Science.gov

Sample records for tetrachloroethylene toluene trichloroethylene

  1. NOVEL PATHWAY OF TOLUENE CATABOLISM IN THE TRICHLOROETHYLENE DEGRADING BACTERIUM G4

    EPA Science Inventory

    o-Cresol and 3-methylcatechol were identified as successive transitory intermediates of toluene catabolism by the trichloroethylene-degrading bacterium G4. he absence of a toluene dihydrodiol intermediate or toluene dioxygenase and toluene dihydrodiol dehydrogenase activities sug...

  2. Dose-excretion relationship in tetrachloroethylene-exposed workers and the effect of tetrachloroethylene co-exposure on trichloroethylene metabolism

    SciTech Connect

    Seiji, K.; Inoue, O.; Jin, C.; Liu, Y.T.; Cai, S.X.; Ohashi, M.; Watanabe, T.; Nakatsuka, H.; Kawai, T.; Ikeda, M. )

    1989-01-01

    Personal monitoring of 8-hour time-weighted average intensity of exposure with diffuse samplers and analysis of shift-end urine for total trichloro-compounds (TTC) and other metabolites were conducted in two groups of workers in China, one (121 subjects) exposed to tetrachloroethylene (TETRA) alone, and the other (38 subjects) exposed to a mixture of TETRA and trichloroethylene (TRI). Urinalysis was also performed on samples from 103 non-exposed controls. A linear exposure-excretion relationship could be observed in both groups of workers. Comparison of these results with those of Japanese TETRA-workers suggested the presence of ethnic difference in TETRA metabolism. Urinary metabolite levels were markedly lower in the mixed (TETRA + TRI) exposure group as compared to previous findings in a group exposed to TRI alone. The observation indicates that metabolism of TRI is suppressed by the co-exposure to TETRA in humans.

  3. Use of Mini-Sprinklers to Strip Trichloroethylene and Tetrachloroethylene from Contaminated Ground Water.

    SciTech Connect

    Brerisford, Yvette, C.; Bush, Parshall, B.; Blake, John, I.; Bayer, Cassandra L.

    2003-01-01

    Berisford, Y.C., P.B. Bush, J.I. Blake, and C.L. Bayer. 2003. Use of mini-sprinklers to strip trichloroethylene and tetrachloroethylene from contaminated ground water. J. Env. Qual. 32:801-815. Three low-volume mini-sprinklers were tested for their efficacy to strip trichloroethylene (TCE) and tetrachloroethylene (PCE) from water. Deionized water spiked with TCE and PCE was pumped through a mini-sprinkler supported on top of a 1.8-m-tall. Water was collected in collection vessels at 0.61 and 1.22 m above the ground on support columns that were spaced at 0.61-m intervals from the riser base, and samples were composited per height and distance from the riser. Overall, air-stripping reduced dissolved concentrations of TCE and PCE by 99.1 to 100 and 96.9 to 100%, respectively. Mini-sprinklers offer the advantages of (i) easy setup in series that can be used on practically any terrain; (ii) operation over a long period of time that does not threaten aquifer depletion; (iii) use in small or confined aquifers in which the capacity is too low to support large irrigation or pumping systems; and (iv) use in forests in which the small, low-impact droplets of the mini-sprinklers do not damage bark and in which trees can help manage (via evapotransporation) excess waste water.

  4. Tetrachloroethylene

    Integrated Risk Information System (IRIS)

    EPA / 635 / R - 08 / 011F February 2012 TOXICOLOGICAL REVIEW OF Tetrachloroethylene ( Perchloroethylene ) ( CAS No . 127 - 18 - 4 ) In Support of Summary Information on the Integrated Risk Information System ( IRIS ) February 2012 U.S . Environmental Protection Agency Washington , DC ii DISCLAIMER T

  5. Kinetic study of trichloroethylene and toluene degradation by a bioluminescent reporter bacterium

    SciTech Connect

    Kelly, C.J.; Sanseverino, J.; Bienkowski, P.R.; Sayler, G.S.

    1995-12-31

    A constructed bioluminescent reporter bacterium, Pseudomonas putida B2, is very briefly described in this paper. The bacterium degrades toluene and trichloroethylene (TCE), and produces light in the presence of toluene. The light response is an indication of cellular viability and expression of the genes encoding toluene and TCE degrading enzymes.

  6. Recruitment and expression of toluene/trichloroethylene biodegradation genes in bacteria native to deep-subsurface sediments

    SciTech Connect

    Romine, M.F.; Brockman, F.J.

    1996-07-01

    Four plasmids, each encoding a combination of either an Escherichia coli or Pseudomonas putida promoter and either toluene dioxygenase or toluene monooxygenase, were electroporated into five bacterial strains isolated from sediments found at depths of 91 to 295 m. Four of these engineered bacterial strains demonstrated both toluene and trichloroethylene degradation activities. 26 refs., 2 tabs.

  7. Reductive dechlorination of tetrachloroethylene and trichloroethylene catalyzed by vitamin B{sub 12} in homogeneous and heterogeneous systems

    SciTech Connect

    Burris, D.R.; Smith, M.H.; Delcomyn, C.A.; Roberts, A.L.

    1996-10-01

    The reduction of tetrachloroethylene (PCE) and trichloroethylene (TCE) catalyzed by vitamin B{sub 12} was examined in homogeneous and heterogeneous (B{sub 12} bound to agarose) batch systems using titanium(III) citrate as the bulk reductant. The solution and surface-mediated reaction rates at similar B{sub 12} loadings were comparable, indicating that binding vitamin B{sub 12} to a surface did not lower catalytic activity. No loss in PCE reducing activity was observed with repeated usage of surface-bound vitamin B{sub 12}. Carbon mass recoveries were 81-84% for PCE reduction and 89% for TCE reduction, relative to controls. In addition to sequential hydrogenolysis, a second competing reaction mechanism for the reduction of PCE and TCE by B{sub 12}, reductive {beta}-elimination, is proposed to account for the observation of acetylene as a significant reaction intermediate. Reductive {beta}-elimination should be considered as a potential pathway in other reactive systems involving the reduction of vicinal polyhaloethenes. Surface-bound catalysts such as vitamin B{sub 12} may have utility in the engineered degradation of aqueous phase chlorinated ethenes. 19 refs., 6 figs., 1 tab.

  8. Adverse Birth Outcomes and Maternal Exposure to Trichloroethylene and Tetrachloroethylene through Soil Vapor Intrusion in New York State

    PubMed Central

    Lewis-Michl, Elizabeth L.; Gomez, Marta I.

    2011-01-01

    Background: Industrial spills of volatile organic compounds (VOCs) in Endicott, New York (USA), have led to contamination of groundwater, soil, and soil gas. Previous studies have reported an increase in adverse birth outcomes among women exposed to VOCs in drinking water. Objective: We investigated the prevalence of adverse birth outcomes among mothers exposed to trichloroethylene (TCE) and tetrachloroethylene [or perchloroethylene (PCE)] in indoor air contaminated through soil vapor intrusion. Methods: We examined low birth weight (LBW), preterm birth, fetal growth restriction, and birth defects among births to women in Endicott who were exposed to VOCs, compared with births statewide. We used Poisson regression to analyze births and malformations to estimate the association between maternal exposure to VOCs adjusting for sex, mother’s age, race, education, parity, and prenatal care. Two exposure areas were identified based on environmental sampling data: one area was primarily contaminated with TCE, and the other with PCE. Results: In the TCE-contaminated area, adjusted rate ratios (RRs) were significantly elevated for LBW [RR = 1.36; 95% confidence interval (CI): 1.07, 1.73; n = 76], small for gestational age (RR = 1.23; 95% CI: 1.03, 1.48; n = 117), term LBW (RR = 1.68; 95% CI: 1.20, 2.34; n = 37), cardiac defects (RR = 2.15; 95% CI: 1.27, 3.62; n = 15), and conotruncal defects (RR = 4.91; 95% CI: 1.58, 15.24; n = 3). In the PCE-contaminated area, RRs for cardiac defects (five births) were elevated but not significantly. Residual socioeconomic confounding may have contributed to elevations of LBW outcomes. Conclusions: Maternal residence in both areas was associated with cardiac defects. Residence in the TCE area, but not the PCE area, was associated with LBW and fetal growth restriction. PMID:22142966

  9. Comparison of factors influencing trichloroethylene degradation by toluene-oxidizing bacteria.

    PubMed Central

    Leahy, J G; Byrne, A M; Olsen, R H

    1996-01-01

    The degradation of trichloroethylene (TCE) by toluene-oxidizing bacteria has been extensively studied, and yet the influence of environmental conditions and physiological characteristics of individual strains has received little attention. To consider these effects, the levels of TCE degradation by strains distinguishable on the basis of toluene and nitrate metabolism were compared under aerobic or hypoxic conditions in the presence and absence of nitrate and an exogenous electron donor, lactate. Under aerobic conditions with toluene-induced cells, strains expressing toluene dioxygenases (Pseudomonas putida F1, Pseudomonas sp. strain JS150, Pseudomonas fluorescens CFS215, and Pseudomonas sp. strain W31) degraded TCE at low rates, with less than 12% of the TCE removed in 18 h. In contrast, strains expressing toluene monooxygenases (Burkholderia cepacia G4, Burkholderia pickettii PKO1, and Pseudomonas mendocina KR1) degraded 36 to 67% of the TCE over the same period. Under hypoxic conditions (1.7 mg of dissolved oxygen per liter) or when lactate was added as an electron donor, the extent of TCE degradation by toluene-induced cells was generally lower. In the presence of lactate, degradation of TCE by denitrifying strain PKO1 was enhanced by nitrate under conditions in which dissimilatory nitrate reduction was observed. The results of experiments performed with strains F1, G4, PKO1, and KR1 suggested that TCE or an oxidation product induces toluene degradation and that TCE induces its own degradation in the monooxygenase strains. The role of TCE as an inducer of toluene oxygenase activity in PKO1 was confirmed by performing a promoter probe analysis, in which we found that TCE activates transcription from the PKO1 3-monooxygenase operon promoter. PMID:8975612

  10. Biodegradation of trichloroethylene and toluene by indigenous microbial populations in soil.

    PubMed

    Fan, S; Scow, K M

    1993-06-01

    The biodegradation of trichloroethylene (TCE) and toluene, incubated separately and in combination, by indigenous microbial populations was measured in three unsaturated soils incubated under aerobic conditions. Sorption and desorption of TCE (0.1 to 10 micrograms ml-1) and toluene (1.0 to 20 micrograms ml-1) were measured in two soils and followed a reversible linear isotherm. At a concentration of 1 micrograms ml-1, TCE was not degraded in the absence of toluene in any of the soils. In combination, both 1 microgram of TCE ml-1 and 20 micrograms of toluene ml-1 were degraded simultaneously after a lag period of approximately 60 to 80 h, and the period of degradation lasted from 70 to 90 h. Usually 60 to 75% of the initial 1 microgram of TCE ml-1 was degraded, whereas 100% of the toluene disappeared. A second addition of 20 micrograms of toluene ml-1 to a flask with residual TCE resulted in another 10 to 20% removal of the chemical. Initial rates of degradation of toluene and TCE were similar at 32, 25, and 18 degrees C; however, the lag period increased with decreasing temperature. There was little difference in degradation of toluene and TCE at soil moisture contents of 16, 25, and 30%, whereas there was no detectable degradation at 5 and 2.5% moisture. The addition of phenol, but not benzoate, stimulated the degradation of TCE in Rindge and Yolo silt loam soils, methanol and ethylene slightly stimulated TCE degradation in Rindge soil, glucose had no effect in either soil, and dissolved organic carbon extracted from soil strongly sorbed TCE but did not affect its rate of biodegradation. PMID:8328806

  11. Experiments and three phase modelling of a biofilter for the removal of toluene and trichloroethylene.

    PubMed

    Das, Chhaya; Chowdhury, Ranjana; Bhattacharya, Pinaki

    2011-05-01

    Volatile organic compounds, namely, toluene, trichloroethylene, styrene, etc., disposed off by electronics and polymer industries, are very harmful. The treatment of VOC laden air through biochemical route is one of the potential options for reduction of their concentration in parts per million or parts per billion level. Under the present investigation, a 0.05-m diameter and 0.58-m high trickle bed biofilter has been studied for the removal of VOCs namely toluene and trichloroethylene from a simulated air-VOC mixture using pure strain of Pseudomonas putida (NCIM2650) in immobilized form. Inlet concentrations of VOCs have been varied in two ranges, the lower being 0.20-2.00 g/m(3) and higher being 10-20 g/m(3), respectively. The Monod type rate kinetics of removal of VOCs has been determined. A three-phase deterministic mathematical model has been developed taking the simultaneous reaction kinetics and interphase (gas to liquid to biofilm) mass transfer rate of VOCs into consideration. Experimentally determined kinetic parameters and mass transfer coefficients calculated using standard correlations have been used. Concentrations have been simulated for all the three phases. Simulated results based on the model have been compared with the experimental ones for both gas and liquid phases satisfactorily. The mathematical model validated through the successful comparison with experimental data may be utilized for the prediction of performance of biofilters undergoing removal of different VOCs in any further investigation and may be utilized for the scale-up of the system to industrial scale. PMID:21170726

  12. Oxidation of trichloroethylene, toluene, and ethanol vapors by a partially saturated permeable reactive barrier

    NASA Astrophysics Data System (ADS)

    Mahmoodlu, Mojtaba G.; Hassanizadeh, S. Majid; Hartog, Niels; Raoof, Amir

    2014-08-01

    The mitigation of volatile organic compound (VOC) vapors in the unsaturated zone largely relies on the active removal of vapor by ventilation. In this study we considered an alternative method involving the use of solid potassium permanganate to create a horizontal permeable reactive barrier for oxidizing VOC vapors. Column experiments were carried out to investigate the oxidation of trichloroethylene (TCE), toluene, and ethanol vapors using a partially saturated mixture of potassium permanganate and sand grains. Results showed a significant removal of VOC vapors due to the oxidation. We found that water saturation has a major effect on the removal capacity of the permeable reactive layer. We observed a high removal efficiency and reactivity of potassium permanganate for all target compounds at the highest water saturation (Sw = 0.6). A change in pH within the reactive layer reduced oxidation rate of VOCs. The use of carbonate minerals increased the reactivity of potassium permanganate during the oxidation of TCE vapor by buffering the pH. Reactive transport of VOC vapors diffusing through the permeable reactive layer was modeled, including the pH effect on the oxidation rates. The model accurately described the observed breakthrough curve of TCE and toluene vapors in the headspace of the column. However, miscibility of ethanol in water in combination with produced water during oxidation made the modeling results less accurate for ethanol. A linear relationship was found between total oxidized mass of VOC vapors per unit volume of permeable reactive layer and initial water saturation. This behavior indicates that pH changes control the overall reactivity and longevity of the permeable reactive layer during oxidation of VOCs. The results suggest that field application of a horizontal permeable reactive barrier can be a viable technology against upward migration of VOC vapors through the unsaturated zone.

  13. Rhizoremediation of Trichloroethylene by a Recombinant, Root-Colonizing Pseudomonas fluorescens Strain Expressing Toluene ortho-Monooxygenase Constitutively

    PubMed Central

    Yee, Dennis C.; Maynard, Jennifer A.; Wood, Thomas K.

    1998-01-01

    Trichloroethylene (TCE) was removed from soils by using a wheat rhizosphere established by coating seeds with a recombinant, TCE-degrading Pseudomonas fluorescens strain that expresses the tomA+ (toluene o-monooxygenase) genes from Burkholderia cepacia PR123(TOM23C). A transposon integration vector was used to insert tomA+ into the chromosome of P. fluorescens 2-79, producing a stable strain that expressed constitutively the monooxygenase at a level of 1.1 nmol/min · mg of protein (initial TCE concentration, 10 ?M, assuming that all of the TCE was in the liquid) for more than 280 cell generations (36 days). We also constructed a salicylate-inducible P. fluorescens strain that degraded TCE at an initial rate of 2.6 nmol/min · mg of protein in the presence of 10 ?M TCE [cf. B. cepacia G4 PR123(TOM23C), which degraded TCE at an initial rate of 2.5 nmol/min · mg of protein]. A constitutive strain, P. fluorescens 2-79TOM, grew (maximum specific growth rate, 0.78 h?1) and colonized wheat (3 × 106 CFU/cm of root) as well as wild-type P. fluorescens 2-79 (maximum specific growth rate, 0.77 h?1; level of colonization, 4 × 106 CFU/cm of root). Rhizoremediation of TCE was demonstrated by using microcosms containing the constitutive monooxygenase-expressing microorganism, soil, and wheat. These closed microcosms degraded an average of 63% of the initial TCE in 4 days (20.6 nmol of TCE/day · plant), compared to the 9% of the initial TCE removed by negative controls consisting of microcosms containing wild-type P. fluorescens 2-79-inoculated wheat, uninoculated wheat, or sterile soil. PMID:9435067

  14. Toluene

    Integrated Risk Information System (IRIS)

    Toluene ; CASRN 108 - 88 - 3 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effects )

  15. SURFACTANT-ENHANCED SOLUBILIZATION OF TETRACHLOROETHYLENE AND DEGRADATION PRODUCTS IN PUMP AND TREAT REMEDIATION

    EPA Science Inventory

    Experiments were conducted to investigate the enhanced solubilization of tetrachloroethylene (PCE), trichloroethylene (TCE), and 1,2-dichloroethylene (DCE) in nonionic surfactant solutions of Triton X-100, Brij-30, Igepal CA-720, and Tergitol NP-10 (alkylpolyoxyethylenes). urfact...

  16. TRICHLOROETHYLENE METABOLISM BY MICROORGANISMS THAT DEGRADE AROMATIC COMPOUNDS

    EPA Science Inventory

    Trichloroethylene (TCE) was metabolized by the natural microflora of three different environmental water samples when stimulated by the addition of either toluene or phenol. Two different strains of Pseudomonas putida that degrade toluene by a pathway containing a toluene dioxyge...

  17. Hydrodechlorination of Trichloroethylene to Hydrocarbons Using Bimetallic Nickel-Iron

    E-print Network

    tetrachloride), PCE (tetrachloroethylene), and TCE (trichloroethylene), in groundwater and surface waters. A concentration of only a few parts per million (ppm) of these possible carcino- gens in water supplies requires the overall design of metal-based treatment systems.4,7-10,17 Since the dechlorination reaction of halogenated

  18. MUTANTS OF PSEUDOMONAS CEPACIA G4 DEFECTIVE IN CATABOLISM OF AROMATIC COMPOUNDS AND TRICHLOROETHYLENE

    EPA Science Inventory

    Pseudomonas cepacia strain G4 possesses a novel pathway of toluene catabolism that is shown to be responsible for the degradation of trichloroethylene (TCE). his pathway involves conversion of toluene via o-cresol to 3-methylcatechol. o determine the enzyme f toluene degradation ...

  19. Reductive dechlorination of tetrachloroethylene (PCE) catalyzed by cyanocobalamin

    SciTech Connect

    Habeck, B.D.; Sublette, K.L.

    1995-12-31

    A biomimetic system has been developed for the reductive dechlorination of tetrachloroethylene (PCE). PCE was dechlorinated to trichloroethylene (TCE) and 1,2-dichloroethylene (DCE) in the presence of dithiothreitol or Ti (III) citrate and catalytic amounts of cyanocobalamin in both homogeneous reaction mixtures and packed bed reactor systems. In packed bed reactors with Ti (III) citrate as the reductant, PCE (0.18 mM) conversion averaged 55% at residence times of 1.75 and 3.5 h. The product distribution was 94% TCE and 6% DCE at the lower residence time. DCE formation increased to 45% at the higher residence time. No reduction of PCE was observed in the absence of cyanocobalamin. This system may be useful as a means of pretreatment of halogenated aliphatic hydrocarbons in advance of biological treatment.

  20. TRICHLOROETHYLENE IHIBITS VOLTAGE-SENSITIVE CALCIUM CURRENTS IN DIFFERENTIATED PC 12 CELLS.

    EPA Science Inventory

    ABSTRACT BODY: It has been demonstrated recently that volatile organic compounds (VOCs)such as toluene, perchloroethylene and trichloroethylene inhibit function of voltage-sensitive calcium channels (VSSC). Such actions are hypothesized to contribute to the acute neurotoxicity of...

  1. CONSTITUTIVE DEGRADATION OF TRICHLOROETHYLENE BY AN ALTERED BACTERIUM IN A GAS-PHASE BIOREACTOR

    EPA Science Inventory

    Pseudomonas cepacia G4 expresses a unique toluene ortho-monooxygenase (Tom) that enables it to degrade toluene and trichloroethylene (TCE). ransposon mutants of G4 have been isolated that constitutively express Tom. wo fixed-film bioreactor designs were investigated for the explo...

  2. ROUTE-DEPENDENT EFFECTS OF TOLUENE ON SIGNAL DETECTION BEHAVIOR IN RATS.

    EPA Science Inventory

    The acute effects of toluene and other solvents on behavior are thought to depend upon their concentration in the brain. We have shown previously that inhaled toluene and trichloroethylene disrupt sustained attention in rats as assessed with a visual signal detection task (SDT). ...

  3. HEALTH ASSESSMENT DOCUMENT FOR TETRACHLOROETHYLENE (PERCHLOROETHYLENE)

    EPA Science Inventory

    Tetrachloroethylene (PERC) is believed to exert its adverse effects upon humans via metabolism by the liver. Concern that PERC is likely to be a human carcinogen is based upon the evidence of the National Cancer Institute bioassay, in which PERC induced a statistically significan...

  4. TRICHLOROETHYLENE (TCE) ISSUE PAPERS

    EPA Science Inventory

    These issue papers are a part of EPA's effort to develop a trichloroethylene (TCE) human health risk assessment. These issue papers were developed by EPA to provide scientific and technical information to the National Academy of Sciences (NAS) for use in developing their advice ...

  5. Induction of the tod operon by trichloroethylene in Pseudomonas putida TVA8

    SciTech Connect

    Shingleton, J.T.; Applegate, B.M.; Nagel, A.C.; Bienkowski, P.R.; Sayler, G.S.

    1998-12-01

    Bioluminescence, mRNA levels, and toluene degradation rates in Pseudomonas putida TVA8 were measured as a function of various concentrations of toluene and trichloroethylene (TCE). TVA8 showed an increasing bioluminescence response to increasing TCE and toluene concentrations. Compared to uninduced TVA8 cultures, todC1 mRNA levels increased 11-fold for TCE-treated cultures and 13-fold for toluene-treated cultures. Compared to uninduced P. putida F1 cultures, todC1 mRNA levels increased 4,4-fold for TCE-induced cultures and 4.9-fold for toluene-induced cultures. Initial toluene degradation rates were linearly correlated with specific bioluminescence in TVA8 cultures.

  6. 40 CFR 721.3560 - Derivative of tetra-chloro-ethy-lene.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...2011-07-01 2011-07-01 false Derivative of tetra-chloro-ethy-lene. ...Chemical Substances § 721.3560 Derivative of tetra-chloro-ethy-lene. ...paragraph (a)(2) of this section: Derivative of tetrachloroethylene,...

  7. 40 CFR 721.3560 - Derivative of tetra-chloro-ethy-lene.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...2010-07-01 2010-07-01 false Derivative of tetra-chloro-ethy-lene. ...Chemical Substances § 721.3560 Derivative of tetra-chloro-ethy-lene. ...paragraph (a)(2) of this section: Derivative of tetrachloroethylene,...

  8. ACUTE TOXICITY OF TETRACHLOROETHYLENE AND TETRACHLOROETHYLENE WITH DIMETHYLFORMAMIDE TO RAINBOW TROUT (SALMO GAIRDNERI)

    EPA Science Inventory

    In this study, two acute toxicity tests were conducted with tetrachloroethylene (TCE) using rainbow trout. DMF was used as an additive in one of the tests and was proportionally diluted with the toxicant. The 96 hr LC50 was 4.99 mg/l in the test without DMF and 5.84 mg/l for DMF ...

  9. KINETIC STUDIES OF THE REACTION OF HYDROXYL RADICALS WITH TRICHLOROETHYLENE AND TETRACHLOROETHYLENE. (R826169)

    EPA Science Inventory

    Rate coefficients are reported for the gas-phase reaction of the hydroxyl radical (OH) with C2HCl3 (k1) and C2Cl4 (k2) over an extended temperature range at 740±10 Torr in a He bath gas. These...

  10. KINETICS OF THE TRANSFORMATION OF TRICHLOROETHYLENE AND TETRACHLOROETHYLENE BY IRON SULFIDE. (R825958)

    EPA Science Inventory

    The transformation of nine halogenated aliphatic compounds
    by 10 g/L (0.5 m2/L) FeS at pH 8.3 was studied in batch
    experiments. These compounds were as follows:
    pentachloroethane (PCA), 1,1,2,2- and 1,1,1,2-tetrachloroethanes (1122-TeCA and 1112-TeCA), 1,1,...

  11. An episode of trichloroethylene poisoning.

    PubMed

    Tan, K J; Phoon, W H

    1980-10-01

    Trichloroethylene is commonly used in industry as a solvent and degreasing agent. An incident is described in which 14 out of 23 workers using trichloroethylene to clean machine parts in an electronics factory suffered symptoms of poisoning, including fainting in 3. Subsequent investigation showed the widespread use of trichloroethylene in that factory; containers of the chemical were also kept exposed. Industrial hygiene assessments revealed vapour levels which exceeded the permissible limit. The implementation of control measures brought the vapour levels to below 50 ppm, a safe level. PMID:7247335

  12. UNCERTAINTIES IN TRICHLOROETHYLENE PHARMACOKINETIC MODELS

    EPA Science Inventory

    Understanding the pharmacokinetics of a chemical¯its absorption, distribution, metabolism, and excretion in humans and laboratory animals ¯ is critical to the assessment of its human health risks. For trichloroethylene (TCE), numerous physiologically-based pharmacokinetic (PBPK)...

  13. 40 CFR 401.15 - Toxic pollutants.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...57. Silver and compounds 58. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) 59. Tetrachloroethylene 60. Thallium and compounds 61. Toluene 62. Toxaphene 1 63. Trichloroethylene 64. Vinyl chloride 65. Zinc and compounds...

  14. 40 CFR 401.15 - Toxic pollutants.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...57. Silver and compounds 58. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) 59. Tetrachloroethylene 60. Thallium and compounds 61. Toluene 62. Toxaphene 1 63. Trichloroethylene 64. Vinyl chloride 65. Zinc and compounds...

  15. 40 CFR 401.15 - Toxic pollutants.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...57. Silver and compounds 58. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) 59. Tetrachloroethylene 60. Thallium and compounds 61. Toluene 62. Toxaphene 1 63. Trichloroethylene 64. Vinyl chloride 65. Zinc and compounds...

  16. 40 CFR 401.15 - Toxic pollutants.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...57. Silver and compounds 58. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) 59. Tetrachloroethylene 60. Thallium and compounds 61. Toluene 62. Toxaphene 1 63. Trichloroethylene 64. Vinyl chloride 65. Zinc and compounds...

  17. Reductive dechlorination of tri- and tetrachloroethylenes depends on transition from aerobic to anaerobic conditions

    SciTech Connect

    Kastner, M. )

    1991-07-01

    Aerobic enrichment cultures from contaminated groundwaters dechlorinated trichloroethylene (TCE) (14.6 mg/liter; 111 {mu}mol/liter) and tetrachloroethylene (PCE) (16.2 mg/liter; 98 {mu}mol/liter) reductively within 4 days after the transition from aerobic to anaerobic conditions. The transformation products were equimolar amounts of cis-1,2-dichloroethylene and traces of 1,1-dichloroethylene. No other chlorinated product and no methane were detected. The change was accompanied by the release of sulfide, which caused a decrease in the redox potential from 0 - {minus}150 mV. In sterile control experiments, sulfide led to the abiotic formation of traces of 1,1-dichloroethylene without cis-1,2-dichloroethylene production. The reductive dechlorination of PCE via TCE depended on these specific transition conditions after consumption of the electron acceptor oxygen or nitrate. Repeated feeding of TCE or PCE to cultures after the change to anaerobic conditions yielded no further dechlorination. Only aerobic subcultures with an air/liquid ratio of 1:4 maintained dechlorination activities; anaerobic subcultures showed no transformation. Bacteria from noncontaminated sites showed no reduction under the same conditions.

  18. Mutants of Pseudomonas cepacia G4 defective in catabolism of aromatic compounds and trichloroethylene

    SciTech Connect

    Sheilds, M.S.; Montgomery, S.O. ); Cuskey, S.M.; Chapman, P.J.; Pritchard, P.H. )

    1991-07-01

    Pseudomonas cepacia G4 possesses a novel pathway of toluene catabolism that is shown to be responsible for the degradation of trichloroethylene (TCE). This pathway involves conversion of toluene via o-cresol to 3-methylcatechol. In order to determine the enzyme of toluene degradation that is responsible for TCE degradation, chemically induced mutants, blocked in the toluene ortho-monooxygenase (TOM) pathway of G4, were examined. Mutants of the phenotypic class designated TOM A{sup {minus}} were all defective in their ability to oxidize toluene, o-cresol, m-cresol, and phenol, suggesting that a single enzyme is responsible for conversion of these compounds to their hydroxylated products (3-methylcatechol from toluene, o-cresol, and m-cresol and catechol from phenol) in the wild type. Mutants of this class did not degrade TCE. Two other mutant classes which lacked 2-hydroxy-6-oxoheptadienoic acid hydrolase activity, were fully capable of TCE degradation. Therefore, TCE degradation is directly associated with the monooxygenation capability responsible for toluene, cresol, and phenol hydroxylation.

  19. IRIS Toxicological Review of Tetrachloroethylene (Perchloroethylene) (External Review Draft)

    EPA Science Inventory

    EPA conducted a peer review of the scientific basis supporting the human health hazard and dose-response assessment of tetrachloroethylene that will appear on the Integrated Risk Information System (IRIS) database. Peer review is meant to ensure that science is used credibly and ...

  20. SURFACTANT ENHANCED REMEDIATION OF SOIL COLUMNS CONTAMINATED BY RESIDUAL TETRACHLOROETHYLENE

    EPA Science Inventory

    The ability of aqueous surfactant solutions to recover tetrachloroethylene (PCE) entrapped in Ottawa sand was evaluated in four column experiments. Residual PCE was emplaced by injecting 14C-labeled PCE into water-saturated soil columns and displacing the free product ...

  1. IRIS TOXICOLOGICAL REVIEW OF TETRACHLOROETHYLENE (PERCHLOROETHYLENE) (INTERAGENCY SCIENCE DISCUSSION DRAFT)

    EPA Science Inventory

    EPA is releasing the draft report, Toxicological Review of Tetrachloroethylene (Perchloroethylene), that was distributed to Federal agencies and White House Offices for comment during the Science Discussion step of the IRIS Assessment...

  2. Health Assessment Document for Tetrachloroethylene (Perchloroethylene) (Final Report)

    EPA Science Inventory

    Tetrachloroethylene (PCE) is a volatile solvent with important commercial applications. It has been detected in the ambient air of a variety of urban and nonurban areas of the United States. It has less frequently been detected in water but has been monitored generally at levels ...

  3. Aerobic biodegradation of trichloroethylene by microorganisms that degrade aromatic compounds

    SciTech Connect

    Lu, C.J.; Chang, C.Y.; Lee, C.M.

    1995-12-31

    Aerobic biodegradation of trichloroethylene (TCE) at an initial concentration of 80 mg/L with and without the presence of an aromatic compound was conducted with a series of batch reactors. The target aromatic compounds were benzene, toluene, and catechol. The aromatics-acclimated microorganisms were used as the cell source for the batch study. The results indicated that the presence of an aromatic compound was required to initiate the aerobic biodegradation of TCE by the aromatic-utilizing microorganisms. The addition of benzene or toluene initiated the removal of TCE. However, TCE removal was not proportional to the initial concentration of the aromatic compounds. The presence of an aromatic compound at an initial concentration of 5 mg/L resulted in better TCE removal in comparison with that at 1 or 20 mg/L. TCE removal was still significant after the depletion of the aromatic compound, but at a lower rate. The presence of catechol, an intermediate of the biodegradation of an aromatic compound, did not initiate the biodegradation of TCE by the catechol-utilizing microorganisms.

  4. The use of biofilters to improve indoor air quality: the removal of toluene, TCE, and formaldehyde.

    PubMed

    Darlington, A; Dixon, M A; Pilger, C

    1998-01-01

    A biofilter composed of a scrubber, a hydroponic planting system, and an aquatic system with green plants as a base maintained air quality within part of a modern office building. The scrubber was composed of five parallel fiberglass modules with external faces of porous lava rock. The face, largely covered with mosses, was wetted by recirculating water. Air was drawn through the scrubber and the immediately adjacent hydroponic region by a dedicated air handling system. The system was challenged for 4 weeks with three common indoor organic pollutants and removed significant amounts of all compounds. A single pass through the scrubber removed 10% of the trichloroethylene and 50% of the toluene. A single pass lowered formaldehyde air concentrations to 13 micrograms m-3 irrespective of influent levels (ranging between 30 and 90 micrograms m-3). The aquatic system accumulated trichloroethylene but neither toluene nor formaldehyde, suggesting the rapid breakdown of these materials. The botanical components removed some pollutants. PMID:11540466

  5. Trichloroethylene

    Integrated Risk Information System (IRIS)

    E PA / 6 3 5 / R - 09 / 01 1 F www . e p a . g o v / i r i s T O X ICO L O G ICA L RE V IE W OF TR I C H LO R O ETH Y LEN E A P P E NDI X C ( CA S No . 79 - 01 - 6 ) I n S uppo r t o f S um m a r y I nf o r m a t i o n o n t he I n t e gr at e d R i s k I n f or m at i on S ys t e m ( I R I S ) C .

  6. DECHLORINATION OF TRICHLOROETHYLENE USING ELECTROCHEMICAL METHODS

    EPA Science Inventory

    Electrochemical degradation (ECD) is used to decontaminate organic and inorganic contaminants through oxidative or reductive processes. The ECD of Trichloroethylene (TCE) dechlorinates TCE through electric reduction. TCE dechlorination presented in the literature utilized electro...

  7. Engineering Chlorinated hydrocarbons such as trichloroethylene

    E-print Network

    Chemical Engineering Abstract Chlorinated hydrocarbons such as trichloroethylene (TCE) form a class carriers/supports for NZVI particles to address the in situ remediation of chlorinated hydrocarbons. We Remediation of Chlorinated Hydrocarbons Dr. Vijay John Department of Chemical & Biomolecular Engineering

  8. Degradation of Trichloroethylene Using Advanced Reduction Processes 

    E-print Network

    Farzaneh, Hajar

    2014-10-27

    This research investigates degradation of trichloroethylene (TCE) using a new treatment method called advanced reduction processes (ARPs). This new set of water treatment processes employ a source of activation energy to activate reducing agents...

  9. Human Health Effects of Tetrachloroethylene: Key Findings and Scientific Issues

    PubMed Central

    Hogan, Karen A.; Scott, Cheryl Siegel; Cooper, Glinda S.; Bale, Ambuja S.; Kopylev, Leonid; Barone, Stanley; Makris, Susan L.; Glenn, Barbara; Subramaniam, Ravi P.; Gwinn, Maureen R.; Dzubow, Rebecca C.; Chiu, Weihsueh A.

    2014-01-01

    Background: The U.S. Environmental Protection Agency (EPA) completed a toxicological review of tetrachloroethylene (perchloroethylene, PCE) in February 2012 in support of the Integrated Risk Information System (IRIS). Objectives: We reviewed key findings and scientific issues regarding the human health effects of PCE described in the U.S. EPA’s Toxicological Review of Tetrachloroethylene (Perchloroethylene). Methods: The updated assessment of PCE synthesized and characterized a substantial database of epidemiological, experimental animal, and mechanistic studies. Key scientific issues were addressed through modeling of PCE toxicokinetics, synthesis of evidence from neurological studies, and analyses of toxicokinetic, mechanistic, and other factors (tumor latency, severity, and background rate) in interpreting experimental animal cancer findings. Considerations in evaluating epidemiological studies included the quality (e.g., specificity) of the exposure assessment methods and other essential design features, and the potential for alternative explanations for observed associations (e.g., bias or confounding). Discussion: Toxicokinetic modeling aided in characterizing the complex metabolism and multiple metabolites that contribute to PCE toxicity. The exposure assessment approach—a key evaluation factor for epidemiological studies of bladder cancer, non-Hodgkin lymphoma, and multiple myeloma—provided suggestive evidence of carcinogenicity. Bioassay data provided conclusive evidence of carcinogenicity in experimental animals. Neurotoxicity was identified as a sensitive noncancer health effect, occurring at low exposures: a conclusion supported by multiple studies. Evidence was integrated from human, experimental animal, and mechanistic data sets in assessing adverse health effects of PCE. Conclusions: PCE is likely to be carcinogenic to humans. Neurotoxicity is a sensitive adverse health effect of PCE. Citation: Guyton KZ, Hogan KA, Scott CS, Cooper GS, Bale AS, Kopylev L, Barone S Jr, Makris SL, Glenn B, Subramaniam RP, Gwinn MR, Dzubow RC, Chiu WA. 2014. Human health effects of tetrachloroethylene: key findings and scientific issues. Environ Health Perspect 122:325–334;?http://dx.doi.org/10.1289/ehp.1307359 PMID:24531164

  10. Death due to acute tetrachloroethylene intoxication in a chronic abuser.

    PubMed

    Amadasi, Alberto; Mastroluca, Lavinia; Marasciuolo, Laura; Caligara, Marina; Sironi, Luca; Gentile, Guendalina; Zoja, Riccardo

    2015-05-01

    Volatile substances are used widespread, especially among young people, as a cheap and easily accessible drug. Tetrachloroethylene is one of the solvents exerting effects on the central nervous system with experiences of disinhibition and euphoria. The case presented is that of a 27-year-old female, found dead by her father at home with cotton swabs dipped in the nostrils. She was already known for this type of abuse and previously admitted twice to the hospital for nonfatal acute poisonings. The swabs were still soaked in tetrachloroethylene. Toxicological and histological investigations demonstrated the presence of an overlap between chronic intake of the substance (with high concentrations in sites of accumulation, e.g., the adipose tissue, and contemporary tissue damage, as histologically highlighted) and acute intoxication as final cause of death, with a concentration of 158 mg/L in cardiac blood and 4915 mg/kg in the adipose tissue. No other drugs or medicines were detected in body fluids or tissues, and to our knowledge, this is the highest concentration ever detected in forensic cases. This peculiar case confirms the toxicity of this substance and focuses on the importance of complete histological and toxicological investigations in the distinction between chronic abuse and acute intoxication. PMID:25605280

  11. Atmospheric benzene and toluene

    SciTech Connect

    Rasmussen, R.A.; Khalil, M.A.K.

    1983-11-01

    Atmospheric concentrations of benzene (C/sub 6/H/sub 6/) and toluene (C/sub 7/H/sub 8/)have been observed at nine remote locations of the world ranging in latitude from inside the arctic circle to the south pole. The observations span all seasons at each location. In the northern hemisphere it is observed that C/sub 6/H/sub 6/ and C/sub 7/H/sub 8/ are most abundant during winter and least abundant during summer. Based on the limited data available, such cycles are not observed in the tropics. These findings are consistent with the expected latitudinal and seasonal variations of OH radicals which cause benzene and toluene to be removed from the atmosphere. The latitude distribution shows high concentrations at mid latitude and low levels in the southern hemisphere. This finding is consistent with the present understanding that the sources of benzene and toluene are primarily anthropogenic. The observed concentration distribution and varibility are consistent with the short expected atmospheric lifetime of the order of months for benzene and days for toluene.

  12. Solubilization of trichloroethylene by polyelectrolyte/surfactant complexes

    SciTech Connect

    Uchiyama, Hirotaka; Christian, S.D.; Tucker, E.E.; Scamehorn, J.F. )

    1994-12-01

    An automated vapor pressure method is used to obtain solubilization isotherms for trichloroethylene (TCE) in polyelectrolyte/surfactant complexes throughout a wide range of solute activities at 20 and 25 C. The polyelectrolyte chosen is sodium poly(styrenesulfonate), PSS< and the surfactant is cetylpyridinium chloride or N-hexadecylpyridinium chloride, CPC. Data are fitted to the quadratic equation K = K[sub 0](1[minus][alpha]X + [beta]X[sup 2]), which correlates the solubilization equilibrium constant (K) with the mole fraction of TCE (X) in the micelles or complexes at each temperature. Activity coefficients are also obtained for TCE in the PSS/CPC complexes as a function of X. The general solubilization of TCE in PSS/CPC complexes resembles that of TCE in CPC micelles, as well as that of benzene or toluene in CPC micelles, suggesting that TCE solubilizes in ionic micelles both within the hydrocarbon micellar interior and near the micellar surface. The presence of the polyelectrolyte causes a small decrease in the ability of the cationic surfactant to solubilize TCE, while greatly reducing the concentration of the surfactant present in monomeric form. PSS/CPC complexes may be useful in colloid-enhanced ultrafiltration processes to purify organic-contaminated water.

  13. Test Pile Reactivity Loss Due to Trichloroethylene

    SciTech Connect

    Plumlee, K.E.

    2001-03-09

    The presence of trichloroethylene in the test pile caused a continual decrease in pile reactivity. A system which removed, purified, and returned 12,000 cfh helium to the pile has held contamination to a negligible level and has permitted normal pile operation.

  14. Silylene- and disilyleneacetylene polymers from trichloroethylene

    DOEpatents

    Barton, Thomas J. (Ames, IA); Ijadi-Maghsoodi, Sina (Ames, IA)

    1990-07-10

    Organosilane polymers having recurring silyleneacetylene and/or disilyleneacetylene units are prepared in a one-pot synthesis from trichloroethylene. Depending on the organic substituents (R and R'), these polymers have useful film-forming properties, and are converted to the ceramic, silicon carbide upon heating in very uniform high yields. They can also be pulled into fibers.

  15. Silylene- and disilyleneacetylene polymers from trichloroethylene

    DOEpatents

    Barton, T.J.; Ijadi-Maghsoodi, S.

    1990-07-10

    Organosilane polymers having recurring silyleneacetylene and/or disilyleneacetylene units are prepared in a one-pot synthesis from trichloroethylene. Depending on the organic substituents (R and R[prime]), these polymers have useful film-forming properties, and are converted to the ceramic, silicon carbide upon heating in very uniform high yields. They can also be pulled into fibers.

  16. RESPONSE TO ISSUES AND DATA SUBMISSIONS ON THE CARCINOGENICITY OF TETRACHLOROETHYLENE (PERCHLOROETHYLENE)

    EPA Science Inventory

    The scientific debate over the potential carcinogenicity of tetrachloroethylene (perchloroethylene, perc, PCE) spans several years. his document reviews the issues considered by the EPA's Science Advisory Board (SAB) during its review of the Draft Addendum to the Health Assessmen...

  17. Prenatal and Early Childhood Exposure to Tetrachloroethylene and Adult Vision

    PubMed Central

    Getz, Kelly D.; Janulewicz, Patricia A.; Rowe, Susannah; Weinberg, Janice M.; Winter, Michael R.; Martin, Brett R.; Vieira, Veronica M.; White, Roberta F.

    2012-01-01

    Background: Tetrachloroethylene (PCE; or perchloroethylene) has been implicated in visual impairments among adults with occupational and environmental exposures as well as children born to women with occupational exposure during pregnancy. Objectives: Using a population-based retrospective cohort study, we examined the association between prenatal and early childhood exposure to PCE-contaminated drinking water on Cape Cod, Massachusetts, and deficits in adult color vision and contrast sensitivity. Methods: We estimated the amount of PCE that was delivered to the family residence from participants’ gestation through 5 years of age. We administered to this now adult study population vision tests to assess acuity, contrast sensitivity, and color discrimination. Results: Participants exposed to higher PCE levels exhibited lower contrast sensitivity at intermediate and high spatial frequencies compared with unexposed participants, although the differences were generally not statistically significant. Exposed participants also exhibited poorer color discrimination than unexposed participants. The difference in mean color confusion indices (CCI) was statistically significant for the Farnsworth test but not Lanthony’s D-15d test [Farnsworth CCI mean difference = 0.05, 95% confidence interval (CI): 0.003, 0.10; Lanthony CCI mean difference = 0.07, 95% CI: –0.02, 0.15]. Conclusions: Prenatal and early childhood exposure to PCE-contaminated drinking water may be associated with long-term subclinical visual dysfunction in adulthood, particularly with respect to color discrimination. Further investigation of this association in similarly exposed populations is necessary. PMID:22784657

  18. Linking indoor air and pharmacokinetic models to assess tetrachloroethylene risk

    SciTech Connect

    Bogen, K.T.; McKone, T.E.

    1988-12-01

    Physiologically based pharmacokinetic (PBPK) models describing the uptake, metabolism, and excretion of xenobiotic compounds are now proposed for use in regulatory health-risk assessments. In this study the authors investigate the extent of PCE metabolism arising from domestic respiratory exposure to tetrachloroethylene (PCE) from ground water, as predicted using a PBPK model. Indoor exposure patterns they use as input to the PBPK model are realistic ones generated from a three-compartment model describing volatilization of PCE from domestic water into household air. Values they use for the metabolic parameters of the PBPK model are estimated from data on urinary metabolites in workers exposed to PCE. It is shown that for respiratory PCE exposure due to typical levels of PCE in ground water, use of time-weighted average air concentrations with a steady-state PBPK model yields estimates of total metabolized PCE similar to those obtained using completely dynamic modeling, despite considerable uncertainty in key exposure- and metabolic-model parameters. These findings suggest that, for PCE, risk estimation taking pharmacokinetics into account may be accomplished using a simple analytic approach.

  19. Soot formation in shock-tube pyrolysis of toluene, toluene-methanol, toluene-ethanol, and toluene-oxygen mixtures

    SciTech Connect

    Alexiou, A.; Williams, A.

    1996-01-01

    Soot formation during the pyrolysis of argon diluted mixtures of toluene and binary mixtures of toluene-methanol and toluene-ethanol, and during the oxidation of toluene has been studied in a reflected shock tube. Soot induction times and rates of soot formation were measured at 632.8 and 1,152.0 nm by a laser beam attenuation method and these showed an Arrhenius dependence on shock temperature. Soot yields and soot amounts were also measured. The soot yield and amount were found to decrease with the addition of methanol and ethanol to toluene, with more pronounced effects for the methanol addition. The addition of oxygen to toluene strongly suppressed soot with a shift of the soot yield to lower temperatures. This laser effect was not found during alcohol addition to the toluene and therefore an alternative route to the soot formation at lower temperatures is suggested. A kinetic model was used to interpret the experimental trends and reasonably reproduced the experimental observations. However, the lack of good quantitative agreement emphasized the urgent need in establishing reliable kinetic data and reaction pathways on the oxidation of the benzyl radical and PAH species.

  20. Pulmonary reactions caused by welding-induced decomposed trichloroethylene

    SciTech Connect

    Sjoegren, B.P.; Plato, N.; Alexandersson, R.; Eklund, A.; Falkenberg, C. )

    1991-01-01

    This is the report of a welder who performed argon-shielded electric arc welding in an atmosphere containing trichloroethylene. He developed immediate respiratory symptoms, pulmonary edema 12 hours after exposure, and recurring dyspnea ten days after exposure. These pulmonary reactions might be explained by inhalation of decomposition products of trichloroethylene such as dichloroacetyl chloride and phosgene.

  1. Inhibited 1,1,1-trichloroethane replaces trichloroethylene for degreasing

    NASA Technical Reports Server (NTRS)

    Schuler, F. T.

    1970-01-01

    In fight against air pollution inhibited TCE /1,1,1-trichloroethane/ is effective substitute for trichloroethylene in degreasing plants. This chemical has only slight photochemical activity and causes little eye irritation. TCE is less toxic than trichloroethylene and can withstand production loads and conditions, or long term storage, without degradation.

  2. Tetrachloroethylene Exposure and Bladder Cancer Risk: A Meta-Analysis of Dry-Cleaning-Worker Studies

    PubMed Central

    Vlaanderen, Jelle; Straif, Kurt; Ruder, Avima; Blair, Aaron; Hansen, Johnni; Lynge, Elsebeth; Charbotel, Barbara; Loomis, Dana; Kauppinen, Timo; Kyyronen, Pentti; Pukkala, Eero; Weiderpass, Elisabete

    2014-01-01

    Background: In 2012, the International Agency for Research on Cancer classified tetrachloroethylene, used in the production of chemicals and the primary solvent used in dry cleaning, as “probably carcinogenic to humans” based on limited evidence of an increased risk of bladder cancer in dry cleaners. Objectives: We assessed the epidemiological evidence for the association between tetrachloroethylene exposure and bladder cancer from published studies estimating occupational exposure to tetrachloroethylene or in workers in the dry-cleaning industry. Methods: Random-effects meta-analyses were carried out separately for occupational exposure to tetrachloroethylene and employment as a dry cleaner. We qualitatively summarized exposure–response data because of the limited number of studies available. Results: The meta-relative risk (mRR) among tetrachloroethylene-exposed workers was 1.08 (95% CI: 0.82, 1.42; three studies; 463 exposed cases). For employment as a dry cleaner, the overall mRR was 1.47 (95% CI: 1.16, 1.85; seven studies; 139 exposed cases), and for smoking-adjusted studies, the mRR was 1.50 (95% CI: 0.80, 2.84; 4 case–control studies). Conclusions: Our meta-analysis demonstrates an increased risk of bladder cancer in dry cleaners, reported in both cohort and case–control studies, and some evidence for an exposure–response relationship. Although dry cleaners incur mixed exposures, tetrachloroethylene could be responsible for the excess risk of bladder cancer because it is the primary solvent used and it is the only chemical commonly used by dry cleaners that is currently identified as a potential bladder carcinogen. Relatively crude approaches in exposure assessment in the studies of “tetrachloroethylene-exposed workers” may have attenuated the relative risks. Citation: Vlaanderen J, Straif K, Ruder A, Blair A, Hansen J, Lynge E, Charbotel B, Loomis D, Kauppinen T, Kyyronen P, Pukkala E, Weiderpass E, Guha N. 2014. Tetrachloroethylene exposure and bladder cancer risk: a meta-analysis of dry-cleaning-worker studies. Environ Health Perspect 122:661–666;?http://dx.doi.org/10.1289/ehp.1307055 PMID:24659585

  3. SUBCHRONIC TOXICITY OF TETRACHLOROETHYLENE (PERCHLOROETHYLENE) ADMINISTERED IN THE DRINKING WATER OF RATS

    EPA Science Inventory

    The study provides data on the effects of tetrachloroethylene in drinking solutions. The acute oral LD(50) was determined in male and female Charles River rats and found to be 3835 mg/kg for males and 3005 mg/kg for females. Male and female rats received theoretical daily doses o...

  4. EVALUATION OF GEOPHYSICAL METHODS FOR THE DETECTION OF SUBSURFACE TETRACHLOROETHYLENE (PCE) IN CONTROLLED SPILL EXPERIMENTS

    EPA Science Inventory

    Tetrachloroethylene (PCE), typically used as a dry cleaning solvent, is a predominant contaminant in the subsurface at Superfund Sites. PCE is a dense non-aqueous phase liquid (DNAPL) that migrates downward into the earth, leaving behind areas of residual saturation and free prod...

  5. Continuous Determination of High-Vapor Phase Concentrations of Tetrachloroethylene Using On-Line Mass Spectrometry

    EPA Science Inventory

    A method was developed to determine the vapor concentration of tetrachloroethylene (PCE) at and below its equilibrium vapor phase concentration, 168,000 ?g/L (25°C). Vapor samples were drawn by vacuum into a six-port sampling valve and injected through a jet separator into an io...

  6. Effect of toluene concentration and hydrogen peroxide on Pseudomonas plecoglossicida cometabolizing mixture of cis-DCE and TCE in soil slurry.

    PubMed

    Li, Junhui; Lu, Qihong; de Toledo, Renata Alves; Lu, Ying; Shim, Hojae

    2015-12-01

    An indigenous Pseudomonas sp., isolated from the regional contaminated soil and identified as P. plecoglossicida, was evaluated for its aerobic cometabolic removal of cis-1,2-dichloroethylene (cis-DCE) and trichloroethylene (TCE) using toluene as growth substrate in a laboratory-scale soil slurry. The aerobic simultaneous bioremoval of the cis-DCE/TCE/toluene mixture was studied under different conditions. Results showed that an increase in toluene concentration level from 300 to 900 mg/kg prolonged the lag phase for the bacterial growth, while the bioremoval extent for cis-DCE, TCE, and toluene declined as the initial toluene concentration increased. In addition, the cometabolic bioremoval of cis-DCE and TCE was inhibited by the presence of hydrogen peroxide as the additional oxygen source, while the bioremoval of toluene (900 mg/kg) was enhanced after 9 days of incubation. The subsequent addition of toluene did not improve the cometabolic bioremoval of cis-DCE and TCE. The obtained results would help to enhance the applicability of bioremediation technology to the mixed waste contaminated sites. PMID:25963576

  7. Development and characterization of a green fluorescent protein-based bacterial biosensor for bioavailable toluene and related compounds.

    PubMed

    Stiner, Lawrence; Halverson, Larry J

    2002-04-01

    A green fluorescent protein-based Pseudomonas fluorescens strain A506 biosensor was constructed and characterized for its potential to measure benzene, toluene, ethylbenzene, and related compounds in aqueous solutions. The biosensor is based on a plasmid carrying the toluene-benzene utilization (tbu) pathway transcriptional activator TbuT from Ralstonia pickettii PKO1 and a transcriptional fusion of its promoter PtbuA1 with a promoterless gfp gene on a broad-host-range promoter probe vector. TbuT was not limiting, since it was constitutively expressed by being fused to the neomycin phosphotransferase (nptII) promoter. The biosensor cells were readily induced, and fluorescence emission after induction periods of 3 h correlated well with toluene, benzene, ethylbenzene, and trichloroethylene concentrations. Our experiments using flow cytometry show that intermediate levels of gfp expression in response to toluene reflect uniform induction of cells. As the toluene concentration increases, the level of gfp expression per cell increases until saturation kinetics of the TbuT-PtbuA1 system are observed. Each inducer had a unique minimum concentration that was necessary for induction, with K(app) values that ranged from 3.3 +/- 1.8 microM for toluene to 35.6 +/- 16.6 microM for trichloroethylene (means +/- standard errors of the means), and maximal fluorescence response. The fluorescence response was specific for alkyl-substituted benzene derivatives and branched alkenes (di- and trichloroethylene, 2-methyl-2-butene). The biosensor responded in an additive fashion to the presence of multiple inducers and was unaffected by the presence of compounds that were not inducers, such as those present in gasoline. Flow cytometry revealed that, in response to toxic concentrations of gasoline, there was a small uninduced population and another larger fully induced population whose levels of fluorescence corresponded to the amount of effectors present in the sample. These results demonstrate the potential for green fluorescent protein-based bacterial biosensors to measure environmental contaminants. PMID:11916719

  8. Evaluation of toxicity of trichloroethylene for plants

    SciTech Connect

    Ryu, S.B.; Davis, L.C.; Dana, J.; Selk, K.; Erickson, L.E.

    1996-12-31

    Trichloroethylene (TCE) exposure of several species of plants was studied. Although earlier studies indicated that the root systems of plants could tolerate an aqueous phase concentration of 1 mM for a day, toxicity to whole plants was observed at somewhat lower levels in the gas phase in this study. The tested species included pumpkin (Cucurbita maxima), tomato (Lycopersicon esculentum), sweet potato (Dioscoria batata), tobacco (Nicotiana tabacum), soybean (Glycine max L. Merr), and alfalfa (Medicago sativa). Damage was observable as wilting or failure of the gravitropic response of shoots at levels above about 0.2 mM in the gas phase, which corresponds to 0.5 mM in the aqueous phase. Plants were usually killed quickly at gas phase concentrations above 0.4 mM.

  9. IRIS Toxicological Review of Trichloroethylene (TCE) (External Review Draft)

    EPA Science Inventory

    EPA is conducting a peer review and public comment of the scientific basis supporting the human health hazard and dose-response assessment of Trichloroethylene (TCE) that when finalized will appear on the Integrated Risk Information System (IRIS) database.

  10. EVALUATION OF MULTIPLE PHARMACOKINETIC MODELING STRUCTURES FOR TRICHLOROETHYLENE

    EPA Science Inventory

    A series of PBPK models were developed for trichloroethylene (TCE) to evaluate biological processes that may affect the absorption, distribution, metabolism and excretion (ADME) of TCE and its metabolites.

  11. IRIS Toxicological Review of Trichloroethylene (Interagency Science Discussion Draft)

    EPA Science Inventory

    EPA is releasing the draft report, Toxicological Review of Trichloroethylene, that was distributed to Federal agencies and White House Offices for comment during the Science Discussion step of the IRIS Assessment Development Process. Comments received from other Federal agencies ...

  12. Detection of Benzene, Toluene, Ethyl Benzene, and Xylenes (BTEX) Using Toluene Dioxygenase-Peroxidase Coupling Reactions

    E-print Network

    Chen, Wilfred

    Detection of Benzene, Toluene, Ethyl Benzene, and Xylenes (BTEX) Using Toluene Dioxygenase, whole-cell bioassay for the detection of bioavailable benzene, toluene, ethyl benzene, and xylenes (BTEX of the response obtained from the blank) of 10, 10, 20, and 50 µM was observed for benzene, toluene, ethyl benzene

  13. Toluene stability Space Station Rankine power system

    NASA Technical Reports Server (NTRS)

    Havens, V. N.; Ragaller, D. R.; Sibert, L.; Miller, D.

    1987-01-01

    A dynamic test loop is designed to evaluate the thermal stability of an organic Rankine cycle working fluid, toluene, for potential application to the Space Station power conversion unit. Samples of the noncondensible gases and the liquid toluene were taken periodically during the 3410 hour test at 750 F peak temperature. The results obtained from the toluene stability loop verify that toluene degradation will not lead to a loss of performance over the 30-year Space Station mission life requirement. The identity of the degradation products and the low rates of formation were as expected from toluene capsule test data.

  14. Subchronic toxicity of tetrachloroethylene (perchloroethylene) administered in the drinking water of rats

    SciTech Connect

    Hayes, J.R.; Condie, L.W. Jr.; Borzelleca, J.F.

    1986-07-01

    This study provides data on the effects of tetrachloroethylene in drinking solutions. The acute oral LD50 in male and female Charles River rats was found to be 3835 mg/kg for males and 3005 mg/kg for females. Male and female rats received theoretical daily doses of 14,400, and 1400 mg tetrachloroethylene/kg body wt/day for 90 consecutive days. There were no compound-related deaths. Body weights were significantly lower in male and female rats at the higher doses. There were no consistent dose-related effects on any of the hematological, clinical chemistry, or urinalysis parameters. 5'-Nucleotidase activity was increased in a dose-dependent manner, suggesting possible hepatotoxicity; however, other serum indicators of hepatic function were unaffected by the treatment. There were no gross pathological effects observed. Liver and kidney body weight ratios, but not brain weight ratios, were elevated at the higher doses. There was no other evidence of compound-related toxicity. These data suggest that exposure of humans to reported levels of tetrachloroethylene in drinking water (approximately 1 microgram/liter) does not constitute a serious health hazard.

  15. Human variability and susceptibility to trichloroethylene.

    PubMed Central

    Pastino, G M; Yap, W Y; Carroquino, M

    2000-01-01

    Although humans vary in their response to chemicals, comprehensive measures of susceptibility have generally not been incorporated into human risk assessment. The U.S. EPA dose-response-based risk assessments for cancer and the RfD/RfC (reference dose-reference concentration) approach for noncancer risk assessments are assumed to protect vulnerable human subgroups. However, these approaches generally rely on default assumptions and do not consider the specific biological basis for potential susceptibility to a given toxicant. In an effort to focus more explicitly on this issue, this article addresses biological factors that may affect human variability and susceptibility to trichloroethylene (TCE), a widely used halogenated industrial solvent. In response to Executive Order 13045, which requires federal agencies to make protection of children a high priority in implementing their policies and to take special risks to children into account when developing standards, this article examines factors that may affect risk of exposure to TCE in children. The influence of genetics, sex, altered health state, coexposure to alcohol, and enzyme induction on TCE toxicity are also examined. PMID:10807552

  16. Physiological Relevance of Successive Hydroxylations of Toluene by Toluene para-Monooxygenase of Ralstonia pickettii

    E-print Network

    Wood, Thomas K.

    Physiological Relevance of Successive Hydroxylations of Toluene by Toluene para (TpMO) of Ralstonia pickettii PKO1 (encoded by tbuA1UBVA2C) performs successive hydroxylations of benzene (Appl. Environ. Microbiol. 70: 3814, 2004) as well as hydroxylates toluene to a mixture of 90% p

  17. IRIS Toxicological Review of Trichloroethylene (Interagency Science Consultation Draft)

    EPA Science Inventory

    On November 3, 2009, the Toxicological Review of Trichloroethylene and the charge to external peer reviewers were released for external peer review and public comment. The Toxicological Review and charge were reviewed internally by EPA and by other federal agencies and White Hous...

  18. EFFECT OF TRICHLOROETHYLENE ON MALE SEXUAL BEHAVIOR: POSSIBLE OPIOID ROLE

    EPA Science Inventory

    Trichloroethylene (TCE) is a chlorinated hydrocarbon solvent which is widely used as an industrial degreasing agent. Workers exposed to TCE often exhibit symptoms similar to those symptoms produced by narcotics. The present studies evaluated the effects of TCE exposure on measure...

  19. Evoked trigeminal nerve potential in chronic trichloroethylene intoxication

    SciTech Connect

    Barret, L.; Arsac, P.; Vincent, M.; Faure, J.; Garrel, S.; Reymond, F.

    1982-06-01

    Results of a study of trigeminal nerve impairment resulting from trichloroethylene intoxication by the somatosensory-evoked potential method reveal three kinds of abnormalities: increased stimulation voltage, excessive latency delay with morphological abnormalities, and excessive graph amplitude. These abnormalities confirm clinical disturbance (hypesthesia of the trigeminal nerve area) and open debate about the real mechanism of trichloroethylene neurotoxicity. Industrial intoxication by solvents, particularly trichloroethylene, is common. We have conducted a study of 188 workers chronically exposed to trichloroethylene and have confirmed the selective neurological disturbances of this intoxication in the trigeminal nerve (20%) (3, 10). We utilized a new experimental method, developed for studies of chronic intoxications effecting the median nerve (5, 8), of recording the somatosensory evoked potential following stimulation of the trigeminal nerve (4, 6, 7). The workers in this study were selected following clinical evaluation of their facial sensitivity and trigeminal nerve reflexes. In this paper we present our preliminary results on 11 workers, 9 suffering effects of intoxication and 2 controls.

  20. Chronic dysphagia and trigeminal anesthesia after trichloroethylene exposure

    SciTech Connect

    Lawrence, W.H.; Partyka, E.K.

    1981-12-01

    A patient is described who inhaled trichloroethylene fumes while working in a closed underground pit. At the time of exposure he developed dysphagia, dysarthria and dyspnea. Assessment of his condition 11 years after the incident indicated major damage of cranial nerves, particularly the trigeminal, chronic involvement of the bulbar cranial nerves, and resultant esophageal and pharnygeal motility impairment. (JMT)

  1. ADSORPTION AND CATALYTIC DESTRUCTION OF TRICHLOROETHYLENE IN HYDROPHOBIC ZEOLITES

    EPA Science Inventory

    Several chromium exchanged ZSM-5 zeolites of varying SiO2/Al2O3 ratio were prepared and investigated for ambient (23 ?C) adsorption and subsequent oxidative destruction (250-400 ?C) of gaseous trichloroethylene (TCE, Cl2C=CHCl) in a humid air stream. With an increase in the SiO2...

  2. Plasma remediation of trichloroethylene in silent discharge plasmas Diane Evans

    E-print Network

    Kushner, Mark

    ; accepted for publication 15 July 1993) Plasma destruction of toxins, and volatile organic compounds compounds. In this regard, remediation of trichloroethylene (TCE) in silent discharge plasmas has been bubbler. The destruction efficiency of TCE is smaller in humid mixtures compared to dry mixtures due

  3. USE OF GRANULAR GRAPHITE FOR ELECTROLYTIC DECHLORINATION OF TRICHLOROETHYLENE

    EPA Science Inventory

    Granular graphite is a potential electrode material for the electrochemical remediation of refractory chlorinated organic compounds such as trichloroethylene (TCE). However, the use of granular graphite can complicate the experimental results. On one hand, up to 99% of TCE was re...

  4. THE EFFECT OF VOLTAGE ON ELECTROCHEMICAL DEGRADATION OF TRICHLOROETHYLENE

    EPA Science Inventory

    This study investigates electrochemical degradation of Trichloroethylene (TCE) using granular graphite as electrodes in a flow-through reactor system. The experiments were conducted to obtain information on the effect of voltage and flow rates on the degradation rates of TCE. The...

  5. EFFECTS OF ORAL EXPOSURE TO TRICHLOROETHYLENE ON FEMALE REPRODUCTIVE FUNCTION

    EPA Science Inventory

    In the present study, the distribution, metabolism and reproductive toxicity of trichloroethylene (TCE) administered by the oral route to female rats were examined. The distribution study with 14C-TCE indicated that relatively high levels of radioactivity accumulated in the ovary...

  6. EFFECTS OF THERMAL TREATMENTS ON THE CHEMICAL REACTIVITY OF TRICHLOROETHYLENE

    EPA Science Inventory

    A series of experiments was completed to investigate abiotic degradation and reaction product formation of trichloroethylene (TCE) when heated. A quartz-tube apparatus was used to study short residence time and high temperature conditions that are thought to occur during thermal ...

  7. GASEOUS BEHAVIOR OF TCE (TRICHLOROETHYLENE) OVERLYING A CONTAMINATED AQUIFER

    EPA Science Inventory

    Shallow soil gas (<2 meters deep) was collected and analyzed for trichloroethylene (TCE) to determine the relationship with ground-water contamination directly below. The gaseous TCE plume was mapped with 46 probes and spanned three orders of magnitude in concentration (<0.001 to...

  8. BIODEGRADATION OF TRICHLOROETHYLENE AND INVOLVEMENT OF AN AROMATIC BIODEGRADATIVE PATHWAY

    EPA Science Inventory

    Biodegradation of trichloroethylene (TCE) by the bacterial isolate strain G4 resulted in complete dechlorination of the compound as indicated by the production of inorganic chloride. A component of the water from which strain G4 was isolated that was required for TCE degradation ...

  9. Impact of Iron Sulfide Transformation on Trichloroethylene Degradation

    EPA Science Inventory

    Trichloroethylene (TCE) is one of the most common and persistent groundwater contaminants encountered at hazardous waste sites around the world. A growing body of evidence indicates that iron sulfides play an important role in degrading TCE in natural environments and in enginee...

  10. 27 CFR 21.132 - Toluene.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Toluene. 21.132 Section 21.132 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS FORMULAS FOR DENATURED ALCOHOL AND RUM Specifications for Denaturants § 21.132 Toluene. (a) Distillation range. (For...

  11. 27 CFR 21.132 - Toluene.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Toluene. 21.132 Section 21.132 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS FORMULAS FOR DENATURED ALCOHOL AND RUM Specifications for Denaturants § 21.132 Toluene. (a) Distillation range. (For...

  12. 27 CFR 21.132 - Toluene.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Toluene. 21.132 Section 21.132 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL FORMULAS FOR DENATURED ALCOHOL AND RUM Specifications for Denaturants § 21.132 Toluene. (a) Distillation range. (For...

  13. 27 CFR 21.132 - Toluene.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Toluene. 21.132 Section 21.132 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL FORMULAS FOR DENATURED ALCOHOL AND RUM Specifications for Denaturants § 21.132 Toluene. (a) Distillation range. (For...

  14. HEALTH EFFECTS OF TOLUENE: A REVIEW

    EPA Science Inventory

    This evaluative review covers the neurotoxic effects of toluene. General health effects of toluene are also discussed in more limited detail. A brief description of chemical properties and environmental prevalence is given, followed by a review of pharmacokinetic data. General he...

  15. Ethnic Differences in the Metabolism of Toluene: Comparisons between Korean and Foreign Workers Exposed to Toluene

    PubMed Central

    Won, Young Lim; Ko, Kyung Sun

    2015-01-01

    The objectives of this study were to investigate the individual characteristics, lifestyle habits, exposure levels, and genetic diversity of xenobiotic-metabolizing enzymes involved in toluene metabolism in Korean and foreign workers exposed to toluene at a manufacturing plant. This study was conducted to determine the effects of culture or ethnicity on toluene metabolism. The results showed that blood and urinary toluene concentrations were dependent on the level of exposure to toluene. We analyzed the correlation between toluene metabolism and genetic diversity in glutathione S-transferase (GST) (M1), GSTT1, and cytochrome p-450 (CYP) 2E1*5 as well as lifestyle habits (smoking, drinking, and exercise habits). The results revealed significant correlations between toluene metabolism and GSTM1 and GSTT1 genetic diversity, as well as smoking and exercise. PMID:25874030

  16. Acclimation of aerobic-activated sludge degrading benzene derivatives and co-metabolic degradation activities of trichloroethylene by benzene derivative-grown aerobic sludge.

    PubMed

    Wang, Shizong; Yang, Qi; Bai, Zhiyong; Wang, Shidong; Wang, Yeyao; Nowak, Karolina M

    2015-01-01

    The acclimation of aerobic-activated sludge for degradation of benzene derivatives was investigated in batch experiments. Phenol, benzoic acid, toluene, aniline and chlorobenzene were concurrently added to five different bioreactors which contained the aerobic-activated sludge. After the acclimation process ended, the acclimated phenol-, benzoic acid-, toluene-, aniline- and chlorobenzene-grown aerobic-activated sludge were used to explore the co-metabolic degradation activities of trichloroethylene (TCE). Monod equation was employed to simulate the kinetics of co-metabolic degradation of TCE by benzene derivative-grown sludge. At the end of experiments, the mixed microbial communities grown under different conditions were identified. The results showed that the acclimation periods of microorganisms for different benzene derivatives varied. The maximum degradation rates of TCE for phenol-, benzoic acid-, toluene-, aniline- and chlorobenzene-grown aerobic sludge were 0.020, 0.017, 0.016, 0.0089 and 0.0047 mg g SS(-1) h(-1), respectively. The kinetic of TCE degradation in the absence of benzene derivative followed Monod equation well. Also, eight phyla were observed in the acclimated benzene derivative-grown aerobic sludge. Each of benzene derivative-grown aerobic sludge had different microbial community composition. This study can hopefully add new knowledge to the area of TCE co-metabolic by mixed microbial communities, and further the understanding on the function and applicability of aerobic-activated sludge. PMID:25409590

  17. Cometabolic biodegradation of trichloroethylene in microcosms

    USGS Publications Warehouse

    Kane, Allen C.; Wilson, Timothy P.; Fischer, Jeffrey M.

    1997-01-01

    Laboratory microcosms were used to determine the concentrations of oxygen (O2) and methane (CH4) that optimize trichloroethylene (TCE) biodegradation in sediment and ground-water samples from a TCE-contaminated aquifer at Picatinny Arsenal, Morris County, New Jersey. The mechanism for degradation is the cometabolic activity of methanotrophic bacteria. The laboratory data will be used to support a field study designed to demonstrate the effectiveness of combining air sparging with cometabolic degradation of TCE for the purpose of aquifer remediation. Microcosms were constructed in autoclaved 250-mL (milliliter) amber glass bottles with valves for repeated headspace sampling. Equal volumes (25 mL) of sediment and ground water, collected from a depth of 40 feet, were added. TCE was added to attain initial aqueous concentrations equal to the field level of 1,400 mu g/L (micrograms per liter). Nine microcosms were constructed with initial headspace O2 concentrations of 5%, 10%, or 14% and CH4 concentrations of 0.5%, 3%, or 5%, with nitrogen making up the balance. Sterile controls, controls without CH4, and controls without sediment were also constructed. A 4-mL gas sample was removed periodically and TCE, O2 , CH4 , and carbon dioxide (CO2) concentrations were measured by using gas chromatography. As biodegradation proceeded, the decrease in O2, CH4 , and TCE concentrations and the production of CO2 were monitored. An initial acclimation period of at least 100 days was observed in those microcosms in which significant microbial activity occurred, as determined from decreases in O2 and CH4 concentrations and an increase in CO2 content. Degradation of TCE occurred with O2 concentrations of 2.7 to 8.7% and CH4 concentrations of 0.5 to 3.5%. Microcosms that initially contained 10% O2 and 3% CH4 showed the greatest microbial activity and the greatest amount of TCE degradation. The greatest rates of TCE degradation occurred when O2 and CH4 headspace concentrations reached levels of 7.7 to 8.7% and 1.7 to 2.7%, respectively, which correspond to aqueous concentrations of 2.9 to 3.5 mg/L and 0.4 to 0.6 mg/L, respectively. Over these ranges, TCE degradation rates ranged from 15 to 20 mu g of TCE per kilogram of sediment per day. Analysis of the control microcosms indicated that these TCE degradation rates are much greater than those attributable to experimental variation. The results indicate that the microbial community of the sediment is capable of TCE degradation and that significant rates of degradation can be achieved with obtainable O2 and CH4 concentrations.

  18. Composition of Toluene-Degrading Microbial Communities from Soil at Different Concentrations of Toluene

    PubMed Central

    Hubert, Casey; Shen, Yin; Voordouw, Gerrit

    1999-01-01

    Toluene-degrading bacteria were isolated from hydrocarbon-contaminated soil by incubating liquid enrichment cultures and agar plate cultures in desiccators in which the vapor pressure of toluene was controlled by dilution with vacuum pump oil. Incubation in desiccators equilibrated with either 100, 10, or 1% (wt/wt) toluene in vacuum pump oil and testing for genomic cross-hybridization resulted in four genomically distinct strains (standards) capable of growth on toluene (strains Cstd1, Cstd2, Cstd5, and Cstd7). The optimal toluene concentrations for growth of these standards on plating media differed considerably. Cstd1 grew best in an atmosphere equilibrated with 0.1% (wt/wt) toluene, but Cstd5 failed to grow in this atmosphere. Conversely, Cstd5 grew well in the presence of 10% (wt/wt) toluene, which inhibited growth of Cstd1. 16S ribosomal DNA sequencing and cross-hybridization analysis indicated that both Cstd1 and Cstd5 are members of the genus Pseudomonas. An analysis of the microbial communities in soil samples that were incubated with 10% (wt/wt) toluene with reverse sample genome probing indicated that Pseudomonas strain Cstd5 was the dominant community member. However, incubation of soil samples with 0.1% (wt/wt) toluene resulted in a community that was dominated by Pseudomonas strain Q7, a toluene degrader that has been described previously (Y. Shen, L. G. Stehmeier, and G. Voordouw, Appl. Environ. Microbiol. 64:637–645, 1998). Q7 was not able to grow by itself in an atmosphere equilibrated with 0.1% (wt/wt) toluene but grew efficiently in coculture with Cstd1, suggesting that toluene or metabolic derivatives of toluene were transferred from Cstd1 to Q7. PMID:10388704

  19. Anticonvulsant and antipunishment effects of toluene

    SciTech Connect

    Wood, R.W.; Coleman, J.B.; Schuler, R.; Cox, C.

    1984-01-01

    Toluene can have striking acute behavioral effects and is subject to abuse by inhalation. To determine if its actions resemble those of drugs used in the treatment of anxiety (anxiolytics), two sets of experiments were undertaken. Inasmuch as prevention of pentylenetetrazol-induced convulsions is an identifying property of this class of agents, the authors first demonstrated that pretreatment of mice with injections of toluene delayed the onset of convulsive signs and prevented the tonic extension phase of the convulsant activity in a dose-related manner. Injections of another alkyl benzene, m-xylene, were of comparable potency to toluene. Inhalation of toluene delayed the time of death after pentylenetetrazol injection in a manner related to the duration and concentration of exposure; at lower convulsant doses, inhalation of moderate concentrations (EC/sub 58/, 1300 ppm) prevented death. Treatment with a benzodiazepine receptor antagonist (Ro 15-1788) failed to reduce the anticonvulsant activity of inhaled toluene. Anxiolytics also attenuate the reduction in response rate produced by punishment with electric shock. Toluene increased rates of responding suppressed by punishment when responding was maintained under a multiple fixed-interval fixed-interval punishment schedule of reinforcement. Distinct antipunishment effects were observed in rats after 2 hr of exposure to 1780 and 3000 ppm of toluene; the rate-increasing effects of toluene were related to concentration and to time after the termination of exposure. Thus, toluene and m-xylene resemble in several respects clinically useful drugs such as the benzodiazepines. 51 references, 3 figures, 2 tables.

  20. SURFACTANT ENHANCED RECOVERY OF TETRACHLOROETHYLENE FROM A POROUS MEDIUM CONTAINING LOW PERMEABILITY LENSES. 1. EXPERIMENTAL STUDIES. (R825409)

    EPA Science Inventory

    Abstract

    A matrix of batch, column and two-dimensional (2-D) box experiments was conducted to investigate the coupled effects of rate-limited solubilization and layering on the entrapment and subsequent recovery of a representative dense NAPL, tetrachloroethylene (PCE)...

  1. The pyrolysis of toluene and ethyl benzene

    NASA Technical Reports Server (NTRS)

    Sokolovskaya, V. G.; Samgin, V. F.; Kalinenko, R. A.; Nametkin, N. S.

    1987-01-01

    The pyrolysis of toluene at 850 to 950 C gave mainly H2, CH4, and benzene; PhEt at 650 to 750 C gave mainly H2, CH4, styrene, benzene, and toluene. The rate constants for PhEt pyrolysis were 1000 times higher than those for toluene pyrolysis; the chain initiation rate constants differed by the same factor. The activation energy differences were 46 kJ/mole for the total reaction and 54 kJ/mole for chain initiation. The chain length was evaluated for the PhEt case (10 + or - 2).

  2. Primary atmospheric oxidation mechanism for toluene.

    PubMed

    Baltaretu, Cristian O; Lichtman, Eben I; Hadler, Amelia B; Elrod, Matthew J

    2009-01-01

    The products of the primary OH-initiated oxidation of toluene were investigated using the turbulent flow chemical ionization mass spectrometry technique at temperatures ranging from 228 to 298 K. A major dienedial-producing pathway was detected for the first time for toluene oxidation, and glyoxal and methylglyoxal were found to be minor primary oxidation products. The results suggest that secondary oxidation processes involving dienedial and epoxide primary products are likely responsible for previous observations of glyoxal and methylglyoxal products from toluene oxidation. Because the dienedial-producing pathway is a null cycle for tropospheric ozone production and glyoxal and methylglyoxal are important secondary organic aerosol precursors, these new findings have important implications for the modeling of toluene oxidation in the atmosphere. PMID:19118482

  3. Oxidation Mechanisms of Toluene and Benzene

    NASA Technical Reports Server (NTRS)

    Bittker, David A.

    1995-01-01

    An expanded and improved version of a previously published benzene oxidation mechanism is presented and shown to model published experimental data fairly successfully. This benzene submodel is coupled to a modified version of a toluene oxidation submodel from the recent literature. This complete mechanism is shown to successfully model published experimental toluene oxidation data for a highly mixed flow reactor and for higher temperature ignition delay times in a shock tube. A comprehensive sensitivity analysis showing the most important reactions is presented for both the benzene and toluene reacting systems. The NASA Lewis toluene mechanism's modeling capability is found to be equivalent to that of the previously published mechanism which contains a somewhat different benzene submodel.

  4. Assessment of intermittent trichloroethylene exposure in vapor degreasing

    SciTech Connect

    Ulander, A.; Selden, A.; Ahlborg, G. Jr. )

    1992-11-01

    To validate various sampling strategies in assessment of trichloroethylene (TCE) exposure, urine and air samples were obtained from 29 metal workers involved in vapor degreasing. Urinary trichloroacetic acid and trichloroethanol were useful metabolites to estimate TCE exposure on a group basis, but the predictive value of a single urine sample was low when related to the air concentration. With intermittent TCE exposure, the best information is obtained by analyzing both metabolites.

  5. Reductive degradation of tetrachloroethylene by biogenic and chemogenic carbonate green rust

    NASA Astrophysics Data System (ADS)

    Lee, N.; Bae, S.; Lee, W.

    2013-12-01

    Degradation of contaminants with microorganisms and natural soil minerals has been extensively studied for understanding of complex interaction mechanism in bio-geochemical reactions. In this study, we conducted a batch experiment to demonstrate the different degradation mechanism of tetrachloroethylene (PCE) in biogenic and chemogenic carbonate green rust suspensions. Both green rusts were characterized by measurement of Fe(II) content, BET, X-ray diffraction, and transmission electron spectroscopy before and after the reaction. The effects of mineral loading, initial concentration of PCE, and solution pH on the degradation kinetic of PCE were investigated. The concentration profiles of transformation products were also monitored to investigate the different degradation mechanism of PCE by biogenic and chemogenic green rust.

  6. Exposure to Tetrachloroethylene-Contaminated Drinking Water and the Risk of Pregnancy Loss

    PubMed Central

    Aschengrau, Ann; Weinberg, Janice M.; Gallagher, Lisa G.; Winter, Michael R.; Vieira, Veronica M.; Webster, Thomas F.; Ozonoff, David M.

    2010-01-01

    There is little information on the impact of solvent-contaminated drinking water on pregnancy outcomes. This retrospective cohort study examined whether maternal exposure to tetrachloroethylene (PCE) - contaminated drinking water in the Cape Cod region of Massachusetts influenced the risk of clinically recognized pregnancy loss. The study identified exposed (n=959) and unexposed (1,087) women who completed a questionnaire on their residential and pregnancy histories, and confounding variables. Exposure was estimated using water distribution system modeling software. No meaningful associations were seen between PCE exposure level and the risk of clinically recognized pregnancy loss at the exposure levels experienced by the study population. Because PCE remains a common water contaminant, it is important to continue monitoring its impact on women and their pregnancies. PMID:20613966

  7. Trichloroethylene activates CD4+ T cells: potential role in an autoimmune response.

    PubMed

    Gilbert, K M; Griffin, J M; Pumford, N R

    1999-11-01

    Trichloroethylene is an industrial solvent and has become a major environmental contaminant. Autoimmune-prone MRL +/+ mice were treated for up to 22 weeks with trichloroethylene in the drinking water (0, 2.5, and 5.0 mg/mL) in order to study the immunoregulatory effects of this environmental toxicant. After only 4 weeks of treatment, trichloroethylene was shown to promote the expansion of CD4+ T cells that expressed a memory/activation phenotype (i.e., CD44hi CD45RBlo) and secreted high levels of IFN-gamma, but not IL-4. In addition, trichloroethylene treatment accelerated the development of an autoimmune response in the MRL +/+ mice as evidenced by an earlier appearance of antinuclear antibodies and increased levels of total IgG2a. MRL +/+ mice treated with trichloroethylene for 22 weeks also contained antibodies specific for trichloroethylene adducts, suggesting the activation of trichloroethylene-specific T cells. The results suggest that trichloroethylene can stimulate antigen nonspecific as well as specific T cells that are capable of promoting autoimmunity in genetically predisposed individuals. PMID:10575554

  8. USE OF CARBON STABLE ISOTOPE TO INVESTIGATE CHLOROMETHANE FORMATION IN THE ELECTROLYTIC DECHLORINATION OF TRICHLOROETHYLENE

    EPA Science Inventory

    Carbon stable isotope trichloroethylene (13C TCE) was used to investigate the formation of chloromethane (CM) during the electrolytic dechlorination of trichloroethylene (TCE) at a granular-graphite packed cathode. A method was developed to use a conventional GC/MS to ...

  9. Adult neuropsychological performance following prenatal and early postnatal exposure to tetrachloroethylene (PCE)-contaminated drinking water.

    PubMed

    Janulewicz, Patricia A; White, Roberta F; Martin, Brett M; Winter, Michael R; Weinberg, Janice M; Vieira, Veronica; Aschengrau, Ann

    2012-01-01

    This population-based retrospective cohort study examined adult performance on a battery of neuropsychological tests in relation to prenatal and early postnatal exposure to tetrachloroethylene (PCE)-contaminated drinking water on Cape Cod, Massachusetts. Subjects were identified through birth records from 1969 through 1983. Exposure was modeled using pipe network information from town water departments, a PCE leaching and transport algorithm, EPANet water flow modeling software, and a Geographic Information System (GIS). Results of crude and multivariate analyses among 35 exposed and 28 unexposed subjects showed no association between prenatal and early postnatal exposure and decrements on tests that assess abilities in the domains of omnibus intelligence, academic achievement or language. The results were suggestive of an association between prenatal and early postnatal PCE exposure and diminished performance on tests that assessed abilities in the domains of visuospatial functioning, learning and memory, motor, attention and mood. Because the sample size was small, most findings were not statistically significant. Future studies with larger sample sizes should be conducted to further define the neuropsychological consequences of early developmental PCE exposure. PMID:22522125

  10. Adult Neuropsychological Performance Following Prenatal and Early Postnatal Exposure to Tetrachloroethylene (PCE)-contaminated Drinking Water

    PubMed Central

    Janulewicz, Patricia A; White, Roberta F; Martin, Brett M; Winter, Michael R; Weinberg, Janice M; Vieira, Veronica; Aschengrau, Ann

    2012-01-01

    This population-based retrospective cohort study examined adult performance on a battery of neuropsychological tests in relation to prenatal and early postnatal exposure to tetrachloroethylene (PCE)-contaminated drinking water on Cape Cod, Massachusetts. Subjects were identified through birth records from 1969 through 1983. Exposure was modeled using pipe network information from town water departments, a PCE leaching and transport algorithm, EPANet water flow modeling software, and a Geographic Information System (GIS). Results of crude and multivariate analyses among 35 exposed and 28 unexposed subjects showed no association between prenatal and early postnatal exposure and decrements on tests that assess abilities in the domains of omnibus intelligence, academic achievement or language. The results were suggestive of an association between prenatal and early postnatal PCE exposure and diminished performance on tests that assessed abilities in the domains of visuospatial functioning, learning and memory, motor, attention and mood. Because the sample size was small, most findings were not statistically significant. Future studies with larger sample sizes should be conducted to further define the neuropsychological consequences of early developmental PCE exposure. PMID:22522125

  11. A small amount of tetrachloroethylene ingestion from drinking water accelerates antigen-stimulated allergic responses.

    PubMed

    Seo, Makoto; Yamagiwa, Takeo; Kobayashi, Ryo; Ikeda, Koji; Satoh, Masahiko; Inagaki, Naoki; Nagai, Hiroichi; Nagase, Hisamitsu

    2008-01-01

    Previously, we observed that tetrachloroethylene (perchloroethylene, PCE) increased histamine release and inflammatory mediator production from antigen-stimulated mast cells. In this study, we examined the enhancing effect of low concentrations of PCE in drinking water on antigen-stimulated allergic responses. After exposure of Wistar rats to PCE in drinking water for 2 or 4 weeks, we performed a passive cutaneous anaphylaxis (PCA) reaction. PCE exposure for 4 weeks enhanced PCA reaction in a dose-dependent manner. In pathological studies, PCE exposure for 2 weeks exacerbated inflammation characterized by infiltration of lymphocytes and accumulation of mast cells around the vessel. Non-purified mast cells (NPMCs) from rats treated with 1mg/L PCE in drinking water for 2 weeks increased antigen-stimulated histamine release. Furthermore, the leukocytes of rats treated with PCE in drinking water for 4 weeks showed increased interleukin (IL)-4 expression. The mechanism of enhancing the PCA reaction is assumed to be that PCE increases IL-4 production and PCE causes T helper (Th) 1/Th2-type helper T-cell imbalance and increases histamine release from excessively accumulated mast cells. The results suggest that the intake of PCE in drinking water, even at a low concentration, leads to the initiation and acceleration of allergic diseases. PMID:18950594

  12. Dynamics of toluene degradation in biofilters

    SciTech Connect

    Tang, Hsiu-Mu; Hwang, Shyh-Jye; Hwang, Sz-Chwun

    1995-12-31

    Biodegradation processes have been validated as a promising alternative to other conventional air pollution control technologies. The objective of this research was to systematically investigate the transient behavior of shut down and restart-up operation and shock loading of the biofilter. Experiments were conducted in three laboratory-scale biofilters with mixtures of chaff/compost, D.E. (diatomaceous earth)/compost, and GAC (granular activated carbon)/compost, respectively as the filter materials. Toluene was used as the gas pollutant in this study. The response of each biofilter to shock loading was studied by abruptly changing the concentration or flow rate of the inlet gas. For each transient operation, toluene concentration was continuously measured until a new steady state was achieved. The results indicated that the biofilters responded effectively to the shut down and restart-up operation and shock loading of toluene concentration or gas flow rate. Moreover, the highly adsorptive GAC could improve the biofilter performance, especially for the treatment of less water soluble compounds such as toluene. Therefore, the GAC/compost biofilter had the highest maximum elimination capacity of 97 (g hr{sup {minus}1} m{sup {minus}3}). 17 refs., 8 figs.

  13. HEALTH ASSESSMENT DOCUMENT FOR TOLUENE. FINAL REPORT

    EPA Science Inventory

    The health effect of primary concern with regard to exposures of humans to toluene is dysfunction of the central nervous system (CNS). Occupational exposures in the range of 200 to 1,500 ppm have elicited dose-related CNS alterations. Although myelotoxicity was previously attribu...

  14. Health assessment for Nutmeg Valley, Wolcott, Connecticut, Region 1. CERCLIS No. CTSI88045. Preliminary report

    SciTech Connect

    Not Available

    1988-05-02

    The Nutmeg Valley Industrial Park is listed on the National Priorities List. The site is an industrial park containing 40 companies (light industry metal working and finishing) and 20 private residences. The contaminants present in groundwater at the site are trichloroethylene, benzene, ethyl benzene, toluene, xylene, methylene chloride, trans 1,2-dichloroethane, 1,1,1-trichloroethane, tetrachloroethylene, pentane, carbon tetrachloride, and chloroform. Investigation into the extent of contamination in other pathways is ongoing.

  15. Project Overview: IRIS TOXICOLOGICAL REVIEW AND SUMMARY DOCUMENTS FOR TOLUENE

    EPA Science Inventory

    Toluene is used as an additive to gasoline mixtures (BTEX) to increase octane ratings, in benzene production, and as a solvent in paints, coatings, inks, adhesives, and cleaners. Additionally, toluene is used in the production of nylon, plastics, and polyurethanes. Toluene was o...

  16. Enhanced dechlorination of tetrachloroethylene by zerovalent silicon in the presence of polyethylene glycol under anoxic conditions.

    PubMed

    Lee, Chun-Chi; Doong, Ruey-An

    2011-03-15

    The combination of zerovalent silicon (Si(0)) with polyethylene glycol (PEG) is a novel technique to enhance the dechlorination efficiency and rate of chlorinated hydrocarbons. In this study, the dechlorination of tetrachloroethylene (PCE) by Si(0) in the presence of various concentrations of PEG was investigated under anoxic conditions. Several surfactants including cetyltrimethylammonium bromide (CTAB), sodium dodecyl sulfate (SDS), and Tween 80 were also selected for comparison. Addition of SDS and Tween 80 had little effect on the enhancement of PCE dechlorination, while CTAB and PEG significantly enhanced the dechlorination efficiency and rate of PCE by Si(0) under anoxic conditions. The Langmuir-Hinshelwood model was used to describe the dechlorination kinetics of PCE and could be simplified to pseudo-first-order kinetics at low PCE concentration. The rate constants (k(obs)) for PCE dechlorination were 0.21 and 0.36 h(-1) in the presence of CTAB and PEG, respectively. However, the reaction mechanisms for CTAB and PEG are different. CTAB could enhance the apparent water solubility of PCE in solution containing Si(0), leading to the enhancement of dechlorination efficiency and rate of PCE, while PEG prevented the formation of silicon dioxide, and significantly enhanced the dechlorination efficiency and rate of PCE at pH 8.3 ± 0.2. In addition, the dechlorination rate increased upon increasing PEG concentration and then leveled off to a plateau when the PEG concentration was higher than 0.2 ?M. The k(obs) for PCE dechlorination by Si(0) in the presence of PEG was 106 times higher than that by Si(0) alone. Results obtained in this study would be helpful in facilitating the development of processes that could be useful for the enhanced degradation of cocontaminants by zerovalent silicon. PMID:21341692

  17. Blink reflex latency after exposure to trichloroethylene in well water

    SciTech Connect

    Feldman, R.G.; Chirico-Post, J.; Proctor, S.P.

    1988-03-01

    The electrophysiological measurement of the blink reflex (BR) can quantify the conduction latency in the reflex arc involving the Vth (trigeminal) and VIIth (facial) cranial nerves. We measured the electrophysiological BR in a population (N = 21), which had alleged chronic exposure to trichloroethylene (TCE) through the public drinking water at levels 30-80 times higher than the Environmental Protection Agency (EPA) Maximum Contamination Level (MCL). A highly significant difference was observed in the conduction latency means of the BR components (p less than .0001), when the study population was compared with laboratory controls (N = 27). This difference suggests a subclinical alteration of the Vth cranial nerve function due to chronic, environmental exposure to TCE.

  18. The role of testosterone in trichloroethylene penetration in vitro

    SciTech Connect

    McCormick, K.; Abdel-Rahman, M.S. )

    1991-02-01

    Sex differences are known to exist in the metabolism and bioavailability of trichloroethylene (TCE). This study revealed that dermal penetration of ({sup 14}C)TCE in vitro was twofold greater in untreated female than in untreated male Sprague-Dawley rats. Since testosterone has been shown to mediate a wide variety of sex differences, its role in dermal penetration of ({sup 14}C)TCE was investigated. Penetration was measured by using an in vitro evaporation-penetration cell with a 10-hour collection period. Depriving male rats of testosterone (by castration) resulted in increased values for total penetration, area under the curve (AUC), and penetration slopes compared to those found in the female control group. Administration of testosterone to female animals produced values for total penetration, AUC, and penetration slopes significantly lower than those of the female control group.

  19. Fate and transport of trichloroethane and trichloroethylene contaminated groundwater, building 719, Dover Air Force Base, Delaware

    SciTech Connect

    Melchiorre, K.J.

    1996-08-01

    Trichloroethane and trichloroethylene are common chlorinated aliphatic industrial organic solvents used in degreasing operations. Both are typically found in groundwater environments as a result of leaking underground storage tanks, leachate from landfills, and contaminant migration from hazardous waste dump sites. Transformation by-products are also found in association with trichloroethane and trichloroethylene without any known source other than from reductive dechlorination. Dechlorinated by-products include 1,1-dichloroethane; cis and trans 1,2-dichloroethylene, 1,1-dichloroethylene, chloroethane, and vinyl chloride. Trichloroethane and trichloroethylene and their transformation by-products are suspected human health hazards. Vinyl chloride is a known human carcinogen, while trichloroethylene is considered a probable human carcinogen, and 1,1-dichloroethylene and 1,1-dichloroethane possible human carcinogens.

  20. PHASE-TRANSFER-CATALYST APPLIED TO THE OXIDATION OF TRICHLOROETHYLENE BY POTASSIUM PERMANGANATE

    EPA Science Inventory

    Chlorinated ethylenes such as trichloroethylene (TCE) and perchloroethylene (PCE) are common contaminants (Plumb 1991; Westrick et al., 1984). They opccur in the subsurface as zones of residual saturation or occasionally as free products. Because of their inherently low solubil...

  1. PHENOL AND TRICHLOROETHYLENE DEGRADATION BY PSEUDOMONAS CEPACIA STRAIN G4: KINETICS AND INTERACTIONS BETWEEN COMETABOLITES

    EPA Science Inventory

    Intact cells of pseudomonas cepacia strain G4 completely degraded trichloroethylene (TCE) following growth with phenol. egradation kinetics were determined for both phenol, used to induce requisite enzymes, and TCE, the target substrate. pparent Ks and Vmax values for degradation...

  2. 78 FR 67372 - Evaluation of Trichloroethylene for the Report on Carcinogens; Request for Nominations of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-12

    ...Trichloroethylene for the Report on Carcinogens; Request for Nominations of Scientific...Program (NTP) Office of the Report on Carcinogens (ORoC) requests nominations of speakers...substance under evaluation for the Report on Carcinogens (RoC)...

  3. PHYSIOLOGICALLY BASED PHARMACOKINEITC (PBPK) MODELING OF METABOLIC INHIBITION FOR INTERACTION BETWEEN TRICHLOROETHYLENE AND CHLOROFORM

    EPA Science Inventory

    Trichloroethylene (TCE) and chloroform (CHCl3) are two of the most common environmental contaminants found in water. PBPK models have been increasingly used to predict target dose in internal tissues from available environmental exposure concentrations. A closed inhalation (or g...

  4. Health Assessment Document for Trichloroethylene Synthesis and Characterization (2001, External Review Draft)

    EPA Science Inventory

    This assessment presents EPA's most current evaluation of the potential health risks from exposure to trichloroethylene (TCE). TCE exposure is associated with several adverse health effects, including neurotoxicity, immunotoxicity, developmental toxicity, liver toxicity, kidney t...

  5. MODELING THE ELECTROLYTIC DECHLORINATION OF TRICHLOROETHYLENE IN A GRANULAR GRAPHITE-PACKED REACTOR

    EPA Science Inventory

    A comprehensive reactor model was developed for the electrolytic dechlorination of trichloroethylene (TCE) at a granular-graphite cathode. The reactor model describes the dynamic processes of TCE dechlorination and adsorption, and the formation and dechlorination of all the major...

  6. EFFECTS OF REACTION PARAMETERS ON ELECTROCHEMICAL DECHLORINATION OF TRICHLOROETHYLENE RATE AND BY-PRODUCTS

    EPA Science Inventory

    Trichloroethylene (TCE) was electrochemically dechlorinated in aqueous environments using granular graphite cathode in a mixed reactor. Effects of pH, current, electrolyte type, and flow rate on TCE dechlorination rate were evaluated. TCE dechlorination rate constant and gas prod...

  7. EFFECTS OF REACTOR CONDITIONS ON ELECTROCHEMICAL DECHLORINATION OF TRICHLOROETHYLENE USING GRANULAR-GRAPHITE ELECTRODE.

    EPA Science Inventory

    Trichloroethylene (TCE) was electrochemically dechlorinated in aqueous environments using granular graphite cathode in a mixed reactor. Effects of pH, current, electrolyte type, and flow rate on TCE dechlorination rate were evaluated. TCE dechlorination rate constant and gas pr...

  8. EFFECTS OF REACTOR CONDITIONS ON ELECTROCHEMICAL DECHLORINATION OF TRICHLOROETHYLENE USING GRANULAR-GRAPHITE ELECTRODE

    EPA Science Inventory

    Trichloroethylene (TCE) was electrochemically dechlorinated in aqueous environments using granular graphite cathode in a mixed reactor. Effects of pH, current, electrolyte type, and flow rate on TCE dechlorination rate were evaluated. TCE dechlorination rate constant and gas pr...

  9. ELECTROCHEMICAL DECHLORINATION OF TRICHLOROETHYLENE USING GRANULAR-GRAPHITE ELECTRODES: IDENTIFICATION AND QUANTIFICATION OF DECHLORINATION PRODUCTS

    EPA Science Inventory

    Electrochemical degradation (ECD) utilizes high redox potential at the anode and low redox potential at the cathode to oxidize and/or reduce organic and inorganic contaminants. ECD of Trichloroethylene (TCE), although theoretically possible, has not been experimentally proven. Th...

  10. Effects of dynamic redox zonation on the potential for natural attenuation of trichloroethylene at a fire-training-impacted aquifer

    USGS Publications Warehouse

    Skubal, K.L.; Haack, S.K.; Forney, L.J.; Adriaens, P.

    1999-01-01

    Hydrogeochemical and microbiological methods were used to characterize temporal changes along a transect of an aquifer contaminated by mixed hydrocarbon and solvent wastes from fire training activities at Wurtsmith Air Force Base (Oscoda, MI). Predominant terminal electron accepting processes (TEAPs) as measured by dissolved hydrogen indicated reoxygenation along the transect between October 1995 and October 1996, possibly because of recharge, fluctuations in water table elevation, or microbial activity. Microbiological analyses using universal and archaeal probes revealed a relationship between groundwater hydrogen concentration, TEAP, and predominant bacterial phylogeny. Specifically, a raised water table level and evidence of methanogenesis corresponded to an order of magnitude increase in archaeal 16S rRNA relative to when this zone was unsaturated. Spatial microbial and geochemical dynamics did not result in measurable differences in trichloroethylene (TCE) mineralization potential in vadose, capillary fringe, and saturated zone soils during a 500-day microcosm experiment using unprocessed contaminated soil and groundwater. Aerobic systems indicated that methane, but not toluene, may serve as cosubstrate for TCE cometabolism. Anaerobic microcosms demonstrated evidence for methanogenesis, CO2 production and hydrogen consumption, yet dechlorination activity was only observed in a microcosm with sulfate-reduction as the dominant TEAP. Mass balance calculations indicated less than 5% mineralization, regardless of redox zone or degree of saturation, at maximum rates of 0.01-0.03 ??mol/g soil??d. The general lack of dechlorination activity under laboratory conditions corroborates the limited evidence for natural dechlorination at this site, despite abundant electron donor material and accumulated organic acids from microbial degradation of alkylbenzenes. Thus, the short-term temporal dynamics in redox conditions is unlikely to have measurable effects on the long-term natural remediation potential of the aquifer.

  11. Electronic and Photoelectron Spectroscopy of Toluene

    NASA Astrophysics Data System (ADS)

    Gardner, Adrian M.; Green, Alistair M.; Tame-Reyes, Victor; Wright, Timothy G.

    2012-06-01

    Electronic and photoelectron spectra of toluene are presented and discussed. The utilization of a recently reported scheme for assigning the normal vibrations of substituted benzenes allows these spectra to be compared to those of other molecules with unprecedented clarity. Changes in vibrational activity within a series of substituted benzene molecules will be discussed, specifically the increased rate of intramolecular vibrational energy redistribution observed in molecules where the substituent is a methyl group. A. M. Gardner and T. G. Wright, J. Chem. Phys., 135, 114305 (2011)

  12. Physiologically-based pharmacokinetic (PBPK) modeling of two binary mixtures: metabolic activation of carbon tetrachloride by trichloroethylene and metabolic inhibition of chloroform by trichloroethylene.

    EPA Science Inventory

    The interaction between trichloroethylene (TCE) and chloroform (CHCI3) has been described as less than additive, with co-exposure to TCE and CHC13 resulting in less hepatic and renal toxicity than observed with CHCl3 alone. In contrast, the nonadditive interaction between TCE and...

  13. CONCENTRATION OF TETRACHLOROETHYLENE IN INDOOR AIR AT A FORMER DRY CLEANER FACILITY AS A FUNCTION OF SUBSURFACE CONTAMINATION: A CASE STUDY

    EPA Science Inventory

    A field study was performed to evaluate indoor air concentrations and vapor intrusion (VI) of tetrachloroethylene (PCE) and other chlorinated solvents at a commercial retail site in Dallas, TX. The building is approximately 40 years old and once housed a dry cleaning operation. R...

  14. Trichloroethylene cancer epidemiology: a consideration of select issues.

    PubMed

    Scott, Cheryl Siegel; Chiu, Weihsueh A

    2006-09-01

    A large body of epidemiologic evidence exists for exploring causal associations between cancer and trichloroethylene (TCE) exposure. The U.S. Environmental Protection Agency 2001 draft TCE health risk assessment concluded that epidemiologic studies, on the whole, support associations between TCE exposure and excess risk of kidney cancer, liver cancer, and lymphomas, and, to a lesser extent, cervical cancer and prostate cancer. As part of a mini-monograph on key issues in the health risk assessment of TCE, this article reviews recently published scientific literature examining cancer and TCE exposure and identifies four issues that are key to interpreting the larger body of epidemiologic evidence: a) relative sensitivity of cancer incidence and mortality data ; b) different classifications of lymphomas, including non-Hodgkin lymphoma ; c) differences in data and methods for assigning TCE exposure status ; and d) different methods employed for causal inferences, including statistical or meta-analysis approaches. The recent epidemiologic studies substantially expand the epidemiologic database, with seven new studies available on kidney cancer and somewhat fewer studies available that examine possible associations at other sites. Overall, recently published studies appear to provide further support for the kidney, liver, and lymphatic systems as targets of TCE toxicity, suggesting, as do previous studies, modestly elevated (typically 1.5-2.0) site-specific relative risks, given exposure conditions in these studies. However, a number of challenging issues need to be considered before drawing causal conclusions about TCE exposure and cancer from these data. PMID:16966107

  15. Optimization of electrochemical dechlorination of trichloroethylene in reducing electrolytes

    PubMed Central

    Mao, Xuhui; Ciblak, Ali; Baek, Kitae; Amiri, Mohammad; Loch-Caruso, Rita; Alshawabkeh, Akram N.

    2012-01-01

    Electrochemical dechlorination of trichloroethylene (TCE) in aqueous solution is investigated in a closed, liquid-recirculation system. The anodic reaction of cast iron generates ferrous species, creating a chemically reducing electrolyte (negative ORP value). The reduction of TCE on the cathode surface is enhanced under this reducing electrolyte because of the absence of electron competition. In the presence of the iron anode, the performances of different cathodes are compared in a recirculated electrolysis system. The copper foam shows superior capability for dechlorination of aqueous TCE. Electrolysis by cast iron anode and copper foam cathode is further optimized though a multivariable experimental design and analysis. The conductivity of the electrolyte is identified as an important factor for both final elimination efficiency (FEE) of TCE and specific energy consumption. The copper foam electrode exhibits high TCE elimination efficiency in a wide range of initial TCE concentration. Under coulostatic conditions, the optimal conditions to achieve the highest FEE are 9.525 mm thick copper foam electrode, 40 mA current and 0.042 mol L?1 Na2SO4. This novel electrolysis system is proposed to remediate groundwater contaminated by chlorinated organic solvents, or as an improved iron electrocoagulation process capable of treating the wastewater co-contaminated with chlorinated compounds. PMID:22264798

  16. Trichloroethylene: Mechanistic, Epidemiologic and Other Supporting Evidence of Carcinogenic Hazard

    PubMed Central

    Rusyn, Ivan; Chiu, Weihsueh A.; Lash, Lawrence H.; Kromhout, Hans; Hansen, Johnni; Guyton, Kathryn Z.

    2013-01-01

    The chlorinated solvent trichloroethylene (TCE) is a ubiquitous environmental pollutant. The carcinogenic hazard of TCE was the subject of a 2012 evaluation by a Working Group of the International Agency for Research on Cancer (IARC). Information on exposures, relevant data from epidemiologic studies, bioassays in experimental animals, and toxicity and mechanism of action studies was used to conclude that TCE is carcinogenic to humans (Group 1). This article summarizes the key evidence forming the scientific bases for the IARC classification. Exposure to TCE from environmental sources (including from hazardous waste sites and contaminated water) is common throughout the world. While workplace use of TCE has been declining, occupational exposures remain of concern, especially in developing countries. Strongest human evidence is from studies of occupational TCE exposure and kidney cancer. Positive, although less consistent, associations were reported for liver cancer and non-Hodgkin's lymphoma. TCE is carcinogenic at multiple sites in multiple species and strains of experimental animals. The mechanistic evidence includes extensive data on the toxicokinetics and genotoxicity of TCE and its metabolites. Together, available evidence provided a cohesive database supporting the human cancer hazard of TCE, particularly in the kidney. For other target sites of carcinogenicity, mechanistic and other data were found to be more limited. Important sources of susceptibility to TCE toxicity and carcinogenicity were also reviewed by the Working Group. In all, consideration of the multiple evidence streams presented herein informed the IARC conclusions regarding the carcinogenicity of TCE. PMID:23973663

  17. Removal of trichloroethylene from waste gases via the peroxone process.

    PubMed

    Van Craeynest, K; Dewulf, J; Vandeburie, S; Van Langenhove, H

    2003-01-01

    In dealing with chlorinated organic compounds in waste gases, traditional treatment techniques show some severe shortcomings. Thermal oxidation may lead to the formation of dioxins, active carbon adsorption does not degrade the pollutants and biotechnological treatment is difficult since microorganisms do not always possess efficient degradation pathways for these compounds. These drawbacks explain the growing interest of the waste gas treatment sector for Advanced Oxidation Processes (AOPs) which were initially developed as water treatment techniques. AOPs generate highly reactive hydroxyl radicals that efficiently oxidise organic pollutants. In the peroxone process, this is done by a combination of ozone and hydrogen peroxide. In this work, the peroxone process is applied in an oxidative scrubber for the removal of trichloroethylene (TCE). Rapid oxidation of absorbed TCE in the liquid phase enhances TCE absorption Practically, a gas stream contaminated with TCE is mixed with an ozone loaded gas stream. The mixture is led through a bubble column that is fed with a buffered hydrogen peroxide solution. The effect of different process parameters (flow rates, buffer concentration, pH, hydrogen peroxide/ozone dosage ratio, TCE dosage) on TCE removal was investigated. Depending on the operating conditions, removal efficiencies up to 98% could be attained. PMID:14518856

  18. Interfacial Properties of a Hydrophobic Dye in the Tetrachloroethylene-Water-Glass Systems

    SciTech Connect

    Tuck, D.M.

    1999-02-23

    Interfacial effects play an important role in governing multiphase fluid behavior in porous media. Strongly hydrophobic organic dyes, used in many experimental studies to facilitate visual observation of the phase distributions, have generally been implicitly assumed to have no influence on the interfacial properties of the various phases in porous media. Sudan IV is the most commonly used dye for non-aqueous phase liquids (NAPLs) in laboratory experiments. It has also been used in at least one field experiment. The effects of this dye on the tetrachloroethylene (PCE)-water-glass system were investigated to test the assumption that the dye does not effect the interfacial properties and therefore PCE mobility. The results indicate that the dye does indeed change the interfacial relationships.The effect of the dye on the interfacial relationships is a complex function of the dye concentration, the solid phase composition, and the dynamic rate of new interface formation. The dye caused a slight (<10 percent) increase in interfacial tension at low concentrations (<0.1 g/L) and high rates of new interface formation. The dye reduced interfacial tension between PCE and water at low rates of new interface formation for all dye concentrations tested (0.00508 to 5.08 g/L). At the highest dye concentration, the PCE-water interfacial tension was significantly reduced regardless of the rate of new interface formation. The apparent interfacial tension increase at low dye concentrations is suspected to be an artifact of a low measured IFT value for the undyed PCE caused by leaching of rubber o-rings by the PCE prior to testing in the final drop-volume configuration.In addition to reducing interfacial tension, the dye was found to significantly alter the wetting relationship between PCE and water on a glass surface at and above the range of reported dye concentrations cited in the literature (1.1 to 1.7 g/L). The wetting relationship was rendered neutral from a water-wet initial condition at the highest dye concentration. The contact angle, measured through the aqueous phase, changed from 58 degrees for undyed PCE to 93 degrees at a dye concentration of 5.08 g/L. Complete reversal of the wettability is likely given the short equilibration time used in this study (approximately five minutes) together with literature indications that hundreds to thousands of hours may be required to reach equilibrium during contact angle measurements. Observations suggesting changing wetting relationships were also noted between PCE, water, and the platinum-iridium surface used in the standard du No/374y ring method for measuring interfacial tension.Observations of the dyed-PCE-water interface behavior during du No/374y ring interfacial tension measurements were similar to observations noted previously during measurements of the interfacial tension between the Savannah River Site (SRS) M-Area Settling Basin DNAPL (M-Area DNAPL) and water. This observation suggests that the M-Area DNAPL may contain surface active components. If this proves to be the case, it would have significant implications for how the M-Area DNAPL is distributed and moves in the SRS subsurface.

  19. 40 CFR 721.10610 - Toluene diisocyanate, polymers with polyalkylene glycol (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...2013-07-01 false Toluene diisocyanate, polymers with polyalkylene glycol (generic...721.10610 Toluene diisocyanate, polymers with polyalkylene glycol (generic...generically as toluene diisocyanate, polymers with polyalkylene glycol (PMNs...

  20. Saturation mutagenesis of Bradyrhizobium sp. BTAi1 toluene 4-monooxygenase at alpha-subunit residues proline 101, proline 103, and histidine 214 for regiospecific oxidation of aromatics.

    PubMed

    Yan?k-Y?ld?r?m, K Cansu; Vardar-Schara, Gönül

    2014-11-01

    A novel toluene monooxygenase (TMO) six-gene cluster from Bradyrhizobium sp. BTAi1 having an overall 35, 36, and 38 % protein similarity with toluene o-xylene monooxygenase (ToMO) of Pseudomonas sp. OX1, toluene 4-monooxygenase (T4MO) of Pseudomonas mendocina KR1, and toluene-para-monooxygenase (TpMO) of Ralstonia pickettii PKO1, respectively, was cloned and expressed in Escherichia coli TG1, and its potential activity was investigated for aromatic hydroxylation and trichloroethylene (TCE) degradation. The natural substrate toluene was hydroxylated to p-cresol, indicating that the new toluene monooxygenase (T4MO·BTAi1) acts as a para hydroxylating enzyme, similar to T4MO and TpMO. Some shifts in regiospecific hydroxylations were observed compared to the other wild-type TMOs. For example, wild-type T4MO·BTAi1 formed catechol (88 %) and hydroquinone (12 %) from phenol, whereas all the other wild-type TMOs were reported to form only catechol. Furthermore, it was discovered that TG1 cells expressing wild-type T4MO·BTAi1 mineralized TCE at a rate of 0.67 ± 0.10 nmol Cl(-)/h/mg protein. Saturation and site directed mutagenesis were used to generate eight variants of T4MO·BTAi1 at alpha-subunit positions P101, P103, and H214: P101T/P103A, P101S, P101N/P103T, P101V, P103T, P101V/P103T, H214G, and H214G/D278N; by testing the substrates phenol, nitrobenzene, and naphthalene, positions P101 and P103 were found to influence the regiospecific oxidation of aromatics. For example, compared to wild type, variant P103T produced four fold more m-nitrophenol from nitrobenzene as well as produced mainly resorcinol (60 %) from phenol whereas wild-type T4MO·BTAi1 did not. Similarly, variants P101T/P103A and P101S synthesized more 2-naphthol and 2.3-fold and 1.6-fold less 1-naphthol from naphthalene, respectively. PMID:25016343

  1. CARDIOVASCULAR AND THERMOREGULATORY RESPONSE TO ORAL TOLUENE IN THE RAT.

    EPA Science Inventory

    Toluene and other volatile organic compounds have often been shown to affect behavior in animals when given by inhalation, and less effective when given orally. Previous work showed that toluene increased heart rate (HR) and motor activity (MA), and reduced core temperature (Tc) ...

  2. TOLUENE EXPERIMENTAL EXPOSURES IN HUMANS: PHARMACOKINETICS AND BEHAVIOR

    EPA Science Inventory

    Toluene Experimental Exposures in Humans:
    Pharmacokinetics and Behavioral Effects
    (Ongoing Research)

    Vernon A. Benignus1, Philip J. Bushnell2 and William K. Boyes2

    Human subjects will be exposed to 250 and 500 ppm toluene for one hour in the Human St...

  3. Protein Engineering of Toluene 4-Monooxygenase of Pseudomonas

    E-print Network

    Wood, Thomas K.

    at 200 AM nitrobenzene (0.13 F 0.01 vs. 0.008 F 0.001 nmol/minÁmg protein). HPLC and mass spectrometryProtein Engineering of Toluene 4-Monooxygenase of Pseudomonas mendocina KR1 for Synthesizing 4 Abstract: After discovering that toluene 4-monooxygen- ase (T4MO) of Pseudomonas mendocina KR1 oxidizes

  4. Copper Enhanced Monooxygenase Activity and FT-IR Spectroscopic Characterisation of Biotransformation Products in Trichloroethylene Degrading Bacterium: Stenotrophomonas maltophilia PM102

    PubMed Central

    Mukherjee, Piyali; Roy, Pranab

    2013-01-01

    Stenotrophomonas maltophilia PM102 (NCBI GenBank Acc. no. JQ797560) is capable of growth on trichloroethylene as the sole carbon source. In this paper, we report the purification and characterisation of oxygenase present in the PM102 isolate. Enzyme activity was found to be induced 10.3-fold in presence of 0.7?mM copper with a further increment to 14.96-fold in presence of 0.05?mM NADH. Optimum temperature for oxygenase activity was recorded at 36°C. The reported enzyme was found to have enhanced activity at pH 5 and pH 8, indicating presence of two isoforms. Maximum activity was seen on incubation with benzene compared to other substrates like TCE, chloroform, toluene, hexane, and petroleum benzene. Km and Vmax for benzene were 3.8?mM and 340?U/mg/min and those for TCE were 2.1?mM and 170?U/mg/min. The crude enzyme was partially purified by ammonium sulphate precipitation followed by dialysis. Zymogram analysis revealed two isoforms in the 70% purified enzyme fraction. The activity stain was more prominent when the native gel was incubated in benzene as substrate in comparison to TCE. Crude enzyme and purified enzyme fractions were assayed for TCE degradation by the Fujiwara test. TCE biotransformation products were analysed by FT-IR spectroscopy. PMID:24083236

  5. Impact of iron sulfide transformation on trichloroethylene degradation

    NASA Astrophysics Data System (ADS)

    He, Y. Thomas; Wilson, John T.; Wilkin, Richard T.

    2010-04-01

    Trichloroethylene (TCE) is one of the most common and persistent groundwater contaminants encountered at hazardous waste sites around the world. A growing body of evidence indicates that iron sulfides play an important role in degrading TCE in natural environments and in engineered systems designed for groundwater cleanup. In this study, we investigate transformation processes of iron sulfides and consequent impacts on TCE degradation using batch experimental techniques, transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray absorption spectroscopy (XAS). Our results show that mackinawite is highly reactive toward TCE and no detectable mineralogical changes were detected during the course of reaction. However, freeze-dried FeS transformed to a mixture of mackinawite and greigite during the freeze drying process, with further mineralogical changes during reaction with TCE to lepidocrocite, goethite and pyrite. Newly formed lepidocrocite is a transient phase, with conversion to goethite over time. TCE transformation kinetics show that freeze-dried FeS is 20-50 times less reactive in degrading TCE than non-freeze-dried FeS, and the TCE degradation rate increases with pH (from 5.4 to 8.3), possibly due to an increase of surface deprotonation or electron transfer at higher pH. Results suggest that freeze drying could cause FeS particle aggregation, decreased surface area and availability of reactive sites; it also could change FeS mineralogy and accelerate mineral transformation. These aspects could contribute to the lower reactivity of freeze-dried FeS toward TCE degradation. Modeling results show that FeS transformation in natural environments depends on specific biogeochemical conditions, and natural FeS transformation may affect mineral reactivity in a similar way as compared to the freeze drying process. Rapid transformation of FeS to FeS 2 could significantly slow down TCE degradation in both natural and engineered systems.

  6. Relationship between vapor intrusion and human exposure to trichloroethylene.

    PubMed

    Archer, Natalie P; Bradford, Carrie M; Villanacci, John F; Crain, Neil E; Corsi, Richard L; Chambers, David M; Burk, Tonia; Blount, Benjamin C

    2015-11-10

    Trichloroethylene (TCE) in groundwater has the potential to volatilize through soil into indoor air where it can be inhaled. The purpose of this study was to determine whether individuals living above TCE-contaminated groundwater are exposed to TCE through vapor intrusion. We examined associations between TCE concentrations in various environmental media and TCE concentrations in residents. For this assessment, indoor air, outdoor air, soil gas, and tap water samples were collected in and around 36 randomly selected homes; blood samples were collected from 63 residents of these homes. Additionally, a completed exposure survey was collected from each participant. Environmental and blood samples were analyzed for TCE. Mixed model multiple linear regression analyses were performed to determine associations between TCE in residents' blood and TCE in indoor air, outdoor air, and soil gas. Blood TCE concentrations were above the limit of quantitation (LOQ; ? 0.012 µg L(-1)) in 17.5% of the blood samples. Of the 36 homes, 54.3%, 47.2%, and >84% had detectable concentrations of TCE in indoor air, outdoor air, and soil gas, respectively. Both indoor air and soil gas concentrations were statistically significantly positively associated with participants' blood concentrations (P = 0.0002 and P = 0.04, respectively). Geometric mean blood concentrations of residents from homes with indoor air concentrations of >1.6 µg m(-3) were approximately 50 times higher than geometric mean blood TCE concentrations in participants from homes with no detectable TCE in indoor air (P < .0001; 95% CI 10.4-236.4). This study confirms the occurrence of vapor intrusion and demonstrates the magnitude of exposure from vapor intrusion of TCE in a residential setting. PMID:26259926

  7. Impact of iron sulfide transformation on trichloroethylene degradation

    SciTech Connect

    He, Y. Thomas; Wilson, John T.; Wilkin, Richard T.

    2010-05-04

    Trichloroethylene (TCE) is one of the most common and persistent groundwater contaminants encountered at hazardous waste sites around the world. A growing body of evidence indicates that iron sulfides play an important role in degrading TCE in natural environments and in engineered systems designed for groundwater cleanup. In this study, we investigate transformation processes of iron sulfides and consequent impacts on TCE degradation using batch experimental techniques, transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray absorption spectroscopy (XAS). Our results show that mackinawite is highly reactive toward TCE and no detectable mineralogical changes were detected during the course of reaction. However, freeze-dried FeS transformed to a mixture of mackinawite and greigite during the freeze drying process, with further mineralogical changes during reaction with TCE to lepidocrocite, goethite and pyrite. Newly formed lepidocrocite is a transient phase, with conversion to goethite over time. TCE transformation kinetics show that freeze-dried FeS is 20-50 times less reactive in degrading TCE than non-freeze-dried FeS, and the TCE degradation rate increases with pH (from 5.4 to 8.3), possibly due to an increase of surface deprotonation or electron transfer at higher pH. Results suggest that freeze drying could cause FeS particle aggregation, decreased surface area and availability of reactive sites; it also could change FeS mineralogy and accelerate mineral transformation. These aspects could contribute to the lower reactivity of freeze-dried FeS toward TCE degradation. Modeling results show that FeS transformation in natural environments depends on specific biogeochemical conditions, and natural FeS transformation may affect mineral reactivity in a similar way as compared to the freeze drying process. Rapid transformation of FeS to FeS{sub 2} could significantly slow down TCE degradation in both natural and engineered systems.

  8. Enhanced reductive dechlorination of trichloroethylene by sulfidated nanoscale zerovalent iron.

    PubMed

    Rajajayavel, Sai Rajasekar C; Ghoshal, Subhasis

    2015-07-01

    Direct injection of reactive nanoscale zerovalent iron particles (NZVI) is considered to be a promising approach for remediation of aquifers contaminated by chlorinated organic pollutants. In this study we show that the extent of sulfidation of NZVI enhances the rate of dechlorination of trichloroethylene (TCE) compared to that by unamended NZVI, and the enhancement depends on the Fe/S molar ratio. Experiments where TCE was reacted with NZVI sulfidated to different extents (Fe/S molar ratios 0.62-66) showed that the surface-area normalized first-order TCE degradation rate constant increased up to 40 folds compared to non-sulfidated NZVI. Fe/S ratios in the range of 12-25 provided the highest TCE dechlorination rates, and rates decreased at both higher and lower Fe/S. In contrast, sulfidated NZVI exposed to water in the absence of TCE showed significantly lower hydrogen evolution rate (2.75 ?mol L(-1) h(-1)) compared to that by an unamended NZVI (6.92 ?mol L(-1) h(-1)), indicating that sulfidation of NZVI suppressed corrosion reactions with water. Sulfide (HS(-)) ions reacted rapidly with NZVI and X-ray photoelectron spectroscopy analyses showed formation of a surface layer of FeS and FeS2. We propose that more electrons are preferentially conducted from sulfidated NZVI than from unamended NZVI to TCE, likely because of greater binding of TCE on the reactive sites of the iron sulfide outer layer. Resuspending sulfidated NZVI in sulfide-free or sulfide containing solutions altered the TCE degradation rate constants because of changes in the FeS layer thickness. Sulfidated NZVI maintained its high reactivity in the presence of multiple mono and divalent ions and with polyelectrolyte coatings. Thus, sulfide ions in groundwater can significantly alter NZVI reactivity. PMID:25935369

  9. Natural attenuation of trichloroethylene in fractured shale bedrock

    NASA Astrophysics Data System (ADS)

    Lenczewski, M.; Jardine, P.; McKay, L.; Layton, A.

    2003-07-01

    This paper describes one of the first well-documented field examples of natural attenuation of trichloroethylene (TCE) in groundwater in a fractured shale bedrock. The study was carried out adjacent to a former waste burial site in Waste Area Grouping 5 (WAG5) on the Oak Ridge Reservation, Oak Ridge, TN. A contaminant plume containing TCE and its daughter products were detected downgradient from the buried waste pits, with most of the contamination occurring in the upper 6 m of the bedrock. The monitoring well array consists of a 35-m-long transect of multilevel sampling wells, situated along a line between the waste pits and a seep which discharges into a small stream. Concentrations of volatile organic carbons (VOCs) were highest in the waste trenches and decreased with distance downgradient towards the seep. Sampling wells indicated the presence of overlapping plumes of TCE, cis-dichloroethylene (cDCE), vinyl chloride (VC), ethylene, ethane, and methane, with the daughter products extending further downgradient than the parent (TCE). This type of distribution suggests anaerobic biodegradation. Measurements of redox potential at the site indicated that iron-reduction, sulfate reduction, and potentially methanogensis were occurring and are conducive to dechlorination of TCE. Bacteria enrichment of groundwater samples revealed the presence of methanotrophs, methanogens, iron-reducing bacteria and sulfate-reducing bacteria, all of which have previously been implicated in anaerobic biodegradation of TCE. 16S rDNA sequence from DNA extracted from two wells were similar to sequences of organisms previously implicated in the anaerobic biodegradation of chlorinated solvents. The combined data strongly suggest that anaerobic biodegradation of the highly chlorinated compounds is occurring. Aerobic biodegradation may also be occurring in oxygenated zones, including near a seep where groundwater exits the site, or in the upper bedrock during seasonal fluctuations in water table elevation and oxygen levels.

  10. Degradation of trichloroethylene using iron, bimetals and trimetals.

    PubMed

    Chao, Keh-Ping; Ong, Say Kee; Fryzek, Todd; Yuan, Wanchun; Braida, Washington

    2012-01-01

    A cold, electrodeless method was used to prepare bimetals (Fe/Cu, Fe/Ni) and trimetals (Fe/Cu/Ni) for the treatment of trichloroethylene (TCE). With Fe/Cu, the degradation of TCE was observed to increase with increasing copper content up to 9.26 % (w/w) with a first-order degradation rate constant approximately 10 times faster than that of zero-valent iron (ZVI) alone. For copper content greater than 9.26 %, the TCE degradation rate decreased. Dechlorinated compounds were initially observed but they were transitory and accounted for no more than 9 % of initial TCE mass on a carbon molar basis. Ethylene was the primary end product of TCE reduction. Similarly for Fe/Ni, increasing rates of degradation were observed with increasing amounts of nickel with a maximum degradation rate constant of about 30 times higher than that of ZVI alone. However, the amount of nickel needed to reach the maximum rate was only 0.25 %. When copper and nickel were plated onto iron, the maximum reaction rate constant was approximately 50 times higher than that of ZVI. The maximum degradation of TCE was observed for a copper and nickel content of 4.17 % and 0.40 %, respectively. The experimental results indicated that TCE degradation was enhanced by more than one order of magnitude when copper and/or nickel was plated onto the zero-valent iron. However, copper or nickel plated onto iron by the elctrodeless process was found to leach out during the reaction which may, in turn, impact the contaminated water. PMID:22702813

  11. Photocatalytic oxidation of toluene to benzaldehyde by molecular oxygen

    SciTech Connect

    Mao, Y.; Bakac, A.

    1996-03-07

    The visible light irradiation of aqueous solutions containing toluene, uranyl(VI) ions, and O{sub 2} results in the formation of benzaldehyde as a major product. Small amounts of PhCH{sub 2}OH are also formed. The yields of benzaldehyde are 3 times greater for toluene-h{sub 8} than for toluene-d{sub 8}, but the kinetic isotope effect for the quenching of the excited state {sup *}UO{sub 2}{sup 2+} by toluene is negligible (k{sub toluene-h(8)}/k{sub toluene-d(8)}=1.2). This and other evidence indicate that the quenching takes place in two parallel pathways. The major one involves the aromatic portion of tolune and leads to the recovery of the reactants. The minor, productive path takes place by hydrogen atom abstraction from the methyl group, followed by the oxidation of PhCH{sub 2}{sup {center_dot}}. Cumene, benzyl alcohol, and benzaldehyde react similarly. 31 refs., 5 figs., 1 tab.

  12. Detailed mechanism of toluene oxidation and comparison with benzene

    NASA Technical Reports Server (NTRS)

    Bittker, David A.

    1988-01-01

    A detailed mechanism for the oxidation of toluene in both argon and nitrogen dilutents is presented. The mechanism was used to compute experimentally ignition delay times for shock-heated toluene-oxygen-argon mixtures with resonably good success over a wide range of initial temperatures and pressures. Attempts to compute experimentally measured concentration profiles for toluene oxidation in a turbulent reactor were partially successful. An extensive sensitivity analysis was performed to determine the reactions which control the ignition process and the rates of formation and destruction of various species. The most important step was found to be the reaction of toluene with molecular oxygen, followed by the reactions of hydroperoxyl and atomic oxygen with benzyl radicals. These findings contrast with the benzene oxidation, where the benzene-molecular oxygen reaction is quite unimportant and the reaction of phenyl with molecular oxygen dominates. In the toluene mechanism the corresponding reaction of benzyl radicals with oxygen is unimportant. Two reactions which are important in the oxidation of benzene also influence the oxidation of toluene for several conditions. These are the oxidations of phenyl and cyclopentadienyl radicals by molecular oxygen. The mechanism presented successfully computes the decrease of toluene concentration with time in the nitrogen diluted turbulent reactor. This fact, in addition to the good prediction of ignition delay times, shows that this mechanism can be used for modeling the ignition and combustion process in practical, well-mixed combustion systems.

  13. Benzene/toluene/p-xylene degradation. Part I. Solvent selection and toluene degradation in a two-phase partitioning bioreactor.

    PubMed

    Collins, L D; Daugulis, A J

    1999-09-01

    A two-phase organic/aqueous reactor configuration was developed for use in the biodegradation of benzene, toluene and p-xylene, and tested with toluene. An immiscible organic phase was systematically selected on the basis of predicted and experimentally determined properties, such as high boiling points, low solubilities in the aqueous phase, good phase stability, biocompatibility, and good predicted partition coefficients for benzene, toluene and p-xylene. An industrial grade of oleyl alcohol was ultimately selected for use in the two-phase partitioning bioreactor. In order to examine the behavior of the system, a single-component fermentation of toluene was conducted with Pseudomonas sp. ATCC 55595. A 0.5-1 sample of Adol 85 NF was loaded with 10.4 g toluene, which partitioned into the cell containing 1 l aqueous medium at a concentration of approximately 50 mg/l. In consuming the toluene to completion, the organisms were able to achieve a volumetric degradation rate of 0.115 g l-1 h-1. This system is self-regulating with respect to toluene delivery to the aqueous phase, and requires only feedback control of temperature and pH. PMID:10531648

  14. Trichloroethylene effects on gene expression during cardiac development

    SciTech Connect

    Collier, John Michael; Selmin, Ornella; Johnson, Paula D.; Runyan, Raymond B.

    2003-05-09

    Background: Halogenated hydrocarbon exposure is associated with changes in gene expression in adult and embryonic tissue. The present study was undertaken to identify differentially expressed mRNA transcripts in embryonic hearts from Sprague-Dawley rats exposed to trichloroethylene (TCE) or potential bio-transformation products of TCE, Dichloroethylene (DCE) and Trichloroacetic acid (TCAA). Methods: cDNA subtractive hybridization was used to selectively amplify expressed mRNA in either control or day 11 embryonic rat hearts exposed to one of these halogenated hydrocarbons from day 0 to 11. The doses used were 1100 and 110 ppm (8300 and 830 mu M) TCE, 110 and 11 ppm (1100 and 110 mu M) DCE, 27.3 and 2.75 mg/ml (100 and 10 mM) TCAA. Control animals were given distilled drinking water throughout the period of experiments. Results: Sequencing of over 100 clones derived from halogenated hydrocarbon exposed groups=resulted in identification of numerous differentially regulate gene sequences. Up-regulated transcripts identified include genes associated with stress response (Hsp 70) and homeostasis (several ribosomal proteins). Down-regulated transcripts include extracellular matrix components (GPI-p137 and vimentin) and Ca2 + responsive proteins (Serca-2 Ca2+-ATPase and beta-catenin). Two possible markers for fetal TCE exposure were identified: Serca-2 and GPI-p137, a GPI-linked protein of unknown function. Both markers show a dose-related decrease in mRNA transcript levels associated with fetal exposure to TCE. Differential regulation of expression of both markers by TCE was confirmed by dot blot analysis and semi-quantitative RT-PCR. Levels of exposure between 100 and 250 ppb (0.76 and 1.9 mu M) TCE are sufficient to decrease expression of both the Ca2+-AT Pase and GPI-p137. Conclusion: Sequences down-regulated with TCE exposure appear to be those associated with cellular=housekeeping, cell adhesion and developmental processes, while TCE=exposure up-regulates expression of numerous stress response and homeostatic genes. Two potentially useful marker genes show a correlation between increasing levels of maternal TCE exposure and a decrease in marker transcript levels expressed at E11 in fetal rat heart tissue.

  15. Dioxinlike properties of a trichloroethylene combustion-generated aerosol.

    PubMed Central

    Villalobos, S A; Anderson, M J; Denison, M S; Hinton, D E; Tullis, K; Kennedy, I M; Jones, A D; Chang, D P; Yang, G; Kelly, P

    1996-01-01

    Conventional chemical analyses of incineration by-products identify compounds of known toxicity but often fail to indicate the presence of other chemicals that may pose health risks. In a previous report, extracts from soot aerosols formed during incomplete combustion of trichloroethylene (TCE) and pyrolysis of plastics exhibited a dioxinlike response when subjected to a keratinocyte assay. To verify this dioxinlike effect, the complete extract, its polar and nonpolar fractions, some containing primarily halogenated aromatic hydrocarbons, were evaluated for toxicity using an embryo assay, for antiestrogenicity using primary liver cell cultures, and for the ability to transform the aryl hydrocarbon receptor into its DNA binding form using liver cytosol in a gel retardation assay. Each of these assays detect dioxinlike effects. Medaka (Oryzias latipes) embryos and primary liver cell cultures of rainbow trout (Oncorhynchus mykiss) were exposed to concentrations of extract ranging from 0.05 to 45 micrograms/l. Cardiotoxicity with pericardial, yolk sac, and adjacent peritoneal edema occurred after exposure of embryos to concentrations of 7 micrograms/l or greater. These same exposure levels were associated with abnormal embryo development and, at the higher concentrations, death. Some of the fractions were toxic but none was as toxic as the whole extract. In liver cells, total cellular protein and cellular lactate dehydrogenase activity were not altered by in vitro exposure to whole extract (0.05-25 micrograms/l). However, induction of cytochrome P4501A1 protein and ethoxyresorufin O-deethylase activity occurred. In the presence of whole extract, estradiol-dependent vitellogenin synthesis was reduced. Of the fractions, only fraction 1 (nonpolar) showed a similar trend, although vitellogenin synthesis inhibition was not significant. The soot extract and fractions bound to the Ah receptor and showed a significantly positive result in the gel retardation/DNA binding test. Chemical analyses using GC-MS with detection limits for 2,3,7,8-tetrachlorodibenzo-p-dioxin and dibenzofuran in the picomole range did not show presence of these compounds. Our results indicate that other chemicals associated with TCE combustion and not originally targeted for analysis may also pose health risks through dioxinlike mechanisms. Images Figure 1. Figure 2. Figure 3. A Figure 3. B Figure 4. A Figure 4. B Figure 4. C Figure 4. D Figure 5. Figure 6. Figure 7. PMID:8841759

  16. The Implication of Iron Oxide Nanoparticles on the Removal of Trichloroethylene by Adsorption

    EPA Science Inventory

    The fate and transport of Fe2O3 NPs in a granular activated carbon (GAC) adsorber and its impact on the removal of trichloroethylene (TCE) by GAC was investigated. The hydrodynamic diameter of Fe2O3 NPs was measured with time to evaluat...

  17. SPERMATID MICRONUCLEUS ANALYSES OF TRICHLOROETHYLENE AND CHLORAL HYDRATE EFFECTS IN MICE

    EPA Science Inventory

    Mice were exposed by inhalation to trichloroethylene (TCE), or by i.p. injection to the TCE metabolite, chloral hydrate (CH). arly spermatids were analyzed for micronucleus (MN) frequency and kinetochore status (presence or absence) using fluorochrome-labeled anti-kinetochore ant...

  18. Long-Term Capacity of Plant Mulch to Remediate Trichloroethylene in Groundwater

    EPA Science Inventory

    Passive reactive barriers are commonly used to treat groundwater that is contaminated with chlorinated solvents such as trichloroethylene (TCE). A number of passive reactive barriers have been constructed with plant mulch as the reactive medium. The TCE is removed in these barr...

  19. TRICHLOROETHYLENE SORPTION AND OXIDATION USING A DUAL FUNCTION SORBENT/CATALYST IN A FALLING FURNACE REACTOR

    EPA Science Inventory

    A dual function medium (Cr-ZSM-5), capable of physisorbing trichloroethylene (TCE) at ambient temperature and catalytically oxidizing it at elevated temperature (-350 degrees C) was utilized in a novel continuous falling furnace reactor system to store and periodically destroy t...

  20. EFFECTS OF TEMPERATURE ON TRICHLOROETHYLENE DESORPTION FROM SILICA GEL AND NATURAL SEDIMENTS. 2. KINETICS. (R822626)

    EPA Science Inventory

    Isothermal desorption rates were measured at 15, 30, and 60 src="/ncer/pubs/images/deg.gif">C for trichloroethylene (TCE) on a silica gel,
    an aquifer sediment, a soil, a sand fraction, and a clay and silt fraction, all
    at 100% relative humidity. Temperature-st...

  1. HARMONIZATION AND COMMUNICATION OF PBPK MODELS USING THE EXPOSURE RELATED DOSE MODEL (ERDEM) SYSTEM: TRICHLOROETHYLENE

    EPA Science Inventory

    In support of the trichloroethylene (TCE) risk assessment for the Office of Air and Radiation, Office of Solid Waste and Emergency Response, and Office of Water, NERL and NCEA are developing an updated physiologically-based pharmacokinetic (PBPK) model. The PBPK modeling effor...

  2. HARMONIZATION AND COMMUNICATION OF PBPK MODELS USING THE EXPOSURE RELATED DOSE ESTIMATION MODEL (ERDEM) SYSTEM: TRICHLOROETHYLENE

    EPA Science Inventory

    In support of the trichloroethylene (TCE) risk assessment for the Office of Air and Radiation, Office of Solid Waste and Emergency Response, and Office of Water, NERL and NCEA are developing an updated physiologically-based pharmacokinetic (PBPK) model. The PBPK modeling effort ...

  3. EFFECTS OF TRICHLOROETHYLENE AND ITS METABOLITES ON RODENT HEPATOCYTE INTERCELLULAR COMMUNICATION

    EPA Science Inventory

    Chronic exposure to trichloroethylene (TCE) results in hepatocellular cancer in mice but not rats. The induction of hepatic tumors by TCE appears to be mediated through nongenotoxic or tumor promotion mechanisms. One cellular effect exhibited by a number of nongentoxic carcinogen...

  4. EFFECTS OF TEMPERATURE ON TRICHLOROETHYLENE DESORPTION FROM SILICA GEL AND NATURAL SEDIMENTS. 1. ISOTHERMS. (R822626)

    EPA Science Inventory

    Aqueous phase isotherms were calculated from vapor phase desorption isotherms
    measured at 15, 30, and 60 C for
    trichloroethylene on a silica gel, an aquifer sediment, a soil, a sand fraction,
    and a clay and silt fraction, all at...

  5. DEGRADATION OF TRICHLOROETHYLENE UNDER HIGH-TEMPERATURE THERMAL SOURCE-ZONE REMOVAL CONDITIONS (ABSTRACT ONLY)

    EPA Science Inventory

    Trichloroethylene (TCE) is a contaminant commonly found in the subsurface at industrial and military installations in the United States. Oxidation of TCE (C2HCl3) to carbon dioxide (CO2) and chloride ions (Cl-) has been reported to occu...

  6. DEGRADATION OF TRICHLOROETHYLENE UNDER HIGH-TEMPERATURE THERMAL SOURCE-ZONE REMOVAL CONDITIONS (POSTER PRESENTATION)

    EPA Science Inventory

    Trichloroethylene (TCE) is a contaminant commonly found in the subsurface at industrial and military installations in the United States. Oxidation of TCE (C2HCl3) to carbon dioxide (CO2) and chloride ions (Cl-) has been reported to occu...

  7. Water Research 36 (2002) 49854996 Comparison of trichloroethylene reductive dehalogenation by

    E-print Network

    Semprini, Lewis

    2002-01-01

    Water Research 36 (2002) 4985­4996 Comparison of trichloroethylene reductive dehalogenation-term dechlorination of TCE to ethylene in Point Mugu microcosms, and in the LLNL microcosm bioaugmented dechlorination were as high as 14% based on the electrons used for dechlorination to the total electrons

  8. HUMAN ALPHA-7 NICOTINIC ACETYLCHOLINE RECEPTORS EXPRESSED IN XENOPUS OOCYTES ARE INHIBITED BY TRICHLOROETHYLENE.

    EPA Science Inventory

    Trichloroethylene (TCE) is a volatile organic solvent (VOC) that is used as a metal degreasing agent and in paints and glue. In addition to being a commonly abused inhalant, run-off from hazardous waste sites contain enough TCE and other VOCs to contaminate ground water and near...

  9. QUANTIFICATION OF PRODUCTS FROM ELECTROCHEMICAL DECHLORINATION OF TRICHLOROETHYLENE USING GRANULAR-GRAPHITE ELECTRODES

    EPA Science Inventory

    Electrochemical dechlorination of Trichloroethylene (TCE) in aqueous phase was studied using graphite as a cathode in a packed bed reactor in a closed system. TCE contaminated matrix solution was circulated through the electrochemical reactor where TCE was reduced at the graphite...

  10. TRICHLOROETHYLENE ADSORPTION BY ACTIVATED CARBON PRELOADED WITH HUMIC SUBSTANCES: EFFECTS OF SOLUTION CHEMISTRY. (R828157)

    EPA Science Inventory

    Abstract

    Trichloroethylene (TCE) adsorption by activated carbon previously loaded ("preloaded") with humic substances was found to decrease with increasing concentrations of monovalent ions (NaCl), calcium (until solubility was exceeded), or dissolved oxygen in...

  11. CATALYTIC STEAM REFORMING OF CHLOROCARBONS: TRICHLOROETHANE, TRICHLOROETHYLENE AND PERCHLOROETHYLENE. (R826694C633)

    EPA Science Inventory

    The effective destruction of trichloroethane, trichloroethylene and perchloroethylene by steam reforming with a commercial nickel catalyst has been demonstrated. Conversion levels of up to 0.99999 were attained in both laboratory and semi-pilot experiments, with the products c...

  12. MECHANISM INVOLVED IN TRICHLOROETHYLENE-INDUCED LIVER CANCER: IMPORTANCE TO ENVIRONMENTAL CLEANUP

    EPA Science Inventory

    Clean-up costs for chlorinated solvents found on DOE sites are most frequently driven by trichloroethylene (TCE). More permissive standards for TCE would reduce DOE's complex-wide clean up costs by several billions of dollars. EPA is currently reviewing its risk assessment for TC...

  13. INHIBITION OF HUMAN A7 NEURONAL NICOTINIC ACETYLCHOLINE RECEPTORS BY THE VOLATILE ORGANIC SOLVENT TRICHLOROETHYLENE.

    EPA Science Inventory

    Volatile organic compounds such as toleune, trichloroethylene and perchloroethylene are potent and reversible blockers of voltage-gated calcium current in nerve growth factor (NGF)-differentiated pheochromocytoma (PC12) cells. It is hypothesized that effects of VOCs on ICa contri...

  14. A SEARCH FOR RESIDUAL BEHAVIORAL EFFECTS OF TRICHLOROETHYLENE (TCE) IN RATS EXPOSED AS YOUNG ADULTS

    EPA Science Inventory

    Trichloroethylene (TCE) is a solvent of concern to the EPA due to its extensive use in industry, its prevalence in urban air, and its appearance in water supplies. Human clinical studies have associated short and long-termsolvent exposures with cognitive dysfunction including att...

  15. Transcutaneous penetration of toluene in rat skin a microdialysis study.

    PubMed

    Klede, Monika; Schmitz, Harald; Göen, Thomas; Fartasch, Manigé; Drexler, Hans; Schmelz, Martin

    2005-02-01

    Percutaneous absorption of lipophilic substances has major implications for therapeutical use or toxicological effects. We, therefore, using dermal microdialysis, measured local toluene concentrations and assessed the effects of duration of exposure, skin barrier disruption and the use of skin-care products. Three microdialysis membranes (3000 kDa) were inserted intradermally at a length of 2 cm in the abdominal skin of 82 anaesthetized male Wistar rats. They were perfused with albumin solution (5%) at 10 microl/min. A skin area of 1.5 x 0.6 cm above the membranes was exposed to toluene (100%, 200 microl) for 15 or 240 min. Dialysate was sampled at 20-min intervals. Using GC-FPD (gas charomotography flame photometric detector), it was analysed for toluene. In addition, the effects of tape stripping and pretreatment with topical products were assessed. In each of the 12 permutations of exposure time, pretreatments and tape stripping, five to eight animals were investigated. Maximum toluene concentrations were reached at 60 min after exposure (3.07 +/- 0.40 microg/ml, 15 min; 5.38 +/- 0.92 microg/ml, 240 min). In 15-min exposure experiments, dermal toluene concentrations decreased slowly to reach baseline values after 240 min. After 240-min exposure, a plateau of approximately 6 microg/ml was reached after 60 min. Neither tape stripping nor the pretreatment with barrier cream induced a significant change on dermal toluene concentrations. The slow kinetics of toluene penetration results in a steep concentration gradient in the skin with very-high local toluene concentrations and a delayed wash out, which might be relevant not only toxicologically, but also therapeutically. PMID:15679579

  16. Toluene diffusion and reaction in unsaturated Pseudomonas putida biofilms

    SciTech Connect

    Holden, P.A.; Hunt, J.R.; Firestone, M.K.

    1997-12-20

    Biofilms are frequently studied in the context of submerged or aquatic systems. However, much less is known about biofilms in unsaturated systems, despite their importance to such processes as food spoilage, terrestrial nutrient cycling, and biodegradation of environmental pollutants in soils. Using modeling and experimentation, the authors have described the biodegradation of toluene in unsaturated media by bacterial biofilms as a function of matric water potential, a dominant variable in unsaturated systems. They experimentally determined diffusion and kinetic parameters for Pseudomonas putida biofilms, then predicted biodegradation rates over a range of matric water potentials. For validation, the authors measured the rate of toluene depletion by intact biofilms and found the results to reasonably follow the model predictions. The diffusion coefficient for toluene through unsaturated P. putida biofilm averaged 1.3 {times} 10{sup {minus}7} cm{sup 2}/s, which is approximately two orders of magnitude lower than toluene diffusivity in water. Their studies show that, at the scale of the microbial biofilm, the diffusion of toluene to biodegrading bacteria can limit the overall rate of biological toluene depletion in unsaturated systems.

  17. Toluene Diffusion and Reaction in Unsaturated Pseudomonas putida Biofilms

    PubMed Central

    Holden, Patricia A.; Hunt, James R.; Firestone, Mary K.

    2010-01-01

    Biofilms are frequently studied in the context of submerged or aquatic systems. However, much less is known about biofilms in unsaturated systems, despite their importance to such processes as food spoilage, terrestrial nutrient cycling, and biodegradation of environmental pollutants in soils. Using modeling and experimentation, we have described the biodegradation of toluene in unsaturated media by bacterial biofilms as a function of matric water potential, a dominant variable in unsaturated systems. We experimentally determined diffusion and kinetic parameters for Pseudomonas putida biofilms, then predicted biodegradation rates over a range of matric water potentials. For validation, we measured the rate of toluene depletion by intact biofilms and found the results to reasonably follow the model predictions. The diffusion coefficient for toluene through unsaturated P. putida biofilm averaged 1.3 × 10?7 cm2/s, which is approximately two orders of magnitude lower than toluene diffusivity in water. Our studies show that, at the scale of the microbial biofilm, the diffusion of toluene to biodegrading bacteria can limit the overall rate of biological toluene depletion in unsaturated systems. PMID:18642338

  18. Evaluation of the Role of Peroxisome Proliferator-Activated Receptor ? (PPAR?) in Mouse Liver Tumor Induction by Trichloroethylene and Metabolites

    EPA Science Inventory

    Trichloroethylene (TCE) is an industrial solvent and a widespread environmental contaminant. Induction of liver cancer in mice by TCE is thought to be mediated by two metabolites, dichloroacetate (DCA) and trichloroacetate (TCA), both of which are themselves mouse liver carcinoge...

  19. INFLUENCES OF PH AND CURRENT ON ELECTROLYTIC DECHLORINATION OF TRICHLOROETHYLENE AT A GRANULAR-GRAPHITE PACKED ELECTRODE

    EPA Science Inventory

    Electrolytic dechlorination using a granular-graphite packed cathode is an alternative method for the remediation of chlorinated organic compounds. Its effectiveness under various conditions needs experimental investigation. Dechlorination of trichloroethylene (TCE) was conducted...

  20. The effect of low concentrations of tetrachloroethylene on H2 adsorption and activation on Pt in a fuel cell catalyst

    NASA Astrophysics Data System (ADS)

    Zhang, Jack Z.; Colón-Mercado, Héctor R.; Goodwin, James G.

    2011-10-01

    The poisoning effect of tetrachloroethylene (TTCE) on the activity of a Pt fuel cell catalyst for the adsorption and activation of H2 was investigated at 60 °C and 2 atm using hydrogen surface concentration measurements. The impurity was chosen as a model compound for chlorinated cleaning and degreasing agents that may be introduced into a fuel cell as a contaminant at a fueling station and/or during vehicle maintenance. In the presence of only H2, introduction of up to 540 ppm TTCE in H2 to Pt/C resulted in a reduction of available Pt surface atoms (measured by H2 uptake) by ca. 30%, which was not enough to shift the H2-D2 exchange reaction away from being equilibrium limited. Exposure of TTCE to Pt/C in a mixed redox environment (hydrogen + oxygen), similar to that at the cathode of a fuel cell, resulted in a much more significant loss of Pt surface atom availability, suggesting a role in TTCE decomposition and/or Cl poisoning. Regeneration of catalyst activity of poisoned Pt/C showed the highest level of recovery when regenerated in only H2, with much less recovery in H2 + O2 or O2. The results from this study are in good agreement with those found in a fuel cell study by Martínez-Rodríguez et al. [2] and confirm that the majority of the poisoning from TTCE on fuel cell performance is most likely at the cathode, rather than the anode.

  1. The use of in vitro metabolic parameters and physiologically based pharmacokinetic (PBPK) modeling to explore the risk assessment of trichloroethylene.

    PubMed

    Hissink, Erna M; Bogaards, Jan J P; Freidig, Andreas P; Commandeur, Jan N M; Vermeulen, Nico P E; van Bladeren, Peter J

    2002-07-01

    A physiologically based pharmacokinetic (PBPK) model has been developed for trichloroethylene (1,1,2-trichloroethene, TRI) for rat and humans, based on in vitro metabolic parameters. These were obtained using individual cytochrome P450 and glutathione S-transferase enzymes. The main enzymes involved both for rats and humans are CYP2E1 and the ?- and ?-class glutathione S-transferases. Validation experiments were performed in order to test the predictive value of the enzyme kinetic parameters to describe 'whole-body' disposition. Male Wistar rats were dosed orally or intravenously with different doses of trichloroethylene. Obtained exhaled radioactivity, excreted radioactivity in urine, and obtained blood concentration-time curves of trichloroethylene for all dosing groups were compared to predictions from the PBPK model. Subsequently, using the scaling factor derived from the rat experiments predictions were made for the extreme cases to be expected in humans, based on interindividual variations of the key enzymes involved. On comparing these predictions with literature data a very close match was found. This illustrates the potential application of in vitro metabolic parameters in risk assessment, through the use of PBPK modeling as a tool to understand and predict in vivo data. From a hypothetical 8 h exposure scenario to 35 ppm trichloroethylene in rats and humans, and assuming that the glutathione S-transferase pathway is responsible for the toxicity of trichloroethylene, it was concluded that humans are less sensitive for trichloroethylene toxicity than rats. PMID:21782610

  2. Smog Chamber Studies of Toluene Photooxidation By Ho Radicals

    NASA Astrophysics Data System (ADS)

    Barbu, A.; Bienenstock, Y.; Arias, M. C.; Collin, F.; Hastie, D. R.

    Two series of smog chamber experiments have been conducted to determine the par- ticulate yield from toluene photo oxidation and to investigate the dependence of the yield on experimental factors. Toluene was oxidized by HO radicals in the presence of NO by irradiating mixtures of toluene/isopropylnitrite/NO with UV light and experiments were done in the presence and absence of ammonium sulfate seed particles. Aerosol formation and growth was monitored using size distributions obtained from a Differential Mobility Analyzer and a Condensation Nucleus Counter. A Gas Chromatograph with an FID detector was used to monitor the toluene loss and a Chemiluminescence Analyzer measured the NO concentration. As expected the ozone concentration was found to be extremely low so the complicating ozone reactions are minimized. The experimental yields (the ratio between the organic aerosol mass formed and the mass of toluene reacted) were found to cluster around 10% but there were cases where the yields were as low as 1.7% and as high as 20%. The on-going work is focused on understanding the factors leading to the variability of experimental yields and on analyzing the data in the framework of the current gas/particle partitioning theory.

  3. Audition and exhibition to toluene - a contribution for the theme

    PubMed Central

    Augusto, Lívia Sanches Calvi; Kulay, Luiz Alexandre; Franco, Eloisa Sartori

    2012-01-01

    Summary Introduction:?With the technological advances and the changes in the productive processes, the workers are displayed the different physical and chemical agents in its labor environment. The toluene is solvent an organic gift in glues, inks, oils, amongst others. Objective:?To compare solvent the literary findings that evidence that diligent displayed simultaneously the noise and they have greater probability to develop an auditory loss of peripheral origin. Method:?Revision of literature regarding the occupational auditory loss in displayed workers the noise and toluene. Results:?The isolated exposition to the toluene also can unchain an alteration of the auditory thresholds. These audiometric findings, for ototoxicity the exposition to the toluene, present similar audiograms to the one for exposition to the noise, what it becomes difficult to differentiate a audiometric result of agreed exposition - noise and toluene - and exposition only to the noise. Conclusion:?The majority of the studies was projected to generate hypotheses and would have to be considered as preliminary steps of an additional research. Until today the agents in the environment of work and its effect they have been studied in isolated way and the limits of tolerance of these, do not consider the agreed expositions. Considering that the workers are displayed the multiples agent and that the auditory loss is irreversible, the implemented tests must be more complete and all the workers must be part of the program of auditory prevention exactly displayed the low doses of the recommended limit of exposition. PMID:25991943

  4. Immunotoxicological evaluation of toluene exposure via drinking water in mice

    SciTech Connect

    Hsieh, G.C.; Sharma, R.P.; Parker, R.D.R. )

    1989-06-01

    Toluene is a known contaminant found in trace amounts in groundwater. Male CD-1 mice were exposed to 0, 17, 80, and 405 mg/liter toluene in drinking water for 4 weeks. Immune function assays were selected to evaluate specific humoral and cell-mediated immunity, interleukin-2 (IL-2) activity, hematology, along with general toxicity. Toluene produced an increase in liver weight and decrease in thymus mass at the highest dose. No effects on body weights and hematological parameters, including erythrocytes, leukocytes, and their differentials were noticed. Mitogenesis by lipopolysaccharide, pokeweed mitogen, concanavalin A, and phytohemagglutinin were suppressed in splenocytes from treated mice. Splenocyte lymphoproliferation to alloantigens decreased at the 405 mg/liter concentration only. Numbers of sheep red blood cell (SRBC)-specific plaque-forming cells decreased in the highest dosed animals; however, no significant change was observed in the serum {alpha}-SRBC antibody level. Toluene also adversely affected IL-2 synthesis at the 405 mg/liter concentration. Findings suggest that alteration of immune functions of mice ingesting toluene was generally evident at relatively high doses, except for splenic lymphocyte responses to selected mitogens.

  5. Atmospheric pressure discharge plasma decomposition for gaseous air contaminants -- Trichlorotrifluoroethane and trichloroethylene

    SciTech Connect

    Oda, Tetsuji; Yamashita, Ryuichi; Takahashi, Tadashi; Masuda, Senichi

    1996-03-01

    The decomposition performance of gaseous environmental destructive contaminants in air by using atmospheric pressure discharged plasma including the surface discharge induced plasma chemical processing (SPCP) was examined. The main contaminants tested were chlorofluorocarbon (CFC-113) and trichloroethylene, typically. The discharge exciting frequency range studied was wide--50 Hz to 50 kHz. Results showed the low frequency discharge requires high voltage to inject high electric power in the gas and to decompose the contaminants. A Gas Chromatograph Mass Spectrometer was used to analyze discharge products of dense CFC-113 or trichloroethylene. Among the detected products were HCl, CClFO, and CHCl{sub 3}. Two different electrode configurations; the silent discharge (coaxial) electrode and the coil-electrode were also tested and compared to each other as a gas reactor.

  6. Exposure assessment to trichloroethylene and perchloroethylene for workers in the dry cleaning industry.

    PubMed

    Rastkari, Noushin; Yunesian, Masud; Ahmadkhaniha, Reza

    2011-04-01

    Perchloroethylene and trichloroethylene are two particular organochloro compounds, are often used for dry-cleaning. In the present study the excretion of urinary Perchloroethylene and trichloroethylene were evaluated as biomarkers of exposure to these compounds. The mean value of Perchloroethylene in breathing zone and the total Perchloroethylene uptake during the work shift of the three groups of dry-cleaning workers according to the capacity of the dry-cleaning machine (8, 12 and 18 kg) were 31.04, 50.87 and 120.99 mg m(-3) and 11.46, 22.6 and 41.6 ?g L(-1), respectively, which were significantly greater than the occupationally nonexposed groups. A good correlation (r = 0.907) between the mean values of Perchloroethylene in breathing zone and the urinary concentrations was observed. PMID:21416139

  7. Physical properties of contaminated trichloroethylene and 1,1,1- trichloroethane

    SciTech Connect

    Holt, R.D.

    1990-10-01

    The specific gravity, volume change, dielectric constant, dissipation factor, boiling point, and nonvolatile residue carryover during distillation was measured for various contamination levels of rosin in trichloroethylene and 1,1,1-trichloroethane. Solvent stabilizers and the vapor pressure of solvents were examined. The effects of unknown contamination in solvents from manufacturing departments were measured. The theoretical effects of oil contamination on the boiling point are discussed. 18 refs., 15 figs., 13 tabs.

  8. Incineration of toluene and chlorobenzene in a laboratory incinerator

    SciTech Connect

    Mao, Z.; Mcintosh, M.J.; Demirgian, J.C.

    1992-01-01

    This paper reports experimental results on the incineration of toluene and chlorobenzene in a small laboratory incinerator. Temperature of the incinerator, excess air ratio and mean residence time were varied to simulate both complete and incomplete combustion conditions. The flue gas was monitored on line using Fourier transform infrared (FTIR) spectroscopy coupling with a heated long path cell (LPC). Methane, toluene, benzene, chlorobenzene, hydrogen chloride and carbon monoxide in the flue gas were simultaneously analyzed. Experimental results indicate that benzene is a major product of incomplete combustion (PIC) besides carbon monoxide in the incineration of toluene and chlorobenzene, and is very sensitive to combustion conditions. This suggests that benzene is a target analyle to be monitored in full-scale incinerators.

  9. Diffusion of trichloroethylene through the threaded joints of PVC (polyvinylchloride) pipe

    SciTech Connect

    Jerome, K.M. . Dept. of Civil Engineering)

    1990-12-01

    The data engineers and scientists use to determine if the groundwater supply is contaminated are derived from analysis of samples taken largely from monitoring wells. For these data to be reliable several factors must be considered. One factor is the integrity of the monitoring well. In this project, emphasis has been placed on the potential impact on water quality caused by diffusion across the threaded joints of PVC pipe. In this study, the diffusion of trichloroethylene across several common types of threaded joints (i.e., square flush, modified ACME, modified ACME stub, and ACME) has been measured. Samples were obtained from the water inside the pipe sections and analyzed for trichloroethylene by gas chromatography. Breakthrough occurs within days of the samples being placed in the baths. The softened PVC joints of the pipes in the pure trichloroethylene split before the first sample interval of 1.5 weeks. The data show great variability in casting joints from the same manufacturer, and indicate a need for increased precision in the manufacturing of the PVC pipe joints. A one-dimensional diffusion model is used to determine an equivalent gap size through which the diffusion occurs. Flow rates through the threaded joints are calculated by using the equivalent gap width and a formula for flow through a rectangular duct running full. Comparison of the results of the gap size calculations and of the flow rates is presented. 20 refs., 13 figs. 11 tabs.

  10. Oxidative degradation of trichloroethylene adsorbed on active carbons: Use of microwave energy

    SciTech Connect

    Varma, R.; Nandi, S.P.

    1991-01-01

    Chlorinated hydrocarbon compounds (CHCl), such as chlorinated alkanes/alkenes, benzene and biphenyl etc, represent an important fraction of the industrial hazardous wastes produced. Trichloroethylene (TCE) can be removed from waste streams by adsorption on active carbons. The primary objective of the present work was to study the detoxification in air-stream of TCE adsorbed on different types of active carbons using in situ microwave heating. A secondary objective was to examine the regeneration of used carbons from the effects of repeated cyclic operations (adsorption- detoxification). The experimental study has shown that trichloroethylene adsorbed on active carbon can be oxidatively degradated in presence of microwave radiation. Energy can be transferred efficiently to the reaction sites without losing heat to the surrounding vessel. One of the decomposition product of trichloroethylene is free chlorine which is held very strongly on active carbon. Hydrochloric acid on the other hand seems to be less strongly held and appears in large concentration in the exit gas. Production of free chlorine can be avoided by using chlorohydrocarbon mixed with sufficient internal hydrogen. This is also expected to minimize the problem of carbon regeneration encountered in this study. The results obtained from studies on the oxidative degradation of TCE under microwave radiation are promising in a number of respects: (1) the detoxification of TCE adsorbed on active carbon can be conducted at moderate (<400{degree}C) temperatures, and (2) the used carbon bed can be regenerated. A patent on the process has been issued. 9 refs., 2 figs., 2 tabs.

  11. Degradation of waste gas containing toluene in an airlift bioreactor.

    PubMed

    Lo, Cheng-Shing; Hwang, Shyh-Jye

    2004-04-01

    Suspension microorganisms in an internal-loop airlift bioreactor were utilized to treat waste gas containing toluene. The working volume of the reactor was 35 L, and the biomass concentration was 3 kg/m3. The gas pollutant flowed into the reactor from the bottom; it then transferred from the gas phase to the liquid phase and was degraded by the microorganisms suspended in the liquid phase. The microorganisms were able to degrade 50-90% of the inlet toluene when its concentration was from 0.5 to 10 g/m3, and the superficial gas velocity ranged from 0.15 to 1.23 cm/s. A comprehensive mathematical model was also developed to describe the overall degradation process of toluene in the internal-loop airlift bioreactor. The overall degradation process included gas flow, gas-liquid mass transfer, flow and dispersion of the liquid phase, and microbial kinetics. The hydrodynamic properties including the gas and liquid superficial velocities, the gas holdup, the volumetric mass transfer coefficients of toluene and oxygen, and the microbial kinetics were obtained for this model. The substrate inhibition theory was used to simulate the microorganism growth kinetics, and its kinetic constants were obtained experimentally. The penetration theory was used to predict the volumetric mass transfer coefficient. And the drift-flux theory was used to predict the hydrodynamic properties in each section (riser, gas-liquid separator, downcomer, and bottom) of the airlift bioreactor. The concentration distributions of toluene and oxygen in the airlift bioreactor and the removal efficiency of toluene predicted by the mathematical model agreed well with the experimental data. PMID:15112834

  12. Risk of Learning and Behavioral Disorders Following Prenatal and Early Postnatal Exposure to Tetrachloroethylene (PCE)-contaminated Drinking Water

    PubMed Central

    Janulewicz, Patricia A; White, Roberta F; Winter, Michael R; Weinberg, Janice M; Gallagher, Lisa E; Vieira, Veronica; Webster, Thomas F; Aschengrau, Ann

    2008-01-01

    This population-based retrospective cohort study examined the association between developmental disorders of learning, attention and behavior and prenatal and early postnatal drinking water exposure to tetrachloroethylene (PCE) on Cape Cod, Massachusetts. Subjects were identified through birth records from 1969 through 1983. Exposure was modeled using information from town water departments, a PCE leaching and transport algorithm, EPANet water flow modeling software, and a Geographic Information System (GIS). Mothers completed a questionnaire on disorders of attention, learning and behavior in their children and on potential confounding variables. The final cohort consisted of 2,086 children. Results of crude and multivariate analyses showed no association between prenatal exposure and receiving tutoring for reading or math, being placed on an Individual Education Plan, or repeating a school grade (adjusted Odds Ratios (OR)=1.0–1.2). There was also no consistent pattern of increased risk for receiving a diagnosis of Attention Deficit Disorder (ADD) or Hyperactive Disorder (HD), special class placement for academic or behavioral problems, or lower educational attainment. Modest associations were observed for the latter outcomes only in the low exposure group (e.g., adjusted ORs for ADD were 1.4 and 1.0 for low and high exposure, respectively). (All ORs are based on an unexposed referent group.) Results for postnatal exposure through age five years were similar to those for prenatal exposure. We conclude that prenatal and early postnatal PCE exposure is not associated with disorders of attention, learning and behavior identified on the basis of questionnaire responses and at the exposure levels experienced by this population. PMID:18353612

  13. Risk of learning and behavioral disorders following prenatal and early postnatal exposure to tetrachloroethylene (PCE)-contaminated drinking water.

    PubMed

    Janulewicz, Patricia A; White, Roberta F; Winter, Michael R; Weinberg, Janice M; Gallagher, Lisa E; Vieira, Veronica; Webster, Thomas F; Aschengrau, Ann

    2008-01-01

    This population-based retrospective cohort study examined the association between developmental disorders of learning, attention and behavior and prenatal and early postnatal drinking water exposure to tetrachloroethylene (PCE) on Cape Cod, Massachusetts. Subjects were identified through birth records from 1969 through 1983. Exposure was modeled using information from town water departments, a PCE leaching and transport algorithm, EPANet water flow modeling software, and a Geographic Information System (GIS). Mothers completed a questionnaire on disorders of attention, learning and behavior in their children and on potential confounding variables. The final cohort consisted of 2086 children. Results of crude and multivariate analyses showed no association between prenatal exposure and receiving tutoring for reading or math, being placed on an Individual Education Plan, or repeating a school grade (adjusted Odds Ratios (OR)=1.0-1.2). There was also no consistent pattern of increased risk for receiving a diagnosis of Attention Deficit Disorder (ADD) or Hyperactive Disorder (HD), special class placement for academic or behavioral problems, or lower educational attainment. Modest associations were observed for the latter outcomes only in the low exposure group (e.g., adjusted ORs for ADD were 1.4 and 1.0 for low and high exposure, respectively). (All ORs are based on an unexposed referent group.) Results for postnatal exposure through age five years were similar to those for prenatal exposure. We conclude that prenatal and early postnatal PCE exposure is not associated with disorders of attention, learning and behavior identified on the basis of questionnaire responses and at the exposure levels experienced by this population. PMID:18353612

  14. Prenatal exposure to tetrachloroethylene-contaminated drinking water and the risk of congenital anomalies: a retrospective cohort study

    PubMed Central

    2009-01-01

    Background Prior animal and human studies of prenatal exposure to solvents including tetrachloroethylene (PCE) have shown increases in the risk of certain congenital anomalies among exposed offspring. Objectives This retrospective cohort study examined whether PCE contamination of public drinking water supplies in Massachusetts influenced the occurrence of congenital anomalies among children whose mothers were exposed around the time of conception. Methods The study included 1,658 children whose mothers were exposed to PCE-contaminated drinking water and a comparable group of 2,999 children of unexposed mothers. Mothers completed a self-administered questionnaire to gather information on all of their prior births, including the presence of anomalies, residential histories and confounding variables. PCE exposure was estimated using EPANET water distribution system modeling software that incorporated a fate and transport model. Results Children whose mothers had high exposure levels around the time of conception had an increased risk of congenital anomalies. The adjusted odds ratio of all anomalies combined among children with prenatal exposure in the uppermost quartile was 1.5 (95% CI: 0.9, 2.5). No meaningful increases in the risk were seen for lower exposure levels. Increases were also observed in the risk of neural tube defects (OR: 3.5, 95% CI: 0.8, 14.0) and oral clefts (OR 3.2, 95% CI: 0.7, 15.0) among offspring with any prenatal exposure. Conclusion The results of this study suggest that the risk of certain congenital anomalies is increased among the offspring of women who were exposed to PCE-contaminated drinking water around the time of conception. Because these results are limited by the small number of children with congenital anomalies that were based on maternal reports, a follow-up investigation should be conducted with a larger number of affected children who are identified by independent records. PMID:19778411

  15. Transformations of toluene radical cation in ZSM-5 and Silicalite

    SciTech Connect

    Barnabas, M.V.; Werst, D.W.; Trifunac, A.D.

    1992-11-25

    Toluene radical cations produced by {gamma} irradiation at 77 K in ZSM-5 and Silicalite (isomorphous with ZSM-5 but nonpolar) undergo a reversible transformation to the norbornadiene radical cation at temperatures {le}150K. The transformation occurs to a greater extent in the more polar zeolite (ZSM-5). The substrate concentration plays an important role. Toluene radical cations undergo ion-molecule reactions to give benzyl radicals at low substrate loading at temperatures >200 K. At higher concentration, different adsorption sites become populated which allow the transformation to norbornadiene radical cation to take place.

  16. SYNCHROTRON X-RAY MICROTOMOGRAPHY, ELECTRON PROBE MICROANALYSIS, AND NMR OF TOLUENE WASTE IN CEMENT.

    SciTech Connect

    BUTLER,L.G.

    1999-07-22

    Synchrotron X-ray microtomography shows vesicular structures for toluene/cement mixtures, prepared with 1.22 to 3.58 wt% toluene. Three-dimensional imaging of the cured samples shows spherical vesicles, with diameters ranging from 20 to 250 {micro}m; a search with EPMA for vesicles in the range of 1-20 {micro}m proved negative. However, the total vesicle volume, as computed from the microtomography images, accounts for less than 10% of initial toluene. Since the cements were cured in sealed bottles, the larger portion of toluene must be dispersed within the cement matrix. Evidence for toluene in the cement matrix comes from {sup 29}Si MAS NMR spectroscopy, which shows a reduction in chain silicates with added toluene. Also, {sup 2}H NMR of d{sub 8}-toluene/cement samples shows high mobility for all, toluene and thus no toluene/cement binding. A model that accounts for all observations follows: For loadings below about 3 wt%, most toluene is dispersed in the cement matrix, with a small fraction of the initial toluene phase separating from the cement paste and forming vesicular structures that are preserved in the cured cement. Furthermore, at loadings above 3 wt%, the abundance of vesicles formed during toluene/cement paste mixing leads to macroscopic phase separation (most toluene floats to the surface of the cement paste).

  17. MICROBIAL DEGRADATION OF TOLUENE UNDER SULFATE- REDUCING CONDITIONS AND THE INFLUENCE OF IRON ON THE PROCESS

    EPA Science Inventory

    Toluene degradation occurred concomitantly with sulfate reduction in anaerobic microcosms inoculated with contaminated subsurface soil from an aviation fuel storage facility near the Patuxent River (Md.). Similar results were obtained for enrichment cultures in which toluene was ...

  18. FORMATION OF POLYKETONES IN IRRADIATED TOLUENE/PROPYLENE/NOX/AIR MIXTURES

    EPA Science Inventory

    A laboratory study was carried out to investigate the formation of polyketones in secondary organic aerosol from photooxidation of the aromatic hydrocarbon toluene, a major constituent of automobile exhaust. The laboratory experiments consisted of irradiating toluene/propylene...

  19. Growth of the fungus Cladosporium sphaerospermum with toluene as the sole carbon and energy source

    SciTech Connect

    Weber, F.J.; Hage, K.C.; De Bont, J.A.M.

    1995-10-01

    The fungus Cladosporium sphaerospermum was isolated from a biofilter used for the removal of toluene from waste gases. This is the first report describing growth of a eukaryotic organism with toluene as the sole source of carbon and energy. The oxygen consumption rates, as well as the measured enzyme activities, of toluene-grown C. sphaerospermum indicate that toluene is degraded by an initial attack on the methyl group. 32 refs., 2 figs., 2 tabs.

  20. PHOSPHOLIPIDS OF FIVE PSEUDOMONAD ARCHETYPES FOR DIFFERENT TOLUENE DEGRADATION PATHWAYS

    EPA Science Inventory

    Liquid chromatography/electrospray ionization/mass spectrometry (LC/ESI/MS) was used to determine phospholipid profiles for five reference pseudomonad strains harboring distinct toluene catabolic pathways: Pseudomonas putida mt-2, Pseudomonas putida F1, Burkholderia cepacia G4, B...

  1. 2,4-/2,6-Toluene diisocyanate mixture (TDI)

    Integrated Risk Information System (IRIS)

    2,4 - / 2,6 - Toluene diisocyanate mixture ( TDI ) ; CASRN 26471 - 62 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Haz

  2. Metabolism of benzene, toluene, and xylene hydrocarbons in soil

    SciTech Connect

    Tsao, C.W.; Song, H.G.; Bartha, R.

    1998-12-01

    Enrichment cultures obtained from soil exposed to benzene, toluene, and xylene (BTX) mineralized benzene and toluene but cometabolized only xylene isomers, forming polymeric residues. This observation prompted the authors to investigate the metabolism of {sup 14}C-labeled BTX hydrocarbons in soil, either individually or as mixtures. BTX-supplemented soil was incubated aerobically for up to 4 weeks in a sealed system that automatically replenished any O{sub 2} consumed. The decrease in solvent vapors and the production of {sup 14}CO{sub 2} were monitored. At the conclusion of each experiment, {sup 14}C distribution in solvent-extractable polymers, biomass, and humic material was determined, obtaining {sup 14}C mass balances of 85 to 98%. BTX compounds were extensively mineralized in soil, regardless of whether they were presented singly or in combinations. No evidence was obtained for the formation of solvent-extractable polymers from xylenes in soil, but {sup 14}C distribution in biomass and humus was unusual for all BTX compounds and especially for toluene and the xylenes. The results suggest that catechol intermediates of BTX degradation are preferentially polymerized into the soil humus and that the methyl substituents of the catechols derived from toluene and especially from xylenes enhance this incorporation. In contrast to inhibitory residues formed from xylene cometabolism in culture, the humus-incorporated xylene residues showed no significant toxicity in the Microtox assay.

  3. TOLUENE DOSE-EFFECT META ANALYSIS AND IMPORTANCE OF EFFECTS

    EPA Science Inventory

    TOLUENE DOSE-EFFECT META ANALYSES AND IMPORTANCE OF EFFECTS
    Benignus, V.A., Research Psychologist, ORD, NHEERL, Human Studies Division,
    919-966-6242, benignus.vernon@epa.gov
    Boyes, W.K., Supervisory Health Scientist, ORD, NHEERL, Neurotoxicology Division
    919-541-...

  4. HYPERTENSIVE AND TACHYCARDIC RESPONSES TO ORAL TOLUENE IN THE RAT.

    EPA Science Inventory

    Little is known regarding the effects of toluene and other volatile organic compounds on autonomic processes. Such studies should be performed in unrestrained and undisturbed animals to avoid the effects of handling stress on processes regulated by the autonomic nervous system. T...

  5. Continuous Operation of Foamed Emulsion Bioreactors Treating Toluene Vapors

    E-print Network

    Continuous Operation of Foamed Emulsion Bioreactors Treating Toluene Vapors Eunsung Kan, Marc A called the foamed emulsion bioreactor (FEBR) has been investigated. The effect of several liquid feeding have developed a new vapor phase bioreactor named the foamed emulsion bioreactor (FEBR) that over

  6. Fenton-like initiation of a toluene transformation mechanism

    EPA Science Inventory

    In Fenton-driven oxidation treatment systems, reaction intermediates derived from parent compounds can play a significant role in the overall treatment process. Fenton-like reactions in the presence of toluene or benzene, involved a transformation mechanism that was highly effici...

  7. 78 FR 37818 - Request for Information on Toluene Diisocyanates

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-24

    ... From the Federal Register Online via the Government Printing Office DEPARTMENT OF HEALTH AND HUMAN... Prevention (CDC), Department of Health and Human Services (HHS). ACTION: Request for Information. SUMMARY... published a Current Intelligence Bulletin on toluene diisocyanate (TDI) and toluenediamine (TDA)...

  8. Ozonation and peroxone oxidation of toluene in aqueous solutions

    SciTech Connect

    Kuo, C.H.; Chen, S.M.

    1996-11-01

    This research investigates the kinetics of the aqueous-phase oxidation of toluene by ozone and ozone-hydrogen peroxide mixtures at 25 C. The oxidation kinetics is first order with respect to the ozone concentration, and the reaction order in toluene varies with pH and the presence or absence of hydrogen peroxide. The peroxone oxidation is one-half order with respect to hydrogen peroxide in distilled water (initial pH of 5.4) and other solutions of higher pH. In acidic solutions with an initial pH of 3 or less, the overall kinetics is second order; the direct oxidation of toluene by ozone molecules is predominant in determining the slow rate of reaction. The reaction becomes very fast and enhanced by hydrogen peroxide, if present, in alkaline solutions with an initial pH of 10 or above. Under these conditions, the reaction is controlled by hydroxyl radical reactions and is independent of the toluene concentration in the traditional and advanced ozonation processes.

  9. 40 CFR 721.10610 - Toluene diisocyanate, polymers with polyalkylene glycol (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Toluene diisocyanate, polymers with... New Uses for Specific Chemical Substances § 721.10610 Toluene diisocyanate, polymers with polyalkylene... substances identified generically as toluene diisocyanate, polymers with polyalkylene glycol (PMNs...

  10. 40 CFR 721.10610 - Toluene diisocyanate, polymers with polyalkylene glycol (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Toluene diisocyanate, polymers with... New Uses for Specific Chemical Substances § 721.10610 Toluene diisocyanate, polymers with polyalkylene... substances identified generically as toluene diisocyanate, polymers with polyalkylene glycol (PMNs...

  11. Cardiovascular effects of oral toluene exposure in the rat monitored by radiotelemetry

    EPA Science Inventory

    Toluene is a hazardous air pollutant that can be toxic to the nervous and cardiovascular systems. The cardiotoxicity data for toluene come from acute studies in anesthetized animals and from clinical observations made on toluene abusers and there is little known on the response o...

  12. Simultaneous biodegradation of chlorobenzene and toluene by a Pseudomonas strain

    SciTech Connect

    Pettigrew, C.A.; Haigler, B.E.; Spain, J.C. )

    1991-01-01

    Pseudomonas sp. strain JS6 grows on a wide range of chloro- and methylaromatic substrates. The simultaneous degradation of these compounds is prevented in most previously studied isolates because the catabolic pathways are incompatible. The purpose of this study was to determine whether strain JS6 could degrade mixtures of chloro- and methyl-substituted aromatic compounds. Strain JS6 was maintained in a chemostat on a minimal medium with toluene or chlorobenzene as the sole carbon source, supplied via a syringe pump. Strain JS6 contained an active catechol 2,3-dioxygenase when grown in the presence of chloroaromatic compounds; however, in cell extracts, this enzyme was strongly inhibited by 3-chlorocatechol. When cells grown to steady state on toluene were exposed to 50% toluene-50% chlorobenzene, 3-chlorocatechol and 3-methylcatechol accumulated in the medium and the cell density decreased. After 3 h, the enzyme activities of the modified ortho ring fission pathway were induced, the metabolites disappeared, and the cell density returned to previous levels. In cell extracts, 3-methylcatechol was degraded by both catechol 1,2- and catechol 2,3-dioxygenase. Strain JS62, a catechol 2,3-dioxygenase mutant of JS6, grew on toluene, and ring cleavage of 3-methylcatechol was catalyzed by catechol 1,2-dioxygenase. The transient metabolite 2-methyllactone was identified in chlorobenzene-grown JS6 cultures exposed to toluene. These results indicate that strain JS6 can degrade mixtures of chloro- and methylaromatic compounds by means of a modified ortho ring fission pathway.

  13. Transport and biodegradation of toluene in unsaturated soil

    NASA Astrophysics Data System (ADS)

    Jin, Yan; Streck, Thilo; Jury, William A.

    1994-12-01

    Degradation of volatile organic chemicals during transport has received little attention in the past. In this study we report the results of a series of experiments on toluene movement through soil columns of different length in sterilized, pre-exposed and unexposed soil. Toluene was added to 25-cm-diameter soil columns through an inlet chamber that maintained a constant concentration throughout the experiment. The toluene diffused through the soil to an outlet chamber at the top which was continuously swept with humidified air and samples were periodically analysed to determine toluene flux. The first experiment, conducted under sterilized conditions, was used to measure the soil gas diffusion coefficient, and subsequent experiments in which biodegradation occurred were used to estimate the degradation rate coefficient by fitting the outflow to a mathematical model. The degradation rate was very rapid under both pre-exposed and unexposed soil conditions, corresponding to a half-life of ˜ 2 h when bacterial activity reached high levels. Prior to this stage, the volatilization flux was very erratic, implying that growth rates of the bacteria were out of phase with the transport process. Overall, the degradation process was not well described by a first-order model until the population stabilized. Pre-exposure of the soil to the substrate prior to the transport experiment greatly increased the rate of removal of toluene during transport. Under such conditions, a 30-cm cover could virtually stop volatization losses of the compound when the inlet concentration was well below saturation, and could decrease it by a factor of ?30 even when the inlet concentration was saturated.

  14. Psychomotor performance and subjective symptoms at low level toluene exposure

    PubMed Central

    Zupanic, M; Demes, P; Seeber, A

    2002-01-01

    Objectives: Possible effects of long term occupational exposure to toluene below the level of 100 ppm on psychomotor performance and subjective symptoms were investigated in a cross sectional approach. Methods: From German rotogravure printing plants 278 male workers, mean age 39.8 years, mean duration of employment 14.9 years, were examined. A mean lifetime weighted average exposure (LWAE) of 45.1 ppm toluene in ambient air was found for 154 exposed workers (rotogravure printing area), with a mean current exposure of 24.7 ppm. The corresponding data for a second group of 124 workers with very low exposure (endprocessing area) had LWAE of 9.3 ppm and a current exposure of 3.3 ppm toluene. Psychomotor performance (steadiness, line tracing, aiming, tapping, and peg board) and subjective symptoms were examined. Results: No significant differences between the two exposure groups were found by analysis of variance (ANOVA). By stepwise linear regression analyses there were weak associations of LWAE with one performance variable and two symptoms scales, but the results were not significant after correction for the ? error. Psychomotor performance was mostly affected by age (maximum explained variance up to 13%), and handedness (up to 9%), whereas subjective symptoms are mostly affected by anxiety (up to 38%). Conclusions: The weak associations between long term exposure to toluene should be used to indicate further longitudinal investigations. The results of this cross sectional study show no obvious dose response relation for psychomotor functions and subjective symptoms among workers exposed to toluene at a current exposure level of 1–88 ppm. PMID:11934954

  15. Chloroform and trichloroethylene uptake from water into human skin in vitro: Kinetics and risk implications

    SciTech Connect

    Bogen, K.T.; Keating, G.A.; Vogel, J.S.

    1995-03-01

    A model recently proposed by the US Environmental Protection Agency (EPA) predicts that short-term dermal uptakes of organic environmental water contaminants are proportional to the square root of exposure time. The model appears to underestimate dermal uptake, based on very limited in vivo uptake data obtained primarily using human subjects. To further assess this model, we examined in vitro dermal uptake kinetics for aqueous organic chemicals using accelerator mass spectrometry (AMS). Specifically, we examined the kinetics of in vitro dermal uptake of {sup 14}C-labeled chloroform and trichloroethylene from dilute (5-ppb) aqueous solutions using full-thickness human cadaver skin exposed for ({le}1 hr).

  16. Microbial degradation of trichloroethylene in the rhizosphere: potential application to biological remediation of waste sites.

    PubMed Central

    Walton, B T; Anderson, T A

    1990-01-01

    The possibility that vegetation may be used to actively promote microbial restoration of chemically contaminated soils was tested by using rhizosphere and nonvegetated soils collected from a trichloroethylene (TCE)-contaminated field site. Biomass determinations, disappearance of TCE from the headspace of spiked soil slurries, and mineralization of [14C]TCE to 14CO2 all showed that microbial activity is greater in rhizosphere soils and that TCE degradation occurs faster in the rhizosphere than in the edaphosphere. Thus, vegetation may be an important variable in the biological restoration of surface and near-surface soils. PMID:2339867

  17. Photo-activated luminescence sensor and method of detecting trichloroethylene and related volatile organochloride compounds

    DOEpatents

    Dinh, Tuan V. (Knoxville, TN)

    1996-01-01

    A sensor for detecting trichloroethylene and related volatile organochloride compounds uses a photo-activator that produces a photo-product complex with the contaminant. Characteristics of the light emitted from the complex will indicate the presence of the contaminant. A probe containing the photo-activator has an excitation light interface and a contaminant interface. One particular embodiment uses a porous membrane as the contaminant interface, so that the contaminant can migrate therethrough to the photo-activator and thereby form the complex.

  18. Photo-activated luminescence sensor and method of detecting trichloroethylene and related volatile organochloride compounds

    DOEpatents

    Dinh, T.V.

    1996-06-11

    A sensor for detecting trichloroethylene and related volatile organochloride compounds uses a photo-activator that produces a photo-product complex with the contaminant. Characteristics of the light emitted from the complex will indicate the presence of the contaminant. A probe containing the photo-activator has an excitation light interface and a contaminant interface. One particular embodiment uses a porous membrane as the contaminant interface, so that the contaminant can migrate there through to the photo-activator and thereby form the complex. 23 figs.

  19. System for In-Situ Detection of Plant Exposure to Trichloroethylene (TCE)

    NASA Technical Reports Server (NTRS)

    Lewis, Mark D. (Inventor); Anderson, Daniel J. (Inventor); Newman, Lee A. (Inventor); Keith, Amy G. (Inventor)

    2013-01-01

    A system detects a plant's exposure to trichloroethylene (TCE) through plant leaf imaging. White light impinging upon a plant's leaf interacts therewith to produce interacted light. A detector is positioned to detect at least one spectral band of the interacted light. A processor coupled to the detector performs comparisons between photonic energy of the interacted light at the one or more spectral bands thereof and reference data defining spectral responses indicative of leaf exposure to TCE. An output device coupled to the processor provides indications of the comparisons.

  20. Performances of toluene removal by activated carbon derived from durian shell.

    PubMed

    Tham, Y J; Latif, Puziah Abdul; Abdullah, A M; Shamala-Devi, A; Taufiq-Yap, Y H

    2011-01-01

    In the effort to find alternative low cost adsorbent for volatile organic vapors has prompted this research in assessing the effectiveness of activated carbon produced from durian shell in removing toluene vapors. Durian shells were impregnated with different concentrations of H3PO4 followed by carbonization at 500 °C for 20 min under nitrogen atmosphere. The prepared durian shell activated carbon (DSAC) was characterized for its physical and chemical properties. The removal efficiency of toluene by DSAC was performed using different toluene concentrations. Results showed that the highest BET surface area of the produced DSAC was 1404 m2/g. Highest removal efficiency of toluene vapors was achieved by using DSAC impregnated with 30% of acid concentration heated at 500 °C for 20 min heating duration. However, there is insignificant difference between removal efficiency of toluene by DSAC and different toluene concentrations. The toluene adsorption by DSAC was better fitted into Freundlich model. PMID:20884200

  1. Deaths and tumours among rotogravure printers exposed to toluene.

    PubMed Central

    Svensson, B G; Nise, G; Englander, V; Attewell, R; Skerfving, S; Möller, T

    1990-01-01

    A cohort of 1020 rotogravure printers exposed to toluene and employed for a minimum period of three months in eight plants during 1925-85 was studied. Air levels of toluene were available since 1943 in one plant and since 1969 in most. Based on these measurements and on present concentrations of toluene in blood and subcutaneous fat, the yearly average air levels in each plant were estimated. They reached a maximum of about 450 ppm in the 1940s and 1950s but were only about 30 ppm by the mid-1980s. Exposure to benzene had occurred up to the beginning of the 1960s. Compared with regional rates, total mortality did not increase during the observation period 1952-86 (129 observed deaths v 125 expected; SMR = 1.03). There was no increase in mortality from non-malignant diseases of the lungs, nervous system, or gastrointestinal and urinary tracts. There was no overall excess of tumours 1958-85 (68 v 54, SMR = 1.26; 95% confidence interval, CI = 0.95-1.7). Among the specific cancers, only those of the respiratory tract were significantly increased (16 v 9; SMR = 1.76, CI = 1.03-2.9). Statistical significance was not attained, however, when only subjects with an exposure period of at least five years and a latency period of at least 10 years were considered. Further, there were no dose response relations with cumulated toluene dose (ppm years). There were no significant increases of tumours at other sites, including leukaemias/lymphomas/myelomas. PMID:2378814

  2. Toluene nitration in irradiated nitric acid and nitrite solution

    SciTech Connect

    Gracy Elias; Bruce J. Mincher; Stephen P. Mezyk; Jim Muller; Leigh R. Martin

    2011-04-01

    The kinetics, mechanisms, and stable products produced for the aryl alkyl mild ortho-para director - toluene, in irradiated nitric acid and neutral nitrite solutions were investigated using ?, and pulse radiolysis. Electron pulse radiolysis was used to determine the bimolecular rate constants for the reaction of toluene with different transient species produced by irradiation. HPLC with UV detection was primarily used to assess the stable reaction products. GC-MS and LC-MS were used to confirm the results from HPLC. Free-radical nitration reaction products were found in irradiated acidic and neutral media. In acidic medium, the ring substitution and side chain substitution and oxidation produced different nitro products. In ring substitution, nitrogen oxide radicals were added mainly to hydroxyl radical-produced cyclohexadienyl radical, and in side chain substitution they were added to the carbon-centered benzyl radical produced by H-atom abstraction. In neutral nitrite toluene solution, radiolytic ring nitration products approached a statistically random distribution, suggesting a free-radical reaction involving addition of the •NO2 radical.

  3. Performance characterization of a model bioreactor for the biodegradation of trichloroethylene by 'pseudomonas cepacia' g4

    SciTech Connect

    Folsom, B.R.; Chapman, P.J.

    1991-01-01

    Of the volatile organic chemicals present in common groundwater contaminants, trichloroethylene (TCE) is the one most commonly found. TCE has been shown to be biodegraded by axenic cultures of aerobic organisms. Pseudomonas cepacia G4 grown in chemostats with phenol demonstrated constant specific degradation rates for both phenol and trichloroethylene (TCE) over a range of dilution rates. Washout of cells from chemostats was evident at a dilution rate of 0.2/h at 28C. Increased phenol concentrations in the nutrient feed led to increased biomass production with constant specific degradation rates for both phenol and TCE. The addition of lactate to the phenol feed led to increased biomass production but lowered specific phenol and TCE degradation rates. The maximum potential for TCE degradation was about 1.1 g per day per g of cell protein. Cell growth and degradation kinetic parameters were used in the design of a recirculating bioreactor for TCE degradation. In the reactor, the total amount of TCE degraded increased as either reaction time or biomass was increased. TCE degradation was observed up to 300 microM TCE with no significant decreases in rates. On the average, the reactor was able to degrade 0.7 g of TCE per day per g of cell protein. The results demonstrate the feasibility of TCE bioremediation through the use of bioreactors. (Copyright (c) 1991, American Society for Microbiology.)

  4. Effects of trichloroethylene and perchloroethylene on wild rodents at Edwards Air Force Base, California, USA

    USGS Publications Warehouse

    Spring, S.E.; Miles, A.K.; Anderson, M.J.

    2004-01-01

    Effects of inhalation of volatilized trichloroethylene (TCE) or perchloroethylene (PCE) were assessed based on the health and population size of wild, burrowing mammals at Edwards Air Force Base (CA, USA). Organic soil-vapor concentrations were measured at three sites with aquifer contamination of TCE or PCE of 5.5 to 77 mg/L and at two uncontaminated reference sites. Population estimates of kangaroo rats (Dipodomys merriami and D. panamintinus) as well as hematology, blood chemistry, and histopathology of kangaroo rats and deer mice (Peromyscus maniculatus) were compared between contaminated and uncontaminated populations. Maximum soil-gas concentrations associated with groundwater contamination were less than 1.5 ??l/L of TCE and 0.07 ??l/L of PCE. Population estimates of kangaroo rats were similar at contaminated and reference sites. Hematology, blood chemistry, and histopathology of kangaroo rats and deer mice indicated no evidence of health effects caused by exposure. Trichloroethylene or PCE in groundwater and in related soil gas did not appear to reduce the size of small mammal populations or impair the health of individuals.

  5. Performance of genetic risk factors in prediction of trichloroethylene induced hypersensitivity syndrome

    PubMed Central

    Dai, Yufei; Chen, Ying; Huang, Hanlin; Zhou, Wei; Niu, Yong; Zhang, Mingrong; Bin, Ping; Dong, Haiyan; Jia, Qiang; Huang, Jianxun; Yi, Juan; Liao, Qijun; Li, Haishan; Teng, Yanxia; Zang, Dan; Zhai, Qingfeng; Duan, Huawei; Shen, Juan; He, Jiaxi; Meng, Tao; Sha, Yan; Shen, Meili; Ye, Meng; Jia, Xiaowei; Xiang, Yingping; Huang, Huiping; Wu, Qifeng; Shi, Mingming; Huang, Xianqing; Yang, Huanming; Luo, Longhai; Li, Sai; Li, Lin; Zhao, Jinyang; Li, Laiyu; Wang, Jun; Zheng, Yuxin

    2015-01-01

    Trichloroethylene induced hypersensitivity syndrome is dose-independent and potentially life threatening disease, which has become one of the serious occupational health issues and requires intensive treatment. To discover the genetic risk factors and evaluate the performance of risk prediction model for the disease, we conducted genomewide association study and replication study with total of 174 cases and 1761 trichloroethylene-tolerant controls. Fifty seven SNPs that exceeded the threshold for genome-wide significance (P?

  6. Performance of genetic risk factors in prediction of trichloroethylene induced hypersensitivity syndrome.

    PubMed

    Dai, Yufei; Chen, Ying; Huang, Hanlin; Zhou, Wei; Niu, Yong; Zhang, Mingrong; Bin, Ping; Dong, Haiyan; Jia, Qiang; Huang, Jianxun; Yi, Juan; Liao, Qijun; Li, Haishan; Teng, Yanxia; Zang, Dan; Zhai, Qingfeng; Duan, Huawei; Shen, Juan; He, Jiaxi; Meng, Tao; Sha, Yan; Shen, Meili; Ye, Meng; Jia, Xiaowei; Xiang, Yingping; Huang, Huiping; Wu, Qifeng; Shi, Mingming; Huang, Xianqing; Yang, Huanming; Luo, Longhai; Li, Sai; Li, Lin; Zhao, Jinyang; Li, Laiyu; Wang, Jun; Zheng, Yuxin

    2015-01-01

    Trichloroethylene induced hypersensitivity syndrome is dose-independent and potentially life threatening disease, which has become one of the serious occupational health issues and requires intensive treatment. To discover the genetic risk factors and evaluate the performance of risk prediction model for the disease, we conducted genomewide association study and replication study with total of 174 cases and 1761 trichloroethylene-tolerant controls. Fifty seven SNPs that exceeded the threshold for genome-wide significance (P < 5 × 10(-8)) were screened to relate with the disease, among which two independent SNPs were identified, that is rs2857281 at MICA (odds ratio, 11.92; P meta = 1.33 × 10(-37)) and rs2523557 between HLA-B and MICA (odds ratio, 7.33; P meta = 8.79 × 10(-35)). The genetic risk score with these two SNPs explains at least 20.9% of the disease variance and up to 32.5-fold variation in inter-individual risk. Combining of two SNPs as predictors for the disease would have accuracy of 80.73%, the area under receiver operator characteristic curves (AUC) scores was 0.82 with sensitivity of 74% and specificity of 85%, which was considered to have excellent discrimination for the disease, and could be considered for translational application for screening employees before exposure. PMID:26190474

  7. Removal of Trichloroethylene by Activated Carbon in the Presence and Absence of TiO2 Nanoparticles

    EPA Science Inventory

    Nanoparticles (NPs) are emerging as a new type of contaminant in water and wastewater. The fate of titanium dioxide nanoparticles (TiO2NPs) in a granular activated carbon (GAC) adsorber and their impact on the removal of trichloroethylene (TCE) by GAC was investigated...

  8. MICROCOSM AND IN-SITU FIELD STUDIES OF ENHANCED BIOTRANSFORMATION OF TRICHLOROETHYLENE BY PHENOL-UTILIZING MICROORGANISMS

    EPA Science Inventory

    The ability of different aerobic groundwater microorganisms to cometabolically degrade trichloroethylene (TCE), 1,2-cis-dichloroethylene (c-DCE), and 1,2-trans-dichloroethylene (t-DCE) was evaluated both in groundwater-fed microcosms and in situ in a shallow aquifer. Microcosms a...

  9. MID-FREQUENCY HEARING LOSS IN RATS FOLLOWING INHALATION EXPOSURE TO TRICHLOROETHYLENE: EVIDENCE FROM REFLEX MODIFICATION AUDIOMETRY

    EPA Science Inventory

    The present experiments were undertaken in order to characterize the hearing loss associated with 1,1,2-trichloroethylene (TCE) exposure. dult male LE rats were exposed to TCE via inhalation (whole body) for 6hr/day for 5 days. he concentration-effect function (0-4000 ppm) was de...

  10. Evaluation of the Potential Impact of Inhibition of Trichloroethylene Metabolism in the Liver on Extra-Hepatic Toxicity

    EPA Science Inventory

    The interaction between trichloroethylene (TCE) and chloroform (CHCI3) is less than additive, with co-exposure to TCE and CHCl3 resulting in less hepatic and renal toxicity than observed with CHCl3 alone. Vapor uptake data demonstrate that co-exposure to CHCl3 decreases the rate ...

  11. COUNTER-DIFFUSION OF ISOTOPICALLY LABELED TRICHLOROETHYLENE IN SILICA GEL AND GEOSORBENT MICROPORES: COLUMN RESULTS. (R822626)

    EPA Science Inventory

    To investigate counter-diffusion in microporous sorbents, the rate of
    exchange between deuterated trichloroethylene (DTCE) in fast desorbing sites and
    nondeuterated TCE (1HTCE) in slow desorbing sites was measured.
    Exchange rates were measured for a sili...

  12. USE OF CARBON STABLE ISOTOPE FOR THE DECHLORINATION OF TRICHLOROETHYLENE ON GRANULAR-GRAPHITE PACKED ELECTRODES (PRESENTATION)

    EPA Science Inventory

    Trichloroethylene (TCE) is widely used as a solvent in metal processing and electronic manufacturing industries, but waste and spilled TCE often results in blocks of non-aqueous liquid in vadose and saturated zones which become continuous contamination sources for groundwater. El...

  13. Active site dynamics of toluene hydroxylation by cytochrome P-450

    SciTech Connect

    Hanzlik, R.P.; Kahhiing John Ling )

    1990-06-22

    Rat liver cytochrome P-450 hydroxylates toluene to benzyl alcohol plus o-, m-, and p-cresol. Deuterated toluenes were incubated under saturating conditions with liver microsomes from phenobarbital-pretreated rats, and product yields and ratios were measured. Stepwise deuteration of the methyl leads to stepwise decreases in the alcohol/cresol ratio without changing the cresol isomer ratios. Extensive deuterium retention in the benzyl alcohols from PhCH{sub 2}D and PhCHD{sub 2} suggests there is a large intrinsic isotope effect for benzylic hydroxylation. After replacement of the third benzylic H by D, the drop in the alcohol/cresol ratio was particularly acute, suggsting that metabolic switching from D to H within the methyl group was easier than switching from the methyl to the ring. Comparison of the alcohol/cresol ratio for PhCH{sub 3} vs PhCD{sub 3} indicated a net isotope effect of 6.9 for benzylic hydroxylation. From product yield data for PhCH{sub 3} and PhCD{sub 3}, {sup D}V for benzyl alcohol formation is only 1.92, whereas {sup D}V for total product formation is 0.67 (i.e., inverse). From competitive incubations of PhCH{sub 3}/PhCD{sub 3} mixtures {sup D}(V/K) isotope effects on benzyl alcohol formation and total product formation (3.6 and 1.23, respectively) are greatly reduced, implying strong commitment to catalysis. In contrast, {sup D}(V/K) for the alcohol/cresol ratio is 6.3, indicating that the majority of the intrinsic isotope effect is expressed through metabolic switching. Overall, these data are consistent with reversible formation of a complex between toluene and the active oxygen form of cytochrome P-450, which rearranges internally and reacts to form products faster than it dissociates back to release substrate.

  14. Degradation of off-gas toluene in continuous pyrite Fenton system.

    PubMed

    Choi, Kyunghoon; Bae, Sungjun; Lee, Woojin

    2014-09-15

    Degradation of off-gas toluene from a toluene reservoir and a soil vapor extraction (SVE) process was investigated in a continuous pyrite Fenton system. The removal of off-gas toluene from the toluene reservoir was >95% by 8h in the pyrite Fenton system, while it was ?97 % by 3h in classic Fenton system and then rapidly decreased to initial level by 8h. Continuous consumption of low Fe(II) concentration dissolved from pyrite surface (0.05-0.11 mM) was observed in the pyrite Fenton system, which can lead to the effective and successful removal of the gas-phase toluene due to stable production of OH radical (OH). Inhibitor and spectroscopic test results showed that OH was a dominant radical that degraded gas-phase toluene during the reaction. Off-gas toluene from the SVE process was removed by 96% in the pyrite Fenton system, and remnant toluene from rebounding effect was treated by 99%. Main transformation products from toluene oxidation were benzoic acid (31.4%) and CO2 (38.8%) at 4h, while traces of benzyl alcohol (1.3%) and benzaldehyde (0.7%) were observed. Maximum operation time of continuous pyrite Fenton system was estimated to be 56-61 d and its optimal operation time achieving emission standard was 28.9 d. PMID:25125037

  15. Rheology of Non-dilute Polystyrene/Cloisite/Toluene Solutions

    NASA Astrophysics Data System (ADS)

    Li, Jun; Sokolov, Jonathan

    2005-03-01

    We have previously described a simple model of spin casting for polymer/clay nanocomposite films in which the viscosity of the polymer solution at low solvent concentration is a critical parameter. We have therefore examined the shear dependent viscosity of polystyrene/Cloisite-6A/toluene solutions over a wide range of weight fractions, and for various molecular weights. The data is well described by the Carreau model ?-??=(?-?0)(1+?^2?^2)^-N, where the parameters in the model show a clear dependence on the clay/PS ratio. We will discuss the trends observed in the viscosity data, and their impact on the uniformity of spin cast films.

  16. Kinetic Modeling of Toluene Oxidation for Surrogate Fuel Applications

    SciTech Connect

    Frassoldati, A; Mehl, M; Fietzek, R; Faravelli, T; Pitz, W J; Ranzi, E

    2009-04-21

    New environmental issues, like the effect of combustion-generated greenhouse gases, provide motivation to better characterize oxidation of hydrocarbons. Transportation, in particular, significantly contributes to energy consumption and CO{sub 2} emissions. Kinetic studies about the combustion of fuels under conditions typical of internal combustion engines provides important support to improve mechanism formulation and to eventually provide better computational tools that can be used to increase the engine performance. It is foreseeable that at least in the next 30 years the main transportation fuels will be either gasoline or diesel. Unfortunately, these fuels are very complex mixtures of many components. Moreover, their specifications and performance requirements significantly change the composition of these fuels: gasoline and diesel mixtures are different if coming from different refineries or they are different from winter to summer. At the same time a fuel with a well defined and reproducible composition is needed for both experimental and modeling work. In response to these issues, surrogate fuels are proposed. Surrogate fuels are defined as mixtures of a small number of hydrocarbons whose relative concentrations is adjusted in order to approximate the chemical and physical properties of a real fuel. Surrogate fuels are then very useful both for the design of reproducible experimental tests and also for the development of reliable kinetic models. The primary reference fuels (PRF) are a typical and old example of surrogate fuel: n-heptane and iso-octane mixtures are used to reproduce antiknock propensity of complex mixtures contained in a gasoline. PRFs are not able to surrogate gasoline in operating conditions different from standard ones and new surrogates have been recently proposed. Toluene is included in all of them as a species able to represent the behavior of aromatic compounds. On the other side, the toluene oxidation chemistry is not so well established and uncertainties still remain in the mechanism. This is especially true in the low temperature regime (< 850K). In these conditions, the toluene reactivity is too low to be conveniently investigated. Nonetheless, gasoline surrogates work in the engine at low temperatures, because of the presence of very reactive alkanes. The effect of these component interactions have to be taken into account. This work's aim is to present the model activity carried out by two different research groups, comparing the main pathways and results, matching data carried out in different devices both for pure toluene and mixtures. This is the starting point for a further activity to improve the two kinetic schemes.

  17. Comparative Study on the Implication of Three Nanoparticles on the Removal of Trichloroethylene by Adsorption - The Pilot and Rapid Small-Scale Column Tests

    EPA Science Inventory

    The impact of three commercially-available nanoparticles (NPs) on trichloroethylene (TCE) adsorption onto granular activated carbon (GAC) was investigated. TCE Adsorption isotherm and column breakthrough experiments were conducted in the presence and absence of silicon dioxide (S...

  18. An alternate metabolic hypothesis for a binary mixture of trichloroethylene and carbon tetrachloride: application of physiologically based pharmacokinetic (PBPK) modeling in rats.

    EPA Science Inventory

    Carbon tetrachloride (CC4) and trichloroethylene (TCE) are hepatotoxic volatile organic compounds (VOCs) and environmental contaminants. Previous physiologically based pharmacokinetic (PBPK) models describe the kinetics ofindividual chemical disposition and metabolic clearance fo...

  19. ESTABLISHING CHANGES IN METABOLISM OF CARBON TETRACHLORIDE IN THE PRESENCE OF TRICHLOROETHYLENE IN THE RAT THROUGH THE USE OF PHYSIOLOGICALLY BASED PHARMACOKINETIC (PBPK) MODELING

    EPA Science Inventory

    Toxicological interactions of chemicals can affect metabolism, often decreasing overall associated metabolic rates; and changes in metabolism can be evaluated through the use of mathematical models. Trichloroethylene (TCE) and carbon tetrachloride (CCl4) are common co...

  20. Suppression of Pulmonary Host Defenses and Enhanced Susceptibility to Respiratory bacterial Infection in mice Following Inhalation Exposure to Trichloroethylene and Chloroform

    EPA Science Inventory

    Numerous epidemiologic studies have associated episodes of increased air pollution with increased incidence of respiratory disease, including pneumonia, croup, and bronchitis. Trichloroethylene (TCE) and chloroform are among 33 hazardous air pollutants identified by the U.S. Env...

  1. Trichloroethylene volatilization enhancement by alcohol/salt cycling injection in unsaturated clayey soils

    NASA Astrophysics Data System (ADS)

    Irizarry, M. L.; Padilla, I. Y.

    2008-05-01

    Trichloroethylene (TCE) is the most widely detected organic contaminant at National Priority List (NPL) sites. In many sites, TCE is trapped as dense non-aqueous phase liquids (DNAPLs) in formations of low permeability, and serve as long-term source of contamination. Remediation of these formations is extremely difficult and expensive. It is, therefore, necessary to develop enhanced, cost effective remediation technologies that can be applied to tight formations of low permeability. This study investigates the applicability of enhanced TCE soil vapor extraction (SVE) from unsaturated clayey soils using capillary delivery of alcohol/salt water cycles. Short chain alcohols are used to modify NAPL air tension and enhance dissolution into the aqueous phase. Brine delivery is used to induce TCE salting out and enhance volatilization. Experimental work involves the use of a 2-D laboratory-scale column packed with tropical clay and contaminated with non-aqueous phase TCE. Rigid porous membranes are inserted into the clay and used to deliver alcohol and brine solutions through competitive capillary forces. Vapor extraction is applied through vacuum well points, whereas a liquid drainage boundary is applied at the bottom of the column. Solution delivery rates and concentrations of TCE, alcohol, and salt solution are monitored to: determine removed and resident mass; assess reactive and transfer processes and develop optimal remedial technologies and parameters (e.g., delivery rates, imposed boundary conditions, contact times). This presentation addresses the preliminary work being conducted to determine the most appropriate alcohol and salt solution. It also discusses the testing of porous membranes of different rigid materials (e.g., stainless steel, Teflon, ceramic) and pore sizes, and the selection of the best one to deliver the selected alcohol and brine solution in unsaturated clays under the imposed boundary conditions. Keywords: Trichloroethylene (TCE), Soil vapor extraction (SVE), clayey soils

  2. Efficient degradation of trichloroethylene in water using persulfate activated by reduced graphene oxide-iron nanocomposite.

    PubMed

    Ahmad, Ayyaz; Gu, Xiaogang; Li, Li; Lv, Shuguang; Xu, Yisheng; Guo, Xuhong

    2015-11-01

    Graphene oxide (GO) and nano-sized zero-valent iron-reduced graphene oxide (nZVI-rGO) composite were prepared. The GO and nZVI-rGO composite were characterized by transmission electron microscopy (TEM), Fourier transform infrared (FTIR), energy-dispersive spectroscopy (EDS), and Raman spectroscopy. The size of nZVI was about 6 nm as observed by TEM. The system of nZVI-rGO and persulfate (PS) was used for the degradation of trichloroethylene (TCE) in water, and showed 26.5 % more efficiency as compared to nZVI/PS system. The different parameters were studied to determine the efficiency of nZVI-rGO to activate the PS system for the TCE degradation. By increasing the PS amount, TCE removal was also improved while no obvious effect was observed by varying the catalyst loading. Degradation was decreased as the TCE initial concentration was increased from 20 to 100 mg/L. Moreover, when initial solution pH was increased, efficiency deteriorated to 80 %. Bicarbonate showed more negative effect on TCE removal among the solution matrix. To better understand the effects of radical species in the system, the scavenger tests were performed. The •SO4 (-) and •O2 (-) were predominant species responsible for TCE removal. The nZVI-rGO-activated PS process shows potential applications in remediation of highly toxic organic contaminants such as TCE present in the groundwater. Graphical abstract Persulfate activated by reduced graphene oxide and nano-sized zero-valent iron composite can be used for efficient degradation of trichloroethylene (TCE) in water. PMID:26162447

  3. Sonochemical treatment of benzene/toluene contaminated wastewater

    SciTech Connect

    Thoma, G.; Gleason, M.; Popov, V.

    1998-12-31

    Studies of the destruction of benzene and toluene in water were undertaken using ultrasonic irradiation in a parallel place Near Field Acoustic Processor (NAP). This magnetostrictive system is capable of degrading both benzene and toluene in a continuous stirred tank reactor configuration. The reaction kinetics were characterized by first order rate constants for the disappearance of the parent compound; these ranged from 2.7 {times} 1{sup {minus}3} to 3.7 {times} 10{sup {minus}2} mm{sup {minus}1} over an applied power density range of 0.6 to 3.6 watt mL{sup {minus}1} and target concentration of approximately 25 to 900 {micro}M. The rate constant is shown to be inversely proportional to the target compound concentration, indicating higher order reaction kinetics. The conversion efficiency for the system was characterized through the G efficiency commonly used in radiation chemistry. The G efficiency ranged between 4 {times} 10{sup {minus}5} to 2.2 {times} 10{sup {minus}4} molecules destroyed per 100 eV of electrical energy drawn from the wall outlet. These values are comparable to those of other advanced oxidation processes. Suggestions are made regarding methods to improve this technology.

  4. Health risk assessment of exposure to selected volatile organic compounds emitted from an integrated iron and steel plant.

    PubMed

    Chang, E-E; Wei-Chi, Wang; Li-Xuan, Zeng; Hung-Lung, Chiang

    2010-12-01

    Workplace air samples from sintering, cokemaking, and hot and cold forming processes in the integrated iron and steel industry were analyzed to determine their volatile organic compound (VOC) concentration. Sixteen VOC species including three paraffins (cyclohexane, n-hexane, methylcyclohexane), five chlorinated VOC species (trichloroethylene, 1,1,1-trichloroethane, tetrachloroethylene, chlorobenzene, 1,4-dichlorobenzene), and eight aromatics (benzene, ethylbenzene, styrene, toluene, m,p-xylene, o-xylene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene) were selected to measure their noncancer risk for workers. Concentrations of toluene, xylene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, dichlorobenzene, and trichloroethylene were high in all four processes. Carbon tetrachloride and tetrachloroethylene concentrations were high in the hot and cold forming processes. The noncancer risk followed the increasing order: cokemaking > sintering > hot forming > cold forming. 1,2,4-trimethylbenzene and 1,3,5-trimethylbenzene contributed 44% to 65% and 13% to 20% of noncancer risk, respectively, for the four processes. Benzene accounted for a high portion of the noncancer risk in cokemaking. The hazard index (HI: 17-108) of the average VOC concentrations suggests that health risks can be reduced by improving workplace air quality and protecting workers. PMID:20828338

  5. EVALUATING THE NMDA-GLUTAMATE RECEPTOR AS A SITE OF ACTION FOR TOLUENE, IN VIVO

    EPA Science Inventory

    In vitro, toluene disrupts the function of NMDA-glutamate receptors, indicating that effects on NMDA receptor function may contribute to toluene neurotoxicity. NMDA-glutamate receptors are widely present in the visual system and contribute to pattern-elicited visual evoked potent...

  6. Activity-dependent Fluorescent Labeling of Bacteria that Degrade Toluene via 3-methylcatechol

    SciTech Connect

    Kauffman, Mary E; Keener, William Kelvin; Watwood, Mary Elizabeth; Reed, David William; Fujita, Yoshiko; Lehman, Richard Michael; Clingenpeel, Scott R.

    2003-12-01

    3-Hydroxyphenylacetylene (3-HPA) served as a novel, activity-dependent, fluorogenic and chromogenic probe for bacterial enzymes known to degrade toluene via meta ring fission of the intermediate, 3-methylcatechol. By this direct physiological analysis, cells grown with an aromatic substrate to induce the synthesis of toluene-degrading enzymes were fluorescently labeled.

  7. Circadian variations of acute toxicity and blood and brain concentrations of inhaled toluene in rats.

    PubMed Central

    Harabuchi, I; Kishi, R; Ikeda, T; Kiyosawa, H; Miyake, H

    1993-01-01

    To investigate circadian variations in the acute toxicity of toluene, rats were exposed to it (2000 ppm or 4000 ppm) both in the dark (the animals' active phase) and the light (the inactive phase) for 4 hours. The performance decrements of rats were greater in the light phase than in the dark phase in all time zones of exposure to toluene. In the dark phase, the performance recovered almost to that pre-exposure, whereas a significant delay of recovery was noted in the light phase. The differences in the number of lever presses between exposure to 2000 ppm toluene and control (air) exposure were also greater in the light phase than in the dark phase. Significant differences according to the time of exposure were also found in toluene concentrations in blood and the brain. Both blood and brain concentrations in the light phase were higher than those in the dark phase at four hours after exposure to 2000 ppm toluene or at two hours after exposure to 4000 ppm toluene. These results suggest that there was a significant difference in circadian susceptibility after exposure to toluene, which might be caused by circadian differences in the pharmacokinetics of toluene in the light and dark phases. PMID:8457497

  8. WHY DO THE ACUTE BEHAVIORAL EFFECTS OT TOLUENE IN RATS DEPEND ON THE ROUTE OF EXPOSURE?

    EPA Science Inventory

    Despite evidence suggesting that the acute effects of organic solvents are related to their concentration in the brain, we have observed route-dependent differences in the acute behavioral effects of toluene. Whereas inhaled toluene disrupts the performance of rats on a visual si...

  9. Low-temperature anaerobic biological treatment of toluene-containing wastewater.

    PubMed

    Enright, Anne-Marie; Collins, Gavin; O'Flaherty, Vincent

    2007-04-01

    Two expanded granular sludge bed-anaerobic filter (EGSB-AF) bioreactors, R1 and R2, were operated at 15 degrees C for the treatment of toluene-contaminated volatile fatty acid-based wastewater. The seed inoculum and the R1 reactor were unexposed to toluene, prior to and during the trial, respectively. Both reactors were operated at a hydraulic retention time of 24h at applied organic loading rates of 0.71-1.43kg chemical oxygen demand (COD)m(-3)d(-1). Toluene was supplemented to the R2 influent at concentrations of 5-104 mg toluenel(-1) (solubilised in ethanol). Bioreactor performance was evaluated by COD and toluene removal efficiency, and the methane content of biogas (%). Specific methanogenic activity and toxicity assays were employed to investigate the activity and toluene toxicity thresholds of key trophic groups, respectively, within the seed and reactor biomass samples. COD and toluene removal efficiencies of 70-90% and 55-99%, respectively, were achieved during the 630-d trial. Metabolic assays suggested that a psychrotolerant H(2)/CO(2)-utilizing methanogenic community developed in the toluene-degrading biomass. The results indicate the viability of low-temperature anaerobic digestion for the treatment of wastewater containing toluene. PMID:17306857

  10. EVALUATING MOLECULAR SITES OF ACTION FOR TOLUENE USING AN IN VIVO MODEL.

    EPA Science Inventory


    In vitro studies have demonstrated that toluene disrupts the function of several ion channels localized in the brain, including the NMDA-glutamate receptor. This has led to the hypothesis that effects on ion channel function may contribute to toluene neurotoxicity, CNS depres...

  11. Behavioral Effects of Sub-Acute Inhalation of Toluene in Adult Rats

    EPA Science Inventory

    Reports of behavioral effects of repeated inhalation of toluene in rats have Yielded inconsistent fmdings. A recent study from this laboratory (Beasley et al., 2010) observed that after 13 weeks of inhaled toluene ("sub-chronic" exposure scenario), rats showed mild but persiste...

  12. Examining the Impact of an Updated Toluene Mechanism on Air Quality in the Eastern US

    EPA Science Inventory

    Model simulations were performed using the CB05 chemical mechanism containing the base and an updated toluene mechanisms for the eastern US. The updated toluene mechanism increased monthly mean 8-hr ozone by 1.0-2.0 ppbv in urban areas of Chicago, the northeast US, Detroit, Cleve...

  13. 40 CFR 721.1850 - Toluene sulfonamide bis-phe-nol A epoxy adduct.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... epoxy adduct. 721.1850 Section 721.1850 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.1850 Toluene sulfonamide bis-phe-nol A epoxy adduct. (a) Chemical... as toluene sulfonamide bisphenol A epoxy adduct (PMN P-90-113) is subject to reporting under...

  14. Use of Selective Inhibitors and Chromogenic Substrates to Differentiate Bacteria Based on Toluene Oxygenase Activity

    SciTech Connect

    Keener, William Kelvin; Schaller, Kastli Dianne; Walton, Michelle Rene; Partin, Judy Kaye; Watwood, Mary Elizabeth; Smith, William Aaron; Chingenpeel, S. R.

    2001-09-01

    In whole-cell studies, two alkynes, 1-pentyne and phenylacetylene, were selective, irreversible inhibitors of monooxygenase enzymes in catabolic pathways that permit growth of bacteria on toluene. 1-Pentyne selectively inhibited growth of Burkholderia cepacia G4 (toluene 2-monooxygenase [T2MO] pathway) and B. pickettii PKO1 (toluene 3-monooxygenase [T3MO] pathway) on toluene, but did not inhibit growth of bacteria expressing other pathways. In further studies with strain G4, chromogenic transformation of a,a,a-Trifluoro-m-cresol (TFC) was irreversibly inhibited by 1-pentyne, but the presence of phenol prevented this inhibition. Transformation of catechol by G4 was unaffected by 1-pentyne. With respect to the various pathways and bacteria tested, phenylacetylene selectively inhibited growth of Pseudomonas mendocina KR1 (toluene 4-monooxygenase [T4MO] pathway) on toluene, but not on p-cresol. An Escherichia coli transformant expressing T4MO transformed indole or naphthalene in chromogenic reactions, but not after exposure to phenylacetylene. The naphthalene reaction remained diminished in phenylacetylene-treated cells relative to untreated cells after phenylacetylene was removed, indicating irreversible inhibition. These techniques were used to differentiate toluene-degrading isolates from an aquifer. Based on data generated with these indicators and inhibitors, along with results from Biolog analysis for sole carbon source oxidation, the groundwater isolates were assigned to eight separate groups, some of which apparently differ in their mode of toluene catabolism.

  15. Photoacoustic signal saturation and optical limiting in C70-toluene solution

    E-print Network

    Harilal, S. S.

    Photoacoustic signal saturation and optical limiting in C70-toluene solution Riju C. Issac S. S photoacoustic studies in solutions of C70 in toluene are made using the 532-nm radiation from a frequency-doubled Nd:YAG laser. It is found that contrary to expectation, there is no photoacoustic (PA) signal

  16. Transformation of pWWO in Rhizobium leguminosarum DPT to Engineer Toluene Degrading Ability for Rhizoremediation.

    PubMed

    Goel, Garima; Pandey, Piyush; Sood, Anchal; Bisht, Sandeep; Maheshwari, D K; Sharma, G D

    2012-06-01

    Rhizoremediation of organic xenobiotics is based on interactions between plants and their associated micro-organisms. The present work was designed to engineer a bacterial system having toluene degradation ability along with plant growth promoting characteristics for effective rhizoremediation. pWWO harboring the genes responsible for toluene breakdown was isolated from Pseudomonas putida MTCC 979 and successfully transformed in Rhizobium DPT. This resulted in a bacterial strain (DPT(T)) which had the ability to degrade toluene as well as enhance growth of host plant. The frequency of transformation was recorded 5.7 × 10(-6). DPT produced IAA, siderophore, chitinase, HCN, ACC deaminase, solubilized inorganic phosphate, fixed atmospheric nitrogen and inhibited the growth of Fusarium oxysporum and Macrophomina phaseolina in vitro. During pot assay, 50 ppm toluene in soil was found to inhibit the germination of Cajanus cajan seeds. However when the seeds bacterized with toluene degrading P. putida or R. leguminosarum DPT were sown in pots, again no germination was observed. Non-bacterized as well as bacterized seeds germinated successfully in toluene free soil as control. The results forced for an alternative mode of application of bacteria for rhizoremediation purpose. Hence bacterial suspension was mixed with soil having 50 ppm of toluene. Germination index in DPT treated soil was 100% while in P. putida it was 50%. Untreated soil with toluene restricted the seeds to germinate. PMID:23729882

  17. Evaluation of the in-situ aerobic cometabolism of chlorinated ethenes by toluene-utilizing microorganisms

    E-print Network

    Semprini, Lewis

    Evaluation of the in-situ aerobic cometabolism of chlorinated ethenes by toluene by Elsevier B.V. Keywords: Aerobic cometabolism; Single-well push­pull tests; Toluene; ortho-cresol; Isobutene sites have the potential to transform TCE and lesser chlorinated ethenes via aerobic cometabolism

  18. CHANGES IN MRNA EXPRESSION PROFILES IN RAT CORTEX AND STRIATUM FOLLOWING SUB CHRONIC TOLUENE EXPOSURE.

    EPA Science Inventory

    Toluene, a volatile organic compound (VOC) used in many commercial products, is a ubiquitous air pollutant and therefore of interest to many EPA regulatory programs. A primary concern for toluene and other VOC’s is the potential for persistent neurotoxic effects from long term e...

  19. Effect of Ethanol, Acetate, and Phenol on Toluene Degradation Activity and todlux

    E-print Network

    Alvarez, Pedro J.

    Effect of Ethanol, Acetate, and Phenol on Toluene Degradation Activity and tod­lux Expression with increasing influent concentrations of ethanol, acetate, or phenol. Three inhibitory mechanisms were inhibition of toluene dioxygenase by phenol; and (3) metabolic flux dilution (MFD) by all three cosubstrates

  20. Metabolites formed during anaerobic transformation of toluene and o-xylene and their proposed relationship to the initial steps of toluene mineralization

    SciTech Connect

    Evans, P.J.; Ling, W.; Goldschmidt, B.; Young, L.Y. ); Ritter, E.R. )

    1992-02-01

    Strain T1 is a facultative bacterium that is capable of anaerobic toluene degradation under denitrifying conditions. While 80% of the carbon from toluene is either oxidized to carbon dioxide or assimilated into cellular carbon, a significant portion of the remainder is transformed into two dead-end metabolites. These metabolites were produced simultaneous to the mineralization of toluene and were identified as benzylsuccinic acid and benzylfumaric acid. Identification was based on comparison of mass spectra of the methyl esters of the metabolites and authentic compounds that were chemically synthesized. Strain T1 is also capable of o-xylene transformation during growth on toluene, o-Xylene does not serve as a source of carbon and is not mineralized. Rather, it is transformed to analogous dead-end metabolites, (2-methylbenzyl)-succinic acid and (2-methyl-benzyl)-fumaric acid. o-Xylene transformation also occurred during growth on succinic acid, which suggests that attack of the methyl group by succinyl-coenzyme A is a key reaction in this transformation. The authors reason that the main pathway for toluene oxidation to carbon dioxide involves a mechanism similar to that for the formation of the metabolites and involves an attack of the methyl group of toluene by acetyl-coenzyme A.

  1. MICROBIAL DEGRADATION OF TOLUENE UNDER SULFATE-REDUCING CONDITIONS AND THE INFLUENCE OF IRON ON THE PROCESS

    EPA Science Inventory

    Toluene degradation occurred concomitantly with sulfate reduction in anaerobic microcosms inoculated with contaminated subsurface soil from an aviation fuel storage facility near the Patuxent River (MD). imilar results were obtained for enrichment cultures in which toluene was th...

  2. Modeling the toxicokinetics of 24-hour toluene exposure in rats, impact of activity patterns and enzyme induction

    EPA Science Inventory

    Toluene, a solvent used in numerous consumer and industrial applications, exerts its critical effects on the brain and nervous system following inhalation exposure. Our previously published PBPK model successfully predicted toluene concentrations in blood and brain over a range o...

  3. DETERMINATION OF SECONDARY ORGANIC AEROSOL PRODUCTS FROM THE PHOTOOXIDATION OF TOLUENE AND THEIR IMPLICATIONS IN AMBIENT PM2.5

    EPA Science Inventory

    Laboratory study was carried out to investigate the secondary organic aerosol products from photooxidation of the aromatic hydrocarbon toluene. The laboratory experiments consisted of irradiating toluene/propylene/NOX/air mixtures in a smog chamber operated in the dynamic mode...

  4. Evaluation of a Polyvinyl Toluene Neutron Counter Array

    SciTech Connect

    Robert Hayes

    2008-03-01

    The purpose of this article is to simulate the performance of a neutron detector array for empirical configuration optimization and preliminary algorithm evaluation. Utilizing a compact array of borated Polyvinyl Toluene light pipes and Photomultiplier Tubes, pulse shape analysis, standard spectral histogramming, and multiplicity counting can enable neutron measurements for multiple applications. Results demonstrate that analysis with Monte Carlo N-Particle (MCNP) can be used to obtain a better understanding of field measurement results and aid in algorithm development for unfolding in conjunction with detector optimization. Use of a handheld neutron spectrometer has promise of widespread applicability. By correlating MCNP results with empirical measurements, substantial confidence can be placed on predicting detector response to sufficiently similar spectral sources under alternate experimental configurations. In addition, use of the detector has substantial promise for operational health physics applications.

  5. Structural Magnetic Resonance Imaging in an adult cohort following prenatal and early postnatal exposure to tetrachloroethylene (PCE)-contaminated drinking water.

    PubMed

    Janulewicz, Patricia A; Killiany, Ronald J; White, Roberta F; Martin, Brett M; Winter, Michael R; Weinberg, Janice M; Aschengrau, Ann

    2013-01-01

    This population-based retrospective cohort study examined Structural Magnetic Resonance Imaging (MRI) of the brain in relation to prenatal and early postnatal exposure to tetrachloroethylene (PCE)-contaminated drinking water on Cape Cod, Massachusetts. Subjects were identified through birth records from 1969 through 1983. Exposure was modeled using pipe network information from town water departments, a PCE leaching and transport algorithm, EPANet water flow modeling software, and Geographic Information System (GIS) methodology. Brain imaging was performed on 26 exposed and 16 unexposed subjects. Scans were acquired on a Philips 3T whole body scanner using the ADNI T1-weighted MP-RAGE scan. The scans were processed by FreeSurfer version 4.3.1 software to obtain measurements of specific brain regions. There were no statistically significant differences between exposed and unexposed subjects on the measures of white matter hypointensities (?: 127.5mm(3), 95% CI: -259.1, 1514.0), white matter volumes (e.g. total cerebral white matter: ?: 21230.0mm(3), 95% CI: -4512.6, 46971.7) or gray matter volumes (e.g. total cerebral gray matter: ?: 11976.0mm(3), 95% CI: -13657.2, 37609.3). The results of this study suggest that exposure to PCE during gestation and early childhood, at the levels observed in this population, is not associated with alterations in the brain structures studied. PMID:23571160

  6. Structural Magnetic Resonance Imaging in an Adult Cohort Following Prenatal and Early Postnatal Exposure to Tetrachloroethylene (PCE)-contaminated Drinking Water

    PubMed Central

    Janulewicz, Patricia A; Killiany, Ronald J; White, Roberta F; Martin, Brett M; Winter, Michael R; Weinberg, Janice M; Aschengrau, Ann

    2013-01-01

    This population-based retrospective cohort study examined Structural Magnetic Resonance Imaging (MRI) of the brain in relation to prenatal and early postnatal exposure to tetrachloroethylene (PCE)-contaminated drinking water on Cape Cod, Massachusetts. Subjects were identified through birth records from 1969 through 1983. Exposure was modeled using pipe network information from town water departments, a PCE leaching and transport algorithm, EPANet water flow modeling software, and Geographic Information System (GIS) methodology. Brain imaging was performed on 26 exposed and 16 unexposed subjects. Scans were acquired on a Philips 3T whole body scanner using the ADNI T1-weighted MP-RAGE scan. The scans were processed by FreeSurfer version 4.3.1 software to obtain measurements of specific brain regions. There were no statistically significant differences between exposed and unexposed subjects on measures of white matter hypointensities (?: 127.5 mm3, 95% CI: ?259.1, 1514.0), white matter volumes (e.g. total cerebral white matter: ?: 21230.0 mm3, 95% CI: ?4512.6, 46971.7) or gray matter volumes (e.g. total cerebral gray matter: ?: 11976.0 mm3, 95% CI: ?13657.2, 37609.3). The results of this study suggest that exposure to PCE during gestation and early childhood, at the levels observed in this population, is not associated with alterations in the brain structures studied. PMID:23571160

  7. Sarcosine attenuates toluene-induced motor incoordination, memory impairment, and hypothermia but not brain stimulation reward enhancement in mice

    SciTech Connect

    Chan, Ming-Huan; Institute of Neuroscience, National Changchi University, Taipei, Taiwan ; Chung, Shiang-Sheng; Department of Pharmacy, Yuli Veterans Hospital, Hualien, Taiwan ; Stoker, Astrid K.; Markou, Athina; Chen, Hwei-Hsien; Division of Mental Health and Addiction Medicine, Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Miaoli County, Taiwan

    2012-12-01

    Toluene, a widely used and commonly abused organic solvent, produces various behavioral disturbances, including motor incoordination and cognitive impairment. Toluene alters the function of a large number of receptors and ion channels. Blockade of N-methyl-D-aspartate (NMDA) receptors has been suggested to play a critical role in toluene-induced behavioral manifestations. The present study determined the effects of various toluene doses on motor coordination, recognition memory, body temperature, and intracranial self-stimulation (ICSS) thresholds in mice. Additionally, the effects of sarcosine on the behavioral and physiological effects induced by toluene were evaluated. Sarcosine may reverse toluene-induced behavioral manifestations by acting as an NMDA receptor co-agonist and by inhibiting the effects of the type I glycine transporter (GlyT1). Mice were treated with toluene alone or combined with sarcosine pretreatment and assessed for rotarod performance, object recognition memory, rectal temperature, and ICSS thresholds. Toluene dose-dependently induced motor incoordination, recognition memory impairment, and hypothermia and lowered ICSS thresholds. Sarcosine pretreatment reversed toluene-induced changes in rotarod performance, novel object recognition, and rectal temperature but not ICSS thresholds. These findings suggest that the sarcosine-induced potentiation of NMDA receptors may reverse motor incoordination, memory impairment, and hypothermia but not the enhancement of brain stimulation reward function associated with toluene exposure. Sarcosine may be a promising compound to prevent acute toluene intoxications by occupational or intentional exposure. -- Highlights: ? Toluene induces impairments in Rotarod test and novel object recognition test. ? Toluene lowers rectal temperature and ICSS thresholds in mice. ? Sarcosine reverses toluene-induced changes in motor, memory and body temperature. ? Sarcosine pretreatment does not affect toluene-induced reward enhancement.

  8. Anodes Stimulate Anaerobic Toluene Degradation via Sulfur Cycling in Marine Sediments.

    PubMed

    Daghio, Matteo; Vaiopoulou, Eleni; Patil, Sunil A; Suárez-Suárez, Ana; Head, Ian M; Franzetti, Andrea; Rabaey, Korneel

    2015-01-01

    Hydrocarbons released during oil spills are persistent in marine sediments due to the absence of suitable electron acceptors below the oxic zone. Here, we investigated an alternative bioremediation strategy to remove toluene, a model monoaromatic hydrocarbon, using a bioanode. Bioelectrochemical reactors were inoculated with sediment collected from a hydrocarbon-contaminated marine site, and anodes were polarized at 0 mV and +300 mV (versus an Ag/AgCl [3 M KCl] reference electrode). The degradation of toluene was directly linked to current generation of up to 301 mA m(-2) and 431 mA m(-2) for the bioanodes polarized at 0 mV and +300 mV, respectively. Peak currents decreased over time even after periodic spiking with toluene. The monitoring of sulfate concentrations during bioelectrochemical experiments suggested that sulfur metabolism was involved in toluene degradation at bioanodes. 16S rRNA gene-based Illumina sequencing of the bulk anolyte and anode samples revealed enrichment with electrocatalytically active microorganisms, toluene degraders, and sulfate-reducing microorganisms. Quantitative PCR targeting the ?-subunit of the dissimilatory sulfite reductase (encoded by dsrA) and the ?-subunit of the benzylsuccinate synthase (encoded by bssA) confirmed these findings. In particular, members of the family Desulfobulbaceae were enriched concomitantly with current production and toluene degradation. Based on these observations, we propose two mechanisms for bioelectrochemical toluene degradation: (i) direct electron transfer to the anode and/or (ii) sulfide-mediated electron transfer. PMID:26497463

  9. Enhanced degradation efficiency of toluene using titania/silica photocatalysis as a regeneration process.

    PubMed

    Luo, Y; Zou, L; Hu, E

    2006-04-01

    Three kinds of titania/silica pellets were prepared using the sol-gel method with surface areas of 50.4 m2 g(-1), 421.1 m2 x g(-1) and 89.1 m2 x g(-1). An annular reactor was designed and built to determine the degradation efficiency of toluene and to investigate the relationship between the adsorption and desorption-photocatalytic processes. Surface area is an important factor influencing the adsorption-photocatalytic efficiency. Higher surface areas of pellets contribute to high rates of conversion of toluene. Un-reacted toluene and reaction intermediates accumulating on their surface deactivated the titania/silica catalyst. To overcome this problem, the adsorption and regeneration process were alternated in a dual reactor system. Connecting or disconnecting the toluene feed gas enabled one reactor to adsorb toluene, while the second reactor was regenerated by photocatalysis. Using UV irradiation and titania/silica pellets with high BET surface area (421.1 m2 x g(-1)), the alternating adsorption/regeneration processes kept the degradation efficiency of toluene at 90% after 8 hours operation. By improving the adsorption-photocatalysis efficiency, and minimising the generation and accumulation of intermediate on the surface of pellets, the method extended catalyst life and maintained a high degradation efficiency of toluene. PMID:16583820

  10. Hesperidin ameliorates trichloroethylene-induced nephrotoxicity by abrogation of oxidative stress and apoptosis in wistar rats.

    PubMed

    Siddiqi, Aisha; Nafees, Sana; Rashid, Summya; Sultana, Sarwat; Saidullah, Bano

    2015-08-01

    Trichloroethylene (TCE), a nephrotoxicant is known to cause severe damage to the kidney. In this study, the nephroprotective potential of hesperidin was evaluated against TCE-induced nephrotoxicity in wistar rats. Oral administration of TCE (1000 mg/kg b.wt) for 15 days enhanced renal lipid peroxidation and reduced antioxidant enzymes armoury viz., reduced renal glutathione, glutathione peroxidase, glutathione reductase, glutathione-S-transferase, catalase and superoxide dismutase. It also enhanced the levels of blood urea nitrogen, creatinine and kidney injury molecule (KIM-1). Caspase-3 and bax expression were found to be elevated, while that of bcl-2 reduced suggesting that TCE induces apoptosis. However, pretreatment with hesperidin at a dose of 100 and 200 mg/kg b.wt for 15 days significantly decreased lipid peroxidation, increased the levels of antioxidant enzymes and reduced blood urea, creatinine and KIM-1 levels. Hesperidin also modulated the apoptotic pathways by altering the expressions of caspase-3, bax and bcl-2 to normal. Our results suggest that hesperidin can be used as a nephroprotective agent against TCE-induced nephrotoxicity. PMID:25994504

  11. Immunological techniques as tools to characterize the subsurface microbial community at a trichloroethylene contaminated site

    SciTech Connect

    Fliermans, C.B.; Dougherty, J.M.; Franck, M.M.; McKinzey, P.C.; Hazen, T.C.

    1992-01-01

    Effective in situ bioremediation strategies require an understanding of the effects pollutants and remediation techniques have on subsurface microbial communities. Therefore, detailed characterization of a site's microbial communities is important. Subsurface sediment borings and water samples were collected from a trichloroethylene (TCE) contaminated site, before and after horizontal well in situ air stripping and bioventing, as well as during methane injection for stimulation of methane-utilizing microorganisms. Subsamples were processed for heterotrophic plate counts, acridine orange direct counts (AODC), community diversity, direct fluorescent antibodies (DFA) enumeration for several nitrogen-transforming bacteria, and Biolog [reg sign] evaluation of enzyme activity in collected water samples. Plate counts were higher in near-surface depths than in the vadose zone sediment samples. During the in situ air stripping and bioventing, counts increased at or near the saturated zone, remained elevated throughout the aquifer, but did not change significantly after the air stripping. Sporadic increases in plate counts at different depths as well as increased diversity appeared to be linked to differing lithologies. AODCs were orders of magnitude higher than plate counts and remained relatively constant with depth except for slight increases near the surface depths and the capillary fringe. Nitrogen-transforming bacteria, as measured by serospecific DFA, were greatly affected both by the in situ air stripping and the methane injection. Biolog[reg sign] activity appeared to increase with subsurface stimulation both by air and methane. The complexity of subsurface systems makes the use of selective monitoring tools imperative.

  12. Immunological techniques as tools to characterize the subsurface microbial community at a trichloroethylene contaminated site

    SciTech Connect

    Fliermans, C.B.; Dougherty, J.M.; Franck, M.M.; McKinzey, P.C.; Hazen, T.C.

    1992-12-31

    Effective in situ bioremediation strategies require an understanding of the effects pollutants and remediation techniques have on subsurface microbial communities. Therefore, detailed characterization of a site`s microbial communities is important. Subsurface sediment borings and water samples were collected from a trichloroethylene (TCE) contaminated site, before and after horizontal well in situ air stripping and bioventing, as well as during methane injection for stimulation of methane-utilizing microorganisms. Subsamples were processed for heterotrophic plate counts, acridine orange direct counts (AODC), community diversity, direct fluorescent antibodies (DFA) enumeration for several nitrogen-transforming bacteria, and Biolog {reg_sign} evaluation of enzyme activity in collected water samples. Plate counts were higher in near-surface depths than in the vadose zone sediment samples. During the in situ air stripping and bioventing, counts increased at or near the saturated zone, remained elevated throughout the aquifer, but did not change significantly after the air stripping. Sporadic increases in plate counts at different depths as well as increased diversity appeared to be linked to differing lithologies. AODCs were orders of magnitude higher than plate counts and remained relatively constant with depth except for slight increases near the surface depths and the capillary fringe. Nitrogen-transforming bacteria, as measured by serospecific DFA, were greatly affected both by the in situ air stripping and the methane injection. Biolog{reg_sign} activity appeared to increase with subsurface stimulation both by air and methane. The complexity of subsurface systems makes the use of selective monitoring tools imperative.

  13. An analysis of trichloroethylene movement in groundwater at castle Air Force Base, California

    USGS Publications Warehouse

    Avon, L.; Bredehoeft, J.D.

    1989-01-01

    A trichloroethylene (TCE) plume has been identified in the groundwater under a U.S. Air Force Base in the Central Valley of California. An areal, two-dimensional numerical solute transport model indicates that the movement of TCE due to advection, dispersion, and linear sorption is simulated over a 25-year historic period. The model is used in several ways: (1) to estimate the extent of the plume; (2) to confirm the likely sources of contamination as suggested by a soil organic vapor survey of the site; and (3) to make predictions about future movement of the plume. Despite the noisy and incomplete data set, the model reproduces the general trends in contamination at a number of observation wells. The analysis indicates that soil organic vapor monitoring is an effective tool for identifying contaminant source locations. Leaky sewer pipes and underground tanks are the indicated pathways for TCE to have entered the groundwater system. The chemical mass balance indicates that a total of about 100 gallons of TCE - a relatively small amount of organic solvent - has created the observed groundwater plume. ?? 1989.

  14. pH dependence of persulfate activation by EDTA/Fe(III) for degradation of trichloroethylene

    NASA Astrophysics Data System (ADS)

    Liang, Chenju; Liang, Ching-Ping; Chen, Chi-Chin

    2009-05-01

    The ability of free ferrous ion activated persulfate (S 2O 82-) to generate sulfate radicals (SO 4- rad ) for the oxidation of trichloroethylene (TCE) is limited by the scavenging of SO 4- rad with excess Fe 2+ and a quick conversion of Fe 2+ to Fe 3+. This study investigated the applicability of ethylene-diamine-tetra-acetic acid (EDTA) chelated Fe 3+ in activating persulfate for the destruction of TCE in aqueous phase under pH 3, 7 and 10. Fe 3+ and EDTA alone did not appreciably degrade persulfate. The presence of TCE in the EDTA/Fe 3+ activated persulfate system can induce faster persulfate and EDTA degradation due to iron recycling to activate persulfate under a higher pH condition. Increasing the pH leads to increases in pseudo-first-order-rate constants for TCE, S 2O 82- and EDTA degradations, and Cl generation. Accordingly, the experiments at pH 10 with different EDTA/Fe 3+ molar ratios indicated that a 1/1 ratio resulted in a remarkably higher degradation rate at the early stage of reaction as compared to results by other ratios. Higher persulfate dosage under the EDTA/Fe 3+ molar ratio of 1/1 resulted in greater TCE degradation rates. However, increases in persulfate concentration may also lead to an increase in the rate of persulfate consumption.

  15. Modulation of trichloroethylene in vitro metabolism by different drugs in human.

    PubMed

    Cheikh Rouhou, Mouna; Haddad, Sami

    2014-08-01

    Toxicological interactions with drugs have the potential to modulate the toxicity of trichloroethylene (TCE). Our objective is to identify metabolic interactions between TCE and 14 widely used drugs in human suspended hepatocytes and characterize the strongest using microsomal assays. Changes in concentrations of TCE and its metabolites were measured by headspace GC-MS. Results with hepatocytes show that amoxicillin, cimetidine, ibuprofen, mefenamic acid and ranitidine caused no significant interactions. Naproxen and salicylic acid showed to increase both TCE metabolites levels, whereas acetaminophen, carbamazepine and erythromycin rather decreased them. Finally, diclofenac, gliclazide, sulphasalazine and valproic acid had an impact on the levels of only one metabolite. Among the 14 tested drugs, 5 presented the most potent interactions and were selected for confirmation with microsomes, namely naproxen, salicylic acid, acetaminophen, carbamazepine and valproic acid. Characterization in human microsomes confirmed interaction with naproxen by competitively inhibiting trichloroethanol (TCOH) glucuronidation (Ki=2.329 mM). Inhibition of TCOH formation was also confirmed for carbamazepine (partial non-competitive with Ki=70 ?M). Interactions with human microsomes were not observed with salicylic acid and acetaminophen, similar to prior results in rat material. For valproic acid, interactions with microsomes were observed in rat but not in human. Inhibition patterns were shown to be similar in human and rat hepatocytes, but some differences in mechanisms were noted in microsomal material between species. Next research efforts will focus on determining the adequacy between in vitro observations and the in vivo situation. PMID:24632077

  16. Observation of trapped gas during electrical resistance heating of trichloroethylene under passive venting conditions

    NASA Astrophysics Data System (ADS)

    Martin, E. J.; Kueper, B. H.

    2011-11-01

    A two-dimensional experiment employing a heterogeneous sand pack incorporating two pools of trichloroethylene (TCE) was performed to assess the efficacy of electrical resistance heating (ERH) under passive venting conditions. Temperature monitoring displayed the existence of a TCE-water co-boiling plateau at 73.4 °C, followed by continued heating to 100 °C. A 5 cm thick gas accumulation formed beneath a fine-grained capillary barrier during and after co-boiling. The capillary barrier did not desaturate during the course of the experiment; the only pathway for gas escape being through perforated wells traversing the barrier. The thickness of the accumulation was dictated by the entry pressure of the perforated well. The theoretical maximum TCE soil concentration within the region of gas accumulation, following gas collapse, was estimated to be 888 mg/kg. Post-heating soil sampling revealed TCE concentrations in this region ranging from 27 mg/kg to 96.7 mg/kg, indicating removal of aqueous and gas phase TCE following co-boiling as a result of subsequent boiling of water. The equilibrium concentrations of TCE in water corresponding to the range of post-treatment concentrations in soil (6.11 mg/kg to 136 mg/kg) are calculated to range from 19.8 mg/l to 440 mg/l. The results of this experiment illustrate the importance of providing gas phase venting during the application of ERH in heterogeneous porous media.

  17. Observation of trapped gas during electrical resistance heating of trichloroethylene under passive venting conditions.

    PubMed

    Martin, E J; Kueper, B H

    2011-11-01

    A two-dimensional experiment employing a heterogeneous sand pack incorporating two pools of trichloroethylene (TCE) was performed to assess the efficacy of electrical resistance heating (ERH) under passive venting conditions. Temperature monitoring displayed the existence of a TCE-water co-boiling plateau at 73.4°C, followed by continued heating to 100°C. A 5cm thick gas accumulation formed beneath a fine-grained capillary barrier during and after co-boiling. The capillary barrier did not desaturate during the course of the experiment; the only pathway for gas escape being through perforated wells traversing the barrier. The thickness of the accumulation was dictated by the entry pressure of the perforated well. The theoretical maximum TCE soil concentration within the region of gas accumulation, following gas collapse, was estimated to be 888mg/kg. Post-heating soil sampling revealed TCE concentrations in this region ranging from 27mg/kg to 96.7mg/kg, indicating removal of aqueous and gas phase TCE following co-boiling as a result of subsequent boiling of water. The equilibrium concentrations of TCE in water corresponding to the range of post-treatment concentrations in soil (6.11mg/kg to 136mg/kg) are calculated to range from 19.8mg/l to 440mg/l. The results of this experiment illustrate the importance of providing gas phase venting during the application of ERH in heterogeneous porous media. PMID:22115093

  18. Modeling adsorption kinetics of trichloroethylene onto biochars derived from soybean stover and peanut shell wastes.

    PubMed

    Ahmad, Mahtab; Lee, Sang Soo; Oh, Sang-Eun; Mohan, Dinesh; Moon, Deok Hyun; Lee, Young Han; Ok, Yong Sik

    2013-12-01

    Trichloroethylene (TCE) is one of the most hazardous organic pollutants in groundwater. Biochar produced from agricultural waste materials could serve as a novel carbonaceous adsorbent for removing organic contaminants from aqueous media. Biochars derived from pyrolysis of soybean stover at 300 °C and 700 °C (S-300 and S-700, respectively), and peanut shells at 300 °C and 700 °C (P-300 and P-700, respectively) were utilized as carbonaceous adsorbents to study batch aqueous TCE remediation kinetics. Different rate-based and diffusion-based kinetic models were adopted to understand the TCE adsorption mechanism on biochars. With an equilibrium time of 8-10 h, up to 69 % TCE was removed from water. Biochars produced at 700 °C were more effective than those produced at 300 °C. The P-700 and S-700 had lower molar H/C and O/C versus P-300 and S-300 resulting in high aromaticity and low polarity accompanying with high surface area and high adsorption capacity. The pseudo-second order and intraparticle diffusion models were well fitted to the kinetic data, thereby, indicating that chemisorption and pore diffusion were the dominating mechanisms of TCE adsorption onto biochars. PMID:23608978

  19. Application of microwave air plasma in the destruction of trichloroethylene and carbon tetrachloride at atmospheric pressure.

    PubMed

    Rubio, S J; Quintero, M C; Rodero, A

    2011-02-15

    In this study, the destruction rate of a volatile waste destruction system based on a microwave plasma torch operating at atmospheric pressure was investigated. Atmospheric air was used to maintain the plasma and was introduced by a compressor, which resulted in lower operating costs compared to other gases such as argon and helium. To isolate the output gases and control the plasma discharge atmosphere, the plasma was coupled to a reactor. The effect of the gas flow rate, microwave power and initial concentration of compound on the destruction efficiency of the system was evaluated. In this study, trichloroethylene and carbon tetrachloride were used as representative volatile organic compounds to determine the destruction rate of the system. Based on the experimental results, at an applied microwave power less than 1000 W, the proposed system can reduce input concentrations in the ppmv range to output concentrations at the ppbv level. High air flow rates and initial concentrations produced energy efficiency values greater than 1000 g/kW h. The output gases and species present in the plasma were analysed by gas chromatography and optical emission spectroscopy, respectively, and negligible amounts of halogenated compounds resulting from the cleavage of C(2)HCl(3) and CCl(4) were observed. The gaseous byproducts of decomposition consisted mainly of CO(2), NO and N(2)O, as well as trace amounts of Cl(2) and solid CuCl. PMID:21146292

  20. In situ detection of organic molecules: Optrodes for TCE (trichloroethylene) and CHCl sub 3

    SciTech Connect

    Angel, S. M.; Langry, K. C.; Ridley, M. N.

    1990-05-01

    We have developed new absorption-based chemical indicators for detecting chloroform (CHCl{sub 3}) and trichloroethylene (TCE). These indicators were used to make very sensitive optical chemical sensors (optrodes) for each of these two contaminants. Concentrations below 10 ppb can be accurately measured using these sensors. Furthermore, they are selective and do not response to similar contaminants commonly found with TCE and CHCl{sub 3} in contaminated groundwater. In addition, the sensor response is linearly proportional to the chemical concentration. In this report, we describe the details of this optrode and the putative reaction sequences of the indicator chemistries with CHCl{sub 3} and TCE and present an analysis of the spectral data obtained from the reaction products. A key part of the development of this optrode was designing a simple readout device. The readout is a dual-channel fiber-optic fluorimeter modified to measure transmission or absorption of light. The system is controlled by a lap-top microcomputer and is fully field portable. In addition to describing the final absorption optrode, details of the chemical indicator reactions are presented for both absorption- (colorimetric) and fluorescence-based optrodes. Finally, we report on the syntheses of several compounds used to evaluate the indicator chemical reactions that led to the development of the absorption optrode. 23 refs., 26 figs., 1 tab.

  1. Synergetic degradation of Fe/Cu/C for groundwater polluted by trichloroethylene.

    PubMed

    Zhang, Wei; Li, Li; Lin, Kuangfei; Xiong, Bang; Li, Bingzhi; Lu, Shuguang; Guo, Meijin; Cui, Xinhong

    2012-01-01

    This study investigated the enhancement of synergetic degradation of Fe/Cu/C (Fe: commercial iron, Cu: solid product of Fe reacted with CuSO(4), C: carbon powder) for simulated groundwater contaminated by trichloroethylene (TCE). Zero valent iron (ZVI) as a reducing agent was proved to be effective for TCE removal. The Fe/Cu/C system resulted in higher reduction efficiency as a result of the synergetic role of Fe/Cu and Fe/C microelectrode than the Fe (ZVI) or Fe/Cu system, and the half-life was only about 0.4 h. When m(Fe) achieved 12.5 g L(-1), the residual concentration of TCE almost leveled off. Fe:Cu = 10:1 or m(C) = 0.0086 g can induce the optimum function for TCE degradation. A neutral condition was appropriate for TCE degradation, and an acidic system slightly favored TCE dechlorination compared with an alkaline system. GC/MS analysis indicated that TCE was dechlorinated to 1,1-dichloroethene (1,1-DCE), cis-1,2-dichloroethene (cis-DCE) and vinyl chloride (VC), and 1,1-DCE might be the precursor. Fe/Cu/C reduction is a highly promising technique for TCE removal, and it is an excellent alternative to enhance TCE reductive dechlorination. PMID:22643424

  2. Deactivation model for the adsorption of trichloroethylene vapor on an activated carbon bed

    SciTech Connect

    Suyadal, Y.; Erol, M.; Oguz, H.

    2000-03-01

    In this work, the adsorption of trichloroethylene (TCE) vapor was investigated in a laboratory-scale packed-bed adsorber by using granular activated carbon (GAC) at constant pressure (101.3 kPa). The packed-bed adsorber (PBA) was operated batchwise with the charges of GAC particles in the ranges of 2.5--10.0 g for obtaining TCE breakthrough curves. Experiments were carried out at different temperatures (25.6 {le} T({degree}C) {le} 35.8) and TCE feedstock concentrations (6,350 {le} C (ppm TCE) {le} 7,950) within the range of space velocity (5,000 {le} {var_theta} (h{sup {minus}1}) {le} 17,000). The effects of TCE inlet concentration, operating temperature, and mass of adsorbent (m{sub Ads}) on the TCE breakthrough curves were investigated, respectively. The deactivation model (DM) was tested for these curves by using the analogy between the adsorption of TCE and the deactivation of catalyst particles. Observed adsorption rate constants (k{sub S}) and first-order deactivation rate constants (k{sub d}) were obtained from the model. It was found that the deactivation model describes the experimental breakthrough curves more accurately compared to the adsorption isotherms given in the literature.

  3. In situ bioremediation of trichloroethylene-contaminated water by a resting-cell methanotrophic microbial filter

    SciTech Connect

    Taylor, R T; Duba, A G; Durham, W B; Hanna, M L; Jackson, K J; Jovanovich, M C; Knapp, R B; Knezovich, J P; Shah, N N; Shonnard, D R; Wijesinghe, A M

    1992-10-01

    The Lawrence Livermore National Laboratory is testing and developing an in situ microbial filter technology for remediating migrating subsurface plumes contaminated with low concentrations of trichloroethylene (TCE). Their current focus is the establishment of a replenishable bioactive zone (catalytic filter) along expanding plume boundaries by the Injection of a representative methanotrophic bacterium, Methylosinus trichosporium OB3b. We have successfully demonstrated this microbial filter strategy using emplaced, attached resting cells (no methane additions) in a 1.1-m flow-through test bed loaded with water-saturated sand. Two separate 24 h pulses of TCE (109 ppb and 85 ppb), one week apart, were pumped through the system at a flow velocity of 1.5 cm/h; no TCE (<0.5 ppb) was detected on the downstream side of the microbial filter. Subsequent excavation of the wet sand confirmed the existence of a TCE-bioactive zone 19 days after it had been created. An enhanced longevity of the cellular, soluble-form methane monooxygenase produced by this methanotroph Is a result of our laboratory bioreactor culturing conditions. Additional experiments with cells in sealed vials and emplaced in the 1.1-m test bed yielded a high resting-cell finite TCE biotransformation capacity of [approximately] 0.25 mg per mg of bacteria; this is suitable for a planned sand-filled trench field demonstration at a Lawrence Livermore National Laboratory site.

  4. Differential Immunotoxicity Induced by Two Different Windows of Developmental Trichloroethylene Exposure

    PubMed Central

    Gilbert, Kathleen M.; Woodruff, William; Blossom, Sarah J.

    2014-01-01

    Developmental exposure to environmental toxicants may induce immune system alterations that contribute to adult stage autoimmune disease. We have shown that continuous exposure of MRL+/+ mice to trichloroethylene (TCE) from gestational day (GD) 0 to postnatal day (PND) 49 alters several aspects of CD4+ T cell function. This window of exposure corresponds to conception-adolescence/young adulthood in humans. More narrowly defining the window of TCE developmental exposure causes immunotoxicity that would establish the stage at which avoidance and/or intervention would be most effective. The current study divided continuous TCE exposure into two separate windows, namely, gestation only (GD0 to birth (PND0)) and early-life only (PND0-PND49). The mice were examined for specific alterations in CD4+ T cell function at PND49. One potentially long-lasting effect of developmental exposure, alterations in retrotransposon expression indicative of epigenetic alterations, was found in peripheral CD4+ T cells from both sets of developmentally exposed mice. Interestingly, certain other effects, such as alterations in thymus cellularity, were only found in mice exposed to TCE during gestation. In contrast, expansion of memory/activation cell subset of peripheral CD4+ T cells were only found in mice exposed to TCE during early life. Different windows of developmental TCE exposure can have different functional consequences. PMID:24696780

  5. Biodegradation of trichloroethylene and its anaerobic daughter products in freshwater wetland sediments

    USGS Publications Warehouse

    Lorah, M.M.; Olsen, L.D.

    2001-01-01

    Laboratory microcosms were prepared under methanogenic, sulfate-reducing, and aerobic conditions using sediment and groundwater from a freshwater wetland that is a discharge area for a trichloroethylene (TCE) to evaluate potential biodegradation rates of TCE and its anaerobic daughter products (cis-1,2-dichloroethylene, trans-1,2-dichloroethylene, and vinyl chloride (VC)). Anaerobic degradation of TCE was about an order of magnitude faster under methanogenic conditions than under sulfate-reducing conditions. Both 12DCE and VC were found under sulfate-reducing conditions in the microcosms containing the wetland sediment, but their production, especially for VC, was substantially slower than under methanogenic conditions. Methane concentrations remained approximately constant (when losses in the formalin-amended controls are considered) in the microcosms amended with TCE and increased in the microcosms amended with the 12DCE isomers and VC during the first 18-25 days of incubation. The most rapid decrease in concentrations of TCE, cis-12DCE, trans-12DCE, and VC was found after aerobic methane-oxidizing conditions were definitely established.

  6. In situ bioremediation of trichloroethylene-contaminated water by a resting-cell methanotrophic microbial filter

    SciTech Connect

    Taylor, R.T.; Duba, A.G.; Durham, W.B.; Hanna, M.L.; Jackson, K.J.; Jovanovich, M.C.; Knapp, R.B.; Knezovich, J.P.; Shah, N.N.; Shonnard, D.R.; Wijesinghe, A.M.

    1992-10-01

    The Lawrence Livermore National Laboratory is testing and developing an in situ microbial filter technology for remediating migrating subsurface plumes contaminated with low concentrations of trichloroethylene (TCE). Their current focus is the establishment of a replenishable bioactive zone (catalytic filter) along expanding plume boundaries by the Injection of a representative methanotrophic bacterium, Methylosinus trichosporium OB3b. We have successfully demonstrated this microbial filter strategy using emplaced, attached resting cells (no methane additions) in a 1.1-m flow-through test bed loaded with water-saturated sand. Two separate 24 h pulses of TCE (109 ppb and 85 ppb), one week apart, were pumped through the system at a flow velocity of 1.5 cm/h; no TCE (<0.5 ppb) was detected on the downstream side of the microbial filter. Subsequent excavation of the wet sand confirmed the existence of a TCE-bioactive zone 19 days after it had been created. An enhanced longevity of the cellular, soluble-form methane monooxygenase produced by this methanotroph Is a result of our laboratory bioreactor culturing conditions. Additional experiments with cells in sealed vials and emplaced in the 1.1-m test bed yielded a high resting-cell finite TCE biotransformation capacity of {approximately} 0.25 mg per mg of bacteria; this is suitable for a planned sand-filled trench field demonstration at a Lawrence Livermore National Laboratory site.

  7. Evaluation of the effectiveness of using alfalfa and buffalo grass for remediation of trichloroethylene from groundwater

    SciTech Connect

    Caravello, V.

    1998-06-03

    Phytoremediation is receiving increasing attention due to the potential for vegetation to play a significant role in bioremediation of contaminated soils and groundwater. The purpose of this research was to conduct a pilot study to determine if buffalo grass would enhance the remediation of groundwater contaminated with trichloroethylene (TCE). A mass-balance experiment was designed and executed to determine the extent of TCE remediation/degradation occurring through buffalo grass. Measurements for TCE in air, water, and soil were completed for three treatments: (1) buffalo grass, (2) alfalfa, and (3) soil following challenge with a water-TCE mixture. In total, 267 air samples, 43 water samples, 85 soil samples, and 40 vegetative samples were collected and analyzed. The analysis identified two important facts. First, there were no significant differences detected between TCE concentrations in soil, water, and air between groups. Second, there is a significant difference in the amount of the TCE-water mixture consumed in chambers with plants versus chambers without plants. The mass balance of the experiment was not achieved due to unaccountable losses of TCE from the chambers. The major loss mechanism for TCE appears to be from the breakthrough of air sampling media during the experiment. Thus, the data are insufficient to determine if remediation occurred via plants or by preferential pathways through the soil. Future experiments should be designed to include daily monitoring of the aquifer, humidity tolerant air sampling protocol, and relief from the build-up of humidity and transpiration inside the chambers.

  8. Remediation of trichloroethylene-contaminated soils by star technology using vegetable oil smoldering.

    PubMed

    Salman, Madiha; Gerhard, Jason I; Major, David W; Pironi, Paolo; Hadden, Rory

    2015-03-21

    Self-sustaining treatment for active remediation (STAR) is an innovative soil remediation approach based on smoldering combustion that has been demonstrated to effectively destroy complex hydrocarbon nonaqueous phase liquids (NAPLs) with minimal energy input. This is the first study to explore the smoldering remediation of sand contaminated by a volatile NAPL (trichloroethylene, TCE) and the first to consider utilizing vegetable oil as supplemental fuel for STAR. Thirty laboratory-scale experiments were conducted to evaluate the relationship between key outcomes (TCE destruction, rate of remediation) to initial conditions (vegetable oil type, oil: TCE mass ratio, neat versus emulsified oils). Several vegetable oils and emulsified vegetable oil formulations were shown to support remediation of TCE via self-sustaining smoldering. A minimum concentration of 14,000 mg/kg canola oil was found to treat sand exhibiting up to 80,000 mg/kg TCE. On average, 75% of the TCE mass was removed due to volatilization. This proof-of-concept study suggests that injection and smoldering of vegetable oil may provide a new alternative for driving volatile contaminants to traditional vapour extraction systems without supplying substantial external energy. PMID:25528233

  9. Degradation of trichloroethylene in aqueous solution by calcium peroxide activated with ferrous ion.

    PubMed

    Zhang, Xiang; Gu, Xiaogang; Lu, Shuguang; Miao, Zhouwei; Xu, Minhui; Fu, Xiaori; Qiu, Zhaofu; Sui, Qian

    2015-03-01

    The application of calcium peroxide (CaO2) activated with ferrous ion to stimulate the degradation of trichloroethylene (TCE) was investigated. The experimental results showed that TCE could be completely degraded in 5 min at a CaO2/Fe(II)/TCE molar ratio of 4/8/1. Probe compound tests demonstrated the presence of reactive oxygen species HO· and O2(-·) in CaO2/Fe(II) system, while scavenging tests indicated that HO· was the dominant active species responsible for TCE removal, and O2(-·) could promote TCE degradation in CaO2/Fe(II) system. In addition, the influences of initial solution pH and solution matrix were evaluated. It suggested that the elevation of initial solution pH suppressed TCE degradation. Cl(-) had significant scavenging effect on TCE removal, whereas HCO3(-) of high concentration showed favorable function. The influences of NO3(-) and SO4(2-) could be negligible, while natural organic matter (NOM) had a negative effect on TCE removal at a relatively high concentration. The results demonstrated that the technique of CaO2 activated with ferrous ion is a highly promising technique in in situ chemical oxidation (ISCO) remediation in TCE contaminated sites. PMID:25463240

  10. Transport via xylem of trichloroethylene in wheat, corn, and tomato seedlings.

    PubMed

    Su, Yu H; Liu, T; Liang, Yong C

    2010-10-15

    Transport via xylem of trichloroethylene (TCE) from roots to shoots in seedlings of wheat, corn, and tomato was measured following a 24-h exposure of plant roots to hydroponic solutions containing TCE. Dewdrops on plant leaves were also collected to test the foliar uptake by plants and the volatilization of TCE from shoot to air. Results indicated that the TCE concentration in xylem sap of wheat and corn decreased significantly with increasing TCE concentration in external solutions, where the initial concentration was set at 10-30 mg l(-1). The translocation stream concentration factor (TSCF) with the three plant species, defined as the ratio of the contaminant concentration in plant xylem sap to that in external solution, decreased sharply with increasing external TCE concentration or with increasing exposure time. Among the three plant species tested, the efficiency of TCE transport from roots to shoots followed the order of corn>wheat>tomato, based on the TCE concentration in xylem sap and the TSCF value. However, the TCE removal efficiency from external solution by three plant species followed the order of wheat>corn>tomato, because of the strong exchange of TCE between corn leaves and air and the rapid movement downward via phloem inside the plant. TCE concentrations in dewdrops collected from wheat and corn were far higher than in the xylem sap, especially with the corn. PMID:20619535

  11. Bioremediation of Trichloroethylene-Contaminated Sediments Augmented with a Dehalococcoides Consortia

    SciTech Connect

    McKinsey, P.C.

    2003-02-20

    At the Department of Energy's (DOE) Savannah River Site (SRS) in Aiken, SC there are a number of sites contaminated with Chlorinated Ethenes (CE) due to past disposal practices. Sediments from two CE contaminated SRS locations were evaluated for trichloroethylene (TCE) biodegradation through anaerobic laboratory microcosms. The testing included addition of amendments and bioaugmentation of sediments. The anaerobic microcosms were first amended with substrates including acetate, lactate, molasses, soybean oil, methanol, sulfate, yeast extract, Regenesis HRC(R), and MEAL (methanol, ethanol, acetate, lactate mixture). Microcosms were analyzed after biostimulation for 9 months and no significant TCE biodegradation was observed. At 10 months, additional TCE, fresh amendments, and a mixed culture containing Dehalococcoides ethenogenes were added to active microcosms. A significant decrease in TCE concentrations and an increase in biodegradation products cis-dichloroethylene (cDCE) and vinyl chloride (VC) were noted within 2 weeks of bioaugmentation. Microcosms amended with lactate and sulfate showed complete transformation of TCE (3 ppm) to ethene within 40 days after bioaugmentation. Microcosms amended with other substrates - soybean oil, acetate, yeast extract, and methanol - also show enhanced biodegradation of TCE to ethene. Microcosms amended with molasses and Regenesis HRC showed limited TCE transformation. No TCE transformation was seen in killed control microcosms. On the basis of these successful results, plans are underway for field-scale in-situ deployment of biostimulation/bioaugmentation at SRS.

  12. The Relationship between the Occupational Exposure of Trichloroethylene and Kidney Cancer

    PubMed Central

    2014-01-01

    Trichloroethylene (TCE) has been widely used as a degreasing agent in many manufacturing industries. Recently, the International Agency for Research on Cancer presented “sufficient evidence” for the causal relationship between TCE and kidney cancer. The aim of this study was to review the epidemiologic evidences regarding the relationship between TCE exposure and kidney cancer in Korean work environments. The results from the cohort studies were inconsistent, but according to the meta-analysis and case–control studies, an increased risk for kidney cancer was present in the exposure group and the dose–response relationship could be identified using various measures of exposure. In Korea, TCE is a commonly used chemical for cleaning or degreasing processes by various manufacturers; average exposure levels of TCE vary widely. When occupational physicians evaluate work-relatedness kidney cancers, they must consider past exposure levels, which could be very high (>100 ppm in some cases) and associated with jobs, such as plating, cleaning, or degreasing. The exposure levels at a manual job could be higher than an automated job. The peak level of TCE could also be considered an important exposure-related variable due to the possibility of carcinogenesis associated with high TCE doses. This review could be a comprehensive reference for assessing work-related TCE exposure and kidney cancer in Korea. PMID:24955246

  13. Characterization of trichloroethylene adsorption onto waste biocover soil in the presence of landfill gas.

    PubMed

    He, Ruo; Su, Yao; Kong, Jiaoyan

    2015-09-15

    Waste biocover soils (WBS) have been demonstrated to have great potential in mitigating trichloroethylene (TCE) emission from landfills, due to the relatively high TCE-degrading capacity. In this study, the characteristics of TCE adsorption on WBS in the presence of the major landfill gas components (i.e., CH4 and CO2) were investigated in soil microcosms. The adsorption isotherm of TCE onto WBS was fitted well with linear model within the TCE concentrations of 7000 ppmv. The adsorption capacity of TCE onto WBS was affected by temperature, soil moisture content and particle size, of which, temperature was the dominant factor. The adsorption capacity of TCE onto the experimental materials increased with the increasing organic matter content. A significantly positive correlation was observed between the adsorption capacity of TCE and the organic matter content of experimental materials that had relatively higher organic content (r = 0.988, P = 0.044). To better understand WBS application in practice, response surface methodology was developed to predict TCE adsorption capacity and emissions through WBS in different landfills in China. These results indicated that WBS had high adsorption capacity of TCE in LFG and temperature should be paid more attention to manipulate WBS to reduce TCE emissions from landfills. PMID:25909498

  14. Significance of urinary hippuric acid determination as an index of toluene exposure

    PubMed Central

    Ikeda, Masayuki; Ohtsuji, Hatsue

    1969-01-01

    Ikeda, Masayuki, and Ohtsuji, Hatsue (1969).Brit. J. industr. Med.,26, 244-246. Significance of urinary hippuric acid determination as an index of toluene exposure. Urine samples from 118 male workers in photogravure printing factories were analysed for hippuric acid. The urinary levels of hippuric acid were proportional to the environmental concentrations of toluene, although within wide variations. The urinary concentration of hippuric acid corresponding to 200 p.p.m. of toluene was 3·5 g./litre (specific gravity 1·016) or 4·3 g./g. creatinine. PMID:5794951

  15. Interfacial properties of asphaltenes at toluene-water interfaces.

    PubMed

    Zarkar, Sharli; Pauchard, Vincent; Farooq, Umer; Couzis, Alexander; Banerjee, Sanjoy

    2015-05-01

    Asphaltenes are "n-alkane insoluble" species in crude oil that stabilize water-in-oil emulsions. To understand asphaltene adsorption mechanisms at oil-water interfaces and coalescence blockage, we first studied the behavior in aliphatic oil-water systems in which asphaltenes are almost insoluble. They adsorbed as monomers, giving a unique master curve relating interfacial tension (IFT) to interfacial coverage through a Langmuir equation of state (EoS). The long-time surface coverage was independent of asphaltene bulk concentration and asymptotically approached the 2-D packing limit for polydisperse disks. On coalescence, the surface coverage exceeded the 2-D limit and the asphaltene film appeared to become solidlike, apparently undergoing a transition to a soft glassy material and blocking further coalescence. However, real systems consist of mixtures of aliphatic and aromatic components in which asphaltenes may be quite soluble. To understand solubility effects, we focus here on how the increased bulk solubility of asphaltenes affects their interfacial properties in comparison to aliphatic oil-water systems. Unlike the "almost irreversible" adsorption of asphaltenes where the asymptotic interfacial coverage was independent of the bulk concentration, an equilibrium surface pressure, dependent on bulk concentration, was obtained for toluene-water systems because of adsorption being balanced by desorption. The equilibrium surface coverage could be obtained from the short- and long-term Ward-Tordai approximations. The behavior of the equilibrium surface pressure with the equilibrium surface coverage was then derived. These data for various asphaltene concentrations were used to determine the EoS, which for toluene-water could also be fitted by the Langmuir EoS with ?? = 3.3 molecule/nm(2), the same value as that found for these asphaltenes in aliphatic media. Asphaltene solubility in the bulk phase only appears to affect the adsorption isotherm but not the EoS. Further support for these observations is provided by dilatational rheology experiments for the EoS and contraction experiments in which desorption to the equilibrium surface pressure was observed. PMID:25865629

  16. Transient pressure induced by laser ablation of toluene, a highly laser-absorbing liquid

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Y.; Ding, X.; Narazaki, A.; Sato, T.; Niino, H.

    2005-02-01

    Transient processes of laser ablation of a highly laser-absorbing liquid, toluene, were investigated by directly measuring (by using a fast-response pressure gauge) the transient pressure caused by toluene ablation under KrF laser irradiation . The results were compared with time-resolved images . The peak pressure P due to a shock wave decreased slowly with increasing distance d for d=100 1000 ?m:P?d-0.33. By extrapolating P to d=8.9 ?m, the optical penetration depth of toluene at ?=248 nm, the estimated initial pressure due to toluene ablation was 65 MPa at 1.0 J cm-2 pulse-1. The estimated initial pressure increased linearly with the fluence. These results help clarify the mechanism of laser-induced backside wet etching.

  17. TOXICITY OF AROMATIC AEROBIC BIOTRANSFORMATION PRODUCTS OF TOLUENE TO HELA CELLS

    EPA Science Inventory

    Petroleum contamination of groundwater is widely recognized as a serious environmental problem. Toluene (methylbenzene) occurs naturally in crude oil and is commonly found as a contaminant in the subsurface as a result of waste disposal and storage activities. Biological transf...

  18. A Flexible Glutamine Regulates the Catalytic Activity of Toluene o-Xylene Monooxygenase

    E-print Network

    Wrobel, Alexandra T.

    Toluene/o-xylene monooxygenase (ToMO) is a bacterial multicomponent monooxygenase capable of oxidizing aromatic substrates. The carboxylate-rich diiron active site is located in the hydroxylase component of ToMO (ToMOH), ...

  19. 40 CFR 721.1850 - Toluene sulfonamide bis-phe-nol A epoxy adduct.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...chemical substance identified generically as toluene sulfonamide bisphenol A epoxy adduct (PMN P-90-113) is subject to reporting...aware that this substance may present a risk of injury to human health, the employer must incorporate this new...

  20. 40 CFR 721.1850 - Toluene sulfonamide bis-phe-nol A epoxy adduct.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...chemical substance identified generically as toluene sulfonamide bisphenol A epoxy adduct (PMN P-90-113) is subject to reporting...aware that this substance may present a risk of injury to human health, the employer must incorporate this new...

  1. 40 CFR 721.1850 - Toluene sulfonamide bis-phe-nol A epoxy adduct.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...chemical substance identified generically as toluene sulfonamide bisphenol A epoxy adduct (PMN P-90-113) is subject to reporting...aware that this substance may present a risk of injury to human health, the employer must incorporate this new...

  2. The atmospheric release of benzene, toluene, ethylbenzene, and xylene from contaminated soils 

    E-print Network

    Ramsey, Ronald Roland

    1993-01-01

    for the remediation of gasoline contaminated soils. Excavation and removal of soils containing hydrocarbons is the most widely used remediation technique because of immediate and total site cleanup. Benzene, toluene, ethylbenzene, and xylene (BTEX) combined are from...

  3. ENVIRONMENTAL FACTORS AFFECTING TOLUENE DEGRADATION IN GROUND WATER AT A HAZARDOUS WASTE SITE

    EPA Science Inventory

    The microbial ecology of pristine and contaminated ground water at a chemical waste disposal site was investigated. ecently, it was determined that ground water downslope from the disposal site contained elevated levels of toxic pollutants, including benzene, toluene, xylene and ...

  4. REDUCTIVE BIOTRANSFORMATION OF TETRACHLOROETHENE TO ETHENE DURING ANAEROBIC DEGRADATION OF TOLUENE: EXPERIMENTAL EVIDENCE AND KINETICS

    EPA Science Inventory

    Reductive biotransformation of tetrachloroethene (PCE) to ethene occurred during anaerobic degradation of toluene in an enrichment culture. Ethene was detected as a dominant daughter product of PCE dechlorination with negligible accumulation of other partially chlorinated ethenes...

  5. VISUAL FUNCTION CHANGES AFTER SUBCHRONIC TOLUENE INHALATION IN LONG-EVANS RATS.

    EPA Science Inventory

    Chronic exposure to volatile organic compounds, including toluene, has been associated with visual deficits such as reduced visual contrast sensitivity or impaired color discrimination in studies of occupational or residential exposure. These reports remain controversial, howeve...

  6. 75 FR 52768 - Withdrawal of Approval of New Animal Drug Applications; Dichlorophene and Toluene Capsules

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-27

    ...withdrawing approval of two new animal drug applications (NADAs) for use of dichlorophene and toluene deworming capsules for cats and dogs. In a final rule published elsewhere in this issue of the Federal Register, FDA is amending the regulations to...

  7. Insights into the different dioxygen activation pathways of methane and toluene monooxygenase hydroxylases

    E-print Network

    Bochevarov, Arteum D.

    The methane and toluene monooxygenase hydroxylases (MMOH and TMOH, respectively) have almost identical active sites, yet the physical and chemical properties of their oxygenated intermediates, designated P*, H[subscript ...

  8. Two cases of paraoccupational asthma due to toluene diisocyanate (TDI).

    PubMed

    De Zotti, R; Muran, A; Zambon, F

    2000-12-01

    Two cases of paraoccupational asthma caused by toluene diisocyanate (TDI) are reported. The first patient was a metal worker in a machine shop situated near a factory producing polyurethane foam. Symptoms at work were not explainable by any specific exposure to irritants or allergens in the work site. As the patient recalled previous occasional work in the adjacent polyurethane factory with accompanying worsening of respiratory symptoms, a specific inhalation (SIC) test was performed with TDI, which confirmed the diagnosis of TDI asthma. The second case was a woman working part time as a secretary in the offices of her son's factory for varnishing wooden chairs. TDI was present in the products used in the varnishing shed. The SIC test confirmed the diagnosis of TDI asthma, despite the fact that the patient's job did not present risk of exposure to the substance. In both patients, symptoms disappeared when further exposure was avoided. These two cases confirm that paraoccupational exposure to TDI must be considered when evaluating patients with asthma not mediated by immunoglobulin E. They also suggest the need for more prospective studies evaluating the health risk for the general population living near polyurethane factories or other firms that use TDI. PMID:11077013

  9. Toluene pyrolysis studies and high temperature reactions of propargyl chloride

    SciTech Connect

    Kern, R.D.; Chen, H.; Qin, Z.

    1993-12-01

    The main focus of this program is to investigate the thermal decompositions of fuels that play an important role in the pre-particle soot formation process. It has been demonstrated that the condition of maximum soot yield is established when the reaction conditions of temperature and pressure are sufficient to establish a radical pool to support the production of polyaromatic hydrocarbon species and the subsequent formation of soot particles. However, elevated temperatures result in lower soot yields which are attributed to thermolyses of aromatic ring structures and result in the bell-shaped dependence of soot yield on temperature. The authors have selected several acyclic hydrocarbons to evaluate the chemical thermodynamic and kinetic effects attendant to benzene formation. To assess the thermal stability of the aromatic ring, the authors have studied the pyrolyses of benzene, toluene, ethylbenzene, chlorobenzene and pyridine. Time-of-flight mass spectrometry (TOF) is employed to analyze the reaction zone behind reflected shock waves. Reaction time histories of the reactants, products, and intermediates are constructed and mechanisms are formulated to model the experimental data. The TOF work is often performed with use of laser schlieren densitometry (LS) to measure density gradients resulting from the heats of various reactions involved in a particular pyrolytic system. The two techniques, TOF and LS, provide independent and complementary information about ring formation and ring rupture reactions.

  10. HCCI experiments with toluene reference fuels modeled by a semidetailed chemical kinetic model

    SciTech Connect

    Andrae, J.C.G.; Brinck, T.; Kalghatgi, G.T.

    2008-12-15

    A semidetailed mechanism (137 species and 633 reactions) and new experiments in a homogeneous charge compression ignition (HCCI) engine on the autoignition of toluene reference fuels are presented. Skeletal mechanisms for isooctane and n-heptane were added to a detailed toluene submechanism. The model shows generally good agreement with ignition delay times measured in a shock tube and a rapid compression machine and is sensitive to changes in temperature, pressure, and mixture strength. The addition of reactions involving the formation and destruction of benzylperoxide radical was crucial to modeling toluene shock tube data. Laminar burning velocities for benzene and toluene were well predicted by the model after some revision of the high-temperature chemistry. Moreover, laminar burning velocities of a real gasoline at 353 and 500 K could be predicted by the model using a toluene reference fuel as a surrogate. The model also captures the experimentally observed differences in combustion phasing of toluene/n-heptane mixtures, compared to a primary reference fuel of the same research octane number, in HCCI engines as the intake pressure and temperature are changed. For high intake pressures and low intake temperatures, a sensitivity analysis at the moment of maximum heat release rate shows that the consumption of phenoxy radicals is rate-limiting when a toluene/n-heptane fuel is used, which makes this fuel more resistant to autoignition than the primary reference fuel. Typical CPU times encountered in zero-dimensional calculations were on the order of seconds and minutes in laminar flame speed calculations. Cross reactions between benzylperoxy radicals and n-heptane improved the model predictions of shock tube experiments for {phi}=1.0 and temperatures lower than 800 K for an n-heptane/toluene fuel mixture, but cross reactions had no influence on HCCI simulations. (author)

  11. Recovery of organic material by supercritical toluene from Turkish Goynuk oil shale

    SciTech Connect

    Yurum, Y.; Karabakan, A. )

    1990-01-01

    The authors describe the effect of the mineral matrix on the recovery of organic material by supercritical toluene extraction from Turkish Goynuk oil shale. Samples were prepared by successive demineralization procedures to study the interaction of different mineral groups during the supercritical interaction. Extraction experiments were done in a stainless steel autoclave of 75 ml capacity at 350{sup 0}C for 60 minutes. Effect of the toluene/kerogen ratio and reaction time on the recovery of organic material was studied.

  12. Uptake of toluene and ethylbenzene by plants: removal of volatile indoor air contaminants.

    PubMed

    Sriprapat, Wararat; Suksabye, Parinda; Areephak, Sirintip; Klantup, Polawat; Waraha, Atcharaphan; Sawattan, Anuchit; Thiravetyan, Paitip

    2014-04-01

    Air borne uptake of toluene and ethylbenzene by twelve plant species was examined. Of the twelve plant species examined, the highest toluene removal was found in Sansevieria trifasciata, while the ethylbenzene removal from air was with Chlorophytum comosum. Toluene and ethylbenzene can penetrate the plant?s cuticle. However, the removal rates do not appear to be correlated with numbers of stomata per plant. It was found that wax of S. trifasciata and Sansevieria hyacinthoides had greater absorption of toluene and ethylbenzene, and it contained high hexadecanoic acid. Hexadecanoic acid might be involved in toluene and ethylbenzene adsorption by cuticles wax of plants. Chlorophyll fluorescence analysis or the potential quantum yield of PSII (Fv/Fm) in toluene exposed plants showed no significant differences between the control and the treated plants, whereas plants exposed to ethylbenzene showed significant differences or those parameters, specifically in Dracaena deremensis (Lemon lime), Dracaena sanderiana, Kalanchoe blossfeldiana, and Cordyline fruticosa. The Fv/Fm ratio can give insight into the ability of plants to tolerate (indoor) air pollution by volatile organic chemicals (VOC). This index can be used for identification of suitable plants for treating/sequestering VOCs in contaminated air. PMID:24530730

  13. Production of toluene cis-glycol by Pseudomonas putida in glucose fed-batch culture

    SciTech Connect

    Jenkins, R.O.; Stephens, G.M.; Dalton, H.

    1987-05-01

    Toluene was oxidized by a mutant strain of Pseudomonas putida (strain NG1) to toluene cis-glycol (TCG). Product was accumulated in fed-batch cultures to concentrations (18-24 g/L) higher than hitherto achieved. In vitro activities of toluene dioxygenase from P. putida NG1 were fivefold lower than that from the toluene-grown wild-type organism, whereas comparable activities of both catechol 2,3- and catechol 1,2-oxygenase were obtained; irreversible inhibition of toluene dioxygenase activity by TCG was shown in vitro. Ammonia deprivation during the production phase limited the growth of revertant organisms but had little effect on either the duration (25 h) of the process or the final concentration of TCG achieved. The rates of glucose utilization decreased throughout the biotransformation and cell death accompanied the cessation of TCG accumulation in cultures. The results suggest that TCG is the mediator of a gradual deterioration in the state of the culture which leads to a loss of both in vivo and in vitro toluene dioxygenase activity and a marked decrease in culture viability.

  14. Effects of the abused inhalant toluene on the mesolimbic dopamine system

    PubMed Central

    Woodward, John J.; Beckley, Jacob

    2014-01-01

    Toluene is a representative member of a class of inhaled solvents that are voluntarily used by adolescents and adults for their euphorigenic effects. Research into the mechanisms of action of inhaled solvents has lagged behind that of other drugs of abuse despite mounting evidence that these compounds exert profound neurobehavioral and neurotoxicological effects. Results from studies carried out by the authors and others suggest that the neural effects of inhalants arise from their interaction with a discrete set of ion channels that regulate brain activity. Of particular interest is how these interactions allow toluene and other solvents to engage portions of an addiction neurocircuitry that includes midbrain and cortical structures. In this review, we focus on the current state of knowledge regarding toluene’s action on midbrain dopamine neurons, a key brain region involved in the initial assessment of natural and drug-induced rewards. Findings from recent studies in the authors’ laboratory show that brief exposures of adolescent rats to toluene vapor induce profound changes in markers of glutamatergic plasticity in VTA DA neurons. These changes are restricted to VTA DA neurons that project to limbic structures and are prevented by transient activation of the medial prefrontal cortex prior to toluene exposure. Together, these data provide the first evidence linking the voluntary inhalation of solvents to changes in reward –sensitive dopamine neurons. PMID:25360326

  15. Degradation of toluene by ortho cleavage enzymes in Burkholderia fungorum FLU100

    PubMed Central

    Dobslaw, Daniel; Engesser, Karl-Heinrich

    2015-01-01

    Burkholderia fungorum?FLU100 simultaneously oxidized any mixture of toluene, benzene and mono-halogen benzenes to (3-substituted) catechols with a selectivity of nearly 100%. Further metabolism occurred via enzymes of ortho cleavage pathways with complete mineralization. During the transformation of 3-methylcatechol, 4-carboxymethyl-2-methylbut-2-en-4-olide (2-methyl-2-enelactone, 2-ML) accumulated transiently, being further mineralized only after a lag phase of 2?h in case of cells pre-grown on benzene or mono-halogen benzenes. No lag phase, however, occurred after growth on toluene. Cultures inhibited by chloramphenicol after growth on benzene or mono-halogen benzenes were unable to metabolize 2-ML supplied externally, even after prolonged incubation. A control culture grown with toluene did not show any lag phase and used 2-ML as a substrate. This means that 2-ML is an intermediate of toluene degradation and converted by specific enzymes. The conversion of 4-methylcatechol as a very minor by-product of toluene degradation in strain FLU100 resulted in the accumulation of 4-carboxymethyl-4-methylbut-2-en-4-olide (4-methyl-2-enelactone, 4-ML) as a dead-end product, excluding its nature as a possible intermediate. Thus, 3-methylcyclohexa-3,5-diene-1,2-diol, 3-methylcatechol, 2-methyl muconate and 2-ML were identified as central intermediates of productive ortho cleavage pathways for toluene metabolism in B.?fungorum?FLU100. PMID:25130674

  16. Microbial Toluene Removal in Hypoxic Model Constructed Wetlands Occurs Predominantly via the Ring Monooxygenation Pathway.

    PubMed

    Martínez-Lavanchy, P M; Chen, Z; Lünsmann, V; Marin-Cevada, V; Vilchez-Vargas, R; Pieper, D H; Reiche, N; Kappelmeyer, U; Imparato, V; Junca, H; Nijenhuis, I; Müller, J A; Kuschk, P; Heipieper, H J

    2015-09-01

    In the present study, microbial toluene degradation in controlled constructed wetland model systems, planted fixed-bed reactors (PFRs), was queried with DNA-based methods in combination with stable isotope fractionation analysis and characterization of toluene-degrading microbial isolates. Two PFR replicates were operated with toluene as the sole external carbon and electron source for 2 years. The bulk redox conditions in these systems were hypoxic to anoxic. The autochthonous bacterial communities, as analyzed by Illumina sequencing of 16S rRNA gene amplicons, were mainly comprised of the families Xanthomonadaceae, Comamonadaceae, and Burkholderiaceae, plus Rhodospirillaceae in one of the PFR replicates. DNA microarray analyses of the catabolic potentials for aromatic compound degradation suggested the presence of the ring monooxygenation pathway in both systems, as well as the anaerobic toluene pathway in the PFR replicate with a high abundance of Rhodospirillaceae. The presence of catabolic genes encoding the ring monooxygenation pathway was verified by quantitative PCR analysis, utilizing the obtained toluene-degrading isolates as references. Stable isotope fractionation analysis showed low-level of carbon fractionation and only minimal hydrogen fractionation in both PFRs, which matches the fractionation signatures of monooxygenation and dioxygenation. In combination with the results of the DNA-based analyses, this suggests that toluene degradation occurs predominantly via ring monooxygenation in the PFRs. PMID:26150458

  17. Potential application of biocover soils to landfills for mitigating toluene emission.

    PubMed

    Su, Yao; Pei, Junshen; Tian, Baohu; Fan, Fengxi; Tang, Mengling; Li, Wei; He, Ruo

    2015-12-15

    Biocover soils have been demonstrated to be a good alternative cover material to mitigate CH4 emission from landfills. To evaluate the potential of biocover soil in mitigating emissions of non-methane volatile organic compounds (NMVOCs) from landfills, simulated cover soil columns with the influx of toluene (chosen as typical of NMVOCs) concentrations of 102-1336mgm(-3) in the presence or absence of the major landfill gas components (i.e., CH4 and CO2) were conducted in this study. In the two experimental materials (waste biocover soils (WBS) and landfill cover soils (LCS)), higher toluene reduction was observed in WBS with respect to LCS. After the introduction of landfill gas, an increase of microbial diversity and relative abundance of toluene-degrading bacteria and methanotrophs occurred in WBS. To illustrate the role of toluene-degrading activity in mitigating toluene emissions through landfill covers, an analytical model was developed by incorporating the steady-state vapor transport with the first-order kinetics of aerobic biodegradation limited by O2 availability. This study demonstrated that biocover soils have great potential in applying to landfills for mitigating toluene emission to the atmosphere. PMID:26073517

  18. Screening-level human health risk assessment of toluene and dibutyl phthalate in nail lacquers.

    PubMed

    Kopelovich, Luda; Perez, Angela L; Jacobs, Neva; Mendelsohn, Emma; Keenan, James J

    2015-07-01

    Toluene and dibutyl phthalate (DBP) are found in many consumer products, including cosmetics, synthetic fragrances, and nail polish. In 2012, the California Environmental Protection Agency evaluated 25 nail products and found that 83% of the products that claimed to be toluene-free contained toluene at concentrations ranging up to 190,000?ppm, and 14% of the products that claimed to be DBP-free contained DBP at concentrations ranging up to 88,000?ppm. We conducted a preliminary, screening-level analysis of the potential toluene and DBP-related health risks to consumers and professionals based on the medium and maximum concentrations of toluene and DBP presented in the 2012 report and evaluated dermal and inhalation exposure to a salon patron, nail technician, and home user. We concluded that the maximum toluene concentration for the technician and home user scenarios exceeded the California MADL, but the estimated air concentrations did not exceed the Federal or Cal OSHA PEL. The MADL for DBP was exceeded for all user scenarios at both the median and maximum concentrations. Using these highly conservative assumptions, exposures above regulatory limits could possibly occur during routine use of nail products; further research is needed in order to evaluate potential human health risks. PMID:25865937

  19. New perspectives on the cancer risks of trichloroethylene, its metabolites, and chlorination by-products

    SciTech Connect

    Bogen, K.T.; Slone, T.; Gold, L.S.; Manley, N.; Revzan, K.

    1994-12-08

    Scientific developments in the 1990`s have important implications for the assessment of cancer risks posed by exposures to trichloroethylene (TCE). These new developments include: epidemiological studies; experimental studies of TCE carcinogenicity, metabolism and metabolite carcinogenicity; applications of new physiologically based pharmacokinetic (PBPK) models for TCE; and new pharmacodynamic data obtained for TCE and its rhetabolites. Following a review of previous assessments of TCE carcinogenicity, each of these new sets of developments is summarized. The new epidemiological data do not provide evidence of TCE carcinogenicity in humans, and the new pharmacodynamic data support the hypothesis that TCE carcinogenicity is caused by TCE-induced cytotoxicity. Based on this information, PBPK-based estimates for likely no-adverse effect levels (NOAELs) for human exposures to TCE are calculated to be 16 ppb for TCE in air respired 24 hr/day, and 210 ppb for TCE in drinking water. Cancer risks of zero are predicted for TCE exposures below these calculated NOAELs. For comparison, hypothetical cancer risks posed by lifetime ingestive and multiroute household exposures to TCE in drinking water, at the currently enforced Maximum Contaminant Level (MCL) concentration of 5 ppb are extrapolated from animal bioassay data using a conservative, linear dose-response model. These TCE-related risks are compared to corresponding ones associated with concentrations of chlorination by-products (CBP) in household water. It is shown that, from the standpoint of comparative hypothetical cancer risks, based on conservative linear dose-response extrapolations, there would likely be no health benefit, and more likely a possible health detriment, associated with any switch from a household water supply containing <375 ppb TCE to one containing CBP at levels corresponding to the currently proposed 80-ppb MCL for total trihalomethanes.

  20. Vapor transport of trichloroethylene in the unsaturated zone: Field and numerical modeling investigations

    SciTech Connect

    Conant, B.H.; Gillham, R.W.; Mendoza, C.A.

    1996-01-01

    Vapor transport of chlorinated solvents in the unsaturated zone may be an important mechanism for the spread of contamination at spill sites and may be a significant factor controlling the extent of groundwater contamination. Two field experiments were carried out at the Canadian Forces Base Borden field site to provide detailed monitoring of the transport behavior of trichloroethylene vapors in the unsaturated zone. Experiments were conducted for both winter and summer conditions and under different surface boundary conditions. The observed results were simulated using a Fickian-based numerical model with linear equilibrium phase partitioning. The model includes both diffusion and density-induced advection and allows for the incorporation of spatial heterogeneities and nonisothermal conditions. Numerical sensitivity analyses were conducted to further evaluate the relative influence of various transport parameters on vapor migration. Use of measured field values as input parameters resulted in a very good match between the experimental results and numerical simulations. In both experiments, vapor plumes spread several meters from the source and downward to the capillary fringe within only a few days. Seasonal temperature variations were found to have a significant impact on the rate and total mass of vapor transport, and variations in organic carbon content, and to a lesser extent moisture content, exerted the greatest control on retardation of vapor migration. Transport was diffusion dominated, but density-induced advection was an appreciable component of net transport under summer conditions, when vapor concentrations were higher. Geologic conditions at the site made overall transport relatively insensitive to the ground surface boundary condition.

  1. Molecular mechanism of trichloroethylene-induced hepatotoxicity mediated by CYP2E1

    SciTech Connect

    Ramdhan, Doni Hikmat; Kamijima, Michihiro; Yamada, Naoyasu; Ito, Yuki; Yanagiba, Yukie; Nakamura, Daichi; Okamura, Ai; Ichihara, Gaku; Aoyama, Toshifumi; Gonzalez, Frank J.; Nakajima, Tamie

    2008-09-15

    Cytochrome P450 (CYP) 2E1 was suggested to be the major enzyme involved in trichloroethylene (TRI) metabolism and TRI-induced hepatotoxicity, although the latter molecular mechanism is not fully understood. The involvement of CYP2E1 in TRI-induced hepatotoxicity and its underlying molecular mechanism were studied by comparing hepatotoxicity in cyp2e1{sup +/+} and cyp2e1{sup -/-} mice. The mice were exposed by inhalation to 0 (control), 1000, or 2000 ppm of TRI for 8 h a day, for 7 days, and TRI-hepatotoxicity was assessed by measuring plasma alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities and histopathology. Urinary metabolites of trichloroethanol and trichloroacetic acid (TCA) were considerably greater in cyp2e1{sup +/+} compared to cyp2e1{sup -/-} mice, suggesting that CYP2E1 is the major P450 involved in the formation of these metabolites. Consistent with elevated plasma ALT and AST activities, cyp2e1{sup +/+} mice in the 2000 ppm group showed histopathological inflammation. TRI significantly upregulated PPAR{alpha}, which might function to inhibit NF{kappa}B p50 and p65 signalling. In addition, TRI-induced NF{kappa}B p52 mRNA, and significantly positive correlation between NF{kappa}B p52 mRNA expression and plasma ALT activity levels were observed, suggesting the involvement of p52 in liver inflammation. Taken together, the current study directly demonstrates that CYP2E1 was the major P450 involved in the first step of the TRI metabolism, and the metabolites produced may have two opposing roles: one inducing hepatotoxicity and the other protecting against the toxicity. Intermediate metabolite(s) from TRI to chloral hydrate produced by CYP2E1-mediated oxidation may be involved in the former, and TCA in the latter.

  2. Evaluating noncancer effects of trichloroethylene: dosimetry, mode of action, and risk assessment.

    PubMed Central

    Barton, H A; Clewell, H J

    2000-01-01

    Alternatives for developing chronic exposure limits for noncancer effects of trichloroethylene (TCE) were evaluated. These alternatives were organized within a framework for dose-response assessment--exposure:dosimetry (pharmacokinetics):mode of action (pharmacodynamics): response. This framework provides a consistent structure within which to make scientific judgments about available information, its interpretation, and use. These judgments occur in the selection of critical studies, internal dose metrics, pharmacokinetic models, approaches for interspecies extrapolation of pharmacodynamics, and uncertainty factors. Potentially limiting end points included developmental eye malformations, liver effects, immunotoxicity, and kidney toxicity from oral exposure and neurological, liver, and kidney effects by inhalation. Each end point was evaluated quantitatively using several methods. Default analyses used the traditional no-observed adverse effect level divided by uncertainty factors and the benchmark dose divided by uncertainty factors methods. Subsequently, mode-of-action and pharmacokinetic information were incorporated. Internal dose metrics were estimated using a physiologically based pharmacokinetic (PBPK) model for TCE and its major metabolites. This approach was notably useful with neurological and kidney toxicities. The human PBPK model provided estimates of human exposure doses for the internal dose metrics. Pharmacodynamic data or default assumptions were used for interspecies extrapolation. For liver and neurological effects, humans appear no more sensitive than rodents when internal dose metrics were considered. Therefore, the interspecies uncertainty factor was reduced, illustrating that uncertainty factors are a semiquantitative approach fitting into the organizational framework. Incorporation of pharmacokinetics and pharmacodynamics can result in values that differ significantly from those obtained with the default methods. PMID:10807562

  3. Influences of carbonate and chloride ions on persulfate oxidation of trichloroethylene at 20 degrees C.

    PubMed

    Liang, Chenju; Wang, Zih-Sin; Mohanty, Nihar

    2006-11-01

    Application of in situ chemical oxidation (ISCO) involves application of oxidants to contaminants such as trichloroethylene (TCE) in soil or groundwater in place. Successful application of ISCO at a hazardous waste site requires understanding the scavenging reactions that could take place at the site to better optimize the oxidation of target contaminants and identification of site conditions where ISCO using persulfate may not be applicable. Additionally, estimation of the oxidant dose at a site would need identification of groundwater constituents such as alkalinity and chlorides that may scavenge radicals and therefore use up the oxidant that is targeted for the contaminant(s). The objective of this study was to investigate the influence of various levels of chloride and carbonates on persulfate oxidation of TCE at 20 degrees C under controlled conditions in a laboratory. Based on the results of the laboratory experiments, both chloride and alkalinity were shown to have scavenging effects on the rate of oxidation of TCE. It was found that at a neutral pH, persulfate oxidation of TCE was not affected by the presence of bicarbonate/carbonate concentrations within the range of 0-9.20 mM. However, the TCE degradation rate was seen to reduce with an increase in the level of carbonate species and at elevated pHs. TCE degradation in the presence of chlorides revealed no effect on the degradation rate especially at chloride levels below 0.2 M. However, at chloride levels greater than 0.2 M, TCE degradation rate was seen to reduce with an increase in the chloride ion concentration. Prior to application of persulfate as an oxidant, a site should be screened for the presence of scavengers to evaluate the potential of meeting target cleanup goals within a desirable timeframe at the site. PMID:17014891

  4. Biosorption of 1,2,3-trichloropropane and trichloroethylene by the diatom Thalassiosira pseudonana

    SciTech Connect

    Berdanier, B.W.

    1996-11-01

    This study`s objective was to determine the potential for algal sorption of 1,2,3-trichloropropane (TCP) and trichloroethylene (TCE) by a specific type of diatom, Thalassiosira pseudonana. The author conducted bench-scale experiments at Ohio State University to determine the bioconcentration factor for TCP and TCE on a collection of diatoms that were representative of the diatoms occurring in an upground reservoir during different seasons of the year. The diatoms were purchased in a preserved state and were diluted to the desired cell concentration for each experiment. Although the mechanisms involved in the transport and uptake of the chemicals still remain to be determined, and further investigations need to be undertaken to quantify the differences in the sorptive capabilities of live and killed diatoms, studies have indicated that sorption is on the same order of magnitude for live or killed diatoms. Also, the fact that the diatoms were killed gave this study control over the actual concentration and cell count throughout each experiment, which investigators dealing with live cultures have not had. A second, but important, objective of this study was to develop a comparatively simple methodology for the identification and quantification of chlorinated hydrocarbons in both raw and finished water supplies. Chlorinated compounds have become a growing concern as an ever increasing number of chemically contaminated sites have been identified. Smaller cities and villages that cannot afford a sophisticated laboratory or technical staff need to be able to test for chlorinated compounds on an ongoing basis with a minimal staff at a moderate training level. The on-column, isothermal gas chromatographic procedure used in this study would also have wide applicability for field and laboratory studies.

  5. Identification of antigenic proteins associated with trichloroethylene-induced autoimmune disease by serological proteome analysis

    SciTech Connect

    Liu Jianjun; Xing Xiumei; Huang Haiyan; Jiang Yingzhi; He Haowei; Xu Xinyun; Yuan Jianhui; Zhou Li; Yang Linqing; Zhuang Zhixiong

    2009-11-01

    Although many studies indicated that trichloroethylene (TCE) could induce autoimmune diseases and some protein adducts were detected, the proteins were not identified and mechanisms remain unknown. To screen and identify autoantigens which might be involved in TCE-induced autoimmune diseases, three groups of sera were collected from healthy donors (I), patients suffering from TCE-induced exfoliative dermatitis (ED) (II), and the healed ones (III). Serological proteome analysis (SERPA) was performed with total proteins of TCE-treated L-02 liver cells as antigen sources and immunoglobins of the above sera as probes. Highly immunogenic spots (2-fold or above increase compared with group I) in group II and III were submitted to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and tandem mass spectrometry sequencing. Western blot analysis was followed using commercial antibodies and individual serum. Six proteins were identified. Among them, Enoyl Coenzyme A hydratase peroxisoma 1 and lactate dehydrogenase B only showed stronger immunogenicity for group II sera, while Purine nucleoside phosphorylase, ribosomal protein P0 and proteasome activator subunit1 isoform1 also showed stronger immunogenicity for group III sera. Noteworthy, NM23 reacted only with group II sera. Western blot analysis of NM23 expression indicated that all of the individual serum of group II showed immune activity, which confirmed the validity of SERPA result. These findings revealed that there exist autoantibodies in group II and III sera. Besides, autoantibodies of the two stages of disease course were different. These autoantigens might serve as biomarkers to elucidate mechanisms underlying TCE toxicity and are helpful for diagnosis, therapy and prognosis of TCE-induced autoimmune diseases.

  6. Aerobic Degradation of Trichloroethylene by Co-Metabolism Using Phenol and Gasoline as Growth Substrates

    PubMed Central

    Li, Yan; Li, Bing; Wang, Cui-Ping; Fan, Jun-Zhao; Sun, Hong-Wen

    2014-01-01

    Trichloroethylene (TCE) is a common groundwater contaminant of toxic and carcinogenic concern. Aerobic co-metabolic processes are the predominant pathways for TCE complete degradation. In this study, Pseudomonas fluorescens was studied as the active microorganism to degrade TCE under aerobic condition by co-metabolic degradation using phenol and gasoline as growth substrates. Operating conditions influencing TCE degradation efficiency were optimized. TCE co-metabolic degradation rate reached the maximum of 80% under the optimized conditions of degradation time of 3 days, initial OD600 of microorganism culture of 0.14 (1.26 × 107 cell/mL), initial phenol concentration of 100 mg/L, initial TCE concentration of 0.1 mg/L, pH of 6.0, and salinity of 0.1%. The modified transformation capacity and transformation yield were 20 ?g (TCE)/mg (biomass) and 5.1 ?g (TCE)/mg (phenol), respectively. Addition of nutrient broth promoted TCE degradation with phenol as growth substrate. It was revealed that catechol 1,2-dioxygenase played an important role in TCE co-metabolism. The dechlorination of TCE was complete, and less chlorinated products were not detected at the end of the experiment. TCE could also be co-metabolized in the presence of gasoline; however, the degradation rate was not high (28%). When phenol was introduced into the system of TCE and gasoline, TCE and gasoline could be removed at substantial rates (up to 59% and 69%, respectively). This study provides a promising approach for the removal of combined pollution of TCE and gasoline. PMID:24857922

  7. Biogeochemistry of Methane-Driven Destruction of Trichloroethylene in a Basalt Aquifer

    NASA Astrophysics Data System (ADS)

    Colwell, F.; Conrad, M.; Paszcynski, A.; Brodie, E.; Delwiche, M.; Radtke, C.; Lee, H.; Paidisetti, R.; Crawford, R.; Bernardini, N.; Johnson, A.; Starr, R.; Swift, D.; Newby, D.; Barnes, J.

    2008-12-01

    We studied the biogeochemical processes responsible for cycling methane and the fortuitous destruction of trichloroethylene (TCE) across spatially distinct locations in a basalt aquifer. This field study was accomplished by examining the attached and unattached microbial communities inherent to the aquifer by using a flow-through in situ reactor (FTISR) and large volumes of aquifer water from which microbial communities were concentrated. After incubation for 238 days, basalt and water were collected from the FTISR and analyzed using proteomics, gene expression, metabolic activity, microbial community structure, and kinetics of TCE degradation. Stable carbon isotopes and PhyloChip gene hybridization analyses were done on groundwater samples. Microbes from the FTSIR co-metabolically degraded approximately 7.5 mg of TCE per liter of groundwater. Proteins from aerobic methanotrophs were detected in the aquifer and on the basalt from the FTISR. Methanotrophic activity in the groundwater and on the FTISR basalt was also confirmed by combined use of enzyme biochemical probes and fluorescent in situ hybridization. Real-time PCR identified ca. 3000 copies of mmoX (a methanotrophic gene) per g of basalt and reverse transcriptase PCR determined that the mmoX subunit was actively transcribed. Stable carbon isotope ratios of dissolved inorganic carbon (DIC) and dissolved methane indicated increased levels of methane oxidation with distance from the source of the TCE (-55 to 28 per mil for methane; >8 to -13 per mil for DIC) corresponding to increased dissolved oxygen concentrations in the aquifer. These geochemistry data are consistent with community composition and activity determinations that identified a gradient of methanogenic to methanotrophic populations along the contaminant plume. Multiple analyses using samples from the FTISR and aquifer water comprehensively demonstrate that both attached and unattached microbial communities are responsible for methane-driven co-metabolism of TCE at this site.

  8. Trichloroethylene and Cancer: Systematic and Quantitative Review of Epidemiologic Evidence for Identifying Hazards

    PubMed Central

    Scott, Cheryl Siegel; Jinot, Jennifer

    2011-01-01

    We conducted a meta-analysis focusing on studies with high potential for trichloroethylene (TCE) exposure to provide quantitative evaluations of the evidence for associations between TCE exposure and kidney, liver, and non-Hodgkin lymphoma (NHL) cancers. A systematic review documenting essential design features, exposure assessment approaches, statistical analyses, and potential sources of confounding and bias identified twenty-four cohort and case-control studies on TCE and the three cancers of interest with high potential for exposure, including five recently published case-control studies of kidney cancer or NHL. Fixed- and random-effects models were fitted to the data on overall exposure and on the highest exposure group. Sensitivity analyses examined the influence of individual studies and of alternative risk estimate selections. For overall TCE exposure and kidney cancer, the summary relative risk (RRm) estimate from the random effects model was 1.27 (95% CI: 1.13, 1.43), with a higher RRm for the highest exposure groups (1.58, 95% CI: 1.28, 1.96). The RRm estimates were not overly sensitive to alternative risk estimate selections or to removal of an individual study. There was no apparent heterogeneity or publication bias. For NHL, RRm estimates for overall exposure and for the highest exposure group, respectively, were 1.23 (95% CI: 1.07, 1.42) and 1.43 (95% CI: 1.13, 1.82) and, for liver cancer, 1.29 (95% CI: 1.07, 1.56) and 1.28 (95% CI: 0.93, 1.77). Our findings provide strong support for a causal association between TCE exposure and kidney cancer. The support is strong but less robust for NHL, where issues of study heterogeneity, potential publication bias, and weaker exposure-response results contribute uncertainty, and more limited for liver cancer, where only cohort studies with small numbers of cases were available. PMID:22163205

  9. Identification of serum biomarkers for occupational medicamentosa-like dermatitis induced by trichloroethylene using mass spectrometry

    SciTech Connect

    Hong, Wen-Xu; Liu, Wei; Zhang, Yanfang; Huang, Peiwu; Yang, Xifei; Ren, Xiaohu; Ye, Jinbo; Huang, Haiyan; Tang, Haiyan; Zhou, Guifeng; Huang, Xinfeng; Zhuang, Zhixiong; Liu, Jianjun

    2013-11-15

    Occupational medicamentosa-like dermatitis induced by trichloroethylene (OMLDT) is an autoimmune disease and it has become a serious occupational health hazard. In the present study, we collected fasting blood samples from patients with OMLDT (n = 18) and healthy volunteers (n = 33) to explore serum peptidome patterns. Peptides in sera were purified using weak cation exchange magnetic beads (MB-WCX), and analyzed by matrix-assisted laser desorption ionization time-of-flight-mass spectrometry (MALDI-TOF-MS) and ClinProTools bioinformatics software. The intensities of thirty protein/peptide peaks were significantly different between the healthy control and OMLDT patients. A pattern of three peaks (m/z 2106.3, 2134.5, and 3263.67) was selected for supervised neural network (SNN) model building to separate the OMLDT patients from the healthy controls with a sensitivity of 95.5% and a specificity of 73.8%. Furthermore, two peptide peaks of m/z 4091.61 and 4281.69 were identified as fragments of ATP-binding cassette transporter family A member 12 (ABCA12), and cationic trypsinogen (PRRS1), respectively. Our findings not only show that specific proteomic fingerprints in the sera of OMLDT patients can be served as a differentiated tool of OMLDT patients with high sensitivity and high specificity, but also reveal the novel correlation between OMLDT with ABC transports and PRRS1, which will be of potential value for clinical and mechanistic studies of OMLDT. - Highlights: • Identify 30 differential protein/peptide peaks between OMLDT and healthy control • The test sensitivity and test specificity were 95.5% and 73.8%, respectively. • ABCA12 and PRSS1 were identified as potential biomarkers in OMLDT patients.

  10. Trichloroethylene oxidation performance in sodium percarbonate (SPC)/Fe2+ system.

    PubMed

    Zang, Xueke; Gu, Xiaogang; Lu, Shuguang; Qiu, Zhaofu; Sui, Qian; Lin, Kuangfei; Du, Xiaoming

    2014-01-01

    In this study, in-situ chemical oxidation technique employing Fe(II) catalytic sodium percarbonate (SPC) to stimulate the oxidation of trichloroethylene (TCE) in contaminated groundwater remediation was investigated. The effects of various factors including the SPC/TCE/Fe2+ molar ratio, the initial solution pH and the widely found constituents in groundwater matrix such as Cl(-), HCO3(-), SO4(2-) and NO3(-) anions and natural organic matters were evaluated. The experimental results showed that TCE could be completely oxidized in 5 min at 20 degrees C with a SPC/TCE/Fe2+ molar ratio of 5:1:10, indicating the significant effectiveness of the SPC/Fe2+ system for TCE removal. The initial solution pH value (from 3 to 11) has less influence on TCE oxidation rate. In contrast, Cl(-) and HCO3(-) anions had a negative effect on TCE removal in which HCO3(-) possesses a stronger influence than Cl(-), whereas the effects of both SO4(2-) and NO3(-) anions appeared to be negligible. With the 1.0-10 mg/L concentrations of humic acid in solution, slightly inhibitive effect was observed, suggesting that dissolved organic matters consumed less SPC and had a negligible effect on the oxidation of TCE in SPC/Fe2+ system. From the intermediate products' analyses and the released Cl(-) contents from TCE parent contaminant in solution, all the decomposed TCE had completely dechlorinated and led to carbon dioxide and hydrocarbon. In conclusion, Fe(II) catalytic SPC oxidation is a highly promising technique for TCE-contaminated groundwater remediation, but some complex constituents such as HCO3(-), in in-situ groundwater matrix should be carefully considered for its practical application. PMID:24645461

  11. Flux-based assessment at a manufacturing site contaminated with trichloroethylene.

    PubMed

    Basu, Nandita B; Rao, P S C; Poyer, Irene C; Annable, M D; Hatfield, K

    2006-06-30

    Groundwater and contaminant fluxes were measured, using the passive flux meter (PFM) technique, in wells along a longitudinal transect passing approximately through the centerline of a trichloroethylene (TCE) plume at a former manufacturing plant located in the Midwestern US. Two distinct zones of hydraulic conductivity were identified from the measured groundwater fluxes; a 6-m-thick upper zone ( approximately 7 m to 13 m below the ground surface or bgs) with a geometric mean Darcy flux (q(0)) of 2 cm/day, and a lower zone ( approximately 13 m to 16.5m bgs) with a q(0) approximately 15 cm/day; this important hydrogeologic feature significantly impacts any remediation technology used at the site. The flux-averaged TCE concentrations estimated from the PFM results compared well with existing groundwater monitoring data. It was estimated that at least 800 kg of TCE was present in the source zone. The TCE mass discharge across the source control plane (85 m x 38 m) was used to estimate the "source strength" ( approximately 365 g/day), while mass discharges across multiple down-gradient control planes were used to estimate the plume-averaged, TCE degradation rate constant (0.52 year(-1)). This is close to the rate estimated using the conventional centerline approach (0.78 year(-1)). The mass discharge approach provides a more robust and representative estimate than the centerline approach since the latter uses only data from wells along the plume centerline while the former uses all wells in the plume. PMID:16581154

  12. Trichloroethylene Hypersensitivity Syndrome Is Potentially Mediated through Its Metabolite Chloral Hydrate

    PubMed Central

    Huang, Yongshun; Xia, Lihua; Wu, Qifeng; Zeng, Zifang; Huang, Zhenlie; Zhou, Shanyu; Jin, Jiachun; Huang, Hanlin

    2015-01-01

    Background We documented previously the entity of trichloroethylene (TCE) hypersensitivity syndrome (THS) in occupational workers. Objectives To identify the culprit causative compound, determine the type of hypersensitivity of THS, and establish a screening test for subjects at risk of THS. Methods TCE and its main metabolites chloral hydrate (CH), trichloroethanol (TCOH) and trichloroacetic acid (TCA) were used as allergens at different concentrations in skin patch tests. The study included 19 case subjects diagnosed with occupational THS, 22 control healthy workers exposed to TCE (exposure >12 weeks), and 20 validation new workers exposed to TCE for <12 weeks free of THS. All subjects were followed-up for 12 weeks after the patch test. Results The highest patch test positive rate in subjects with THS was for CH, followed by TCOH, TCA and TCE. The CH patch test positive rate was 100% irrespective of CH concentrations (15%, 10% and 5%). The TCOH patch test positive rate was concentration-dependent (89.5%, 73.7% and 52.6% for 5%, 0.5% and 0.05%, respectively). Lower patch test positive rates were noted for TCA and TCE. All patch tests (including four allergens) were all negative in each of the 22 control subjects. None of the subjects of the validation group had a positive 15% CH patch test. Conclusions Chloral hydrate seems to be the culprit causative compound of THS and type IV seems to be the major type of hypersensitivity of THS. The CH patch test could be potentially useful for screening workers at risk of THS. PMID:26020924

  13. Vertical cross contamination of trichloroethylene in a borehole in fractured sandstone

    USGS Publications Warehouse

    Sterling, S.N.; Parker, B.L.; Cherry, J.A.; Williams, J.H.; Lane, J.W., Jr.; Haeni, F.P.

    2005-01-01

    Boreholes drilled through contaminated zones in fractured rock create the potential for vertical movement of contaminated ground water between fractures. The usual assumption is that purging eliminates cross contamination; however, the results of a field study conducted in a trichloroethylene (TCE) plume in fractured sandstone with a mean matrix porosity of 13% demonstrates that matrix-diffusion effects can be strong and persistent. A deep borehole was drilled to 110 m below ground surface (mbgs) near a shallow bedrock well containing high TCE concentrations. The borehole was cored continuously to collect closely spaced samples of rock for analysis of TCE concentrations. Geophysical logging and flowmetering were conducted in the open borehole, and a removable multilevel monitoring system was installed to provide hydraulic-head and ground water samples from discrete fracture zones. The borehole was later reamed to complete a well screened from 89 to 100 mbgs; persistent TCE concentrations at this depth ranged from 2100 to 33,000 ??g/L. Rock-core analyses, combined with the other types of borehole information, show that nearly all of this deep contamination was due to the lingering effects of the downward flow of dissolved TCE from shallower depths during the few days of open-hole conditions that existed prior to installation of the multilevel system. This study demonstrates that transfer of contaminant mass to the matrix by diffusion can cause severe cross contamination effects in sedimentary rocks, but these effects generally are not identified from information normally obtained in fractured-rock investigations, resulting in potential misinterpretation of site conditions. Copyright ?? 2005 National Ground Water Association.

  14. Aerobic degradation of trichloroethylene by co-metabolism using phenol and gasoline as growth substrates.

    PubMed

    Li, Yan; Li, Bing; Wang, Cui-Ping; Fan, Jun-Zhao; Sun, Hong-Wen

    2014-01-01

    Trichloroethylene (TCE) is a common groundwater contaminant of toxic and carcinogenic concern. Aerobic co-metabolic processes are the predominant pathways for TCE complete degradation. In this study, Pseudomonas fluorescens was studied as the active microorganism to degrade TCE under aerobic condition by co-metabolic degradation using phenol and gasoline as growth substrates. Operating conditions influencing TCE degradation efficiency were optimized. TCE co-metabolic degradation rate reached the maximum of 80% under the optimized conditions of degradation time of 3 days, initial OD600 of microorganism culture of 0.14 (1.26×10? cell/mL), initial phenol concentration of 100 mg/L, initial TCE concentration of 0.1 mg/L, pH of 6.0, and salinity of 0.1%. The modified transformation capacity and transformation yield were 20 ?g (TCE)/mg (biomass) and 5.1 ?g (TCE)/mg (phenol), respectively. Addition of nutrient broth promoted TCE degradation with phenol as growth substrate. It was revealed that catechol 1,2-dioxygenase played an important role in TCE co-metabolism. The dechlorination of TCE was complete, and less chlorinated products were not detected at the end of the experiment. TCE could also be co-metabolized in the presence of gasoline; however, the degradation rate was not high (28%). When phenol was introduced into the system of TCE and gasoline, TCE and gasoline could be removed at substantial rates (up to 59% and 69%, respectively). This study provides a promising approach for the removal of combined pollution of TCE and gasoline. PMID:24857922

  15. Molecular markers of trichloroethylene-induced toxicity in human kidney cells

    SciTech Connect

    Lash, Lawrence H. . E-mail: l.h.lash@wayne.edu; Putt, David A.; Hueni, Sarah E.; Horwitz, Beth P.

    2005-08-07

    Difficulties in evaluation of trichloroethylene (TRI)-induced toxicity in humans and extrapolation of data from laboratory animals to humans are due to the existence of multiple target organs, multiple metabolic pathways, sex-, species-, and strain-dependent differences in both metabolism and susceptibility to toxicity, and the lack or minimal amount of human data for many target organs. The use of human tissue for mechanistic studies is thus distinctly advantageous. The kidneys are one target organ for TRI and metabolism by the glutathione (GSH) conjugation pathway is responsible for nephrotoxicity. The GSH conjugate is processed further to produce the cysteine conjugate, S-(1,2-dichlorovinyl)-L-cysteine (DCVC), which is the penultimate nephrotoxic species. Confluent, primary cultures of human proximal tubular (hPT) cells were used as the model system. Although cells in log-phase growth, which are undergoing more rapid DNA synthesis, would give lower LD{sub 50} values, confluent cells more closely mimic the in vivo proximal tubule. DCVC caused cellular necrosis only at relatively high doses (>100 {mu}M) and long incubation times (>24 h). In contrast, both apoptosis and enhanced cellular proliferation occurred at relatively low doses (10-100 {mu}M) and early incubation times (2-8 h). These responses were associated with prominent changes in expression of several proteins that regulate apoptosis (Bcl-2, Bax, Apaf-1, Caspase-9 cleavage, PARP cleavage) and cellular growth, differentiation and stress response (p53, Hsp27, NF-{kappa}B). Effects on p53 and Hsp27 implicate function of protein kinase C, the mitogen activated protein kinase pathway, and the cytoskeleton. The precise pattern of expression of these and other proteins can thus serve as molecular markers for TRI exposure and effect in human kidney.

  16. Excess Volumes and Excess Isentropic Compressibilities of Binary Liquid Mixtures of Trichloroethylene with Esters at 303.15 K

    NASA Astrophysics Data System (ADS)

    Ramanaiah, S.; Rao, C. Narasimha; Nagaraja, P.; Venkateswarlu, P.

    2015-07-01

    Exces volumes, VE , and excess isentropic compressibilities, ? SE , have been reported as a function of composition for binary liquid mixtures of trichloroethylene with ethyl acetate, n-propyl acetate, and n-butyl acetate at 303.15 K. Isentropic compressibilities are calculated using measured sound speeds and density data for pure components and for binary mixtures. Excess volumes and excess isentropic compressibilities are found to be negative for the three systems studied over the entire composition range at 303.15 K, whereas these values become more negative with an increase of carbon chain length. The results are discussed in terms of intermolecular interactions between unlike molecules.

  17. Kinetic effects of toluene blending on the extinction limit of n-decane diffusion flames

    SciTech Connect

    Won, Sang Hee; Sun, Wenting; Ju, Yiguang

    2010-03-15

    The impact of toluene addition in n-decane on OH concentrations, maximum heat release rates, and extinction limits were studied experimentally and computationally by using counterflow diffusion flames with laser induced fluorescence imaging. Sensitivity analyses of kinetic path ways and species transport on flame extinction were also conducted. The results showed that the extinction strain rate of n-decane/toluene/nitrogen flames decreased significantly with an increase of toluene addition and depended linearly on the maximum OH concentration. It was revealed that the maximum OH concentration, which depends on the fuel H/C ratio, can be used as an index of the radical pool and chemical heat release rate, since it plays a significant role on the heat production via the reaction with other species, such as CO, H{sub 2}, and HCO. Experimental results further demonstrated that toluene addition in n-decane dramatically reduced the peak OH concentration via H abstraction reactions and accelerated flame extinction via kinetic coupling between toluene and n-decane mechanisms. Comparisons between experiments and simulations revealed that the current toluene mechanism significantly over-predicts the radical destruction rate, leading to under-prediction of extinction limits and OH concentrations, especially caused by the uncertainty of the H abstraction reaction from toluene, which rate coefficient has a difference by a factor of 5 in the tested toluene models. In addition, sensitivity analysis of diffusive transport showed that in addition to n-decane and toluene, the transport of OH and H also considerably affects the extinction limit. A reduced linear correlation between the extinction limits of n-decane/toluene blended fuels and the H/C ratio as well as the mean fuel molecular weight was obtained. The results suggest that an explicit prediction of the extinction limits of aromatic and alkane blended fuels can be established by using H/C ratio (or radical index) and the mean fuel molecular weight which represent the rates of radical production and the fuel transport, respectively. (author)

  18. Alterations in Rat Fetal Morphology Following Abuse Patterns of Toluene Exposure

    PubMed Central

    Bowen, Scott E.; Irtenkauf, Susan; Hannigan, John H.; Stefanski, Adrianne L.

    2009-01-01

    Toluene is a commonly abused organic solvent. Inhalant abusers are increasingly women in their prime childbearing years. Children born to mothers who abused solvents during pregnancy may exhibit characteristics of a “fetal solvent syndrome” which may include dysmorphic features. This study examined the teratological effects of an abuse pattern of binge toluene exposure during gestation on skeletal and soft tissue abnormalities, body weight, and body size in fetal rats. Pregnant Sprague–Dawley rats were exposed for 30 min, twice daily, from gestational day (GD) 8 through GD20 to either air (0 ppm), 8,000 ppm, 12,000 ppm, or 16,000 ppm toluene. Two-thirds of each litter was prepared for skeletal examination using Alizarin Red S staining while the remaining third of each litter was fixed in Bouin’s solution for Wilson’s soft tissue evaluation. Exposure to toluene at all levels significantly reduced growth, including decreases in placental weight, fetal weight, and crown-rump length. In addition, numerous gross morphological anomalies were observed such as short or missing digits and missing limbs. Skeletal examination revealed that ossification of the extremities was significantly reduced as a result of toluene exposure at all levels. Specific skeletal defects included misshapen scapula, missing and supernumerary vertebrae and ribs, and fused digits. Soft tissue anomalies were also observed at all toluene levels and there was a dose-dependent increase in the number of anomalies which included cryptorchidism, displaced abdominal organs, gastromegaly, distended/hypoplastic bladder, and delayed cardiac development, among others. These results indicate that animals exposed prenatally to levels and patterns of toluene typical of inhalant abuse are at increased risk for skeletal and soft tissue abnormalities. PMID:19429395

  19. Alterations in rat fetal morphology following abuse patterns of toluene exposure.

    PubMed

    Bowen, Scott E; Irtenkauf, Susan; Hannigan, John H; Stefanski, Adrianne L

    2009-04-01

    Toluene is a commonly abused organic solvent. Inhalant abusers are increasingly women in their prime childbearing years. Children born to mothers who abused solvents during pregnancy may exhibit characteristics of a "fetal solvent syndrome" which may include dysmorphic features. This study examined the teratological effects of an abuse pattern of binge toluene exposure during gestation on skeletal and soft tissue abnormalities, body weight, and body size in fetal rats. Pregnant Sprague-Dawley rats were exposed for 30 min, twice daily, from gestational day (GD) 8 through GD20 to either air (0 ppm), 8000 ppm, 12,000 ppm, or 16,000 ppm toluene. Two-thirds of each litter was prepared for skeletal examination using Alizarin Red S staining while the remaining third of each litter was fixed in Bouin's solution for Wilson's soft tissue evaluation. Exposure to toluene at all levels significantly reduced growth, including decreases in placental weight, fetal weight, and crown-rump length. In addition, numerous gross morphological anomalies were observed such as short or missing digits and missing limbs. Skeletal examination revealed that ossification of the extremities was significantly reduced as a result of toluene exposure at all levels. Specific skeletal defects included misshapen scapula, missing and supernumerary vertebrae and ribs, and fused digits. Soft tissue anomalies were also observed at all toluene levels and there was a dose-dependent increase in the number of anomalies which included cryptorchidism, displaced abdominal organs, gastromegaly, distended/hypoplastic bladder, and delayed cardiac development, among others. These results indicate that animals exposed prenatally to levels and patterns of toluene typical of inhalant abuse are at increased risk for skeletal and soft tissue abnormalities. PMID:19429395

  20. Probing the dynamics of highly excited toluene on the fs timescale.

    PubMed

    Papadopoulou, C C; Kaziannis, S; Kosmidis, C

    2015-11-25

    Investigation of the dynamics of toluene-h8 (C6H5CH3), toluene-d8 (C6D5CD3) and toluene-?,?,?-d3 (C6H5CD3) has been performed utilizing the VUV pump-IR probe technique on the fs timescale. Using the 5th harmonic (?160 nm) of a Ti:sapphire laser as the pump beam, two superimposed electronic states, the valence S3 and the Rydberg 4p, were excited by one-photon absorption, followed by ionization and dissociation induced by the probe beam (800 nm). Analysis of the transient signal of the parent (P(+)) and fragment ions ([P-H](+) or [P-D](+)) implies the existence of two different relaxation processes: (i) from the Rydberg and (ii) from the S3 valence state. Using a rate equation model, the decay times have been determined and comparison between the different isotopologues has been made. Conclusions on the relaxation path, the relative displacements of the potential energy surfaces and the activation energies needed have been drawn from the decay times. The signals corresponding to the fragment ions present a small in amplitude, but nonetheless, unambiguous periodical modulation, which is attributed to out-of-plane bending oscillation, involving also the methyl group. The dynamics of the H- and D-loss channels has been investigated. Especially for the case of toluene-?,?,?-d3, where both channels are in operation, it was found that the ratio of the abundance of H/D-loss dissociation reactions decreases as the pump-probe delay time increases. PMID:26559123

  1. Volatile organic compounds detected in vapor-diffusion samplers placed in sediments along and near the shoreline at Allen Harbor Landfill and Calf Pasture Point, Davisville, Rhode Island, March-April 1998

    USGS Publications Warehouse

    Lyford, F.P.; Kliever, J.D.; Scott, Clifford

    1999-01-01

    Volatile organic compounds are present in ground water at the Allen Harbor Landfill and the Calf Pasture Point sites on the former Naval Construction Battalion Center in Davisville, R.I. Vapor-diffusion samplers were used at the two sites during March-April 1998 to identify possible discharge points for contaminants along the shore of Allen Harbor and in two wetland areas near the shore. Results from vapor-diffusion samplers will be used in conjunction with other site information to evaluate proposed ground-water monitoring programs. Volatile organic compounds were detected in 41 of 115 samplers placed along the shoreline at the Allen Harbor Landfill. Trichloroethylene was the principal volatile organic compound detected of eight target compounds. The highest vapor concentration measured exceeded 300,000 parts per billion by volume in an area where TCE was detected in groundwater from nearby monitoring wells. Other chemicals detected in vapor-diffusion samplers included tetrachloroethylene, toluene, and benzene. Concentrations of individual volatile organic compounds were less than 100 parts per billion by volume in most samplers. Volatile organic compounds, principally trichloroethylene, were detected in 7 of 30 samplers placed along the shoreline at Calf Pasture Point; the highest trichloroethylene concentration was 1,900 parts per billion by volume. A trace concentration of tetrachloroethylene was detected in one of the samplers. One of 24 samplers placed in two wetland areas near the shore (suspected discharge areas for ground-water containing volatile organic compounds) detected trichloroethylene at a vapor concentration of 14 parts per billion by volume.

  2. Kinetic modeling of benzene and toluene decomposition in air and in flue gas under electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Nichipor, Henrieta; Dashouk, Elena; Yacko, Svetlana; Sun, Yongxia; Chmielewski, Andrzej G.; Zimek, Zbigniew; Bu?ka, Sylwester

    2012-05-01

    Computer simulations of benzene and toluene decomposition in air (79% N2+21% O2) and in flue gas (87% N2+10% O2+3% H2O+160 ppm SO2+80 ppm NO) under electron beam (EB) irradiation were carried out using computer code KINETIC and GEAR method. 285 reactions involving 73 species and 294 reactions involving 78 species were considered for simulation of benzene and toluene decomposition, respectively. Calculation results of benzene and toluene decomposition in air under electron beam agree well with the published experimental results. rad OH radicals play a main role in benzene or toluene decomposition.

  3. Occurrence of mental illness following prenatal and early childhood exposure to tetrachloroethylene (PCE)-contaminated drinking water: a retrospective cohort study

    PubMed Central

    2012-01-01

    Background While many studies of adults with solvent exposure have shown increased risks of anxiety and depressive disorders, there is little information on the impact of prenatal and early childhood exposure on the subsequent risk of mental illness. This retrospective cohort study examined whether early life exposure to tetrachloroethylene (PCE)-contaminated drinking water influenced the occurrence of depression, bipolar disorder, post-traumatic stress disorder, and schizophrenia among adults from Cape Cod, Massachusetts. Methods A total of 1,512 subjects born between 1969 and 1983 were studied, including 831 subjects with both prenatal and early childhood PCE exposure and 547 unexposed subjects. Participants completed questionnaires to gather information on mental illnesses, demographic and medical characteristics, other sources of solvent exposure, and residences from birth through 1990. PCE exposure originating from the vinyl-liner of water distribution pipes was assessed using water distribution system modeling software that incorporated a leaching and transport algorithm. Results No meaningful increases in risk ratios (RR) for depression were observed among subjects with prenatal and early childhood exposure (RR: 1.1, 95% CI: 0.9-1.4). However, subjects with prenatal and early childhood exposure had a 1.8-fold increased risk of bipolar disorder (N = 36 exposed cases, 95% CI: 0.9-1.4), a 1.5-fold increased risk post-traumatic stress disorder (N = 47 exposed cases, 95% CI: 0.9-2.5), and a 2.1-fold increased risk of schizophrenia (N = 3 exposed cases, 95% CI: 0.2-20.0). Further increases in the risk ratio were observed for bipolar disorder (N = 18 exposed cases, RR; 2.7, 95% CI: 1.3-5.6) and post-traumatic stress disorder (N = 18 exposed cases, RR: 1.7, 95% CI: 0.9-3.2) among subjects with the highest exposure levels. Conclusions The results of this study provide evidence against an impact of early life exposure to PCE on the risk of depression. In contrast, the results provide support for an impact of early life exposure on the risk of bipolar disorder and post-traumatic stress disorder. The number of schizophrenia cases was too small to draw reliable conclusions. These findings should be confirmed in investigations of other similarly exposed populations. PMID:22264316

  4. Affinity for risky behaviors following prenatal and early childhood exposure to tetrachloroethylene (PCE)-contaminated drinking water: a retrospective cohort study

    PubMed Central

    2011-01-01

    Background Many studies of adults with acute and chronic solvent exposure have shown adverse effects on cognition, behavior and mood. No prior study has investigated the long-term impact of prenatal and early childhood exposure to the solvent tetrachloroethylene (PCE) on the affinity for risky behaviors, defined as smoking, drinking or drug use as a teen or adult. Objectives This retrospective cohort study examined whether early life exposure to PCE-contaminated drinking water influenced the occurrence of cigarette smoking, alcohol consumption, and drug use among adults from Cape Cod, Massachusetts. Methods Eight hundred and thirty-one subjects with prenatal and early childhood PCE exposure and 547 unexposed subjects were studied. Participants completed questionnaires to gather information on risky behaviors as a teenager and young adult, demographic characteristics, other sources of solvent exposure, and residences from birth through 1990. PCE exposure was estimated using the U.S. EPA's water distribution system modeling software (EPANET) that was modified to incorporate a leaching and transport model to estimate PCE exposures from pipe linings. Results Individuals who were highly exposed to PCE-contaminated drinking water during gestation and early childhood experienced 50-60% increases in the risk of using two or more major illicit drugs as a teenager or as an adult (Relative Risk (RR) for teen use = 1.6, 95% CI: 1.2-2.2; and RR for adult use = 1.5, 95% CI: 1.2-1.9). Specific drugs for which increased risks were observed included crack/cocaine, psychedelics/hallucinogens, club/designer drugs, Ritalin without a prescription, and heroin (RRs:1.4-2.1). Thirty to 60% increases in the risk of certain smoking and drinking behaviors were also seen among highly exposed subjects. Conclusions The results of this study suggest that risky behaviors, particularly drug use, are more frequent among adults with high PCE exposure levels during gestation and early childhood. These findings should be confirmed in follow-up investigations of other exposed populations. PMID:22136431

  5. Distribution of petroleum hydrocarbons and toluene biodegradation, Knox Street fire pits, Fort Bragg, North Carolina

    USGS Publications Warehouse

    Harden, S.L.; Landmeyer, J.E.

    1996-01-01

    An investigation was conducted at the Knox Street fire pits, Fort Bragg, North Carolina, to monitor the distribution of toluene, ethylbenzene, and xylene (TEX) in soil vapor, ground water, and ground-water/vapor to evaluate if total concentrations of TEX at the site are decreasing with time, and to quantify biodegradation rates of toluene in the unsaturated and saturated zones. Soil-vapor and ground-water samples were collected around the fire pits and ground-water/vapor samples were collected along the ground-water discharge zone, Beaver Creek, on a monthly basis from June 1994 through June 1995. Concentrations of TEX compounds in these samples were determined with a field gas chro- matograph. Laboratory experiments were performed on aquifer sediment samples to measure rates of toluene biodegradation by in situ micro- organisms. Based on field gas chromatographic analytical results, contamination levels of TEX compounds in both soil vapor and ground water appear to decrease downgradient of the fire-pit source area. During the 1-year study period, the observed temporal and spatial trends in soil vapor TEX concentrations appear to reflect differences in the distribution of TEX among solid, aqueous, and gaseous phases within fuel-contaminated soils in the unsaturated zone. Soil temperature and soil moisture are two important factors which influence the distribution of TEX com- pounds among the different phases. Because of the short period of data collection, it was not possible to distinguish between seasonal fluc- tuations in soil vapor TEX concentrations and an overall net decrease in TEX concentrations at the study site. No seasonal trend was observed in total TEX concentrations for ground- water samples collected at the study site. Although the analytical results could not be used to determine if ground-water TEX concen- trations decreased during the study at a specific location, the data were used to examine rate constants of toluene biodegradation. Based on ground-water toluene concentration data, a maximum rate constant for anaerobic biodegradation of toluene in the saturated zone was estimated to be as low as 0.002 d-1 or as high as 0.026 d-1. Based on analyses of ground-water/vapor samples, toluene was the prin- cipal TEX compound identified in ground water discharging to Beaver Creek. Observed decreases in ground-water/vapor toluene concentrations during the study period may reflect a decrease in source inputs, an increase in dilution caused by higher ground-water flow, and(or) removal by biological or other physical processes. Rate constants of toluene anaerobic biodegradation determined by laboratory measurements illustrate a typical acclimation response of micro-organisms to hydrocarbon contamination in sediments collected from the site. Toluene biodegradation rate constants derived from laboratory microcosm studies ranged from 0.001 to 0.027 d-1, which is similar to the range of 0.002 to 0.026 d-1 for toluene biodegradation rate constants derived from ground-water analytical data. The close agreement of toluene biodegradation rate constants reported using both approaches offer strong evidence that toluene can be degraded at environmentally significant rates at the study site.

  6. Contribution of Dichloroacetate and Trichloroacetate to Liver Tumor Induction in Mice by Trichloroethylene

    SciTech Connect

    Bull, Richard J.; Orner, Gayle A.; Cheng, Rita S.; Stillwell, Lisa C.; Stauber, Anja J.; Sasser, Lyle B.); Lingohr, Melissa K.; Thrall, Brian D.)

    2002-01-01

    Determining the key events in the induction of liver cancer in mice by trichloroethylene (TRI) is important in the determination of how risks from this chemical should be treated at low doses. At least two metabolites can contribute to liver cancer in mice, dichloroacetate (DCA) and trichloroacetate (TCA). TCA is produced from metabolism of TRI at systemic concentrations that can clearly contribute to this response. As a peroxisome proliferator and a species-specific carcinogen, TCA may not be important in the induction of liver cancer in humans at the low doses of TRI encountered in the environment. Because DCA is metabolized much more rapidly than TCA, it has not been possible to directly determine whether it is produced at carcinogenic levels. Unlike TCA, DCA is active as a carcinogen in both mice and rats. Its low-dose effects are not associated with peroxisome proliferation. The present study examines whether biomarkers for DCA and TCA can be used to determine if the liver tumor response to TRI seen in mice is completely attributable to TCA or if other metabolites, such as DCA, are involved. Previous work had shown that DCA produces tumors in mice that display a diffuse immunoreactivity to a c-Jun antibody (Santa Cruz Biotechnology, SC-45), whereas TCA-induced tumors do not stain with this antibody. In the present study, we compared the c-Jun phenotype of tumors induced by DCA or TCA alone to those induced when they are given together in various combinations and to those induced by TRI given in an aqueous vehicle. When given in various combinations, DCA and TCA produced a few tumors that were c-Jun+, many that were c-Jun-, but a number with a mixed phenotype that increased with the relative dose of DCA. Sixteen TRI-induced tumors were c-Jun+, 13 were c-Jun-, and 9 had a mixed phenotype. Mutations of the H-ras protooncogene were also examined in DCA-, TCA-, and TRI-induced tumors.

  7. Effect of Trichloroethylene on Minimum Energy Requirement and Gene Expression in a Nutrient Limited Methanotroph

    NASA Astrophysics Data System (ADS)

    Colwell, F. S.; Delwiche, M.; Newby, D.; Wood, A.; Bingham, M.; Crawford, R. L.; Strap, J. L.

    2005-12-01

    Monitored natural attenuation (MNA) of contaminant plumes requires data for predictive modeling of plume destruction including the rates of microbial contaminant degradation. Methanotrophs are implicated in co-metabolism of trichloroethylene (TCE) in the Snake River Plain aquifer (SRPA) where MNA is the selected method of treatment. Our research aims to: 1) determine realistic activities of these cells when starved, a condition typical of subsurface microbes, and 2) detect the genes that are transcribed when methanotrophs experience stress or starvation related to TCE exposure and conditions in the subsurface. Methylosinus trichosporium OB3b (OB3b), a model methanotroph, was starved in a biomass recycle reactor and soluble methane monooxygenase (sMMO) activities determined, with and without TCE exposure (ca. 100 ?g TCE/L). Starved methanotrophs, present at 3 x 109 cells/mL in the reactor, consumed methane at 0.001 fmoles of methane/cell/day and gradually increased sMMO activities when exposed to higher methane concentrations. sMMO activities of starved OB3b cells exposed to TCE were indistinguishable from cells that were not exposed over brief (one day) periods. The sequences of eight genes, known to code for starvation/stress proteins, were retrieved from phylogenetic relatives (?-proteobacteria) of OB3b. Primers (18-22 bp) were designed from conserved regions in the consensus sequences to obtain OB3b-specific sequences for the eight genes. Primers for the starvation/stress genes successfully amplified all eight genes in OB3b using PCR. Our plan is to clone and sequence these OB3b genes then synthesize oligonucleotides that can be added to a microarray that includes targets for OB3b structural and regulatory gene sequences as a prelude to evaluating gene expression under different nutrient availability conditions and in the presence and absence of TCE. Incorporation of starvation-based rate estimates into natural attenuation models of contaminant plumes will permit estimates of the fraction of TCE natural attenuation that can be attributed to methanotrophic co-metabolism in a given aquifer system.

  8. DIFFICULTY OF MODE OF ACTION DETERMINATION FOR TRICHLOROETHYLENE: AN EXAMPLE OF COMPLEX INTERACTIONS OF METABOLITES AND OTHER CHEMICAL EXPOSURES (Journal Article)

    EPA Science Inventory

    The mode(s) of action (MOA) of a pollutant for adverse health effects may be dependent on the mixture of metabolites resulting from exposure to a single agent and may also be affected by co-exposure to pollutants that have similar targets or affected pathways. Trichloroethylene ...

  9. COMPARISON OF TRICHLOROETHYLENE REDUCTIVE DEHALOGENATION BY MICROBIAL COMMUNITIES STIMULATED ON SILICON-BASED ORGANIC COMPOUNDS AS SLOW-RELEASE ANAEROBIC SUBSTRATES. (R828772C001)

    EPA Science Inventory

    Microcosm studies were conducted to demonstrate the effectiveness of tetrabutoxysilane (TBOS) as a slow-release anaerobic substrate to promote reductive dehalogenation of trichloroethylene (TCE). The abiotic hydrolysis of TBOS and tetrakis(2-ethylbutoxy)silane (TKEBS), and the...

  10. The desorption of toluene from a montmorillonite clay adsorbent in a rotary kiln environment

    SciTech Connect

    Owens, W.D.; Silcox, G.D.; Lighty, J.S.; Xiao Xue Deng; Pershing, D.W. ); Cundy, V.A.; Leger, C.B.; Jakway, A.L. )

    1992-05-01

    The vaporization of toluene from pre-dried, 3 mm montmorillonite clay particles was studied in a 130 kW pilot-scale rotary kiln with inside dimensions of 0.61 by 0.61 meters. Vaporization rates were obtained with a toluene weight fraction of 0.25 percent as a function of kiln fill fractions from 3 to 8 percent, rotation rates from 0.1 to 0.9 rpm, and kiln wall temperatures from 189 to 793 C. Toluene desorption rates were obtained from gas-phase measurements and interpreted using a desorption model that incorporates the slumping frequency of the solids, the fill fraction of the kiln, the diffusion of toluene in the bed, and the rate of particle desorption using an Arrhenius-type expression that is a function of bed temperature and average bed concentration. The model included three adjustable desorption parameters which were obtained by fitting the experimental data at one set of conditions with a least squares technique. Solid and kiln-wall temperatures were continuously recorded and used in the model at predicting the effects of fill fraction and rotation rate over a range of temperatures. A methodology for predicting full-scale performance was developed. Full-scale toluene desorption predictions were completed for different operating temperatures.

  11. Kinetic and metabolic study of benzene, toluene and m-xylene in nitrifying batch cultures.

    PubMed

    Zepeda, A; Texier, A-C; Razo-Flores, E; Gomez, J

    2006-05-01

    The effect of benzene, toluene, and m-xylene (BTX) compounds on the nitrifying activity of a sludge produced in steady-state nitrification was evaluated in batch cultures. Benzene and m-xylene at 10 mg C/L decreased ammonium consumption efficiency by 57% and 26%, respectively, whereas toluene did not affect the ammonium oxidation process. The consumed NH4+-N was totally oxidized to NO3- -N. There was no significant effect at 5 mg C/L of each aromatic compound. BTX (5-20mg C/L) induced a significant decrease in the values for specific rates of NH4+ -N consumption (76-99%) and NO3- -N production (45-98%). At 10 mg C/L of BTX compounds, the inhibition order on nitrate production was: benzene > m-xylene > toluene while at 20 mg C/L, the sequence changed to m-xylene > toluene > benzene for both nitrification inhibition and BTX compounds persistence. At 5 mg C/L of BTX compounds, there was no toxic effect on the sludge whereas from 10 to 50 mgC/L, bacteria did not totally recover their nitrifying activity. At a concentration of 5 mg C/L, toluene was first oxidized to benzyl alcohol, which was later oxidized to butyrate while m-xylene was oxidized to acetate and butyrate. PMID:16603220

  12. The effect of explicit solvent on photodegradation of decabromodiphenyl ether in toluene: insights from theoretical study.

    PubMed

    Pan, Lu; Bian, Wensheng; Zhang, Jiaxu

    2013-06-27

    Polybrominated diphenyl ethers (PBDEs) have received special environmental concern because of their potential toxicity to humans and wildlife worldwide. However, their photochemical degradation mechanisms remain largely unknown. Herein, a PCM/TD-DFT scheme (time-dependent density functional theory combined with the polarizable continuum model) augmented with explicit solute-solvent interactions is used to explore the promotive effects of the toluene solvent on the photochemical degradation debromination of deca-BDE (BDE209). The face-to-face ?-? interactions between penta-bromine-substituted phenyl and toluene are investigated. The calculations indicate that the face-to-face ?-? interaction plays an important role in the low-lying ???* transitions of BDE209-toluene ?-stacking complex at around 300 nm in the sunlight region, which leads to notable changes for the ??* excited states and which promotes the breaking of the C-Br bonds. The photodegradation reaction via an intermolecular charge-transfer excited state formed by the electronic transition from a ? orbital of toluene to a ?* orbital of BDE209 is found to be a dominant mechanism. Our calculation results reveal the mechanism of how the participation of an explicit toluene solvent molecule catalyzes the photodegradation of BDE209 and explain the experimental results successfully. The present study may provide helpful information for the removal of PBDE contamination. PMID:23725399

  13. Flammability limits and explosion characteristics of toluene-nitrous oxide mixtures.

    PubMed

    Vandebroek, L; Van den Schoor, F; Verplaetsen, F; Berghmans, J; Winter, H; van't Oost, E

    2005-04-11

    Flammability limits and explosion characteristics of toluene-nitrous oxide mixtures are experimentally determined in an 8l spherical vessel, and are compared with corresponding values of toluene-air mixtures. The experiments, performed at atmospheric pressure and at an initial temperature of 70 degrees C, show that the flammable range of toluene in nitrous oxide (0.25-22.5 mol%) is about three times as wide as the corresponding range of toluene in air (1.3-7.1 mol%). Maximum values of the explosion pressure ratio and the deflagration index, K(G), are clearly higher when nitrous oxide is applied as an oxidizer. This can be attributed to the increased flame temperature and burning velocity of toluene-nitrous oxide flames. Moreover, extremely high values of K(G) for near-stoichiometric mixtures in combination with strong acoustic oscillations in the pressure signals of these mixtures indicate the existence of a flame accelerating mechanism. These phenomena are enhanced when an initial pressure of 6 bara is applied. Finally, when evaluating the lower flammability limit, it was found that pure nitrous oxide decomposes at pressures above 4.5 bara when applying an ignition energy of about 10 J. PMID:15811665

  14. Toluene degradation by non-thermal plasma combined with a ferroelectric catalyst.

    PubMed

    Liang, Wen-Jun; Ma, Lin; Liu, Huan; Li, Jian

    2013-08-01

    Degradation of toluene in a gas by non-thermal plasma with a ferroelectric catalyst was studied at normal temperature and atmospheric pressure. Spontaneous polarization material (BaTiO3) and photocatalyst (TiO2) were added into plasma system simultively. Toluene degradation efficiency and specific energy density during the discharge process were investigated. Furthermore, byproducts and degradation mechanisms of toluene were also investigated. The toluene degradation efficiency increased when non-thermal plasma technology was combined with the catalyst. The toluene degradation efficiencies of the different catalysts tested were in the following order: BaTiO3/TiO2>BaTiO3>TiO2>no catalyst. A mass ratio of 2.38:1 was optimum for the BaTiO3 and TiO2 catalyst. The outlet gas was analyzed by gas chromatography and Fourier transform infrared spectroscopy, and the main compounds detected were CO2, H2O, O3 and benzene ring derivatives. PMID:23773445

  15. Respiratory effects in toluene diisocyanate manufacture: a multidisciplinary approach.

    PubMed Central

    Weill, H; Salvaggio, J; Neilson, A; Butcher, B; Ziskind, M

    1975-01-01

    A new plant manufacturing toluene diisocyanate (TDI) has provided a unique opportunity to investigate the effects of TDI vapor inhalation on respiratory health in a group of exposed workers who have been studied prior to the start of plant operation. In order to establish dose-response relationships and determine host factors, complete biologic monitoring, including pulmonary function and immunologic studies, has been performed concurrently with a comprehensive environmental monitoring program including continuous sampling for atmospheric concentrations of TDI. Study groups include workers with regular exposure to TDI in production jobs (83), workers with intermittent contact with this vapor, usually in maintenance (28), and a control group of workers employed outside the TDI area (55). This population is being followed for a period of 5 yr. The plant began operations in August 1973 with start-up procedures completed by the end of October. TDI spills occurred for numerous reasons, usually attributed to pump failure and resultant line blockage. Significant exposures also occurred in the drumming operation. The influence of these malfunctions is noted in the continuous monitoring data on atmospheric TDI concentrations which continue to reveal frequent excursions above the threshold limit value (TLV) of 0.02 ppm ceiling. These data are presented in relation to time and plant location. Although the first full year follow-up following initial exposure was not complete, certain preliminary clinical observations were made. A number of workers had episodes of acute respiratory symptoms related to single exposure to an irritant gas at work, usually either TDI or phosgene. It appears that two or three workers in the study population have become "clinically sensitized" to TDI and have been removed from regular TDI exposure. To date, the total number of workers who report the presence of recurring respiratory symptoms has not increased in comparison with the pre-exposure survey. Pulmonary function data after one full year of TDI exposure are not yet available. Pre- and post-shift ventilatory function studies do not indicate significant differences between the exposed and control groups. Selected individuals had carefully controlled inhalation challenge tests to monitored concentrations of TDI vapor under laboratory conditions. In workers suspected of having become "sensitized", immediate and/or late air flow obstruction was demonstrated and could be related to dose of inhaled TDI. PMID:170075

  16. Final Progress Report: Coupled Biogeochemical Process Evaluation for Conceptualizing Trichloroethylene Cometabolism

    SciTech Connect

    Crawford, Ronald L; Paszczynski, Andrzej J

    2010-02-19

    Our goal within the overall project is to demonstrate the presence and abundance of methane monooxygenases (MMOs) enzymes and their genes within the microbial community of the Idaho National Laboratory (INL) Test Area North (TAN) site. MMOs are thought to be the primary catalysts of natural attenuation of trichloroethylene (TCE) in contaminated groundwater at this location. The actual presence of the proteins making up MMO complexes would provide direct evidence for its participation in TCE degradation. The quantitative estimation of MMO genes and their translation products (sMMO and pMMO proteins) and the knowledge about kinetics and substrate specificity of MMOs will be used to develop mathematical models of the natural attenuation process in the TAN aquifer. The model will be particularly useful in prediction of TCE degradation rate in TAN and possibly in the other DOE sites. Bacteria known as methanotrophs produce a set of proteins that assemble to form methane monooxygenase complexes (MMOs), enzymes that oxidize methane as their natural substrate, thereby providing a carbon and energy source for the organisms. MMOs are also capable of co-metabolically transforming chlorinated solvents like TCE into nontoxic end products such as carbon dioxide and chloride. There are two known forms of methane monooxygenase, a membrane-bound particulate form (pMMO) and a cytoplasmic soluble form (sMMO). pMMO consists of two components, pMMOH (a hydroxylase comprised of 47-, 27-, and 24-kDa subunits) and pMMOR (a reductase comprised of 63 and 8-kDa subunits). sMMO consists of three components: a hydroxylase (protein A-250 kDa), a dimer of three subunits (?2?2?2), a regulatory protein (protein B-15.8 kDa), and a reductase (protein C-38.6 kDa). All methanotrophs will produce a methanol dehydrogenase to channel the product of methane oxidation (methanol) into the central metabolite formaldehyde. University of Idaho (UI) efforts focused on proteomic analyses using mass spectrometry and genomic analyses using RT-PCR to characterize these enzyme systems. UI’s specific objectives were to develop the proteomics and genomic tools to assess the presence of the methane monooxygenase (MMO) proteins in the aquifers under study and relate this to the enumeration of methanotrophic microorganisms. We targeted the identification of both sMMO and pMMO. We believe that the copper level in the TAN aquifer is most likely suppressing the expression of sMMO and mediates the higher levels of pMMO expression. Hence our investigations included the identification of both forms of MMOs, and we expected a higher concentration of pMMO proteins in TAN samples. The amounts of these proteins present were correlated with numbers of methanotrophs determined by us and other members of the research team using PCR-based methods. In summary, to accomplish our objectives we applied environmental proteomics techniques to monitor proteins that are involved in the co-metabolic degradation of trichloroethylene (TCE) in groundwater of the INL TAN site on Department of Energy ands of near Idaho Falls, ID USA. To acquire peptides sequences information we used an ultra performance chromatography (UPLC) system coupled with QToF Premiere nano-electrospray tandem quadropole-time of flight mass spectrometer. Our goal was to identify signature peptides of methane monooxygenases (MMOs) within methanotrophic bacteria that are active in cometabolic degradation of TCE. We developed a new method for extracting total proteins from environmental planktonic and/or biofilm samples that involve a new time course cell lysis and protein extraction method in combination with chromatographic separation of peptide and tandem mass spectrometry sequencing. The techniques resulted in successful extraction and identification of MMO-based peptides from both pure cultures and TAN site samples. The work confirmed the importance of mathonotrophs in the co-metabolic removal of TCE from the TAN site aquifer.

  17. Toluene oxidation by non-thermal plasma combined with palladium catalysts

    PubMed Central

    Magureanu, Monica; Dobrin, Daniela; Mandache, Nicolae B.; Cojocaru, Bogdan; Parvulescu, Vasile I.

    2013-01-01

    The oxidation of toluene in air was investigated using a dielectric barrier discharge (DBD) combined with a Pd/Al2O3 catalyst. When using only plasma, rather low selectivity toward CO2 was obtained: 32–35%. By filling the DBD reactor with Pd/Al2O3 catalyst the CO2 selectivity was significantly enhanced (80–90%), however, a large amount of toluene was desorbed from the catalyst when the discharge was operated. By filling a quarter of the discharge gap with catalyst and placing the rest of the catalyst downstream of the plasma reactor, an important increase of CO2 selectivity (~75%) and a 15% increase in toluene conversion were achieved as compared to the results with plasma alone. The catalyst exhibited a very good stability in this reaction. PMID:24790936

  18. Electrophilic and free radical nitration of benzene and toluene with various nitrating agents*

    PubMed Central

    Olah, George A.; Lin, Henry C.; Olah, Judith A.; Narang, Subhash C.

    1978-01-01

    Electrophilic nitration of toluene and benzene was studied under various conditions with several nitrating systems. It was found that high orthopara regioselectivity is prevalent in all reactions and is independent of the reactivity of the nitrating agent. The methyl group of toluene is predominantly ortho-para directing under all reaction conditions. Steric factors are considered to be important but not the sole reason for the variation in the ortho/para ratio. The results reinforce our earlier views that, in electrophilic aromatic nitrations with reactive nitrating agents, substrate and positional selectivities are determined in two separate steps. The first step involves a ?-aromatic-NO2+ ion complex or encounter pair, whereas the subsequent step is of arenium ion nature (separate for the ortho, meta, and para positions). The former determines substrate selectivity, whereas the latter determines regioselectivity. Thermal free radical nitration of benzene and toluene with tetranitromethane in sharp contrast gave nearly statistical product distributions. PMID:16592503

  19. Engineering case report. Toluene and methyl ethyl ketone exposure from a commercially available contact adhesive.

    PubMed

    Mills, William J; Grigg, Benjamin J; Offermann, Francis J; Gustin, Barry E; Spingarn, Neil E

    2012-01-01

    A maintenance worker became ill after working indoors over the course of 3 days with a commercially available contact adhesive containing toluene and methyl ethyl ketone. Respiratory protection or local exhaust ventilation was not used. The worker subsequently suffered from numerous medical symptoms including tremors and elevated blood pressure. Magnetic resonance imaging documented the occurrence of encephalopathy. The worker has alleged that the cause of these effects was exposure to the vapors from the contact adhesive. The objective of this study was to characterize/estimate the level of the worker's exposure by obtaining air samples in an exposure chamber while performing similar activities under similar conditions. We found that the worker may have been exposed to approximately 159 ppm toluene and 58 ppm methyl ethyl ketone 8-hr time-weighted averages for 8 hr of adhesive application. The maximum 15-min average exposures were 233 ppm toluene and 85 ppm methyl ethyl ketone. PMID:22548642

  20. Surface modification of aluminum by toluene plasma at low-pressure and its surface properties

    NASA Astrophysics Data System (ADS)

    Ji, Youngyeon; Cho, Jeong-Hee; Chae, Hee-Sun

    2013-09-01

    Condition processes are commonly implemented in semiconductor fabrication to prepare plasma chamber for the optimal performance of plasma processes. When used with plasma ash and etch chambers, conditioning processes typically involve generating conditioning plasma in the plasma chamber for a predetermined length of time to prepare, or “season”, the chamber for the performance of ash and etch processes with production wafers. We report on the seasoning of aluminum baffle surfaces by plasma with non-polar aromatic hydrocarbon such as toluene. The aluminum surface was simply treated by radio frequency (RF) plasma with toluene. The non-polar property of the sample increases with increasing plasma treatments. Therefore, the ashing rate of toluene coated baffle improved 1.3 times without scavenging activative species.

  1. Ignition delay times of benzene and toluene with oxygen in argon mixtures

    NASA Technical Reports Server (NTRS)

    Burcat, A.; Snyder, C.; Brabbs, T.

    1985-01-01

    The ignition delay times of benzene and toluene with oxygen diluted in argon were investigated over a wide range of conditions. For benzene the concentration ranges were 0.42 to 1.69 percent fuel and 3.78 to 20.3 percent oxygen. The temperature range was 1212 to 1748 K and the reflected shock pressures were 1.7 to 7.89 atm. Statistical evaluation of the benzene experiments provided an overall equation which is given. For toluene the concentration ranges were 0.5 to 1.5 percent fuel and 4.48 to 13.45 percent oxygen. The temperature range was 1339 to 1797 K and the reflected shock pressures were 1.95 to 8.85 atm. The overall ignition delay equation for toluene after a statistical evaluation is also given. Detailed experimental information is provided.

  2. Molecular Modeling Studies on Aromatic Sulfonation. 1. Intermediates Formed in the Sulfonation of Toluene.

    PubMed

    Morley, John O.; Roberts, D. W.

    1997-10-17

    Molecular modeling studies suggest that the mechanism of the sulfonation of toluene with sulfur trioxide proceeds via the formation of a pi-complex (4b) which rearranges to form a Wheland intermediate (5). This structure is unable to form toluenesulfonic acid (8) directly and prefers to react with a further molecule of sulfur trioxide to form a pyrosulfonate intermediate (6a) which undergoes a facile prototropic rearrangement involving the transfer of the ring hydrogen at the sp(3) carbon of 6a to the sulfonate oxygen atom to form the corresponding acid (7). The formation of toluenesulfonic acid (8) appears to arise from an exothermic reaction of between the pyrosulfonic acid (7) and toluene. The overall calculated thermodynamic change in moving from the reaction of one molecule of sulfur trioxide with toluene to the sulfonic acid (8b) is fully consistent with an estimated experimental value of -33.5 kcal mol(-1) for the same reaction using simple alkylbenzenes. PMID:11671852

  3. Evaluation of toluene LIF thermometry detection strategies applied in an internal combustion engine

    NASA Astrophysics Data System (ADS)

    Peterson, Brian; Baum, Elias; Böhm, Benjamin; Sick, Volker; Dreizler, Andreas

    2014-10-01

    In the context of toluene laser-induced fluorescence (LIF) thermometry, the two common LIF detection strategies, namely one-color and two-color detection, have been simultaneously applied to compare each strategy's ability to accurately resolve thermal gradients during an engine cycle within an optically accessible internal combustion (IC) engine. Temperature images are obtained from high-speed toluene LIF measurements and are combined with high-speed particle image velocimetry. The combination with flow data and Mie scattering images facilitates the interpretation of differences between the toluene LIF detection strategies. Two-color temperature images are limited in their ability to detect thermal gradients near the end of compression due to larger precision uncertainties. Local regions of cold gases in the two-color images are better identified with the guidance of the one-color images when homogeneous toluene mixtures preside. During expansion, large differences exist between one- and two-color temperature images and likely caused by local mixture fraction heterogeneities that bias the one-color detection strategy. Toluene condensation occurs during the expansion and exhaust stroke and causes local mixture fraction heterogeneities in the combustion chamber. Liquid toluene is in contact with solid surfaces and crevices of the combustion chamber and can evaporate during compression or expansion causing both local temperature and mixture stratification. This work demonstrates the advantage of high-speed imaging and use of multiple image diagnostics to reveal the development of natural temperature and mixture stratification in a motored IC engine. This work also suggests that natural temperature stratification typically regarded from gas-wall heat transfer may also be caused by liquid droplet evaporation on solid surfaces. Such phenomenon, however, is expected to be pertinent for all modern-day engine operating systems.

  4. Substrate-bound structures of benzylsuccinate synthase reveal how toluene is activated in anaerobic hydrocarbon degradation.

    PubMed

    Funk, Michael A; Marsh, E Neil G; Drennan, Catherine L

    2015-09-11

    Various bacteria perform anaerobic degradation of small hydrocarbons as a source of energy and cellular carbon. To activate non-reactive hydrocarbons such as toluene, enzymes conjugate these molecules to fumarate in a radical-catalyzed, C-C bond-forming reaction. We have determined x-ray crystal structures of the glycyl radical enzyme that catalyzes the addition of toluene to fumarate, benzylsuccinate synthase (BSS), in two oligomeric states with fumarate alone or with both substrates. We find that fumarate is secured at the bottom of a long active site cavity with toluene bound directly above it. The two substrates adopt orientations that appear ideal for radical-mediated C-C bond formation; the methyl group of toluene is positioned between fumarate and a cysteine that forms a thiyl radical during catalysis, which is in turn adjacent to the glycine that serves as a radical storage residue. Toluene is held in place by fumarate on one face and tight packing by hydrophobic residues on the other face and sides. These hydrophobic residues appear to become ordered, thus encapsulating toluene, only in the presence of BSS?, a small protein subunit that forms a tight complex with BSS?, the catalytic subunit. Enzymes related to BSS are able to metabolize a wide range of hydrocarbons through attachment to fumarate. Using our structures as a guide, we have constructed homology models of several of these "X-succinate synthases" and determined conservation patterns that will be useful in understanding the basis for catalysis and specificity in this family of enzymes. PMID:26224635

  5. A detailed kinetic modeling study of toluene oxidation in a premixed laminar flame

    SciTech Connect

    Tian, Z; Pitz, W J; Fournet, R; Glaude, P; Battin-Leclerc, F

    2009-12-18

    An improved chemical kinetic model for the toluene oxidation based on experimental data obtained in a premixed laminar low-pressure flame with vacuum ultraviolet (VUV) photoionization and molecular beam mass spectrometry (MBMS) techniques has been proposed. The present mechanism consists of 273 species up to chrysene and 1740 reactions. The rate constants of reactions of toluene, decomposition, reaction with oxygen, ipso-additions and metatheses with abstraction of phenylic H-atom are updated; new pathways of C{sub 4} + C{sub 2} species giving benzene and fulvene are added. Based on the experimental observations, combustion intermediates such as fulvenallene, naphtol, methylnaphthalene, acenaphthylene, 2-ethynylnaphthalene, phenanthrene, anthracene, 1-methylphenanthrene, pyrene and chrysene are involved in the present mechanism. The final toluene model leads to an overall satisfactory agreement between the experimentally observed and predicted mole fraction profiles for the major products and most combustion intermediates. The toluene depletion is governed by metathese giving benzyl radicals, ipso-addition forming benzene and metatheses leading to C{sub 6}H{sub 4}CH{sub 3} radicals. A sensitivity analysis indicates that the unimolecular decomposition via the cleavage of a C-H bond has a strong inhibiting effect, while decomposition via C-C bond breaking, ipso-addition of H-atom to toluene, decomposition of benzyl radicals and reactions related to C{sub 6}H{sub 4}CH{sub 3} radicals have promoting effect for the consumption of toluene. Moreover, flow rate analysis is performed to illustrate the formation pathways of mono- and polycyclic aromatics.

  6. Spectral Induced Polarization (SIP) measurements for monitoring toluene contamination in clayey soils

    NASA Astrophysics Data System (ADS)

    Ustra, A.; Slater, L. D.; Ntarlagiannis, D.

    2010-12-01

    The Spectral Induced Polarization (SIP) method has previously shown potential for detecting hydrocarbons in the subsurface when clay minerals are present. However, results from recent studies of soils containing hydrocarbon contaminants are inconclusive, and further research is needed. In an effort to better constrain the sensitivity of SIP to toluene contamination in clayey soils, samples consisting of mixtures of quartzitic sand and montmorillonite (5 and 10% by weight) were contaminated with varying amounts of toluene (5, 10 and 20% by weight) and saturated with sodium nitrate solution (0.003 mol/L). The SIP response of the various samples was monitored for a period of about 40 days. An important aspect of this experimental work was to minimize measurement errors related with the experimental set up and uncertainty in the interpretation of effects of hydrocarbon presence that will result from any variations in sample packing. Errors from the experimental setup (electrodes, sample holder and data acquisition device) varied from 0.02 mrad (at 0.01 Hz) to 9 mrad (at 1000 Hz), as determined from calibration measurements on water samples with known electrical properties. Variations associated with the packing effect (based on repeated sample packs) were from 0.1 mrad (at 0.01 Hz) to 11 mrad (at 1000 Hz). The real and imaginary conductivities at specified frequencies and the integral chargeability and time constant (obtained from a Debye decomposition fitting) were correlated to toluene and clay content. Repeated SIP measurements suggest that the toluene contaminated samples may take significant time to come into equilibrium. Low frequency SIP measurements are significantly related to toluene content only during early stages of contamination, when the dependence of SIP on clay concentration is apparently suppressed. At later time, progress towards a steady state SIP response (interpreted to indicate equilibrium surface chemistry) results in loss of a significant relation between SIP measurements and toluene content; instead the low frequency SIP measurements are then significantly correlated with clay concentration. The results show only subtle low frequency SIP signals observed in relation to toluene concentration, which initially decreases the interfacial polarization. Unlike earlier work, our results do not support the use of the SIP method as a tool for investigating toluene contamination in clay soils.

  7. Surface microfabrication of silica glass by excimer laser irradiation of toluene solution

    NASA Astrophysics Data System (ADS)

    Niino, Hiroyuki; Yasui, Yoshimi; Ding, Ximing; Narazaki, Aiko; Sato, Tadatake; Kawaguchi, Yoshizo; Yabe, Akira

    2003-07-01

    Laser-induced backside wet etching of silica glass plates was performed by the excitation of a pure toluene solution with a ns-pulsed KrF excimer laser at 248 nm. Well-defined grid micropattern was fabricated without debris and microcrack around the etched area. To understand the etching mechanism, the formation and propagation of shockwave and bubble were monitored by time-resolved optical microscopy at the interface between the silica glass and the toluene solution after laser irradiation. Transient high-pressure as well as high-temperature generated by UV laser irradiation plays a key role in the etching process.

  8. Solubilities of Toluene, Benzene and TCE in High-Biomass Systems

    SciTech Connect

    Barton, John W.; Vodraska, Christopher D; Flanary, Sandie A.; Davison, Brian H

    2008-01-01

    We report measurements of solubility limits for benzene, toluene, and TCE in systems that contain varying levels of biomass up to 0.13 g/mL. The solubility limit increased from 20 to 48 mM when biomass (in the form of yeast) was added to aqueous batch systems containing benzene. The toluene solubility limit increased from 4.9 to greater than 20 mM. For TCE, the solubility increased from 8 mM to more than 1000 mM. Solubility for TCE was most heavily impacted by biomass levels, changing by two orders of magnitude.

  9. Optical properties of supercritical toluene extraction residues obtained from Turkish coals

    SciTech Connect

    Vayisoglu, E.S. |; Bartle, K.D.; Erbatur, N.G.

    1997-07-01

    Two Turkish coals of subbituminous C and high-volatile bituminous rank were subjected to supercritical toluene extraction at 400 C and 100 atm. The solid residues were examined microscopically in order to gain useful insight into the mechanisms involved in supercritical toluene extraction. The disappearance of liptinite macerals is a feature of the optical texture of both coals subjected to the extraction process. Residues of the two coals produced high-reflecting vitroplast. The amount of inertinite macerals in the residues increased and showed higher reflectance. No other alterations were observed for the inertinite macerals in the extraction residues.

  10. Part 1: Vadose-zone column studies of toluene (enhanced bioremediation) in a shallow unconfined aquifer

    USGS Publications Warehouse

    Tindall, J.A.; Friedel, M.J.; Szmajter, R.J.; Cuffin, S.M.

    2005-01-01

    The objectives of the laboratory study described in this paper were (1) to determine the effectiveness of four nutrient solutions and a control in stimulating the microbial degradation of toluene in the unsaturated zone as an alternative to bioremediation methodologies such as air sparging, in situ vitrification, or others (Part I), and (2) to compare the effectiveness of the addition of the most effective nutrient solution from Part I (modified Hoagland type, nitrate-rich) and hydrogen peroxide (H2O2) on microbial degradation of toluene for repeated, simulated spills in the unsaturated zone (Part II). For Part 1, fifteen columns (30-cm diameter by 150-cm height), packed with air-dried, 0.25-mm, medium-fine sand, were prepared to simulate shallow unconfined aquifer conditions. Toluene (10 mL) was added to the surface of each column, and soil solution and soil gas samples were collected from the columns every third day for 21 days. On day 21, a second application of toluene (10 mL) was made, and the experiment was run for another 21 days. Solution 4 was the most effective for microbial degradation in Part I. For Part II, three columns were designated nutrient-rich 3-day toluene columns and received toluene injections every 3 days; three columns were designated as nutrient-rich 7-day columns and received toluene injections every 7 days; and two columns were used as controls to which no nutrient was added. As measured by CO2 respiration, the initial benefits for aerobic organisms from the O2 enhancement were sustained by the bacteria for only a short period of time (about 8 days). Degradation benefits from the nutrient solution were sustained throughout the experiment. The O2 and nutrient-enhanced columns degraded significantly more toluene than the control columns when simulating repeated spills onto the unsaturated zone, and demonstrated a potentially effective in situ bioremediation technology when used immediately or within days after a spill. The combined usage of H 2O2 and nitrate-rich nutrients served to effectively maximize natural aerobic and anaerobic metabolic processes that biodegrade hydrocarbons in petroleum-contaminated media. Applications of this technology in the field may offer economical advantages to other, more intrusive abatement technologies. ?? Springer 2005.

  11. REPEATED INHALATION OF TOLUENE BY RATS PERFORMING A SIGNAL DETECTION TASK LEADS TO BEHVIORAL TOLERANCE ON SOME PERFORMANCE MEASURES.

    EPA Science Inventory

    Previous work showed that trichloroethylene (TCE) impairs sustained attention as evidenced by a reduction in accuracy and elevation of response latencies in rats trained to perform a visual signal detection task (SDT). This work also showed that these effects abate during repeat...

  12. The Role of Physical Activity and Feeding Schedule on the Kinetics of Inhaled and Oral Toluene in Rats

    EPA Science Inventory

    This manuscript provides new information regarding factors that affect the toxicokinetics of toluene, a hazardous air pollutant with acute neurotoxic activity. Toluene is a prototype compound of the class of volatile organic compounds (VOCs), which have similar CNS activity and k...

  13. A PHYSIOLOGICALLY-BASED PHARMACOKINETIC MODEL FOR TOLUENE IN THE LONG EVANS RAT: BODY COMPOSITION AND PHYSICAL ACTIVITY.

    EPA Science Inventory

    A physiologically-based pharmacokinetic (PBPK) model for inhaled toluene was developed for Long-Evans rats as a component of an exposure-dose-response (EDR) model for volatile organic compounds. The PBPK model was needed to link airborne toluene exposure to its concentration in b...

  14. Solar light induced degradation of trichloroethylene (TCE) using TiO2: effects of solar light intensity and seasonal variations.

    PubMed

    Park, Jaehong; Choi, Euiso; Cho, Il-Hyoung; Kim, Young-Gyu

    2003-09-01

    The feasibility of the trichloroethylene (TCE) degradation using solar light was investigated. With both solar light and TiO2 present, TCE was more effectively degraded than either with solar light or TiO2 alone. The rate of photocatalytic degradation under a clear sky was about five and 18 times higher than that of photocatalytic degradation under cloudy and thick cloudy skies, respectively. The optimization of the degradation rates was strongly dependent on the solar light intensity. All experimental data were fit to a first-order rate equation. Summer showed faster degradation rate than winter. From the mass balance, this study showed that over 80% of chloride in clear and partly cloudy skies was mineralized from TCE degradation. PMID:12940492

  15. Separation of volatile organic compounds by pervaporation for a binary compound combination: Trichloroethylene and 1,1,1-trichloroethane

    SciTech Connect

    Visvanathan, C.; Basu, B.; Mora, J.C.

    1995-11-01

    This study evaluates the behavior of sweeping air pervaporation when used to separate trichloroethylene (TCE) and 1,1,1-trichloroethane (TCEthane) from wastewater. Selectivity and membrane preference are studied. Models for binary compounds are studied to evaluate the extent of cross influence on TCE flux due to the presence of another volatile organic compound, TCEthane. Using the models, the integral dry diffusion coefficient for TCEthane is evaluated. Results indicate that the membrane exhibits a preference for TCE over TCEthane. However, the values of the diffusion rates are found to be comparable. Selectivity values are found to be independent of the air flow rate but dependent on the relative concentration of the compounds in the feed solution. It is found that, due to the presence of TCEthane, the flux of TCE decreased. Further, it is found that the ratio of the integral dry diffusion coefficients of the compounds is inversely proportional to the ratio of their molecular weights.

  16. Metabolic changes and DNA hypomethylation in cerebellum are associated with behavioral alterations in mice exposed to trichloroethylene postnatally

    SciTech Connect

    Blossom, Sarah J.; Cooney, Craig A.; Melnyk, Stepan B.; Rau, Jenny L.; Swearingen, Christopher J.; Wessinger, William D.

    2013-06-15

    Previous studies demonstrated that low-level postnatal and early life exposure to the environmental contaminant, trichloroethylene (TCE), in the drinking water of MRL +/+ mice altered glutathione redox homeostasis and increased biomarkers of oxidative stress indicating a more oxidized state. Plasma metabolites along the interrelated transmethylation pathway were also altered indicating impaired methylation capacity. Here we extend these findings to further characterize the impact of TCE exposure in mice exposed to water only or two doses of TCE in the drinking water (0, 2, and 28 mg/kg/day) postnatally from birth until 6 weeks of age on redox homeostasis and biomarkers of oxidative stress in the cerebellum. In addition, pathway intermediates involved in methyl metabolism and global DNA methylation patterns were examined in cerebellar tissue. Because the cerebellum is functionally important for coordinating motor activity, including exploratory and social approach behaviors, these parameters were evaluated in the present study. Mice exposed to 28 mg/kg/day TCE exhibited increased locomotor activity over time as compared with control mice. In the novel object exploration test, these mice were more likely to enter the zone with the novel object as compared to control mice. Similar results were obtained in a second test when an unfamiliar mouse was introduced into the testing arena. The results show for the first time that postnatal exposure to TCE causes key metabolic changes in the cerebellum that may contribute to global DNA methylation deficits and behavioral alterations in TCE-exposed mice. - Highlights: • We exposed male mice to low-level trichloroethylene from postnatal days 1 through 42. • This exposure altered redox potential and increased oxidative stress in cerebellum. • This exposure altered metabolites important in cellular methylation in cerebellum. • This exposure promoted DNA hypomethylation in cerebellum. • This exposure enhanced locomotor activity and exploratory behavior.

  17. Acute Toluene Exposure alters expression of genes associated with synaptic structure and function

    EPA Science Inventory

    Toluene (TOL), a volatile organic compound, is a ubiquitous air pollutant of interest to EPA regulatory programs. Whereas its acute functional effects are well described, several potential modes of action in the CNS have been proposed. Therefore, the genomic response to acute TOL...

  18. Influence of activated carbon characteristics on toluene and hexane adsorption: Application of surface response methodology

    NASA Astrophysics Data System (ADS)

    Izquierdo, Mª Teresa; de Yuso, Alicia Martínez; Valenciano, Raquel; Rubio, Begoña; Pino, Mª Rosa

    2013-01-01

    The objective of this study was to evaluate the adsorption capacity of toluene and hexane over activated carbons prepared according an experimental design, considering as variables the activation temperature, the impregnation ratio and the activation time. The response surface methodology was applied to optimize the adsorption capacity of the carbons regarding the preparation conditions that determine the physicochemical characteristics of the activated carbons. The methodology of preparation produced activated carbons with surface areas and micropore volumes as high as 1128 m2/g and 0.52 cm3/g, respectively. Moreover, the activated carbons exhibit mesoporosity, ranging from 64.6% to 89.1% the percentage of microporosity. The surface chemistry was characterized by TPD, FTIR and acid-base titration obtaining different values of surface groups from the different techniques because the limitation of each technique, but obtaining similar trends for the activated carbons studied. The exhaustive characterization of the activated carbons allows to state that the measured surface area does not explain the adsorption capacity for either toluene or n-hexane. On the other hand, the surface chemistry does not explain the adsorption results either. A compromise between physical and chemical characteristics can be obtained from the appropriate activation conditions, and the response surface methodology gives the optimal activated carbon to maximize adsorption capacity. Low activation temperature, intermediate impregnation ratio lead to high toluene and n-hexane adsorption capacities depending on the activation time, which a determining factor to maximize toluene adsorption.

  19. EFFECTS OF TOLUENE INHALATION ON DETECTION OF AUDITORY SIGNALS IN RATS

    EPA Science Inventory

    Inhalation of organic solvents can affect vigilance and reaction time in humans. n animal model of vigilance was designed to assess the effects of toluene on these processes. dult male Long-Evans rats were trained to detect auditory signals (increases of 1 to 7 dB, 20 msec in dur...

  20. A QUANTITATIVE COMPARISON OF THE EFFECTS OF ACUTE INHALED TOLUENE IN HUMAN RATS

    EPA Science Inventory

    The effects of acute exposure to toluene have been explored more thoroughly than other hydrocarbon solvents. These effects have been experimentally studied in humans and other species, e.g., rats, as well as in a number of in vitro preparations. The existence ofdosimetric and eff...

  1. AGE-RELATED TOXICITY PATHWAY ANALYSIS IN BROWN NORWAY RAT BRAIN FOLLOWING ACUTE TOLUENE EXPOSURE

    EPA Science Inventory

    The influence of aging on susceptibility to environmental exposures is poorly understood. To investigate-the contribution of different life stages on response to toxicants, we examined the effects of an acute exposure to the volatile organic compound, toluene (0.0 or 1.0 g/kg), i...

  2. MUTAGENIC ACTIVITY OF IRRADIATED TOLUENE/NOX/H2O/AIR MIXTURES

    EPA Science Inventory

    Irradiated mixtures of toluene/NOx/H2O/air were brought to a steady-state distribution of reactants and products in a 22.7 cu. m. flow-mode smog chamber, and the effluent was tested for mutagenic activity by exposing Salmonella typhimurum strains TA100 and TA98 to it. Two differe...

  3. Degree of branching in hyperbranched poly(glycerol-co-diacid)s synthesized in toluene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hyperbranched polymers were synthesized by using a Lewis acid (dibutyltin(IV)oxide) to catalyze the polycondensation of glycerol with either succinic acid (n (aliphatic chain length)=2), glutaric acid (n=3) or azelaic acid (n=7) in toluene. These are the first examples of diacid-glycerol hyperbranc...

  4. MODELING THE TOXICOKINETICS OF INHALED TOLUENE IN RATS: THE IMPACT OF CONDITIONING AND PHYSICAL ACTIVITY

    EPA Science Inventory

    Toluene is found in petroleum-based fuels and used as a solvent in consumer products and industrial applications. The critical effects following inhalation exposure involve the brain and nervous system in both humans and experimental animals whether exposure duration is acute or...

  5. Draft Genome Sequence of the Toluene-Degrading Pseudomonas stutzeri Strain ST-9

    PubMed Central

    Gomila, Margarita; Busquets, Antonio; García-Valdés, Elena; Michael, Esti; Cahan, Rivka; Nitzan, Yeshayahu

    2015-01-01

    Strain ST-9 was isolated from toluene-contaminated soil (Samaria, Israel). The draft genome has an estimated size of 4.8 Mb, exhibits an average G+C content of 60.37%, and is predicted to encode 4,183 proteins, including a gene cluster for aromatic hydrocarbon degradation. It is assigned to genomovar 3 of Pseudomonas stutzeri. PMID:26044424

  6. ASSESSING THE IMPORTANCE OF THE BEHAVIORAL EFFECT OF ACUTE EXPOSURE TO TOLUENE IN HUMANS.

    EPA Science Inventory

    There is increasing interest in being able to evaluate potential benefit-cost relationships of controlling exposure to toxic substances. Behavioral effects of acute toluene exposure could be subjected to benefit-cost analysis if it's effects were quantitatively compared to tho...

  7. Biomonitoring Equivalents (BE) Dossier for Toluene (Cas No. 108-88-3)

    EPA Science Inventory

    This document reviews available pharmacokinetic data and models for toluene and applies these data and models to existing health-based exposure guidance values from the US Environmental Protection Agency, the Agency for Toxic Substances and Disease Registry, Health Canada, and th...

  8. TOWARD COST-BENEFIT ANALYSIS OF ACUTE BEHAVIORAL EFFECTS OF TOLUENE IN HUMANS

    EPA Science Inventory

    There is increasing interest in being able to express the consequences of exposure to potentially toxic compounds in monetary terms in order to evaluate potential cost-benefit relationships of controlling exposure. Behavioral effects of acute toluene exposure could be subjected ...

  9. Carbon isotope fractionation during anaerobic biodegradation of toluene: Implications for intrinsic bioremediation

    SciTech Connect

    Ahad, J.M.E.; Lollar, B.S.; Edwards, E.A.; Slater, G.F.; Sleep, B.E.

    2000-03-01

    Carbon isotope fractionation produced by anaerobic biodegradation of toluene was evaluated in laboratory experiments under both methanogenic and sulfate-reducing conditions. A small ({approximately}2{per_thousand}) but highly reproducible {sup 13}C-enrichment in the residual toluene at advanced stages of microbial transformation was observed in both cultures. The maximum isotopic enrichment observed in the residual toluene was +2.0{per_thousand} and +2.4{per_thousand} for the methanogenic and sulfate-reducing cultures, respectively, corresponding to isotopic enrichment factors ({epsilon}) of {minus}0.5 and {minus}0.8. Because the accuracy and reproducibility associated with gas chromatograph-combustion-isotope ratio mass spectrometry (GC/C/IRMS) is {+-}0.5{per_thousand}, delineating which of these two terminal electron-accepting processes (TEAP) is responsible for the biodegradation of toluene at field sites will not be possible. However, the potential does exist to use compound-specific isotope analysis (CSIA), in conjunction with other methodologies, as a means of validating advanced stages of intrinsic bioremediation in anaerobic systems. Caution is urged that relating this small ({approximately}2{per_thousand}) fractionation to biodegradation at complex field sites will prove a challenge.

  10. Chemical characterisation of semi-volatile and aerosol compounds from the photooxidation of toluene and NOx

    NASA Astrophysics Data System (ADS)

    White, Stephen J.; Jamie, Ian M.; Angove, Dennys E.

    2014-02-01

    The chemical composition of a gas phase and secondary organic aerosol (SOA) mixture from toluene photooxidation in NOx was determined. Aerosol from toluene photooxidation was generated in a smog chamber and was collected onto glass fibre filters along with those gas phase compounds which adhered to the filter. The filter bound organic material was extracted, derivatised with O-2,3,4,5,6-pentafluorobenzyl hydroxylamine (PFBHA) and N,O-bistrimethylsilyl-trifluoroacetamide (BSTFA), then analysed using gas chromatography-mass spectrometry (GC-MS). Compound identification was aided by the use of isotopically-labelled toluene. The effect of humidity on product formation was investigated by raising water vapour concentration in one experiment. Sixty compounds were identified, of which twenty had not been identified from toluene photooxidation previously. Small carboxylic acids and dicarbonyls provided the highest proportion of identifiable compounds by relative response. The use of water to extract the filter samples resulted in much higher relative responses for oxocarboxylic acids, such as glyoxylic acid and pyruvic acid, than has been observed in previous studies. The formation of levulinic acid was determined to be due to the reaction of water with aromatic photooxidation products in the gas phase or particle phase of the chamber experiment. Nuclear magnetic resonance (NMR) was used to determine the functional groups of water-extracted organic material, which indicated that the water-soluble components were comprised of compounds which contain similar functional groups, primarily alcohols and carboxylic acids.

  11. STIMULATION OF THE REDUCTIVE DECHLORINATION OF TETRACHLOROETHENE IN ANAEROBIC AQUIFER MICROCOSMS BY THE ADDITION OF TOLUENE

    EPA Science Inventory

    In this study, the biologically mediated interactions of toluene and PCE under anaerobic conditions were investigated by using microcosms constructed with aquifer solids from an area that was exposed to both alkylbenzenes and chlorinated ethenes at the U.S. Coast Guard Air Statio...

  12. Decomposition of toluene in a steady-state atmospheric-pressure glow discharge

    NASA Astrophysics Data System (ADS)

    Trushkin, A. N.; Grushin, M. E.; Kochetov, I. V.; Trushkin, N. I.; Akishev, Yu. S.

    2013-02-01

    Results are presented from experimental studies of decomposition of toluene (C6H5CH3) in a polluted air flow by means of a steady-state atmospheric pressure glow discharge at different water vapor contents in the working gas. The experimental results on the degree of C6H5CH3 removal are compared with the results of computer simulations conducted in the framework of the developed kinetic model of plasma chemical decomposition of toluene in the N2: O2: H2O gas mixture. A substantial influence of the gas flow humidity on toluene decomposition in the atmospheric pressure glow discharge is demonstrated. The main mechanisms of the influence of humidity on C6H5CH3 decomposition are determined. The existence of two stages in the process of toluene removal, which differ in their duration and the intensity of plasma chemical decomposition of C6H5CH3 is established. Based on the results of computer simulations, the composition of the products of plasma chemical reactions at the output of the reactor is analyzed as a function of the specific energy deposition and gas flow humidity. The existence of a catalytic cycle in which hydroxyl radical OH acts a catalyst and which substantially accelerates the recombination of oxygen atoms and suppression of ozone generation when the plasma-forming gas contains water vapor is established.

  13. Atmosphere-Water Interaction of Chloroform, Toluene, and MTBE in Small Perennial Urban Streams

    E-print Network

    Atmosphere-Water Interaction of Chloroform, Toluene, and MTBE in Small Perennial Urban Streams-butyl ether (MTBE) are frequently detected VOCs in the atmosphere, surface water, and ground water in urban the atmosphere and perennial urban streams. Air VOC samples were collected from four sites, and stream-water VOC

  14. PERSISTENT EFFECTS OF REPEATED INHALATION OF TOLUENE: 4 WEEKS VS. 13 WEEKS.

    EPA Science Inventory

    Understanding and predicting the extent of neurotoxic damage from repeated exposure to volatile organic compounds (VOCs) is a problem for many EPA programs. Eighty adult, male Long-Evans rats inhaled toluene (0, 10, 100, or 1000 ppm) 6 hr/day, 5 days/week for 4 weeks in a systema...

  15. DEVELOPMENT AND VALIDATION OF A SOURCE TEST METHOD FOR 2,4-TOLUENE DIISOCYANATE

    EPA Science Inventory

    Four isocyanates are listed for regulation in the Clean Air Act Amendments of 1990: hexamethylene-1,6 diisocyanate, methylene diphenyl diisocyanate, and 2,4-toluene diisocyanate, each of which is used in the production of polymers, and methyl isocyanate which is an intermediate i...

  16. Hematological indices of peripheral blood in workers occupationally exposed to benzene, toluene and xylene.

    PubMed

    Moszczy?ski, P; Lisiewicz, J

    1983-12-01

    In 106 workers occupationally exposed to benzen, toluen and xylene through 1 to 122 months basic hematological indices of peripheral blood were evaluated. The benzene, toluene and xylene concentrations in the air at workplaces were equal to 0-370, 0-580 and 0-506 mg/m3, respectively. The workers were subdivided into three subgroups according to the service time corresponding to 1-29, 31-54 and 55-122 months. The first hematological changes noted in the workers studied consisted of diminishing the mean corpuscular hemoglobin and the mean corpuscular hemoglobin concentration in erythrocytes. Increased numbers of reticulocytes, lowered total count of leukocytes due to decreased numbers of T and "non-T, non-B" cells as well as increased numbers of monocytes were other signs of exposure investigated. Increased numbers of reticulocytes were noted in all workers independently of service time whereas other hematological alterations presented above were marked only in the subgroup of workers exposed to benzene, toluene and xylene through 55 to 122 months. It was stated that the T cell count decreased gradually in relationship with an extent of exposure time (negative correlation). Since laboratory examinations serving the evaluation of health state of workers exposed are only few it was postulated that the E rosette test may be of practical use for monitoring the toxic effect of benzene, toluene and xylene on the lymphocyte system. PMID:6670413

  17. Compensation effect and volcano curve in toluene hydrogenation catalyzed by transition metal sulfides.

    PubMed

    Guernalec, N; Geantet, C; Cseri, T; Vrinat, M; Toulhoat, H; Raybaud, P

    2010-09-28

    Within the framework of volcano curves, a kinetic study of toluene hydrogenation catalyzed by transition metal sulfides highlights the variation of the apparent kinetic parameters as a function of the ab initio sulfur-metal bond energy descriptor and sulfo-reductive reaction conditions. PMID:20424734

  18. EFFECT OF AGING ON THE CARDIOVASCULAR AND THERMOREGULATORY RESPONSE TO TOLUENE IN THE BROWN NORWAY RATS.

    EPA Science Inventory

    Since the proportion of aged in the U.S. will expand markedly for the next several decades, the U.S.EPA is assessing if the aged are more susceptible to environmental toxicants. The neurotoxicity of toluene (TOL) has been well characterized in young adults but has not been studie...

  19. AGING AND SUSCEPTIBILITY TO TOLUENE IN RATS: A PHARMACOKINETIC, BIOMARKER, AND PHYSIOLOGICAL APPROACH.

    EPA Science Inventory

    Aging adults are a growing segment of the U.S. population and are likely to exhibit increased susceptibility to many environmental toxicants. However, there is little information on the susceptibility of the aged to toxicants. The toxicity of toluene has been well characterized i...

  20. CONTINUOUS STIRRED TANK REACTOR INVESTIGATION OF THE GAS-PHASE REACTION OF HYDROXYL RADICALS AND TOLUENE

    EPA Science Inventory

    A continuous stirred tank reactor (CSTR) was used to study the gas phase reaction between HO and toluene. HO was generated by the in situ photolysis of nitrous acid. Flow reactor operation at steady state conditions with a residence time of 20 minutes allowed investigation of pri...

  1. www.rsc.org/analyst The airliquid interface of benzene, toluene, m-xylene, and

    E-print Network

    ANALYST FULLPAPER THE www.rsc.org/analyst The air­liquid interface of benzene, toluene, m as an Advance Article on the web 10th April 2003 The air­liquid interface and the liquid-phase of benzene-zero hyperpolarizabilities of benzene and 1,3,5-trimethylbenzene. The orientation of the aromatic rings of these compounds

  2. Biocatalytic conversion of ethylene to ethylene oxide using an engineered toluene monooxygenase

    SciTech Connect

    Carlin, DA; Bertolani, SJ; Siegel, JB

    2015-01-01

    Mutants of toluene o-xylene monooxygenase are demonstrated to oxidize ethylene to ethylene oxide in vivo at yields of >99%. The best mutant increases ethylene oxidation activity by >5500-fold relative to the native enzyme. This is the first report of a recombinant enzyme capable of carrying out this industrially significant chemical conversion.

  3. EFFECTS OF MICROCOSM PREPARATION ON RATES OF TOLUENE BIODEGRADATION UNDER DENITRIFYING CONDITIONS

    EPA Science Inventory

    Microcosms were prepared with subsurface material from two aquifers to examine the effects of preparation methods on rates of toluene biodegradation under denitrifying conditions. In both cases, the data fit a zero-order kinetics plot. However, rates of removal were generally pro...

  4. A DOSIMETRIC ANALYSIS OF THE ACUTE BEHAVIORAL EFFECTS OF INHALED TOLUENE IN RATS

    EPA Science Inventory

    Knowledge of the appropriate metric of dose for a toxic chemical facilitates quantitative extrapolation of toxicity observed in the laboratory to the risk of adverse effects in the human population. Here we utilize a physiologically-based toxicokinetic (PBTK) model for toluene, a...

  5. BEHAVIORAL ASSESSMENTS OF LONG EVANS RATS FOLLOWING A 13-WEEK SUBCHRONIC TOLUENE EXPOSURE.

    EPA Science Inventory

    The current study sought to develop an animal model of the neurotoxicity of long-term exposure to volatile organic compounds (VOCs) which may be used to predict the effects of chronic exposure to VOCs on public health. The effects of Subchronic inhalation exposure to toluene (0,...

  6. Henry's law constants and micellar partitioning of volatile organic compounds in surfactant solutions

    SciTech Connect

    Vane, L.M.; Giroux, E.L.

    2000-02-01

    Partitioning of volatile organic compounds (VOCs) into surfactant micelles affects the apparent vapor-liquid equilibrium of VOCs in surfactant solutions. This partitioning will complicate removal of VOCs from surfactant solutions by standard separation processes. Headspace experiments were performed to quantify the effect of four anionic surfactants and one nonionic surfactant on the Henry's law constants of 1,1,1-trichloroethane, tirchloroethylene, toluene, and tetrachloroethylene at temperatures ranging from 30 to 60 C. Although the Henry's law constant increased markedly with temperature for all solutions, the amount of VOC in micelles relative to that in the extramicellar region was comparatively insensitive to temperature. The effect of adding sodium chloride and isopropyl alcohol as consolutes also was evaluated. Significant partitioning of VOCs into miscelles was observed, with the micellar partitioning coefficient (tendency to partition from water into mecelle) increasing according to the following series: trichloroethane < trichloroethylene < toluene < tetrachloroethylene. The addition of surfactant was capable of reversing the normal sequence observed in Henry's law constants for these four VOCs.

  7. Primary and Secondary Glyoxal Formation from Aromatics: Experimental Evidence for the Bicycloalkyl-Radical Pathway from Benzene, Toluene, and p-Xylene

    E-print Network

    -Radical Pathway from Benzene, Toluene, and p-Xylene R. Volkamer,*, U. Platt, and K. Wirtz Centro de Estudios Form: May 16, 2001 A new approach is presented to study the ring-cleavage process of benzene, toluene for the troposphere. The yield of glyoxal was determined to be 35% ( 10% for benzene and about 5% higher for toluene

  8. Applications of Monitored Natural Attenuation in the USA (Presentation)

    EPA Science Inventory

    Monitored Natural Attenuation (MNA) is widely applied in the USA to control the risk associated with ground water contamination from chlorinated solvents such a tetrachloroethylene (PCE) and trichloroethylene (TCE). MNA relies on the natural processes of degradation, sorption an...

  9. Applications of Monitored Natural Attenuation in the USA (Abstract)

    EPA Science Inventory

    Monitored Natural Attenuation (MNA) is widely applied in the USA to control the risk associated with ground water contamination from chlorinated solvents such a tetrachloroethylene (PCE) and trichloroethylene (TCE). MNA relies on the natural processes of degradation, sorption an...

  10. BIOVENTING OF CHLORINATED SOLVENTS FOR GROUND-WATER CLEANUP THROUGH BIOREMEDIATION

    EPA Science Inventory

    Chlorinated solvents such as tetrachloroethylene, trichloroethylene, carbon tetrachloride, chloroform, 1,2-dichloroethane, and dichloromethane (methylene chloride) can exist in contaminated subsurface material as (1) the neat oil, (2) a component of a mixed oily waste, (3) a solu...

  11. DEMONSTRATION BULLETIN: AQUADETOX®/ SVE SYSTEM and AWD Technologies, Inc.

    EPA Science Inventory

    The AWD technology simultaneously treats groundwater and soil-gas contaminated with volatile or ganic compounds (VOC), such as trichloroethylene (TCE) and tetrachloroethylene (PCE). This technology integrates two processes: (1) AquaDetox®, a moderate vacuum (pressure about 50 ...

  12. MULTIDISCIPLINARY APPROACH TO TOXICOLOGICAL SCREENING: I. SYSTEMIC TOXICITY

    EPA Science Inventory

    The toxicity of 10 chemicals (carbaryl, carbon tetrachloride, chlordane, ethylhexylphthalate, dichloromethane, heptachlor, phenol, tetrachloroethylene, triadimefon, and trichloroethylene were examined in the liver, kidney, spleen, thymus, and adrenal of female F-344 rats. cute le...

  13. Does increasing the temperature induce DNAPL migration?

    EPA Science Inventory

    Tetrachloroethylene, trichloroethylene, and chlorobenzene have been identified as contaminants in groundwater and are sometimes called Dense Non-Aqueous Phase Liquids (DNAPL). Thermal methods for remediation of contaminated soils and groundwater rely on raising the temperature o...

  14. MICROEMULSION OF MIXED CHLORINATED SOLVENTS USING FOOD GRADE (EDIBLE) SURFACTANTS

    EPA Science Inventory

    Ground water contamination frequently consists of mixed chlorinated solvents [e.g., tetrachloroethylene (PCE), trichloroethylene (TCE), and trans-1,2- dichloroethylene (DCE)]. In this research, mixtures of the food grade (edible) surfactants bis(2-ethylhexyl) sodium sulfosuccinat...

  15. IN-PLACE REGENERATION OF SVE LOADED GAC USING FENTON'S REAGENTS

    EPA Science Inventory

    Ten out of the 25 most frequently detected groundwater contaminants at hazardous waste sites are chlorinated volatile organic compounds (VOCs) 1 . Trichloroethylene (TCE) and tetrachloroethylene (PCE) are among the top three 1 . Granular activated carbon (GAC) adsorption is w...

  16. IN-PLACE REGENERATION OF SVE LOADED GAC USING FENTON'S REAGENTS

    EPA Science Inventory

    Ten out of the 25 most frequently detected groundwater contaminants at hazardous waste sites are chlorinated volatile organic compounds (VOCs) 1. Trichloroethylene (TCE) and tetrachloroethylene (PCE) are among the top three 1. Granular activated carbon (GAC) adsorption is widel...

  17. IN SITU BIOREMEDIATION OF TRICHLOROETHYLENE USING BURKHOLDERIA CEPACIA G4 PR1: ANALYSIS OF MICROBIAL ECOLOGY PARAMETERS FOR RISK ASSESSMENT (RESEARCH BRIEF)

    EPA Science Inventory

    The introduction of bacteria into aquifers for bioremediation purposes requires monitoring of the persistence and activity of microbial populations for efficacy and risk assessment purposes. Burkholderia cepacia G4 PR1 constitutively expresses a toluene ortho-monooxygenase (tom) ...

  18. Deuterium isotope effects on toluene metabolism. Product release as a rate-limiting step in cytochrome P-450 catalysis

    SciTech Connect

    Ling, K.H.; Hanzlik, R.P.

    1989-04-28

    Liver microsomes from phenobarbital-induced rats oxidize toluene to a mixture of benzyl alcohol plus o-, m- and p-cresol (ca. 69:31). Stepwise deuteration of the methyl group causes stepwise decreases in the yield of benzyl alcohol relative to cresols (ca. 24:76 for toluene-d3). For benzyl alcohol formation from toluene-d3 DV = 1.92 and D(V/K) = 3.53. Surprisingly, however, stepwise deuteration induces stepwise increases in total oxidation, giving rise to an inverse isotope effect overall (DV = 0.67 for toluene-d3). Throughout the series (i.e. d0, d1, d2, d3) the ratios of cresol isomers remain constant. These results are interpreted in terms of product release for benzyl alcohol being slower than release of cresols (or their epoxide precursors), and slow enough to be partially rate-limiting in turnover. Thus metabolic switching to cresol formation causes a net acceleration of turnover.

  19. Medial prefrontal cortex inversely regulates toluene-induced changes in markers of synaptic plasticity of mesolimbic dopamine neurons

    PubMed Central

    Beckley, Jacob T.; Evins, Caitlin E.; Fedarovich, Hleb; Gilstrap, Meghin J.; Woodward, John J.

    2013-01-01

    Toluene is a volatile solvent that is intentionally inhaled by children, adolescents and adults for its intoxicating effects. While voluntary use of toluene suggests that it possesses rewarding properties and abuse potential, it is unknown whether toluene alters excitatory synaptic transmission in reward sensitive dopamine neurons like other drugs of abuse. Here, using a combination of retrograde labeling and slice electrophysiology, we show that a brief in vivo exposure of rats to a behaviorally relevant concentration of toluene vapor enhances glutamatergic synaptic strength of dopamine (DA) neurons projecting to nucleus accumbens core and medial shell neurons. This effect persisted for up to 3 days in mesoaccumbens core DA neurons and for at least 21 days in those projecting to the medial shell. In contrast, toluene vapor exposure had no effect on synaptic strength of DA neurons that project to the medial prefrontal cortex (mPFC). Furthermore, infusion of GABAergic modulators into the mPFC prior to vapor exposure to pharmacologically manipulate output, inhibited or potentiated toluene's action on mesoaccumbens DA neurons. Taken together, the results of these studies indicate that toluene induces a target-selective increase in mesolimbic DA neuron synaptic transmission and strongly implicates the mPFC as an important regulator of drug-induced plasticity of mesolimbic dopamine neurons. PMID:23303956

  20. Analysis of organic compounds (VOC) in the forest air of the Southern Black Forest

    SciTech Connect

    Juettner, F.

    1986-01-01

    The volatile organic compounds of forest air (Kaelbelescheuer, Southern Black Forest) and, for comparison, suburban air (Tuebingen) were qualitatively analyzed by gas chromatographic and mass spectrometric methods. 94 Individual compounds were identified, 6 of them belonged to biogenic monoterpenes (..cap alpha..-pinene, ..delta..3-carene, myrcene, limonene, eucalyptol, camphene). While the monoterpenes were enriched in forest air, a similar collection of the pollution products was observed in both locations. Predominant substances were aromatic compounds (toluene, ethylbenzene, benzene, xylenes, ethyltoluenes, pseudocumene and naphthalene) which can be regarded as constituents of vehicle exhaust fumes and incineration processes. Other important substances in forest air were various solvents, of which butyl acetate, isobutyl acetate, tetrachloroethylene and trichloroethylene, butanol-1, and several ketones were prominent species.

  1. Health assessment for Greenacres (Liberty Lake) Landfill, Spokane, Spokane County, Washington, Region 10. CERCLIS No. WAD980514608. Preliminary report

    SciTech Connect

    Not Available

    1988-08-09

    The Greenacres Landfill site is on the National Priorities List. The site is a 90-acre, rural-burning landfill that was closed in 1968. On-site contamination, determined by on-site ground water monitoring wells, consists of trans-1,2-dichloroethylene (41 ppb), chloroform (0.2 ppb), trichloroethylene (2 ppb), benzene (0.6 ppb), tetrachloroethylene (9 ppb), toluene (0.7 ppb), 2,4-dichlorophenoxyacetic acid (3 ppb), 2,4,5-trichlorophenoxyacetic acid (0.6 ppb), chromium (37 ppb), manganese (210 ppb), zinc (2,380 ppb), lead (67 ppb), barium 175 ppb, magnesium (18 ppb), and mercury (4 ppb). The site is considered to be of potential public health concern because of the risk to human health caused by the possibility of exposure to hazardous substances via the movement of contaminated ground water into an aquifer used as a public water source.

  2. Soil gas survey and analysis of the Rose-Hulman Institute of Technology campus using a portable gas chromatograph. Final report, August 1995-May 1996

    SciTech Connect

    Jones, H.B.

    1996-05-01

    This project focuses on a method used to discover hidden contamination--soil gas surveying. The Rose-Hulman Institute of Technology campus in Terre Haute, Indiana is on the site of an old farm. The campus has an old gasoline station on its border, a chemical storage building on the grounds, and areas where fuel, oil, and solvents are used and stored by the physical plant operation. Possible contaminants of these types of operations include Benzene, Toluene, Ethylbenzene, m-, p-, and o-Xylenes, and chlorinated solvents such as Trichloroethylene and Tetrachloroethylene. No significant areas of contamination were found for the contaminants tested. A detailed description of the method and results of testing are presented. Recommendations for improved management of potential contamination areas are also presented.

  3. CONTRIBUTIONS OF TOLUENE AND ? -PINENE TO SOA FORMED IN AN IRRADIATED TOLUENE/?-PINENE/NOX/AIR MIXTURE: COMPARISON OF RESULTS USING 14C CONTENT AND SOA ORGANIC TRACER METHODS

    EPA Science Inventory

    An organic tracer method, recently proposed for estimating individual contributions of toluene and ?-pinene to secondary organic aerosol (SOA) formation, was evaluated by conducting a laboratory study where a binary hydrocarbon mixture, containing the anthropogenic aromatic hydro...

  4. Biotransformation of chlorinated aliphatic solvents in the presence of aromatic compounds under methanogenic conditions

    SciTech Connect

    Liang, L.N.; Grbic-Galic, D. . Dept. of Civil Engineering)

    1993-08-01

    Transformation of carbon tetrachloride (CT) and tetrachloroethylene (PCE) was studied under methanogenic conditions, in the presence or absence of toluene, ethylbenzene, phenol, and benzoate. Microbial inoculate for the experiments were derived from three groundwater aquifers contaminated by jet fuel or creosote. CT and PCE were reductively dechlorinated in all the examined castes (CT to chloroform [CF]; PCE to trichloroethylene [TCE], trans-1,2-dichloroethylene [DCE], and vinyl chloride [VC]). In the aquifer microcosms, the electron donors used for the reductive transformations were most likely the unidentified organic compounds present on aquifer solids, or storage materials in microorganisms. Alternatively, molecular hydrogen from the anaerobic incubator atmosphere could have been used. The addition of benzoate caused a decrease in rates of dechlorination if benzoate was transformed. Phenol and ethylbenzene were not degraded and did not influence the transformation of CT or PCE. Toluene, in most of the studied cases, had no influence on reductive dechlorination of either CT or PCE. Only in microcosms derived from a JP-4 jet fuel-contaminated aquifer did the anaerobic degradation of toluene occur simultaneously with reductive dechlorination of PCE, suggesting that toluene might possibly have been used as an electron donor for reductive transformation of chlorinated solvents.

  5. Decomposition of gaseous toluene using a continuous flow discharge plasma reactor with new configurations.

    PubMed

    Liu, Juanjuan; Wang, Jingting; Cao, Xu; Zhang, Renxi; Hou, Huiqi

    2015-12-01

    The destruction of gaseous toluene was carried out in a tubular multilayer dielectric barrier discharge reactor which can yield a steady state of low-temperature plasma with an array structure. The research was investigated under different relative humidities, input voltages, energy densities, energy consumption and the reactor processing capacities. The results showed that the highest removal efficiency and processing capacity (?) were acquired using an additional dielectric with the width of 2?mm between adjacent discharge quartz tubes, and the removal efficiency of toluene reached 86.5% and ? increased to 6272?kg/s?m(3) at a voltage of 6?kV. The gas-phase by-products (O3, NOx, COx and intermediate organics) were also presented and the reaction mechanism was described according to the decomposition reaction tunnels. PMID:26077374

  6. Toluene 4-Monooxygenase and its Complex with Effector Protein T4moD

    SciTech Connect

    Bailey, Lucas J.; Fox, Brian G.

    2012-10-16

    Toluene 4-monooxygenase (T4MO) is a multiprotein diiron enzyme complex that catalyzes the regiospecific oxidation of toluene to p-cresol. Catalytic function requires the presence of a small protein, called the effector protein. Effector protein exerts substantial control on the diiron hydroxylase catalytic cycle through protein-protein interactions. High-resolution crystal structures of the stoichometric hydroxylase and effector protein complex described here reveal how protein-protein interactions and reduction of the diiron center produce an active site configuration poised for reaction with O{sub 2}. Further information from crystal structures of mutated isoforms of the hydroxylase and a peroxo adduct is combined with catalytic results to give a fuller picture of the geometry of the enzyme-substrate complex used for the high fidelity oxidation of hydrocarbon substrates.

  7. Toluene vapor capture by activated carbon particles in a dual gas-solid cyclone system.

    PubMed

    Lim, Yun Hui; Ngo, Khanh Quoc; Park, Young Koo; Jo, Young Min

    2012-08-01

    Capturing of odorous compounds such as toluene vapor by a particulate-activated carbon adsorbent was investigated in a gas-solid cyclone, which is one type of mobile beds. The test cyclone was early modified with the post cyclone (PoC) and a spiral flow guide to the vortex finder. The proposed process may contribute to the reduction of gases and dust from industrial exhausts, especially when dealing with a low concentration of odorous elements and a large volume ofdust flow. In this device, the toluene capturing efficiency at a 400 ppm concentration rose up to 77.4% when using activated carbon (AC) particles with a median size of 27.03 microm. A maximum 96% of AC particles could be collected for reuse depending on the size and flow rate. The AC regenerated via thermal treatment showed an adsorption potential up to 66.7% throughout repeated tests. PMID:22916440

  8. Vapor-liquid equilibria in the systems toluene/naphthalene and cyclohexane/naphthalene

    SciTech Connect

    Lee, Changha; Holder, G.D. )

    1993-04-01

    In this study, the authors report isothermal vapor-liquid equilibrium (VLE) data for the toluene/naphthalene and cyclohexane/naphthalene systems which can be considered as model compounds for coal liquids. Vapor-liquid equilibrium data for the binary systems toluene/naphthalene and cyclohexane/naphthalene were measured at 0-1,300 kPa and 370-500 K using a 1-L stirred autoclave system. All pure components and binary P-T data were well fitted with a three-constant Antoine equation. The data can bee accurately correlated with the modified Peng-Robinson equation of state using density-dependent mixing rules to describe both the vapor and liquid phases. The binary interaction parameters and correction factors for the equation of state are reported at each isotherm.

  9. [Effect of ammonium sulfate aerosol on the photochemical reaction of toluene/ NO(x)/air mixture].

    PubMed

    Wu, Shan; Hao, Ji-Ming; Lü, Zi-Feng; Zhao, Zhe; Li, Jun-Hua

    2007-06-01

    The effect of ammonium sulfate aerosol on the photochemical reaction of toluene/NO(x)/air mixture was evaluated with Tsinghua Smog Chamber facility. The results indicate that the presence of concentrated preexisting ammonium sulfate aerosol shortens the time to reach maximum PM (particle matter) concentration and increases the aerosol yield of toluene. And under the presence of high concentrated ammonium sulfate aerosol seed, the concentration of aerosol does not have significant effects on NO(x), NO and O3 variation, but affects the formation of secondary organic aerosol (SOA). The SOA yield increases with the increasing initial ammonium sulfate seed concentration (< 160 microg x m(-3)). From the minimum 7.2% to the maximum 11.7%, the percentage increase of SOA yield is more than 60%. PMID:17674719

  10. Study of toluene stability for an Organic Rankine Cycle (ORC) space-based power system

    NASA Technical Reports Server (NTRS)

    Havens, Vance; Ragaller, Dana

    1988-01-01

    The design, fabrication, assembly, and endurance operation of a dynamic test loop, built to evaluate the thermal stability of a proposed Organic Rankine Cycle (ORC) working fluid, is discussed. The test fluid, toluene, was circulated through a heater, simulated turbine, regenerator, condenser and pump to duplicate an actual ORC system. The maximum nominal fluid temperature, 750 F, was at the turbine simulator inlet. Samples of noncondensible gases and liquid toluene were taken periodically during the test. The samples were analyzed to identify the degradation products formed and the quantity of these products. From these data it was possible to determine the degradation rate of the working fluid and the generation rate of noncondensible gases. A further goal of this work was to relate the degradation observed in the dynamic operating loop to degradation obtained in isothermal capsule tests. This relationship was the basis for estimating the power loop degradation in the Space Station Organic Rankine Cycle system.

  11. Structural features of HNb3O8 nanosheets and their catalytic performance in toluene nitration

    NASA Astrophysics Data System (ADS)

    Zhou, Pan; Li, Qingjie; He, Jie; Li, Dewei; Li, Zhong

    2015-11-01

    HNb3O8 nanosheet aggregates ( e-HNb3O8) were prepared by exfoliation and aggregation of layered HNb3O8, which was obtained by protonation of KNb3O8. Especially, in this research, KNb3O8 was synthesized through a novel polymerized complex method (PC) from niobium oxalate. The as-prepared samples were characterized by SEM, HRTEM, XRD, LRS, NH3-TPD, and FT-IR methods. The toluene nitration was used to evaluate the acid catalytic performance of HNb3O8 and e-HNb3O8 samples. The catalytic activity in toluene nitration was related to the structure and acidity of the as-prepared samples. The results show that e-HNb3O8 has a higher specific surface area, stronger acidity and better para-selectivity than the precursor HNb3O8.

  12. Photocatalytic degradation of gaseous toluene over bcc-In2O3 hollow microspheres

    NASA Astrophysics Data System (ADS)

    Zhang, Qianzhe; Li, Xinyong; Zhao, Qidong; Shi, Yong; Zhang, Fei; Liu, Baojun; Ke, Jun; Wang, Lianzhou

    2015-05-01

    In this work, the body-centered cubic indium oxide (bcc-In2O3) hollow microspheres were prepared via a P123-assisted solvothermal process. The structural properties of samples were investigated by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, UV-visible diffusive reflectance spectroscopy, and nitrogen adsorption-desorption isotherms. The photocatalytic effects of degrading gaseous toluene were evaluated by gas chromatography and in situ Fourier transform infrared (FTIR) spectra under a irradiation of a 500 W high pressure xenon lamp. The results indicated that the as-prepared bcc-In2O3 hollow microspheres exhibited a high degradation efficiency towards toluene within a short reaction time. Besides, the preliminary mechanism therein was inferred with the aid of in situ FTIR and electron spin-paramagnetic resonance techniques to understand the degradation process.

  13. Pyrolysis studies of methylcyclohexane and oxidation studies of methylcyclohexane and methylcyclohexane/toluene blends

    SciTech Connect

    Zeppieri, S.; Brezinsky, K.; Glassman, I.

    1997-02-01

    High-temperature (1,050--1,200 K) pyrolysis studies of pure methylcyclohexane (MCH) and oxidation studies of pure MCH and MCH/toluene blends were performed in the Princeton Turbulent Flow Reactor. Since MCH is a proposed endothermic jet fuel, as well as a possibly significant constituent of current commercial automotive and aviation fuel blends, high-temperature studies of MCH provide an understanding of its decay characteristics in both aircraft and automobile engine environments. Ethene, 1,3-butadiene, methane, and propene were found to be the major intermediates produced by MCH pyrolysis. Oxidation of MCH also produced the same intermediates. As expected, the observed oxidation reaction rates were faster than the pyrolysis reaction rates. The MCH/toluene-blend oxidation experiments (1,160 K and {Phi} = {approximately}1.3) revealed that, while the two fuels appear to oxidize by independent mechanisms, the rates of oxidation of both fuels are strongly related to the initial concentration of MCH.

  14. Mechanistic Studies of Reactions of Peroxodiiron(III) Intermediates in T201 Variants of Toluene/o-Xylene Monooxygenase Hydroxylase

    E-print Network

    Lippard, Stephen J.

    Site-directed mutagenesis studies of a strictly conserved T201 residue in the active site of toluene/o-xylene monooxygenase hydroxylase (ToMOH) revealed that a single mutation can facilitate kinetic isolation of two ...

  15. Solvothermal-assisted liquid-phase exfoliation of graphite in a mixed solvent of toluene and oleylamine.

    PubMed

    Dang, Dinh Khoi; Kim, Eui Jung

    2015-12-01

    We report an effective method for producing graphene sheets using solvothermal-assisted exfoliation of graphite in a mixed solvent of toluene and oleylamine. The mixed solvent of toluene and oleylamine produces higher yield of graphene than its constituents, oleylamine and toluene. The oleylamine molecules with its long chain enwrap the graphene sheets efficiently, while toluene helps the oleylamine molecules become more flexible and easily intercalate into the edge of graphite. The prepared graphene sheets have a high quality, and the concentration of graphene in the dispersion is as high as 0.128 mg mL(-1). The high-quality graphene sheets obtained in this work make them suitable for application in many fields such as energy-storage materials and polymer composites. PMID:26055473

  16. Active Site Threonine Facilitates Proton Transfer during Dioxygen Activation at the Diiron Center of Toluene/o-Xylene Monooxygenase Hydroxylase

    E-print Network

    Song, Woon Ju

    Toluene/o-xylene monooxygenase hydroxylase (ToMOH), a diiron-containing enzyme, can activate dioxygen to oxidize aromatic substrates. To elucidate the role of a strictly conserved T201 residue during dioxygen activation ...

  17. Toluene Effects on Gene Expression in the Hippocampus of Young-Adult, Middle-Age and Senescent Brown Norway Rats

    EPA Science Inventory

    Differential susceptibility to environmental exposure(s) across life stages is an area of toxicology about which little is known. We examined the effects of toluene, a known neurotoxicant with reported behavioral, electrophysiological and pathological effects, on transcriptomic...

  18. Stable self-trapping and ring formation in polydiacetylene para-toluene sulfonate

    NASA Astrophysics Data System (ADS)

    Wright, Ewan M.; Lawrence, Brian L.; Torruellas, William; Stegeman, George

    1995-12-01

    Numerical simulations of two-dimensional beam propagation in polydiacetylene para-toluene sulfonate measured values for n2>0 and n3<0 , where Delta n=n2I+n 3I2 , predict stable self-trapping and a new phenomenon in which a spatial ring evolves from a Gaussian input beam. We interpret the numerical results theoretically, using the variational model of nonlinear Gaussian beam propagation.

  19. Effect of toluene exposure on the antioxidant status and apoptotic pathway in organs of the rat.

    PubMed

    El-Nabi Kamel, M A; Shehata, M

    2008-01-01

    The chronic abuse of the solvent toluene results in structural and functional impairment of various organs. However, the pathophysiological mechanisms that cause these impairments of function are not clearly understood. This study aims to assess the effect of chronic toluene exposure (15, 30 and 45 days) on the oxidative stress and antioxidant status of different organs in the rat. Also, cyclooxygenase-2 and caspase-3 activities (a marker of apoptosis) are studied. Forty male albino rats were used and divided into four groups: controls (group I) and three other groups receiving a single daily dose of toluene (650 mg/kg) for 15 days (group II), 30 days (group III) and 45 days (group IV). The animals were then sacrificed and the brain cortex, cerebellum, liver, kidney and testis were separated for the determination of thiobarbituric acid reactive substance (TBARS), GSH, glutathione disulphide (GSSG) and glutathione reductase (GR), glutathione peroxidase (GPx), glutathione-S-transferase (GST), superoxide dismutase (SOD), cyclooxygenase-2 (COX-2) and caspase-3 activity. Results showed a significant and time-dependent increase in the levels of TBARS, GSSG and in GST, SOD, COX-2 and caspase-3 activity, while GSH, GR and GPx showed a marked decline in most tissues. The brain (cortex and cerebellum) was the most affected organ, showing the greatest increase in one apoptotic marker (caspase-3), while the testis and kidneys were least affected. In conclusion, oxidative stress and derangement of the GSH:GSSG ratio, induced chronic inflammatory change and apoptosis may play an essential role in toluene toxicity PMID:19055109

  20. Modulation of neurological related allergic reaction in mice exposed to low-level toluene

    SciTech Connect

    Tin-Tin-Win-Shwe; Yamamoto, Shoji; Nakajima, Daisuke; Furuyama, Akiko; Fukushima, Atsushi; Ahmed, Sohel; Goto, Sumio; Fujimaki, Hidekazu . E-mail: fujimaki@nies.go.jp

    2007-07-01

    The contributing role of indoor air pollution to the development of allergic disease has become increasingly evident in public health problems. It has been reported that extensive communication exists between neurons and immune cells, and neurotrophins are molecules potentially responsible for regulating and controlling this neuroimmune crosstalk. The adverse effects of volatile organic compounds which are main indoor pollutants on induction or augmentation of neuroimmune interaction have not been fully characterized yet. To investigate the effects of low-level toluene inhalation on the airway inflammatory responses, male C3H mice were exposed to filtered air (control), 9 ppm, and 90 ppm toluene for 30 min by nose-only inhalation on Days 0, 1, 2, 7, 14, 21, and 28. Some groups of mice were injected with ovalbumin intraperitoneally before starting exposure schedule and these mice were then challenged with aerosolized ovalbumin as booster dose. For analysis of airway inflammation, bronchoalveolar lavage (BAL) fluid were collected to determine inflammatory cell influx and lung tissue and blood samples were collected to determine cytokine and neurotrophin mRNA and protein expressions and plasma antibody titers using real-time RT-PCR and ELISA methods respectively. Exposure of the ovalbumin-immunized mice to low-level toluene resulted in (1) increased inflammatory cells infiltration in BAL fluid; (2) increased IL-5 mRNA, decreased nerve growth factor receptor tropomyosin-related kinase A and brain-derived neurotrophic factor mRNAs in lung; and (3) increased IgE and IgG{sub 1} antibodies and nerve growth factor content in the plasma. These findings suggest that low-level toluene exposure aggravates the airway inflammatory responses in ovalbumin-immunized mice by modulating neuroimmune crosstalk.

  1. Mining Gene Expression Data for Pollutants (Dioxin, Toluene, Formaldehyde) and Low Dose of Gamma-Irradiation

    PubMed Central

    Moskalev, Alexey; Shaposhnikov, Mikhail; Snezhkina, Anastasia; Kogan, Valeria; Plyusnina, Ekaterina; Peregudova, Darya; Melnikova, Nataliya; Uroshlev, Leonid; Mylnikov, Sergey; Dmitriev, Alexey; Plusnin, Sergey; Fedichev, Peter; Kudryavtseva, Anna

    2014-01-01

    General and specific effects of molecular genetic responses to adverse environmental factors are not well understood. This study examines genome-wide gene expression profiles of Drosophila melanogaster in response to ionizing radiation, formaldehyde, toluene, and 2,3,7,8-tetrachlorodibenzo-p-dioxin. We performed RNA-seq analysis on 25,415 transcripts to measure the change in gene expression in males and females separately. An analysis of the genes unique to each treatment yielded a list of genes as a gene expression signature. In the case of radiation exposure, both sexes exhibited a reproducible increase in their expression of the transcription factors sugarbabe and tramtrack. The influence of dioxin up-regulated metabolic genes, such as anachronism, CG16727, and several genes with unknown function. Toluene activated a gene involved in the response to the toxins, Cyp12d1-p; the transcription factor Fer3’s gene; the metabolic genes CG2065, CG30427, and CG34447; and the genes Spn28Da and Spn3, which are responsible for reproduction and immunity. All significantly differentially expressed genes, including those shared among the stressors, can be divided into gene groups using Gene Ontology Biological Process identifiers. These gene groups are related to defense response, biological regulation, the cell cycle, metabolic process, and circadian rhythms. KEGG molecular pathway analysis revealed alteration of the Notch signaling pathway, TGF-beta signaling pathway, proteasome, basal transcription factors, nucleotide excision repair, Jak-STAT signaling pathway, circadian rhythm, Hippo signaling pathway, mTOR signaling pathway, ribosome, mismatch repair, RNA polymerase, mRNA surveillance pathway, Hedgehog signaling pathway, and DNA replication genes. Females and, to a lesser extent, males actively metabolize xenobiotics by the action of cytochrome P450 when under the influence of dioxin and toluene. Finally, in this work we obtained gene expression signatures pollutants (dioxin, toluene), low dose of gamma-irradiation and common molecular pathways for different kind of stressors. PMID:24475070

  2. Mining gene expression data for pollutants (dioxin, toluene, formaldehyde) and low dose of gamma-irradiation.

    PubMed

    Moskalev, Alexey; Shaposhnikov, Mikhail; Snezhkina, Anastasia; Kogan, Valeria; Plyusnina, Ekaterina; Peregudova, Darya; Melnikova, Nataliya; Uroshlev, Leonid; Mylnikov, Sergey; Dmitriev, Alexey; Plusnin, Sergey; Fedichev, Peter; Kudryavtseva, Anna

    2014-01-01

    General and specific effects of molecular genetic responses to adverse environmental factors are not well understood. This study examines genome-wide gene expression profiles of Drosophila melanogaster in response to ionizing radiation, formaldehyde, toluene, and 2,3,7,8-tetrachlorodibenzo-p-dioxin. We performed RNA-seq analysis on 25,415 transcripts to measure the change in gene expression in males and females separately. An analysis of the genes unique to each treatment yielded a list of genes as a gene expression signature. In the case of radiation exposure, both sexes exhibited a reproducible increase in their expression of the transcription factors sugarbabe and tramtrack. The influence of dioxin up-regulated metabolic genes, such as anachronism, CG16727, and several genes with unknown function. Toluene activated a gene involved in the response to the toxins, Cyp12d1-p; the transcription factor Fer3's gene; the metabolic genes CG2065, CG30427, and CG34447; and the genes Spn28Da and Spn3, which are responsible for reproduction and immunity. All significantly differentially expressed genes, including those shared among the stressors, can be divided into gene groups using Gene Ontology Biological Process identifiers. These gene groups are related to defense response, biological regulation, the cell cycle, metabolic process, and circadian rhythms. KEGG molecular pathway analysis revealed alteration of the Notch signaling pathway, TGF-beta signaling pathway, proteasome, basal transcription factors, nucleotide excision repair, Jak-STAT signaling pathway, circadian rhythm, Hippo signaling pathway, mTOR signaling pathway, ribosome, mismatch repair, RNA polymerase, mRNA surveillance pathway, Hedgehog signaling pathway, and DNA replication genes. Females and, to a lesser extent, males actively metabolize xenobiotics by the action of cytochrome P450 when under the influence of dioxin and toluene. Finally, in this work we obtained gene expression signatures pollutants (dioxin, toluene), low dose of gamma-irradiation and common molecular pathways for different kind of stressors. PMID:24475070

  3. ACUTE EXPOSURES TO P-XYLENE AND TOLUENE ALTER VISUAL INFORMATION PROCESSING (JOURNAL VERSION)

    EPA Science Inventory

    Long-Evans hooded rats were exposed to single doses of toluene (p.o.) at 0, 250, 500 and 1000 mg/kg, to p-xylene (p.o.) at 0, 125, 250, 500, 1000 and 2000 mg/kg, and to inhalation of p-xylene for 4 hrs at 0, 800 or 1600 ppm. The functional integrity of the visual system was evalu...

  4. Investigations on Chlorophytum comosum ability to remove toluene from air in a closed environment

    NASA Astrophysics Data System (ADS)

    Bulteau, G.; Lakel, A.

    Plants play a major role in bioregenerative systems for air and water supplies. They may also contribute to the removal of volatile organic compounds (VOC) from the air in a closed environment, based on the ability to absorb toxic compounds and to detoxify them. The aim of our work was to study the capabilities of Chlorophytum comosum for toluene removal and to identify the main parts of the plants which are responsible for the elimination. A 1-m3 sealed chamber was designed and built in 8-mm window glass assembled with UV-polymerized glue. It was equipped with one internal fan for air mixing. The other materials (low-emitting and low-adsorptive) were aluminium and PTFE. A cooling system was also used to regulate humidity content which was monitored continuously as well as temperature and carbon dioxide concentration. Experiments were carried out in this chamber with Chlorophytum comosum plants exposed to an initial concentration of 11.5x103 ?g toluene m-3. Pollutant concentration was measured every five minutes during several days. Toluene removal was studied in various configurations (potting media, hydroponic conditions{ldots}) in order to document the level of contribution of each component (leaves, roots, microorganisms and soil) of the potted plants. Results show that 54 % of toluene was removed in 72 h with the whole potted plant. A large participation of the soil in the purification process was noticed whereas foliage seemed to have little effect at the light intensity used in the experiments. Moreover, the tests realized with both natural and sterilized soils suggest that soil bacteria (in potting media) play a significant role in the removal process showing that soil and its microorganisms may have complementary roles in the elimination phenomena. Detoxifying function of potted plants could find current applications in improving air quality, in particular indoor air from domestic buildings.

  5. Adsorption characteristics of activated carbon fibers (ACFs) for toluene: application in respiratory protection.

    PubMed

    Balanay, Jo Anne G; Bartolucci, Alfred A; Lungu, Claudiu T

    2014-01-01

    Granular activated carbon (GAC) is currently the standard adsorbent in respirators against several gases and vapors because of its efficiency, low cost, and available technology. However, a drawback of GAC due to its granular form is its need for containment, adding weight and bulkiness to respirators. This makes respirators uncomfortable to wear, resulting in poor compliance in their use. Activated carbon fibers (ACF) are considered viable alternative adsorbent materials for developing thinner, light-weight, and efficient respirators because of their larger surface area, lighter weight, and fabric form. This study aims to determine the critical bed depth and adsorption capacity of different types of commercially available ACFs for toluene to understand how thin a respirator can be and the service life of the adsorbents, respectively. ACF in cloth (ACFC) and felt (ACFF) forms with three different surface areas per form were tested. Each ACF type was challenged with six concentrations of toluene (50, 100, 200, 300, 400, 500 ppm) at constant air temperature (23°C), relative humidity (50%), and airflow (16 LPM) at different adsorbent weights and bed depths. Breakthrough data were obtained for each adsorbent using gas chromatography with flame ionization detector. The ACFs' surface areas were measured by an automatic physisorption analyzer. The results showed that ACFC has a lower critical bed depth and higher adsorption capacity compared to ACFF with similar surface area for each toluene concentration. Among the ACF types, ACFC2000 (cloth with the highest measured surface area of 1614 ± 5 m(2)/g) has one of the lowest critical bed depths (ranging from 0.11-0.22 cm) and has the highest adsorption capacity (ranging from 595-878 mg/g). Based on these studied adsorption characteristics, it is concluded that ACF has great potential for application in respiratory protection against toluene, particularly the ACFC2000, which is the best candidate for developing thinner and efficient respirators. PMID:24521063

  6. Biodegradation of toluene and xylenes under microaerophilic and denitrifying conditions by Pseudomonas maltophilia

    SciTech Connect

    Su, J.J.

    1994-01-01

    Aerobic biodegradation of aromatic hydrocarbons has been well studied. Under aerobic conditions, aerobes or facultative anaerobes can utilize aromatic hydrocarbons as sole carbon and energy sources by using oxygen as the cosubstrate of oxygenase enzymes for the initial attack of the aromatic ring and as the terminal electron acceptor for aerobic respiration. However, some facultative or obligate anaerobes can degrade these hydrocarbons by using alternate electron acceptors, such as nitrate, sulfate, carbon dioxide, or iron for anaerobic respiration. Among the potential alternate electron acceptors available, nitrate is the most common one used by microorganisms under oxygen-limited conditions. The first objective of this project was to explore hydrocarbon utilization under anoxic or low oxygen conditions. A microorganism that can utilize the petroleum hydrocarbons, toluene and xylene, as sole carbon and energy sources under microaerophilic (2% oxygen) and denitrifying conditions was isolated and characterized. Since oxygen may repress microbial denitrification, it was of interest to monitor the effects of low oxygen levels on aromatic hydrocarbon biodegradation coupled to denitrification. We isolated a Gram-negative rod, Pseudomonas maltophilia from anaerobic sewage digester sludge. The patterns of biodegradations of toluene and two isomers of xylenes, m- and p-xylene, were very similar under either microaerophilic or anaerobic conditions. Nitrate reduction was also observed during time course experiments under aerobic conditions. The final objective was to test the feasibility of an immobilized cell reactor to treat waste streams. Therefore, a bench-scale bioreactor was built to treat a waste stream contaminated with both toluene and nitrate without aeration. The utilization of toluene and nitrate was monitored periodically in a continuous system under anaerobic conditions.

  7. Decomposition of toluene in a steady-state atmospheric-pressure glow discharge

    SciTech Connect

    Trushkin, A. N.; Grushin, M. E.; Kochetov, I. V.; Trushkin, N. I.; Akishev, Yu. S.

    2013-02-15

    Results are presented from experimental studies of decomposition of toluene (C{sub 6}H{sub 5}CH{sub 3}) in a polluted air flow by means of a steady-state atmospheric pressure glow discharge at different water vapor contents in the working gas. The experimental results on the degree of C{sub 6}H{sub 5}CH{sub 3} removal are compared with the results of computer simulations conducted in the framework of the developed kinetic model of plasma chemical decomposition of toluene in the N{sub 2}: O{sub 2}: H{sub 2}O gas mixture. A substantial influence of the gas flow humidity on toluene decomposition in the atmospheric pressure glow discharge is demonstrated. The main mechanisms of the influence of humidity on C{sub 6}H{sub 5}CH{sub 3} decomposition are determined. The existence of two stages in the process of toluene removal, which differ in their duration and the intensity of plasma chemical decomposition of C{sub 6}H{sub 5}CH{sub 3} is established. Based on the results of computer simulations, the composition of the products of plasma chemical reactions at the output of the reactor is analyzed as a function of the specific energy deposition and gas flow humidity. The existence of a catalytic cycle in which hydroxyl radical OH acts a catalyst and which substantially accelerates the recombination of oxygen atoms and suppression of ozone generation when the plasma-forming gas contains water vapor is established.

  8. Toluene effects on oxidative stress in brain regions of young-adult, middle-age, and senescent Brown Norway rats.

    PubMed

    Kodavanti, Prasada Rao S; Royland, Joyce E; Richards, Judy E; Besas, Jonathan; Macphail, Robert C

    2011-11-01

    The influence of aging on susceptibility to environmental contaminants is not well understood. To extend knowledge in this area, we examined effects in rat brain of the volatile organic compound, toluene. The objective was to test whether oxidative stress (OS) plays a role in the adverse effects caused by toluene exposure, and if so, if effects are age-dependent. OS parameters were selected to measure the production of reactive oxygen species (NADPH Quinone oxidoreductase 1 (NQO1), NADH Ubiquinone reductase (UBIQ-RD)), antioxidant homeostasis (total antioxidant substances (TAS), superoxide dismutase (SOD), ?-glutamylcysteine synthetase (?-GCS), glutathione transferase (GST), glutathione peroxidase (GPX), glutathione reductase (GRD)), and oxidative damage (total aconitase and protein carbonyls). In this study, Brown Norway rats (4, 12, and 24 months) were dosed orally with toluene (0, 0.65 or 1g/kg) in corn oil. Four hours later, frontal cortex, cerebellum, striatum, and hippocampus were dissected, quick frozen on dry ice, and stored at -80°C until analysis. Some parameters of OS were found to increase with age in select brain regions. Toluene exposure also resulted in increased OS in select brain regions. For example, an increase in NQO1 activity was seen in frontal cortex and cerebellum of 4 and 12 month old rats following toluene exposure, but only in the hippocampus of 24 month old rats. Similarly, age and toluene effects on glutathione enzymes were varied and brain-region specific. Markers of oxidative damage reflected changes in oxidative stress. Total aconitase activity was increased by toluene in frontal cortex and cerebellum at 12 and 24 months, respectively. Protein carbonyls in both brain regions and in all age groups were increased by toluene, but step-down analyses indicated toluene effects were statistically significant only in 12month old rats. These results indicate changes in OS parameters with age and toluene exposure resulted in oxidative damage in frontal cortex and cerebellum of 12 month old rats. Although increases in oxidative damage are associated with increases in horizontal motor activity in older rats, further research is warranted to determine if these changes in OS parameters are related to neurobehavioral and neurophysiological effects of toluene in animal models of aging. PMID:21549141

  9. Toluene effects on oxidative stress in brain regions of young-adult, middle-age, and senescent Brown Norway rats

    SciTech Connect

    Kodavanti, Prasada Rao S.; Royland, Joyce E.; Richards, Judy E.; Besas, Jonathan; MacPhail, Robert C.

    2011-11-15

    The influence of aging on susceptibility to environmental contaminants is not well understood. To extend knowledge in this area, we examined effects in rat brain of the volatile organic compound, toluene. The objective was to test whether oxidative stress (OS) plays a role in the adverse effects caused by toluene exposure, and if so, if effects are age-dependent. OS parameters were selected to measure the production of reactive oxygen species (NADPH Quinone oxidoreductase 1 (NQO1), NADH Ubiquinone reductase (UBIQ-RD)), antioxidant homeostasis (total antioxidant substances (TAS), superoxide dismutase (SOD), {gamma}-glutamylcysteine synthetase ({gamma}-GCS), glutathione transferase (GST), glutathione peroxidase (GPX), glutathione reductase (GRD)), and oxidative damage (total aconitase and protein carbonyls). In this study, Brown Norway rats (4, 12, and 24 months) were dosed orally with toluene (0, 0.65 or 1 g/kg) in corn oil. Four hours later, frontal cortex, cerebellum, striatum, and hippocampus were dissected, quick frozen on dry ice, and stored at - 80 Degree-Sign C until analysis. Some parameters of OS were found to increase with age in select brain regions. Toluene exposure also resulted in increased OS in select brain regions. For example, an increase in NQO1 activity was seen in frontal cortex and cerebellum of 4 and 12 month old rats following toluene exposure, but only in the hippocampus of 24 month old rats. Similarly, age and toluene effects on glutathione enzymes were varied and brain-region specific. Markers of oxidative damage reflected changes in oxidative stress. Total aconitase activity was increased by toluene in frontal cortex and cerebellum at 12 and 24 months, respectively. Protein carbonyls in both brain regions and in all age groups were increased by toluene, but step-down analyses indicated toluene effects were statistically significant only in 12 month old rats. These results indicate changes in OS parameters with age and toluene exposure resulted in oxidative damage in frontal cortex and cerebellum of 12 month old rats. Although increases in oxidative damage are associated with increases in horizontal motor activity in older rats, further research is warranted to determine if these changes in OS parameters are related to neurobehavioral and neurophysiological effects of toluene in animal models of aging.

  10. Size-Restricted Proton Transfer within Toluene-Methanol Cluster Ions

    PubMed Central

    Chiang, Chi-Tung; Shores, Kevin S.; Freindorf, Marek; Furlani, Thomas; DeLeon, Robert L.; Garvey, James F.

    2009-01-01

    To understand the interaction between toluene and methanol, the chemical reactivity of {(C6H5CH3)(CH3OH)n=1-7}+ cluster ions has been investigated via tandem quadrupole mass spectrometry and through calculations. Collision Induced Dissociation (CID) experiments show that the dissociated intracluster proton transfer reaction from the toluene cation to methanol clusters, forming protonated methanol clusters, only occurs for n=2-4. For n=5-7, CID spectra reveal that these larger clusters have to sequentially lose methanol monomers until they reach n=4 to initiate the deprotonation of the toluene cation. Metastable decay data indicate that for n=3 and n=4 (CH3OH)3H+ is the preferred fragment ion. The calculational result reveals that both the gross proton affinity of the methanol subcluster and the structure of the cluster itself play an important role in driving this proton transfer reaction. When n=3, the cooperative effect of the methanols in the subcluster provides the most important contribution to allow the intracluster proton transfer reaction to occur with little or no energy barrier. As n?4, the methanol subcluster is able to form ring structures to stabilize the cluster structures so that direct proton transfer is not a favored process. The preferred reaction product, the (CH3OH)3H+ cluster ion, indicates that this size-restricted reaction is driven by both the proton affinity and the enhanced stability of the resulting product. PMID:18950147

  11. An Improved Impregnated-filter Method for Measuring Low-levelConcentrations of Toluene

    SciTech Connect

    Mahanama, K.R.R.; Hodgson, A.T.

    1995-02-01

    An improved method was developed and validated for measuring low-level concentrations of toluene diisocyanates (TDls) in air. The method is based on OSHA Method 42 for industrial applications. Airborne TDls were trapped on a 25-mm glass-fiber filter impregnated with 50 pg of 1-(2-pyridy1)piperazine. A filter holder was constructed to minimize contamination and losses of the analytes. The derivatized TDls were extracted by immersion of the filter in a small volume of solvent. The analysis was performed with a high performance liquid chromatograph equipped with a fluorescence detector and a CIB base-deactivated silica column. The modified method has a lower limit of quantitation of 0.02 ppb in 15 L of air for both 2,4-toluene diisocyanate (2,4-TDI) and 2,6-toluene diisocyanate (2,6-TDI), which is about a fifteen-fold enhancement over Method 42. The recovery efficiencies and 95% confidence intervals for vapor-spiked filters were 77 {+-} 6 percent for 2,4-TDI and 69 {+-} 10 percent for 2,6-TDI. The precision of replicate analyses was ten percent or better. The method was used to screen flexible polyurethane foam for emissions of unreacted TDls.

  12. An Uncultivated Nitrate-Reducing Member of the Genus Herminiimonas Degrades Toluene

    PubMed Central

    Kim, So-Jeong; Park, Soo-Je; Jung, Man-Young; Kim, Jong-Geol; Madsen, Eugene L.

    2014-01-01

    Stable isotope probing (SIP) is a cultivation-free methodology that provides information about the identity of microorganisms participating in assimilatory processes in complex communities. In this study, a Herminiimonas-related bacterium was identified as the dominant member of a denitrifying microcosm fed [13C]toluene. The genome of the uncultivated toluene-degrading bacterium was obtained by applying pyrosequencing to the heavy DNA fraction. The draft genome comprised ?3.8 Mb, in 131 assembled contigs. Metabolic reconstruction of aromatic hydrocarbon (toluene, benzoate, p-cresol, 4-hydroxybenzoate, phenylacetate, and cyclohexane carboxylate) degradation indicated that the bacterium might specialize in anaerobic hydrocarbon degradation. This characteristic is novel for the order Burkholderiales within the class Betaproteobacteria. Under aerobic conditions, the benzoate oxidation gene cluster (BOX) system is likely involved in the degradation of benzoate via benzoyl coenzyme A. Many putative genes for aromatic hydrocarbon degradation were closely related to those in the Rhodocyclaceae (particularly Aromatoleum aromaticum EbN1) with respect to organization and sequence similarity. Putative mobile genetic elements associated with these catabolic genes were highly abundant, suggesting gene acquisition by Herminiimonas via horizontal gene transfer. PMID:24632261

  13. Tubular biofilter for toluene removal under various organic loading rates and gas empty bed residence times.

    PubMed

    Chen, Hong; Yang, Chunping; Zeng, Guangming; Luo, Shenglian; Yu, Guanlong

    2012-10-01

    A tubular biofilter (TBF) which consisted of a closed chamber, a polyurethane sponge tube and a nutrient solution distributor was developed and evaluated under organic loading rates (OL) ranging from 18.7 to 149.3 gm(-3)h(-1) and gas empty bed residence times (EBRTs) of 30-5.0 s. Using toluene as model VOC, the startup of the TBF lasted approximately 7 weeks. The removal efficiency decreased from 99% to 52.2% when OL was increased from 18.7 to 149.3g toluene m(-3)h(-1) at 15s, but did not decline significantly when the EBRT was reduced from 30 to 5.0 s at 18.7 gm(-3)h(-1). Biomass concentration did not increase significantly within the sponge tube during the 391 days' operation as observed through the Plexiglas pipe of the TBF. The TBF is suitable for treating waste gases with low toluene concentrations even at high gas flow and over long periods. PMID:22858486

  14. A hybrid biological process of indoor air treatment for toluene removal.

    PubMed

    Hort, C; Platel, V; Sochard, S; Munoz, Luengas A T; Ondarts, M; Reguer, A; Barona, A; Elias, A

    2014-12-01

    Bioprocesses, such as biofiltration, are commonly used to treat industrial effluents containing volatile organic compounds (VOCs) at low concentrations. Nevertheless, the use of biofiltration for indoor air pollution (IAP) treatment requires adjustments depending on specific indoor environments. Therefore, this study focuses on the convenience of a hybrid biological process for IAP treatment. A biofiltration reactor using a green waste compost was combined with an adsorption column filled with activated carbon (AC). This system treated a toluene-micropolluted effluent (concentration between 17 and 52 ?g/m3), exhibiting concentration peaks close to 733 ?g/m3 for a few hours per day. High removal efficiency was obtained despite changes in toluene inlet load (from 4.2 x 10(-3) to 0.20 g/m3/hr), which proves the hybrid system's effectiveness. In fact, during unexpected concentration changes, the efficiency of the biofilter is greatly decreased, but the adsorption column maintains the high efficiency of the entire process (removal efficiency [RE] close to 100%). Moreover, the adsorption column after biofiltration is able to deal with the problem of the emission of particles and/or microorganisms from the biofilter. Implications: Indoor air pollution is nowadays recognized as major environmental and health issue. This original study investigates the performance of a hybrid biological process combining a biofilter and an adsorption column for removal of indoor VOCs, specifically toluene. PMID:25562936

  15. Association of chlorophyll with inverted micelles of dodecylpyridinium iodide in toluene

    SciTech Connect

    Seely, G.R.; Ma, X.C.; Nieman, R.A.; Gust, D. )

    1990-02-22

    Dodecylpyridinium iodide forms inverted micelles in water-containing toluene at concentrations higher than 10{sup {minus}4} M, as it reportedly does in other nonpolar solvents. Micelle formation is characterized by changes in the charge-transfer absorption band, and in the chemical shifts of protons, especially those on or near the pyridinium group. The micelles associate with chlorophyll a, also dissolved in the toluene, as evidenced by large changes in the chemical shift of some of the surfactant and the chlorophyll resonances. The fluorescence quantum yield of chlorophyll is little reduced by the presence of 10{sup {minus}3} M 2,2{prime}-dithiobis(5-nitropyridine), a quencher which is soluble in toluene and probably associates weakly with the micelles, but is strongly reduced by the presence of the bis(tetramethylammonium) salt of 5,5{prime}-dithiobis(2-nitrobenzoic acid), which is solubilized only in the presence of the inverted micelles, and furthermore forms a complex with chlorophyll. These cationic inverted micelles constitute a new environment for the pursuit of chlorophyll model system investigations.

  16. Synthesis of mesoporous BiOBr 3D microspheres and their photodecomposition for toluene.

    PubMed

    Feng, Yinchang; Li, Lei; Li, Junwei; Wang, Junfeng; Liu, Lu

    2011-08-30

    In this article, a facile solvothermal method was introduced to synthesize mesoporous BiOBr microspheres with Bi(NO(3))(3) as Bi source. The synthesized catalysts were characterized by XRD, SEM, TEM, XPS, UV-vis, TG-DTA, and N(2)-adsorption-desorption, and their photoactivity was evaluated by gaseous toluene both under UV and UV-vis irradiation with Degussa TiO(2) P(25) as reference. The prepared BiOBr catalysts were of pure tetragonal phase and its band gap energy was calculated to be about 2.64eV. Comparing with P(25), BiOBr showed promoted photocatalytic activity under UV-vis irradiation, during which more than 90% of toluene was eliminated after 5h irradiation. Kinetic analysis further demonstrated the enhanced activity of BiOBr under UV-vis irradiation and the reaction rate constant k of BiOBr was nearly 2 times higher than that of P(25). The superior activity of BiOBr under UV-vis irradiation can be attributed to its hierarchical structure and suitable band gap energy. Moreover, the reacted intermediates under different light source were identified by GC-MS. Fifteen main intermediates were identified and a tentative pathway of toluene degradation by BiOBr was proposed. PMID:21676542

  17. Chemical kinetic modeling of benzene and toluene oxidation behind shock waves

    NASA Technical Reports Server (NTRS)

    Mclain, A. G.; Jachimowski, C. J.; Wilson, C. H.

    1979-01-01

    The oxidation of stoichiometric mixtures of benzene and toluene behind incident shock waves was studied for a temperature range from 1700 to 2800 K and a pressure range from 1.1 to 1.7 atm. The concentration of CO and CO2 produced were measured as well as the product of the oxygen atom and carbon monoxide concentrations. Comparisons between the benzene experimental data and results calculated by use of a reaction mechanism published in the open literature were carried out. With some additional reactions and changes in rate constants to reflect the pressure-temperature range of the experimental data, a good agreement was achieved between computed and experimental results. A reaction mechanism was developed for toluene oxidation based on analogous rate steps from the benzene mechanism. Measurements of NOx levels in an actual flame device, a jet-stirred combustor, were reproduced successfully by use of the reaction mechanism developed from the shock-tube experiments on toluene. These experimental measurements of NOx levels were reproduced from a computer simulation of a jet-stirred combustor.

  18. Determination of Benzene, Toluene, and Xylene by means of an ion mobility spectrometer device using photoionization

    NASA Technical Reports Server (NTRS)

    Leonhardt, J. W.; Bensch, H.; Berger, D.; Nolting, M.; Baumbach, J. I.

    1995-01-01

    The continuous monitoring of changes on the quality of ambient air is a field of advantage of ion mobility spectrometry. Benzene, Toluene, and Xylene are substances of special interest because of their toxicity. We present an optimized drift tube for ion mobility spectrometers, which uses photo-ionization tubes to produce the ions to be analyzed. The actual version of this drift tube has a length of 45 mm, an electric field strength established within the drift tube of about 180 V/cm and a shutter-opening-time of 400 mus. With the hydrogen tube used for ionisation a mean flux of 10(exp 12) photons/sq cm s was established for the experiments described. We discuss the results of investigations on Benzene, Toluene, and Xylene in normal used gasoline SUPER. The detection limits obtained with the ion mobility spectrometer developed in co-operation are in the range of 10 ppbv in this case. Normally, charge transfer from Benzene ions to Toluene takes place. Nevertheless the simultaneous determination in mixtures is possible by a data evaluation procedure developed for this case. The interferences found between Xylene and others are rather weak. The ion mobility spectra of different concentrations of gasoline SUPER are attached as an example for the resolution and the detection limit of the instrument developed. Resolution and sensitivity of the system are well demonstrated. A hand-held portable device produced just now is to be tested for special environmental analytical problems in some industrial and scientific laboratories in Germany.

  19. Biodegradation kinetics of benzene, toluene and xylene compounds: microbial growth and evaluation of models.

    PubMed

    Feisther, Vódice Amoroz; Ulson de Souza, Antônio Augusto; Trigueros, Daniela Estelita Goes; de Mello, Josiane Maria Muneronde; de Oliveira, Déborade; Guelli Ulson de Souza, Selene M A

    2015-07-01

    The biodegradation kinetics of BTX compounds (benzene, toluene, and xylene) individually and as mixtures was studied using models with different levels of sophistication. To compare the performance of the unstructured models applied in this work we used experimental data obtained here and some results published in the literature. The system description was based on the material balances of key components for batch operations, where the Monod and Andrews models were applied to predict the biodegradation of individual substrates. To simulate the biodegradation kinetics of substrate mixtures, models of substrate inhibition were applied along with the Sum Kinetics with Interaction Parameters (SKIP) models, where for two-component association toluene-xylene SKIP model presented better performance and for tri-component association benzene-toluene-xylene, the uncompetitive inhibition model was better. The kinetic parameters were estimated via a global search method known as Particle Swarm Optimization (PSO). The main result of this study is that the sophisticated biodegradation kinetics of BTX mixtures can be successfully described by applying the SKIP model, with the main advantage being the consideration of the substrate interactions. PMID:25627469

  20. Chemical kinetic study of the oxidation of toluene and related cyclic compounds

    SciTech Connect

    Mehl, M; Frassoldati, A; Fietzek, R; Faravelli, T; Pitz, W; Ranzi, E

    2009-10-01

    Chemical kinetic models of hydrocarbons found in transportation fuels are needed to simulate combustion in engines and to improve engine performance. The study of the combustion of practical fuels, however, has to deal with their complex compositions, which generally involve hundreds of compounds. To provide a simplified approach for practical fuels, surrogate fuels including few relevant components are used instead of including all components. Among those components, toluene, the simplest of the alkyl benzenes, is one of the most prevalent aromatic compounds in gasoline in the U.S. (up to 30%) and is a promising candidate for formulating gasoline surrogates. Unfortunately, even though the combustion of aromatics been studied for a long time, the oxidation processes relevant to this class of compounds are still matter of discussion. In this work, the combustion of toluene is systematically approached through the analysis of the kinetics of some important intermediates contained in its kinetic submechanism. After discussing the combustion chemistry of cyclopentadiene, benzene, phenol and, finally, of toluene, the model is validated against literature experimental data over a wide range of operating conditions.

  1. A kinetic model for the oxidation of toluene near 1200 K

    SciTech Connect

    Emdee, J.L.; Brezinsky, K.; Glassman, I.

    1992-03-05

    An improved kinetic model for the high-temperature oxidation of toluene has been developed using previously established reaction mechanisms for benzene and toluene. The model is compared to benzene and toluene flow reactor experiments near 1100 and 1200 K, respectively. Fuel decay rates and many intermediate species profiles are reproduced successfully for both lean and rich equivalence ratios. A linear sensitivity analysis indicated that the reaction mechanism was most sensitive to the rate constant of C{sub 6}H{sub 5}CH{sub 3} + O{sub 2} {r_arrow} C{sub 6}H{sub 5}CH{sub 2} + HO{sub 2} (71). A value of k{sub 71} = 3.0 x 10{sup 14} exp(-20700/T) cm/mol/s was found to fit the experimental data best. The model revealed that the presence of resonantly stable radical such as benzyl and phenoxy can inhibit the reaction rate of the fuel by removing H atoms from the system. Specific shortcomings of the model are also discussed. 70 refs., 10 figs., 4 tabs.

  2. Anaerobic oxidation of toluene, phenol, and p-cresol by the dissimilatory iron-reducing organism, GS-15

    USGS Publications Warehouse

    Lovley, D.R.; Lonergan, D.J.

    1990-01-01

    The dissimilatory Fe(III) reducer, GS-15, is the first microorganism known to couple the oxidation of aromatic compounds to the reduction of Fe(III) and the first example of a pure culture of any kind known to anaerobically oxidize an aromatic hydrocarbon, toluene. In this study, the metabolism of toluene, phenol, and p-cresol by GS-15 was investigated in more detail. GS-15 grew in an anaerobic medium with toluene as the sole electron donor and Fe(III) oxide as the electron acceptor. Growth coincided with Fe(III) reduction. [ring-14C]toluene was oxidized to 14CO2, and the stoichiometry of 14CO2 production and Fe(III) reduction indicated that GS-15 completely oxidized toluene to carbon dioxide with Fe(III) as the electron acceptor. Magnetite was the primary iron end product during toluene oxidation. Phenol and p-cresol were also completely oxidized to carbon dioxide with Fe(III) as the sole electron acceptor, and GS-15 could obtain energy to support growth by oxidizing either of these compounds as the sole electron donor. p-Hydroxybenzoate was a transitory extracellular intermediate of phenol and p-cresol metabolism but not of toluene metabolism. GS-15 oxidized potential aromatic intermediates in the oxidation of toluene (benzylalcohol and benzaldehyde) and p-cresol (p-hydroxybenzylalcohol and p-hydroxybenzaldehyde). The metabolism described here provides a model for how aromatic hydrocarbons and phenols may be oxidized with the reduction of Fe(III) in contaminated aquifers and petroleum-containing sediments.

  3. Location of MTBE and toluene in the channel system of the zeolite mordenite: Adsorption and host-guest interactions

    SciTech Connect

    Arletti, Rossella; Martucci, Annalisa; Alberti, Alberto; Pasti, Luisa; Nassi, Marianna; Bagatin, Roberto

    2012-10-15

    This paper reports a study of the location of Methyl Tertiary Butyl Ether (MTBE) and toluene molecules adsorbed in the pores of the organophylic zeolite mordenite from an aqueous solution. The presence of these organic molecules in the zeolite channels was revealed by structure refinement performed by the Rietveld method. About 3 molecules of MTBE and 3.6 molecules of toluene per unit cell were incorporated into the cavities of mordenite, representing 75% and 80% of the total absorption capacity of this zeolite. In both cases a water molecule was localized inside the side pocket of mordenite. The saturation capacity determined by the adsorption isotherms, obtained by batch experiments, and the weight loss given by thermogravimetric (TG) analyses were in very good agreement with these values. The interatomic distances obtained after the structural refinements suggest MTBE could be connected to the framework through a water molecule, while toluene could be bonded to framework oxygen atoms. The rapid and high adsorption of these hydrocarbons into the organophylic mordenite zeolite makes this cheap and environmental friendly material a suitable candidate for the removal of these pollutants from water. - graphical abstract: Location of MTBE (a) and toluene (b) in mordenite channels (projection along the [001] direction). Highlights: Black-Right-Pointing-Pointer We investigated the MTBE and toluene adsorption process into an organophilic zeolite mordenite. Black-Right-Pointing-Pointer The presence of MTBE and toluene in mordenite was determined by X-ray diffraction studies. Black-Right-Pointing-Pointer About 3 molecules of MTBE and 3.6 molecules of toluene per unit cell were incorporated into the zeolite cavities. Black-Right-Pointing-Pointer MTBE is connected to the framework through a water molecule. Black-Right-Pointing-Pointer Toluene is directly bonded to framework oxygen atoms.

  4. Trichloroethylene sensing in water based on SERS with multifunctional Au/TiO2 core-shell nanocomposites

    PubMed Central

    Ren, Wen; Zhou, Zhongwu; Irudayaraj, Joseph M. K.

    2015-01-01

    Herein we report on a rapid and highly sensitive scheme to detect trichloroethylene (TCE), an environmental contaminant, by surface enhanced Raman scattering (SERS) with multifunctional Au/TiO2 core-shell nanocomposites as SERS substrates. A facile approach to fabricate TiO2 shell around gold core nanocomposites is proposed as sensors for TCE detection by SERS. During detection, TCE was first oxidized due to the photocatalytic activity of the TiO2 shell and the increase in SERS intensity due to the product of TCE photooxidation can be used to determine the concentration of TCE. It should be noted that the SERS of the Raman label, 4-mercaptopyridine (4-MPy) modified onto the gold nanoparticle (GNP) core is in proportion to the product of TCE photooxidation. After optimizing the sample pH, enrichment of the analyte, and the UV exposure time, the methodology developed accomplishes an excellent limit of detection (LOD) (0.038 ?M, ie. ~5 ppb) for TCE in water. Our unique approach based on the synthesized SERS composite to detect TCE, a chlorinated environmental contaminant directly in water could pave the way for the development of a multifunctional nanosensor platform to monitor TCE and the catalytic reactions in a multiplex format. PMID:26332451

  5. Trichloroethylene and Its Oxidative Metabolites Enhance the Activated State and Th1 Cytokine Gene Expression inJurkat Cells

    PubMed Central

    Pan, Yao; Wei, Xuetao; Hao, Weidong

    2015-01-01

    Trichloroethylene (TCE) is an occupational and ubiquitous environmental contaminant, and TCE exposure will increase the risk of autoimmune diseases and allergic diseases. T cells play an important role in the pathogenesis of TCE-related immune disorders, but the effect of TCE and its oxidative metabolites, trichloroacetic acid (TCA) and dichloroacetic acid (DCA), on the activation of human T cells is still unknown. In this study, Jurkat cells were pre-treated with TCE, TCA and DCA overnight and then stimulated with phorbol 12-myristate 13-acetate and ionomycin for another 4, 8 and 24 hours. IL-2 secretion was detected by ELISA; the expressions of CD25 and CD69 were tested by flow cytometry; and IFN-? and IL-2 mRNA expression levels were investigated by real-time PCR. The results showed that TCE and its oxidative metabolites, TCA and DCA, significantly enhanced IL-2 releasing and the expression of T cell activation markers, CD25 and CD69. Consistent with this result, these compounds markedly up-regulated the expression levels of IFN-? and IL-2 mRNA. Collectively, these findings suggest that TCE and its metabolites, TCA and DCA, might enhance the activation of T cells and disrupt various activities of peripheral T cells. PMID:26343699

  6. Development of a physiologically based pharmacokinetic model of trichloroethylene and its metabolites for use in risk assessment.

    PubMed Central

    Clewell, H J; Gentry, P R; Covington, T R; Gearhart, J M

    2000-01-01

    A physiologically based pharmacokinetic (PBPK) model was developed that provides a comprehensive description of the kinetics of trichloroethylene (TCE) and its metabolites, trichloroethanol (TCOH), trichloroacetic acid (TCA), and dichloroacetic acid (DCA), in the mouse, rat, and human for both oral and inhalation exposure. The model includes descriptions of the three principal target tissues for cancer identified in animal bioassays: liver, lung, and kidney. Cancer dose metrics provided in the model include the area under the concentration curve (AUC) for TCA and DCA in the plasma, the peak concentration and AUC for chloral in the tracheobronchial region of the lung, and the production of a thioacetylating intermediate from dichlorovinylcysteine in the kidney. Additional dose metrics provided for noncancer risk assessment include the peak concentrations and AUCs for TCE and TCOH in the blood, as well as the total metabolism of TCE divided by the body weight. Sensitivity and uncertainty analyses were performed on the model to evaluate its suitability for use in a pharmacokinetic risk assessment for TCE. Model predictions of TCE, TCA, DCA, and TCOH concentrations in rodents and humans are in good agreement with a variety of experimental data, suggesting that the model should provide a useful basis for evaluating cross-species differences in pharmacokinetics for these chemicals. In the case of the lung and kidney target tissues, however, only limited data are available for establishing cross-species pharmacokinetics. As a result, PBPK model calculations of target tissue dose for lung and kidney should be used with caution. PMID:10807559

  7. Mechanism insights into enhanced trichloroethylene removal using xanthan gum-modified microscale zero-valent iron particles.

    PubMed

    Xin, Jia; Han, Jun; Zheng, Xilai; Shao, Haibing; Kolditz, Olaf

    2015-03-01

    This report focuses on the enhancement in trichloroethylene (TCE) removal from contaminated groundwater using xanthan gum (XG)-modified, microscale, zero-valent iron (mZVI). Compared with bare mZVI, XG-coated mZVI increased the TCE removal efficiency by 30.37% over a 480-h experimental period. Because the TCE removal is attributed to both sorption and reduction processes, the contributions from sorption and reduction were separately investigated to determine the mechanism of XG on TCE removal using mZVI. The results showed that the TCE sorption capacity of mZVI was lower in the presence of XG, whereas the TCE reduction capacity was significantly increased. The FTIR spectra confirmed that XG, which is rich in hydrophilic functional groups, was adsorbed onto the iron surface through intermolecular hydrogen bonds, which competitively repelled the sorption and mass transfer of TCE toward reactive sites. The variations in the pH, Eh, and Fe(2+) concentration as functions of the reaction time were recorded and indicated that XG buffered the solution pH, inhibited surface passivation, and promoted TCE reduction by mZVI. Overall, the XG-modified mZVI was considered to be potentially effective for the in-situ remediation of TCE contaminated groundwater due to its high stability and dechlorination reactivity. PMID:25556871

  8. Microfabricated gas chromatograph for the selective determination of trichloroethylene vapor at sub-parts-per-billion concentrations in complex mixtures.

    PubMed

    Kim, Sun Kyu; Chang, Hungwei; Zellers, Edward T

    2011-09-15

    A complete field-deployable microfabricated gas chromatograph (?GC) is described, and its adaptation to the analysis of low- and subparts-per-billion (ppb) concentrations of trichloroethylene (TCE) vapors in complex mixtures is demonstrated through laboratory testing. The specific application being addressed concerns the problem of indoor air contamination by TCE vapor intrusion. The ?GC prototype employs a microfabricated focuser, dual microfabricated separation columns, and a microsensor array. These are interfaced to a nonmicrofabricated front-end pretrap and high-volume sampler module to reduce analysis time and limits of detection (LOD). Selective preconcentration and focusing are coupled with rapid chromatographic separation and multisensor detection for the determination of TCE in the presence of up to 45 interferences. Autonomous operation is possible via a laptop computer. Preconcentration factors as high as 500?000 are achieved. Sensitivities are constant over the range of captured TCE masses tested (i.e., 9-390 ng), and TCE is measured in a test atmosphere at 120 parts-per-trillion (ppt), with a projected LOD of 40 ppt (4.2 ng captured, 20 L sample) and a maximum sampling + analytical cycle time of 36 min. Short- and medium-term (1 month) variations in retention time, absolute responses, and response patterns are within acceptable limits. PMID:21859085

  9. Simulation of toluene decomposition in a pulse-periodic discharge operating in a mixture of molecular nitrogen and oxygen

    SciTech Connect

    Trushkin, A. N.; Kochetov, I. V.

    2012-05-15

    The kinetic model of toluene decomposition in nonequilibrium low-temperature plasma generated by a pulse-periodic discharge operating in a mixture of nitrogen and oxygen is developed. The results of numerical simulation of plasma-chemical conversion of toluene are presented; the main processes responsible for C{sub 6}H{sub 5}CH{sub 3} decomposition are identified; the contribution of each process to total removal of toluene is determined; and the intermediate and final products of C{sub 6}H{sub 5}CH{sub 3} decomposition are identified. It was shown that toluene in pure nitrogen is mostly decomposed in its reactions with metastable N{sub 2}(A{sub 3}{Sigma}{sub u}{sup +}) and N{sub 2}(a Prime {sup 1}{Sigma}{sub u}{sup -}) molecules. In the presence of oxygen, in the N{sub 2} : O{sub 2} gas mixture, the largest contribution to C{sub 6}H{sub 5}CH{sub 3} removal is made by the hydroxyl radical OH which is generated in this mixture exclusively due to plasma-chemical reactions between toluene and oxygen decomposition products. Numerical simulation showed the existence of an optimum oxygen concentration in the mixture, at which toluene removal is maximum at a fixed energy deposition.

  10. Environmental enrichment increases doublecortin-associated new neurons and decreases neuronal death without modifying anxiety-like behavior in mice chronically exposed to toluene.

    PubMed

    Paez-Martinez, Nayeli; Flores-Serrano, Zoraida; Ortiz-Lopez, Leonardo; Ramirez-Rodriguez, Gerardo

    2013-11-01

    Toluene misuse is a health problem worldwide with broad effects at the level of the central nervous system; however, therapeutic alternatives for inhalant abusers are limited. Chronic use of volatile substances is associated with different neurological and cognitive alterations, being anxiety a psychiatric condition with high prevalence. At cellular level toluene reduces neurogenesis and induces neuronal death. On the other hand, environmental enrichment has demonstrated to produce positive effects at behavioral and neuronal levels. Thus, the aim of the present work was to model alterations occasioned after repeated exposure to toluene (anxiety, reduction in neurogenesis - measured as doublecortin-labeled cells - and neuronal death). Subsequently, the influence of environmental enrichment on these effects was evaluated. Adolescent mice were exposed to toluene vapors from 1 to 4 weeks. Effects on anxiety were evaluated with the burying behavior test, whereas neurogenesis and hippocampal cell death were analyzed with immunohistochemistry, using anti-doublecortin or anti-active-Caspase-3 antibodies, respectively. Results showed that chronic toluene exposure increased anxiety in the burying behavior test; additionally, toluene decreased neurogenesis and enhanced neuronal death. Environmental enrichment (EE) enhanced the anxiety like response in air-exposed mice but did not modify the toluene anxiety response. Additionally, EE enhanced neurogenesis in toluene-pretreated animals at the same level to that found in animals unexposed to toluene and decreased neuronal death. Overall, the present study showed that environmental enrichment positively impacts some effects produced by repeated exposure to toluene. PMID:24012598

  11. Indoor exposure to toluene from printed matter matters: complementary views from life cycle assessment and risk assessment.

    PubMed

    Walser, Tobias; Juraske, Ronnie; Demou, Evangelia; Hellweg, Stefanie

    2014-01-01

    A pronounced presence of toluene from rotogravure printed matter has been frequently observed indoors. However, its consequences to human health in the life cycle of magazines are poorly known. Therefore, we quantified human-health risks in indoor environments with Risk Assessment (RA) and impacts relative to the total impact of toxic releases occurring in the life cycle of a magazine with Life Cycle Assessment (LCA). We used a one-box indoor model to estimate toluene concentrations in printing facilities, newsstands, and residences in a best, average, and worst-case scenario. The modeled concentrations are in the range of the values measured in on-site campaigns. Toluene concentrations can be close or even surpass the occupational legal thresholds in printing facilities in realistic worst-case scenarios. The concentrations in homes can surpass the US EPA reference dose (69 ?g/kg/day) in worst-case scenarios, but are still at least 1 order of magnitude lower than in press rooms or newsstands. However, toluene inhaled at home becomes the dominant contribution to the total potential human toxicity impacts of toluene from printed matter when assessed with LCA, using the USEtox method complemented with indoor characterization factors for toluene. The significant contribution (44%) of toluene exposure in production, retail, and use in households, to the total life cycle impact of a magazine in the category of human toxicity, demonstrates that the indoor compartment requires particular attention in LCA. While RA works with threshold levels, LCA assumes that every toxic emission causes an incremental change to the total impact. Here, the combination of the two paradigms provides valuable information on the life cycle stages of printed matter. PMID:24283298

  12. Biodegradation of ortho-cresol by a mixed culture of nitrate-reducing bacteria growing on toluene.

    PubMed Central

    Flyvbjerg, J; Jørgensen, C; Arvin, E; Jensen, B K; Olsen, S K

    1993-01-01

    A mixed culture of nitrate-reducing bacteria degraded o-cresol in the presence of toulene as a primary growth substrate. No degradation of o-cresol was observed in the absence of toluene or when the culture grew on p-cresol and 2,4-dimethylphenol. In batch cultures, the degradation of o-cresol started after toluene was degraded to below 0.5 to 1.0 mg/liter but continued only for about 3 to 5 days after the depletion of toluene since the culture had a limited capacity for o-cresol degradation once toluene was depleted. The total amount of o-cresol degraded was proportional to the amount of toluene metabolized, with an average yield of 0.47 mg of o-cresol degraded per mg of toluene metabolized. Experiments with [ring-U-14C]o-cresol indicated that about 73% of the carbon from degraded o-cresol was mineralized to CO2 and about 23% was assimilated into biomass after the transient accumulation of unidentified water-soluble intermediates. A mathematical model based on a simplified Monod equation is used to describe the kinetics of o-cresol degradation. In this model, the biomass activity toward o-cresol is assumed to decay according to first-order kinetics once toluene is depleted. On the basis of nonlinear regression of the data, the maximum specific rate of o-cresol degradation was estimated to be 0.4 mg of o-cresol per mg of biomass protein per h, and the first-order decay constant for o-cresol-degrading biomass activity was estimated to be 0.15 h-1.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8357260

  13. Optimization of trichloroethylene degradation using soluble methane monooxygenase of Methylosinus trichosporium OB3b expressed in recombinant bacteria

    SciTech Connect

    Jahng, D.; Kim, C.S.; Wood, T.K.; Hanson, R.S.

    1996-08-05

    By complementing cell-free extracts of Pseudomonas putida F1/pSMMO20 with purified soluble methane monooxygenase (sMMO) components of Methylosinus trichospoirium OB3b, the low cloned-gene sMMO activity in the recombinant strain was found to be due to incomplete activity of the hydroxylase component. To address this incomplete activity, additional sMMO-expressing strains were formed by transferring mmo-containing pSMMO20 and pSMMO50 into various bacterial species including pseudomonads and {alpha}-2 subdivision strains such as methanotrophs, methylotrophs, Agrobacterium tumefaciens A114, and Rhizobium meliloti 102F34 (11 new strains screened); sMMO activity was detected in the last two strains. To increase plasmid segregational stability, the hok/sok locus originally from Escherichia coli plasmid R1 was inserted downstream of the mmo locus of pSMMO20 (resulting in pSMMO40) and found to enhance plasmid stability in P. putida F1 and R. meliloti 102F34 (first report of hok/sok in Rhizobium). To further increase sMMO activity, a modified Whittenbury minimal medium was selected from various minimal and complex media based on trichloroethylene (TCE) degradation and growth rates and was improved by removing the sMMO-inhibiting metal ions [Cu(II), Ni(II), and Zn(II)] and chloramphenicol from the medium and by supplementing with an iron source (3.6 {micro}M of ferrous ammonium sulfate). Using chemostat-grown P. putida F1/pSMMO40, it was found that sMMO activity was higher for cells grown at higher dilution rates. These optimization efforts resulted in a twofold increase in the extent of TCE degradation and more consistent sMMO activity.

  14. Influence of under pressure dissolved oxygen on trichloroethylene degradation by the H2O2/TiO2 process

    PubMed Central

    2013-01-01

    Background The widespread use of trichloroethylene (TCE) and its frequent release into the environment has caused many environmental and health problems. In this study the degradation of TCE at different micromolar concentrations was investigated in a stainless steel reactor with various concentrations of H2O2 and TiO2 at different oxygen pressures and three different pHs. Methods To examine the synergistic effect of under pressure oxygen on TCE degradation, the concentrations of H2O2 and TiO2 as well as pH were first optimized, and then the experiments were performed under optimal conditions. Gas chromatography with a flame ionization detector (FID) was used to measure TCE concentrations. Results Results showed that the percentage of TCE degradation without pressurized oxygen was low and it increased with increasing pressure of oxygen at all initial concentrations of TCE. The degradation percentages without oxygen pressure were 48.27%, 51.22%, 58.13% and 64.33% for TCE concentrations of 3000, 1500, 300 and 150 ?g/L respectively. At an oxygen pressure of 2.5 atmospheres (atm) the percent degradation of TCE reached 84.85%, 89.14%, 93.13% and 94.99% respectively for the aforementioned TCE concentrations. Conclusions The results of this study show that the application of dissolved oxygen under pressure increases the efficiency of the H2O2/TiO2 process on the degradation of TCE and can be used along with other oxidants as an effective method for the removal of this compound from aqueous solutions. PMID:24359702

  15. Chelate-Modified Fenton Reaction for the Degradation of Trichloroethylene in Aqueous and Two-Phase Systems

    SciTech Connect

    Lewis, Scott; lynch, Andrew; Bachas, Leonidas; hampson, Steve; Ormsbee, Lindelle; Bhattacharyya, Dibakar

    2008-06-01

    The Standard Fenton reaction has been used for In-Situ Chemical Oxidation (ISCO) of toxic organics in groundwater. However, it requires low pH operating conditions, and thus has limitations for in situ applications. In addition, hydroxyl radicals are rapidly consumed by hydroxyl scavengers found in the subsurface. These problems are alleviated through the chelate-modified Fenton (hydroxyl radical) reaction, which includes the addition of nontoxic chelate (L) such as citrate or gluconic acid. This chelate allows the reaction to take place at bear neutral pH and control hydrogen peroxide consumption by binding to Fe(II), forming an FeL complex. The chelate also binds to Fe(III), preventing its precipitation as ferric hydroxide and thus prevents problems associated with injection well plugging. The rate of TCE dechlorination in chelate-modified Fenton systems is a function of pH, H2O2 concentration, and FE:L ratio. The primary objective of this research is to model and apply this process to the destruction of trichloroethylene (TCE) present in both the aqueous and organic (in the form of droplets) phases. Experimentation proved the chelate-modified Fenton reaction effectively dechlorinates TCE in both the aqueous and organic phases at near-neutral pH. Other focuses of this work include determining the effect of [L]:[Fe] ratios on H2O2 and TCE degradation as well as reusability of the FE citrate solution under repeated H2O2 injections. Generalized models were developed to predict the concentration of TCE in the aqueous phase and TCE droplet radius as a function of time using established hydroxyl radial kinetics and mass transfer relationships.

  16. Exploring molecular sieve capabilities of activated carbon fibers to reduce the impact of NOM preloading on trichloroethylene adsorption

    SciTech Connect

    Tanju Karanfil; Seyed A. Dastgheib; Dina Mauldin

    2006-02-15

    Adsorption of trichloroethylene (TCE) by two activated carbon fibers ACF10 and ACF20H and two granular activated carbons, coal-based F400 and Macro preloaded with hydrophobic and transphilic fractions of natural organic matter (NOM) was examined. ACF10, the most microporous activated carbon used in this study, had over 90% of its pore volume in pores smaller than 10 {angstrom}. It also had the highest volume in pores 5-8 {angstrom}, which is the optimum pore size region for TCE adsorption, among the four activated carbons. Adsorption of NOM fractions by ACF10 was, in general, negligible. Therefore, ACF10, functioning as a molecular sieve during preloading, exhibited the least NOM uptake for each fraction, and subsequently the highest TCE adsorption. The other three sorbents had wider pore size distributions, including high volumes in pores larger than 10 {angstrom}, where NOM molecules can adsorb. As a result, they showed a higher degree of uptake for all NOM fractions, and subsequently lower adsorption capacities for TCE, as compared to ACF10. The results obtained in this study showed that understanding the interplay between the optimum pore size region for the adsorption of target synthetic organic contaminant (SOC) and the pore size region for the adsorption of NOM molecules is important for controlling NOM-SOC competitions. Experiments with different NOM fractions indicated that the degree of NOM loading is important in terms of preloading effects; however the way that the carbon pores are filled and loaded by different NOM fractions can be different and may create an additional negative impact on TCE adsorption. 40 refs., 3 figs., 2 tabs.

  17. Development of Sulfidogenic Sludge from Marine Sediments and Trichloroethylene Reduction in an Upflow Anaerobic Sludge Blanket Reactor.

    PubMed

    Guerrero-Barajas, Claudia; Ordaz, Alberto; García-Solares, Selene Montserrat; Garibay-Orijel, Claudio; Bastida-González, Fernando; Zárate-Segura, Paola Berenice

    2015-01-01

    The importance of microbial sulfate reduction relies on the various applications that it offers in environmental biotechnology. Engineered sulfate reduction is used in industrial wastewater treatment to remove large concentrations of sulfate along with the chemical oxygen demand (COD) and heavy metals. The most common approach to the process is with anaerobic bioreactors in which sulfidogenic sludge is obtained through adaptation of predominantly methanogenic granular sludge to sulfidogenesis. This process may take a long time and does not always eliminate the competition for substrate due to the presence of methanogens in the sludge. In this work, we propose a novel approach to obtain sulfidogenic sludge in which hydrothermal vents sediments are the original source of microorganisms. The microbial community developed in the presence of sulfate and volatile fatty acids is wide enough to sustain sulfate reduction over a long period of time without exhibiting inhibition due to sulfide. This protocol describes the procedure to generate the sludge from the sediments in an upflow anaerobic sludge blanket (UASB) type of reactor. Furthermore, the protocol presents the procedure to demonstrate the capability of the sludge to remove by reductive dechlorination a model of a highly toxic organic pollutant such as trichloroethylene (TCE). The protocol is divided in three stages: (1) the formation of the sludge and the determination of its sulfate reducing activity in the UASB, (2) the experiment to remove the TCE by the sludge, and (3) the identification of microorganisms in the sludge after the TCE reduction. Although in this case the sediments were taken from a site located in Mexico, the generation of a sulfidogenic sludge by using this procedure may work if a different source of sediments is taken since marine sediments are a natural pool of microorganisms that may be enriched in sulfate reducing bacteria. PMID:26555802

  18. Halocarbon adsorption in nanoporous materials: A combined calorimetric and Monte Carlo study of trichloroethylene (TCE) in faujasite-type zeolites

    SciTech Connect

    Mellot, C.F.; Cheetham, A.K.; Harms, S.; Savitz, S.; Gorte, R.J.; Myers, A.L.

    1998-11-10

    Isosteric heats of adsorption of trichloroethylene (TCE) in a series of faujasite-type zeolites, siliceous faujasite, NaY (Si:Al = 2.6), and NaX (Si:Al = 1.2), have been studied by the combination of calorimetry and (N,V,T) Monte Carlo simulations, varying the sorbate loading up to {approximately}35 molecules per unit-cell. Excellent agreement is obtained between observed and calculated heats, confirming the applicability of the force field to the realm of unsaturated halocarbons for a large range of Si:Al ratio, cation content, and sorbate loading. The relative contributions of short-range and long-range interactions to the heat of adsorption are discussed, and the host/guest pair distribution functions (PDFs) from the MC simulations are analyzed in detail. At fixed loading, TCE heats of adsorption increase in the sequence of host basicity and cation content: siliceous faujasite: {approximately}40 kJ/mol < NaY: {approximately}55 kJ/mol < NaX: {approximately}80 kJ/mol (extrapolated to zero loading). Such a correlation is further elucidated from the host/guest PDFs by the enhancement of H{sub TCE}{hor_ellipsis}O{sub ZEO} hydrogen bonding and Cl{sub TCE}{hor_ellipsis}Na{sub ZEO} electrostatic interactions from the siliceous faujasite to NaY and NaX. An increase in TCE loading gives rise to a systematic increase in adsorption heats (>10 kJ/mol); this is identified as of a predominantly dispersive nature arising from Cl{sub TCE}{hor_ellipsis} and H{sub TCE}{hor_ellipsis}Cl{sub TCE} intermolecular interactions.

  19. Assessment of reinforcement enhancing effects of toluene vapor and nitrous oxide in intracranial self-stimulation

    PubMed Central

    Tracy, Matthew E.; Slavova-Hernandez, Galina G.; Shelton, Keith L.

    2013-01-01

    Rationale Despite widespread abuse there are few validated methods to study the rewarding effects of inhalants. One model that that may have utility for this purpose is intracranial self-stimulation (ICSS). Objectives We wished to compare and contrast the ICSS reward-facilitating effects of abused inhalants to other classes of abused drugs. Compounds were examined using two different ICSS procedures in mice to determine the generality of each drug's effects on ICSS and the sensitivity of the procedures. Methods Male C57BL/6J mice with electrodes implanted in the medial forebrain bundle were trained under a three component rate-frequency as well as a progressive ratio (PR) ICSS procedure. The effects of nitrous oxide, toluene vapor, cocaine and diazepam on ICSS were then examined. Results Concentrations of 1360-2900 ppm inhaled toluene vapor significantly facilitated ICSS in the rate frequency procedure and 1360 ppm increased PR breakpoint. A concentration of 40% nitrous oxide facilitated ICSS in the rate-frequency procedure but reduced PR breakpoint. Doses of 3-18 mg/kg cocaine facilitated ICSS in the rate frequency procedure and 10 and 18 mg/kg increased PR breakpoint. Doses of 1 and 3 mg/kg diazepam facilitated ICSS in the rate frequency procedure and 3 mg/kg increased PR breakpoint. Conclusions The reinforcement facilitating effect of toluene in ICSS is at least as great as diazepam. In contrast, nitrous oxide weakly enhances ICSS in only the rate frequency procedure. The data suggest that the rate frequency procedure may be more sensitive than the PR schedule to the reward facilitating effects of abused inhalants. PMID:24186077

  20. The effects of torsion-vibration coupling on rotational spectra: Toluene reinterpreted and refitted

    NASA Astrophysics Data System (ADS)

    Gascooke, Jason R.; Lawrance, Warren D.

    2015-12-01

    A re-examination of rotational line positions for toluene is reported, motivated by the recent observation that the methyl internal rotor states are perturbed by torsion-vibration coupling to vibrational mode M20 (Gascooke et al., 2015). We demonstrate that the data can be fit equally well including or excluding torsion-vibration coupling. The torsion-vibration model required to account for the torsional band positions is thus shown to be consistent with the rotational line positions reported. It is found that including torsion-vibration coupling leads to changes in the values of the rotational and torsional constants, most significantly for AF, AF?, F and V6, as well as the higher order constants, with those involving powers of m, K and their cross-terms most affected. Expressions for these effects are provided based on a perturbation expansion, which shows the links between the two models. A primary indicator for the presence of torsion-vibration coupling is AF? being significantly different to the rotational constant for the frame, AF, and changing with m. Examination of published AF? /AF ratios for several substituted toluenes suggests that torsion-vibration coupling is widespread in such molecules. Torsion-vibration coupling has been directly observed through local perturbations to torsional levels in substituted toluenes with both 3- and 6-fold torsion potentials, indicating that it will also affect rotational and torsional constants in molecules with a 3-fold barrier. This indicates that the assumption that the small amplitude vibrations can be ignored when considering the large amplitude methyl rotation requires reassessment.

  1. Reactions of the CN Radical with Benzene and Toluene: Product Detection and Low-Temperature Kinetics

    SciTech Connect

    Trevitt, Adam J.; Goulay, Fabien; Taatjes, Craig A.; Osborn, David L.; Leone, Stephen R.

    2009-12-23

    Low temperature rate coefficients are measured for the CN + benzene and CN + toluene reactions using the pulsed Laval nozzle expansion technique coupled with laser-induced fluorescence detection. The CN + benzene reaction rate coefficient at 105, 165 and 295 K is found to be relatively constant over this temperature range, 3.9 - 4.9 x 10-10 cm3 molecule-1 s-1. These rapid kinetics, along with the observed negligible temperature dependence, are consistent with a barrierless reaction entrance channel and reaction efficiencies approaching unity. The CN + toluene reaction is measured to have a slower rate coefficient of 1.3 x 10-10 cm3 molecule-1 s-1 at 105 K. At room temperature, non-exponential decay profiles are observed for this reaction that may suggest significant back-dissociation of intermediate complexes. In separate experiments, the products of these reactions are probed at room temperature using synchrotron VUV photoionization mass spectrometry. For CN + benzene, cyanobenzene (C6H5CN) is the only product recorded with no detectable evidence for a C6H5 + HCN product channel. In the case of CN + toluene, cyanotoluene (NCC6H4CH3) constitutes the only detected product. It is not possible to differentiate among the ortho, meta and para isomers of cyanotoluene because of their similar ionization energies and the ~;; 40 meV photon energy resolution of the experiment. There is no significant detection of benzyl radicals (C6H5CH2) that would suggest a H-abstraction or a HCN elimination channel is prominent at these conditions. As both reactions are measured to be rapid at 105 K, appearing to have barrierless entrance channels, it follows that they will proceed efficiently at the temperatures of Saturn?s moon Titan (~;;100 K) and are also likely to proceed at the temperature of interstellar clouds (10-20 K).

  2. Viscosity of magnetite-toluene nanofluids: Dependence on temperature and nanoparticle concentration

    NASA Astrophysics Data System (ADS)

    Singh, Rahul; Sanchez, Oswaldo; Ghosh, Suvojit; Kadimcherla, Naveen; Sen, Swarnendu; Balasubramanian, Ganesh

    2015-10-01

    We examine the dependence of the viscosity of nanofluids, comprised of magnetite nanoparticles dispersed in toluene, on particle concentration and temperature. The nanofluid viscosity increases monotonically with particle concentration. We show that although the nanoparticles aggregate to form clusters with increasing concentration, the cluster size is fairly monodisperse and hence the viscosity can be expressed as a function of only the particle concentration. The viscosity of the nanofluid is found to decrease with temperature, similarly to the characteristics of the carrier liquid. We describe these dependencies through an empirical correlation, since the observations are useful to employ such nanofluids in engineering applications.

  3. Laser ablation of toluene liquid for surface micro-structuring of silica glass

    NASA Astrophysics Data System (ADS)

    Niino, H.; Kawaguchi, Y.; Sato, T.; Narazaki, A.; Gumpenberger, T.; Kurosaki, R.

    2006-04-01

    Microstructures with well-defined micropatterns were fabricated on the surfaces of silica glass using a laser-induced backside wet etching (LIBWE) method by diode-pumped solid state (DPSS) UV laser at the repetition rate of 10 kHz. For a demonstration of flexible rapid prototyping as mask-less exposure system, the focused laser beam was directed to the sample by galvanometer-based point scanning system. Additionally, a diagnostics study of plume propagation in the ablated products of toluene solid film was carried out with an intensified CCD (ICCD) camera.

  4. Electrophoretic mobility of silica particles in a mixture of toluene and ethanol at different particle concentrations.

    PubMed

    Medrano, M; Pérez, A T; Lobry, L; Peters, F

    2009-10-20

    In this paper we present measurements of the electrophoretic mobility of colloidal particles by using heterodyne detection of light scattering. The measurements have been made up to concentrations of 5.4% silica nanoparticles, with a diameter on the order of 80 nm, in a mixture of 70% toluene and 30% ethanol. To make possible the measurements at these concentrations, the liquid mixture is chosen so as to match the index of refraction of the particles, thus resulting in a transparent suspension. PMID:19754057

  5. Critical assessment of diffusion coefficients in semidilute to concentrated solutions of polystyrene in toluene

    NASA Astrophysics Data System (ADS)

    Pollak, T.; Köhler, W.

    2009-03-01

    We have measured collective diffusion coefficients of dilute, semidilute, and concentrated solutions of polystyrene in toluene up to a polymer concentration of 0.832 mass fractions at T =25 °C. The three employed experimental techniques of photon correlation spectroscopy, thermal diffusion forced Rayleigh scattering, and optical beam deflection cover four orders of magnitude with respect to their characteristic diffusion lengths (200 nm-2.9 mm), corresponding to more than 8 decades of the diffusion time constants. Contrary to existing literature data, which suggest a length scale dependent anomalous diffusion at high concentrations, all our techniques yield identical diffusion coefficients and purely Fickian diffusion, irrespective of their characteristic length scale.

  6. Evaluation of solar photosensitization of benzene, toluene and Escherichia coli with methylene blue and rose bengal

    SciTech Connect

    Cooper, A.T.; Goswami, D.Y.

    1999-07-01

    There exists a need for research, at all levels, tailored to address the needs of smaller, and possibly lesser developed, communities. One such area for research is the simultaneous disinfection and detoxification of a mildly contaminated water source. While photosensitization has been studied for disinfection, most of the work with regard to microorganisms has been done in the medical field. Research was conducted to provide preliminary determination of the efficacy of two dyes, methylene blue and rose bengal, for simultaneous photosensitized disinfection and detoxification. Specifically, the destruction of the aromatic hydrocarbons benzene and toluene, and the bacteria Escherichia coli, were investigated.

  7. In situ investigation of vapor-deposited glasses of toluene and ethylbenzene via alternating current chip-nanocalorimetry

    NASA Astrophysics Data System (ADS)

    Ahrenberg, M.; Chua, Y. Z.; Whitaker, K. R.; Huth, H.; Ediger, M. D.; Schick, C.

    2013-01-01

    Vapor-deposited glasses of toluene and ethylbenzene have been characterized by in situ ac chip-nanocalorimetry. The high sensitivity of this method allows the detection of small changes in the heat capacity of nanogram size samples. We observe that vapor-deposited glasses have up to 4% lower heat capacities than the ordinary glass. The largest heat capacity decrease and the most kinetically stable glasses of toluene and ethylbenzene are observed in a range of deposition temperatures between 0.75 Tg and 0.96 Tg. Compared to larger molecules, deposition rate has a minor influence on the kinetic stability of these glasses. For both toluene and ethylbenzene, the kinetic stability is strongly correlated with the heat capacity decrease for deposition temperatures above 0.8 Tg. In addition, ac-nanocalorimetry was used to follow the isothermal transformation of the stable glasses into the supercooled liquid at temperatures slightly above Tg. Toluene and ethylbenzene stable glasses exhibit a constant transformation rate which is consistent with the growth front mechanism recently demonstrated for tris-naphthylbenzene and indomethacin. The kinetic stability of the most stable toluene and ethylbenzene glasses is comparable to that observed for other stable glasses formed by vapor deposition.

  8. Kinetics and simulations of substrate interactions during the biodegradation of benzene, toluene, p-xylene and styrene.

    PubMed

    Song, Jihyeon; Shin, Seungkyu; Jang, Hyun-Sup; Hwang, Sun-Jin

    2012-01-01

    Air streams commonly emitted from industrial sources generally contain various mixtures of volatile organic compounds (VOCs), and these complex mixtures can present challenges with respect to bioreactor design and applications. In this study, therefore, a modified Monod-type model using interaction parameters was employed to describe the biodegradation kinetics of mixtures of aromatic compounds by a Pseudomonas isolate. In addition, the model and estimated parameters were utilized to predict the performance of a bubble-column bioreactor for the treatment of mixtures of benzene, toluene, p-xylene, and styrene (BTXS). Benzene, toluene and styrene, as individual substrates, were actively degraded by the bacterial culture, whereas p-xylene was not degraded as a single substrate. Relative to the single substrate experiments, the degradation of benzene and toluene was inhibited by the other compounds, while the degradation of styrene was significantly stimulated in the presence of the other BTXS compounds. The cometabolic degradation of p-xylene was observed in the presence of benzene and toluene. The estimated interaction parameters indicated that the degradation of benzene was substantially inhibited in the presence of styrene, whereas the degradation of styrene was strongly stimulated by toluene. The kinetic coefficients and interaction parameters were used to successfully predict the biodegradation kinetics and performance of a bioreactor subjected to the quaternary mixture. Overall, the model was able to provide reasonable predictions when substrate interactions, including inhibition, stimulation, and cometabolism, play significant roles in biodegradation processes. PMID:22486672

  9. 20 kHz toluene planar laser-induced fluorescence imaging of a jet in nearly sonic crossflow

    NASA Astrophysics Data System (ADS)

    Miller, V. A.; Troutman, V. A.; Mungal, M. G.; Hanson, R. K.

    2014-10-01

    This manuscript describes continuous, high-repetition-rate (20 kHz) toluene planar laser-induced fluorescence (PLIF) imaging in an expansion tube impulse flow facility. Cinematographic image sequences are acquired that visualize an underexpanded jet of hydrogen in Mach 0.9 crossflow, a practical flow configuration relevant to aerospace propulsion systems. The freestream gas is nitrogen seeded with toluene; toluene broadly absorbs and fluoresces in the ultraviolet, and the relatively high quantum yield of toluene produces large signals and high signal-to-noise ratios. Toluene is excited using a commercially available, frequency-quadrupled (266 nm), high-repetition-rate (20 kHz), pulsed (0.8-0.9 mJ per pulse), diode-pumped solid-state Nd:YAG laser, and fluorescence is imaged with a high-repetition-rate intensifier and CMOS camera. The resulting PLIF movie and image sequences are presented, visualizing the jet start-up process and the dynamics of the jet in crossflow; the freestream duration and a measure of freestream momentum flux steadiness are also inferred. This work demonstrates progress toward continuous PLIF imaging of practical flow systems in impulse facilities at kHz acquisition rates using practical, turn-key, high-speed laser and imaging systems.

  10. Top-down estimates of benzene and toluene emissions in Pearl River Delta and Hong Kong, China

    NASA Astrophysics Data System (ADS)

    Fang, X.; Shao, M.; Stohl, A.; Zhang, Q.; Zheng, J.; Guo, H.; Wang, C.; Wang, M.; Ou, J.; Thompson, R. L.; Prinn, R. G.

    2015-09-01

    Benzene (C6H6) and toluene (C7H8) are toxic to humans and the environment. They are also important precursors of ground-level ozone and secondary organic aerosols and contribute substantially to severe air pollution in urban areas in China. Discrepancies exist between different bottom-up inventories for benzene and toluene emissions in Pearl River Delta (PRD) and Hong Kong (HK), which are emission hot spots in China. This study provides top-down estimates of benzene and toluene emissions in PRD and HK using atmospheric measurement data from a rural site in the area, Heshan, an atmospheric transport model and an inverse modeling method. The model simulations captured the measured mixing ratios during most pollution episodes. For PRD and HK, the benzene emissions estimated in this study for 2010 were 44 (12-75) Gg yr-1 and 5 (2-7) Gg yr-1 for PRD and HK, respectively, and the toluene emissions were 131 (44-218) Gg yr-1 and 6 (2-9) Gg yr-1, respectively. Temporal and spatial differences between the inversion estimate and four different bottom-up emission estimates are discussed, and it is proposed that more observations at different sites are urgently needed to better constrain benzene and toluene (and other air pollutants) emissions in PRD and HK in the future.

  11. Comparison of Benzene & Toluene removal from synthetic polluted air with use of Nano photocatalyticTiO2/ ZNO process

    PubMed Central

    2014-01-01

    Background Mono aromatic hydrocarbons (BTEX) are a group of hazardous pollutants which originate from sources such as refineries, gas, and oil extraction fields, petrochemicals and paint and glue industries. Conventional methods, including incineration, condensation, adsorption and absorption have been used for removal of VOCs. None of these methods is economical for removal of pollutants of polluted air with low to moderate concentrations. The heterogeneous photocatalytic processes involve the chemical reactions to convert pollutant to carbon dioxide and water. The aim of this paper is a comparison of Benzene & Toluene removal from synthetic polluted air using a Nano photocatalytic TiO2/ ZNO process. Results The X-ray diffraction (XRD) patterns showed that Nano crystals of TiO2 and ZNO were in anatase and rutile phases. Toluene & benzene were decomposed by TiO2/ ZNO Nano photocatalyst and UV radiation. Kruskal-wallis Test demonstrated that there are significant differences (pvalue?toluene & benzene increases with increasing UV intensity and decreasing initial concentrations. Effect of TiO2/ZNO Nano photocatalyst on benzene is less than that on toluene. In this research, Toluene & benzene removal by TiO2/ZNO and UV followed first-order reactions. PMID:24499601

  12. Temperature measurements of the gas-phase during surrogate diesel injection using two-color toluene LIF

    NASA Astrophysics Data System (ADS)

    Zegers, R. P. C.; Yu, M.; Bekdemir, C.; Dam, N. J.; Luijten, C. C. M.; de Goey, L. P. H.

    2013-08-01

    Planar laser-induced fluorescence (LIF) of toluene has been applied in an optical engine and a high-pressure cell, to determine temperatures of fuel sprays and in-cylinder vapors. The method relies on a redshift of the toluene LIF emission spectrum with increasing temperature. Toluene fluorescence is recorded simultaneously in two disjunct wavelength bands by a two-camera setup. After calibration, the pixel-by-pixel LIF signal ratio is a proxy for the local temperature. A detailed measurement procedure is presented to minimize measurement inaccuracies and to improve precision. n-Heptane is used as the base fuel and 10 % of toluene is added as a tracer. The toluene LIF method is capable of measuring temperatures up to 700 K; above that the signal becomes too weak. The precision of the spray temperature measurements is 4 % and the spatial resolution 1.3 mm. We pay particular attention to the construction of the calibration curve that is required to translate LIF signal ratios into temperature, and to possible limitations in the portability of this curve between different setups. The engine results are compared to those obtained in a constant-volume high-pressure cell, and the fuel spray results obtained in the high-pressure cell are also compared to LES simulations. We find that the hot ambient gas entrained by the head vortex gives rise to a hot zone on the spray axis.

  13. The electrochemical oxidation of toluene catalysed by Co(ii) in N-butyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide.

    PubMed

    Balaji, S; Kannan, K; Moon, I S

    2015-11-18

    The electrochemical oxidation of toluene in N-butyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([bmpyr](+)[Ntf2](-)) was investigated by using cyclic voltammetry and galvanostatic electrolysis in the presence of Co(ii) at a Pt disc working electrode. Cyclic voltammetry (CV) investigations revealed that Co(ii)-Co(iii) oxidation is a diffusion controlled electron transfer process. The diffusion coefficient values of Co(ii) were found to increase from 0.38 × 10(-7) to 1.9 × 10(-7) cm(2) s(-1) as the temperature was increased from 25 °C to 80 °C. The CV peak current for toluene electro-oxidation increased by nearly 7 fold in the presence of Co(ii) demonstrating a good catalytic effect. Co(ii) catalysed galvanostatic electrolysis of toluene at room temperature has shown that benzaldehyde was formed along with a small quantity of 3-methyl-1-hexanol. PMID:26538114

  14. Graphene-hemin hybrid material as effective catalyst for selective oxidation of primary C-H bond in toluene

    PubMed Central

    Li, Yongjia; Huang, Xiaoqing; Li, Yujing; Xu, Yuxi; Wang, Yang; Zhu, Enbo; Duan, Xiangfeng; Huang, Yu

    2013-01-01

    An effective hemin catalyst on graphene support for selective oxidation of primary C-H bond in toluene is reported with an over 50% conversion rate achieved at mild conditions. Significantly this hybrid material shows catalytic efficiency in toluene oxidation with selectivity towards benzoic acid. The role of graphene support is discussed here as providing large contact area between the catalyst and the substrate, maintaining hemin in catalytically active monomer form, attracting electron to promote site isolation, as well as protecting hemin from oxidative degradation during the reaction. Moreover, graphene is suggested to largely alter the final product selectivity, due to the different ?-? interaction strength between the graphene support and the substrate/oxidized products. With longer reaction time, overall conversion rate tends to maintain relatively unchanged while toluene undergoes a series of oxidation to convert mostly to benzoic acid.

  15. Interaction of toluene with two-color asymmetric laser fields: Controlling the directional emission of molecular hydrogen fragments

    SciTech Connect

    Kaziannis, S.; Kotsina, N.; Kosmidis, C.

    2014-09-14

    The interaction of toluene with strong asymmetric two-color laser irradiation of 40 fs duration is studied by means of Time of flight mass spectrometry. Highly energetic H{sub 2}{sup +} and H{sub 3}{sup +} fragment ions are produced through an isomerization process taking place within transient multiply charged parent ions. Comparative study of deuterium labeled toluene isotopes enables the discrimination between molecular hydrogen fragments formed exclusively within the CH{sub 3}- part from those that require hydrogen atom exchange between the former and the phenyl moiety. It is demonstrated that by manipulating the relative phase of the ?/2? field components the selective ionization of oriented toluene molecules can be used as a tool to control the directional emission of the H{sub 2}{sup +}, H{sub 3}{sup +} species.

  16. Graphene-hemin hybrid material as effective catalyst for selective oxidation of primary C-H bond in toluene

    NASA Astrophysics Data System (ADS)

    Li, Yongjia; Huang, Xiaoqing; Li, Yujing; Xu, Yuxi; Wang, Yang; Zhu, Enbo; Duan, Xiangfeng; Huang, Yu

    2013-05-01

    An effective hemin catalyst on graphene support for selective oxidation of primary C-H bond in toluene is reported with an over 50% conversion rate achieved at mild conditions. Significantly this hybrid material shows catalytic efficiency in toluene oxidation with selectivity towards benzoic acid. The role of graphene support is discussed here as providing large contact area between the catalyst and the substrate, maintaining hemin in catalytically active monomer form, attracting electron to promote site isolation, as well as protecting hemin from oxidative degradation during the reaction. Moreover, graphene is suggested to largely alter the final product selectivity, due to the different ?-? interaction strength between the graphene support and the substrate/oxidized products. With longer reaction time, overall conversion rate tends to maintain relatively unchanged while toluene undergoes a series of oxidation to convert mostly to benzoic acid.

  17. Toluene Valence and Rydberg Excitations as Studied by ab initio Calculations and Vacuum Ultraviolet (VUV) Synchrotron Radiation.

    PubMed

    Serralheiro, C; Duflot, D; da Silva, F Ferreira; Hoffmann, S V; Jones, N C; Mason, N J; Mendes, B; Limão-Vieira, P

    2015-08-27

    The electronic spectroscopy of isolated toluene in the gas phase has been investigated using high-resolution photoabsorption spectroscopy in the 4.0-10.8 eV energy range, with absolute cross-section measurements derived. We present the first set of ab initio calculations (vertical energies and oscillator strengths), which we use in the assignment of valence and Rydberg transitions of the toluene molecule. The spectrum reveals several new features not previously reported in the literature, with particular relevance to 7.989 and 8.958 eV, which are here tentatively assigned to the ?*(17a') ? ?(15a') and 1?*(10a?) ? 1?(14a') transitions, respectively. The measured absolute photoabsorption cross sections have been used to calculate the photolysis lifetime of toluene in the upper stratosphere (20-50 km). PMID:26244250

  18. A Kinetic Modeling study on the Oxidation of Primary Reference Fuel?Toluene Mixtures Including Cross Reactions between Aromatics and Aliphatics

    SciTech Connect

    Sakai, Y; Miyoshi, A; Koshi, M; Pitz, W J

    2008-01-09

    A detailed chemical kinetic model for the mixtures of Primary Reference Fuel (PRF: n-heptane and iso-octane) and toluene has been proposed. This model is divided into three parts; a PRF mechanism [T. Ogura et al., Energy & Fuels 21 (2007) 3233-3239], toluene sub-mechanism and cross reactions between PRF and toluene. Toluene sub-mechanism includes the low temperature kinetics relevant to engine conditions. A chemical kinetic mechanism proposed by Pitz et al. [Proc. the 2nd Joint Meeting of the U.S. Combust. Institute (2001)] was used as a starting model and modified by updating rate coefficients. Theoretical estimations of rate coefficients were performed for toluene and benzyl radical reactions important at low temperatures. Cross-reactions between alkane, alkene, and aromatics were also included in order to account for the acceleration by the addition of toluene into iso-octane recently found in the shock tube study of the ignition delay [Y. Sakai et al, SAE 2007-01-4014 (2007)]. Validations of the model were performed with existing shock tube and flow tube data. The model well predicts the ignition characteristics of toluene and PRF/Toluene mixtures under the wide range of temperatures (500-1700 K) and pressures (2-50 atm). It is found that reactions of benzyl radical with oxygen molecule determine the reactivity of toluene at low temperature. Although the effect of toluene addition to iso-octane is not fully resolved, the reactions of alkene with benzyl radical have the possibility to account for the kinetic interactions between PRF and toluene.

  19. Selective Chlorination of Toluene to p-Chlorotoluene Catalyzed by Nanosized Zeolite K-L Catalysts.

    PubMed

    Zhu, Xiaoyan; Fu, Yujun; Yin, Hengbo; Feng, Yonghai; Shen, Lingqin; Wang, Aili; Li, Jitai; Ni, Wenxiu; Xie, Xulan

    2015-08-01

    Nanosized zeolite K-L catalysts were synthesized by the hydrothermal method starting from silica sol and potassium aluminate. The crystallinities of the zeolite K-L catalysts increased with increasing the SiO2/Al2O3 mole ratio of reaction solution and prolonging the autoclaving time. Nanosized and well-dispersed zeolite K-L catalysts were synthesized when the SiO2/Al2O3 mole ratio was more than 26:1. Well-crystallized and nanosized zeolite K-L catalysts showed high catalytic activity for the chlorination of toluene to p-chlorotoluene. When the nanosized zeolite K-L catalyst was synthesized with the SiO2/Al2O3 mole ratio of 31:1 at the autoclaving temperature of 150 °C for 96 h, the selectivities of p-chlorotoluene and o-chlorotoluene were 76.2% and 20.0%, respectively, at the complete conversion of toluene. PMID:26369216

  20. Temperature and bath gas composition dependence of effective fluorescence lifetimes of toluene excited at 266 nm

    NASA Astrophysics Data System (ADS)

    Faust, S.; Dreier, T.; Schulz, C.

    2011-05-01

    Time-resolved fluorescence spectra of gas-phase toluene upon picosecond excitation at 266 nm were investigated as a function of temperature (296-1074 K) and bath gas composition (varying amounts of N 2, O 2, and CO 2) at 1 bar total pressure with a temporal resolution of 50 ps. In the investigated temperature range the effective fluorescence lifetime drops with increasing temperature from 46 ± 3 ns to 0.05 ± 0.01 ns in N 2 and CO 2. In the presence of O 2 at constant temperature the lifetimes also decrease significantly (e.g., from 46 ± 3 ns without O 2 to 0.63 ± 0.05 ns in air at room temperature), whereas lifetimes are independent on the CO 2 concentration. The implications of the results for the existing phenomenological model of predicting temporally integrated fluorescence intensities in toluene [W. Koban, J.D. Koch, R.K. Hanson, C. Schulz, Appl. Phys. B 80 (2005) 777] are discussed.