isolates exhibited soluble methane monooxygenase (sMMO) activity. This was presumptively indicated by the naphthalene oxidation assay and confirmed by hybridization with a gene probe encoding the mmoB gene and by cell extract assays. TCE was degraded at various rates by most of the sMMO-producing isolates, whereas PCE was not degraded. Savannah River Area M and other groundwaters, pristine and polluted, were found to support sMMO activity when supplemented with nutrients and then inoculated with Methylosinus trichosporium OB3b. The maximal sMMO-specific activity obtained in the various groundwaters ranged from 41 to 67% compared with maximal rates obtained in copper-free nitrate mineral salts media. This study partially supports the hypothesis that stimulation of indigenous methanotrophic communities can be efficacious for removal of chlorinated aliphatic hydrocarbons from subsurface sites and that the removal can be mediated by sMMO. PMID:8368829

  18. Subchronic toxicity of tetrachloroethylene (perchloroethylene) administered in the drinking water of rats

    SciTech Connect

    Hayes, J.R.; Condie, L.W. Jr.; Borzelleca, J.F.

    1986-07-01

    This study provides data on the effects of tetrachloroethylene in drinking solutions. The acute oral LD50 in male and female Charles River rats was found to be 3835 mg/kg for males and 3005 mg/kg for females. Male and female rats received theoretical daily doses of 14,400, and 1400 mg tetrachloroethylene/kg body wt/day for 90 consecutive days. There were no compound-related deaths. Body weights were significantly lower in male and female rats at the higher doses. There were no consistent dose-related effects on any of the hematological, clinical chemistry, or urinalysis parameters. 5'-Nucleotidase activity was increased in a dose-dependent manner, suggesting possible hepatotoxicity; however, other serum indicators of hepatic function were unaffected by the treatment. There were no gross pathological effects observed. Liver and kidney body weight ratios, but not brain weight ratios, were elevated at the higher doses. There was no other evidence of compound-related toxicity. These data suggest that exposure of humans to reported levels of tetrachloroethylene in drinking water (approximately 1 microgram/liter) does not constitute a serious health hazard.

  19. Identification of reaction intermediates/products from the photocatalytic degradation of trichloroethylene on illuminated titanium dioxide surfaces

    SciTech Connect

    Hung, C.H.; Marinas, B.J. [Purdue Univ., West Lafayette, IN (United States)

    1996-11-01

    The objective of this study was to identify reaction intermediates/products from the gas-phase photocatalytic degradation of trichloroethylene (TCE) on anatase titanium dioxide (TiO{sub 2}) surfaces illuminated with near-ultraviolet light (360 nm wavelength). A Pyrex glass annular photocatalytic reactor fabricated with turbulence promoters was used for this purpose. The inner surface of the outside tube forming the annular reactor was coated with TiO{sub 2} prepared by vapor phase hydrolysis of titanium isopropoxide. Reaction intermediates/products were concentrated by passing the photocatalytic reactor off-gas through a stainless steel tube immersed in liquid nitrogen. Compounds deposited were allowed to revolatilize or were washed with deionized water and analyzed by gas chromatography with a mass spectrum selective detector (GC/MS), or by ion chromatography (IC), respectively. Preliminary results revealed the presence of many halogenated organic compounds, including phosgene, 1,2-dichloroethylene, chloroform, carbon tetrachloride, dichloroacetyl chloride, 1,1,2-trichloroethane, tetrachloroethylene, 1,1,2,2-tetrachloroethane, pentchloroethane, and hexachloroethane, as well as hydrochloric acid. The abundance of most of these compounds except phosgene and hydrochloric acid was observed to diminish with increasing oxygen concentrations. Possible reaction mechanisms and pathways for the photocatalytic degradation of TCE will be presented.

  20. In-situ characterization using pulsed laser systems and hyperspectral imaging

    Microsoft Academic Search

    Rosemarie Catherine Chinni

    2002-01-01

    We are investigating the use of resonance-enhanced multiphoton ionization (REMPI) to detect volatile organic compounds (VOCs) mainly BTEX compounds (benzene, toluene, ethylbenzene, o-, m -, and p-xylenes) and some organochlorides, such as tetrachloroethylene (PCE), trichloroethylene (TCE), and carbon tetrachloride, found in the environment. The long term objective of this work is to develop a system for measuring and identifying a

  1. Atmospheric oxidation of trichloroethylene: an ab initio study.

    PubMed

    Christiansen, Carrie J; Francisco, Joseph S

    2010-09-01

    The atmospheric oxidation of trichloroethylene has previously been studied experimentally. Phosgene is thought to be the dominant product, although the mechanism of production is not well understood. Additionally, studies omitting a chlorine scavenger show the production of dichloroacetyl chloride. This influence of the chlorine atom on the trichloroethylene oxidation is not well understood. Using ab initio methods, this study presents a comprehensive computational study of both the hydroxyl radical and chlorine atom initiated atmospheric oxidation mechanisms of trichloroethylene (C(2)HCl(3)). Potential energy surfaces, including activation energies and enthalpies, are determined. The results from this study, in connection with experimental work, confirm the influence of the Cl-initiated oxidation in determining the product profile of the trichloroethylene oxidation. These products include dichloroacetyl chloride [Cl(2)CHC(O)Cl], formyl chloride [CH(O)Cl], phosgene [C(O)Cl(2)], and regeneration of the chlorine atom. PMID:20687539

  2. Pharmacokinetics of benzene and toluene

    Microsoft Academic Search

    Akio Sato; Tamie Nakajima; Yukiko Fujiwara; Kiichi Hirosawa

    1974-01-01

    1.Experimental human exposure of benzene and toluene: Elimination curves obtained from a single exposure in which three male subjects inhaled 25 ppm of benzene and 100 ppm of toluene for 2 hrs were graphically resolved into a sum of three exponential components; for benzene in blood, \\u000a$${\\\\text{Y = }}5.93e^{ - 0.418t} + 8.60e^{ - 0.0238t} + 2.87e^{ - 0.00317t}$$\\u000a and

  3. Toxicological profile for toluene. Update. Final report

    SciTech Connect

    Dorsey, A.S.; Donohue, J.M.

    1994-05-01

    This Statement was prepared to give you information about toluene and to emphasize the human health effects that may result from exposure to it. Toluene has been found in at least 851 of the sites on the NPL. However, the number of NPL sites evaluated for toluene is not known. This information is important because exposure to toluene may cause harmful health effects and because these sites are potential or actual sources of human exposure to toluene.

  4. Current trends in trichloroethylene biodegradation: a review.

    PubMed

    Shukla, Awadhesh Kumar; Upadhyay, Siddh Nath; Dubey, Suresh Kumar

    2014-06-01

    Over the past few years biodegradation of trichloroethylene (TCE) using different microorganisms has been investigated by several researchers. In this review article, an attempt has been made to present a critical summary of the recent results related to two major processes--reductive dechlorination and aerobic co-metabolism used for TCE biodegradation. It has been shown that mainly Clostridium sp. DC-1, KYT-1, Dehalobacter, Dehalococcoides, Desulfuromonas, Desulfitobacterium, Propionibacterium sp. HK-1, and Sulfurospirillum bacterial communities are responsible for the reductive dechlorination of TCE. Efficacy of bacterial communities like Nitrosomonas, Pseudomonas, Rhodococcus, and Xanthobacter sp. etc. for TCE biodegradation under aerobic conditions has also been examined. Mixed cultures of diazotrophs and methanotrophs have been used for TCE degradation in batch and continuous cultures (biofilter) under aerobic conditions. In addition, some fungi (Trametes versicolor, Phanerochaete chrysosporium ME-446) and Actinomycetes have also been used for aerobic biodegradation of TCE. The available information on kinetics of biofiltration of TCE and its degradation end-products such as CO2 are discussed along with the available results on the diversity of bacterial community obtained using molecular biological approaches. It has emerged that there is a need to use metabolic engineering and molecular biological tools more intensively to improve the robustness of TCE degrading microbial species and assess their diversity. PMID:23057686

  5. Decomposition of dilute trichloroethylene by nonthermal plasma

    SciTech Connect

    Oda, Tetsuji; Takahashi, Tadashi; Tada, Keiko [Univ. of Tokyo (Japan). Dept. of Electrical Engineering] [Univ. of Tokyo (Japan). Dept. of Electrical Engineering

    1999-03-01

    Decomposition performance of a dilute toxic organic compound, trichloroethylene (TCE), in air by using nonthermal plasma processing was studied extensively. The nonthermal plasma was generated by the high-frequency (2 kHz) or commercial-frequency (50 Hz) barrier discharge in a fused silica tube. Three types of reactors, bolt type, rod type (both are barrier-discharge type), and coil type (surface-discharge type), were tested. Analysis of byproducts, residual materials, and end products generated by the plasma process was performed by a gas chromatography mass spectrometer of gas chromatography. Most organic byproducts decrease with an increase of the electric discharge power, but only toxic phosgene increases with the increase of the discharge power. As a post process, NaOH solution was used to test effluent from the plasma reactor. The solution was found effective in phosgene absorption. Comparison between nonthermal plasma and UV irradiation for TCE decomposition was also made. In regard to the energy efficiency of the TCE decomposition, UV irradiation is found much better than discharge plasma.

  6. Toluene monooxygenase from the fungus Cladosporium sphaerospermum

    Microsoft Academic Search

    Dion M. A. M. Luykx; Francesc X. Prenafeta-Boldu; Jan A. M de Bont

    2003-01-01

    Assimilation of toluene by Cladosporium sphaerospermum is initially catalyzed by toluene monooxygenase (TOMO). TOMO activity was induced by adding toluene to a glucose-pregrown culture of C. sphaerospermum. The corresponding microsomal enzyme needed NADPH and O2 to oxidize toluene and glycerol, EDTA, DTT, and PMSF for stabilization. TOMO activity was maximal at 35°C and pH 7.5 and was inhibited by carbon

  7. Toluene inhibits hippocampal neurogenesis in adult mice

    Microsoft Academic Search

    Heung-Sik Seo; Miyoung Yang; Myoung-Sub Song; Joong-Sun Kim; Sung-Ho Kim; Jong-Choon Kim; Heechul Kim; Taekyun Shin; Hongbing Wang; Changjong Moon

    2010-01-01

    Toluene, a representative industrial solvent and abused inhalant, decreases neuronal activity in vitro and causes mental depression and cognitive impairment in humans. However, the effects of toluene on brain function and the sites of its action are poorly understood. This study investigated the temporal changes of neurogenesis in the hippocampus of adult C57BL\\/6 mice after acute administration of toluene using

  8. SURFACTANT ENHANCED RECOVERY OF TETRACHLOROETHYLENE FROM A POROUS MEDIUM CONTAINING LOW PERMEABILITY LENSES. 1. EXPERIMENTAL STUDIES. (R825409)

    EPA Science Inventory

    Abstract A matrix of batch, column and two-dimensional (2-D) box experiments was conducted to investigate the coupled effects of rate-limited solubilization and layering on the entrapment and subsequent recovery of a representative dense NAPL, tetrachloroethylene (PCE)...

  9. Medico legal investigations into sudden sniffing deaths linked with trichloroethylene.

    PubMed

    Da Broi, Ugo; Colatutto, Antonio; Sala, Pierguido; Desinan, Lorenzo

    2015-08-01

    Sudden deaths attributed to sniffing trichloroethylene are caused by the abuse of this solvent which produces pleasant inebriating effects with rapid dissipation. In the event of repeated cycles of inhalation, a dangerous and uncontrolled systemic accumulation of trichloroethylene may occur, followed by central nervous system depression, coma and lethal cardiorespiratory arrest. Sometimes death occurs outside the hospital environment, without medical intervention or witnesses and without specific necroscopic signs. Medico legal investigations into sudden sniffing deaths associated with trichloroethylene demand careful analysis of the death scene and related circumstances, a detailed understanding of the deceased's medical history and background of substance abuse and an accurate evaluation of all autopsy and laboratory data, with close cooperation between the judiciary, coroners and toxicologists. PMID:26165664

  10. Trichloroethylene degradation by butane-oxidizing bacteria causes a spectrum of toxic effects.

    PubMed

    Halsey, Kimberly H; Sayavedra-Soto, Luis A; Bottomley, Peter J; Arp, Daniel J

    2005-10-01

    The physiological consequences of trichloroethylene (TCE) transformation by three butane oxidizers were examined. Pseudomonas butanovora, Mycobacterium vaccae, and Nocardioides sp. CF8 utilize distinctly different butane monooxygenases (BMOs) to initiate degradation of the recalcitrant TCE molecule. Although the primary toxic event resulting from TCE cometabolism by these three strains was loss of BMO activity, species differences were observed. P. butanovora and Nocardioides sp. CF8 maintained only 4% residual BMO activity following exposure to 165 microM TCE for 90 min and 180 min, respectively. In contrast, M. vaccae maintained 34% residual activity even after exposure to 165 microM TCE for 300 min. Culture viability was reduced 83% in P. butanovora, but was unaffected in the other two species. Transformation of 530 nmol of TCE by P. butanovora (1.0 mg total protein) did not affect the viability of BMO-deficient P. butanovora cells, whereas transformation of 482 nmol of TCE by toluene-grown Burkholderia cepacia G4 caused 87% of BMO-deficient P. butanovora cells to lose viability. Together, these results contrast with those previously reported for other bacteria carrying out TCE cometabolism and demonstrate the range of cellular toxicities associated with TCE cometabolism. PMID:15754184

  11. Electrochemical fluorination of trichloroethylene and N, N-dimethyltrifluoroacetamide

    NASA Technical Reports Server (NTRS)

    Hsu, L. C.

    1979-01-01

    Fluorination of trichloroethylene and N, N-dimethyltrifluoroacetamide was carried out on a laboratory scale in an advanced Simons type electrochemical apparatus which could be operated automatically from ambient to 50 psi pressure. A variety of fluorine-substituted products are formed, depending upon electrolysis conditions and concentrations of reactant relative to the NaF, KF, HF electrolyte. A new reaction mechanism of electrochemical fluorination of trichloroethylene is proposed. The solvency-to-fluorine content relationship of fluorinated N, N-dimethyltrifluoroacetamide is described.

  12. Simulation calculations of tetrachloroethylene decomposition in air mixtures under electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Chmielewski, A. G.; Bu?ka, S.; Zimek, Z.; Nichipor, H.

    2009-07-01

    Theoretical simulation calculations of tetrachloroethylene (PCE) decomposition in air mixtures under electron beam (EB) irradiation have been carried out based on the experimental results. A computer code Kinetic and a Gear method were used and 324 reactions and 76 species were considered. From calculated results, we learn that more than 99% PCE is decomposed at 4.4 kGy dose when the initial concentration of PCE is 322 ppm; concentrations of inorganic carbons (CO+CO 2) increases with the dose, and the relative carbon concentration of inorganic carbons is about 17% at 13.1 kGy; phosgene (COCl 2) and trichloroacetyl chloride (CCl 3COCl) are predicted as main organic products and are confirmed by the experimental results. The good agreement is obtained between the calculated results and the experimental data.

  13. Mutagenicity of trichloroethylene and its metabolites: implications for the risk assessment of trichloroethylene.

    PubMed Central

    Moore, M M; Harrington-Brock, K

    2000-01-01

    This article addresses the evidence that trichloroethylene (TCE) or its metabolites might mediate tumor formation via a mutagenic mode of action. We review and draw conclusions from the published mutagenicity and genotoxicity information for TCE and its metabolites, chloral hydrate (CH), dichloroacetic acid (DCA), trichloroacetic acid (TCA), trichloroethanol, S-(1, 2-dichlorovinyl)-l-cysteine (DCVC), and S-(1, 2-dichlorovinyl) glutathione (DCVG). The new U.S. Environmental Protection Agency proposed Cancer Risk Assessment Guidelines provide for an assessment of the key events involved in the development of specific tumors. Consistent with this thinking, we provide a new and general strategy for interpreting genotoxicity data that goes beyond a simple determination that the chemical is or is not genotoxic. For TCE, we conclude that the weight of the evidence argues that chemically induced mutation is unlikely to be a key event in the induction of human tumors that might be caused by TCE itself (as the parent compound) and its metabolites, CH, DCA, and TCA. This conclusion derives primarily from the fact that these chemicals require very high doses to be genotoxic. There is not enough information to draw any conclusions for trichloroethanol and the two trichloroethylene conjugates, DCVC and DCVG. There is some evidence that DCVC is a more potent mutagen than CH, DCA, or TCA. Unfortunately, definitive conclusions as to whether TCE will induce tumors in humans via a mutagenic mode of action cannot be drawn from the available information. More research, including the development and use of new techniques, is required before it is possible to make a definitive assessment as to whether chemically induced mutation is a key event in any human tumors resulting from exposure to TCE. PMID:10807553

  14. Identification and quantification of products formed from the photocatalytic degradation of trichloroethylene vapor on TlO{sub 2} illuminated with near-UV light

    SciTech Connect

    Hung, C.H.; Marinas, B.J. [Purdue Univ., West Lafayette, IN (United States)

    1995-12-31

    The objectives of this study were to identify and quantify reaction products from photocatalytic degradation of trichloroethylene (TCE) vapor on the surfaces of anatase titanium dioxide (TiO{sub 2}) immobilized inside a reactor with annular configuration at ambient temperature and pressure. Ten chlorinated organic compounds including phosgene (COCl{sub 2}), 1,2-dichloroethylene (C{sub 2}H{sub 2}Cl{sub 2}), dichloroacetyl chloride (C{sub 2}HCl{sub 3}O), chloroform (CHCl{sub 3}), carbon tetrachloride (CCl{sub 4}), 1,1,2-trichloroethane (C{sub 2}H{sub 3}Cl{sub 3}), 1,1,2,2-tetrachloroethane (C{sub 2}H{sub 2}Cl{sub 4}), tetrachloroethylene (C{sub 2}O{sub 4}), pentachloroethane (C{sub 2}HCl{sub 5}), and hexachloroethane (C{sub 2}Cl{sub 4}) and two inorganic specks HCl and Cl{sub 2} were identified in the photocatalytic reactor effluent. In general, the fraction of TCE going into chlorinated organic products appeared to peak at an oxygen concentration of 150 ppmv and then to decrease at higher oxygen levels. Cl-containing products observed at high oxygen concentrations were predominately the inorganic species HCl and Cl{sub 2}.

  15. EFFECTS OF THERMAL TREATMENTS ON THE CHEMICAL REACTIVITY OF TRICHLOROETHYLENE

    EPA Science Inventory

    A series of experiments was completed to investigate abiotic degradation and reaction product formation of trichloroethylene (TCE) when heated. A quartz-tube apparatus was used to study short residence time and high temperature conditions that are thought to occur during thermal ...

  16. IRIS Toxicological Review of Trichloroethylene (TCE) (External Review Draft)

    EPA Science Inventory

    EPA is conducting a peer review and public comment of the scientific basis supporting the human health hazard and dose-response assessment of Trichloroethylene (TCE) that when finalized will appear on the Integrated Risk Information System (IRIS) database. Please refer to ...

  17. Chronic dysphagia and trigeminal anesthesia after trichloroethylene exposure

    SciTech Connect

    Lawrence, W.H.; Partyka, E.K.

    1981-12-01

    A patient is described who inhaled trichloroethylene fumes while working in a closed underground pit. At the time of exposure he developed dysphagia, dysarthria and dyspnea. Assessment of his condition 11 years after the incident indicated major damage of cranial nerves, particularly the trigeminal, chronic involvement of the bulbar cranial nerves, and resultant esophageal and pharnygeal motility impairment. (JMT)

  18. EFFECT OF TRICHLOROETHYLENE ON MALE SEXUAL BEHAVIOR: POSSIBLE OPIOID ROLE

    EPA Science Inventory

    Trichloroethylene (TCE) is a chlorinated hydrocarbon solvent which is widely used as an industrial degreasing agent. Workers exposed to TCE often exhibit symptoms similar to those symptoms produced by narcotics. The present studies evaluated the effects of TCE exposure on measure...

  19. Documentation of trichloroethylene for the material safety data sheet

    Microsoft Academic Search

    B. C. Fields; L. MacDonald

    1984-01-01

    An investigation was made of all available research data to evaluate and determine the toxic effects of trichloroethylene (TCE) for the Material Safety Data Sheet. It is a study of the toxic effects on humans and animals of exposure to various concentrations of TCE. The study, which includes chronic exposure to TCE causing damage to the skin, eyes, and all

  20. BIODEGRADATION OF TRICHLOROETHYLENE AND INVOLVEMENT OF AN AROMATIC BIODEGRADATIVE PATHWAY

    EPA Science Inventory

    Biodegradation of trichloroethylene (TCE) by the bacterial isolate strain G4 resulted in complete dechlorination of the compound as indicated by the production of inorganic chloride. A component of the water from which strain G4 was isolated that was required for TCE degradation ...

  1. EFFECT OF ALCOHOL COSOLVENTS ON THE AQUEOUS SOLUBILITY OF TRICHLOROETHYLENE

    Microsoft Academic Search

    R. C. Chawla; K. F. Dour; D. McKay

    2001-01-01

    Trichloroethylene (TCE) is a halogenated organic compound, which due to its unique properties and solvent effects, has been widely used as an ingredient in industrial cleaning solutions and as a universal degreasing agent. Due to its wide use, TCE is prevalent in contaminated soil and Superfund sites. This has generated a high degree of interest in efficient and cost-effective technologies

  2. ADSORPTION AND CATALYTIC DESTRUCTION OF TRICHLOROETHYLENE IN HYDROPHOBIC ZEOLITES

    EPA Science Inventory

    Several chromium exchanged ZSM-5 zeolites of varying SiO2/Al2O3 ratio were prepared and investigated for ambient (23 ?C) adsorption and subsequent oxidative destruction (250-400 ?C) of gaseous trichloroethylene (TCE, Cl2C=CHCl) in a humid air stream. With an increase in the SiO2...

  3. Hepatitis caused by occupational chronic exposure to trichloroethylene.

    PubMed

    Anagnostopoulos, G; Sakorafas, G H; Grigoriadis, K; Margantinis, G; Kostopoulos, P; Tsiakos, S; Arvanitidis, D

    2004-01-01

    Trichloroethylene (TCE) is an organic solvent used in a variety of industries for more than 60 years. Several adverse events following acute or chronic exposure to trichloroethylene have been reported. However, TCE-induced hepatitis is very rare. We present the case of a 55-year old male who was presented with anorexia, fatigue and upper abdominal discomfort. Routine laboratory examination revealed marked elevation of liver enzyme values. All possible causes of hepatitis were ruled out. The patient has been working as a shoemaker, in a small room of a basement, with insufficient air-exchange; during the last 5 years he used daily a glue containing 1,1,1 trichloroethylene. The diagnosis of hepatitis was confirmed by liver biopsy. The offending agent was withdrawn. Three months later, he was "feeling well" and liver enzyme values had returned to normal. Six months after the initial biopsy, a second liver biopsy was performed and histology was markedly improved. Workers exposed to hazardous chemicals, such as trichloroethylene, must have periodic follow-up examinations. Good work practices are very important when using toxic substances. In patients whose initial diagnostic workout is negative for common causes of acute or chronic hepatitis, toxic causes should be considered, with emphasis on patient's job and working conditions. PMID:15727081

  4. AEROBIC METABOLISM OF TRICHLOROETHYLENE BY A BACTERIAL ISOLATE

    EPA Science Inventory

    A number of soil and water samples were screened for the biological capacity to metabolize trichloroethylene. One water sample was found to contain this capacity, and a gram-negative, rod-shaped bacterium which appeared to be responsible for the metabolic activity was isolated fr...

  5. THE EFFECT OF VOLTAGE ON ELECTROCHEMICAL DEGRADATION OF TRICHLOROETHYLENE

    EPA Science Inventory

    This study investigates electrochemical degradation of Trichloroethylene (TCE) using granular graphite as electrodes in a flow-through reactor system. The experiments were conducted to obtain information on the effect of voltage and flow rates on the degradation rates of TCE. The...

  6. Cometabolic biodegradation of trichloroethylene in microcosms

    USGS Publications Warehouse

    Kane, Allen C.; Wilson, Timothy P.; Fischer, Jeffrey M.

    1997-01-01

    Laboratory microcosms were used to determine the concentrations of oxygen (O2) and methane (CH4) that optimize trichloroethylene (TCE) biodegradation in sediment and ground-water samples from a TCE-contaminated aquifer at Picatinny Arsenal, Morris County, New Jersey. The mechanism for degradation is the cometabolic activity of methanotrophic bacteria. The laboratory data will be used to support a field study designed to demonstrate the effectiveness of combining air sparging with cometabolic degradation of TCE for the purpose of aquifer remediation. Microcosms were constructed in autoclaved 250-mL (milliliter) amber glass bottles with valves for repeated headspace sampling. Equal volumes (25 mL) of sediment and ground water, collected from a depth of 40 feet, were added. TCE was added to attain initial aqueous concentrations equal to the field level of 1,400 mu g/L (micrograms per liter). Nine microcosms were constructed with initial headspace O2 concentrations of 5%, 10%, or 14% and CH4 concentrations of 0.5%, 3%, or 5%, with nitrogen making up the balance. Sterile controls, controls without CH4, and controls without sediment were also constructed. A 4-mL gas sample was removed periodically and TCE, O2 , CH4 , and carbon dioxide (CO2) concentrations were measured by using gas chromatography. As biodegradation proceeded, the decrease in O2, CH4 , and TCE concentrations and the production of CO2 were monitored. An initial acclimation period of at least 100 days was observed in those microcosms in which significant microbial activity occurred, as determined from decreases in O2 and CH4 concentrations and an increase in CO2 content. Degradation of TCE occurred with O2 concentrations of 2.7 to 8.7% and CH4 concentrations of 0.5 to 3.5%. Microcosms that initially contained 10% O2 and 3% CH4 showed the greatest microbial activity and the greatest amount of TCE degradation. The greatest rates of TCE degradation occurred when O2 and CH4 headspace concentrations reached levels of 7.7 to 8.7% and 1.7 to 2.7%, respectively, which correspond to aqueous concentrations of 2.9 to 3.5 mg/L and 0.4 to 0.6 mg/L, respectively. Over these ranges, TCE degradation rates ranged from 15 to 20 mu g of TCE per kilogram of sediment per day. Analysis of the control microcosms indicated that these TCE degradation rates are much greater than those attributable to experimental variation. The results indicate that the microbial community of the sediment is capable of TCE degradation and that significant rates of degradation can be achieved with obtainable O2 and CH4 concentrations.

  7. Methanogenic toluene metabolism: community structure and intermediates.

    PubMed

    Fowler, S Jane; Dong, Xiaoli; Sensen, Christoph W; Suflita, Joseph M; Gieg, Lisa M

    2012-03-01

    Toluene is a model compound used to study the anaerobic biotransformation of aromatic hydrocarbons. Reports indicate that toluene is transformed via fumarate addition to form benzylsuccinate or by unknown mechanisms to form hydroxylated intermediates under methanogenic conditions. We investigated the mechanism(s) of syntrophic toluene metabolism by a newly described methanogenic enrichment from a gas condensate-contaminated aquifer. Pyrosequencing of 16S rDNA revealed that the culture was comprised mainly of Clostridiales. The predominant methanogens affiliated with the Methanomicrobiales. Methane production from toluene ranged from 72% to 79% of that stoichiometrically predicted. Isotope studies using (13)C(7) toluene showed that benzylsuccinate and benzoate transiently accumulated revealing that members of this consortium can catalyse fumarate addition and subsequent reactions. Detection of a BssA gene fragment in this culture further supported fumarate addition as a mechanism of toluene activation. Transient formation of cresols, benzylalcohol, hydroquinone and methylhydroquinone suggested alternative mechanism(s) for toluene metabolism. However, incubations of the consortium with (18)O-H(2)O showed that the hydroxyl group in these metabolites did not originate from water and abiotic control experiments revealed abiotic formation of hydroxylated species due to reactions of toluene with sulfide and oxygen. Our results suggest that toluene is activated by fumarate addition, presumably by the dominant Clostridiales. PMID:22040260

  8. Toluene disrupts synaptogenesis in cultured hippocampal neurons.

    PubMed

    Lin, Huei-Min; Liu, Chih-Yang; Jow, Guey-Mei; Tang, Chih-Yung

    2009-01-30

    Prenatal toluene exposure may lead to significant developmental neurotoxicity known as fetal solvent syndrome. Emerging evidence suggests that toluene embryopathy may arise from an elusive deviation of the neurogenesis process. One key event during neural development is synaptogenesis, which is essential for the progression of neuronal differentiation and the establishment of neuronal network. We therefore aim to test the hypothesis that toluene may interfere with synaptogenesis by applying toluene to cultured hippocampal neurons dissected from embryonic rat brains. In the presence of toluene, hippocampal neurons displayed a significant loss of the immunostaining of synapsin and densin-180 punctas. Notably, a dramatic reduction was also discerned for the colocalization of the two synaptic markers. Moreover, Western blotting analyses revealed that toluene exposure resulted in considerable down-regulation of the expression of synapse-specific proteins. None of the preceding observations can be attributed to toluene-induced cell death effects, since toluene treatments failed to affect the viability of hippocampal neurons. Overall, our data are consistent with the idea that toluene may alter the expression and localization of essential synaptic proteins, thereby leading to a disruption of synapse formation and maintenance. PMID:19038319

  9. Integrating Address Geocoding, Land Use Regression, and Spatiotemporal Geostatistical Estimation for Groundwater Tetrachloroethylene

    PubMed Central

    Messier, Kyle P.; Akita, Yasuyuki; Serre, Marc L.

    2012-01-01

    Geographic Information Systems (GIS) based techniques are cost-effective and efficient methods used by state agencies and epidemiology researchers for estimating concentration and exposure. However, budget limitations have made statewide assessments of contamination difficult, especially in groundwater media. Many studies have implemented address geocoding, land use regression, and geostatistics independently, but this is the first to examine the benefits of integrating these GIS techniques to address the need of statewide exposure assessments. A novel framework for concentration exposure is introduced that integrates address geocoding, land use regression (LUR), below detect data modeling, and Bayesian Maximum Entropy (BME). A LUR model was developed for Tetrachloroethylene that accounts for point sources and flow direction. We then integrate the LUR model into the BME method as a mean trend while also modeling below detects data as a truncated Gaussian probability distribution function. We increase available PCE data 4.7 times from previously available databases through multistage geocoding. The LUR model shows significant influence of dry cleaners at short ranges. The integration of the LUR model as mean trend in BME results in a 7.5% decrease in cross validation mean square error compared to BME with a constant mean trend. PMID:22264162

  10. A risk-based cleanup criterion for PCE in soil. [Tetrachloroethylene

    SciTech Connect

    Daniels, J.I.; McKone, T.E.; Hall, L.C.

    1990-09-26

    The most important attribute of a chemical contaminant at a hazardous-wastes site for decision makers to consider with regard to its cleanup is the potential risk associated with human exposure. For this reason we have developed a strategy for establishing a risk-based cleanup criterion for chemicals in soil. We describe this strategy by presenting a cleanup criterion for tetrachloroethylene (PCE) in soil associated with a representative California landscape. We being by discussing the environmental fate and transport model, developed at the Lawrence Livermore National Laboratory (LLNL), that we used to predict the equilibrium concentration of PCE in five environmental media from a steady-state source in soil. Next, we explain the concept and application of pathway-exposure factors (PEFs), the hazard index, and cancer-potency factors (CPFs) for translating the predicted concentrations of PCE into estimated potential hazard or risk for hypothetically exposed individuals. Finally, the relationship between concentration and an allowable level of risk is defined and the societal and financial implications are discussed. 22 refs., 6 tabs.

  11. Continuous determination of high-vapor-phase concentrations of tetrachloroethylene using on-line mass spectrometry.

    PubMed

    Fine, Dennis; Brooks, Michael C; Bob, Mustafa; Mravik, Susan; Wood, Lynn

    2008-02-15

    A method was developed to determine the vapor concentration of tetrachloroethylene (PCE) at and below its equilibrium vapor-phase concentration, 168 000 microg/L (25 degrees C). Vapor samples were drawn by vacuum into a six-port sampling valve and injected through a jet separator into an ion trap mass spectrometer (MS). This on-line MS can continuously sample a vapor stream and provide vapor concentrations every 30 s. Calibration of the instrument was done by creating a saturated stream of PCE vapor, sampling the vapor with the on-line MS and with thermal desorption tubes, and correlating the peak area response from the MS with the vapor concentration determined by automated thermal desorption gas chromatography mass spectrometry. Dilution of the saturated stream provided lower concentrations of PCE vapor. The method was developed to monitor the vapor concentration of PCE that was sparged from a two-dimensional flow chamber and for determination of the total PCE mass removed during each sparge event. The method has potential application for analysis of gas-phase tracers. PMID:18205332

  12. Biological degradation of tetrachloroethylene in methanogenic conditions. Final report, 12 July 1991-11 January 1993

    SciTech Connect

    Gossett, J.M.; DiStefano, T.D.; Stover, M.A.

    1994-06-01

    Research objective: investigate anaerobic biodegradation of perchloroethylene (PCE). Specific objectives: determine if the presence of PCE is necessary to sustain dechlorination of vinyl chloride (VC), delineate the role of hydrogen (H2) in PCE reductive dechlorination, investigate the ability of the high level PCE/methanol (MeOH) culture to utilize low levels of PCE, and determine the applicability of an Anaerobic Attached-film Expanded-bed (AAFEB) reactor to achieve PCE dechlorination. The investigators determined: by using a VC-fed culture unable to sustain ETH production, that the presence of PCE is required to sustain VC dechlorination, H2 acts as the electron donor directly used for the reductive dechlorination of PCE to ethene, the PCE/MeOH culture was able to use ppb levels of PCE due to the small requirement for electron donor (H2) by the culture, and that the loss of the dechlorinating biomass from the support matrix, and/or the inability of the culture to support PCE dechlorination at low concentrations, led to the failure of the AAFEB reactor system. Biodegradation, Tetrachloroethylene, Methanogenesis, Fixed-film reactors, Biological treatment, Chlorinated hydrocarbons.

  13. Adult Neuropsychological Performance Following Prenatal and Early Postnatal Exposure to Tetrachloroethylene (PCE)-contaminated Drinking Water

    PubMed Central

    Janulewicz, Patricia A; White, Roberta F; Martin, Brett M; Winter, Michael R; Weinberg, Janice M; Vieira, Veronica; Aschengrau, Ann

    2012-01-01

    This population-based retrospective cohort study examined adult performance on a battery of neuropsychological tests in relation to prenatal and early postnatal exposure to tetrachloroethylene (PCE)-contaminated drinking water on Cape Cod, Massachusetts. Subjects were identified through birth records from 1969 through 1983. Exposure was modeled using pipe network information from town water departments, a PCE leaching and transport algorithm, EPANet water flow modeling software, and a Geographic Information System (GIS). Results of crude and multivariate analyses among 35 exposed and 28 unexposed subjects showed no association between prenatal and early postnatal exposure and decrements on tests that assess abilities in the domains of omnibus intelligence, academic achievement or language. The results were suggestive of an association between prenatal and early postnatal PCE exposure and diminished performance on tests that assessed abilities in the domains of visuospatial functioning, learning and memory, motor, attention and mood. Because the sample size was small, most findings were not statistically significant. Future studies with larger sample sizes should be conducted to further define the neuropsychological consequences of early developmental PCE exposure. PMID:22522125

  14. Trichloroethylene biodegradation by a methane-oxidizing bacterium

    Microsoft Academic Search

    C. D. Little; A. V. Palumbo; S. E. Herbes; M. E. Lidstrom; R. L. Tyndall; P. J. Gilmer

    1988-01-01

    Trichloroethylene (TCE), a common ground water contaminant, is a suspected carcinogen that is highly resistant to aerobic biodegradation. An aerobic, methane-oxidizing bacterium was isolated that degrades TCE in pure culture at concentrations commonly observed in contaminated ground water. Strain 46-1, a type I methanotrophic bacterium, degraded TCE if grown on methane or methanol, producing COâ and water-soluble products. Gas chromatography

  15. Influence of Physical Factors on Trichloroethylene Evaporation from Surface Water

    Microsoft Academic Search

    Prabhakar Pant; Marshall Allen; Yong Cai; Krishnaswamy Jayachandran; Yin Chen

    2007-01-01

    Evaporation of trichloroethylene (TCE) is a viable option in the remediation of TCE contaminated water. In this study, laboratory\\u000a batch experiments were conducted to understand the evaporation kinetics of TCE in surface water, with further extension of\\u000a this knowledge to field application. Experiments were set up for 15, 30, 60, and 90 min time intervals in open glass containers\\u000a with initial

  16. Subsurface microbial communities and degradative capacities during trichloroethylene bioremediation

    SciTech Connect

    Pfiffner, S.M.; Ringelberg, D.B.; Hedrick, D.B.; Phelps, T.J.; Palumbo, A.V.

    1995-12-31

    Subsurface amendments of air, methane, and nutrients were investigated for the in situ stimulation of trichloroethylene- degrading microorganisms at the US DOE Savannah River Integrated Demonstration. Amendments were injected into a lower horizontal well coupled with vacuum extraction from the vadose zone horizontal well. The amendments were sequenced to give increasingly more aggressive treatments. Microbial populations and degradative capacities were monitored in groundwaters samples bimonthly.

  17. Toluene disrupts synaptogenesis in cultured hippocampal neurons

    Microsoft Academic Search

    Huei-Min Lin; Chih-Yang Liu; Guey-Mei Jow; Chih-Yung Tang

    2009-01-01

    Prenatal toluene exposure may lead to significant developmental neurotoxicity known as fetal solvent syndrome. Emerging evidence suggests that toluene embryopathy may arise from an elusive deviation of the neurogenesis process. One key event during neural development is synaptogenesis, which is essential for the progression of neuronal differentiation and the establishment of neuronal network. We therefore aim to test the hypothesis

  18. Ethnic Differences in the Metabolism of Toluene: Comparisons between Korean and Foreign Workers Exposed to Toluene

    PubMed Central

    Won, Young Lim; Ko, Kyung Sun

    2015-01-01

    The objectives of this study were to investigate the individual characteristics, lifestyle habits, exposure levels, and genetic diversity of xenobiotic-metabolizing enzymes involved in toluene metabolism in Korean and foreign workers exposed to toluene at a manufacturing plant. This study was conducted to determine the effects of culture or ethnicity on toluene metabolism. The results showed that blood and urinary toluene concentrations were dependent on the level of exposure to toluene. We analyzed the correlation between toluene metabolism and genetic diversity in glutathione S-transferase (GST) (M1), GSTT1, and cytochrome p-450 (CYP) 2E1*5 as well as lifestyle habits (smoking, drinking, and exercise habits). The results revealed significant correlations between toluene metabolism and GSTM1 and GSTT1 genetic diversity, as well as smoking and exercise. PMID:25874030

  19. Toluene monooxygenase from the fungus Cladosporium sphaerospermum.

    PubMed

    Luykx, Dion M A M; Prenafeta-Boldú, Francesc X; de Bont, Jan A M

    2003-12-12

    Assimilation of toluene by Cladosporium sphaerospermum is initially catalyzed by toluene monooxygenase (TOMO). TOMO activity was induced by adding toluene to a glucose-pregrown culture of C. sphaerospermum. The corresponding microsomal enzyme needed NADPH and O(2) to oxidize toluene and glycerol, EDTA, DTT, and PMSF for stabilization. TOMO activity was maximal at 35 degrees C and pH 7.5 and was inhibited by carbon monoxide, Metyrapone, and cytochrome c. TOMO preferred as substrates also other aromatic hydrocarbons with a short aliphatic side chain. Its reduced carbon monoxide difference spectrum showed a maximum at 451 nm. A substrate-induced Type I spectrum was observed on addition of toluene. These results indicated that TOMO is a cytochrome P450. TOMO and its corresponding reductase were eventually purified by a simultaneous purification revealing apparent molecular masses of 58 and 78 kDa, respectively. PMID:14637148

  20. TRICHLOROETHYLENE ACCELERATES AN AUTOIMMUNE RESPONSE IN ASSOCIATION WITH TH1 T-CELL ACTIVATION IN MRL+/+ MICE. (R826409)

    EPA Science Inventory

    Abstract Trichloroethylene (1,1,2-trichloroethene) is a major environmental contaminant. There is increasing evidence relating exposure to trichloroethylene with autoimmunity. To investigate potential mechanisms, we treated the autoimmune-prone MRL+/+ mice with trichlo...

  1. Cloning and characterization of a Pseudomonas mendocina KR1 gene cluster encoding toluene-4-monooxygenase.

    PubMed Central

    Yen, K M; Karl, M R; Blatt, L M; Simon, M J; Winter, R B; Fausset, P R; Lu, H S; Harcourt, A A; Chen, K K

    1991-01-01

    Pseudomonas mendocina KR1 metabolizes toluene as a carbon source by a previously unknown pathway. The initial step of the pathway is hydroxylation of toluene to form p-cresol by a multicomponent toluene-4-monooxygenase (T4MO) system. The T4MO enzyme system has broad substrate specificity and provides a new opportunity for biodegradation of toxic compounds and bioconversions. Its known activities include conversion of a variety of phenyl compounds into the phenolic derivatives and the complete degradation of trichloroethylene. We have cloned and characterized a gene cluster from KR1 that determines the offO activity. To clone the T4MO genes, KR1 DNA libraries were constructed in Escherichia coli HB101 by using a broad-host-range vector and transferred to a KR1 mutant able to grow on p-cresol but not on toluene. An insert consisting of two SacI fragments of identical size (10.2 kb) was shown to complement the mutant for growth on toluene. One of the SacI fragments, when cloned into the E. coli vector pUC19, was found to direct the synthesis of indigo dye. The indigo-forming property was correlated with the presence of T4MO activity. The T4MO genes were mapped to a 3.6-kb region, and the direction of transcription was determined. DNA sequencing and N-terminal amino acid determination identified a five-gene cluster, tmoABCDE, within this region. Expression of this cluster carrying a single mutation in each gene demonstrated that each of the five genes is essential for T4MO activity. Other evidence presented indicated that none of the tmo genes was involved in the regulation of the tmo gene cluster, in the control of substrate transport for the T4MO system, or in major processing of the products of the tmo genes. It was tentatively concluded that the tmoABCDE genes encode structural polypeptides of the T4MO enzyme system. One of the tmo genes was tentatively identified as a ferredoxin gene. Images PMID:1885512

  2. Bacterial treatment system for the remediation of trichloroethylene. Final report, 1 November 1992-31 December 1994

    SciTech Connect

    Shields, M.S.

    1996-10-01

    14. Abstract A genetically altered bacterium Burkholderia (Pseudomonas) cepacia PR123 and closely related genetic derivatives were tested for bioreactor and in situ trichloroethylene (TOE) degradation. PRi 23 was shown to degrade TOE in a plugged flow bioreactor, but failed to form a stable biofilm under test conditions at Hanscom AFB. Indigenous microorganisms dominated the reactors shortly after inoculation in every instance, despite changes in support matrix and primary carbon source. The continuous addition of the genetically altered bacterium did achieve a significant (>80%) removal of TOE and cis-dichloroethylene from the waste stream at concentrations of 500-800 ugiL, at 0.26 GPM, thus confirming the capacity the constitutively expressed toluene ortho-monooxygenase (Tom) to cooxidize TOE under environmental conditions. For this reason the Tom constitutive plasmid: TOM31c (a kanamycin resistant derivative of TOM), was transferred to two superior biofilm forming bacteria: P. capacia 17616 and P. sp JSl5O, and dominant aquifer bacterium from Wichita KS WS23. These transconjugants also constitutively degraded TOE, but were no more competitive in biofilm reactors than PR123. In column tests >95% of the TOE was degraded in an 8 hour residence time.

  3. Two cases of acute toluene intoxication.

    PubMed Central

    Meulenbelt, J; de Groot, G; Savelkoul, T J

    1990-01-01

    Two patients exposed to high concentrations of toluene in air (greater than 7000 mg/m3) were found at the bottom of a small swimming pool under construction. Their symptoms were stupefaction, paresis, and amnesia. Patient A had been exposed for three hours and patient B for two hours. Ninety minutes after the exposure, the toluene blood concentration in patient A was 4.1 mg/l and in patient B 2.2 mg/l. Urinary ortho-cresol secretion was shown to be a good index of exposure to toluene. After high level exposure, urinary meta-cresol excretion may also be used to monitor toluene exposure. PMID:2378819

  4. Oxidation Mechanisms of Toluene and Benzene

    NASA Technical Reports Server (NTRS)

    Bittker, David A.

    1995-01-01

    An expanded and improved version of a previously published benzene oxidation mechanism is presented and shown to model published experimental data fairly successfully. This benzene submodel is coupled to a modified version of a toluene oxidation submodel from the recent literature. This complete mechanism is shown to successfully model published experimental toluene oxidation data for a highly mixed flow reactor and for higher temperature ignition delay times in a shock tube. A comprehensive sensitivity analysis showing the most important reactions is presented for both the benzene and toluene reacting systems. The NASA Lewis toluene mechanism's modeling capability is found to be equivalent to that of the previously published mechanism which contains a somewhat different benzene submodel.

  5. Primary atmospheric oxidation mechanism for toluene.

    PubMed

    Baltaretu, Cristian O; Lichtman, Eben I; Hadler, Amelia B; Elrod, Matthew J

    2009-01-01

    The products of the primary OH-initiated oxidation of toluene were investigated using the turbulent flow chemical ionization mass spectrometry technique at temperatures ranging from 228 to 298 K. A major dienedial-producing pathway was detected for the first time for toluene oxidation, and glyoxal and methylglyoxal were found to be minor primary oxidation products. The results suggest that secondary oxidation processes involving dienedial and epoxide primary products are likely responsible for previous observations of glyoxal and methylglyoxal products from toluene oxidation. Because the dienedial-producing pathway is a null cycle for tropospheric ozone production and glyoxal and methylglyoxal are important secondary organic aerosol precursors, these new findings have important implications for the modeling of toluene oxidation in the atmosphere. PMID:19118482

  6. Landfill gas (LFG) processing via adsorption and alkanolamine absorption

    Microsoft Academic Search

    Ankur Gaur; Jin-Won Park; Sanjeev Maken; Ho-Jun Song; Jong-Jin Park

    2010-01-01

    Landfill gas (LFG) was upgraded to pure methane using the adsorption and absorption processes. Different toxic compounds like aromatics and chlorinated compounds were removed using granular activated carbon. The activated carbon adsorbed toxic trace components in the following order: carbon tetrachloride>toluene>chloroform>xylene>ethylbenzene>benzene>trichloroethylene?tetrachloroethylene. After removing all trace components, the gas was fed to absorption apparatus for the removal of carbon dioxide (CO2).

  7. Molecular Inclusion Properties of Hydrophobic Organic Compounds by a Modified ?-Cyclodextrin Intercalated within a Layered Double Hydroxide

    Microsoft Academic Search

    Hongting Zhao; George F. Vance

    1998-01-01

    A study was conducted to evaluate the inclusion properties of various nonionic hydrophobic organic compounds by a novel intercalate derived from magnesium-aluminum layered double hydroxide (Mg\\/Al LDH) and carboxymethyl-ß-cyclodextrin with a degree of substitution of 3 [CMCD(3)]. The isotherm sorption results at 25 °C showed that the CMCD(3)-Mg\\/Al LDH intercalate could retain all the organic compounds (trichloroethylene, tetrachloroethylene, benzene, toluene,

  8. Documentation of trichloroethylene for the material safety data sheet

    SciTech Connect

    Fields, B.C.; MacDonald, L.

    1984-04-15

    An investigation was made of all available research data to evaluate and determine the toxic effects of trichloroethylene (TCE) for the Material Safety Data Sheet. It is a study of the toxic effects on humans and animals of exposure to various concentrations of TCE. The study, which includes chronic exposure to TCE causing damage to the skin, eyes, and all internal vital organs, was made in order to establish safe levels, or further lower exposure levels, in the interest of biological safety. 35 references, 1 table.

  9. Reduction of benzene toxicity by toluene

    SciTech Connect

    Plappert, U.; Barthel, E.; Seidel, H.J. [Universitaet Ulm (Germany)

    1994-12-31

    BDF{sub 1} mice were exposed in inhalation chambers to benzene (900 ppm, 300 ppm) and/or toluene (500 ppm, 250 ppm) 6 hr per day, 5 days per week, for up to 8 weeks. Benzene alone induced a slight anemia after 4 and 8 weeks and a reduction of BFU-E and CFU-E numbers in the marrow. The coexposure to toluene reduced the degree of anemia. These results confirm previous studies where toluene was found to reduce benzene toxicity. This protective effect was most pronounced when DNA damage was studied in peripheral blood cells, bone marrow, and liver using the single cell gel (SCG) assay. With benzene alone, either with 300 or 900 ppm, a significant increase in DNA damage was detected in cells sampled from all three organs. Toluene alone did not induce a significant increase in DNA damage. The coexposure of benzene and toluene reduced the extent of DNA damage to about 50% of benzene alone. This result is considered a clear indication for a protective effect of toluene on the genetic toxicity of benzene. 18 refs., 7 figs., 3 tabs.

  10. Interfacial Properties of a Hydrophobic Dye in the Tetrachloroethylene-Water-Glass Systems

    SciTech Connect

    Tuck, D.M.

    1999-02-23

    Interfacial effects play an important role in governing multiphase fluid behavior in porous media. Strongly hydrophobic organic dyes, used in many experimental studies to facilitate visual observation of the phase distributions, have generally been implicitly assumed to have no influence on the interfacial properties of the various phases in porous media. Sudan IV is the most commonly used dye for non-aqueous phase liquids (NAPLs) in laboratory experiments. It has also been used in at least one field experiment. The effects of this dye on the tetrachloroethylene (PCE)-water-glass system were investigated to test the assumption that the dye does not effect the interfacial properties and therefore PCE mobility. The results indicate that the dye does indeed change the interfacial relationships.The effect of the dye on the interfacial relationships is a complex function of the dye concentration, the solid phase composition, and the dynamic rate of new interface formation. The dye caused a slight (<10 percent) increase in interfacial tension at low concentrations (<0.1 g/L) and high rates of new interface formation. The dye reduced interfacial tension between PCE and water at low rates of new interface formation for all dye concentrations tested (0.00508 to 5.08 g/L). At the highest dye concentration, the PCE-water interfacial tension was significantly reduced regardless of the rate of new interface formation. The apparent interfacial tension increase at low dye concentrations is suspected to be an artifact of a low measured IFT value for the undyed PCE caused by leaching of rubber o-rings by the PCE prior to testing in the final drop-volume configuration.In addition to reducing interfacial tension, the dye was found to significantly alter the wetting relationship between PCE and water on a glass surface at and above the range of reported dye concentrations cited in the literature (1.1 to 1.7 g/L). The wetting relationship was rendered neutral from a water-wet initial condition at the highest dye concentration. The contact angle, measured through the aqueous phase, changed from 58 degrees for undyed PCE to 93 degrees at a dye concentration of 5.08 g/L. Complete reversal of the wettability is likely given the short equilibration time used in this study (approximately five minutes) together with literature indications that hundreds to thousands of hours may be required to reach equilibrium during contact angle measurements. Observations suggesting changing wetting relationships were also noted between PCE, water, and the platinum-iridium surface used in the standard du No/374y ring method for measuring interfacial tension.Observations of the dyed-PCE-water interface behavior during du No/374y ring interfacial tension measurements were similar to observations noted previously during measurements of the interfacial tension between the Savannah River Site (SRS) M-Area Settling Basin DNAPL (M-Area DNAPL) and water. This observation suggests that the M-Area DNAPL may contain surface active components. If this proves to be the case, it would have significant implications for how the M-Area DNAPL is distributed and moves in the SRS subsurface.

  11. The selective catalytic oxidation of toluene

    NASA Astrophysics Data System (ADS)

    Boikov, E. V.; Vishnetskaya, M. V.; Emel'Yanov, A. N.; Tomskii, I. S.; Shcherbakov, N. V.

    2008-12-01

    It was found for the first time that the selectivity of toluene transformations into benzaldehyde and benzoic acid decreased and into maleic anhydride and deep oxidation products increased as the ability of vanadium-containing catalysts of toluene oxidation to generate the singlet form of molecular oxygen grew. A scheme of the formation of the products of toluene oxidation with oxygen was suggested. Quinones were shown to be final rather than intermediate oxidation products. The selectivity of the reaction with respect to mild oxidation products in the presence of V2O5, MoO3, and V2O5 · MoO3 could be increased by changing the temperature of catalyst preparation from 400 to 500°C.

  12. Neurobehavioral performance in workers exposed to toluene.

    PubMed

    Kang, Seong-Kyu; Rohlman, Diane S; Lee, Mi-Young; Lee, Hye-Sil; Chung, Soo-Young; Anger, W Kent

    2005-05-01

    Toluene is widely used in adhesive, printing, painting and petroleum industries in many countries. This study was conducted to examine the effect of chronic exposure to toluene below 100ppm on neurobehavioral performance using a computerized neurobehavioral test battery that emphasizes simple instructions and practice prior to testing. The Behavioral Assessment and Research System (BARS) with Korean language instructions was administered to 54 workers from three different industries: oil refinery, gravure printing, and rubber boat manufacturing. The battery consisted of the following tests: Digit Span (DS), Simple Reaction Time (SRT), Selective Attention (SAT), Finger Tapping (FT), and Symbol Digit (SD). Urine was collected at the end-of-shift to analyze urinary hippuric acid to assess exposure level to toluene. Based on the previous air toluene level, workers were divided into three groups: Low (21 workers, less than 10ppm), Moderate (13 workers, 20-30ppm) and High (20 workers, 70-80ppm) exposure status. Analysis of Covariance (ANCOVA) adjusting for age, education and work duration as covariates, was performed to examine the relationship between the neurobehavioral performance and the exposure groups. Poorer performance of the High exposure group was found on FT-preferred (F=7.034, p=0.002) and SAT latency (F=11.710, p=0.000). Age showed a significant correlation with SD (r=0.417, p=0.002) and SAT number correct (r=-0.460, p=0.000). Years of education and work duration were not significantly correlated with any items. This study supports that toluene exposure below 100ppm is associated with neurobehavioral changes and that high-level toluene exposure could cause not only attention and concentration, but also motor performance deficits. PMID:21783537

  13. 78 FR 67372 - Evaluation of Trichloroethylene for the Report on Carcinogens; Request for Nominations of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-12

    ...Trichloroethylene for the Report on Carcinogens; Request for Nominations of Scientific...Program (NTP) Office of the Report on Carcinogens (ORoC) requests nominations of speakers...substance under evaluation for the Report on Carcinogens (RoC)...

  14. Health Assessment Document for Trichloroethylene Synthesis and Characterization (2001, External Review Draft)

    EPA Science Inventory

    This assessment presents EPA's most current evaluation of the potential health risks from exposure to trichloroethylene (TCE). TCE exposure is associated with several adverse health effects, including neurotoxicity, immunotoxicity, developmental toxicity, liver toxicity, kidney t...

  15. MOMENTARY BRAIN CONCENTRATION OF TRICHLOROETHYLENE PREDICTS THE EFFECTS ON RAT VISUAL FUNCTION.

    EPA Science Inventory

    This manuscript demonstrates that the level neurological impairment following acute reversible exposure to trichloroethylene, a volatile organic compound, is more accurately described when extrapolations across exposure conditions are based on target tissue (brain) dose level, th...

  16. TRICHLOROETHYLENE ADSORPTION BY ACTIVATED CARBON PRELOADED WITH HUMIC SUBSTANCES: EFFECTS OF SOLUTION CHEMISTRY. (R828157)

    EPA Science Inventory

    Abstract Trichloroethylene (TCE) adsorption by activated carbon previously loaded ("preloaded") with humic substances was found to decrease with increasing concentrations of monovalent ions (NaCl), calcium (until solubility was exceeded), or dissolved oxygen in...

  17. DEGRADATION OF TRICHLOROETHYLENE UNDER HIGH-TEMPERATURE THERMAL SOURCE-ZONE REMOVAL CONDITIONS (POSTER PRESENTATION)

    EPA Science Inventory

    Trichloroethylene (TCE) is a contaminant commonly found in the subsurface at industrial and military installations in the United States. Oxidation of TCE (C2HCl3) to carbon dioxide (CO2) and chloride ions (Cl-) has been reported to occu...

  18. DEGRADATION OF TRICHLOROETHYLENE UNDER HIGH-TEMPERATURE THERMAL SOURCE-ZONE REMOVAL CONDITIONS (ABSTRACT ONLY)

    EPA Science Inventory

    Trichloroethylene (TCE) is a contaminant commonly found in the subsurface at industrial and military installations in the United States. Oxidation of TCE (C2HCl3) to carbon dioxide (CO2) and chloride ions (Cl-) has been reported to occu...

  19. EFFECTS OF REACTION PARAMETERS ON ELECTROCHEMICAL DECHLORINATION OF TRICHLOROETHYLENE RATE AND BY-PRODUCTS

    EPA Science Inventory

    Trichloroethylene (TCE) was electrochemically dechlorinated in aqueous environments using granular graphite cathode in a mixed reactor. Effects of pH, current, electrolyte type, and flow rate on TCE dechlorination rate were evaluated. TCE dechlorination rate constant and gas prod...

  20. EFFECTS OF REACTOR CONDITIONS ON ELECTROCHEMICAL DECHLORINATION OF TRICHLOROETHYLENE USING GRANULAR-GRAPHITE ELECTRODE

    EPA Science Inventory

    Trichloroethylene (TCE) was electrochemically dechlorinated in aqueous environments using granular graphite cathode in a mixed reactor. Effects of pH, current, electrolyte type, and flow rate on TCE dechlorination rate were evaluated. TCE dechlorination rate constant and gas pr...

  1. EFFECTS OF REACTOR CONDITIONS ON ELECTROCHEMICAL DECHLORINATION OF TRICHLOROETHYLENE USING GRANULAR-GRAPHITE ELECTRODE.

    EPA Science Inventory

    Trichloroethylene (TCE) was electrochemically dechlorinated in aqueous environments using granular graphite cathode in a mixed reactor. Effects of pH, current, electrolyte type, and flow rate on TCE dechlorination rate were evaluated. TCE dechlorination rate constant and gas pr...

  2. ELECTROCHEMICAL DECHLORINATION OF TRICHLOROETHYLENE USING GRANULAR-GRAPHITE ELECTRODES: IDENTIFICATION AND QUANTIFICATION OF DECHLORINATION PRODUCTS

    EPA Science Inventory

    Electrochemical degradation (ECD) utilizes high redox potential at the anode and low redox potential at the cathode to oxidize and/or reduce organic and inorganic contaminants. ECD of Trichloroethylene (TCE), although theoretically possible, has not been experimentally proven. Th...

  3. PHASE-TRANSFER-CATALYST APPLIED TO THE OXIDATION OF TRICHLOROETHYLENE BY POTASSIUM PERMANGANATE

    EPA Science Inventory

    Chlorinated ethylenes such as trichloroethylene (TCE) and perchloroethylene (PCE) are common contaminants (Plumb 1991; Westrick et al., 1984). They opccur in the subsurface as zones of residual saturation or occasionally as free products. Because of their inherently low solubil...

  4. COVALENT BINDING OF TRICHLOROETHYLENE TO PROTEINS IN HUMAN AND RAT HEPATOCYTES. (R826409)

    EPA Science Inventory

    The environmental contaminant and occupational solvent trichloroethylene is metabolized to a reactive intermediate that covalently binds to specific hepatic proteins in exposed mice and rats. In order to compare covalent binding between humans and rodents, primary hepatocyte c...

  5. Instantaneous Chemical Reactions in Benzene and Toluene

    E-print Network

    Allen, Herman Camp

    1905-06-07

    KU ScholarWorks | The University of Kansas Pre-1923 Dissertations and Theses Collection Instantaneous Chemical Reac- tions in Benzene and Toluene June 7th, 1905 by Herman Camp Allen This work was digitized by the Scholarly Communications program... Chemistry Allen, H.C. 1905 "Instantaneous reactions (chemical) in benzene and toluene". I ! B f O H B M I O A L REACTIONS IN Bt«2F;»F! AND TQLUBMB, Presented to the faculty of the University of Kansas in partial fulfillment of the requirements...

  6. Evoked potentials are modified by long term exposure to trichloroethylene.

    PubMed

    Blain, L; Lachapelle, P; Molotchnikoff, S

    1992-01-01

    Two groups of New Zealand albino rabbits were respectively exposed to 350 and 700 ppm of trichloroethylene (TRI) 4 hrs/day, 4 days/week for 12 weeks. Weekly, visual evoked potentials (VEP) recordings were obtained under mesopic condition. Blood samples were also collected weekly to determine the concentration of TRI and its metabolites. Recordings from the 350 ppm group showed a significant (p less than 0.001) decrease in the amplitude of VEPs, while a significant (p less than 0.001) increase was observed in the 700 ppm group. Both effects were reversed to baseline values within six weeks after the last exposure. The observed modifications in VEP amplitudes were related to blood level of trichloroethanol. These results thus confirm the neuro-ophthalmotoxicity of TRI and support the hypothesis that trichloroethanol is a reliable marker of the effective neurotoxic dose of this organic solvent. PMID:1508420

  7. The role of testosterone in trichloroethylene penetration in vitro

    SciTech Connect

    McCormick, K.; Abdel-Rahman, M.S. (Univ. of Medicine and Dentistry of New Jersey, Newark (United States))

    1991-02-01

    Sex differences are known to exist in the metabolism and bioavailability of trichloroethylene (TCE). This study revealed that dermal penetration of ({sup 14}C)TCE in vitro was twofold greater in untreated female than in untreated male Sprague-Dawley rats. Since testosterone has been shown to mediate a wide variety of sex differences, its role in dermal penetration of ({sup 14}C)TCE was investigated. Penetration was measured by using an in vitro evaporation-penetration cell with a 10-hour collection period. Depriving male rats of testosterone (by castration) resulted in increased values for total penetration, area under the curve (AUC), and penetration slopes compared to those found in the female control group. Administration of testosterone to female animals produced values for total penetration, AUC, and penetration slopes significantly lower than those of the female control group.

  8. Trichloroethylene Biodegradation by a Methane-Oxidizing Bacterium †

    PubMed Central

    Little, C. Deane; Palumbo, Anthony V.; Herbes, Stephen E.; Lidstrom, Mary E.; Tyndall, Richard L.; Gilmer, Penny J.

    1988-01-01

    Trichloroethylene (TCE), a common groundwater contaminant, is a suspected carcinogen that is highly resistant to aerobic biodegradation. An aerobic, methane-oxidizing bacterium was isolated that degrades TCE in pure culture at concentrations commonly observed in contaminated groundwater. Strain 46-1, a type I methanotrophic bacterium, degraded TCE if grown on methane or methanol, producing CO2 and water-soluble products. Gas chromatography and 14C radiotracer techniques were used to determine the rate, methane dependence, and mechanism of TCE biodegradation. TCE biodegradation by strain 46-1 appears to be a cometabolic process that occurs when the organism is actively metabolizing a suitable growth substrate such as methane or methanol. It is proposed that TCE biodegradation by methanotrophs occurs by formation of TCE epoxide, which breaks down spontaneously in water to form dichloroacetic and glyoxylic acids and one-carbon products. Images PMID:16347616

  9. Zeolite-combined plasma reactor for decomposition of toluene

    Microsoft Academic Search

    S.-M. Oh; H.-H. Kim; H. Einaga; A. Ogata; S. Futamura; D.-W. Park

    2006-01-01

    Toluene was decomposed in a surface-discharge plasma reactor and the combined effect of zeolite in the plasma reactor was studied. The decomposition of toluene and the product compositions depended on the reactor configuration and the capacity of zeolite to adsorb toluene. Toluene adsorbed on the zeolite (micro-pores) was not properly decomposed in the head of the plasma (P1), while it

  10. Acute behavioural comparisons of toluene and ethanol in human subjects

    Microsoft Academic Search

    D Echeverria; L Fine; G Langolf; T Schork; C Sampaio

    1991-01-01

    A comparison of toluene and ethanol (EtOH) induced changes in central nervous system (CNS) function and symptoms were evaluated in two studies, and when possible the effects of toluene were expressed in EtOH equivalent units. The toluene concentrations were 0, 75, and 150 ppm, bracketing the American Conference of Governmental Industrial Hygienists threshold limit value (ACGIH TLV) of 100 ppm.

  11. Toluene Monooxygenase-Catalyzed Epoxidation of Alkenes

    PubMed Central

    McClay, Kevin; Fox, Brian G.; Steffan, Robert J.

    2000-01-01

    Several toluene monooxygenase-producing organisms were tested for their ability to oxidize linear alkenes and chloroalkenes three to eight carbons long. Each of the wild-type organisms degraded all of the alkenes that were tested. Epoxides were produced during the oxidation of butene, butadiene, and pentene but not hexene or octadiene. A strain of Escherichia coli expressing the cloned toluene-4-monooxygenase (T4MO) of Pseudomonas mendocina KR1 was able to oxidize butene, butadiene, pentene, and hexene but not octadiene, producing epoxides from all of the substrates that were oxidized. A T4MO-deficient variant of P. mendocina KR1 oxidized alkenes that were five to eight carbons long, but no epoxides were detected, suggesting the presence of multiple alkene-degrading enzymes in this organism. The alkene oxidation rates varied widely (ranging from 0.01 to 0.33 ?mol of substrate/min/mg of cell protein) and were specific for each organism-substrate pair. The enantiomeric purity of the epoxide products also varied widely, ranging from 54 to >90% of a single epoxide enantiomer. In the absence of more preferred substrates, such as toluene or alkenes, the epoxides underwent further toluene monooxygenase-catalyzed transformations, forming products that were not identified. PMID:10788354

  12. Anticonvulsant and antipunishment effects of toluene

    Microsoft Academic Search

    R. W. Wood; J. B. Coleman; R. Schuler; C. Cox

    1984-01-01

    Toluene can have striking acute behavioral effects and is subject to abuse by inhalation. To determine if its actions resemble those of drugs used in the treatment of anxiety (anxiolytics), two sets of experiments were undertaken. Inasmuch as prevention of pentylenetetrazol-induced convulsions is an identifying property of this class of agents, the authors first demonstrated that pretreatment of mice with

  13. Chemical detoxification of trichloroethylene and 1,1,1-trichloroethane in a microwave discharge plasma reactor at atmospheric pressure

    SciTech Connect

    Krause, T.R.; Helt, J.E.

    1991-01-01

    This report focuses on the application of plasma technology to hazardous waste treatment. Microwave sustained plasmas are used to thermal degrade trichloroethylene and trichloroethane at atmospheric pressure. (JL)

  14. Chemical detoxification of trichloroethylene and 1,1,1-trichloroethane in a microwave discharge plasma reactor at atmospheric pressure

    SciTech Connect

    Krause, T.R.; Helt, J.E.

    1991-12-31

    This report focuses on the application of plasma technology to hazardous waste treatment. Microwave sustained plasmas are used to thermal degrade trichloroethylene and trichloroethane at atmospheric pressure. (JL)

  15. Effects of dynamic redox zonation on the potential for natural attenuation of trichloroethylene at a fire-training-impacted aquifer

    USGS Publications Warehouse

    Skubal, K.L.; Haack, S.K.; Forney, L.J.; Adriaens, P.

    1999-01-01

    Hydrogeochemical and microbiological methods were used to characterize temporal changes along a transect of an aquifer contaminated by mixed hydrocarbon and solvent wastes from fire training activities at Wurtsmith Air Force Base (Oscoda, MI). Predominant terminal electron accepting processes (TEAPs) as measured by dissolved hydrogen indicated reoxygenation along the transect between October 1995 and October 1996, possibly because of recharge, fluctuations in water table elevation, or microbial activity. Microbiological analyses using universal and archaeal probes revealed a relationship between groundwater hydrogen concentration, TEAP, and predominant bacterial phylogeny. Specifically, a raised water table level and evidence of methanogenesis corresponded to an order of magnitude increase in archaeal 16S rRNA relative to when this zone was unsaturated. Spatial microbial and geochemical dynamics did not result in measurable differences in trichloroethylene (TCE) mineralization potential in vadose, capillary fringe, and saturated zone soils during a 500-day microcosm experiment using unprocessed contaminated soil and groundwater. Aerobic systems indicated that methane, but not toluene, may serve as cosubstrate for TCE cometabolism. Anaerobic microcosms demonstrated evidence for methanogenesis, CO2 production and hydrogen consumption, yet dechlorination activity was only observed in a microcosm with sulfate-reduction as the dominant TEAP. Mass balance calculations indicated less than 5% mineralization, regardless of redox zone or degree of saturation, at maximum rates of 0.01-0.03 ??mol/g soil??d. The general lack of dechlorination activity under laboratory conditions corroborates the limited evidence for natural dechlorination at this site, despite abundant electron donor material and accumulated organic acids from microbial degradation of alkylbenzenes. Thus, the short-term temporal dynamics in redox conditions is unlikely to have measurable effects on the long-term natural remediation potential of the aquifer.

  16. Behavior of toluene added to sludge-amended soils

    SciTech Connect

    Jin, Y.; O'Connor, G.A.

    1990-01-01

    Toluene is a priority pollutant that can be introduced to soils in a variety of wastes, including some municipal sludges. Laboratory experiments were conducted to study the behavior of toluene in two soils in the presence and absence of municipal sludge. Sludge additions increased toluene adsorption in two soils because of increased organic C content. The source of organic C (soil or sludge) and soil clay content also influenced toluene adsorption. Toluene adsorption-desorption was reversible in one soil, but slightly hysteretic in the other soil. An air-flow incubation system was used to evaluate toluene volatilization and degradation. The primary fate of surface-applied toluene in both soils was volatilization. Toluene volatilization rates were independent of sludge treatments. Toluene degradation was negligible in all treatments because of rapid volatilization losses. Despite increased toluene adsorption in the presence of sludge and reduced volatilization in saturated soils, gaseous transfer dominated all soils and treatments so that no toluene remained after 10 d.

  17. Physiologically-based pharmacokinetic (PBPK) modeling of two binary mixtures: metabolic activation of carbon tetrachloride by trichloroethylene and metabolic inhibition of chloroform by trichloroethylene.

    EPA Science Inventory

    The interaction between trichloroethylene (TCE) and chloroform (CHCI3) has been described as less than additive, with co-exposure to TCE and CHC13 resulting in less hepatic and renal toxicity than observed with CHCl3 alone. In contrast, the nonadditive interaction between TCE and...

  18. Removal of Trichloroethylene and Heavy Metals by Zerovalent Iron Nanoparticles

    NASA Astrophysics Data System (ADS)

    Boparai, H. K.; O'Carroll, D. M.

    2009-05-01

    Heavy metals combined with chlorinated solvents are one class of mixed waste found at various hazardous waste sites in North America. Nano zerovalent iron (nZVI), an emerging technology, is being successfully used for treating chlorinated solvents and heavy metals independently, however comparatively little research has investigated the remediation of the wastes when they are present in the same mixture. The remediation of trichloroethylene (TCE)/heavy metal waste mixtures via nZVI has been investigated in the present study. Results suggest that some metals are reduced by nZVI to their zerovalent state and thus precipitate on nZVI particles. This improves the contaminant removal performance of nZVI by forming bimetallic iron nanoparticles. Other metals are directly precipitated or adsorbed on the nZVI particles in their original oxidation state and are rendered immobile. In some cases the presence of the heavy metals in the waste mixture enhanced the dechlorination of TCE while in other cases it did not. This study suggests that nano zerovalent iron particles can be effectively used for the remediation of mixed contamination of heavy metals and chlorinated solvents. Results have been supported by a variety of techniques including X-ray photoelectron spectroscopy (XPS) analysis.

  19. Trichloroethylene: Mechanistic, Epidemiologic and Other Supporting Evidence of Carcinogenic Hazard

    PubMed Central

    Rusyn, Ivan; Chiu, Weihsueh A.; Lash, Lawrence H.; Kromhout, Hans; Hansen, Johnni; Guyton, Kathryn Z.

    2013-01-01

    The chlorinated solvent trichloroethylene (TCE) is a ubiquitous environmental pollutant. The carcinogenic hazard of TCE was the subject of a 2012 evaluation by a Working Group of the International Agency for Research on Cancer (IARC). Information on exposures, relevant data from epidemiologic studies, bioassays in experimental animals, and toxicity and mechanism of action studies was used to conclude that TCE is carcinogenic to humans (Group 1). This article summarizes the key evidence forming the scientific bases for the IARC classification. Exposure to TCE from environmental sources (including from hazardous waste sites and contaminated water) is common throughout the world. While workplace use of TCE has been declining, occupational exposures remain of concern, especially in developing countries. Strongest human evidence is from studies of occupational TCE exposure and kidney cancer. Positive, although less consistent, associations were reported for liver cancer and non-Hodgkin's lymphoma. TCE is carcinogenic at multiple sites in multiple species and strains of experimental animals. The mechanistic evidence includes extensive data on the toxicokinetics and genotoxicity of TCE and its metabolites. Together, available evidence provided a cohesive database supporting the human cancer hazard of TCE, particularly in the kidney. For other target sites of carcinogenicity, mechanistic and other data were found to be more limited. Important sources of susceptibility to TCE toxicity and carcinogenicity were also reviewed by the Working Group. In all, consideration of the multiple evidence streams presented herein informed the IARC conclusions regarding the carcinogenicity of TCE. PMID:23973663

  20. Electroretinal responses are modified by chronic exposure to trichloroethylene.

    PubMed

    Blain, L; Lachapelle, P; Molotchnikoff, S

    1994-01-01

    Using an inhalation chamber, New Zealand albino rabbits were exposed to 350 ppm (n = 6) and 700 ppm (n = 8) of trichloroethylene (TRI) 4 hrs/day, 4 days/week for 12 weeks. Electroretinograms (ERG) and oscillatory potentials (OPs) were recorded weekly under mesopic conditions. Blood samples were also collected weekly to determine the concentration of TRI and its main metabolites. Recordings from the 350 and 700 ppm exposed groups showed a significant (p < 0.01) increase in the amplitude of the a- and b-waves (ERG), while the amplitude of the OPs was significantly (p < 0.01) decreased at 350 ppm and increased at 700 ppm. These electroretinal changes were reversed to the baseline value within six weeks after the inhalation stopped. The observed variations in a-wave and OP amplitudes were related to plasmatic level of trichloroethanol, while the effects on the b-wave were related to the blood level of TRI. These results confirm the neuro-ophthalmotoxicity of TRI and support the hypothesis that trichloroethanol is the major neurotoxic metabolite of TRI. PMID:7854598

  1. Biotransformation of trichloroethylene by a phenol-induced mixed culture

    SciTech Connect

    Shurtliff, M.M. [CH2M Hill, Gainesville, FL (United States); Parkin, G.F.; Gibson, D.T. [Univ. of Iowa, Iowa City, IA (United States); Weathers, L.J. [Univ. of Maine, Orono, ME (United States). Dept. of Civil and Environmental Engineering

    1996-07-01

    Biodegradation of trichloroethylene (TCE) was studied using a mixed culture of aerobic, phenol-induced organisms. Abiotic experiments showed that sorption of TCE to biomass was negligible in the systems studied. The effects of influent phenol and TCE concentration on the TCE degradation capacity of the culture were studied using chemostats. A relationship exists between the influent phenol/TCE ratio and TCE biodegradation. TCE transformation yields ranged from 0.052 to 0.222 mg TCE removed/mg phenol removed. Monod kinetic coefficients for phenol degradation were determined. Monod kinetic coefficients were also determined for TCE biotransformation by resting cells. The concept of transformation capacity was used to model the decrease in active biomass concentration caused by TCE transformation. In mineralization studies using {sup 14}C-labeled TCE, 22% of the degraded mass of TCE was transformed to carbon dioxide, 8.8% was incorporated into biomass, 42% was transformed to nonvolatile products, with the remaining, unrecovered 27% most likely transformed into volatile or semivolatile products.

  2. Pulsed corona and dielectric-barrier discharge processing of trichloroethylene

    SciTech Connect

    Hsiao, M.C.; Merritt, B.T.; Penetrante, B.M.; Vogtlin, G.E.; Wallman, P.H. [Lawrence Livermore National Lab., CA (United States)

    1995-12-31

    This paper presents experimental results on the plasma assisted decomposition of dilute concentrations (100--200 ppm) of trichloroethylene (TCE) in atmospheric-pressure dry air streams by pulsed corona and dielectric-barrier discharge processing. The experiments were performed at gas temperatures up to 300 A1C. One of the objectives in these experiments is to study the effect of gas temperature on the removal chemistry and product formation. The data on the gas temperature dependence provide a good basis for elucidating the chemical kinetics of TCE decomposition in the plasma. Under identical gas conditions the type of electrical discharge reactor does not affect the electrical energy requirements for decomposing the same amount of TCE; the reactor type also does not affect the product formation. For input energy densities up to 300 Joules per liter, the authors observe that carbon monoxide (CO) and carbon dioxide (CO2) are only minor products in the decomposition of TCE. The main organic products are phosgene and dichloroacetyl chloride (DCAC), as inferred from the Fourier Transform Infrared (FTIR) spectra. Processing at higher gas temperatures (around 300 A1C) increases the electrical energy required to remove the same amount of TCE; however, the CO and CO2 yields increase substantially and higher amounts of hydrochloric acid (HCl) are formed. These trends suggest increased competition from decomposition of DCAC and/or phosgene at high temperatures. In all cases, pulsed corona or dielectric-barrier discharge processing produces CO preferentially over CO2.

  3. Plasma remediation of gas streams contaminated by trichloroethylene

    SciTech Connect

    Evans, D.; Kushner, M.K. [Univ. of Illinois, Urbana, IL (United States); Rosocha, L.A. [Los Alamos National Lab., NM (United States)

    1992-12-01

    There is increasing interest in using plasmas to cleanse gas streams of toxic gases and for toxic waste remediation. Silent discharges (or dielectric barrier discharges) are attractive in this regard because they operate stably at high power deposition and atmospheric pressure. The authors have experimentally and computationally investigated the removal of trichloroethylene (C{sub 2}HCl{sub 3}) or TCE from Ar/O{sub 2}/H{sub 2}O gas streams using a silent discharge. Experimental results will be discussed where TCE is removed from the gas stream (1000 ppm reduced to < 1 ppm) with moderate energy deposition (10s mJ-cm{sup {minus}3}). The desired reaction products are CO{sub 2} and UC1. The plasma removal of TCE, however, directly produces undesirable products such as CHOCl and COCl{sub 2} (phosgene). These products can also be oxidized and removed from the gas stream by further increasing power deposition beyond that required for removal of TCE. Reaction mechanisms will be discussed with results from a plasma chemistry computer model.

  4. Identification and removal of trichloroethylene contamination: A case study at Wright-Patterson Air Force Base. Master's thesis

    Microsoft Academic Search

    Butterfield

    1991-01-01

    The purpose of this thesis was to determine the parameters associated with installing monitoring wells to detect trichloroethylene contamination, and to determine what emphasis or weights were placed on the nine National Contingency Plan criteria to select a treatment method that would remove trichloroethylene. The results of this study should help installation restoration project officers understand what parameters should be

  5. Toluene Induces Depression-Like Behaviors in Adult Mice

    PubMed Central

    Yang, Miyoung; Kim, Sung-Ho; Kim, Jong-Choon; Shin, Taekyun

    2010-01-01

    It has been clinically reported that toluene causes mental depression in humans. However, the detrimental effects of toluene exposure on brain function and the relation between features of mental depression and toluene exposure are poorly understood. This study evaluated depression-like behaviors in adult C57BL/6 mice after administration of toluene, and elucidated the effects of classical antidepressants on the depression-like behaviors. For the estimation of depression-like behaviors, tail suspension test (TST) and forcedswim test (FST) were performed 1, 4 and 16 days after toluene (0~1000 mg/kg bw) treatment. In addition, classical antidepressants such as fluoxetine (FLX, 20 mg/kg bw) and imipramine (IMI, 40 mg/kg bw) were administered 12 h and 1 h before the tests. In the TST and FST, toluene-treated mice exhibited a longer duration of immobility than vehicle-treated mice 1 and 4 days after toluene treatment. The depression-like behaviors were significantly reversed by FLX and IMI. The weight of the adrenal gland and the size of adrenocortical cells were significantly higher in toluene-treated mice compared to vehicle-treated controls. It is suggested that acute toluene exposure of adult mice is sufficiently detrimental to induce depression. In addition, this study has established a mouse model for a depressive state induced by toluene treatment. PMID:24278539

  6. Benzodiazepine-like discriminative stimulus effects of toluene vapor

    PubMed Central

    Shelton, Keith L.; Nicholson, Katherine L.

    2013-01-01

    In vitro studies show that the abused inhalant toluene affects a number of ligand-gated ion channels. The two most consistently implicated of these are ?-aminobutyric acid type A (GABAA) receptors which are positively modulated by toluene and N-methyl-D-aspartate (NMDA) receptors which are negatively modulated by toluene. Behavioral studies also suggest an interaction of toluene with GABAA and/or NMDA receptors but it is unclear if these receptors underlie the abuse-related intoxicating effects of toluene. Seventeen B6SJLF1/J mice were trained using a two-choice operant drug discrimination procedure to discriminate 10 min of exposure to 2000 ppm toluene vapor from 10 min of exposure to air. The discrimination was acquired in a mean of 65 training sessions. The stimulus effects of 2000 ppm toluene vapor were exposure concentration-dependent but rapidly diminished following the cessation of vapor exposure. The stimulus effects of toluene generalized to the chlorinated hydrocarbon vapor perchloroethylene but not 1,1,2-trichloroethane nor the volatile anesthetic isoflurane. The competitive NMDA antagonist CGS-17955, the uncompetitive antagonist dizocilpine and the glycine-site antagonist L701,324 all failed to substitute for toluene. The classical nonselective benzodiazepines midazolam and chlordiazepoxide produced toluene-like stimulus effects but the alpha 1 subunit preferring positive GABAA modulator zaleplon failed to substitute for toluene. The barbiturates pentobarbital and methohexital and the GABAA-positive modulator neurosteroid allopregnanolone did not substitute for toluene. These data suggest that the stimulus effects of toluene may be at least partially mediated by benzodiazepine-like positive allosteric modulation of GABAA receptors containing alpha 2, 3 or 5 subunits. PMID:24436974

  7. Non-steady state partitioning of dry cleaning surfactants between tetrachloroethylene (PCE) and water in porous media

    NASA Astrophysics Data System (ADS)

    Hoggan, James L.; Bae, Keonbeom; Kibbey, Tohren C. G.

    2007-08-01

    Trapped organic solvents, in both the vadose zone and below the water table, are frequent sources of environmental contamination. A common source of organic solvent contamination is spills, leaks, and improper solvent disposal associated with dry cleaning processes. Dry cleaning solvents, such as tetrachloroethylene (PCE), are typically enhanced with the addition of surfactants to improve cleaning performance. The objective of this work was to examine the partitioning behavior of surfactants from PCE in contact with water. The relative rates of surfactants partitioning and PCE dissolution are important for modeling the behavior of waste PCE in the subsurface, in that they influence the interfacial tension of the PCE, and how (or if) interfacial tension changes over time in the subsurface. The work described here uses a flow-through system to examine simultaneous partitioning and PCE dissolution in a porous medium. Results indicate that both nonylphenol ethoxylate nonionic surfactants and a sulfosuccinate anionic surfactant partition out of residual PCE much more rapidly than the PCE dissolves, suggesting that in many cases interfacial tension changes caused by partitioning may influence infiltration and distribution of PCE in the subsurface. Non-steady-state partitioning is found to be well-described by a linear driving force model incorporating measured surfactant partition coefficients.

  8. The effect of low concentrations of tetrachloroethylene on H2 adsorption and activation on Pt in a fuel cell catalyst

    NASA Astrophysics Data System (ADS)

    Zhang, Jack Z.; Colón-Mercado, Héctor R.; Goodwin, James G.

    2011-10-01

    The poisoning effect of tetrachloroethylene (TTCE) on the activity of a Pt fuel cell catalyst for the adsorption and activation of H2 was investigated at 60 °C and 2 atm using hydrogen surface concentration measurements. The impurity was chosen as a model compound for chlorinated cleaning and degreasing agents that may be introduced into a fuel cell as a contaminant at a fueling station and/or during vehicle maintenance. In the presence of only H2, introduction of up to 540 ppm TTCE in H2 to Pt/C resulted in a reduction of available Pt surface atoms (measured by H2 uptake) by ca. 30%, which was not enough to shift the H2-D2 exchange reaction away from being equilibrium limited. Exposure of TTCE to Pt/C in a mixed redox environment (hydrogen + oxygen), similar to that at the cathode of a fuel cell, resulted in a much more significant loss of Pt surface atom availability, suggesting a role in TTCE decomposition and/or Cl poisoning. Regeneration of catalyst activity of poisoned Pt/C showed the highest level of recovery when regenerated in only H2, with much less recovery in H2 + O2 or O2. The results from this study are in good agreement with those found in a fuel cell study by Martínez-Rodríguez et al. [2] and confirm that the majority of the poisoning from TTCE on fuel cell performance is most likely at the cathode, rather than the anode.

  9. Use of starvation promoters to limit growth and selectively enrich expression of trichloroethylene- and phenol-transforming activity in recombinant Escherichia coli [corrected

    PubMed Central

    Matin, A; Little, C D; Fraley, C D; Keyhan, M

    1995-01-01

    The expression of much useful bacterial activity is facilitated by rapid growth. This coupling can create problems in bacterial fermentations and in situ bioremediation. In the latter process, for example, it necessitates addition of large amounts of nutrients to contaminated environments, such as aquifers. This approach, termed biostimulation, can be technically difficult. Moreover, the resulting in situ bacterial biomass production can have undesirable consequences. In an attempt to minimize coupling between expression of biodegradative activity and growth, we used Escherichia coli starvation promoters to control toluene monooxygenase synthesis. This enzyme complex can degrade the environmental contaminants trichloroethylene (TCE) and phenol. Totally starving cell suspensions of such strains degraded phenol and TCE. Furthermore, rapid conversions occurred in the postexponential batch or very slow growth (dilution) rate chemostat cultures, and the nutrient demand and biomass formation for transforming a given amount of TCE or phenol were reduced by 60 to 90%. Strong starvation promoters have recently been clones and characterized in environmentally relevant bacteria like Pseudomonas species; thus, starvation promoter-driven degradative systems can now be constructed in such bacteria and tested for in situ efficacy. PMID:7574643

  10. Copper Enhanced Monooxygenase Activity and FT-IR Spectroscopic Characterisation of Biotransformation Products in Trichloroethylene Degrading Bacterium: Stenotrophomonas maltophilia PM102

    PubMed Central

    Mukherjee, Piyali; Roy, Pranab

    2013-01-01

    Stenotrophomonas maltophilia PM102 (NCBI GenBank Acc. no. JQ797560) is capable of growth on trichloroethylene as the sole carbon source. In this paper, we report the purification and characterisation of oxygenase present in the PM102 isolate. Enzyme activity was found to be induced 10.3-fold in presence of 0.7?mM copper with a further increment to 14.96-fold in presence of 0.05?mM NADH. Optimum temperature for oxygenase activity was recorded at 36°C. The reported enzyme was found to have enhanced activity at pH 5 and pH 8, indicating presence of two isoforms. Maximum activity was seen on incubation with benzene compared to other substrates like TCE, chloroform, toluene, hexane, and petroleum benzene. Km and Vmax for benzene were 3.8?mM and 340?U/mg/min and those for TCE were 2.1?mM and 170?U/mg/min. The crude enzyme was partially purified by ammonium sulphate precipitation followed by dialysis. Zymogram analysis revealed two isoforms in the 70% purified enzyme fraction. The activity stain was more prominent when the native gel was incubated in benzene as substrate in comparison to TCE. Crude enzyme and purified enzyme fractions were assayed for TCE degradation by the Fujiwara test. TCE biotransformation products were analysed by FT-IR spectroscopy. PMID:24083236

  11. Gas sensing properties and in situ diffuse reflectance infrared Fourier transform spectroscopy study of trichloroethylene adsorption and reactions on SnO2 films

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenxin; Huang, Kaijin; Yuan, Fangli; Xie, Changsheng

    2014-05-01

    The detection of trichloroethylene has attracted much attention because it has an important effect on human health. The sensitivity of the SnO2 flat-type coplanar gas sensor arrays to 100 ppm trichloroethylene in air was investigated. The adsorption and surface reactions of trichloroethylene were investigated at 100-200 °C by in-situ diffuse reflection Fourier transform infrared spectroscopy (DIRFTS) on SnO2 films. Molecularly adsorbed trichloroethylene, dichloroacetyl chloride (DCAC), phosgene, HCl, CO, H2O, CHCl3, Cl2 and CO2 surface species are formed during trichloroethylene adsorption at 100-200 °C. A possible mechanism of the reaction process is discussed.

  12. Toluene inhalation induced epididymal sperm dysfunction in rats

    Microsoft Academic Search

    Atsushi Ono; Kunio Kawashima; Kiyoshi Sekita; Akihiko Hirose; Yukio Ogawa; Minoru Saito; Katsushi Naito; Kazuo Yasuhara; Toyozo Kaneko; Tsuyoshi Furuya; Tohru Inoue; Yuji Kurokawa

    1999-01-01

    Toluene is a widely abused inhaled solvent. This study was designed to determine whether toluene abuse affects the reproductive functions or general health of males. Seven-week-old male Sprague–Dawley rats were exposed to toluene vapor inhalation (0, 4000, or 6000 ppm; 2 h\\/day) daily for 5 weeks. Exposure-related suppression of body weight gain and food consumption were observed. Salivation and lacrimation

  13. Impact of iron sulfide transformation on trichloroethylene degradation

    SciTech Connect

    He, Y. Thomas; Wilson, John T.; Wilkin, Richard T. (EPA)

    2010-05-04

    Trichloroethylene (TCE) is one of the most common and persistent groundwater contaminants encountered at hazardous waste sites around the world. A growing body of evidence indicates that iron sulfides play an important role in degrading TCE in natural environments and in engineered systems designed for groundwater cleanup. In this study, we investigate transformation processes of iron sulfides and consequent impacts on TCE degradation using batch experimental techniques, transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray absorption spectroscopy (XAS). Our results show that mackinawite is highly reactive toward TCE and no detectable mineralogical changes were detected during the course of reaction. However, freeze-dried FeS transformed to a mixture of mackinawite and greigite during the freeze drying process, with further mineralogical changes during reaction with TCE to lepidocrocite, goethite and pyrite. Newly formed lepidocrocite is a transient phase, with conversion to goethite over time. TCE transformation kinetics show that freeze-dried FeS is 20-50 times less reactive in degrading TCE than non-freeze-dried FeS, and the TCE degradation rate increases with pH (from 5.4 to 8.3), possibly due to an increase of surface deprotonation or electron transfer at higher pH. Results suggest that freeze drying could cause FeS particle aggregation, decreased surface area and availability of reactive sites; it also could change FeS mineralogy and accelerate mineral transformation. These aspects could contribute to the lower reactivity of freeze-dried FeS toward TCE degradation. Modeling results show that FeS transformation in natural environments depends on specific biogeochemical conditions, and natural FeS transformation may affect mineral reactivity in a similar way as compared to the freeze drying process. Rapid transformation of FeS to FeS{sub 2} could significantly slow down TCE degradation in both natural and engineered systems.

  14. Exposure of Danish workers to trichloroethylene, 1947-1989.

    PubMed

    Raaschou-Nielsen, Ole; Hansen, Johnni; Thomsen, Birthe L; Johansen, Inger; Lipworth, Loren; McLaughlin, Joseph K; Olsen, Jørgen H

    2002-10-01

    The aim of this study was to investigate the exposure of Danish workers to trichloroethylene (TCE) and the factors that affected such exposure. Data from Danish health authorities were evaluated for use in an epidemiological study of possible adverse health effects of TCE. The paper files relating to 1,075 air measurements taken between 1947 and 1989 at 150 companies were examined to extract information about calendar year, company, industry, type of measurement, and worker. Multiple regression models were used to analyze the effects of various factors on the concentration of TCE. TCE concentrations decreased over the four decades studied. The geometric mean was 329 mg/m3 for measurements taken 1947-1959, and 260 mg/m3, 53 mg/m3, and 23 mg/m3, respectively, for the three subsequent decades. Regression analyses showed that 1) TCE concentrations decreased on average 4 percent per year before 1964 and 15 percent per year afterward; 2) area and personal measurements gave similar concentrations (for the same calendar period, industry, and duration of measurement); 3) longer-duration measurements were associated with lower TCE concentrations; 4) high TCE concentrations occurred in the iron and metal industry; and, 5) in this industry men were exposed to concentrations two times those of women. Moreover, this study indicated that both the exposure level and the proportion of exposed workers in Danish companies increased with decreasing number of employees. Epidemiological studies of health effects of TCE may benefit from evaluating potential risk within different strata of calendar time, number of company employees, sex, and type of industry. PMID:12363210

  15. Prenatal exposure to tetrachloroethylene-contaminated drinking water and the risk of congenital anomalies: a retrospective cohort study

    PubMed Central

    2009-01-01

    Background Prior animal and human studies of prenatal exposure to solvents including tetrachloroethylene (PCE) have shown increases in the risk of certain congenital anomalies among exposed offspring. Objectives This retrospective cohort study examined whether PCE contamination of public drinking water supplies in Massachusetts influenced the occurrence of congenital anomalies among children whose mothers were exposed around the time of conception. Methods The study included 1,658 children whose mothers were exposed to PCE-contaminated drinking water and a comparable group of 2,999 children of unexposed mothers. Mothers completed a self-administered questionnaire to gather information on all of their prior births, including the presence of anomalies, residential histories and confounding variables. PCE exposure was estimated using EPANET water distribution system modeling software that incorporated a fate and transport model. Results Children whose mothers had high exposure levels around the time of conception had an increased risk of congenital anomalies. The adjusted odds ratio of all anomalies combined among children with prenatal exposure in the uppermost quartile was 1.5 (95% CI: 0.9, 2.5). No meaningful increases in the risk were seen for lower exposure levels. Increases were also observed in the risk of neural tube defects (OR: 3.5, 95% CI: 0.8, 14.0) and oral clefts (OR 3.2, 95% CI: 0.7, 15.0) among offspring with any prenatal exposure. Conclusion The results of this study suggest that the risk of certain congenital anomalies is increased among the offspring of women who were exposed to PCE-contaminated drinking water around the time of conception. Because these results are limited by the small number of children with congenital anomalies that were based on maternal reports, a follow-up investigation should be conducted with a larger number of affected children who are identified by independent records. PMID:19778411

  16. Reductive Dehalogenation of Trichloroethylene with Zero-Valent Iron: Surface Profiling Microscopy and Rate

    E-print Network

    Lyuksyutov, Sergei

    was attributed to the increased roughness of the iron surface due to crevice corrosion obtained by pretreatmentReductive Dehalogenation of Trichloroethylene with Zero-Valent Iron: Surface Profiling Microscopy zerovalent iron are studied with three different surface characterization techniques. These include scanning

  17. EXPOSURE DOSE REPONSE MODELING FOR THE EFFECTS OF HAZARDOUS AIR POLLUTANTS ON HEALTH: TRICHLOROETHYLENE

    EPA Science Inventory

    Trichloroethylene (TCE) is a neurotoxic volatile organic compound (VOC) that is produced in large quantities as a degreasing agent and general solvent, and it appears on the list of 188 HAPs specified by the Clean Air Act Amendments of 1990. TCE was selected as a model VOC for de...

  18. EFFECT OF TRICHLOROETHYLENE ON THE EXPLORATORY AND LOCOMOTOR ACTIVITY OF RATS EXPOSED DURING DEVELOPMENT

    EPA Science Inventory

    Trichloroethylene (TCE) is a common contaminant of underground water supplies. To examine the effect of TCE on the developing central nervous system, rats were exposed to TCE throughout gestation until 21 days postpartum via their dams' drinking water. TCE concentrations of 312 p...

  19. Health Effects of Environmental Contaminant Exposure: An Intrafile Comparison of the Trichloroethylene Subregistry

    Microsoft Academic Search

    Jeanne R. Burg; Ginger L. Gist

    1999-01-01

    The establishment of the National Exposure Registry represents the first major effort toward longitudinal surveillance of general populations exposed long-term to low levels of specific substances in the environment. The authors investigated the National Exposure Registry's Trichloroethylene Subregistry intrasubregistry differences with respect to health outcomes and the possible relationships with types and levels of chemical exposure. Investigators divided the 4

  20. Trichloroethylene cranial neuropathy: is it really a toxic neuropathy or does it activate latent herpes virus?

    Microsoft Academic Search

    J B Cavanagh; P H Buxton

    1989-01-01

    The mechanism of the cranial neuropathy associated with heavy exposure to trichloroethylene (or dichloroethylene) is unknown. In severe cases there is destructive spread of the neuropathic process from the Vth cranial nerve nuclei up and down the brain stem in a manner that is difficult to explain on accepted neurotoxicological principles. However, there is a close association reported of this

  1. CARCINOGENICITY OF TRICHLOROETHYLENE AND ITS METABOLITES, TRICHLOROACETIC ACID AND DICHLOROACETIC ACID, IN MOUSE LIVER

    EPA Science Inventory

    Trichloroethylene (TCE) has previously been shown to be carcinogenic in mouse liver when given by daily gavage in corn oil. The metabolism of TCE results, in part, in the formation of trichloroacetic acid (TCA) as a major metabolite and dichloroacetic acid (DCA) as a minor metabo...

  2. QUANTIFICATION OF PRODUCTS FROM ELECTROCHEMICAL DECHLORINATION OF TRICHLOROETHYLENE USING GRANULAR-GRAPHITE ELECTRODES

    EPA Science Inventory

    Electrochemical dechlorination of Trichloroethylene (TCE) in aqueous phase was studied using graphite as a cathode in a packed bed reactor in a closed system. TCE contaminated matrix solution was circulated through the electrochemical reactor where TCE was reduced at the graphite...

  3. A SEARCH FOR RESIDUAL BEHAVIORAL EFFECTS OF TRICHLOROETHYLENE (TCE) IN RATS EXPOSED AS YOUNG ADULTS

    EPA Science Inventory

    Trichloroethylene (TCE) is a solvent of concern to the EPA due to its extensive use in industry, its prevalence in urban air, and its appearance in water supplies. Human clinical studies have associated short and long-termsolvent exposures with cognitive dysfunction including att...

  4. Impedimetric microbial biosensor based on single wall carbon nanotube modified microelectrodes for trichloroethylene detection

    Microsoft Academic Search

    M. Hnaien; S. Bourigua; F. Bessueille; J. Bausells; A. Errachid; F. Lagarde; N. Jaffrezic-Renault

    Contamination of soils and groundwaters with persistent organic pollutants is a matter of increasing concern. The most common organic pollutants are chlorinated hydrocarbons such as perchloroethylene and trichloroethylene (TCE). In this study, we developed a bacterial impedimetric biosensor for TCE detection, based on the immobilization of Pseudomonas putida F1 strain on gold microelectrodes functionalized with single wall carbon nanotubes covalently

  5. Atmospheric pressure discharge plasma decomposition for gaseous air contaminants-trichlorotrifluoroethane and trichloroethylene

    Microsoft Academic Search

    Tetsuji Oda; Ryuichi Yamashita; Tadashi Takahashi; Senichi Masuda

    1996-01-01

    The decomposition performance of gaseous environmental destructive contaminants in air by using atmospheric pressure discharge plasma including the surface discharge induced plasma chemical processing (SPCP) was examined. The main contaminants tested were chlorofluorocarbon (CFC-113) and trichloroethylene, typically. The discharge exciting frequency range studied was wide-50 Hz to 50 kHz. Results showed the low frequency discharge requires high voltage to inject

  6. Uptake of trichloroethylene by hybrid poplar trees grown hydroponically in flow-through plant growth chambers

    Microsoft Academic Search

    B. J. Orchard; W. J. Doucette; J. K. Chard; B. Bugbee

    2000-01-01

    Phytoremediation in being promoted as a cost-effective treatment option for shallow groundwater and soils contaminated with trichloroethylene (TCE). However, its effectiveness is difficult to assess due to contradictory reports regarding the magnitude of plant uptake and phytovolatilization. Experimental artifacts and plants stress, resulting from the use of static or low-flow plants growth laboratory systems, may account for part of the

  7. Cytotoxicity of trichloroethylene and perchloroethylene on normal human epidermal keratinocytes and protective role of Vitamin E

    Microsoft Academic Search

    Qi-Xing Zhu; Tong Shen; Rui Ding; Zhao-Zhao Liang; Xue-Jun Zhang

    2005-01-01

    Trichloroethylene (TCE) and perchloroethylene (PERC), the most common alkenyl halides, have been extensively used in industry, and can cause skin damage. To evaluate their cytotoxic potential on skin, the effects of these agents on the normal human epidermal keratinocytes (NHEK) were investigated. Their action on cell viability, membrane integrity and lipid peroxidation (LPO) was assessed by neutral red uptake (NRU)

  8. HUMAN ALPHA-7 NICOTINIC ACETYLCHOLINE RECEPTORS EXPRESSED IN XENOPUS OOCYTES ARE INHIBITED BY TRICHLOROETHYLENE.

    EPA Science Inventory

    Trichloroethylene (TCE) is a volatile organic solvent (VOC) that is used as a metal degreasing agent and in paints and glue. In addition to being a commonly abused inhalant, run-off from hazardous waste sites contain enough TCE and other VOCs to contaminate ground water and near...

  9. Uses of and Exposure to Trichloroethylene in U.S. Industry: A Systematic Literature Review

    Microsoft Academic Search

    Berit Bakke; Patricia A. Stewart; Martha A. Waters

    2007-01-01

    This article describes a systematic review of the industrial hygiene literature for uses of trichloroethylene (TCE) in industry for the exposure assessment of two population-based case control studies of brain cancer in the United States. Papers and reports that address uses of and exposures to TCE were identified from MEDLINE, TOXLINE, NIOSHTIC, the NIOSH Health Hazard Evaluation database (keywords: chlorinated

  10. Contribution of Dichloroacetate and Trichloroacetate to Liver Tumor Induction in Mice by Trichloroethylene

    Microsoft Academic Search

    Richard J. Bull; Gayle A. Orner; Rita S. Cheng; Lisa C. Stillwell; Anja J. Stauber; Lyle B. Sasser; Melissa K. Lingohr; Brian D. Thrall

    2002-01-01

    Determining the key events in the induction of liver cancer in mice by trichloroethylene (TRI) is important in the determination of how risks from this chemical should be treated at low doses. At least two metabolites can contribute to liver cancer in mice, dichloroacetate (DCA) and trichloroacetate (TCA). TCA is produced from metabolism of TRI at systemic concentrations that can

  11. The Implication of Iron Oxide Nanoparticles on the Removal of Trichloroethylene by Adsorption

    EPA Science Inventory

    The fate and transport of Fe2O3 NPs in a granular activated carbon (GAC) adsorber and its impact on the removal of trichloroethylene (TCE) by GAC was investigated. The hydrodynamic diameter of Fe2O3 NPs was measured with time to evaluat...

  12. EFFECTS OF TRICHLOROETHYLENE AND ITS METABOLITES ON RODENT HEPATOCYTE INTERCELLULAR COMMUNICATION

    EPA Science Inventory

    Chronic exposure to trichloroethylene (TCE) results in hepatocellular cancer in mice but not rats. The induction of hepatic tumors by TCE appears to be mediated through nongenotoxic or tumor promotion mechanisms. One cellular effect exhibited by a number of nongentoxic carcinogen...

  13. MECHANISM INVOLVED IN TRICHLOROETHYLENE-INDUCED LIVER CANCER: IMPORTANCE TO ENVIRONMENTAL CLEANUP

    EPA Science Inventory

    Clean-up costs for chlorinated solvents found on DOE sites are most frequently driven by trichloroethylene (TCE). More permissive standards for TCE would reduce DOE's complex-wide clean up costs by several billions of dollars. EPA is currently reviewing its risk assessment for TC...

  14. BEHAVIOR OF TOLUENE ADDED TO SLUDGE-AMENDED SOILS

    EPA Science Inventory

    Toluene is a priority pollutant that can be introduced to soils in a variety of wastes, including some municipal sludges. aboratory experiments were conducted to study the behavior of toluene in two soils in the presence and absence of municipal sludge. ludge additions increased ...

  15. BEHAVIOR OF TOLUENE ADDED TO SLUDGE-AMENDED SOILS

    EPA Science Inventory

    Toluene is a priority pollutant that can be introduced to soils in a variety of wastes, including some municipal sludges. Laboratory experiments were conducted to study the behavior of toluene in two soils in the presence and absence of municipal sludge. Sludge additions increa...

  16. Protein Engineering of Toluene 4-Monooxygenase of Pseudomonas

    E-print Network

    Wood, Thomas K.

    Protein Engineering of Toluene 4-Monooxygenase of Pseudomonas mendocina KR1 for Synthesizing 4 of substrates and promotes more flexible orientations. B 2004 Wiley Periodicals, Inc. Keywords: protein engineering; toluene 4-monooxy- genase; Pseudomonas mendocina KR1; 4-nitrocatechol; nitrobenzene INTRODUCTION

  17. TOLUENE EXPERIMENTAL EXPOSURES IN HUMANS: PHARMACOKINETICS AND BEHAVIOR

    EPA Science Inventory

    Toluene Experimental Exposures in Humans: Pharmacokinetics and Behavioral Effects (Ongoing Research) Vernon A. Benignus1, Philip J. Bushnell2 and William K. Boyes2 Human subjects will be exposed to 250 and 500 ppm toluene for one hour in the Human St...

  18. CARDIOVASCULAR AND THERMOREGULATORY RESPONSE TO ORAL TOLUENE IN THE RAT.

    EPA Science Inventory

    Toluene and other volatile organic compounds have often been shown to affect behavior in animals when given by inhalation, and less effective when given orally. Previous work showed that toluene increased heart rate (HR) and motor activity (MA), and reduced core temperature (Tc) ...

  19. Respiratory retention of inhaled toluene and benzene in the dog

    Microsoft Academic Search

    John L. Egle Jr; Bethe J. Gochberg

    1976-01-01

    This study deals with the inhalation of toluene and benzene found in the vapor phase of cigarette smoke. Determined in this study were the uptake of each substance by the total respiratory tract and by the upper and lower portions under varying conditions of ventilatory rate, tidal volume, and concentration inhaled. Retention by the total tract of toluene fell within

  20. TrgI, toluene repressed gene I, a novel gene involved in toluene-tolerance in Pseudomonas putida S12.

    PubMed

    Volkers, Rita J M; Ballerstedt, Hendrik; Ruijssenaars, Harald; de Bont, Jan A M; de Winde, Johannes H; Wery, Jan

    2009-03-01

    Pseudomonas putida S12 is well known for its remarkable solvent tolerance. Transcriptomics analysis of this bacterium grown in toluene-containing chemostats revealed the differential expression of 253 genes. As expected, the genes encoding one of the major solvent tolerance mechanisms, the solvent efflux pump SrpABC and its regulatory genes srpRS were heavily up-regulated. The increased energy demand brought about by toluene stress was also reflected in transcriptional changes: genes involved in sugar storage were down-regulated whereas genes involved in energy generation such as isocitrate dehydrogenase and NADH dehydrogenases, were up-regulated in the presence of toluene. Several flagella-related genes were up-regulated and a large group of transport genes were down-regulated. In addition, a novel Pseudomonas-specific gene was identified to be involved in toluene tolerance of P. putida S12. This toluene-repressed gene, trgI, was heavily down-regulated immediately upon toluene exposure in batch cultures. The relationship of trgI with solvent tolerance was confirmed by the increased resistance to toluene shock and toluene induced lysis of trgI knock-out mutants. We propose that down-regulation of trgI plays a role in the first line of defence against solvents. PMID:19089528

  1. Preliminary response of a pristine aquifer when facing toluene contamination

    NASA Astrophysics Data System (ADS)

    Qiu, S.; Herzyk, A.; Maloszewski, P.; Larentis, M.; Griebler, C.; Elsner, M.

    2012-04-01

    Toluene is a common groundwater contaminant due to the wide spread of gasoline and industrial solvents. The understanding of how and when ecosystems initially respond to the presence of toluene is yet limited, because field investigations rarely start before a contamination has occurred. In order to investigate for the first time such a scenario, a pristine indoor aquifer model (0.8 - 0.7 - 5 m) was constructed, filled with natural sediment, flushed with natural groundwater at a rate of 9 L/hr, and subsequently exposed to a toluene contamination. Investigation was done to the chemical and biological parameters of the model, including oxygen concentration (9.6 mg/L), nitrate concentration (5.8 mg/L), small organic carbon content (0.8 mg/L), microbial abundance (4 x 104 cell/mL), and ATP (0.01 nM). This agreed with the condition of a typical pristine and oligotrophic aquifer. A 30-hr aqueous toluene pulse (water saturated with toluene) was injected into the system together with a conservative tracer (90% D2O). Water samples were collected 4.2 m away from the injection source. The comparison between the toluene and D2O breakthrough curves indicated that a portion of toluene was removed by degradation at a pseudo 1st order rate of 0.017/hr. Stable carbon isotope values of toluene were also measured along with the breakthrough curves. ?13C values were more positive than the original input, confirming that biodegradation had taken place. Subsequent to the pulse, a constant injection of aqueous toluene together with bromide was applied to obtain a deeper insight of the biological and geochemical processes in the aquifer. High resolution water sampling over the entire aquifer model was conducted 80 hrs after the start of constant injection. Microbial abundance and living biomass (ATP) were observed to be 10 - and 100 -, respectively, higher than under pristine conditions. Biodegradation was detected by comparing the concentration of toluene and bromide, and was confirmed by a significant depletion of oxygen concentrations in the center of the plume. Subsequent sediment sampling revealed a pronounced decrease in bacterial diversity and evenness in the toluene plume, indicating fast establishment of the degraders and disappearance of sensitive members. Changes of microbial community composition were accompanied by a build up of biomass and high bacterial carbon production rates. Our study shows that microbial degradation of toluene occurs immediately (within 50 hrs) after exposure of the pristine aquifer to the contaminant. Changes in biological and geochemical processes give additional evidences that the system responds very fast towards toluene contamination and has a high potential for natural attenuation.

  2. AN EXAMPLE OF MODEL STRUCTURE DIFFERENCES USING SENSITIVITY ANALYSES IN PHYSIOLOGICALLY BASED PHARMACOKINETIC MODELS OF TRICHLOROETHYLENE IN HUMANS

    EPA Science Inventory

    Abstract Trichloroethylene (TCE) is an industrial chemical and an environmental contaminant. TCE and its metabolites may be carcinogenic and affect human health. Physiologically based pharmacokinetic (PBPK) models that differ in compartmentalization are developed for TCE metabo...

  3. COUNTER-DIFFUSION OF ISOTOPICALLY LABELED TRICHLOROETHYLENE IN SILICA GEL AND GEOSORBENT MICROPORES: COLUMN RESULTS. (R822626)

    EPA Science Inventory

    To investigate counter-diffusion in microporous sorbents, the rate of exchange between deuterated trichloroethylene (DTCE) in fast desorbing sites and nondeuterated TCE (1HTCE) in slow desorbing sites was measured. Exchange rates were measured for a sili...

  4. Detailed mechanism of toluene oxidation and comparison with benzene

    NASA Technical Reports Server (NTRS)

    Bittker, David A.

    1988-01-01

    A detailed mechanism for the oxidation of toluene in both argon and nitrogen dilutents is presented. The mechanism was used to compute experimentally ignition delay times for shock-heated toluene-oxygen-argon mixtures with resonably good success over a wide range of initial temperatures and pressures. Attempts to compute experimentally measured concentration profiles for toluene oxidation in a turbulent reactor were partially successful. An extensive sensitivity analysis was performed to determine the reactions which control the ignition process and the rates of formation and destruction of various species. The most important step was found to be the reaction of toluene with molecular oxygen, followed by the reactions of hydroperoxyl and atomic oxygen with benzyl radicals. These findings contrast with the benzene oxidation, where the benzene-molecular oxygen reaction is quite unimportant and the reaction of phenyl with molecular oxygen dominates. In the toluene mechanism the corresponding reaction of benzyl radicals with oxygen is unimportant. Two reactions which are important in the oxidation of benzene also influence the oxidation of toluene for several conditions. These are the oxidations of phenyl and cyclopentadienyl radicals by molecular oxygen. The mechanism presented successfully computes the decrease of toluene concentration with time in the nitrogen diluted turbulent reactor. This fact, in addition to the good prediction of ignition delay times, shows that this mechanism can be used for modeling the ignition and combustion process in practical, well-mixed combustion systems.

  5. Anaerobic biodegradation of toluene in a plug-flow reactor

    SciTech Connect

    Ghosh, S.; Liu, T.; Fukushi, K. [Univ. of Utah, Salt Lake City, UT (United States). Dept. of Civil and Environmental Engineering

    1996-12-31

    This paper presents the application of a continuous-flow mesophilic (35 C), plug-flow digester to cometabolic degradation of toluene by an anaerobic microbial consortium in the presence of conventional pollutants serving as the major carbon and energy sources. In contrast to conventional practice, digester contents were not mixed. Reactor effluents were recirculated to the influent end at a rate of 20 vol. percent of the influent flow rate. The anaerobic digester was charged with 50 mg/l of toluene. The total COD (chemical oxygen demand) concentration of the mixed, non-hazardous carbon sources was 11,000 mg/l. Experimental results showed that anaerobic digestion occurring in a plug-flow reactor can simultaneously stabilize and detoxify conventional and hazardous wastes with the production of a methane-rich (up to 80 mol% methane) fuel gas. The observed gas yield of 0.36 {+-} 0.01 SCM/kg VS added was higher than that of conventional, complete-mix digesters under similar operating conditions of hydraulic retention time (HRT) and organic loading rate (OLR). Toluene did not inhibit anaerobic biogasification of non-hazardous substrates. A toluene degradation efficiency of 95% and a total COD reduction of 96% were observed at an HRT of 13 days and an OLR of 0.81 kgCOD/m{sup 3}-day. Digester effluents contained about 2 mg/l of toluene under these operating conditions. Toluene released to the reactor head gas was about 1.4% of the toluene introduced into the anaerobic reactor. The small concentration of toluene in the gas-phase would not be a problem if the digester gas were subjected to high-temperature combustion. A simple model based on the Monod growth-kinetic equation was developed to describe cometabolic toluene-degradation profiles in the plug-flow digester.

  6. Benzene/toluene/p-xylene degradation. Part I. Solvent selection and toluene degradation in a two-phase partitioning bioreactor.

    PubMed

    Collins, L D; Daugulis, A J

    1999-09-01

    A two-phase organic/aqueous reactor configuration was developed for use in the biodegradation of benzene, toluene and p-xylene, and tested with toluene. An immiscible organic phase was systematically selected on the basis of predicted and experimentally determined properties, such as high boiling points, low solubilities in the aqueous phase, good phase stability, biocompatibility, and good predicted partition coefficients for benzene, toluene and p-xylene. An industrial grade of oleyl alcohol was ultimately selected for use in the two-phase partitioning bioreactor. In order to examine the behavior of the system, a single-component fermentation of toluene was conducted with Pseudomonas sp. ATCC 55595. A 0.5-1 sample of Adol 85 NF was loaded with 10.4 g toluene, which partitioned into the cell containing 1 l aqueous medium at a concentration of approximately 50 mg/l. In consuming the toluene to completion, the organisms were able to achieve a volumetric degradation rate of 0.115 g l-1 h-1. This system is self-regulating with respect to toluene delivery to the aqueous phase, and requires only feedback control of temperature and pH. PMID:10531648

  7. Transformation of Microflora during Degradation of Gaseous Toluene in a Biofilter detected using PCR-DGGE

    Microsoft Academic Search

    Suguru Okunishi; Yasutaka Morita; Takashi Higuchi; Hiroto Maeda; Katsuji Nishi

    2012-01-01

    A laboratory scale biofiltration system, the rotatory-switching biofilter (RSB), was operated for 199 days using toluene as a model pollutant. The target gaseous pollutant for the biofiltration experiment was ca. 300 ppmv of toluene. Toluene removal efficiency (RE, %) was initially approximately 20% with a 247 ppmv concentration (0.9 g m) of toluene during the first 10 days. Although the

  8. Growth of the fungus Cladosporium sphaerospermum with toluene as the sole carbon and energy source

    Microsoft Academic Search

    F. J. Weber; K. C. Hage; Bont de J. A. M

    1995-01-01

    The fungus Cladosporium sphaerospermum was isolated from a biofilter used for the removal of toluene from waste gases. This is the first report describing growth of a eukaryotic organism with toluene as the sole source of carbon and energy. The oxygen consumption rates, as well as the measured enzyme activities, of toluene-grown C. sphaerospermum indicate that toluene is degraded by

  9. Distribution and movement of trichloroethylene in ground water in the Tucson area, Arizona

    USGS Publications Warehouse

    Leake, S.A.; Hanson, R.T.

    1987-01-01

    In 1981, investigations of groundwater quality around Tucson International Airport revealed a number of wells that pumped water contaminated with trichloroethylene. Subsequent investigations resulted in the delineation of three distinct areas of contamination, the largest of which encompasses about 5 sq mi of aquifer surface area. Most of the contamination is in the top 100 ft of the saturated groundwater flow system. A fine-grained confining layer that is present in much of the contaminated area significantly limits the vertical movement of the chlorinated groundwater. Within the contaminated area, measured trichloroethylene concentrations were as high as 3,100 mg/L in 1984. Measured concentrations are highly variable vertically as well as horizontally. Future quantitative studies of contaminant movement may benefit from additional data collection and experiments to determine which contaminant transport and groundwater flow equations are most appropriate. (Author 's abstract)

  10. Catalytic oxidation of dichloromethane and toluene over platinum alumite catalyst.

    PubMed

    Wang, Lifeng; Sakurai, Makoto; Kameyama, Hideo

    2008-06-15

    Catalytic oxidation technology is one of the most promising technologies for the reduction of volatile organic compound (VOC) emissions. It is very necessary to study the catalytic oxidation of mixture of VOCs and volatile organic compounds (CVOCs), because VOCs are always emitted accompanying with CVOCs. Hence, the catalytic oxidation reaction of toluene and CH2Cl2 is explored on a platinum alumite catalyst in this work. The results show that the addition of toluene has no effect on the decomposition of CH2Cl2, although it can suppress CH3Cl formation because the steam generated from the catalytic combustion of toluene suppresses the formation of CH3Cl from CH2Cl2. High concentrations of CH2Cl2 have a negative effect on the catalytic combustion of toluene. PMID:18054162

  11. Reactions of water vapor or molecular hydrogen with trichloroethylene in a microwave plasma reactor

    Microsoft Academic Search

    Joseph W. Bozzelli; Robert B. Barat

    1988-01-01

    The reaction of trichloroethylene (C2HCl3) with water vapor or molecular hydrogen has been studied in a low-pressure [ca. 5 Torr (0.67 kPa)] microwave plasma tubular flow reactor. The experimental apparatus included feed introduction systems, a microwave plasma reactor, and full product analysis by flame ionization and thermal-conductivity gas chromatography, mass spectrometry, and specific ion or pH detection for hydrogen chloride

  12. Physiologically based pharmacokinetic models for the transport of trichloroethylene in adipose tissue

    Microsoft Academic Search

    R. A. Albanese; H. T. Banks; M. V. Evans; L. K. Potter

    2002-01-01

    In this paper we present three physiologically based pharmacokinetic (PBPK) models for the systemic transport of trichloroethylene\\u000a (TCE), with a focus on the adipose, or fat tissue. TCE is a widespread environmental contaminant, and has been shown to produce\\u000a toxic effects in both animals and humans. A key characteristic of TCE is its tendency to accumulate in fat tissue, which

  13. Lack of Trigeminal Nerve Toxicity in Rats Exposed to Trichloroethylene Vapor for 13 Weeks

    Microsoft Academic Search

    Ralph R. Albee; Pamela J. Spencer; Keith A. Johnson; Greg J. Bradley; Brian R. Marable; Jan W. Wilmer; Joel L. Mattsson

    2006-01-01

    Male and female Fischer-344 rats were exposed to 1,1,2-trichloroethylene (TCE) at 250, 800, or 2500 ppm for 6 h\\/day, 5 days\\/week, for 13 weeks. Weekly body weights and daily clinical observations were recorded and a functional observational battery (FOB) was performed monthly. Postexposure neurotoxicological evaluations included an electrodiagnostic evaluation of auditory function, the trigeminal nerve, and a comprehensive neuropatho-logical examination.

  14. EFFECTS OF PH ON DECHLORINATION OF TRICHLOROETHYLENE BY ZERO-VALENT IRON

    EPA Science Inventory

    The surface normalized reaction rate constants (ksa) of trichloroethylene (TCE) and zero-valent iron (ZVI) was quantified in batch reactors at pH values between 1.7 and 10. The ksa of TCE linearly decreased from 0.044 to 0.009 L/hr-m2 between pH 3.8 and 8.0, whereas the ksa at pH...

  15. Stable isotope (C, Cl, and H) fractionation during vaporization of trichloroethylene

    SciTech Connect

    Poulson, S.R.; Drever, J.I.

    1999-10-15

    Stable isotope fractionation during vaporization of trichloroethylene has been measured, with possible application as a technique to investigate subsurface behavior. The equilibrium value of {Delta}{sup 13}C{sub vapor-liquid} has been measured between 5 and 35 C, and {Delta}{sup 13}C{sub vapor-liquid}, {Delta}{sup 37}Cl{sub vapor-liquid}, and {Delta}D{sub vapor-liquid} have been measured during progressive evaporation of liquid trichloroethylene at 22 {+-} 2 C. Equilibrium values of {Delta}{sup 13}C{sub vapor-liquid} show a total range of 0.07--0.82{per{underscore}thousand}, with a trend of decreasing {Delta}{sup 13}C{sub vapor-liquid} with increasing temperature, from approximately +0.7{per{underscore}thousand} at 5--15 C to approximately +0.1{per{underscore}thousand} at 35 C. Progressive evaporation experiments yield values of {Delta}{sup 13}C{sub vapor-liquid} = +0.35{per{underscore}thousand} and +0.24{per{underscore}thousand}, {Delta}{sup 37}Cl{sub vapor-liquid} = {minus}1.64{per{underscore}thousand}, and {Delta}D{sub vapor-liquid} = +8.9{per{underscore}thousand}. The positive values for carbon and hydrogen isotope fractionation, while unexpected, are consistent with available quantitative and qualitative data for trichloroethylene and other contaminant hydrocarbons, but a satisfactory explanation for these observations, particularly in combination with the negative value for chlorine, remains elusive, Vapor-liquid fractionation factors have application to the investigation of the behavior of trichloroethylene at contaminated sites, particularly sites undergoing remediation by techniques such as soil vapor extraction and soil bioventing.

  16. Physical properties of contaminated trichloroethylene and 1,1,1- trichloroethane

    SciTech Connect

    Holt, R.D.

    1990-10-01

    The specific gravity, volume change, dielectric constant, dissipation factor, boiling point, and nonvolatile residue carryover during distillation was measured for various contamination levels of rosin in trichloroethylene and 1,1,1-trichloroethane. Solvent stabilizers and the vapor pressure of solvents were examined. The effects of unknown contamination in solvents from manufacturing departments were measured. The theoretical effects of oil contamination on the boiling point are discussed. 18 refs., 15 figs., 13 tabs.

  17. Persulfate oxidation of trichloroethylene with and without iron activation in porous media

    Microsoft Academic Search

    Chenju Liang; I-Ling Lee; I-Yuang Hsu; Ching-Ping Liang; Yu-Ling Lin

    2008-01-01

    In situ chemical oxidation with persulfate anion (S2O82-) is a viable technique for remediation of groundwater contaminants such as trichloroethylene (TCE). An accelerated reaction using S2O82- to destroy TCE can be achieved via chemical activation with ferrous ion to generate sulfate radicals (SO4-·)(E°=2.6V). The column study presented here simulates persulfate oxidation of TCE in porous media (glass beads and a

  18. Hepatotoxicity in Rats Treated with Dimethylformamide or Toluene or Both

    PubMed Central

    Chung, Yong Hyun

    2013-01-01

    The effects of toluene in dimethylformamide (DMF)-induced hepatotoxicity were investigated with respect to the induction of cytochrome P-450 (CYP) and the activities of related enzymes. The rats were treated intraperitoneally with the organic solvents in olive oil (Single treatment groups: 450 [D1], 900 [D2], 1,800 [D3] mg DMF, and 346 mg toluene [T] per kg of body weight; Combined treatment groups: D1+T, D2+T, and D3+T) once a day for three days, while the control group received just the olive oil. Each group consisted of 4 rats. The activities of the xenobiotic metabolic enzymes and the hepatic morphology were assessed. The immunoblots indicated that the expression of CYP2E1 was considerably enhanced depending on the dosage of DMF and the CYP2E1 blot densities were significantly increased after treatment with both DMF and toluene, compared to treatment with DMF alone. The activities of glutathione- S-transferase and glutathione peroxidase were either decreased or remained unaltered after treatment with DMF and toluene, whereas the lipid peroxide levels were increased with increasing dosage of DMF and toluene. The liver tissue in the D3 group (1,800 mg/kg of DMF) showed signs of microvacuolation in the central vein region and a large necrotic zone around the central vein, in rats treated with both DMF (1,800 mg/kg) and toluene (D3T). These results suggest that the expression of CYP2E1 is induced by DMF and enhanced by toluene. These changes may have facilitated the accelerated formation of Nmethylformamide (NMF) from toluene, and the generated NMF may directly induce liver damage. PMID:24386519

  19. Diffusion of trichloroethylene through the threaded joints of PVC (polyvinylchloride) pipe

    SciTech Connect

    Jerome, K.M. (Pennsylvania State Univ., University Park, PA (USA). Dept. of Civil Engineering)

    1990-12-01

    The data engineers and scientists use to determine if the groundwater supply is contaminated are derived from analysis of samples taken largely from monitoring wells. For these data to be reliable several factors must be considered. One factor is the integrity of the monitoring well. In this project, emphasis has been placed on the potential impact on water quality caused by diffusion across the threaded joints of PVC pipe. In this study, the diffusion of trichloroethylene across several common types of threaded joints (i.e., square flush, modified ACME, modified ACME stub, and ACME) has been measured. Samples were obtained from the water inside the pipe sections and analyzed for trichloroethylene by gas chromatography. Breakthrough occurs within days of the samples being placed in the baths. The softened PVC joints of the pipes in the pure trichloroethylene split before the first sample interval of 1.5 weeks. The data show great variability in casting joints from the same manufacturer, and indicate a need for increased precision in the manufacturing of the PVC pipe joints. A one-dimensional diffusion model is used to determine an equivalent gap size through which the diffusion occurs. Flow rates through the threaded joints are calculated by using the equivalent gap width and a formula for flow through a rectangular duct running full. Comparison of the results of the gap size calculations and of the flow rates is presented. 20 refs., 13 figs. 11 tabs.

  20. Adsorption of toluene on carbon nanofibers prepared by electrospinning.

    PubMed

    Oh, Gil-Young; Ju, Young-Wan; Kim, Mi-Young; Jung, Hong-Ryun; Kim, Hyung Jin; Lee, Wan-Jin

    2008-04-15

    This paper reports the novel results of activated carbon nanofibers (ACNF) used to improve the toluene adsorption capacity. The ACNF was prepared by stabilization, carbonization and activation after electrospinning the polymer solution of polyacrylonitrile (PAN) in N, N-dimethylformamide. The average diameter of the ACNF was approximately 300 nm, ranging from 200 to 500 nm. The toluene adsorption capacity of ACNF10 activated at 1000 degrees C increased to 65 g-toluene/100 g-ACNF. This was attributed to the high specific surface area (1403 m(2)/g), large micropore volume (0.505 cm(3)/g), and narrow average pore diameter (6.0 A). The oxygen to carbon ratio (O/C ratio) in ACNF10 was 1.8%. This O/C ratio appears to induce a higher toluene adsorption capacity, which originates from a non-polar interaction between the ACNF surface and toluene. In conclusion, the electrospun ACNF prepared in this study promotes the adsorption of toluene through the high specific surface area, large pore volume, narrow pore diameter and low O/C ratio. PMID:18262599

  1. Toluene Diffusion and Reaction in Unsaturated Pseudomonas putida Biofilms

    PubMed Central

    Holden, Patricia A.; Hunt, James R.; Firestone, Mary K.

    2010-01-01

    Biofilms are frequently studied in the context of submerged or aquatic systems. However, much less is known about biofilms in unsaturated systems, despite their importance to such processes as food spoilage, terrestrial nutrient cycling, and biodegradation of environmental pollutants in soils. Using modeling and experimentation, we have described the biodegradation of toluene in unsaturated media by bacterial biofilms as a function of matric water potential, a dominant variable in unsaturated systems. We experimentally determined diffusion and kinetic parameters for Pseudomonas putida biofilms, then predicted biodegradation rates over a range of matric water potentials. For validation, we measured the rate of toluene depletion by intact biofilms and found the results to reasonably follow the model predictions. The diffusion coefficient for toluene through unsaturated P. putida biofilm averaged 1.3 × 10?7 cm2/s, which is approximately two orders of magnitude lower than toluene diffusivity in water. Our studies show that, at the scale of the microbial biofilm, the diffusion of toluene to biodegrading bacteria can limit the overall rate of biological toluene depletion in unsaturated systems. PMID:18642338

  2. Asymmetric orientation of toluene molecules at oil-silica interfaces

    NASA Astrophysics Data System (ADS)

    Ledyastuti, Mia; Liang, Yunfeng; Kunieda, Makoto; Matsuoka, Toshifumi

    2012-08-01

    The interfacial structure of heptane and toluene at oil-silica interfaces has previously been studied by sum frequency generation [Z. Yang et al., J. Phys. Chem. C. 113, 20355 (2009)], 10.1021/jp9043122. It was found that the toluene molecule is almost perpendicular to the silica surface with a tilt angle of about 25°. Here, we have investigated the structural properties of toluene and heptane at oil-silica interfaces using molecular dynamics simulations for two different surfaces: the oxygen-bridging (hydrophobic) and hydroxyl-terminated (hydrophilic) surfaces of quartz (silica). Based on the density profile, it was found that both heptane and toluene oscillate on silica surfaces, with heptane showing more oscillation peaks. Furthermore, the toluene molecules of the first layer were found to have an asymmetric distribution of orientations, with more CH3 groups pointed away from the silica surface than towards the silica surface. These findings are generally consistent with previous experiments, and reveal enhanced molecular structures of liquids at oil-silica interfaces.

  3. Toluene-4-monooxygenase, a three-component enzyme system that catalyzes the oxidation of toluene to p-cresol in Pseudomonas mendocina KR1.

    PubMed Central

    Whited, G M; Gibson, D T

    1991-01-01

    Pseudomonas mendocina KR1 grows on toluene as a sole carbon and energy source. A multicomponent oxygenase was partially purified from toluene-grown cells and separated into three protein components. The reconstituted enzyme system, in the presence of NADH and Fe2+, oxidized toluene to p-cresol as the first detectable product. Experiments with p-deutero-toluene led to the isolation of p-cresol which retained 68% of the deuterium initially present in the parent molecule. When the reconstituted enzyme system was incubated with toluene in the presence of 18O2, the oxygen in p-cresol was shown to be derived from molecular oxygen. The results demonstrate that P. mendocina KR1 initiates degradation of toluene by a multicomponent enzyme system which has been designated toluene-4-monooxygenase. PMID:2019563

  4. Catalytic Decomposition of Toluene Using Various Dielectric Barrier Discharge Reactors

    NASA Astrophysics Data System (ADS)

    Ye, Daiqi; Huang, Haibao; Chen, Weili; Zeng, Ronghui

    2008-02-01

    Decomposition of toluene was experimentally investigated with various dielectric barrier discharge (DBD) reactors, such as wire-cylinder, wire-plate and plate-to-plate, combined with multi-metal oxides catalyst (Mn-Ni-Co-Cu-Ox/Al2O3) loaded on the cordierite honeycomb and nickel foam, respectively. The effects of some factors including the residence time, reactor configuration and catalyst, upon the toluene destruction were studied. Results revealed that the use of in-plasma catalysis was more helpful to enhancing the DRE (destruction and removal efficiency) and reducing the O3 formation than that of either post-plasma catalysis or plasma alone. It was demonstrated that the wire-plate reactor was favorable for the oxidation reaction of toluene and the nickel foam-supported catalysts exhibited good activity.

  5. SYNCHROTRON X-RAY MICROTOMOGRAPHY, ELECTRON PROBE MICROANALYSIS, AND NMR OF TOLUENE WASTE IN CEMENT.

    SciTech Connect

    BUTLER,L.G.

    1999-07-22

    Synchrotron X-ray microtomography shows vesicular structures for toluene/cement mixtures, prepared with 1.22 to 3.58 wt% toluene. Three-dimensional imaging of the cured samples shows spherical vesicles, with diameters ranging from 20 to 250 {micro}m; a search with EPMA for vesicles in the range of 1-20 {micro}m proved negative. However, the total vesicle volume, as computed from the microtomography images, accounts for less than 10% of initial toluene. Since the cements were cured in sealed bottles, the larger portion of toluene must be dispersed within the cement matrix. Evidence for toluene in the cement matrix comes from {sup 29}Si MAS NMR spectroscopy, which shows a reduction in chain silicates with added toluene. Also, {sup 2}H NMR of d{sub 8}-toluene/cement samples shows high mobility for all, toluene and thus no toluene/cement binding. A model that accounts for all observations follows: For loadings below about 3 wt%, most toluene is dispersed in the cement matrix, with a small fraction of the initial toluene phase separating from the cement paste and forming vesicular structures that are preserved in the cured cement. Furthermore, at loadings above 3 wt%, the abundance of vesicles formed during toluene/cement paste mixing leads to macroscopic phase separation (most toluene floats to the surface of the cement paste).

  6. A meta-analysis of occupational trichloroethylene exposure and liver cancer

    Microsoft Academic Search

    Dominik D. Alexander; Michael A. Kelsh; Pamela J. Mink; Jeffrey H. Mandel; Rupa Basu; Michal Weingart

    2007-01-01

    Objective  Findings from epidemiologic studies of trichloroethylene (TCE) exposure and liver cancer have been inconsistent. To quantitatively\\u000a evaluate this association and to examine sources of heterogeneity, we conducted a meta-analysis of occupational studies of\\u000a TCE exposure and liver\\/biliary tract cancer.\\u000a \\u000a \\u000a \\u000a Methods  We identified 14 occupational cohort studies of TCE exposed workers and one case-control study that met our inclusion criteria.\\u000a Nine studies

  7. Biocatalytic Dechlorination of Trichloroethylene With Bio-Palladium in a Pilot-Scale Membrane Reactor

    Microsoft Academic Search

    Tom Hennebel; Henri Simoen; Wim De Windt; Marc Verloo; Nico Boon; Willy Verstraete

    2009-01-01

    Trichloroethylene (TCE) is a toxic and recalcitrant groundwater\\u000a pollutant. An innovative technology using microbial produced Pd(O)\\u000a nanoparticles for the remediation of TCE contaminated groundwater was\\u000a developed. The nanoscale bio-Pd particles were precipitated on the\\u000a biomass of Shewanella oneidensis and hydrogen gas, formate, or formic\\u000a acid were used as hydrogen donors. Ethane turned out to be the only\\u000a organic degradation product

  8. Trichloroethylene degradation by two independent aromatic-degrading pathways in alcaligenes eutrophus JMP134

    SciTech Connect

    Harker, A.R.; Kim, Y. (Oklahoma State Univ. Stillwater (USA))

    1990-04-01

    The bacterium Alcaligenes eutrophus JMP134(pJP4) degrades trichloroethylene (TCE) by a chromosomal phenol-dependent pathway and by the plasmid-encoded 2,4-dichlorophenoxyacetic acid pathway. The two pathways were independent and exhibited different rates of removal and capacities for quantity of TCE removed. The phenol-dependent pathway was more rapid (0.2 versus 0.06 nmol of TCE removed per min per mg of protein) and consumed all detectable TCE. The 2,4-dichlorophenoxyacetic acid-dependent pathway removed 40 to 60% of detectable TCE.

  9. Chloroform and trichloroethylene uptake from water into human skin in vitro: Kinetics and risk implications

    SciTech Connect

    Bogen, K.T.; Keating, G.A.; Vogel, J.S.

    1995-03-01

    A model recently proposed by the US Environmental Protection Agency (EPA) predicts that short-term dermal uptakes of organic environmental water contaminants are proportional to the square root of exposure time. The model appears to underestimate dermal uptake, based on very limited in vivo uptake data obtained primarily using human subjects. To further assess this model, we examined in vitro dermal uptake kinetics for aqueous organic chemicals using accelerator mass spectrometry (AMS). Specifically, we examined the kinetics of in vitro dermal uptake of {sup 14}C-labeled chloroform and trichloroethylene from dilute (5-ppb) aqueous solutions using full-thickness human cadaver skin exposed for ({le}1 hr).

  10. Photo-activated luminescence sensor and method of detecting trichloroethylene and related volatile organochloride compounds

    DOEpatents

    Dinh, Tuan V. (Knoxville, TN)

    1996-01-01

    A sensor for detecting trichloroethylene and related volatile organochloride compounds uses a photo-activator that produces a photo-product complex with the contaminant. Characteristics of the light emitted from the complex will indicate the presence of the contaminant. A probe containing the photo-activator has an excitation light interface and a contaminant interface. One particular embodiment uses a porous membrane as the contaminant interface, so that the contaminant can migrate therethrough to the photo-activator and thereby form the complex.

  11. Photo-activated luminescence sensor and method of detecting trichloroethylene and related volatile organochloride compounds

    DOEpatents

    Dinh, T.V.

    1996-06-11

    A sensor for detecting trichloroethylene and related volatile organochloride compounds uses a photo-activator that produces a photo-product complex with the contaminant. Characteristics of the light emitted from the complex will indicate the presence of the contaminant. A probe containing the photo-activator has an excitation light interface and a contaminant interface. One particular embodiment uses a porous membrane as the contaminant interface, so that the contaminant can migrate there through to the photo-activator and thereby form the complex. 23 figs.

  12. Effects of pH on dechlorination of trichloroethylene by zero-valent iron

    Microsoft Academic Search

    Jiann-Long Chen; Souhail R Al-Abed; James A Ryan; Zhenbin Li

    2001-01-01

    The surface normalized reaction rate constants (ksa) of trichloroethylene (TCE) and zero-valent iron (ZVI) were quantified in batch reactors at pH values between 1.7 and 10. The ksa of TCE linearly decreased from 0.044 to 0.009l\\/hm2 between pH 3.8 and 8.0, whereas the ksa at pH 1.7 was more than an order higher than that at pH 3.8. The degradation

  13. Synergistic effect of catalyst for oxidation removal of toluene.

    PubMed

    Zhu, Tao; Li, Jian; Liang, Wenjun; Jin, Yuquan

    2009-06-15

    A series of experiments was performed for toluene removal from a gaseous influent at the normal temperature and atmospheric pressure by decomposition due to dielectric barrier discharge generated non-thermal plasma, by using MnO(2)/gamma-Al(2)O(3) as catalyst. The removal efficiency of toluene was significantly increased by combining MnO(2)/gamma-Al(2)O(3) with NTP. At the same time, the goal of improving energy efficiency and decreasing O(3) from exhaust gas treatment was accomplished. PMID:19124193

  14. A Brillouin scattering study of C 60/toluene mixtures

    NASA Astrophysics Data System (ADS)

    Amer, Maher S.; Bennett, Mats; Maguire, John F.

    2008-05-01

    Solutions of C 60 in toluene were investigated using Brillouin light scattering. The C 60 molar fractions for the solutions studied ranged from 0 (pure toluene) to 36 × 10 -5 (2.8 mg/ml C 60 which is the saturation limit). The solutions were examined under a VV polarization condition and a distinct shift of the Brillouin doublets position was observed. It was found that adiabatic compressibility of the solution increases linearly as the C 60 molar fraction increases. Comparison to recently developed models predicting excess adiabatic compressibility in binary liquid mixtures is provided.

  15. MICROBIAL DEGRADATION OF TOLUENE UNDER SULFATE- REDUCING CONDITIONS AND THE INFLUENCE OF IRON ON THE PROCESS

    EPA Science Inventory

    Toluene degradation occurred concomitantly with sulfate reduction in anaerobic microcosms inoculated with contaminated subsurface soil from an aviation fuel storage facility near the Patuxent River (Md.). Similar results were obtained for enrichment cultures in which toluene was ...

  16. Growth of the fungus Cladosporium sphaerospermum with toluene as the sole carbon and energy source.

    PubMed

    Weber, F J; Hage, K C; de Bont, J A

    1995-10-01

    The fungus Cladosporium sphaerospermum was isolated from a biofilter used for the removal of toluene from waste gases. This is the first report describing growth of a eukaryotic organism with toluene as the sole source of carbon and energy. The oxygen consumption rates, as well as the measured enzyme activities, of toluene-grown C. sphaerospermum indicate that toluene is degraded by an initial attack on the methyl group. PMID:7486990

  17. Enhanced Anaerobic Biodegradation of Benzene-Toluene-Ethylbenzene-Xylene-Ethanol Mixtures in Bioaugmented Aquifer Columns

    Microsoft Academic Search

    M. L. B. Da Silva; P. J. J. Alvarez

    2004-01-01

    Methanogenic flowthrough aquifer columns were used to investigate the potential of bioaugmentation to enhance anaerobic benzene-toluene-ethylbenzene-xylene (BTEX) degradation in groundwater contaminated with ethanol-blended gasoline. Two different methanogenic consortia (enriched with benzene or toluene and o-xylene) were used as inocula. Toluene was the only hydrocarbon degraded within 3 years in columns that were not bioaugmented, although anaerobic toluene degradation was observed

  18. Toluene removal by oxidation reaction in spray wet scrubber: experimental, modeling and optimization

    Microsoft Academic Search

    Juntima Chungsiriporn; Charun Bunyakan

    Toluene, an important volatile organic compound (VOC), is used in many kinds of industries, such as painting, printing, coating, and petrochemical industries. The emission of toluene causes serious air pollution, odor problem, flammability problem and affects human health. This paper proposes the removal of toluene from waste air using a spray wet scrubber combining the absorption and oxidation reaction. Aqueous

  19. Cardiovascular effects of oral toluene exposure in the rat monitored by radiotelemetry

    EPA Science Inventory

    Toluene is a hazardous air pollutant that can be toxic to the nervous and cardiovascular systems. The cardiotoxicity data for toluene come from acute studies in anesthetized animals and from clinical observations made on toluene abusers and there is little known on the response o...

  20. Effects of trichloroethylene and perchloroethylene on wild rodents at Edwards Air Force Base, California, USA.

    PubMed

    Spring, Sarah E; Miles, A Keith; Anderson, Michael J

    2004-09-01

    Effects of inhalation of volatilized trichloroethylene (TCE) or perchloroethylene (PCE) were assessed based on the health and population size of wild, burrowing mammals at Edwards Air Force Base (CA, USA). Organic soil-vapor concentrations were measured at three sites with aquifer contamination of TCE or PCE of 5.5 to 77 mg/L and at two uncontaminated reference sites. Population estimates of kangaroo rats (Dipodomys merriami and D. panamintinus) as well as hematology, blood chemistry, and histopathology of kangaroo rats and deer mice (Peromyscus maniculatus) were compared between contaminated and uncontaminated populations. Maximum soil-gas concentrations associated with groundwater contamination were less than 1.5 microl/L of TCE and 0.07 microl/L of PCE. Population estimates of kangaroo rats were similar at contaminated and reference sites. Hematology, blood chemistry, and histopathology of kangaroo rats and deer mice indicated no evidence of health effects caused by exposure. Trichloroethylene or PCE in groundwater and in related soil gas did not appear to reduce the size of small mammal populations or impair the health of individuals. PMID:15378993

  1. Performance of genetic risk factors in prediction of trichloroethylene induced hypersensitivity syndrome

    PubMed Central

    Dai, Yufei; Chen, Ying; Huang, Hanlin; Zhou, Wei; Niu, Yong; Zhang, Mingrong; Bin, Ping; Dong, Haiyan; Jia, Qiang; Huang, Jianxun; Yi, Juan; Liao, Qijun; Li, Haishan; Teng, Yanxia; Zang, Dan; Zhai, Qingfeng; Duan, Huawei; Shen, Juan; He, Jiaxi; Meng, Tao; Sha, Yan; Shen, Meili; Ye, Meng; Jia, Xiaowei; Xiang, Yingping; Huang, Huiping; Wu, Qifeng; Shi, Mingming; Huang, Xianqing; Yang, Huanming; Luo, Longhai; Li, Sai; Li, Lin; Zhao, Jinyang; Li, Laiyu; Wang, Jun; Zheng, Yuxin

    2015-01-01

    Trichloroethylene induced hypersensitivity syndrome is dose-independent and potentially life threatening disease, which has become one of the serious occupational health issues and requires intensive treatment. To discover the genetic risk factors and evaluate the performance of risk prediction model for the disease, we conducted genomewide association study and replication study with total of 174 cases and 1761 trichloroethylene-tolerant controls. Fifty seven SNPs that exceeded the threshold for genome-wide significance (P?

  2. Effects of trichloroethylene and perchloroethylene on wild rodents at Edwards Air Force Base, California, USA

    USGS Publications Warehouse

    Spring, S.E.; Miles, A.K.; Anderson, M.J.

    2004-01-01

    Effects of inhalation of volatilized trichloroethylene (TCE) or perchloroethylene (PCE) were assessed based on the health and population size of wild, burrowing mammals at Edwards Air Force Base (CA, USA). Organic soil-vapor concentrations were measured at three sites with aquifer contamination of TCE or PCE of 5.5 to 77 mg/L and at two uncontaminated reference sites. Population estimates of kangaroo rats (Dipodomys merriami and D. panamintinus) as well as hematology, blood chemistry, and histopathology of kangaroo rats and deer mice (Peromyscus maniculatus) were compared between contaminated and uncontaminated populations. Maximum soil-gas concentrations associated with groundwater contamination were less than 1.5 ??l/L of TCE and 0.07 ??l/L of PCE. Population estimates of kangaroo rats were similar at contaminated and reference sites. Hematology, blood chemistry, and histopathology of kangaroo rats and deer mice indicated no evidence of health effects caused by exposure. Trichloroethylene or PCE in groundwater and in related soil gas did not appear to reduce the size of small mammal populations or impair the health of individuals.

  3. Instrument for benzene and toluene emission measurements of glycol regenerators

    NASA Astrophysics Data System (ADS)

    Hanyecz, Veronika; Mohácsi, Árpád; Puskás, Sándor; Vágó, Árpád; Szabó, Gábor

    2013-11-01

    We introduce an in-field and in-explosive atmosphere useable instrument, which can measure the benzene and toluene concentration in two gas and two glycol samples produced by natural gas dehydration units. It is a two-phase, on-line gas chromatograph with a photoacoustic spectroscopy based detector. The time resolution is 10 min per cycle and the minimum detectable concentrations are 2 mg m-3 for benzene, 3 mg m-3 for toluene in natural gas, and 5 g m-3 for benzene and 6 g m-3 for toluene in glycol. Test measurements were carried out at a dehydration plant belonging to MOL Hungarian Oil and Gas Company. Benzene and toluene emissions of gas dehydration unit are calculated from the measured values based on mass balance of a glycol regenerator. The relationship between the outdoor temperature and the measured concentration was observed which is caused by temperature-dependent operation of the whole dehydration unit. Emission decreases with increase of outdoor temperature.

  4. TOLUENE DOSE-EFFECT META ANALYSIS AND IMPORTANCE OF EFFECTS

    EPA Science Inventory

    TOLUENE DOSE-EFFECT META ANALYSES AND IMPORTANCE OF EFFECTS Benignus, V.A., Research Psychologist, ORD, NHEERL, Human Studies Division, 919-966-6242, benignus.vernon@epa.gov Boyes, W.K., Supervisory Health Scientist, ORD, NHEERL, Neurotoxicology Division 919-541-...

  5. MID-FREQUENCY HEARING LOSS IN RATS FOLLOWING INHALATION EXPOSURE TO TRICHLOROETHYLENE: EVIDENCE FROM REFLEX MODIFICATION AUDIOMETRY

    EPA Science Inventory

    The present experiments were undertaken in order to characterize the hearing loss associated with 1,1,2-trichloroethylene (TCE) exposure. dult male LE rats were exposed to TCE via inhalation (whole body) for 6hr/day for 5 days. he concentration-effect function (0-4000 ppm) was de...

  6. Nonadditive Developmental Toxicity in Mixtures of Trichloroethylene, Di(2-ethylhexyl) Phthalate, and Heptachlor in a 5 × 5 × 5 Design

    Microsoft Academic Search

    Michael G. Narotsky; Edie A. Weller; Vernon M. Chinchilli; Robert J. Kavlock

    1995-01-01

    Nonadditive Developmental Toxicity in Mixtures of Trichloroethylene, Di(2-ethylhexyl) Phthalate, and Heptachlor in a 5 × 5 × 5 Design. Narotsky, M. G., Weller, E. A., Chinchilli V. M., and Kavlock, R. J. (1995). Fundam. Appl. Toxicol. 27, 203-216.In order to identify nonadditive effects on development, three compounds were combined using five dosages of each agent (a 5 × 5 ×

  7. Evaluating human variability in chemical risk assessment: hazard identification and dose-response assessment for noncancer oral toxicity of trichloroethylene

    Microsoft Academic Search

    H. A. Barton; C. D. Flemming; J. C. Lipscomb

    1996-01-01

    Human variability can be addressed during each stage in the risk assessment of chemicals causing noncancer toxicities. Noncancer toxicities arising from oral exposure to trichloroethylene (TCE) are used in this paper as a case study for exploring strategies for identifying and incorporating information about human variability in the chemical specific hazard identification and dose-response assessment steps. Toxicity testing in laboratory

  8. Plasma-assisted decomposition of methanol and trichloroethylene in atmospheric pressure air streams by electrical discharge processing

    NASA Astrophysics Data System (ADS)

    Hsiao, M. C.; Merritt, B. T.; Penetrante, B. M.; Vogtlin, G. E.; Wallman, P. H.

    1995-09-01

    Experiments are presented on the plasma-assisted decomposition of dilute concentrations of methanol and trichloroethylene in atmospheric pressure air streams by electrical discharge processing. This investigation used two types of discharge reactors, a dielectric-barrier and a pulsed corona discharge reactor, to study the effects of gas temperature and electrical energy input on the decomposition chemistry and byproduct formation. Our experimental data on both methanol and trichloroethylene show that, under identical gas conditions, the type of electrical discharge reactor does not affect the energy requirements for decomposition or byproduct formation. Our experiments on methanol show that discharge processing converts methanol to COx with an energy yield that increases with temperature. In contrast to the results from methanol, COx is only a minor product in the decomposition of trichloroethylene. In addition, higher temperatures decrease the energy yield for trichloroethylene. This effect may be due to increased competition from decomposition of the byproducts dichloroacetyl chloride and phosgene. In all cases plasma processing using an electrical discharge device produces CO preferentially over CO2.

  9. Plasma-assisted decomposition of methanol and trichloroethylene in atmospheric pressure air streams by electrical discharge processing

    SciTech Connect

    Hsiao, M.C.; Merritt, B.T.; Penetrante, B.M.; Vogtlin, G.E.; Wallman, P.H. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 (United States)] [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 (United States)

    1995-09-01

    Experiments are presented on the plasma-assisted decomposition of dilute concentrations of methanol and trichloroethylene in atmospheric pressure air streams by electrical discharge processing. This investigation used two types of discharge reactors, a dielectric-barrier and a pulsed corona discharge reactor, to study the effects of gas temperature and electrical energy input on the decomposition chemistry and byproduct formation. Our experimental data on both methanol and trichloroethylene show that, under identical gas conditions, the type of electrical discharge reactor does not affect the energy requirements for decomposition or byproduct formation. Our experiments on methanol show that discharge processing converts methanol to CO{sub {ital x}} with an energy yield that increases with temperature. In contrast to the results from methanol, CO{sub {ital x}} is only a minor product in the decomposition of trichloroethylene. In addition, higher temperatures decrease the energy yield for trichloroethylene. This effect may be due to increased competition from decomposition of the byproducts dichloroacetyl chloride and phosgene. In all cases plasma processing using an electrical discharge device produces CO preferentially over CO{sub 2}.

  10. Mortality and cancer incidence of aircraft maintenance workers exposed to trichloroethylene and other organic solvents and chemicals: extended follow up

    PubMed Central

    Blair, A.; Hartge, P.; Stewart, P. A.; McAdams, M.; Lubin, J.

    1998-01-01

    OBJECTIVES: To extend the follow up of a cohort of 14,457 aircraft maintenance workers to the end of 1990 to evaluate cancer risks from potential exposure to trichloroethylene and other chemicals. METHODS: The cohort comprised civilians employed for at least one year between 1952 and 1956, of whom 5727 had died by 31 December 1990. Analyses compared the mortality of the cohort with the general population of Utah and the mortality and cancer incidence of exposed workers with those unexposed to chemicals, while adjusting for age, sex and calendar time. RESULTS: In the combined follow up period (1952-90), mortality from all causes and all cancer was close to expected (standardised mortality ratios (SMRs) 97 and 96, respectively). Significant excesses occurred for ischaemic heart disease (SMR 108), asthma (SMR 160), and cancer of the bone (SMR 227), whereas significant deficits occurred for cerebrovascular disease (SMR 88), accidents (SMR 70), and cancer of the central nervous system (SMR 64). Workers exposed to trichloroethylene showed non-significant excesses for non-Hodgkin's lymphoma (relative risk (RR) 2.0), and cancers of the oesophagus (RR 5.6), colon (RR 1.4), primary liver (RR 1.7), breast (RR 1.8), cervix (RR 1.8), kidney (RR 1.6), and bone (RR 2.1). None of these cancers showed an exposure- response gradient and RRs among workers exposed to other chemicals but not trichloroethylene often had RRs as large as workers exposed to trichloroethylene. Workers exposed to solvents other than trichloroethylene had slightly increased mortality from asthma, non- Hodgkin's lymphoma, multiple myeloma, and breast cancer. CONCLUSION: These findings do not strongly support a causal link with trichloroethylene because the associations were not significant, not clearly dose-related, and inconsistent between men and women. Because findings from experimental investigations and other epidemiological studies on solvents other than trichloroethylene provide some biological plausibility, the suggested links between these chemicals and non-Hodgkin's lymphoma, multiple myeloma, and breast cancer found here deserve further attention. Although this extended follow up cannot rule out a connection between exposures to solvents and some diseases, it seems clear that these workers have not experienced a major increase in cancer mortality or cancer incidence.   PMID:9624267

  11. Structural Magnetic Resonance Imaging in an Adult Cohort Following Prenatal and Early Postnatal Exposure to Tetrachloroethylene (PCE)-contaminated Drinking Water

    PubMed Central

    Janulewicz, Patricia A; Killiany, Ronald J; White, Roberta F; Martin, Brett M; Winter, Michael R; Weinberg, Janice M; Aschengrau, Ann

    2013-01-01

    This population-based retrospective cohort study examined Structural Magnetic Resonance Imaging (MRI) of the brain in relation to prenatal and early postnatal exposure to tetrachloroethylene (PCE)-contaminated drinking water on Cape Cod, Massachusetts. Subjects were identified through birth records from 1969 through 1983. Exposure was modeled using pipe network information from town water departments, a PCE leaching and transport algorithm, EPANet water flow modeling software, and Geographic Information System (GIS) methodology. Brain imaging was performed on 26 exposed and 16 unexposed subjects. Scans were acquired on a Philips 3T whole body scanner using the ADNI T1-weighted MP-RAGE scan. The scans were processed by FreeSurfer version 4.3.1 software to obtain measurements of specific brain regions. There were no statistically significant differences between exposed and unexposed subjects on measures of white matter hypointensities (?: 127.5 mm3, 95% CI: ?259.1, 1514.0), white matter volumes (e.g. total cerebral white matter: ?: 21230.0 mm3, 95% CI: ?4512.6, 46971.7) or gray matter volumes (e.g. total cerebral gray matter: ?: 11976.0 mm3, 95% CI: ?13657.2, 37609.3). The results of this study suggest that exposure to PCE during gestation and early childhood, at the levels observed in this population, is not associated with alterations in the brain structures studied. PMID:23571160

  12. Death due to combined intake of ethanol and toluene: a case report.

    PubMed

    Gürses, Murat Seradar; Türkmen, Nursel; Eren, Bulent; Çetin, Selcuk; Gündo?mu?, Umit Naci

    2014-12-01

    Toluene is a commonly used volatile organic chemical in industry and is the most often chosen illicit substance among volatile substance abusers. Studies involving healthy volunteers suggest that ethanol consumption inhibits toluene metabolism, thus increasing its blood levels. In this study, a lethal case of combined ethanol consumption and toluene inhalation has been reported. Our case was a 30-year-old male who had used volatile substance for 15 years. The autopsy revealed no abnormal findings. Toxicological analysis revealed alcohol and toluene in the blood and the cause of death was considered as toxicity due to acute combined intake of alcohol and toluene. Lethal combined ethanol and toluene intake is rarely reported in the literature. Experimental studies indicate that toluene increases the risk of ethanol dependence and each substance increases the toxic effects of the other. PMID:25705313

  13. Initial reactions in the anaerobic oxidation of toluene and m-xylene by denitrifying bacteria

    SciTech Connect

    Seyfried, B.; Glod, G.; Schocher, R.; Tschech, A.; Zeyer, J. [Institute of Terrestrial Ecology, Schlieren (Switzerland)

    1994-11-01

    Anaerobic degradation of toluene has been observed under different redox conditions, and several pure cultures of bacteria which grow anaerobically with toluene have been isolated. Both denitrifying Pseufomonas sp. strain T and denitrifying Pseudomonas sp. strain K172 grow anaerobically with toluene, benzaldehyde, and benzoate, but only strain K172 also grows with benzlyalchohol. Carboxylation of toluene to yield phenylacetate or methylbenzoate does not occur in strains K172 and T. Utilization of benzylalcohol might be considered a prerequisite for initial activation of toluene via methyl group oxidation. This paper describes studies examining the initial reaction in anaerobic toluene degradation by strains T and K172. The initial reaction in anaerobic degradation of m-xylene by strain T. was also examined. The results indicate that initial direct oxidation of the methyl groups of toluene and m-xylene occurs. 21 refs., 3 figs., 3 tabs.

  14. Health risk assessment of exposure to selected volatile organic compounds emitted from an integrated iron and steel plant.

    PubMed

    Chang, E-E; Wei-Chi, Wang; Li-Xuan, Zeng; Hung-Lung, Chiang

    2010-12-01

    Workplace air samples from sintering, cokemaking, and hot and cold forming processes in the integrated iron and steel industry were analyzed to determine their volatile organic compound (VOC) concentration. Sixteen VOC species including three paraffins (cyclohexane, n-hexane, methylcyclohexane), five chlorinated VOC species (trichloroethylene, 1,1,1-trichloroethane, tetrachloroethylene, chlorobenzene, 1,4-dichlorobenzene), and eight aromatics (benzene, ethylbenzene, styrene, toluene, m,p-xylene, o-xylene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene) were selected to measure their noncancer risk for workers. Concentrations of toluene, xylene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, dichlorobenzene, and trichloroethylene were high in all four processes. Carbon tetrachloride and tetrachloroethylene concentrations were high in the hot and cold forming processes. The noncancer risk followed the increasing order: cokemaking > sintering > hot forming > cold forming. 1,2,4-trimethylbenzene and 1,3,5-trimethylbenzene contributed 44% to 65% and 13% to 20% of noncancer risk, respectively, for the four processes. Benzene accounted for a high portion of the noncancer risk in cokemaking. The hazard index (HI: 17-108) of the average VOC concentrations suggests that health risks can be reduced by improving workplace air quality and protecting workers. PMID:20828338

  15. An alternate metabolic hypothesis for a binary mixture of trichloroethylene and carbon tetrachloride: application of physiologically based pharmacokinetic (PBPK) modeling in rats.

    EPA Science Inventory

    Carbon tetrachloride (CC4) and trichloroethylene (TCE) are hepatotoxic volatile organic compounds (VOCs) and environmental contaminants. Previous physiologically based pharmacokinetic (PBPK) models describe the kinetics ofindividual chemical disposition and metabolic clearance fo...

  16. COMPARISON OF TRICHLOROETHYLENE REDUCTIVE DEHALOGENATION BY MICROBIAL COMMUNITIES STIMULATED ON SILICON-BASED ORGANIC COMPOUNDS AS SLOW-RELEASE ANAEROBIC SUBSTRATES. (R828772C001)

    EPA Science Inventory

    Microcosm studies were conducted to demonstrate the effectiveness of tetrabutoxysilane (TBOS) as a slow-release anaerobic substrate to promote reductive dehalogenation of trichloroethylene (TCE). The abiotic hydrolysis of TBOS and tetrakis(2-ethylbutoxy)silane (TKEBS), and the...

  17. Comparative Study on the Implication of Three Nanoparticles on the Removal of Trichloroethylene by Adsorption - The Pilot and Rapid Small-Scale Column Tests

    EPA Science Inventory

    The impact of three commercially-available nanoparticles (NPs) on trichloroethylene (TCE) adsorption onto granular activated carbon (GAC) was investigated. TCE Adsorption isotherm and column breakthrough experiments were conducted in the presence and absence of silicon dioxide (S...

  18. Suppression of Pulmonary Host Defenses and Enhanced Susceptibility to Respiratory bacterial Infection in mice Following Inhalation Exposure to Trichloroethylene and Chloroform

    EPA Science Inventory

    Numerous epidemiologic studies have associated episodes of increased air pollution with increased incidence of respiratory disease, including pneumonia, croup, and bronchitis. Trichloroethylene (TCE) and chloroform are among 33 hazardous air pollutants identified by the U.S. Env...

  19. Phytotoxicity and fate of 1,1,2-trichloroethylene: a laboratory study.

    PubMed

    Inderjit; Asakawa, Chikako; Kakuta, Hideo

    2003-06-01

    1,1,2-Trichloroethylene (TCE), a chlorinated organic contaminant, poses serious environmental concerns. A study was conducted to evaluate the phytotoxicity of TCE to a crop species and its fate in vermiculite. Growth bioassays were carried out using carrot (Daucus carota L.) as the test species. Three different concentrations, 0.25, 0.50, and 1 ppm were used to evaluate phytotoxicity of TCE. When added to petri plates with cotton pads, TCE did not have any effect on carrot seedling growth. However, when added to vermiculite, it significantly suppressed growth. Shoot growth was inhibited only at the 1 ppm concentration. Recovery experiments were carried out to study the fate of TCE in vermiculite. A significant decline in the percent recovery was observed with time. Interestingly, TCE additional peaks (unknown organic molecules) were detected with declining concentrations. The available chloride ion concentration in vermiculite containing 1 ppm of TCE for 24 hr was significantly higher compared to control. PMID:12918919

  20. Trichloroethylene degradation in a coupled anaerobic/aerobic reactor oxygenated using hydrogen peroxide.

    PubMed

    Tartakovsky, B; Manuel, M F; Guiot, S R

    2003-12-15

    In this work, trichloroethylene (TCE) degradation under combined anaerobic-aerobic conditions was studied in an ethanol-fed biofilm reactor oxygenated using hydrogen peroxide. The reactor was inoculated with a biomass originating from an anaerobic digestor. Granulated peat was added to the reactor as a substratum for biofilm development. Extensive characterization of reactor populations using activity tests and PCR analysis revealed the development of a mutualistic consortium, particularly methanotrophic and methanogenic microorganisms. This consortium was shown to degrade TCE by a combination of reductive and oxidative pathways. A near complete degradation of TCE at a load of 18 mg L(R)(-1) day(-1) was evidenced by a stoichiometric release of inorganic chloride. PMID:14717201

  1. Toxicity of zero-valent iron nanoparticles to a trichloroethylene-degrading groundwater microbial community.

    PubMed

    Zabetakis, Kara M; Niño de Guzmán, Gabriela T; Torrents, Alba; Yarwood, Stephanie

    2015-07-01

    The microbiological impact of zero-valent iron used in the remediation of groundwater was investigated by exposing a trichloroethylene-degrading anaerobic microbial community to two types of iron nanoparticles. Changes in total bacterial and archaeal population numbers were analyzed using qPCR and were compared to results from a blank and negative control to assess for microbial toxicity. Additionally, the results were compared to those of samples exposed to silver nanoparticles and iron filings in an attempt to discern the source of toxicity. Statistical analysis revealed that the three different iron treatments were equally toxic to the total bacteria and archaea populations, as compared with the controls. Conversely, the silver nanoparticles had a limited statistical impact when compared to the controls and increased the microbial populations in some instances. Therefore, the findings suggest that zero-valent iron toxicity does not result from a unique nanoparticle-based effect. PMID:26030685

  2. UV absorption spectra of vibrationally highly excited toluene molecules

    NASA Astrophysics Data System (ADS)

    Hippler, H.; Troe, J.; Wendelken, H. J.

    1983-05-01

    Vibrationally highly excited toluene molecules with an energy of 52 000 cm-1 have been prepared by UV laser excitation and subsequent isomerization of the isomer cycloheptatriene. The UV absorption spectrum of the toluene, whose vibrational energy would correspond to the average energy of thermal molecules at 2800 K, has been measured over the range 210-270 nm. It is compared with the UV spectrum of thermal molecules heated in shock waves up to 1800 K. All spectra, corresponding either to microcanonical or canonical energy distributions, can be represented by a modified Sulzer-Wieland equation. It is concluded that the absorption coefficients can be expressed to a first approximation by the average energy of the excited molecules independent of their energy distribution.

  3. Carbon isotope fractionation of benzene and toluene by progressive evaporation.

    PubMed

    Shin, Woo-Jin; Lee, Kwang-Sik

    2010-06-15

    Evaporation is one of the key attenuation processes for near-surface volatile organic compounds (VOCs) in the upper soil zone. Evaporation experiments were performed to investigate the carbon isotope fractionation of benzene and toluene during progressive and non-equilibrium evaporation at room temperature. Considerable carbon isotope fractionation occurred during evaporative enrichment of benzene and toluene. The carbon isotope compositions of residual compounds increased exponentially with increasing evaporation. Thus, the remaining liquids become isotopically heavier, and the process follows a Rayleigh trend. This result is compatible with the direction of isotopic changes associated with both microbial degradation and volatilization of hydrocarbons previously observed in soil columns, but shows exactly the opposite behavior to previous equilibrium volatilization findings. PMID:20486260

  4. Experimental study on respiratory sensitivity to inhaled toluene diisocyanate

    Microsoft Academic Search

    Jun Huang; Kohji Aoyama; Atsushi Ueda

    1993-01-01

    Groups of guinea pigs were exposed via inhalation to toluene diisocyanate (TDI) ranging from 0.02 to 1.0 ppm for 3 h\\/day on 5 consecutive days. Three weeks later, guinea pigs were challenged with TDI-GSA conjugates. Evaluations were based on TDI specific antibodies, pulmonary response and antigen stimulated histamine release from lung mast cells (LMC). The results indicated that both the

  5. Deaths and tumours among rotogravure printers exposed to toluene.

    PubMed Central

    Svensson, B G; Nise, G; Englander, V; Attewell, R; Skerfving, S; Möller, T

    1990-01-01

    A cohort of 1020 rotogravure printers exposed to toluene and employed for a minimum period of three months in eight plants during 1925-85 was studied. Air levels of toluene were available since 1943 in one plant and since 1969 in most. Based on these measurements and on present concentrations of toluene in blood and subcutaneous fat, the yearly average air levels in each plant were estimated. They reached a maximum of about 450 ppm in the 1940s and 1950s but were only about 30 ppm by the mid-1980s. Exposure to benzene had occurred up to the beginning of the 1960s. Compared with regional rates, total mortality did not increase during the observation period 1952-86 (129 observed deaths v 125 expected; SMR = 1.03). There was no increase in mortality from non-malignant diseases of the lungs, nervous system, or gastrointestinal and urinary tracts. There was no overall excess of tumours 1958-85 (68 v 54, SMR = 1.26; 95% confidence interval, CI = 0.95-1.7). Among the specific cancers, only those of the respiratory tract were significantly increased (16 v 9; SMR = 1.76, CI = 1.03-2.9). Statistical significance was not attained, however, when only subjects with an exposure period of at least five years and a latency period of at least 10 years were considered. Further, there were no dose response relations with cumulated toluene dose (ppm years). There were no significant increases of tumours at other sites, including leukaemias/lymphomas/myelomas. PMID:2378814

  6. Toluene nitration in irradiated nitric acid and nitrite solution

    SciTech Connect

    Gracy Elias; Bruce J. Mincher; Stephen P. Mezyk; Jim Muller; Leigh R. Martin

    2011-04-01

    The kinetics, mechanisms, and stable products produced for the aryl alkyl mild ortho-para director - toluene, in irradiated nitric acid and neutral nitrite solutions were investigated using ?, and pulse radiolysis. Electron pulse radiolysis was used to determine the bimolecular rate constants for the reaction of toluene with different transient species produced by irradiation. HPLC with UV detection was primarily used to assess the stable reaction products. GC-MS and LC-MS were used to confirm the results from HPLC. Free-radical nitration reaction products were found in irradiated acidic and neutral media. In acidic medium, the ring substitution and side chain substitution and oxidation produced different nitro products. In ring substitution, nitrogen oxide radicals were added mainly to hydroxyl radical-produced cyclohexadienyl radical, and in side chain substitution they were added to the carbon-centered benzyl radical produced by H-atom abstraction. In neutral nitrite toluene solution, radiolytic ring nitration products approached a statistically random distribution, suggesting a free-radical reaction involving addition of the •NO2 radical.

  7. Draft Genome Sequence of Uncultivated Toluene-Degrading Desulfobulbaceae Bacterium Tol-SR, Obtained by Stable Isotope Probing Using [13C6]Toluene

    PubMed Central

    Abu Laban, Nidal; Tan, BoonFei; Dao, Anh

    2015-01-01

    The draft genome of a member of the bacterial family Desulfobulbaceae (phylum Deltaproteobacteria) was assembled from the metagenome of a sulfidogenic [13C6]toluene-degrading enrichment culture. The “Desulfobulbaceae bacterium Tol-SR” genome is distinguished from related, previously sequenced genomes by suites of genes associated with anaerobic toluene metabolism, including bss, bbs, and bam. PMID:25593261

  8. Selection of a Pseudomonas cepacia strain constitutive for the degradation of trichloroethylene

    SciTech Connect

    Shields, M.S. (Univ. of West Florida, Pensacola (United States)); Reagin, M.J. (Technical Resources Inc., Gulf Breeze, FL (United States) Environmental Protection Agency, Gulf Breeze, FL (United States))

    1992-12-01

    Groundwater contamination by organic pollutants, particularly volatile organics including TCE, DCE, I,I-DCE, and vinyl chloride, is of concern throughout the industrialized world. The capability of biologically degrading such contaminants at the site of pollution should be of considerable treatment value. However, all TCE-degrading bacterial, with one exception, require the addition of an exogenous inducer substrate such as toluene, phenol, methane, isoprene, propane or 2,4-dichlorophenoxyacetic acid to induce the enzymes require for the degradation TCE. This paper describes a Tn5-induced mutant of Pseudomonas cepacia G4 (Tom-) that does not express toluene ortho-monooxygenase (TOM) but spontaneously reverts to the constitutive expression of TOM. This revertant no longer requires aromatic induction of the TOM pathway enzyme(s) in order to degrade TCE.

  9. Evaluation of enrichments of sulfate reducing bacteria from pristine hydrothermal vents sediments as potential inoculum for reducing trichloroethylene

    Microsoft Academic Search

    C. Guerrero-Barajas; E. I. García-Peña

    2010-01-01

    The evaluation of enrichments from pristine hydrothermal vents sediments on its capability of reducing trichloroethylene (TCE)\\u000a under sulfate reducing conditions with lactate and volatile fatty acids (VFAs) as substrates was performed. Effect of the\\u000a possible TCE biodegradation intermediates cis and trans 1,2 dichloroethenes on sulfate reduction (SR) was also evaluated. The influence of cyanocobalamin (CNB12) and riboflavin (RF) on the

  10. Exploring molecular sieve capabilities of activated carbon fibers to reduce the impact of NOM preloading on trichloroethylene adsorption

    Microsoft Academic Search

    Tanju Karanfil; Seyed A. Dastgheib; Dina Mauldin

    2006-01-01

    Adsorption of trichloroethylene (TCE) by two activated carbon fibers ACF10 and ACF20H and two granular activated carbons, coal-based F400 and Macro preloaded with hydrophobic and transphilic fractions of natural organic matter (NOM) was examined. ACF10, the most microporous activated carbon used in this study, had over 90% of its pore volume in pores smaller than 10 â«. It also had

  11. Trichloroethylene concentration effects on pilot field-scale in-situ groundwater bloremediation by phenol-oxidizing microorganisms

    Microsoft Academic Search

    Gary D. Hopkins; Junko Munakata; Lewis Semprini; Perry L. McCarty

    1993-01-01

    A pilot study of in-situ aerobic cometabolic degradation of trichloroethylene (TCE) through the injection of phenol and oxygen into a confined aquifer was conducted at the Moffett Field test site together with a related laboratory study. With injected phenol and dissolved oxygen concentrations of 12.5 and 35 mg\\/L, respectively, first-order TCE removal of 88% was obtained over a concentration range

  12. Development and mathematical modeling of a two-stage reactor system for trichloroethylene degradation using Methylosinus trichosporium OB3b

    Microsoft Academic Search

    Jae Woong Hwang; Young Bum Choi; Sunghoon Park; Cha Yong Choi; Eun Yeol Lee

    2007-01-01

    A two-stage reactor system was developed for the continuous degradation of gas-phase trichloroethylene (TCE). Methylosinus trichosporium OB3b was immobilized on activated carbon in a TCE degradation reactor, trickling biofilter (TBF). The TBF was coupled with\\u000a a continuous stirred tank reactor (CSTR) to allow recirculation of microbial cells from\\/to the TBF for the reactivation of\\u000a inactivated cells during TCE degradation. The

  13. Comparative fate of [¹⁴C]trichloroethylene in the root zone of plants from a former solvent disposal site

    Microsoft Academic Search

    Todd A. Anderson; Barbara T. Walton

    1995-01-01

    A comparison of the environmental fate of [¹⁴]trichloroethylene ([¹⁴C]TCE) in vegetated and nonvegetated soils from a contaminated field site indicated increased mineralization (¹⁴COâ production) in soils containing vegetation. Mineralization in soils containing Lespedeza cuneata (Dumont), Pinus taeda (L.), Solidago sp. (all collected from a former chlorinated solvent disposal site), and Glycine max, germinated from commercially available seeds, accounted for >

  14. Thermally Activated Persulfate Oxidation of Trichloroethylene (TCE) and 1,1,1Trichloroethane (TCA) in Aqueous Systems and Soil Slurries

    Microsoft Academic Search

    Chen Ju Liang; Clifford J. Bruell; Michael C. Marley; Kenneth L. Sperry

    2003-01-01

    Under thermally activated conditions (i.e., temperature of 40?99°C), there is considerable evidence that the persulfate anion () can be converted to a powerful oxidant known as the sulfate free radical (), which could be used in situ to destroy groundwater contaminants. In this laboratory study only limited trichloroethylene (TCE) degradation and no 1,1,1-trichloroethane (TCA) degradation was observed at 20°C. However,

  15. Considering pharmacokinetic and mechanistic information in cancer risk assessments for environmental contaminants: Examples with vinyl chloride and trichloroethylene

    Microsoft Academic Search

    H. J. Clewell; P. R. Gentry; J. M. Gearhart; B. C. Allen; M. E. Andersen

    1995-01-01

    Risk assessments for vinyl chloride (VC) and trichloroethylene (TCE) are presented as examples of approaches for incorporating chemical-specific pharmacokinetic and mechanistic information into a more scientifically plausible cancer risk assessment. For VC, the evidence regarding mode of action includes direct reaction of a metabolite with DNA, resulting in DNA adducts and mistranscription, and cross-species target-tissue correspondence of a rare tumor

  16. Bioaugmentation of the phyllosphere for the removal of toluene from indoor air

    Microsoft Academic Search

    L. De Kempeneer; B. Sercu; W. Vanbrabant; H. Van Langenhove; W. Verstraete

    2004-01-01

    The removal of airborne toluene by means of the phyllosphere of Azalea indica augmented with a toluene-degrading enrichment culture of Pseudomonas putida TVA8 was studied. The 95% disappearance time [DT95%; the time in which an initial toluene concentration of 90 ppmv (339 mg.m 3) was removed in a batch experiment] was 75 h for Azalea plants. Under the same experimental conditions, DT95% of

  17. Microbial characterization of toluene-degrading denitrifying consortia obtained from terrestrial and marine ecosystems

    Microsoft Academic Search

    Y.-J. An; Y.-H. Joo; I.-Y. Hong; H.-W. Ryu; K.-S. Cho

    2004-01-01

    The degradation characteristics of toluene coupled to nitrate reduction were investigated in enrichment culture and the microbial communities of toluene-degrading denitrifying consortia were characterized by denaturing gradient gel electrophoresis (DGGE) technique. Anaerobic nitrate-reducing bacteria were enriched from oil-contaminated soil samples collected from terrestrial (rice field) and marine (tidal flat) ecosystems. Enriched consortia degraded toluene in the presence of nitrate as

  18. Enhanced effect of RM-?-cyclodextrin on biodegradation of toluene in wastewater by activated sludge

    Microsoft Academic Search

    Takeshi Furuta; Shuichi Ikefuji; Koujirou Tokunaga; Tze Loon Neoh; Hidefumi Yoshii

    2007-01-01

    Recently, air and ground water pollution and contamination of soil by toluene have been drawing increasing attention and became\\u000a an urgently important problem in environmental pollution. Hence, the development of highly sophisticated removal techniques\\u000a of toluene is required for the global environmental preservation. Since toluene is a highly volatile material, it is difficult\\u000a to treat it by usual activated sludge

  19. Separation of toluene-trichlorotrinitrobenzene mixture with CO sub 2 at elevated pressures

    SciTech Connect

    Chungsung Tan; Beensheng Chen (National Tsing Hua Univ., Hsinchu (Taiwan)); Chiwung Wong (Chung-Shan Inst. of Science and Tech., Lung Tan (Taiwan))

    1991-09-01

    In the production of TATB (triaminotrinitrobenzene), a heat-resistant explosive, a waste solution containing mainly toluene (about 95%) and TCTNB (trichlorotrinitrobenzene) (about 3%) is generated. Because of concern with process economics and pollution of the environment, toluene needs to be recovered from the waste. However, due to the presence of a small amount of TATB in the waste, the distillation method is generally not considered to achieve this purpose for safety reasons. A flow apparatus was used to study the separation of toluene from a liquid mixture containing mainly toluene and TCTNB (trichlorotrinitrobenzene) with CO{sub 2} at elevated pressures. Experimental results indicated that toluene of 100% purity could be obtained when the operating pressures were below the critical pressure of the CO{sub 2}-toluene mixture. The most appropriate operating conditions were found to be at a temperature of 311 K and at a pressure of 61.2 atm. Because the solubility of toluene in CO{sub 2} for the system CO{sub 2}-toluene-TCTNB was found to be close to that for the binary system CO{sub 2}-toluene, the data for the latter system could be used to model the present extraction operation. The effects of several packings, including glass beads of different sizes and structure packing, on mass transfer rate were also measured in this work. The data indicated that the interphase mass transfer resistances played an important role during the extraction.

  20. Degradation of off-gas toluene in continuous pyrite Fenton system.

    PubMed

    Choi, Kyunghoon; Bae, Sungjun; Lee, Woojin

    2014-09-15

    Degradation of off-gas toluene from a toluene reservoir and a soil vapor extraction (SVE) process was investigated in a continuous pyrite Fenton system. The removal of off-gas toluene from the toluene reservoir was >95% by 8h in the pyrite Fenton system, while it was ?97 % by 3h in classic Fenton system and then rapidly decreased to initial level by 8h. Continuous consumption of low Fe(II) concentration dissolved from pyrite surface (0.05-0.11 mM) was observed in the pyrite Fenton system, which can lead to the effective and successful removal of the gas-phase toluene due to stable production of OH radical (OH). Inhibitor and spectroscopic test results showed that OH was a dominant radical that degraded gas-phase toluene during the reaction. Off-gas toluene from the SVE process was removed by 96% in the pyrite Fenton system, and remnant toluene from rebounding effect was treated by 99%. Main transformation products from toluene oxidation were benzoic acid (31.4%) and CO2 (38.8%) at 4h, while traces of benzyl alcohol (1.3%) and benzaldehyde (0.7%) were observed. Maximum operation time of continuous pyrite Fenton system was estimated to be 56-61 d and its optimal operation time achieving emission standard was 28.9 d. PMID:25125037

  1. A solvent-free sampling method for airborne toluene diisocyanate

    Microsoft Academic Search

    A. Robert; P. Simon

    1987-01-01

    Summary  A useful method of sampling and measurement of toluene diisocyanate concentration in atmosphere is described. The sampler\\u000a consists of glass-fibre filters impregnated with the reagent 1-(2-methoxyphenyl)piperazine1 so that the 2,4 and 2,6 isomers of TDI react to form urea derivatives which are analysed by high performance liquid chromatography\\u000a in isocratic mode on cyan-amino and C18 bonded phases. A dynamic system

  2. Kinetic Modeling of Toluene Oxidation for Surrogate Fuel Applications

    SciTech Connect

    Frassoldati, A; Mehl, M; Fietzek, R; Faravelli, T; Pitz, W J; Ranzi, E

    2009-04-21

    New environmental issues, like the effect of combustion-generated greenhouse gases, provide motivation to better characterize oxidation of hydrocarbons. Transportation, in particular, significantly contributes to energy consumption and CO{sub 2} emissions. Kinetic studies about the combustion of fuels under conditions typical of internal combustion engines provides important support to improve mechanism formulation and to eventually provide better computational tools that can be used to increase the engine performance. It is foreseeable that at least in the next 30 years the main transportation fuels will be either gasoline or diesel. Unfortunately, these fuels are very complex mixtures of many components. Moreover, their specifications and performance requirements significantly change the composition of these fuels: gasoline and diesel mixtures are different if coming from different refineries or they are different from winter to summer. At the same time a fuel with a well defined and reproducible composition is needed for both experimental and modeling work. In response to these issues, surrogate fuels are proposed. Surrogate fuels are defined as mixtures of a small number of hydrocarbons whose relative concentrations is adjusted in order to approximate the chemical and physical properties of a real fuel. Surrogate fuels are then very useful both for the design of reproducible experimental tests and also for the development of reliable kinetic models. The primary reference fuels (PRF) are a typical and old example of surrogate fuel: n-heptane and iso-octane mixtures are used to reproduce antiknock propensity of complex mixtures contained in a gasoline. PRFs are not able to surrogate gasoline in operating conditions different from standard ones and new surrogates have been recently proposed. Toluene is included in all of them as a species able to represent the behavior of aromatic compounds. On the other side, the toluene oxidation chemistry is not so well established and uncertainties still remain in the mechanism. This is especially true in the low temperature regime (< 850K). In these conditions, the toluene reactivity is too low to be conveniently investigated. Nonetheless, gasoline surrogates work in the engine at low temperatures, because of the presence of very reactive alkanes. The effect of these component interactions have to be taken into account. This work's aim is to present the model activity carried out by two different research groups, comparing the main pathways and results, matching data carried out in different devices both for pure toluene and mixtures. This is the starting point for a further activity to improve the two kinetic schemes.

  3. A Set of Genes Encoding a Second Toluene Efflux System in Pseudomonas putida DOT-T1E Is Linked to the tod Genes for Toluene Metabolism

    PubMed Central

    Mosqueda, Gilberto; Ramos, Juan-Luis

    2000-01-01

    Sequence analysis in Pseudomonas putida DOT-T1E revealed a second toluene efflux system for toluene metabolism encoded by the ttgDEF genes, which are adjacent to the tod genes. The ttgDEF genes were expressed in response to the presence of aromatic hydrocarbons such as toluene and styrene in the culture medium. To characterize the contribution of the TtgDEF system to toluene tolerance in P. putida, site-directed mutagenesis was used to knock out the gene in the wild-type DOT-T1E strain and in a mutant derivative, DOT-T1E-18. This mutant carried a Tn5 insertion in the ttgABC gene cluster, which encodes a toluene efflux pump that is synthesized constitutively. For site-directed mutagenesis, a cassette to knock out the ttgD gene and encoding resistance to tellurite was constructed in vitro and transferred to the corresponding host chromosome via the suicide plasmid pKNG101. Successful replacement of the wild-type sequences with the mutant cassette was confirmed by Southern hybridization. A single ttgD mutant, DOT-T1E-1, and a double mutant with knock outs in the ttgD and ttgA genes, DOT-T1E-82, were obtained and characterized for toluene tolerance. This was assayed by the sudden addition of toluene (0.3% [vol/vol]) to the liquid culture medium of cells growing on Luria-Bertani (LB) medium (noninduced) or on LB medium with toluene supplied via the gas phase (induced). Induced cells of the single ttgD mutant were more sensitive to sudden toluene shock than were the wild-type cells; however, noninduced wild-type and ttgD mutant cells were equally tolerant to toluene shock. Noninduced cells of the double DOT-T1E-82 mutant did not survive upon sudden toluene shock; however, they still remained viable upon sudden toluene shock if they had been previously induced. These results are discussed in the context of the use of multiple efflux pumps involved in solvent tolerance in P. putida DOT-T1E. PMID:10648517

  4. Anaerobic activation of toluene and o-xylene by addition to fumarate in denitrifying strain T.

    PubMed Central

    Beller, H R; Spormann, A M

    1997-01-01

    Anaerobic assays conducted with strain T, a denitrifying bacterium capable of mineralizing toluene to carbon dioxide, demonstrated that toluene-grown, permeabilized cells catalyzed the addition of toluene to fumarate to form benzylsuccinate. This reaction was not dependent on the presence of coenzyme A (CoA) or ATP. In the presence of CoA, formation of E-phenylitaconate from benzylsuccinate was also observed. Kinetic studies demonstrated that the specific rate of benzylsuccinate formation from toluene and fumarate in assays with permeabilized cells was >30% of the specific rate of toluene consumption in whole-cell suspensions with nitrate; this observation suggests that benzylsuccinate formation may be the first reaction in anaerobic toluene degradation by strain T. Use of deuterium-labeled toluene and gas chromatography-mass spectrometry indicated that the H atom abstracted from the toluene methyl group during addition to fumarate was retained in the succinyl moiety of benzylsuccinate. In this study, no evidence was found to support previously proposed reactions of toluene with acetyl-CoA or succinyl-CoA. Toluene-grown, permeabilized cells of strain T also catalyzed the addition of o-xylene to fumarate to form (2-methylbenzyl)succinate. o-Xylene is not a growth substrate for strain T, and its transformation was probably cometabolic. With the exception of specific reaction rates, the observed characteristics of the toluene-fumarate addition reaction (i.e., retention of a methyl H atom and independence from CoA and ATP) also apply to the o-xylene-fumarate addition reaction. Thus, addition to fumarate may be a biochemical strategy to anaerobically activate a range of methylbenzenes. PMID:9006019

  5. Hydrotreating of wheat straw in toluene and ethanol.

    PubMed

    Murnieks, Raimonds; Kampars, Valdis; Malins, Kristaps; Apseniece, Lauma

    2014-07-01

    In the present work, wheat straw was hydroliquefied at a temperature of 300°C for 4h in ethanol or toluene in order to obtain bio-components which are useful for fuel purposes. The experiments were performed in a 100mL batch reactor under hydrogen pressure of 70 bar. Typically, 2g of straw and 0.1g of catalyst (66%Ni/SiO2-Al2O3) were dispersed in 15 g of solvent. The main compounds of the oil produced during the liquefaction of hemicellulose, cellulose and lignin of wheat straw in both solvents are: tetrahydrofuran-2-methanol, 1,2-butanediol and butyrolactone. Besides the mentioned compounds, ethanol favoured the decomposition of bigger molecules to short-chain alcohols such as 1-butanol, 1,2-propanediol and 1,2-ethanediol. Toluene contributes to the production of furans and other cyclic compounds. The light fractions distilled together with the solvent also contain the following: 1-propanol, 2-methyl-cyclopentanone, acetic acid and ethyl acetate. PMID:24787323

  6. Biotransformation of nitrobenzene by bacteria containing toluene degradative pathways

    SciTech Connect

    Haigler, B.E.; Spain, J.C. (Air Force Civil Engineering Support Agency, Tyndall AFB, FL (United States))

    1991-11-01

    Nonpolar nitroaromatic compounds have been considered resistant to attack by oxygenases because of the electron withdrawing properties of the nitro group. The authors have investigate the ability of seven bacterial strains containing toluene degradative pathways to oxidize nitrobenzene. Cultures were induced with toluene vapor prior to incubation with nitrobenzene, and products were identified by high-performance liquid chromatography and gas chromatography-mass spectrometry. Pseudomonas cepacia G4 and a strain of Pseudomonas harboring the TOL plasmid (pTN2) did not transform nitrobenzene. Cells of Pseudomonas putida F1 and Pseudomonas sp. strain JS150 converted nitrobenzene to 3-nitrocatechol. Transformation of nitrobenzene in the presence of {sup 18}O{sub 2} indicated that the reaction in JS150 involved the incorporation of both atoms of oxygen in the 3-nitrocatechol, which suggests a dioxygenase mechanism. P. putida 39/D, a mutant strain of P. putida F1, converted nitrobenzene to a compound tentatively identified as cis-1, 2-dihydroxy-3-nitrocyclohexa-3, 5-diene. This compound was rapidly converted to 3-nitrocatechol by cells of strain JS150. Cultures of Pseudomonas mendocina KR-1 converted nitrobenzene to a mixture of 3- and 4-nitrophenol (10 and 63%, respectively). Pseudomonas pickettii PKO1 converted nitrobenzene to 3- and 4-nitrocatechol via 3- and 4-nitrophenol. The nitrocatechols were slowly degraded to unidentified metabolites. Nitrobenzene did not serve as an inducer for the enzymes that catalyzed its oxidation.

  7. Sonochemical treatment of benzene/toluene contaminated wastewater

    SciTech Connect

    Thoma, G.; Gleason, M. [Univ. of Arkansas, Fayetteville, AR (United States). Dept. of Chemical Engineering; Popov, V. [Scientific Production Association Typhoon, Obninsk (Russian Federation). Inst. of Experimental Meterology

    1998-12-31

    Studies of the destruction of benzene and toluene in water were undertaken using ultrasonic irradiation in a parallel place Near Field Acoustic Processor (NAP). This magnetostrictive system is capable of degrading both benzene and toluene in a continuous stirred tank reactor configuration. The reaction kinetics were characterized by first order rate constants for the disappearance of the parent compound; these ranged from 2.7 {times} 1{sup {minus}3} to 3.7 {times} 10{sup {minus}2} mm{sup {minus}1} over an applied power density range of 0.6 to 3.6 watt mL{sup {minus}1} and target concentration of approximately 25 to 900 {micro}M. The rate constant is shown to be inversely proportional to the target compound concentration, indicating higher order reaction kinetics. The conversion efficiency for the system was characterized through the G efficiency commonly used in radiation chemistry. The G efficiency ranged between 4 {times} 10{sup {minus}5} to 2.2 {times} 10{sup {minus}4} molecules destroyed per 100 eV of electrical energy drawn from the wall outlet. These values are comparable to those of other advanced oxidation processes. Suggestions are made regarding methods to improve this technology.

  8. Progression of neuropsychological deficits following toluene diisocyanate exposure.

    PubMed

    Singer, R; Scott, N E

    1987-01-01

    Three wharf workers were acutely exposed to toluene diisocyanate (TDI) during an accidental chemical spill. Toluene is neurotoxic as a solvent, while cyanates can cause nervous tissue injury or death by hypoxia. Chronic symptoms which occurred following the incident included headache, fatigue, concentration problems, irritability, depression, sleep disturbance, memory and sexual dysfunction. Compared with two months post-exposure, at 16 months post-exposure Full Scale IQ dropped an average of 23 points. Results from additional neuropsychological testing at 16 months post-exposure indicated severe deficits in all three subjects in memory, manual dexterity, visuomotor tracking, mental flexibility, ability to detect figure-ground relationships, and word fluency. Nerve conduction velocity testing indicated abnormal peripheral nervous system function in two of the three workers; however, its etiology is not certain. These results may be relevant to the neurotoxicity of methyl isocyanate exposure, such as occurred in Bhopal, India, where an increasing magnitude of depression, anxiety, fatigue, restlessness, and headaches 18 months post-exposure have been reported. In general, continuing decrement in mental function without concomitant environmental exposure should be considered in neuropsychological assessment of chemical toxicity. PMID:14591141

  9. Stable Hydrogen and Carbon Isotope Fractionation during Microbial Toluene Degradation: Mechanistic and Environmental Aspects†

    PubMed Central

    Morasch, Barbara; Richnow, Hans H.; Schink, Bernhard; Meckenstock, Rainer U.

    2001-01-01

    Primary features of hydrogen and carbon isotope fractionation during toluene degradation were studied to evaluate if analysis of isotope signatures can be used as a tool to monitor biodegradation in contaminated aquifers. D/H hydrogen isotope fractionation during microbial degradation of toluene was measured by gas chromatography. Per-deuterated toluene-d8 and nonlabeled toluene were supplied in equal amounts as growth substrates, and kinetic isotope fractionation was calculated from the shift of the molar ratios of toluene-d8 and nondeuterated toluene. The D/H isotope fractionation varied slightly for sulfate-reducing strain TRM1 (slope of curve [b] = ?1.219), Desulfobacterium cetonicum (b = ?1.196), Thauera aromatica (b = ?0.816), and Geobacter metallireducens (b = ?1.004) and was greater for the aerobic bacterium Pseudomonas putida mt-2 (b = ?2.667). The D/H isotope fractionation was 3 orders of magnitude greater than the 13C/12C carbon isotope fractionation reported previously. Hydrogen isotope fractionation with nonlabeled toluene was 1.7 and 6 times less than isotope fractionation with per-deuterated toluene-d8 and nonlabeled toluene for sulfate-reducing strain TRM1 (b = ?0.728) and D. cetonicum (b = ?0.198), respectively. Carbon and hydrogen isotope fractionation during toluene degradation by D. cetonicum remained constant over a growth temperature range of 15 to 37°C but varied slightly during degradation by P. putida mt-2, which showed maximum hydrogen isotope fractionation at 20°C (b = ?4.086) and minimum fractionation at 35°C (b = ?2.138). D/H isotope fractionation was observed only if the deuterium label was located at the methyl group of the toluene molecule which is the site of the initial enzymatic attack on the substrate by the bacterial strains investigated in this study. Use of ring-labeled toluene-d5 in combination with nondeuterated toluene did not lead to significant D/H isotope fractionation. The activity of the first enzyme in the anaerobic toluene degradation pathway, benzylsuccinate synthase, was measured in cell extracts of D. cetonicum with an initial activity of 3.63 mU (mg of protein)?1. The D/H isotope fractionation (b = ?1.580) was 30% greater than that in growth experiments with D. cetonicum. Mass spectroscopic analysis of the product benzylsuccinate showed that H atoms abstracted from the toluene molecules by the enzyme were retained in the same molecules after the product was released. Our findings revealed that the use of deuterium-labeled toluene was appropriate for studying basic features of D/H isotope fractionation. Similar D/H fractionation factors for toluene degradation by anaerobic bacteria, the lack of significant temperature dependence, and the strong fractionation suggest that analysis of D/H fractionation can be used as a sensitive tool to assess degradation activities. Identification of the first enzyme reaction in the pathway as the major fractionating step provides a basis for linking observed isotope fractionation to biochemical reactions. PMID:11571192

  10. Zero valent iron and clay mixtures for removal of trichloroethylene, chromium(VI), and nitrate.

    PubMed

    Lee, H J; Chun, B S; Kim, W C; Chung, M; Park, J W

    2006-03-01

    A series of batch experiments on free swell, hydraulic conductivity, and contaminant removal efficiency was performed for the combination of bentonite and zero valent iron (ZVI), in order to identify the optimal mixing ratio between bentonite and ZVI. The swell volume of the bentonite-ZVI mixtures did not change with increasing ZVI, and the hydraulic conductivity decreased as the ZVI increased. The reduction rates and removal efficiencies of trichloroethylene (TCE), Chromium(VI), and nitrate increased as ZVI content increased, while there was no practical difference in removal efficiencies between 30% and 100% of ZVI weight contents. Therefore, 30% of the ZVI content was used as the optimal amount in this research since the physical properties, such as swell volume and hydraulic conductivity, as well as the contaminant sorption and reduction were the most efficient. From Raman spectrophotometer analysis, peaks of magnetite, maghemite, and hematite were observed on the surfaces of the bentonites that had been used for the mixtures. Since iron oxides are strong adsorbers of contaminants and magnetites can facilitate the electron transfer of irons, these formations are beneficial for the long-term performance of the iron metals. PMID:16548210

  11. Evaluation of the effectiveness of using alfalfa and buffalo grass for remediation of trichloroethylene from groundwater

    SciTech Connect

    Caravello, V.

    1998-06-03

    Phytoremediation is receiving increasing attention due to the potential for vegetation to play a significant role in bioremediation of contaminated soils and groundwater. The purpose of this research was to conduct a pilot study to determine if buffalo grass would enhance the remediation of groundwater contaminated with trichloroethylene (TCE). A mass-balance experiment was designed and executed to determine the extent of TCE remediation/degradation occurring through buffalo grass. Measurements for TCE in air, water, and soil were completed for three treatments: (1) buffalo grass, (2) alfalfa, and (3) soil following challenge with a water-TCE mixture. In total, 267 air samples, 43 water samples, 85 soil samples, and 40 vegetative samples were collected and analyzed. The analysis identified two important facts. First, there were no significant differences detected between TCE concentrations in soil, water, and air between groups. Second, there is a significant difference in the amount of the TCE-water mixture consumed in chambers with plants versus chambers without plants. The mass balance of the experiment was not achieved due to unaccountable losses of TCE from the chambers. The major loss mechanism for TCE appears to be from the breakthrough of air sampling media during the experiment. Thus, the data are insufficient to determine if remediation occurred via plants or by preferential pathways through the soil. Future experiments should be designed to include daily monitoring of the aquifer, humidity tolerant air sampling protocol, and relief from the build-up of humidity and transpiration inside the chambers.

  12. Acute exposure to trichloroethylene differentially alters the susceptibility to chemoconvulsants in mice.

    PubMed

    Shih, C L; Chen, H H; Chiu, T H

    2001-04-12

    The effects of a common industrial solvent, trichloroethylene (TCE), which was once used as an anesthetic agent but its in vivo mechanism is still unknown, on convulsant-induced seizures in mice were examined. Pretreatment with TCE (250-2000 mg/kg, i.p.) significantly increased pentylenetetrazol (PTZ)-, picrotoxin (PIC)-, bicuculline (BIC)-, strychnine (STY)-, 4-aminopyridine (4-AP)- and N-methyl-D-aspartate (NMDA)-induced convulsion thresholds and lethal doses. However, the increase in convulsion thresholds and lethal doses was much greater for GABAergic antagonists (PIC, BIC, and PTZ) than non-GABAergic convulsants (STY, 4AP, and NMDA) following 2000 mg/kg TCE administration. Pre-treatment of mice with disulfiram (an inhibitor of CYP 4502E1) but not 4-methyl pyrazole (an inhibitor of alcohol dehydrogenase) significantly prolonged the time required for TCE (5000 mg/kg, i.p.) to induce the loss of righting reflex. These results suggest that acute exposure to TCE differentially alters the susceptibility to chemically induced convulsions in mice. The anticonvulsive effect of TCE may be predominantly mediated by GABA(A) receptors. In addition, TCE appears to exert a direct anesthetic effect. PMID:11311456

  13. Electrolytic manipulation of persulfate reactivity by iron electrodes for trichloroethylene degradation in groundwater.

    PubMed

    Yuan, Songhu; Liao, Peng; Alshawabkeh, Akram N

    2014-01-01

    Activated persulfate oxidation is an effective in situ chemical oxidation process for groundwater remediation. However, reactivity of persulfate is difficult to manipulate or control in the subsurface causing activation before reaching the contaminated zone and leading to a loss of chemicals. Furthermore, mobilization of heavy metals by the process is a potential risk. An effective approach using iron electrodes is thus developed to manipulate the reactivity of persulfate in situ for trichloroethylene (TCE) degradation in groundwater and to limit heavy metals mobilization. TCE degradation is quantitatively accelerated or inhibited by adjusting the current applied to the iron electrode, following k1 = 0.00053·Iv + 0.059 (-122 A/m(3) ? Iv ? 244 A/m(3)) where k1 and Iv are the pseudo first-order rate constant (min(-1)) and volume normalized current (A/m(3)), respectively. Persulfate is mainly decomposed by Fe(2+) produced from the electrochemical and chemical corrosion of iron followed by the regeneration via Fe(3+) reduction on the cathode. SO4(•-) and ·OH cocontribute to TCE degradation, but ·OH contribution is more significant. Groundwater pH and oxidation-reduction potential can be restored to natural levels by the continuation of electrolysis after the disappearance of contaminants and persulfate, thus decreasing adverse impacts such as the mobility of heavy metals in the subsurface. PMID:24328192

  14. The transfer of trichloroethylene (TCE) from a shower to indoor air: experimental measurements and their implications.

    PubMed

    McKone, T E; Knezovich, J P

    1991-03-01

    Experiments were performed to measure the transfer of trichloroethylene (TCE), a volatile organic compound (VOC), from tap water in showers to indoor air. In these experiments, the loss of TCE from tap water in the shower is based on the difference between influent and effluent concentrations. We have developed and previously published a three-compartment model, which we use to simulate the 24-h concentration history of VOCs in the shower, bathroom, and remaining household volumes resulting from the use of contaminated tap water. An important input to this model is the transfer efficiency of the VOC from water to air. The experiments reveal that the transfer efficiency of TCE from shower water to air has an arithmetic mean value of 61 percent and an arithmetic standard deviation of 9 percent. Analysis of the results shows that there is no statistically significant difference between the transfer efficiency measured with hot (37 degrees C) or cold (22 degrees C) shower water and that there is no statistically significant change in transfer efficiency with time during a 20-min shower. The implications for exposure assessment are considered. PMID:2059420

  15. The transfer of trichloroethylene (TCE) from a shower to indoor air: experimental measurements and their implications.

    PubMed

    McKone, T E; Knezovich, J P

    1991-06-01

    Experiments were performed to measure the transfer of trichloroethylene (TCE), a volatile organic compound (VOC), from tap water in showers to indoor air. In these experiments, the loss of TCE from tap water in the shower is based on the difference between influent and effluent concentrations. We have developed and previously published a three-compartment model, which we use to simulate the 24-h concentration history of VOCs in the shower, bathroom, and remaining household volumes resulting from the use of contaminated tap water. An important input to this model is the transfer efficiency of the VOC from water to air. The experiments reveal that the transfer efficiency of TCE from shower water to air has an arithmetic mean value of 61 percent and an arithmetic standard deviation of 9 percent. Analysis of the results shows that there is no statistically significant difference between the transfer efficiency measured with hot (37 degrees C) or cold (22 degrees C) shower water and that there is no statistically significant change in transfer efficiency with time during a 20-min shower. The implications for exposure assessment are considered. PMID:1910750

  16. Evaluating the risk of liver cancer in humans exposed in trichloroethylene using physiological models

    SciTech Connect

    Fisher, J.W. (Armstrong Lab., Wright-Patterson AFB, OH (United States)); Allen, B.C. (Clement Assoc., Ruston, LA (United States))

    1993-02-01

    Trichloroethylene (TCE) is a widespread environmental pollutant. TCE is classified as a rodent carcinogen by the U.S. Environmental Protection Agency (EPA). Using the rodent cancer bioassay findings and estimates of metabolized dose, the SPA has estimated lifetime exposure cancer risks for humans that ingest TCE in drinking water or inhale TCE. In this study, a physiologically based pharmacokinetic (PB-PK) model for mice was used to simulate selected gavage and inhalation bioassays with TCE. Plausible dose-metrics thought to be linked with the mechanism of action for TCE carcinogenesis were selected. These dose-metrics, adjusted to reflect an average amount per day for a lifetime, were metabolism of TCE (AMET, mg/kg/day) and systemic concentration of TCA (AUCTCA, mg/L/day). These dose-metrics were then used in a linearized multistage model to estimate AMET and AUCTCA values that correspond to liver cancer risks of 1 in 1 million in mice. A human PB-PK model for TCE was then used to predict TCE concentrations in drinking water and air that would provide AMET and AUCTCA values equal to the predicted mice AMET and AUCTCA values that correspond to liver cancer risks of 1 in 1 million. For the dose-metrics, AMET and AUCTCA, the TCE concentrations in air wave 10.0 and 0.1 ppb TCE (continuous exposure), respectively, and in water, 7 and 4 [mu] TCE/L, respectively.

  17. Removal of Pb (II), Cd (II), Cu (II) and trichloroethylene from water by Nanofer ZVI.

    PubMed

    Eglal, Mahmoud M; Ramamurthy, Amruthur S

    2015-07-29

    Zero-valent iron nanoparticle (Nanofer ZVI) is a new reagent due to its unique structure and properties. Images of scanning electron microscopy/electron dispersive spectroscopy (SEM/EDS), transmission electron microscopy and X-ray diffraction revealed that Nanofer ZVI is stable, reactive and has a unique structure. The particles exhibited a spherical shape, a chain-like structure with a particle size of 20 to 100 nm and a surface area between 25-30 m(2)g(-1). The time interval for particles to agglomerate and settle was between 4-6 h. SEM/EDS Images showed that particle size increased to 2 µm due to agglomeration. Investigation of adsorption and oxidation behavior of Nanofer ZVI used for the removal of Cu(II), Pb(II), Cd(II) ions and trichloroethylene (TCE) from aqueous solutions showed that the optimal pH for Pb(II), Cu(II), Cd(II) and TCE removal were 4.5 and 4.8, 5.0 and 6.5, respectively. Test data were used to form Langmuir and Freundlich isotherms. The maximum contaminant loading was estimated as 270, 170, 110, 130 mg per gram of Nanofer ZVI for Cu(II), Pb(II), Cd(II) and TCE respectively. Removal of metal ions is interpreted in terms of their hydrated ionic radii and their electronegativity. TCE oxidation followed the dechlorination pathway resulting in nonhazardous by-products. PMID:26061203

  18. An analysis of trichloroethylene movement in groundwater at castle Air Force Base, California

    USGS Publications Warehouse

    Avon, L.; Bredehoeft, J.D.

    1989-01-01

    A trichloroethylene (TCE) plume has been identified in the groundwater under a U.S. Air Force Base in the Central Valley of California. An areal, two-dimensional numerical solute transport model indicates that the movement of TCE due to advection, dispersion, and linear sorption is simulated over a 25-year historic period. The model is used in several ways: (1) to estimate the extent of the plume; (2) to confirm the likely sources of contamination as suggested by a soil organic vapor survey of the site; and (3) to make predictions about future movement of the plume. Despite the noisy and incomplete data set, the model reproduces the general trends in contamination at a number of observation wells. The analysis indicates that soil organic vapor monitoring is an effective tool for identifying contaminant source locations. Leaky sewer pipes and underground tanks are the indicated pathways for TCE to have entered the groundwater system. The chemical mass balance indicates that a total of about 100 gallons of TCE - a relatively small amount of organic solvent - has created the observed groundwater plume. ?? 1989.

  19. Biodegradation of 1,4-dioxane: effects of enzyme inducers and trichloroethylene.

    PubMed

    Hand, Steven; Wang, Baixin; Chu, Kung-Hui

    2015-07-01

    1,4-Dioxane is a groundwater contaminant and probable human carcinogen. In this study, two well-studied degradative bacteria Mycobacterium vaccae JOB5 and Rhodococcus jostii RHA1 were examined for their 1,4-dioxane degradation ability in the presence and absence of its co-contaminant, trichloroethylene (TCE), under different oxygenase-expression conditions. These two strains were precultured with R2A broth (complex nutrient medium) before supplementation with propane or 1-butanol to induce the expression of different oxygenases. Both propane- and 1-butanol-induced JOB5 and RHA1 were able to degrade 1,4-dioxane, TCE, and mixtures of 1,4-dioxane/TCE. Complete degradation of 1,4-dioxane/TCE mixture was observed only in propane-induced strain JOB5. Inhibition was observed between 1,4-dioxane and TCE for all cells. Furthermore, product toxicity caused incomplete degradation of 1,4-dioxane by 1-butanol-induced JOB5. In general, the more TCE degraded, the greater extent of product toxicity cells experienced; however, susceptibility to product toxicity was found to be both strain- and inducer-dependent. The findings of this study provide fundamental basis for developing an effective in-situ remediation method for 1,4-dioxane-contaminated ground water and the first known study of 1,4-dioxane degradation by wild-type strain RHA1. PMID:25813968

  20. Biodegradation of trichloroethylene and its anaerobic daughter products in freshwater wetland sediments

    USGS Publications Warehouse

    Lorah, M.M.; Olsen, L.D.

    2001-01-01

    Laboratory microcosms were prepared under methanogenic, sulfate-reducing, and aerobic conditions using sediment and groundwater from a freshwater wetland that is a discharge area for a trichloroethylene (TCE) to evaluate potential biodegradation rates of TCE and its anaerobic daughter products (cis-1,2-dichloroethylene, trans-1,2-dichloroethylene, and vinyl chloride (VC)). Anaerobic degradation of TCE was about an order of magnitude faster under methanogenic conditions than under sulfate-reducing conditions. Both 12DCE and VC were found under sulfate-reducing conditions in the microcosms containing the wetland sediment, but their production, especially for VC, was substantially slower than under methanogenic conditions. Methane concentrations remained approximately constant (when losses in the formalin-amended controls are considered) in the microcosms amended with TCE and increased in the microcosms amended with the 12DCE isomers and VC during the first 18-25 days of incubation. The most rapid decrease in concentrations of TCE, cis-12DCE, trans-12DCE, and VC was found after aerobic methane-oxidizing conditions were definitely established.

  1. Remediation of trichloroethylene-contaminated soils by star technology using vegetable oil smoldering.

    PubMed

    Salman, Madiha; Gerhard, Jason I; Major, David W; Pironi, Paolo; Hadden, Rory

    2015-03-21

    Self-sustaining treatment for active remediation (STAR) is an innovative soil remediation approach based on smoldering combustion that has been demonstrated to effectively destroy complex hydrocarbon nonaqueous phase liquids (NAPLs) with minimal energy input. This is the first study to explore the smoldering remediation of sand contaminated by a volatile NAPL (trichloroethylene, TCE) and the first to consider utilizing vegetable oil as supplemental fuel for STAR. Thirty laboratory-scale experiments were conducted to evaluate the relationship between key outcomes (TCE destruction, rate of remediation) to initial conditions (vegetable oil type, oil: TCE mass ratio, neat versus emulsified oils). Several vegetable oils and emulsified vegetable oil formulations were shown to support remediation of TCE via self-sustaining smoldering. A minimum concentration of 14,000 mg/kg canola oil was found to treat sand exhibiting up to 80,000 mg/kg TCE. On average, 75% of the TCE mass was removed due to volatilization. This proof-of-concept study suggests that injection and smoldering of vegetable oil may provide a new alternative for driving volatile contaminants to traditional vapour extraction systems without supplying substantial external energy. PMID:25528233

  2. Second moment method for evaluating human health risks from groundwater contaminated by trichloroethylene.

    PubMed Central

    Jacobs, T L; Warmerdam, J M; Medina, M A; Piver, W T

    1996-01-01

    Pollutants in groundwater aquifers may constitute a significant human health risk. A large variation in response may result among human populations experiencing the same level and duration of exposure to pollutants. Variability in response, as a result of exposure to a carcinogenic contaminant such as trichloroethylene (TCE), can be represented by a distribution function of safe doses. Spatial variability in aquifer characteristics and contaminant transport parameters requires the use of stochastic transport models to quantify variability in exposure concentrations. A second moment method is used to evaluate the probability of exceeding safe dose levels for a contaminated aquifer. The name of this method stems from the fact that the formulation is based on the first and second moments of the random variables. With this method, the probability is a function of the variability of contaminant concentration (which incorporates variability in hydrogeologic parameters such as hydraulic conductivity) and the variability in response in the human population. In this manner, the severity of the health risk posed by a contaminated aquifer and the evaluation of appropriate strategies and technologies for aquifer remediation are a function of contaminant concentrations and human health risks. The applicability and limitations of this method are demonstrated with data on groundwater contaminated by TCE at Hill Air Force Base, Utah. Images Figure 1. Figure 2. Figure 3. Figure 4. PMID:8875161

  3. Effect of nanopore size distributions on trichloroethylene adsorption and desorption on carbogenic adsorbents

    SciTech Connect

    Kane, M.S.; Bushong, J.H.; Foley, H.C. [Univ. of Delaware, Newark, DE (United States)] [Univ. of Delaware, Newark, DE (United States); Brendley, W.H. Jr. [Philadelphia Coll. of Textiles, Philadelphia, PA (United States). Dept. of Chemistry] [Philadelphia Coll. of Textiles, Philadelphia, PA (United States). Dept. of Chemistry

    1998-06-01

    Two carbon adsorbents, Ambersorb-600 and Ambersorb-563 (A-600 and A-563), were compared for vapor-phase trichloroethylene (TCE) adsorption from humid air streams. These adsorbents retained capacity for TCE in humid environments and were regenerable in situ. Enhanced desorption, and hence, increased working capacities, were achieved with bimodal pore size distributions and hydrophobic surface chemistry. Vapor-phase TCE isotherms confirmed that both of these adsorbents have high capacities for TCE. Only a small difference between the micropore size distributions of A-563 and A-600 was determined by room-temperature methyl chloride adsorption and the modified Horvath-Kawazoe model. Besides differences in particle size and pore volume there was a measurable, but small change, in the fraction of the pores in the ultramicropore range (5 {angstrom} or smaller) of the A-600 adsorbent versus that of A-563. In packed-bed breakthrough curve experiments, A-600 displayed a sharper mass-transfer zone than A-563, but maintained essentially the same capacity for TCE in a humid environment. Both materials were amenable to in-situ regeneration, and the A-600 provided higher overall working capacity than that of A-563.

  4. Characterization of trichloroethylene adsorption onto waste biocover soil in the presence of landfill gas.

    PubMed

    He, Ruo; Su, Yao; Kong, Jiaoyan

    2015-09-15

    Waste biocover soils (WBS) have been demonstrated to have great potential in mitigating trichloroethylene (TCE) emission from landfills, due to the relatively high TCE-degrading capacity. In this study, the characteristics of TCE adsorption on WBS in the presence of the major landfill gas components (i.e., CH4 and CO2) were investigated in soil microcosms. The adsorption isotherm of TCE onto WBS was fitted well with linear model within the TCE concentrations of 7000ppmv. The adsorption capacity of TCE onto WBS was affected by temperature, soil moisture content and particle size, of which, temperature was the dominant factor. The adsorption capacity of TCE onto the experimental materials increased with the increasing organic matter content. A significantly positive correlation was observed between the adsorption capacity of TCE and the organic matter content of experimental materials that had relatively higher organic content (r=0.988, P=0.044). To better understand WBS application in practice, response surface methodology was developed to predict TCE adsorption capacity and emissions through WBS in different landfills in China. These results indicated that WBS had high adsorption capacity of TCE in LFG and temperature should be paid more attention to manipulate WBS to reduce TCE emissions from landfills. PMID:25909498

  5. Observation of trapped gas during electrical resistance heating of trichloroethylene under passive venting conditions

    NASA Astrophysics Data System (ADS)

    Martin, E. J.; Kueper, B. H.

    2011-11-01

    A two-dimensional experiment employing a heterogeneous sand pack incorporating two pools of trichloroethylene (TCE) was performed to assess the efficacy of electrical resistance heating (ERH) under passive venting conditions. Temperature monitoring displayed the existence of a TCE-water co-boiling plateau at 73.4 °C, followed by continued heating to 100 °C. A 5 cm thick gas accumulation formed beneath a fine-grained capillary barrier during and after co-boiling. The capillary barrier did not desaturate during the course of the experiment; the only pathway for gas escape being through perforated wells traversing the barrier. The thickness of the accumulation was dictated by the entry pressure of the perforated well. The theoretical maximum TCE soil concentration within the region of gas accumulation, following gas collapse, was estimated to be 888 mg/kg. Post-heating soil sampling revealed TCE concentrations in this region ranging from 27 mg/kg to 96.7 mg/kg, indicating removal of aqueous and gas phase TCE following co-boiling as a result of subsequent boiling of water. The equilibrium concentrations of TCE in water corresponding to the range of post-treatment concentrations in soil (6.11 mg/kg to 136 mg/kg) are calculated to range from 19.8 mg/l to 440 mg/l. The results of this experiment illustrate the importance of providing gas phase venting during the application of ERH in heterogeneous porous media.

  6. Observation of trapped gas during electrical resistance heating of trichloroethylene under passive venting conditions.

    PubMed

    Martin, E J; Kueper, B H

    2011-11-01

    A two-dimensional experiment employing a heterogeneous sand pack incorporating two pools of trichloroethylene (TCE) was performed to assess the efficacy of electrical resistance heating (ERH) under passive venting conditions. Temperature monitoring displayed the existence of a TCE-water co-boiling plateau at 73.4°C, followed by continued heating to 100°C. A 5cm thick gas accumulation formed beneath a fine-grained capillary barrier during and after co-boiling. The capillary barrier did not desaturate during the course of the experiment; the only pathway for gas escape being through perforated wells traversing the barrier. The thickness of the accumulation was dictated by the entry pressure of the perforated well. The theoretical maximum TCE soil concentration within the region of gas accumulation, following gas collapse, was estimated to be 888mg/kg. Post-heating soil sampling revealed TCE concentrations in this region ranging from 27mg/kg to 96.7mg/kg, indicating removal of aqueous and gas phase TCE following co-boiling as a result of subsequent boiling of water. The equilibrium concentrations of TCE in water corresponding to the range of post-treatment concentrations in soil (6.11mg/kg to 136mg/kg) are calculated to range from 19.8mg/l to 440mg/l. The results of this experiment illustrate the importance of providing gas phase venting during the application of ERH in heterogeneous porous media. PMID:22115093

  7. Effects of toxicity, aeration, and reductant supply on trichloroethylene transformation by a mixed methanotrophic culture.

    PubMed

    Alvarez-Cohen, L; McCarty, P L

    1991-01-01

    The trichloroethylene (TCE) transformation rate and capacity of a mixed methanotrophic culture at room temperature were measured to determine the effects of time without methane (resting), use of an alternative energy source (formate), aeration, and toxicity of TCE and its transformation products. The initial specific TCE transformation rate of resting cells was 0.6 mg of TCE per mg of cells per day, and they had a finite TCE transformation capacity of 0.036 mg of TCE per mg of cells. Formate addition resulted in increased initial specific TCE transformation rates (2.1 mg/mg of cells per day) and elevated transformation capacity (0.073 mg of TCE per mg of cells). Significant declines in methane conversion rates following exposure to TCE were observed for both resting and formate-fed cells, suggesting toxic effects caused by TCE or its transformation products. TCE transformation and methane consumption rates of resting cells decreased with time much more rapidly when cells were shaken and aerated than when they remained dormant, suggesting that the transformation ability of methanotrophs is best preserved by storage under anoxic conditions. PMID:2036009

  8. Biochar supported nanoscale zerovalent iron composite used as persulfate activator for removing trichloroethylene.

    PubMed

    Yan, Jingchun; Han, Lu; Gao, Weiguo; Xue, Song; Chen, Mengfang

    2014-10-25

    Biochar (BC) supported nanoscale zerovalent iron (nZVI) composite was synthesized and used as an activator for persulfate to enhance the trichloroethylene (TCE) removal in aqueous solutions. The degradation efficiency of TCE (0.15mmolL(-1)) was 99.4% in the presence of nZVI/BC (4.5mmolL(-1), nZVI to BC mass ratio was 1:5) and persulfate (4.5mmolL(-1)) within 5min, which was significantly higher than that (56.6%) in nZVI-persulfate system under the same conditions. Owing to large specific surface area and oxygen-containing functional groups of BC, nZVI/BC enhanced the SO4(-) generation and accelerated TCE degradation. On the basis of the characterization and analysis data, possible activation mechanisms of the Fe(2+)/Fe(3+) (Fe(II)/Fe(III)) redox action and the electron-transfer mediator of the BC oxygen functional groups promoting the generation of SO4(-) in nZVI/BC-persulfate system were clarified. PMID:25459832

  9. In situ bioremediation of trichloroethylene-contaminated water by a resting-cell methanotrophic microbial filter

    SciTech Connect

    Taylor, R.T.; Duba, A.G.; Durham, W.B.; Hanna, M.L.; Jackson, K.J.; Jovanovich, M.C.; Knapp, R.B.; Knezovich, J.P.; Shah, N.N.; Shonnard, D.R.; Wijesinghe, A.M.

    1992-10-01

    The Lawrence Livermore National Laboratory is testing and developing an in situ microbial filter technology for remediating migrating subsurface plumes contaminated with low concentrations of trichloroethylene (TCE). Their current focus is the establishment of a replenishable bioactive zone (catalytic filter) along expanding plume boundaries by the Injection of a representative methanotrophic bacterium, Methylosinus trichosporium OB3b. We have successfully demonstrated this microbial filter strategy using emplaced, attached resting cells (no methane additions) in a 1.1-m flow-through test bed loaded with water-saturated sand. Two separate 24 h pulses of TCE (109 ppb and 85 ppb), one week apart, were pumped through the system at a flow velocity of 1.5 cm/h; no TCE (<0.5 ppb) was detected on the downstream side of the microbial filter. Subsequent excavation of the wet sand confirmed the existence of a TCE-bioactive zone 19 days after it had been created. An enhanced longevity of the cellular, soluble-form methane monooxygenase produced by this methanotroph Is a result of our laboratory bioreactor culturing conditions. Additional experiments with cells in sealed vials and emplaced in the 1.1-m test bed yielded a high resting-cell finite TCE biotransformation capacity of {approximately} 0.25 mg per mg of bacteria; this is suitable for a planned sand-filled trench field demonstration at a Lawrence Livermore National Laboratory site.

  10. E-beam treatment of trichloroethylene-air mixtures: Products and rates

    NASA Astrophysics Data System (ADS)

    Mill, Theodore; Su, Minggong; David Yao, C. C.; Matthews, Stephen M.; Wang, Francis T. S.

    1997-09-01

    Electron beam (E-beam) treatment of 3000 ppmv trichloroethylene (TCE) vapor in dry and wet air led to rapid, nearly quantitative, conversion of TCE to dichloroacetyl chloride, plus small amounts of phosgene. Higher E-beam doses, up to 110 kGy, led to oxidation of the initial products to CO, CO 2, HCl and Cl 2. The results parallel results found for photo- and Cl-atom initiated oxidation of TCE vapor, and are accounted for by an efficient Cl-atom chain oxidation. Lack of effect of 28,000 ppmv water vapor (90% RH) on rates or products reflects a very high efficiency for the Cl-atom chain oxidation and the very slow reaction of vapor phase water with acyl halides. Irradiation experiments conducted with TCE dissolved in aerated and deaerated water at 10 and 300 ppm showed marked differences in radiolytic products from those found in the vapor phase. A preliminary cost estimate indicates that E-beam treatment of TCE vapor is very competitive with conventional activated carbon treatment and catalytic oxidation.

  11. Trichloroethylene and 1,1,1-trichloroethane decomposition in an electron beam generated plasma reactor

    SciTech Connect

    Vitale, S.A.; Hadidi, K.; Cohn, D.R. [Massachusetts Institute of Technology, Cambridge, MA (United States)

    1995-12-31

    This paper investigates the effect of a carbon-carbon double bond on the energy requirements of plasma induced decomposition of chlorinated ethylenes and ethanes in an electron beam generated plasma reactor. The decomposition of low concentrations of trichloroethylene (C{sub 2}HCl{sub 3}, TCE) and 1,1,1-trichloroethane (C{sub 2}H{sub 3}Cl{sub 3}, TCA) was studied in atmospheric pressure air streams. The primary decomposition products observed experimentally were carbon dioxide, phosgene, dichloroacetyl chloride, and hydrogen chloride, along with low concentrations of trichloroacetyl chloride, chloroform, and carbon monoxide. At high electron beam doses to the plasma, all of the intermedicate products of both TCA and TCE are converted to carbon dioxide, carbon monoxide, hydrogen chloride, and molecular chlorine. Greater than 99% removal of TCE in stream at flow rates up to 7 l/m were achieved. TCE required only 2 to 6% of the energy of that required to decompose the same amount of TCA. This was explained by the chlorine radical chain reaction mechanism available to chlorinated ethylenes. The chain length of the TCE reaction mechanism was determined to increase with increasing TCE concentration. A simple kinetic model was used to study the effects of inhibition of the decomposition through chlorine radical scavenging by reaction products; this inhibition was determined to be approximately ten times less important for TCe than for TCA.

  12. Anaerobic degradation of toluene and o-xylene by a methanogenic consortium.

    PubMed Central

    Edwards, E A; Grbi?-Gali?, D

    1994-01-01

    Toluene and o-xylene were completely mineralized to stoichiometric amounts of carbon dioxide, methane, and biomass by aquifer-derived microorganisms under strictly anaerobic conditions. The source of the inoculum was creosote-contaminated sediment from Pensacola, Fla. The adaptation periods before the onset of degradation were long (100 to 120 days for toluene degradation and 200 to 255 days for o-xylene). Successive transfers of the toluene- and o-xylene-degrading cultures remained active. Cell density in the cultures progressively increased over 2 to 3 years to stabilize at approximately 10(9) cells per ml. Degradation of toluene and o-xylene in stable mixed methanogenic cultures followed Monod kinetics, with inhibition noted at substrate concentrations above about 700 microM for o-xylene and 1,800 microM for toluene. The cultures degraded toluene or o-xylene but did not degrade m-xylene, p-xylene, benzene, ethylbenzene, or naphthalene. The degradative activity was retained after pasteurization or after starvation for 1 year. Degradation of toluene and o-xylene was inhibited by the alternate electron acceptors oxygen, nitrate, and sulfate. Degradation was also inhibited by the addition of preferred substrates such as acetate, H2, propionate, methanol, acetone, glucose, amino acids, fatty acids, peptone, and yeast extract. These data suggest that the presence of natural organic substrates or contaminants may inhibit anaerobic degradation of pollutants such as toluene and o-xylene at contaminated sites. Images PMID:8117084

  13. WHY DO THE ACUTE BEHAVIORAL EFFECTS OT TOLUENE IN RATS DEPEND ON THE ROUTE OF EXPOSURE?

    EPA Science Inventory

    Despite evidence suggesting that the acute effects of organic solvents are related to their concentration in the brain, we have observed route-dependent differences in the acute behavioral effects of toluene. Whereas inhaled toluene disrupts the performance of rats on a visual si...

  14. Separation of toluene-trichlorotrinitrobenzene mixture with CO sub 2 at elevated pressures

    Microsoft Academic Search

    Chungsung Tan; Beensheng Chen; Chiwung Wong

    1991-01-01

    In the production of TATB (triaminotrinitrobenzene), a heat-resistant explosive, a waste solution containing mainly toluene (about 95%) and TCTNB (trichlorotrinitrobenzene) (about 3%) is generated. Because of concern with process economics and pollution of the environment, toluene needs to be recovered from the waste. However, due to the presence of a small amount of TATB in the waste, the distillation method

  15. Toluene biodegradation by Pseudomonas putida F1: targeting culture stability in long-term operation.

    PubMed

    Díaz, Luis Felipe; Muñoz, Raúl; Bordel, Sergio; Villaverde, Santiago

    2008-04-01

    The stability of Pseudomonas putida F1, a strain harbouring the genes responsible for toluene degradation in the chromosome was evaluated in a bioscrubber under high toluene loadings and nitrogen limiting conditions at two dilution rates (0.11 and 0.27 h(-1)). Each experiment was run for 30 days, period long enough for microbial instability to occur considering previously reported studies carried out with bacterial strains encoding the catabolic genes in the TOL plasmid. At all tested conditions, P. putida F1 exhibited stable performance as shown by the constant values of the specific toluene degradation yield, CO2 produced versus toluene degraded yield, and biomass concentration within each steady state. Benzyl alcohol, a curing agent causing TOL plasmid deletion in Pseudomonas strains, was present in the cultivation medium as a result of the monooxygenation of toluene by the diooxygenase system of P. putida F1. However, no mutant population growing at the expense of the extracellular excreted carbon or lysis products was established in the chemostat as confirmed by the constant dissolved total organic carbon (TOC) concentration and fraction of toluene degrading cells (approx. 100%). In addition, batch experiments conducted with both lysis substrate and toluene simultaneously confirmed that P. putida F1 preferentially consumed toluene rather than extracellular excreted carbon. PMID:17487552

  16. Photocatalytic destruction of toluene and xylene at gas phase on a titania based monolithic catalyst

    Microsoft Academic Search

    J. Blanco; P. Avila; A. Bahamonde; E. Alvarez; B. Sánchez; M. Romero

    1996-01-01

    Toluene and xylene were subjected to gas-solid heterogeneous photocatalytic oxidation on a titania based monolithic catalyst, in order to investigate the potential of solar-driven detoxification as a clean and safe method for air purification and gas phase waste destruction. Thus, gaseous streams with toluene or xylene were conducted through a monolithic catalysts based on titania dispersed on a fibrous silicate

  17. Treatment of Toluene in an Air Stream by a Biotrickling Filter Packed with Slags

    Microsoft Academic Search

    Ming-Shean Chou; Feh-Loong Wu

    1999-01-01

    This study utilized a biotrickling filter with blast-furnace slag packings (sizes = 20-40 mm; specific surface area = 120 m\\/m) to treat toluene in an air stream. Also studied were the effects of volumetric loading (L), nutrient addition, and superficial gas velocity (Ug) or gas retention time on toluene elimination capacity. Experimental results indicate that, for a test period of

  18. Behavioral Effects of Sub-Acute Inhalation of Toluene in Adult Rats

    EPA Science Inventory

    Reports of behavioral effects of repeated inhalation of toluene in rats have Yielded inconsistent fmdings. A recent study from this laboratory (Beasley et al., 2010) observed that after 13 weeks of inhaled toluene ("sub-chronic" exposure scenario), rats showed mild but persiste...

  19. Issues When Modeling Benzene, Toluene, and Xylene Exposures Using a Literature Database

    Microsoft Academic Search

    Misty J. Hein; Martha A. Waters; Edwin van Wijngaarden; James A. Deddens; Patricia A. Stewart

    2007-01-01

    A database of benzene, toluene, and xylene measurements was compiled from an extensive literature review that contained information on several exposure determinants, including job type, operation, mechanism of release, process type, ventilation, temperature, distance from the source, quantity, and location. The database was used to develop statistical models for benzene, toluene, and xylene exposure as a function of operation and

  20. Use of biological activated carbon to treat mixed gas of toluene and benzene in biofilter.

    PubMed

    Li, G W; Hu, H Y; Hao, J M; Fujie, K

    2002-04-01

    The biodegradation of toluene and benzene in a biofilter filled with cylindrical activated carbon was studied. Three various gaseous flow rates, i.e. 0.25, 0.50 and 0.75 m3 h(-1), corresponding to empty bed gas residences of 75, 37.5 and 25 s, respectively, and total organic load lower than 400 g m(-1) h(-1) were tested. The biofilter proved to be highly efficient in biodegradations of toluene and benzene, and toluene was more easily degraded than benzene. When each inlet load of toluene and benzenewas lower than 150 g m(-3) h(-1), removal rate increased with inlet loads and reached maximum values of 150 and 120 g m(-3) h(-1) for toluene and benzene, respectively. For inlet load higher than the maximum removal capacity conditions, the removal rate decreased with inlet load. The carbon dioxide concentration profile through the biofilter revealed that the mass ratios of carbon dioxide produced to the toluene and benzene removed were 2.15 g CO2 g(-1) toluene and 1.67 g CO2 g(-1) benzene. Model predictions for toluene, benzene and carbon dioxide concentration gradient profiles were in agreement with experimental data for the tested conditions. The observation of biotic community demonstrated that the microbes consisted of bacillus, spore bacillus and fungi, of them spore baxillus was dominant. PMID:12088374

  1. Use of Selective Inhibitors and Chromogenic Substrates to Differentiate Bacteria Based on Toluene Oxygenase Activity

    SciTech Connect

    Keener, William Kelvin; Schaller, Kastli Dianne; Walton, Michelle Rene; Partin, Judy Kaye; Watwood, Mary Elizabeth; Smith, William Aaron; Chingenpeel, S. R.

    2001-09-01

    In whole-cell studies, two alkynes, 1-pentyne and phenylacetylene, were selective, irreversible inhibitors of monooxygenase enzymes in catabolic pathways that permit growth of bacteria on toluene. 1-Pentyne selectively inhibited growth of Burkholderia cepacia G4 (toluene 2-monooxygenase [T2MO] pathway) and B. pickettii PKO1 (toluene 3-monooxygenase [T3MO] pathway) on toluene, but did not inhibit growth of bacteria expressing other pathways. In further studies with strain G4, chromogenic transformation of a,a,a-Trifluoro-m-cresol (TFC) was irreversibly inhibited by 1-pentyne, but the presence of phenol prevented this inhibition. Transformation of catechol by G4 was unaffected by 1-pentyne. With respect to the various pathways and bacteria tested, phenylacetylene selectively inhibited growth of Pseudomonas mendocina KR1 (toluene 4-monooxygenase [T4MO] pathway) on toluene, but not on p-cresol. An Escherichia coli transformant expressing T4MO transformed indole or naphthalene in chromogenic reactions, but not after exposure to phenylacetylene. The naphthalene reaction remained diminished in phenylacetylene-treated cells relative to untreated cells after phenylacetylene was removed, indicating irreversible inhibition. These techniques were used to differentiate toluene-degrading isolates from an aquifer. Based on data generated with these indicators and inhibitors, along with results from Biolog analysis for sole carbon source oxidation, the groundwater isolates were assigned to eight separate groups, some of which apparently differ in their mode of toluene catabolism.

  2. CHANGES IN MRNA EXPRESSION PROFILES IN RAT CORTEX AND STRIATUM FOLLOWING SUB CHRONIC TOLUENE EXPOSURE.

    EPA Science Inventory

    Toluene, a volatile organic compound (VOC) used in many commercial products, is a ubiquitous air pollutant and therefore of interest to many EPA regulatory programs. A primary concern for toluene and other VOC?s is the potential for persistent neurotoxic effects from long term e...

  3. EVALUATING MOLECULAR SITES OF ACTION FOR TOLUENE USING AN IN VIVO MODEL.

    EPA Science Inventory

    In vitro studies have demonstrated that toluene disrupts the function of several ion channels localized in the brain, including the NMDA-glutamate receptor. This has led to the hypothesis that effects on ion channel function may contribute to toluene neurotoxicity, CNS depres...

  4. Determination of phase equilibria for the binary systems polystyrene/cyclohexane and polystyrene/toluene and for the ternary system polystyrene/cyclohexane/toluene at 423 K, 433 K, and 448 K using perturbation gas chromatography / cby Kathryn Rion Hanneman 

    E-print Network

    Hanneman, Kathryn Rion

    1984-01-01

    DETERMINATION OF PHASE EQUILIBRIA FOR THE BINARY SYSTEMS POLYSTYRENE/CYCLOHEXANE AND POLYSTYRENE/TOLUENE AND FOR THE TERNARY SYSTEM POLYSTYRENE/CYCLOHEXANE/TOLUENE AT 423 K, 433 K, AND 448 K USING PERTURBATION GAS CHROMATOGRAPHY A Thesis... FOR THE BINARY SYSTEMS POLYSTYRENE/CYCLOHEXANE AND POLYSTYRENE/TOLUENE AND FOR THE TERNARY SYSTEM POLYSTYRENE/CYCLOHEXANE/TOLUENE AT 423 K, 433 K, AND 44B K USING PERTURBATION GAS CHROMATOGRAPHY A Thesis by KATHRYN RION HANNEMAN Approved as to style...

  5. MICROBIAL DEGRADATION OF TOLUENE UNDER SULFATE-REDUCING CONDITIONS AND THE INFLUENCE OF IRON ON THE PROCESS

    EPA Science Inventory

    Toluene degradation occurred concomitantly with sulfate reduction in anaerobic microcosms inoculated with contaminated subsurface soil from an aviation fuel storage facility near the Patuxent River (MD). imilar results were obtained for enrichment cultures in which toluene was th...

  6. Metabolites formed during anaerobic transformation of toluene and o-xylene and their proposed relationship to the initial steps of toluene mineralization.

    PubMed Central

    Evans, P J; Ling, W; Goldschmidt, B; Ritter, E R; Young, L Y

    1992-01-01

    Strain T1 is a facultative bacterium that is capable of anaerobic toluene degradation under denitrifying conditions. While 80% of the carbon from toluene is either oxidized to carbon dioxide or assimilated into cellular carbon, a significant portion of the remainder is transformed into two dead-end metabolites. These metabolites were produced simultaneous to the mineralization of toluene and were identified as benzylsuccinic acid and benzylfumaric acid. Identification was based on comparison of mass spectra of the methyl esters of the metabolites and authentic compounds that were chemically synthesized. Strain T1 is also capable of o-xylene transformation during growth on toluene. o-Xylene does not serve as a source of carbon and is not mineralized. Rather, it is transformed to analogous dead-end metabolites, (2-methylbenzyl)-succinic acid and (2-methylbenzyl)-fumaric acid. o-Xylene transformation also occurred during growth on succinic acid, which suggests that attack of the methyl group by succinyl-coenzyme A is a key reaction in this transformation. We reason that the main pathway for toluene oxidation to carbon dioxide involves a mechanism similar to that for the formation of the metabolites and involves an attack of the methyl group of toluene by acetyl-coenzyme A. PMID:1610173

  7. Metabolites formed during anaerobic transformation of toluene and o-xylene and their proposed relationship to the initial steps of toluene mineralization

    SciTech Connect

    Evans, P.J.; Ling, W.; Goldschmidt, B.; Young, L.Y. (New York Univ., NY (United States)); Ritter, E.R. (New Jersey Inst. of Tech., Newark (United States))

    1992-02-01

    Strain T1 is a facultative bacterium that is capable of anaerobic toluene degradation under denitrifying conditions. While 80% of the carbon from toluene is either oxidized to carbon dioxide or assimilated into cellular carbon, a significant portion of the remainder is transformed into two dead-end metabolites. These metabolites were produced simultaneous to the mineralization of toluene and were identified as benzylsuccinic acid and benzylfumaric acid. Identification was based on comparison of mass spectra of the methyl esters of the metabolites and authentic compounds that were chemically synthesized. Strain T1 is also capable of o-xylene transformation during growth on toluene, o-Xylene does not serve as a source of carbon and is not mineralized. Rather, it is transformed to analogous dead-end metabolites, (2-methylbenzyl)-succinic acid and (2-methyl-benzyl)-fumaric acid. o-Xylene transformation also occurred during growth on succinic acid, which suggests that attack of the methyl group by succinyl-coenzyme A is a key reaction in this transformation. The authors reason that the main pathway for toluene oxidation to carbon dioxide involves a mechanism similar to that for the formation of the metabolites and involves an attack of the methyl group of toluene by acetyl-coenzyme A.

  8. A Patient with Systemic Lupus Erythematosus Complicated by Neurological Symptoms of Toluene Poisoning

    PubMed Central

    Takeuchi, Tohru; Makino, Shigeki; Hanafusa, Toshiaki

    2013-01-01

    We report a patient with systemic lupus erythematosus complicated by toluene poisoning. She had erythema, alopecia, arthralgia, and various neurological symptoms. Laboratory findings showed leukocytopenia, low levels of complements, and anti-dsDNA antibody. However, normal interleukin-6 level and IgG index of cerebrospinal fluid and brain magnetic resonance imaging and single photon emission computed tomography findings suggested that her neurological symptoms were caused by metabolic disorder but not neuropsychiatric systemic lupus erythematosus. Erythema, alopecia, and arthralgia improved rapidly after administration of prednisolone and tacrolimus, whereas neurological symptoms improved only gradually. Because of a history of exposure to toluene, her neurological symptoms were considered to be due to toluene poisoning. The differentiation of toluene poisoning from neuropsychiatric systemic lupus erythematosus based on symptoms is difficult because both induce various neuropsychiatric disorders. Laboratory findings of cerebrospinal fluid, radiological findings, and medical interview were useful for differentiation of toluene poisoning from neuropsychiatric systemic lupus erythematosus. PMID:23956915

  9. Biodegradation of toluene in a two-phase partitioning bioreactor--impact of activated sludge acclimation.

    PubMed

    Béchohra, Imane; Couvert, Annabelle; Amrane, Abdeltif

    2014-01-01

    A two-phase partitioning bioreactor was considered to remove toluene contained in a biodegradable organic phase by activated sludge (AS). The selected solvent was hexadecane. In a first step, the biodegradation of toluene dissolved in hexadecane by AS was examined. In a second step, acclimation of the AS was carried out in order to improve the biodegradation rate. Acclimation improved toluene removal, since biodegradation yield increased from 72% to more than 91%. A total consumption was observed after only 4 days culture with acclimated AS, since the rest of the toluene corresponded to gas leak; while in the case of non-acclimated sludge, losses cannot account for all non-degraded toluene. Regarding hexadecane, acclimation also improved its degradation, from 43% to 79% after 6 days culture for non-acclimated and acclimated AS, respectively. PMID:24645454

  10. Toluene inhalation induced changes of gene expression in rat brain: fluorescence differential display PCR analysis.

    PubMed

    Ikematsu, Kazuya; Tsuda, Ryouichi; Tsuruya, Shinichiro; Kubo, Shin-ichi; Nakasono, Ichiro

    2007-09-01

    Toluene, an abused substance in Japan, is well known as a neurotoxic chemical and has been shown to have neurobehavioral and electrophysiological effects. We used a fluorescence differential display PCR technique to analyze the genes expressed in the brain by toluene inhalation. We found 20 genes that were differentially expressed by toluene exposure. We confirmed by re-amplified PCR, nucleotide sequence and quantitative real-time PCR that of the 20 cDNAs, only 10 showed reproducible expression patterns by toluene inhalation. Of these genes, four had high homology with known genes (MIDA1, PEBP2 beta, phosphatidylserine synthase 2 and SKAP55) and six fragments were new sequence tags of unknown genes. This result may contribute to reveal the patho-physiological effects of toluene inhalation on rat brain. PMID:17584516

  11. Protein Engineering of Toluene Monooxygenases for Synthesis of Chiral Sulfoxides?

    PubMed Central

    Feingersch, Roi; Shainsky, Janna; Wood, Thomas K.; Fishman, Ayelet

    2008-01-01

    Enantiopure sulfoxides are valuable asymmetric starting materials and are important chiral auxiliaries in organic synthesis. Toluene monooxygenases (TMOs) have been shown previously to catalyze regioselective hydroxylation of substituted benzenes and phenols. Here we show that TMOs are also capable of performing enantioselective oxidation reactions of aromatic sulfides. Mutagenesis of position V106 in the ?-hydroxylase subunit of toluene ortho-monooxygenase (TOM) of Burkholderia cepacia G4 and the analogous position I100 in toluene 4-monooxygenase (T4MO) of Pseudomonas mendocina KR1 improved both rate and enantioselectivity. Variant TomA3 V106M of TOM oxidized methyl phenyl sulfide to the corresponding sulfoxide at a rate of 3.0 nmol/min/mg protein compared with 1.6 for the wild-type enzyme, and the enantiomeric excess (pro-S) increased from 51% for the wild type to 88% for this mutant. Similarly, T4MO variant TmoA I100G increased the wild-type oxidation rate by 1.7-fold, and the enantiomeric excess rose from 86% to 98% (pro-S). Both wild-type enzymes showed lower activity with methyl para-tolyl sulfide as a substrate, but the improvement in the activity and enantioselectivity of the mutants was more dramatic. For example, T4MO variant TmoA I100G oxidized methyl para-tolyl sulfide 11 times faster than the wild type did and changed the selectivity from 41% pro-R to 77% pro-S. A correlation between regioselectivity and enantioselectivity was shown for TMOs studied in this work. Using in silico homology modeling, it is shown that residue I100 in T4MO aids in steering the substrate into the active site at the end of the long entrance channel. It is further hypothesized that the main function of V106 in TOM is the proper positioning or docking of the substrate with respect to the diiron atoms. The results from this work suggest that when the substrate is not aligned correctly in the active site, the oxidation rate is decreased and enantioselectivity is impaired, resulting in products with both chiral configurations. PMID:18192418

  12. Immunological investigation of individuals with toluene diisocyanate asthma

    PubMed Central

    Avery, S. B.; Stetson, D. M.; Pan, P. M.; Mathews, K. P.

    1969-01-01

    Thirteen subjects who experienced only the expected irritant respiratory and ocular effects from occupational exposure to toluene diisocyanate (TDI) were compared with eight workers who appeared clinically to be sensitized to this substance, as manifested by the prompt development of asthmatic symptoms on exposure to minute concentrations of TDI. In an attempt to document an immunological response to TDI in the latter group, several conjugates of TDI with human serum albumin were prepared. Gel diffusion, leucocyte histamine release, PCA in guinea-pigs, passive haemagglutination, passive transfer (P-K) and a few direct skin tests all failed to show antibodies to TDI. In lymphocyte culture, however, TDI–human serum albumin complexes produced stimulation of lymphocytes from seven of the eight subjects suspected of being sensitized and none of the controls. PMID:4182406

  13. Photodegradation of Hydrophobic Pyridineketoximes in Toluene and Heptane.

    PubMed

    Wieszczycka, Karolina; Zembrzuska, Joanna

    2015-07-01

    The goal of the research was to study the reactivity of the hydrophobic 2- and 3-pyridineketoximes under exposure to UV-VIS light. The photodegradation was conducted in both toluene and heptane for 10 h under atmosphere of argon. Ten-hour irradiation experiments demonstrated that the pyridineketoximes underwent the facile E-Z photoisomerization, photo-Beckmann rearrangement, and to a lesser extent, the photosubstitution to the pyridine ring. From LC-MS and NMR analysis of the irradiated solutions, it was found that the photosubstitution proceeded to give the corresponding 6-substituted 2- or 3-pyridylketoxime via the replacement of the ring hydrogen by the benzyl or heptyl group. The photo-Beckmann rearrangement led to the formation of the corresponding amides, but also other products formed in the photo-decomposition reaction. PMID:25763903

  14. 5,22-Stigmastadien-3?-yl p-toluene­sulfonate

    PubMed Central

    Ketuly, Kamal Aziz; Hadi, A. Hamid A.; Khaledi, Hamid; Tiekink, Edward R. T.

    2010-01-01

    The asymmetric unit of the title compound {systematic name: (3S,8S,9S,10R,13R,14S,17R)-17-[(E,2R,5S)-5-ethyl-6-methyl­hept-3-en-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodeca­hydro-1H-cyclo­penta­[a]phenanthren-3-yl p-toluene­sulfonate}, C36H54O3S, comprises two independent mol­ecules that differ significantly in terms of the relative orientations of the peripheral groups; the conformation about the C=C bond of the side chain is E. In the crystal, mol­ecules associate into linear supra­molecular chains aligned along the a axis via C—H?O inter­actions. PMID:21579426

  15. Volatile organic compounds detected in vapor-diffusion samplers placed in sediments along and near the shoreline at Allen Harbor Landfill and Calf Pasture Point, Davisville, Rhode Island, March-April 1998

    USGS Publications Warehouse

    Lyford, F.P.; Kliever, J.D.; Scott, Clifford

    1999-01-01

    Volatile organic compounds are present in ground water at the Allen Harbor Landfill and the Calf Pasture Point sites on the former Naval Construction Battalion Center in Davisville, R.I. Vapor-diffusion samplers were used at the two sites during March-April 1998 to identify possible discharge points for contaminants along the shore of Allen Harbor and in two wetland areas near the shore. Results from vapor-diffusion samplers will be used in conjunction with other site information to evaluate proposed ground-water monitoring programs. Volatile organic compounds were detected in 41 of 115 samplers placed along the shoreline at the Allen Harbor Landfill. Trichloroethylene was the principal volatile organic compound detected of eight target compounds. The highest vapor concentration measured exceeded 300,000 parts per billion by volume in an area where TCE was detected in groundwater from nearby monitoring wells. Other chemicals detected in vapor-diffusion samplers included tetrachloroethylene, toluene, and benzene. Concentrations of individual volatile organic compounds were less than 100 parts per billion by volume in most samplers. Volatile organic compounds, principally trichloroethylene, were detected in 7 of 30 samplers placed along the shoreline at Calf Pasture Point; the highest trichloroethylene concentration was 1,900 parts per billion by volume. A trace concentration of tetrachloroethylene was detected in one of the samplers. One of 24 samplers placed in two wetland areas near the shore (suspected discharge areas for ground-water containing volatile organic compounds) detected trichloroethylene at a vapor concentration of 14 parts per billion by volume.

  16. Biotransformation of nitrobenzene by bacteria containing toluene degradative pathways.

    PubMed Central

    Haigler, B E; Spain, J C

    1991-01-01

    Nonpolar nitroaromatic compounds have been considered resistant to attack by oxygenases because of the electron withdrawing properties of the nitro group. We have investigated the ability of seven bacterial strains containing toluene degradative pathways to oxidize nitrobenzene. Cultures were induced with toluene vapor prior to incubation with nitrobenzene, and products were identified by high-performance liquid chromatography and gas chromatography-mass spectrometry. Pseudomonas cepacia G4 and a strain of Pseudomonas harboring the TOL plasmid (pTN2) did not transform nitrobenzene. Cells of Pseudomonas putida F1 and Pseudomonas sp. strain JS150 converted nitrobenzene to 3-nitrocatechol. Transformation of nitrobenzene in the presence of 18O2 indicated that the reaction in JS150 involved the incorporation of both atoms of oxygen in the 3-nitrocatechol, which suggests a dioxygenase mechanism. P. putida 39/D, a mutant strain of P. putida F1, converted nitrobenzene to a compound tentatively identified as cis-1,2-dihydroxy-3-nitrocyclohexa-3,5-diene. This compound was rapidly converted to 3-nitrocatechol by cells of strain JS150. Cultures of Pseudomonas mendocina KR-1 converted nitrobenzene to a mixture of 3- and 4-nitrophenol (10 and 63%, respectively). Pseudomonas pickettii PKO1 converted nitrobenzene to 3- and 4-nitrocatechol via 3- and 4-nitrophenol. The nitrocatechols were slowly degraded to unidentified metabolites. Nitrobenzene did not serve as an inducer for the enzymes that catalyzed its oxidation. These results indicate that the nitrobenzene ring is subject to initial attack by both mono- and dioxygenase enzymes. PMID:1781679

  17. CONSIDERING PHARMACOKINETIC AND MECHANISTIC INFORMATION IN CANCER RISK ASSESSMENTS FOR ENVIRONMENTAL CONTAMINANTS : EXAMPLES WTTH VINYL CHLORIDE AND TRICHLOROETHYLENE

    Microsoft Academic Search

    H. J. Clewell; R. Gentry; M. Gearhart; B. C. Allen; E. Andersen

    1995-01-01

    ABSTRACT Risk assessments,for vinyl chloride (VC) and trichloroethylene (TCE) are presented as examples of approaches,for,incorporating,chemical-specific pharmacokinetic and,mechanistic,information,into,a more scientifically plausible cancer risk assessment . For VC, the evidence regarding mode of action includes direct reaction of a metabolite with DNA, resulting in DNA adducts and mistranscription . and cross-species target-tissue correspondence,of a rare,tumor,type . Risk estimates,for human,exposure,to VC predicted,with,a physiologically-

  18. Inhibition of iron (III) minerals and acidification on the reductive dechlorination of trichloroethylene.

    PubMed

    Paul, Laiby; Smolders, Erik

    2014-09-01

    Reductive dechlorination of chlorinated ethenes is inhibited by acidification and by the presence of Fe (III) as a competitive electron acceptor. Synergism between both factors on dechlorination is predicted as reductive dissolution of Fe (III) minerals is facilitated by acidification. This study was set-up to assess this synergism for two common aquifer Fe (III) minerals, goethite and ferrihydrite. Anaerobic microbial dechlorination of trichloroethylene (TCE) by KB-1 culture and formate as electron donor was investigated in anaerobic batch containers at different solution pH values (6.2-7.2) in sand coated with these Fe minerals and a sand only as control. In the absence of Fe, lowering substrate pH from 7.2 to 6.2 increased the time for 90% TCE degradation from 14±1d to 42±4d. At pH 7.2, goethite did not affect TCE degradation time while ferrihydrite increased the degradation time to 19±1d compared to the no Fe control. At pH 6.2, 90% degradation was at 78±1 (ferrihydrite) or 131±1d (goethite). Ferrous iron production in ferrihydrite treatment increased between pH 7.2 and 6.5 but decreased by further lowering pH to 6.2, likely due to reduced microbial activity. This study confirms that TCE is increasingly inhibited by the combined effect of acidification and bioavailable Fe (III), however no evidence was found for synergistic inhibition since Fe reduction did not increase as pH decreases. To the best of our knowledge, this is the first study where effect of pH and Fe (III) reduction on TCE was simultaneously tested. Acid Fe-rich aquifers need sufficient buffering and alkalinity to ensure swift degradation of chlorinated ethenes. PMID:24997954

  19. Interstrain differences in the liver effects of trichloroethylene in a multistrain panel of inbred mice.

    PubMed

    Bradford, Blair U; Lock, Eric F; Kosyk, Oksana; Kim, Sungkyoon; Uehara, Takeki; Harbourt, David; DeSimone, Michelle; Threadgill, David W; Tryndyak, Volodymyr; Pogribny, Igor P; Bleyle, Lisa; Koop, Dennis R; Rusyn, Ivan

    2011-03-01

    Trichloroethylene (TCE) is a widely used industrial chemical and a common environmental contaminant. It is a well-known carcinogen in rodents and a probable carcinogen in humans. Studies utilizing panels of mouse inbred strains afford a unique opportunity to understand both metabolic and genetic basis for differences in responses to TCE. We tested the hypothesis that strain- and liver-specific toxic effects of TCE are genetically controlled and that the mechanisms of toxicity and susceptibility can be uncovered by exploring responses to TCE using a diverse panel of inbred mouse strains. TCE (2100 mg/kg) or corn oil vehicle was administered by gavage to 6- to 8-week-old male mice of 15 mouse strains. Serum and liver were collected at 2, 8, and 24 h postdosing and were analyzed for TCE metabolites, hepatocellular injury, and gene expression of liver. TCE metabolism, as evident from the levels of individual oxidative and conjugative metabolites, varied considerably between strains. TCE treatment-specific effect on the liver transcriptome was strongly dependent on genetic background. Peroxisome proliferator-activated receptor-mediated molecular networks, consisting of the metabolism genes known to be induced by TCE, represent some of the most pronounced molecular effects of TCE treatment in mouse liver that are dependent on genetic background. Conversely, cell death, liver necrosis, and immune-mediated response pathways, which are altered by TCE treatment in liver, are largely genetic background independent. These studies provide better understanding of the mechanisms of TCE-induced toxicity anchored on metabolism and genotype-phenotype correlations that may define susceptibility or resistance. PMID:21135412

  20. Molecular markers of trichloroethylene-induced toxicity in human kidney cells

    SciTech Connect

    Lash, Lawrence H. [Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201 (United States)]. E-mail: l.h.lash@wayne.edu; Putt, David A. [Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201 (United States); Hueni, Sarah E. [Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201 (United States); Horwitz, Beth P. [Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201 (United States)

    2005-08-07

    Difficulties in evaluation of trichloroethylene (TRI)-induced toxicity in humans and extrapolation of data from laboratory animals to humans are due to the existence of multiple target organs, multiple metabolic pathways, sex-, species-, and strain-dependent differences in both metabolism and susceptibility to toxicity, and the lack or minimal amount of human data for many target organs. The use of human tissue for mechanistic studies is thus distinctly advantageous. The kidneys are one target organ for TRI and metabolism by the glutathione (GSH) conjugation pathway is responsible for nephrotoxicity. The GSH conjugate is processed further to produce the cysteine conjugate, S-(1,2-dichlorovinyl)-L-cysteine (DCVC), which is the penultimate nephrotoxic species. Confluent, primary cultures of human proximal tubular (hPT) cells were used as the model system. Although cells in log-phase growth, which are undergoing more rapid DNA synthesis, would give lower LD{sub 50} values, confluent cells more closely mimic the in vivo proximal tubule. DCVC caused cellular necrosis only at relatively high doses (>100 {mu}M) and long incubation times (>24 h). In contrast, both apoptosis and enhanced cellular proliferation occurred at relatively low doses (10-100 {mu}M) and early incubation times (2-8 h). These responses were associated with prominent changes in expression of several proteins that regulate apoptosis (Bcl-2, Bax, Apaf-1, Caspase-9 cleavage, PARP cleavage) and cellular growth, differentiation and stress response (p53, Hsp27, NF-{kappa}B). Effects on p53 and Hsp27 implicate function of protein kinase C, the mitogen activated protein kinase pathway, and the cytoskeleton. The precise pattern of expression of these and other proteins can thus serve as molecular markers for TRI exposure and effect in human kidney.

  1. Effects of temperature on trichloroethylene desorption from silica gel and natural sediments. 1. Isotherms

    SciTech Connect

    Werth, C.J.; Reinhard, M. [Stanford Univ., CA (United States)] [Stanford Univ., CA (United States)

    1997-03-01

    Aqueous phase isotherms were calculated from vapor phase desorption isotherms measured at 15, 30, and 60{degree}C for trichloroethylene on a silica gel, an aquifer sediment, a soil, a sand fraction, and a clay and silt fraction, all at 100% relative humidity. Isosteric heats of adsorption (Q{sub st}(q)) were calculated as a function of the sorbed concentration, q, and examined with respect to the following mechanisms: adsorption on water wet mineral surfaces, sorption in amorphous organic matter (AOM), and adsorption in hydrophobic micropores. Silica gel, sand fraction, and clay and silt fraction 60{degree}C isotherms are characterized by a Freundlich region and a region at very low concentrations where isotherm points deviate from log-log linear behavior. The latter is designated the non-Freundlich region. For the silica gel, values of Q{sub st}(q) (9.5-45 kJ/mol) in both regions are consistent with adsorption in hydrophobic micropores. For the natural solids, values of Q{sub st}(q) in the Freundlich regions are less than or equal to zero and are consistent with sorption on water wet mineral surfaces and in AOM. In the non-Freundlich regions, diverging different temperature isotherms with decreasing q and Q{sub st}(q) value of 34 kJ/mol for the clay and silt fraction suggest that adsorption is occurring in hydrophobic micropores. The General Adsorption Isotherm is used to capture this adsorption heterogeneity. 57 refs., 5 figs., 2 tabs.

  2. Identification of antigenic proteins associated with trichloroethylene-induced autoimmune disease by serological proteome analysis

    SciTech Connect

    Liu Jianjun; Xing Xiumei; Huang Haiyan; Jiang Yingzhi; He Haowei; Xu Xinyun; Yuan Jianhui; Zhou Li; Yang Linqing [Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, No. 21, Rd 1st Tianbei, 518020 Shenzhen (China); Zhuang Zhixiong, E-mail: bio-research@hotmail.co [Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, No. 21, Rd 1st Tianbei, 518020 Shenzhen (China)

    2009-11-01

    Although many studies indicated that trichloroethylene (TCE) could induce autoimmune diseases and some protein adducts were detected, the proteins were not identified and mechanisms remain unknown. To screen and identify autoantigens which might be involved in TCE-induced autoimmune diseases, three groups of sera were collected from healthy donors (I), patients suffering from TCE-induced exfoliative dermatitis (ED) (II), and the healed ones (III). Serological proteome analysis (SERPA) was performed with total proteins of TCE-treated L-02 liver cells as antigen sources and immunoglobins of the above sera as probes. Highly immunogenic spots (2-fold or above increase compared with group I) in group II and III were submitted to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and tandem mass spectrometry sequencing. Western blot analysis was followed using commercial antibodies and individual serum. Six proteins were identified. Among them, Enoyl Coenzyme A hydratase peroxisoma 1 and lactate dehydrogenase B only showed stronger immunogenicity for group II sera, while Purine nucleoside phosphorylase, ribosomal protein P0 and proteasome activator subunit1 isoform1 also showed stronger immunogenicity for group III sera. Noteworthy, NM23 reacted only with group II sera. Western blot analysis of NM23 expression indicated that all of the individual serum of group II showed immune activity, which confirmed the validity of SERPA result. These findings revealed that there exist autoantibodies in group II and III sera. Besides, autoantibodies of the two stages of disease course were different. These autoantigens might serve as biomarkers to elucidate mechanisms underlying TCE toxicity and are helpful for diagnosis, therapy and prognosis of TCE-induced autoimmune diseases.

  3. Trichloroethylene Hypersensitivity Syndrome Is Potentially Mediated through Its Metabolite Chloral Hydrate

    PubMed Central

    Huang, Yongshun; Xia, Lihua; Wu, Qifeng; Zeng, Zifang; Huang, Zhenlie; Zhou, Shanyu; Jin, Jiachun; Huang, Hanlin

    2015-01-01

    Background We documented previously the entity of trichloroethylene (TCE) hypersensitivity syndrome (THS) in occupational workers. Objectives To identify the culprit causative compound, determine the type of hypersensitivity of THS, and establish a screening test for subjects at risk of THS. Methods TCE and its main metabolites chloral hydrate (CH), trichloroethanol (TCOH) and trichloroacetic acid (TCA) were used as allergens at different concentrations in skin patch tests. The study included 19 case subjects diagnosed with occupational THS, 22 control healthy workers exposed to TCE (exposure >12 weeks), and 20 validation new workers exposed to TCE for <12 weeks free of THS. All subjects were followed-up for 12 weeks after the patch test. Results The highest patch test positive rate in subjects with THS was for CH, followed by TCOH, TCA and TCE. The CH patch test positive rate was 100% irrespective of CH concentrations (15%, 10% and 5%). The TCOH patch test positive rate was concentration-dependent (89.5%, 73.7% and 52.6% for 5%, 0.5% and 0.05%, respectively). Lower patch test positive rates were noted for TCA and TCE. All patch tests (including four allergens) were all negative in each of the 22 control subjects. None of the subjects of the validation group had a positive 15% CH patch test. Conclusions Chloral hydrate seems to be the culprit causative compound of THS and type IV seems to be the major type of hypersensitivity of THS. The CH patch test could be potentially useful for screening workers at risk of THS. PMID:26020924

  4. Evaluating noncancer effects of trichloroethylene: dosimetry, mode of action, and risk assessment.

    PubMed Central

    Barton, H A; Clewell, H J

    2000-01-01

    Alternatives for developing chronic exposure limits for noncancer effects of trichloroethylene (TCE) were evaluated. These alternatives were organized within a framework for dose-response assessment--exposure:dosimetry (pharmacokinetics):mode of action (pharmacodynamics): response. This framework provides a consistent structure within which to make scientific judgments about available information, its interpretation, and use. These judgments occur in the selection of critical studies, internal dose metrics, pharmacokinetic models, approaches for interspecies extrapolation of pharmacodynamics, and uncertainty factors. Potentially limiting end points included developmental eye malformations, liver effects, immunotoxicity, and kidney toxicity from oral exposure and neurological, liver, and kidney effects by inhalation. Each end point was evaluated quantitatively using several methods. Default analyses used the traditional no-observed adverse effect level divided by uncertainty factors and the benchmark dose divided by uncertainty factors methods. Subsequently, mode-of-action and pharmacokinetic information were incorporated. Internal dose metrics were estimated using a physiologically based pharmacokinetic (PBPK) model for TCE and its major metabolites. This approach was notably useful with neurological and kidney toxicities. The human PBPK model provided estimates of human exposure doses for the internal dose metrics. Pharmacodynamic data or default assumptions were used for interspecies extrapolation. For liver and neurological effects, humans appear no more sensitive than rodents when internal dose metrics were considered. Therefore, the interspecies uncertainty factor was reduced, illustrating that uncertainty factors are a semiquantitative approach fitting into the organizational framework. Incorporation of pharmacokinetics and pharmacodynamics can result in values that differ significantly from those obtained with the default methods. PMID:10807562

  5. Impact of nanoscale zero valent iron on geochemistry and microbial populations in trichloroethylene contaminated aquifer materials.

    PubMed

    Kirschling, Teresa L; Gregory, Kelvin B; Minkley, Edwin G; Lowry, Gregory V; Tilton, Robert D

    2010-05-01

    Nanoscale zerovalent iron (NZVI) particles are a promising technology for reducing trichloroethylene (TCE) contamination in the subsurface. Prior to injecting large quantities of nanoparticles into the groundwater it is important to understand what impact the particles will have on the geochemistry and indigenous microbial communities. Microbial populations are important not only for nutrient cycling, but also for contaminant remediation and heavy metal immobilization. Microcosms were used to determine the effects of NZVI addition on three different aquifer materials from TCE contaminated sites in Alameda Point, CA, Mancelona, MI, and Parris Island, SC. The oxidation and reduction potential of the microcosms consistently decreased by more than 400 mV when NZVI was added at 1.5 g/L concentrations. Sulfate concentrations decreased in the two coastal aquifer materials, and methane was observed in the presence of NZVI in Alameda Point microcosms, but not in the other two materials. Denaturing gradient gel electrophoresis (DGGE) showed significant shifts in Eubacterial diversity just after the Fe(0) was exhausted, and quantitative polymerase chain reaction (qPCR) analyses showed increases of the dissimilatory sulfite reductase gene (dsrA) and Archaeal 16s rRNA genes, indicating that reducing conditions and hydrogen created by NZVI stimulate both sulfate reducer and methanogen populations. Adding NZVI had no deleterious effect on total bacterial abundance in the microcosms. NZVI with a biodegradable polyaspartate coating increased bacterial populations by an order of magnitude relative to controls. The lack of broad bactericidal effect, combined with the stimulatory effect of polyaspartate coatings, has positive implications for NZVI field applications. PMID:20350000

  6. Statistical analysis of Fisher et al. PBPK model of trichloroethylene kinetics.

    PubMed Central

    Bois, F Y

    2000-01-01

    Two physiologically based pharmacokinetic models for trichloroethylene (TCE) in mice and humans were calibrated with new toxicokinetic data sets. Calibration is an important step in model development, essential to a legitimate use of models for research or regulatory purposes. A Bayesian statistical framework was used to combine prior information about the model parameters with the data likelihood to yield posterior parameter distributions. For mice, these distributions represent uncertainty. For humans, the use of a population statistical model yielded estimates of both variability and uncertainty in human toxicokinetics of TCE. After adjustment of the models by Markov chain Monte Carlo sampling, the mouse model agreed with a large part of the data. Yet, some data on secondary metabolites were not fit well. The posterior parameter distributions obtained for mice were quite narrow (coefficient of variation [CV] of about 10 or 20%), but these CVs might be underestimated because of the incomplete fit of the model. The data fit, for humans, was better than for mice. Yet, some improvement of the model is needed to correctly describe trichloroethanol concentrations over long time periods. Posterior uncertainties about the population means corresponded to 10-20% CV. In terms of human population variability, volumes and flows varied across subject by approximately 20% CV. The variability was somewhat higher for partition coefficients (between 30 and 40%) and much higher for the metabolic parameters (standard deviations representing about a factor of 2). Finally, the analysis points to differences between human males and females in the toxicokinetics of TCE. The significance of these differences in terms of risk remains to be investigated. PMID:10807558

  7. Product toxicity and cometabolic competitive inhibition modeling of chloroform and trichloroethylene transformation by methanotrophic resting cells.

    PubMed Central

    Alvarez-Cohen, L; McCarty, P L

    1991-01-01

    The rate and capacity for chloroform (CF) and trichloroethylene (TCE) transformation by a mixed methanotrophic culture of resting cells (no exogenous energy source) and formate-fed cells were measured. As reported previously for TCE, formate addition resulted in an increased CF transformation rate (0.35 day-1 for resting cells and 1.5 day-1 for formate-fed cells) and transformation capacity (0.0065 mg of CF per mg of cells for resting cells and 0.015 mg of CF per mg of cells for formate-fed cells), suggesting that depletion of energy stores affects transformation behavior. The observed finite transformation capacity, even with an exogenous energy source, suggests that toxicity was also a factor. CF transformation capacity was significantly lower than that for TCE, suggesting a greater toxicity from CF transformation. The toxicity of CF, TCE, and their transformation products to whole cells was evaluated by comparing the formate oxidation activity of acetylene-treated cells to that of non-acetylene-treated cells with and without prior exposure to CF or TCE. Acetylene arrests the activity of methane monooxygenase in CF and TCE oxidation without halting cell activity toward formate. Significantly diminished formate oxidation by cells exposed to either CR or TCE without acetylene compared with that with acetylene suggests that the solvents themselves were not toxic under the experimental conditions but their transformation products were. The concurrent transformation of CF and TCE by resting cells was measured, and results were compared with predictions from a competitive-inhibition cometabolic transformation model. The reasonable fit between model predictions and experimental observations was supportive of model assumptions. PMID:1905516

  8. Vertical cross contamination of trichloroethylene in a borehole in fractured sandstone

    USGS Publications Warehouse

    Sterling, S.N.; Parker, B.L.; Cherry, J.A.; Williams, J.H.; Lane, J.W., Jr.; Haeni, F.P.

    2005-01-01

    Boreholes drilled through contaminated zones in fractured rock create the potential for vertical movement of contaminated ground water between fractures. The usual assumption is that purging eliminates cross contamination; however, the results of a field study conducted in a trichloroethylene (TCE) plume in fractured sandstone with a mean matrix porosity of 13% demonstrates that matrix-diffusion effects can be strong and persistent. A deep borehole was drilled to 110 m below ground surface (mbgs) near a shallow bedrock well containing high TCE concentrations. The borehole was cored continuously to collect closely spaced samples of rock for analysis of TCE concentrations. Geophysical logging and flowmetering were conducted in the open borehole, and a removable multilevel monitoring system was installed to provide hydraulic-head and ground water samples from discrete fracture zones. The borehole was later reamed to complete a well screened from 89 to 100 mbgs; persistent TCE concentrations at this depth ranged from 2100 to 33,000 ??g/L. Rock-core analyses, combined with the other types of borehole information, show that nearly all of this deep contamination was due to the lingering effects of the downward flow of dissolved TCE from shallower depths during the few days of open-hole conditions that existed prior to installation of the multilevel system. This study demonstrates that transfer of contaminant mass to the matrix by diffusion can cause severe cross contamination effects in sedimentary rocks, but these effects generally are not identified from information normally obtained in fractured-rock investigations, resulting in potential misinterpretation of site conditions. Copyright ?? 2005 National Ground Water Association.

  9. Removal of trichloroethylene (TCE) contaminated soil using a two-stage anaerobic-aerobic composting technique.

    PubMed

    Ponza, Supat; Parkpian, Preeda; Polprasert, Chongrak; Shrestha, Rajendra P; Jugsujinda, Aroon

    2010-01-01

    The effect of organic carbon addition on remediation of trichloroethylene (TCE) contaminated clay soil was investigated using a two stage anaerobic-aerobic composting system. TCE removal rate and processes involved were determined. Uncontaminated clay soil was treated with composting materials (dried cow manure, rice husk and cane molasses) to represent carbon based treatments (5%, 10% and 20% OC). All treatments were spiked with TCE at 1,000 mg TCE/kg DW and incubated under anaerobic and mesophillic condition (35 degrees C) for 8 weeks followed by continuous aerobic condition for another 6 weeks. TCE dissipation, its metabolites and biogas composition were measured throughout the experimental period. Results show that TCE degradation depended upon the amount of organic carbon (OC) contained within the composting treatments/matrices. The highest TCE removal percentage (97%) and rate (75.06 micro Mole/kg DW/day) were obtained from a treatment of 10% OC composting matrices as compared to 87% and 27.75 micro Mole/kg DW/day for 20% OC, and 83% and 38.08 micro Mole/kg DW/day for soil control treatment. TCE removal rate was first order reaction kinetics. Highest degradation rate constant (k(1) = 0.035 day(- 1)) was also obtained from the 10% OC treatment, followed by 20% OC (k(1) = 0.026 day(- 1)) and 5% OC or soil control treatment (k(1) = 0.023 day(- 1)). The half-life was 20, 27 and 30 days, respectively. The overall results suggest that sequential two stages anaerobic-aerobic composting technique has potential for remediation of TCE in heavy texture soil, providing that easily biodegradable source of organic carbon is present. PMID:20390902

  10. Identification of serum biomarkers for occupational medicamentosa-like dermatitis induced by trichloroethylene using mass spectrometry

    SciTech Connect

    Hong, Wen-Xu; Liu, Wei [Key Laboratory of Modern Toxicology of Shenzhen, Medical Key Laboratory of Guangdong Province, Medical Key Laboratory of Health Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055 (China); Zhang, Yanfang [Shenzhen Prevention and Treatment Center for Occupational Disease, Shenzhen 518001 (China); Huang, Peiwu; Yang, Xifei; Ren, Xiaohu; Ye, Jinbo; Huang, Haiyan [Key Laboratory of Modern Toxicology of Shenzhen, Medical Key Laboratory of Guangdong Province, Medical Key Laboratory of Health Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055 (China); Tang, Haiyan [Shenzhen Prevention and Treatment Center for Occupational Disease, Shenzhen 518001 (China); Zhou, Guifeng [Medical School of Hunan Normal University, Changsha 410006 (China); Huang, Xinfeng; Zhuang, Zhixiong [Key Laboratory of Modern Toxicology of Shenzhen, Medical Key Laboratory of Guangdong Province, Medical Key Laboratory of Health Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055 (China); Liu, Jianjun, E-mail: bio-research@hotmail.com [Key Laboratory of Modern Toxicology of Shenzhen, Medical Key Laboratory of Guangdong Province, Medical Key Laboratory of Health Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055 (China)

    2013-11-15

    Occupational medicamentosa-like dermatitis induced by trichloroethylene (OMLDT) is an autoimmune disease and it has become a serious occupational health hazard. In the present study, we collected fasting blood samples from patients with OMLDT (n = 18) and healthy volunteers (n = 33) to explore serum peptidome patterns. Peptides in sera were purified using weak cation exchange magnetic beads (MB-WCX), and analyzed by matrix-assisted laser desorption ionization time-of-flight-mass spectrometry (MALDI-TOF-MS) and ClinProTools bioinformatics software. The intensities of thirty protein/peptide peaks were significantly different between the healthy control and OMLDT patients. A pattern of three peaks (m/z 2106.3, 2134.5, and 3263.67) was selected for supervised neural network (SNN) model building to separate the OMLDT patients from the healthy controls with a sensitivity of 95.5% and a specificity of 73.8%. Furthermore, two peptide peaks of m/z 4091.61 and 4281.69 were identified as fragments of ATP-binding cassette transporter family A member 12 (ABCA12), and cationic trypsinogen (PRRS1), respectively. Our findings not only show that specific proteomic fingerprints in the sera of OMLDT patients can be served as a differentiated tool of OMLDT patients with high sensitivity and high specificity, but also reveal the novel correlation between OMLDT with ABC transports and PRRS1, which will be of potential value for clinical and mechanistic studies of OMLDT. - Highlights: • Identify 30 differential protein/peptide peaks between OMLDT and healthy control • The test sensitivity and test specificity were 95.5% and 73.8%, respectively. • ABCA12 and PRSS1 were identified as potential biomarkers in OMLDT patients.

  11. Molecular mechanism of trichloroethylene-induced hepatotoxicity mediated by CYP2E1

    SciTech Connect

    Ramdhan, Doni Hikmat; Kamijima, Michihiro; Yamada, Naoyasu; Ito, Yuki; Yanagiba, Yukie; Nakamura, Daichi; Okamura, Ai; Ichihara, Gaku [Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine (Japan); Aoyama, Toshifumi [Department of Metabolic Regulation, Institute of Aging and Adaptation, Shinshu University Graduate School of Medicine (Japan); Gonzalez, Frank J. [Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD (United States); Nakajima, Tamie [Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine (Japan)], E-mail: tnasu23@med.nagoya-u.ac.jp

    2008-09-15

    Cytochrome P450 (CYP) 2E1 was suggested to be the major enzyme involved in trichloroethylene (TRI) metabolism and TRI-induced hepatotoxicity, although the latter molecular mechanism is not fully understood. The involvement of CYP2E1 in TRI-induced hepatotoxicity and its underlying molecular mechanism were studied by comparing hepatotoxicity in cyp2e1{sup +/+} and cyp2e1{sup -/-} mice. The mice were exposed by inhalation to 0 (control), 1000, or 2000 ppm of TRI for 8 h a day, for 7 days, and TRI-hepatotoxicity was assessed by measuring plasma alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities and histopathology. Urinary metabolites of trichloroethanol and trichloroacetic acid (TCA) were considerably greater in cyp2e1{sup +/+} compared to cyp2e1{sup -/-} mice, suggesting that CYP2E1 is the major P450 involved in the formation of these metabolites. Consistent with elevated plasma ALT and AST activities, cyp2e1{sup +/+} mice in the 2000 ppm group showed histopathological inflammation. TRI significantly upregulated PPAR{alpha}, which might function to inhibit NF{kappa}B p50 and p65 signalling. In addition, TRI-induced NF{kappa}B p52 mRNA, and significantly positive correlation between NF{kappa}B p52 mRNA expression and plasma ALT activity levels were observed, suggesting the involvement of p52 in liver inflammation. Taken together, the current study directly demonstrates that CYP2E1 was the major P450 involved in the first step of the TRI metabolism, and the metabolites produced may have two opposing roles: one inducing hepatotoxicity and the other protecting against the toxicity. Intermediate metabolite(s) from TRI to chloral hydrate produced by CYP2E1-mediated oxidation may be involved in the former, and TCA in the latter.

  12. Sarcosine attenuates toluene-induced motor incoordination, memory impairment, and hypothermia but not brain stimulation reward enhancement in mice

    SciTech Connect

    Chan, Ming-Huan [Department of Pharmacology and Toxicology, Tzu Chi University, Hualien, Taiwan (China) [Department of Pharmacology and Toxicology, Tzu Chi University, Hualien, Taiwan (China); Institute of Neuroscience, National Changchi University, Taipei, Taiwan (China); Chung, Shiang-Sheng [Department of Pharmacology and Toxicology, Tzu Chi University, Hualien, Taiwan (China) [Department of Pharmacology and Toxicology, Tzu Chi University, Hualien, Taiwan (China); Department of Pharmacy, Yuli Veterans Hospital, Hualien, Taiwan (China); Stoker, Astrid K.; Markou, Athina [Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA (United States)] [Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA (United States); Chen, Hwei-Hsien, E-mail: hwei@nhri.org.tw [Department of Pharmacology and Toxicology, Tzu Chi University, Hualien, Taiwan (China) [Department of Pharmacology and Toxicology, Tzu Chi University, Hualien, Taiwan (China); Division of Mental Health and Addiction Medicine, Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Miaoli County, Taiwan (China)

    2012-12-01

    Toluene, a widely used and commonly abused organic solvent, produces various behavioral disturbances, including motor incoordination and cognitive impairment. Toluene alters the function of a large number of receptors and ion channels. Blockade of N-methyl-D-aspartate (NMDA) receptors has been suggested to play a critical role in toluene-induced behavioral manifestations. The present study determined the effects of various toluene doses on motor coordination, recognition memory, body temperature, and intracranial self-stimulation (ICSS) thresholds in mice. Additionally, the effects of sarcosine on the behavioral and physiological effects induced by toluene were evaluated. Sarcosine may reverse toluene-induced behavioral manifestations by acting as an NMDA receptor co-agonist and by inhibiting the effects of the type I glycine transporter (GlyT1). Mice were treated with toluene alone or combined with sarcosine pretreatment and assessed for rotarod performance, object recognition memory, rectal temperature, and ICSS thresholds. Toluene dose-dependently induced motor incoordination, recognition memory impairment, and hypothermia and lowered ICSS thresholds. Sarcosine pretreatment reversed toluene-induced changes in rotarod performance, novel object recognition, and rectal temperature but not ICSS thresholds. These findings suggest that the sarcosine-induced potentiation of NMDA receptors may reverse motor incoordination, memory impairment, and hypothermia but not the enhancement of brain stimulation reward function associated with toluene exposure. Sarcosine may be a promising compound to prevent acute toluene intoxications by occupational or intentional exposure. -- Highlights: ? Toluene induces impairments in Rotarod test and novel object recognition test. ? Toluene lowers rectal temperature and ICSS thresholds in mice. ? Sarcosine reverses toluene-induced changes in motor, memory and body temperature. ? Sarcosine pretreatment does not affect toluene-induced reward enhancement.

  13. Evaluation of genotoxicity and oxidative damage in painters exposed to low levels of toluene.

    PubMed

    Moro, Angela M; Brucker, Natália; Charão, Mariele; Bulcão, Rachel; Freitas, Fernando; Baierle, Marília; Nascimento, Sabrina; Valentini, Juliana; Cassini, Carina; Salvador, Mirian; Linden, Rafael; Thiesen, Flávia; Buffon, Andréia; Moresco, Rafael; Garcia, Solange C

    2012-07-01

    Toluene is an organic solvent used in numerous processes and products, including industrial paints. Toluene neurotoxicity and reproductive toxicity are well recognized; however, its genotoxicity is still under discussion, and toluene is not classified as a carcinogenic solvent. Using the comet assay and the micronucleus test for detection of possible genotoxic effects of toluene, we monitored industrial painters from Rio Grande do Sul, Brazil. The putative involvement of oxidative stress in genetic damage and the influences of age, smoking, alcohol consumption, and exposure time were also assessed. Although all biomarkers of toluene exposure were below the biological exposure limits, painters presented significantly higher DNA damage (comet assay) than the control group; however, in the micronucleus assay, no significant difference was observed. Painters also showed alterations in hepatic enzymes and albumin levels, as well as oxidative damage, suggesting the involvement of oxidative stress. According to multiple linear regression analysis, blood toluene levels may account for the increased DNA damage in painters. In summary, this study showed that low levels of toluene exposure can cause genetic damage, and this is related to oxidative stress, age, and time of exposure. PMID:22405974

  14. Complete oxidation of toluene under strictly anoxic conditions by a new sulfate-reducing bacterium.

    PubMed

    Rabus, R; Nordhaus, R; Ludwig, W; Widdel, F

    1993-05-01

    A toluene-degrading sulfate-reducing bacterium, strain Tol2, was isolated from marine sediment under strictly anoxic conditions. Toluene was toxic if applied directly to the medium at concentrations higher than 0.5 mM. To provide toluene continuously at a nontoxic concentration, it was supplied in an inert hydrophobic carrier phase. The isolate had oval, sometimes motile cells (1.2 to 1.4 by 1.2 to 2.0 microns). The doubling time was 27 h. Toluene was completely oxidized to CO2, as demonstrated by measurement of the degradation balance. The presence of carbon monoxide dehydrogenase and formate dehydrogenase indicated a terminal oxidation of acetyl coenzyme A via the CO dehydrogenase pathway. The use of hypothetical intermediates of toluene degradation was tested in growth experiments and adaptation studies with dense cell suspensions. Results do not support a degradation of toluene via one of the cresols or methylbenzoates, benzyl alcohol, or phenylacetate as free intermediate. Benzyl alcohol did not serve as growth substrate; moreover, it was a strong, specific inhibitor of toluene degradation, whereas benzoate utilization was not affected by benzyl alcohol. Sequencing of 16S rRNA revealed a relationship to the metabolically dissimilar genus Desulfobacter and on a deeper level to the genus Desulfobacterium. The new genus and species Desulfobacula toluolica is proposed. PMID:7686000

  15. Complete oxidation of toluene under strictly anoxic conditions by a new sulfate-reducing bacterium.

    PubMed Central

    Rabus, R; Nordhaus, R; Ludwig, W; Widdel, F

    1993-01-01

    A toluene-degrading sulfate-reducing bacterium, strain Tol2, was isolated from marine sediment under strictly anoxic conditions. Toluene was toxic if applied directly to the medium at concentrations higher than 0.5 mM. To provide toluene continuously at a nontoxic concentration, it was supplied in an inert hydrophobic carrier phase. The isolate had oval, sometimes motile cells (1.2 to 1.4 by 1.2 to 2.0 microns). The doubling time was 27 h. Toluene was completely oxidized to CO2, as demonstrated by measurement of the degradation balance. The presence of carbon monoxide dehydrogenase and formate dehydrogenase indicated a terminal oxidation of acetyl coenzyme A via the CO dehydrogenase pathway. The use of hypothetical intermediates of toluene degradation was tested in growth experiments and adaptation studies with dense cell suspensions. Results do not support a degradation of toluene via one of the cresols or methylbenzoates, benzyl alcohol, or phenylacetate as free intermediate. Benzyl alcohol did not serve as growth substrate; moreover, it was a strong, specific inhibitor of toluene degradation, whereas benzoate utilization was not affected by benzyl alcohol. Sequencing of 16S rRNA revealed a relationship to the metabolically dissimilar genus Desulfobacter and on a deeper level to the genus Desulfobacterium. The new genus and species Desulfobacula toluolica is proposed. Images PMID:7686000

  16. Toluene toxicokinetics and metabolism parameters in the rat and guinea pig.

    PubMed

    Campo, P; Blachère, V; Payan, J P; Cossec, B; Ducos, P

    2006-05-01

    Cochlear disruptions induced by toluene were shown in the rat but not in the guinea pig. To better understand the differences between species, three investigations were carried out to study (1) the blood affinity and the pulmonary uptake of the solvent, (2) its clearance and (3) its urinary elimination in both species. The blood affinity of toluene was +44% higher in the rat than in the guinea pig (14.4?g/g versus 10?g/g). Similarly, the pulmonary uptake of toluene was approximately 46.5% more efficient in the rat than in the guinea pig (75.4?g/g versus 40.3?g/g) after 3h inhalation of 1500ppm toluene. Therefore, the physicochemical composition of the blood could explain the difference in the uptake performances between rats and guinea pigs. The clearance of the toluene showed that 10min after an intravenous administration of 400?L of vehicle containing 28?L (43mgkg(-1)) of toluene, the solvent concentration was approximately threefold higher in the rat than in the guinea pig blood. The last experiment was carried out to compare the concentrations of the urinary metabolites. The concentrations of o-cresol, hippuric and benzyl mercapturic acids measured in the urines were different before and after the toluene injection. These data give evidence for large differences of toluene uptake and metabolism between rat and guinea pig. Therefore, it seems reasonable to claim that guinea pigs cochleas are not susceptible to toluene as the blood burden of solvent does not reach the concentration required to induce permanent damages. PMID:21783669

  17. Reproductive endocrine effects of acute exposure to toluene in men and women

    PubMed Central

    Luderer, U.; Morgan, M. S.; Brodkin, C. A.; Kalman, D. A.; Faustman, E. M.

    1999-01-01

    OBJECTIVES: Despite observation of adverse reproductive effects of toluene, including alterations of serum gonadotropins (luteinising hormone (LH) and follicle stimulating hormone (FSH)) in humans, little is known of the mechanism of toxicity. The hypothesis was tested that toluene acutely suppresses pulsatile gonadotropin secretion by measuring LH and FSH at frequent intervals during controlled exposure to toluene. METHODS: Women in the follicular and luteal phases of the menstrual cycle and men were randomised to inhale filtered air with or without 50 ppm toluene through a mouthpiece for 3 hours (19% of the OSHA permissible exposure limit). Blood was sampled by intravenous catheter at 20 minute intervals for 3 hours before, 3 hours during, and 3 hours after exposure. Plasma LH, FSH, and testosterone were measured. Pulse amplitude, pulse frequency, and mean concentrations of LH and FSH for each of the 3 hour periods before, during and after exposure to toluene versus sham exposure were calculated with the ULTRA pulse detection program and compared by analysis of variance (ANOVA) with repeated measures. RESULTS: In men mean concentrations of LH showed a significant interaction (p < 0.05) between exposure and sampling period, with a greater LH decline during exposure to toluene than sham exposure. However, there was no concomitant effect on testosterone concentrations. The LH pulse frequency of women in the luteal phase showed a trend towards a significant interaction between exposure and sampling period (p = 0.06), with a greater decline in pulse frequency during exposure to toluene than sham exposure. There were no other significant effects of exposure to toluene. CONCLUSIONS: Three hour exposure to 50 ppm toluene did not result in abnormal episodic LH or FSH secretion profiles, however, subtle effects on LH secretion in men and women in the luteal phase were found. The clinical relevance of these effects is unclear, indicating the need for further study of reproductive function in exposed workers.   PMID:10658543

  18. Biotechnical approach to studies on the biodegradation of chlorobenzenes and trichloroethylene. Final report, 1 September 1988-31 May 1992

    SciTech Connect

    Gibson, D.T.

    1992-10-01

    The absolute stereochemistry of the chiral dihydrodiols formed from ortho- and meta-dichlorobenzene were determined. Both diols were found to be enantiomerically pure with 1S,2S absolute configuration. Toluene-grown cells of Pseudomonas putida F1 and Pseudomonas sp. JS150 were found to oxidize 2- and 3-nitrotoluene to benzyl alcohols. These results represent the first demonstration of the oxidation of a methyl substituent by toluene dioxygenase. Both organisms oxidized 4-nitrotoluene to 2-methyl-5-nitrophenol and 3-methyl-6-nitrocatechol. The significance of these unexpected results was evaluated.

  19. Inhaled toluene produces pentobarbital-like discriminative stimulus effects in mice

    SciTech Connect

    Rees, D.C.; Coggeshall, E.; Balster, R.L.

    1985-10-07

    The abuse of volatile solvents may be due to their ability to produce an intoxication similar to that produced by classical central nervous system depressants such as the barbiturates and ethanol. To evaluate this hypothesis, mice were trained to discriminate pentobarbital from saline injections in a two-lever operant task. Stimulus generalization was examined following 20-min inhalation exposures to toluene (300-5400 ppm). In 8 of 10 subjects, pentobarbital-lever responding occurred following toluene exposure indicating an overlap in the discriminative stimulus properties of toluene and pentobarbital.

  20. DIFFICULTY OF MODE OF ACTION DETERMINATION FOR TRICHLOROETHYLENE: AN EXAMPLE OF COMPLEX INTERACTIONS OF METABOLITES AND OTHER CHEMICAL EXPOSURES (Journal Article)

    EPA Science Inventory

    The mode(s) of action (MOA) of a pollutant for adverse health effects may be dependent on the mixture of metabolites resulting from exposure to a single agent and may also be affected by co-exposure to pollutants that have similar targets or affected pathways. Trichloroethylene ...

  1. The atmospheric release of benzene, toluene, ethylbenzene, and xylene from contaminated soils

    E-print Network

    Ramsey, Ronald Roland

    1993-01-01

    for the remediation of gasoline contaminated soils. Excavation and removal of soils containing hydrocarbons is the most widely used remediation technique because of immediate and total site cleanup. Benzene, toluene, ethylbenzene, and xylene (BTEX) combined are from...

  2. Oxidation of nitrotoluenes by toluene dioxygenase: Evidence for a monooxygenase reaction

    SciTech Connect

    Robertson, J.B.; Spain, J.C. (Air Force Civil Engineering Support Agency, Tyndall Air Force Base, FL (United States)); Haddock, J.D.; Gibson, D.T. (Univ. of Iowa, Iowa City (United States))

    1992-08-01

    Pseudomonas putida F1 and Pseudomonas sp. strain JS150 initiate toluene degradation by incorporating molecular oxygen into the aromatic nucleus to form cis-1,2-dihydroxy-3-methylcyclohexa-3,5-diene. When toluene-grown cells were incubated with 2- and 3-nitrotoluene, the major products identified were 2- and 3-nitrobenzyl alcohol, respectively. The same cells oxidized 4-nitrotoluene to 2-methyl-5-nitrophenol and 3-methyl-6-nitrocatechol. Escherichia coli JM109(pDTG601), which contains the toluene dioxygenase genes from P. putida F1 under the control of the tac promoter, oxidized the isomeric nitrotoluenes to the same metabolites as those formed by P. putida F1 and Pseudomonas sp. strain JS150. These results extend the range of substrates known to be oxidized by this versatile enzyme and demonstrate for the first time that toluene dioxygenase can oxidize an aromatic methyl substituent.

  3. Exposure of workers to a mixture of toluene and xylenes. II. Effects.

    PubMed Central

    Chen, Z; Liu, S J; Cai, S X; Yao, Y M; Yin, H; Ukai, H; Uchida, Y; Nakatsuka, H; Watanabe, T; Ikeda, M

    1994-01-01

    The health effects of exposure to a mixture of toluene and xylene isomers was studied on the fourth or fifth days of a working week in factories in China. The study population comprised 233 subjects (122 men and 111 women), who were exposed to the time weighted geometric mean (maximum) concentrations of toluene (3 (203) ppm) and xylenes (4 (103) ppm). For comparison, 241 non-exposed controls (116 men and 125 women) were recruited from the same regions. The prevalence of some subjective symptoms significantly increased in the exposed population, and the symptom profiles were similar to those found after exposure to toluene or xylenes alone. Haematology and serum biochemistry did not show notable changes. It seems reasonable to conclude that the effects of the toxicities of toluene and xylenes in combination are additive. PMID:8124463

  4. TOXICITY OF AROMATIC AEROBIC BIOTRANSFORMATION PRODUCTS OF TOLUENE TO HELA CELLS

    EPA Science Inventory

    Petroleum contamination of groundwater is widely recognized as a serious environmental problem. Toluene (methylbenzene) occurs naturally in crude oil and is commonly found as a contaminant in the subsurface as a result of waste disposal and storage activities. Biological transf...

  5. 75 FR 52768 - Withdrawal of Approval of New Animal Drug Applications; Dichlorophene and Toluene Capsules

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-27

    ...withdrawing approval of two new animal drug applications (NADAs) for use of dichlorophene and toluene deworming capsules for cats and dogs. In a final rule published elsewhere in this issue of the Federal Register, FDA is amending the regulations to...

  6. The atmospheric release of benzene, toluene, ethylbenzene, and xylene from contaminated soils 

    E-print Network

    Ramsey, Ronald Roland

    1993-01-01

    for the remediation of gasoline contaminated soils. Excavation and removal of soils containing hydrocarbons is the most widely used remediation technique because of immediate and total site cleanup. Benzene, toluene, ethylbenzene, and xylene (BTEX) combined are from...

  7. A Flexible Glutamine Regulates the Catalytic Activity of Toluene o-Xylene Monooxygenase

    E-print Network

    Wrobel, Alexandra T.

    Toluene/o-xylene monooxygenase (ToMO) is a bacterial multicomponent monooxygenase capable of oxidizing aromatic substrates. The carboxylate-rich diiron active site is located in the hydroxylase component of ToMO (ToMOH), ...

  8. REDUCTIVE BIOTRANSFORMATION OF TETRACHLOROETHENE TO ETHENE DURING ANAEROBIC DEGRADATION OF TOLUENE: EXPERIMENTAL EVIDENCE AND KINETICS

    EPA Science Inventory

    Reductive biotransformation of tetrachloroethene (PCE) to ethene occurred during anaerobic degradation of toluene in an enrichment culture. Ethene was detected as a dominant daughter product of PCE dechlorination with negligible accumulation of other partially chlorinated ethenes...

  9. 40 CFR 721.1850 - Toluene sulfonamide bis-phe-nol A epoxy adduct.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...and significant new uses subject to reporting. (1) The chemical substance identified generically as toluene sulfonamide bisphenol A epoxy adduct (PMN P-90-113) is subject to reporting under this section for the significant new uses described in...

  10. 40 CFR 721.1850 - Toluene sulfonamide bis-phe-nol A epoxy adduct.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...and significant new uses subject to reporting. (1) The chemical substance identified generically as toluene sulfonamide bisphenol A epoxy adduct (PMN P-90-113) is subject to reporting under this section for the significant new uses described in...

  11. Effect of Trichloroethylene on Minimum Energy Requirement and Gene Expression in a Nutrient Limited Methanotroph

    NASA Astrophysics Data System (ADS)

    Colwell, F. S.; Delwiche, M.; Newby, D.; Wood, A.; Bingham, M.; Crawford, R. L.; Strap, J. L.

    2005-12-01

    Monitored natural attenuation (MNA) of contaminant plumes requires data for predictive modeling of plume destruction including the rates of microbial contaminant degradation. Methanotrophs are implicated in co-metabolism of trichloroethylene (TCE) in the Snake River Plain aquifer (SRPA) where MNA is the selected method of treatment. Our research aims to: 1) determine realistic activities of these cells when starved, a condition typical of subsurface microbes, and 2) detect the genes that are transcribed when methanotrophs experience stress or starvation related to TCE exposure and conditions in the subsurface. Methylosinus trichosporium OB3b (OB3b), a model methanotroph, was starved in a biomass recycle reactor and soluble methane monooxygenase (sMMO) activities determined, with and without TCE exposure (ca. 100 ?g TCE/L). Starved methanotrophs, present at 3 x 109 cells/mL in the reactor, consumed methane at 0.001 fmoles of methane/cell/day and gradually increased sMMO activities when exposed to higher methane concentrations. sMMO activities of starved OB3b cells exposed to TCE were indistinguishable from cells that were not exposed over brief (one day) periods. The sequences of eight genes, known to code for starvation/stress proteins, were retrieved from phylogenetic relatives (?-proteobacteria) of OB3b. Primers (18-22 bp) were designed from conserved regions in the consensus sequences to obtain OB3b-specific sequences for the eight genes. Primers for the starvation/stress genes successfully amplified all eight genes in OB3b using PCR. Our plan is to clone and sequence these OB3b genes then synthesize oligonucleotides that can be added to a microarray that includes targets for OB3b structural and regulatory gene sequences as a prelude to evaluating gene expression under different nutrient availability conditions and in the presence and absence of TCE. Incorporation of starvation-based rate estimates into natural attenuation models of contaminant plumes will permit estimates of the fraction of TCE natural attenuation that can be attributed to methanotrophic co-metabolism in a given aquifer system.

  12. Al 2O 3-supported transition-metal oxide catalysts for catalytic incineration of toluene

    Microsoft Academic Search

    Ching-Huei Wang

    2004-01-01

    The catalytic incineration of toluene over ?-Al2O3-supported transition-metal oxide catalysts in the temperature range of 200–380 °C was investigated employing a fixed bed flow reactor. CuO\\/?-Al2O3 was found to be the most active of seven catalysts tested. Using this catalyst with different wt% Cu in the incineration of toluene, we found that the optimal Cu content was 5 wt%. X-ray

  13. Study of hydroxylation of benzene and toluene using a micro-DBD plasma reactor

    Microsoft Academic Search

    H. Sekiguchi; M. Ando; H. Kojima

    2005-01-01

    The hydroxylation behaviour of benzene and toluene were studied using a micro-plasma reactor, where an atmospheric non-thermal plasma was generated by a dielectric barrier discharge (DBD). The results indicated that oxidation products primarily consisted of phenol and C4-compounds for benzene hydroxylation, whereas cresol, benzaldehyde, benzylalcohol and C4-compounds were detected for toluene hydroxylation. By taking into consideration the reaction mechanism in

  14. Toluene and ethylbenzene oxidation by purified naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816-4

    SciTech Connect

    Lee, K.; Gibson, D.T. [Univ. of Iowa, Iowa City, IA (United States)

    1996-09-01

    Naphthalene dioxygenase (NDO) catalyzes the first reaction in the aerobic catabolism of naphthalene by Pseudomonas sp strain NCIB 9816-4. Studies suggest that the enzyme may oxidize aromatic hydrocarbons such as toluene and ethylbenzene at the alkyl substituents rather than the aromatic nucleus. This paper reports on multiple pathways for the oxidation of the methyl and thyl groups of toluene and ethylbenzene by NDO. 47 refs., 6 figs., 3 tabs.

  15. Phototrophic utilization of toluene under anoxic conditions by a new strain of Blastochloris sulfoviridis

    Microsoft Academic Search

    Karsten Zengler; Johann Heider; Ramon Rosselló-Mora; Friedrich Widdel

    1999-01-01

    The capacity of anoxygenic phototrophic bacteria to utilize aromatic hydrocarbons was investigated in enrichment cultures\\u000a with toluene. When mineral medium with toluene (provided in an inert carrier phase) was inoculated with activated sludge and\\u000a incubated under infrared illumination (> 750 nm), a red-to-brownish culture developed. Agar dilution series indicated the\\u000a dominance of two types of phototrophic bacteria. One type formed

  16. Toluene 2-monooxygenase-dependent growth of Burkholderia cepacia G4/PR1 on diethyl ether

    SciTech Connect

    Hur, H.G.; Newman, L.M.; Wackett, L.P.; Sadowsky, M.J. [Univ. of Minnesota, St. Paul, MN (United States)

    1997-04-01

    There is considerable interest in the biodegradation of solvents and fuel additives such as diethyl ether and tert-butyl methyl either. The present study investigated if toluene 2-monooxygenase would allow Burkholderia cepacia G4/PR1 to grow on either compounds via novel metabolic pathways. In addition, the role of enzyme induction in allowing growth on compounds not resembling toluene or phenol was studied. 29 refs., 2 figs., 2 tabs.

  17. Influence of cigarette smoking on the toxicokinetics of toluene in humans

    Microsoft Academic Search

    Ewa Wigaeus Hjelm; Per H. Näslund; Maria Wallén

    1988-01-01

    To study the influence of cigarette smoking on the toxicokinetics of toluene, 10 habitual smokers who intended to stop smoking were exposed to toluene vapor (3.2 mmol\\/m, 4 h) at three different exposure occasions: (I) while the smoking habit was still ongoing, and (II and III) 1 and 3–4 wk, respectively, after the day at which the smoking habit was

  18. Possible involvement of toluene-2,3-dioxygenase in defluorination of 3-fluoro-substituted benzenes by toluene-degrading Pseudomonas sp. strain T-12

    SciTech Connect

    Renganathan, V. (Smith Kline and French Laboratories, King of Prussia, PA (USA))

    1989-02-01

    Pseudomonas sp. strain T-12 cells in which the toluene-degradative pathway enzymes have been induced can transform many 3-fluoro-substituted benzenes to the corresponding 2,3-catechols with simultaneous elimination of the fluorine substituent as inorganic fluoride. Substrates for this transformation included 3-fluorotoluen, 3-fluorotrifluorotuluene, 3-fluorohalobenzenes, 3-fluoroanisole, and 3-fluorobenzonitrile. While 3-fluorotoluene and 3-fluoroaniole produced only defluorinated catechols, other substrates generated catechol products with and without the fluorine substituent. The steric size of the C-1 substituent affected the ratio of defluorinated to fluorinated catechols formed from a substrate. A mechanism for the defluorination reaction involving toluene-2,3-dioxygenase is proposed.

  19. Impact of coexposure on toluene biomarkers in rats.

    PubMed

    Cosnier, Frédéric; Nunge, Hervé; Brochard, Céline; Burgart, Manuella; Rémy, Aurélie; Décret, Marie-Josèphe; Cossec, Benoît; Campo, Pierre

    2014-03-01

    1.?Toluene (TOL) is widely used in industry. Occupational exposure to TOL is commonly assessed using TOL in blood, hippuric acid and ortho-cresol. Levels of these biomarkers may depend on factors potentially interfering with TOL biotransformation, such as the presence of other solvents in the workplace. Mercapturic acids (MAs) could be an alternative to the "traditional" TOL biomarkers. 2.?This study aims (1) to investigate in rat the effects of an exposure to vapours mixtures on the TOL metabolism, and (2) to assess how well MAs performed in these contexts compared to the traditional TOL biomarkers. 3.?Rats were exposed by inhalation to binary mixtures of TOL with n-butanol (BuOH), ethyl acetate (EtAc), methyl ethyl ketone (MEK) or xylenes (XYLs); biological exposure indicators were then measured. 4.?Depending on the compounds in the mixture and their concentrations, TOL metabolism was accelerated (with BuOH), unchanged (with EtAc) or inhibited (with XYLs and MEK). Inhibition leads to an increase in blood TOL concentrations, even at authorized atmospheric concentrations, which may potentiate the effect of TOL. 5.?MAs excretions are little affected by coexposure scenarios, their levels correlating well with atmospheric TOL levels. They could thus be suitable bioindicators of atmospheric TOL exposure. PMID:24015909

  20. Screening-level human health risk assessment of toluene and dibutyl phthalate in nail lacquers.

    PubMed

    Kopelovich, Luda; Perez, Angela L; Jacobs, Neva; Mendelsohn, Emma; Keenan, James J

    2015-07-01

    Toluene and dibutyl phthalate (DBP) are found in many consumer products, including cosmetics, synthetic fragrances, and nail polish. In 2012, the California Environmental Protection Agency evaluated 25 nail products and found that 83% of the products that claimed to be toluene-free contained toluene at concentrations ranging up to 190,000?ppm, and 14% of the products that claimed to be DBP-free contained DBP at concentrations ranging up to 88,000?ppm. We conducted a preliminary, screening-level analysis of the potential toluene and DBP-related health risks to consumers and professionals based on the medium and maximum concentrations of toluene and DBP presented in the 2012 report and evaluated dermal and inhalation exposure to a salon patron, nail technician, and home user. We concluded that the maximum toluene concentration for the technician and home user scenarios exceeded the California MADL, but the estimated air concentrations did not exceed the Federal or Cal OSHA PEL. The MADL for DBP was exceeded for all user scenarios at both the median and maximum concentrations. Using these highly conservative assumptions, exposures above regulatory limits could possibly occur during routine use of nail products; further research is needed in order to evaluate potential human health risks. PMID:25865937

  1. Liquid Phase adsorption kinetics and equilibrium of toluene by novel modified-diatomite.

    PubMed

    Sheshdeh, Reza Khalighi; Abbasizadeh, Saeed; Nikou, Mohammad Reza Khosravi; Badii, Khashayar; Sharafi, Mohammad Sadegh

    2014-01-01

    The adsorption equilibria of toluene from aqueous solutions on natural and modified diatomite were examined at different operation parameters such as pH, contact time, initial toluene concentration was evaluated and optimum experimental conditions were identified. The surface area and morphology of the nanoparticles were characterized by SEM, BET, XRD, FTIR and EDX analysis. It was found that in order to obtain the highest possible removal of toluene, the experiments can be carried out at pH?6, temperature 25°C, an agitation speed of 200 rpm, an initial toluene concentration of 150 mg/L, a centrifugal rate of 4000 rpm, adsorbent dosage?=?0.1 g and a process time of 90 min. The results of this work show that the maximum percentage removal of toluene from aqueous solution in the optimum conditions for NONMD was 96.91% (145.36 mg/g). Furthermore, under same conditions, the maximum adsorption of natural diatomite was 71.45% (107.18 mg/g). Both adsorption kinetic and isotherm experiments were carried out. The experimental data showed that the adsorption follows the Langmuir model and Freundlich model on natural and modified diatomite respectively. The kinetics results were found to conform well to pseudo-second order kinetics model with good correlation. Thus, this study demonstrated that the modified diatomite could be used as potential adsorbent for removal of toluene from aqueous solution. PMID:25614826

  2. Bioaugmentation of the phyllosphere for the removal of toluene from indoor air.

    PubMed

    De Kempeneer, L; Sercu, B; Vanbrabant, W; Van Langenhove, H; Verstraete, W

    2004-04-01

    The removal of airborne toluene by means of the phyllosphere of Azalea indica augmented with a toluene-degrading enrichment culture of Pseudomonas putida TVA8 was studied. The 95% disappearance time [DT95%; the time in which an initial toluene concentration of 90 ppmv (339 mg.m(3)) was removed in a batch experiment] was 75 h for Azalea plants. Under the same experimental conditions, DT95% of inoculated Azalea plants decreased remarkably to about 27 h. Subsequent additions of toluene further increased the removal efficiency of the bioaugmented system (DT95% decreased by a factor of four). A decrease in DT95% was also recorded after repeated incubations of non-inoculated plants, but the toluene-removal rate was remarkably low, compared with the inoculated plants. Hence, inoculation of the leaf surface appeared essential for obtaining rapid removal rates. It was not possible to obtain comparable and sustained removal of airborne toluene by inoculating artificial plant surfaces. This is, to our knowledge, the first report on bioaugmentation of the leaf surface of plants to remove gaseous pollutants from air. The results presented are promising and could be of great practical importance in the field of indoor air pollution control. PMID:12910328

  3. Which Hydrogen Atom of Toluene Protonates PAH molecules in (+)-Mode APPI MS Analysis?

    NASA Astrophysics Data System (ADS)

    Ahmed, Arif; Ghosh, Manik Kumer; Choi, Myung Chul; Choi, Cheol Ho; Kim, Sunghwan

    2013-03-01

    A previous study (Ahmed, A. et al., Anal. Chem. 84, 1146-1151( 2012) reported that toluene used as a solvent was the proton source for polyaromatic hydrocarbon compounds (PAHs) that were subjected to (+)-mode atmospheric-pressure photoionization. In the current study, the exact position of the hydrogen atom in the toluene molecule (either a methyl hydrogen or an aromatic ring hydrogen) involved in the formation of protonated PAH ions was investigated. Experimental analyses of benzene and anisole demonstrated that although the aromatic hydrogen atom of toluene did not contribute to the formation of protonated anthracene, it did contribute to the formation of protonated acridine. Thermochemical data and quantum mechanical calculations showed that the protonation of anthracene by an aromatic ring hydrogen atom of toluene is endothermic, while protonation by a methyl hydrogen atom is exothermic. However, protonation of acridine by either an aromatic ring hydrogen or a methyl hydrogen atom of toluene is exothermic. The different behavior of acridine and anthracene was attributed to differences in gas-phase basicity. It was concluded that both types of hydrogen in toluene can be used for protonation of PAH compounds, but a methyl hydrogen atom is preferred, especially for non-basic compounds.

  4. Effects of the abused inhalant toluene on the mesolimbic dopamine system

    PubMed Central

    Woodward, John J.; Beckley, Jacob

    2014-01-01

    Toluene is a representative member of a class of inhaled solvents that are voluntarily used by adolescents and adults for their euphorigenic effects. Research into the mechanisms of action of inhaled solvents has lagged behind that of other drugs of abuse despite mounting evidence that these compounds exert profound neurobehavioral and neurotoxicological effects. Results from studies carried out by the authors and others suggest that the neural effects of inhalants arise from their interaction with a discrete set of ion channels that regulate brain activity. Of particular interest is how these interactions allow toluene and other solvents to engage portions of an addiction neurocircuitry that includes midbrain and cortical structures. In this review, we focus on the current state of knowledge regarding toluene’s action on midbrain dopamine neurons, a key brain region involved in the initial assessment of natural and drug-induced rewards. Findings from recent studies in the authors’ laboratory show that brief exposures of adolescent rats to toluene vapor induce profound changes in markers of glutamatergic plasticity in VTA DA neurons. These changes are restricted to VTA DA neurons that project to limbic structures and are prevented by transient activation of the medial prefrontal cortex prior to toluene exposure. Together, these data provide the first evidence linking the voluntary inhalation of solvents to changes in reward –sensitive dopamine neurons. PMID:25360326

  5. Uptake of toluene and ethylbenzene by plants: removal of volatile indoor air contaminants.

    PubMed

    Sriprapat, Wararat; Suksabye, Parinda; Areephak, Sirintip; Klantup, Polawat; Waraha, Atcharaphan; Sawattan, Anuchit; Thiravetyan, Paitip

    2014-04-01

    Air borne uptake of toluene and ethylbenzene by twelve plant species was examined. Of the twelve plant species examined, the highest toluene removal was found in Sansevieria trifasciata, while the ethylbenzene removal from air was with Chlorophytum comosum. Toluene and ethylbenzene can penetrate the plant?s cuticle. However, the removal rates do not appear to be correlated with numbers of stomata per plant. It was found that wax of S. trifasciata and Sansevieria hyacinthoides had greater absorption of toluene and ethylbenzene, and it contained high hexadecanoic acid. Hexadecanoic acid might be involved in toluene and ethylbenzene adsorption by cuticles wax of plants. Chlorophyll fluorescence analysis or the potential quantum yield of PSII (Fv/Fm) in toluene exposed plants showed no significant differences between the control and the treated plants, whereas plants exposed to ethylbenzene showed significant differences or those parameters, specifically in Dracaena deremensis (Lemon lime), Dracaena sanderiana, Kalanchoe blossfeldiana, and Cordyline fruticosa. The Fv/Fm ratio can give insight into the ability of plants to tolerate (indoor) air pollution by volatile organic chemicals (VOC). This index can be used for identification of suitable plants for treating/sequestering VOCs in contaminated air. PMID:24530730

  6. Biological treatment characteristics of benzene and toluene in a biofilter packed with cylindrical activated carbon.

    PubMed

    Li, G W; Hu, H Y; Hao, J M; Zhang, H Q

    2002-01-01

    The biodegradation of toluene and benzene in a biofilter using cylindrical activated carbon as the filler materials was studied. Three gas low rates, i.e. 0.25, 0.50 and 0.75 m3/h, corresponding to empty bed gas residence of 75, 37.5 and 25 s, respectively, and total organic load lower than 400 g/m3 x h were tested. The biofilter proved to be highly efficient in biodegradation of toluene and benzene, and toluene was more easily degraded than benzene. When each inlet load was lower than 150 g/m3 x h, removal rate increased with inlet load and reached a maximum, which was 150 and 120 g/m(-3) x h for toluene and benzene, respectively. For inlet load higher than the maximum removal capacity conditions, the removal rate decreased with inlet load. Carbon dioxide concentration profile through the biofilter revealed that the mass ratios of carbon dioxide produced to the toluene and benzene removed were 2.15 g(CO2)/g(toluene) and 1.67 g(CO2)/g(benzene), which furthermore, confirmed the biodegradation performance in biofilter. The observation of biotic community demonstrated that the microbes consisted of bacillus, spore bacillus and fungi, of which the spore bacillus was dominant. PMID:12523732

  7. BIOVENTING OF CHLORINATED SOLVENTS FOR GROUND-WATER CLEANUP THROUGH BIOREMEDIATION

    EPA Science Inventory

    Chlorinated solvents such as tetrachloroethylene, trichloroethylene, carbon tetrachloride, chloroform, 1,2-dichloroethane, and dichloromethane (methylene chloride) can exist in contaminated subsurface material as (1) the neat oil, (2) a component of a mixed oily waste, (3) a solu...

  8. Applications of Monitored Natural Attenuation in the USA (Presentation)

    EPA Science Inventory

    Monitored Natural Attenuation (MNA) is widely applied in the USA to control the risk associated with ground water contamination from chlorinated solvents such a tetrachloroethylene (PCE) and trichloroethylene (TCE). MNA relies on the natural processes of degradation, sorption an...

  9. Applications of Monitored Natural Attenuation in the USA (Abstract)

    EPA Science Inventory

    Monitored Natural Attenuation (MNA) is widely applied in the USA to control the risk associated with ground water contamination from chlorinated solvents such a tetrachloroethylene (PCE) and trichloroethylene (TCE). MNA relies on the natural processes of degradation, sorption an...

  10. IN-PLACE REGENERATION OF SVE LOADED GAC USING FENTON'S REAGENTS

    EPA Science Inventory

    Ten out of the 25 most frequently detected groundwater contaminants at hazardous waste sites are chlorinated volatile organic compounds (VOCs) 1 . Trichloroethylene (TCE) and tetrachloroethylene (PCE) are among the top three 1 . Granular activated carbon (GAC) adsorption is w...

  11. IN-PLACE REGENERATION OF SVE LOADED GAC USING FENTON'S REAGENTS

    EPA Science Inventory

    Ten out of the 25 most frequently detected groundwater contaminants at hazardous waste sites are chlorinated volatile organic compounds (VOCs) 1. Trichloroethylene (TCE) and tetrachloroethylene (PCE) are among the top three 1. Granular activated carbon (GAC) adsorption is widel...

  12. Henry's law constants and micellar partitioning of volatile organic compounds in surfactant solutions

    SciTech Connect

    Vane, L.M.; Giroux, E.L.

    2000-02-01

    Partitioning of volatile organic compounds (VOCs) into surfactant micelles affects the apparent vapor-liquid equilibrium of VOCs in surfactant solutions. This partitioning will complicate removal of VOCs from surfactant solutions by standard separation processes. Headspace experiments were performed to quantify the effect of four anionic surfactants and one nonionic surfactant on the Henry's law constants of 1,1,1-trichloroethane, tirchloroethylene, toluene, and tetrachloroethylene at temperatures ranging from 30 to 60 C. Although the Henry's law constant increased markedly with temperature for all solutions, the amount of VOC in micelles relative to that in the extramicellar region was comparatively insensitive to temperature. The effect of adding sodium chloride and isopropyl alcohol as consolutes also was evaluated. Significant partitioning of VOCs into miscelles was observed, with the micellar partitioning coefficient (tendency to partition from water into mecelle) increasing according to the following series: trichloroethane < trichloroethylene < toluene < tetrachloroethylene. The addition of surfactant was capable of reversing the normal sequence observed in Henry's law constants for these four VOCs.

  13. Albumin adducts in plasma from workers exposed to toluene diisocyanate.

    PubMed

    Lind, P; Dalene, M; Lindström, V; Grubb, A; Skarping, G

    1997-02-01

    Desalted plasma from a 2,4- and 2,6-toluene diisocyanate (2,4- and 2,6-TDI) exposed worker at a factory producing flexible polyurethane foam was separated and fractionated into 200 fractions using ion-exchange chromatography followed by a gel-filtration separation and fractionation into 59 fractions. The corresponding amines (to the isocyanates), 2,4- and 2,6-toluenediamine (2,4- and 2,6-TDA), were determined in each fraction after sulfuric acid hydrolysis as pentafluoropropionic anhydride derivatives by capillary gas chromatography and chemical ionisation mass spectrometry monitoring negative ions. The ion exchange fractions containing TDA (81-115) were added together and the solution was separated and fractionated on the gel-filtration column. The fractions 81-115 contained 84 and 72% of 2,4- and 2,6-TDA, respectively, as compared to the unfractionated plasma. The gel filtration fractions 22-27 contained 107 and 119% of 2,4- and 2,6-TDA, respectively, as compared to the amounts in the ion exchange fractions (81-115). Agarose gel-electrophoresis and electroimmunoassay demonstrated that albumin, 2,4- and 2,6-TDA co-eluted in both ion-exchange and gel-filtration chromatography. Quantitative determination of albumin, 2,4- and 2,6-TDA also demonstrated that these components co-eluted using albumin-immunosorption chromatography. In addition, studies of affinity isolated IgG revealed that this fraction was devoid of 2,4- and 2,6-TDA. These results indicate that albumin is the major receptor molecule for 2,4- and 2,6-TDI in blood plasma and that these isocyanates form covalent bondings with albumin. PMID:9124697

  14. Flux measurements of benzene and toluene from landfill cover soils.

    PubMed

    Tassi, Franco; Montegrossi, Giordano; Vaselli, Orlando; Morandi, Andrea; Capecchiacci, Francesco; Nisi, Barbara

    2011-01-01

    Carbon dioxide and CH(4), C(6)H(6) and C(7)H(8) fluxes from the soil cover of Case Passerini landfill site (Florence, Italy) were measured using the accumulation and static closed chamber methods, respectively. Results show that the CH(4)/CO(2), CH(4)/C(6)H(6) and CH(4)/C(7)H(8) ratios of the flux values are relatively low when compared with those of the 'pristine' biogas produced by degradation processes acting on the solid waste material disposed in the landfill. This suggests that when biogas transits through the cover soil, CH(4) is affected by degradation processes activated by oxidizing bacteria at higher extent than both CO(2) and mono-aromatics. Among the investigated hydrocarbons, C(6)H(6) has shown the highest stability in a wide range of redox conditions. Toluene behaviour only partially resembles that of C(6)H(6), possibly because de-methylation processes require less energy than that necessary for the degradation of C(6)H(6), the latter likely occurring via benzoate at anaerobic conditions and/or through various aerobic metabolic pathways at relatively shallow depth in the cover soil where free oxygen is present. According to these considerations, aromatics are likely to play an important role in the environmental impact of biogas released into the atmosphere from such anthropogenic emission sites, usually only ascribed to CO(2) and CH(4). In this regard, flux measurements using accumulation and static closed chamber methods coupled with gas chromatography and gas chromatography-mass spectrometry analysis may properly be used to obtain a dataset for the estimation of the amount of volatile organic compounds dispersed from landfills. PMID:21041416

  15. Remote monitoring of sub ppb levels of vinyl chloride, dichloroethylene and trichloroethylene via modem operated automated GC

    SciTech Connect

    Linenberg, A.; Lander, N.J. [Sentex Systems Inc., Ridgefield, NJ (United States)

    1994-12-31

    The need for remote monitoring of certain compounds in a sparsely populated area with limited user assistance led to the development and manufacture of a self contained, portable gas chromatography with the appropriate software. Part per billion levels of vinyl chloride, cis 1,2 dichloroethylene and trichloroethylene were detected in air using a trap for preconcentration of the compounds. The units were continuously calibrated with certified standards from Scott Specialty Gases, which in one case was 1 part per billion of the aforementioned compounds. The entire operation of the units, including monitoring instrument responses, changing operating parameters, data transfer, data review and data reporting was done entirely on a remote basis from approximately 600 miles away using a remote computer with a modem and remote operating software. The entire system concept promises the availability of highly sensitive remote monitoring in sparsely populated areas for long periods of time.

  16. Impacts of the physiochemical properties of chlorinated solvents on the sorption of trichloroethylene to the roots of Typha latifolia.

    PubMed

    Ma, Xingmao; Wang, Chen

    2009-03-01

    Sorption to plant roots is the first step for organic contaminants to enter plant tissues. Mounting evidence is showing that sorption to plant roots is nonlinear and competitive. The objective of this study was to investigate the effects of physiochemical properties of homologous chlorinated ethenes and ethanes on the competitive sorption of trichloroethylene (TCE) to the roots of Typha latifolia (cattail). The results showed that chlorinated ethenes exerted significantly stronger competition on the sorption of TCE than chlorinated ethanes. Individual physiochemical properties of organic compounds could be related to the competitive capacity of chlorinated ethenes, but the roles appeared secondary, with molecular structures showing primary effects. Based on these observations, a two-step sorption mechanism was proposed, consisting of the interactions between organic compounds and functional groups on the root surface and subsequent pore filling and absorption to the hydrophobic domains in the composition of roots. PMID:19013701

  17. Enhanced Anaerobic Biodegradation of Benzene-Toluene-Ethylbenzene-Xylene-Ethanol Mixtures in Bioaugmented Aquifer Columns

    PubMed Central

    Da Silva, Marcio L. B.; Alvarez, Pedro J. J.

    2004-01-01

    Methanogenic flowthrough aquifer columns were used to investigate the potential of bioaugmentation to enhance anaerobic benzene-toluene-ethylbenzene-xylene (BTEX) degradation in groundwater contaminated with ethanol-blended gasoline. Two different methanogenic consortia (enriched with benzene or toluene and o-xylene) were used as inocula. Toluene was the only hydrocarbon degraded within 3 years in columns that were not bioaugmented, although anaerobic toluene degradation was observed after only 2 years of acclimation. Significant benzene biodegradation (up to 88%) was observed only in a column bioaugmented with the benzene-enriched methanogenic consortium, and this removal efficiency was sustained for 1 year with no significant decrease in permeability due to bioaugmentation. Benzene removal was hindered by the presence of toluene, which is a more labile substrate under anaerobic conditions. Real-time quantitative PCR analysis showed that the highest numbers of bssA gene copies (coding for benzylsuccinate synthase) occurred in aquifer samples exhibiting the highest rate of toluene degradation, which suggests that this gene could be a useful biomarker for environmental forensic analysis of anaerobic toluene bioremediation potential. bssA continued to be detected in the columns 1 year after column feeding ceased, indicating the robustness of the added catabolic potential. Overall, these results suggest that anaerobic bioaugmentation might enhance the natural attenuation of BTEX in groundwater contaminated with ethanol-blended gasoline, although field trials would be needed to demonstrate its feasibility. This approach may be especially attractive for removing benzene, which is the most toxic and commonly the most persistent BTEX compound under anaerobic conditions. PMID:15294807

  18. Adolescent Toluene Inhalation in Rats Affects White Matter Maturation with the Potential for Recovery Following Abstinence

    PubMed Central

    Egan, Gary; Kolbe, Scott; Gavrilescu, Maria; Wright, David; Lubman, Dan Ian; Lawrence, Andrew John

    2012-01-01

    Inhalant misuse is common during adolescence, with ongoing chronic misuse associated with neurobiological and cognitive abnormalities. While human imaging studies consistently report white matter abnormalities among long-term inhalant users, longitudinal studies have been lacking with limited data available regarding the progressive nature of such abnormalities, including the potential for recovery following periods of sustained abstinence. We exposed adolescent male Wistar rats (postnatal day 27) to chronic intermittent inhaled toluene (3,000 ppm) for 1 hour/day, 3 times/week for 8 weeks to model abuse patterns observed in adolescent and young adult human users. This dosing regimen resulted in a significant retardation in weight gain during the exposure period (p<0.05). In parallel, we performed longitudinal magnetic resonance imaging (T2-weighted) and diffusion tensor imaging prior to exposure, and after 4 and 8 weeks, to examine the integrity of white matter tracts, including the anterior commissure and corpus callosum. We also conducted imaging after 8 weeks of abstinence to assess for potential recovery. Chronic intermittent toluene exposure during adolescence and early adulthood resulted in white matter abnormalities, including a decrease in axial (p<0.05) and radial (p<0.05) diffusivity. These abnormalities appeared region-specific, occurring in the anterior commissure but not the corpus callosum and were not present until after at least 4 weeks of exposure. Toluene-induced effects on both body weight and white matter parameters recovered following abstinence. Behaviourally, we observed a progressive decrease in rearing activity following toluene exposure but no difference in motor function, suggesting cognitive function may be more sensitive to the effects of toluene. Furthermore, deficits in rearing were present by 4 weeks suggesting that toluene may affect behaviour prior to detectable white matter abnormalities. Consequently, exposure to inhalants that contain toluene during adolescence and early adulthood appear to differentially affect white matter maturation and behavioural outcomes, although recovery can occur following abstinence. PMID:23028622

  19. Description of Toluene Inhibition of Methyl Bromide Biodegradation in Seawater and Isolation of a Marine Toluene Oxidizer That Degrades Methyl Bromide

    PubMed Central

    Goodwin, Kelly D.; Tokarczyk, Ryszard; Stephens, F. Carol; Saltzman, Eric S.

    2005-01-01

    Methyl bromide (CH3Br) and methyl chloride (CH3Cl) are important precursors for destruction of stratospheric ozone, and oceanic uptake is an important component of the biogeochemical cycle of these methyl halides. In an effort to identify and characterize the organisms mediating halocarbon biodegradation, we surveyed the effect of potential cometabolic substrates on CH3Br biodegradation using a 13CH3Br incubation technique. Toluene (160 to 200 nM) clearly inhibited CH3Br and CH3Cl degradation in seawater samples from the North Atlantic, North Pacific, and Southern Oceans. Furthermore, a marine bacterium able to co-oxidize CH3Br while growing on toluene was isolated from subtropical Western Atlantic seawater. The bacterium, Oxy6, was also able to oxidize o-xylene and the xylene monooxygenase (XMO) pathway intermediate 3-methylcatechol. Patterns of substrate oxidation, lack of acetylene inhibition, and the inability of the toluene 4-monooxygenase (T4MO)-containing bacterium Pseudomonas mendocina KR1 to degrade CH3Br ruled out participation of the T4MO pathway in Oxy6. Oxy6 also oxidized a variety of toluene (TOL) pathway intermediates such as benzyl alcohol, benzylaldehyde, benzoate, and catechol, but the inability of Pseudomonas putida mt-2 to degrade CH3Br suggested that the TOL pathway might not be responsible for CH3Br biodegradation. Molecular phylogenetic analysis identified Oxy6 to be a member of the family Sphingomonadaceae related to species within the Porphyrobacter genus. Although some Sphingomonadaceae can degrade a variety of xenobiotic compounds, this appears to be the first report of CH3Br degradation for this class of organism. The widespread inhibitory effect of toluene on natural seawater samples and the metabolic capabilities of Oxy6 indicate a possible link between aromatic hydrocarbon utilization and the biogeochemical cycle of methyl halides. PMID:16000753

  20. Protein Engineering of Toluene-o-Xylene Monooxygenase from Pseudomonas stutzeri OX1 for Synthesizing 4-Methylresorcinol, Methylhydroquinone, and Pyrogallol

    Microsoft Academic Search

    Gonul Vardar; Thomas K. Wood

    2004-01-01

    Toluene-o-xylene monooxygenase (ToMO) from Pseudomonas stutzeri OX1 oxidizes toluene to 3- and 4-meth- ylcatechol and oxidizes benzene to form phenol; in this study ToMO was found to also form catechol and 1,2,3-trihydroxybenzene (1,2,3-THB) from phenol. To synthesize novel dihydroxy and trihydroxy derivatives of benzene and toluene, DNA shuffling of the alpha-hydroxylase fragment of ToMO (TouA) and saturation mu- tagenesis of

  1. Metabolic changes and DNA hypomethylation in cerebellum are associated with behavioral alterations in mice exposed to trichloroethylene postnatally

    SciTech Connect

    Blossom, Sarah J., E-mail: blossomsarah@uams.edu [Department of Pediatrics, University of Arkansas for Medical Sciences, College of Medicine, Arkansas Children's Hospital Research Institute, 13 Children's Way, Little Rock, AR 72202 (United States); Cooney, Craig A. [Department of Research and Development, Central Arkansas Veterans Healthcare System, John L. McClellan Memorial Veterans Hospital, 4300 West 7th St., Little Rock, AR 72205-5484 (United States); Melnyk, Stepan B.; Rau, Jenny L.; Swearingen, Christopher J. [Department of Pediatrics, University of Arkansas for Medical Sciences, College of Medicine, Arkansas Children's Hospital Research Institute, 13 Children's Way, Little Rock, AR 72202 (United States); Wessinger, William D. [Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, College of Medicine, 4301 West Markham St., Little Rock, AR 72205 (United States)

    2013-06-15

    Previous studies demonstrated that low-level postnatal and early life exposure to the environmental contaminant, trichloroethylene (TCE), in the drinking water of MRL +/+ mice altered glutathione redox homeostasis and increased biomarkers of oxidative stress indicating a more oxidized state. Plasma metabolites along the interrelated transmethylation pathway were also altered indicating impaired methylation capacity. Here we extend these findings to further characterize the impact of TCE exposure in mice exposed to water only or two doses of TCE in the drinking water (0, 2, and 28 mg/kg/day) postnatally from birth until 6 weeks of age on redox homeostasis and biomarkers of oxidative stress in the cerebellum. In addition, pathway intermediates involved in methyl metabolism and global DNA methylation patterns were examined in cerebellar tissue. Because the cerebellum is functionally important for coordinating motor activity, including exploratory and social approach behaviors, these parameters were evaluated in the present study. Mice exposed to 28 mg/kg/day TCE exhibited increased locomotor activity over time as compared with control mice. In the novel object exploration test, these mice were more likely to enter the zone with the novel object as compared to control mice. Similar results were obtained in a second test when an unfamiliar mouse was introduced into the testing arena. The results show for the first time that postnatal exposure to TCE causes key metabolic changes in the cerebellum that may contribute to global DNA methylation deficits and behavioral alterations in TCE-exposed mice. - Highlights: • We exposed male mice to low-level trichloroethylene from postnatal days 1 through 42. • This exposure altered redox potential and increased oxidative stress in cerebellum. • This exposure altered metabolites important in cellular methylation in cerebellum. • This exposure promoted DNA hypomethylation in cerebellum. • This exposure enhanced locomotor activity and exploratory behavior.

  2. Distribution of petroleum hydrocarbons and toluene biodegradation, Knox Street fire pits, Fort Bragg, North Carolina

    USGS Publications Warehouse

    Harden, S.L.; Landmeyer, J.E.

    1996-01-01

    An investigation was conducted at the Knox Street fire pits, Fort Bragg, North Carolina, to monitor the distribution of toluene, ethylbenzene, and xylene (TEX) in soil vapor, ground water, and ground-water/vapor to evaluate if total concentrations of TEX at the site are decreasing with time, and to quantify biodegradation rates of toluene in the unsaturated and saturated zones. Soil-vapor and ground-water samples were collected around the fire pits and ground-water/vapor samples were collected along the ground-water discharge zone, Beaver Creek, on a monthly basis from June 1994 through June 1995. Concentrations of TEX compounds in these samples were determined with a field gas chro- matograph. Laboratory experiments were performed on aquifer sediment samples to measure rates of toluene biodegradation by in situ micro- organisms. Based on field gas chromatographic analytical results, contamination levels of TEX compounds in both soil vapor and ground water appear to decrease downgradient of the fire-pit source area. During the 1-year study period, the observed temporal and spatial trends in soil vapor TEX concentrations appear to reflect differences in the distribution of TEX among solid, aqueous, and gaseous phases within fuel-contaminated soils in the unsaturated zone. Soil temperature and soil moisture are two important factors which influence the distribution of TEX com- pounds among the different phases. Because of the short period of data collection, it was not possible to distinguish between seasonal fluc- tuations in soil vapor TEX concentrations and an overall net decrease in TEX concentrations at the study site. No seasonal trend was observed in total TEX concentrations for ground- water samples collected at the study site. Although the analytical results could not be used to determine if ground-water TEX concen- trations decreased during the study at a specific location, the data were used to examine rate constants of toluene biodegradation. Based on ground-water toluene concentration data, a maximum rate constant for anaerobic biodegradation of toluene in the saturated zone was estimated to be as low as 0.002 d-1 or as high as 0.026 d-1. Based on analyses of ground-water/vapor samples, toluene was the prin- cipal TEX compound identified in ground water discharging to Beaver Creek. Observed decreases in ground-water/vapor toluene concentrations during the study period may reflect a decrease in source inputs, an increase in dilution caused by higher ground-water flow, and(or) removal by biological or other physical processes. Rate constants of toluene anaerobic biodegradation determined by laboratory measurements illustrate a typical acclimation response of micro-organisms to hydrocarbon contamination in sediments collected from the site. Toluene biodegradation rate constants derived from laboratory microcosm studies ranged from 0.001 to 0.027 d-1, which is similar to the range of 0.002 to 0.026 d-1 for toluene biodegradation rate constants derived from ground-water analytical data. The close agreement of toluene biodegradation rate constants reported using both approaches offer strong evidence that toluene can be degraded at environmentally significant rates at the study site.

  3. Toluene degradation by Pseudomonas putida F1: genetic organization of the tod operon

    SciTech Connect

    Zylstra, G.J.; McCombie, W.R.; Gibson, D.T.; Finette, B.A.

    1988-06-01

    Pseudomonas putida PpF1 degrades toluene through cis-toluene dihydrodiol to 3-methylcatechol. The latter compound is metabolized through the well-established meta pathway for catechol degradation. The first four steps in the pathway involve the sequential action of toluene dioxygenase (todABC1C2), cis-toluene, dihydrodiol dehydrogenase (todD), 3-methylcatechol 2,3-dioxygenase (todE), and 2-hydroxy-6-oxo-2,4-heptadienoate hydrolase (todF). The genes for these enzymes form part of the tod operon which is responsible for the degradation of toluene by this organism. A combination of transposon mutagenesis of the PpF1 chromosome, was well as the analysis of cloned chromosomal fragments, was used to determine the physical order of the genes in the tod operon. The genes were determined to be transcribed in the order todF, todC1, todC2, todB, todA, todD, todE.

  4. PANI and graphene/PANI nanocomposite films--comparative toluene gas sensing behavior.

    PubMed

    Parmar, Mitesh; Balamurugan, Chandran; Lee, Dong-Weon

    2013-01-01

    The present work discusses and compares the toluene sensing behavior of polyaniline (PANI) and graphene/polyaniline nanocomposite (C-PANI) films. The graphene-PANI ratio in the nanocomposite polymer film is optimized at 1:2. For this, N-methyl-2-pyrrolidone (NMP) solvent is used to prepare PANI-NMP solution as well as graphene-PANI-NMP solution. The films are later annealed at 230 °C, characterized using scanning electron microscopy (SEM) as well Fourier transform infrared spectroscopy (FTIR) and tested for their sensing behavior towards toluene. The sensing behaviors of the films are analyzed at different temperatures (30, 50 and 100 °C) for 100 ppm toluene in air. The nanocomposite C-PANI films have exhibited better overall toluene sensing behavior in terms of sensor response, response and recovery time as well as repeatability. Although the sensor response of PANI (12.6 at 30 °C, 38.4 at 100 °C) is comparatively higher than that of C-PANI (8.4 at 30 °C, 35.5 at 100 °C), response and recovery time of PANI and C-PANI varies with operating temperature. C-PANI at 50 °C seems to have better toluene sensing behavior in terms of response time and recovery time. PMID:24300600

  5. Breath and blood levels of benzene, toluene, cumene and styrene in non-occupational exposure.

    PubMed

    Brugnone, F; Perbellini, L; Faccini, G B; Pasini, F; Maranelli, G; Romeo, L; Gobbi, M; Zedde, A

    1989-01-01

    Benzene, toluene, cumene and styrene were measured in the breath and blood of two groups of individuals. The first group included individuals belonging to a hospital staff, the second group included chemical workers who were not exposed to the abovementioned chemicals. The chemical workers were examined in plant infirmaries on the morning before the start of the workshift, and the hospital staff in the hospital infirmaries. One environmental air sample was taken in the infirmaries for each individual at the moment of the biological samplings. The environmental concentrations of benzene and styrene were significantly higher in the infirmaries of the chemical plant than in the infirmaries of the hospital. On the other hand, the environmental concentrations of toluene and cumene were not significantly different in the plant infirmaries and in the hospital infirmaries. In the hospital staff the alveolar concentrations of benzene, toluene and styrene were significantly lower than those in the chemical workers. In the hospital staff the blood concentrations of benzene, toluene and styrene were not significantly different from those in the chemical workers. Only the blood cumene concentration was significantly higher in the chemical workers. In hospital staff, smokers showed alveolar and blood concentrations of benzene and toluene that were significantly higher than those measured in the non smoker hospital staff. With reference to chemical workers, only alveolar benzene concentration was significantly higher in smokers than in non smokers.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2707867

  6. PANI and Graphene/PANI Nanocomposite Films — Comparative Toluene Gas Sensing Behavior

    PubMed Central

    Parmar, Mitesh; Balamurugan, Chandran; Lee, Dong-Weon

    2013-01-01

    The present work discusses and compares the toluene sensing behavior of polyaniline (PANI) and graphene/polyaniline nanocomposite (C-PANI) films. The graphene–PANI ratio in the nanocomposite polymer film is optimized at 1:2. For this, N-methyl-2-pyrrolidone (NMP) solvent is used to prepare PANI-NMP solution as well as graphene-PANI-NMP solution. The films are later annealed at 230 °C, characterized using scanning electron microscopy (SEM) as well Fourier transform infrared spectroscopy (FTIR) and tested for their sensing behavior towards toluene. The sensing behaviors of the films are analyzed at different temperatures (30, 50 and 100 °C) for 100 ppm toluene in air. The nanocomposite C-PANI films have exhibited better overall toluene sensing behavior in terms of sensor response, response and recovery time as well as repeatability. Although the sensor response of PANI (12.6 at 30 °C, 38.4 at 100 °C) is comparatively higher than that of C-PANI (8.4 at 30 °C, 35.5 at 100 °C), response and recovery time of PANI and C-PANI varies with operating temperature. C-PANI at 50 °C seems to have better toluene sensing behavior in terms of response time and recovery time. PMID:24300600

  7. Exponential modeling, washout curve reconstruction, and estimation of half-life of toluene and its metabolites.

    PubMed

    Pierce, Crispin; Chen, Yili; Hurtle, William; Morgan, Michael

    2004-07-23

    Health risks from ostensible occupational and environmental toxicant exposure are difficult to quantify. Maximal use of limited biological measurements of xenobiotic or metabolite concentration in the body is therefore essential. Elimination rates of exhaled [2H8]toluene and urinary metabolites were analyzed from 33 exposures of males to 50 ppm [2H8]toluene for 2 h at rest. It was hypothesized that the shapes from our decay curves would be applicable to any occupational or environmental toluene exposure. Except for a rapid decline in toluene blood and breath levels in the 0-0.1 h period, this "curve reconstruction" method successfully fit data from published studies. Urinary hippuric acid concentrations were not well fit due to substantial background levels, whereas o-cresol levels were accurately described. Our approach was able to reconstruct data from studies where exposure duration ranged from 10 min to 7 h, and where activity level ranged from rest to 150 W (strenuous exercise). Using this approach, limited biological data following toluene exposure could be back-extrapolated to immediate postexposure concentrations, which in turn could be compared to biological indicators of exposure to determine risk. PMID:15205028

  8. Psychological autopsy and necropsy of an unusual case of suicide by intravenous toluene.

    PubMed

    Kulkarni, Ranganath R; Hemanth Kumar, R G; Kulkarni, Pratibha R; Kotabagi, Raghavendra B

    2015-01-01

    Toluene (methylbenzene; volatile hydrocarbon) is an industrial solvent that causes major injury to the lungs; the organ being the first capillary bed encountered. We report an unusual case of suicide by a 24-year-old male, paramedical professional, with fatal outcome within 16 h of intentional, intravenous self-administration of toluene, with clinical presentation of acute respiratory distress syndrome. Psychological autopsy revealed severe depressive disorder and solvent (inhalant) abuse, with marital disharmony as the precipitating stressor for suicide. Necropsy revealed diffuse congestion of internal organs like lungs and liver, epicardial petechial hemorrhages, and gastric hemorrhages. Treatment of toluene poisoning includes supportive care as no specific antidote is available. Early and aggressive management may be conducive to a favorable outcome with minimal residual pulmonary sequelae. Relevant literature of toluene poisoning was identified via PubMed, PubChem, ToxNet, Hazardous Substances Data Bank (HSDB), Embase, and PsycINFO. To our knowledge, this is the first case of suicide by intravenous administration of toluene in the literature. PMID:25969615

  9. Health assessment for Greenacres (Liberty Lake) Landfill, Spokane, Spokane County, Washington, Region 10. CERCLIS No. WAD980514608. Preliminary report

    SciTech Connect

    Not Available

    1988-08-09

    The Greenacres Landfill site is on the National Priorities List. The site is a 90-acre, rural-burning landfill that was closed in 1968. On-site contamination, determined by on-site ground water monitoring wells, consists of trans-1,2-dichloroethylene (41 ppb), chloroform (0.2 ppb), trichloroethylene (2 ppb), benzene (0.6 ppb), tetrachloroethylene (9 ppb), toluene (0.7 ppb), 2,4-dichlorophenoxyacetic acid (3 ppb), 2,4,5-trichlorophenoxyacetic acid (0.6 ppb), chromium (37 ppb), manganese (210 ppb), zinc (2,380 ppb), lead (67 ppb), barium 175 ppb, magnesium (18 ppb), and mercury (4 ppb). The site is considered to be of potential public health concern because of the risk to human health caused by the possibility of exposure to hazardous substances via the movement of contaminated ground water into an aquifer used as a public water source.

  10. Health assessment for Aerojet-General Corporation, Rancho Cordova, Sac Ramento County, California, Region 9. CERCLIS No. CAD980358832. Preliminary report

    SciTech Connect

    Not Available

    1988-12-05

    The Aerojet-General Corporation site is on the National Priorities List. Since the 1950s, Aerojet-General has manufactured liquid and solid propellent rocket engines for military and commercial applications, and has formulated a number of chemicals. The environmental contamination on-site (maximum concentrations reported) consists of trichloroethylene (12 ppm), toluene (4.2 ppm), chloroform (100 ppm), and methylene chloride (5.9 ppm) in ground water; and 1,1-dichloroethane (1.6 ppm), 1,1,1-trichloroethane (1.8 ppm), carbon tetrachloride (1 ppm), and tetrachloroethylene (0.6 ppm) in surface water. The site is considered to be of potential public health concern because of the risk to human health caused by the likelihood of exposure to hazardous substances via contaminated ground water.

  11. Electrophilic and free radical nitration of benzene and toluene with various nitrating agents*

    PubMed Central

    Olah, George A.; Lin, Henry C.; Olah, Judith A.; Narang, Subhash C.

    1978-01-01

    Electrophilic nitration of toluene and benzene was studied under various conditions with several nitrating systems. It was found that high orthopara regioselectivity is prevalent in all reactions and is independent of the reactivity of the nitrating agent. The methyl group of toluene is predominantly ortho-para directing under all reaction conditions. Steric factors are considered to be important but not the sole reason for the variation in the ortho/para ratio. The results reinforce our earlier views that, in electrophilic aromatic nitrations with reactive nitrating agents, substrate and positional selectivities are determined in two separate steps. The first step involves a ?-aromatic-NO2+ ion complex or encounter pair, whereas the subsequent step is of arenium ion nature (separate for the ortho, meta, and para positions). The former determines substrate selectivity, whereas the latter determines regioselectivity. Thermal free radical nitration of benzene and toluene with tetranitromethane in sharp contrast gave nearly statistical product distributions. PMID:16592503

  12. Investigation of the role of bicyclic peroxy radicals in the oxidation mechanism of toluene.

    PubMed

    Birdsall, Adam W; Andreoni, John F; Elrod, Matthew J

    2010-10-01

    The products of the primary OH-initiated oxidation of toluene were investigated using the turbulent flow chemical ionization mass spectrometry technique under different oxygen, NO, and initial OH radical concentrations as well as a range of total pressures. The bicyclic peroxy radical intermediate, a key proposed intermediate species in the Master Chemical Mechanism (MCM) for the atmospheric oxidation of toluene, was detected for the first time. The toluene oxidation mechanism was shown to have a strong oxygen concentration dependence, presumably due to the central role of the bicyclic peroxy radical in determining the stable product distribution at atmospheric oxygen concentrations. The results also suggest a potential role for bicyclic peroxy radical + HO(2) reactions at high HO(2)/NO ratios. These reactions are postulated to be a source of the inconsistencies between environmental chamber results and predictions from the MCM. PMID:20836528

  13. Natural Gradient Drift Tests for Assessing the Feasibility of In Situ Aerobic Cometabolism of Trichloroethylene and Evaluating the Microbial Community Change

    Microsoft Academic Search

    Chulyoon Ha; Namhee Kim; Soo Youl Kwon; Heung-Shick Lee; Ui Jeon Hong; Sungpyo Kim; Young Kim

    2011-01-01

    The objective of this study is to develop a method for using the single-well natural gradient drift test (SWNGDT) in the field\\u000a to assess in situ aerobic cometabolism of trichloroethylene (TCE) and to analyze microbial community changes. The SWNGDT was\\u000a performed in a monitoring well installed in a TCE-contaminated aquifer in Wonju, South Korea. The natural gradient drift biostimulation\\u000a test

  14. Isolation, characterization, and distribution of denitrifying toluene degraders from a variety of habitats.

    PubMed Central

    Fries, M R; Zhou, J; Chee-Sanford, J; Tiedje, J M

    1994-01-01

    Enrichments capable of toluene degradation under O2-free denitrifying conditions were established with diverse inocula including agricultural soils, compost, aquifer material, and contaminated soil samples from different geographic regions of the world. Successful enrichment was strongly dependent on the initial use of relatively low toluene concentrations, typically 5 ppm. From the enrichments showing positive activity for toluene degradation, 10 bacterial isolates were obtained. Fingerprints generated by PCR-amplified DNA, with repetitive extragenic palindromic sequence primers, showed that eight of these isolates were different. Under aerobic conditions, all eight isolates degraded toluene, five degraded ethylbenzene, three consumed benzene, and one degraded chlorobenzene, meta-Xylene was the only other substrate used anaerobically and was used by only one isolate. All isolates were motile gram-negative rods, produced N2 from denitrification, and did not hydrolyze starch. All strains but one fixed nitrogen as judged by ethylene production from acetylene, but only four strains hybridized to the nifHDK genes. All strains appeared to have heme nitrite reductase since their DNA hybridized to the heme (nirS) but not to the Cu (nirU) genes. Five strains hybridized to a toluene ortho-hydroxylase catabolic probe, and two of those also hybridized to a toluene meta-hydroxylase probe. Partial sequences of the 16S rRNA genes of all isolates showed substantial similarity to 16S rRNA sequences of Azoarcus sp. Physiological, morphological, fatty acid, and 16S rRNA analyses indicated that these strains were closely related to each other and that they belong to the genus Azoarcus.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:8085824

  15. Evaluation of toluene LIF thermometry detection strategies applied in an internal combustion engine

    NASA Astrophysics Data System (ADS)

    Peterson, Brian; Baum, Elias; Böhm, Benjamin; Sick, Volker; Dreizler, Andreas

    2014-10-01

    In the context of toluene laser-induced fluorescence (LIF) thermometry, the two common LIF detection strategies, namely one-color and two-color detection, have been simultaneously applied to compare each strategy's ability to accurately resolve thermal gradients during an engine cycle within an optically accessible internal combustion (IC) engine. Temperature images are obtained from high-speed toluene LIF measurements and are combined with high-speed particle image velocimetry. The combination with flow data and Mie scattering images facilitates the interpretation of differences between the toluene LIF detection strategies. Two-color temperature images are limited in their ability to detect thermal gradients near the end of compression due to larger precision uncertainties. Local regions of cold gases in the two-color images are better identified with the guidance of the one-color images when homogeneous toluene mixtures preside. During expansion, large differences exist between one- and two-color temperature images and likely caused by local mixture fraction heterogeneities that bias the one-color detection strategy. Toluene condensation occurs during the expansion and exhaust stroke and causes local mixture fraction heterogeneities in the combustion chamber. Liquid toluene is in contact with solid surfaces and crevices of the combustion chamber and can evaporate during compression or expansion causing both local temperature and mixture stratification. This work demonstrates the advantage of high-speed imaging and use of multiple image diagnostics to reveal the development of natural temperature and mixture stratification in a motored IC engine. This work also suggests that natural temperature stratification typically regarded from gas-wall heat transfer may also be caused by liquid droplet evaporation on solid surfaces. Such phenomenon, however, is expected to be pertinent for all modern-day engine operating systems.

  16. Toluene mineralization by denitrification in an up flow anaerobic sludge blanket (UASB) reactor.

    PubMed

    Martínez, S; Cuervo-López, F M; Gomez, J

    2007-07-01

    In order to examine the effect of easily degradable substrate such as acetate on toluene mineralization by denitrification, an upflow anaerobic sludge blanket (UASB) reactor in steady state was set up. The experimentation was carried out in two stages. Initially, the reactor was fed with a carbon loading rate of 250 mg acetate-C L-1 d-1 as electron source. Nitrate loading rate (mg ) was adjusted to obtain a constant C/N ratio of 1.4. In the second stage, five toluene-C loading rates (TLR, mg toluene-C L-1 d-1), 25, 50, 75, 100 and 125, were assessed while total carbon loading rate and C/N were maintained constant at 250 mg C L-1 d-1 and 1.4, respectively. In so doing, acetate-C loading rate (mg acetate-C L-1 d-1) was gradually substituted by toluene-C. When acetate-C was the only electron source a dissimilative denitrifying process resulted as indicated by bicarbonate yield YHCO3, mg produced/mg carbon consumed) of 0.74 +/- 0.005 and denitrifying yield (YN2, mg N2 produced/mg consumed) of 0.89 +/- 0.042. The addition of different TLR did not affect the biological process as consumption carbon efficiency (CCE) values remained up to 95% +/- 3.5 and YHCO3 and YN2 values were higher than 0.71 +/- 0.03 and 0.88 +/- 0.01, respectively. Toluene mineralization by denitrification in continuous culture was successfully achieved. A simple UASB denitrifying reactor system has promising applications for complete conversion of nitrate, toluene and acetate into N2 and CO2 with a minimal sludge production. PMID:17029958

  17. Activated carbon and tungsten oxide supported on activated carbon catalysts for toluene catalytic combustion.

    PubMed

    Alvarez-Merino, M A; Ribeiro, M F; Silva, J M; Carrasco-Marín, F; Maldonado-Hódar, F J

    2004-09-01

    We have used activated carbon (AC) prepared from almond shells as a support for tungsten oxide to develop a series of WOx/AC catalysts for the catalytic combustion of toluene. We conducted the reaction between 300 and 350 degrees C, using a flow of 500 ppm of toluene in air and space velocity (GHSV) in the range 4000-7000 h(-1). Results show that AC used as a support is an appropriate material for removing toluene from dilute streams. By decreasing the GHSV and increasing the reaction temperature AC becomes a specific catalyst for the total toluene oxidation (SCO2 = 100%), but in less favorable conditions CO appears as reaction product and toluene-derivative compounds are retained inside the pores. WOx/AC catalysts are more selective to CO2 than AC due to the strong acidity of this oxide; this behavior improves with increased metal loading and reaction temperature and contact time. The catalytic performance depends on the nonstoichiometric tungsten oxide obtained during the pretreatment. In comparison with other supports the WOx/AC catalysts present, at low reaction temperatures, higher activity and selectivity than WO, supported on SiO2, TiO2, Al2O3, or Y zeolite. This is due to the hydrophobic character of the AC surface which prevents the adsorption of water produced from toluene combustion thus avoiding the deactivation of the active centers. However, the use of WOx/AC system is always restricted by its gasification temperature (around 400 degrees C), which limits the ability to increase the conversion values by increasing reaction temperatures. PMID:15461177

  18. A detailed kinetic modeling study of toluene oxidation in a premixed laminar flame

    SciTech Connect

    Tian, Z; Pitz, W J; Fournet, R; Glaude, P; Battin-Leclerc, F

    2009-12-18

    An improved chemical kinetic model for the toluene oxidation based on experimental data obtained in a premixed laminar low-pressure flame with vacuum ultraviolet (VUV) photoionization and molecular beam mass spectrometry (MBMS) techniques has been proposed. The present mechanism consists of 273 species up to chrysene and 1740 reactions. The rate constants of reactions of toluene, decomposition, reaction with oxygen, ipso-additions and metatheses with abstraction of phenylic H-atom are updated; new pathways of C{sub 4} + C{sub 2} species giving benzene and fulvene are added. Based on the experimental observations, combustion intermediates such as fulvenallene, naphtol, methylnaphthalene, acenaphthylene, 2-ethynylnaphthalene, phenanthrene, anthracene, 1-methylphenanthrene, pyrene and chrysene are involved in the present mechanism. The final toluene model leads to an overall satisfactory agreement between the experimentally observed and predicted mole fraction profiles for the major products and most combustion intermediates. The toluene depletion is governed by metathese giving benzyl radicals, ipso-addition forming benzene and metatheses leading to C{sub 6}H{sub 4}CH{sub 3} radicals. A sensitivity analysis indicates that the unimolecular decomposition via the cleavage of a C-H bond has a strong inhibiting effect, while decomposition via C-C bond breaking, ipso-addition of H-atom to toluene, decomposition of benzyl radicals and reactions related to C{sub 6}H{sub 4}CH{sub 3} radicals have promoting effect for the consumption of toluene. Moreover, flow rate analysis is performed to illustrate the formation pathways of mono- and polycyclic aromatics.

  19. Modeling acute and chronic toxicity of nonpolar narcotic chemicals and mixtures to Ceriodaphnia dubia.

    PubMed

    Niederlehner, B R; Cairns, J; Smith, E P

    1998-02-01

    The response of the daphnid Ceriodaphnia dubia to six widely used industrial chemicals acting through nonpolar narcosis and a mixture was determined. Toxicological effect levels were based on reasonably steady-state, measured concentrations. Reproductive IC50S were 149 microM benzene, 82 microM trichloroethylene, 35 microM toluene, 31 microM ethylbenzene, 26 microM m-xylene, and 4 microM tetrachloroethylene. A QSAR describing 2-day LC50S as a function of log Kow accounted for 90.97% of the variation in response across chemical. A similar QSAR for chronic effects on reproduction accounted for 78.92%. Mixtures of benzene, trichloroethylene, and toluene had effects at concentrations below their individual LOELs. Observed effects of 20/24 mixtures tested fell within the 95% prediction interval for a concentration-addition model of joint action derived from tests with individual components. However, the observed response differed significantly from the predictive relationship. In general, the predictive relationship overestimated mixture toxicity. Fitted relationships reduced observed error by as much as 82% compared to the predictive model. PMID:9515086

  20. Toluene 2-Monooxygenase-Dependent Growth of Burkholderia cepacia G4/PR1 on Diethyl Ether

    PubMed Central

    Hur, H.; Newman, L. M.; Wackett, L. P.; Sadowsky, M. J.

    1997-01-01

    Aerobic bacterial growth on aromatic hydrocarbons typically requires oxygenase enzymes, which are known to fortuitously oxidize nongrowth substrates. In this study, we found that oxidation of diethyl ether by toluene 2-monooxygenase supported more rapid growth of Burkholderia cepacia G4/PR1 than did the aromatic substrates n-propylbenzene and o-xylene. The wild-type Burkholderia cepacia G4 failed to grow on diethyl ether. Purified toluene 2-monooxygenase protein components oxidized diethyl ether stoichiometrically to ethanol and acetaldehyde. Butyl methyl ether, diethyl sulfide, and 2-chloroethyl ethyl ether were oxidized by B. cepacia G4/PR1. PMID:16535583

  1. Part 1: Vadose-zone column studies of toluene (enhanced bioremediation) in a shallow unconfined aquifer

    USGS Publications Warehouse

    Tindall, J.A.; Friedel, M.J.; Szmajter, R.J.; Cuffin, S.M.

    2005-01-01

    The objectives of the laboratory study described in this paper were (1) to determine the effectiveness of four nutrient solutions and a control in stimulating the microbial degradation of toluene in the unsaturated zone as an alternative to bioremediation methodologies such as air sparging, in situ vitrification, or others (Part I), and (2) to compare the effectiveness of the addition of the most effective nutrient solution from Part I (modified Hoagland type, nitrate-rich) and hydrogen peroxide (H2O2) on microbial degradation of toluene for repeated, simulated spills in the unsaturated zone (Part II). For Part 1, fifteen columns (30-cm diameter by 150-cm height), packed with air-dried, 0.25-mm, medium-fine sand, were prepared to simulate shallow unconfined aquifer conditions. Toluene (10 mL) was added to the surface of each column, and soil solution and soil gas samples were collected from the columns every third day for 21 days. On day 21, a second application of toluene (10 mL) was made, and the experiment was run for another 21 days. Solution 4 was the most effective for microbial degradation in Part I. For Part II, three columns were designated nutrient-rich 3-day toluene columns and received toluene injections every 3 days; three columns were designated as nutrient-rich 7-day columns and received toluene injections every 7 days; and two columns were used as controls to which no nutrient was added. As measured by CO2 respiration, the initial benefits for aerobic organisms from the O2 enhancement were sustained by the bacteria for only a short period of time (about 8 days). Degradation benefits from the nutrient solution were sustained throughout the experiment. The O2 and nutrient-enhanced columns degraded significantly more toluene than the control columns when simulating repeated spills onto the unsaturated zone, and demonstrated a potentially effective in situ bioremediation technology when used immediately or within days after a spill. The combined usage of H 2O2 and nitrate-rich nutrients served to effectively maximize natural aerobic and anaerobic metabolic processes that biodegrade hydrocarbons in petroleum-contaminated media. Applications of this technology in the field may offer economical advantages to other, more intrusive abatement technologies. ?? Springer 2005.

  2. Toluene laser-induced fluorescence for in-cylinder temperature imaging in internal combustion engines

    Microsoft Academic Search

    M. Luong; R. Zhang; C. Schulz; V. Sick

    2008-01-01

    A single-laser single-camera imaging technique was demonstrated for in-cylinder temperature distribution measurements in a\\u000a direct-injection internal combustion engine. The single excitation wavelength two-color detection technique is based on toluene\\u000a laser-induced fluorescence (LIF). Toluene-LIF emission spectra show a red-shift with increasing temperature. Temperature can\\u000a thus be determined from the ratio of the signal measured in two separate wavelength ranges independent of

  3. Evaluation of the In Situ Aerobic Cometabolism of Chlorinated Ethenes by Toluene-Utilizing Microorganisms Using Push-Pull Tests

    SciTech Connect

    Azizian, Mohammad F.; Istok, Jonathan; Semprini, Lewis

    2004-03-31

    Single-well-push-pull tests were used in a contaminated aquifer to evaluate the ability of toluene-oxidizing microorganisms to aerobically cometabolize chlorinated aliphatic hydrocarbons (CAHs) such as trichloroethene (TCE). Groundwater containing dissolved toluene was injected into the saturated zone in biostimulate indigenous toluene-utilizers. The test solution was injected into the aquifer using a standard monitoring well and then was transported under natural-gradient conditions. Transport tests demonstrated similar transport characteristics of the conservative tracer and the reactive solutes. Biostimulation tests were then performed by injecting a test solution containing dissolved toluene substrate, hydrogen peroxide, bromide and nitrate in order to increase the biomass of toluene-utilizing microorganisms. During the biostimulation tests, decreases in toluene concentration and the production of o-cresol as an intermediate oxidation product, indicated the simulation of toluene-utilizing microorganisms containing an ortho-monooxygenase enzyme. Transformation tests conducted after biostimulation demonstrated that indigenous microorganisms have the capability to transform the surrogate compounds (e.g. isobutene). Isobutene was transformed to isobutene oxide, indicating transformation by a toluene ortho-monooxygenase.

  4. Isolation and transposon mutagenesis of a Pseudomonas putida KT2442 toluene-resistant variant: involvement of an efflux system in solvent resistance

    Microsoft Academic Search

    Fumiyasu Fukumori; Hisako Hirayama; Hideto Takami; Akira Inoue; Koki Horikoshi

    1998-01-01

    A toluene-resistant variant of Pseudomonas putida KT2442, strain TOL, was isolated after liquid cultivation under xylene followed by toluene for 1 month in each condition.\\u000a Almost all the populations of the variant strain formed small but readily visible colonies under toluene within 24 h at 30?C.\\u000a The toluene-resistant strain also showed an increase in resistance to some unrelated antibiotics. Several

  5. Phase equilibria of toluene\\/heptane with deep eutectic solvents based on ethyltriphenylphosphonium iodide for the potential use in the separation of aromatics from naphtha

    Microsoft Academic Search

    M. A. Kareem; F. S. Mjalli; M. A. Hashim; M. K. O. Hadj-Kali; F. S. Ghareh Bagh; I. M. Alnashef

    2013-01-01

    In this work, the liquid-liquid extraction of toluene from hydrocarbons mixtures (toluene\\/heptane) was investigated using deep eutectic solvents as solvents. Ethyltriphenylphosphonium iodide as a salt with either ethylene glycol or sulfolane as hydrogen-bond donors (HBDs) were utilized for synthesizing six DESs. (Liquid + liquid) equilibria data were determined experimentally for the ternary system (toluene + heptane + DES) at (30,

  6. Stable Carbon Isotope Fractionation in Chlorinated Ethene Degradation by Bacteria Expressing Three Toluene Oxygenases

    PubMed Central

    Clingenpeel, Scott R.; Moan, Jaina L.; McGrath, Danielle M.; Hungate, Bruce A.; Watwood, Mary E.

    2012-01-01

    One difficulty in using bioremediation at a contaminated site is demonstrating that biodegradation is actually occurring in situ. The stable isotope composition of contaminants may help with this, since they can serve as an indicator of biological activity. To use this approach it is necessary to establish how a particular biodegradation pathway affects the isotopic composition of a contaminant. This study examined bacterial strains expressing three aerobic enzymes for their effect on the 13C/12C ratio when degrading both trichloroethene (TCE) and cis-1,2-dichloroethene (c-DCE): toluene 3-monoxygenase, toluene 4-monooxygenase, and toluene 2,3-dioxygenase. We found no significant differences in fractionation among the three enzymes for either compound. Aerobic degradation of c-DCE occurred with low fractionation producing ?13C enrichment factors of ?0.9?±?0.5 to ?1.2?±?0.5, in contrast to reported anaerobic degradation ?13C enrichment factors of ?14.1 to ?20.4‰. Aerobic degradation of TCE resulted in ?13C enrichment factors of ?11.6?±?4.1 to ?14.7?±?3.0‰ which overlap reported ?13C enrichment factors for anaerobic TCE degradation of ?2.5 to ?13.8‰. The data from this study suggest that stable isotopes could serve as a diagnostic for detecting aerobic biodegradation of TCE by toluene oxygenases at contaminated sites. PMID:22363335

  7. Low temperature oxidation of benzene and toluene in mixture with n-decane

    PubMed Central

    Herbinet, Olivier; Husson, Benoit; Ferrari, Maude; Glaude, Pierre-Alexandre; Battin-Leclerc, Frédérique

    2013-01-01

    The oxidation of two blends, benzene/n-decane and toluene/n-decane, was studied in a jet-stirred reactor with gas chromatography analysis (temperatures from 500 to 1100 K, atmospheric pressure, stoichiometric mixtures). The studied hydrocarbon mixtures contained 75% of aromatics in order to highlight the chemistry of the low-temperature oxidation of these two aromatic compounds which have a very low reactivity compared to large alkanes. The difference of behavior between the two aromatic reactants is highly pronounced concerning the formation of derived aromatic products below 800 K. In the case of benzene, only phenol could be quantified. In the case of toluene, significant amounts of benzaldehyde, benzene, and cresols were also formed, as well as several heavy aromatic products such as bibenzyl, phenylbenzylether, methylphenylbenzylether, and ethylphenylphenol. A comparison with results obtained with neat n-decane showed that the reactivity of the alkane is inhibited by the presence of benzene and, to a larger extent, toluene. An improved model for the oxidation of toluene was developed based on recent theoretical studies of the elementary steps involved in the low-temperature chemistry of this molecule. Simulations using this model were successfully compared with the obtained experimental results. PMID:23762017

  8. Draft Genome Sequence of the Toluene-Degrading Pseudomonas stutzeri Strain ST-9.

    PubMed

    Gomila, Margarita; Busquets, Antonio; García-Valdés, Elena; Michael, Esti; Cahan, Rivka; Nitzan, Yeshayahu; Lalucat, Jorge

    2015-01-01

    Strain ST-9 was isolated from toluene-contaminated soil (Samaria, Israel). The draft genome has an estimated size of 4.8 Mb, exhibits an average G+C content of 60.37%, and is predicted to encode 4,183 proteins, including a gene cluster for aromatic hydrocarbon degradation. It is assigned to genomovar 3 of Pseudomonas stutzeri. PMID:26044424

  9. Investigation of a cylindrical chemosorptive denuder for sampling and phase separation of toluene diisocyanate aerosols

    Microsoft Academic Search

    Yvonne Nordqvist; Ulrika Nilsson; Anders Colmsjö

    2005-01-01

    A cylindrical chemosorptive denuder in series with a glass fibre filter has been evaluated for sampling toluene diisocyanate (TDI) aerosols. The sampler is designed for measuring personal exposure to diisocyanates. Several denuder coatings and derivatising reagents were investigated. Dimethylpolysiloxane (SE-30) and 5% phenyl dimethylpolysiloxane (SE-54) with either dibutylamine (DBA) or dipentylamine (DPeA) as derivatising reagents yielded the lowest vapour breakthrough

  10. Activated carbon adsorption and desorption of toluene in the aqueous phase

    Microsoft Academic Search

    Dimitrios Chatzopoulos; Arvind Varma; Robert L. Irvine

    1993-01-01

    The equilibrium and dynamics of toluene adsorption and desorption in single-component aqueous solutions were investigated. Adsorption rates in a batch reactor under a variety of operating conditions were fitted successfully with the homogeneous surface diffusion model and a surface diffusion coefficient that increases exponentially with surface concentration. The dependence of the external mass-transfer coefficient on the hydrodynamic conditions in the

  11. Experiment on TiO2/AC Photocatalysis Technique to Eliminate Toluene in Air Conditioning Systems 

    E-print Network

    Hu, Y.; Feng, G.; Yuan, Q.

    2006-01-01

    ICEBO2006, Shenzhen, China Maximize Comfort: Temperature, Humidity, and IAQ Vol. I-3-3 Experiment on TiO2/AC Photocatalysis Technique to Eliminate Toluene in Air Conditioning Systems Yanjun Hu Guohui Feng Quan Yuan Ph.D. Ph.D. Master...

  12. Decomposition of toluene in a steady-state atmospheric-pressure glow discharge

    NASA Astrophysics Data System (ADS)

    Trushkin, A. N.; Grushin, M. E.; Kochetov, I. V.; Trushkin, N. I.; Akishev, Yu. S.

    2013-02-01

    Results are presented from experimental studies of decomposition of toluene (C6H5CH3) in a polluted air flow by means of a steady-state atmospheric pressure glow discharge at different water vapor contents in the working gas. The experimental results on the degree of C6H5CH3 removal are compared with the results of computer simulations conducted in the framework of the developed kinetic model of plasma chemical decomposition of toluene in the N2: O2: H2O gas mixture. A substantial influence of the gas flow humidity on toluene decomposition in the atmospheric pressure glow discharge is demonstrated. The main mechanisms of the influence of humidity on C6H5CH3 decomposition are determined. The existence of two stages in the process of toluene removal, which differ in their duration and the intensity of plasma chemical decomposition of C6H5CH3 is established. Based on the results of computer simulations, the composition of the products of plasma chemical reactions at the output of the reactor is analyzed as a function of the specific energy deposition and gas flow humidity. The existence of a catalytic cycle in which hydroxyl radical OH acts a catalyst and which substantially accelerates the recombination of oxygen atoms and suppression of ozone generation when the plasma-forming gas contains water vapor is established.

  13. Removal of toluene in gas streams by a fibrous-bed trickling filter.

    PubMed

    Tseng, D H; Guo, G L; Chang, C H; Huang, S L

    2001-01-01

    A novel fibrous-bed trickling filter was developed to remove toluene present in contaminated air. Pure culture of Pseudomonas putida F1 was attached on fibrous-bed and utilized toluene as the carbon source. Experimental results indicated the removal efficiency decreased with the increase of inlet concentration. In general, the removal efficiency of toluene was greater than 90% when the inlet loading capacity was below 70 g m-3h-3. The elimination capacity increased with increasing inlet loading capacity, but the increased rate decreased gradually. When the inlet loading capacity increased to 300 g m-3h-1, the elimination capacity could approach to 130 g m-3h-1. The first order kinetics model was useful to describe the removal of toluene in this filter and an excellent linear relationship was found between the apparent first order parameter and inlet concentration (ranging from 1.2 g m-3 to 3.5 g m-3). Also, the performance of fibrous-bed trickling filter was relatively stable during the four-month period of continuous operation. Slight clogging phenomena of filters were observed only under high loading capacity. PMID:11286054

  14. Deactivation kinetics of toluene alkylation with methanol over magnesium-modified ZSM-5

    Microsoft Academic Search

    Jose L. Sotelo; Maria A. Uguina; Jose L. Valverde; David P. Serrano

    1996-01-01

    The deactivation kinetics of toluene alkylation with methanol over a Mg-modified ZSM-5 catalyst has been studied. A kinetic model taking into account both the deactivation of the main and the secondary reactions and the influence of the intracrystalline diffusion has been developed. The best fit of the experimental data has been obtained assuming that gaseous hydrocarbons, formed mainly by ethylene,

  15. Review of toluene action: clinical evidence, animal studies and molecular targets

    PubMed Central

    Cruz, Silvia L.; Rivera-García, María Teresa; Woodward, John J.

    2014-01-01

    It has long been known that individuals will engage in voluntary inhalation of volatile solvents for their rewarding effects. However, research into the neurobiology of these agents has lagged behind that of more commonly used drugs of abuse such as psychostimulants, alcohol and nicotine. This imbalance has begun to shift in recent years as the serious effects of abused inhalants, especially among children and adolescents, on brain function and behavior have become appreciated and scientifically documented. In this review, we discuss the physicochemical and pharmacological properties of toluene, a representative member of a large class of organic solvents commonly used as inhalants. This is followed by a brief summary of the clinical and pre-clinical evidence showing that toluene and related solvents produce significant effects on brain structures and processes involved in the rewarding aspects of drugs. This is highlighted by tables highlighting toluene’s effect on behaviors (reward, motor effects, learning, etc.) and cellular proteins (e.g. voltage and ligand-gated ion channels) closely associated the actions of abused substances. These sections demonstrate not only the significant progress that has been made in understanding the neurobiological basis for solvent abuse but also reveal the challenges that remain in developing a coherent understanding of this often overlooked class of drugs of abuse. PMID:25360325

  16. Organic Rankine-cycle power systems working fluids study: Topical report No. 2, Toluene

    SciTech Connect

    Cole, R.L.; Demirgian, J.C.; Allen, J.W.

    1987-02-01

    The US Department of Energy initiated an investigation at Argonne National Laboratory in 1982 to experimentally determine the thermal stability limits and degradation rates of toluene as a function of maximum cycle temperature. Following the design and construction of a dynamic test loop capable of closely simulating the thermodynamic conditions of typical organic Rankine-cycle (ORC) power systems, four test runs, totaling about 3900 h of test time and covering a temperature range of 600-677(degree)F, were completed. Both liquid and noncondensable-vapor (gaseous) samples were drawn periodically and analyzed using capillary-column gas chromatography, gas chromatography/mass spectrometry, and mass spectrometry. A computer program that can predict degradation in an ORC engine was developed. Experimental results indicate that, if oxygen can be excluded from the system, toluene is a stable fluid up to the maximum test temperature; the charge of toluene could be used for several years before replacement became necessary. (Additional data provided by Sundstrand Corp. from tests sponsored by the National Aeronautics and Space Administration indicate that toluene may be used at temperatures up to 750(degree)F.) Degradation products are benign; the main liquid degradation products are bibenzyls, and the main gaseous degradation products are hydrogen and methane. A cold trap to remove gaseous degradation products from the condenser is necessary for extended operation. 21 figs., 22 tabs.

  17. Quaternary liquid-liquid equilibrium of n-heptane-toluene-o-xylene-propylene carbonate

    SciTech Connect

    Salem, A.B.S.H.; Hamad, E.Z.; Al-Naafa, M.A. (King Fahd Univ. of Petroleum and Minerals, Dhahran (Saudi Arabia). Chemical Engineering Dept.)

    1994-03-01

    Liquid-liquid equilibrium data for the system n-heptane/toluene/o-xylene/propylene carbonate were obtained at 25 OC. Experimental tie line data were measured by gas chromatographic analysis. The UNIQUAC and NRTL models were used to predict the quaternary data from the corresponding ternary data. Agreement between the predictions and the experimental data was satisfactory.

  18. BEHAVIORAL ASSESSMENTS OF LONG EVANS RATS FOLLOWING A 13-WEEK SUBCHRONIC TOLUENE EXPOSURE.

    EPA Science Inventory

    The current study sought to develop an animal model of the neurotoxicity of long-term exposure to volatile organic compounds (VOCs) which may be used to predict the effects of chronic exposure to VOCs on public health. The effects of Subchronic inhalation exposure to toluene (0,...

  19. EFFECTS OF TOLUENE INHALATION ON DETECTION OF AUDITORY SIGNALS IN RATS

    EPA Science Inventory

    Inhalation of organic solvents can affect vigilance and reaction time in humans. n animal model of vigilance was designed to assess the effects of toluene on these processes. dult male Long-Evans rats were trained to detect auditory signals (increases of 1 to 7 dB, 20 msec in dur...

  20. Draft Genome Sequence of the Toluene-Degrading Pseudomonas stutzeri Strain ST-9

    PubMed Central

    Gomila, Margarita; Busquets, Antonio; García-Valdés, Elena; Michael, Esti; Cahan, Rivka; Nitzan, Yeshayahu

    2015-01-01

    Strain ST-9 was isolated from toluene-contaminated soil (Samaria, Israel). The draft genome has an estimated size of 4.8 Mb, exhibits an average G+C content of 60.37%, and is predicted to encode 4,183 proteins, including a gene cluster for aromatic hydrocarbon degradation. It is assigned to genomovar 3 of Pseudomonas stutzeri. PMID:26044424

  1. Degree of branching in hyperbranched poly(glycerol-co-diacid)s synthesized in toluene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hyperbranched polymers were synthesized by using a Lewis acid (dibutyltin(IV)oxide) to catalyze the polycondensation of glycerol with either succinic acid (n (aliphatic chain length)=2), glutaric acid (n=3) or azelaic acid (n=7) in toluene. These are the first examples of diacid-glycerol hyperbranc...

  2. Atmosphere-Water Interaction of Chloroform, Toluene, and MTBE in Small Perennial Urban Streams

    E-print Network

    Atmosphere-Water Interaction of Chloroform, Toluene, and MTBE in Small Perennial Urban Streams. Trenton, NJ 08628 ABSTRACT An initial goal of the U.S. Geological Survey's National Water of anthropogenic and natural compounds in the Nation's surface and ground water. A large number of contaminants

  3. Organic Rankine-cycle power systems working fluids study: Topical report No. 2, Toluene

    Microsoft Academic Search

    R. L. Cole; J. C. Demirgian; J. W. Allen

    1987-01-01

    The US Department of Energy initiated an investigation at Argonne National Laboratory in 1982 to experimentally determine the thermal stability limits and degradation rates of toluene as a function of maximum cycle temperature. Following the design and construction of a dynamic test loop capable of closely simulating the thermodynamic conditions of typical organic Rankine-cycle (ORC) power systems, four test runs,

  4. Ambient Air Levels and the Exposure of Children to Benzene, Toluene, and Xylenes in Denmark

    Microsoft Academic Search

    Ole Raaschou-Nielsen; Christian Lohse; Birthe L. Thomsen; Henrik Skov; Jørgen H. Olsen

    1997-01-01

    The aims of the study were to evaluate if the front-door concentrations of benzene, toluene, and xylenes can be used to classify the personal exposures of Danish children and to identify factors that affect their personal exposure. Average concentrations were measured over 1 week with diffusive samplers, and the personal exposures of 98 children and the concentrations outside the front

  5. STIMULATION OF THE REDUCTIVE DECHLORINATION OF TETRACHLOROETHENE IN ANAEROBIC AQUIFER MICROCOSMS BY THE ADDITION OF TOLUENE

    EPA Science Inventory

    In this study, the biologically mediated interactions of toluene and PCE under anaerobic conditions were investigated by using microcosms constructed with aquifer solids from an area that was exposed to both alkylbenzenes and chlorinated ethenes at the U.S. Coast Guard Air Statio...

  6. Carbon isotope fractionation during anaerobic biodegradation of toluene: Implications for intrinsic bioremediation

    SciTech Connect

    Ahad, J.M.E.; Lollar, B.S.; Edwards, E.A.; Slater, G.F.; Sleep, B.E.

    2000-03-01

    Carbon isotope fractionation produced by anaerobic biodegradation of toluene was evaluated in laboratory experiments under both methanogenic and sulfate-reducing conditions. A small ({approximately}2{per_thousand}) but highly reproducible {sup 13}C-enrichment in the residual toluene at advanced stages of microbial transformation was observed in both cultures. The maximum isotopic enrichment observed in the residual toluene was +2.0{per_thousand} and +2.4{per_thousand} for the methanogenic and sulfate-reducing cultures, respectively, corresponding to isotopic enrichment factors ({epsilon}) of {minus}0.5 and {minus}0.8. Because the accuracy and reproducibility associated with gas chromatograph-combustion-isotope ratio mass spectrometry (GC/C/IRMS) is {+-}0.5{per_thousand}, delineating which of these two terminal electron-accepting processes (TEAP) is responsible for the biodegradation of toluene at field sites will not be possible. However, the potential does exist to use compound-specific isotope analysis (CSIA), in conjunction with other methodologies, as a means of validating advanced stages of intrinsic bioremediation in anaerobic systems. Caution is urged that relating this small ({approximately}2{per_thousand}) fractionation to biodegradation at complex field sites will prove a challenge.

  7. 2,4-Toluene diisocyanate suppressed the calcium signaling of ligand gated ion channel receptors.

    PubMed

    Liu, Pei-Shan; Chiung, Yin-Mei; Kao, Yi-Yun; Chen, Han-Ting

    2006-02-15

    Toluene diisocyanate (TDI) is widely used as a chemical intermediate in the production of polyurethane. TDI-induced asthma is related to its disturbance of acetylcholine activity in most affected workers, but the relevant mechanisms are unclear. Toluene diamine (TDA) is the main metabolite of TDI. TDI and TDA have in common the basic toluene structure. Toluene is an abused solvent affecting neuronal signal transduction by influencing the function of ligand gated ion channel receptors, including nicotinic acetylcholine receptors (nAChR), P2X purinoceptors, [gamma]-aminobutyric acid type A (GABAA) receptors, etc. To understand the actions of TDI and TDA on ligand gated ion channels, we investigated their effects on the changes of cytosolic calcium concentration ([Ca2+]c) while stimulating nAChR in human neuroblastoma SH-SY5Y cells, P2 purinoceptors in PC12 cells, and GABAA receptors in bovine adrenal chromaffin cells. Our results showed that both TDI and TDA suppressed the [Ca2+]c rise induced by the potent nicotinic ligand, epibatidine, in human SH-SY5Y cells. Similar but stronger suppression of ATP-induced [Ca2+]c rise occurred in PC12 cells. TDI and TDA also partially suppressed the [Ca2+] c rise induced by GABA in bovine adrenal chromaffin cells. We conclude that TDI and TDA can act on ligand gated ion channel receptors. Our findings suggest that TDI and TDA might have some neurotoxicity that will need to be investigated. PMID:16337724

  8. EFFECT OF AGING ON THE CARDIOVASCULAR AND THERMOREGULATORY RESPONSE TO TOLUENE IN THE BROWN NORWAY RATS.

    EPA Science Inventory

    Since the proportion of aged in the U.S. will expand markedly for the next several decades, the U.S.EPA is assessing if the aged are more susceptible to environmental toxicants. The neurotoxicity of toluene (TOL) has been well characterized in young adults but has not been studie...

  9. Aqueous emulsion containing fluorous cobalt species in supercritical CO2 for catalytic air oxidation of toluene.

    PubMed

    Zhu, Jie; Robertson, Alan; Tsang, Shik Chi

    2002-09-21

    An aqueous emulsion containing ionic Co2+ and Br- species stabilised by fluorous surfactant-like species in supercritical CO2-air mixture acts as a nano-reactor with excellent interfacial contacts of all necessary hydrophilic/hydrophobic species, which renders safe operation of catalytic aerial oxidation of toluene at high yields. PMID:12357771

  10. ASSESSING THE IMPORTANCE OF THE BEHAVIORAL EFFECT OF ACUTE EXPOSURE TO TOLUENE IN HUMANS.

    EPA Science Inventory

    There is increasing interest in being able to evaluate potential benefit-cost relationships of controlling exposure to toxic substances. Behavioral effects of acute toluene exposure could be subjected to benefit-cost analysis if it's effects were quantitatively compared to tho...

  11. Effect of Ethanol, Acetate, and Phenol on Toluene Degradation Activity and todlux

    E-print Network

    Alvarez, Pedro J.

    Effect of Ethanol, Acetate, and Phenol on Toluene Degradation Activity and tod­lux Expression with increasing influent concentrations of ethanol, acetate, or phenol. Three inhibitory mechanisms were) by acetate and ethanol, which was quantified by a decrease in specific bioluminescence; (2) competitive

  12. Influence of cigarette smoking on the toxicokinetics of toluene in humans.

    PubMed

    Hjelm, E W; Näslund, P H; Wallén, M

    1988-01-01

    To study the influence of cigarette smoking on the toxicokinetics of toluene, 10 habitual smokers who intended to stop smoking were exposed to toluene vapor (3.2 mmol/m3, 4 h) at three different exposure occasions: (I) while the smoking habit was still ongoing, and (II and III) 1 and 3-4 wk, respectively, after the day at which the smoking habit was discontinued. Solvent concentrations in the exhaled air and in the blood as well as hippuric acid concentrations in the urine were measured during the exposure period and for 3 h after the exposure period. The apparent clearance of toluene decreased significantly (p less than 0.05) 3-4 wk after the smoking habit was discontinued. This decrease was not a consequence of the increased body weight noticed in the subjects. No statistically significant differences between the three exposure occasions in the elimination rate of hippuric acid could be demonstrated. Thus, cigarette smoking seems to enhance the elimination rate of toluene from the body, since the apparent clearance was decreased after smoking was stopped. PMID:3172270

  13. TOWARD COST-BENEFIT ANALYSIS OF ACUTE BEHAVIORAL EFFECTS OF TOLUENE IN HUMANS

    EPA Science Inventory

    There is increasing interest in being able to express the consequences of exposure to potentially toxic compounds in monetary terms in order to evaluate potential cost-benefit relationships of controlling exposure. Behavioral effects of acute toluene exposure could be subjected ...

  14. PERSISTENT EFFECTS OF REPEATED INHALATION OF TOLUENE: 4 WEEKS VS. 13 WEEKS.

    EPA Science Inventory

    Understanding and predicting the extent of neurotoxic damage from repeated exposure to volatile organic compounds (VOCs) is a problem for many EPA programs. Eighty adult, male Long-Evans rats inhaled toluene (0, 10, 100, or 1000 ppm) 6 hr/day, 5 days/week for 4 weeks in a systema...

  15. Oxidation of CO, ethanol and toluene over TiO 2 supported noble metal catalysts

    Microsoft Academic Search

    Vera P. Santos; Sónia A. C. Carabineiro; Pedro B. Tavares; Manuel F. R. Pereira; José J. M. Órfão; José L. Figueiredo

    2010-01-01

    The oxidation of CO, ethanol and toluene was investigated on noble metal catalysts (Pt, Pd, Ir, Rh and Au) supported on TiO2. The catalysts were prepared by liquid phase reduction deposition (LPRD) and by incipient wetness impregnation (IMP). It was observed that the preparation method can have a significant effect on the dispersion of the metallic phase, and subsequently on

  16. Mixture effects during the oxidation of toluene, ethyl acetate and ethanol over a cryptomelane catalyst.

    PubMed

    Santos, V P; Pereira, M F R; Órfão, J J M; Figueiredo, J L

    2011-01-30

    The catalytic oxidation of two-component VOC mixtures (ethanol, ethyl acetate and toluene) was studied over cryptomelane. Remarkable mixture effects were observed on the activity and the selectivity. Toluene inhibits both ethyl acetate and ethanol oxidation, this effect being more evident in the case of ethyl acetate. For instance, the temperature for 100% conversion is about 210 °C when ethyl acetate is oxidised alone, and 250 °C or higher, when it is oxidised in mixtures with toluene. On the contrary, toluene oxidation is only slightly inhibited by the presence of ethyl acetate, while the presence of ethanol has a promoting effect. Concerning the mixtures of ethyl acetate and ethanol, both compounds have a mutual inhibitory effect, which is more evident in the case of ethyl acetate (the temperature for 100% conversion of ethyl acetate is about 45 °C higher when ethyl acetate is oxidised in mixtures with ethanol, while in the case of ethanol the corresponding increase is only 10 °C). PMID:21044815

  17. Biomonitoring Equivalents (BE) Dossier for Toluene (Cas No. 108-88-3)

    EPA Science Inventory

    This document reviews available pharmacokinetic data and models for toluene and applies these data and models to existing health-based exposure guidance values from the US Environmental Protection Agency, the Agency for Toxic Substances and Disease Registry, Health Canada, and th...

  18. Effects of toluene, acrolein and vinyl chloride on motor activity of Drosophila melanogaster.

    PubMed

    Tatum-Gibbs, K R; McKee, J M; Higuchi, M; Bushnell, P J

    2015-01-01

    The data generated by current high-throughput assays for chemical toxicity require information to link effects at molecular targets to adverse outcomes in whole animals. In addition, more efficient methods for testing volatile chemicals are needed. Here we begin to address these issues by determining the utility of measuring behavioral responses of Drosophila melanogaster to airborne volatile organic compounds (VOCs) as a potential model system for discovering adverse outcome pathways and as a method to test for toxicity. In these experiments, we measured motor activity in male and female flies to determine concentration-effect functions for three VOCs that differ in their mode of action: toluene, a narcotic; acrolein, an irritant; and vinyl chloride, a hepatocarcinogen. These experiments were conducted in Flyland, an outbred population of flies derived from 40 lines of the Drosophila Genetics Reference Panel (DGRP) (Mackay et al., 2012), in preparation for subsequent experiments with individual lines of the DGRP. Systematic, concentration-related changes in activity were observed with toluene, but not with acrolein; high concentrations of vinyl chloride reduced activity by a small amount. Despite higher activity levels in males than in females under control conditions, the sexes were equally sensitive to toluene. Transient increases in activity at the onset and offset of exposure to toluene and vinyl chloride suggested that the flies detected changes in air quality at concentrations that did not persistently suppress activity. The effects and potency of toluene are consistent with those observed in rodents. The lack of clear concentration-related changes in response to acrolein and vinyl chloride shows limitations of this method is for screening toxicity attributed to VOCs. This abstract does not reflect U.S. EPA policy. PMID:25445728

  19. Cloning and characterization of a Pseudomonas mendocina KR1 gene cluster encoding toluene-4-monooxygenase

    SciTech Connect

    Kwangmu Yen; Karl, M.R.; Blatt, L.M.; Simon, M.J.; Winter, R.B.; Fausset, P.R.; Lu, H.S.; Harcourt, A.A.; Chen, K.K. (Amgen Inc., Thousand Oaks, CA (United States))

    1991-09-01

    Pseudomonas mendocina KR1 metabolizes toluene as a carbon source by a previously unknown pathway. The initial step of the pathway is hydroxylation of toluene to form p-cresol by a multicomponent toluene-4-monooxygenase (T4MO) system. The authors have cloned and characterized a gene cluster from KR 1 that determines the T4MO activity. To clone the T4MO genes, KR1 DNA libraries were constructed in Escherichia coli HB 101 by using a broad-host-range vector and transferred to a KR1 mutant able to grow on p-cresol but no on toluene. An insert consisting of two SacI fragments of identical size was shown to complement the mutant for growth on toluene. One of the SacI fragments, when cloned into the E. coli vector pUC19, was found to direct the synthesis of indigo dye. The indigo-forming property was correlated with the presence of T4MO activity. The T4MO genes were mapped to a 3.6-kb region, and the direction of transcription was determined. DNA sequencing and N-terminal amino acid determination identified a five-gene cluster, tmoABCDE, within this region. Expression of this cluster carrying a single mutation in each gene demonstrated that each of the five genes is essential for T4MO activity. Other evidence presented indicated that none of the tmo genes was involved in the regulation of the tmo gene cluster, in the control of substrate transport of the T4MO system, or in major processing of the products of the tmo genes. It was tentatively concluded that the tmoABCDE genes encode structural polypeptides of the T4MO enzyme system. One of the tmo genes was tentatively identified as a ferredoxin gene.

  20. Catabolite-mediated mutations in alternate toluene degradative pathways in Pseudomonas putida.

    PubMed Central

    Leddy, M B; Phipps, D W; Ridgway, H F

    1995-01-01

    Pseudomonas putida 54g grew on mineral salts with toluene and exhibited catechol-2,3-dioxygenase (C23O) activity, indicating a meta pathway. After 10 to 15 days on toluene, nondegrading (Tol-) variants approached nearly 10% of total CFU. Auxotrophs were not detected among variants, suggesting selective loss of catabolic function(s). Variant formation was substrate dependent, since Tol- cells were observed on neither ethylbenzene, glucose, nor peptone-based media nor when toluene catabolism was suppressed by glucose. Unlike wild-type cells, variants did not grow on gasoline, toluene, benzene, ethylbenzene, benzoate, or catechol, suggesting loss of meta pathway function. Catabolic and C23O activities were restored to variants via transfer of a 78-mDa TOL-like plasmid from a wild-type Tol+ donor. Tests for reversion of variants to Tol+ were uniformly negative, suggesting possible delection or excision of catabolic genes. Deletions were confirmed in some variants by failure to hybridize with a DNA probe specific for the xylE gene encoding C23O. Cells grown on benzoate remained Tol+ but were C23O- and contained a plasmid of reduced size or were plasmid free, suggesting an alternate chromosomal catabolic pathway, also defective in variants. Cells exposed to benzyl alcohol, the initial oxidation product of toluene, accumulated > 13% variants in 5 days, even when cell division was repressed by nitrogen deprivation to abrogate selection processes. No variants formed in identical ethylbenzene-exposed controls. The results suggest that benzyl alcohol mediates irreversible defects in both a plasmid-associated meta pathway and an alternate chromosomal pathway. PMID:7642499

  1. Carcinogenesis studies of trichloroethylene (without epichlorohydrin) (CAS No. 79-01-6) in F344/N rats and B6C3F1 mice (gavage studies). Technical report series (Final)

    SciTech Connect

    Not Available

    1990-05-01

    Carcinogenesis studies of epichlorohydrin-free trichloroethylene were conducted by administering the test chemical in corn oil by gavage to groups of 50 male and 50 female F344/N rats and 50 B6C3F1 mice of each sex for 103 weeks. Dose levels were 500 and 1,000 mg/kg for rats and 1,000 mg/kg for mice. Under the conditions of these studies, epichlorohydrin-free trichloroethylene caused renal tubular-cell neoplasms in male F344/N rats, produced toxic nephrosis in both sexes, and shortened the survival time of males. The experiment in male F344/N rats was considered to be inadequate to evaluate the presence or absence of a carcinogenic response to trichloroethylene. For female F344/N rats receiving trichloroethylene containing no epichlorohydrin, there was no evidence of carcinogenicity. Trichloroethylene (without epichlorohydrin) was carcinogenic for B6C3F1 mice, causing increased incidences of hepatocellular carcinomas in males and females and hepatocellular adenomas in females.

  2. Trichloroethylene concentration effects on pilot field-scale in-situ groundwater bloremediation by phenol-oxidizing microorganisms

    SciTech Connect

    Hopkins, G.D.; Munakata, Junko; Semprini, L.; McCarty, P.L. (Stanford Univ., CA (United States))

    1993-11-01

    A pilot study of in-situ aerobic cometabolic degradation of trichloroethylene (TCE) through the injection of phenol and oxygen into a confined aquifer was conducted at the Moffett Field test site together with a related laboratory study. With injected phenol and dissolved oxygen concentrations of 12.5 and 35 mg/L, respectively, first-order TCE removal of 88% was obtained over a concentration range of 62-500 [mu]g/L. With 1000 [mu]g/L TCE, removal was lower (77%), but increased to 90% when the phenol concentration was raised to 25 mg/L. The maximum field transformation yield of 0.062 g of TCE/g of phenol compared favorably with the highest measured resting-cell laboratory yield of 0.11 g of TCE/g of phenol. These results demonstrate high promise for in-situ aerobic cometabolic biodegradation of TCE with phenol-induced enzymes. 30 refs., 6 figs., 2 tabs.

  3. Mechanism insights into enhanced trichloroethylene removal using xanthan gum-modified microscale zero-valent iron particles.

    PubMed

    Xin, Jia; Han, Jun; Zheng, Xilai; Shao, Haibing; Kolditz, Olaf

    2015-03-01

    This report focuses on the enhancement in trichloroethylene (TCE) removal from contaminated groundwater using xanthan gum (XG)-modified, microscale, zero-valent iron (mZVI). Compared with bare mZVI, XG-coated mZVI increased the TCE removal efficiency by 30.37% over a 480-h experimental period. Because the TCE removal is attributed to both sorption and reduction processes, the contributions from sorption and reduction were separately investigated to determine the mechanism of XG on TCE removal using mZVI. The results showed that the TCE sorption capacity of mZVI was lower in the presence of XG, whereas the TCE reduction capacity was significantly increased. The FTIR spectra confirmed that XG, which is rich in hydrophilic functional groups, was adsorbed onto the iron surface through intermolecular hydrogen bonds, which competitively repelled the sorption and mass transfer of TCE toward reactive sites. The variations in the pH, Eh, and Fe(2+) concentration as functions of the reaction time were recorded and indicated that XG buffered the solution pH, inhibited surface passivation, and promoted TCE reduction by mZVI. Overall, the XG-modified mZVI was considered to be potentially effective for the in-situ remediation of TCE contaminated groundwater due to its high stability and dechlorination reactivity. PMID:25556871

  4. Trace level determination of trichloroethylene from liver, lung and kidney tissues by gas chromatography - magnetic sector mass spectrometry

    SciTech Connect

    Stacy D. Brown; S. Muralidhara; James V. Bruckner, Michael G. Bartlett

    2002-07-30

    Trichloroethylene (TCE) is a common industrial chemical that has been heavily used as a metal degreaser and a solvent for the past 100 years. As a result of the extensive use and production of this compound, it has become prevalent in the environment, appearing at over 50% of the hazardous waste sites on the US EPA's National Priorities List (NPL). TCE exposure has been linked to neurological dysfunction as well as to several types of cancer in animals. This paper describes the development and validation of a gas chromatography-mass spectrometry (GC-MS) method for the quantitation of trace levels of TCE in its target tissues (i.e. liver, kidney and lungs). The limit of quantitation (5 ng/ml) is substantially lower than currently published methods for the analysis of TCE in tissues. The % RSD and % Error for the assay falls within the acceptable range (<15% for middle and high QC points and <20% for low QC points), and the recovery is high from all tissues (>79%).

  5. Micellar enhanced ultrafiltration for recovery and concentration of trichloroethylene in groundwater. Final report, 1 July 1991-31 December 1991

    SciTech Connect

    Roberts, B.L.; Scamehorn, J.F.; Christian, S.D.; Tucker, E.E.; Uchiyama, H.

    1992-04-01

    The objective of this experimental investigation was to determine the feasability of micellar-enhanced ultrafiltration (MEUF) and vacuum stripping process in concentrating and separating trichloroethylene (TCE) from contaminated groundwater. The theory is to add surfactant to the contaminated groundwater to form micelles which bind the TCE molecules. The micelles containing the TCE are then removed by ultrafiltration using a spiral-wound membrane. To remove the TCE from the surfactant, this concentrated solution is vacuum stripped and the surfactant is recycled back to each MEUF stage. Properties such as membrane flux, solubilization equilibrium constant, molecular weight, and Krafft temperature were used to determine the appropriate surfactant. Design calculations were performed to estimate the performance of the vacuum stripper and the approximate number of MEUF units needed to remove 99+ percent of the TCE. Based on these feasability studies, preliminary cost estimates of applying this technology were calculated to be approximately the same cost as current established technology. Several recommendations for improving and optimizing the performance of this technology were made.

  6. Chemical adsorption of phosgene on TiO 2 and its effect on the photocatalytic oxidation of trichloroethylene

    NASA Astrophysics Data System (ADS)

    Joung, Soon-Kil; Amemiya, Takahashi; Murabayashi, Masayuki; Cai, R.; Itoh, Kiminori

    2005-12-01

    We observed the chemical adsorption with gas-phase phosgene on TiO 2 surfaces using in situ FT-IR, and examined its effect on the photocatalytic decomposition of trichloroethylene (TCE). The infrared spectrum of the adsorbed standard phosgene suggested that phosgene reacts with surface hydroxyl groups to form a bidentate carbonate compound, which binds to the TiO 2 surface through two Ti-O bonds. The surface species, adsorbed phosgene, derived from dichloroacetyl chloride (DCAC), which is generated during the photocatalytic decomposition of TCE, was also found to yield the same bidentate carbonate when decomposed photocatalytically. The adsorbed phosgene was formed stably on TiO 2 and was found to play an important role in accelerating the decomposition of TCE under irradiation with visible light as well as with UV. The active species was considered to be active oxygen on the structure of phosgene stably adsorbed to bidentate carbonate. The surface structure of adsorbed phosgene, bidentate carbonate may be used for the surface improvement of photocatalysts under visible light as well as UV.

  7. Medial prefrontal cortex inversely regulates toluene-induced changes in markers of synaptic plasticity of mesolimbic dopamine neurons

    PubMed Central

    Beckley, Jacob T.; Evins, Caitlin E.; Fedarovich, Hleb; Gilstrap, Meghin J.; Woodward, John J.

    2013-01-01

    Toluene is a volatile solvent that is intentionally inhaled by children, adolescents and adults for its intoxicating effects. While voluntary use of toluene suggests that it possesses rewarding properties and abuse potential, it is unknown whether toluene alters excitatory synaptic transmission in reward sensitive dopamine neurons like other drugs of abuse. Here, using a combination of retrograde labeling and slice electrophysiology, we show that a brief in vivo exposure of rats to a behaviorally relevant concentration of toluene vapor enhances glutamatergic synaptic strength of dopamine (DA) neurons projecting to nucleus accumbens core and medial shell neurons. This effect persisted for up to 3 days in mesoaccumbens core DA neurons and for at least 21 days in those projecting to the medial shell. In contrast, toluene vapor exposure had no effect on synaptic strength of DA neurons that project to the medial prefrontal cortex (mPFC). Furthermore, infusion of GABAergic modulators into the mPFC prior to vapor exposure to pharmacologically manipulate output, inhibited or potentiated toluene's action on mesoaccumbens DA neurons. Taken together, the results of these studies indicate that toluene induces a target-selective increase in mesolimbic DA neuron synaptic transmission and strongly implicates the mPFC as an important regulator of drug-induced plasticity of mesolimbic dopamine neurons. PMID:23303956

  8. CONTRIBUTIONS OF TOLUENE AND ¿ -PINENE TO SOA FORMED IN AN IRRADIATED TOLUENE/¿-PINENE/NOX/AIR MIXTURE: COMPARISON OF RESULTS USING 14C CONTENT AND SOA ORGANIC TRACER METHODS

    EPA Science Inventory

    An organic tracer method, recently proposed for estimating individual contributions of toluene and a-pinene to secondary organic aerosol (SOA) formation, was evaluated by conducting a laboratory study where a binary hydrocarbon mixture, containing the anthropogenic aromatic hydro...

  9. Transport properties of nonelectrolyte liquid mixtures. VIII. Viscosity coefficients for toluene and for three mixtures of toluene + hexane from 25 to 100°C at pressures up to 500 MPa

    Microsoft Academic Search

    J. H. Dymond; M. A. Awan; N. F. Glen; J. D. Isdale

    1991-01-01

    Viscosity coefficients measured using a two-coil self-centering falling-body viscometer are reported for toluene and three binary mixtures of toluene + n-hexane at 25, 50, 75, and 100°C at pressures up to 500 MPa. The data for a given composition at different temperatures and pressures are correlated very satisfactorily by a plot of reduced viscosity eta * versus log V', where

  10. Transport properties of nonelectrolyte liquid mixtures. VIII. Viscosity coefficients for toluene and for three mixtures of toluene + hexane from 25 to 100°C at pressures up to 500 MPa

    Microsoft Academic Search

    J. H. Dymond; M. A. Awan; N. F. Glen; J. D. Isdale

    1991-01-01

    Viscosity coefficients measured using a two-coil self-centering falling-body viscometer are reported for toluene and three binary mixtures of toluene + n-hexane at 25, 50, 75, and 100°C at pressures up to 500 MPa. The data for a given composition at different temperatures and pressures are correlated very satisfactorily by a plot of reduced viscosity ?* versus log V', where V'=V·V0(TR)\\/V0(T)

  11. Chelate-Modified Fenton Reaction for the Degradation of Trichloroethylene in Aqueous and Two-Phase Systems

    PubMed Central

    Lewis, Scott; Lynch, Andrew; Bachas, Leonidas; Hampson, Steve; Ormsbee, Lindell; Bhattacharyya, Dibakar

    2009-01-01

    Abstract The primary objective of this research was to model and understand the chelate-modified Fenton reaction for the destruction of trichloroethylene (TCE) present in both the aqueous and organic (in the form of droplets) phases. The addition of a nontoxic chelate (L), such as citrate or gluconic acid, allows for operation at near-neutral pH and controlled release of Fe(II)/Fe(III). For the standard Fenton reaction at low pH in two-phase systems, an optimum H2O2:Fe(II) molar ratio was found to be between 1:1 and 2:1. Experimentation proved the chelate-modified Fenton reaction effectively dechlorinated TCE in both the aqueous and organic phases at pH 6–7 using low H2O2:Fe(II) molar ratios (4:1 to 8:1). Increasing the L:Fe ratio was found to decrease the rate of H2O2 degradation in both Fe(II) and Fe(III) systems at near-neutral pH. Generalized models were developed to predict the concentration of TCE in the aqueous phase and TCE droplet radius as a function of time using literature-reported hydroxyl radical reaction kinetics and mass transfer relationships. Additional aspects of this work include the reusability of the Fe–citrate complex under repeated H2O2 injections in real water systems as well as packed column studies for simulated groundwater injection. PMID:20418966

  12. Influence of under pressure dissolved oxygen on trichloroethylene degradation by the H2O2/TiO2 process

    PubMed Central

    2013-01-01

    Background The widespread use of trichloroethylene (TCE) and its frequent release into the environment has caused many environmental and health problems. In this study the degradation of TCE at different micromolar concentrations was investigated in a stainless steel reactor with various concentrations of H2O2 and TiO2 at different oxygen pressures and three different pHs. Methods To examine the synergistic effect of under pressure oxygen on TCE degradation, the concentrations of H2O2 and TiO2 as well as pH were first optimized, and then the experiments were performed under optimal conditions. Gas chromatography with a flame ionization detector (FID) was used to measure TCE concentrations. Results Results showed that the percentage of TCE degradation without pressurized oxygen was low and it increased with increasing pressure of oxygen at all initial concentrations of TCE. The degradation percentages without oxygen pressure were 48.27%, 51.22%, 58.13% and 64.33% for TCE concentrations of 3000, 1500, 300 and 150 ?g/L respectively. At an oxygen pressure of 2.5 atmospheres (atm) the percent degradation of TCE reached 84.85%, 89.14%, 93.13% and 94.99% respectively for the aforementioned TCE concentrations. Conclusions The results of this study show that the application of dissolved oxygen under pressure increases the efficiency of the H2O2/TiO2 process on the degradation of TCE and can be used along with other oxidants as an effective method for the removal of this compound from aqueous solutions. PMID:24359702

  13. Postnatal exposure to trichloroethylene alters glutathione redox homeostasis, methylation potential, and neurotrophin expression in the mouse hippocampus

    PubMed Central

    Blossom, Sarah J.; Melnyk, Stepan; Cooney, Craig A.; Gilbert, Kathleen M.; James, S. Jill

    2012-01-01

    Previous studies have shown that continuous exposure throughout gestation until the juvenile period to environmentally-relevant doses of trichloroethylene (TCE) in the drinking water of MRL+/+ mice promoted adverse behavior associated with glutathione depletion in the cerebellum indicating increased sensitivity to oxidative stress. The purpose of this study was to extend our findings and further characterize the impact of TCE exposure on redox homeostasis and biomarkers of oxidative stress in the hippocampus, a brain region prone to oxidative stress. Instead of a continuous exposure, the mice were exposed to water only or two environmentally relevant doses of TCE in the drinking water postnatally from birth until 6 weeks of age. Biomarkers of plasma metabolites in the transsulfuration pathway and the transmethylation pathway of the methionine cycle were also examined. Gene expression of neurotrophins was examined to investigate a possible relationship between oxidative stress, redox imbalance and neurotrophic factor expression with TCE exposure. Our results show that hippocampi isolated from male mice exposed to TCE showed altered glutathione redox homeostasis indicating a more oxidized state. Also observed was a significant, dose dependent increase in glutathione precursors. Plasma from the TCE treated mice showed alterations in metabolites in the transsulfuration and transmethylation pathways indicating redox imbalance and altered methylation capacity. 3-Nitrotyrosine, a biomarker of protein oxidative stress, was also significantly higher in plasma and hippocampus of TCE-exposed mice compared to controls. In contrast, expression of key neurotrophic factors in the hippocampus (BDNF, NGF, and NT-3) was significantly reduced compared to controls. Our results demonstrate that low-level postnatal and early life TCE exposure modulates neurotrophin gene expression in the mouse hippocampus and may provide a mechanism for TCE-mediated neurotoxicity. PMID:22421312

  14. Adsorption characteristics of trichloroethylene and 1,1,1-trichloroethane onto activated carbon fiber in gaseous phase

    SciTech Connect

    Tanada, Seiki; Nakamura, Takeo; Xiaohong, Ma; Higuchi, Toshikazu; Shinoda, Sanji [Kinki Univ., Osaka (Japan)

    1992-07-01

    Trichloroethylene (TCE) and 1,1,1-trichloroethane (methylchloroform:MC) are major volatile chlorinated hydrocarbons, and the production amounts of these compounds run up to about 80,000-100,000 tons a year in Japan. TCE and MC were observed in groundwater in Japan as well as in the United States, so that the environmental contamination by these compounds became a serious problem. TCE and MC cause vertigo, headache, drunkenness and fatigue depending on central nervous system depress, and also liver or kidney lesion by inhalation as general toxicities. For prevention of the poisoning to workers, the permissible concentrations of TCE and MC vapors in work area have been set at 50ppm and 200ppm, respectively by Japan Association of Industrial Health. In the United States, those values are set at 100ppm and 350ppm by American Conference of Governmental Industrial Hygienists, respectively. In addition, TCE is considered to be carcinogenic because it causes liver cancer in mice. Furthermore, MC is considered to destroy the Ozone Layer. Though it is presumed that 40-70% of used TCE and MC in factories is exhausted to the atmosphere, there is no regulation now concerning the exhaustion of TCE and MC to the atmosphere. So that regards should be paid to the intake of TCE and MC from the atmosphere as well as from drinking water. In this paper, we studied the adsorption removal of TCE and MC by activated carbon fibers (ACFs) in gaseous phase pointing to the prevention against TCE and MC diffusion to the atmosphere and inhalation to workers. 9 refs., 3 figs., 2 tabs.

  15. Group-Specific Monitoring of Phenol Hydroxylase Genes for a Functional Assessment of Phenol-Stimulated Trichloroethylene Bioremediation

    PubMed Central

    Futamata, Hiroyuki; Harayama, Shigeaki; Watanabe, Kazuya

    2001-01-01

    The sequences of the largest subunit of bacterial multicomponent phenol hydroxylases (LmPHs) were compared. It was found that LmPHs formed three phylogenetic groups, I, II, and III, corresponding to three previously reported kinetic groups, low-Ks (the half-saturation constant in Haldane's equation for trichloroethylene [TCE]), moderate-Ks, and high-Ks groups. Consensus sequences and specific amino acid residues for each group of LmPH were found, which facilitated the design of universal and group-specific PCR primers. PCR-mediated approaches using these primers were applied to analyze phenol/TCE-degrading populations in TCE-contaminated aquifer soil. It was found that the aquifer soil harbored diverse genotypes of LmPH, and the group-specific primers successfully amplified LmPH fragments affiliated with each of the three groups. Analyses of phenol-degrading bacteria isolated from the aquifer soil confirmed the correlation between genotype and phenotype. Competitive PCR assays were used to quantify LmPHs belonging to each group during the enrichment of phenol/TCE-degrading bacteria from the aquifer soil. We found that an enrichment culture established by batch phenol feeding expressed low TCE-degrading activity at a TCE concentration relevant to the contaminated aquifer (e.g., 0.5 mg liter?1); group II and III LmPHs were predominant in this batch enrichment. In contrast, group I LmPHs overgrew an enrichment culture when phenol was fed continuously. This enrichment expressed unexpectedly high TCE-degrading activity that was comparable to the activity expressed by a pure culture of Methylosinus trichosporium OB3b. These results demonstrate the utility of the group-specific monitoring of LmPH genes in phenol-stimulated TCE bioremediation. It is also suggested that phenol biostimulation could become a powerful TCE bioremediation strategy when bacteria possessing group I LmPHs are selectively stimulated. PMID:11571171

  16. Nonthermal plasma alternative to the incineration of hazardous organic wastes. [Mixtures containing oil and trichloroethylene, carbon tetrachloride and trichloroethane

    SciTech Connect

    Rosocha, L.A.; McCulla, W.H.; Anderson, G.K.; Coogan, J.J.; Kang, M.; Tennant, R.A.; Wantuck, P.J.

    1992-01-01

    We are developing silent discharge plasma (SDP) oxidation technology as an alternative to incineration and as a post-incinerator treatment process for hazardous organic wastes. As an alternative to incineration, SDP apparatus has been coupled to a high-temperature packed-bed reactor, the plasma apparatus serving as a second stage for treating gaseous effluent from the packed bed. As a post- incinerator treatment process, SDP apparatus has been evaluated using a prepared gaseous feed containing hazardous organic compounds which are expected to be found in the machining fluids (trichloroethylene (TCE), carbon tetrachloride (CCl{sub 4}), and trichloroethane (TCA)). In typical tests with the packed-bed reactor alone, we have treated mixtures containing oil and several per cent TCE, TCA, or CCl{sub 4} removing the chlorocarbons to levels of ppm-order for TCA and to order {approximately}100 ppb for TCE and CCl{sub 4}, as measured in the gaseous effluent. In representative stand-alone tests with the SDP reactor, we have removed TCE in the gaseous influent from 1,000 ppm concentrations to around 100 ppb in the gaseous effluent (CCl{sub 4} appears to be more treatment-resistant). The measured figures of merit for the SDP reactor (electrical energy per mass of removed chemical) are 10's of kW-hr/kg for >>99% removal of TCE and 100's of kW-hr/kg for 90% removal of CCl{sub 4}, both being non-optimized cases in terms of waste concentration, carrier gas composition, water content, flow rate, and electrical power. Using combined packed- bed/SDP reactors on chlorocarbon/oil mixtures, several per cent chlorocarbon concentrations have been removed to well below the 100-ppb level overall. We envision eventual reductions to levels of {approximately}10 ppb or less.

  17. Optimization of trichloroethylene degradation using soluble methane monooxygenase of Methylosinus trichosporium OB3b expressed in recombinant bacteria

    SciTech Connect

    Jahng, D. [Myongji Univ., Nam-Dong (Korea, Republic of). Dept. of Chemical Engineering] [Myongji Univ., Nam-Dong (Korea, Republic of). Dept. of Chemical Engineering; Kim, C.S.; Wood, T.K. [Univ. of California, Irvine, CA (United States). Dept. of Chemical and Biochemical Engineering] [Univ. of California, Irvine, CA (United States). Dept. of Chemical and Biochemical Engineering; Hanson, R.S. [Univ. of Minnesota, Minneapolis, MN (United States). Dept. of Microbiology] [Univ. of Minnesota, Minneapolis, MN (United States). Dept. of Microbiology

    1996-08-05

    By complementing cell-free extracts of Pseudomonas putida F1/pSMMO20 with purified soluble methane monooxygenase (sMMO) components of Methylosinus trichospoirium OB3b, the low cloned-gene sMMO activity in the recombinant strain was found to be due to incomplete activity of the hydroxylase component. To address this incomplete activity, additional sMMO-expressing strains were formed by transferring mmo-containing pSMMO20 and pSMMO50 into various bacterial species including pseudomonads and {alpha}-2 subdivision strains such as methanotrophs, methylotrophs, Agrobacterium tumefaciens A114, and Rhizobium meliloti 102F34 (11 new strains screened); sMMO activity was detected in the last two strains. To increase plasmid segregational stability, the hok/sok locus originally from Escherichia coli plasmid R1 was inserted downstream of the mmo locus of pSMMO20 (resulting in pSMMO40) and found to enhance plasmid stability in P. putida F1 and R. meliloti 102F34 (first report of hok/sok in Rhizobium). To further increase sMMO activity, a modified Whittenbury minimal medium was selected from various minimal and complex media based on trichloroethylene (TCE) degradation and growth rates and was improved by removing the sMMO-inhibiting metal ions [Cu(II), Ni(II), and Zn(II)] and chloramphenicol from the medium and by supplementing with an iron source (3.6 {micro}M of ferrous ammonium sulfate). Using chemostat-grown P. putida F1/pSMMO40, it was found that sMMO activity was higher for cells grown at higher dilution rates. These optimization efforts resulted in a twofold increase in the extent of TCE degradation and more consistent sMMO activity.

  18. Estimation of Koc values for deuterated benzene, toluene, and ethylbenzene, and application to ground water contamination studies.

    PubMed

    Poulson, S R; Drever, J I; Colberg, P J

    1997-11-01

    Sorption partition coefficients between water and organic carbon (Koc) for deuterated benzene, toluene, and ethylbenzene have been estimated by measuring values of the octanol-water partition coefficient (Kow) and HPLC retention factors (k1), which correlate closely to values of Koc. Measured values of log Kow for non-deuterated and deuterated toluene are 2.77 (+/- 0.02) and 2.78 (+/- 0.04), respectively, indicating that within experimental error, log Koc for deuterated and non-deuterated toluene are the same. The HPLC method provides greater precision, and yields values of delta log Koc (= log Koc [deuterated]-log Koc [non-deuterated]) of -0.021 (+/- 0.001) for benzene, -0.028 (+/- 0.002) for toluene, and -0.035 (+/- 0.003) for ethylbenzene. The small values of delta log Koc demonstrates that deuterated compounds are excellent tracers for the hydrologic behavior of ground water contaminants. PMID:9375354

  19. Solvothermal-assisted liquid-phase exfoliation of graphite in a mixed solvent of toluene and oleylamine.

    PubMed

    Dang, Dinh Khoi; Kim, Eui Jung

    2015-12-01

    We report an effective method for producing graphene sheets using solvothermal-assisted exfoliation of graphite in a mixed solvent of toluene and oleylamine. The mixed solvent of toluene and oleylamine produces higher yield of graphene than its constituents, oleylamine and toluene. The oleylamine molecules with its long chain enwrap the graphene sheets efficiently, while toluene helps the oleylamine molecules become more flexible and easily intercalate into the edge of graphite. The prepared graphene sheets have a high quality, and the concentration of graphene in the dispersion is as high as 0.128 mg mL(-1). The high-quality graphene sheets obtained in this work make them suitable for application in many fields such as energy-storage materials and polymer composites. PMID:26055473

  20. Toluene Effects on Gene Expression in the Hippocampus of Young-Adult, Middle-Age and Senescent Brown Norway Rats

    EPA Science Inventory

    Differential susceptibility to environmental exposure(s) across life stages is an area of toxicology about which little is known. We examined the effects of toluene, a known neurotoxicant with reported behavioral, electrophysiological and pathological effects, on transcriptomic...

  1. In-situ characterization of vapor-deposited glasses of toluene by differential AC chip nanocalorimetry

    NASA Astrophysics Data System (ADS)

    Ahrenberg, Mathias; Whitaker, Katie; Huth, Heiko; Ediger, Mark D.; Schick, Christoph; University of Rostock Team; University of Wisconsin-Madison Team

    2011-03-01

    We use ac nanocalorimetry to investigate extraordinarily stable glasses of toluene prepared by vapor deposition. For that purpose we've built a vapor deposition chamber that allows in-situ characterization of vapor-deposited organic glasses down to liquid nitrogen temperature. With highly sensitive nanocalorimeters in a differential setup, we are able to measure ng-samples over a frequency range from 0.1 Hz up to 8 kHz. The device was used to investigate the transformation of as-deposited stable toluene glasses into ordinary glasses. For films about 100 nm thick, the transformation was studied as a function of time at constant temperature above the common glass transition and as function of temperature at constant heating rate. The stability of the thin films was investigated as a function of substrate temperature and deposition rate.

  2. Vapor-liquid equilibria in the systems toluene/naphthalene and cyclohexane/naphthalene

    SciTech Connect

    Lee, Changha; Holder, G.D. (Univ. of Pittsburgh, PA (United States))

    1993-04-01

    In this study, the authors report isothermal vapor-liquid equilibrium (VLE) data for the toluene/naphthalene and cyclohexane/naphthalene systems which can be considered as model compounds for coal liquids. Vapor-liquid equilibrium data for the binary systems toluene/naphthalene and cyclohexane/naphthalene were measured at 0-1,300 kPa and 370-500 K using a 1-L stirred autoclave system. All pure components and binary P-T data were well fitted with a three-constant Antoine equation. The data can bee accurately correlated with the modified Peng-Robinson equation of state using density-dependent mixing rules to describe both the vapor and liquid phases. The binary interaction parameters and correction factors for the equation of state are reported at each isotherm.

  3. Study of toluene stability for an Organic Rankine Cycle (ORC) space-based power system

    NASA Technical Reports Server (NTRS)

    Havens, Vance; Ragaller, Dana

    1988-01-01

    The design, fabrication, assembly, and endurance operation of a dynamic test loop, built to evaluate the thermal stability of a proposed Organic Rankine Cycle (ORC) working fluid, is discussed. The test fluid, toluene, was circulated through a heater, simulated turbine, regenerator, condenser and pump to duplicate an actual ORC system. The maximum nominal fluid temperature, 750 F, was at the turbine simulator inlet. Samples of noncondensible gases and liquid toluene were taken periodically during the test. The samples were analyzed to identify the degradation products formed and the quantity of these products. From these data it was possible to determine the degradation rate of the working fluid and the generation rate of noncondensible gases. A further goal of this work was to relate the degradation observed in the dynamic operating loop to degradation obtained in isothermal capsule tests. This relationship was the basis for estimating the power loop degradation in the Space Station Organic Rankine Cycle system.

  4. Toluene 4-Monooxygenase and its Complex with Effector Protein T4moD

    SciTech Connect

    Bailey, Lucas J.; Fox, Brian G. (UW)

    2012-10-16

    Toluene 4-monooxygenase (T4MO) is a multiprotein diiron enzyme complex that catalyzes the regiospecific oxidation of toluene to p-cresol. Catalytic function requires the presence of a small protein, called the effector protein. Effector protein exerts substantial control on the diiron hydroxylase catalytic cycle through protein-protein interactions. High-resolution crystal structures of the stoichometric hydroxylase and effector protein complex described here reveal how protein-protein interactions and reduction of the diiron center produce an active site configuration poised for reaction with O{sub 2}. Further information from crystal structures of mutated isoforms of the hydroxylase and a peroxo adduct is combined with catalytic results to give a fuller picture of the geometry of the enzyme-substrate complex used for the high fidelity oxidation of hydrocarbon substrates.

  5. Stable self-trapping and ring formation in polydiacetylene para-toluene sulfonate

    NASA Astrophysics Data System (ADS)

    Wright, Ewan M.; Lawrence, Brian L.; Torruellas, William; Stegeman, George

    1995-12-01

    Numerical simulations of two-dimensional beam propagation in polydiacetylene para-toluene sulfonate measured values for n2>0 and n3<0 , where Delta n=n2I+n 3I2 , predict stable self-trapping and a new phenomenon in which a spatial ring evolves from a Gaussian input beam. We interpret the numerical results theoretically, using the variational model of nonlinear Gaussian beam propagation.

  6. Biodegradation of toluene and xylenes under microaerophilic and denitrifying conditions by Pseudomonas maltophilia

    SciTech Connect

    Su, J.J.

    1994-01-01

    Aerobic biodegradation of aromatic hydrocarbons has been well studied. Under aerobic conditions, aerobes or facultative anaerobes can utilize aromatic hydrocarbons as sole carbon and energy sources by using oxygen as the cosubstrate of oxygenase enzymes for the initial attack of the aromatic ring and as the terminal electron acceptor for aerobic respiration. However, some facultative or obligate anaerobes can degrade these hydrocarbons by using alternate electron acceptors, such as nitrate, sulfate, carbon dioxide, or iron for anaerobic respiration. Among the potential alternate electron acceptors available, nitrate is the most common one used by microorganisms under oxygen-limited conditions. The first objective of this project was to explore hydrocarbon utilization under anoxic or low oxygen conditions. A microorganism that can utilize the petroleum hydrocarbons, toluene and xylene, as sole carbon and energy sources under microaerophilic (2% oxygen) and denitrifying conditions was isolated and characterized. Since oxygen may repress microbial denitrification, it was of interest to monitor the effects of low oxygen levels on aromatic hydrocarbon biodegradation coupled to denitrification. We isolated a Gram-negative rod, Pseudomonas maltophilia from anaerobic sewage digester sludge. The patterns of biodegradations of toluene and two isomers of xylenes, m- and p-xylene, were very similar under either microaerophilic or anaerobic conditions. Nitrate reduction was also observed during time course experiments under aerobic conditions. The final objective was to test the feasibility of an immobilized cell reactor to treat waste streams. Therefore, a bench-scale bioreactor was built to treat a waste stream contaminated with both toluene and nitrate without aeration. The utilization of toluene and nitrate was monitored periodically in a continuous system under anaerobic conditions.

  7. Quinone-Bodipy H-bonding interaction over ?-stacking in toluene.

    PubMed

    Karmakar, Animesh; Mula, Soumyaditya; Ghosh, Kalyan; Chaudhuri, Tandrima; Shivran, Neelam; Banerjee, Manas; Chattopadhyay, Subrata

    2015-06-01

    Quinone type compounds (o-chloranil, p-chloranil and DDQ) demonstrate excellent H-bonding interactions with a meso-phenol Bodipy dye () in both ground and excited state in a non-polar toluene medium. The spectroscopic detection of isosbestic absorption occurs with both quinones and fullerenes, but only quinones form isoemissive complexes with dye . (1)H NMR study and Monte Carlo global minima searching justified the above mentioned results with efficiency. PMID:26006323

  8. Adsorption of Benzene, Toluene, and Xylene by Two Tetramethylammonium-Smectites Having Different Charge Densities

    Microsoft Academic Search

    Jiunn-Fwu Lee; MAX M. MORTLAND; CARY T. CHIOU; DANIEL E. KILE; STEPHEN A. BOYD

    1990-01-01

    A high-charge smectite from Arizona (cation-exchange capacity (CEC) = 120 meq\\/100 g) and a low-charge smectite from Wyoming (CEC = 90 meq\\/100 g) were used to prepare homoionic tetra- methylammonium (TMA)-clay complexes. The adsorption of benzene, toluene, and o-xylene as vapors by the dry TMA-clays and as solutes from water by the wet TMA-clays was studied. The adsorption of the

  9. Effect of continuous ozone injection on performance and biomass accumulation of biofilters treating gaseous toluene.

    PubMed

    Xi, Jinying; Saingam, Prakit; Gu, Feng; Hu, Hong-Ying; Zhao, Xuefei

    2014-11-01

    Biofilters treating high-concentration gaseous volatile organic compounds (VOC) can be subject to bed clogging induced by excess biomass accumulation. In this study, O3 was continuously injected into biofilters to control biomass. Its effects on the performance of the biofilters and on biomass accumulation were investigated. Four identical biofilters designed to treat gaseous toluene were operated for 70 days, and three of them were continuously injected with O3 at different concentrations (from 80 to 320 mg/m(3)). The results showed that continuous O3 injection could effectively keep the bed pressure drop stable and had no adverse effect on toluene removal when O3 concentrations were 180-220 mg/m(3). The maximum toluene elimination capacity of the four biofilters was 140 g-toluene/m(3)/h, and the bed pressure drop of the biofilter fed with 180-220 mg/m(3) O3 remained below 3 mmH2O/m throughout the operation period. The biomass accumulation rates of the three biofilters with O3 at 80-320 mg/m(3) were lowered by 0.15-0.25 g/L/day compared with the biofilter without O3. The decreases in biomass accumulation resulted in higher void fractions of the filter beds with O3 injection. Carbon balance analysis indicated that CO2 production had increased while biomass accumulation and leachate waste production decreased in response to O3 injection. Based on the experimental results, it was concluded here that continuous O3 injection can reduce increases in bed pressure effectively, preserve VOC removal capacity, and prevent production of extra leachate waste. PMID:25005059

  10. Effect of continuous ozone injection on performance and biomass accumulation of biofilters treating gaseous toluene.

    PubMed

    Xi, Jinying; Saingam, Prakit; Gu, Feng; Hu, Hong-Ying; Zhao, Xuefei

    2015-01-01

    Biofilters treating high-concentration gaseous volatile organic compounds (VOC) can be subject to bed clogging induced by excess biomass accumulation. In this study, O3 was continuously injected into biofilters to control biomass. Its effects on the performance of the biofilters and on biomass accumulation were investigated. Four identical biofilters designed to treat gaseous toluene were operated for 70 days, and three of them were continuously injected with O3 at different concentrations (from 80 to 320 mg/m(3)). The results showed that continuous O3 injection could effectively keep the bed pressure drop stable and had no adverse effect on toluene removal when O3 concentrations were 180-220 mg/m(3). The maximum toluene elimination capacity of the four biofilters was 140 g-toluene/m(3)/h, and the bed pressure drop of the biofilter fed with 180-220 mg/m(3) O3 remained below 3 mmH2O/m throughout the operation period. The biomass accumulation rates of the three biofilters with O3 at 80-320 mg/m(3) were lowered by 0.15-0.25 g/L/day compared with the biofilter without O3. The decreases in biomass accumulation resulted in higher void fractions of the filter beds with O3 injection. Carbon balance analysis indicated that CO2 production had increased while biomass accumulation and leachate waste production decreased in response to O3 injection. Based on the experimental results, it was concluded here that continuous O3 injection can reduce increases in bed pressure effectively, preserve VOC removal capacity, and prevent production of extra leachate waste. PMID:25492419

  11. Formation of ethyl benzene and styrene by side chain methylation of toluene over calcined LDHs

    Microsoft Academic Search

    R. Manivannan; A. Pandurangan

    2009-01-01

    Mg\\/Al layered double hydroxide (LDH) with various Mg\\/Al molar ratios 3, 4, 5, 7 and 10 were prepared, calcined and characterized by XRD, FT-IR, ICPES and BET surface area analysis. These LDHs were used for side chain methylation of toluene with methanol between 300 and 450 °C. For comparison, Cu\\/Al, Ni\\/Al, Co\\/Al and Zn\\/Al LDHs with molar ratio 3 were also

  12. Pattern Visual Evoked Cortical Potentials in Patients With Toxic Optic Neuropathy Caused by Toluene Abuse

    Microsoft Academic Search

    Masahiro Kiyokawa; Atsushi Mizota; Michihiko Takasoh; Emiko Adachi-Usami

    1999-01-01

    Purpose: Electrophysiological evaluation of the visual function of patients with toxic neuropathy caused by toluene abuse.Methods: Fifteen patients (mean age 25.6 years, eight men and seven women) were diagnosed with bilateral optic neuropathy. Pattern visual evoked cortical potentials (PVECPs) and clinical symptoms were investigated.Results: Visual acuities at the initial visit were less than 0.1 in 5 cases and 0.1–1.0 in

  13. Modulation of neurological related allergic reaction in mice exposed to low-level toluene

    SciTech Connect

    Tin-Tin-Win-Shwe [Research Center for Environmental Risk, National Institute for Environmental Studies 16-2, Onogawa, Tsukuba, Ibaraki 305-8506 (Japan); Yamamoto, Shoji [Research Center for Environmental Risk, National Institute for Environmental Studies 16-2, Onogawa, Tsukuba, Ibaraki 305-8506 (Japan); Nakajima, Daisuke [Research Center for Environmental Risk, National Institute for Environmental Studies 16-2, Onogawa, Tsukuba, Ibaraki 305-8506 (Japan); Furuyama, Akiko [Research Center for Environmental Risk, National Institute for Environmental Studies 16-2, Onogawa, Tsukuba, Ibaraki 305-8506 (Japan); Fukushima, Atsushi [Research Center for Environmental Risk, National Institute for Environmental Studies 16-2, Onogawa, Tsukuba, Ibaraki 305-8506 (Japan); Ahmed, Sohel [Research Center for Environmental Risk, National Institute for Environmental Studies 16-2, Onogawa, Tsukuba, Ibaraki 305-8506 (Japan); Goto, Sumio [Research Center for Environmental Risk, National Institute for Environmental Studies 16-2, Onogawa, Tsukuba, Ibaraki 305-8506 (Japan); Fujimaki, Hidekazu [Research Center for Environmental Risk, National Institute for Environmental Studies 16-2, Onogawa, Tsukuba, Ibaraki 305-8506 (Japan)]. E-mail: fujimaki@nies.go.jp

    2007-07-01

    The contributing role of indoor air pollution to the development of allergic disease has become increasingly evident in public health problems. It has been reported that extensive communication exists between neurons and immune cells, and neurotrophins are molecules potentially responsible for regulating and controlling this neuroimmune crosstalk. The adverse effects of volatile organic compounds which are main indoor pollutants on induction or augmentation of neuroimmune interaction have not been fully characterized yet. To investigate the effects of low-level toluene inhalation on the airway inflammatory responses, male C3H mice were exposed to filtered air (control), 9 ppm, and 90 ppm toluene for 30 min by nose-only inhalation on Days 0, 1, 2, 7, 14, 21, and 28. Some groups of mice were injected with ovalbumin intraperitoneally before starting exposure schedule and these mice were then challenged with aerosolized ovalbumin as booster dose. For analysis of airway inflammation, bronchoalveolar lavage (BAL) fluid were collected to determine inflammatory cell influx and lung tissue and blood samples were collected to determine cytokine and neurotrophin mRNA and protein expressions and plasma antibody titers using real-time RT-PCR and ELISA methods respectively. Exposure of the ovalbumin-immunized mice to low-level toluene resulted in (1) increased inflammatory cells infiltration in BAL fluid; (2) increased IL-5 mRNA, decreased nerve growth factor receptor tropomyosin-related kinase A and brain-derived neurotrophic factor mRNAs in lung; and (3) increased IgE and IgG{sub 1} antibodies and nerve growth factor content in the plasma. These findings suggest that low-level toluene exposure aggravates the airway inflammatory responses in ovalbumin-immunized mice by modulating neuroimmune crosstalk.

  14. Detection and quantification of degradative genes in soils contaminated by toluene

    Microsoft Academic Search

    Sylvie Hallier-Soulier; Véronique Ducrocq; Nathalie Mazure; Nicole Truffaut

    1996-01-01

    A method based on the polymerase chain reaction (PCR) was developed for a rapid and specific detection of toluene degradative genes in soil. The xylE gene coding for catechol 2,3-dioxygenase was chosen as a target gene. The detection threshold was evaluated in microcosms using a sterilized standard soil inoculated with various amounts of a degradative strain of Pseudomonas putida (mX).

  15. Central neurological abnormalities and multiple chemical sensitivity caused by chronic toluene exposure

    Microsoft Academic Search

    Y.-L. Lee; M.-C. Pai; J.-H. Chen; Y. L. Guo

    2003-01-01

    Multiple chemical sensitivity (MCS) is a syndrome in which multiple symptoms occur with low-level chemical exposure; whether it is an organic disease initiated by environmental exposure or a psychological disorder is still controversial. We report a 38-year-old male worker with chronic toluene exposure who developed symptoms such as palpitation, insomnia, dizziness with headache, memory impairment, euphoria while working, and depression

  16. Horizontal Gene Transfer to Endogenous Endophytic Bacteria from Poplar Improves Phytoremediation of Toluene

    Microsoft Academic Search

    Safiyh Taghavi; Tanja Barac; Bill Greenberg; Brigitte Borremans; Jaco Vangronsveld; Daniel van der Lelie

    2005-01-01

    Poplar, a plant species frequently used for phytoremediation of groundwater contaminated with organic solvents, was inoculated with the endophyte Burkholderia cepacia VM1468. This strain, whose natural host is yellow lupine, contains the pTOM-Bu61 plasmid coding for constitutively expressed toluene degradation. Noninoculated plants or plants inoculated with the soil bacterium B. cepacia Bu61(pTOM-Bu61) were used as controls. Inoculation of poplar had

  17. Adsorption characteristics of activated carbon fibers (ACFs) for toluene: application in respiratory protection.

    PubMed

    Balanay, Jo Anne G; Bartolucci, Alfred A; Lungu, Claudiu T

    2014-01-01

    Granular activated carbon (GAC) is currently the standard adsorbent in respirators against several gases and vapors because of its efficiency, low cost, and available technology. However, a drawback of GAC due to its granular form is its need for containment, adding weight and bulkiness to respirators. This makes respirators uncomfortable to wear, resulting in poor compliance in their use. Activated carbon fibers (ACF) are considered viable alternative adsorbent materials for developing thinner, light-weight, and efficient respirators because of their larger surface area, lighter weight, and fabric form. This study aims to determine the critical bed depth and adsorption capacity of different types of commercially available ACFs for toluene to understand how thin a respirator can be and the service life of the adsorbents, respectively. ACF in cloth (ACFC) and felt (ACFF) forms with three different surface areas per form were tested. Each ACF type was challenged with six concentrations of toluene (50, 100, 200, 300, 400, 500 ppm) at constant air temperature (23°C), relative humidity (50%), and airflow (16 LPM) at different adsorbent weights and bed depths. Breakthrough data were obtained for each adsorbent using gas chromatography with flame ionization detector. The ACFs' surface areas were measured by an automatic physisorption analyzer. The results showed that ACFC has a lower critical bed depth and higher adsorption capacity compared to ACFF with similar surface area for each toluene concentration. Among the ACF types, ACFC2000 (cloth with the highest measured surface area of 1614 ± 5 m(2)/g) has one of the lowest critical bed depths (ranging from 0.11-0.22 cm) and has the highest adsorption capacity (ranging from 595-878 mg/g). Based on these studied adsorption characteristics, it is concluded that ACF has great potential for application in respiratory protection against toluene, particularly the ACFC2000, which is the best candidate for developing thinner and efficient respirators. PMID:24521063

  18. Extraction of U(VI) with unsymmetrical N-methyl-N-octyl alkylamides in toluene

    Microsoft Academic Search

    Sun Guoxin; Cui Yu; Li Yexin; Zhang Zhenwei; Sun Sixiu

    2005-01-01

    Summary  This work is focused on the extraction of U(VI) with three new unsymmetrical monoamides, N-methyl-N-octyloctylamide (MOOA), N-methyl-N-octyldecanamide (MODA), and N-methyl-N-octyldodecanamide (MODOA), from nitric acid solution employing toluene as diluent. The effects of nitric acid, sodium nitrate and extractant concentrations and also the temperature on the distribution ratio have been investigated. The extracted species were studied by IR spectrometry.

  19. New High Temperature Lithium Para-Toluene Sulfonate (LIPTSA) Salt for Rechargeable Batteries

    Microsoft Academic Search

    Sreejith K R; Akhil Kumar Sen

    2012-01-01

    Lithium para-toluene sulfonate [LIPTSA] was used for lithium rechargeable batteries, with poly(methyl methacrylate) [PMMA] as the base material. Tri block copolymer of PEO-PPO-PEO was used to increase the solubility of lithium salts in PMMA matrix. FTIR, TGA, XRD, Impedance spectroscopy & SEM were used for characterizations and morphological studies. LIPTSA salt is stable up to 375°C. The highest room temperature

  20. Room temperature selective oxidation of toluene over vanadium substituted polyoxometalate catalysts

    Microsoft Academic Search

    K. T. Venkateswara Rao; P. S. N. Rao; P. Nagaraju; P. S. Sai Prasad; N. Lingaiah

    2009-01-01

    Selective oxidation of toluene at room temperature was carried on vanadium containing molybdophosphoric acid supported on niobia catalysts using t-butyl hydrogen peroxide (TBHP) as oxidant. The catalysts were characterized by FT-IR, X-ray diffraction (XRD), 31P MAS NMR, Laser Raman spectroscopy and N2 adsorption. The characterization data reveals the incorporation of vanadium and retention of intact Keggin ion on the support.

  1. Decomposition of toluene in a steady-state atmospheric-pressure glow discharge

    SciTech Connect

    Trushkin, A. N.; Grushin, M. E.; Kochetov, I. V.; Trushkin, N. I.; Akishev, Yu. S. [Troitsk Institute for Innovation and Fusion Research (Russian Federation)] [Troitsk Institute for Innovation and Fusion Research (Russian Federation)

    2013-02-15

    Results are presented from experimental studies of decomposition of toluene (C{sub 6}H{sub 5}CH{sub 3}) in a polluted air flow by means of a steady-state atmospheric pressure glow discharge at different water vapor contents in the working gas. The experimental results on the degree of C{sub 6}H{sub 5}CH{sub 3} removal are compared with the results of computer simulations conducted in the framework of the developed kinetic model of plasma chemical decomposition of toluene in the N{sub 2}: O{sub 2}: H{sub 2}O gas mixture. A substantial influence of the gas flow humidity on toluene decomposition in the atmospheric pressure glow discharge is demonstrated. The main mechanisms of the influence of humidity on C{sub 6}H{sub 5}CH{sub 3} decomposition are determined. The existence of two stages in the process of toluene removal, which differ in their duration and the intensity of plasma chemical decomposition of C{sub 6}H{sub 5}CH{sub 3} is established. Based on the results of computer simulations, the composition of the products of plasma chemical reactions at the output of the reactor is analyzed as a function of the specific energy deposition and gas flow humidity. The existence of a catalytic cycle in which hydroxyl radical OH acts a catalyst and which substantially accelerates the recombination of oxygen atoms and suppression of ozone generation when the plasma-forming gas contains water vapor is established.

  2. Positively charged composite nanofiltration membrane from quaternized chitosan by toluene diisocyanate cross-linking

    Microsoft Academic Search

    Ruihua Huang; Guohua Chen; Bingchao Yang; Congjie Gao

    2008-01-01

    2-Hydroxypropyltrimethyl ammonium chloride chitosan\\/polyacrylonitrile (HACC\\/PAN) positively charged composite nanofiltration (NF) membrane was prepared using HACC as active layer, PAN ultrafiltration (UF) membrane as support layer, and toluene diisocyanate (TDI) as cross-linking reagent. FTIR-ATR spectrum was employed to characterize the cross-linking on the resultant membrane surface. Besides, some characteristics such as the permeability of pure water and the rejection performance to

  3. Methanogenic Sarcina from an Anaerobic Microbial Community Degrading p Toluene Sulfonate

    Microsoft Academic Search

    V. A. Shcherbakova; K. S. Laurinavichyu; A. M. Lysenko; N. E. Suzina; V. K. Akimenko

    2003-01-01

    The methanogenic strain MM isolated from an anaerobic microbial community degrading p-toluene sulfonate showed optimal values of temperature and pH for growth equal to 37°C and 6.3–6.9, respectively. The doubling times of the isolate grown on methanol, acetate, and methylamines under the optimal conditions were 8.8, 19.1, and 10.3–28.1 h, respectively. The growth of strain MM was observed only when

  4. Physical aging of glassy PMMA\\/toluene films: Influence of drying\\/swelling history

    Microsoft Academic Search

    F. Doumenc; H. Bodiguel; B. Guerrier

    2008-01-01

    Gravimetry experiments in a well-controlled environment have been performed to investigate aging for a glassy PMMA\\/toluene\\u000a film. The temperature is constant and the control parameter is the solvent vapor pressure above the film (i.e. the activity). Several experimental protocols have been used, starting from a high activity where the film is swollen and\\u000a rubbery and then aging the film at

  5. Joint action and lethal levels of toluene, ethylbenzene, and xylene on midge (Chironomus plumosus) larvae.

    PubMed

    Li, Xuefeng; Zhou, Qixing; Luo, Yi; Yang, Guang; Zhou, Tong

    2013-02-01

    Aquatic ecosystems are vulnerable to the exposure with petrochemicals such as toluene, ethylbenzene, and xylene (o-, m-, and p-xylene) (TEX) and their adverse effects. Considering the widespread use, occurrence, and high toxicity of TEX, the aim of this work was to investigate the differential toxicity of TEX against midge (Chironomus plumosus) larvae and reveal the joint action of binary and ternary mixtures of TEX using the predictive concentration addition model. More importantly, this research can afford the basic toxicity data and scientific reference for the establishment of water quality criteria or benchmark, water pollution control, and aquatic risk assessment. Single and joint toxic effects of TEX on C. plumosus larvae were investigated using a semi-static bioassay, and the type of joint effects of TEX was ascertained. In the single toxicant experiments, the toxicity of the three pollutants could be sequenced as ethylbenzene > xylene > toluene. Specifically, LC(50s) of T, E, and X after a 48-h exposure were 64.9, 37.8, and 42.0 mg/L, respectively. In the binary mixture experiments, the interaction between toluene and ethylbenzene, ethylbenzene and xylene, and toluene and xylene was largely in conformity with partial additive or additive effect as determined by isobologram representation and toxic unit models. In the ternary mixture experiments, the interaction was basically dependent on the use of additive index and mixture toxicity index methods. However, the antagonistic and synergistic actions were not significant. Thus, the tertiary mixture interaction could be regarded as additive action. The concentration addition model could successfully predict the joint action of TEX mixtures on C. plumosus larvae. Particularly, the additive action of TEX on C. plumosus larvae can be further recommended to evaluate water quality criteria of TEX. PMID:23354551

  6. Studies of new magnesium fluoride supported nickel catalysts for toluene hydrogenation

    Microsoft Academic Search

    Micha? Zieli?ski; Maria Wojciechowska

    2011-01-01

    Ni\\/MgF2 (1wt.% Ni) catalysts were prepared by introduction of nickel nitrate into hydrogel of magnesium fluoride or impregnation of calcined MgF2 with Ni(NO3)2. The samples were reduced with H2 without or after calcination in air or helium. The catalysts were characterized by BET, H2-TPR, H2-adsorption, XRD and gas phase hydrogenation of toluene.The catalysts obtained with magnesium fluoride as a support

  7. Transalkylation of toluene and 1,2,4-trimethylbenzene over large pore zeolites

    Microsoft Academic Search

    Yong-Kul Lee; Se-Ho Park; Hyun-Ku Rhee

    1998-01-01

    Large pore zeolites, H-beta, H-mordenite (H-MOR) and H-omega, were dealuminated by steam treatment followed by acid leaching and were applied for transalkylation of toluene and 1,2,4-trimethylbenzene. The acidic properties of catalysts were examined by using TPD of ammonia and in situ FT-IR spectroscopy in the OH stretching region as well as pyridine adsorbed catalysts. XRD, mid-infrared spectroscopy and 29Si and

  8. Importance of platinum particle size for complete oxidation of toluene over Pt/ZSM-5 catalysts.

    PubMed

    Chen, Chunyu; Chen, Fang; Zhang, Ling; Pan, Shuxiang; Bian, Chaoqun; Zheng, Xiaoming; Meng, Xiangju; Xiao, Feng-Shou

    2015-04-01

    Size-controllable Pt nanoparticles ranging from 1.3 to 2.3 nm were successfully loaded onto ZSM-5 (Pt-x/ZSM-5, where x is the mean diameter of the Pt nanoparticles). Catalytic tests in complete oxidation of toluene as a model for VOC removal show that Pt-1.9/ZSM-5 has the highest activity, due to a balance of Pt dispersion and Pt(0) proportion. PMID:25738186

  9. Catalytic combustion of toluene on Pd/CeO2-TiO2 catalysts.

    PubMed

    Chen, Yu-Wen; Lee, Der-Shing

    2013-03-01

    Pd/TiO2 and Pd/CeO2 were reported to be very active to destruct toluene. Combination of TiO2 and CeO2 is an interesting candidate to achieve a catalyst with higher activity. In this study, a series of Pd/CeO2-TiO2 catalysts with various Pd loadings were prepared. CeO2-TiO2 was prepared by impregnation of aqueous solution of cerium nitrate into TiO2 support. It was then calcined at 400 degrees C. Pd was loaded by incipient-wetness impregnation method. The Pd loadings in all samples were fixed at 0.5 wt.%. The catalysts were characterized by powder X-ray diffraction, transmission electron microscopy, high resolution transmission electron microscopy, temperature-programmed reduction of hydrogen, and X-ray photoelectron spectroscopy. The catalysts were tested for total oxidation of toluene. The feed concentration of toluene was 8.564 g/m3 (2085 ppm), with GHSV = 10,000 h(-1). Pd particle sizes were 3-5 nm and well-dispersed on the support. CeO2 on TiO2 was easier to reduce than the bulk CeO2, therefore it could enhance the activity of VOC destruction. Pd/CeO2-TiO2 was more active than Pd/CeO2 and Pd/TiO2. Pd/CeO2-TiO2 with Ce/Ti ratio of 2/8 was very active for toluene destruction, due to its lower oxygen reduction temperature of ceria and higher concentration of Pd(0). PMID:23755662

  10. Determination of Secondary Organic Aerosol Products from the Photooxidation of Toluene and their Implications in Ambient PM 2.5

    Microsoft Academic Search

    T. E. Kleindienst; T. S. Conver; C. D. McIver; E. O. Edney

    2004-01-01

    A laboratory study was carried out to investigate the secondary organic aerosol products from photooxidation of the aromatic hydrocarbon toluene. The laboratory experiments consisted of irradiating toluene\\/propylene\\/NOx\\/air mixtures in a smog chamber operated inthe dynamic mode and collecting submicron secondary organic aerosol samples through a sampling train that consisted of an XAD denuder and a ZefluorTM filter. Oxidation products in

  11. Stable Carbon Isotope Ratios of Specific Products in Secondary Particulate Organic Matter Formed by PhotoOxidation of Toluene

    Microsoft Academic Search

    S. Irei; J. Rudolph; L. Huang; J. Auld; D. Hastie

    2009-01-01

    Laboratory experiments for stable carbon isotope studies of secondary particulate organic matter (POM) in the gas-phase were conducted. Secondary POM was generated using a 2.5 L flow reactor or an 8 m3 smog chamber. The initial mixing ratio of toluene and the initial toluene\\/NO ratio were 20 ppmV - 40 ppmV and 4 - 8 for the flow reactor experiments

  12. Radiation damage in scintillator detector chemical compounds: a new approach using PPO-Toluene liquid scintillator as a model

    Microsoft Academic Search

    C. H. Mesquita; J. M. Fernandes Neto; C. L. Duarte; P. R. Rela; M. M. Hamada

    2002-01-01

    The effect of radiation damage was evaluated in PPO-Toluene liquid scintillator solution. Samples containing PPO (1% w\\/v) diluted in toluene were prepared and irradiated at different doses, using a 60Co irradiator at 1.8 Gy\\/s. The effect of radiation on transmittance, light output, and chemical modification in the PPO were evaluated before and after irradiation. Transmittance loss at 360 nm decayed

  13. Temperature effects and substrate interactions during the aerobic biotransformation of BTEX mixtures by toluene?enriched consortia and Rhodococcus rhodochrous

    Microsoft Academic Search

    Rula A. Deeb

    1999-01-01

    A microbial consortium derived from a gaso- line-contaminated aquifer was enriched on toluene (T) in a chemostat at 20°C and was found to degrade benzene (B), ethylbenzene (E), and xylenes (X). Studies conducted to determine the optimal temperature for microbial ac- tivity revealed that cell growth and toluene degradation were maximized at 35°C. A consortium enriched at 35°C exhibited increased

  14. Estimation of K oc values for deuterated benzene, toluene, and ethylbenzene, and application to ground water contamination studies

    Microsoft Academic Search

    Simon R. Poulson; James I. Drever; Patricia J. S. Colberg

    1997-01-01

    Sorption partition coefficients between water and organic carbon (Koc) for deuterated benzene, toluene, and ethylbenzene have been estimated by measuring values of the octanol-water partition coefficient (Kow) and HPLC retention factors (k?), which correlate closely to values of Koc. Measured values of log Kow for non-deuterated and deuterated toluene are 2.77 (±0.02) and 2.78 (±0.04), respectively, indicating that within experimental

  15. PHOTOCATALYTIC DEGRADATION OF TOLUENE vapour USING FIXED BED MULTICHANNEL PHOTOREACTORS EQUIPPED WITH TiO2?COATED FABRICS

    Microsoft Academic Search

    2008-01-01

    The feasibility of producing TiO2?coated fabric using nonwoven polyester as a photocatalyst support was examined through investigations on (i) changes in the fabric properties after coating with TiO2, (ii) the toluene removal capacity of a multichannel TiO2\\/fabric\\/UV reactor in removing the toluene vapour with and without O3 addition, and (iii) the photocatalytic effect of regenerated TiO2. The value and usefulness

  16. Anaerobic oxidation of toluene, phenol, and p-cresol by the dissimilatory iron-reducing organism, GS-15

    USGS Publications Warehouse

    Lovley, D.R.; Lonergan, D.J.

    1990-01-01

    The dissimilatory Fe(III) reducer, GS-15, is the first microorganism known to couple the oxidation of aromatic compounds to the reduction of Fe(III) and the first example of a pure culture of any kind known to anaerobically oxidize an aromatic hydrocarbon, toluene. In this study, the metabolism of toluene, phenol, and p-cresol by GS-15 was investigated in more detail. GS-15 grew in an anaerobic medium with toluene as the sole electron donor and Fe(III) oxide as the electron acceptor. Growth coincided with Fe(III) reduction. [ring-14C]toluene was oxidized to 14CO2, and the stoichiometry of 14CO2 production and Fe(III) reduction indicated that GS-15 completely oxidized toluene to carbon dioxide with Fe(III) as the electron acceptor. Magnetite was the primary iron end product during toluene oxidation. Phenol and p-cresol were also completely oxidized to carbon dioxide with Fe(III) as the sole electron acceptor, and GS-15 could obtain energy to support growth by oxidizing either of these compounds as the sole electron donor. p-Hydroxybenzoate was a transitory extracellular intermediate of phenol and p-cresol metabolism but not of toluene metabolism. GS-15 oxidized potential aromatic intermediates in the oxidation of toluene (benzylalcohol and benzaldehyde) and p-cresol (p-hydroxybenzylalcohol and p-hydroxybenzaldehyde). The metabolism described here provides a model for how aromatic hydrocarbons and phenols may be oxidized with the reduction of Fe(III) in contaminated aquifers and petroleum-containing sediments.

  17. 1,2,4Trimethylbenzene Transformation Reaction Compared with its Transalkylation Reaction with Toluene over USY Zeolite Catalyst

    Microsoft Academic Search

    Sulaiman Al-Khattaf; Nasir M. Tukur; Adnan Al-Amer

    2007-01-01

    1,2,4-Trimethylbenzene (TMB) transalkylation with toluene has been studied over USY zeolite type catalyst using a riser simulator that mimics the operation of a fluidized-bed reactor. Reaction mixtures of 50:50 wt % TMB and toluene were used for the transalkylation reaction. The range of temperature investigated was 400- 500 °C with time on stream ranging from 3 to 15 s. The

  18. Toluene and 1,2,4-trimethylbenzene conversion on [Al]MCM-22 zeolite partially substituted by boron

    Microsoft Academic Search

    R. M. Mihályi; I. Kolev; M. Kollár; V. Mavrodinova; Ch. Minchev; T. I. Korányi

    2008-01-01

    Catalytic activity of [Al]MCM-22 and [Al,B]MCM-22 zeolites were compared in toluene and 1,2,4-trimethylbenzene (TMB) conversions. In both reactions activity was found to be proportional with the Al content of the catalyst. Results indicate homogeneous distribution of boron and\\/or aluminum in the MCM-22 framework. The [Al,B]MCM-22 zeolite showed higher selectivity for p-xylene formation in the disproportionation of toluene. The improved p-selectivity

  19. Conversion of phenylalanine to toluene and 2-phenylethanol by the pine engraver Ips pini (Say) (Coleoptera, Scolytidae)

    Microsoft Academic Search

    G. Gries; M. J. Smirle; A. Leufvén; D. R. Miller; J. H. Borden; H. S. Whitney

    1990-01-01

    Summary The pine engraver,Ips pini (Say), was found to produce toluene and 2-phenylethanol when boring into fresh pine logs. The hypotheses that phenylalanine is a precursor of these compounds and that beetles without their symbiotic microorganisms can perform these conversions were confirmed by treating wild and axencially-reared males and females topically with L-phenyl-d5-alanine. Extracts of these beetles invariably contained deuterio-toluene,

  20. Issues when modeling benzene, toluene, and xylene exposures using a literature database.

    PubMed

    Hein, Misty J; Waters, Martha A; van Wijngaarden, Edwin; Deddens, James A; Stewart, Patricia A

    2008-01-01

    A database of benzene, toluene, and xylene measurements was compiled from an extensive literature review that contained information on several exposure determinants, including job type, operation, mechanism of release, process type, ventilation, temperature, distance from the source, quantity, and location. The database was used to develop statistical models for benzene, toluene, and xylene exposure as a function of operation and other workplace determinants. These models can be used to predict exposure levels for subjects enrolled in community-based case-control studies. This article presents the derived parameter estimates for specific operations and additional workplace exposure determinants and describes a number of statistical and data limitation issues that are inherent in determinants modeling of historical published data. [Supplementary materials are available for this article. Go to the publisher's online edition of Journal of Occupational and Environmental Hygiene for the following free supplemental resource(s): a PDF file of QQ plots and a Word file with references used in the benzene/toluene/xylene exposure database]. PMID:18041643