These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Photolysis, Sonolysis, and Photosonolysis of Trichloroethane (TCA), Trichloroethylene (TCE), and Tetrachloroethylene (PCE) Without Catalyst  

Microsoft Academic Search

Photolysis, sonolysis, and photosonolysis of common groundwater contaminants, namely 1,1,1-trichloroethane, trichloroethylene,\\u000a and tetrachloroethylene, were investigated using a flow-through photosono reactor system. Simulated groundwater containing\\u000a the chlorinated volatile organic compounds (VOCs) was exposed to ultraviolet light (UV), ultrasonication (US), and UV and\\u000a US concurrently (UVUS), without a photo catalyst. VOC removal efficiencies of the UV, US, and UVUS treatment processes were

Chikashi Sato

2011-01-01

2

Dose-excretion relationship in tetrachloroethylene-exposed workers and the effect of tetrachloroethylene co-exposure on trichloroethylene metabolism  

SciTech Connect

Personal monitoring of 8-hour time-weighted average intensity of exposure with diffuse samplers and analysis of shift-end urine for total trichloro-compounds (TTC) and other metabolites were conducted in two groups of workers in China, one (121 subjects) exposed to tetrachloroethylene (TETRA) alone, and the other (38 subjects) exposed to a mixture of TETRA and trichloroethylene (TRI). Urinalysis was also performed on samples from 103 non-exposed controls. A linear exposure-excretion relationship could be observed in both groups of workers. Comparison of these results with those of Japanese TETRA-workers suggested the presence of ethnic difference in TETRA metabolism. Urinary metabolite levels were markedly lower in the mixed (TETRA + TRI) exposure group as compared to previous findings in a group exposed to TRI alone. The observation indicates that metabolism of TRI is suppressed by the co-exposure to TETRA in humans.

Seiji, K.; Inoue, O.; Jin, C.; Liu, Y.T.; Cai, S.X.; Ohashi, M.; Watanabe, T.; Nakatsuka, H.; Kawai, T.; Ikeda, M. (Tohoku Univ. School of Medicine, Sendai (Japan))

1989-01-01

3

NOVEL PATHWAY OF TOLUENE CATABOLISM IN THE TRICHLOROETHYLENE DEGRADING BACTERIUM G4  

EPA Science Inventory

o-Cresol and 3-methylcatechol were identified as successive transitory intermediates of toluene catabolism by the trichloroethylene-degrading bacterium G4. he absence of a toluene dihydrodiol intermediate or toluene dioxygenase and toluene dihydrodiol dehydrogenase activities sug...

4

Use of Mini-Sprinklers to Strip Trichloroethylene and Tetrachloroethylene from Contaminated Ground Water.  

SciTech Connect

Berisford, Y.C., P.B. Bush, J.I. Blake, and C.L. Bayer. 2003. Use of mini-sprinklers to strip trichloroethylene and tetrachloroethylene from contaminated ground water. J. Env. Qual. 32:801-815. Three low-volume mini-sprinklers were tested for their efficacy to strip trichloroethylene (TCE) and tetrachloroethylene (PCE) from water. Deionized water spiked with TCE and PCE was pumped through a mini-sprinkler supported on top of a 1.8-m-tall. Water was collected in collection vessels at 0.61 and 1.22 m above the ground on support columns that were spaced at 0.61-m intervals from the riser base, and samples were composited per height and distance from the riser. Overall, air-stripping reduced dissolved concentrations of TCE and PCE by 99.1 to 100 and 96.9 to 100%, respectively. Mini-sprinklers offer the advantages of (i) easy setup in series that can be used on practically any terrain; (ii) operation over a long period of time that does not threaten aquifer depletion; (iii) use in small or confined aquifers in which the capacity is too low to support large irrigation or pumping systems; and (iv) use in forests in which the small, low-impact droplets of the mini-sprinklers do not damage bark and in which trees can help manage (via evapotransporation) excess waste water.

Brerisford, Yvette, C.; Bush, Parshall, B.; Blake, John, I.; Bayer, Cassandra L.

2003-01-01

5

ADVANCED OXIDATION PROCESSES FOR TREATING GROUNDWATER CONTAMINATED WITH TCE (TRICHLOROETHYLENE) AND PCE (TETRACHLOROETHYLENE): LABORATORY STUDIES (JOURNAL VERSION)  

EPA Science Inventory

Oxidation of trichloroethylene (TCE) and tetrachloroethylene (PCE) with various dosages of ozone or ozone plus hydrogen peroxide was studied in laboratory experiments. The results show that hydrogen peroxide accelerates the oxidation of TCE and PCE by ozone. At peroxide-to-ozone ...

6

Difference in uptake, elimination, and metabolism in exposure to trichloroethylene, 1,1,1-trichloroethane and tetrachloroethylene  

Microsoft Academic Search

The relatively high and almost constant absorption\\/min of trichloroethylene (TRI) is explained by the relatively high partition coefficient between blood and air (?b\\/g = 15) combined with the rapid metabolism (75 %). Tetrachloroethylene (PERC) has about the same ?b\\/g as TRI, but the metabolism is insignificant (2 %); therefore, the amount taken up\\/min decreases in the course of exposure. The

A. C. Monster

1979-01-01

7

Toluene-degrading bacteria are chemotactic towards the environmental pollutants benzene, toluene, and trichloroethylene.  

PubMed

The bioremediation of polluted groundwater and toxic waste sites requires that bacteria come into close physical contact with pollutants. This can be accomplished by chemotaxis. Five motile strains of bacteria that use five different pathways to degrade toluene were tested for their ability to detect and swim towards this pollutant. Three of the five strains (Pseudomonas putida F1, Ralstonia pickettii PKO1, and Burkholderia cepacia G4) were attracted to toluene. In each case, the response was dependent on induction by growth with toluene. Pseudomonas mendocina KR1 and P. putida PaW15 did not show a convincing response. The chemotactic responses of P. putida F1 to a variety of toxic aromatic hydrocarbons and chlorinated aliphatic compounds were examined. Compounds that are growth substrates for P. putida F1, including benzene and ethylbenzene, were chemoattractants. P. putida F1 was also attracted to trichloroethylene (TCE), which is not a growth substrate but is dechlorinated and detoxified by P. putida F1. Mutant strains of P. putida F1 that do not oxidize toluene were attracted to toluene, indicating that toluene itself and not a metabolite was the compound detected. The two-component response regulator pair TodS and TodT, which control expression of the toluene degradation genes in P. putida F1, were required for the response. This demonstration that soil bacteria can sense and swim towards the toxic compounds toluene, benzene, TCE, and related chemicals suggests that the introduction of chemotactic bacteria into selected polluted sites may accelerate bioremediation processes. PMID:10966434

Parales, R E; Ditty, J L; Harwood, C S

2000-09-01

8

Novel Pathway of Toluene Catabolism in the Trichloroethylene-Degrading Bacterium G4  

PubMed Central

o-Cresol and 3-methylcatechol were identified as successive transitory intermediates of toluene catabolism by the trichloroethylene-degrading bacterium G4. The absence of a toluene dihydrodiol intermediate or toluene dioxygenase and toluene dihydrodiol dehydrogenase activities suggested that G4 catabolizes toluene by a unique pathway. Formation of a hybrid species of 18O- and 16O-labeled 3-methylcatechol from toluene in an atmosphere of 18O2 and 16O2 established that G4 catabolizes toluene by successive monooxygenations at the ortho and meta positions. Detection of trace amounts of 4-methylcatechol from toluene catabolism suggested that the initial hydroxylation of toluene was not exclusively at the ortho position. Further catabolism of 3-methylcatechol was found to proceed via catechol-2,3-dioxygenase and hydroxymuconic semialdehyde hydrolase activities. PMID:16347956

Shields, Malcolm S.; Montgomery, Stacy O.; Chapman, Peter J.; Cuskey, Stephen M.; Pritchard, P. H.

1989-01-01

9

Excess molar volumes of 2-(2-alkoxyethoxy)ethanols with trichloroethylene and tetrachloroethylene at 298.15 and 308.15 K  

Microsoft Academic Search

The excess molar volumes for binary liquid mixtures of trichloroethylene, CâClâH and tetrachloroethylene, CâClâ, with 2-(2-methoxyethoxy)ethanol, CHâO(CHâ)âO(CHâ)âOH, 2-(2-ethoxyethoxy)ethanol, CâHâO(CHâ)âO(CHâ)âOH, and 2-(2-butoxyethoxy)ethanol, CâHâO(CHâ)âO(CHâ)âOH, have been measured using a continuous-dilution dilatometer over the entire mole fraction range at 298.15 and 308.15 K. The excess volumes change sign for trichloroethylene and are positive for tetrachloroethylene with 2-(2-methoxyethoxy)ethanol, 2-(2-ethoxyethoxy)ethanol, and 2-(2-butoxyethoxy)ethanol over the whole

Amalendu Pal; Wazir Singh

1995-01-01

10

Potential of physiologically based pharmacokinetics to amalgamate kinetic data of trichloroethylene and tetrachloroethylene obtained in rats and man.  

PubMed Central

A physiologically based pharmacokinetic model was used to amalgamate information obtained in rats and man by various routes of exposure to trichloroethylene (TRI) and tetrachloroethylene (TETRA). Since there have been no pharmacokinetic data on drinking water exposure, drinking water exposure to TRI was conducted in rats using 14C-TRI. Several partition coefficients of TRI and TETRA were also determined in the present study. Simulations of the kinetics of TRI and TETRA were made with the unified physiologically based pharmacokinetic model to determine whether reported pharmacokinetic data from different routes of exposure to TRI and TETRA (inhalation, intravenous, drinking water in rats, and inhalation in man) could be simulated. The results indicated that the unified model used in this study successfully simulates the pharmacokinetics of TRI and TETRA irrespective of the routes and exposure intensities. Subsequently, sensitivity analyses were performed. Since both TRI and TETRA require bioactivation to produce their toxicity, the amounts metabolised in the body were used as indicators of toxicity. Vmax (maximum velocity of metabolism in the liver), alveolar ventilation, and the blood/air partition coefficient had a more profound effect than other factors on the amounts of these chemicals metabolised when parameter values were altered. The model was applied to simulate the biologically permissible values of exhaled air concentration and blood concentration of these compounds for monitoring exposure intensities in occupational settings. The simulated maximum permissible values showed good agreement with those obtained by field studies. Finally, the model was applied to the risk assessment of drinking water exposures to TRI and TETRA, assuming that a man weighing 70 kg drinks 2 l of the most contaminated drinking water ever reported in the US; 32 ppb for TRI and 5 ppb for TETRA. The simulated metabolised amounts of TRI and TETRA under steady state condition in man were a fifth of an order of magnitude lower than non-cancer causing metabolised amounts of TRI and TETRA in rats through inhalation. PMID:2713280

Koizumi, A

1989-01-01

11

Adverse Birth Outcomes and Maternal Exposure to Trichloroethylene and Tetrachloroethylene through Soil Vapor Intrusion in New York State  

PubMed Central

Background: Industrial spills of volatile organic compounds (VOCs) in Endicott, New York (USA), have led to contamination of groundwater, soil, and soil gas. Previous studies have reported an increase in adverse birth outcomes among women exposed to VOCs in drinking water. Objective: We investigated the prevalence of adverse birth outcomes among mothers exposed to trichloroethylene (TCE) and tetrachloroethylene [or perchloroethylene (PCE)] in indoor air contaminated through soil vapor intrusion. Methods: We examined low birth weight (LBW), preterm birth, fetal growth restriction, and birth defects among births to women in Endicott who were exposed to VOCs, compared with births statewide. We used Poisson regression to analyze births and malformations to estimate the association between maternal exposure to VOCs adjusting for sex, mother’s age, race, education, parity, and prenatal care. Two exposure areas were identified based on environmental sampling data: one area was primarily contaminated with TCE, and the other with PCE. Results: In the TCE-contaminated area, adjusted rate ratios (RRs) were significantly elevated for LBW [RR = 1.36; 95% confidence interval (CI): 1.07, 1.73; n = 76], small for gestational age (RR = 1.23; 95% CI: 1.03, 1.48; n = 117), term LBW (RR = 1.68; 95% CI: 1.20, 2.34; n = 37), cardiac defects (RR = 2.15; 95% CI: 1.27, 3.62; n = 15), and conotruncal defects (RR = 4.91; 95% CI: 1.58, 15.24; n = 3). In the PCE-contaminated area, RRs for cardiac defects (five births) were elevated but not significantly. Residual socioeconomic confounding may have contributed to elevations of LBW outcomes. Conclusions: Maternal residence in both areas was associated with cardiac defects. Residence in the TCE area, but not the PCE area, was associated with LBW and fetal growth restriction. PMID:22142966

Lewis-Michl, Elizabeth L.; Gomez, Marta I.

2011-01-01

12

Contrasting carbon isotope fractionation during biodegradation of trichloroethylene and toluene: Implications for intrinsic bioremediation  

Microsoft Academic Search

In experiments involving anaerobic biodegradation of trichloroethylene (TCE), ?13C values for residual TCE changed from ?30.4‰ to values more enriched than ?16‰. All data exhibit a consistent correlation between ?13C value of the residual TCE and the extent of biodegradation of TCE, described by a fractionation factor (?) of 0.9929. In contrast, during aerobic biodegradation of toluene by two separate

B. Sherwood Lollar; G. F. Slater; J. Ahad; B. Sleep; J. Spivack; M. Brennan; P. MacKenzie

1999-01-01

13

Effect of Trichloroethylene on the Competitive Behavior of Toluene-Degrading Bacteria  

PubMed Central

The influence of trichloroethylene (TCE) on a mixed culture of four different toluene-degrading bacterial strains (Pseudomonas putida mt-2, P. putida F1, P. putida GJ31, and Burkholderia cepacia G4) was studied with a fed-batch culture. The strains were competing for toluene, which was added at a very low rate (31 nmol mg of cells [dry weight]?1 h?1). All four strains were maintained in the mixed culture at comparable numbers when TCE was absent. After the start of the addition of TCE, the viabilities of B. cepacia G4 and P. putida F1 and GJ31 decreased 50- to 1,000-fold in 1 month. These bacteria can degrade TCE, although at considerably different rates. P. putida mt-2, which did not degrade TCE, became the dominant organism. Kinetic analysis showed that the presence of TCE caused up to a ninefold reduction in the affinity for toluene of the three disappearing strains, indicating that inhibition of toluene degradation by TCE occurred. While P. putida mt-2 took over the culture, mutants of this strain which could no longer grow on p-xylene arose. Most of them had less or no meta-cleavage activity and were able to grow on toluene with a higher growth rate. The results indicate that cometabolic degradation of TCE has a negative effect on the maintenance and competitive behavior of toluene-utilizing organisms that transform TCE. PMID:16349481

Mars, Astrid E.; Prins, Gjalt T.; Wietzes, Pieter; de Koning, Wim; Janssen, Dick B.

1998-01-01

14

Comparison of factors influencing trichloroethylene degradation by toluene-oxidizing bacteria.  

PubMed

The degradation of trichloroethylene (TCE) by toluene-oxidizing bacteria has been extensively studied, and yet the influence of environmental conditions and physiological characteristics of individual strains has received little attention. To consider these effects, the levels of TCE degradation by strains distinguishable on the basis of toluene and nitrate metabolism were compared under aerobic or hypoxic conditions in the presence and absence of nitrate and an exogenous electron donor, lactate. Under aerobic conditions with toluene-induced cells, strains expressing toluene dioxygenases (Pseudomonas putida F1, Pseudomonas sp. strain JS150, Pseudomonas fluorescens CFS215, and Pseudomonas sp. strain W31) degraded TCE at low rates, with less than 12% of the TCE removed in 18 h. In contrast, strains expressing toluene monooxygenases (Burkholderia cepacia G4, Burkholderia pickettii PKO1, and Pseudomonas mendocina KR1) degraded 36 to 67% of the TCE over the same period. Under hypoxic conditions (1.7 mg of dissolved oxygen per liter) or when lactate was added as an electron donor, the extent of TCE degradation by toluene-induced cells was generally lower. In the presence of lactate, degradation of TCE by denitrifying strain PKO1 was enhanced by nitrate under conditions in which dissimilatory nitrate reduction was observed. The results of experiments performed with strains F1, G4, PKO1, and KR1 suggested that TCE or an oxidation product induces toluene degradation and that TCE induces its own degradation in the monooxygenase strains. The role of TCE as an inducer of toluene oxygenase activity in PKO1 was confirmed by performing a promoter probe analysis, in which we found that TCE activates transcription from the PKO1 3-monooxygenase operon promoter. PMID:8975612

Leahy, J G; Byrne, A M; Olsen, R H

1996-03-01

15

Comparison of factors influencing trichloroethylene degradation by toluene-oxidizing bacteria.  

PubMed Central

The degradation of trichloroethylene (TCE) by toluene-oxidizing bacteria has been extensively studied, and yet the influence of environmental conditions and physiological characteristics of individual strains has received little attention. To consider these effects, the levels of TCE degradation by strains distinguishable on the basis of toluene and nitrate metabolism were compared under aerobic or hypoxic conditions in the presence and absence of nitrate and an exogenous electron donor, lactate. Under aerobic conditions with toluene-induced cells, strains expressing toluene dioxygenases (Pseudomonas putida F1, Pseudomonas sp. strain JS150, Pseudomonas fluorescens CFS215, and Pseudomonas sp. strain W31) degraded TCE at low rates, with less than 12% of the TCE removed in 18 h. In contrast, strains expressing toluene monooxygenases (Burkholderia cepacia G4, Burkholderia pickettii PKO1, and Pseudomonas mendocina KR1) degraded 36 to 67% of the TCE over the same period. Under hypoxic conditions (1.7 mg of dissolved oxygen per liter) or when lactate was added as an electron donor, the extent of TCE degradation by toluene-induced cells was generally lower. In the presence of lactate, degradation of TCE by denitrifying strain PKO1 was enhanced by nitrate under conditions in which dissimilatory nitrate reduction was observed. The results of experiments performed with strains F1, G4, PKO1, and KR1 suggested that TCE or an oxidation product induces toluene degradation and that TCE induces its own degradation in the monooxygenase strains. The role of TCE as an inducer of toluene oxygenase activity in PKO1 was confirmed by performing a promoter probe analysis, in which we found that TCE activates transcription from the PKO1 3-monooxygenase operon promoter. PMID:8975612

Leahy, J G; Byrne, A M; Olsen, R H

1996-01-01

16

Biodegradation of trichloroethylene and toluene by indigenous microbial populations in soil.  

PubMed Central

The biodegradation of trichloroethylene (TCE) and toluene, incubated separately and in combination, by indigenous microbial populations was measured in three unsaturated soils incubated under aerobic conditions. Sorption and desorption of TCE (0.1 to 10 micrograms ml-1) and toluene (1.0 to 20 micrograms ml-1) were measured in two soils and followed a reversible linear isotherm. At a concentration of 1 micrograms ml-1, TCE was not degraded in the absence of toluene in any of the soils. In combination, both 1 microgram of TCE ml-1 and 20 micrograms of toluene ml-1 were degraded simultaneously after a lag period of approximately 60 to 80 h, and the period of degradation lasted from 70 to 90 h. Usually 60 to 75% of the initial 1 microgram of TCE ml-1 was degraded, whereas 100% of the toluene disappeared. A second addition of 20 micrograms of toluene ml-1 to a flask with residual TCE resulted in another 10 to 20% removal of the chemical. Initial rates of degradation of toluene and TCE were similar at 32, 25, and 18 degrees C; however, the lag period increased with decreasing temperature. There was little difference in degradation of toluene and TCE at soil moisture contents of 16, 25, and 30%, whereas there was no detectable degradation at 5 and 2.5% moisture. The addition of phenol, but not benzoate, stimulated the degradation of TCE in Rindge and Yolo silt loam soils, methanol and ethylene slightly stimulated TCE degradation in Rindge soil, glucose had no effect in either soil, and dissolved organic carbon extracted from soil strongly sorbed TCE but did not affect its rate of biodegradation. PMID:8328806

Fan, S; Scow, K M

1993-01-01

17

Influence of the nature of soil organics on the sorption of toluene and trichloroethylene  

SciTech Connect

Predictive relationships that are presently employed for estimating the soil-water partitioning of nonionic organic pollutants do not account for the variable nature of soil organic matter. The capacity of selected components of soil organic matter to sorb trichloroethylene (TCE) and toluene, two nonionic volatile organic pollutants commonly encountered in contaminated groundwaters, is examined here. Sorption coefficients were determined and correlated with selected physico-chemical characteristics of the sorbents. Results indicate that the components of soil organic matter had widely varying affinities for toluene and TCE that cannot be solely explained by their organic carbon content. Multivariate regression results show that use of a sorbent's oxygen content as well as its carbon content yields a more accurate prediction of the sorptive partitioning coefficient than relationships that rely solely on the sorbent's carbon content.

Garbarini, D.R.; Lion, L.W.

1986-12-01

18

Toluene-Degrading Bacteria Are Chemotactic towards the Environmental Pollutants Benzene, Toluene, and Trichloroethylene  

Microsoft Academic Search

The bioremediation of polluted groundwater and toxic waste sites requires that bacteria come into close physical contact with pollutants. This can be accomplished by chemotaxis. Five motile strains of bacteria that use five different pathways to degrade toluene were tested for their ability to detect and swim towards this pollutant. Three of the five strains (Pseudomonas putida F1, Ralstonia pickettii

REBECCA E. PARALES; JAYNA L. DITTY; CAROLINE S. HARWOOD

2000-01-01

19

Heterogeneous Photocatalytic Oxidation of Trichloroethylene and Toluene Mixtures in Air: Kinetic Promotion and Inhibition, Time-Dependent Catalyst Activity  

Microsoft Academic Search

Photocatalyzed degradation of trace level trichloroethylene (TCE) and toluene in air were carried out over near-UV-illuminated titanium dioxide (anatase) powder in a flow reactor using a residence time of about 5–6 ms. Concentration ranges for TCE and toluene were 0–800 mg\\/m3. TCE photooxidation was very rapid under our experimental conditions, and ?100% conversion was achieved for TCE concentration examined up

Yang Luo; David F. Ollis

1996-01-01

20

Degradation of Toluene and Trichloroethylene by Burkholderia cepacia G4 in Growth-Limited Fed-Batch Culture  

PubMed Central

Burkholderia (Pseudomonas) cepacia G4 was cultivated in a fed-batch bioreactor on either toluene or toluene plus trichloroethylene (TCE). The culture was allowed to reach a constant cell density under conditions in which the amount of toluene supplied equals the maintenance energy demand of the culture. Compared with toluene only, the presence of TCE at a toluene/TCE ratio of 2.3 caused a fourfold increase in the specific maintenance requirement for toluene from 22 to 94 nmol mg of cells (dry weight)(sup-1) h(sup-1). During a period of 3 weeks, approximately 65% of the incoming TCE was stably converted to unidentified products from which all three chlorine atoms were liberated. When toluene was subsequently omitted from the culture feed while TCE addition continued, mutants which were no longer able to grow on toluene or to degrade TCE appeared. These mutants were also unable to grow on phenol or m- or o-cresol but were still able to grow on catechol and benzoate. Plasmid analysis showed that the mutants had lost the plasmid involved in toluene monooxygenase formation (pTOM). Thus, although strain G4 is much less sensitive to TCE toxicity than methanotrophs, deleterious effects may still occur, namely, an increased maintenance energy demand in the presence of toluene and plasmid loss when no toluene is added. PMID:16535277

Mars, A. E.; Houwing, J.; Dolfing, J.; Janssen, D. B.

1996-01-01

21

Trichloroethylene degradation by toluene-oxidizing bacteria grown on non-aromatic substrates.  

PubMed

The potential of trichloroethylene (TCE) to induce and non-aromatic growth substrates to support TCE degradation in five strains (Pseudomonas mendocina KR1, Ralstonia pickettii PKO1, Pseudomonas putida F1, Burkholderia cepacia G4, B. cepacia PR1) of toluene-oxidizing bacteria was examined. LB broth and acetate did not support TCE degradation in any of the wild-type strains. In contrast, fructose supported the highest specific levels of TCE oxidation observed in each of the strains tested, except B. cepacia G4. We discuss the potential mechanisms and implications of this observation. In particular, cells of P. mendocina KR1 degraded significant amounts of TCE during cell growth on non-aromatic substrates. Apparently, TCE degradation was not completely constrained by any given factor in this microorganism, as was observed with P. putida F1 (TCE was an extremely poor substrate) or B. cepacia G4 (lack of oxygenase induction by TCE). Our results indicate that multiple physiological traits are required to enable useful TCE degradation by toluene-oxidizing bacteria in the absence of aromatic cosubstrates. These traits include oxygenase induction, effective TCE turnover, and some level of resistance to TCE mediated toxicity. PMID:14971854

Yeager, Chris M; Arthur, Kirstin M; Bottomley, Peter J; Arp, Daniel J

2004-02-01

22

Distributions and sea-to-air fluxes of chloroform, trichloroethylene, tetrachloroethylene, chlorodibromomethane and bromoform in the Yellow Sea and the East China Sea during spring.  

PubMed

Halocarbons including chloroform (CHCl3), trichloroethylene (C2HCl3), tetrachloroethylene (C2Cl4), chlorodibromomethane (CHBr2Cl) and bromoform (CHBr3) were measured in the Yellow Sea (YS) and the East China Sea (ECS) during spring 2011. The influences of chlorophyll a, salinity and nutrients on the distributions of these gases were examined. Elevated levels of these gases in the coastal waters were attributed to anthropogenic inputs and biological release by phytoplankton. The vertical distributions of these gases in the water column were controlled by different source strengths and water masses. Using atmospheric concentrations measured in spring 2012 and seawater concentrations obtained from this study, the sea-to-air fluxes of these gases were estimated. Our results showed that the emissions of C2HCl3, C2Cl4, CHBr2Cl, and CHBr3 from the study area could account for 16.5%, 10.5%, 14.6%, and 3.5% of global oceanic emissions, respectively, indicating that the coastal shelf may contribute significantly to the global oceanic emissions of these gases. PMID:23466729

He, Zhen; Yang, Gui-Peng; Lu, Xiao-Lan; Zhang, Hong-Hai

2013-06-01

23

Oxidation of trichloroethylene, toluene, and ethanol vapors by a partially saturated permeable reactive barrier  

NASA Astrophysics Data System (ADS)

The mitigation of volatile organic compound (VOC) vapors in the unsaturated zone largely relies on the active removal of vapor by ventilation. In this study we considered an alternative method involving the use of solid potassium permanganate to create a horizontal permeable reactive barrier for oxidizing VOC vapors. Column experiments were carried out to investigate the oxidation of trichloroethylene (TCE), toluene, and ethanol vapors using a partially saturated mixture of potassium permanganate and sand grains. Results showed a significant removal of VOC vapors due to the oxidation. We found that water saturation has a major effect on the removal capacity of the permeable reactive layer. We observed a high removal efficiency and reactivity of potassium permanganate for all target compounds at the highest water saturation (Sw = 0.6). A change in pH within the reactive layer reduced oxidation rate of VOCs. The use of carbonate minerals increased the reactivity of potassium permanganate during the oxidation of TCE vapor by buffering the pH. Reactive transport of VOC vapors diffusing through the permeable reactive layer was modeled, including the pH effect on the oxidation rates. The model accurately described the observed breakthrough curve of TCE and toluene vapors in the headspace of the column. However, miscibility of ethanol in water in combination with produced water during oxidation made the modeling results less accurate for ethanol. A linear relationship was found between total oxidized mass of VOC vapors per unit volume of permeable reactive layer and initial water saturation. This behavior indicates that pH changes control the overall reactivity and longevity of the permeable reactive layer during oxidation of VOCs. The results suggest that field application of a horizontal permeable reactive barrier can be a viable technology against upward migration of VOC vapors through the unsaturated zone.

Mahmoodlu, Mojtaba G.; Hassanizadeh, S. Majid; Hartog, Niels; Raoof, Amir

2014-08-01

24

Oxidation of trichloroethylene, toluene, and ethanol vapors by a partially saturated permeable reactive barrier.  

PubMed

The mitigation of volatile organic compound (VOC) vapors in the unsaturated zone largely relies on the active removal of vapor by ventilation. In this study we considered an alternative method involving the use of solid potassium permanganate to create a horizontal permeable reactive barrier for oxidizing VOC vapors. Column experiments were carried out to investigate the oxidation of trichloroethylene (TCE), toluene, and ethanol vapors using a partially saturated mixture of potassium permanganate and sand grains. Results showed a significant removal of VOC vapors due to the oxidation. We found that water saturation has a major effect on the removal capacity of the permeable reactive layer. We observed a high removal efficiency and reactivity of potassium permanganate for all target compounds at the highest water saturation (Sw=0.6). A change in pH within the reactive layer reduced oxidation rate of VOCs. The use of carbonate minerals increased the reactivity of potassium permanganate during the oxidation of TCE vapor by buffering the pH. Reactive transport of VOC vapors diffusing through the permeable reactive layer was modeled, including the pH effect on the oxidation rates. The model accurately described the observed breakthrough curve of TCE and toluene vapors in the headspace of the column. However, miscibility of ethanol in water in combination with produced water during oxidation made the modeling results less accurate for ethanol. A linear relationship was found between total oxidized mass of VOC vapors per unit volume of permeable reactive layer and initial water saturation. This behavior indicates that pH changes control the overall reactivity and longevity of the permeable reactive layer during oxidation of VOCs. The results suggest that field application of a horizontal permeable reactive barrier can be a viable technology against upward migration of VOC vapors through the unsaturated zone. PMID:24992709

Mahmoodlu, Mojtaba G; Hassanizadeh, S Majid; Hartog, Niels; Raoof, Amir

2014-08-01

25

Oxidation of trichloroethylene, 1,1-dichloroethylene, and chloroform by toluene/o-xylene monooxygenase from Pseudomonas stutzeri OX1  

SciTech Connect

Toluene/o-xylene monooxygenase (ToMO) from Pseudomonas stutzeri OX1, which oxidizes toluene and o-xylene, was examined for its ability to degrade the environmental pollutants trichloroethylene (TCE), 1,1-dichloroethylene (1,1-DCE), cis-1,2-DCE, trans-1,2-DCE, chloroform, dichloromethane, phenol, 2,4-dichlorophenol, 2,4,5-trichlorophenol, 2,4,6-trichlorophenol, 2,3,5,6-tetrachlorophenol, and 2,3,4,5,6-pentachlorophenol. Escherichia coli JM109 that expressed ToMO from genes on plasmid pBZ1260 under control of the lac promoter degraded TCE, 1,1-DCE, and chloroform at initial rates of 3.1, 3.6, and 1.6 nmol, respectively. Stoichiometric amounts of chloride release were seen, indicating mineralization. Thus, the substrate range of ToMO is extended to include aliphatic chlorinated compounds.

Chauhan, S.; Wood, T.K. [Univ. of California, Irvine, CA (United States). Dept. of Chemical and Biochemical Engineering; Barbieri, P. [Univ. degli Studi di Milano, Milan (Italy). Dept. di Genetica e di Biologia dei Microrganismi

1998-08-01

26

Enhancing co-metabolic degradation of trichloroethylene with toluene using Burkholderia vietnamiensis G4 encapsulated in polyethylene glycol polymer.  

PubMed

The biodegradation potential of Burkholderia vietnamiensis G4 (B. vietnamiensis G4) was evaluated under encapsulation in comparison with direct exposure to trichloroethylene (TCE) (0.1, 0.5, 1 and 5 mg/L) and toluene (10 and 50 mg/L), maintaining aerobic conditions. B. vietnamiensis G4 was encapsulated in polyethylene glycol (PEG) polymer. Under suspended conditions, the degradation rate decreased as the initial TCE concentration increased, even with a higher amount of substrate available. However, the encapsulated systems were less suppressed, presumably by mitigated toxicity, and completely removed TCE with 50 mg/L of toluene. The transformation yield (Ty) was as high as 0.427 mg-TCE/mg-toluene for the encapsulated cultures and 0.1007 mg-TCE/mg-toluene for the suspended cultures. The Ty value for the encapsulated cultures was one to two orders higher than what has been reported in the literature. The higher Ty values in the encapsulated cultures compared with those from suspended cultures showed that the PEG encapsulation provided more a favourable environment for efficient substrate use. PMID:24701945

Hamid, S; Bae, W; Kim, S; Amin, M T

2014-01-01

27

Rhizoremediation of Trichloroethylene by a Recombinant, Root-Colonizing Pseudomonas fluorescens Strain Expressing Toluene ortho-Monooxygenase Constitutively  

PubMed Central

Trichloroethylene (TCE) was removed from soils by using a wheat rhizosphere established by coating seeds with a recombinant, TCE-degrading Pseudomonas fluorescens strain that expresses the tomA+ (toluene o-monooxygenase) genes from Burkholderia cepacia PR123(TOM23C). A transposon integration vector was used to insert tomA+ into the chromosome of P. fluorescens 2-79, producing a stable strain that expressed constitutively the monooxygenase at a level of 1.1 nmol/min · mg of protein (initial TCE concentration, 10 ?M, assuming that all of the TCE was in the liquid) for more than 280 cell generations (36 days). We also constructed a salicylate-inducible P. fluorescens strain that degraded TCE at an initial rate of 2.6 nmol/min · mg of protein in the presence of 10 ?M TCE [cf. B. cepacia G4 PR123(TOM23C), which degraded TCE at an initial rate of 2.5 nmol/min · mg of protein]. A constitutive strain, P. fluorescens 2-79TOM, grew (maximum specific growth rate, 0.78 h?1) and colonized wheat (3 × 106 CFU/cm of root) as well as wild-type P. fluorescens 2-79 (maximum specific growth rate, 0.77 h?1; level of colonization, 4 × 106 CFU/cm of root). Rhizoremediation of TCE was demonstrated by using microcosms containing the constitutive monooxygenase-expressing microorganism, soil, and wheat. These closed microcosms degraded an average of 63% of the initial TCE in 4 days (20.6 nmol of TCE/day · plant), compared to the 9% of the initial TCE removed by negative controls consisting of microcosms containing wild-type P. fluorescens 2-79-inoculated wheat, uninoculated wheat, or sterile soil. PMID:9435067

Yee, Dennis C.; Maynard, Jennifer A.; Wood, Thomas K.

1998-01-01

28

[Effects of benzene, toluene on reductive dechlorination of trichloroethylene and its daughter product cis-1,2-dichloroethylene by granular iron].  

PubMed

Mixed plumes contained chlorinated solvents and petroleum hydrocarbons which mainly refers to BTEX (benzene, toluene, ethylbenzene and xylenes) in groundwater can be remediated by sequential units combined an iron permeable reactive barrier (Fe0-PRB) with an anoxic wall. In design of the Fe0-PRB it should be taken into account the necessity of altering the width of the iron cell in the presence of BTEX. Three column experiments were conducted to evaluate the effects of benzene, toluene on the long-term performance of reductive dechlorination of trichloroethylene (TCE) by granular iron. The results showed that the kinetics of TCE (at the initial concentration of 2 mg x L(-1) more or less) reduction was accorded with pseudo first-order even in the presence of benzene or toluene (at about 1-2 mg x L(-1), respectively). The existence of benzene and toluene inhibited the removal of TCE by 15.1% and 18. 5% , respectively; however, the presence of benzene slightly increased cis-1,2-DCE reduction rate by 4.5%, and the presence of toluene increased cis-1,2-DCE reduction rate by 42.8%. The inhibition of benzene and toluene other than mineral precipitates was not one of the decisive factors in the long-term performance of an Feo-PRB; in addition, the kinds of chlorinated daughter products of TCE in the presence/absence of benzene or toluene were identical and cis-1,2-dichloroethylene (cis-1,2-DCE), the major intermediate, firstly broke through from all the 3 columns at concentrations about 2-75 microg x L(-1), indicating that designing the width of an Fe0-PRB should be based on the hydraulic residence time of cis-1,2-DCE. In conclusion, if only considering the TCE remedial goals and disregarding the effects of cis-1,2-DCE on BTEX biodegradation downgradient the Fe0-PRB, the results suggested that it should be not necessary to increase the width of the iron cell for constructing sequential permeable reactive barriers (SPRBs) to rescue TCE- and BTEX-contaminated aquifers. PMID:20825021

Liu, Yu-long; Xia, Fan; Liu, Fei; Chen, Hong-han

2010-07-01

29

SURFACTANT-ENHANCED SOLUBILIZATION OF TETRACHLOROETHYLENE AND DEGRADATION PRODUCTS IN PUMP AND TREAT REMEDIATION  

EPA Science Inventory

Experiments were conducted to investigate the enhanced solubilization of tetrachloroethylene (PCE), trichloroethylene (TCE), and 1,2-dichloroethylene (DCE) in nonionic surfactant solutions of Triton X-100, Brij-30, Igepal CA-720, and Tergitol NP-10 (alkylpolyoxyethylenes). urfact...

30

Bio-removal of mixture of benzene, toluene, ethylbenzene, and xylenes\\/total petroleum hydrocarbons\\/trichloroethylene from contaminated water  

Microsoft Academic Search

Four pure cultures were isolated from soil samples potentially contaminated with gasoline compounds either at a construction site near a gas station in Fai Chi Kei, Macau SAR or in the northern parts of China (Beijing, and Hebei and Shandong). The effects of different concentrations of benzene, toluene, ethylbenzene, and three isomers (ortho-, meta-, and para-) of xylene (BTEX), total

Hojae SHIM; Wei MA; Aijun LIN; Kaicho CHAN

2009-01-01

31

CONSTITUTIVE DEGRADATION OF TRICHLOROETHYLENE BY AN ALTERED BACTERIUM IN A GAS-PHASE BIOREACTOR  

EPA Science Inventory

Pseudomonas cepacia G4 expresses a unique toluene ortho-monooxygenase (Tom) that enables it to degrade toluene and trichloroethylene (TCE). ransposon mutants of G4 have been isolated that constitutively express Tom. wo fixed-film bioreactor designs were investigated for the explo...

32

HEALTH ASSESSMENT DOCUMENT FOR TETRACHLOROETHYLENE (PERCHLOROETHYLENE)  

EPA Science Inventory

Tetrachloroethylene (PERC) is believed to exert its adverse effects upon humans via metabolism by the liver. Concern that PERC is likely to be a human carcinogen is based upon the evidence of the National Cancer Institute bioassay, in which PERC induced a statistically significan...

33

ROUTE-DEPENDENT EFFECTS OF TOLUENE ON SIGNAL DETECTION BEHAVIOR IN RATS.  

EPA Science Inventory

The acute effects of toluene and other solvents on behavior are thought to depend upon their concentration in the brain. We have shown previously that inhaled toluene and trichloroethylene disrupt sustained attention in rats as assessed with a visual signal detection task (SDT). ...

34

40 CFR 264.1080 - Applicability.  

Code of Federal Regulations, 2010 CFR

...Tetrachloroethylene; Tetrahydrofuran; Thallium; Toluene; Toluene 2,4 Diisocyanate; Trichloroethylene; Trichloroflouromethane; Vanadium; Vinyl Chloride; Warfarin; Xylene; Zinc. (g) This section applies only to the facility commonly referred to as the...

2010-07-01

35

40 CFR 265.1080 - Applicability.  

Code of Federal Regulations, 2010 CFR

...Tetrachloroethylene; Tetrahydrofuran; Thallium; Toluene; Toluene 2,4 Diisocyanate; Trichloroethylene; Trichloroflouromethane; Vanadium; Vinyl Chloride; Warfarin; Xylene; Zinc. (g) This section applies only to the facility commonly referred to as the...

2010-07-01

36

TRICHLOROETHYLENE (TCE) ISSUE PAPERS  

EPA Science Inventory

These issue papers are a part of EPA's effort to develop a trichloroethylene (TCE) human health risk assessment. These issue papers were developed by EPA to provide scientific and technical information to the National Academy of Sciences (NAS) for use in developing their advice ...

37

40 CFR 721.3560 - Derivative of tetra-chloro-ethy-lene.  

Code of Federal Regulations, 2013 CFR

...2013-07-01 2013-07-01 false Derivative of tetra-chloro-ethy-lene. ...Chemical Substances § 721.3560 Derivative of tetra-chloro-ethy-lene. ...paragraph (a)(2) of this section: Derivative of tetrachloroethylene,...

2013-07-01

38

40 CFR 721.3560 - Derivative of tetra-chloro-ethy-lene.  

Code of Federal Regulations, 2010 CFR

...2010-07-01 2010-07-01 false Derivative of tetra-chloro-ethy-lene. ...Chemical Substances § 721.3560 Derivative of tetra-chloro-ethy-lene. ...paragraph (a)(2) of this section: Derivative of tetrachloroethylene,...

2010-07-01

39

40 CFR 721.3560 - Derivative of tetra-chloro-ethy-lene.  

Code of Federal Regulations, 2012 CFR

...2012-07-01 2012-07-01 false Derivative of tetra-chloro-ethy-lene. ...Chemical Substances § 721.3560 Derivative of tetra-chloro-ethy-lene. ...paragraph (a)(2) of this section: Derivative of tetrachloroethylene,...

2012-07-01

40

40 CFR 721.3560 - Derivative of tetra-chloro-ethy-lene.  

Code of Federal Regulations, 2011 CFR

...2011-07-01 2011-07-01 false Derivative of tetra-chloro-ethy-lene. ...Chemical Substances § 721.3560 Derivative of tetra-chloro-ethy-lene. ...paragraph (a)(2) of this section: Derivative of tetrachloroethylene,...

2011-07-01

41

ACUTE TOXICITY OF TETRACHLOROETHYLENE AND TETRACHLOROETHYLENE WITH DIMETHYLFORMAMIDE TO RAINBOW TROUT (SALMO GAIRDNERI)  

EPA Science Inventory

In this study, two acute toxicity tests were conducted with tetrachloroethylene (TCE) using rainbow trout. DMF was used as an additive in one of the tests and was proportionally diluted with the toxicant. The 96 hr LC50 was 4.99 mg/l in the test without DMF and 5.84 mg/l for DMF ...

42

Biodegradation of trichloroethylene by an endophyte of hybrid poplar.  

PubMed

We isolated and characterized a novel endophyte from hybrid poplar. This unique endophyte, identified as Enterobacter sp. strain PDN3, showed high tolerance to trichloroethylene (TCE). Without the addition of inducers, such as toluene or phenol, PDN3 rapidly reduced TCE levels in medium from 72.4 ?M to 30.1 ?M in 24 h with a concurrent release of 127 ?M chloride ion, and nearly 80% of TCE (55.3 ?M) was dechlorinated by PDN3 in 5 days with 166 ?M chloride ion production, suggesting TCE degradation. PMID:22367087

Kang, Jun Won; Khan, Zareen; Doty, Sharon L

2012-05-01

43

Benzene and toluene biodegradation down gradient of a zero-valent iron permeable reactive barrier  

Microsoft Academic Search

This study simulated benzene and toluene biodegradation down gradient of a zero-valent iron permeable reactive barrier (ZVI PRB) that reduces trichloroethylene (TCE). The effects of elevated pH (10.5) and the presence of a common TCE dechlorination by product [cis-1,2-dichloroethene (cis-1,2-DCE)] on benzene and toluene biodegradation were evaluated in batch experiments. The data suggest that alkaline pH (pH 10.5), often observed

Liang Chen; Fei Liu; YuLong Liu; HongZhong Dong; Patricia J. S. Colberg

2011-01-01

44

Kinetics of tetrachloroethylene-reductive dechlorination catalyzed by vitamin B{sub 12}  

SciTech Connect

Reductive dechlorination kinetics of tetrachloroethylene (PCE) to ethylene catalyzed by vitamin B{sub 12} using Ti[III] citrate as the bulk reductant was examined in a vapor-water batch system. A kinetic model incorporating substrate-B{sub 12} electron-transfer complex formation and subsequent product release was developed. The model also accounted for the primary reductive dechlorination pathways (hydrogenolysis and reductive {beta} elimination) and vapor/water-phase partitioning. Reaction rate constants were sequentially determined by fitting the model to experimental kinetic data while moving upward through consecutive reaction pathways. The release of product from the complex was found to be second order with respect to substrate concentration for both PCE and acetylene; all other substrates appeared to release by first order. Reductive {beta} elimination was found to be a significant reaction pathway for trichloroethylene (TCE), and chloroacetylene was observed as a reactive intermediate. Acetylene production appears to be primarily due to the reduction of chloroacetylene derived from TCE. The reduction of cis-dichloroethylene (cis-DCE), the primary DCE isomer formed, was extremely slow, leading to a significant buildup of cis-DCE. The kinetics of acetylene and vinyl chloride reduction appeared to be limited by the formation of relatively stable substrate-B{sub 12} complexes. The relatively simple model examined appears to adequately represent the main features of the experimental data.

Burris, D.R. [AFRL/MLQR, Tyndall AFB, FL (United States); Delcomyn, C.A. [Applied Research Associates, Inc., Tyndall AFB, FL (United States); Deng, B. [New Mexico Inst. of Mining and Technology, Socorro, NM (United States). Dept. of Mineral and Environmental Engineering; Buck, L.E. [Polytechnic Univ., Brooklyn, NY (United States). Dept. of Civil and Environmental Engineering; Hatfield, K. [Univ. of Florida, Gainesville, FL (United States). Dept. of Civil Engineering

1998-09-01

45

Chloroform mineralization by toluene-oxidizing bacteria.  

PubMed Central

Seven toluene-oxidizing bacterial strains (Pseudomonas mendocina KR1, Burkholderia cepacia G4, Pseudomonas putida F1, Pseudomonas pickettii PKO1, and Pseudomonas sp. strains ENVPC5, ENVBF1, and ENV113) were tested for their ability to degrade chloroform (CF). The greatest rate of CF oxidation was achieved with strain ENVBF1 (1.9 nmol/min/mg of cell protein). CF also was oxidized by P. mendocina KR1 (0.48 nmol/min/mg of cell protein), strain ENVPC5 (0.49 nmol/min/mg of cell protein), and Escherichia coli DH510B(pRS202), which contained cloned toluene 4-monooxygenase genes from P. mendocina KR1 (0.16 nmol/min/mg of cell protein). Degradation of [14C]CF and ion analysis of culture extracts revealed that CF was mineralized to CO2 (approximately 30 to 57% of the total products), soluble metabolites (approximately 15%), a total carbon fraction irreversibly bound to particulate cellular constituents (approximately 30%), and chloride ions (approximately 75% of the expected yield). CF oxidation by each strain was inhibited in the presence of trichloroethylene, and acetylene significantly inhibited trichloroethylene oxidation by P. mendocina KR1. Differences in the abilities of the CF-oxidizing strains to degrade other halogenated compounds were also identified. CF was not degraded by B. cepacia G4, P. putida F1, P. pickettii PKO1, Pseudomonas sp. strain ENV113, or P. mendocina KRMT, which contains a tmo mutation. PMID:8702263

McClay, K; Fox, B G; Steffan, R J

1996-01-01

46

Chloroform mineralization by toluene-oxidizing bacteria.  

PubMed

Seven toluene-oxidizing bacterial strains (Pseudomonas mendocina KR1, Burkholderia cepacia G4, Pseudomonas putida F1, Pseudomonas pickettii PKO1, and Pseudomonas sp. strains ENVPC5, ENVBF1, and ENV113) were tested for their ability to degrade chloroform (CF). The greatest rate of CF oxidation was achieved with strain ENVBF1 (1.9 nmol/min/mg of cell protein). CF also was oxidized by P. mendocina KR1 (0.48 nmol/min/mg of cell protein), strain ENVPC5 (0.49 nmol/min/mg of cell protein), and Escherichia coli DH510B(pRS202), which contained cloned toluene 4-monooxygenase genes from P. mendocina KR1 (0.16 nmol/min/mg of cell protein). Degradation of [14C]CF and ion analysis of culture extracts revealed that CF was mineralized to CO2 (approximately 30 to 57% of the total products), soluble metabolites (approximately 15%), a total carbon fraction irreversibly bound to particulate cellular constituents (approximately 30%), and chloride ions (approximately 75% of the expected yield). CF oxidation by each strain was inhibited in the presence of trichloroethylene, and acetylene significantly inhibited trichloroethylene oxidation by P. mendocina KR1. Differences in the abilities of the CF-oxidizing strains to degrade other halogenated compounds were also identified. CF was not degraded by B. cepacia G4, P. putida F1, P. pickettii PKO1, Pseudomonas sp. strain ENV113, or P. mendocina KRMT, which contains a tmo mutation. PMID:8702263

McClay, K; Fox, B G; Steffan, R J

1996-08-01

47

Metabolism of trichloroethylene.  

PubMed Central

A major focus in the study of metabolism and disposition of trichloroethylene (TCE) is to identify metabolites that can be used reliably to assess flux through the various pathways of TCE metabolism and to identify those metabolites that are causally associated with toxic responses. Another important issue involves delineation of sex- and species-dependent differences in biotransformation pathways. Defining these differences can play an important role in the utility of laboratory animal data for understanding the pharmacokinetics and pharmacodynamics of TCE in humans. Sex-, species-, and strain-dependent differences in absorption and distribution of TCE may play some role in explaining differences in metabolism and susceptibility to toxicity from TCE exposure. The majority of differences in susceptibility, however, are likely due to sex-, species-, and strain-dependent differences in activities of the various enzymes that can metabolize TCE and its subsequent metabolites. An additional factor that plays a role in human health risk assessment for TCE is the high degree of variability in the activity of certain enzymes. TCE undergoes metabolism by two major pathways, cytochrome P450 (P450)-dependent oxidation and conjugation with glutathione (GSH). Key P450-derived metabolites of TCE that have been associated with specific target organs, such as the liver and lungs, include chloral hydrate, trichloroacetate, and dichloroacetate. Metabolites derived from the GSH conjugate of TCE, in contrast, have been associated with the kidney as a target organ. Specifically, metabolism of the cysteine conjugate of TCE by the cysteine conjugate ss-lyase generates a reactive metabolite that is nephrotoxic and may be nephrocarcinogenic. Although the P450 pathway is a higher activity and higher affinity pathway than the GSH conjugation pathway, one should not automatically conclude that the latter pathway is only important at very high doses. A synthesis of this information is then presented to assess how experimental data, from either animals or from (italic)in vitro (/italic)studies, can be extrapolated to humans for risk assessment. (italic)Key words(/italic): conjugate beta-lyase, cysteine glutathione, cytochrome P450, glutathione (italic)S(/italic)-transferases, metabolism, sex dependence, species dependence, tissue dependence, trichloroethylene. Images Figure 2 Figure 3 PMID:10807551

Lash, L H; Fisher, J W; Lipscomb, J C; Parker, J C

2000-01-01

48

Mutants of Pseudomonas cepacia G4 defective in catabolism of aromatic compounds and trichloroethylene.  

PubMed Central

Pseudomonas cepacia G4 possesses a novel pathway of toluene catabolism that is shown to be responsible for the degradation of trichloroethylene (TCE). This pathway involves conversion of toluene via o-cresol to 3-methylcatechol. In order to determine the enzyme of toluene degradation that is responsible for TCE degradation, chemically induced mutants, blocked in the toluene ortho-monooxygenase (TOM) pathway of G4, were examined. Mutants of the phenotypic class designated TOM A- were all defective in their ability to oxidize toluene, o-cresol, m-cresol, and phenol, suggesting that a single enzyme is responsible for conversion of these compounds to their hydroxylated products (3-methylcatechol from toluene, o-cresol, and m-cresol and catechol from phenol) in the wild type. Mutants of this class did not degrade TCE. Two other mutant classes which were blocked in toluene catabolism, TOM B-, which lacked catechol-2,3-dioxygenase, and TOM C-, which lacked 2-hydroxy-6-oxoheptadienoic acid hydrolase activity, were fully capable of TCE degradation. Therefore, TCE degradation is directly associated with the monooxygenation capability responsible for toluene, cresol, and phenol hydroxylation. PMID:1892384

Shields, M S; Montgomery, S O; Cuskey, S M; Chapman, P J; Pritchard, P H

1991-01-01

49

Trichloroethylene: environmental and occupational exposure  

SciTech Connect

Trichloroethylene is used in paint strippers, rug cleaners, spot removers, typewriter correction fluid and industrial cleaners. It is a common environmental contaminant, detected in over one-third of hazardous waste sites and in 10 percent of groundwater sources. Acute workplace exposure above acceptable levels can cause neurologic, respiratory and hepatic problems. The health effects of prolonged occupational and environmental low-level exposure are probably minimal, but whether such exposure poses a risk remains controversial. Although trichloroethylene has been shown to cause cancer in some animals, it has not been proven to be a human carcinogen. Trichloroethylene has been involved in several well-publicized cases of contamination of community water supplies, and family physicians are likely to receive questions about this chemical.22 references.

Campos-Outcalt, D. (University of Arizona College of Medicine, Tucson (United States))

1992-08-01

50

Pharmacological classification of the abuse-related discriminative stimulus effects of trichloroethylene vapor  

PubMed Central

Inhalants are distinguished as a class primarily based upon a shared route of administration. Grouping inhalants according to their abuse-related in vivo pharmacological effects using the drug discrimination procedure has the potential to provide a more relevant classification scheme to the research and treatment community. Mice were trained to differentiate the introceptive effects of the trichloroethylene vapor from air using an operant procedure. Trichloroethylene is a chlorinated hydrocarbon solvent once used as an anesthetic as well as in glues and other consumer products. It is now primarily employed as a metal degreaser. We found that the stimulus effects of trichloroethylene were similar to those of other chlorinated hydrocarbon vapors, the aromatic hydrocarbon toluene and the vapor anesthetics methoxyflurane and isoflurane. The stimulus effects of trichloroethylene overlapped with those of the barbiturate methohexital, to a lesser extent the benzodiazepine midazolam and to ethanol. NMDA antagonists, the kappa opioid agonist U50,488 and the mixed 5-HT agonist mCPP largely failed to substitute for trichloroethylene. These data suggest that stimulus effects of chlorinated hydrocarbon vapors are mediated at least partially by GABAA receptor positive modulatory effects. PMID:25202471

Shelton, Keith L.; Nicholson, Katherine L.

2014-01-01

51

Health Assessment Document for Tetrachloroethylene (Perchloroethylene) (Final Report)  

EPA Science Inventory

Tetrachloroethylene (PCE) is a volatile solvent with important commercial applications. It has been detected in the ambient air of a variety of urban and nonurban areas of the United States. It has less frequently been detected in water but has been monitored generally at levels ...

52

SURFACTANT ENHANCED REMEDIATION OF SOIL COLUMNS CONTAMINATED BY RESIDUAL TETRACHLOROETHYLENE  

EPA Science Inventory

The ability of aqueous surfactant solutions to recover tetrachloroethylene (PCE) entrapped in Ottawa sand was evaluated in four column experiments. Residual PCE was emplaced by injecting 14C-labeled PCE into water-saturated soil columns and displacing the free product ...

53

SURFACTANT ENHANCED REMEDIATION OF SOIL COLUMNS CONTAMINATED BY RESIDUAL TETRACHLOROETHYLENE  

EPA Science Inventory

The ability of aqueous surfactant solutions to recover tetrachloroethylene (PCE) entrapped in Ottawa and was evaluated in four column experiments. esidual PCE was emplaced by injecting 14 C-labeled PCE into water-saturated soil columns and displacing the free product with water. ...

54

Trichloroethylene and cancer: epidemiologic evidence.  

PubMed Central

Trichloroethylene is an organic chemical that has been used in dry cleaning, for metal degreasing, and as a solvent for oils and resins. It has been shown to cause liver and kidney cancer in experimental animals. This article reviews over 80 published papers and letters on the cancer epidemiology of people exposed to trichloroethylene. Evidence of excess cancer incidence among occupational cohorts with the most rigorous exposure assessment is found for kidney cancer (relative risk [RR] = 1.7, 95% confidence interval [CI] 1.1-2.7), liver cancer (RR = 1.9, 95% CI(1.0-3.4), and non-Hodgkin's lymphoma (RR = 1.5, 95% CI 0.9-2.3) as well as for cervical cancer, Hodgkin's disease, and multiple myeloma. However, since few studies isolate trichloroethylene exposure, results are likely confounded by exposure to other solvents and other risk factors. Although we believe that solvent exposure causes cancer in humans and that trichloroethylene likely is one of the active agents, we recommend further study to better specify the specific agents that confer this risk and to estimate the magnitude of that risk. PMID:10807550

Wartenberg, D; Reyner, D; Scott, C S

2000-01-01

55

TCE degradation by toluene/benzene monooxygenase of Pseudomonas aeruginosa JI104 and Escherichia coli recombinant  

SciTech Connect

Pseudomonas aeruginosa JI104 incorporates more than three degradation pathways for aromatic compounds such as benzene, toluene, and xylene. A dioxygenase and two monooxygenases were cloned in Escherichia coli XL1-Blue. The dioxygenase yielding cis-toluene dihydrodiol and one of the monooxygenases producing o-cresol from toluene did not exhibit conspicuous activity in trichloroethylene (TCE) oxygenation, although DNA sequencing proved that the former enzyme was an isozyme of toluene dioxygenase of the known TCE decomposer P.putida F1. The other toluene/benzene monooxygenase that could generate o-, m-, and p-cresol simultaneously from toluene showed TCE oxygenation activity resulting in TCE decomposition in E. coli. The activity was inhibited competitively by toluene, ethylbenzene, and o- and m-xylene: their inhibition constants were greater than those of propylbenzene and p-xylene. When the E. coli recombinant harboring the monooxygenase was induced by isopropyl {beta}-D-thiogalactopyranoside (IPTG) and incubated in the absence of toluene, TCE degradation activity decreased during incubation, compared to that with toluene. Toluene probably controlled the lifetime of the enzyme.

Koizumi, Junichi [National Univ. of Yokohama (Japan). Div. of Bioengineering; Kitayama, Atsushi [Univ. of Tokyo (Japan). Dept. of Biochemistry and Biotechnology

1995-12-31

56

Surfactant enhanced remediation of soil columns contaminated by residual tetrachloroethylene  

Microsoft Academic Search

The ability of aqueous surfactant solutions to recover tetrachloroethylene (PCE) entrapped in Ottawa sand was evaluated in four column experiments. Residual PCE was emplaced by injecting (14)C-labeled PCE into water-saturated soil columns and displacing the free product with water. Miscible displacement experiments were conducted before and after PCE entrapment to determine the influence or residual PCE on column dispersivities. The

K. D. Pennell; M. Jin; L. M. Abriola; G. A. Pope

1994-01-01

57

Cytotoxicity Associated with Trichloroethylene Oxidation in Burkholderia cepacia G4  

PubMed Central

The effects of trichloroethylene (TCE) oxidation on toluene 2-monooxygenase activity, general respiratory activity, and cell culturability were examined in the toluene-oxidizing bacterium Burkholderia cepacia G4. Nonspecific damage outpaced inactivation of toluene 2-monooxygenase in B. cepacia G4 cells. Cells that had degraded approximately 0.5 ?mol of TCE (mg of cells?1) lost 95% of their acetate-dependent O2 uptake activity (a measure of general respiratory activity), yet toluene-dependent O2 uptake activity decreased only 35%. Cell culturability also decreased upon TCE oxidation; however, the extent of loss varied greatly (up to 3 orders of magnitude) with the method of assessment. Addition of catalase or sodium pyruvate to the surfaces of agar plates increased enumeration of TCE-injured cells by as much as 100-fold, indicating that the TCE-injured cells were ultrasensitive to oxidative stress. Cell suspensions that had oxidized TCE recovered the ability to grow in liquid minimal medium containing lactate or phenol, but recovery was delayed substantially when TCE degradation approached 0.5 ?mol (mg of cells?1) or 66% of the cells' transformation capacity for TCE at the cell density utilized. Furthermore, among B. cepacia G4 cells isolated on Luria-Bertani agar plates from cultures that had degraded approximately 0.5 ?mol of TCE (mg of cells?1), up to 90% were Tol? variants, no longer capable of TCE degradation. These results indicate that a toxicity threshold for TCE oxidation exists in B. cepacia G4 and that once a cell suspension has exceeded this toxicity threshold, the likelihood of reestablishing an active, TCE-degrading biomass from the cells will decrease significantly. PMID:11319088

Yeager, Chris M.; Bottomley, Peter J.; Arp, Daniel J.

2001-01-01

58

Human Health Effects of Tetrachloroethylene: Key Findings and Scientific Issues  

PubMed Central

Background: The U.S. Environmental Protection Agency (EPA) completed a toxicological review of tetrachloroethylene (perchloroethylene, PCE) in February 2012 in support of the Integrated Risk Information System (IRIS). Objectives: We reviewed key findings and scientific issues regarding the human health effects of PCE described in the U.S. EPA’s Toxicological Review of Tetrachloroethylene (Perchloroethylene). Methods: The updated assessment of PCE synthesized and characterized a substantial database of epidemiological, experimental animal, and mechanistic studies. Key scientific issues were addressed through modeling of PCE toxicokinetics, synthesis of evidence from neurological studies, and analyses of toxicokinetic, mechanistic, and other factors (tumor latency, severity, and background rate) in interpreting experimental animal cancer findings. Considerations in evaluating epidemiological studies included the quality (e.g., specificity) of the exposure assessment methods and other essential design features, and the potential for alternative explanations for observed associations (e.g., bias or confounding). Discussion: Toxicokinetic modeling aided in characterizing the complex metabolism and multiple metabolites that contribute to PCE toxicity. The exposure assessment approach—a key evaluation factor for epidemiological studies of bladder cancer, non-Hodgkin lymphoma, and multiple myeloma—provided suggestive evidence of carcinogenicity. Bioassay data provided conclusive evidence of carcinogenicity in experimental animals. Neurotoxicity was identified as a sensitive noncancer health effect, occurring at low exposures: a conclusion supported by multiple studies. Evidence was integrated from human, experimental animal, and mechanistic data sets in assessing adverse health effects of PCE. Conclusions: PCE is likely to be carcinogenic to humans. Neurotoxicity is a sensitive adverse health effect of PCE. Citation: Guyton KZ, Hogan KA, Scott CS, Cooper GS, Bale AS, Kopylev L, Barone S Jr, Makris SL, Glenn B, Subramaniam RP, Gwinn MR, Dzubow RC, Chiu WA. 2014. Human health effects of tetrachloroethylene: key findings and scientific issues. Environ Health Perspect 122:325–334;?http://dx.doi.org/10.1289/ehp.1307359 PMID:24531164

Hogan, Karen A.; Scott, Cheryl Siegel; Cooper, Glinda S.; Bale, Ambuja S.; Kopylev, Leonid; Barone, Stanley; Makris, Susan L.; Glenn, Barbara; Subramaniam, Ravi P.; Gwinn, Maureen R.; Dzubow, Rebecca C.; Chiu, Weihsueh A.

2014-01-01

59

Systematic Literature Review of Uses and Levels of Occupational Exposure to Tetrachloroethylene  

Microsoft Academic Search

Tetrachloroethylene has been one of the most widely used chlorinated solvents in the United States. This review provides a basis for tetrachloroethylene exposure assessment in population-based case-control studies. We performed literature searches in MEDLINE, TOXLINE, NIOSHTIC, and the NIOSH Health Hazard Evaluation databases using relevant search terms. We calculated weighted arithmetic means from the measurement data and compiled these into

Laura S. Gold; Anneclaire J. De Roos; Martha Waters; Patricia Stewart

2008-01-01

60

Death due to acute tetrachloroethylene intoxication in a chronic abuser.  

PubMed

Volatile substances are used widespread, especially among young people, as a cheap and easily accessible drug. Tetrachloroethylene is one of the solvents exerting effects on the central nervous system with experiences of disinhibition and euphoria. The case presented is that of a 27-year-old female, found dead by her father at home with cotton swabs dipped in the nostrils. She was already known for this type of abuse and previously admitted twice to the hospital for nonfatal acute poisonings. The swabs were still soaked in tetrachloroethylene. Toxicological and histological investigations demonstrated the presence of an overlap between chronic intake of the substance (with high concentrations in sites of accumulation, e.g., the adipose tissue, and contemporary tissue damage, as histologically highlighted) and acute intoxication as final cause of death, with a concentration of 158 mg/L in cardiac blood and 4915 mg/kg in the adipose tissue. No other drugs or medicines were detected in body fluids or tissues, and to our knowledge, this is the highest concentration ever detected in forensic cases. This peculiar case confirms the toxicity of this substance and focuses on the importance of complete histological and toxicological investigations in the distinction between chronic abuse and acute intoxication. PMID:25605280

Amadasi, Alberto; Mastroluca, Lavinia; Marasciuolo, Laura; Caligara, Marina; Sironi, Luca; Gentile, Guendalina; Zoja, Riccardo

2015-05-01

61

DECHLORINATION OF TRICHLOROETHYLENE USING ELECTROCHEMICAL METHODS  

EPA Science Inventory

Electrochemical degradation (ECD) is used to decontaminate organic and inorganic contaminants through oxidative or reductive processes. The ECD of Trichloroethylene (TCE) dechlorinates TCE through electric reduction. TCE dechlorination presented in the literature utilized electro...

62

Cometabolic degradation of trichloroethylene by Burkholderia cepacia G4 with poplar leaf homogenate.  

PubMed

Trichloroethylene (TCE), a chlorinated organic solvent, is one of the most common and widespread groundwater contaminants worldwide. Among the group of TCE-degrading aerobic bacteria, Burkholderia cepacia G4 is the best-known representative. This strain requires the addition of specific substrates, including toluene, phenol, and benzene, to induce the enzymes to degrade TCE. However, the substrates are toxic and introducing them into the soil can result in secondary contamination. In this study, poplar leaf homogenate containing natural phenolic compounds was tested for the ability to induce the growth of and TCE degradation by B. cepacia G4. The results showed that the G4 strain could grow and degrade TCE well with the addition of phytochemicals. The poplar leaf homogenate also functioned as an inducer of the toluene-ortho-monooxygenase (TOM) gene in B. cepacia G4. PMID:24992516

Kang, Jun Won; Doty, Sharon Lafferty

2014-07-01

63

Benzene and toluene biodegradation down gradient of a zero-valent iron permeable reactive barrier.  

PubMed

This study simulated benzene and toluene biodegradation down gradient of a zero-valent iron permeable reactive barrier (ZVI PRB) that reduces trichloroethylene (TCE). The effects of elevated pH (10.5) and the presence of a common TCE dechlorination by product [cis-1,2-dichloroethene (cis-1,2-DCE)] on benzene and toluene biodegradation were evaluated in batch experiments. The data suggest that alkaline pH (pH 10.5), often observed down gradient of ZVI PRBs, inhibits Fe(III)-mediated biotransformation of both benzene and toluene. Removal was reduced by 43% for benzene and 26% for toluene as compared to the controls. The effect of the addition of cis-1,2-DCE on benzene and toluene biodegradation was positive and resulted in removal that was greater than or equal to the controls. These results suggest that, at least for cis-1,2-DCE, its formation may not be toxic to iron-reducing benzene and toluene degrading bacteria; however, for microbial benzene and toluene removal down gradient of a ZVI PRB, it may be necessary to provide pH control, especially in the case of a biological PRB that is downstream from a ZVI PRB. PMID:21316847

Chen, Liang; Liu, Fei; Liu, Yulong; Dong, Hongzhong; Colberg, Patricia J S

2011-04-15

64

RESPONSE TO ISSUES AND DATA SUBMISSIONS ON THE CARCINOGENICITY OF TETRACHLOROETHYLENE (PERCHLOROETHYLENE)  

EPA Science Inventory

The scientific debate over the potential carcinogenicity of tetrachloroethylene (perchloroethylene, perc, PCE) spans several years. his document reviews the issues considered by the EPA's Science Advisory Board (SAB) during its review of the Draft Addendum to the Health Assessmen...

65

Solubilization of trichloroethylene by N-hexadecylpyridinium chloride micelles  

SciTech Connect

An automated vapor pressure method has been used to obtain solubilization isotherms for trichloroethylene (TCE) in N-hexadecylpyridinium chloride (CPC) micelles, throughout a wide range of solute activities and at temperatures varying from 15 to 45[degree]C. The simple empirical expression K = K[sub 0](1 - [alpha]X + [beta]X[sup 2]) is used to correlate the solubilization equilibrium constant (K) with the mole fraction of TCE in the micelles (X) at each temperature. The solubilization equilibrium constant has a maximum value at approximately 30[degree]C, the temperature at which the solubility of TCE in water is a minimum. Activity coefficients are also reported for TCE in the micelle; these values increase slightly with increasing mole fraction of TCE. The general solubilization behavior of TCE in CPC micelles resembles that of benzene or toluene in CPC, suggesting that TCE solubilizes in ionic micelles both within the hydrocarbon micellar interior and near the micellar surface. The values of [alpha] for TCE are much smaller than those for phenol and phenol derivatives, indicating that TCE is not as tightly anchored in the head group region of the CPC micelles as are more polar solutes such as phenol and chlorinated phenols. With increasing temperature, the tendency of TCE to solubilize within the hydrocarbon core region of the micelles increases, relative to its tendency to solubilize in the micellar surface region. 31 refs., 7 figs., 1 tab.

Uchiyama, Hirotaka; Tucker, E.E.; Christian, S.D.; Scamehorn, J.F. (Univ. of Oklahoma, Norman, OK (United States))

1994-02-10

66

Prenatal and Early Childhood Exposure to Tetrachloroethylene and Adult Vision  

PubMed Central

Background: Tetrachloroethylene (PCE; or perchloroethylene) has been implicated in visual impairments among adults with occupational and environmental exposures as well as children born to women with occupational exposure during pregnancy. Objectives: Using a population-based retrospective cohort study, we examined the association between prenatal and early childhood exposure to PCE-contaminated drinking water on Cape Cod, Massachusetts, and deficits in adult color vision and contrast sensitivity. Methods: We estimated the amount of PCE that was delivered to the family residence from participants’ gestation through 5 years of age. We administered to this now adult study population vision tests to assess acuity, contrast sensitivity, and color discrimination. Results: Participants exposed to higher PCE levels exhibited lower contrast sensitivity at intermediate and high spatial frequencies compared with unexposed participants, although the differences were generally not statistically significant. Exposed participants also exhibited poorer color discrimination than unexposed participants. The difference in mean color confusion indices (CCI) was statistically significant for the Farnsworth test but not Lanthony’s D-15d test [Farnsworth CCI mean difference = 0.05, 95% confidence interval (CI): 0.003, 0.10; Lanthony CCI mean difference = 0.07, 95% CI: –0.02, 0.15]. Conclusions: Prenatal and early childhood exposure to PCE-contaminated drinking water may be associated with long-term subclinical visual dysfunction in adulthood, particularly with respect to color discrimination. Further investigation of this association in similarly exposed populations is necessary. PMID:22784657

Getz, Kelly D.; Janulewicz, Patricia A.; Rowe, Susannah; Weinberg, Janice M.; Winter, Michael R.; Martin, Brett R.; Vieira, Veronica M.; White, Roberta F.

2012-01-01

67

Indoor tetrachloroethylene levels and determinants in Paris dwellings.  

PubMed

There is growing public health concern about indoor air quality. Tetrachloroethylene (PERC), a chlorinated volatile organic compound widely used as a solvent in dry cleaning facilities, can be a residential indoor air pollutant. As part of an environmental investigation included in the PARIS (Pollution and asthma Risk: an Infant Study) birth cohort, this study firstly aimed to document domestic PERC levels, and then to identify the factors influencing these levels using standardized questionnaires about housing characteristics and living conditions. Air samples were collected in the child's bedroom over one week using passive devices when infants were 1, 6, 9, and 12 months. PERC was identified and quantified by gas chromatography/mass spectrometry. PERC annual domestic level was calculated by averaging seasonal levels. PERC was omnipresent indoors, annual levels ranged from 0.6 to 124.2 ?g/m3. Multivariate linear and logistic regression models showed that proximity to dry cleaning facilities, do-it-yourself activities (e.g.: photographic development, silverware), presence of air vents, and building construction date (<1945) were responsible for higher domestic levels of PERC. This study, conducted in an urban context, provides helpful information on PERC contamination in dwellings, and identifies parameters influencing this contamination. PMID:23127492

Roda, Célina; Kousignian, Isabelle; Ramond, Anna; Momas, Isabelle

2013-01-01

68

Test Pile Reactivity Loss Due to Trichloroethylene  

SciTech Connect

The presence of trichloroethylene in the test pile caused a continual decrease in pile reactivity. A system which removed, purified, and returned 12,000 cfh helium to the pile has held contamination to a negligible level and has permitted normal pile operation.

Plumlee, K.E.

2001-03-09

69

Silylene- and disilyleneacetylene polymers from trichloroethylene  

DOEpatents

Organosilane polymers having recurring silyleneacetylene and/or disilyleneacetylene units are prepared in a one-pot synthesis from trichloroethylene. Depending on the organic substituents (R and R'), these polymers have useful film-forming properties, and are converted to the ceramic, silicon carbide upon heating in very uniform high yields. They can also be pulled into fibers.

Barton, Thomas J. (Ames, IA); Ijadi-Maghsoodi, Sina (Ames, IA)

1990-07-10

70

Systematic literature review of uses and levels of occupational exposure to tetrachloroethylene.  

PubMed

Tetrachloroethylene has been one of the most widely used chlorinated solvents in the United States. This review provides a basis for tetrachloroethylene exposure assessment in population-based case-control studies. We performed literature searches in MEDLINE, TOXLINE, NIOSHTIC, and the NIOSH Health Hazard Evaluation databases using relevant search terms. We calculated weighted arithmetic means from the measurement data and compiled these into three summary tables by type of operation: (1) dry cleaning, (2) degreasing, and (3) other operations. We identified 258 relevant documents, of which 179 (69%) contained useful descriptive information. Within the dry cleaning industry, the overall arithmetic mean (AM) for personal tetrachloroethylene exposures was 59 ppm (range: 0-4636, n = 1395). Machine operators who transferred wet garments to a dryer had the highest levels (AM = 150 ppm [range: 0-1000, n = 441]) of the jobs in this industry. The AM for personal measurements associated with degreasing was 95 ppm (range: 0-1800, n = 206). In addition, we identified several other sources of substantial tetrachloroethylene exposure, including cleaning mining equipment, testing coal, cleaning animal coats in taxidermy, and cleaning and duplicating film. Exposure assessment in population-based, case-control studies is a complex process requiring substantial resources. Researchers conducting these types of studies will be able to use results of the measurements to quantify tetrachloroethylene exposure levels for various jobs. PMID:18949603

Gold, Laura S; De Roos, Anneclaire J; Waters, Martha; Stewart, Patricia

2008-12-01

71

Role of water and other H-rich additives in the catalytic combustion of 1,2-dichloroethane and trichloroethylene.  

PubMed

In several practical applications gas streams containing chlorinated volatile organic compounds with variable chemical nature (namely, 1,2-dichloroethane and trichloroethylene) and a significant moisture content (15000ppm) must be addressed. In this paper the control of such emissions by catalytic oxidation over Ce/Zr mixed oxides was analysed. Results in terms of activity and selectivity were compared with those obtained when other H-rich additives (1000ppm), such as hexane or toluene, were fed. High activity was found from mixed oxides featuring a suitable combination of a large population of acid sites, easily accessible oxygen species, and hydrophobic nature attributable to cerium content. The presence of additional H-rich compounds in the feed stream (water, toluene or hexane) tended to decrease the catalytic activity due to the blockage and/or competition for actives sites. However, the increased presence of hydrogen atoms in the stream notably promoted the selectivity to hydrogen chloride instead of molecular chlorine. PMID:19278711

de Rivas, Beatriz; López-Fonseca, Rubén; Gutiérrez-Ortiz, Miguel A; Gutiérrez-Ortiz, José I

2009-06-01

72

Tetrachloroethylene Exposure and Bladder Cancer Risk: A Meta-Analysis of Dry-Cleaning-Worker Studies  

PubMed Central

Background: In 2012, the International Agency for Research on Cancer classified tetrachloroethylene, used in the production of chemicals and the primary solvent used in dry cleaning, as “probably carcinogenic to humans” based on limited evidence of an increased risk of bladder cancer in dry cleaners. Objectives: We assessed the epidemiological evidence for the association between tetrachloroethylene exposure and bladder cancer from published studies estimating occupational exposure to tetrachloroethylene or in workers in the dry-cleaning industry. Methods: Random-effects meta-analyses were carried out separately for occupational exposure to tetrachloroethylene and employment as a dry cleaner. We qualitatively summarized exposure–response data because of the limited number of studies available. Results: The meta-relative risk (mRR) among tetrachloroethylene-exposed workers was 1.08 (95% CI: 0.82, 1.42; three studies; 463 exposed cases). For employment as a dry cleaner, the overall mRR was 1.47 (95% CI: 1.16, 1.85; seven studies; 139 exposed cases), and for smoking-adjusted studies, the mRR was 1.50 (95% CI: 0.80, 2.84; 4 case–control studies). Conclusions: Our meta-analysis demonstrates an increased risk of bladder cancer in dry cleaners, reported in both cohort and case–control studies, and some evidence for an exposure–response relationship. Although dry cleaners incur mixed exposures, tetrachloroethylene could be responsible for the excess risk of bladder cancer because it is the primary solvent used and it is the only chemical commonly used by dry cleaners that is currently identified as a potential bladder carcinogen. Relatively crude approaches in exposure assessment in the studies of “tetrachloroethylene-exposed workers” may have attenuated the relative risks. Citation: Vlaanderen J, Straif K, Ruder A, Blair A, Hansen J, Lynge E, Charbotel B, Loomis D, Kauppinen T, Kyyronen P, Pukkala E, Weiderpass E, Guha N. 2014. Tetrachloroethylene exposure and bladder cancer risk: a meta-analysis of dry-cleaning-worker studies. Environ Health Perspect 122:661–666;?http://dx.doi.org/10.1289/ehp.1307055 PMID:24659585

Vlaanderen, Jelle; Straif, Kurt; Ruder, Avima; Blair, Aaron; Hansen, Johnni; Lynge, Elsebeth; Charbotel, Barbara; Loomis, Dana; Kauppinen, Timo; Kyyronen, Pentti; Pukkala, Eero; Weiderpass, Elisabete

2014-01-01

73

Acute and chronic toxicity of some chlorinated benzenes, chlorinated ethanes, and tetrachloroethylene to Daphnia magna  

Microsoft Academic Search

Chronic effect and no effect concentrations (28 day) and acute toxicity (48 hr, LC50 and EC50) values were determined forDaphnia magna with some chlorinated benzenes, chlorinated ethanes, and tetrachloroethylene. Acute and chronic toxicity generally increased with the degree of chlorine substitution with these chemicals. The 48 hr LC50 values for hexachloroethane, pentachloroethane, 1,1,2,2-tetrachloroethane, 1,1,2-trichloroethane, 1,2-dichloroethane, 1,2,4-trichlorobenzene, 1,3-dichlorobenzene, and tetrachloroethylene were

Joseph E. Richter; Steven F. Peterson; Charles E Kleinert

1983-01-01

74

Removal of gaseous trichloroethylene (TCE) in a composite membrane biofilm reactor.  

PubMed

A membrane biofilm reactor (MBfR) was investigated for the degradation of trichloroethylene (TCE) vapors inoculated by Burkholderia vietnamiensis G4. Toluene (TOL) was used as the primary substrate. The MBfR was loaded sequentially with TOL, TCE (or both) during 110 days. In this study, a maximum steady-state TCE removal efficiency of 23% and a maximum volumetric elimination capacity (EC) of 2.1 g m(-3) h(-1) was achieved. A surface area based maximum elimination capacity (EC(m)) of 4.2 × 10(-3) g m(-2) h(-1) was observed, which is 2-10 times higher than reported in other gas phase biological treatment studies. However, further research is needed to optimize the TCE feeding cycle and to evaluate the inhibiting effects of TCE and its intermediates on TOL biodegradation. PMID:22486674

Kumar, Amit; Vercruyssen, Aline; Dewulf, Jo; Lens, Piet; Van Langenhove, Herman

2012-01-01

75

Acute toxicity of trichloroethylene to saltwater organisms  

Microsoft Academic Search

Trichloroethylene (TCE) is a chlorinated aliphatic hydrocarbon primarily utilized for vapor-phase degreasing in the fabricated metals industry. Other applications include cold-metal cleaning and use in the manufacture of organic chemicals. TCE enters the environment as a result of volatilization during its production and through its industrial uses. TCE has been detected in aquatic environments and organisms at part-per-trillion (pptr) concentrations.

G. S. Ward; A. J. Tolmsoff; S. R. Petrocelli

1986-01-01

76

A new bacterial biosensor for trichloroethylene detection based on a three-dimensional carbon nanotubes bioarchitecture.  

PubMed

Trichloroethylene (TCE), a suspected human carcinogen, is one of the most common volatile groundwater contaminants. Many different methodologies have already been developed for the determination of TCE and its degradation products in water, but most of them are costly, time-consuming and require well-trained operators. In this work, a fast, sensitive and miniaturised whole cell conductometric biosensor was developed for the determination of trichloroethylene. The biosensor assembly was prepared by immobilising Pseudomonas putida F1 bacteria (PpF1) at the surface of gold interdigitated microelectrodes through a three-dimensional alkanethiol self-assembly monolayer/carbon nanotube architecture functionalised with Pseudomonas antibodies. The biosensor response was linear from 0.07 to 100 ?M of TCE (9-13,100 ?g?L(-1)). No significant loss of the enzymatic activity was observed after 5 weeks of storage at 4 °C in the M457 pH 7 defined medium (two or three measurements per week). Ninety-two per cent of the initial signal still remained after 7 weeks. The biosensor response to TCE was not significantly affected by cis-1,2-dichloroethylene and vinyl chloride and, in a limited way, by phenol. Toluene was the major interference found. The bacterial biosensor was successfully applied to the determination of TCE in spiked groundwater samples and in six water samples collected in an urban industrial site contaminated with TCE. Gas chromatography-mass spectrometric analysis of these samples confirmed the biosensor measurements. PMID:21052645

Hnaien, Mouna; Lagarde, Florence; Bausells, Joan; Errachid, Abdelhamid; Jaffrezic-Renault, Nicole

2011-05-01

77

Induction of toluene oxidation activity in Pseudomonas mendocina KR1 and Pseudomonas sp. strain ENVPC5 by chlorinated solvents and alkanes.  

PubMed

Toluene oxidation activity in Pseudomonas mendocina KR1 and Pseudomonas sp. strain ENVPC5 was induced by trichloroethylene (TCE), and induction was followed by the degradation of TCE. Higher levels of toluene oxidation activity were achieved in the presence of a supplemental growth substrate such as glutamate, with levels of activity of up to 86% of that observed with toluene-induced cells. Activity in P. mendocina KR1 was also induced by cis-1,2-dichloroethylene, perchloroethylene, chloroethane, hexane, pentane, and octane, but not by trans-1,2-dichloroethylene. Toluene oxidation was not induced by TCE in Burkholderia (Pseudomonas) cepacia G4, P. putida F1, Pseudomonas sp. strain ENV110, or Pseudomonas sp. strain ENV113. PMID:7574658

McClay, K; Streger, S H; Steffan, R J

1995-09-01

78

Kinetics of tetrachloroethylene in volunteers; influence of exposure concentration and work load  

Microsoft Academic Search

Six male volunteers were exposed for 4 h to 72 ppm tetrachloroethylene (PERC) at rest, to 144 ppm PERC at rest, and to 142 ppm PERC at rest combined with work load (2 times 30 min, 100 W). Minute volume and concentrations in exhaled air were measured to estimate the uptake. Concentrations of PERC and trichloroacetic acid (TCA) were determined

A. C. Monster; G. Boersma; H. Steenweg

1979-01-01

79

SUBCHRONIC TOXICITY OF TETRACHLOROETHYLENE (PERCHLOROETHYLENE) ADMINISTERED IN THE DRINKING WATER OF RATS  

EPA Science Inventory

The study provides data on the effects of tetrachloroethylene in drinking solutions. The acute oral LD(50) was determined in male and female Charles River rats and found to be 3835 mg/kg for males and 3005 mg/kg for females. Male and female rats received theoretical daily doses o...

80

ACUTE AND CHRONIC TOXICITY OF SOME CHLORINATED BENZENES, CHLORINATED ETHANES, AND TETRACHLOROETHYLENE TO 'DAPHNIA MAGNA'  

EPA Science Inventory

Chronic effect and no effect concentrations (28 day) and acute toxicity (48 hr, LC50 and EC50) values were determined for Daphnia magna with some chlorinated benzenes, chlorinated ethanes, and tetrachloroethylene. Acute and chronic toxicity generally increased with the degree of ...

81

Prenatal Exposure to Tetrachloroethylene-Contaminated Drinking Water and the Risk of Adverse Birth Outcomes  

Microsoft Academic Search

Background: Prior studies of prenatal exposure to tetrachloroethylene (PCE) have shown mixed results regarding its effect on birth weight and gestational age. Objectives: In this retrospective cohort study we examined whether PCE contamination of public drinking-water supplies in Massachusetts influenced the birth weight and gestational duration of children whose mothers were exposed before the child's delivery. Methods: The study included

Ann Aschengrau; Janice Weinberg; Sarah Rogers; Lisa Gallagher; Michael Winter; Veronica Vieira; Thomas Webster; David Ozonoff

2008-01-01

82

EVALUATION OF GEOPHYSICAL METHODS FOR THE DETECTION OF SUBSURFACE TETRACHLOROETHYLENE (PCE) IN CONTROLLED SPILL EXPERIMENTS  

EPA Science Inventory

Tetrachloroethylene (PCE), typically used as a dry cleaning solvent, is a predominant contaminant in the subsurface at Superfund Sites. PCE is a dense non-aqueous phase liquid (DNAPL) that migrates downward into the earth, leaving behind areas of residual saturation and free prod...

83

Continuous Determination of High-Vapor Phase Concentrations of Tetrachloroethylene Using On-Line Mass Spectrometry  

EPA Science Inventory

A method was developed to determine the vapor concentration of tetrachloroethylene (PCE) at and below its equilibrium vapor phase concentration, 168,000 µg/L (25°C). Vapor samples were drawn by vacuum into a six-port sampling valve and injected through a jet separator into an io...

84

Pulmonary reactions caused by welding-induced decomposed trichloroethylene  

SciTech Connect

This is the report of a welder who performed argon-shielded electric arc welding in an atmosphere containing trichloroethylene. He developed immediate respiratory symptoms, pulmonary edema 12 hours after exposure, and recurring dyspnea ten days after exposure. These pulmonary reactions might be explained by inhalation of decomposition products of trichloroethylene such as dichloroacetyl chloride and phosgene.

Sjoegren, B.P.; Plato, N.; Alexandersson, R.; Eklund, A.; Falkenberg, C. (Karolinska Hospital, Stockholm (Sweden))

1991-01-01

85

Pulmonary reactions caused by welding-induced decomposed trichloroethylene.  

PubMed

This is the report of a welder who performed argon-shielded electric arc welding in an atmosphere containing trichloroethylene. He developed immediate respiratory symptoms, pulmonary edema 12 hours after exposure, and recurring dyspnea ten days after exposure. These pulmonary reactions might be explained by inhalation of decomposition products of trichloroethylene such as dichloroacetyl chloride and phosgene. PMID:1984962

Sjögren, B; Plato, N; Alexandersson, R; Eklund, A; Falkenberg, C

1991-01-01

86

Determination of methylene chloride, ethylene dichloride, and trichloroethylene as solvent residues in spice oleoresins, using vacuum distillation and electron capture gas chromatography.  

PubMed

A quantitative gas chromatographic (GC) method is described for the determination of residual methylene chloride, ethylene dichloride, and trichloroethylene in spice oleoresins. The proposed method involves vacuum distillation in a closed system with toluene as a carrier solvent. Quantitation by electron capture GC on Porapak Q is facilitated by water extraction and by the addition of trans-1,2-dichloroethylene as an internal standard. Recoveries from oleoresins spiked at 30, 15, and 6 ppm ranged from 93 to 102%. To assess the possibility of interference from spice volatiles, the procedure was applied to 17 different spice oleoresins from 3 different manufacturers. No interferences were found, but methylene chloride levels up to 83 ppm and ethylene dichloride levels up to 23 ppm were detected. Trichloroethylene was not detected in any of the oleoresins. PMID:1158825

Page, B D; Kennedy, B P

1975-09-01

87

Acute toxicity of trichloroethylene to saltwater organisms  

SciTech Connect

Trichloroethylene (TCE) is a chlorinated aliphatic hydrocarbon primarily utilized for vapor-phase degreasing in the fabricated metals industry. Other applications include cold-metal cleaning and use in the manufacture of organic chemicals. TCE enters the environment as a result of volatilization during its production and through its industrial uses. TCE has been detected in aquatic environments and organisms at part-per-trillion (pptr) concentrations. Although TCE is indicated to be widely distributed, relatively limited data exist on the acute effects of TCE on aquatic organisms, especially saltwater species. Results of static acute tests of TCE with a saltwater alga, invertebrate, and fish are reported here to enhance the data base.

Ward, G.S.; Tolmsoff, A.J.; Petrocelli, S.R.

1986-12-01

88

Subchronic toxicity of tetrachloroethylene (perchloroethylene) administered in the drinking water of rats  

SciTech Connect

This study provides data on the effects of tetrachloroethylene in drinking solutions. The acute oral LD50 in male and female Charles River rats was found to be 3835 mg/kg for males and 3005 mg/kg for females. Male and female rats received theoretical daily doses of 14,400, and 1400 mg tetrachloroethylene/kg body wt/day for 90 consecutive days. There were no compound-related deaths. Body weights were significantly lower in male and female rats at the higher doses. There were no consistent dose-related effects on any of the hematological, clinical chemistry, or urinalysis parameters. 5'-Nucleotidase activity was increased in a dose-dependent manner, suggesting possible hepatotoxicity; however, other serum indicators of hepatic function were unaffected by the treatment. There were no gross pathological effects observed. Liver and kidney body weight ratios, but not brain weight ratios, were elevated at the higher doses. There was no other evidence of compound-related toxicity. These data suggest that exposure of humans to reported levels of tetrachloroethylene in drinking water (approximately 1 microgram/liter) does not constitute a serious health hazard.

Hayes, J.R.; Condie, L.W. Jr.; Borzelleca, J.F.

1986-07-01

89

Mineralization of Trichloroethylene by Heterotrophic Enrichment Cultures  

PubMed Central

Microbial consortia capable of aerobically degrading more than 99% of exogenous trichloroethylene (TCE) (50 mg/liter) were collected from TCE-contaminated subsurface sediments and grown in enrichment cultures. TCE at concentrations greater than 300 mg/liter was not degraded, nor was TCE used by the consortia as a sole energy source. Energy sources which permitted growth included tryptone-yeast extract, methanol, methane, and propane. The optimum temperature range for growth and subsequent TCE consumption was 22 to 37°C, and the pH optimum was 7.0 to 8.1. Utilization of TCE occurred only after apparent microbial growth had ceased. The major end products recovered were hydrochloric acid and carbon dioxide. Minor products included dichloroethylene, vinylidine chloride, and, possibly, chloroform. PMID:16347682

Fliermans, C. B.; Phelps, T. J.; Ringelberg, D.; Mikell, A. T.; White, D. C.

1988-01-01

90

Recurrent asthma induced by toluene diisocyanate.  

PubMed Central

A worker developed toluene diisocyanate induced asthma in 1974. On reassessment, 11 years after leaving the chemical plant where toluene diisocyanate was produced, he had no respiratory symptoms and normal bronchial reactivity in response to methacholine, and showed no reaction when challenged with a subirritant concentration of toluene diisocyanate. He developed asthma within five months of returning to the workplace. Repeat challenge testing showed bronchial hyperreactivity to methacholine and to the specific sensitising agent, toluene diisocyanate. This clinical pattern could be due to underlying toluene diisocyanate sensitivity with resolution and reappearance of hyperresponsiveness to methacholine and toluene diisocyanate reactivity associated with workplace toluene diisocyanate exposure. Alternatively, this worker may have developed sensitisation to toluene diisocyanate anew. PMID:2845598

Banks, D E; Rando, R J

1988-01-01

91

Ototoxicity of trichloroethylene in concentrations relevant for the working environment.  

PubMed

Organic solvents can cause hearing loss themselves or promote noise-induced hearing loss. The objective of this study was to review the literature on the effects of low-level exposure to trichloroethylene on the auditory system and consider its relevance for the occupational settings. Both human and animal investigations were evaluated only for realistic exposure concentrations based on the Quebec permissible exposure limits: 50 ppm 8-h time-weighed average exposure value (TWAEV) and 200 ppm short-term exposure value (STEV). In humans, the upper limit for considering ototoxicity data relevant to the occupational exposure situation was set at the STEV. Animal data were evaluated only for exposure concentrations up to 100 times the TWAEV. There is no convincing evidence of trichloroethylene-induced hearing losses in workers. In rats, trichloroethylene affects the auditory function mainly in the cochlear mid- to high-frequency range with a lowest observed adverse effect level (LOAEL) of 2000 ppm. No studies on ototoxic interaction after combined exposure to noise and trichloroethylene were identified in humans. In rats, supra-additive interaction was reported. Further studies with sufficient data on the trichloroethylene exposure of workers are necessary to make a definitive conclusion. In the interim, we recommend considering trichloroethylene as an ototoxic agent. PMID:18650250

Vyskocil, A; Leroux, T; Truchon, G; Lemay, F; Gagnon, F; Gendron, M; Viau, C

2008-03-01

92

Detection of Benzene, Toluene, Ethyl Benzene, and Xylenes (BTEX) Using Toluene Dioxygenase-Peroxidase Coupling Reactions  

E-print Network

Detection of Benzene, Toluene, Ethyl Benzene, and Xylenes (BTEX) Using Toluene Dioxygenase, whole-cell bioassay for the detection of bioavailable benzene, toluene, ethyl benzene, and xylenes (BTEX of the response obtained from the blank) of 10, 10, 20, and 50 µM was observed for benzene, toluene, ethyl benzene

Chen, Wilfred

93

Human variability and susceptibility to trichloroethylene.  

PubMed Central

Although humans vary in their response to chemicals, comprehensive measures of susceptibility have generally not been incorporated into human risk assessment. The U.S. EPA dose-response-based risk assessments for cancer and the RfD/RfC (reference dose-reference concentration) approach for noncancer risk assessments are assumed to protect vulnerable human subgroups. However, these approaches generally rely on default assumptions and do not consider the specific biological basis for potential susceptibility to a given toxicant. In an effort to focus more explicitly on this issue, this article addresses biological factors that may affect human variability and susceptibility to trichloroethylene (TCE), a widely used halogenated industrial solvent. In response to Executive Order 13045, which requires federal agencies to make protection of children a high priority in implementing their policies and to take special risks to children into account when developing standards, this article examines factors that may affect risk of exposure to TCE in children. The influence of genetics, sex, altered health state, coexposure to alcohol, and enzyme induction on TCE toxicity are also examined. PMID:10807552

Pastino, G M; Yap, W Y; Carroquino, M

2000-01-01

94

Current trends in trichloroethylene biodegradation: a review.  

PubMed

Over the past few years biodegradation of trichloroethylene (TCE) using different microorganisms has been investigated by several researchers. In this review article, an attempt has been made to present a critical summary of the recent results related to two major processes--reductive dechlorination and aerobic co-metabolism used for TCE biodegradation. It has been shown that mainly Clostridium sp. DC-1, KYT-1, Dehalobacter, Dehalococcoides, Desulfuromonas, Desulfitobacterium, Propionibacterium sp. HK-1, and Sulfurospirillum bacterial communities are responsible for the reductive dechlorination of TCE. Efficacy of bacterial communities like Nitrosomonas, Pseudomonas, Rhodococcus, and Xanthobacter sp. etc. for TCE biodegradation under aerobic conditions has also been examined. Mixed cultures of diazotrophs and methanotrophs have been used for TCE degradation in batch and continuous cultures (biofilter) under aerobic conditions. In addition, some fungi (Trametes versicolor, Phanerochaete chrysosporium ME-446) and Actinomycetes have also been used for aerobic biodegradation of TCE. The available information on kinetics of biofiltration of TCE and its degradation end-products such as CO2 are discussed along with the available results on the diversity of bacterial community obtained using molecular biological approaches. It has emerged that there is a need to use metabolic engineering and molecular biological tools more intensively to improve the robustness of TCE degrading microbial species and assess their diversity. PMID:23057686

Shukla, Awadhesh Kumar; Upadhyay, Siddh Nath; Dubey, Suresh Kumar

2014-06-01

95

Trichloroethylene degradation and mineralization by pseudomonads and Methylosinus trichosporium OB3b.  

PubMed

To examine the trichloroethylene (C2HCl3)-degrading capability of five microorganisms, the maximum rate, extent, and degree of C2HCl3 mineralization were evaluated for Pseudomonas cepacia G4, Pseudomonas cepacia G4 PR1, Pseudomonas mendocina KR1, Pseudomonas putida F1, and Methylosinus trichosporium OB3b using growth conditions commonly reported in the literature for expression of oxygenases responsible for C2HCl3 degradation. By varying the C2HCl3 concentration from 5 microM to 75 microM, Vmax and Km values for C2HCl3 degradation were calculated as 9 nmol/(min mg protein) and 4 microM for P. cepacia G4, 18 nmol/(min mg protein) and 29 microM for P. cepacia G4 PR1, 20 nmol/(min mg protein) and 10 microM for P. mendocina KR1, and 8 nmol/(min mg protein) and 5 microM for P. putida F1. This is the first report of these Michaelis-Menten parameters for P. mendocina KR1, P. putida F1, and P. cepacia G4 PR1. At 75 microM, the extent of C2HCl3 that was degraded after 6 h of incubation with resting cells was 61%-98%; the highest degradation being achieved by toluene-induced P. mendocina KR1. The extent of C2HCl3 mineralization in 6 h (as indicated by concentration of chloride ion) was also measured and varied from 36% for toluene-induced P. putida F1 to 102% for M. trichosporium OB3b. Since C2HCl3 degradation requires new bio-mass, the specific growth rate (mu max) of each of the C2HCl3-degradation microorganisms was determined and varied from 0.080/h (M. trichosporium OB3b) to 0.864/h (P. cepacia G4 PR1). PMID:8920197

Sun, A K; Wood, T K

1996-03-01

96

Human Health Risk Assessment of Trichloroethylene from Industrial Complex A  

PubMed Central

This study investigated the human health risks of trichloroethylene from Industrial Complex A. The excessive carcinogenic risks for central tendency exposure were 1.40 × 10?5 for male and female residents in the vicinity of Industrial Complex A. The excessive cancers risk for reasonable maximum exposure were 2.88 × 10?5 and 1.97 × 10?5 for males and females, respectively. These values indicate that there are potential cancer risks for exposure to these concentrations. The hazard index for central tendency exposure to trichloroethylene was 1.71 for male and female residents. The hazard indexes for reasonable maximum exposure were 3.27 and 2.41 for males and females, respectively. These values were over one, which is equivalent to the threshold value. This result showed that adverse cancer and non-cancer health effects may occur and that some risk management of trichloroethylene from Industrial Complex A was needed. PMID:24278607

Sin, Saemi

2012-01-01

97

Aerobic TCE degradation by encapsulated toluene-oxidizing bacteria, Pseudomonas putida and Bacillus spp.  

PubMed

The degradation rates of toluene and trichloroethylene (TCE) by Pseudomonas putida and Bacillus spp. that were encapsulated in polyethylene glycol (PEG) polymers were evaluated in comparison with the results of exposure to suspended cultures. PEG monomers were polymerized together with TCE-degrading microorganisms, such that the cells were encapsulated in and protected by the matrices of the PEG polymers. TCE concentrations were varied from 0.1 to 1.5 mg/L. In the suspended cultures of P. putida, the TCE removal rate decreased as the initial TCE concentration increased, revealing TCE toxicity or a limitation of reducing power, or both. When the cells were encapsulated, an initial lag period of about 10-20 h was observed for toluene degradation. Once acclimated, the encapsulated P. putida cultures were more tolerant to TCE at an experimental range of 0.6-1.0 mg/L and gave higher transfer efficiencies (mass TCE transformed/mass toluene utilized). When the TCE concentration was low (e.g., 0.1 mg/L) the removal of TCE per unit mass of cells (specific removal) was significantly lower, probably due to a diffusion limitation into the PEG pellet. Encapsulated Bacillus spp. were able to degrade TCE cometabolically. The encapsulated Bacillus spp. gave significantly higher values than did P. putida in the specific removal and the transfer efficiency, particularly at relatively high TCE concentration of approximately 1.0±0.5 mg/L. The transfer efficiency by encapsulated Bacillus spp. in this study was 0.27 mgTCE/mgToluene, which was one to two orders of magnitude greater than the reported values. PMID:21045323

Kim, Seungjin; Bae, Wookeun; Hwang, Jungmin; Park, Jaewoo

2010-01-01

98

Risk of learning and behavioral disorders following prenatal and early postnatal exposure to tetrachloroethylene (PCE)-contaminated drinking water  

Microsoft Academic Search

This population-based retrospective cohort study examined the association between developmental disorders of learning, attention and behavior and prenatal and early postnatal drinking water exposure to tetrachloroethylene (PCE) on Cape Cod, Massachusetts. Subjects were identified through birth records from 1969 through 1983. Exposure was modeled using information from town water departments, a PCE leaching and transport algorithm, EPANet water flow modeling

Patricia A. Janulewicz; Roberta F. White; Michael R. Winter; Janice M. Weinberg; Lisa E. Gallagher; Veronica Vieira; Thomas F. Webster; Ann Aschengrau

2008-01-01

99

Prenatal exposure to tetrachloroethylene-contaminated drinking water and the risk of congenital anomalies: a retrospective cohort study  

Microsoft Academic Search

BACKGROUND: Prior animal and human studies of prenatal exposure to solvents including tetrachloroethylene (PCE) have shown increases in the risk of certain congenital anomalies among exposed offspring. OBJECTIVES: This retrospective cohort study examined whether PCE contamination of public drinking water supplies in Massachusetts influenced the occurrence of congenital anomalies among children whose mothers were exposed around the time of conception.

Ann Aschengrau; Janice M. Weinberg; Patricia A. Janulewicz; Lisa G. Gallagher; Michael R. Winter; Veronica M. Vieira; Thomas F. Webster; David M. Ozonoff

2009-01-01

100

SURFACTANT ENHANCED RECOVERY OF TETRACHLOROETHYLENE FROM A POROUS MEDIUM CONTAINING LOW PERMEABILITY LENSES. 1. EXPERIMENTAL STUDIES. (R825409)  

EPA Science Inventory

Abstract A matrix of batch, column and two-dimensional (2-D) box experiments was conducted to investigate the coupled effects of rate-limited solubilization and layering on the entrapment and subsequent recovery of a representative dense NAPL, tetrachloroethylene (PCE)...

101

Evoked trigeminal nerve potential in chronic trichloroethylene intoxication  

SciTech Connect

Results of a study of trigeminal nerve impairment resulting from trichloroethylene intoxication by the somatosensory-evoked potential method reveal three kinds of abnormalities: increased stimulation voltage, excessive latency delay with morphological abnormalities, and excessive graph amplitude. These abnormalities confirm clinical disturbance (hypesthesia of the trigeminal nerve area) and open debate about the real mechanism of trichloroethylene neurotoxicity. Industrial intoxication by solvents, particularly trichloroethylene, is common. We have conducted a study of 188 workers chronically exposed to trichloroethylene and have confirmed the selective neurological disturbances of this intoxication in the trigeminal nerve (20%) (3, 10). We utilized a new experimental method, developed for studies of chronic intoxications effecting the median nerve (5, 8), of recording the somatosensory evoked potential following stimulation of the trigeminal nerve (4, 6, 7). The workers in this study were selected following clinical evaluation of their facial sensitivity and trigeminal nerve reflexes. In this paper we present our preliminary results on 11 workers, 9 suffering effects of intoxication and 2 controls.

Barret, L.; Arsac, P.; Vincent, M.; Faure, J.; Garrel, S.; Reymond, F.

1982-06-01

102

EFFECTS OF THERMAL TREATMENTS ON THE CHEMICAL REACTIVITY OF TRICHLOROETHYLENE  

EPA Science Inventory

A series of experiments was completed to investigate abiotic degradation and reaction product formation of trichloroethylene (TCE) when heated. A quartz-tube apparatus was used to study short residence time and high temperature conditions that are thought to occur during thermal ...

103

EFFECTS OF TRICHLOROETHYLENE EXPOSURE ON MALE REPRODUCTIVE FUNCTION IN RATS  

EPA Science Inventory

The present study was designed to evaluate the influences of trichloroethylene (TCE) on the reproductive system of male rats. In addition, information was obtained on the distribution and metabolism of TCE. At 100 days of age, male rats were allowed to copulate with ovariectomize...

104

USE OF GRANULAR GRAPHITE FOR ELECTROLYTIC DECHLORINATION OF TRICHLOROETHYLENE  

EPA Science Inventory

Granular graphite is a potential electrode material for the electrochemical remediation of refractory chlorinated organic compounds such as trichloroethylene (TCE). However, the use of granular graphite can complicate the experimental results. On one hand, up to 99% of TCE was re...

105

Impact of Iron Sulfide Transformation on Trichloroethylene Degradation  

EPA Science Inventory

Trichloroethylene (TCE) is one of the most common and persistent groundwater contaminants encountered at hazardous waste sites around the world. A growing body of evidence indicates that iron sulfides play an important role in degrading TCE in natural environments and in enginee...

106

BIODEGRADATION OF TRICHLOROETHYLENE AND INVOLVEMENT OF AN AROMATIC BIODEGRADATIVE PATHWAY  

EPA Science Inventory

Biodegradation of trichloroethylene (TCE) by the bacterial isolate strain G4 resulted in complete dechlorination of the compound as indicated by the production of inorganic chloride. A component of the water from which strain G4 was isolated that was required for TCE degradation ...

107

EFFECT OF TRICHLOROETHYLENE ON MALE SEXUAL BEHAVIOR: POSSIBLE OPIOID ROLE  

EPA Science Inventory

Trichloroethylene (TCE) is a chlorinated hydrocarbon solvent which is widely used as an industrial degreasing agent. Workers exposed to TCE often exhibit symptoms similar to those symptoms produced by narcotics. The present studies evaluated the effects of TCE exposure on measure...

108

ADSORPTION AND CATALYTIC DESTRUCTION OF TRICHLOROETHYLENE IN HYDROPHOBIC ZEOLITES  

EPA Science Inventory

Several chromium exchanged ZSM-5 zeolites of varying SiO2/Al2O3 ratio were prepared and investigated for ambient (23 ?C) adsorption and subsequent oxidative destruction (250-400 ?C) of gaseous trichloroethylene (TCE, Cl2C=CHCl) in a humid air stream. With an increase in the SiO2...

109

EFFECTS OF ORAL EXPOSURE TO TRICHLOROETHYLENE ON FEMALE REPRODUCTIVE FUNCTION  

EPA Science Inventory

In the present study, the distribution, metabolism and reproductive toxicity of trichloroethylene (TCE) administered by the oral route to female rats were examined. The distribution study with 14C-TCE indicated that relatively high levels of radioactivity accumulated in the ovary...

110

AEROBIC METABOLISM OF TRICHLOROETHYLENE BY A BACTERIAL ISOLATE  

EPA Science Inventory

A number of soil and water samples were screened for the biological capacity to metabolize trichloroethylene. One water sample was found to contain this capacity, and a gram-negative, rod-shaped bacterium which appeared to be responsible for the metabolic activity was isolated fr...

111

Neurotoxicity and Mechanism of Toluene Abuse  

Microsoft Academic Search

Toluene is one of the most produced and widely used industrial solvents worldwide. It is a key ingredient in many products used by inhalant abusers. Toluene is responsible not only for instant inebriation but also for devastating neurotoxicity and death in the chronic abusers. Despite its prevalence and associated morbidity and mortality, very little is known about how this volatile

Daniel P. Eisenberg

112

HEALTH EFFECTS OF TOLUENE: A REVIEW  

EPA Science Inventory

This evaluative review covers the neurotoxic effects of toluene. General health effects of toluene are also discussed in more limited detail. A brief description of chemical properties and environmental prevalence is given, followed by a review of pharmacokinetic data. General he...

113

Exposure to Tetrachloroethylene-Contaminated Drinking Water and the Risk of Pregnancy Loss  

PubMed Central

There is little information on the impact of solvent-contaminated drinking water on pregnancy outcomes. This retrospective cohort study examined whether maternal exposure to tetrachloroethylene (PCE) - contaminated drinking water in the Cape Cod region of Massachusetts influenced the risk of clinically recognized pregnancy loss. The study identified exposed (n=959) and unexposed (1,087) women who completed a questionnaire on their residential and pregnancy histories, and confounding variables. Exposure was estimated using water distribution system modeling software. No meaningful associations were seen between PCE exposure level and the risk of clinically recognized pregnancy loss at the exposure levels experienced by the study population. Because PCE remains a common water contaminant, it is important to continue monitoring its impact on women and their pregnancies. PMID:20613966

Aschengrau, Ann; Weinberg, Janice M.; Gallagher, Lisa G.; Winter, Michael R.; Vieira, Veronica M.; Webster, Thomas F.; Ozonoff, David M.

2010-01-01

114

In situ study of tetrachloroethylene bioremediation with different microbial community shifting.  

PubMed

In this study, we characterized the microbial community in groundwater contaminated with tetrachloroethylene (PCE) in order to evaluate the intrinsic and enhanced bioremediation of PCE. Variable behaviour of microbes was observed between natural attenuation and biostimulation, where the latter was mediated by the addition of nutrients. Results of denaturing gradient gel electrophoresis (DGGE) of amplified bacterial 16S rDNA in the case of biostimulation showed that the microbial community was dominated by species phylogenetically related to the beta-proteobacteria. With regards to natural attenuation, sequences were found belonging to multiple species of different phyla. Interestingly, we found sequences that matched the species belonging to the Firmicutes, which contains bacteria capable of reductive dehalogenation. These results suggest the possibility of the presence of some Clostridium-like PCE degraders within the microbial community when using bioremediation or biostimulation. PMID:20184006

Bhowmik, Arpita; Asahino, Akane; Shiraki, Takanori; Nakamura, Kohei; Takamizawa, Kazuhiro

2009-12-14

115

Ethnic Differences in the Metabolism of Toluene: Comparisons between Korean and Foreign Workers Exposed to Toluene  

PubMed Central

The objectives of this study were to investigate the individual characteristics, lifestyle habits, exposure levels, and genetic diversity of xenobiotic-metabolizing enzymes involved in toluene metabolism in Korean and foreign workers exposed to toluene at a manufacturing plant. This study was conducted to determine the effects of culture or ethnicity on toluene metabolism. The results showed that blood and urinary toluene concentrations were dependent on the level of exposure to toluene. We analyzed the correlation between toluene metabolism and genetic diversity in glutathione S-transferase (GST) (M1), GSTT1, and cytochrome p-450 (CYP) 2E1*5 as well as lifestyle habits (smoking, drinking, and exercise habits). The results revealed significant correlations between toluene metabolism and GSTM1 and GSTT1 genetic diversity, as well as smoking and exercise. PMID:25874030

Won, Young Lim; Ko, Kyung Sun

2015-01-01

116

Cometabolic biodegradation of trichloroethylene in microcosms  

USGS Publications Warehouse

Laboratory microcosms were used to determine the concentrations of oxygen (O2) and methane (CH4) that optimize trichloroethylene (TCE) biodegradation in sediment and ground-water samples from a TCE-contaminated aquifer at Picatinny Arsenal, Morris County, New Jersey. The mechanism for degradation is the cometabolic activity of methanotrophic bacteria. The laboratory data will be used to support a field study designed to demonstrate the effectiveness of combining air sparging with cometabolic degradation of TCE for the purpose of aquifer remediation. Microcosms were constructed in autoclaved 250-mL (milliliter) amber glass bottles with valves for repeated headspace sampling. Equal volumes (25 mL) of sediment and ground water, collected from a depth of 40 feet, were added. TCE was added to attain initial aqueous concentrations equal to the field level of 1,400 mu g/L (micrograms per liter). Nine microcosms were constructed with initial headspace O2 concentrations of 5%, 10%, or 14% and CH4 concentrations of 0.5%, 3%, or 5%, with nitrogen making up the balance. Sterile controls, controls without CH4, and controls without sediment were also constructed. A 4-mL gas sample was removed periodically and TCE, O2 , CH4 , and carbon dioxide (CO2) concentrations were measured by using gas chromatography. As biodegradation proceeded, the decrease in O2, CH4 , and TCE concentrations and the production of CO2 were monitored. An initial acclimation period of at least 100 days was observed in those microcosms in which significant microbial activity occurred, as determined from decreases in O2 and CH4 concentrations and an increase in CO2 content. Degradation of TCE occurred with O2 concentrations of 2.7 to 8.7% and CH4 concentrations of 0.5 to 3.5%. Microcosms that initially contained 10% O2 and 3% CH4 showed the greatest microbial activity and the greatest amount of TCE degradation. The greatest rates of TCE degradation occurred when O2 and CH4 headspace concentrations reached levels of 7.7 to 8.7% and 1.7 to 2.7%, respectively, which correspond to aqueous concentrations of 2.9 to 3.5 mg/L and 0.4 to 0.6 mg/L, respectively. Over these ranges, TCE degradation rates ranged from 15 to 20 mu g of TCE per kilogram of sediment per day. Analysis of the control microcosms indicated that these TCE degradation rates are much greater than those attributable to experimental variation. The results indicate that the microbial community of the sediment is capable of TCE degradation and that significant rates of degradation can be achieved with obtainable O2 and CH4 concentrations.

Kane, Allen C.; Wilson, Timothy P.; Fischer, Jeffrey M.

1997-01-01

117

Anticonvulsant and antipunishment effects of toluene  

SciTech Connect

Toluene can have striking acute behavioral effects and is subject to abuse by inhalation. To determine if its actions resemble those of drugs used in the treatment of anxiety (anxiolytics), two sets of experiments were undertaken. Inasmuch as prevention of pentylenetetrazol-induced convulsions is an identifying property of this class of agents, the authors first demonstrated that pretreatment of mice with injections of toluene delayed the onset of convulsive signs and prevented the tonic extension phase of the convulsant activity in a dose-related manner. Injections of another alkyl benzene, m-xylene, were of comparable potency to toluene. Inhalation of toluene delayed the time of death after pentylenetetrazol injection in a manner related to the duration and concentration of exposure; at lower convulsant doses, inhalation of moderate concentrations (EC/sub 58/, 1300 ppm) prevented death. Treatment with a benzodiazepine receptor antagonist (Ro 15-1788) failed to reduce the anticonvulsant activity of inhaled toluene. Anxiolytics also attenuate the reduction in response rate produced by punishment with electric shock. Toluene increased rates of responding suppressed by punishment when responding was maintained under a multiple fixed-interval fixed-interval punishment schedule of reinforcement. Distinct antipunishment effects were observed in rats after 2 hr of exposure to 1780 and 3000 ppm of toluene; the rate-increasing effects of toluene were related to concentration and to time after the termination of exposure. Thus, toluene and m-xylene resemble in several respects clinically useful drugs such as the benzodiazepines. 51 references, 3 figures, 2 tables.

Wood, R.W.; Coleman, J.B.; Schuler, R.; Cox, C.

1984-01-01

118

The pyrolysis of toluene and ethyl benzene  

NASA Technical Reports Server (NTRS)

The pyrolysis of toluene at 850 to 950 C gave mainly H2, CH4, and benzene; PhEt at 650 to 750 C gave mainly H2, CH4, styrene, benzene, and toluene. The rate constants for PhEt pyrolysis were 1000 times higher than those for toluene pyrolysis; the chain initiation rate constants differed by the same factor. The activation energy differences were 46 kJ/mole for the total reaction and 54 kJ/mole for chain initiation. The chain length was evaluated for the PhEt case (10 + or - 2).

Sokolovskaya, V. G.; Samgin, V. F.; Kalinenko, R. A.; Nametkin, N. S.

1987-01-01

119

Cloning and characterization of a Pseudomonas mendocina KR1 gene cluster encoding toluene-4-monooxygenase.  

PubMed

Pseudomonas mendocina KR1 metabolizes toluene as a carbon source by a previously unknown pathway. The initial step of the pathway is hydroxylation of toluene to form p-cresol by a multicomponent toluene-4-monooxygenase (T4MO) system. The T4MO enzyme system has broad substrate specificity and provides a new opportunity for biodegradation of toxic compounds and bioconversions. Its known activities include conversion of a variety of phenyl compounds into the phenolic derivatives and the complete degradation of trichloroethylene. We have cloned and characterized a gene cluster from KR1 that determines the offO activity. To clone the T4MO genes, KR1 DNA libraries were constructed in Escherichia coli HB101 by using a broad-host-range vector and transferred to a KR1 mutant able to grow on p-cresol but not on toluene. An insert consisting of two SacI fragments of identical size (10.2 kb) was shown to complement the mutant for growth on toluene. One of the SacI fragments, when cloned into the E. coli vector pUC19, was found to direct the synthesis of indigo dye. The indigo-forming property was correlated with the presence of T4MO activity. The T4MO genes were mapped to a 3.6-kb region, and the direction of transcription was determined. DNA sequencing and N-terminal amino acid determination identified a five-gene cluster, tmoABCDE, within this region. Expression of this cluster carrying a single mutation in each gene demonstrated that each of the five genes is essential for T4MO activity. Other evidence presented indicated that none of the tmo genes was involved in the regulation of the tmo gene cluster, in the control of substrate transport for the T4MO system, or in major processing of the products of the tmo genes. It was tentatively concluded that the tmoABCDE genes encode structural polypeptides of the T4MO enzyme system. One of the tmo genes was tentatively identified as a ferredoxin gene. PMID:1885512

Yen, K M; Karl, M R; Blatt, L M; Simon, M J; Winter, R B; Fausset, P R; Lu, H S; Harcourt, A A; Chen, K K

1991-09-01

120

Evaluation of the developmental toxicity of trichloroethylene and detoxification metabolites using Xenopus.  

PubMed

Potential mechanisms of trichloroethylene-induced developmental toxicity were evaluated using FETAX (Frog Embryo Teratogenesis Assay--Xenopus). Early Xenopus laevis embryos were exposed to trichloroethylene for 96 h in two separate definitive concentration-response assays with and without an exogenous metabolic activation system (MAS) and inhibited MAS. The MAS was treated with either carbon monoxide or cyclohexene oxide to modulate mixed-function oxidase (MFO) or epoxide hydrolase activity, respectively. Trichloroethylene metabolites: dichloroacetic acid, trichloroacetic acid, trichloroethanol, and oxalic acid were also evaluated in two separate definitive, static renewal tests. Addition of the MAS decreased the 96 h LC50 and EC50 (malformation) of trichloroethylene 1.8-fold and 3.8-fold, respectively. Addition of the carbon monoxide inhibited MAS decreased the developmental toxicity of activated trichloroethylene to levels approximating that of the parent compound. Cyclohexene oxide-inhibited MAS substantially increased the developmental toxicity of trichloroethylene. In addition, each of the metabolites tested were significantly less developmental toxic than the parent compound, trichloroethylene. Results indicate that a highly embryotoxic epoxide intermediate, trichloroethylene oxide, formed as the results of MFO mediated metabolism may play a significant role in the developmental toxicity of trichloroethylene in vitro. PMID:8100651

Fort, D J; Stover, E L; Rayburn, J R; Hull, M; Bantle, J A

1993-01-01

121

Gas chromatographic determination of residual methylene chloride and trichloroethylene in decaffeinated instant and ground coffee with electrolytic conductivity and electron capture detection.  

PubMed

A method is described for the quantitative determination of residual methylene chloride (MC) and trichloroethylene (TCE) in decaffeinated instant and ground roasted coffees. The residual solvents were isolated by a closed system vacuum distillation technique with toluene as a carrier solvent, chromatographed on Chromosorb 102, detected by both electron capture and electrolytic conductivity detectors, and quantitated by comparison with an internal standard. Average recoveries of MC from instant and ground coffees spiked at 1, 10, and 25 ppm were 100.0 (88-113), 93.2 (92-95), and 97.7% (94-102%); and for TCE, 97.2 (92-101), 96.2 (95-99), and 96.5% (92-100%), respectively. The results from both detectors are compared. At lower attenuations, levels less than 1 ppm can be readily measured. The procedure developed was applied to domestic and imported coffee samples. PMID:858707

Page, B D; Charbonneau, C F

1977-05-01

122

Kinetics of trichloroethylene in repeated exposure of volunteers  

Microsoft Academic Search

Five male volunteers inhaled 70 ppm trichloroethylene (TRI) for 4 h on 5 consecutive days. TRI, trichloroethanol (TCE) and trichloroacetic acid (TCA) were measured, as far as present in exhaled air, blood, and urine. The uptake was 6.6 ± 0.4 mg\\/kg lean body mass in 4 h. The concentration of TRI in blood and exhaled air at 18 h after

A. C. Monster; G. Boersma; W C Duba

1979-01-01

123

Oxidation Mechanisms of Toluene and Benzene  

NASA Technical Reports Server (NTRS)

An expanded and improved version of a previously published benzene oxidation mechanism is presented and shown to model published experimental data fairly successfully. This benzene submodel is coupled to a modified version of a toluene oxidation submodel from the recent literature. This complete mechanism is shown to successfully model published experimental toluene oxidation data for a highly mixed flow reactor and for higher temperature ignition delay times in a shock tube. A comprehensive sensitivity analysis showing the most important reactions is presented for both the benzene and toluene reacting systems. The NASA Lewis toluene mechanism's modeling capability is found to be equivalent to that of the previously published mechanism which contains a somewhat different benzene submodel.

Bittker, David A.

1995-01-01

124

Reversible toluene adsorption on monolithic carbon aerogels.  

PubMed

Thirteen monolithic carbon aerogels with different pore textures were used as toluene adsorbents. Adsorption was carried out under both static and dynamic conditions. Under static conditions at 25 degrees C and at saturation, an adsorption capacity as high as 1.36 cm(3) g(-1) or 1180 mg g(-1) was obtained. Toluene adsorption was a reversible process in all carbon aerogels, and the adsorbed toluene was completely recovered by heating them at 400 degrees C. Regenerated adsorbents showed larger surface area and micropore width than the original samples, indicating that no pore blockage was produced. Adsorption under dynamic conditions at 100 degrees C was also completely reversible after at least three consecutive adsorption-desorption cycles. The ability of these carbon aerogels to reversibly adsorb toluene could be useful for their application in thermal swing adsorption or pressure swing adsorption equipment. PMID:17433536

Maldonado-Hódar, Francisco J; Moreno-Castilla, Carlos; Carrasco-Marín, Francisco; Pérez-Cadenas, Agustín F

2007-09-30

125

Primary atmospheric oxidation mechanism for toluene.  

PubMed

The products of the primary OH-initiated oxidation of toluene were investigated using the turbulent flow chemical ionization mass spectrometry technique at temperatures ranging from 228 to 298 K. A major dienedial-producing pathway was detected for the first time for toluene oxidation, and glyoxal and methylglyoxal were found to be minor primary oxidation products. The results suggest that secondary oxidation processes involving dienedial and epoxide primary products are likely responsible for previous observations of glyoxal and methylglyoxal products from toluene oxidation. Because the dienedial-producing pathway is a null cycle for tropospheric ozone production and glyoxal and methylglyoxal are important secondary organic aerosol precursors, these new findings have important implications for the modeling of toluene oxidation in the atmosphere. PMID:19118482

Baltaretu, Cristian O; Lichtman, Eben I; Hadler, Amelia B; Elrod, Matthew J

2009-01-01

126

Toluene Monooxygenase-Catalyzed Epoxidation of Alkenes  

Microsoft Academic Search

Several toluene monooxygenase-producing organisms were tested for their ability to oxidize linear alkenes and chloroalkenes three to eight carbons long. Each of the wild-type organisms degraded all of the alkenes that were tested. Epoxides were produced during the oxidation of butene, butadiene, and pentene but not hexene or octadiene. A strain of Escherichia coli expressing the cloned toluene-4-monooxygenase (T4MO) of

KEVIN MCCLAY; BRIAN G. FOX; ROBERT J. STEFFAN

2000-01-01

127

Reduction of benzene toxicity by toluene  

SciTech Connect

BDF{sub 1} mice were exposed in inhalation chambers to benzene (900 ppm, 300 ppm) and/or toluene (500 ppm, 250 ppm) 6 hr per day, 5 days per week, for up to 8 weeks. Benzene alone induced a slight anemia after 4 and 8 weeks and a reduction of BFU-E and CFU-E numbers in the marrow. The coexposure to toluene reduced the degree of anemia. These results confirm previous studies where toluene was found to reduce benzene toxicity. This protective effect was most pronounced when DNA damage was studied in peripheral blood cells, bone marrow, and liver using the single cell gel (SCG) assay. With benzene alone, either with 300 or 900 ppm, a significant increase in DNA damage was detected in cells sampled from all three organs. Toluene alone did not induce a significant increase in DNA damage. The coexposure of benzene and toluene reduced the extent of DNA damage to about 50% of benzene alone. This result is considered a clear indication for a protective effect of toluene on the genetic toxicity of benzene. 18 refs., 7 figs., 3 tabs.

Plappert, U.; Barthel, E.; Seidel, H.J. [Universitaet Ulm (Germany)

1994-12-31

128

75 FR 30401 - National Primary Drinking Water Regulations; Announcement of the Results of EPA's Review of...  

Federal Register 2010, 2011, 2012, 2013, 2014

...action as candidates for revision (i.e. acrylamide, epichlorohydrin, tetrechloroethylene and trichloroethylene). This information...regulatory revision. These four NPDWRs are acrylamide, epichlorohydrin, tetrachloroethylene, and trichloroethylene. EPA...

2010-06-01

129

TRICHLOROETHYLENE ACCELERATES AN AUTOIMMUNE RESPONSE IN ASSOCIATION WITH TH1 T-CELL ACTIVATION IN MRL+/+ MICE. (R826409)  

EPA Science Inventory

Abstract Trichloroethylene (1,1,2-trichloroethene) is a major environmental contaminant. There is increasing evidence relating exposure to trichloroethylene with autoimmunity. To investigate potential mechanisms, we treated the autoimmune-prone MRL+/+ mice with trichlo...

130

A risk-based cleanup criterion for PCE in soil. [Tetrachloroethylene  

SciTech Connect

The most important attribute of a chemical contaminant at a hazardous-wastes site for decision makers to consider with regard to its cleanup is the potential risk associated with human exposure. For this reason we have developed a strategy for establishing a risk-based cleanup criterion for chemicals in soil. We describe this strategy by presenting a cleanup criterion for tetrachloroethylene (PCE) in soil associated with a representative California landscape. We being by discussing the environmental fate and transport model, developed at the Lawrence Livermore National Laboratory (LLNL), that we used to predict the equilibrium concentration of PCE in five environmental media from a steady-state source in soil. Next, we explain the concept and application of pathway-exposure factors (PEFs), the hazard index, and cancer-potency factors (CPFs) for translating the predicted concentrations of PCE into estimated potential hazard or risk for hypothetically exposed individuals. Finally, the relationship between concentration and an allowable level of risk is defined and the societal and financial implications are discussed. 22 refs., 6 tabs.

Daniels, J.I.; McKone, T.E.; Hall, L.C.

1990-09-26

131

Adult neuropsychological performance following prenatal and early postnatal exposure to tetrachloroethylene (PCE)-contaminated drinking water.  

PubMed

This population-based retrospective cohort study examined adult performance on a battery of neuropsychological tests in relation to prenatal and early postnatal exposure to tetrachloroethylene (PCE)-contaminated drinking water on Cape Cod, Massachusetts. Subjects were identified through birth records from 1969 through 1983. Exposure was modeled using pipe network information from town water departments, a PCE leaching and transport algorithm, EPANet water flow modeling software, and a Geographic Information System (GIS). Results of crude and multivariate analyses among 35 exposed and 28 unexposed subjects showed no association between prenatal and early postnatal exposure and decrements on tests that assess abilities in the domains of omnibus intelligence, academic achievement or language. The results were suggestive of an association between prenatal and early postnatal PCE exposure and diminished performance on tests that assessed abilities in the domains of visuospatial functioning, learning and memory, motor, attention and mood. Because the sample size was small, most findings were not statistically significant. Future studies with larger sample sizes should be conducted to further define the neuropsychological consequences of early developmental PCE exposure. PMID:22522125

Janulewicz, Patricia A; White, Roberta F; Martin, Brett M; Winter, Michael R; Weinberg, Janice M; Vieira, Veronica; Aschengrau, Ann

2012-01-01

132

Adult Neuropsychological Performance Following Prenatal and Early Postnatal Exposure to Tetrachloroethylene (PCE)-contaminated Drinking Water  

PubMed Central

This population-based retrospective cohort study examined adult performance on a battery of neuropsychological tests in relation to prenatal and early postnatal exposure to tetrachloroethylene (PCE)-contaminated drinking water on Cape Cod, Massachusetts. Subjects were identified through birth records from 1969 through 1983. Exposure was modeled using pipe network information from town water departments, a PCE leaching and transport algorithm, EPANet water flow modeling software, and a Geographic Information System (GIS). Results of crude and multivariate analyses among 35 exposed and 28 unexposed subjects showed no association between prenatal and early postnatal exposure and decrements on tests that assess abilities in the domains of omnibus intelligence, academic achievement or language. The results were suggestive of an association between prenatal and early postnatal PCE exposure and diminished performance on tests that assessed abilities in the domains of visuospatial functioning, learning and memory, motor, attention and mood. Because the sample size was small, most findings were not statistically significant. Future studies with larger sample sizes should be conducted to further define the neuropsychological consequences of early developmental PCE exposure. PMID:22522125

Janulewicz, Patricia A; White, Roberta F; Martin, Brett M; Winter, Michael R; Weinberg, Janice M; Vieira, Veronica; Aschengrau, Ann

2012-01-01

133

THE EFFECT OF LOW CONCENTRATIONS OF TETRACHLOROETHYLENE ON THE PERFORMANCE OF PEM FUEL CELLS  

SciTech Connect

Polymer electrolyte membrane (PEM) fuel cells use components that are susceptible to contaminants in the fuel stream. To ensure fuel quality, standards are being set to regulate the amount of impurities allowable in fuel. The present study investigates the effect of chlorinated impurities on fuel cell systems using tetrachloroethylene (PCE) as a model compound for cleaning and degreasing agents. Concentrations between 0.05 parts per million (ppm) and 30 ppm were studied. We show how PCE causes rapid drop in cell performances for all concentrations including 0.05 ppm. At concentrations of 1 and 0.05 ppm, PCE poisoned the cell at a rate dependent on the dosage of the contaminant delivered to the cell. PCE appears to affect the cell when the cell potential was over potentials higher than approximately 0.2 V. No effects were observed at voltages around or below 0.2 V and the cells could be recovered from previous poisoning performed at higher potentials. Recoveries at those low voltages could be induced by changing the operating voltage or by purging the system. Poisoning did not appear to affect the membrane conductivity. Measurements with long-path length IR results suggested catalytic decomposition of the PCE by hydrogen over the anode catalyst.

COLON-MERCHADO, H.; MARTINEZ-RODRIGUEZ, M.; FOX, E.; RHODES, W.; MCWHORTER, C.; GREENWAY, S.

2011-04-18

134

TOLUENE BLOOD LEVEL FOLLOWING SUBCUTANEOUS INJECTION OF TOLUENE IN THE RAT  

EPA Science Inventory

A model of toluene level in blood following subcutaneous injection of toluene mixed with polyoxyethylated-vegetable-oil vehicle was developed. The purpose was to provide a means of predicting dose received for subsequent toxicologic studies for any time and dose combination. The ...

135

Abstract Pseudomonas stutzeri OX1 naphthalene-oxi-dation activity is induced 3.0-fold by tetrachloroethylene  

E-print Network

(PCE) and trichloroethylene (TCE) are suspected carcinogens, regulated to levels of five parts per billion under the Safe Drinking Water Act. These compounds are the most common groundwater pollutants degradation of TCE and PCE (McCarty 1997); VC is a known human carcinogen (McCarty 1997) whereas both VC

Wood, Thomas K.

136

Kinetics of the Oxidation of Trichloroethylene in Air via Heterogeneous Photocatalysis  

Microsoft Academic Search

Trichloroethylene in solution with air is oxidized rapidly in the presence of irradiated titanium dioxide. Dichloroacetyl chloride (DCAC), which is formed as an intermediate during the trichloroethylene reaction, also undergoes photocatalytic oxidation. This paper describes the kinetics of these reactions and how operating conditions influence the observed reaction rates. Annular photocatalytic reactors with thin films of titanium dioxide catalyst were

W. A. Jacoby; D. M. Blake; R. D. Noble; C. A. Koval

1995-01-01

137

USE OF CARBON STABLE ISOTOPE TO INVESTIGATE CHLOROMETHANE FORMATION IN THE ELECTROLYTIC DECHLORINATION OF TRICHLOROETHYLENE  

EPA Science Inventory

Carbon stable isotope trichloroethylene (13C TCE) was used to investigate the formation of chloromethane (CM) during the electrolytic dechlorination of trichloroethylene (TCE) at a granular-graphite packed cathode. A method was developed to use a conventional GC/MS to ...

138

Fate and transport of trichloroethane and trichloroethylene contaminated groundwater, building 719, Dover Air Force Base, Delaware  

Microsoft Academic Search

Trichloroethane and trichloroethylene are common chlorinated aliphatic industrial organic solvents used in degreasing operations. Both are typically found in groundwater environments as a result of leaking underground storage tanks, leachate from landfills, and contaminant migration from hazardous waste dump sites. Transformation by-products are also found in association with trichloroethane and trichloroethylene without any known source other than from reductive dechlorination.

Melchiorre

1996-01-01

139

Detection of low levels of trichloroethylene vapor with Raman spectrometry.  

PubMed

The response of a novel fiber-optic Raman probe to low levels of trichloroethylene (TCE) vapors is characterized. The detection limit of the current probe for TCE vapor is 34 mg/L, and the probe exhibits a fully reversible response. The probe uses an organic-polymer, low-density polyethylene to concentrate TCE vapors in the optical path of the fiber-optic Raman spectrometer. The relative standard deviation for measurement of 677 mg/L of TCE in the vapor is 0.3%. PMID:20941164

Ewing, K J; Bilodeau, T; Nau, G; Schneider, I; Aggarwal, I D

1994-09-20

140

Prenatal Exposure to Tetrachloroethylene-Contaminated Drinking Water and the Risk of Adverse Birth Outcomes  

PubMed Central

Background Prior studies of prenatal exposure to tetrachloroethylene (PCE) have shown mixed results regarding its effect on birth weight and gestational age. Objectives In this retrospective cohort study we examined whether PCE contamination of public drinking-water supplies in Massachusetts influenced the birth weight and gestational duration of children whose mothers were exposed before the child’s delivery. Methods The study included 1,353 children whose mothers were exposed to PCE-contaminated drinking water and a comparable group of 772 children of unexposed mothers. Birth records were used to identify subjects and provide information on the outcomes. Mothers completed a questionnaire to gather information on residential histories and confounding variables. PCE exposure was estimated using EPANET water distribution system modeling software that incorporated a fate and transport model. Results We found no meaningful associations between PCE exposure and birth weight or gestational duration. Compared with children whose mothers were unexposed during the year of the last menstrual period (LMP), adjusted mean differences in birth weight were 20.9, 6.2, 30.1, and 15.2 g for children whose mothers’ average monthly exposure during the LMP year ranged from the lowest to highest quartile. Similarly, compared with unexposed children, adjusted mean differences in gestational age were ?0.2, 0.1, ?0.1, and ?0.2 weeks for children whose mothers’ average monthly exposure ranged from the lowest to highest quartile. Similar results were observed for two other measures of prenatal exposure. Conclusions These results suggest that prenatal PCE exposure does not have an adverse effect on these birth outcomes at the exposure levels experienced by this population. PMID:18560539

Aschengrau, Ann; Weinberg, Janice; Rogers, Sarah; Gallagher, Lisa; Winter, Michael; Vieira, Veronica; Webster, Thomas; Ozonoff, David

2008-01-01

141

Instantaneous Chemical Reactions in Benzene and Toluene  

E-print Network

KU ScholarWorks | The University of Kansas Pre-1923 Dissertations and Theses Collection Instantaneous Chemical Reac- tions in Benzene and Toluene June 7th, 1905 by Herman Camp Allen This work was digitized by the Scholarly Communications program... Chemistry Allen, H.C. 1905 "Instantaneous reactions (chemical) in benzene and toluene". I ! B f O H B M I O A L REACTIONS IN Bt«2F;»F! AND TQLUBMB, Presented to the faculty of the University of Kansas in partial fulfillment of the requirements...

Allen, Herman Camp

1905-06-07

142

Toluene monooxygenase-catalyzed epoxidation of alkenes.  

PubMed

Several toluene monooxygenase-producing organisms were tested for their ability to oxidize linear alkenes and chloroalkenes three to eight carbons long. Each of the wild-type organisms degraded all of the alkenes that were tested. Epoxides were produced during the oxidation of butene, butadiene, and pentene but not hexene or octadiene. A strain of Escherichia coli expressing the cloned toluene-4-monooxygenase (T4MO) of Pseudomonas mendocina KR1 was able to oxidize butene, butadiene, pentene, and hexene but not octadiene, producing epoxides from all of the substrates that were oxidized. A T4MO-deficient variant of P. mendocina KR1 oxidized alkenes that were five to eight carbons long, but no epoxides were detected, suggesting the presence of multiple alkene-degrading enzymes in this organism. The alkene oxidation rates varied widely (ranging from 0. 01 to 0.33 micromol of substrate/min/mg of cell protein) and were specific for each organism-substrate pair. The enantiomeric purity of the epoxide products also varied widely, ranging from 54 to >90% of a single epoxide enantiomer. In the absence of more preferred substrates, such as toluene or alkenes, the epoxides underwent further toluene monooxygenase-catalyzed transformations, forming products that were not identified. PMID:10788354

McClay, K; Fox, B G; Steffan, R J

2000-05-01

143

Project Overview: IRIS TOXICOLOGICAL REVIEW AND SUMMARY DOCUMENTS FOR TOLUENE  

EPA Science Inventory

Toluene is used as an additive to gasoline mixtures (BTEX) to increase octane ratings, in benzene production, and as a solvent in paints, coatings, inks, adhesives, and cleaners. Additionally, toluene is used in the production of nylon, plastics, and polyurethanes. Toluene was o...

144

TOLUENE LEVELS IN BLOOD AND BRAIN OF RATS AS A FUNCTION OF TOLUENE LEVEL IN INSPIRED AIR  

EPA Science Inventory

The relationship of toluene concentration in blood and brain to the concentration of toluene in inspired air has not been explicitly studied. Sixty rats were exposed by inhalation to 50, 100, 500, or 1000 ppm toluene for 3 hr. Immediately following exposure, venous blood samples ...

145

Behavior of toluene added to sludge-amended soils  

SciTech Connect

Toluene is a priority pollutant that can be introduced to soils in a variety of wastes, including some municipal sludges. Laboratory experiments were conducted to study the behavior of toluene in two soils in the presence and absence of municipal sludge. Sludge additions increased toluene adsorption in two soils because of increased organic C content. The source of organic C (soil or sludge) and soil clay content also influenced toluene adsorption. Toluene adsorption-desorption was reversible in one soil, but slightly hysteretic in the other soil. An air-flow incubation system was used to evaluate toluene volatilization and degradation. The primary fate of surface-applied toluene in both soils was volatilization. Toluene volatilization rates were independent of sludge treatments. Toluene degradation was negligible in all treatments because of rapid volatilization losses. Despite increased toluene adsorption in the presence of sludge and reduced volatilization in saturated soils, gaseous transfer dominated all soils and treatments so that no toluene remained after 10 d.

Jin, Y.; O'Connor, G.A.

1990-01-01

146

Health Assessment Document for Trichloroethylene Synthesis and Characterization (2001, External Review Draft)  

EPA Science Inventory

This assessment presents EPA's most current evaluation of the potential health risks from exposure to trichloroethylene (TCE). TCE exposure is associated with several adverse health effects, including neurotoxicity, immunotoxicity, developmental toxicity, liver toxicity, kidney t...

147

EFFECTS OF TEMPERATURE ON TRICHLOROETHYLENE DESORPTION FROM SILICA GEL AND NATURAL SEDIMENTS. 1. ISOTHERMS. (R822626)  

EPA Science Inventory

Aqueous phase isotherms were calculated from vapor phase desorption isotherms measured at 15, 30, and 60 C for trichloroethylene on a silica gel, an aquifer sediment, a soil, a sand fraction, and a clay and silt fraction, all at...

148

EFFECTS OF TEMPERATURE ON TRICHLOROETHYLENE DESORPTION FROM SILICA GEL AND NATURAL SEDIMENTS. 2. KINETICS. (R822626)  

EPA Science Inventory

Isothermal desorption rates were measured at 15, 30, and 60 C for trichloroethylene (TCE) on a silica gel, an aquifer sediment, a soil, a sand fraction, and a clay and silt fraction, all at 100% relative humidity. Temperature-st...

149

MODELING THE ELECTROLYTIC DECHLORINATION OF TRICHLOROETHYLENE IN A GRANULAR GRAPHITE-PACKED REACTOR  

EPA Science Inventory

A comprehensive reactor model was developed for the electrolytic dechlorination of trichloroethylene (TCE) at a granular-graphite cathode. The reactor model describes the dynamic processes of TCE dechlorination and adsorption, and the formation and dechlorination of all the major...

150

ELECTROCHEMICAL DECHLORINATION OF TRICHLOROETHYLENE USING GRANULAR-GRAPHITE ELECTRODES: IDENTIFICATION AND QUANTIFICATION OF DECHLORINATION PRODUCTS  

EPA Science Inventory

Electrochemical degradation (ECD) utilizes high redox potential at the anode and low redox potential at the cathode to oxidize and/or reduce organic and inorganic contaminants. ECD of Trichloroethylene (TCE), although theoretically possible, has not been experimentally proven. Th...

151

EFFECTS OF REACTION PARAMETERS ON ELECTROCHEMICAL DECHLORINATION OF TRICHLOROETHYLENE RATE AND BY-PRODUCTS  

EPA Science Inventory

Trichloroethylene (TCE) was electrochemically dechlorinated in aqueous environments using granular graphite cathode in a mixed reactor. Effects of pH, current, electrolyte type, and flow rate on TCE dechlorination rate were evaluated. TCE dechlorination rate constant and gas prod...

152

COMPARISON OF MINERAL AND SOLUBLE IRON FENTON'S CATALYSTS FOR THE TREATMENT OF TRICHLOROETHYLENE. (R826163)  

EPA Science Inventory

Abstract Contaminant degradation, stoichiometry, and role of hydroxyl radicals (OH·) in four Fenton's systems were investigated using trichloroethylene (TCE) as a model contaminant. A standard Fenton's system, a modified soluble iron system with a...

153

PHASE-TRANSFER-CATALYST APPLIED TO THE OXIDATION OF TRICHLOROETHYLENE BY POTASSIUM PERMANGANATE  

EPA Science Inventory

Chlorinated ethylenes such as trichloroethylene (TCE) and perchloroethylene (PCE) are common contaminants (Plumb 1991; Westrick et al., 1984). They opccur in the subsurface as zones of residual saturation or occasionally as free products. Because of their inherently low solubil...

154

COVALENT BINDING OF TRICHLOROETHYLENE TO PROTEINS IN HUMAN AND RAT HEPATOCYTES. (R826409)  

EPA Science Inventory

The environmental contaminant and occupational solvent trichloroethylene is metabolized to a reactive intermediate that covalently binds to specific hepatic proteins in exposed mice and rats. In order to compare covalent binding between humans and rodents, primary hepatocyte c...

155

Development of a replacement for trichloroethylene in the two-stage cleaning process  

NASA Astrophysics Data System (ADS)

Isopropyl alcohol, d-limonene, and a synthetic mineral spirits were compared for effectiveness as replacements for trichloroethylene in an ultrasonic cleaning process. All were found to be suitable. Isopropyl alcohol is recommended as the replacement.

Harding, W. B.

1992-12-01

156

Fate and transport of trichloroethane and trichloroethylene contaminated groundwater, building 719, Dover Air Force Base, Delaware  

SciTech Connect

Trichloroethane and trichloroethylene are common chlorinated aliphatic industrial organic solvents used in degreasing operations. Both are typically found in groundwater environments as a result of leaking underground storage tanks, leachate from landfills, and contaminant migration from hazardous waste dump sites. Transformation by-products are also found in association with trichloroethane and trichloroethylene without any known source other than from reductive dechlorination. Dechlorinated by-products include 1,1-dichloroethane; cis and trans 1,2-dichloroethylene, 1,1-dichloroethylene, chloroethane, and vinyl chloride. Trichloroethane and trichloroethylene and their transformation by-products are suspected human health hazards. Vinyl chloride is a known human carcinogen, while trichloroethylene is considered a probable human carcinogen, and 1,1-dichloroethylene and 1,1-dichloroethane possible human carcinogens.

Melchiorre, K.J.

1996-08-01

157

DEGRADATION OF TRICHLOROETHYLENE UNDER HIGH-TEMPERATURE THERMAL SOURCE-ZONE REMOVAL CONDITIONS (POSTER PRESENTATION)  

EPA Science Inventory

Trichloroethylene (TCE) is a contaminant commonly found in the subsurface at industrial and military installations in the United States. Oxidation of TCE (C2HCl3) to carbon dioxide (CO2) and chloride ions (Cl-) has been reported to occu...

158

DEGRADATION OF TRICHLOROETHYLENE UNDER HIGH-TEMPERATURE THERMAL SOURCE-ZONE REMOVAL CONDITIONS (ABSTRACT ONLY)  

EPA Science Inventory

Trichloroethylene (TCE) is a contaminant commonly found in the subsurface at industrial and military installations in the United States. Oxidation of TCE (C2HCl3) to carbon dioxide (CO2) and chloride ions (Cl-) has been reported to occu...

159

Sources of error in the determination of trichloroethylene in blood  

SciTech Connect

One of the more common methods in determining volatile chemicals in biological samples involves an extraction procedure followed by a chromatographic quantitation step. These analytical methods are generally validated using conventional techniques with some attempts to minimize analyte losses during sample handling. After a successful validation, the analyst will feel confident that the procedure employed would provide an accurate determination of the analyte in the sample. However, it is difficult or sometimes impossible to identify precisely the losses that occur during sample handling. In this paper problems associated with the accurate determination of the volatile analyte, trichloroethylene, (TCE) are addressed. Gas chromatography was performed with a Perkin-Elmer Sigma 2000 chromatograph equipped with a 63Ni detector. Experiments to determine recovery of TCE were performed on both water and blood samples.

Gorski, T.; Goehl, T.J.; Jameson, C.W.; Collins, B.J. (National Institute of Environmental Health Sciences, Research Triangle Park, NC (USA))

1990-07-01

160

Trichloroethylene Biodegradation by a Methane-Oxidizing Bacterium †  

PubMed Central

Trichloroethylene (TCE), a common groundwater contaminant, is a suspected carcinogen that is highly resistant to aerobic biodegradation. An aerobic, methane-oxidizing bacterium was isolated that degrades TCE in pure culture at concentrations commonly observed in contaminated groundwater. Strain 46-1, a type I methanotrophic bacterium, degraded TCE if grown on methane or methanol, producing CO2 and water-soluble products. Gas chromatography and 14C radiotracer techniques were used to determine the rate, methane dependence, and mechanism of TCE biodegradation. TCE biodegradation by strain 46-1 appears to be a cometabolic process that occurs when the organism is actively metabolizing a suitable growth substrate such as methane or methanol. It is proposed that TCE biodegradation by methanotrophs occurs by formation of TCE epoxide, which breaks down spontaneously in water to form dichloroacetic and glyoxylic acids and one-carbon products. Images PMID:16347616

Little, C. Deane; Palumbo, Anthony V.; Herbes, Stephen E.; Lidstrom, Mary E.; Tyndall, Richard L.; Gilmer, Penny J.

1988-01-01

161

The role of testosterone in trichloroethylene penetration in vitro  

SciTech Connect

Sex differences are known to exist in the metabolism and bioavailability of trichloroethylene (TCE). This study revealed that dermal penetration of ({sup 14}C)TCE in vitro was twofold greater in untreated female than in untreated male Sprague-Dawley rats. Since testosterone has been shown to mediate a wide variety of sex differences, its role in dermal penetration of ({sup 14}C)TCE was investigated. Penetration was measured by using an in vitro evaporation-penetration cell with a 10-hour collection period. Depriving male rats of testosterone (by castration) resulted in increased values for total penetration, area under the curve (AUC), and penetration slopes compared to those found in the female control group. Administration of testosterone to female animals produced values for total penetration, AUC, and penetration slopes significantly lower than those of the female control group.

McCormick, K.; Abdel-Rahman, M.S. (Univ. of Medicine and Dentistry of New Jersey, Newark (United States))

1991-02-01

162

Trichloroethylene: Reevaluation of cancer risks using physiological models  

SciTech Connect

Trichloroethylene (TCE) is a widespread groundwater contaminant that is regulated as a carcinogen. Toxicology information used to establish the US EPA drinking water standard (Maximum Contaminant Level) for TCE was based on information collected from 1970 to 1985. Today, significant progress has been made in understanding the mode of action that TCE and its metabolites exert on rodent and human tissues and organs. In addition, physiologically based pharmacokinetic (PB-PK) models are used to account for animal and human differences in metabolism and kinetics of TCE and its metabolites. TCE PB-PK models have been used for low dose extrapolation of cancer risks. This paper presents theoretical cancer risks for TCE using PBPK modeling techniques and compares the outcome with EPA derived cancer risks for TCE.

Fisher, J.W. [Tri-Service Toxicology, WPAFB, OH (United States)

1995-12-31

163

Exposure Assessment to Trichloroethylene and Perchloroethylene for Workers in the Dry Cleaning Industry  

Microsoft Academic Search

Perchloroethylene and trichloroethylene are two particular organochloro compounds, are often used for dry-cleaning. In the\\u000a present study the excretion of urinary Perchloroethylene and trichloroethylene were evaluated as biomarkers of exposure to\\u000a these compounds. The mean value of Perchloroethylene in breathing zone and the total Perchloroethylene uptake during the work\\u000a shift of the three groups of dry-cleaning workers according to the

Noushin Rastkari; Masud Yunesian; Reza Ahmadkhaniha

2011-01-01

164

Permeation of Polymeric Materials by Toluene  

Microsoft Academic Search

The permeation of toluene through butyl, butyl-coated nomex, neoprene, and polyvinyl alcohol was tested at 25°C and 45°C with the use of ASTM method F-739. Butyl exhibited breakthrough of 18?min at 25°C and 11?min at 45°C. Butyl nomex exhibited breakthrough times of 11?min and 25°C and 6?min at 45°C. PV A showed no breakthrough in 20?hr. The steady-state permeation rates

NADER VAHDAT

1987-01-01

165

Human response to varying concentrations of toluene  

Microsoft Academic Search

Summary  Thirty two males and 39 females aged 31–50 were exposed for 7 h to one of the three following conditions: (1) Clean air, (2)\\u000a constant exposure to 100 ppm toluene, or (3) a varying exposure with the same time-weighted average, but with peaks of 300\\u000a ppm every 30 min. During exposure the subjects exercised in three 15-min periods with a

Jesper Bælum; Gunnar R. Lundgvist; Lars Mølhave; Niels Trolle Andersen

1990-01-01

166

Remediation of trichloroethylene by bio-precipitated and encapsulated palladium nanoparticles in a fixed bed reactor.  

PubMed

Trichloroethylene is a toxic and recalcitrant groundwater pollutant. Palladium nanoparticles bio-precipitated on Shewanella oneidensis were encapsulated in polyurethane, polyacrylamide, alginate, silica or coated on zeolites. The reactivity of these bio-Pd beads and zeolites was tested in batch experiments and trichloroethylene dechlorination followed first order reaction kinetics. The calculated k-values of the encapsulated catalysts were a factor of six lower compared to non-encapsulated bio-Pd. Bio-Pd, used as a catalyst, was able to dechlorinate 100 mgL(-1) trichloroethylene within a time period of 1h. The main reaction product was ethane; yet small levels of chlorinated intermediates were detected. Subsequently polyurethane cubes empowered with bio-Pd were implemented in a fixed bed reactor for the treatment of water containing trichloroethylene. The influent recycle configuration resulted in a cumulative removal of 98% after 22 h. The same reactor in a flow through configuration achieved removal rates up to 1059 mg trichloroethylene g Pd(-1)d(-1). This work showed that fixed bed reactors with bio-Pd polyurethane cubes can be instrumental for remediation of water contaminated with trichloroethylene. PMID:19560796

Hennebel, Tom; Verhagen, Pieter; Simoen, Henri; De Gusseme, Bart; Vlaeminck, Siegfried E; Boon, Nico; Verstraete, Willy

2009-08-01

167

Estimation of kinetic equations on decomposition of trichloroethylene using Fenton's reaction  

NASA Astrophysics Data System (ADS)

Soil and groundwater pollution from trichloroethylene has recently been noted. In the present work kinetics for decomposition of trichloroethylene using Fenton's reaction are discussed. This study found that the reaction was first-order for concentration of trichloroethylene, 0.8-order for concentration of iron ion and half-order for concentrations of hydrogen peroxide. The reaction rate constant was given as 0.205 (l · mol-1) 1.3 · s-1. Additional experiments were carried out in the presence of humic acid (HA), the most abundant organic compound in soil. The reaction with HA was first-order for concentrations of trichloroethylene and Fe (II) iron, and 0.8-order for concentration of hydrogen peroxide, and the reaction rate constant was 0.865 (l · mol-1) 1.8 · s-1. In spite of small difference in reaction order, these reaction rates are almost the same with and without humic acid under the present conditions. At the initial stage of these reactions, concentrations of trichloroethylene were found to be reduced rapidly. The correlation to calculate the reduction amounts is proposed. Finally, equations to predict the variation of trichloroethylene concentration using Fenton's reaction are suggested.

Takuma, Yasuhiko; Kato, Shigeru; Kojima, Toshinori

168

Toxicity of a Solvent Mixture of 1,1,1-TrichIoroethane and Tetrachloroethylene as Determined by Experiments on Laboratory Animals and Human Subjects  

Microsoft Academic Search

The toxicological properties of a solvent mixture (Dowclenef EC cleaner) consisting by weight of 75% inhibited 1,1,1-trichloroethane (Chlorothene NU solvent) and 25% tetrachloroethylene were studied on rats, mice, guinea pigs, rabbits, dogs and human subjects. The material was low in oral toxicity, not appreciably irritating to the eyes or skin, not absorbed through the skin to an appreciable extent, and

V. K. Rowe; T. Wujkowski; M. A. Wolf; S. E. Sadek; R. D. Stewart

1963-01-01

169

Apartment residents' and day care workers' exposures to tetrachloroethylene and deficits in visual contrast sensitivity.  

PubMed Central

Tetrachloroethylene (also called perchloroethylene, or perc), a volatile organic compound, has been the predominant solvent used by the dry-cleaning industry for many years. The U.S. Environmental Protection Agency (EPA) classified perc as a hazardous air pollutant because of its potential adverse impact on human health. Several occupational studies have indicated that chronic, airborne perc exposure adversely affects neurobehavioral functions in workers, particularly visual color discrimination and tasks dependent on rapid visual-information processing. A 1995 study by Altmann and colleagues extended these findings, indicating that environmental perc exposure at a mean level of 4,980 microg/m(3) (median=1,360 microg/m(3)) alters neurobehavioral functions in residents living near dry-cleaning facilities. Although the U.S. EPA has not yet set a reference concentration guideline level for environmental exposure to airborne perc, the New York State Department of Health set an air quality guideline of 100 microg/m(3). In the current residential study, we investigated the potential for perc exposure and neurologic effects, using a battery of visual-system function tests, among healthy members of six families living in two apartment buildings in New York City that contained dry-cleaning facilities on the ground floors. In addition, a day care investigation assessed the potential for perc exposure and effects among workers at a day care center located in the same one-story building as a dry-cleaning facility. Results from the residential study showed a mean exposure level of 778 microg/m(3) perc in indoor air for a mean of 5.8 years, and that perc levels in breath, blood, and urine were 1-2 orders of magnitude in excess of background values. Group-mean visual contrast sensitivity (VCS), a measure of the ability to detect visual patterns, was significantly reduced in the 17 exposed study participants relative to unexposed matched-control participants. The groups did not differ in visual acuity, suggesting that the VCS deficit was of neurologic origin. Healthy workers in the day care investigation were chronically exposed to airborne perc at a mean of 2,150 microg/m(3) for a mean of 4.0 years. Again, group-mean VCS, measured 6 weeks after exposure cessation, was significantly reduced in the nine exposed workers relative to matched controls, and the groups did not differ significantly in visual acuity. These results suggested that chronic, environmental exposure to airborne perc adversely affects neurobehavioral function in healthy individuals. Further research is needed to assess the susceptibility of the young and elderly to perc-induced effects, to determine whether persistent solvent-induced VCS deficits are a risk factor for the development of neurologic disease, and to identify the no observable adverse effect level for chronic, environmental, perc exposure in humans. PMID:12117642

Schreiber, Judith S; Hudnell, H Kenneth; Geller, Andrew M; House, Dennis E; Aldous, Kenneth M; Force, Michael S; Langguth, Karyn; Prohonic, Elizabeth J; Parker, Jean C

2002-01-01

170

Interfacial Properties of a Hydrophobic Dye in the Tetrachloroethylene-Water-Glass Systems  

SciTech Connect

Interfacial effects play an important role in governing multiphase fluid behavior in porous media. Strongly hydrophobic organic dyes, used in many experimental studies to facilitate visual observation of the phase distributions, have generally been implicitly assumed to have no influence on the interfacial properties of the various phases in porous media. Sudan IV is the most commonly used dye for non-aqueous phase liquids (NAPLs) in laboratory experiments. It has also been used in at least one field experiment. The effects of this dye on the tetrachloroethylene (PCE)-water-glass system were investigated to test the assumption that the dye does not effect the interfacial properties and therefore PCE mobility. The results indicate that the dye does indeed change the interfacial relationships.The effect of the dye on the interfacial relationships is a complex function of the dye concentration, the solid phase composition, and the dynamic rate of new interface formation. The dye caused a slight (<10 percent) increase in interfacial tension at low concentrations (<0.1 g/L) and high rates of new interface formation. The dye reduced interfacial tension between PCE and water at low rates of new interface formation for all dye concentrations tested (0.00508 to 5.08 g/L). At the highest dye concentration, the PCE-water interfacial tension was significantly reduced regardless of the rate of new interface formation. The apparent interfacial tension increase at low dye concentrations is suspected to be an artifact of a low measured IFT value for the undyed PCE caused by leaching of rubber o-rings by the PCE prior to testing in the final drop-volume configuration.In addition to reducing interfacial tension, the dye was found to significantly alter the wetting relationship between PCE and water on a glass surface at and above the range of reported dye concentrations cited in the literature (1.1 to 1.7 g/L). The wetting relationship was rendered neutral from a water-wet initial condition at the highest dye concentration. The contact angle, measured through the aqueous phase, changed from 58 degrees for undyed PCE to 93 degrees at a dye concentration of 5.08 g/L. Complete reversal of the wettability is likely given the short equilibration time used in this study (approximately five minutes) together with literature indications that hundreds to thousands of hours may be required to reach equilibrium during contact angle measurements. Observations suggesting changing wetting relationships were also noted between PCE, water, and the platinum-iridium surface used in the standard du No/374y ring method for measuring interfacial tension.Observations of the dyed-PCE-water interface behavior during du No/374y ring interfacial tension measurements were similar to observations noted previously during measurements of the interfacial tension between the Savannah River Site (SRS) M-Area Settling Basin DNAPL (M-Area DNAPL) and water. This observation suggests that the M-Area DNAPL may contain surface active components. If this proves to be the case, it would have significant implications for how the M-Area DNAPL is distributed and moves in the SRS subsurface.

Tuck, D.M.

1999-02-23

171

Benzodiazepine-like discriminative stimulus effects of toluene vapor  

PubMed Central

In vitro studies show that the abused inhalant toluene affects a number of ligand-gated ion channels. The two most consistently implicated of these are ?-aminobutyric acid type A (GABAA) receptors which are positively modulated by toluene and N-methyl-D-aspartate (NMDA) receptors which are negatively modulated by toluene. Behavioral studies also suggest an interaction of toluene with GABAA and/or NMDA receptors but it is unclear if these receptors underlie the abuse-related intoxicating effects of toluene. Seventeen B6SJLF1/J mice were trained using a two-choice operant drug discrimination procedure to discriminate 10 min of exposure to 2000 ppm toluene vapor from 10 min of exposure to air. The discrimination was acquired in a mean of 65 training sessions. The stimulus effects of 2000 ppm toluene vapor were exposure concentration-dependent but rapidly diminished following the cessation of vapor exposure. The stimulus effects of toluene generalized to the chlorinated hydrocarbon vapor perchloroethylene but not 1,1,2-trichloroethane nor the volatile anesthetic isoflurane. The competitive NMDA antagonist CGS-17955, the uncompetitive antagonist dizocilpine and the glycine-site antagonist L701,324 all failed to substitute for toluene. The classical nonselective benzodiazepines midazolam and chlordiazepoxide produced toluene-like stimulus effects but the alpha 1 subunit preferring positive GABAA modulator zaleplon failed to substitute for toluene. The barbiturates pentobarbital and methohexital and the GABAA-positive modulator neurosteroid allopregnanolone did not substitute for toluene. These data suggest that the stimulus effects of toluene may be at least partially mediated by benzodiazepine-like positive allosteric modulation of GABAA receptors containing alpha 2, 3 or 5 subunits. PMID:24436974

Shelton, Keith L.; Nicholson, Katherine L.

2013-01-01

172

Effects of dynamic redox zonation on the potential for natural attenuation of trichloroethylene at a fire-training-impacted aquifer  

USGS Publications Warehouse

Hydrogeochemical and microbiological methods were used to characterize temporal changes along a transect of an aquifer contaminated by mixed hydrocarbon and solvent wastes from fire training activities at Wurtsmith Air Force Base (Oscoda, MI). Predominant terminal electron accepting processes (TEAPs) as measured by dissolved hydrogen indicated reoxygenation along the transect between October 1995 and October 1996, possibly because of recharge, fluctuations in water table elevation, or microbial activity. Microbiological analyses using universal and archaeal probes revealed a relationship between groundwater hydrogen concentration, TEAP, and predominant bacterial phylogeny. Specifically, a raised water table level and evidence of methanogenesis corresponded to an order of magnitude increase in archaeal 16S rRNA relative to when this zone was unsaturated. Spatial microbial and geochemical dynamics did not result in measurable differences in trichloroethylene (TCE) mineralization potential in vadose, capillary fringe, and saturated zone soils during a 500-day microcosm experiment using unprocessed contaminated soil and groundwater. Aerobic systems indicated that methane, but not toluene, may serve as cosubstrate for TCE cometabolism. Anaerobic microcosms demonstrated evidence for methanogenesis, CO2 production and hydrogen consumption, yet dechlorination activity was only observed in a microcosm with sulfate-reduction as the dominant TEAP. Mass balance calculations indicated less than 5% mineralization, regardless of redox zone or degree of saturation, at maximum rates of 0.01-0.03 ??mol/g soil??d. The general lack of dechlorination activity under laboratory conditions corroborates the limited evidence for natural dechlorination at this site, despite abundant electron donor material and accumulated organic acids from microbial degradation of alkylbenzenes. Thus, the short-term temporal dynamics in redox conditions is unlikely to have measurable effects on the long-term natural remediation potential of the aquifer.

Skubal, K.L.; Haack, S.K.; Forney, L.J.; Adriaens, P.

1999-01-01

173

Qualitative color vision impairment in toluene-exposed workers  

Microsoft Academic Search

Objective?: The aim of this study was to evaluate whether toluene, like many other organic solvents and solvent mixtures, could impair\\u000a color vision. Subjects and methods?: We investigated color vision impairment in three groups of workers, two groups occupationally exposed to toluene and a\\u000a nonexposed group. The first exposed group, group E1, comprised 41 workers (median value of toluene in

M. Zavali?; Z. Mandi?; R. Turk; A. Bogadi-Šare; D. Plavec; L. J. Skender

1998-01-01

174

Permeation of polymeric materials by toluene  

SciTech Connect

The permeation of toluene through protective clothing materials composed of butyl, butyl-coated nomex, neoprene, and polyvinyl alcohol was tested at 25/sup 0/C and 45/sup 0/C with the use of ASTM method F-739. Butyl exhibited breakthrough of 18 min at 25/sup 0/C and 11 min at 45/sup 0/ C. Butyl nomex exhibited breakthrough times of 11 min and 25/sup 0/C and 6 min at 45/sup 0/C. PVA showed no breakthrough in 20 hr. The steady-state permeation rates and the diffusion coefficients were determined.

Vahdat, N.

1987-02-01

175

Modes of action of trichloroethylene for kidney tumorigenesis.  

PubMed Central

This article focuses on the various models for kidney toxicity due to trichloroethylene (TCE) and its glutathione-dependent metabolites, in particular S-(1,2-dichlorovinyl)-l-cysteine. Areas of controversy regarding the relative importance of metabolic pathways, species differences in toxic responses, rates of generation of reactive metabolites, and dose-dependent phenomena are highlighted. The first section briefly reviews information on the incidence and risk factors of kidney cancer in the general U.S. population. Epidemiological data on incidence of kidney cancer in male workers exposed occupationally to TCE are also summarized. This is contrasted with cancer bioassay data from laboratory animals, that highlights sex and species differences and, consequently, the difficulties in making risk assessments for humans based on animal data. The major section of the article considers proposed modes of action for TCE or its metabolites in kidney, including peroxisome proliferation, alpha(2u)-globulin nephropathy, genotoxicity, and acute and chronic toxicity mechanisms. The latter comprise oxidative stress, alterations in calcium ion homeostasis, mitochondrial dysfunction, protein alkylation, cellular repair processes, and alterations in gene expression and cell proliferation. Finally, the status of risk assessment for TCE based on the kidneys as a target organ and remaining questions and research needs are discussed. PMID:10807554

Lash, L H; Parker, J C; Scott, C S

2000-01-01

176

Trichloroethylene: Mechanistic, Epidemiologic and Other Supporting Evidence of Carcinogenic Hazard  

PubMed Central

The chlorinated solvent trichloroethylene (TCE) is a ubiquitous environmental pollutant. The carcinogenic hazard of TCE was the subject of a 2012 evaluation by a Working Group of the International Agency for Research on Cancer (IARC). Information on exposures, relevant data from epidemiologic studies, bioassays in experimental animals, and toxicity and mechanism of action studies was used to conclude that TCE is carcinogenic to humans (Group 1). This article summarizes the key evidence forming the scientific bases for the IARC classification. Exposure to TCE from environmental sources (including from hazardous waste sites and contaminated water) is common throughout the world. While workplace use of TCE has been declining, occupational exposures remain of concern, especially in developing countries. Strongest human evidence is from studies of occupational TCE exposure and kidney cancer. Positive, although less consistent, associations were reported for liver cancer and non-Hodgkin's lymphoma. TCE is carcinogenic at multiple sites in multiple species and strains of experimental animals. The mechanistic evidence includes extensive data on the toxicokinetics and genotoxicity of TCE and its metabolites. Together, available evidence provided a cohesive database supporting the human cancer hazard of TCE, particularly in the kidney. For other target sites of carcinogenicity, mechanistic and other data were found to be more limited. Important sources of susceptibility to TCE toxicity and carcinogenicity were also reviewed by the Working Group. In all, consideration of the multiple evidence streams presented herein informed the IARC conclusions regarding the carcinogenicity of TCE. PMID:23973663

Rusyn, Ivan; Chiu, Weihsueh A.; Lash, Lawrence H.; Kromhout, Hans; Hansen, Johnni; Guyton, Kathryn Z.

2013-01-01

177

Optimization of electrochemical dechlorination of trichloroethylene in reducing electrolytes  

PubMed Central

Electrochemical dechlorination of trichloroethylene (TCE) in aqueous solution is investigated in a closed, liquid-recirculation system. The anodic reaction of cast iron generates ferrous species, creating a chemically reducing electrolyte (negative ORP value). The reduction of TCE on the cathode surface is enhanced under this reducing electrolyte because of the absence of electron competition. In the presence of the iron anode, the performances of different cathodes are compared in a recirculated electrolysis system. The copper foam shows superior capability for dechlorination of aqueous TCE. Electrolysis by cast iron anode and copper foam cathode is further optimized though a multivariable experimental design and analysis. The conductivity of the electrolyte is identified as an important factor for both final elimination efficiency (FEE) of TCE and specific energy consumption. The copper foam electrode exhibits high TCE elimination efficiency in a wide range of initial TCE concentration. Under coulostatic conditions, the optimal conditions to achieve the highest FEE are 9.525 mm thick copper foam electrode, 40 mA current and 0.042 mol L?1 Na2SO4. This novel electrolysis system is proposed to remediate groundwater contaminated by chlorinated organic solvents, or as an improved iron electrocoagulation process capable of treating the wastewater co-contaminated with chlorinated compounds. PMID:22264798

Mao, Xuhui; Ciblak, Ali; Baek, Kitae; Amiri, Mohammad; Loch-Caruso, Rita; Alshawabkeh, Akram N.

2012-01-01

178

Immobilization of bimetallic nanoparticles on microfiltration membranes for trichloroethylene dechlorination.  

PubMed

Highly reactive nanoscale Ni/Fe nanoparticles were synthesized on microfiltration membranes for dechlorination of 20 mg/L trichloroethylene (TCE). Complete degradation of TCE was achieved within 25 min by Nylon 66 membrane with the production of ethane as a major degradation product, depicting that hydrodechlorination is the major reaction mechanism for TCE dechlorination. In addition, the carbon mass balance can be reached to 93%. The surface-area-normalized rate constant (kSA) for TCE degradation by Ni/Fe immobilized on Nylon 66 was 0.172 L h(-1) m(-2), which is higher than that by Ni/Fe in solution. Further TEM and SEM-EDS analyses show that Nylon 66 can retain higher amounts of Ni on the surface of membrane. In addition, the efficiency and rate for TCE dechlorination increased upon increasing mass loading of Ni from 2.5 to 20 wt%. Results obtained in this study clearly demonstrate that the use of Nylon 66 as the support for immobilization of bimetallic Ni/Fe nanoparticles has a good catalytic activity for dechlorination of TCE. PMID:19001718

Parshetti, G K; Doong, R A

2008-01-01

179

Mass recovery methods for trichloroethylene in plant tissue.  

SciTech Connect

Monitoring expenses form a significant fraction of the costs associated with remediation of contaminated soil and groundwater sites. A novel monitoring method that could result in significant cost savings is the use of plants as monitoring devices; previous work indicates that plant tissue samples, especially trunk (core) and branch samples, can be used to delineate soil and groundwater plumes at phytoremediation sites. An important factor in reducing the uncertainty associated with this sampling method is development of a technique to analyze, both consistently and accurately, the chemicals stored in plant tissue samples. The present research presents a simple, robust, and inexpensive technique to recover most of the contaminant in plant branch tissue, irrespective of the age or species of the plant. Trichloroethylene (TCE) was the chemical analyzed. A number of headspace and solvent extraction techniques in the literature were evaluated, including headspace extraction at different incubation times and temperatures and solvent extraction using hexane or hot methanol. Extraction using hot methanol was relatively fast, simple, and reliable; this method recovered more than 89% of the TCE present in branches of five different tree species.

Gopalakrishnan, G.; Negri, M. C.; Werth, C. J.; Energy Systems; Univ. of Illionis

2009-06-01

180

Phytoremediation of Trichloroethylene and Perchloroethylene at the Savannah River Site  

SciTech Connect

Bioremediation of chlorinated solvents, both natural and accelerated, is exemplified by phytoremediation and biodegradation by rhizosphere microorganisms. Phytoremediation is the use of vegetation for the treatment of contaminated soils, sediments, and water. The potential for phytoremediation of chlorinated solvents has been demonstrated at the Savannah River Site (SRS) Miscellaneous Chemical Basin, Southern Sector of A/M Area and TNX/D-Area. Recent characterization work at the SRS has delineated widespread plumes (1-2 miles) of low concentration (40 ppb -10-ppm range) trichloroethylene (TCE) and perchloroethylene (PCE) contaminated groundwater. Phytoremediation deployments are underway for TCE and PCE phytoremediation in select SRS areas. Phytoremediation appears to be an excellent technology to intercept and control plume migration. The ongoing Southern Sector treatability study is part of a multi-year field study of SRS seepline-soil systems maintained under saturated conditions. The primary focus is on determining how trees, seepline groundcover, soil microbial communities, and geochemical and surface-volatilization processes affect TCE and PCE in contaminated groundwater that flows through surface seepline areas. Therefore, FY00 represented an initial acclimation phase for soil and plant systems and will facilitate examination of seepline phyto- and bioactivity in subsequent growth season in FY01.

Brigmon, R.L.

2001-01-10

181

Ovarian Gene Expression is Stable after Exposure to Trichloroethylene  

PubMed Central

Exposure of female rats to trichloroethylene (TCE), an environmental toxicant commonly found in ground and surface waters throughout the United States, reduces the fertilizability of oocytes produced by these females compared with oocytes from control females. Localization of cytochrome P450 2E1 and glutathione s-transferase ?, TCE-metabolizing enzymes, in the ovary suggests TCE metabolism occurs in the ovary. The production of bioactive TCE metabolites in the ovary may alter female reproductive function by altering ovarian gene transcription and/or protein expression and function. The purpose of the present study was to examine ovarian gene transcription after exposure of female rats to 0.45% TCE (v/v) in 3% Tween. Control rats received 3% Tween. Microarray analysis after 1 and 5 days of exposure indicated ovarian gene transcription was maintained during TCE exposure with the possible exception of a very few genes. Although conclusions for these few genes were ambiguous from the microarray analysis due to the minimal but statistically significant reductions, quantitative real time RT-PCR (qRT-PCR) analysis indicated expression of these genes was unaltered after TCE exposure. Protein analysis confirmed qRT-PCR results. This study suggests TCE-induced reductions in oocyte fertilizability are independent of currently detectable alterations in ovarian gene expression. PMID:18249509

Wu, Katherine Lily; Berger, Trish

2009-01-01

182

Biotransformation of trichloroethylene by a phenol-induced mixed culture  

SciTech Connect

Biodegradation of trichloroethylene (TCE) was studied using a mixed culture of aerobic, phenol-induced organisms. Abiotic experiments showed that sorption of TCE to biomass was negligible in the systems studied. The effects of influent phenol and TCE concentration on the TCE degradation capacity of the culture were studied using chemostats. A relationship exists between the influent phenol/TCE ratio and TCE biodegradation. TCE transformation yields ranged from 0.052 to 0.222 mg TCE removed/mg phenol removed. Monod kinetic coefficients for phenol degradation were determined. Monod kinetic coefficients were also determined for TCE biotransformation by resting cells. The concept of transformation capacity was used to model the decrease in active biomass concentration caused by TCE transformation. In mineralization studies using {sup 14}C-labeled TCE, 22% of the degraded mass of TCE was transformed to carbon dioxide, 8.8% was incorporated into biomass, 42% was transformed to nonvolatile products, with the remaining, unrecovered 27% most likely transformed into volatile or semivolatile products.

Shurtliff, M.M. [CH2M Hill, Gainesville, FL (United States); Parkin, G.F.; Gibson, D.T. [Univ. of Iowa, Iowa City, IA (United States); Weathers, L.J. [Univ. of Maine, Orono, ME (United States). Dept. of Civil and Environmental Engineering

1996-07-01

183

Inhibition of trichloroethylene oxidation by the transformation intermediate carbon monoxide.  

PubMed Central

Inhibition of trichloroethylene (TCE) oxidation by the transformation intermediate carbon monoxide (CO) was evaluated with the aquifer methanotroph Methylomonas sp. strain MM2. CO was a TCE transformation intermediate. During TCE oxidation, approximately 9 mol% of the TCE was transformed to CO. CO was oxidized by Methylomonas sp. strain MM2, and when formate was provided as an electron donor, the CO oxidation rate doubled. The rate of CO oxidation without formate was 4.6 liter mg (dry weight)-1 day-1, and the rate with formate was 10.2 liter mg (dry weight)-1 day-1. CO inhibited TCE oxidation, both by exerting a demand for reductant and through competitive inhibition. The Ki for CO inhibition of TCE oxidation, 4.2 microM, was much less than the Ki for methane inhibition of TCE oxidation, 116 microM. CO also inhibited methane oxidation, and the degree of inhibition increased with increasing CO concentration. When CO was present, formate amendment was necessary for methane oxidation to occur and both substrates were simultaneously oxidized. CO at a concentration greater than that used in the inhibition studies was not toxic to Methylomonas sp. strain MM2. PMID:1908211

Henry, S M; Grbi?-Gali?, D

1991-01-01

184

Saturation mutagenesis of Bradyrhizobium sp. BTAi1 toluene 4-monooxygenase at alpha-subunit residues proline 101, proline 103, and histidine 214 for regiospecific oxidation of aromatics.  

PubMed

A novel toluene monooxygenase (TMO) six-gene cluster from Bradyrhizobium sp. BTAi1 having an overall 35, 36, and 38 % protein similarity with toluene o-xylene monooxygenase (ToMO) of Pseudomonas sp. OX1, toluene 4-monooxygenase (T4MO) of Pseudomonas mendocina KR1, and toluene-para-monooxygenase (TpMO) of Ralstonia pickettii PKO1, respectively, was cloned and expressed in Escherichia coli TG1, and its potential activity was investigated for aromatic hydroxylation and trichloroethylene (TCE) degradation. The natural substrate toluene was hydroxylated to p-cresol, indicating that the new toluene monooxygenase (T4MO·BTAi1) acts as a para hydroxylating enzyme, similar to T4MO and TpMO. Some shifts in regiospecific hydroxylations were observed compared to the other wild-type TMOs. For example, wild-type T4MO·BTAi1 formed catechol (88 %) and hydroquinone (12 %) from phenol, whereas all the other wild-type TMOs were reported to form only catechol. Furthermore, it was discovered that TG1 cells expressing wild-type T4MO·BTAi1 mineralized TCE at a rate of 0.67 ± 0.10 nmol Cl(-)/h/mg protein. Saturation and site directed mutagenesis were used to generate eight variants of T4MO·BTAi1 at alpha-subunit positions P101, P103, and H214: P101T/P103A, P101S, P101N/P103T, P101V, P103T, P101V/P103T, H214G, and H214G/D278N; by testing the substrates phenol, nitrobenzene, and naphthalene, positions P101 and P103 were found to influence the regiospecific oxidation of aromatics. For example, compared to wild type, variant P103T produced four fold more m-nitrophenol from nitrobenzene as well as produced mainly resorcinol (60 %) from phenol whereas wild-type T4MO·BTAi1 did not. Similarly, variants P101T/P103A and P101S synthesized more 2-naphthol and 2.3-fold and 1.6-fold less 1-naphthol from naphthalene, respectively. PMID:25016343

Yan?k-Y?ld?r?m, K Cansu; Vardar-Schara, Gönül

2014-11-01

185

40 CFR 721.10610 - Toluene diisocyanate, polymers with polyalkylene glycol (generic).  

Code of Federal Regulations, 2013 CFR

...2013-07-01 false Toluene diisocyanate, polymers with polyalkylene glycol (generic...721.10610 Toluene diisocyanate, polymers with polyalkylene glycol (generic...generically as toluene diisocyanate, polymers with polyalkylene glycol (PMNs...

2013-07-01

186

Regeneration of Honeycomb Zeolite by Nonthermal Plasma Desorption of Toluene  

Microsoft Academic Search

In order to develop an economical volatile organic compound (VOC) removal process, a concentration technique using nonthermal plasma combined with an adsorption process is investigated. Toluene-one of the most commonly used VOCs-is used, and the optimization of plasma desorption is investigated. The effects of toluene concentration and adsorbent regeneration are investigated by varying the plasma desorption methods: closing method, in

Tomoyuki Kuroki; Takeshi Fujioka; Ryouhei Kawabata; Masaaki Okubo; Toshiaki Yamamoto

2009-01-01

187

TOLUENE EXPERIMENTAL EXPOSURES IN HUMANS: PHARMACOKINETICS AND BEHAVIOR  

EPA Science Inventory

Toluene Experimental Exposures in Humans: Pharmacokinetics and Behavioral Effects (Ongoing Research) Vernon A. Benignus1, Philip J. Bushnell2 and William K. Boyes2 Human subjects will be exposed to 250 and 500 ppm toluene for one hour in the Human St...

188

CARDIOVASCULAR AND THERMOREGULATORY RESPONSE TO ORAL TOLUENE IN THE RAT.  

EPA Science Inventory

Toluene and other volatile organic compounds have often been shown to affect behavior in animals when given by inhalation, and less effective when given orally. Previous work showed that toluene increased heart rate (HR) and motor activity (MA), and reduced core temperature (Tc) ...

189

BEHAVIOR OF TOLUENE ADDED TO SLUDGE-AMENDED SOILS  

EPA Science Inventory

Toluene is a priority pollutant that can be introduced to soils in a variety of wastes, including some municipal sludges. Laboratory experiments were conducted to study the behavior of toluene in two soils in the presence and absence of municipal sludge. Sludge additions increa...

190

BEHAVIOR OF TOLUENE ADDED TO SLUDGE-AMENDED SOILS  

EPA Science Inventory

Toluene is a priority pollutant that can be introduced to soils in a variety of wastes, including some municipal sludges. aboratory experiments were conducted to study the behavior of toluene in two soils in the presence and absence of municipal sludge. ludge additions increased ...

191

Toluene inhalation produces regionally specific changes in extracellular dopamine  

Microsoft Academic Search

The aim of the present study was to investigate the effect of toluene inhalation on dopaminergic transmission in two distinct brain areas presumably involved in mediating the reward processes important for toluene abuse. Extracellular dopamine (DA) levels were measured in prefrontal cortex (PFC) and nucleus accumbens (NACC) of freely moving rats using in vivo microdialysis. Inhalation of a behaviorally relevant

Madina R. Gerasimov; Wynne K. Schiffer; Douglas Marstellar; Richard Ferrieri; David Alexoff; Stephen L. Dewey

2002-01-01

192

Toluene Solubilization Induces Different Modes of Mixed Micelle Growth  

E-print Network

on the size and mobility of Triton X100 (TX100) micelles and TX100/ sodium dodecyl sulfate (SDS) mixed of excess toluene leads to the formation of ca. 140 nm toluene droplets, stabilized mainly by monomers" remediation techniques also known as "soil flushing".20-22 This tech- nique aims to improve the removal

Dubin, Paul D.

193

Role of heterotrophic bacteria in complete mineralization of trichloroethylene by Methylocystis sp. strain M.  

PubMed Central

Biodegradation experiments with radioactively labeled trichloroethylene showed that 32% of the radioactive carbon was converted to glyoxylic acid, dichloroacetic acid and trichloroacetic acid and that the same percentage was converted to CO2 and CO after 140 h of incubation by a pure culture of a type II methane-utilizing bacterium, Methylocystis sp. strain M, isolated from a mixed culture, MU-81, in our laboratory. In contrast, these water-soluble (14C)trichloroethylene degradation products were completely or partially degraded further and converted to CO2 by the MU-81 mixed culture. This phenomenon was attributed to the presence of a heterotrophic bacterium (strain DA4), which was identified as Xanthobacter autotrophicus, in the MU-81 culture. The results indicate that the heterotrophic bacteria play an important role in complete trichloroethylene degradation by methanotrophs. PMID:1444420

Uchiyama, H; Nakajima, T; Yagi, O; Nakahara, T

1992-01-01

194

Copper Enhanced Monooxygenase Activity and FT-IR Spectroscopic Characterisation of Biotransformation Products in Trichloroethylene Degrading Bacterium: Stenotrophomonas maltophilia PM102  

PubMed Central

Stenotrophomonas maltophilia PM102 (NCBI GenBank Acc. no. JQ797560) is capable of growth on trichloroethylene as the sole carbon source. In this paper, we report the purification and characterisation of oxygenase present in the PM102 isolate. Enzyme activity was found to be induced 10.3-fold in presence of 0.7?mM copper with a further increment to 14.96-fold in presence of 0.05?mM NADH. Optimum temperature for oxygenase activity was recorded at 36°C. The reported enzyme was found to have enhanced activity at pH 5 and pH 8, indicating presence of two isoforms. Maximum activity was seen on incubation with benzene compared to other substrates like TCE, chloroform, toluene, hexane, and petroleum benzene. Km and Vmax for benzene were 3.8?mM and 340?U/mg/min and those for TCE were 2.1?mM and 170?U/mg/min. The crude enzyme was partially purified by ammonium sulphate precipitation followed by dialysis. Zymogram analysis revealed two isoforms in the 70% purified enzyme fraction. The activity stain was more prominent when the native gel was incubated in benzene as substrate in comparison to TCE. Crude enzyme and purified enzyme fractions were assayed for TCE degradation by the Fujiwara test. TCE biotransformation products were analysed by FT-IR spectroscopy. PMID:24083236

Mukherjee, Piyali; Roy, Pranab

2013-01-01

195

Use of starvation promoters to limit growth and selectively enrich expression of trichloroethylene- and phenol-transforming activity in recombinant Escherichia coli [corrected  

PubMed Central

The expression of much useful bacterial activity is facilitated by rapid growth. This coupling can create problems in bacterial fermentations and in situ bioremediation. In the latter process, for example, it necessitates addition of large amounts of nutrients to contaminated environments, such as aquifers. This approach, termed biostimulation, can be technically difficult. Moreover, the resulting in situ bacterial biomass production can have undesirable consequences. In an attempt to minimize coupling between expression of biodegradative activity and growth, we used Escherichia coli starvation promoters to control toluene monooxygenase synthesis. This enzyme complex can degrade the environmental contaminants trichloroethylene (TCE) and phenol. Totally starving cell suspensions of such strains degraded phenol and TCE. Furthermore, rapid conversions occurred in the postexponential batch or very slow growth (dilution) rate chemostat cultures, and the nutrient demand and biomass formation for transforming a given amount of TCE or phenol were reduced by 60 to 90%. Strong starvation promoters have recently been clones and characterized in environmentally relevant bacteria like Pseudomonas species; thus, starvation promoter-driven degradative systems can now be constructed in such bacteria and tested for in situ efficacy. PMID:7574643

Matin, A; Little, C D; Fraley, C D; Keyhan, M

1995-01-01

196

Risk of breast cancer following exposure to tetrachloroethylene-contaminated drinking water in Cape Cod, Massachusetts: reanalysis of a case-control study using a modified exposure assessment  

Microsoft Academic Search

Background  Tetrachloroethylene (PCE) is an important occupational chemical used in metal degreasing and drycleaning and a prevalent drinking\\u000a water contaminant. Exposure often occurs with other chemicals but it occurred alone in a pattern that reduced the likelihood\\u000a of confounding in a unique scenario on Cape Cod, Massachusetts. We previously found a small to moderate increased risk of\\u000a breast cancer among women

Lisa G Gallagher; Veronica M Vieira; David Ozonoff; Thomas F Webster; Ann Aschengrau

2011-01-01

197

Human Health Effects of Trichloroethylene: Key Findings and Scientific Issues  

PubMed Central

Background: In support of the Integrated Risk Information System (IRIS), the U.S. Environmental Protection Agency (EPA) completed a toxicological review of trichloroethylene (TCE) in September 2011, which was the result of an effort spanning > 20 years. Objectives: We summarized the key findings and scientific issues regarding the human health effects of TCE in the U.S. EPA’s toxicological review. Methods: In this assessment we synthesized and characterized thousands of epidemiologic, experimental animal, and mechanistic studies, and addressed several key scientific issues through modeling of TCE toxicokinetics, meta-analyses of epidemiologic studies, and analyses of mechanistic data. Discussion: Toxicokinetic modeling aided in characterizing the toxicological role of the complex metabolism and multiple metabolites of TCE. Meta-analyses of the epidemiologic data strongly supported the conclusions that TCE causes kidney cancer in humans and that TCE may also cause liver cancer and non-Hodgkin lymphoma. Mechanistic analyses support a key role for mutagenicity in TCE-induced kidney carcinogenicity. Recent evidence from studies in both humans and experimental animals point to the involvement of TCE exposure in autoimmune disease and hypersensitivity. Recent avian and in vitro mechanistic studies provided biological plausibility that TCE plays a role in developmental cardiac toxicity, the subject of substantial debate due to mixed results from epidemiologic and rodent studies. Conclusions: TCE is carcinogenic to humans by all routes of exposure and poses a potential human health hazard for noncancer toxicity to the central nervous system, kidney, liver, immune system, male reproductive system, and the developing embryo/fetus. PMID:23249866

Jinot, Jennifer; Scott, Cheryl Siegel; Makris, Susan L.; Cooper, Glinda S.; Dzubow, Rebecca C.; Bale, Ambuja S.; Evans, Marina V.; Guyton, Kathryn Z.; Keshava, Nagalakshmi; Lipscomb, John C.; Barone, Stanley; Fox, John F.; Gwinn, Maureen R.; Schaum, John; Caldwell, Jane C.

2012-01-01

198

Trichloroethylene Metabolism in the Rat Ovary Reduces Oocyte Fertilizability  

PubMed Central

Exposure to trichloroethylene (TCE, an environmental toxicant) reduced oocyte fertilizability in the rat. In vivo, TCE may be metabolized by cytochrome P450 dependent oxidation or glutathione conjugation in the liver or kidneys, respectively. Cytochrome P450 dependent oxidation is the higher affinity pathway. The primary isoform of cytochrome P450 to metabolize TCE in the liver, cytochrome P450 2E1, is present in the rodent ovary. Ovarian metabolism of TCE by the oxidative pathway and the production of reactive oxygen species may occur given the presence of the metabolizing enzyme. The objectives of this study were to define the sensitive interval of oocyte growth to TCE exposure, and to determine if TCE exposure resulted in the formation of ovarian protein carbonyls, an indicator of oxidative damage. Rats were exposed to TCE in drinking water (0.45% TCE (v/v) in 3% Tween) or 3% Tween (vehicle-control) during three 4–5 day intervals of oocyte development preceding ovulation. Oocytes from TCE-exposed females were less fertilizable compared with vehicle-control oocytes. Immunohistochemical labeling of ovaries and Western blotting of ovarian proteins demonstrated TCE treatment induced a greater incidence of protein carbonyls compared with vehicle controls. Protein carbonyl formation in the ovary is consistent with TCE metabolism by the cytochrome P450 pathway. Oxidative damage following ovarian TCE metabolism or the presence of TCE metabolites may contribute to reduced oocyte fertilizability. In summary, these results indicate maturing oocytes are susceptible to very short in vivo exposures to TCE. PMID:17673192

Wu, Katherine Lily; Berger, Trish

2007-01-01

199

Impact of iron sulfide transformation on trichloroethylene degradation  

NASA Astrophysics Data System (ADS)

Trichloroethylene (TCE) is one of the most common and persistent groundwater contaminants encountered at hazardous waste sites around the world. A growing body of evidence indicates that iron sulfides play an important role in degrading TCE in natural environments and in engineered systems designed for groundwater cleanup. In this study, we investigate transformation processes of iron sulfides and consequent impacts on TCE degradation using batch experimental techniques, transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray absorption spectroscopy (XAS). Our results show that mackinawite is highly reactive toward TCE and no detectable mineralogical changes were detected during the course of reaction. However, freeze-dried FeS transformed to a mixture of mackinawite and greigite during the freeze drying process, with further mineralogical changes during reaction with TCE to lepidocrocite, goethite and pyrite. Newly formed lepidocrocite is a transient phase, with conversion to goethite over time. TCE transformation kinetics show that freeze-dried FeS is 20-50 times less reactive in degrading TCE than non-freeze-dried FeS, and the TCE degradation rate increases with pH (from 5.4 to 8.3), possibly due to an increase of surface deprotonation or electron transfer at higher pH. Results suggest that freeze drying could cause FeS particle aggregation, decreased surface area and availability of reactive sites; it also could change FeS mineralogy and accelerate mineral transformation. These aspects could contribute to the lower reactivity of freeze-dried FeS toward TCE degradation. Modeling results show that FeS transformation in natural environments depends on specific biogeochemical conditions, and natural FeS transformation may affect mineral reactivity in a similar way as compared to the freeze drying process. Rapid transformation of FeS to FeS 2 could significantly slow down TCE degradation in both natural and engineered systems.

He, Y. Thomas; Wilson, John T.; Wilkin, Richard T.

2010-04-01

200

Preliminary response of a pristine aquifer when facing toluene contamination  

NASA Astrophysics Data System (ADS)

Toluene is a common groundwater contaminant due to the wide spread of gasoline and industrial solvents. The understanding of how and when ecosystems initially respond to the presence of toluene is yet limited, because field investigations rarely start before a contamination has occurred. In order to investigate for the first time such a scenario, a pristine indoor aquifer model (0.8 - 0.7 - 5 m) was constructed, filled with natural sediment, flushed with natural groundwater at a rate of 9 L/hr, and subsequently exposed to a toluene contamination. Investigation was done to the chemical and biological parameters of the model, including oxygen concentration (9.6 mg/L), nitrate concentration (5.8 mg/L), small organic carbon content (0.8 mg/L), microbial abundance (4 x 104 cell/mL), and ATP (0.01 nM). This agreed with the condition of a typical pristine and oligotrophic aquifer. A 30-hr aqueous toluene pulse (water saturated with toluene) was injected into the system together with a conservative tracer (90% D2O). Water samples were collected 4.2 m away from the injection source. The comparison between the toluene and D2O breakthrough curves indicated that a portion of toluene was removed by degradation at a pseudo 1st order rate of 0.017/hr. Stable carbon isotope values of toluene were also measured along with the breakthrough curves. ?13C values were more positive than the original input, confirming that biodegradation had taken place. Subsequent to the pulse, a constant injection of aqueous toluene together with bromide was applied to obtain a deeper insight of the biological and geochemical processes in the aquifer. High resolution water sampling over the entire aquifer model was conducted 80 hrs after the start of constant injection. Microbial abundance and living biomass (ATP) were observed to be 10 - and 100 -, respectively, higher than under pristine conditions. Biodegradation was detected by comparing the concentration of toluene and bromide, and was confirmed by a significant depletion of oxygen concentrations in the center of the plume. Subsequent sediment sampling revealed a pronounced decrease in bacterial diversity and evenness in the toluene plume, indicating fast establishment of the degraders and disappearance of sensitive members. Changes of microbial community composition were accompanied by a build up of biomass and high bacterial carbon production rates. Our study shows that microbial degradation of toluene occurs immediately (within 50 hrs) after exposure of the pristine aquifer to the contaminant. Changes in biological and geochemical processes give additional evidences that the system responds very fast towards toluene contamination and has a high potential for natural attenuation.

Qiu, S.; Herzyk, A.; Maloszewski, P.; Larentis, M.; Griebler, C.; Elsner, M.

2012-04-01

201

Comparison between urinary o-cresol and toluene as biomarkers of toluene exposure.  

PubMed

The characteristics of urinary o-cresol (o-C) and urinary toluene (TOL-U) as biomarkers of occupational exposure to toluene were comparatively evaluated. One hundred healthy male rotogravure printing workers and 161 male and female control subjects were studied. Personal exposure to airborne toluene (TOL-A) during the shift was determined as a time-weighted average. Simple analytical procedures based on solid phase microextraction followed by gas chromatography/mass spectometry analysis were applied to the determination of end-shift o-C and TOL-U. Median TOL-A was 48 (6.0-162.0) mg/m3 in printers and 0.021 (<0.003-0.137) mg/m3 in controls. o-C was 0.185 (0.032-0.948) mg/g creatinine in printers and 0.027 (<0.006-0.330) mg/g creatinine in the controls. TOL-U was 7.6 (1.8-23.9) microg/L in printers and 0.140 (0.094-0.593) microg/L in the controls. According to all indices, exposure to toluene was higher in printers than in the controls. Nevertheless, the distribution of o-C in the two groups partially overlapped, whereas such behavior was not found in TOL-U. Both o-C and TOL-U in printers were correlated with TOL-A (Pearson's on log10-transformed variables r = 0.704 and 0.844, respectively) and with each other (r = 0.683). Smoking habits significantly increased the excretion of o-C but not of TOL-U. From the point of view of sampling conditions and analytical requirements, TOL-U and o-C showed similar properties, but comparison of their intrinsic characteristics showed that TOL-U had higher specificity and sensitivity, lower background values, was better correlated with airborne exposure, and was not influenced by cigarette smoking. Therefore TOL-U may be considered superior to o-C as a biomarker of occupational exposure to toluene. PMID:17162475

Fustinoni, Silvia; Mercadante, Rosa; Campo, Laura; Scibetta, Licia; Valla, Carla; Consonni, Dario; Foà, Vito

2007-01-01

202

Remediation of an aquifer polluted with dissolved tetrachloroethylene by an array of wells filled with activated carbon.  

PubMed

In this work, an array of deep passive wells filled with activated carbon, namely a Discontinuous Permeable Adsorptive Barrier (PAB-D), has been proposed for the remediation of an aquifer contaminated by tetrachloroethylene (PCE). The dynamics of the aquifer in the particular PAB-D configuration chosen, including the contaminant transport in the aquifer and the adsorption onto the barrier material, has been accurately performed by means of a computer code which allows describing all the phenomena occurring in the aquifer, simultaneously. A PAB-D design procedure is presented and the main dimensions of the barrier (number and position of passive wells) have been evaluated. Numerical simulations have been carried out over a long time span to follow the contaminant plume and to assess the effectiveness of the remediation method proposed. The model results show that this PAB-D design allows for a complete remediation of the aquifer under a natural hydraulic gradient, the PCE concentrations flowing out of the barrier being always lower than the corresponding Italian regulation limit. Finally, the results have been compared with those obtained for the design of a more traditional continuous barrier (PAB-C) for the same remediation process. PMID:23876256

Bortone, I; Di Nardo, A; Di Natale, M; Erto, A; Musmarra, D; Santonastaso, G F

2013-09-15

203

Detailed mechanism of toluene oxidation and comparison with benzene  

NASA Technical Reports Server (NTRS)

A detailed mechanism for the oxidation of toluene in both argon and nitrogen dilutents is presented. The mechanism was used to compute experimentally ignition delay times for shock-heated toluene-oxygen-argon mixtures with resonably good success over a wide range of initial temperatures and pressures. Attempts to compute experimentally measured concentration profiles for toluene oxidation in a turbulent reactor were partially successful. An extensive sensitivity analysis was performed to determine the reactions which control the ignition process and the rates of formation and destruction of various species. The most important step was found to be the reaction of toluene with molecular oxygen, followed by the reactions of hydroperoxyl and atomic oxygen with benzyl radicals. These findings contrast with the benzene oxidation, where the benzene-molecular oxygen reaction is quite unimportant and the reaction of phenyl with molecular oxygen dominates. In the toluene mechanism the corresponding reaction of benzyl radicals with oxygen is unimportant. Two reactions which are important in the oxidation of benzene also influence the oxidation of toluene for several conditions. These are the oxidations of phenyl and cyclopentadienyl radicals by molecular oxygen. The mechanism presented successfully computes the decrease of toluene concentration with time in the nitrogen diluted turbulent reactor. This fact, in addition to the good prediction of ignition delay times, shows that this mechanism can be used for modeling the ignition and combustion process in practical, well-mixed combustion systems.

Bittker, David A.

1988-01-01

204

Toluene alters p75NTR expression in the rat brainstem.  

PubMed

Toluene is a neurotoxic organic solvent widely used in industry. Acute toluene administration in rats induced a significant increase in the numbers of neural cells immunostained for p75NTR in several brainstem regions, such as the raphe magnus and the nucleus of the solitary tract, as well as in the lateral reticular, gigantocellular, vestibular and ventral cochlear nuclei, without any in the facial and spinal trigeminal nuclei and the dorsal horn of the spinal cord. These data suggest that p75NTR could be involved in toluene-induced neurotoxic efffects in the rat brainstem. PMID:14964621

Pascual, Jesús; Morón, Lena; Zárate, Jon; Gutiérrez, Arantza; Churruca, Itziar; Echevarría, Enrique

2004-01-01

205

Pharmacokinetics of trichloroethylene in volunteers, influence of workload and exposure concentration  

Microsoft Academic Search

Four male volunteers inhaled for 4 h 70 and 140 ppm trichloroethylene (TRI) at rest and also at rest combined with exercise. To estimate the amount retained in the body (dose), minute volume and concentration in exhaled air were determined. Concentrations of TRI, trichloroethanol (TCE) and trichloroacetic acid (TCA) were determined in blood. Exhaled air was analysed for TRI and

A. C. Monster; G. Boersma; W. C. Duba

1976-01-01

206

Simultaneous determination of trichloroethylene and metabolites in blood and exhaled air by gas chromatography  

Microsoft Academic Search

Summary A gas chromatographic method for simultaneous determination of trichloroethylene (TRI), trichloroethanol (TCE) and trichloroacetic acid (TCA) in blood and TRI, TCE in exhaled air is described. The determination in blood is based on the relative volatility of TRI, TCE and TCA methylester, which offers the possibility of headspace analysis. The gaschromatograph is equipped with an electron capture detector.

A. C. Monster; G. Boersma

1975-01-01

207

QUANTIFICATION OF PRODUCTS FROM ELECTROCHEMICAL DECHLORINATION OF TRICHLOROETHYLENE USING GRANULAR-GRAPHITE ELECTRODES  

EPA Science Inventory

Electrochemical dechlorination of Trichloroethylene (TCE) in aqueous phase was studied using graphite as a cathode in a packed bed reactor in a closed system. TCE contaminated matrix solution was circulated through the electrochemical reactor where TCE was reduced at the graphite...

208

Uses of and Exposure to Trichloroethylene in U.S. Industry: A Systematic Literature Review  

Microsoft Academic Search

This article describes a systematic review of the industrial hygiene literature for uses of trichloroethylene (TCE) in industry for the exposure assessment of two population-based case control studies of brain cancer in the United States. Papers and reports that address uses of and exposures to TCE were identified from MEDLINE, TOXLINE, NIOSHTIC, the NIOSH Health Hazard Evaluation database (keywords: chlorinated

Berit Bakke; Patricia A. Stewart; Martha A. Waters

2007-01-01

209

HUMAN ALPHA-7 NICOTINIC ACETYLCHOLINE RECEPTORS EXPRESSED IN XENOPUS OOCYTES ARE INHIBITED BY TRICHLOROETHYLENE.  

EPA Science Inventory

Trichloroethylene (TCE) is a volatile organic solvent (VOC) that is used as a metal degreasing agent and in paints and glue. In addition to being a commonly abused inhalant, run-off from hazardous waste sites contain enough TCE and other VOCs to contaminate ground water and near...

210

TRICHLOROETHYLENE SORPTION AND OXIDATION USING A DUAL FUNCTION SORBENT/CATALYST IN A FALLING FURNACE REACTOR  

EPA Science Inventory

A dual function medium (Cr-ZSM-5), capable of physisorbing trichloroethylene (TCE) at ambient temperature and catalytically oxidizing it at elevated temperature (-350 degrees C) was utilized in a novel continuous falling furnace reactor system to store and periodically destroy t...

211

CATALYTIC STEAM REFORMING OF CHLOROCARBONS: TRICHLOROETHANE, TRICHLOROETHYLENE AND PERCHLOROETHYLENE. (R826694C633)  

EPA Science Inventory

The effective destruction of trichloroethane, trichloroethylene and perchloroethylene by steam reforming with a commercial nickel catalyst has been demonstrated. Conversion levels of up to 0.99999 were attained in both laboratory and semi-pilot experiments, with the products c...

212

EFFECTS OF TRICHLOROETHYLENE AND ITS METABOLITES ON RODENT HEPATOCYTE INTERCELLULAR COMMUNICATION  

EPA Science Inventory

Chronic exposure to trichloroethylene (TCE) results in hepatocellular cancer in mice but not rats. The induction of hepatic tumors by TCE appears to be mediated through nongenotoxic or tumor promotion mechanisms. One cellular effect exhibited by a number of nongentoxic carcinogen...

213

Atmospheric pressure discharge plasma decomposition for gaseous air contaminants-trichlorotrifluoroethane and trichloroethylene  

Microsoft Academic Search

The decomposition performance of gaseous environmental destructive contaminants in air by using atmospheric pressure discharge plasma including the surface discharge induced plasma chemical processing (SPCP) was examined. The main contaminants tested were chlorofluorocarbon (CFC-113) and trichloroethylene, typically. The discharge exciting frequency range studied was wide-50 Hz to 50 kHz. Results showed the low frequency discharge requires high voltage to inject

Tetsuji Oda; Ryuichi Yamashita; Tadashi Takahashi; Senichi Masuda

1996-01-01

214

A SEARCH FOR RESIDUAL BEHAVIORAL EFFECTS OF TRICHLOROETHYLENE (TCE) IN RATS EXPOSED AS YOUNG ADULTS  

EPA Science Inventory

Trichloroethylene (TCE) is a solvent of concern to the EPA due to its extensive use in industry, its prevalence in urban air, and its appearance in water supplies. Human clinical studies have associated short and long-termsolvent exposures with cognitive dysfunction including att...

215

FY00 Phytoremediation of Trichloroethylene and Perchloroethylene in the Southern Sector of SRS  

SciTech Connect

This treatability study addresses the fate of volatile organic contaminants (VOCs) in an experiment that simulates a vegetated seepline supplied with trichloroethylene (TCE) and perchloroethylene (PCE) -contaminated groundwater. The primary objective is to determine how the trees uptake TCE and PCE, accumulate it, and/or transform it.

Brigmon, R.L.

2000-12-15

216

CYTOCHROME P450-DEPENDENT METABOLISM OF TRICHLOROETHYLENE IN THE RAT KIDNEY  

EPA Science Inventory

The metabolism of trichloroethylene (Tri) by cytochrome P450 (P450) was studied in microsomes from liver and kidney homogenates and from isolated renal proximal tubular (PT) and distal tubular (DT) cells from male Fischer 344 rats. Chloral hydrate (CH) was the only metabolite con...

217

Comparison of mineral and soluble iron Fenton's catalysts for the treatment of trichloroethylene  

Microsoft Academic Search

Contaminant degradation, stoichiometry, and role of hydroxyl radicals (OH·) in four Fenton's systems were investigated using trichloroethylene (TCE) as a model contaminant. A standard Fenton's system, a modified soluble iron system with a pulse input of hydrogen peroxide, and two modified mineral-catalyzed systems (pH 3 and 7) were studied. In the standard Fenton's system, which had the most efficient reaction

Amy L. Teel; Christopher R. Warberg; David A. Atkinson; Richard J. Watts

2001-01-01

218

CARCINOGENICITY OF TRICHLOROETHYLENE AND ITS METABOLITES, TRICHLOROACETIC ACID AND DICHLOROACETIC ACID, IN MOUSE LIVER  

EPA Science Inventory

Trichloroethylene (TCE) has previously been shown to be carcinogenic in mouse liver when given by daily gavage in corn oil. The metabolism of TCE results, in part, in the formation of trichloroacetic acid (TCA) as a major metabolite and dichloroacetic acid (DCA) as a minor metabo...

219

EFFECT OF TRICHLOROETHYLENE ON THE EXPLORATORY AND LOCOMOTOR ACTIVITY OF RATS EXPOSED DURING DEVELOPMENT  

EPA Science Inventory

Trichloroethylene (TCE) is a common contaminant of underground water supplies. To examine the effect of TCE on the developing central nervous system, rats were exposed to TCE throughout gestation until 21 days postpartum via their dams' drinking water. TCE concentrations of 312 p...

220

SPERMATID MICRONUCLEUS ANALYSES OF TRICHLOROETHYLENE AND CHLORAL HYDRATE EFFECTS IN MICE  

EPA Science Inventory

Mice were exposed by inhalation to trichloroethylene (TCE), or by i.p. injection to the TCE metabolite, chloral hydrate (CH). arly spermatids were analyzed for micronucleus (MN) frequency and kinetochore status (presence or absence) using fluorochrome-labeled anti-kinetochore ant...

221

INHIBITION OF HUMAN A7 NEURONAL NICOTINIC ACETYLCHOLINE RECEPTORS BY THE VOLATILE ORGANIC SOLVENT TRICHLOROETHYLENE.  

EPA Science Inventory

Volatile organic compounds such as toleune, trichloroethylene and perchloroethylene are potent and reversible blockers of voltage-gated calcium current in nerve growth factor (NGF)-differentiated pheochromocytoma (PC12) cells. It is hypothesized that effects of VOCs on ICa contri...

222

Activated carbon adsorption of trichloroethylene (TCE) vapor stripped from TCE-contaminated water  

Microsoft Academic Search

Ground water contaminated with trichloroethylene (TCE) used in electronic, electric, dry cleaning and the like industries is often treated by air-stripping. In this treatment process, TCE in its vapor form is stripped from ground water by air stream and sometimes emitted into the atmosphere without any additional treatments. Activated carbon adsorption is one of the practical and useful processes for

Yusaku Miyake; Akiyoshi Sakoda; Hiroaki Yamanashi; Hirotaka Kaneda; Motoyuki Suzuki

2003-01-01

223

Dioxinlike properties of a trichloroethylene combustion-generated aerosol.  

PubMed Central

Conventional chemical analyses of incineration by-products identify compounds of known toxicity but often fail to indicate the presence of other chemicals that may pose health risks. In a previous report, extracts from soot aerosols formed during incomplete combustion of trichloroethylene (TCE) and pyrolysis of plastics exhibited a dioxinlike response when subjected to a keratinocyte assay. To verify this dioxinlike effect, the complete extract, its polar and nonpolar fractions, some containing primarily halogenated aromatic hydrocarbons, were evaluated for toxicity using an embryo assay, for antiestrogenicity using primary liver cell cultures, and for the ability to transform the aryl hydrocarbon receptor into its DNA binding form using liver cytosol in a gel retardation assay. Each of these assays detect dioxinlike effects. Medaka (Oryzias latipes) embryos and primary liver cell cultures of rainbow trout (Oncorhynchus mykiss) were exposed to concentrations of extract ranging from 0.05 to 45 micrograms/l. Cardiotoxicity with pericardial, yolk sac, and adjacent peritoneal edema occurred after exposure of embryos to concentrations of 7 micrograms/l or greater. These same exposure levels were associated with abnormal embryo development and, at the higher concentrations, death. Some of the fractions were toxic but none was as toxic as the whole extract. In liver cells, total cellular protein and cellular lactate dehydrogenase activity were not altered by in vitro exposure to whole extract (0.05-25 micrograms/l). However, induction of cytochrome P4501A1 protein and ethoxyresorufin O-deethylase activity occurred. In the presence of whole extract, estradiol-dependent vitellogenin synthesis was reduced. Of the fractions, only fraction 1 (nonpolar) showed a similar trend, although vitellogenin synthesis inhibition was not significant. The soot extract and fractions bound to the Ah receptor and showed a significantly positive result in the gel retardation/DNA binding test. Chemical analyses using GC-MS with detection limits for 2,3,7,8-tetrachlorodibenzo-p-dioxin and dibenzofuran in the picomole range did not show presence of these compounds. Our results indicate that other chemicals associated with TCE combustion and not originally targeted for analysis may also pose health risks through dioxinlike mechanisms. Images Figure 1. Figure 2. Figure 3. A Figure 3. B Figure 4. A Figure 4. B Figure 4. C Figure 4. D Figure 5. Figure 6. Figure 7. PMID:8841759

Villalobos, S A; Anderson, M J; Denison, M S; Hinton, D E; Tullis, K; Kennedy, I M; Jones, A D; Chang, D P; Yang, G; Kelly, P

1996-01-01

224

Understanding Trichloroethylene Chemisorption to Iron Surfaces Using Density Functional Theory  

PubMed Central

This research investigated the thermodynamic favorability and resulting structures for chemical adsorption of trichloroethylene (TCE) to metallic iron using periodic density functional theory (DFT). Three initial TCE positions having the plane defined by HCC atoms parallel to the iron surface resulted in formation of three different chemisorption complexes between carbon atoms in TCE and the iron surface. The Cl-bridge initial configuration with the HCC plane of the TCE molecule perpendicular to the iron surface did not result in C–Fe bond formation. The most energetically favorable complex formed at the C-bridge site where the initial configuration had the C=C bond in TCE at a bridge site between adjacent iron atoms. In the C-bridge complex one C atom formed two sigma bonds to different Fe atoms while the second C atom formed a sigma bond with a second Fe atom. Surface complexation at the C-bridge site resulted in scission of all three C–Cl bonds, and also resulted in a shortening of the C=C bond to a distance intermediate between a double and a triple bond. Initial configurations with the C=C bond adsorbed at top or hollow sites on the iron surface resulted in formation of C–Fe sigma bonds between a single C and two adjacent Fe atoms, and the scission of only two C–Cl bonds. Bond angles and bond lengths indicated that there were no changes in bond order of the C=C bond for top and hollow adsorption. Chemisorption at the C-bridge site had an early transition state in which all three C–Cl bonds were activated from ~1.7 to ~2.2 Å, with an activation energy of 49 kJ/mol. The early transition state and the loss of all three Cl atoms upon chemisorption are consistent with most experimental observations that TCE undergoes complete dechlorination in one interaction with the iron surface. The absence of chemisorption and scission of only two C–Cl bonds at the Cl-bridge site is consistent with experimental observations that trace amounts of chloroacetylene may also be produced from reactions of TCE with iron. PMID:18409630

Zhang, Nianliu; Luo, Jing; Blowers, Paul; Farrell, James

2013-01-01

225

Trichloroethylene effects on gene expression during cardiac development  

SciTech Connect

Background: Halogenated hydrocarbon exposure is associated with changes in gene expression in adult and embryonic tissue. The present study was undertaken to identify differentially expressed mRNA transcripts in embryonic hearts from Sprague-Dawley rats exposed to trichloroethylene (TCE) or potential bio-transformation products of TCE, Dichloroethylene (DCE) and Trichloroacetic acid (TCAA). Methods: cDNA subtractive hybridization was used to selectively amplify expressed mRNA in either control or day 11 embryonic rat hearts exposed to one of these halogenated hydrocarbons from day 0 to 11. The doses used were 1100 and 110 ppm (8300 and 830 mu M) TCE, 110 and 11 ppm (1100 and 110 mu M) DCE, 27.3 and 2.75 mg/ml (100 and 10 mM) TCAA. Control animals were given distilled drinking water throughout the period of experiments. Results: Sequencing of over 100 clones derived from halogenated hydrocarbon exposed groups=resulted in identification of numerous differentially regulate gene sequences. Up-regulated transcripts identified include genes associated with stress response (Hsp 70) and homeostasis (several ribosomal proteins). Down-regulated transcripts include extracellular matrix components (GPI-p137 and vimentin) and Ca2 + responsive proteins (Serca-2 Ca2+-ATPase and beta-catenin). Two possible markers for fetal TCE exposure were identified: Serca-2 and GPI-p137, a GPI-linked protein of unknown function. Both markers show a dose-related decrease in mRNA transcript levels associated with fetal exposure to TCE. Differential regulation of expression of both markers by TCE was confirmed by dot blot analysis and semi-quantitative RT-PCR. Levels of exposure between 100 and 250 ppb (0.76 and 1.9 mu M) TCE are sufficient to decrease expression of both the Ca2+-AT Pase and GPI-p137. Conclusion: Sequences down-regulated with TCE exposure appear to be those associated with cellular=housekeeping, cell adhesion and developmental processes, while TCE=exposure up-regulates expression of numerous stress response and homeostatic genes. Two potentially useful marker genes show a correlation between increasing levels of maternal TCE exposure and a decrease in marker transcript levels expressed at E11 in fetal rat heart tissue.

Collier, John Michael; Selmin, Ornella; Johnson, Paula D.; Runyan, Raymond B.

2003-05-09

226

Rheology of asphaltene-toluene/water interfaces.  

PubMed

The stability of water-in-crude oil emulsions is frequently attributed to a rigid asphaltene film at the water/oil interface. The rheological properties of these films and their relationship to emulsion stability are ill defined. In this study, the interfacial tension, elastic modulus, and viscous modulus were measured using a drop shape analyzer for model oils consisting of asphaltenes dissolved in toluene for concentrations varying from 0.002 to 20 kg/m(3). The effects of oscillation frequency, asphaltene concentration, and interface aging time were examined. The films exhibited viscoelastic behavior. The total modulus increased as the interface aged at all asphaltene concentrations. An attempt was made to model the rheology for the full range of asphaltene concentration. The instantaneous elasticity was modeled with a surface equation of state (SEOS), and the elastic and viscous moduli, with the Lucassen-van den Tempel (LVDT) model. It was found that only the early-time data could be modeled using the SEOS-LVDT approach; that is, the instantaneous, elastic, and viscous moduli of interfaces aged for at most 10 minutes. At longer interface aging times, the SEOS-LVDT approach was invalid, likely because of irreversible adsorption of asphaltenes on the interface and the formation of a network structure. PMID:16316096

Sztukowski, Danuta M; Yarranton, Harvey W

2005-12-01

227

On the Mechanism of Toluene-Induced Renal Tubular Acidosis  

Microsoft Academic Search

This study was aimed to investigate the pathogenesis of toluene-induced renal tubular acidosis (RTA). In 5 individuals addicted to toluene sniffing we documented the occurrence of hypokalemia and hyperchloremic metabolic acidosis associated with inability to lower urine pH below 5.5 (6.06 ± 0.24). Overall kidney bicarbonate reabsorption was normal or enhanced, a feature characteristic of the distal form of RTA

D. C. Batlle; S. Sabatini; N. A. Kurtzman

1988-01-01

228

Active site dynamics of toluene hydroxylation by cytochrome P-450  

Microsoft Academic Search

Rat liver cytochrome P-450 hydroxylates toluene to benzyl alcohol plus o-, m-, and p-cresol. Deuterated toluenes were incubated under saturating conditions with liver microsomes from phenobarbital-pretreated rats, and product yields and ratios were measured. Stepwise deuteration of the methyl leads to stepwise decreases in the alcohol\\/cresol ratio without changing the cresol isomer ratios. Extensive deuterium retention in the benzyl alcohols

Robert P. Hanzlik; Kahhiing John Ling

1990-01-01

229

Hepatotoxicity in Rats Treated with Dimethylformamide or Toluene or Both  

PubMed Central

The effects of toluene in dimethylformamide (DMF)-induced hepatotoxicity were investigated with respect to the induction of cytochrome P-450 (CYP) and the activities of related enzymes. The rats were treated intraperitoneally with the organic solvents in olive oil (Single treatment groups: 450 [D1], 900 [D2], 1,800 [D3] mg DMF, and 346 mg toluene [T] per kg of body weight; Combined treatment groups: D1+T, D2+T, and D3+T) once a day for three days, while the control group received just the olive oil. Each group consisted of 4 rats. The activities of the xenobiotic metabolic enzymes and the hepatic morphology were assessed. The immunoblots indicated that the expression of CYP2E1 was considerably enhanced depending on the dosage of DMF and the CYP2E1 blot densities were significantly increased after treatment with both DMF and toluene, compared to treatment with DMF alone. The activities of glutathione- S-transferase and glutathione peroxidase were either decreased or remained unaltered after treatment with DMF and toluene, whereas the lipid peroxide levels were increased with increasing dosage of DMF and toluene. The liver tissue in the D3 group (1,800 mg/kg of DMF) showed signs of microvacuolation in the central vein region and a large necrotic zone around the central vein, in rats treated with both DMF (1,800 mg/kg) and toluene (D3T). These results suggest that the expression of CYP2E1 is induced by DMF and enhanced by toluene. These changes may have facilitated the accelerated formation of Nmethylformamide (NMF) from toluene, and the generated NMF may directly induce liver damage. PMID:24386519

Chung, Yong Hyun

2013-01-01

230

Permanent loss of chromosome initiation in toluene-treated Bacillus subtilis cells.  

PubMed Central

Initiation of deoxyribonucleic acid replication is absent in Bacillus subtilis cells made permeable by toluene. The absence of initiation may be (i) a temporary removal of toluene, or (ii) irreversibly lost due to damage by toluene treatment to a cellular structure or a process required for chromosome initiation. Washed cells, previously treated with toluene and subsequently washed free of detectable amounts of toluene, have the same characteristics of toluene-treated cells in which toluene is not removed. The continued absence of initiation in the washed cells indicates a permanent loss of initiation in cells treated with toluene. Protein synthesis is also inhibited irreversibly by toluene treatment, indicating damage to translation as a possible mechanism for loss of initiation of toluene-treated cells. PMID:808538

Winston, S; Matsushita, T

1975-01-01

231

Toluene Diffusion and Reaction in Unsaturated Pseudomonas putida Biofilms  

PubMed Central

Biofilms are frequently studied in the context of submerged or aquatic systems. However, much less is known about biofilms in unsaturated systems, despite their importance to such processes as food spoilage, terrestrial nutrient cycling, and biodegradation of environmental pollutants in soils. Using modeling and experimentation, we have described the biodegradation of toluene in unsaturated media by bacterial biofilms as a function of matric water potential, a dominant variable in unsaturated systems. We experimentally determined diffusion and kinetic parameters for Pseudomonas putida biofilms, then predicted biodegradation rates over a range of matric water potentials. For validation, we measured the rate of toluene depletion by intact biofilms and found the results to reasonably follow the model predictions. The diffusion coefficient for toluene through unsaturated P. putida biofilm averaged 1.3 × 10?7 cm2/s, which is approximately two orders of magnitude lower than toluene diffusivity in water. Our studies show that, at the scale of the microbial biofilm, the diffusion of toluene to biodegrading bacteria can limit the overall rate of biological toluene depletion in unsaturated systems. PMID:18642338

Holden, Patricia A.; Hunt, James R.; Firestone, Mary K.

2010-01-01

232

Risk of learning and behavioral disorders following prenatal and early postnatal exposure to tetrachloroethylene (PCE)-contaminated drinking water.  

PubMed

This population-based retrospective cohort study examined the association between developmental disorders of learning, attention and behavior and prenatal and early postnatal drinking water exposure to tetrachloroethylene (PCE) on Cape Cod, Massachusetts. Subjects were identified through birth records from 1969 through 1983. Exposure was modeled using information from town water departments, a PCE leaching and transport algorithm, EPANet water flow modeling software, and a Geographic Information System (GIS). Mothers completed a questionnaire on disorders of attention, learning and behavior in their children and on potential confounding variables. The final cohort consisted of 2086 children. Results of crude and multivariate analyses showed no association between prenatal exposure and receiving tutoring for reading or math, being placed on an Individual Education Plan, or repeating a school grade (adjusted Odds Ratios (OR)=1.0-1.2). There was also no consistent pattern of increased risk for receiving a diagnosis of Attention Deficit Disorder (ADD) or Hyperactive Disorder (HD), special class placement for academic or behavioral problems, or lower educational attainment. Modest associations were observed for the latter outcomes only in the low exposure group (e.g., adjusted ORs for ADD were 1.4 and 1.0 for low and high exposure, respectively). (All ORs are based on an unexposed referent group.) Results for postnatal exposure through age five years were similar to those for prenatal exposure. We conclude that prenatal and early postnatal PCE exposure is not associated with disorders of attention, learning and behavior identified on the basis of questionnaire responses and at the exposure levels experienced by this population. PMID:18353612

Janulewicz, Patricia A; White, Roberta F; Winter, Michael R; Weinberg, Janice M; Gallagher, Lisa E; Vieira, Veronica; Webster, Thomas F; Aschengrau, Ann

2008-01-01

233

Prenatal exposure to tetrachloroethylene-contaminated drinking water and the risk of congenital anomalies: a retrospective cohort study  

PubMed Central

Background Prior animal and human studies of prenatal exposure to solvents including tetrachloroethylene (PCE) have shown increases in the risk of certain congenital anomalies among exposed offspring. Objectives This retrospective cohort study examined whether PCE contamination of public drinking water supplies in Massachusetts influenced the occurrence of congenital anomalies among children whose mothers were exposed around the time of conception. Methods The study included 1,658 children whose mothers were exposed to PCE-contaminated drinking water and a comparable group of 2,999 children of unexposed mothers. Mothers completed a self-administered questionnaire to gather information on all of their prior births, including the presence of anomalies, residential histories and confounding variables. PCE exposure was estimated using EPANET water distribution system modeling software that incorporated a fate and transport model. Results Children whose mothers had high exposure levels around the time of conception had an increased risk of congenital anomalies. The adjusted odds ratio of all anomalies combined among children with prenatal exposure in the uppermost quartile was 1.5 (95% CI: 0.9, 2.5). No meaningful increases in the risk were seen for lower exposure levels. Increases were also observed in the risk of neural tube defects (OR: 3.5, 95% CI: 0.8, 14.0) and oral clefts (OR 3.2, 95% CI: 0.7, 15.0) among offspring with any prenatal exposure. Conclusion The results of this study suggest that the risk of certain congenital anomalies is increased among the offspring of women who were exposed to PCE-contaminated drinking water around the time of conception. Because these results are limited by the small number of children with congenital anomalies that were based on maternal reports, a follow-up investigation should be conducted with a larger number of affected children who are identified by independent records. PMID:19778411

2009-01-01

234

Risk of Learning and Behavioral Disorders Following Prenatal and Early Postnatal Exposure to Tetrachloroethylene (PCE)-contaminated Drinking Water  

PubMed Central

This population-based retrospective cohort study examined the association between developmental disorders of learning, attention and behavior and prenatal and early postnatal drinking water exposure to tetrachloroethylene (PCE) on Cape Cod, Massachusetts. Subjects were identified through birth records from 1969 through 1983. Exposure was modeled using information from town water departments, a PCE leaching and transport algorithm, EPANet water flow modeling software, and a Geographic Information System (GIS). Mothers completed a questionnaire on disorders of attention, learning and behavior in their children and on potential confounding variables. The final cohort consisted of 2,086 children. Results of crude and multivariate analyses showed no association between prenatal exposure and receiving tutoring for reading or math, being placed on an Individual Education Plan, or repeating a school grade (adjusted Odds Ratios (OR)=1.0–1.2). There was also no consistent pattern of increased risk for receiving a diagnosis of Attention Deficit Disorder (ADD) or Hyperactive Disorder (HD), special class placement for academic or behavioral problems, or lower educational attainment. Modest associations were observed for the latter outcomes only in the low exposure group (e.g., adjusted ORs for ADD were 1.4 and 1.0 for low and high exposure, respectively). (All ORs are based on an unexposed referent group.) Results for postnatal exposure through age five years were similar to those for prenatal exposure. We conclude that prenatal and early postnatal PCE exposure is not associated with disorders of attention, learning and behavior identified on the basis of questionnaire responses and at the exposure levels experienced by this population. PMID:18353612

Janulewicz, Patricia A; White, Roberta F; Winter, Michael R; Weinberg, Janice M; Gallagher, Lisa E; Vieira, Veronica; Webster, Thomas F; Aschengrau, Ann

2008-01-01

235

Tetrachloroethylene-contaminated drinking water in Massachusetts and the risk of colon-rectum, lung, and other cancers.  

PubMed Central

We conducted a population-based case-control study to evaluate the relationship between cancer of the colon-rectum (n = 326), lung (n = 252), brain (n = 37), and pancreas (n = 37), and exposure to tetrachloroethylene (PCE) from public drinking water. Subjects were exposed to PCE when it leached from the vinyl lining of drinking-water distribution pipes. Relative delivered dose of PCE was estimated using a model that took into account residential location, years of residence, water flow, and pipe characteristics. Adjusted odds ratios (ORs) for lung cancer were moderately elevated among subjects whose exposure level was above the 90th percentile whether or not a latent period was assumed [ORs and 95% confidence intervals (CIs), 3.7 (1.0-11.7), 3.3 (0.6-13.4), 6.2 (1.1-31.6), and 19.3 (2.5-141.7) for 0, 5, 7, and 9 years of latency, respectively]. The adjusted ORs for colon-rectum cancer were modestly elevated among ever-exposed subjects as more years of latency were assumed [OR and CI, 1.7 (0.8-3.8) and 2.0 (0.6-5.8) for 11 and 13 years of latency, respectively]. These elevated ORs stemmed mainly from associations with rectal cancer. Adjusted ORs for rectal cancer among ever-exposed subjects were more elevated [OR and CI, 2.6 (0. 8-6.7) and 3.1 (0.7-10.9) for 11 and 13 years of latency, respectively] than were corresponding estimates for colon cancer [OR and CI, 1.3 (0.5-3.5) and 1.5 (0.3-5.8) for 11 and 13 years of latency, respectively]. These results provide evidence for an association between PCE-contaminated public drinking water and cancer of the lung and, possibly, cancer of the colon-rectum. PMID:10090704

Paulu, C; Aschengrau, A; Ozonoff, D

1999-01-01

236

Spatiotemporal variability of tetrachloroethylene in residential indoor air due to vapor intrusion: a longitudinal, community-based study.  

PubMed

The migration of volatile contaminants from groundwater and soil into indoor air is a potential health threat at thousands of contaminated sites across the country. This phenomenon, known as vapor intrusion, is characterized by spatial and temporal heterogeneity. This study examined short-term fluctuations in concentrations of tetrachloroethylene (PCE) in the indoor air of residential homes due to vapor intrusion in a community in San Antonio, Texas, that sits atop an extensive, shallow plume of contaminated groundwater. Using a community-based design, we removed potential indoor sources of PCE and then collected twelve 3-day passive indoor air samples in each of the 20 homes. Results demonstrated a one-order-of-magnitude variability in concentration across both space and time among the study homes, although all measured concentrations were below risk-based screening levels. We found that within any given home, indoor concentrations increase with the magnitude of the barometric pressure drop (P=0.048) and humidity (P<0.001), while concentrations decrease as wind speed increases (P<0.001) and also during winter (P=0.001). In a second analysis to examine sources of spatial variability, we found that indoor air PCE concentrations between homes increase with groundwater concentration (P=0.030) and a slab-on-grade (as compared with a crawl space) foundation (P=0.028), whereas concentrations decrease in homes without air conditioners (P=0.015). This study offers insights into the drivers of temporal and spatial variability in vapor intrusion that can inform decisions regarding monitoring and exposure assessment at affected sites. PMID:23549403

Johnston, Jill E; Gibson, Jacqueline MacDonald

2014-11-01

237

Stable Hydrogen and Carbon Isotope Fractionation during Microbial Toluene Degradation: Mechanistic and Environmental Aspects  

Microsoft Academic Search

Primary features of hydrogen and carbon isotope fractionation during toluene degradation were studied to evaluate if analysis of isotope signatures can be used as a tool to monitor biodegradation in contaminated aquifers. D\\/H hydrogen isotope fractionation during microbial degradation of toluene was measured by gas chromatography. Per-deuterated toluene-d8 and nonlabeled toluene were supplied in equal amounts as growth substrates, and

BARBARA MORASCH; HANS H. RICHNOW; BERNHARD SCHINK; RAINER U. MECKENSTOCK

2001-01-01

238

AN EXAMPLE OF MODEL STRUCTURE DIFFERENCES USING SENSITIVITY ANALYSES IN PHYSIOLOGICALLY BASED PHARMACOKINETIC MODELS OF TRICHLOROETHYLENE IN HUMANS  

EPA Science Inventory

Abstract Trichloroethylene (TCE) is an industrial chemical and an environmental contaminant. TCE and its metabolites may be carcinogenic and affect human health. Physiologically based pharmacokinetic (PBPK) models that differ in compartmentalization are developed for TCE metabo...

239

INFLUENCES OF PH AND CURRENT ON ELECTROLYTIC DECHLORINATION OF TRICHLOROETHYLENE AT A GRANULAR-GRAPHITE PACKED ELECTRODE  

EPA Science Inventory

Electrolytic dechlorination using a granular-graphite packed cathode is an alternative method for the remediation of chlorinated organic compounds. Its effectiveness under various conditions needs experimental investigation. Dechlorination of trichloroethylene (TCE) was conducted...

240

COUNTER-DIFFUSION OF ISOTOPICALLY LABELED TRICHLOROETHYLENE IN SILICA GEL AND GEOSORBENT MICROPORES: COLUMN RESULTS. (R822626)  

EPA Science Inventory

To investigate counter-diffusion in microporous sorbents, the rate of exchange between deuterated trichloroethylene (DTCE) in fast desorbing sites and nondeuterated TCE (1HTCE) in slow desorbing sites was measured. Exchange rates were measured for a sili...

241

Influence of heat treatment conditions on the physicochemical and catalytic properties of a chromium-containing catalyst for tetrachloroethylene hydrofluorination to pentafluoroethane  

Microsoft Academic Search

The physicochemical properties of coprecipitated 95% Cr2O3-5% Al2O3 oxide systems obtained by heat treatment of the precursor in nitrogen and air between 110 and 600°C and their influence on\\u000a the catalytic activity in tetrachloroethylene hydrofluorination were studied by thermal and X-ray diffraction analyses, diffuse\\u000a reflectance spectroscopy, and specific surface are measurements. The CrO1.9 compounds are more active than CrO1.5, but

L. G. Simonova; A. A. Zirka; S. I. Reshetnikov; T. V. Larina; G. S. Litvak; L. G. Pinaeva; L. A. Isupova

2011-01-01

242

Effect of air sparging on fate and transport of trichloroethylene in chambers with alfalfa plants  

SciTech Connect

To study the effect of air sparging in soil with trichloroethylene present as a dense nonaqueous phase, air was supplied through pipes installed at the bottom of two chambers planted with alfalfa. Air input rate was 2.14 L/m{sup 2}/day. The fate of trichloroethylene (TCE) was investigated by monitoring TCE concentration in both outflow groundwater and soil gas. Comparison of these results with those of the previous study without air sparging indicates that air sparging appreciably increases the groundwater concentration of TCE. The soil gas at the surface shows even greater concentration difference. The flux of TCE to the atmosphere is increased significantly by air input. Accordingly, the authors can conclude that air sparging improved mass transfer of TCE from the nonaqueous phase to groundwater phase. Air sparging appeared to negatively impact the health of the alfalfa because of the elevated TCE present in the vadose zone of the chamber.

Zhang, Q.; Hu, J.; Erickson, L.E.; Davis, L.C. [Kansas State Univ., Manhattan, KS (United States)

1997-12-31

243

Gas phase trichloroethylene removal at low concentration using activated carbon fiber.  

PubMed

The breakthrough adsorption behaviors of gas phase trichloroethylene in a packed bed of activated carbon fibers (ACF) were investigated. The specific surface area of the ACF was 600 m2/g, 1400 m2/g and 1600 m2/g, respectively, and the concentration of trichloroethylene ranged from 270 mg/m3 to 2700 mg/m3. Results showed that the capacity of adsorption increased with increasing specific surface area, the relationship between the logarithms of 10% breakthrough time and concentration was approximately linear over the experimental range, the breakthrough time decreased with increasing temperature and humidity. The breakthrough curves at different inlet concentration or different temperature can be predicted by several simple theoretical models with good agreements. PMID:14971452

Liu, Jun; Huang, Zheng-hong; Wang, Zhan-sheng; Kang, Fei-yu

2004-01-01

244

Exposure assessment to trichloroethylene and perchloroethylene for workers in the dry cleaning industry.  

PubMed

Perchloroethylene and trichloroethylene are two particular organochloro compounds, are often used for dry-cleaning. In the present study the excretion of urinary Perchloroethylene and trichloroethylene were evaluated as biomarkers of exposure to these compounds. The mean value of Perchloroethylene in breathing zone and the total Perchloroethylene uptake during the work shift of the three groups of dry-cleaning workers according to the capacity of the dry-cleaning machine (8, 12 and 18 kg) were 31.04, 50.87 and 120.99 mg m(-3) and 11.46, 22.6 and 41.6 ?g L(-1), respectively, which were significantly greater than the occupationally nonexposed groups. A good correlation (r = 0.907) between the mean values of Perchloroethylene in breathing zone and the urinary concentrations was observed. PMID:21416139

Rastkari, Noushin; Yunesian, Masud; Ahmadkhaniha, Reza

2011-04-01

245

Asymmetric orientation of toluene molecules at oil-silica interfaces  

NASA Astrophysics Data System (ADS)

The interfacial structure of heptane and toluene at oil-silica interfaces has previously been studied by sum frequency generation [Z. Yang et al., J. Phys. Chem. C. 113, 20355 (2009)], 10.1021/jp9043122. It was found that the toluene molecule is almost perpendicular to the silica surface with a tilt angle of about 25°. Here, we have investigated the structural properties of toluene and heptane at oil-silica interfaces using molecular dynamics simulations for two different surfaces: the oxygen-bridging (hydrophobic) and hydroxyl-terminated (hydrophilic) surfaces of quartz (silica). Based on the density profile, it was found that both heptane and toluene oscillate on silica surfaces, with heptane showing more oscillation peaks. Furthermore, the toluene molecules of the first layer were found to have an asymmetric distribution of orientations, with more CH3 groups pointed away from the silica surface than towards the silica surface. These findings are generally consistent with previous experiments, and reveal enhanced molecular structures of liquids at oil-silica interfaces.

Ledyastuti, Mia; Liang, Yunfeng; Kunieda, Makoto; Matsuoka, Toshifumi

2012-08-01

246

Treatment of tetrachloroethylene-contaminated groundwater by surfactant-enhanced persulfate/BOF slag oxidation--a laboratory feasibility study.  

PubMed

The main objective of this study was to evaluate the feasibility of remediating tetrachloroethylene (PCE)-contaminated groundwater (with initial PCE concentration of approximately 20 mg L(-1)) via persulfate oxidation activated by basic oxygen furnace slag (S(2)O(8)(2-)/BOF slag) with the addition of biodegradable surfactant (Tween 80). Results indicate that only 15% of PCE can be removed in experiment with the addition of S(2)O(8)(2-) only (S(2)O(8)(2-)/PCE=30/1). PCE removal can be increased to 31% while both S(2)O(8)(2-) and BOF slag (10 g L(-1)) were added. This indicates that BOF slag was able to activate the persulfate oxidation mechanism, and cause the decrease in PCE concentration via oxidation process. Results also reveal that PCE degradation rates increased to 92% with the presence of Tween 80 (S(2)O(8)(2-)/Tween 80/PCE=30/2/1). In the presence of 10 g L(-1) BOF slag, the reaction rate constant (k(obs)) values were found to be 3.1 x 10(-3), 8.7 x 10(-3), 1.6 x 10(-2), and 5.8 x 10(-2)h(-1), as the S(2)O(8)(2-)/Tween 80/PCE molar ratios were 30/0/1, 30/0.5/1, 30/1/1, and 30/2/1, respectively. The reaction rate constant increased as the Tween 80 concentration increased. The significantly increased k(obs) could be caused by the enhanced solubilization of PCE by Tween 80. The increase in initial surfactant concentration would cause the increase in the solubilization of PCE, and thus, enhance the oxidation rate. This was confirmed by the total amount of chloride ions produced after the reaction. Results from this study indicate that BOF slag-activated persulfate oxidation enhanced by surfactant addition is a potential method to efficiently and effectively remediate chlorinated solvents contaminated groundwater. PMID:19586715

Tsai, T T; Kao, C M; Hong, A

2009-11-15

247

Persulfate oxidation of trichloroethylene with and without iron activation in porous media  

Microsoft Academic Search

In situ chemical oxidation with persulfate anion (S2O82-) is a viable technique for remediation of groundwater contaminants such as trichloroethylene (TCE). An accelerated reaction using S2O82- to destroy TCE can be achieved via chemical activation with ferrous ion to generate sulfate radicals (SO4-·)(E°=2.6V). The column study presented here simulates persulfate oxidation of TCE in porous media (glass beads and a

Chenju Liang; I-Ling Lee; I-Yuang Hsu; Ching-Ping Liang; Yu-Ling Lin

2008-01-01

248

EFFECTS OF PH ON DECHLORINATION OF TRICHLOROETHYLENE BY ZERO-VALENT IRON  

EPA Science Inventory

The surface normalized reaction rate constants (ksa) of trichloroethylene (TCE) and zero-valent iron (ZVI) was quantified in batch reactors at pH values between 1.7 and 10. The ksa of TCE linearly decreased from 0.044 to 0.009 L/hr-m2 between pH 3.8 and 8.0, whereas the ksa at pH...

249

Degradation of trichloroethylene by photocatalysis in an internally circulating slurry bubble column reactor  

Microsoft Academic Search

The effects of initial trichloroethylene (TCE) concentration, recirculating liquid flow rate and gas velocity on photodegradation of TCE have been determined in an internally circulating slurry bubble column reactor (0.15m-ID×0.85m-high). Titanium dioxide (TiO2) powder was employed as a photocatalyst and the optimum loading of TiO2 in the present system is found to be approximately 0.2wt%. The stripping fraction of TCE

JinHee Jeon; SangDone Kim; TakHyoung Lim; DongHyun Lee

2005-01-01

250

Kinetics of Chlorinated Hydrocarbon Degradation by Methylosinus trichosporium OB3b and Toxicity of Trichloroethylene  

Microsoft Academic Search

The kinetics of the degradation of trichloroethylene (TCE) and seven other chlorinated aliphatic hydrocarbons by Methylosinus trichosporium OB3b were studied. All experiments were performed with cells grown under copper stress and thus expressing soluble methane monooxygenase. Compounds that were readily degraded included chloroform, trans-1,2-dichloroethylene, and TCE, with Vmax values of 550, 330, and 290 nmol min-1 mg of cells-1, respectively.

Dick B. Janssen; Jacob J. van der Waarde; Johannes Y. Oedzes; Roelof Oldenhuis

1991-01-01

251

Oxidative Degradation of Trichloroethylene Adsorbed on Active Carbons: Use of Microwave Energy  

E-print Network

OXIDATIVE DEGRADATION OF TRICHLOROETHYLENE ADSORBED ON ACTIVE CARBONS: USE OF MICROWAVE ENERGY R. VARMA, S. P. NANDI, D. CLEAVELAND, K. M. MYLES, D. R. VISSERS, AND P. A. NELSON Chemist Chemical Technology Division Argonne National... microwave energy and heatup. The bed temperature was estimated to be from 350 to 400 0 C. The extent of TCE degradation was determined from analysis of the exit gaa as well as the start ing and final bed material. The highest TCE degra dation (NBOl...

Varma, R.; Nandi, S. P.; Cleaveland, D.; Myles, K. M.; Vissers, D. R.; Nelson, P. A.

252

Effect of methane pulsation on methanotropic biodegradation of trichloroethylene in an in-situ model aquifer  

E-print Network

heterotrophic organisms, into inorganic end products. An in situ model aquifer with six sampling zones was used to degrade TCE aerobically by stimulating a methanotrophic population. Three experiments were done on the aquifer. TCE concentration for all... of Technology Chair of Advisory Committee: Dr. Charlie G. Coble Trichloroethylene (TCE) which is used as a solvent in many industries is one of the most common contaminant of ground waters. TCE can be degraded by methanotrophic bacteria, along with other...

Natarajan, Ranjan

1993-01-01

253

Diffusion of trichloroethylene through the threaded joints of PVC (polyvinylchloride) pipe  

SciTech Connect

The data engineers and scientists use to determine if the groundwater supply is contaminated are derived from analysis of samples taken largely from monitoring wells. For these data to be reliable several factors must be considered. One factor is the integrity of the monitoring well. In this project, emphasis has been placed on the potential impact on water quality caused by diffusion across the threaded joints of PVC pipe. In this study, the diffusion of trichloroethylene across several common types of threaded joints (i.e., square flush, modified ACME, modified ACME stub, and ACME) has been measured. Samples were obtained from the water inside the pipe sections and analyzed for trichloroethylene by gas chromatography. Breakthrough occurs within days of the samples being placed in the baths. The softened PVC joints of the pipes in the pure trichloroethylene split before the first sample interval of 1.5 weeks. The data show great variability in casting joints from the same manufacturer, and indicate a need for increased precision in the manufacturing of the PVC pipe joints. A one-dimensional diffusion model is used to determine an equivalent gap size through which the diffusion occurs. Flow rates through the threaded joints are calculated by using the equivalent gap width and a formula for flow through a rectangular duct running full. Comparison of the results of the gap size calculations and of the flow rates is presented. 20 refs., 13 figs. 11 tabs.

Jerome, K.M. (Pennsylvania State Univ., University Park, PA (USA). Dept. of Civil Engineering)

1990-12-01

254

Oxidative degradation of trichloroethylene adsorbed on active carbons: Use of microwave energy  

SciTech Connect

Chlorinated hydrocarbon compounds (CHCl), such as chlorinated alkanes/alkenes, benzene and biphenyl etc, represent an important fraction of the industrial hazardous wastes produced. Trichloroethylene (TCE) can be removed from waste streams by adsorption on active carbons. The primary objective of the present work was to study the detoxification in air-stream of TCE adsorbed on different types of active carbons using in situ microwave heating. A secondary objective was to examine the regeneration of used carbons from the effects of repeated cyclic operations (adsorption- detoxification). The experimental study has shown that trichloroethylene adsorbed on active carbon can be oxidatively degradated in presence of microwave radiation. Energy can be transferred efficiently to the reaction sites without losing heat to the surrounding vessel. One of the decomposition product of trichloroethylene is free chlorine which is held very strongly on active carbon. Hydrochloric acid on the other hand seems to be less strongly held and appears in large concentration in the exit gas. Production of free chlorine can be avoided by using chlorohydrocarbon mixed with sufficient internal hydrogen. This is also expected to minimize the problem of carbon regeneration encountered in this study. The results obtained from studies on the oxidative degradation of TCE under microwave radiation are promising in a number of respects: (1) the detoxification of TCE adsorbed on active carbon can be conducted at moderate (<400{degree}C) temperatures, and (2) the used carbon bed can be regenerated. A patent on the process has been issued. 9 refs., 2 figs., 2 tabs.

Varma, R.; Nandi, S.P.

1991-01-01

255

Toluene-4-monooxygenase, a three-component enzyme system that catalyzes the oxidation of toluene to p-cresol in Pseudomonas mendocina KR1.  

PubMed

Pseudomonas mendocina KR1 grows on toluene as a sole carbon and energy source. A multicomponent oxygenase was partially purified from toluene-grown cells and separated into three protein components. The reconstituted enzyme system, in the presence of NADH and Fe2+, oxidized toluene to p-cresol as the first detectable product. Experiments with p-deutero-toluene led to the isolation of p-cresol which retained 68% of the deuterium initially present in the parent molecule. When the reconstituted enzyme system was incubated with toluene in the presence of 18O2, the oxygen in p-cresol was shown to be derived from molecular oxygen. The results demonstrate that P. mendocina KR1 initiates degradation of toluene by a multicomponent enzyme system which has been designated toluene-4-monooxygenase. PMID:2019563

Whited, G M; Gibson, D T

1991-05-01

256

Mass Spectrometry Study of OH-initiated Photooxidation of Toluene  

NASA Astrophysics Data System (ADS)

The composition of products formed from photooxidation of the aromatic hydrocarbon toluene was investigated. The OH-initiated photooxidation experiments were conducted by irradiating toluene/CH3ONO/NO/air mixtures in a smog chamber, the gaseous products were detected under the supersonic beam conditions by utilizing vacuum ultraviolet photoionization mass spectrometer using synchrotron radiation in real-time. And an aerosol time-of-flight mass spectrometer was used to provide on-line measurements of the individual secondary organic aerosol particle resulting from irradiating toluene. The experimental results demonstrated that there were some differences between the gaseous products and that of particle-phase, the products of glyoxal, 2-hydroxyl-3-oxo-butanal, nitrotoluene, and methyl-nitrophenol only existed in the particle-phase. However, furane, methylglyoxal, 2-methylfurane, benzaldehyde, cresol, and benzoic acid were the predominant photooxidation products in both the gas phase and particle phase.

Huang, Ming-qiang; Zhang, Wei-jun; Wang, Zhen-ya; Fang, Li; Kong, Rui-hong; Shan, Xiao-bin; Liu, Fu-yi; Sheng, Liu-si

2011-12-01

257

Linking Toluene Degradation with Specific Microbial Populations in Soil  

PubMed Central

Phospholipid fatty acid (PLFA) analysis of a soil microbial community was coupled with 13C isotope tracer analysis to measure the community’s response to addition of 35 ?g of [13C]toluene ml of soil solution?1. After 119 h of incubation with toluene, 96% of the incorporated 13C was detected in only 16 of the total 59 PLFAs (27%) extracted from the soil. Of the total 13C-enriched PLFAs, 85% were identical to the PLFAs contained in a toluene-metabolizing bacterium isolated from the same soil. In contrast, the majority of the soil PLFAs (91%) became labeled when the same soil was incubated with [13C]glucose. Our study showed that coupling 13C tracer analysis with PLFA analysis is an effective technique for distinguishing a specific microbial population involved in metabolism of a labeled substrate in complex environments such as soil. PMID:10583996

Hanson, Jessica R.; Macalady, Jennifer L.; Harris, David; Scow, Kate M.

1999-01-01

258

Incineration of toluene and chlorobenzene in a laboratory incinerator  

SciTech Connect

This paper reports results on incineration of toluene and chlorobenzene in a small laboratory incinerator. The incinerator temperature, excess air ratio and mean residence time were varied to simulate both complete and incomplete combustion conditions. The flue gas was monitored on line using Fourier transform infrared (FTIR) spectroscopy coupling with a heated long path cell (LPC). Methane, toluene, benzene, chlorobenzene, hydrogen chloride and carbon monoxide in the flue gas were simultaneously analyzed. Experimental results indicate that benzene is a major product of incomplete combustion (PIC), besides carbon monoxide, in the incineration of toluene and chlorobenzene and is very sensitive to the combustion conditions. This suggests that benzene is a target analyte to be monitored in full-scale incinerators.

Mao, Zhuoxiong; McIntosh, M.J.; Demirgian, J.C.

1992-01-01

259

Incineration of toluene and chlorobenzene in a laboratory incinerator  

SciTech Connect

This paper reports experimental results on the incineration of toluene and chlorobenzene in a small laboratory incinerator. Temperature of the incinerator, excess air ratio and mean residence time were varied to simulate both complete and incomplete combustion conditions. The flue gas was monitored on line using Fourier transform infrared (FTIR) spectroscopy coupling with a heated long path cell (LPC). Methane, toluene, benzene, chlorobenzene, hydrogen chloride and carbon monoxide in the flue gas were simultaneously analyzed. Experimental results indicate that benzene is a major product of incomplete combustion (PIC) besides carbon monoxide in the incineration of toluene and chlorobenzene, and is very sensitive to combustion conditions. This suggests that benzene is a target analyle to be monitored in full-scale incinerators.

Mao, Z.; Mcintosh, M.J.; Demirgian, J.C.

1992-01-01

260

Incineration of toluene and chlorobenzene in a laboratory incinerator  

SciTech Connect

This paper reports results on incineration of toluene and chlorobenzene in a small laboratory incinerator. The incinerator temperature, excess air ratio and mean residence time were varied to simulate both complete and incomplete combustion conditions. The flue gas was monitored on line using Fourier transform infrared (FTIR) spectroscopy coupling with a heated long path cell (LPC). Methane, toluene, benzene, chlorobenzene, hydrogen chloride and carbon monoxide in the flue gas were simultaneously analyzed. Experimental results indicate that benzene is a major product of incomplete combustion (PIC), besides carbon monoxide, in the incineration of toluene and chlorobenzene and is very sensitive to the combustion conditions. This suggests that benzene is a target analyte to be monitored in full-scale incinerators.

Mao, Zhuoxiong; McIntosh, M.J.; Demirgian, J.C.

1992-12-31

261

Performance test plan for a space station toluene heater tube  

SciTech Connect

Sundstrand Energy Systems was awarded a contract to investigate the performance capabilities of a toluene heater tube integral to a heat pipe as applied to the Organic Rankine Cycle (ORC) solar dynamic power system for the Space Station. This heat pipe is a subassembly of the heat receiver. The heat receiver, the heat absorption component of the ORC solar dynamic power system, consists of forty liquid metal heat pipes located circumferentially around the heat receiver`s outside diameter. Each heat pipe contains a toluene heater, two thermal energy storage (TES) canisters and potassium. The function of the heater tube is to heat the supercritical toluene to the required turbine inlet temperature. During the orbit of the space station, the heat receiver and thereby the heat pipe and heater tube will be subjected to variable heat input. The design of the heater must be such that it can accommodate the thermal and hydraulic variations that will be imposed upon it.

Parekh, M.B. [Sundstrand Energy Systems, Rockford, IL (United States)

1987-10-01

262

Chronic toluene misuse among Roma youth in Eastern Slovakia.  

PubMed

This report presents pilot data on toluene misuse among Roma (Gypsy) youth in eastern Slovakia. Twenty interviews were conducted with field social workers (FSWs) working in seven Roma settlements with a combined population of 17,050 people. An estimated 340 chronic toluene users, mostly males (90%, n = 306), were identified in the researched communities. FSWs reported that children younger than 10 years of age represented about 15% of users (n = 52) and that the majority of users (75%, n = 255) were between 10 and 25 years of age. Consequences of prolonged use on individuals and communities are discussed. The study's limitations are noted. PMID:21609147

Važan, Peter; Khan, Maria R; Poduška, Ond?ej; Stastná, Lenka; Miovský, Michal

2011-01-01

263

MICROBIAL DEGRADATION OF TOLUENE UNDER SULFATE- REDUCING CONDITIONS AND THE INFLUENCE OF IRON ON THE PROCESS  

EPA Science Inventory

Toluene degradation occurred concomitantly with sulfate reduction in anaerobic microcosms inoculated with contaminated subsurface soil from an aviation fuel storage facility near the Patuxent River (Md.). Similar results were obtained for enrichment cultures in which toluene was ...

264

Enhanced Anaerobic Biodegradation of Benzene-Toluene-Ethylbenzene-Xylene-Ethanol Mixtures in Bioaugmented Aquifer Columns  

Microsoft Academic Search

Methanogenic flowthrough aquifer columns were used to investigate the potential of bioaugmentation to enhance anaerobic benzene-toluene-ethylbenzene-xylene (BTEX) degradation in groundwater contaminated with ethanol-blended gasoline. Two different methanogenic consortia (enriched with benzene or toluene and o-xylene) were used as inocula. Toluene was the only hydrocarbon degraded within 3 years in columns that were not bioaugmented, although anaerobic toluene degradation was observed

M. L. B. Da Silva; P. J. J. Alvarez

2004-01-01

265

Growth of the fungus Cladosporium sphaerospermum with toluene as the sole carbon and energy source  

SciTech Connect

The fungus Cladosporium sphaerospermum was isolated from a biofilter used for the removal of toluene from waste gases. This is the first report describing growth of a eukaryotic organism with toluene as the sole source of carbon and energy. The oxygen consumption rates, as well as the measured enzyme activities, of toluene-grown C. sphaerospermum indicate that toluene is degraded by an initial attack on the methyl group. 32 refs., 2 figs., 2 tabs.

Weber, F.J.; Hage, K.C.; De Bont, J.A.M. [Wageningen Agricultural Univ. (Netherlands)

1995-10-01

266

Mesophilic and thermophilic BTEX substrate interactions for a toluene-acclimatized biofilter  

Microsoft Academic Search

Benzene, toluene, ethylbenzene and xylene (BTEX) substrate interactions for a mesophilic (25°C) and thermophilic (50°C) toluene-acclimatized composted pine bark biofilter were investigated. Toluene, benzene, ethylbenzene, o-xylene, m-xylene and p-xylene removal efficiencies, both individually and in paired mixtures with toluene (1:1 ratio), were determined at a total loading rate of 18.1 g m -3 h -1 and retention time ranges of 0.5–3.0 min

J. M. Strauss; K. J. Riedel; C. A. du Plessis

2004-01-01

267

Metabolism of benzene, toluene, and xylene hydrocarbons in soil  

SciTech Connect

Enrichment cultures obtained from soil exposed to benzene, toluene, and xylene (BTX) mineralized benzene and toluene but cometabolized only xylene isomers, forming polymeric residues. This observation prompted the authors to investigate the metabolism of {sup 14}C-labeled BTX hydrocarbons in soil, either individually or as mixtures. BTX-supplemented soil was incubated aerobically for up to 4 weeks in a sealed system that automatically replenished any O{sub 2} consumed. The decrease in solvent vapors and the production of {sup 14}CO{sub 2} were monitored. At the conclusion of each experiment, {sup 14}C distribution in solvent-extractable polymers, biomass, and humic material was determined, obtaining {sup 14}C mass balances of 85 to 98%. BTX compounds were extensively mineralized in soil, regardless of whether they were presented singly or in combinations. No evidence was obtained for the formation of solvent-extractable polymers from xylenes in soil, but {sup 14}C distribution in biomass and humus was unusual for all BTX compounds and especially for toluene and the xylenes. The results suggest that catechol intermediates of BTX degradation are preferentially polymerized into the soil humus and that the methyl substituents of the catechols derived from toluene and especially from xylenes enhance this incorporation. In contrast to inhibitory residues formed from xylene cometabolism in culture, the humus-incorporated xylene residues showed no significant toxicity in the Microtox assay.

Tsao, C.W.; Song, H.G.; Bartha, R. [Rutgers--the State Univ., New Brunswick, NJ (United States)

1998-12-01

268

Risk of spontaneous abortion in workers exposed to toluene.  

PubMed Central

Rates of spontaneous abortions were determined using a reproductive questionnaire administered by personal interview to 55 married women with 105 pregnancies. They were employed in an audio speaker factory and were exposed to high concentrations of toluene (mean 88, range 50-150 ppm). These rates of spontaneous abortion were compared with those among 31 women (68 pregnancies) who worked in other departments in the same factory and had little or no exposure to toluene (0-25 ppm), as well as with a community control group of women who underwent routine antenatal and postnatal care at public maternal health clinics (190 women with 444 pregnancies). Significantly higher rates for spontaneous abortions were noted in the group with high exposure to toluene (12.4 per 100 pregnancies) compared with those in the internal control group (2.9 per 100 pregnancies) and in the external control group (4.5 per 100 pregnancies). Among the exposed women, significant differences were also noted in the rates of spontaneous abortion before employment (2.9 per 100 pregnancies) and after employment in the factory (12.6 per 100 pregnancies). Almost all the women were nonsmokers and did not drink; other known risk factors such as maternal age at pregnancy, order of gravidity, and race were not likely to explain the results. Thus, specific exposure to toluene seems to be associated with a risk of foetal loss. PMID:1463682

Ng, T P; Foo, S C; Yoong, T

1992-01-01

269

Ozonation and peroxone oxidation of toluene in aqueous solutions  

SciTech Connect

This research investigates the kinetics of the aqueous-phase oxidation of toluene by ozone and ozone-hydrogen peroxide mixtures at 25 C. The oxidation kinetics is first order with respect to the ozone concentration, and the reaction order in toluene varies with pH and the presence or absence of hydrogen peroxide. The peroxone oxidation is one-half order with respect to hydrogen peroxide in distilled water (initial pH of 5.4) and other solutions of higher pH. In acidic solutions with an initial pH of 3 or less, the overall kinetics is second order; the direct oxidation of toluene by ozone molecules is predominant in determining the slow rate of reaction. The reaction becomes very fast and enhanced by hydrogen peroxide, if present, in alkaline solutions with an initial pH of 10 or above. Under these conditions, the reaction is controlled by hydroxyl radical reactions and is independent of the toluene concentration in the traditional and advanced ozonation processes.

Kuo, C.H.; Chen, S.M. [Mississippi State Univ., MS (United States). Dept. of Chemical Engineering] [Mississippi State Univ., MS (United States). Dept. of Chemical Engineering

1996-11-01

270

PHOSPHOLIPIDS OF FIVE PSEUDOMONAD ARCHETYPES FOR DIFFERENT TOLUENE DEGRADATION PATHWAYS  

EPA Science Inventory

Liquid chromatography/electrospray ionization/mass spectrometry (LC/ESI/MS) was used to determine phospholipid profiles for five reference pseudomonad strains harboring distinct toluene catabolic pathways: Pseudomonas putida mt-2, Pseudomonas putida F1, Burkholderia cepacia G4, B...

271

Fenton-like initiation of a toluene transformation mechanism  

EPA Science Inventory

In Fenton-driven oxidation treatment systems, reaction intermediates derived from parent compounds can play a significant role in the overall treatment process. Fenton-like reactions in the presence of toluene or benzene, involved a transformation mechanism that was highly effici...

272

HYPERTENSIVE AND TACHYCARDIC RESPONSES TO ORAL TOLUENE IN THE RAT.  

EPA Science Inventory

Little is known regarding the effects of toluene and other volatile organic compounds on autonomic processes. Such studies should be performed in unrestrained and undisturbed animals to avoid the effects of handling stress on processes regulated by the autonomic nervous system. T...

273

Low temperature oxidation of benzene and toluene in mixture with ndecane  

E-print Network

Low temperature oxidation of benzene and toluene in mixture with ndecane Olivier Herbinet Abstract The oxidation of two blends, benzene/ndecane and toluene/ndecane, was studied in a jetstirred of benzene, only phenol could be quantified. In the case of toluene, significant amounts

Paris-Sud XI, Université de

274

Cardiovascular effects of oral toluene exposure in the rat monitored by radiotelemetry  

EPA Science Inventory

Toluene is a hazardous air pollutant that can be toxic to the nervous and cardiovascular systems. The cardiotoxicity data for toluene come from acute studies in anesthetized animals and from clinical observations made on toluene abusers and there is little known on the response o...

275

Catalytic Transformation of Toluene over High Acidity Y-Zeolite Based S. Al-Khattaf*  

E-print Network

Catalytic Transformation of Toluene over High Acidity Y-Zeolite Based Catalyst S. Al in the temperature range of 400-500o C to understand the transformation of toluene over high acidity Y-based zeolite Abstract Catalytic transformation of toluene has been investigated over Y-zeolite based catalysts

Al-Khattaf, Sulaiman

276

Acute Toluene Exposure and Rat Visual Function in Proportion to Momentary Brain Concentration  

Microsoft Academic Search

Acute exposure to toluene was assessed in two experiments to determine the relationship between brain toluene concentration and changes in neurophysiological function. The concentration of toluene in brain tissue at the time of assessment was estimated using a physiologically based pharmacokinetic model. Brain neurophysiological function was measured using pattern-elicited visual evoked potentials (VEP) recorded from electrodes located over visual cortex

William K. Boyes; Mark Bercegeay; Quentin Todd Krantz; Elaina M. Kenyon; Ambuja S. Bale; Timothy J. Shafer; Philip J. Bushnell; Vernon A. Benignus

2007-01-01

277

Photochemistry of toluene vapor at 193 nm. Direct measurements of formation of hot toluene and the dissociation rate to benzyl radical  

Microsoft Academic Search

Toluene has been photolyzed with an ArF laser (193 nm) in the gas phase. Time-resolved absorption spectra show that vibrationally hot toluene (S@B|@B|0) is formed after rapid internal conversion from the S3 state, and then dissociates to benzyl radical. The formation rate of benzyl radical from hot toluene has been measured to be (2.4±0.2)×106 s?1 under collision-free conditions. It has

Noriaki Ikeda; Nobuaki Nakashima; Keitaro Yoshihara

1985-01-01

278

Toluene diisocyanate (TDI) regulates haem oxygenase-1/ferritin expression: implications for toluene diisocyanate-induced asthma  

PubMed Central

Diisocyanate is a leading cause of occupational asthma (OA). Diisocyanate-induced OA is an inflammatory disease of the airways that is associated with airway remodelling. Although the pathogenic mechanisms are unclear, oxidative stress may be related to the pathogenesis of diisocyanate-induced OA. In our previous report, we observed that the expression of ferritin light chain (FTL) was decreased in both of bronchoalveolar lavage fluid and serum of patients with diphenyl-methane diisocyanate (MDI)-induced OA compared to those of asymptomatic exposed controls and unexposed healthy controls. In this study of toluene diisocyanate (TDI)-OA, we found identical findings with increased transferrin and decreased ferritin levels in the serum of patients with TDI-OA. To elucidate whether diisocyanate suppresses FTL synthesis directly, we tested the effect of TDI on the FTL synthesis in A549 cells, a human airway epithelial cell line. We found that haem oxygenase-1 as well as FTL was suppressed by treatment with TDI in dose- and time-dependent manners. We also found that the synthesis of other anti-oxidant proteins such as thioredoxin-1, glutathione peroxidase, peroxiredoxin 1 and catalase were suppressed by TDI. Furthermore, TDI suppressed nuclear translocation of Nrf2 through suppressing the phosphorylation of mitogen-activated protein kinases (MAPKs); extracellular-regulated kinase 1/2 (ERK1/2); p38; and c-Jun N-terminal kinase (JNK). Peroxisome proliferator-activated receptor-? (PPAR-?) agonists, 15-deoxy-?12,14-PGJ2 and rosiglitazone rescued the effect of TDI on HO-1/FTL expression. Collectively, our findings suggest that TDI suppressed HO-1/FTL expression through the MAPK–Nrf2 signalling pathway, which may be involved in the pathogenesis of TDI-induced OA. Therefore, elucidating these observations further should help to develop the therapeutic strategies of diisocyanate-induced OA. PMID:20345975

Kim, S-H; Choi, G-S; Ye, Y-M; Jou, I; Park, H-S; Park, S M

2010-01-01

279

Monitoring remediation of trichloroethylene using a chemical fiber optic sensor: Field studies  

SciTech Connect

Current US Department of Energy (DOE) policy requires characterization and subsequent remediation of areas where trichloroethylene (TCE) has been discharged into the soil and groundwater. Technology that allows trace quantities of this contaminant to be measured in situ on a continuous basis is needed. Fiber optic chemical sensors offer a promising low cost solution. Field tests of such a fiber optic chemical sensor for TCE have recently been completed. Sensors have been used to measure TCE contamination at Savannah River Site (SRS) and Lawrence Livermore National Laboratory Site 300 (S300) in the groundwater and vadose zones. Both sites are currently undergoing remediation processes.

Colston, B.W.; Brown, S.B.; Langry, K.; Daley, P.; Milanovich, F.P.

1994-06-01

280

Photo-activated luminescence sensor and method of detecting trichloroethylene and related volatile organochloride compounds  

DOEpatents

A sensor for detecting trichloroethylene and related volatile organochloride compounds uses a photo-activator that produces a photo-product complex with the contaminant. Characteristics of the light emitted from the complex will indicate the presence of the contaminant. A probe containing the photo-activator has an excitation light interface and a contaminant interface. One particular embodiment uses a porous membrane as the contaminant interface, so that the contaminant can migrate therethrough to the photo-activator and thereby form the complex.

Dinh, Tuan V. (Knoxville, TN)

1996-01-01

281

System for In-Situ Detection of Plant Exposure to Trichloroethylene (TCE)  

NASA Technical Reports Server (NTRS)

A system detects a plant's exposure to trichloroethylene (TCE) through plant leaf imaging. White light impinging upon a plant's leaf interacts therewith to produce interacted light. A detector is positioned to detect at least one spectral band of the interacted light. A processor coupled to the detector performs comparisons between photonic energy of the interacted light at the one or more spectral bands thereof and reference data defining spectral responses indicative of leaf exposure to TCE. An output device coupled to the processor provides indications of the comparisons.

Lewis, Mark D. (Inventor); Anderson, Daniel J. (Inventor); Newman, Lee A. (Inventor); Keith, Amy G. (Inventor)

2013-01-01

282

Chloroform and trichloroethylene uptake from water into human skin in vitro: Kinetics and risk implications  

SciTech Connect

A model recently proposed by the US Environmental Protection Agency (EPA) predicts that short-term dermal uptakes of organic environmental water contaminants are proportional to the square root of exposure time. The model appears to underestimate dermal uptake, based on very limited in vivo uptake data obtained primarily using human subjects. To further assess this model, we examined in vitro dermal uptake kinetics for aqueous organic chemicals using accelerator mass spectrometry (AMS). Specifically, we examined the kinetics of in vitro dermal uptake of {sup 14}C-labeled chloroform and trichloroethylene from dilute (5-ppb) aqueous solutions using full-thickness human cadaver skin exposed for ({le}1 hr).

Bogen, K.T.; Keating, G.A.; Vogel, J.S.

1995-03-01

283

Trichloroethylene degradation by two independent aromatic-degrading pathways in alcaligenes eutrophus JMP134  

SciTech Connect

The bacterium Alcaligenes eutrophus JMP134(pJP4) degrades trichloroethylene (TCE) by a chromosomal phenol-dependent pathway and by the plasmid-encoded 2,4-dichlorophenoxyacetic acid pathway. The two pathways were independent and exhibited different rates of removal and capacities for quantity of TCE removed. The phenol-dependent pathway was more rapid (0.2 versus 0.06 nmol of TCE removed per min per mg of protein) and consumed all detectable TCE. The 2,4-dichlorophenoxyacetic acid-dependent pathway removed 40 to 60% of detectable TCE.

Harker, A.R.; Kim, Y. (Oklahoma State Univ. Stillwater (USA))

1990-04-01

284

A meta-analysis of occupational trichloroethylene exposure and liver cancer  

Microsoft Academic Search

Objective  Findings from epidemiologic studies of trichloroethylene (TCE) exposure and liver cancer have been inconsistent. To quantitatively\\u000a evaluate this association and to examine sources of heterogeneity, we conducted a meta-analysis of occupational studies of\\u000a TCE exposure and liver\\/biliary tract cancer.\\u000a \\u000a \\u000a \\u000a Methods  We identified 14 occupational cohort studies of TCE exposed workers and one case-control study that met our inclusion criteria.\\u000a Nine studies

Dominik D. Alexander; Michael A. Kelsh; Pamela J. Mink; Jeffrey H. Mandel; Rupa Basu; Michal Weingart

2007-01-01

285

Photo-activated luminescence sensor and method of detecting trichloroethylene and related volatile organochloride compounds  

DOEpatents

A sensor for detecting trichloroethylene and related volatile organochloride compounds uses a photo-activator that produces a photo-product complex with the contaminant. Characteristics of the light emitted from the complex will indicate the presence of the contaminant. A probe containing the photo-activator has an excitation light interface and a contaminant interface. One particular embodiment uses a porous membrane as the contaminant interface, so that the contaminant can migrate there through to the photo-activator and thereby form the complex. 23 figs.

Dinh, T.V.

1996-06-11

286

Death Due to Combined Intake of Ethanol and Toluene: a Case Report  

PubMed Central

Toluene is a commonly used volatile organic chemical in industry and is the most often chosen illicit substance among volatile substance abusers. Studies involving healthy volunteers suggest that ethanol consumption inhibits toluene metabolism, thus increasing its blood levels. In this study, a lethal case of combined ethanol consumption and toluene inhalation has been reported. Our case was a 30-year-old male who had used volatile substance for 15 years. The autopsy revealed no abnormal findings. Toxicological analysis revealed alcohol and toluene in the blood and the cause of death was considered as toxicity due to acute combined intake of alcohol and toluene. Lethal combined ethanol and toluene intake is rarely reported in the literature. Experimental studies indicate that toluene increases the risk of ethanol dependence and each substance increases the toxic effects of the other. PMID:25705313

GÜRSES, Murat Seradar; TÜRKMEN, Nursel; EREN, Bulent; ÇET?N, Selcuk; GÜNDO?MU?, Umit Naci

2014-01-01

287

Synthesis of diamondlike nanoparticles under cavitation in toluene  

NASA Astrophysics Data System (ADS)

Nanodiamonds that are obtained during cavitation synthesis in toluene [E. M. Galimov et al., Doklady Phys. 49 (3), 150 (2004)] are investigated. The procedure of chemical purification of nanodiamonds allowing for isolating a chemically pure product is developed, and diamond nanoparticles less than 10 nm in size are obtained. New data indicating that the fcc modification of carbon appears along with the diamond phase under cavitation synthesis and raising the question on the account of interaction types of carbon precursors are represented.

Voropaev, S. A.; Shkinev, V. M.; Dnestrovskii, A. Yu.; Ponomareva, E. A.; Aronin, A. S.; Bondarev, O. L.; Strazdovskii, V. V.; Skorobogatskii, V. N.; Eliseev, A. A.; Spivakov, B. Ya.; Galimov, E. M.

2012-10-01

288

Visual evoked potentials in rotogravure printers exposed to toluene  

Microsoft Academic Search

Visual evoked potentials (VEPs) from stimulation by checkerboard pattern reversal were examined in 54 rotogravure printers exposed to toluene (all men, aged 22-64 years, duration of exposure 1-41 years). A control group consisted of 46 subjects (23 men and 23 women; aged 22-54 years). Compared with controls the exposed group showed more frequent responses with reduced reproducibility or absence of

P Urban; E Lukás

1990-01-01

289

Gas phase photocatalytic removal of toluene effluents on sulfated titania  

Microsoft Academic Search

Photocatalytic removal of toluene in the gas phase was carried out over UV-illuminated sulfated titania materials in a cylinder-like continuous reactor. A series of SO42?–TiO2 samples was obtained from the addition of H2SO4 on an amorphous titanium hydroxide gel synthesized according to a classical sol–gel procedure. The wide variety of materials led to varying photocatalytic behaviors depending strongly on the

Elodie Barraud; Florence Bosc; David Edwards; Nicolas Keller; Valérie Keller

2005-01-01

290

Microbial degradation of benzene and toluene in groundwater  

SciTech Connect

Certain organic pollutants reaching the groundwater are subject to biotransformations. Currently, remedial measures promoting microbial degradation of pollutants are becoming very attractive because of their cost-effectiveness in removal of the contaminants. Current technology for reclaiming groundwater polluted with petroleum hydrocarbons involves (i) pumping the water into an aerated stripping tower, (ii) removal by sorbents, or (iii) biodegradation in situ or pumped into a bioreactor. Among the bioreactors, fixed film and suspended growth reactors are the most popular systems. Gasoline contamination of groundwaters is becoming an alarming and widespread problem. A major concern with petroleum contamination is the benzene, toluene and xylene (BTX) content reaching the groundwater because of their solubility and high toxicity. The state of California Department of Health Services now recommends that remedial action be taken when the concentration of benzene and toluene exceeds 0.7 and 100 {mu}g L{sup {minus}1}, respectively. The purpose of this study was to assess biodegradation of benzene and toluene in groundwater upon amendment with nutrients and an enriched hydrocarbon oxidizing culture.

Karlson, U.; Frankenberger, W.T. Jr. (Univ. of California, Riverside (USA))

1989-10-01

291

Toluene nitration in irradiated nitric acid and nitrite solution  

SciTech Connect

The kinetics, mechanisms, and stable products produced for the aryl alkyl mild ortho-para director - toluene, in irradiated nitric acid and neutral nitrite solutions were investigated using ?, and pulse radiolysis. Electron pulse radiolysis was used to determine the bimolecular rate constants for the reaction of toluene with different transient species produced by irradiation. HPLC with UV detection was primarily used to assess the stable reaction products. GC-MS and LC-MS were used to confirm the results from HPLC. Free-radical nitration reaction products were found in irradiated acidic and neutral media. In acidic medium, the ring substitution and side chain substitution and oxidation produced different nitro products. In ring substitution, nitrogen oxide radicals were added mainly to hydroxyl radical-produced cyclohexadienyl radical, and in side chain substitution they were added to the carbon-centered benzyl radical produced by H-atom abstraction. In neutral nitrite toluene solution, radiolytic ring nitration products approached a statistically random distribution, suggesting a free-radical reaction involving addition of the •NO2 radical.

Gracy Elias; Bruce J. Mincher; Stephen P. Mezyk; Jim Muller; Leigh R. Martin

2011-04-01

292

Serum proteomic analysis reveals potential serum biomarkers for occupational medicamentosa-like dermatitis caused by trichloroethylene.  

PubMed

Trichloroethylene (TCE) is an industrial solvent with widespread occupational exposure and also a major environmental contaminant. Occupational medicamentosa-like dermatitis induced by trichloroethylene (OMLDT) is an autoimmune disease and it has become one major hazard in China. In this study, sera from 3 healthy controls and 3 OMLDT patients at different disease stages were used for a screening study by 2D-DIGE and MALDI-TOF-MS/MS. Eight proteins including transthyretin (TTR), retinol binding protein 4 (RBP4), haptoglobin, clusterin, serum amyloid A protein (SAA), apolipoprotein A-I, apolipoprotein C-III and apolipoprotein C-II were found to be significantly altered among the healthy, acute-stage, healing-stage and healed-stage groups. Specifically, the altered expression of TTR, RBP4 and haptoglobin were further validated by Western blot analysis and ELISA. Our data not only suggested that TTR, RBP4 and haptoglobin could serve as potential serum biomarkers of OMLDT, but also indicated that measurement of TTR, RBP4 and haptoglobin or their combination could help aid in the diagnosis, monitoring the progression and therapy of the disease. PMID:24960064

Huang, Peiwu; Ren, Xiaohu; Huang, Zhijun; Yang, Xifei; Hong, Wenxu; Zhang, Yanfang; Zhang, Hang; Liu, Wei; Huang, Haiyan; Huang, Xinfeng; Wu, Desheng; Yang, Linqing; Tang, Haiyan; Zhou, Li; Li, Xuan; Liu, Jianjun

2014-08-17

293

Effects of trichloroethylene and perchloroethylene on wild rodents at Edwards Air Force Base, California, USA  

USGS Publications Warehouse

Effects of inhalation of volatilized trichloroethylene (TCE) or perchloroethylene (PCE) were assessed based on the health and population size of wild, burrowing mammals at Edwards Air Force Base (CA, USA). Organic soil-vapor concentrations were measured at three sites with aquifer contamination of TCE or PCE of 5.5 to 77 mg/L and at two uncontaminated reference sites. Population estimates of kangaroo rats (Dipodomys merriami and D. panamintinus) as well as hematology, blood chemistry, and histopathology of kangaroo rats and deer mice (Peromyscus maniculatus) were compared between contaminated and uncontaminated populations. Maximum soil-gas concentrations associated with groundwater contamination were less than 1.5 ??l/L of TCE and 0.07 ??l/L of PCE. Population estimates of kangaroo rats were similar at contaminated and reference sites. Hematology, blood chemistry, and histopathology of kangaroo rats and deer mice indicated no evidence of health effects caused by exposure. Trichloroethylene or PCE in groundwater and in related soil gas did not appear to reduce the size of small mammal populations or impair the health of individuals.

Spring, S.E.; Miles, A.K.; Anderson, M.J.

2004-01-01

294

Uptake of trichloroethylene by hybrid poplar trees grown hydroponically in flow-through plant growth chambers  

SciTech Connect

Phytoremediation in being promoted as a cost-effective treatment option for shallow groundwater and soils contaminated with trichloroethylene (TCE). However, its effectiveness is difficult to assess due to contradictory reports regarding the magnitude of plant uptake and phytovolatilization. Experimental artifacts and plants stress, resulting from the use of static or low-flow plants growth laboratory systems, may account for part of the discrepancy. High exposure concentrations and short durations may also cause artifacts in laboratory studies. A dual-chamber plant growth system designed to minimize experimental artifacts was used to determine the uptake of [{sup 14}C] TCE by hydroponically grown hybrid poplar as a function of plant stress, exposure concentration, and exposure duration. The [{sup 14}]TCE recoveries ranged from 92 to 101% in 11 dosed chambers. Trichloroethylene mass equivalent concentrations in the shoot tissue were dependent on the amount of water transpired and the exposure concentration. Root-zone oxygen status die not significantly impact TCE uptake. Transpiration stream concentration factors (TSCFs) determined in these studies were independent of exposure duration and are much lower than those previously reported and predicted. The role of TSCF and other factors in estimating the significance of plant uptake in the phytoremediation of TCE-contaminated groundwater is discussed.

Orchard, B.J.; Doucette, W.J.; Chard, J.K.; Bugbee, B.

2000-04-01

295

Draft Genome Sequence of Uncultivated Toluene-Degrading Desulfobulbaceae Bacterium Tol-SR, Obtained by Stable Isotope Probing Using [13C6]Toluene  

PubMed Central

The draft genome of a member of the bacterial family Desulfobulbaceae (phylum Deltaproteobacteria) was assembled from the metagenome of a sulfidogenic [13C6]toluene-degrading enrichment culture. The “Desulfobulbaceae bacterium Tol-SR” genome is distinguished from related, previously sequenced genomes by suites of genes associated with anaerobic toluene metabolism, including bss, bbs, and bam. PMID:25593261

Abu Laban, Nidal; Tan, BoonFei; Dao, Anh

2015-01-01

296

Evaluation of the Potential Impact of Inhibition of Trichloroethylene Metabolism in the Liver on Extra-Hepatic Toxicity  

EPA Science Inventory

The interaction between trichloroethylene (TCE) and chloroform (CHCI3) is less than additive, with co-exposure to TCE and CHCl3 resulting in less hepatic and renal toxicity than observed with CHCl3 alone. Vapor uptake data demonstrate that co-exposure to CHCl3 decreases the rate ...

297

Dechlorination of trichloroethylene by Ni\\/Fe nanoparticles immobilized in PEG\\/PVDF and PEG\\/nylon 66 membranes  

Microsoft Academic Search

The highly reactive bimetallic Fe\\/Ni nanoparticles immobilized in nylon 66 and PVDF membranes were synthesized and characterized for dechlorination of trichloroethylene (TCE) under anoxic conditions. Scanning electron microscopy (SEM) images and electron probe microanalysis (EPMA) elemental maps showed that the distribution of Fe in nylon 66 membrane was uniform and the intensity of Ni layer was higher than that in

Ganesh K. Parshetti; Ruey-an Doong

2009-01-01

298

USE OF CARBON STABLE ISOTOPE FOR THE DECHLORINATION OF TRICHLOROETHYLENE ON GRANULAR-GRAPHITE PACKED ELECTRODES (PRESENTATION)  

EPA Science Inventory

Trichloroethylene (TCE) is widely used as a solvent in metal processing and electronic manufacturing industries, but waste and spilled TCE often results in blocks of non-aqueous liquid in vadose and saturated zones which become continuous contamination sources for groundwater. El...

299

Fifteen-year assessment of a permeable reactive barrier for treatment of chromate and trichloroethylene in groundwater.  

PubMed

The fifteen-year performance of a granular iron, permeable reactive barrier (PRB; Elizabeth City, North Carolina) is reviewed with respect to contaminant treatment (hexavalent chromium and trichloroethylene) and hydraulic performance. Due to in-situ treatment of the chromium source zone, reactive and hydraulic longevity of the PRB has outlived the mobile chromate plume. Chromium concentrations exceeding 3 ?g/L have not been detected in regions located hydraulically down-gradient of the PRB. Trichloroethylene treatment has also been effective, although non-constant influent concentrations of trichloroethylene have at times resulted in incomplete dechlorination. Daughter products: cis-1,2-dichloroethylene, vinyl chloride, ethene, and ethane have been observed within and down-gradient of the PRB at levels <10% of the influent trichloroethylene. Analysis of potentiometric surfaces up-gradient and across the PRB suggests that the PRB may currently represent a zone of reduced hydraulic conductivity; however, measurements of the in-situ hydraulic conductivity provide values in excess of 200 m/d in some intervals and indicate no discernible loss of bulk hydraulic conductivity within the PRB. The results presented here are particularly significant because they provide the longest available record of performance of a PRB. The longevity of the Elizabeth City PRB is principally the result of favorable groundwater geochemistry and hydrologic properties of the site. PMID:24021639

Wilkin, Richard T; Acree, Steven D; Ross, Randall R; Puls, Robert W; Lee, Tony R; Woods, Leilani L

2014-01-15

300

Deuterium isotope effects on toluene metabolism. Product release as a rate-limiting step in cytochrome P-450 catalysis  

Microsoft Academic Search

Liver microsomes from phenobarbital-induced rats oxidize toluene to a mixture of benzyl alcohol plus o-, m- and p-cresol (ca. 69:31). Stepwise deuteration of the methyl group causes stepwise decreases in the yield of benzyl alcohol relative to cresols (ca. 24:76 for toluene-d3). For benzyl alcohol formation from toluene-d3 DV = 1.92 and D(V\\/K) = 3.53. Surprisingly, however, stepwise deuteration induces

K. H. Ling; R. P. Hanzlik

1989-01-01

301

Aging and susceptibility to toluene in rats: a pharmacokinetic, biomarker, and physiological approach.  

PubMed

Aging adults are a growing segment of the U.S. population and are likely to exhibit increased susceptibility to many environmental toxicants. However, there is little information on the susceptibility of the aged to toxicants. The toxicity of toluene has been well characterized in young adult rodents but there is little information in the aged. Three approaches were used: (1) pharmacokinetic (PK), (2) cardiac biomarkers, and (3) whole-animal physiology to assess whether aging increases susceptibility to toluene in the Brown Norway (BN) rat. Three life stages, young adult, middle aged, and aged (4, 12, and 24 mo, respectively), were administered toluene orally at doses of 0, 0.3, 0.65, or 1 g/kg and subjected to the following: terminated at 45 min or 4 h post dosing, and blood and brain toluene concentration were measured; terminated at 4 h post dosing, and biomarkers of cardiac function were measured; or monitor heart rate (HR), core temperature (Tc), and motor activity (MA) by radiotelemetry before and after dosing. Brain toluene concentration was significantly elevated in aged rats at 4 h after dosing with either 0.3 or 1 g/kg. Blood toluene concentrations were unaffected by age. There were various interactions between aging and toluene-induced effects on cardiac biomarkers. Most notably, toluene exposure led to reductions in mRNA markers for oxidative stress in aged but not younger animals. Toluene also produced a reduction in cardiac endothelin-1 in aged rats. Higher doses of toluene led to tachycardia, hypothermia, and a transient elevation in MA. Aged rats were less sensitive to the tachycardic effects of toluene but showed a prolonged hypothermic response. Elevated brain levels of toluene in aged rats may be attributed to their suppressed cardiovascular and respiratory responses. The expression of several cardiac biochemical markers of toluene exposure in the aged may also reflect differential susceptibility to this toxicant. PMID:20077299

Gordon, Christopher J; Gottipolu, Reddy R; Kenyon, Elaina M; Thomas, Ronald; Schladweiler, Mette C; Mack, Cina M; Shannahan, Jonathan H; Wallenborn, J Grace; Nyska, Abraham; MacPhail, Robert C; Richards, Judy E; Devito, Mike; Kodavanti, Urmila P

2010-01-01

302

Mortality and cancer incidence of aircraft maintenance workers exposed to trichloroethylene and other organic solvents and chemicals: extended follow up  

PubMed Central

OBJECTIVES: To extend the follow up of a cohort of 14,457 aircraft maintenance workers to the end of 1990 to evaluate cancer risks from potential exposure to trichloroethylene and other chemicals. METHODS: The cohort comprised civilians employed for at least one year between 1952 and 1956, of whom 5727 had died by 31 December 1990. Analyses compared the mortality of the cohort with the general population of Utah and the mortality and cancer incidence of exposed workers with those unexposed to chemicals, while adjusting for age, sex and calendar time. RESULTS: In the combined follow up period (1952-90), mortality from all causes and all cancer was close to expected (standardised mortality ratios (SMRs) 97 and 96, respectively). Significant excesses occurred for ischaemic heart disease (SMR 108), asthma (SMR 160), and cancer of the bone (SMR 227), whereas significant deficits occurred for cerebrovascular disease (SMR 88), accidents (SMR 70), and cancer of the central nervous system (SMR 64). Workers exposed to trichloroethylene showed non-significant excesses for non-Hodgkin's lymphoma (relative risk (RR) 2.0), and cancers of the oesophagus (RR 5.6), colon (RR 1.4), primary liver (RR 1.7), breast (RR 1.8), cervix (RR 1.8), kidney (RR 1.6), and bone (RR 2.1). None of these cancers showed an exposure- response gradient and RRs among workers exposed to other chemicals but not trichloroethylene often had RRs as large as workers exposed to trichloroethylene. Workers exposed to solvents other than trichloroethylene had slightly increased mortality from asthma, non- Hodgkin's lymphoma, multiple myeloma, and breast cancer. CONCLUSION: These findings do not strongly support a causal link with trichloroethylene because the associations were not significant, not clearly dose-related, and inconsistent between men and women. Because findings from experimental investigations and other epidemiological studies on solvents other than trichloroethylene provide some biological plausibility, the suggested links between these chemicals and non-Hodgkin's lymphoma, multiple myeloma, and breast cancer found here deserve further attention. Although this extended follow up cannot rule out a connection between exposures to solvents and some diseases, it seems clear that these workers have not experienced a major increase in cancer mortality or cancer incidence.   PMID:9624267

Blair, A.; Hartge, P.; Stewart, P. A.; McAdams, M.; Lubin, J.

1998-01-01

303

Regiospecific oxidation of naphthalene and fluorene by toluene monooxygenases and engineered toluene 4-monooxygenases of Pseudomonas mendocina KR1.  

PubMed

The regiospecific oxidation of the polycyclic aromatic hydrocarbons naphthalene and fluorene was examined with Escherichia coli strains expressing wildtype toluene 4-monooxygenase (T4MO) from Pseudomonas mendocina KR1, toluene para-monooxygenase (TpMO) from Ralstonia pickettii PKO1, toluene ortho-monooxygenase (TOM) from Burkholderia cepacia G4, and toluene/ortho-xylene monooxygenase (ToMO) from P. stutzeri OX1. T4MO oxidized toluene (12.1+/-0.8 nmol/min/mg protein at 109 microM), naphthalene (7.7+/-1.5 nmol/min/mg protein at 5 mM), and fluorene (0.68+/-0.04 nmol/min/mg protein at 0.2 mM) faster than the other wildtype enzymes (2-22-fold) and produced a mixture of 1-naphthol (52%) and 2-naphthol (48%) from naphthalene, which was successively transformed to a mixture of 2,3-, 2,7-, 1,7-, and 2,6-dihydroxynaphthalenes (7%, 10%, 20%, and 63%, respectively). TOM and ToMO made 1,7-dihydroxynaphthalene from 1-naphthol, and ToMO made a mixture of 2,3-, 2,6-, 2,7-, and 1,7-dihydroxynaphthalene (26%, 22%, 1%, and 44%, respectively) from 2-naphthol. TOM had no activity on 2-naphthol, and T4MO had no activity on 1-naphthol. To take advantage of the high activity of wildtype T4MO but to increase its regiospecificity on naphthalene, seven engineered enzymes containing mutations in T4MO alpha hydroxylase TmoA were examined; the selectivity for 2-naphthol by T4MO I100A, I100S, and I100G was enhanced to 88-95%, and the selectivity for 1-naphthol was enhanced to 87% and 99% by T4MO I100L and G103S/A107G, respectively, while high oxidation rates were maintained except for G103S/A107G. Therefore, the regiospecificity for naphthalene oxidation was altered to practically pure 1-naphthol or 2-naphthol. All four wildtype monooxygenases were able to oxidize fluorene to different monohydroxylated products; T4MO oxidized fluorene successively to 3-hydroxyfluorene and 3,6-dihydroxyfluorene, which was confirmed by gas chromatography-mass spectrometry and 1H nuclear magnetic resonance analysis. TOM and its variant TomA3 V106A oxidize fluorene to a mixture of 1-, 2-, 3-, and 4-hydroxyfluorene. This is the first report of using enzymes to synthesize 1-, 3-, and 4-hydroxyfluorene, and 3,6-dihydroxyfluorene from fluorene as well as 2-naphthol and 2,6-dihydroxynaphthalene from naphthalene. PMID:15723332

Tao, Ying; Bentley, William E; Wood, Thomas K

2005-04-01

304

Kinetics of toluene degradation by a nitrate-reducing bacterium isolated from a groundwater aquifer  

SciTech Connect

Groundwater from a xylene-contaminated aquifer was enriched in the laboratory in the presence of toluene, xylenes, ethylbenzene, and benzene. A pure culture that degrades toluene and m-xylene under nitrate-reducing conditions was isolated. Fatty acid analysis, 16S rRNA sequencing, and morphological traits indicate that the isolate was a strain of Azoarcus tolulyticus. The kinetics of toluene degradation under nitrate-reducing conditions by this isolate was determined. Nitrate reduction does not proceed beyond nitrite. Nitrate and toluene are substrate limiting at low concentrations, whereas toluene, nitrate, and nitrite are inhibitory at high concentrations. Several inhibition models were compared to experimental data to represent inhibition by these substrates. A kinetic model for toluene and nitrate degradation as well as for cell growth and nitrite production was developed and compared to experimental data. The results of this work may find important application in the remediation of groundwater aquifers contaminated with aromatic hydrocarbons.

Elmen, J.; Pan, W.; Leung, S.Y.; Magyarosy, A.; Keasling, J.D. [Univ. of California, Berkeley, CA (United States). Dept. of Chemical Engineering] [Univ. of California, Berkeley, CA (United States). Dept. of Chemical Engineering

1997-07-05

305

Plasma-Driven Catalysis Process for Toluene Abatement: Effect of Water Vapor  

Microsoft Academic Search

Plasma-driven catalysis (PDC) was used to remove toluene in air. Water vapor is a critical operating parameter in this process. Its effect on toluene removal efficiency, carbon balance, CO2 selectivity, and outlet O3 concentration was systematically investigated. Results showed that water vapor imposed negative effect on toluene decomposition since it depressed the formation and catalytic decomposition of O3. Water vapor

Haibao Huang; Daiqi Ye; Dennis Y. C. Leung

2011-01-01

306

Reported survival with severe mixed acidosis and hyperlactemia after toluene poisoning  

PubMed Central

Lactic acidosis is a recognized complication of the inhalant abuse such as toluene, especially in patients with renal insufficiency. We report a case of severe metabolic acidosis and hyperlactemia due to toluene sniffing. The favorable outcome, despite extremely poor clinical symptoms, signs, laboratory and radiological findings, was unexpected. Specific aspects of the clinical course are addressed. Toluene sniffing should be considered in evaluating sever metabolic acidosis. Favorable outcome could be achieved with early diagnosis and proper interventions. PMID:21655021

Omar, Amr S.; Rahman, Masood ur; Abuhasna, Said

2011-01-01

307

Adsorption and thermal regeneration of acetone and toluene vapors in dealuminated Y-zeolite bed  

Microsoft Academic Search

Adsorption and thermal regeneration dynamics of acetone and toluene on dealuminated Y-zeolite (DAY-zeolite) were studied experimentally and theoretically. The isotherms of acetone on DAY-zeolite changed from Type-II to Type-III with an increase in temperature, whereas the isotherms of toluene were Type-I. The adsorption amount of acetone was higher than that of toluene at low temperatures, but its adsorption affinity was

Dong-Geun Lee; Jong-Hwa Kim; Chang-Ha Lee

2011-01-01

308

COMPARISON OF TRICHLOROETHYLENE REDUCTIVE DEHALOGENATION BY MICROBIAL COMMUNITIES STIMULATED ON SILICON-BASED ORGANIC COMPOUNDS AS SLOW-RELEASE ANAEROBIC SUBSTRATES. (R828772C001)  

EPA Science Inventory

Microcosm studies were conducted to demonstrate the effectiveness of tetrabutoxysilane (TBOS) as a slow-release anaerobic substrate to promote reductive dehalogenation of trichloroethylene (TCE). The abiotic hydrolysis of TBOS and tetrakis(2-ethylbutoxy)silane (TKEBS), and the...

309

An alternate metabolic hypothesis for a binary mixture of trichloroethylene and carbon tetrachloride: application of physiologically based pharmacokinetic (PBPK) modeling in rats.  

EPA Science Inventory

Carbon tetrachloride (CC4) and trichloroethylene (TCE) are hepatotoxic volatile organic compounds (VOCs) and environmental contaminants. Previous physiologically based pharmacokinetic (PBPK) models describe the kinetics ofindividual chemical disposition and metabolic clearance fo...

310

Suppression of Pulmonary Host Defenses and Enhanced Susceptibility to Respiratory bacterial Infection in mice Following Inhalation Exposure to Trichloroethylene and Chloroform  

EPA Science Inventory

Numerous epidemiologic studies have associated episodes of increased air pollution with increased incidence of respiratory disease, including pneumonia, croup, and bronchitis. Trichloroethylene (TCE) and chloroform are among 33 hazardous air pollutants identified by the U.S. Env...

311

Evaluation of simultaneous biodegradation of methane and toluene in landfill covers.  

PubMed

The biodegradation of CH4 and toluene in landfill cover soil (LCS) and waste biocover soil (WBS) was investigated with a serial toluene concentration in the headspace of landfill cover microcosms in this study. Compared with the LCS sample, the higher CH4 oxidation activity and toluene-degrading capacity occurred in the WBS sample. The co-existence of toluene in landfill gas would positively or negatively affect CH4 oxidation, mainly depending on the toluene concentrations and exposure time. The nearly complete inhibition of toluene on CH4 oxidation was observed in the WBS sample at the toluene concentration of ? 80,000 mg m(-3), which was about 10 times higher than that in the LCS sample. The toluene degradation rates in both landfill covers fitted well with the Michaelis-Menten model. These findings showed that WBS was a good alternative landfill cover material to simultaneously mitigate emissions of CH4 and toluene from landfills to the atmosphere. PMID:24801894

Su, Yao; Zhang, Xuan; Wei, Xiao-Meng; Kong, Jiao-Yan; Xia, Fang-Fang; Li, Wei; He, Ruo

2014-06-15

312

Diversity of Five Anaerobic Toluene-Degrading Microbial Communities Investigated Using Stable Isotope Probing  

PubMed Central

Time-series DNA-stable isotope probing (SIP) was used to identify the microbes assimilating carbon from [13C]toluene under nitrate- or sulfate-amended conditions in a range of inoculum sources, including uncontaminated and contaminated soil and wastewater treatment samples. In all, five different phylotypes were found to be responsible for toluene degradation, and these included previously identified toluene degraders as well as novel toluene-degrading microorganisms. In microcosms constructed from granular sludge and amended with nitrate, the putative toluene degraders were classified in the genus Thauera, whereas in nitrate-amended microcosms constructed from a different source (agricultural soil), microorganisms in the family Comamonadaceae (genus unclassified) were the key putative degraders. In one set of sulfate-amended microcosms (agricultural soil), the putative toluene degraders were identified as belonging to the class Clostridia (genus Desulfosporosinus), while in other sulfate-amended microcosms, the putative degraders were in the class Deltaproteobacteria, within the family Syntrophobacteraceae (digester sludge) or Desulfobulbaceae (contaminated soil) (genus unclassified for both). Partial benzylsuccinate synthase gene (bssA, the functional gene for anaerobic toluene degradation) sequences were obtained for some samples, and quantitative PCR targeting this gene, along with SIP, was further used to confirm anaerobic toluene degradation by the identified species. The study illustrates the diversity of toluene degraders across different environments and highlights the utility of ribosomal and functional gene-based SIP for linking function with identity in microbial communities. PMID:22156434

Sun, Weimin

2012-01-01

313

Behavioral and neurochemical effects induced by subchronic exposure to 40 ppm toluene in rats.  

PubMed

Chronic toluene inhalation at concentrations above occupational exposure limits (e.g., 100 ppm; NIOSH) has been repeatedly shown to induce neurotoxic effects. In contrast, although few clinical and experimental data are available on the effects of toluene exposure at concentrations below occupational exposure standards, some of these data may support adverse effects of long-term exposure to low toluene concentrations. To test this hypothesis, we investigated the neurobehavioral and neurochemical effects of 40 ppm inhaled toluene in a rat model of 16-week subchronic exposure, examining locomotor and rearing activities; adaptation/sensitization to narcosis produced by acute exposure to toluene at high concentration; and tyrosine hydroxylase and tryptophan hydroxylase activities, and dopamine (DA) and serotonin (5-HT) turnovers in the caudate-putamen, nucleus accumbens, hippocampus, prefrontal cortex, and cerebellum. Our results mainly show that subchronic exposure to 40 ppm toluene significantly resulted in a sensitization to toluene-induced narcosis, a decrease in rearing activity, and alterations in DA and 5-HT transmissions. This demonstrates that subchronic toluene exposure at a low concentration may lead to adverse changes in neurobehavioral and neurochemical functioning, and further questions in a public health perspective the actual neurotoxic potential of toluene and other organic compounds, because deficits in functioning are generally viewed as precursors of more serious adverse effects. PMID:12667915

Berenguer, Patrick; Soulage, Christophe; Perrin, David; Pequignot, Jean-Marc; Abraini, Jacques H

2003-03-01

314

Persistent reactive airway dysfunction syndrome after exposure to toluene diisocyanate.  

PubMed Central

Two police officers developed asthma like illness after a single but prolonged exposure to toluene diisocyanate (TDI) by being in the immediate vicinity of a tank car that had overturned on a highway. One officer experienced upper and lower respiratory tract symptoms with chest tightness about 4.5 hours after initial exposure. Shortness of breath, cough, and wheezing were noted the following day. The other experienced symptoms immediately on exposure, developed shortness of breath 20 minutes later, and presented with wheezing four hours after that. Follow up examinations over seven years showed persistence of respiratory symptoms and continuation of airway hyperreactivity requiring treatment. PMID:2159772

Luo, J C; Nelsen, K G; Fischbein, A

1990-01-01

315

Kinetic Modeling of Toluene Oxidation for Surrogate Fuel Applications  

SciTech Connect

New environmental issues, like the effect of combustion-generated greenhouse gases, provide motivation to better characterize oxidation of hydrocarbons. Transportation, in particular, significantly contributes to energy consumption and CO{sub 2} emissions. Kinetic studies about the combustion of fuels under conditions typical of internal combustion engines provides important support to improve mechanism formulation and to eventually provide better computational tools that can be used to increase the engine performance. It is foreseeable that at least in the next 30 years the main transportation fuels will be either gasoline or diesel. Unfortunately, these fuels are very complex mixtures of many components. Moreover, their specifications and performance requirements significantly change the composition of these fuels: gasoline and diesel mixtures are different if coming from different refineries or they are different from winter to summer. At the same time a fuel with a well defined and reproducible composition is needed for both experimental and modeling work. In response to these issues, surrogate fuels are proposed. Surrogate fuels are defined as mixtures of a small number of hydrocarbons whose relative concentrations is adjusted in order to approximate the chemical and physical properties of a real fuel. Surrogate fuels are then very useful both for the design of reproducible experimental tests and also for the development of reliable kinetic models. The primary reference fuels (PRF) are a typical and old example of surrogate fuel: n-heptane and iso-octane mixtures are used to reproduce antiknock propensity of complex mixtures contained in a gasoline. PRFs are not able to surrogate gasoline in operating conditions different from standard ones and new surrogates have been recently proposed. Toluene is included in all of them as a species able to represent the behavior of aromatic compounds. On the other side, the toluene oxidation chemistry is not so well established and uncertainties still remain in the mechanism. This is especially true in the low temperature regime (< 850K). In these conditions, the toluene reactivity is too low to be conveniently investigated. Nonetheless, gasoline surrogates work in the engine at low temperatures, because of the presence of very reactive alkanes. The effect of these component interactions have to be taken into account. This work's aim is to present the model activity carried out by two different research groups, comparing the main pathways and results, matching data carried out in different devices both for pure toluene and mixtures. This is the starting point for a further activity to improve the two kinetic schemes.

Frassoldati, A; Mehl, M; Fietzek, R; Faravelli, T; Pitz, W J; Ranzi, E

2009-04-21

316

Reactivity characteristics of nanoscale zerovalent iron--silica composites for trichloroethylene remediation.  

PubMed

Spherical silica particles containing nanoscale zerovalent iron were synthesized through an aerosol-assisted process. These particles are effective for groundwater remediation, with the environmentally benign silica particles serving as effective carriers for nanoiron transport. Incorporation of iron into porous sub-micrometer silica particles protects ferromagnetic iron nanoparticles from aggregation and may increase their subsurface mobility. Additionally, the presence of surface silanol groups on silica particles allows control of surface properties via silanol modification using organic functional groups. Aerosolized silica particles with functional alkyl moieties, such as ethyl groups on the surface, clearly adsorb solubilized trichloroethylene (TCE) in water. These materials may therefore act as adsorbents which have coupled reactivity characteristics. The nanoscale iron/silica composite particles with controlled surface properties have the potential to be efficiently applied for in situ source depletion and in the design of permeable reactive barriers. PMID:18605576

Zheng, Tonghua; Zhan, Jingjing; He, Jibao; Day, Christopher; Lu, Yunfeng; McPherson, Gary L; Piringer, Gerhard; John, Vijay T

2008-06-15

317

Mortality of aircraft maintenance workers exposed to trichloroethylene and other hydrocarbons and chemicals: extended follow up  

PubMed Central

Objective To extend follow-up of 14,455 workers from 1990 to 2000, and evaluate mortality risk from exposure to trichloroethylene (TCE) and other chemicals. Methods Multivariable Cox models were used to estimate relative risk for exposed vs. unexposed workers based on previously developed exposure surrogates. Results Among TCE exposed workers, there was no statistically significant increased risk of all-cause mortality (RR=1.04) or death from all cancers (RR=1.03). Exposure-response gradients for TCE were relatively flat and did not materially change since 1990. Statistically significant excesses were found for several chemical exposure subgroups and causes, and were generally consistent with the previous follow up. Conclusions Patterns of mortality have not changed substantially since 1990. While positive associations with several cancers were observed, and are consistent with the published literature, interpretation is limited due to the small numbers of events for specific exposures. PMID:19001957

Radican, Larry; Blair, Aaron; Stewart, Patricia; Wartenberg, Daniel

2009-01-01

318

Biodegradation of trichloroethylene by Alcaligenes eutrophus JMP134 in a laboratory scale bioreactor  

SciTech Connect

A single stage recirculating bioreactor with a pure culture of Alcaligenes eutrophus JMP134 and a packed gravel bed was operated for a two week period during which a maximum biodegradation of 88.4% of the influent trichloroethylene was observed with average performance of 71.8% at 8.4 hour hydraulic retention time. The reactor was then operated for a seven day period with the gravel bed removed, demonstrating a maximum degradation of 97.4% and an average of 95.6%. Average influent and effluent concentrations for the second case were 5.97 mg/l and 145 {mu}g/l with a mean retention time of 14.1 hours. Phenol, supplied as the sole source of carbon and energy, was degraded below levels of detection (<1.6 {mu}M) in the effluent. 16 refs., 5 figs., 1 tab.

McKay, D.J.; Morse, J.S. [Univ. of South Carolina, Columbia, SC (United States); Hazen, T.C. [Savannah River Technology Center, Aiken, SC (United States)

1994-12-31

319

Structural Magnetic Resonance Imaging in an adult cohort following prenatal and early postnatal exposure to tetrachloroethylene (PCE)-contaminated drinking water.  

PubMed

This population-based retrospective cohort study examined Structural Magnetic Resonance Imaging (MRI) of the brain in relation to prenatal and early postnatal exposure to tetrachloroethylene (PCE)-contaminated drinking water on Cape Cod, Massachusetts. Subjects were identified through birth records from 1969 through 1983. Exposure was modeled using pipe network information from town water departments, a PCE leaching and transport algorithm, EPANet water flow modeling software, and Geographic Information System (GIS) methodology. Brain imaging was performed on 26 exposed and 16 unexposed subjects. Scans were acquired on a Philips 3T whole body scanner using the ADNI T1-weighted MP-RAGE scan. The scans were processed by FreeSurfer version 4.3.1 software to obtain measurements of specific brain regions. There were no statistically significant differences between exposed and unexposed subjects on the measures of white matter hypointensities (?: 127.5mm(3), 95% CI: -259.1, 1514.0), white matter volumes (e.g. total cerebral white matter: ?: 21230.0mm(3), 95% CI: -4512.6, 46971.7) or gray matter volumes (e.g. total cerebral gray matter: ?: 11976.0mm(3), 95% CI: -13657.2, 37609.3). The results of this study suggest that exposure to PCE during gestation and early childhood, at the levels observed in this population, is not associated with alterations in the brain structures studied. PMID:23571160

Janulewicz, Patricia A; Killiany, Ronald J; White, Roberta F; Martin, Brett M; Winter, Michael R; Weinberg, Janice M; Aschengrau, Ann

2013-01-01

320

Structural Magnetic Resonance Imaging in an Adult Cohort Following Prenatal and Early Postnatal Exposure to Tetrachloroethylene (PCE)-contaminated Drinking Water  

PubMed Central

This population-based retrospective cohort study examined Structural Magnetic Resonance Imaging (MRI) of the brain in relation to prenatal and early postnatal exposure to tetrachloroethylene (PCE)-contaminated drinking water on Cape Cod, Massachusetts. Subjects were identified through birth records from 1969 through 1983. Exposure was modeled using pipe network information from town water departments, a PCE leaching and transport algorithm, EPANet water flow modeling software, and Geographic Information System (GIS) methodology. Brain imaging was performed on 26 exposed and 16 unexposed subjects. Scans were acquired on a Philips 3T whole body scanner using the ADNI T1-weighted MP-RAGE scan. The scans were processed by FreeSurfer version 4.3.1 software to obtain measurements of specific brain regions. There were no statistically significant differences between exposed and unexposed subjects on measures of white matter hypointensities (?: 127.5 mm3, 95% CI: ?259.1, 1514.0), white matter volumes (e.g. total cerebral white matter: ?: 21230.0 mm3, 95% CI: ?4512.6, 46971.7) or gray matter volumes (e.g. total cerebral gray matter: ?: 11976.0 mm3, 95% CI: ?13657.2, 37609.3). The results of this study suggest that exposure to PCE during gestation and early childhood, at the levels observed in this population, is not associated with alterations in the brain structures studied. PMID:23571160

Janulewicz, Patricia A; Killiany, Ronald J; White, Roberta F; Martin, Brett M; Winter, Michael R; Weinberg, Janice M; Aschengrau, Ann

2013-01-01

321

Health risk assessment of exposure to selected volatile organic compounds emitted from an integrated iron and steel plant.  

PubMed

Workplace air samples from sintering, cokemaking, and hot and cold forming processes in the integrated iron and steel industry were analyzed to determine their volatile organic compound (VOC) concentration. Sixteen VOC species including three paraffins (cyclohexane, n-hexane, methylcyclohexane), five chlorinated VOC species (trichloroethylene, 1,1,1-trichloroethane, tetrachloroethylene, chlorobenzene, 1,4-dichlorobenzene), and eight aromatics (benzene, ethylbenzene, styrene, toluene, m,p-xylene, o-xylene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene) were selected to measure their noncancer risk for workers. Concentrations of toluene, xylene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, dichlorobenzene, and trichloroethylene were high in all four processes. Carbon tetrachloride and tetrachloroethylene concentrations were high in the hot and cold forming processes. The noncancer risk followed the increasing order: cokemaking > sintering > hot forming > cold forming. 1,2,4-trimethylbenzene and 1,3,5-trimethylbenzene contributed 44% to 65% and 13% to 20% of noncancer risk, respectively, for the four processes. Benzene accounted for a high portion of the noncancer risk in cokemaking. The hazard index (HI: 17-108) of the average VOC concentrations suggests that health risks can be reduced by improving workplace air quality and protecting workers. PMID:20828338

Chang, E-E; Wei-Chi, Wang; Li-Xuan, Zeng; Hung-Lung, Chiang

2010-12-01

322

Control of toluene and xylene by absorption in mineral oil  

SciTech Connect

Control of VOC is usually accomplished by thermal or catalytic incineration, by adsorption and more recently by biofiltration. In Brazil there is no specific environmental legislation for VOC control. The enforcement at the present time is based on population complaints in relation to odor outside the plant. The author feels that in the near future a regulation for VOC control will be enacted, aiming the attainment of the ozone standard or by ecological reason. This paper presents the results of a laboratory experiment for the absorption of toluene and xylene in mineral oil (fuel oil used in diesel buses and trucks) with a countercurrent flow packed tower. The resulting enriched mineral oil would still be used as a fuel and could be a more economical way of reducing emissions of VOC if it is not necessary to have collection efficiencies as high as those obtained by incineration or by adsorption. This control method could be also a way of waste recycling. Other organic liquids will be tested in the near future. A first set of experimental data showed collection efficiency of 92.69% for xylene, for inlet concentration in the tower of 1,471 ppmv, and 76.57% for toluene, for inlet concentration in the tower of 6,349.9 ppmv.

Assuncao, J.V. de [Univ. of Sao Paulo (Brazil); [Mackenzie Univ., Sao Paulo (Brazil); Vasconcelos, S.M.F. [Mackenzie Univ., Sao Paulo (Brazil)

1997-12-31

323

Influence of vanadia content onto TiO 2-SiO 2 matrix for photocatalytic oxidation of trichloroethylene  

NASA Astrophysics Data System (ADS)

Direct synthesis of vanadia onto titania-silica matrices as photocatalysts was achieved by using simple sol-gel method. This synthetic strategy revealed that the vanadia species could be loaded into TiO 2-SiO 2 matrices up to 18.5 wt%. Results from FTIR indicated that at low loading amounts of vanadia species (i.e. ?1), the formation of monolayer vanadia species onto the matrices was successfully fabricated; however, a polymeric vanadate could be formed with high loading of vanadia species. On such heterogeneous photocatalytic systems, the oxidation affinity of trichloroethylene was substantially affected by the loading amount and the degree of dispersion V 2O 5 particles onto the TiO 2-SiO 2 support matrices, indicating the exclusive effect of the V 2O 5 nanoparticles on this photocatalytic reaction. Clearly evident is that this polymeric vanadate was a relatively inactive photocatalysts for the oxidation of trichloroethylene.

Ismail, Adel Ali; Matsunaga, Hideyuki

2007-10-01

324

Assessment of dermal exposure to benzene and toluene in shoe manufacturing by activated carbon cloth patches  

E-print Network

Assessment of dermal exposure to benzene and toluene in shoe manufacturing by activated carbon activated carbon cloth (ACC) patches to study the probability and extent of dermal exposure to benzene for the contribution from the air through passive absorption of benzene and toluene on the ACC patches. Systemic

California at Berkeley, University of

325

Interactions between benzene, toluene, and p-xylene (BTX) during their biodegradation  

Microsoft Academic Search

A microbial consortium and Pseudomonas strain (PPO1) were used in studying biodegradation of benzene, toluene, and p-xylene under aerobic conditions. Studies involved removal of each compound individually as well as in mixture with the others. Both cultures exhibited a qualitatively similar behavior toward each compound. Both the pure culture and the consortium grew on benzene following Monod kinetics, on toluene

Young-Sook Oh; R. Bartha; Z. Shareefdeen; B. C. Baltzis

1994-01-01

326

Autoignition of toluene reference fuels at high pressures modeled with detailed chemical kinetics  

Microsoft Academic Search

A detailed chemical kinetic model for the autoignition of toluene reference fuels (TRF) is presented. The toluene submechanism added to the Lawrence Livermore Primary Reference Fuel (PRF) mechanism was developed using recent shock tube autoignition delay time data under conditions relevant to HCCI combustion. For two-component fuels the model was validated against recent high-pressure shock tube autoignition delay time data

J. C. G. Andrae; P. Björnbom; R. F. Cracknell; G. T. Kalghatgi

2007-01-01

327

Adsorption of toluene onto activated carbons exposed to 100 ppb ozone  

Microsoft Academic Search

The effects of 100ppb ozone exposure on the adsorption of 1ppm toluene on activated carbon are presented for dry (less than 5% RH) and humid (55% RH) air. In dry air, the 10% toluene breakthrough times of granular carbon beds exposed to ozone for 208days are 17% less than those of unexposed carbon beds. At 55% RH, the corresponding reduction

Michael L. Kingsley; Jane H. Davidson

2006-01-01

328

Anaerobic degradation of toluene and o-xylene by a methanogenic consortium.  

PubMed Central

Toluene and o-xylene were completely mineralized to stoichiometric amounts of carbon dioxide, methane, and biomass by aquifer-derived microorganisms under strictly anaerobic conditions. The source of the inoculum was creosote-contaminated sediment from Pensacola, Fla. The adaptation periods before the onset of degradation were long (100 to 120 days for toluene degradation and 200 to 255 days for o-xylene). Successive transfers of the toluene- and o-xylene-degrading cultures remained active. Cell density in the cultures progressively increased over 2 to 3 years to stabilize at approximately 10(9) cells per ml. Degradation of toluene and o-xylene in stable mixed methanogenic cultures followed Monod kinetics, with inhibition noted at substrate concentrations above about 700 microM for o-xylene and 1,800 microM for toluene. The cultures degraded toluene or o-xylene but did not degrade m-xylene, p-xylene, benzene, ethylbenzene, or naphthalene. The degradative activity was retained after pasteurization or after starvation for 1 year. Degradation of toluene and o-xylene was inhibited by the alternate electron acceptors oxygen, nitrate, and sulfate. Degradation was also inhibited by the addition of preferred substrates such as acetate, H2, propionate, methanol, acetone, glucose, amino acids, fatty acids, peptone, and yeast extract. These data suggest that the presence of natural organic substrates or contaminants may inhibit anaerobic degradation of pollutants such as toluene and o-xylene at contaminated sites. Images PMID:8117084

Edwards, E A; Grbi?-Gali?, D

1994-01-01

329

Study of the corrosion resistance of metals in the media of phenol synthesis from toluene  

Microsoft Academic Search

Phenol is obtained from toluene in two stages. The toluene is first oxidized to benzoic acid in the presence of soluble cobalt and manganese salts. The obtained benzoic acid is then subjected to oxidizing decarboxylation in the presence of soluble copper and magnesium salts. Oxidizing decarboxylation of the benzoic acid is conducted with the simultaneous treatment of the reacting mass

Yu. I. Perin; R. A. Valieva; A. A. Sokolov

1967-01-01

330

40 CFR 721.1850 - Toluene sulfonamide bis-phe-nol A epoxy adduct.  

Code of Federal Regulations, 2010 CFR

...2010-07-01 2010-07-01 false Toluene sulfonamide bis-phe-nol A epoxy adduct. 721.1850 Section 721.1850 Protection...Chemical Substances § 721.1850 Toluene sulfonamide bis-phe-nol A epoxy adduct. (a) Chemical substances and...

2010-07-01

331

40 CFR 721.1850 - Toluene sulfonamide bis-phe-nol A epoxy adduct.  

Code of Federal Regulations, 2013 CFR

...2013-07-01 2013-07-01 false Toluene sulfonamide bis-phe-nol A epoxy adduct. 721.1850 Section 721.1850 Protection...Chemical Substances § 721.1850 Toluene sulfonamide bis-phe-nol A epoxy adduct. (a) Chemical substances and...

2013-07-01

332

40 CFR 721.1850 - Toluene sulfonamide bis-phe-nol A epoxy adduct.  

Code of Federal Regulations, 2014 CFR

...2014-07-01 2014-07-01 false Toluene sulfonamide bis-phe-nol A epoxy adduct. 721.1850 Section 721.1850 Protection...Chemical Substances § 721.1850 Toluene sulfonamide bis-phe-nol A epoxy adduct. (a) Chemical substances and...

2014-07-01

333

40 CFR 721.1850 - Toluene sulfonamide bis-phe-nol A epoxy adduct.  

Code of Federal Regulations, 2011 CFR

...2011-07-01 2011-07-01 false Toluene sulfonamide bis-phe-nol A epoxy adduct. 721.1850 Section 721.1850 Protection...Chemical Substances § 721.1850 Toluene sulfonamide bis-phe-nol A epoxy adduct. (a) Chemical substances and...

2011-07-01

334

40 CFR 721.1850 - Toluene sulfonamide bis-phe-nol A epoxy adduct.  

Code of Federal Regulations, 2012 CFR

...2012-07-01 2012-07-01 false Toluene sulfonamide bis-phe-nol A epoxy adduct. 721.1850 Section 721.1850 Protection...Chemical Substances § 721.1850 Toluene sulfonamide bis-phe-nol A epoxy adduct. (a) Chemical substances and...

2012-07-01

335

CHANGES IN MRNA EXPRESSION PROFILES IN RAT CORTEX AND STRIATUM FOLLOWING SUB CHRONIC TOLUENE EXPOSURE.  

EPA Science Inventory

Toluene, a volatile organic compound (VOC) used in many commercial products, is a ubiquitous air pollutant and therefore of interest to many EPA regulatory programs. A primary concern for toluene and other VOC?s is the potential for persistent neurotoxic effects from long term e...

336

Phospholipid compositional changes of five pseudomonad archetypes grown with and without toluene.  

PubMed

Bacterial physiological responses to toluene exposure were investigated in five reference pseudomonad strains that express different toluene degradation pathways: Pseudomonas putida mt-2, Pseudomonas putida F1, Burkholderia cepacia G4, Burkholderia pickettii PKO1, and Pseudomonas mendocina KR1. The intact phospholipids of these archetypes, grown with and without toluene, were characterized using liquid chromatography/electrospray ionization/mass spectrometry. All strains showed significant changes in phospholipid content and composition as an adaptive response to toluene exposure, as well as considerable diversity in response mechanisms. For example, the phospholipid content of toluene-grown PKO1, F1, and KR1 were 10.9-34.7% of that found in succinate-grown strains, while the phospholipid content of mt-2 and G4 increased by 56% and 94%, respectively, when grown on toluene. In addition, PKO1, F1, and mt-2 responded to the presence of toluene by synthesizing more phosphatidylglycerol, whereas G4 and KR1 synthesized phospholipids with polyunsaturated fatty acids (C18:2) on one or both of the sn-2 positions. These changes in phospholipid composition and concentration probably reflect the sensitivity and degree of tolerance of these strains to toluene, and suggest that different mechanisms are utilized by dissimilar bacteria to maintain optimal lipid ordering in the presence of such environmental pollutants. PMID:11030576

Fang, J; Barcelona, M J; Alvarez, P J

2000-09-01

337

Use of selective inhibitors and chromogenic substrates to differentiate bacteria based on toluene oxygenase activity.  

PubMed

In whole-cell studies, two alkynes, 1-pentyne and phenylacetylene, were selective, irreversible inhibitors of monooxygenase enzymes in catabolic pathways that permit growth of bacteria on toluene. 1-Pentyne selectively inhibited growth of Burkholderia cepacia G4 (toluene 2-monooxygenase [T2MO] pathway) and B. pickettii PKO1 (toluene 3-monooxygenase [T3MO] pathway) on toluene, but did not inhibit growth of bacteria expressing other pathways. In further studies with strain G4, chromogenic transformation of alpha,alpha,alpha-Trifluoro-m-cresol (TFC) was irreversibly inhibited by 1-pentyne, but the presence of phenol prevented this inhibition. Transformation of catechol by G4 was unaffected by 1-pentyne. With respect to the various pathways and bacteria tested, phenylacetylene selectively inhibited growth of Pseudomonas mendocina KR1 (toluene 4-monooxygenase [T4MO] pathway) on toluene, but not on p-cresol. An Escherichia coli transformant expressing T4MO transformed indole or naphthalene in chromogenic reactions, but not after exposure to phenylacetylene. The naphthalene reaction remained diminished in phenylacetylene-treated cells relative to untreated cells after phenylacetylene was removed, indicating irreversible inhibition.These techniques were used to differentiate toluene-degrading isolates from an aquifer. Based on data generated with these indicators and inhibitors, along with results from Biolog analysis for sole carbon source oxidation, the groundwater isolates were assigned to eight separate groups, some of which apparently differ in their mode of toluene catabolism. PMID:11438182

Keener, W K; Watwood, M E; Schaller, K D; Walton, M R; Partin, J K; Smith, W A; Clingenpeel, S R

2001-09-01

338

Behavioral Effects of Sub-Acute Inhalation of Toluene in Adult Rats  

EPA Science Inventory

Reports of behavioral effects of repeated inhalation of toluene in rats have Yielded inconsistent fmdings. A recent study from this laboratory (Beasley et al., 2010) observed that after 13 weeks of inhaled toluene ("sub-chronic" exposure scenario), rats showed mild but persiste...

339

Removal of Toluene in Air by Non Thermal Plasma-Catalysis Hybrid , H. T. Pham  

E-print Network

Removal of Toluene in Air by Non Thermal Plasma-Catalysis Hybrid System A. Khacef , H. T. Pham , A, Abstract: Atmospheric Non-Thermal Plasma (ANTP) technology for indoor air treatment has the disadvantage catalysts. The products of the toluene oxidation were CO and CO2. Keywords: Non thermal Plasma, Catalysis

Paris-Sud XI, Université de

340

Transformation of pWWO in Rhizobium leguminosarum DPT to Engineer Toluene Degrading Ability for Rhizoremediation.  

PubMed

Rhizoremediation of organic xenobiotics is based on interactions between plants and their associated micro-organisms. The present work was designed to engineer a bacterial system having toluene degradation ability along with plant growth promoting characteristics for effective rhizoremediation. pWWO harboring the genes responsible for toluene breakdown was isolated from Pseudomonas putida MTCC 979 and successfully transformed in Rhizobium DPT. This resulted in a bacterial strain (DPT(T)) which had the ability to degrade toluene as well as enhance growth of host plant. The frequency of transformation was recorded 5.7 × 10(-6). DPT produced IAA, siderophore, chitinase, HCN, ACC deaminase, solubilized inorganic phosphate, fixed atmospheric nitrogen and inhibited the growth of Fusarium oxysporum and Macrophomina phaseolina in vitro. During pot assay, 50 ppm toluene in soil was found to inhibit the germination of Cajanus cajan seeds. However when the seeds bacterized with toluene degrading P. putida or R. leguminosarum DPT were sown in pots, again no germination was observed. Non-bacterized as well as bacterized seeds germinated successfully in toluene free soil as control. The results forced for an alternative mode of application of bacteria for rhizoremediation purpose. Hence bacterial suspension was mixed with soil having 50 ppm of toluene. Germination index in DPT treated soil was 100% while in P. putida it was 50%. Untreated soil with toluene restricted the seeds to germinate. PMID:23729882

Goel, Garima; Pandey, Piyush; Sood, Anchal; Bisht, Sandeep; Maheshwari, D K; Sharma, G D

2012-06-01

341

WHY DO THE ACUTE BEHAVIORAL EFFECTS OT TOLUENE IN RATS DEPEND ON THE ROUTE OF EXPOSURE?  

EPA Science Inventory

Despite evidence suggesting that the acute effects of organic solvents are related to their concentration in the brain, we have observed route-dependent differences in the acute behavioral effects of toluene. Whereas inhaled toluene disrupts the performance of rats on a visual si...

342

Thermally Activated Persulfate Oxidation of Trichloroethylene (TCE) and 1,1,1Trichloroethane (TCA) in Aqueous Systems and Soil Slurries  

Microsoft Academic Search

Under thermally activated conditions (i.e., temperature of 40?99°C), there is considerable evidence that the persulfate anion () can be converted to a powerful oxidant known as the sulfate free radical (), which could be used in situ to destroy groundwater contaminants. In this laboratory study only limited trichloroethylene (TCE) degradation and no 1,1,1-trichloroethane (TCA) degradation was observed at 20°C. However,

Chen Ju Liang; Clifford J. Bruell; Michael C. Marley; Kenneth L. Sperry

2003-01-01

343

Optimization of trichloroethylene oxidation by methanotrophs and the use of a colorimetric assay to detect soluble methane monooxygenase activity  

Microsoft Academic Search

Methylosinus trichosporium OB3b biosynthesizes a broad specificity soluble methane monooxygenase that rapidly oxidizes trichloroethylene (TCE). The selective expression of the soluble methane monooxygenase was followed in vivo by a rapid colorimetric assay. Naphthalene was oxidized by purified soluble methane monooxygenase or by cells grown in copper-deficient media to a mixture of 1-naphthol and 2-naphthol. The naphthols were detected by reaction

Gregory A. Brusseau; Hsien-Chyang Tsien; Richard S. Hanson; Lawrence P. Wackett

1990-01-01

344

Electrical Properties of SandClay Mixtures Containing Trichloroethylene and Ethanol Jeffery J. Roberts and Dorthe Wildenschild*  

E-print Network

-to-surface-area ratio (a measure of the dynamically interconnected pore size), as � 2 ¼ R jEðr�j 2 dVp R jEðr�j 2 dS ; ðElectrical Properties of Sand­Clay Mixtures Containing Trichloroethylene and Ethanol Jeffery J2� where E(r) is the electric potential field at point r, Vp is the pore volume, a

Wildenschild, Dorthe

345

Kinetics of the gas-solid heterogeneous photocatalytic oxidation of trichloroethylene by near UV illuminated titanium dioxide  

Microsoft Academic Search

Kinetics of the gas\\/solid heterogeneous photocatalytic oxidation of dilute trichloroethylene (TCE) vapors by ultraviolet-illuminated titanium dioxide have been determined using a fixed-bed dynamic photoreactor. Reaction rate dependences on inlet TCE, oxygen and water vapor concentrations were found to consist of both reactant sensitive and insensitive regions. In the reactant sensitive regions, measured limiting apparent reaction rate orders for TCE, oxygen

Lynette A. Dibble; Gregory B. Raupp

1990-01-01

346

Investigation of the long-term performance of zero-valent iron for reductive dechlorination of trichloroethylene  

Microsoft Academic Search

This research investigated the long-term performance of zero-valent iron for mediating the reductive dechlorination of trichloroethylene (TCE). Over a 2-year period, rates of TCE dechlorination in columns packed with iron filings were measured in simulated groundwaters containing either 3 mM CaSOâ, 5 mM CaClâ, or 5 mM Ca(NOâ)â. At early elapsed times, TCE reaction rates were pseudo-first-order in TCE concentration

James Farrell; Mark Kason; Nicos Melitas; Tie Li

2000-01-01

347

The kinetics of photocatalytic degradation of trichloroethylene in gas phase over TiO 2 supported on glass bead  

Microsoft Academic Search

In this investigation, a packed bed filled with coated titanium dioxide glass beads to study the kinetics of photocatalytic degradation of trichloroethylene under irradiation of 365nm UV light. In the range of 100–500ml\\/min of flowrate, the reaction rate for 6?M TCE increased with an increasing flowrate upto 300ml\\/min, while was not affected by the flowrate at the values higher than

Kuo-Hua Wang; Hung-Huan Tsai; Yung-Hsu Hsieh

1998-01-01

348

Mammalian cytochrome CYP2E1 triggered differential gene regulation in response to trichloroethylene (TCE) in a transgenic poplar  

Microsoft Academic Search

Trichloroethylene (TCE) is an important environmental contaminant of soil, groundwater, and air. Studies of the metabolism\\u000a of TCE by poplar trees suggest that cytochrome P450 enzymes are involved. Using poplar genome microarrays, we report a number\\u000a of putative genes that are differentially expressed in response to TCE. In a previous study, transgenic hybrid poplar plants\\u000a expressing mammalian cytochrome P450 2E1

Jun Won Kang; Hui-Wen Wilkerson; Federico M. Farin; Theo K. Bammler; Richard P. Beyer; Stuart E. Strand; Sharon L. Doty

2010-01-01

349

Occupational trichloroethylene exposure as a cause of idiosyncratic generalized skin disorders and accompanying hepatitis similar to drug hypersensitivities  

Microsoft Academic Search

Objectives  Workers exposed to trichloroethylene (TCE) rarely show severe generalized skin disorders and accompanying hepatitis which\\u000a resemble drug hypersensitivities. The disorders are completely different from solvent-induced irritating contact dermatitis,\\u000a and their serious consequences have become one of the critical occupational health issues recently in Asia. The present review\\u000a sheds light on the analogous relationship between the reported patients’ clinical manifestations and

Michihiro Kamijima; Naomi Hisanaga; Hailan Wang; Tamie Nakajima

2007-01-01

350

A new kinetic model for titanium dioxide mediated heterogeneous photocatalytic degradation of trichloroethylene in gas-phase  

Microsoft Academic Search

This paper focuses on the kinetics of photocatalytic removal and carbon mineralization of gaseous trichloroethylene (TCE) on near-UV irradiated TiO2 Degussa P25. Experiments were carried out in a flat-plate photoreactor at TCE inlet concentrations of 100–500ppmv, relative humidities (RH) of 0–62% and gas residence times of 2.5–60.3s. Gas residence time distribution (RTD) curves revealed an axial dispersed plug flow in

Kristof Demeestere; Alex De Visscher; Jo Dewulf; Maarten Van Leeuwen; Herman Van Langenhove

2004-01-01

351

Metabolites formed during anaerobic transformation of toluene and o-xylene and their proposed relationship to the initial steps of toluene mineralization  

SciTech Connect

Strain T1 is a facultative bacterium that is capable of anaerobic toluene degradation under denitrifying conditions. While 80% of the carbon from toluene is either oxidized to carbon dioxide or assimilated into cellular carbon, a significant portion of the remainder is transformed into two dead-end metabolites. These metabolites were produced simultaneous to the mineralization of toluene and were identified as benzylsuccinic acid and benzylfumaric acid. Identification was based on comparison of mass spectra of the methyl esters of the metabolites and authentic compounds that were chemically synthesized. Strain T1 is also capable of o-xylene transformation during growth on toluene, o-Xylene does not serve as a source of carbon and is not mineralized. Rather, it is transformed to analogous dead-end metabolites, (2-methylbenzyl)-succinic acid and (2-methyl-benzyl)-fumaric acid. o-Xylene transformation also occurred during growth on succinic acid, which suggests that attack of the methyl group by succinyl-coenzyme A is a key reaction in this transformation. The authors reason that the main pathway for toluene oxidation to carbon dioxide involves a mechanism similar to that for the formation of the metabolites and involves an attack of the methyl group of toluene by acetyl-coenzyme A.

Evans, P.J.; Ling, W.; Goldschmidt, B.; Young, L.Y. (New York Univ., NY (United States)); Ritter, E.R. (New Jersey Inst. of Tech., Newark (United States))

1992-02-01

352

Protein engineering of toluene monooxygenases for synthesis of chiral sulfoxides.  

PubMed

Enantiopure sulfoxides are valuable asymmetric starting materials and are important chiral auxiliaries in organic synthesis. Toluene monooxygenases (TMOs) have been shown previously to catalyze regioselective hydroxylation of substituted benzenes and phenols. Here we show that TMOs are also capable of performing enantioselective oxidation reactions of aromatic sulfides. Mutagenesis of position V106 in the alpha-hydroxylase subunit of toluene ortho-monooxygenase (TOM) of Burkholderia cepacia G4 and the analogous position I100 in toluene 4-monooxygenase (T4MO) of Pseudomonas mendocina KR1 improved both rate and enantioselectivity. Variant TomA3 V106M of TOM oxidized methyl phenyl sulfide to the corresponding sulfoxide at a rate of 3.0 nmol/min/mg protein compared with 1.6 for the wild-type enzyme, and the enantiomeric excess (pro-S) increased from 51% for the wild type to 88% for this mutant. Similarly, T4MO variant TmoA I100G increased the wild-type oxidation rate by 1.7-fold, and the enantiomeric excess rose from 86% to 98% (pro-S). Both wild-type enzymes showed lower activity with methyl para-tolyl sulfide as a substrate, but the improvement in the activity and enantioselectivity of the mutants was more dramatic. For example, T4MO variant TmoA I100G oxidized methyl para-tolyl sulfide 11 times faster than the wild type did and changed the selectivity from 41% pro-R to 77% pro-S. A correlation between regioselectivity and enantioselectivity was shown for TMOs studied in this work. Using in silico homology modeling, it is shown that residue I100 in T4MO aids in steering the substrate into the active site at the end of the long entrance channel. It is further hypothesized that the main function of V106 in TOM is the proper positioning or docking of the substrate with respect to the diiron atoms. The results from this work suggest that when the substrate is not aligned correctly in the active site, the oxidation rate is decreased and enantioselectivity is impaired, resulting in products with both chiral configurations. PMID:18192418

Feingersch, Roi; Shainsky, Janna; Wood, Thomas K; Fishman, Ayelet

2008-03-01

353

DETERMINATION OF SECONDARY ORGANIC AEROSOL PRODUCTS FROM THE PHOTOOXIDATION OF TOLUENE AND THEIR IMPLICATIONS IN AMBIENT PM2.5  

EPA Science Inventory

Laboratory study was carried out to investigate the secondary organic aerosol products from photooxidation of the aromatic hydrocarbon toluene. The laboratory experiments consisted of irradiating toluene/propylene/NOX/air mixtures in a smog chamber operated in the dynamic mode...

354

Modeling the toxicokinetics of 24-hour toluene exposure in rats, impact of activity patterns and enzyme induction  

EPA Science Inventory

Toluene, a solvent used in numerous consumer and industrial applications, exerts its critical effects on the brain and nervous system following inhalation exposure. Our previously published PBPK model successfully predicted toluene concentrations in blood and brain over a range o...

355

MICROBIAL DEGRADATION OF TOLUENE UNDER SULFATE-REDUCING CONDITIONS AND THE INFLUENCE OF IRON ON THE PROCESS  

EPA Science Inventory

Toluene degradation occurred concomitantly with sulfate reduction in anaerobic microcosms inoculated with contaminated subsurface soil from an aviation fuel storage facility near the Patuxent River (MD). imilar results were obtained for enrichment cultures in which toluene was th...

356

Two-dimensional ethanol floods of toluene in homogeneous, unconfined aquifer media  

SciTech Connect

An NSF-Small Business Innovative Research Phase 1 project entitled, {open_quotes}In-Situ Cleanup of Petroleum Contaminated Soil and Groundwater Using Alcohol Flooding{close_quotes} was recently completed. As part of this study, two-dimensional flow experiments in unconfined homogeneous and layered sand samples using a combined pure ethanol and 50/50 (vol.%) ethanol-water flooding strategy were conducted on the bench-scale to mobilize lighter-than-water non-aqueous phase liquids (LNAPLs) such as toluene. The results presented here include ethanol flooding experiments in uniform No. 30 coarse crystal silica sands which was spiked with 20 ml toluene at discrete locations above the water table. The enhanced recovery of LNAPL was attained at flow rates of less than 11 m/day. Toluene emplaced slightly above the water table in homogeneous sands migrated vertically-downward along the sloping ethanol-water flooding interface because the toluene had a somewhat greater density than the ethanol. A portion of the toluene that migrated downward became trapped below the area swept by the pure ethanol flood as the ethanol broke through the source zone area. During mobilization, toluene concentrations at the leading edge of the toluene-laden ethanol-water interface were measured in excess of 300,000 mg/l. A co-injected 50/50 (vol.%) ethanol-water mixture recovered the trapped toluene by a combination of enhanced solubilization and physical displacement. Toluene appeared to be effectively removed from the sand. A very concentrated ethanol- and toluene-rich liquid phase formed above essentially clean water in the effluent manifold.

Grubb, D.G.; Empie, L.E.; Hudock, G.W. [Georgia Institute of Technology, Atlanta, GA (United States); Davies, R.N. [GeoSyntec Consultants, Atlanta, GA (United States)] [and others

1997-12-31

357

Characterization of an inhaled toluene drug discrimination in mice: effect of exposure conditions and route of administration  

PubMed Central

The drug discrimination procedure in animals has been extensively utilized to model the abuse related, subjective effects of drugs in humans, but it has seldom been used to examine abused volatile inhalants like toluene. The present study sought to characterize the temporal aspects of toluene's discriminative stimulus as well assess toluene blood concentrations under identical exposure conditions. B6SJLF1/J mice were trained to discriminate 10 min of exposure to 6000 ppm inhaled toluene vapor from air. Toluene vapor concentration dependently substituted for the training exposure condition with longer exposures to equivalent concentrations producing greater substitution than shorter exposures. Toluene's discriminative stimulus effects dissipated completely by 60 min after the cessation of exposure. Injected liquid toluene dose-dependently substituted for toluene vapor as well as augmenting the discriminative stimulus effects of inhaled toluene. Toluene blood concentrations measured under several exposure conditions which produced full substitution were all nearly identical suggesting that the concentration of toluene in the animals tissues at the time of testing determined discriminative performance. These results indicate that the discriminative stimulus effects of inhaled toluene vapor are likely mediated by CNS effects rather than by it's pronounced peripheral stimulus effects. PMID:19268500

Shelton, Keith L.; Slavova-Hernandez, Galina

2009-01-01

358

Catalytic incineration of chlorocarbons  

SciTech Connect

The authors have evaluated the performance of several supported metal and transition metal oxide catalysts for the oxidation of chlorinated hydrocarbons and have developed a proprietary catalyst (VOCat35OHC{sup TM}) which shows excellent activity and stability. Performance data for the oxidative destruction of trichloroethylene (TCE), tetrachloroethylene, methyl chloride, methylene chloride, chlorobenzene and toluene (1000 ppm, 1.5% H{sub 2}O in air, 7500 VHSV) studies show no decrease in activity after 1000 hours at 450{degrees}C and 1000 ppm TCE. Analysis of reactor effluents show formation of CO{sub 2}, HCI and only relatively minor amounts of Cl{sub 2}. Parametric studies using a central composite experimental design produced response surface models for both VOC at and Pt/alumina using mixed streams of TCE and toluene. These allow one to predict conversion levels as well as levels of Cl{sub 2} and CO produced.

Nguyen, P.; Stern, E.W.; Amundsen, A.R.; Balko, E.N. [Engelhard Corp., Iselin, NJ (United States)

1993-12-31

359

Complete oxidation of toluene under strictly anoxic conditions by a new sulfate-reducing bacterium.  

PubMed

A toluene-degrading sulfate-reducing bacterium, strain Tol2, was isolated from marine sediment under strictly anoxic conditions. Toluene was toxic if applied directly to the medium at concentrations higher than 0.5 mM. To provide toluene continuously at a nontoxic concentration, it was supplied in an inert hydrophobic carrier phase. The isolate had oval, sometimes motile cells (1.2 to 1.4 by 1.2 to 2.0 microns). The doubling time was 27 h. Toluene was completely oxidized to CO2, as demonstrated by measurement of the degradation balance. The presence of carbon monoxide dehydrogenase and formate dehydrogenase indicated a terminal oxidation of acetyl coenzyme A via the CO dehydrogenase pathway. The use of hypothetical intermediates of toluene degradation was tested in growth experiments and adaptation studies with dense cell suspensions. Results do not support a degradation of toluene via one of the cresols or methylbenzoates, benzyl alcohol, or phenylacetate as free intermediate. Benzyl alcohol did not serve as growth substrate; moreover, it was a strong, specific inhibitor of toluene degradation, whereas benzoate utilization was not affected by benzyl alcohol. Sequencing of 16S rRNA revealed a relationship to the metabolically dissimilar genus Desulfobacter and on a deeper level to the genus Desulfobacterium. The new genus and species Desulfobacula toluolica is proposed. PMID:7686000

Rabus, R; Nordhaus, R; Ludwig, W; Widdel, F

1993-05-01

360

Competition in chemostat culture between Pseudomonas strains that use different pathways for the degradation of toluene.  

PubMed

Pseudomonas putida mt-2, P. cepacia G4, P. mendocina KR1, and P. putida F1 degrade toluene through different pathways. In this study, we compared the competition behaviors of these strains in chemostat culture at a low growth rate (D = 0.05 h-1), with toluene as the sole source of carbon and energy. Either toluene or oxygen was growth limiting. Under toluene-limiting conditions, P. mendocina KR1, in which initial attack is by monooxygenation of the aromatic nucleus at the para position, outcompeted the other three strains. Under oxygen limitation, P. cepacia G4, which hydroxylates toluene in the ortho position, was the most competitive strain. P. putida mt-2, which metabolizes toluene via oxidation of the methyl group, was the least competitive strain under both growth conditions. The apparent superiority of strains carrying toluene degradation pathways that start degradation by hydroxylation of the aromatic nucleus was also found during competition experiments with pairs of strains of P. cepacia, P. fluorescence, and P. putida that were freshly isolated from contaminated soil. PMID:8085826

Duetz, W A; de Jong, C; Williams, P A; van Andel, J G

1994-08-01

361

Sarcosine attenuates toluene-induced motor incoordination, memory impairment, and hypothermia but not brain stimulation reward enhancement in mice  

SciTech Connect

Toluene, a widely used and commonly abused organic solvent, produces various behavioral disturbances, including motor incoordination and cognitive impairment. Toluene alters the function of a large number of receptors and ion channels. Blockade of N-methyl-D-aspartate (NMDA) receptors has been suggested to play a critical role in toluene-induced behavioral manifestations. The present study determined the effects of various toluene doses on motor coordination, recognition memory, body temperature, and intracranial self-stimulation (ICSS) thresholds in mice. Additionally, the effects of sarcosine on the behavioral and physiological effects induced by toluene were evaluated. Sarcosine may reverse toluene-induced behavioral manifestations by acting as an NMDA receptor co-agonist and by inhibiting the effects of the type I glycine transporter (GlyT1). Mice were treated with toluene alone or combined with sarcosine pretreatment and assessed for rotarod performance, object recognition memory, rectal temperature, and ICSS thresholds. Toluene dose-dependently induced motor incoordination, recognition memory impairment, and hypothermia and lowered ICSS thresholds. Sarcosine pretreatment reversed toluene-induced changes in rotarod performance, novel object recognition, and rectal temperature but not ICSS thresholds. These findings suggest that the sarcosine-induced potentiation of NMDA receptors may reverse motor incoordination, memory impairment, and hypothermia but not the enhancement of brain stimulation reward function associated with toluene exposure. Sarcosine may be a promising compound to prevent acute toluene intoxications by occupational or intentional exposure. -- Highlights: ? Toluene induces impairments in Rotarod test and novel object recognition test. ? Toluene lowers rectal temperature and ICSS thresholds in mice. ? Sarcosine reverses toluene-induced changes in motor, memory and body temperature. ? Sarcosine pretreatment does not affect toluene-induced reward enhancement.

Chan, Ming-Huan [Department of Pharmacology and Toxicology, Tzu Chi University, Hualien, Taiwan (China) [Department of Pharmacology and Toxicology, Tzu Chi University, Hualien, Taiwan (China); Institute of Neuroscience, National Changchi University, Taipei, Taiwan (China); Chung, Shiang-Sheng [Department of Pharmacology and Toxicology, Tzu Chi University, Hualien, Taiwan (China) [Department of Pharmacology and Toxicology, Tzu Chi University, Hualien, Taiwan (China); Department of Pharmacy, Yuli Veterans Hospital, Hualien, Taiwan (China); Stoker, Astrid K.; Markou, Athina [Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA (United States)] [Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA (United States); Chen, Hwei-Hsien, E-mail: hwei@nhri.org.tw [Department of Pharmacology and Toxicology, Tzu Chi University, Hualien, Taiwan (China) [Department of Pharmacology and Toxicology, Tzu Chi University, Hualien, Taiwan (China); Division of Mental Health and Addiction Medicine, Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Miaoli County, Taiwan (China)

2012-12-01

362

Transformation of microflora during degradation of gaseous toluene in a biofilter detected using PCR-DGGE.  

PubMed

A laboratory-scale biofiltration system, the rotatory-switching biofilter (RSB), was operated for 199 days using toluene as a model pollutant. The target gaseous pollutant for the biofiltration experiment was approximately 300 ppmv of toluene. Toluene removal efficiency (RE, %) was initially approximately 20% with a 247-ppmv concentration (0.9 g m(-3)) of toluene during the first 10 days. Although the RE decreased several times whenever nitrogen was consumed, it again reached almost 100% when the nitrogen source was in sufficient supply. Denaturing gradient gel electrophoresis (DGGE) analysis was employed to assess the transformation ofmicroflora during operation of the biofilter The results based on a 16S rRNA gene profile showed that the microbial community structure changed with operation time. Although the microflora changed during the initial period (before day 40), transformation of the bacterial component was hardly observed after day 51. Statistical analyses of the DGGE profiles indicated that the bacterial community was almost unaffected by the environmental factors, such as adding ozone, high-level nitrogen supply, increase of loading toluene, and the shutdown of the RSB. The DGGE profile using tmoA-like genes, which encode proteins belonging to the hydroxylase component mono-oxygenases involved in the initial attack of aerobic benzene, toluene, ethylbenzene, and xylene degradation, confirmed the existence of toluene-degrading bacteria. There were at least four kinds of toluene-degradable bacteria having tmoA-like genes up to day 36, which decreased to two species after day 40. Sequence analysis after DGGE profiling revealed that Burkholderia cepacia, Sphingobacterium multivorum, and Pseudomonas putida were present in the biofilter. Only Alicycliphilus denitrificans was present throughout the whole operation period. In the initial stage of operating the RSB, many types of bacteria may have tried to adapt to the conditions, and subsequently, only selected bacteria were able to grow and to degrade toluene. PMID:22866576

Okunishi, Suguru; Morita, Yasutaka; Higuchi, Takashi; Maeda, Hiroto; Nishi, Katsuji

2012-07-01

363

Mesophilic and thermophilic BTEX substrate interactions for a toluene-acclimatized biofilter.  

PubMed

Benzene, toluene, ethylbenzene and xylene (BTEX) substrate interactions for a mesophilic (25 degrees C) and thermophilic (50 degrees C) toluene-acclimatized composted pine bark biofilter were investigated. Toluene, benzene, ethylbenzene, o-xylene, m-xylene and p-xylene removal efficiencies, both individually and in paired mixtures with toluene (1:1 ratio), were determined at a total loading rate of 18.1 g m(-3) h(-1) and retention time ranges of 0.5-3.0 min and 0.6-3.8 min for mesophilic and thermophilic biofilters, respectively. Overall, toluene degradation rates under mesophilic conditions were superior to degradation rates of individual BEX compounds. With the exception of p-xylene, higher removal efficiencies were achieved for individual BEX compounds compared to toluene under thermophilic conditions. Overall BEX compound degradation under mesophilic conditions was ranked as ethylbenzene >benzene > o-xylene > m-xylene > p-xylene. Under thermophilic conditions overall BEX compound degradation was ranked as benzene > o-xylene >ethylbenzene > m-xylene > p-xylene. With the exception of o-xylene, the presence of toluene in paired mixtures with BEX compounds resulted in enhanced removal efficiencies of BEX compounds, under both mesophilic and thermophilic conditions. A substrate interaction index was calculated to compare removal efficiencies at a retention time of 0.8 min (50 s). A reduction in toluene removal efficiencies (negative interaction) in the presence of individual BEX compounds was observed under mesophilic conditions, while enhanced toluene removal efficiency was achieved in the presence of other BEX compounds, with the exception of p-xylene under thermophilic conditions. PMID:14666388

Strauss, J M; Riedel, K J; Du Plessis, C A

2004-06-01

364

Experimental and modeling studies of the fate of trichloroethylene in a chamber with alfalfa plants  

SciTech Connect

Experiments were performed in a laboratory chamber to investigate the influence of alfalfa plants on the fate and transport of trichloroethylene (TCE) fed at 200 {micro}l/l concentration in the entering ground water. Concentrations of TCE in the aqueous and gas phases were regularly monitored in the chamber. Evapotranspirational fluxes of TCE were also reported from the soil to the headspace of the chamber. Numerical modeling of the fate of TCE in the vertical direction of this chamber was carried out using the Galerkin finite element approach. In this model, the partitioning of TCE between solid, aqueous, and gas phases was represented as rate-independent physical equilibrium processes. The boundary condition at the surface was modified to account for free volatilization of TCE to the headspace of the chamber across a thin atmospheric boundary layer. The simulation results were compared with experimental data on the transport of TCE. Results indicated that the water and air content distribution in the soil significantly impact the transport of TCE in subsurface soils.

Narayanan, M.; Russell, N.K.; Davis, L.C.; Erickson, L.E. [Kansas State Univ., Manhattan, KS (United States)

1996-12-31

365

Evaluation of the effectiveness of using alfalfa and buffalo grass for remediation of trichloroethylene from groundwater  

SciTech Connect

Phytoremediation is receiving increasing attention due to the potential for vegetation to play a significant role in bioremediation of contaminated soils and groundwater. The purpose of this research was to conduct a pilot study to determine if buffalo grass would enhance the remediation of groundwater contaminated with trichloroethylene (TCE). A mass-balance experiment was designed and executed to determine the extent of TCE remediation/degradation occurring through buffalo grass. Measurements for TCE in air, water, and soil were completed for three treatments: (1) buffalo grass, (2) alfalfa, and (3) soil following challenge with a water-TCE mixture. In total, 267 air samples, 43 water samples, 85 soil samples, and 40 vegetative samples were collected and analyzed. The analysis identified two important facts. First, there were no significant differences detected between TCE concentrations in soil, water, and air between groups. Second, there is a significant difference in the amount of the TCE-water mixture consumed in chambers with plants versus chambers without plants. The mass balance of the experiment was not achieved due to unaccountable losses of TCE from the chambers. The major loss mechanism for TCE appears to be from the breakthrough of air sampling media during the experiment. Thus, the data are insufficient to determine if remediation occurred via plants or by preferential pathways through the soil. Future experiments should be designed to include daily monitoring of the aquifer, humidity tolerant air sampling protocol, and relief from the build-up of humidity and transpiration inside the chambers.

Caravello, V.

1998-06-03

366

Biochar supported nanoscale zerovalent iron composite used as persulfate activator for removing trichloroethylene.  

PubMed

Biochar (BC) supported nanoscale zerovalent iron (nZVI) composite was synthesized and used as an activator for persulfate to enhance the trichloroethylene (TCE) removal in aqueous solutions. The degradation efficiency of TCE (0.15mmolL(-1)) was 99.4% in the presence of nZVI/BC (4.5mmolL(-1), nZVI to BC mass ratio was 1:5) and persulfate (4.5mmolL(-1)) within 5min, which was significantly higher than that (56.6%) in nZVI-persulfate system under the same conditions. Owing to large specific surface area and oxygen-containing functional groups of BC, nZVI/BC enhanced the SO4(-) generation and accelerated TCE degradation. On the basis of the characterization and analysis data, possible activation mechanisms of the Fe(2+)/Fe(3+) (Fe(II)/Fe(III)) redox action and the electron-transfer mediator of the BC oxygen functional groups promoting the generation of SO4(-) in nZVI/BC-persulfate system were clarified. PMID:25459832

Yan, Jingchun; Han, Lu; Gao, Weiguo; Xue, Song; Chen, Mengfang

2014-10-25

367

pH dependence of persulfate activation by EDTA/Fe(III) for degradation of trichloroethylene  

NASA Astrophysics Data System (ADS)

The ability of free ferrous ion activated persulfate (S 2O 82-) to generate sulfate radicals (SO 4- rad ) for the oxidation of trichloroethylene (TCE) is limited by the scavenging of SO 4- rad with excess Fe 2+ and a quick conversion of Fe 2+ to Fe 3+. This study investigated the applicability of ethylene-diamine-tetra-acetic acid (EDTA) chelated Fe 3+ in activating persulfate for the destruction of TCE in aqueous phase under pH 3, 7 and 10. Fe 3+ and EDTA alone did not appreciably degrade persulfate. The presence of TCE in the EDTA/Fe 3+ activated persulfate system can induce faster persulfate and EDTA degradation due to iron recycling to activate persulfate under a higher pH condition. Increasing the pH leads to increases in pseudo-first-order-rate constants for TCE, S 2O 82- and EDTA degradations, and Cl generation. Accordingly, the experiments at pH 10 with different EDTA/Fe 3+ molar ratios indicated that a 1/1 ratio resulted in a remarkably higher degradation rate at the early stage of reaction as compared to results by other ratios. Higher persulfate dosage under the EDTA/Fe 3+ molar ratio of 1/1 resulted in greater TCE degradation rates. However, increases in persulfate concentration may also lead to an increase in the rate of persulfate consumption.

Liang, Chenju; Liang, Ching-Ping; Chen, Chi-Chin

2009-05-01

368

Performance characterization of a model bioreactor for the biodegradation of trichloroethylene by Pseudomonas cepacia G4.  

PubMed Central

Pseudomonas cepacia G4 grown in chemostats with phenol demonstrated constant specific degradation rates for both phenol and trichloroethylene (TCE) over a range of dilution rates. Washout of cells from chemostats was evident at a dilution rate of 0.2 h-1 at 28 degrees C. Increased phenol concentrations in the nutrient feed led to increased biomass production with constant specific degradation rates for both phenol and TCE. The addition of lactate to the phenol feed led to increased biomass production but lowered specific phenol and TCE degradation rates. The maximum potential for TCE degradation was about 1.1 g per day per g of cell protein. Cell growth and degradation kinetic parameters were used in the design of a recirculating bioreactor for TCE degradation. In this reactor, the total amount of TCE degraded increased as either reaction time or biomass was increased. TCE degradation was observed up to 300 microM TCE with no significant decreases in rates. On the average, this reactor was able to degrade 0.7 g of TCE per day per g of cell protein. These results demonstrate the feasibility of TCE bioremediation through the use of bioreactors. PMID:1872599

Folsom, B R; Chapman, P J

1991-01-01

369

Phenol and trichloroethylene degradation by Pseudomonas cepacia G4: kinetics and interactions between substrates.  

PubMed Central

Intact cells of Pseudomonas cepacia G4 completely degraded trichloroethylene (TCE) following growth with phenol. Degradation kinetics were determined for both phenol, used to induce requisite enzymes, and TCE, the target substrate. Apparent Ks and Vmax values for degradation of phenol by cells were 8.5 microM and 466 nmol/min per mg of protein, respectively. At phenol concentrations greater than 50 microM, phenol degradation was inhibited, yielding an apparent second-order inhibitory value, KSI, of 0.45 mM as modeled by the Haldane expression. A partition coefficient for TCE was determined to be 0.40 +/- 0.02, [TCEair]/[TCEwater], consistent with Henry's law. To eliminate experimental problems associated with TCE volatility and partitioning, a no-headspace bottle assay was developed, allowing for direct and accurate determinations of aqueous TCE concentration. By this assay procedure, apparent Ks and Vmax values determined for TCE degradation by intact cells were 3 microM and 8 nmol/min per mg of protein, respectively. Following a transient lag period, P. cepacia G4 degraded TCE at concentrations of at least 300 microM with no apparent retardation in rate. Consistent with Ks values determined for degradation, TCE significantly inhibited phenol degradation. PMID:2339883

Folsom, B R; Chapman, P J; Pritchard, P H

1990-01-01

370

Degradation of trichloroethylene in aqueous solution by calcium peroxide activated with ferrous ion.  

PubMed

The application of calcium peroxide (CaO2) activated with ferrous ion to stimulate the degradation of trichloroethylene (TCE) was investigated. The experimental results showed that TCE could be completely degraded in 5 min at a CaO2/Fe(II)/TCE molar ratio of 4/8/1. Probe compound tests demonstrated the presence of reactive oxygen species HO· and O2(-·) in CaO2/Fe(II) system, while scavenging tests indicated that HO· was the dominant active species responsible for TCE removal, and O2(-·) could promote TCE degradation in CaO2/Fe(II) system. In addition, the influences of initial solution pH and solution matrix were evaluated. It suggested that the elevation of initial solution pH suppressed TCE degradation. Cl(-) had significant scavenging effect on TCE removal, whereas HCO3(-) of high concentration showed favorable function. The influences of NO3(-) and SO4(2-) could be negligible, while natural organic matter (NOM) had a negative effect on TCE removal at a relatively high concentration. The results demonstrated that the technique of CaO2 activated with ferrous ion is a highly promising technique in in situ chemical oxidation (ISCO) remediation in TCE contaminated sites. PMID:25463240

Zhang, Xiang; Gu, Xiaogang; Lu, Shuguang; Miao, Zhouwei; Xu, Minhui; Fu, Xiaori; Qiu, Zhaofu; Sui, Qian

2015-03-01

371

Synthesis and characterization of supported polysugar-stabilized palladium nanoparticle catalysts for enhanced hydrodechlorination of trichloroethylene.  

PubMed

Palladium (Pd) nanoparticle catalysts were successfully synthesized within an aqueous phase using sodium carboxymethyl cellulose (CMC) as a capping ligand which offers a green alternative to conventional nanoparticle synthesis techniques. The CMC-stabilized Pd nanoparticles were subsequently dispersed within support materials using the incipient wetness impregnation technique for utilization in heterogeneous catalyst systems. The unsupported and supported (both calcined and uncalcined) Pd nanoparticle catalysts were characterized using transmission electron microscopy, energy dispersive x-ray spectrometry, x-ray diffraction, and Brunauer-Emmett-Teller surface area measurement and their catalytic activity toward the hydrodechlorination of trichloroethylene (TCE) in aqueous media was examined using homogeneous and heterogeneous catalyst systems, respectively. The unsupported Pd nanoparticles showed considerable activity toward the degradation of TCE, as demonstrated by the reaction kinetics. Although the supported Pd nanoparticle catalysts had a lower catalytic activity than the unsupported particles that were homogeneously dispersed in the aqueous solutions, the supported catalysts retained sufficient activity toward the degradation of TCE. In addition, the use of the hydrophilic Al(2)O(3) support material induced a mass transfer resistance to TCE that affected the initial hydrodechlorination rate. This paper demonstrates that supported Pd catalysts can be applied to the heterogeneous catalytic hydrodechlorination of TCE. PMID:22743584

Bacik, Deborah B; Zhang, Man; Zhao, Dongye; Roberts, Christopher B; Seehra, Mohinar S; Singh, Vivek; Shah, Naresh

2012-07-27

372

Impacts of Co-Solvent Flushing on Microbial Populations Capable of Degrading Trichloroethylene  

PubMed Central

With increased application of co-solvent flushing technologies for removal of nonaqueous phase liquids from groundwater aquifers, concern over the effects of the solvent on native microorganisms and their ability to degrade residual contaminant has also arisen. This study assessed the impact of ethanol flushing on the numbers and activity potentials of trichloroethylene (TCE)-degrading microbial populations present in aquifer soils taken immediately after and 2 years after ethanol flushing of a former dry cleaners site. Polymerase chain reaction analysis revealed soluble methane monooxygenase genes in methanotrophic enrichments, and 16S rRNA analysis identified Methylocystis parvus with 98% similarity, further indicating the presence of a type II methanotroph. Dissimilatory sulfite reductase genes in sulfate-reducing enrichments prepared were also observed. Ethanol flushing was simulated in columns packed with uncontaminated soils from the dry cleaners site that were dosed with TCE at concentrations observed in the field; after flushing, the columns were subjected to a continuous flow of 500 pore volumes of groundwater per week. Total acridine orange direct cell counts of the flushed and nonflushed soils decreased over the 15-week testing period, but after 5 weeks, the flushed soils maintained higher cell counts than the nonflushed soils. Inhibition of methanogenesis by sulfate reduction was observed in all column soils, as was increasing removal of total methane by soils incubated under methanotrophic conditions. These results showed that impacts of ethanol were not as severe as anticipated and imply that ethanol may mitigate the toxicity of TCE to the microorganisms. PMID:15626648

Ramakrishnan, Vijayalakshmi; Ogram, Andrew V.; Lindner, Angela S.

2005-01-01

373

Trichloroethylene aerobic cometabolism by suspended and immobilized butane-growing microbial consortia: a kinetic study.  

PubMed

A kinetic study of butane uptake and trichloroethylene (TCE) aerobic cometabolism was conducted by two suspended-cell (15 and 30°C) and two attached-cell (15 and 30°C) consortia obtained from the indigenous biomass of a TCE-contaminated aquifer. The shift from suspended to attached cells resulted in an increase of butane (15 and 30°C) and TCE (15°C) biodegradation rates, and a significant decrease of butane inhibition on TCE biodegradation. The TCE 15°C maximum specific biodegradation rate was equal to 0.011 mg(TCE ) mg(protein)(-1) d(-1) with suspended cells and 0.021 mg(TCE) mg(protein)(-1) d(-1) with attached cells. The type of mutual butane/TCE inhibition depended on temperature and biomass conditions. On the basis of a continuous-flow simulation, a packed-bed PFR inoculated with the 15 or 30°C attached-cell consortium could attain a 99.96% conversion of the studied site's average TCE concentration with a 0.4-0.5-day hydraulic residence time, with a low effect of temperature on the TCE degradation performances. PMID:23896437

Frascari, Dario; Zanaroli, Giulio; Bucchi, Giacomo; Rosato, Antonella; Tavanaie, Nasrin; Fraraccio, Serena; Pinelli, Davide; Fava, Fabio

2013-09-01

374

The transfer of trichloroethylene (TCE) from a shower to indoor air: Experimental measurements and their implications  

SciTech Connect

Experiments were performed to measure the transfer of trichloroethylene (TCE), a volatile organic compound (VOC), from tap water to showers to indoor air. In these experiments, the loss of TCE from tap water in the shower is based on the difference between influent and effluent concentrations. We have developed and previously published a three-compartment model, which we use to simulate the 24-h concentration history of VOCs in the shower, bathroom, and remaining household volumes resulting from the use of contaminated tap water. An important input to this model is the transfer efficiency of the VOC from water to air. The experiments reveal that the transfer efficiency of TCE from shower water to air has an arithmetic mean value of 61 percent and an arithmetic standard deviation of 9 percent. Analysis of the results shows that there is no statistically significant difference between the transfer efficiency measured with hot (37C) or cold (22C) shower water and that there is no statistically significant change in transfer efficiency with time during a 20-min shower. The implications for exposure assessment are considered.

McKone, T.E.; Knezovich, J.P. (Univ. of California, Livermore (United States))

1991-05-01

375

The transfer of trichloroethylene (TCE) from a shower to indoor air: Experimental measurements and their implications  

SciTech Connect

Experiments were performed to measure the transfer of trichloroethylene (TCE), a volatile organic compound (VOC), from tap water in showers to indoor air. In these experiments, the loss of TCE from tap water in the shower is based on the difference between influent and effluent concentrations.We have developed and previously published a three-compartment model, which we use to simulate the 24-h concentration history of VOCs in the shower, bathroom, and remaining household volumes resulting from the use of contaminated tap water. An important input to this model is the transfer efficiency of the VOC from water to air. The experiments reveal that the transfer efficiency of TCE from shower water to air has an arithmetic mean value of 51 percent and an arithmetic standard deviation of 9 percent. Analysis of the results shows that there is no statistically significant difference between the transfer efficiency measured with hot (37C) or cold (22C) shower water and that there is no statistically significant change in transfer efficiency with time during a 20-min shower. The implications for exposure assessment are considered.

McKone, T.E.; Knezovich, J.P. (Univ. of California, Livermore (United States))

1991-08-01

376

Trichloroethylene degradation using recombinant bacteria expressing the soluble methane monooxygenase from methylosinus trichosporium OB3b  

SciTech Connect

Soluble methane monooxygenase (sMMO) from M. trichosporium OB3b has the ability to degrade many halogenated aliphatic compounds that are found in contaminated soil and groundwater. For efficient trichloroethylene (TCE) degradation in a foreign host, efforts are being made to improve inconsistent and low sMMO activity of the recombinant strain constructed previously (Pseudomonas putida F1/pSMMO20). Additional smmo-containing recombinant strains have been constructed including various Pseudomonas, Agrobacterium, and Rhizobium strains. Recombinant facultative methylotrophs containing the smmo locus were also constructed through electroporation and tri-parental mating using a new plasmid pSMMO50. TCE degradation by these recombinant strains was examined. The effect of metal ions on in vitro sMMO activity was also discerned to optimize the expression medium. Among the metal ions examined, Cu(I), Cu(II), Ni(II), and Zn(II) inhibited sMMO purified from trichosporium OB3b, and the effect of the metal ions on each of the components of sMMO will also be discussed. In addition, the post-segregational killing locus (hok/sok) from E. coli plasmid R1 was inserted downstream of the smmo locus to stabilize the recombinant plasmid in these host cells, and chemostat cultures were used to optimize expression of active sMMO by varying the growth rate.

Jahng, D.; Kim, C.; Wood, T.K. [Univ. of California, Irvine, CA (United States)

1995-12-01

377

Redox control for electrochemical dechlorination of trichloroethylene in bicarbonate aqueous media  

PubMed Central

The role of iron anode on electrochemical dechlorination of aqueous trichloroethylene (TCE) is evaluated using batch mixed-electrolyte experiments. A significantly higher dechlorination rate, up to 99%, is reported when iron anode and copper foam cathodes are used. In contrast to the oxygen-releasing inert anode, the cast iron anode generates ferrous species, which regulate the electrolyte to a reducing condition (low ORP value) and favor the reduction of TCE. The main products of TCE electrochemical reduction on copper foam cathode include ethene and ethane. The ratio of these two hydrocarbons gases varied with the electrolyte ORP condition and current density as more ethane gas generates at more reducing electrolyte condition and at higher current condition. A pseudo-first order model is used to describe the degradation of TCE, the first order rate constant (k) increased with the current applied, but exhibits a negative relation with initial concentration. Depending on the current, electrolysis by iron anode causes a reduction in the ORP and an increase in the pH of the mixed electrolyte. Enhanced reaction rates in this investigation indicate that the electrochemical reduction using copper foam and iron anode may be a promising process for remediation of groundwater contaminated with chlorinated organic compounds. PMID:21671641

Mao, Xuhui; Ciblak, Ali; Amiri, Mohammad; Alshawabkeh, Akram N.

2011-01-01

378

Occupational Exposure to Trichloroethylene and Serum Concentrations of IL-6, IL-10, and TNF-alpha  

PubMed Central

To evaluate the immunotoxicity of trichloroethylene (TCE), we conducted a cross-sectional molecular epidemiology study in China of workers exposed to TCE. We measured serum levels of IL-6, IL-10, and TNF-?, which play a critical role in regulating various components of the immune system, in 71 exposed workers and 78 unexposed control workers. Repeated personal exposure measurements were taken in workers before blood collection using 3 M organic vapor monitoring badges. Compared to unexposed workers, the serum concentration of IL-10 in workers exposed to TCE was decreased by 70% (P = 0.001) after adjusting for potential confounders. Further, the magnitude of decline in IL-10 was >60% and statistically significant in workers exposed to <12 ppm as well as in workers with exposures ? 12 ppm of TCE, compared to unexposed workers. No significant differences in levels of IL-6 or TNF-? were observed among workers exposed to TCE compared to unexposed controls. Given that IL-10 plays an important role in immunologic processes, including mediating the Th1/Th2 balance, our findings provide additional evidence that TCE is immunotoxic in humans. PMID:23798002

Bassig, Bryan A.; Zhang, Luoping; Tang, Xiaojiang; Vermeulen, Roel; Shen, Min; Smith, Martyn T.; Qiu, Chuangyi; Ge, Yichen; Ji, Zhiying; Reiss, Boris; Hosgood, H. Dean; Liu, Songwang; Bagni, Rachel; Guo, Weihong; Purdue, Mark; Hu, Wei; Yue, Fei; Li, Laiyu; Huang, Hanlin; Rothman, Nathaniel; Lan, Qing

2015-01-01

379

The Relationship between the Occupational Exposure of Trichloroethylene and Kidney Cancer  

PubMed Central

Trichloroethylene (TCE) has been widely used as a degreasing agent in many manufacturing industries. Recently, the International Agency for Research on Cancer presented “sufficient evidence” for the causal relationship between TCE and kidney cancer. The aim of this study was to review the epidemiologic evidences regarding the relationship between TCE exposure and kidney cancer in Korean work environments. The results from the cohort studies were inconsistent, but according to the meta-analysis and case–control studies, an increased risk for kidney cancer was present in the exposure group and the dose–response relationship could be identified using various measures of exposure. In Korea, TCE is a commonly used chemical for cleaning or degreasing processes by various manufacturers; average exposure levels of TCE vary widely. When occupational physicians evaluate work-relatedness kidney cancers, they must consider past exposure levels, which could be very high (>100 ppm in some cases) and associated with jobs, such as plating, cleaning, or degreasing. The exposure levels at a manual job could be higher than an automated job. The peak level of TCE could also be considered an important exposure-related variable due to the possibility of carcinogenesis associated with high TCE doses. This review could be a comprehensive reference for assessing work-related TCE exposure and kidney cancer in Korea. PMID:24955246

2014-01-01

380

Toxic and inhibitory effects of trichloroethylene aerobic co-metabolism on phenol-grown aerobic granules.  

PubMed

Aerobic granule, a form of microbial aggregate, exhibits good potential in degrading toxic and recalcitrant substances. In this study, the inhibitory and toxic effects of trichloroethylene (TCE), a model compound for aerobic co-metabolism, on phenol-grown aerobic granules were systematically studied, using respiratory activities after exposure to TCE as indicators. High TCE concentration did not exert positive or negative effects on the subsequent endogenous respiration rate or phenol dependent specific oxygen utilization rate (SOUR), indicating the absence of solvent stress and induction effect on phenol-hydroxylase. Phenol-grown aerobic granules exhibited a unique response to TCE transformation product toxicity, that small amount of TCE transformation enhanced the subsequent phenol SOUR. Granules that had transformed between 1.3 and 3.7mg TCE gSS(-1) showed at most 53% increase in the subsequent phenol SOUR, and only when the transformation exceeded 6.6mg TCE gSS(-1) did the SOUR dropped below that of the control. This enhancing effect was found to sustain throughout several phenol dosages, and TCE transformation below the toxicity threshold also lessened the granules' sensitivity to higher phenol concentration. The unique toxic effect was possibly caused by the granule's compact structure as a protection barrier against the diffusive transformation product(s) of TCE co-metabolism. PMID:25577321

Zhang, Yi; Tay, JooHwa

2015-04-01

381

Phytoremediation of trichloroethylene and carbon tetrachloride: Results from bench to field  

SciTech Connect

Remediation of contaminated sites using plants, or phytoremediation, is one of the most promising new technologies for remediation.As with any new technology, solid data concerning the efficacy of this method needs to be produced before commercial groups are willing to implement the technology. This work shows that axenic poplar cell cultures produced from hybrid poplar H-11-11 (Populous trichocarpa x P. deltoides) are capable of independently oxidizing trichloroethylene (TCE) to expected metabolites. It also demonstrates that young rooted cuttings, when placed in metabolic chambers or grown under greenhouse conditions, are capable of taking up and transpiring TCE. Further tests include a pilot-scale remediation project simulating what would be seen on a contaminated site. After one year of exposure to TCE, the data shows that hybrid poplars were able to extract significant amounts of TCE from the water stream. Additionally, at dose concentrations up to 50 ppm, there is no apparent effect on the above ground growth of the trees. Continued use of bench and pilot-scale facilities will allow the testing of different species of plants challenged with a wide range of chemicals.

Newman, L.A.; Choe, N. [Univ. of Washington, Seattle, WA (United States). Dept. of Biochemistry; Bod, C. [Washington State Univ., Puyallup, WA (United States). Puyallup Research and Extension Center] [and others

1997-12-31

382

Concentration of Trichloroethylene in Breast Milk and Household Water from Nogales, Arizona  

PubMed Central

The United States Environmental Protection Agency has identified quantification of trichloroethylene (TCE), an industrial solvent, in breast milk as a high priority need for risk assessment. Water and milk samples were collected from 20 households by a lactation consultant in Nogales, Arizona. Separate water samples (including tap, bottled and vending machine) were collected for all household uses: drinking, bathing, cooking, and laundry. A risk factor questionnaire was administered. Liquid-liquid extraction with diethyl ether was followed by GC-MS for TCE quantification in water. Breast milk underwent homogenization, lipid hydrolysis and centrifugation prior to extraction. The limit of detection was 1.5 ng/mL. TCE was detected in 7 of 20 mothers’ breast milk samples. The maximum concentration was 6 ng/mL. TCE concentration in breast milk was significantly correlated with the concentration in water used for bathing (?=0.59, p=0.008). Detection of TCE in breast milk was more likely if the infant had a body mass index <14 (RR=5.2, p=0.02). Based on average breast milk consumption, TCE intake for 5% of the infants may exceed the proposed US EPA Reference Dose. Results of this exploratory study warrant more in depth studies to understand risk of TCE exposures from breast milk intake. PMID:22827160

Beamer, Paloma I.; Luik, Catherine E.; Abrell, Leif; Campos, Swilma; Martínez, María Elena; Sáez, A. Eduardo

2013-01-01

383

Pre-treatment effects of trichloroethylene on the dermal absorption of the biocide, triazine.  

PubMed

Triazine is often added to cutting-fluid formulations in the metal-machining industry as a preservative. Trichloroethylene (TCE) is a solvent used for cleaning the cutting fluid or oil from the metal product. The purpose of this study was to examine the effect of TCE on the dermal absorption of triazine in an in vitro flow-through diffusion cell system. Skin sections were dosed topically with aqueous mixtures containing mineral oil or polyethylene glycol (PEG) spiked with (14)C-triazine. Some skin sections were simultaneously exposed to TCE while other skin sections were pre-treated with TCE daily for 4 days in vivo and then exposed to these mixtures in vitro. TCE pre-treatment almost doubled triazine permeability, but this pre-treatment had no effect on triazine diffusivity. The pre-treatment effects of TCE on triazine permeability appear to be more important in PEG-based mixtures than in the mineral oil-based mixtures. Simultaneous single exposure to TCE had little or no effect on triazine absorption. TCE absorption was significantly less than triazine absorption; however, cutting fluid additives had a more significant effect on TCE absorption than on triazine absorption. In summary, this study demonstrated that TCE pre-treatment can significantly alter the dermal permeability to triazine, and workers who are chronically exposed to this or similar cleansers may be at increased risk of absorbing related skin irritants. PMID:15979828

Baynes, Ronald E; Yeatts, James L; Brooks, James D; Riviere, Jim E

2005-12-15

384

Requirement of DNA Repair Mechanisms for Survival of Burkholderia cepacia G4 upon Degradation of Trichloroethylene  

PubMed Central

A Tn5-based mutagenesis strategy was used to generate a collection of trichloroethylene (TCE)-sensitive (TCS) mutants in order to identify repair systems or protective mechanisms that shield Burkholderia cepacia G4 from the toxic effects associated with TCE oxidation. Single Tn5 insertion sites were mapped within open reading frames putatively encoding enzymes involved in DNA repair (UvrB, RuvB, RecA, and RecG) in 7 of the 11 TCS strains obtained (4 of the TCS strains had a single Tn5 insertion within a uvrB homolog). The data revealed that the uvrB-disrupted strains were exceptionally susceptible to killing by TCE oxidation, followed by the recA strain, while the ruvB and recG strains were just slightly more sensitive to TCE than the wild type. The uvrB and recA strains were also extremely sensitive to UV light and, to a lesser extent, to exposure to mitomycin C and H2O2. The data from this study establishes that there is a link between DNA repair and the ability of B. cepacia G4 cells to survive following TCE transformation. A possible role for nucleotide excision repair and recombination repair activities in TCE-damaged cells is discussed. PMID:11722883

Yeager, Chris M.; Bottomley, Peter J.; Arp, Daniel J.

2001-01-01

385

Electrochemical transformation of trichloroethylene in aqueous solution by electrode polarity reversal.  

PubMed

Electrode polarity reversal is evaluated for electrochemical transformation of trichloroethylene (TCE) in aqueous solution using flow-through reactors with mixed metal oxide electrodes and Pd catalyst. The study tests the hypothesis that optimizing electrode polarity reversal will generate H2O2 in Pd presence in the system. The effect of polarity reversal frequency, duration of the polarity reversal intervals, current intensity and TCE concentration on TCE removal rate and removal mechanism were evaluated. TCE removal efficiencies under 6 cycles h(-1) were similar in the presence of Pd catalyst (50.3%) and without Pd catalyst (49.8%), indicating that Pd has limited impact on TCE degradation under these conditions. The overall removal efficacies after 60 min treatment under polarity reversal frequencies of 6, 10, 15, 30 and 90 cycles h(-1) were 50.3%, 56.3%, 69.3%, 34.7% and 23.4%, respectively. Increasing the frequency of polarity reversal increases TCE removal as long as sufficient charge is produced during each cycle for the reaction at the electrode. Electrode polarity reversal shifts oxidation/reduction and reduction/oxidation sequences in the system. The optimized polarity reversal frequency (15 cycles h(-1) at 60 mA) enables two reaction zones formation where reduction/oxidation occurs at each electrode surface. PMID:25282093

Rajic, Ljiljana; Fallahpour, Noushin; Yuan, Songhu; Alshawabkeh, Akram N

2014-12-15

386

In situ detection of organic molecules: Optrodes for TCE (trichloroethylene) and CHCl sub 3  

SciTech Connect

We have developed new absorption-based chemical indicators for detecting chloroform (CHCl{sub 3}) and trichloroethylene (TCE). These indicators were used to make very sensitive optical chemical sensors (optrodes) for each of these two contaminants. Concentrations below 10 ppb can be accurately measured using these sensors. Furthermore, they are selective and do not response to similar contaminants commonly found with TCE and CHCl{sub 3} in contaminated groundwater. In addition, the sensor response is linearly proportional to the chemical concentration. In this report, we describe the details of this optrode and the putative reaction sequences of the indicator chemistries with CHCl{sub 3} and TCE and present an analysis of the spectral data obtained from the reaction products. A key part of the development of this optrode was designing a simple readout device. The readout is a dual-channel fiber-optic fluorimeter modified to measure transmission or absorption of light. The system is controlled by a lap-top microcomputer and is fully field portable. In addition to describing the final absorption optrode, details of the chemical indicator reactions are presented for both absorption- (colorimetric) and fluorescence-based optrodes. Finally, we report on the syntheses of several compounds used to evaluate the indicator chemical reactions that led to the development of the absorption optrode. 23 refs., 26 figs., 1 tab.

Angel, S. M.; Langry, K. C.; Ridley, M. N.

1990-05-01

387

An analysis of trichloroethylene movement in groundwater at castle Air Force Base, California  

USGS Publications Warehouse

A trichloroethylene (TCE) plume has been identified in the groundwater under a U.S. Air Force Base in the Central Valley of California. An areal, two-dimensional numerical solute transport model indicates that the movement of TCE due to advection, dispersion, and linear sorption is simulated over a 25-year historic period. The model is used in several ways: (1) to estimate the extent of the plume; (2) to confirm the likely sources of contamination as suggested by a soil organic vapor survey of the site; and (3) to make predictions about future movement of the plume. Despite the noisy and incomplete data set, the model reproduces the general trends in contamination at a number of observation wells. The analysis indicates that soil organic vapor monitoring is an effective tool for identifying contaminant source locations. Leaky sewer pipes and underground tanks are the indicated pathways for TCE to have entered the groundwater system. The chemical mass balance indicates that a total of about 100 gallons of TCE - a relatively small amount of organic solvent - has created the observed groundwater plume. ?? 1989.

Avon, L.; Bredehoeft, J.D.

1989-01-01

388

Differential Immunotoxicity Induced by Two Different Windows of Developmental Trichloroethylene Exposure  

PubMed Central

Developmental exposure to environmental toxicants may induce immune system alterations that contribute to adult stage autoimmune disease. We have shown that continuous exposure of MRL+/+ mice to trichloroethylene (TCE) from gestational day (GD) 0 to postnatal day (PND) 49 alters several aspects of CD4+ T cell function. This window of exposure corresponds to conception-adolescence/young adulthood in humans. More narrowly defining the window of TCE developmental exposure causes immunotoxicity that would establish the stage at which avoidance and/or intervention would be most effective. The current study divided continuous TCE exposure into two separate windows, namely, gestation only (GD0 to birth (PND0)) and early-life only (PND0-PND49). The mice were examined for specific alterations in CD4+ T cell function at PND49. One potentially long-lasting effect of developmental exposure, alterations in retrotransposon expression indicative of epigenetic alterations, was found in peripheral CD4+ T cells from both sets of developmentally exposed mice. Interestingly, certain other effects, such as alterations in thymus cellularity, were only found in mice exposed to TCE during gestation. In contrast, expansion of memory/activation cell subset of peripheral CD4+ T cells were only found in mice exposed to TCE during early life. Different windows of developmental TCE exposure can have different functional consequences. PMID:24696780

Gilbert, Kathleen M.; Woodruff, William; Blossom, Sarah J.

2014-01-01

389

Biodegradation of trichloroethylene and its anaerobic daughter products in freshwater wetland sediments  

USGS Publications Warehouse

Laboratory microcosms were prepared under methanogenic, sulfate-reducing, and aerobic conditions using sediment and groundwater from a freshwater wetland that is a discharge area for a trichloroethylene (TCE) to evaluate potential biodegradation rates of TCE and its anaerobic daughter products (cis-1,2-dichloroethylene, trans-1,2-dichloroethylene, and vinyl chloride (VC)). Anaerobic degradation of TCE was about an order of magnitude faster under methanogenic conditions than under sulfate-reducing conditions. Both 12DCE and VC were found under sulfate-reducing conditions in the microcosms containing the wetland sediment, but their production, especially for VC, was substantially slower than under methanogenic conditions. Methane concentrations remained approximately constant (when losses in the formalin-amended controls are considered) in the microcosms amended with TCE and increased in the microcosms amended with the 12DCE isomers and VC during the first 18-25 days of incubation. The most rapid decrease in concentrations of TCE, cis-12DCE, trans-12DCE, and VC was found after aerobic methane-oxidizing conditions were definitely established.

Lorah, M.M.; Olsen, L.D.

2001-01-01

390

Biodegradation of 1,4-dioxane: Effects of enzyme inducers and trichloroethylene.  

PubMed

1,4-Dioxane is a groundwater contaminant and probable human carcinogen. In this study, two well-studied degradative bacteria Mycobacterium vaccae JOB5 and Rhodococcus jostii RHA1 were examined for their 1,4-dioxane degradation ability in the presence and absence of its co-contaminant, trichloroethylene (TCE), under different oxygenase-expression conditions. These two strains were precultured with R2A broth (complex nutrient medium) before supplementation with propane or 1-butanol to induce the expression of different oxygenases. Both propane- and 1-butanol-induced JOB5 and RHA1 were able to degrade 1,4-dioxane, TCE, and mixtures of 1,4-dioxane/TCE. Complete degradation of 1,4-dioxane/TCE mixture was observed only in propane-induced strain JOB5. Inhibition was observed between 1,4-dioxane and TCE for all cells. Furthermore, product toxicity caused incomplete degradation of 1,4-dioxane by 1-butanol-induced JOB5. In general, the more TCE degraded, the greater extent of product toxicity cells experienced; however, susceptibility to product toxicity was found to be both strain- and inducer-dependent. The findings of this study provide fundamental basis for developing an effective in-situ remediation method for 1,4-dioxane-contaminated ground water and the first known study of 1,4-dioxane degradation by wild-type strain RHA1. PMID:25813968

Hand, Steven; Wang, Baixin; Chu, Kung-Hui

2015-07-01

391

In situ bioremediation of trichloroethylene-contaminated water by a resting-cell methanotrophic microbial filter  

SciTech Connect

The Lawrence Livermore National Laboratory is testing and developing an in situ microbial filter technology for remediating migrating subsurface plumes contaminated with low concentrations of trichloroethylene (TCE). Their current focus is the establishment of a replenishable bioactive zone (catalytic filter) along expanding plume boundaries by the Injection of a representative methanotrophic bacterium, Methylosinus trichosporium OB3b. We have successfully demonstrated this microbial filter strategy using emplaced, attached resting cells (no methane additions) in a 1.1-m flow-through test bed loaded with water-saturated sand. Two separate 24 h pulses of TCE (109 ppb and 85 ppb), one week apart, were pumped through the system at a flow velocity of 1.5 cm/h; no TCE (<0.5 ppb) was detected on the downstream side of the microbial filter. Subsequent excavation of the wet sand confirmed the existence of a TCE-bioactive zone 19 days after it had been created. An enhanced longevity of the cellular, soluble-form methane monooxygenase produced by this methanotroph Is a result of our laboratory bioreactor culturing conditions. Additional experiments with cells in sealed vials and emplaced in the 1.1-m test bed yielded a high resting-cell finite TCE biotransformation capacity of [approximately] 0.25 mg per mg of bacteria; this is suitable for a planned sand-filled trench field demonstration at a Lawrence Livermore National Laboratory site.

Taylor, R T; Duba, A G; Durham, W B; Hanna, M L; Jackson, K J; Jovanovich, M C; Knapp, R B; Knezovich, J P; Shah, N N; Shonnard, D R; Wijesinghe, A M

1992-10-01

392

Identification of the proteins related to SET-mediated hepatic cytotoxicity of trichloroethylene by proteomic analysis.  

PubMed

Trichloroethylene (TCE) is an effective solvent for a variety of organic materials. Since the wide use of TCE as industrial degreasing of metals, adhesive paint and polyvinyl chloride production, TCE has turned into an environmental and occupational toxicant. Exposure to TCE could cause severe hepatotoxicity; however, the toxic mechanisms of TCE remain poorly understood. Recently, we reported that SET protein mediated TCE-induced cytotoxicity in L-02 cells. Here, we further identified the proteins related to SET-mediated hepatic cytotoxicity of TCE using the techniques of DIGE (differential gel electrophoresis) and MALDI-TOF-MS/MS. Among the 20 differential proteins identified, 8 were found to be modulated by SET in TCE-induced cytotoxicity and three of them (cofilin-1, peroxiredoxin-2 and S100-A11) were validated by Western-blot analysis. The functional analysis revealed that most of the identified SET-modulated proteins are apoptosis-associated proteins. These data indicated that these proteins may be involved in SET-mediated hepatic cytotoxicity of TCE in L-02 cells. PMID:24631019

Ren, Xiaohu; Yang, Xifei; Hong, Wen-Xu; Huang, Peiwu; Wang, Yong; Liu, Wei; Ye, Jinbo; Huang, Haiyan; Huang, Xinfeng; Shen, Liming; Yang, Linqing; Zhuang, Zhixiong; Liu, Jianjun

2014-05-16

393

Elevated urinary levels of kidney injury molecule-1 among Chinese factory workers exposed to trichloroethylene  

PubMed Central

Epidemiological studies suggest that trichloroethylene (TCE) exposure may be associated with renal cancer. The biological mechanisms involved are not exactly known although nephrotoxicity is believed to play a role. Studies on TCE nephrotoxicity among humans, however, have been largely inconsistent. We studied kidney toxicity in Chinese factory workers exposed to TCE using novel sensitive nephrotoxicity markers. Eighty healthy workers exposed to TCE and 45 comparable unexposed controls were included in the present analyses. Personal TCE exposure measurements were taken over a 2-week period before urine collection. Ninety-six percent of workers were exposed to TCE below the current US Occupational Safety and Health Administration permissible exposure limit (100 ppm 8h TWA), with a mean (SD) of 22.2 (35.9) ppm. Kidney injury molecule-1 (KIM-1) and Pi-glutathione S transferase (GST) alpha were elevated among the exposed subjects as compared with the unexposed controls with a strong exposure-response association between individual estimates of TCE exposure and KIM-1 (P < 0.0001). This is the first report to use a set of sensitive nephrotoxicity markers to study the possible effects of TCE on the kidneys. The findings suggest that at relatively low occupational exposure levels a toxic effect on the kidneys can be observed. This finding supports the biological plausibility of linking TCE exposure and renal cancer. Abbreviations:GSTglutathione-S-transferaseKIM-1kidney injury molecule-1NAGN-acetyl-beta-(d)-glucosaminidaseOVMorganic vapour monitoringTCEtrichloroethyleneVEGFvascular endothelial growth factor. PMID:22665366

Vermeulen, Roel; Huang, Hanlin; Rothman, Nathaniel; Lan, Qing

2012-01-01

394

Effects of Phenol Feeding Pattern on Microbial Community Structure and Cometabolism of Trichloroethylene  

PubMed Central

Cometabolism of trichloroethylene (TCE) by phenol-fed enrichments was evaluated in four reactors with distinct phenol feeding patterns. The reactors were inoculated from the same source, operated at the same average dilution rate, and received the same mass of phenol over time. Only the timing of phenol addition differed. Reactor C received phenol continuously; reactor SC5 received phenol semicontinuously--alternating between 5 h of feed and 3 h without feed; reactor SC2 alternated between 2 h of feed and 6 h without feed; and reactor P received a single pulse every 24 h. The structure of the enrichments and their capacity for TCE transformation were analyzed. In long-term operation, reactors C and SC5 were dominated by fungi, had higher levels of predators, were more susceptible to biomass fluctuations, and exhibited reduced capacity for TCE transformation. Reactors P and SC2 were characterized by lower levels of fungi, higher bacterial biomass, higher concentrations of TCE-degrading organisms, and higher rates of TCE transformation. After 200 days of operation, rates of TCE transformation increased 10-fold in reactor P, resulting in TCE transformation rates that were 20 to 100 times higher than the rates of the other reactor communities. The cause of this shift is unknown. Isolates capable of the highest rates of TCE transformation were obtained from reactor P. We conclude that cometabolic activity depends upon microbial community structure and that the community structure can be manipulated by altering the growth substrate feeding pattern. PMID:16535382

Shih, C.; Davey, M. E.; Zhou, J.; Tiedje, J. M.; Criddle, C. S.

1996-01-01

395

Dose-response analyses of the carcinogenic effects of trichloroethylene in experimental animals.  

PubMed Central

In lifetime bioassays, trichloroethylene (TCE, CAS No. 79-01-6) causes liver tumors in mice following gavage, liver and lung tumors in mice following inhalation, and kidney tumors in rats following gavage or inhalation. Recently developed pharmacokinetic models provide estimates of internal, target-organ doses of the TCE metabolites thought responsible for these tumor responses. Dose-response analyses following recently proposed methods for carcinogen risk assessment from the U.S. Environmental Protection Agency (U.S. EPA) are conducted on the animal tumor data using the pharmacokinetic dosimeters to derive a series of alternative projections of the potential carcinogenic potency of TCE in humans exposed to low environmental concentrations. Although mechanistic considerations suggest action of possibly nonlinear processes, dose-response shapes in the observable range of tumor incidence evince little sign of such patterns. Results depend on which of several alternative pharmacokinetic analyses are used to define target-organ doses. Human potency projections under the U.S. EPA linear method based on mouse liver tumors and internal dosimetry equal or somewhat exceed calculations based on administered dose, and projections based on mouse liver tumors exceed those from mouse lung or rat kidney tumors. Estimates of the carcinogenic potency of the two primary oxidative metabolites of TCE--trichloroacetic acid and dichloroacetic acid, which are mouse liver carcinogens in their own right--are also made, but it is not clear whether the carcinogenic potency of TCE can be quantitatively ascribed to metabolic generation of these metabolites. PMID:10807564

Rhomberg, L R

2000-01-01

396

Immunological techniques as tools to characterize the subsurface microbial community at a trichloroethylene contaminated site  

SciTech Connect

Effective in situ bioremediation strategies require an understanding of the effects pollutants and remediation techniques have on subsurface microbial communities. Therefore, detailed characterization of a site`s microbial communities is important. Subsurface sediment borings and water samples were collected from a trichloroethylene (TCE) contaminated site, before and after horizontal well in situ air stripping and bioventing, as well as during methane injection for stimulation of methane-utilizing microorganisms. Subsamples were processed for heterotrophic plate counts, acridine orange direct counts (AODC), community diversity, direct fluorescent antibodies (DFA) enumeration for several nitrogen-transforming bacteria, and Biolog {reg_sign} evaluation of enzyme activity in collected water samples. Plate counts were higher in near-surface depths than in the vadose zone sediment samples. During the in situ air stripping and bioventing, counts increased at or near the saturated zone, remained elevated throughout the aquifer, but did not change significantly after the air stripping. Sporadic increases in plate counts at different depths as well as increased diversity appeared to be linked to differing lithologies. AODCs were orders of magnitude higher than plate counts and remained relatively constant with depth except for slight increases near the surface depths and the capillary fringe. Nitrogen-transforming bacteria, as measured by serospecific DFA, were greatly affected both by the in situ air stripping and the methane injection. Biolog{reg_sign} activity appeared to increase with subsurface stimulation both by air and methane. The complexity of subsurface systems makes the use of selective monitoring tools imperative.

Fliermans, C.B.; Dougherty, J.M.; Franck, M.M.; McKinzey, P.C.; Hazen, T.C.

1992-12-31

397

Immunological techniques as tools to characterize the subsurface microbial community at a trichloroethylene contaminated site  

SciTech Connect

Effective in situ bioremediation strategies require an understanding of the effects pollutants and remediation techniques have on subsurface microbial communities. Therefore, detailed characterization of a site's microbial communities is important. Subsurface sediment borings and water samples were collected from a trichloroethylene (TCE) contaminated site, before and after horizontal well in situ air stripping and bioventing, as well as during methane injection for stimulation of methane-utilizing microorganisms. Subsamples were processed for heterotrophic plate counts, acridine orange direct counts (AODC), community diversity, direct fluorescent antibodies (DFA) enumeration for several nitrogen-transforming bacteria, and Biolog [reg sign] evaluation of enzyme activity in collected water samples. Plate counts were higher in near-surface depths than in the vadose zone sediment samples. During the in situ air stripping and bioventing, counts increased at or near the saturated zone, remained elevated throughout the aquifer, but did not change significantly after the air stripping. Sporadic increases in plate counts at different depths as well as increased diversity appeared to be linked to differing lithologies. AODCs were orders of magnitude higher than plate counts and remained relatively constant with depth except for slight increases near the surface depths and the capillary fringe. Nitrogen-transforming bacteria, as measured by serospecific DFA, were greatly affected both by the in situ air stripping and the methane injection. Biolog[reg sign] activity appeared to increase with subsurface stimulation both by air and methane. The complexity of subsurface systems makes the use of selective monitoring tools imperative.

Fliermans, C.B.; Dougherty, J.M.; Franck, M.M.; McKinzey, P.C.; Hazen, T.C.

1992-01-01

398

Remediation of trichloroethylene-contaminated soils by star technology using vegetable oil smoldering.  

PubMed

Self-sustaining treatment for active remediation (STAR) is an innovative soil remediation approach based on smoldering combustion that has been demonstrated to effectively destroy complex hydrocarbon nonaqueous phase liquids (NAPLs) with minimal energy input. This is the first study to explore the smoldering remediation of sand contaminated by a volatile NAPL (trichloroethylene, TCE) and the first to consider utilizing vegetable oil as supplemental fuel for STAR. Thirty laboratory-scale experiments were conducted to evaluate the relationship between key outcomes (TCE destruction, rate of remediation) to initial conditions (vegetable oil type, oil: TCE mass ratio, neat versus emulsified oils). Several vegetable oils and emulsified vegetable oil formulations were shown to support remediation of TCE via self-sustaining smoldering. A minimum concentration of 14,000mg/kg canola oil was found to treat sand exhibiting up to 80,000mg/kg TCE. On average, 75% of the TCE mass was removed due to volatilization. This proof-of-concept study suggests that injection and smoldering of vegetable oil may provide a new alternative for driving volatile contaminants to traditional vapour extraction systems without supplying substantial external energy. PMID:25528233

Salman, Madiha; Gerhard, Jason I; Major, David W; Pironi, Paolo; Hadden, Rory

2015-03-21

399

A Study of Groundwater Matrix Effects for the Destruction of Trichloroethylene Using Fe/Pd Nanoaggregates  

PubMed Central

Iron nanoaggregates have been prepared using the sodium borohydride reduction method and post-coated with Pd using aqueous phase electro-deposition. The Fe/Pd nanoaggregates were used to examine dechlorination of trichloroethylene (TCE) with regard to matrix effects using materials representative of a potential zero-valent metal remediation site surrounding the Paducah gaseous diffusion plant in Paducah, KY. A surface-area-normalized first-order rate constant of 1.4 × 10–1 L m–2 h–1 was obtained for the case of ideal dechlorination of 19.6 mg L–1 TCE at room temperature and pH 6.2 using 0.5 g L–1 Fe/Pd (0.42 wt % Pd) loading. This value decreases by an order of magnitude to 1.9 × 10–2 L m–2 h–1 when the reaction is carried out in a realistic background matrix when the pH is high (8.8). For all variables tested, Pd content has the most impact on reaction rates. Circulating batch-column experiments are used to study dechlorination under flow conditions and demonstrate the ability of nonstabilized Fe/Pd nanoaggregates to remove significant amounts of TCE (80–90%) over a broad range of groundwater velocities (12.9–83 ft per day) using moderate metal loadings (0.23–0.5 g L–1). PMID:20526423

Meyer, D.E.; Hampson, S.; Ormsbee, L.; Bhattacharyya, D.

2010-01-01

400

Low dose trichloroethylene alters cytochrome P450 - 2C subfamily expression in the developing chick heart  

PubMed Central

Trichloroethylene (TCE) is an organic solvent and common environmental contaminant. TCE exposure is associated with heart defects in humans and animal models. Primary metabolism of TCE in adult rodent models is by specific hepatic cytochrome P450 enzymes (Lash et al., 2000). As association of TCE exposure with cardiac defects is in exposed embryos prior to normal liver development, we investigated metabolism of TCE in the early embryo. Developing chick embryos were dosed in ovo with environmentally relevant doses of TCE (8 ppb and 800 ppb) and RNA was extracted from cardiac and extra-cardiac tissue (whole embryo without heart). Real time PCR showed upregulation of CYP2H1 transcripts in response to TCE exposure in the heart. No detectable cytochrome expression was found in extra-cardiac tissue. As seen previously, the dose response was non-monotonic and 8ppb elicited stronger upregulation than 800 ppb. Immunostaining for CYP2C subfamily expression confirmed protein expression and showed localization in both myocardium and endothelium. TCE exposure increased protein expression in both tissues. These data demonstrate that the earliest embryonic expression of phase I detoxification enzymes is in the developing heart. Expression of these CYPs is likely to be relevant to the susceptibility of the developing heart to environmental teratogens. PMID:22855351

Makwana, Om; Ahles, Lauren; Lencinas, Alejandro; Selmin, Ornella I.; Runyan, Raymond B.

2013-01-01

401

Occurrence of mental illness following prenatal and early childhood exposure to tetrachloroethylene (PCE)-contaminated drinking water: a retrospective cohort study  

PubMed Central

Background While many studies of adults with solvent exposure have shown increased risks of anxiety and depressive disorders, there is little information on the impact of prenatal and early childhood exposure on the subsequent risk of mental illness. This retrospective cohort study examined whether early life exposure to tetrachloroethylene (PCE)-contaminated drinking water influenced the occurrence of depression, bipolar disorder, post-traumatic stress disorder, and schizophrenia among adults from Cape Cod, Massachusetts. Methods A total of 1,512 subjects born between 1969 and 1983 were studied, including 831 subjects with both prenatal and early childhood PCE exposure and 547 unexposed subjects. Participants completed questionnaires to gather information on mental illnesses, demographic and medical characteristics, other sources of solvent exposure, and residences from birth through 1990. PCE exposure originating from the vinyl-liner of water distribution pipes was assessed using water distribution system modeling software that incorporated a leaching and transport algorithm. Results No meaningful increases in risk ratios (RR) for depression were observed among subjects with prenatal and early childhood exposure (RR: 1.1, 95% CI: 0.9-1.4). However, subjects with prenatal and early childhood exposure had a 1.8-fold increased risk of bipolar disorder (N = 36 exposed cases, 95% CI: 0.9-1.4), a 1.5-fold increased risk post-traumatic stress disorder (N = 47 exposed cases, 95% CI: 0.9-2.5), and a 2.1-fold increased risk of schizophrenia (N = 3 exposed cases, 95% CI: 0.2-20.0). Further increases in the risk ratio were observed for bipolar disorder (N = 18 exposed cases, RR; 2.7, 95% CI: 1.3-5.6) and post-traumatic stress disorder (N = 18 exposed cases, RR: 1.7, 95% CI: 0.9-3.2) among subjects with the highest exposure levels. Conclusions The results of this study provide evidence against an impact of early life exposure to PCE on the risk of depression. In contrast, the results provide support for an impact of early life exposure on the risk of bipolar disorder and post-traumatic stress disorder. The number of schizophrenia cases was too small to draw reliable conclusions. These findings should be confirmed in investigations of other similarly exposed populations. PMID:22264316

2012-01-01

402

Risk of breast cancer following exposure to tetrachloroethylene-contaminated drinking water in Cape Cod, Massachusetts: reanalysis of a case-control study using a modified exposure assessment  

PubMed Central

Background Tetrachloroethylene (PCE) is an important occupational chemical used in metal degreasing and drycleaning and a prevalent drinking water contaminant. Exposure often occurs with other chemicals but it occurred alone in a pattern that reduced the likelihood of confounding in a unique scenario on Cape Cod, Massachusetts. We previously found a small to moderate increased risk of breast cancer among women with the highest exposures using a simple exposure model. We have taken advantage of technical improvements in publically available software to incorporate a more sophisticated determination of water flow and direction to see if previous results were robust to more accurate exposure assessment. Methods The current analysis used PCE exposure estimates generated with the addition of water distribution modeling software (EPANET 2.0) to test model assumptions, compare exposure distributions to prior methods, and re-examine the risk of breast cancer. In addition, we applied data smoothing to examine nonlinear relationships between breast cancer and exposure. We also compared a set of measured PCE concentrations in water samples collected in 1980 to modeled estimates. Results Thirty-nine percent of individuals considered unexposed in prior epidemiological analyses were considered exposed using the current method, but mostly at low exposure levels. As a result, the exposure distribution was shifted downward resulting in a lower value for the 90th percentile, the definition of "high exposure" in prior analyses. The current analyses confirmed a modest increase in the risk of breast cancer for women with high PCE exposure levels defined by either the 90th percentile (adjusted ORs 1.0-1.5 for 0-19 year latency assumptions) or smoothing analysis cut point (adjusted ORs 1.3-2.0 for 0-15 year latency assumptions). Current exposure estimates had a higher correlation with PCE concentrations in water samples (Spearman correlation coefficient = 0.65, p < 0.0001) than estimates generated using the prior method (0.54, p < 0.0001). Conclusions The incorporation of sophisticated flow estimates in the exposure assessment method shifted the PCE exposure distribution downward, but did not meaningfully affect the exposure ranking of subjects or the strength of the association with the risk of breast cancer found in earlier analyses. Thus, the current analyses show a slightly elevated breast cancer risk for highly exposed women, with strengthened exposure assessment and minimization of misclassification by using the latest technology. PMID:21600013

2011-01-01

403

Affinity for risky behaviors following prenatal and early childhood exposure to tetrachloroethylene (PCE)-contaminated drinking water: a retrospective cohort study  

PubMed Central

Background Many studies of adults with acute and chronic solvent exposure have shown adverse effects on cognition, behavior and mood. No prior study has investigated the long-term impact of prenatal and early childhood exposure to the solvent tetrachloroethylene (PCE) on the affinity for risky behaviors, defined as smoking, drinking or drug use as a teen or adult. Objectives This retrospective cohort study examined whether early life exposure to PCE-contaminated drinking water influenced the occurrence of cigarette smoking, alcohol consumption, and drug use among adults from Cape Cod, Massachusetts. Methods Eight hundred and thirty-one subjects with prenatal and early childhood PCE exposure and 547 unexposed subjects were studied. Participants completed questionnaires to gather information on risky behaviors as a teenager and young adult, demographic characteristics, other sources of solvent exposure, and residences from birth through 1990. PCE exposure was estimated using the U.S. EPA's water distribution system modeling software (EPANET) that was modified to incorporate a leaching and transport model to estimate PCE exposures from pipe linings. Results Individuals who were highly exposed to PCE-contaminated drinking water during gestation and early childhood experienced 50-60% increases in the risk of using two or more major illicit drugs as a teenager or as an adult (Relative Risk (RR) for teen use = 1.6, 95% CI: 1.2-2.2; and RR for adult use = 1.5, 95% CI: 1.2-1.9). Specific drugs for which increased risks were observed included crack/cocaine, psychedelics/hallucinogens, club/designer drugs, Ritalin without a prescription, and heroin (RRs:1.4-2.1). Thirty to 60% increases in the risk of certain smoking and drinking behaviors were also seen among highly exposed subjects. Conclusions The results of this study suggest that risky behaviors, particularly drug use, are more frequent among adults with high PCE exposure levels during gestation and early childhood. These findings should be confirmed in follow-up investigations of other exposed populations. PMID:22136431

2011-01-01

404

REDUCTIVE BIOTRANSFORMATION OF TETRACHLOROETHENE TO ETHENE DURING ANAEROBIC DEGRADATION OF TOLUENE: EXPERIMENTAL EVIDENCE AND KINETICS  

EPA Science Inventory

Reductive biotransformation of tetrachloroethene (PCE) to ethene occurred during anaerobic degradation of toluene in an enrichment culture. Ethene was detected as a dominant daughter product of PCE dechlorination with negligible accumulation of other partially chlorinated ethenes...

405

The atmospheric release of benzene, toluene, ethylbenzene, and xylene from contaminated soils  

E-print Network

for the remediation of gasoline contaminated soils. Excavation and removal of soils containing hydrocarbons is the most widely used remediation technique because of immediate and total site cleanup. Benzene, toluene, ethylbenzene, and xylene (BTEX) combined are from...

Ramsey, Ronald Roland

1993-01-01

406

ENVIRONMENTAL FACTORS AFFECTING TOLUENE DEGRADATION IN GROUND WATER AT A HAZARDOUS WASTE SITE  

EPA Science Inventory

The microbial ecology of pristine and contaminated ground water at a chemical waste disposal site was investigated. ecently, it was determined that ground water downslope from the disposal site contained elevated levels of toxic pollutants, including benzene, toluene, xylene and ...

407

TOXICITY OF AROMATIC AEROBIC BIOTRANSFORMATION PRODUCTS OF TOLUENE TO HELA CELLS  

EPA Science Inventory

Petroleum contamination of groundwater is widely recognized as a serious environmental problem. Toluene (methylbenzene) occurs naturally in crude oil and is commonly found as a contaminant in the subsurface as a result of waste disposal and storage activities. Biological transf...

408

75 FR 52768 - Withdrawal of Approval of New Animal Drug Applications; Dichlorophene and Toluene Capsules  

Federal Register 2010, 2011, 2012, 2013, 2014

...withdrawing approval of two new animal drug applications (NADAs) for use of dichlorophene and toluene deworming capsules for cats and dogs. In a final rule published elsewhere in this issue of the Federal Register, FDA is amending the regulations to...

2010-08-27

409

Atomic picture of ligand migration in toluene 4-monooxygenase.  

PubMed

Computational modeling combined with mutational and activity assays was used to underline the substrate migration pathways in toluene 4-monooxygenase, a member of the important family of bacterial multicomponent monooxygenases (BMMs). In all structurally defined BMM hydroxylases, several hydrophobic cavities in the ?-subunit map a preserved path from the protein surface to the diiron active site. Our results confirm the presence of two pathways by which different aromatic molecules can enter/escape the active site. While the substrate is observed to enter from both channels, the more hydrophilic product is withdrawn mainly from the shorter channel ending at residues D285 and E214. The long channel ends in the vicinity of S395, whose variants have been seen to affect activity and specificity. These mutational effects are clearly reproduced and rationalized by the in silico studies. Furthermore, the combined computational and experimental results highlight the importance of residue F269, which is located at the intersection of the two channels. PMID:24798294

Hosseini, Ali; Brouk, Moran; Lucas, Maria Fatima; Glaser, Fabian; Fishman, Ayelet; Guallar, Victor

2015-01-22

410

Air sparging for in situ bioremediation of toluene  

SciTech Connect

Groundwater contamination was discovered at a manufacturing site in New York State. The contamination was due to the use of a burn pit to dispose of waste solvents, primarily toluene and a mixture of chlorinated ethenes. These solvents were partiality absorbed into a sandy fill. Over a period of time, these adsorbed solvents leached into the groundwater and eventually impacted a local wetlands. Of longer term environmental concern was the existence of a municipal water well approximately 1,200 ft downgradient of the site. Air sparging was chosen as the remedial method to address the soil and groundwater contamination on site. Air sparging was chosen as a direct volatilization method and as an oxygen source for bioremediation. This case history illustrates the efficacy and limitations of air sparging for in situ bioremediation applications. The purpose of the paper is to discuss the selection, design, and operation of an air sparging/bioremediation system so that a remediation practitioner can adequately evaluate the use of air sparging for in situ bioremediation applications.

Brown, R.A. [Groundwater Technology, Inc., Trenton, NJ (United States); Leonard, W.C. [Groundwater Technology, Inc., Tampa, FL (United States); Leahy, M.C. [Groundwater Technology, Inc., Windsor, CT (United States)

1995-12-31

411

Fatal asthma in a subject sensitized to toluene diisocyanate  

SciTech Connect

We report the case of a 43-yr-old car painter who died within 1 h of exposure to a polyurethane paint in the workplace. A diagnosis of asthma induced by toluene diisocyanate (TDI) had been established 6 yr before, when he underwent inhalation challenges with carbachol and with TDI. The subject had airway hyperresponsiveness to carbachol (PD20FEV1 carbachol = 0.32 mg; normal value greater than 1.0 mg) and developed an early and long-lasting asthmatic reaction after exposure to TDI in the laboratory. Although it was recommended that he change his job or stop using paints containing isocyanates, he continued to work as a car painter, taking antiasthmatic drugs both at work and at home to control asthma symptoms. On Monday, October 6, 1986, at 11:30 A. M., he developed a severe attack of asthma while he was mixing the 2 components of a polyurethane paint. Taken to hospital, he was dead on arrival. Autopsy showed no evidence of cardiac or brain disease; lungs were overinflated, the cut surface showed grey glistening mucous plugs in in the airways. Histologic examination showed denudation of airway epithelium and thickening of the basement membrane with infiltration of the lamina propria by polymorphonuclear leukocytes, mainly eosinophils, and diffuse mucous plugging of bronchioles. Bronchial smooth muscle appeared hyperplastic and disarrayed, and lung parenchyma showed focal areas of alveolar destruction adjacent to areas of perfectly intact alveolar walls.

Fabbri, L.M.; Danieli, D.; Crescioli, S.; Bevilacqua, P.; Meli, S.; Saetta, M.; Mapp, C.E.

1988-06-01

412

Impact of coexposure on toluene biomarkers in rats.  

PubMed

1.?Toluene (TOL) is widely used in industry. Occupational exposure to TOL is commonly assessed using TOL in blood, hippuric acid and ortho-cresol. Levels of these biomarkers may depend on factors potentially interfering with TOL biotransformation, such as the presence of other solvents in the workplace. Mercapturic acids (MAs) could be an alternative to the "traditional" TOL biomarkers. 2.?This study aims (1) to investigate in rat the effects of an exposure to vapours mixtures on the TOL metabolism, and (2) to assess how well MAs performed in these contexts compared to the traditional TOL biomarkers. 3.?Rats were exposed by inhalation to binary mixtures of TOL with n-butanol (BuOH), ethyl acetate (EtAc), methyl ethyl ketone (MEK) or xylenes (XYLs); biological exposure indicators were then measured. 4.?Depending on the compounds in the mixture and their concentrations, TOL metabolism was accelerated (with BuOH), unchanged (with EtAc) or inhibited (with XYLs and MEK). Inhibition leads to an increase in blood TOL concentrations, even at authorized atmospheric concentrations, which may potentiate the effect of TOL. 5.?MAs excretions are little affected by coexposure scenarios, their levels correlating well with atmospheric TOL levels. They could thus be suitable bioindicators of atmospheric TOL exposure. PMID:24015909

Cosnier, Frédéric; Nunge, Hervé; Brochard, Céline; Burgart, Manuella; Rémy, Aurélie; Décret, Marie-Josèphe; Cossec, Benoît; Campo, Pierre

2014-03-01

413

Toluene pyrolysis studies and high temperature reactions of propargyl chloride  

SciTech Connect

The main focus of this program is to investigate the thermal decompositions of fuels that play an important role in the pre-particle soot formation process. It has been demonstrated that the condition of maximum soot yield is established when the reaction conditions of temperature and pressure are sufficient to establish a radical pool to support the production of polyaromatic hydrocarbon species and the subsequent formation of soot particles. However, elevated temperatures result in lower soot yields which are attributed to thermolyses of aromatic ring structures and result in the bell-shaped dependence of soot yield on temperature. The authors have selected several acyclic hydrocarbons to evaluate the chemical thermodynamic and kinetic effects attendant to benzene formation. To assess the thermal stability of the aromatic ring, the authors have studied the pyrolyses of benzene, toluene, ethylbenzene, chlorobenzene and pyridine. Time-of-flight mass spectrometry (TOF) is employed to analyze the reaction zone behind reflected shock waves. Reaction time histories of the reactants, products, and intermediates are constructed and mechanisms are formulated to model the experimental data. The TOF work is often performed with use of laser schlieren densitometry (LS) to measure density gradients resulting from the heats of various reactions involved in a particular pyrolytic system. The two techniques, TOF and LS, provide independent and complementary information about ring formation and ring rupture reactions.

Kern, R.D.; Chen, H.; Qin, Z. [Univ. of New Orleans, LA (United States)

1993-12-01

414

Cardiovascular effects of oral toluene exposure in the rat monitored by radiotelemetry.  

PubMed

Toluene is a hazardous air pollutant that can be toxic to the nervous and cardiovascular systems. The cardiotoxicity data for toluene come from acute studies in anesthetized animals and from clinical observations made on toluene abusers and there is little known on the response of the cardiovascular and other autonomic processes to graded doses of toluene. This study assessed the effects of toluene (0.4, 0.8, and 1.2 g/kg; gavage) on heart rate (HR), blood pressure, core temperature (Tc), and motor activity (MA) in unrestrained, male Long-Evans rats monitored by telemetry. Toluene doses of 0.8 and 1.2 g/kg elicited significant elevations in HR, characterized by a transient 100 beats/min increase in HR lasting 1 h followed with a steady state tachycardia lasting >6 h. Overall, HR increased by 25 and 50 beats/min in the 0.8 and 1.2 g/kg groups, respectively. MA increased markedly in the 0.8 and 1.2 g/kg groups but the tachycardia persisted in spite of recovery of MA in the 0.8 g/kg group. There was a small (<0.5 degrees C) increase in Tc above controls in rats dosed with 0.8 g/kg toluene, whereas 1.2 g/kg toluene elicited a transient reduction in Tc followed by a small elevation lasting several hours. In a second study, rats were implanted with transmitters to monitor blood pressure (BP), and were administered with toluene as in the first study. HR, Tc, and MA were also monitored. The tachycardic effects of toluene at 0.8 and 1.2 g/kg were associated with a rise in blood pressure. Doses of 0.8 and 1.2 g/kg elicited a mean BP elevation of 6 and 16 mm Hg, respectively, for 7-hour post-dosing. The biphasic tachycardia to toluene suggests multiple sites for eliciting the cardiotoxic effects of this toxicant. PMID:17140765

Gordon, Christopher J; Samsam, Tracey E; Oshiro, Wendy M; Bushnell, Philip J

2007-01-01

415

Kinetics of aerobic biodegradation of benzene and toluene in sandy aquifer material  

Microsoft Academic Search

Monod's equation adequately described aerobic biodegradation rates of benzene and toluene by the microbial population of a sandy aquifer when these compounds were initially present at concentrations lower than 100 mg\\/l each. Concentrations higher than 100 mg\\/l were inhibitory, and no benzene or toluene degradation was observed when these compounds were initially present at 250 mg\\/l each. The Monod coefficients

Pedro J. J. Alvarez; Paul J. Anid; Timothy M. Vogel

1991-01-01

416

Breakthrough of toluene vapours in granular activated carbon filled packed bed reactor  

Microsoft Academic Search

The objective of this research was to determine the toluene removal efficiency and breakthrough time using commercially available coconut shell-based granular activated carbon in packed bed reactor. To study the effect of toluene removal and break point time of the granular activated carbon (GAC), the parameters studied were bed lengths (2, 3, and 4cm), concentrations (5, 10, and 15mgl?1) and

N. Mohan; G. K. Kannan; S. Upendra; R. Subha; N. S. Kumar

2009-01-01

417

Effect of zeolite in surface discharge plasma on the decomposition of toluene  

Microsoft Academic Search

Toluene was decomposed in a surface discharge plasma reactor packed with various zeolites. The positioning effect of the zeolite bed was also investigated Reactor-B, in which the zeolite bed was located upstream, performed much better than Reactor-A, in which the zeolite bed was located downstream. Furthermore, the decomposition efficiency in Reactor-B increased with the capacity for toluene adsorption on zeolite,

Seung-Min Oh; Hyun-Ha Kim; Atsushi Ogata; Hisahiro Einaga; Shigeru Futamura; Dong-Wha Park

2005-01-01

418

HCCI experiments with toluene reference fuels modeled by a semidetailed chemical kinetic model  

SciTech Connect

A semidetailed mechanism (137 species and 633 reactions) and new experiments in a homogeneous charge compression ignition (HCCI) engine on the autoignition of toluene reference fuels are presented. Skeletal mechanisms for isooctane and n-heptane were added to a detailed toluene submechanism. The model shows generally good agreement with ignition delay times measured in a shock tube and a rapid compression machine and is sensitive to changes in temperature, pressure, and mixture strength. The addition of reactions involving the formation and destruction of benzylperoxide radical was crucial to modeling toluene shock tube data. Laminar burning velocities for benzene and toluene were well predicted by the model after some revision of the high-temperature chemistry. Moreover, laminar burning velocities of a real gasoline at 353 and 500 K could be predicted by the model using a toluene reference fuel as a surrogate. The model also captures the experimentally observed differences in combustion phasing of toluene/n-heptane mixtures, compared to a primary reference fuel of the same research octane number, in HCCI engines as the intake pressure and temperature are changed. For high intake pressures and low intake temperatures, a sensitivity analysis at the moment of maximum heat release rate shows that the consumption of phenoxy radicals is rate-limiting when a toluene/n-heptane fuel is used, which makes this fuel more resistant to autoignition than the primary reference fuel. Typical CPU times encountered in zero-dimensional calculations were on the order of seconds and minutes in laminar flame speed calculations. Cross reactions between benzylperoxy radicals and n-heptane improved the model predictions of shock tube experiments for {phi}=1.0 and temperatures lower than 800 K for an n-heptane/toluene fuel mixture, but cross reactions had no influence on HCCI simulations. (author)

Andrae, J.C.G. [Department of Chemical Engineering and Technology, Royal Institute of Technology (KTH), SE-100 44 Stockholm (Sweden); Brinck, T. [Department of Physical Chemistry, Royal Institute of Technology (KTH), SE-100 44 Stockholm (Sweden); Kalghatgi, G.T. [Shell Global Solutions (UK), P.O. Box 1, Chester CH1 3SH (United Kingdom)

2008-12-15

419

Characterization of a methane-utilizing bacterium from a bacterial consortium that rapidly degrades trichloroethylene and chloroform.  

PubMed Central

A mixed culture of bacteria grown in a bioreactor with methane as a carbon and energy source rapidly oxidized trichloroethylene and chloroform. The most abundant organism was a crescent-shaped bacterium that bound the fluorescent oligonucleotide signature probes that specifically hybridize to serine pathway methylotrophs. The 5S rRNA from this bacterium was found to be 93.5% homologous to the Methylosinus trichosporium OB3b 5S RNA sequence. A type II methanotrophic bacterium, isolated in pure culture from the bioreactor, synthesized soluble methane monooxygenase during growth in a copper-limited medium and was also capable of rapid trichloroethylene oxidation. The bacterium contained the gene that encodes the soluble methane monooxygenase B component on an AseI restriction fragment identical in size to a restriction fragment present in AseI digests of DNA from bacteria in the mixed culture. The sequence of the 16S rRNA from the pure culture was found to be 92 and 94% homologous to the 16S rRNAs of M. trichosporium OB3b and M. sporium, respectively. Both the pure and mixed cultures oxidized naphthalene to naphthol, indicating the presence of soluble methane monooxygenase. The mixed culture also synthesized soluble methane monooxygenase, as evidenced by the presence of proteins that cross-reacted with antibodies prepared against purified soluble methane monooxygenase components from M. trichosporium OB3b on Western blots (immunoblots). It was concluded that a type II methanotrophic bacterium phylogenetically related to Methylosinus species synthesizes soluble methane monooxygenase and is responsible for trichloroethylene oxidation in the bioreactor. Images PMID:1377902

Alvarez-Cohen, L; McCarty, P L; Boulygina, E; Hanson, R S; Brusseau, G A; Tsien, H C

1992-01-01

420

Mechanism involved in trichloroethylene-induced liver cancer: Importance to environmental cleanup. 1998 annual progress report  

SciTech Connect

'The objective of this project is to develop critical data for changing risk-based clean-up standards for trichloroethylene (TCE). The project is organized around two interrelated tasks: Task 1 addresses the tumorigenic and dosimetry issues for the metabolites of TCE that produce liver cancer in mice, dichloroacetate (DCA) and trichloroacetate (TCA). Early work had suggested that TCA was primarily responsible for TCE-induced liver tumors, but several, more mechanistic observations suggest that DCA may play a prominent role. This task is aimed at determining the basis for the selection hypothesis and seeks to prove that this mode of action is responsible for TCE-induced tumors. This project will supply the basic dose-response data from which low-dose extrapolations would be made. Task 2 seeks specific evidence that TCA and DCA are capable of promoting the growth of spontaneously initiated cells from mouse liver, in vitro. The data provide the clearest evidence that both metabolites act by a mechanism of selection rather than mutation. These data are necessary to select between a linear (i.e. no threshold) and non-linear low-dose extrapolation model. As of May of 1998, this research has identified two plausible modes of action by which TCE produces liver tumors in mice. These modes of action do not require the compounds to be mutagenic. The bulk of the experimental evidence suggests that neither TCE nor the two hepatocarcinogenic metabolites of TCE are mutagenic. The results from the colony formation assay clearly establish that both of these metabolites cause colony growth from initiated cells that occur spontaneously in the liver of B 6 C 3 F 1 mice, although the phenotypes of the colonies differ in the same manner as tumors differ, in vivo. In the case of DCA, a second mechanism may occur at a lower dose involving the release of insulin. This observation is timely as it was recently reported that occupational exposures to trichloroethylene results in 2 to 4-fold elevations in serum insulin concentrations, as well. The increases in insulin have not been shown responsible for the induction of liver tumors. Therefore, this problem is a subject of a proposal to the Office of Biological and Environmental Research Low-Dose Initiative. However, even if this is demonstrated to be the most sensitive mechanism for liver tumor induction, it is unlikely to contribute to induction of cancer at lower doses, since this involves modification of normal endocrine function. As doses are decreased to levels that do not induce increase in serum insulin level, there should be no risk from this metabolite either. Therefore, there is clearly a rational basis for considering a margin of exposure for low dose extrapolation of liver cancer risks for TCE.'

Bull, R.J.; Thrall, B.D.; Sasser, L.B.; Miller, J.H.; Schultz, I.R.

1998-06-01

421

Uptake of toluene and ethylbenzene by plants: removal of volatile indoor air contaminants.  

PubMed

Air borne uptake of toluene and ethylbenzene by twelve plant species was examined. Of the twelve plant species examined, the highest toluene removal was found in Sansevieria trifasciata, while the ethylbenzene removal from air was with Chlorophytum comosum. Toluene and ethylbenzene can penetrate the plant?s cuticle. However, the removal rates do not appear to be correlated with numbers of stomata per plant. It was found that wax of S. trifasciata and Sansevieria hyacinthoides had greater absorption of toluene and ethylbenzene, and it contained high hexadecanoic acid. Hexadecanoic acid might be involved in toluene and ethylbenzene adsorption by cuticles wax of plants. Chlorophyll fluorescence analysis or the potential quantum yield of PSII (Fv/Fm) in toluene exposed plants showed no significant differences between the control and the treated plants, whereas plants exposed to ethylbenzene showed significant differences or those parameters, specifically in Dracaena deremensis (Lemon lime), Dracaena sanderiana, Kalanchoe blossfeldiana, and Cordyline fruticosa. The Fv/Fm ratio can give insight into the ability of plants to tolerate (indoor) air pollution by volatile organic chemicals (VOC). This index can be used for identification of suitable plants for treating/sequestering VOCs in contaminated air. PMID:24530730

Sriprapat, Wararat; Suksabye, Parinda; Areephak, Sirintip; Klantup, Polawat; Waraha, Atcharaphan; Sawattan, Anuchit; Thiravetyan, Paitip

2014-04-01

422

Chronic toluene exposure induces cell proliferation in the mice SVZ but not migration through the RMS.  

PubMed

Abuse of toluene-containing inhalants is associated to various cognitive impairments that have been partly associated to deviation of the hippocampal neurogenesis processes during adulthood. In the present study we analyzed the effect of chronic toluene exposure (6000ppm) on cell proliferation and migration in the other selected area of the rodent brain where neurogenesis persist throughout adulthood, the subventricular zone of the lateral ventricle (SVZ). We used an anti-Ki67 antibody to evaluate SVZ cell proliferation, BrdU to evaluate cell survival and double-staining with BrdU and the migration marker doublecortin (DCX) to evaluate migration, by immunofluorescence 2h, 1, 5, 10 or 15 days after 20 sessions of toluene exposure. We found that toluene induced an initial burst of cell proliferation in the SVZ but not a significant increase in migration toward the rostral migratory stream (RMS) or the number of cells that migrate to the olfactory bulb. In addition, we detected a small number of new migrating cells in the corpus callosum and striatum of control mice that was similar in toluene-exposed brains. These results may underline the homeostatic capabilities of the populations of dividing cells, previously demonstrated using other drugs of abuse and demonstrate that toluene misuse can alter cellular proliferation in the postnatal brain. PMID:24882722

Franco, Ireri; Valdez-Tapia, Mariana; Sanchez-Serrano, Sinthia L; Cruz, Silvia L; Lamas, Monica

2014-07-11

423

Effects of the abused inhalant toluene on the mesolimbic dopamine system  

PubMed Central

Toluene is a representative member of a class of inhaled solvents that are voluntarily used by adolescents and adults for their euphorigenic effects. Research into the mechanisms of action of inhaled solvents has lagged behind that of other drugs of abuse despite mounting evidence that these compounds exert profound neurobehavioral and neurotoxicological effects. Results from studies carried out by the authors and others suggest that the neural effects of inhalants arise from their interaction with a discrete set of ion channels that regulate brain activity. Of particular interest is how these interactions allow toluene and other solvents to engage portions of an addiction neurocircuitry that includes midbrain and cortical structures. In this review, we focus on the current state of knowledge regarding toluene’s action on midbrain dopamine neurons, a key brain region involved in the initial assessment of natural and drug-induced rewards. Findings from recent studies in the authors’ laboratory show that brief exposures of adolescent rats to toluene vapor induce profound changes in markers of glutamatergic plasticity in VTA DA neurons. These changes are restricted to VTA DA neurons that project to limbic structures and are prevented by transient activation of the medial prefrontal cortex prior to toluene exposure. Together, these data provide the first evidence linking the voluntary inhalation of solvents to changes in reward –sensitive dopamine neurons. PMID:25360326

Woodward, John J.; Beckley, Jacob

2014-01-01

424

Degradation of toluene by ortho cleavage enzymes in Burkholderia fungorum?FLU100.  

PubMed

Burkholderia fungorum?FLU100 simultaneously oxidized any mixture of toluene, benzene and mono-halogen benzenes to (3-substituted) catechols with a selectivity of nearly 100%. Further metabolism occurred via enzymes of ortho cleavage pathways with complete mineralization. During the transformation of 3-methylcatechol, 4-carboxymethyl-2-methylbut-2-en-4-olide (2-methyl-2-enelactone, 2-ML) accumulated transiently, being further mineralized only after a lag phase of 2?h in case of cells pre-grown on benzene or mono-halogen benzenes. No lag phase, however, occurred after growth on toluene. Cultures inhibited by chloramphenicol after growth on benzene or mono-halogen benzenes were unable to metabolize 2-ML supplied externally, even after prolonged incubation. A control culture grown with toluene did not show any lag phase and used 2-ML as a substrate. This means that 2-ML is an intermediate of toluene degradation and converted by specific enzymes. The conversion of 4-methylcatechol as a very minor by-product of toluene degradation in strain FLU100 resulted in the accumulation of 4-carboxymethyl-4-methylbut-2-en-4-olide (4-methyl-2-enelactone, 4-ML) as a dead-end product, excluding its nature as a possible intermediate. Thus, 3-methylcyclohexa-3,5-diene-1,2-diol, 3-methylcatechol, 2-methyl muconate and 2-ML were identified as central intermediates of productive ortho cleavage pathways for toluene metabolism in B.?fungorum?FLU100. PMID:25130674

Dobslaw, Daniel; Engesser, Karl-Heinrich

2015-01-01

425

Degradation of toluene by ortho cleavage enzymes in Burkholderia fungorum FLU100  

PubMed Central

Burkholderia fungorum?FLU100 simultaneously oxidized any mixture of toluene, benzene and mono-halogen benzenes to (3-substituted) catechols with a selectivity of nearly 100%. Further metabolism occurred via enzymes of ortho cleavage pathways with complete mineralization. During the transformation of 3-methylcatechol, 4-carboxymethyl-2-methylbut-2-en-4-olide (2-methyl-2-enelactone, 2-ML) accumulated transiently, being further mineralized only after a lag phase of 2?h in case of cells pre-grown on benzene or mono-halogen benzenes. No lag phase, however, occurred after growth on toluene. Cultures inhibited by chloramphenicol after growth on benzene or mono-halogen benzenes were unable to metabolize 2-ML supplied externally, even after prolonged incubation. A control culture grown with toluene did not show any lag phase and used 2-ML as a substrate. This means that 2-ML is an intermediate of toluene degradation and converted by specific enzymes. The conversion of 4-methylcatechol as a very minor by-product of toluene degradation in strain FLU100 resulted in the accumulation of 4-carboxymethyl-4-methylbut-2-en-4-olide (4-methyl-2-enelactone, 4-ML) as a dead-end product, excluding its nature as a possible intermediate. Thus, 3-methylcyclohexa-3,5-diene-1,2-diol, 3-methylcatechol, 2-methyl muconate and 2-ML were identified as central intermediates of productive ortho cleavage pathways for toluene metabolism in B.?fungorum?FLU100. PMID:25130674

Dobslaw, Daniel; Engesser, Karl-Heinrich

2015-01-01

426

Trichloroethylene and Cancer: Systematic and Quantitative Review of Epidemiologic Evidence for Identifying Hazards  

PubMed Central

We conducted a meta-analysis focusing on studies with high potential for trichloroethylene (TCE) exposure to provide quantitative evaluations of the evidence for associations between TCE exposure and kidney, liver, and non-Hodgkin lymphoma (NHL) cancers. A systematic review documenting essential design features, exposure assessment approaches, statistical analyses, and potential sources of confounding and bias identified twenty-four cohort and case-control studies on TCE and the three cancers of interest with high potential for exposure, including five recently published case-control studies of kidney cancer or NHL. Fixed- and random-effects models were fitted to the data on overall exposure and on the highest exposure group. Sensitivity analyses examined the influence of individual studies and of alternative risk estimate selections. For overall TCE exposure and kidney cancer, the summary relative risk (RRm) estimate from the random effects model was 1.27 (95% CI: 1.13, 1.43), with a higher RRm for the highest exposure groups (1.58, 95% CI: 1.28, 1.96). The RRm estimates were not overly sensitive to alternative risk estimate selections or to removal of an individual study. There was no apparent heterogeneity or publication bias. For NHL, RRm estimates for overall exposure and for the highest exposure group, respectively, were 1.23 (95% CI: 1.07, 1.42) and 1.43 (95% CI: 1.13, 1.82) and, for liver cancer, 1.29 (95% CI: 1.07, 1.56) and 1.28 (95% CI: 0.93, 1.77). Our findings provide strong support for a causal association between TCE exposure and kidney cancer. The support is strong but less robust for NHL, where issues of study heterogeneity, potential publication bias, and weaker exposure-response results contribute uncertainty, and more limited for liver cancer, where only cohort studies with small numbers of cases were available. PMID:22163205

Scott, Cheryl Siegel; Jinot, Jennifer

2011-01-01

427

Biosorption of 1,2,3-trichloropropane and trichloroethylene by the diatom Thalassiosira pseudonana  

SciTech Connect

This study`s objective was to determine the potential for algal sorption of 1,2,3-trichloropropane (TCP) and trichloroethylene (TCE) by a specific type of diatom, Thalassiosira pseudonana. The author conducted bench-scale experiments at Ohio State University to determine the bioconcentration factor for TCP and TCE on a collection of diatoms that were representative of the diatoms occurring in an upground reservoir during different seasons of the year. The diatoms were purchased in a preserved state and were diluted to the desired cell concentration for each experiment. Although the mechanisms involved in the transport and uptake of the chemicals still remain to be determined, and further investigations need to be undertaken to quantify the differences in the sorptive capabilities of live and killed diatoms, studies have indicated that sorption is on the same order of magnitude for live or killed diatoms. Also, the fact that the diatoms were killed gave this study control over the actual concentration and cell count throughout each experiment, which investigators dealing with live cultures have not had. A second, but important, objective of this study was to develop a comparatively simple methodology for the identification and quantification of chlorinated hydrocarbons in both raw and finished water supplies. Chlorinated compounds have become a growing concern as an ever increasing number of chemically contaminated sites have been identified. Smaller cities and villages that cannot afford a sophisticated laboratory or technical staff need to be able to test for chlorinated compounds on an ongoing basis with a minimal staff at a moderate training level. The on-column, isothermal gas chromatographic procedure used in this study would also have wide applicability for field and laboratory studies.

Berdanier, B.W.

1996-11-01

428

Influences of carbonate and chloride ions on persulfate oxidation of trichloroethylene at 20 degrees C.  

PubMed

Application of in situ chemical oxidation (ISCO) involves application of oxidants to contaminants such as trichloroethylene (TCE) in soil or groundwater in place. Successful application of ISCO at a hazardous waste site requires understanding the scavenging reactions that could take place at the site to better optimize the oxidation of target contaminants and identification of site conditions where ISCO using persulfate may not be applicable. Additionally, estimation of the oxidant dose at a site would need identification of groundwater constituents such as alkalinity and chlorides that may scavenge radicals and therefore use up the oxidant that is targeted for the contaminant(s). The objective of this study was to investigate the influence of various levels of chloride and carbonates on persulfate oxidation of TCE at 20 degrees C under controlled conditions in a laboratory. Based on the results of the laboratory experiments, both chloride and alkalinity were shown to have scavenging effects on the rate of oxidation of TCE. It was found that at a neutral pH, persulfate oxidation of TCE was not affected by the presence of bicarbonate/carbonate concentrations within the range of 0-9.20 mM. However, the TCE degradation rate was seen to reduce with an increase in the level of carbonate species and at elevated pHs. TCE degradation in the presence of chlorides revealed no effect on the degradation rate especially at chloride levels below 0.2 M. However, at chloride levels greater than 0.2 M, TCE degradation rate was seen to reduce with an increase in the chloride ion concentration. Prior to application of persulfate as an oxidant, a site should be screened for the presence of scavengers to evaluate the potential of meeting target cleanup goals within a desirable timeframe at the site. PMID:17014891

Liang, Chenju; Wang, Zih-Sin; Mohanty, Nihar

2006-11-01

429

Molecular markers of trichloroethylene-induced toxicity in human kidney cells  

SciTech Connect

Difficulties in evaluation of trichloroethylene (TRI)-induced toxicity in humans and extrapolation of data from laboratory animals to humans are due to the existence of multiple target organs, multiple metabolic pathways, sex-, species-, and strain-dependent differences in both metabolism and susceptibility to toxicity, and the lack or minimal amount of human data for many target organs. The use of human tissue for mechanistic studies is thus distinctly advantageous. The kidneys are one target organ for TRI and metabolism by the glutathione (GSH) conjugation pathway is responsible for nephrotoxicity. The GSH conjugate is processed further to produce the cysteine conjugate, S-(1,2-dichlorovinyl)-L-cysteine (DCVC), which is the penultimate nephrotoxic species. Confluent, primary cultures of human proximal tubular (hPT) cells were used as the model system. Although cells in log-phase growth, which are undergoing more rapid DNA synthesis, would give lower LD{sub 50} values, confluent cells more closely mimic the in vivo proximal tubule. DCVC caused cellular necrosis only at relatively high doses (>100 {mu}M) and long incubation times (>24 h). In contrast, both apoptosis and enhanced cellular proliferation occurred at relatively low doses (10-100 {mu}M) and early incubation times (2-8 h). These responses were associated with prominent changes in expression of several proteins that regulate apoptosis (Bcl-2, Bax, Apaf-1, Caspase-9 cleavage, PARP cleavage) and cellular growth, differentiation and stress response (p53, Hsp27, NF-{kappa}B). Effects on p53 and Hsp27 implicate function of protein kinase C, the mitogen activated protein kinase pathway, and the cytoskeleton. The precise pattern of expression of these and other proteins can thus serve as molecular markers for TRI exposure and effect in human kidney.

Lash, Lawrence H. [Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201 (United States)]. E-mail: l.h.lash@wayne.edu; Putt, David A. [Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201 (United States); Hueni, Sarah E. [Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201 (United States); Horwitz, Beth P. [Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201 (United States)

2005-08-07

430

Trichloroethylene biodegradation by mesophilic and psychrophilic ammonia oxidizers and methanotrophs in groundwater microcosms.  

PubMed Central

This study investigated the efficiency of methane and ammonium for stimulating trichloroethylene (TCE) biodegradation in groundwater microcosms (flasks and batch exchange columns) at a psychrophilic temperature (12 degrees C) typical of shallow aquifers in the northern United States or a mesophilic temperature (24 degrees C) representative of most laboratory experiments. After 140 days, TCE biodegradation rates by ammonia oxidizers and methanotrophs in mesophilic flask microcosms were similar (8 to 10 nmol day-1), but [14C]TCE mineralization (biodegradation to 14CO2) by ammonia oxidizers was significantly greater than that by methanotrophs (63 versus 53%). Under psychrophilic conditions, [14C]TCE mineralization in flask systems by ammonia oxidizers and methanotrophs was reduced to 12 and 5%, respectively. In mesophilic batch exchange columns, average TCE biodegradation rates for methanotrophs (900 nmol liter-1 day-1) were not significantly different from those of ammonia oxidizers (775 nmol liter-1 day-1). Psychrophilic TCE biodegradation rates in the columns were similar with both biostimulants and averaged 145 nmol liter-1 day-1. Methanotroph biostimulation was most adversely affected by low temperatures. At 12 degrees C, the biodegradation efficiencies (TCE degradation normalized to microbial activity) of methanotrophs and ammonia oxidizers decreased by factors of 2.6 and 1.6, respectively, relative to their biodegradation efficiencies at 24 degrees C. Collectively, these experiments demonstrated that in situ bioremediation of TCE is feasible at the psychrophilic temperatures common in surficial aquifers in the northern United States and that for such applications biostimulation of ammonia oxidizers could be more effective than has been previously reported. PMID:9327550

Moran, B N; Hickey, W J

1997-01-01

431

Inhibition of iron (III) minerals and acidification on the reductive dechlorination of trichloroethylene.  

PubMed

Reductive dechlorination of chlorinated ethenes is inhibited by acidification and by the presence of Fe (III) as a competitive electron acceptor. Synergism between both factors on dechlorination is predicted as reductive dissolution of Fe (III) minerals is facilitated by acidification. This study was set-up to assess this synergism for two common aquifer Fe (III) minerals, goethite and ferrihydrite. Anaerobic microbial dechlorination of trichloroethylene (TCE) by KB-1 culture and formate as electron donor was investigated in anaerobic batch containers at different solution pH values (6.2-7.2) in sand coated with these Fe minerals and a sand only as control. In the absence of Fe, lowering substrate pH from 7.2 to 6.2 increased the time for 90% TCE degradation from 14±1d to 42±4d. At pH 7.2, goethite did not affect TCE degradation time while ferrihydrite increased the degradation time to 19±1d compared to the no Fe control. At pH 6.2, 90% degradation was at 78±1 (ferrihydrite) or 131±1d (goethite). Ferrous iron production in ferrihydrite treatment increased between pH 7.2 and 6.5 but decreased by further lowering pH to 6.2, likely due to reduced microbial activity. This study confirms that TCE is increasingly inhibited by the combined effect of acidification and bioavailable Fe (III), however no evidence was found for synergistic inhibition since Fe reduction did not increase as pH decreases. To the best of our knowledge, this is the first study where effect of pH and Fe (III) reduction on TCE was simultaneously tested. Acid Fe-rich aquifers need sufficient buffering and alkalinity to ensure swift degradation of chlorinated ethenes. PMID:24997954

Paul, Laiby; Smolders, Erik

2014-09-01

432

New perspectives on the cancer risks of trichloroethylene, its metabolites, and chlorination by-products  

SciTech Connect

Scientific developments in the 1990`s have important implications for the assessment of cancer risks posed by exposures to trichloroethylene (TCE). These new developments include: epidemiological studies; experimental studies of TCE carcinogenicity, metabolism and metabolite carcinogenicity; applications of new physiologically based pharmacokinetic (PBPK) models for TCE; and new pharmacodynamic data obtained for TCE and its rhetabolites. Following a review of previous assessments of TCE carcinogenicity, each of these new sets of developments is summarized. The new epidemiological data do not provide evidence of TCE carcinogenicity in humans, and the new pharmacodynamic data support the hypothesis that TCE carcinogenicity is caused by TCE-induced cytotoxicity. Based on this information, PBPK-based estimates for likely no-adverse effect levels (NOAELs) for human exposures to TCE are calculated to be 16 ppb for TCE in air respired 24 hr/day, and 210 ppb for TCE in drinking water. Cancer risks of zero are predicted for TCE exposures below these calculated NOAELs. For comparison, hypothetical cancer risks posed by lifetime ingestive and multiroute household exposures to TCE in drinking water, at the currently enforced Maximum Contaminant Level (MCL) concentration of 5 ppb are extrapolated from animal bioassay data using a conservative, linear dose-response model. These TCE-related risks are compared to corresponding ones associated with concentrations of chlorination by-products (CBP) in household water. It is shown that, from the standpoint of comparative hypothetical cancer risks, based on conservative linear dose-response extrapolations, there would likely be no health benefit, and more likely a possible health detriment, associated with any switch from a household water supply containing <375 ppb TCE to one containing CBP at levels corresponding to the currently proposed 80-ppb MCL for total trihalomethanes.

Bogen, K.T. [Lawrence Livermore National Lab., CA (United States); Slone, T.; Gold, L.S.; Manley, N.; Revzan, K. [Lawrence Berkeley Lab., CA (United States)

1994-12-08

433

Threshold of trichloroethylene contamination in maternal drinking waters affecting fetal heart development in the rat.  

PubMed Central

Halogenated hydrocarbons such as trichloroethylene (TCE) are among the most common water supply contaminants in the United States and abroad. Epidemiologic studies have found an association but not a cause-and-effect relation between halogenated hydrocarbon contamination and increased incidence of congenital cardiac malformations or other defective birth outcomes. Avian and rat studies demonstrated statistically significant increases in the number of congenital cardiac malformations in those treated with high doses of TCE, either via intrauterine pump or in maternal drinking water, compared with controls. This study attempts to determine if there is a threshold dose exposure to TCE above which the developing heart is more likely to be affected. Sprague-Dawley rats were randomly placed in test groups and exposed to various concentrations of TCE (2.5 ppb, 250 ppb, 1.5 ppm, 1,100 ppm) in drinking water or distilled water (control group) throughout pregnancy. The percentage of abnormal hearts in the treated groups ranged from 0 to 10.48%, with controls having 2.1% abnormal hearts, and the number of litters with fetuses with abnormal hearts ranged from 0 to 66.7%, and the control percentage was 16.4%. The data from this study indicate not only that there is a statistically significant probability overall of a dose response to increasing levels of TCE exposure, but also that this trend begins to manifest at relatively low levels of exposure (i.e., < 250 ppb). Maternal rats exposed to more than this level of TCE during pregnancy showed an associated increased incidence of cardiac malformations in their developing rat fetuses. PMID:12611656

Johnson, Paula D; Goldberg, Stanley J; Mays, Mary Z; Dawson, Brenda V

2003-01-01

434

Trichloroethylene oxidation performance in sodium percarbonate (SPC)/Fe2+ system.  

PubMed

In this study, in-situ chemical oxidation technique employing Fe(II) catalytic sodium percarbonate (SPC) to stimulate the oxidation of trichloroethylene (TCE) in contaminated groundwater remediation was investigated. The effects of various factors including the SPC/TCE/Fe2+ molar ratio, the initial solution pH and the widely found constituents in groundwater matrix such as Cl(-), HCO3(-), SO4(2-) and NO3(-) anions and natural organic matters were evaluated. The experimental results showed that TCE could be completely oxidized in 5 min at 20 degrees C with a SPC/TCE/Fe2+ molar ratio of 5:1:10, indicating the significant effectiveness of the SPC/Fe2+ system for TCE removal. The initial solution pH value (from 3 to 11) has less influence on TCE oxidation rate. In contrast, Cl(-) and HCO3(-) anions had a negative effect on TCE removal in which HCO3(-) possesses a stronger influence than Cl(-), whereas the effects of both SO4(2-) and NO3(-) anions appeared to be negligible. With the 1.0-10 mg/L concentrations of humic acid in solution, slightly inhibitive effect was observed, suggesting that dissolved organic matters consumed less SPC and had a negligible effect on the oxidation of TCE in SPC/Fe2+ system. From the intermediate products' analyses and the released Cl(-) contents from TCE parent contaminant in solution, all the decomposed TCE had completely dechlorinated and led to carbon dioxide and hydrocarbon. In conclusion, Fe(II) catalytic SPC oxidation is a highly promising technique for TCE-contaminated groundwater remediation, but some complex constituents such as HCO3(-), in in-situ groundwater matrix should be carefully considered for its practical application. PMID:24645461

Zang, Xueke; Gu, Xiaogang; Lu, Shuguang; Qiu, Zhaofu; Sui, Qian; Lin, Kuangfei; Du, Xiaoming

2014-01-01

435

Aerobic Degradation of Trichloroethylene by Co-Metabolism Using Phenol and Gasoline as Growth Substrates  

PubMed Central

Trichloroethylene (TCE) is a common groundwater contaminant of toxic and carcinogenic concern. Aerobic co-metabolic processes are the predominant pathways for TCE complete degradation. In this study, Pseudomonas fluorescens was studied as the active microorganism to degrade TCE under aerobic condition by co-metabolic degradation using phenol and gasoline as growth substrates. Operating conditions influencing TCE degradation efficiency were optimized. TCE co-metabolic degradation rate reached the maximum of 80% under the optimized conditions of degradation time of 3 days, initial OD600 of microorganism culture of 0.14 (1.26 × 107 cell/mL), initial phenol concentration of 100 mg/L, initial TCE concentration of 0.1 mg/L, pH of 6.0, and salinity of 0.1%. The modified transformation capacity and transformation yield were 20 ?g (TCE)/mg (biomass) and 5.1 ?g (TCE)/mg (phenol), respectively. Addition of nutrient broth promoted TCE degradation with phenol as growth substrate. It was revealed that catechol 1,2-dioxygenase played an important role in TCE co-metabolism. The dechlorination of TCE was complete, and less chlorinated products were not detected at the end of the experiment. TCE could also be co-metabolized in the presence of gasoline; however, the degradation rate was not high (28%). When phenol was introduced into the system of TCE and gasoline, TCE and gasoline could be removed at substantial rates (up to 59% and 69%, respectively). This study provides a promising approach for the removal of combined pollution of TCE and gasoline. PMID:24857922

Li, Yan; Li, Bing; Wang, Cui-Ping; Fan, Jun-Zhao; Sun, Hong-Wen

2014-01-01

436

Mode of action of liver tumor induction by trichloroethylene and its metabolites, trichloroacetate and dichloroacetate.  

PubMed Central

Trichloroethylene (TCE) induces liver cancer in mice but not in rats. Three metabolites of TCE may contribute--chloral hydrate (CH), dichloroacetate (DCA), and trichloroacetate (TCA). CH and TCA appear capable of only inducing liver tumors in mice, but DCA is active in rats as well. The concentrations of TCA in blood required to induce liver cancer approach the mM range. Concentrations of DCA in blood associated with carcinogenesis are in the sub-microM range. The carcinogenic activity of CH is largely dependent on its conversion to TCA and/or DCA. TCA is a peroxisome proliferator in the same dose range that induces liver cancer. Mice with targeted disruptions of the peroxisome proliferator-activated receptor alpha (PPAR-alpha) are insensitive to the liver cancer-inducing properties of other peroxisome proliferators. Human cells do not display the responses associated with PPAR-alpha that are observed in rodents. This may be attributed to lower levels of expressed PPAR-alpha in human liver. DCA treatment produces liver tumors with a different phenotype than TCA. Its tumorigenic effects are closely associated with differential effects on cell replication rates in tumors, normal hepatocytes, and suppression of apoptosis. Growth of DCA-induced tumors has been shown to arrest after cessation of treatment. The DCA and TCA adequately account for the hepatocarcinogenic responses to TCE. Low-level exposure to TCE is not likely to induce liver cancer in humans. Higher exposures to TCE could affect sensitive populations. Sensitivity could be based on different metabolic capacities for TCE or its metabolites or result from certain chronic diseases that have a genetic basis. PMID:10807555

Bull, R J

2000-01-01

437

Flux-based assessment at a manufacturing site contaminated with trichloroethylene.  

PubMed

Groundwater and contaminant fluxes were measured, using the passive flux meter (PFM) technique, in wells along a longitudinal transect passing approximately through the centerline of a trichloroethylene (TCE) plume at a former manufacturing plant located in the Midwestern US. Two distinct zones of hydraulic conductivity were identified from the measured groundwater fluxes; a 6-m-thick upper zone ( approximately 7 m to 13 m below the ground surface or bgs) with a geometric mean Darcy flux (q(0)) of 2 cm/day, and a lower zone ( approximately 13 m to 16.5m bgs) with a q(0) approximately 15 cm/day; this important hydrogeologic feature significantly impacts any remediation technology used at the site. The flux-averaged TCE concentrations estimated from the PFM results compared well with existing groundwater monitoring data. It was estimated that at least 800 kg of TCE was present in the source zone. The TCE mass discharge across the source control plane (85 m x 38 m) was used to estimate the "source strength" ( approximately 365 g/day), while mass discharges across multiple down-gradient control planes were used to estimate the plume-averaged, TCE degradation rate constant (0.52 year(-1)). This is close to the rate estimated using the conventional centerline approach (0.78 year(-1)). The mass discharge approach provides a more robust and representative estimate than the centerline approach since the latter uses only data from wells along the plume centerline while the former uses all wells in the plume. PMID:16581154

Basu, Nandita B; Rao, P S C; Poyer, Irene C; Annable, M D; Hatfield, K

2006-06-30

438

Identification of serum biomarkers for occupational medicamentosa-like dermatitis induced by trichloroethylene using mass spectrometry  

SciTech Connect

Occupational medicamentosa-like dermatitis induced by trichloroethylene (OMLDT) is an autoimmune disease and it has become a serious occupational health hazard. In the present study, we collected fasting blood samples from patients with OMLDT (n = 18) and healthy volunteers (n = 33) to explore serum peptidome patterns. Peptides in sera were purified using weak cation exchange magnetic beads (MB-WCX), and analyzed by matrix-assisted laser desorption ionization time-of-flight-mass spectrometry (MALDI-TOF-MS) and ClinProTools bioinformatics software. The intensities of thirty protein/peptide peaks were significantly different between the healthy control and OMLDT patients. A pattern of three peaks (m/z 2106.3, 2134.5, and 3263.67) was selected for supervised neural network (SNN) model building to separate the OMLDT patients from the healthy controls with a sensitivity of 95.5% and a specificity of 73.8%. Furthermore, two peptide peaks of m/z 4091.61 and 4281.69 were identified as fragments of ATP-binding cassette transporter family A member 12 (ABCA12), and cationic trypsinogen (PRRS1), respectively. Our findings not only show that specific proteomic fingerprints in the sera of OMLDT patients can be served as a differentiated tool of OMLDT patients with high sensitivity and high specificity, but also reveal the novel correlation between OMLDT with ABC transports and PRRS1, which will be of potential value for clinical and mechanistic studies of OMLDT. - Highlights: • Identify 30 differential protein/peptide peaks between OMLDT and healthy control • The test sensitivity and test specificity were 95.5% and 73.8%, respectively. • ABCA12 and PRSS1 were identified as potential biomarkers in OMLDT patients.

Hong, Wen-Xu; Liu, Wei [Key Laboratory of Modern Toxicology of Shenzhen, Medical Key Laboratory of Guangdong Province, Medical Key Laboratory of Health Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055 (China); Zhang, Yanfang [Shenzhen Prevention and Treatment Center for Occupational Disease, Shenzhen 518001 (China); Huang, Peiwu; Yang, Xifei; Ren, Xiaohu; Ye, Jinbo; Huang, Haiyan [Key Laboratory of Modern Toxicology of Shenzhen, Medical Key Laboratory of Guangdong Province, Medical Key Laboratory of Health Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055 (China); Tang, Haiyan [Shenzhen Prevention and Treatment Center for Occupational Disease, Shenzhen 518001 (China); Zhou, Guifeng [Medical School of Hunan Normal University, Changsha 410006 (China); Huang, Xinfeng; Zhuang, Zhixiong [Key Laboratory of Modern Toxicology of Shenzhen, Medical Key Laboratory of Guangdong Province, Medical Key Laboratory of Health Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055 (China); Liu, Jianjun, E-mail: bio-research@hotmail.com [Key Laboratory of Modern Toxicology of Shenzhen, Medical Key Laboratory of Guangdong Province, Medical Key Laboratory of Health Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055 (China)

2013-11-15

439

Identification of antigenic proteins associated with trichloroethylene-induced autoimmune disease by serological proteome analysis  

SciTech Connect

Although many studies indicated that trichloroethylene (TCE) could induce autoimmune diseases and some protein adducts were detected, the proteins were not identified and mechanisms remain unknown. To screen and identify autoantigens which might be involved in TCE-induced autoimmune diseases, three groups of sera were collected from healthy donors (I), patients suffering from TCE-induced exfoliative dermatitis (ED) (II), and the healed ones (III). Serological proteome analysis (SERPA) was performed with total proteins of TCE-treated L-02 liver cells as antigen sources and immunoglobins of the above sera as probes. Highly immunogenic spots (2-fold or above increase compared with group I) in group II and III were submitted to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and tandem mass spectrometry sequencing. Western blot analysis was followed using commercial antibodies and individual serum. Six proteins were identified. Among them, Enoyl Coenzyme A hydratase peroxisoma 1 and lactate dehydrogenase B only showed stronger immunogenicity for group II sera, while Purine nucleoside phosphorylase, ribosomal protein P0 and proteasome activator subunit1 isoform1 also showed stronger immunogenicity for group III sera. Noteworthy, NM23 reacted only with group II sera. Western blot analysis of NM23 expression indicated that all of the individual serum of group II showed immune activity, which confirmed the validity of SERPA result. These findings revealed that there exist autoantibodies in group II and III sera. Besides, autoantibodies of the two stages of disease course were different. These autoantigens might serve as biomarkers to elucidate mechanisms underlying TCE toxicity and are helpful for diagnosis, therapy and prognosis of TCE-induced autoimmune diseases.

Liu Jianjun; Xing Xiumei; Huang Haiyan; Jiang Yingzhi; He Haowei; Xu Xinyun; Yuan Jianhui; Zhou Li; Yang Linqing [Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, No. 21, Rd 1st Tianbei, 518020 Shenzhen (China); Zhuang Zhixiong, E-mail: bio-research@hotmail.co [Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, No. 21, Rd 1st Tianbei, 518020 Shenzhen (China)

2009-11-01

440

Evaluating noncancer effects of trichloroethylene: dosimetry, mode of action, and risk assessment.  

PubMed Central

Alternatives for developing chronic exposure limits for noncancer effects of trichloroethylene (TCE) were evaluated. These alternatives were organized within a framework for dose-response assessment--exposure:dosimetry (pharmacokinetics):mode of action (pharmacodynamics): response. This framework provides a consistent structure within which to make scientific judgments about available information, its interpretation, and use. These judgments occur in the selection of critical studies, internal dose metrics, pharmacokinetic models, approaches for interspecies extrapolation of pharmacodynamics, and uncertainty factors. Potentially limiting end points included developmental eye malformations, liver effects, immunotoxicity, and kidney toxicity from oral exposure and neurological, liver, and kidney effects by inhalation. Each end point was evaluated quantitatively using several methods. Default analyses used the traditional no-observed adverse effect level divided by uncertainty factors and the benchmark dose divided by uncertainty factors methods. Subsequently, mode-of-action and pharmacokinetic information were incorporated. Internal dose metrics were estimated using a physiologically based pharmacokinetic (PBPK) model for TCE and its major metabolites. This approach was notably useful with neurological and kidney toxicities. The human PBPK model provided estimates of human exposure doses for the internal dose metrics. Pharmacodynamic data or default assumptions were used for interspecies extrapolation. For liver and neurological effects, humans appear no more sensitive than rodents when internal dose metrics were considered. Therefore, the interspecies uncertainty factor was reduced, illustrating that uncertainty factors are a semiquantitative approach fitting into the organizational framework. Incorporation of pharmacokinetics and pharmacodynamics can result in values that differ significantly from those obtained with the default methods. PMID:10807562

Barton, H A; Clewell, H J

2000-01-01

441

Trichloroethylene degradation by persulphate with magnetite as a heterogeneous activator in aqueous solution.  

PubMed

Iron oxide-magnetite (Fe3O4) as a heterogeneous activator to activate persulphate anions [Formula: see text] for trichloroethylene (TCE) degradation was investigated in this study. The experimental results showed that TCE could be completely oxidized within 5?h by using 5?g?L(-1) magnetite and 63?mM [Formula: see text] indicating the effectiveness of the process for TCE removal. Various factors of the process, including. [Formula: see text] and magnetite dosages, and initial solution pH, were evaluated, and TCE degradation fitted well to the pseudo-first-order kinetic model. The calculated kinetic rate constant was increased with increasing [Formula: see text] and magnetite dosages, but it was independent of solution pH. In addition, the changes of magnetite morphology examined by scanning electron microscopy and X-ray powder diffraction, respectively, confirmed the slight corrosion with ?-Fe2O3 coated on the magnetite surface. The probe compounds tests clearly identified the generation of the reactive oxygen species in the system. While the free radical quenching studies further demonstrated that [Formula: see text] and •OH were the major radicals responsible for TCE degradation, whereas [Formula: see text] contributed less in the system, and therefore the roles of reactive oxygen species on TCE degradation mechanisms were proposed accordingly. To our best knowledge, this is the first time the performance and mechanism of magnetite-activated persulphate oxidation for TCE degradation are reported. The findings of this study provided a new insight into the heterogeneous catalysis mechanism and showed a great potential for the practical application of this technique in in situ TCE-contaminated groundwater remediation. PMID:25496173

Ruan, Xiaoxin; Gu, Xiaogang; Lu, Shuguang; Qiu, Zhaofu; Sui, Qian

2015-06-01

442

Aerobic degradation of trichloroethylene by co-metabolism using phenol and gasoline as growth substrates.  

PubMed

Trichloroethylene (TCE) is a common groundwater contaminant of toxic and carcinogenic concern. Aerobic co-metabolic processes are the predominant pathways for TCE complete degradation. In this study, Pseudomonas fluorescens was studied as the active microorganism to degrade TCE under aerobic condition by co-metabolic degradation using phenol and gasoline as growth substrates. Operating conditions influencing TCE degradation efficiency were optimized. TCE co-metabolic degradation rate reached the maximum of 80% under the optimized conditions of degradation time of 3 days, initial OD600 of microorganism culture of 0.14 (1.26×10? cell/mL), initial phenol concentration of 100 mg/L, initial TCE concentration of 0.1 mg/L, pH of 6.0, and salinity of 0.1%. The modified transformation capacity and transformation yield were 20 ?g (TCE)/mg (biomass) and 5.1 ?g (TCE)/mg (phenol), respectively. Addition of nutrient broth promoted TCE degradation with phenol as growth substrate. It was revealed that catechol 1,2-dioxygenase played an important role in TCE co-metabolism. The dechlorination of TCE was complete, and less chlorinated products were not detected at the end of the experiment. TCE could also be co-metabolized in the presence of gasoline; however, the degradation rate was not high (28%). When phenol was introduced into the system of TCE and gasoline, TCE and gasoline could be removed at substantial rates (up to 59% and 69%, respectively). This study provides a promising approach for the removal of combined pollution of TCE and gasoline. PMID:24857922

Li, Yan; Li, Bing; Wang, Cui-Ping; Fan, Jun-Zhao; Sun, Hong-Wen

2014-01-01

443

Trichloroethylene Exposure during Cardiac Valvuloseptal Morphogenesis Alters Cushion Formation and Cardiac Hemodynamics in the Avian Embryo  

PubMed Central

It is controversial whether trichloroethylene (TCE) is a cardiac teratogen. We exposed chick embryos to 0, 0.4, 8, or 400 ppb TCE/egg during the period of cardiac valvuloseptal morphogenesis (2–3.3 days’ incubation). Embryo survival, valvuloseptal cellularity, and cardiac hemodynamics were evaluated at times thereafter. TCE at 8 and 400 ppb/egg reduced embryo survival to day 6.25 incubation by 40–50%. At day 4.25, increased proliferation and hypercellularity were observed within the atrioventricular and outflow tract primordia after 8 and 400 ppb TCE. Doppler ultrasound revealed that the dorsal aortic and atrioventricular blood flows were reduced by 23% and 30%, respectively, after exposure to 8 ppb TCE. Equimolar trichloroacetic acid (TCA) was more potent than TCE with respect to increasing mortality and causing valvuloseptal hypercellularity. These results independently confirm that TCE disrupts cardiac development of the chick embryo and identifies valvuloseptal development as a period of sensitivity. The hypercellular valvuloseptal profile is consistent with valvuloseptal heart defects associated with TCE exposure. This is the first report that TCA is a cardioteratogen for the chick and the first report that TCE exposure depresses cardiac function. Valvuloseptal hypercellularity may narrow the cardiac orifices, which reduces blood flow through the heart, thereby compromising cardiac output and contributing to increased mortality. The altered valvuloseptal formation and reduced hemodynamics seen here are consistent with such an outcome. Notably, these effects were observed at a TCE exposure (8 ppb) that is only slightly higher than the U.S. Environmental Protection Agency maximum containment level for drinking water (5 ppb). PMID:16759982

Drake, Victoria J.; Koprowski, Stacy L.; Lough, John; Hu, Norman; Smith, Susan M.

2006-01-01

444

Volatile organic compounds detected in vapor-diffusion samplers placed in sediments along and near the shoreline at Allen Harbor Landfill and Calf Pasture Point, Davisville, Rhode Island, March-April 1998  

USGS Publications Warehouse

Volatile organic compounds are present in ground water at the Allen Harbor Landfill and the Calf Pasture Point sites on the former Naval Construction Battalion Center in Davisville, R.I. Vapor-diffusion samplers were used at the two sites during March-April 1998 to identify possible discharge points for contaminants along the shore of Allen Harbor and in two wetland areas near the shore. Results from vapor-diffusion samplers will be used in conjunction with other site information to evaluate proposed ground-water monitoring programs. Volatile organic compounds were detected in 41 of 115 samplers placed along the shoreline at the Allen Harbor Landfill. Trichloroethylene was the principal volatile organic compound detected of eight target compounds. The highest vapor concentration measured exceeded 300,000 parts per billion by volume in an area where TCE was detected in groundwater from nearby monitoring wells. Other chemicals detected in vapor-diffusion samplers included tetrachloroethylene, toluene, and benzene. Concentrations of individual volatile organic compounds were less than 100 parts per billion by volume in most samplers. Volatile organic compounds, principally trichloroethylene, were detected in 7 of 30 samplers placed along the shoreline at Calf Pasture Point; the highest trichloroethylene concentration was 1,900 parts per billion by volume. A trace concentration of tetrachloroethylene was detected in one of the samplers. One of 24 samplers placed in two wetland areas near the shore (suspected discharge areas for ground-water containing volatile organic compounds) detected trichloroethylene at a vapor concentration of 14 parts per billion by volume.

Lyford, F.P.; Kliever, J.D.; Scott, Clifford

1999-01-01

445

Kinetic effects of toluene blending on the extinction limit of n-decane diffusion flames  

SciTech Connect

The impact of toluene addition in n-decane on OH concentrations, maximum heat release rates, and extinction limits were studied experimentally and computationally by using counterflow diffusion flames with laser induced fluorescence imaging. Sensitivity analyses of kinetic path ways and species transport on flame extinction were also conducted. The results showed that the extinction strain rate of n-decane/toluene/nitrogen flames decreased significantly with an increase of toluene addition and depended linearly on the maximum OH concentration. It was revealed that the maximum OH concentration, which depends on the fuel H/C ratio, can be used as an index of the radical pool and chemical heat release rate, since it plays a significant role on the heat production via the reaction with other species, such as CO, H{sub 2}, and HCO. Experimental results further demonstrated that toluene addition in n-decane dramatically reduced the peak OH concentration via H abstraction reactions and accelerated flame extinction via kinetic coupling between toluene and n-decane mechanisms. Comparisons between experiments and simulations revealed that the current toluene mechanism significantly over-predicts the radical destruction rate, leading to under-prediction of extinction limits and OH concentrations, especially caused by the uncertainty of the H abstraction reaction from toluene, which rate coefficient has a difference by a factor of 5 in the tested toluene models. In addition, sensitivity analysis of diffusive transport showed that in addition to n-decane and toluene, the transport of OH and H also considerably affects the extinction limit. A reduced linear correlation between the extinction limits of n-decane/toluene blended fuels and the H/C ratio as well as the mean fuel molecular weight was obtained. The results suggest that an explicit prediction of the extinction limits of aromatic and alkane blended fuels can be established by using H/C ratio (or radical index) and the mean fuel molecular weight which represent the rates of radical production and the fuel transport, respectively.

Won, Sang Hee; Sun, Wenting; Ju, Yiguang

2010-01-01

446

Kinetic effects of toluene blending on the extinction limit of n-decane diffusion flames  

SciTech Connect

The impact of toluene addition in n-decane on OH concentrations, maximum heat release rates, and extinction limits were studied experimentally and computationally by using counterflow diffusion flames with laser induced fluorescence imaging. Sensitivity analyses of kinetic path ways and species transport on flame extinction were also conducted. The results showed that the extinction strain rate of n-decane/toluene/nitrogen flames decreased significantly with an increase of toluene addition and depended linearly on the maximum OH concentration. It was revealed that the maximum OH concentration, which depends on the fuel H/C ratio, can be used as an index of the radical pool and chemical heat release rate, since it plays a significant role on the heat production via the reaction with other species, such as CO, H{sub 2}, and HCO. Experimental results further demonstrated that toluene addition in n-decane dramatically reduced the peak OH concentration via H abstraction reactions and accelerated flame extinction via kinetic coupling between toluene and n-decane mechanisms. Comparisons between experiments and simulations revealed that the current toluene mechanism significantly over-predicts the radical destru