Science.gov

Sample records for tetrachloroethylene toluene trichloroethylene

  1. NOVEL PATHWAY OF TOLUENE CATABOLISM IN THE TRICHLOROETHYLENE DEGRADING BACTERIUM G4

    EPA Science Inventory

    o-Cresol and 3-methylcatechol were identified as successive transitory intermediates of toluene catabolism by the trichloroethylene-degrading bacterium G4. he absence of a toluene dihydrodiol intermediate or toluene dioxygenase and toluene dihydrodiol dehydrogenase activities sug...

  2. Use of Mini-Sprinklers to Strip Trichloroethylene and Tetrachloroethylene from Contaminated Ground Water.

    SciTech Connect

    Brerisford, Yvette, C.; Bush, Parshall, B.; Blake, John, I.; Bayer, Cassandra L.

    2003-01-01

    Berisford, Y.C., P.B. Bush, J.I. Blake, and C.L. Bayer. 2003. Use of mini-sprinklers to strip trichloroethylene and tetrachloroethylene from contaminated ground water. J. Env. Qual. 32:801-815. Three low-volume mini-sprinklers were tested for their efficacy to strip trichloroethylene (TCE) and tetrachloroethylene (PCE) from water. Deionized water spiked with TCE and PCE was pumped through a mini-sprinkler supported on top of a 1.8-m-tall. Water was collected in collection vessels at 0.61 and 1.22 m above the ground on support columns that were spaced at 0.61-m intervals from the riser base, and samples were composited per height and distance from the riser. Overall, air-stripping reduced dissolved concentrations of TCE and PCE by 99.1 to 100 and 96.9 to 100%, respectively. Mini-sprinklers offer the advantages of (i) easy setup in series that can be used on practically any terrain; (ii) operation over a long period of time that does not threaten aquifer depletion; (iii) use in small or confined aquifers in which the capacity is too low to support large irrigation or pumping systems; and (iv) use in forests in which the small, low-impact droplets of the mini-sprinklers do not damage bark and in which trees can help manage (via evapotransporation) excess waste water.

  3. Tetrachloroethylene

    Integrated Risk Information System (IRIS)

    EPA / 635 / R - 08 / 011F February 2012 TOXICOLOGICAL REVIEW OF Tetrachloroethylene ( Perchloroethylene ) ( CAS No . 127 - 18 - 4 ) In Support of Summary Information on the Integrated Risk Information System ( IRIS ) February 2012 U.S . Environmental Protection Agency Washington , DC ii DISCLAIMER T

  4. Tetrachloroethylene

    Integrated Risk Information System (IRIS)

    Tetrachloroethylene ( Perchloroethylene ) ; CASRN 127 - 18 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessm

  5. Trichloroethylene and tetrachloroethylene elimination from the air by means of a hybrid bioreactor with immobilized biomass.

    PubMed

    Tabernacka, Agnieszka; Zborowska, Ewa

    2012-09-01

    Two-phase bioreactors consisting of bacterial consortium in suspension and sorbents with immobilized biomass were used to treat waste air containing chlorinated ethenes, trichloroethylene (TCE) and tetrachloroethylene (PCE). Synthetic municipal sewage was used as the medium for bacterial growth. The system was operated with loadings in the range 1.48-4.76 gm(-3)h(-1) for TCE and 1.49-5.96 gm(-3)h(-1) for PCE. The efficiency of contaminant elimination was 55-86% in the bioreactor with wood chips and 33-89% in the bioreactor filled with zeolite. The best results were observed 1 week after the pollutant loading was increased. However, in these conditions, the stability of the process was not achieved. In the next 7 days the effectiveness of the system decreased. Contaminant removal efficiency, enzymatic activity and the biomass content were all diminished. The system was working without being supplied with additional hydrocarbons as the growth-supporting substrates. It is assumed that ammonia produced during the transformation of wastewater components induced enzymes for the cometabolic degradation of TCE and PCE. However, the evaluation of nitrogen compound transformations in the system is difficult due to the sorption on carriers and the combined processes of nitrification and the aerobic denitrification. An applied method of air treatment is advantageous from both economic and environmental point of views. PMID:22621954

  6. Kinetic study of trichloroethylene and toluene degradation by a bioluminescent reporter bacterium

    SciTech Connect

    Kelly, C.J.; Sanseverino, J.; Bienkowski, P.R.; Sayler, G.S.

    1995-12-31

    A constructed bioluminescent reporter bacterium, Pseudomonas putida B2, is very briefly described in this paper. The bacterium degrades toluene and trichloroethylene (TCE), and produces light in the presence of toluene. The light response is an indication of cellular viability and expression of the genes encoding toluene and TCE degrading enzymes.

  7. Trichloroethylene degradation by Escherichia coli containing the cloned Pseudomonas putida F1 toluene dioxygenase genes

    SciTech Connect

    Zylstra, G.J.; Gibson, D.T. ); Wackett, L.P. )

    1989-12-01

    Toluene dioxygenase from Pseudomonas putida F1 has been implicated as an enzyme capable of degrading trichloroethylene. This has now been confirmed with Escherichia coli JM109(pDTG601) that contains the structural genes (todC1C2BA) of toluene dioxygenase under the control of the tac promoter. The extent of trichloroethylene degradation by the recombinant organism depended on the cell concentration and the concentration of trichloroethylene. A linear rate of trichloroethylene degradation was observed with the E. coli recombinant strain. In contrast, P. putida F39/D, a mutant strain of P. putida F1 that does not contain cis-toluene dihydrodiol dehydrogenase, showed a much faster initial rate of trichloroethylene degradation which decreased over time.

  8. Mutagenicity of the cysteine S-conjugate sulfoxides of trichloroethylene and tetrachloroethylene in the Ames test.

    PubMed

    Irving, Roy M; Elfarra, Adnan A

    2013-04-01

    The nephrotoxicity and nephrocarcinogenicity of trichloroethylene (TCE) and tetrachloroethylene (PCE) are believed to be mediated primarily through the cysteine S-conjugate ?-lyase-dependent bioactivation of the corresponding cysteine S-conjugate metabolites S-(1,2-dichlorovinyl)-l-cysteine (DCVC) and S-(1,2,2-trichlorovinyl)-l-cysteine (TCVC), respectively. DCVC and TCVC have previously been demonstrated to be mutagenic by the Ames Salmonella mutagenicity assay, and reduction in mutagenicity was observed upon treatment with the ?-lyase inhibitor aminooxyacetic acid (AOAA). Because DCVC and TCVC can also be bioactivated through sulfoxidation to yield the potent nephrotoxicants S-(1,2-dichlorovinyl)-l-cysteine sulfoxide (DCVCS) and S-(1,2,2-trichlorovinyl)-l-cysteine sulfoxide (TCVCS), respectively, the mutagenic potential of these two sulfoxides was investigated using the Ames Salmonella typhimurium TA100 mutagenicity assay. The results show both DCVCS and TCVCS were mutagenic, and TCVCS exhibited 3-fold higher mutagenicity than DCVCS. However, DCVCS and TCVCS mutagenic activity was approximately 700-fold and 30-fold lower than DCVC and TCVC, respectively. DCVC and DCVCS appeared to induce toxicity in TA100, as evidenced by increased microcolony formation and decreased mutant frequency above threshold concentrations. TCVC and TCVCS were not toxic in TA100. The toxic effects of DCVC limited the sensitivity of TA100 to DCVC mutagenic effects and rendered it difficult to investigate the effects of AOAA on DCVC mutagenic activity. Collectively, these results suggest that DCVCS and TCVCS exerted a definite but weak mutagenicity in the TA100 strain. Therefore, despite their potent nephrotoxicity, DCVCS and TCVCS are not likely to play a major role in DCVC or TCVC mutagenicity in this strain. PMID:23416178

  9. Effect of trichloroethylene and tetrachloroethylene on methane oxidation and community structure of methanotrophic consortium.

    PubMed

    Choi, Sun-Ah; Lee, Eun-Hee; Cho, Kyung-Suk

    2013-01-01

    The methane oxidation rate and community structure of a methanotrophic consortium were analyzed to determine the effects of trichloroethylene (TCE) and tetrachloroethylene (PCE) on methane oxidation. The maximum methane oxidation rate (Vmax ) of the consortium was 326.8?molg-dry biomass(-1)h(-1), and it had a half-saturation constant (Km ) of 143.8?M. The addition of TCE or PCE resulted in decreased methane oxidation rates, which were decreased from 101.73 to 5.47-24.64?molg-dry biomass(-1)h(-1) with an increase in the TCE-to-methane ratio, and to 61.95-67.43?molg-dry biomass(-1)h(-1) with an increase in the PCE-to-methane ratio. TCE and PCE were non-competitive inhibitors for methane oxidation, and their inhibition constants (Ki ) were 33.4 and 132.0?M, respectively. When the methanotrophic community was analyzed based on pmoA using quantitative real-time PCR (qRT-PCR), the pmoA gene copy numbers were shown to decrease from 7.3 0.7 10(8) to 2.1-5.0 10(7) pmoA gene copy number g-dry biomass(-1) with an increase in the TCE-to-methane ratio and to 2.5-7.0 10(7) pmoA gene copy number g-dry biomass(-1) with an increase in the PCE-to-methane ratio. Community analysis by microarray demonstrated that Methylocystis (type II methanotrophs) were the most abundant in the methanotrophic community composition in the presence of TCE. These results suggest that toxic effects caused by TCE and PCE change not only methane oxidation rates but also the community structure of the methanotrophic consortium. PMID:23947712

  10. Kinetics of the transformation of trichloroethylene and tetrachloroethylene by iron sulfide

    SciTech Connect

    Butler, E.C.; Hayes, K.F. . Dept. of Civil and Environmental Engineering)

    1999-06-15

    The transformation of trichloroethylene (TCE), tetrachloroethylene (PCE), and 1,1-dichloroethylene FeS in aqueous solution at pH 8.3 was studied in batch experiments. TCE and PCE were transformed by FeS with pseudo-first-order rate constants, corrected for partitioning to the sample headspace, of (1.49 [+-] 0.14) [times] 10[sup [minus]3] h[sup [minus]1] (TCE) and (5.7 [+-] 1.0) [times] 10[sup [minus]4] h[sup [minus]1] (PCE). A 17% decrease in the concentration of 1,3-DCE was observed over 120 days; however, no reaction products were detected. TCE and PCE transformation data were fit to a rate law assuming transformation of TCE via parallel reaction pathways to acetylene and cis-1,2-dichloroethylene (cis-DCE) and transformation of PCE via parallel reaction pathways to acetylene and TCE. Acetylene was the major reaction product for both TCE and PCE. Determination of rate constants for each reaction pathway indicated that TCE was transformed to acetylene 11.8 [+-] 1.1 times faster than to cis-DCE and that PCE was transformed to acetylene 8.2 [+-] 1.8 times faster than to TCE. Additional minor reaction products were vinyl chloride (VC) for TCE and cis-DCE for PCE. Detection of acetylene as the major product of both TCE and PCE transformation by FeS contrasts with the sequential hydrogenolysis products typically observed in the microbial transformation of these compounds, making acetylene a potential indicator of abiotic transformation of TCE and PCE by FeS in natural systems.

  11. Recruitment and expression of toluene/trichloroethylene biodegradation genes in bacteria native to deep-subsurface sediments

    SciTech Connect

    Romine, M.F.; Brockman, F.J.

    1996-07-01

    Four plasmids, each encoding a combination of either an Escherichia coli or Pseudomonas putida promoter and either toluene dioxygenase or toluene monooxygenase, were electroporated into five bacterial strains isolated from sediments found at depths of 91 to 295 m. Four of these engineered bacterial strains demonstrated both toluene and trichloroethylene degradation activities. 26 refs., 2 tabs.

  12. Reductive dechlorination of tetrachloroethylene and trichloroethylene catalyzed by vitamin B{sub 12} in homogeneous and heterogeneous systems

    SciTech Connect

    Burris, D.R.; Smith, M.H.; Delcomyn, C.A.; Roberts, A.L.

    1996-10-01

    The reduction of tetrachloroethylene (PCE) and trichloroethylene (TCE) catalyzed by vitamin B{sub 12} was examined in homogeneous and heterogeneous (B{sub 12} bound to agarose) batch systems using titanium(III) citrate as the bulk reductant. The solution and surface-mediated reaction rates at similar B{sub 12} loadings were comparable, indicating that binding vitamin B{sub 12} to a surface did not lower catalytic activity. No loss in PCE reducing activity was observed with repeated usage of surface-bound vitamin B{sub 12}. Carbon mass recoveries were 81-84% for PCE reduction and 89% for TCE reduction, relative to controls. In addition to sequential hydrogenolysis, a second competing reaction mechanism for the reduction of PCE and TCE by B{sub 12}, reductive {beta}-elimination, is proposed to account for the observation of acetylene as a significant reaction intermediate. Reductive {beta}-elimination should be considered as a potential pathway in other reactive systems involving the reduction of vicinal polyhaloethenes. Surface-bound catalysts such as vitamin B{sub 12} may have utility in the engineered degradation of aqueous phase chlorinated ethenes. 19 refs., 6 figs., 1 tab.

  13. Effect of trichloroethylene (TCE) and toluene concentrations on TCE and toluene biodegradation and the population density of TCE and toluene degraders in soil

    SciTech Connect

    Mu, D.Y.; Scow, K.M.

    1994-07-01

    Toluene is one of several cosubstrates able to support the cometabolism of trichloroethylene (TCE) by soil microbial communities. Indigenous microbial populations in soil degraded TCE in the presence, but not the absence, of toluene after a 60- to 80-h lag period. Initial populations of toluene and TCE degraders ranged from 0.2 x 10{sup 3} to 4 x 10{sup 3} cells per g of soil and increased by more than 4 orders of magnitude after the addition of 20 {mu}g of toluene and 1 {mu}g of TCE per mol of soil solution. The numbers of TCE and toluene degraders and the percent removal of TCE increased with an increase in initial toluene concentration. As the initial TCE concentration was increased from 1 to 20 {mu}g/ml, the numbers of toluene and TCE degraders and the rate of toluene degradation decreased, and no TCE degradation occurred. No toluene or TCE degradation occurred at a TCE concentration of 50 {mu}g/ml. 22 refs., 3 figs., 2 tabs.

  14. Kinetics of trichloroethylene cometabolism and toluene biodegradation: Model application to soil batch experiments

    SciTech Connect

    El-Farhan, Y.H.; Scow, K.M.; Fan, S.; Rolston, D.E.

    2000-06-01

    Trichloroethylene (TCE) biodegradation in soil under aerobic conditions requires the presence of another compound, such as toluene, to support growth of microbial populations and enzyme induction. The biodegradation kinetics of TCE and toluene were examined by conducting three groups of experiments in soil: toluene only, toluene combined with low TCE concentrations, and toluene with TCE concentrations similar to or higher than toluene. The biodegradation of TCE and toluene and their interrelationships were modeled using a combination of several biodegradation functions. In the model, the pollutants were described as existing in the solid, liquid, and gas phases of soil, with biodegradation occurring only in the liquid phase. The distribution of the chemicals between the solid and liquid phase was described by a linear sorption isotherm, whereas liquid-vapor partitioning was described by Henry's law. Results from 12 experiments with toluene only could be described by a single set of kinetic parameters. The same set of parameters could describe toluene degradation in 10 experiments where low TCE concentrations were present. From these 10 experiments a set of parameters describing TCE cometabolism induced by toluene also was obtained. The complete set of parameters was used to describe the biodegradation of both compounds in 15 additional experiments, where significant TCE toxicity and inhibition effects were expected. Toluene parameters were similar to values reported for pure culture systems. Parameters describing the interaction of TCE with toluene and biomass were different from reported values for pure cultures, suggesting that the presence of soil may have affected the cometabolic ability of the indigenous soil microbial populations.

  15. Trichloroethylene removal and oxidation toxicity mediated by toluene dioxygenase of Pseudomonas putida

    SciTech Connect

    Heald, S.; Jenkins, R.O.

    1994-12-01

    Trichloroethylene (TCE) is a major ground water contaminant and potential health hazard in drinking water. This paper reports on the cometabolism of TCE by a wild-type strain of Pseudomonas putida containing an inducible toluene dioxygenase enzyme. The results show rapid TCE removal by the strain but severe oxidation toxicity and rapid cell death. This is also the first report of enhanced capacity of bacterial cells to remove TCE in the presence of dithiothreitol. Presented also is evidence for induction of toluene degradation by TCE. 17 refs., 2 figs., 2 tabs.

  16. Comparison of factors influencing trichloroethylene degradation by toluene-oxidizing bacteria

    SciTech Connect

    Leahy, J.G.; Byrne, A.M.; Olsen, R.H.

    1996-03-01

    Trichloroethylene (TCE) is the most commonly reported volatile organic contaminant of groundwater. TCE can be degraded by means of a cooxidation reactions catalyzed by both toluene dioxygenase and monoxygenase. This study compares 4 strains of Pseudomonas for the ability to degrade TCE under aerobic and hypoxic conditions in the presence and absence of an electrol donor, lactate, and a supplementary electron acceptor, nitrate. 68 refs., 4 figs., 5 tabs.

  17. Adverse Birth Outcomes and Maternal Exposure to Trichloroethylene and Tetrachloroethylene through Soil Vapor Intrusion in New York State

    PubMed Central

    Lewis-Michl, Elizabeth L.; Gomez, Marta I.

    2011-01-01

    Background: Industrial spills of volatile organic compounds (VOCs) in Endicott, New York (USA), have led to contamination of groundwater, soil, and soil gas. Previous studies have reported an increase in adverse birth outcomes among women exposed to VOCs in drinking water. Objective: We investigated the prevalence of adverse birth outcomes among mothers exposed to trichloroethylene (TCE) and tetrachloroethylene [or perchloroethylene (PCE)] in indoor air contaminated through soil vapor intrusion. Methods: We examined low birth weight (LBW), preterm birth, fetal growth restriction, and birth defects among births to women in Endicott who were exposed to VOCs, compared with births statewide. We used Poisson regression to analyze births and malformations to estimate the association between maternal exposure to VOCs adjusting for sex, mothers age, race, education, parity, and prenatal care. Two exposure areas were identified based on environmental sampling data: one area was primarily contaminated with TCE, and the other with PCE. Results: In the TCE-contaminated area, adjusted rate ratios (RRs) were significantly elevated for LBW [RR = 1.36; 95% confidence interval (CI): 1.07, 1.73; n = 76], small for gestational age (RR = 1.23; 95% CI: 1.03, 1.48; n = 117), term LBW (RR = 1.68; 95% CI: 1.20, 2.34; n = 37), cardiac defects (RR = 2.15; 95% CI: 1.27, 3.62; n = 15), and conotruncal defects (RR = 4.91; 95% CI: 1.58, 15.24; n = 3). In the PCE-contaminated area, RRs for cardiac defects (five births) were elevated but not significantly. Residual socioeconomic confounding may have contributed to elevations of LBW outcomes. Conclusions: Maternal residence in both areas was associated with cardiac defects. Residence in the TCE area, but not the PCE area, was associated with LBW and fetal growth restriction. PMID:22142966

  18. Biodegradation of trichloroethylene and toluene by indigenous microbial populations in soil.

    PubMed Central

    Fan, S; Scow, K M

    1993-01-01

    The biodegradation of trichloroethylene (TCE) and toluene, incubated separately and in combination, by indigenous microbial populations was measured in three unsaturated soils incubated under aerobic conditions. Sorption and desorption of TCE (0.1 to 10 micrograms ml-1) and toluene (1.0 to 20 micrograms ml-1) were measured in two soils and followed a reversible linear isotherm. At a concentration of 1 micrograms ml-1, TCE was not degraded in the absence of toluene in any of the soils. In combination, both 1 microgram of TCE ml-1 and 20 micrograms of toluene ml-1 were degraded simultaneously after a lag period of approximately 60 to 80 h, and the period of degradation lasted from 70 to 90 h. Usually 60 to 75% of the initial 1 microgram of TCE ml-1 was degraded, whereas 100% of the toluene disappeared. A second addition of 20 micrograms of toluene ml-1 to a flask with residual TCE resulted in another 10 to 20% removal of the chemical. Initial rates of degradation of toluene and TCE were similar at 32, 25, and 18 degrees C; however, the lag period increased with decreasing temperature. There was little difference in degradation of toluene and TCE at soil moisture contents of 16, 25, and 30%, whereas there was no detectable degradation at 5 and 2.5% moisture. The addition of phenol, but not benzoate, stimulated the degradation of TCE in Rindge and Yolo silt loam soils, methanol and ethylene slightly stimulated TCE degradation in Rindge soil, glucose had no effect in either soil, and dissolved organic carbon extracted from soil strongly sorbed TCE but did not affect its rate of biodegradation. PMID:8328806

  19. The effect of salinity conditions on kinetics of trichloroethylene biodegradation by toluene-oxidizing cultures.

    PubMed

    Lee, Chi-Yuan; Liu, Wen-Der

    2006-09-01

    This study investigates the effect of salt (NaCl) conditions on the biodegradations of trichloroethylene (TCE) by mixed cultures enriched on toluene. Two cultures were separately cultivated in this investigation, involving culture LHTO4, cultivated with freshwater and culture HHTO4, cultivated with 3.5% (w/v) NaCl solution. Batch tests were conducted to elucidate the degradations of toluene, TCE and a mixture of toluene and TCE by cultures LHTO4 at salinities of 0, 2 and 3.5% and by HHTO4 at salinity of 3.5%. The measurements were analyzed with microbial kinetics. The results show that for culture LHTO4 in the resting cells, when the transient salinities increased from 0 to 3.5%, the maximum specific rate of TCE degradation, k(TCE), declined from 2.28 to 1.45 d(-1), and the observed TCE transformation capacity, T(c,obs), decreased from 0.060 to 0.036 mgTCE/mgVSS. In the presence of toluene, TCE degradation was more inhibited by toluene (inhibition coefficients, K(I,TOL) were 0.8, 2.2, and 0.96 mg/L for salinity 0, 2, and 3.5%, respectively) than toluene degradation was by TCE (K(I,TCE) were 14, 5.8, and 1000 mg/L for salinity 0, 2, and 3.5%, respectively). Under long-term salinity stress, the culture HHTO4 maintained its capacity to utilize toluene but lost its effectiveness in the cometabolic transformation of TCE: k(TCE) fell to 0.25 d(-1) and T(c,obs) dropped to 0.024 mgTCE/mgVSS. This work reveals that the degradation of TCE by toluene-oxidizing cultures under saline conditions can be best described by the chosen kinetic equations and experimentally estimated constants, which can thus be used to lay a foundation for the rational design of biological processes to remove TCE from saline solutions. PMID:16621274

  20. Experiments and three phase modelling of a biofilter for the removal of toluene and trichloroethylene.

    PubMed

    Das, Chhaya; Chowdhury, Ranjana; Bhattacharya, Pinaki

    2011-05-01

    Volatile organic compounds, namely, toluene, trichloroethylene, styrene, etc., disposed off by electronics and polymer industries, are very harmful. The treatment of VOC laden air through biochemical route is one of the potential options for reduction of their concentration in parts per million or parts per billion level. Under the present investigation, a 0.05-m diameter and 0.58-m high trickle bed biofilter has been studied for the removal of VOCs namely toluene and trichloroethylene from a simulated air-VOC mixture using pure strain of Pseudomonas putida (NCIM2650) in immobilized form. Inlet concentrations of VOCs have been varied in two ranges, the lower being 0.20-2.00g/m(3) and higher being 10-20g/m(3), respectively. The Monod type rate kinetics of removal of VOCs has been determined. A three-phase deterministic mathematical model has been developed taking the simultaneous reaction kinetics and interphase (gas to liquid to biofilm) mass transfer rate of VOCs into consideration. Experimentally determined kinetic parameters and mass transfer coefficients calculated using standard correlations have been used. Concentrations have been simulated for all the three phases. Simulated results based on the model have been compared with the experimental ones for both gas and liquid phases satisfactorily. The mathematical model validated through the successful comparison with experimental data may be utilized for the prediction of performance of biofilters undergoing removal of different VOCs in any further investigation and may be utilized for the scale-up of the system to industrial scale. PMID:21170726

  1. Trichloroethylene

    Integrated Risk Information System (IRIS)

    Trichloroethylene ; CASRN 79 - 01 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  2. Trichloroethylene

    Integrated Risk Information System (IRIS)

    EPA / 635 / R - 09 / 011F www.epa.gov / iris TOXICOLOGICAL REVIEW OF TRICHLOROETHYLENE ( CAS No . 79 - 01 - 6 ) In Support of Summary Information on the Integrated Risk Information System ( IRIS ) August 2011 U.S . Environmental Protection Agency Washington , DC DISCLAIMER This document has been rev

  3. Oxidation of trichloroethylene, toluene, and ethanol vapors by a partially saturated permeable reactive barrier

    NASA Astrophysics Data System (ADS)

    Mahmoodlu, Mojtaba G.; Hassanizadeh, S. Majid; Hartog, Niels; Raoof, Amir

    2014-08-01

    The mitigation of volatile organic compound (VOC) vapors in the unsaturated zone largely relies on the active removal of vapor by ventilation. In this study we considered an alternative method involving the use of solid potassium permanganate to create a horizontal permeable reactive barrier for oxidizing VOC vapors. Column experiments were carried out to investigate the oxidation of trichloroethylene (TCE), toluene, and ethanol vapors using a partially saturated mixture of potassium permanganate and sand grains. Results showed a significant removal of VOC vapors due to the oxidation. We found that water saturation has a major effect on the removal capacity of the permeable reactive layer. We observed a high removal efficiency and reactivity of potassium permanganate for all target compounds at the highest water saturation (Sw = 0.6). A change in pH within the reactive layer reduced oxidation rate of VOCs. The use of carbonate minerals increased the reactivity of potassium permanganate during the oxidation of TCE vapor by buffering the pH. Reactive transport of VOC vapors diffusing through the permeable reactive layer was modeled, including the pH effect on the oxidation rates. The model accurately described the observed breakthrough curve of TCE and toluene vapors in the headspace of the column. However, miscibility of ethanol in water in combination with produced water during oxidation made the modeling results less accurate for ethanol. A linear relationship was found between total oxidized mass of VOC vapors per unit volume of permeable reactive layer and initial water saturation. This behavior indicates that pH changes control the overall reactivity and longevity of the permeable reactive layer during oxidation of VOCs. The results suggest that field application of a horizontal permeable reactive barrier can be a viable technology against upward migration of VOC vapors through the unsaturated zone.

  4. Oxidation of trichloroethylene, toluene, and ethanol vapors by a partially saturated permeable reactive barrier.

    PubMed

    Mahmoodlu, Mojtaba G; Hassanizadeh, S Majid; Hartog, Niels; Raoof, Amir

    2014-08-01

    The mitigation of volatile organic compound (VOC) vapors in the unsaturated zone largely relies on the active removal of vapor by ventilation. In this study we considered an alternative method involving the use of solid potassium permanganate to create a horizontal permeable reactive barrier for oxidizing VOC vapors. Column experiments were carried out to investigate the oxidation of trichloroethylene (TCE), toluene, and ethanol vapors using a partially saturated mixture of potassium permanganate and sand grains. Results showed a significant removal of VOC vapors due to the oxidation. We found that water saturation has a major effect on the removal capacity of the permeable reactive layer. We observed a high removal efficiency and reactivity of potassium permanganate for all target compounds at the highest water saturation (Sw=0.6). A change in pH within the reactive layer reduced oxidation rate of VOCs. The use of carbonate minerals increased the reactivity of potassium permanganate during the oxidation of TCE vapor by buffering the pH. Reactive transport of VOC vapors diffusing through the permeable reactive layer was modeled, including the pH effect on the oxidation rates. The model accurately described the observed breakthrough curve of TCE and toluene vapors in the headspace of the column. However, miscibility of ethanol in water in combination with produced water during oxidation made the modeling results less accurate for ethanol. A linear relationship was found between total oxidized mass of VOC vapors per unit volume of permeable reactive layer and initial water saturation. This behavior indicates that pH changes control the overall reactivity and longevity of the permeable reactive layer during oxidation of VOCs. The results suggest that field application of a horizontal permeable reactive barrier can be a viable technology against upward migration of VOC vapors through the unsaturated zone. PMID:24992709

  5. Distributions and sea-to-air fluxes of chloroform, trichloroethylene, tetrachloroethylene, chlorodibromomethane and bromoform in the Yellow Sea and the East China Sea during spring.

    PubMed

    He, Zhen; Yang, Gui-Peng; Lu, Xiao-Lan; Zhang, Hong-Hai

    2013-06-01

    Halocarbons including chloroform (CHCl3), trichloroethylene (C2HCl3), tetrachloroethylene (C2Cl4), chlorodibromomethane (CHBr2Cl) and bromoform (CHBr3) were measured in the Yellow Sea (YS) and the East China Sea (ECS) during spring 2011. The influences of chlorophyll a, salinity and nutrients on the distributions of these gases were examined. Elevated levels of these gases in the coastal waters were attributed to anthropogenic inputs and biological release by phytoplankton. The vertical distributions of these gases in the water column were controlled by different source strengths and water masses. Using atmospheric concentrations measured in spring 2012 and seawater concentrations obtained from this study, the sea-to-air fluxes of these gases were estimated. Our results showed that the emissions of C2HCl3, C2Cl4, CHBr2Cl, and CHBr3 from the study area could account for 16.5%, 10.5%, 14.6%, and 3.5% of global oceanic emissions, respectively, indicating that the coastal shelf may contribute significantly to the global oceanic emissions of these gases. PMID:23466729

  6. Oxidation of trichloroethylene, 1,1-dichloroethylene, and chloroform by toluene/o-xylene monooxygenase from Pseudomonas stutzeri OX1

    SciTech Connect

    Chauhan, S.; Wood, T.K.; Barbieri, P.

    1998-08-01

    Toluene/o-xylene monooxygenase (ToMO) from Pseudomonas stutzeri OX1, which oxidizes toluene and o-xylene, was examined for its ability to degrade the environmental pollutants trichloroethylene (TCE), 1,1-dichloroethylene (1,1-DCE), cis-1,2-DCE, trans-1,2-DCE, chloroform, dichloromethane, phenol, 2,4-dichlorophenol, 2,4,5-trichlorophenol, 2,4,6-trichlorophenol, 2,3,5,6-tetrachlorophenol, and 2,3,4,5,6-pentachlorophenol. Escherichia coli JM109 that expressed ToMO from genes on plasmid pBZ1260 under control of the lac promoter degraded TCE, 1,1-DCE, and chloroform at initial rates of 3.1, 3.6, and 1.6 nmol, respectively. Stoichiometric amounts of chloride release were seen, indicating mineralization. Thus, the substrate range of ToMO is extended to include aliphatic chlorinated compounds.

  7. Activity-Dependent Enzymatic Assay for the Detection of Toluene-Oxidizing Bacteria Capable of Trichloroethylene Degradation

    NASA Astrophysics Data System (ADS)

    Kauffman, M. E.; Kauffman, M. E.; Keener, W. K.; Watwood, M. E.; Lehman, R. M.

    2001-12-01

    Toluene-oxidizing bacteria produce enzymes that cometabolically degrade trichloroethylene (TCE). These inducible enzymes are produced only in the presence of certain aromatic substrates such as toluene or phenol. Recent laboratory studies have utilized analog chemical substrates to identify production of bacterial enzymes capable of degrading trichloroethylene. These analog substrates produce chromogenic and/or fluorescent products when biotransformed by the enzymes of interest. In this study, 3-hydroxyphenylacetylene (3-HPA) was identified as an activity-dependent enzymatic probe for the detection of three of the four known toluene oxygenase enzymes capable of TCE degradation. Laboratory studies were conducted using pure cultures of Burkholderia cepacia G4, Burkholderia pickettii PKO1, and Pseudomonas putida F1. Cell cultures grown on lactate (non-enzyme inducing) or lactate and toluene (inducing) were trapped trapped on black polycarbonate filters, exposed to 3-HPA, and examined for fluorescence using an epifluorescent microscope. Additionally, B. cepacia G4 cells were grown under the same conditions, but in the presence of mineral and basalt specimens to allow for bacterial attachment. The specimens were then exposed to 3-HPA and examined under an epifluorescent microscope. Our results demonstrate that cells induced for the production of oxygenase enzymes, both unattached and attached, are able to transform 3-HPA to a fluorescent product, although cells attached to geologic materials, such as basalt, take substantially longer to transform the probe. Cells grown under non-inducing conditions do not transform the probe, regardless of their attachment status. Additionally, well water samples taken from a TCE-contaminated aquifer were successfully assayed using the 3-HPA enzymatic probe. The development of this enzyme activity-dependent enzymatic assay provides a fast and reliable method to assess the potential for TCE and aromatic contaminant bioremediation.

  8. BIOTRANSFORMATION OF TRICHLOROETHYLENE IN SOIL

    EPA Science Inventory

    The organic contaminants that are most commonly detected in groundwater are low-molecular-weight, chlorinated aliphatic hydrocarbons such as trichloroethylene (TCE), tetrachloroethylene (PCE), 1,1,1-trichloroethane, carbon tetrachloride, and chloroform. The authors exposed unsatu...

  9. Modeling trichloroethylene degradation by a recombinant pseudomonad expressing toluene ortho-monooxygenase in a fixed-film bioreactor

    SciTech Connect

    Sun, A.K.; Hong, J.; Wood, T.K.

    1998-07-05

    Burkholderia cepacia PR1{sub 23}(TOM{sub 23C}), expressing constitutively the TCE-degrading enzyme toluene ortho-monooxygenase (Tom), was immobilized on SIRAN{trademark} glass beads in a biofilter for the degradation and mineralization of gas-phase trichloroethylene (TCE). To interpret the experimental results, a mathematical model has been developed which includes axial dispersion, convection, film mass-transfer, and biodegradation coupled with deactivation of the TCE-degrading enzyme. Parameters used for numerical simulation were determined from either independent experiments or values reported in the literature. The model was compared with the experimental data, and there was good agreement between the predicted and measured TCE breakthrough curves. The simulations indicated that TCE degradation in the biofilter was not limited by mass transfer of TCE or oxygen from the gas phase to the liquid/biofilm phase (biodegradation limits), and predicts that improving the specific TCE degradation rates of bacteria will not significantly enhance long-term biofilter performance. The most important factors for prolonging the performance of biofilter are increasing the amount of active biomass and the transformation capacity enhancing resistance to TCE metabolism.

  10. Rhizoremediation of Trichloroethylene by a Recombinant, Root-Colonizing Pseudomonas fluorescens Strain Expressing Toluene ortho-Monooxygenase Constitutively

    PubMed Central

    Yee, Dennis C.; Maynard, Jennifer A.; Wood, Thomas K.

    1998-01-01

    Trichloroethylene (TCE) was removed from soils by using a wheat rhizosphere established by coating seeds with a recombinant, TCE-degrading Pseudomonas fluorescens strain that expresses the tomA+ (toluene o-monooxygenase) genes from Burkholderia cepacia PR123(TOM23C). A transposon integration vector was used to insert tomA+ into the chromosome of P. fluorescens 2-79, producing a stable strain that expressed constitutively the monooxygenase at a level of 1.1 nmol/min mg of protein (initial TCE concentration, 10 ?M, assuming that all of the TCE was in the liquid) for more than 280 cell generations (36 days). We also constructed a salicylate-inducible P. fluorescens strain that degraded TCE at an initial rate of 2.6 nmol/min mg of protein in the presence of 10 ?M TCE [cf. B. cepacia G4 PR123(TOM23C), which degraded TCE at an initial rate of 2.5 nmol/min mg of protein]. A constitutive strain, P. fluorescens 2-79TOM, grew (maximum specific growth rate, 0.78 h?1) and colonized wheat (3 106 CFU/cm of root) as well as wild-type P. fluorescens 2-79 (maximum specific growth rate, 0.77 h?1; level of colonization, 4 106 CFU/cm of root). Rhizoremediation of TCE was demonstrated by using microcosms containing the constitutive monooxygenase-expressing microorganism, soil, and wheat. These closed microcosms degraded an average of 63% of the initial TCE in 4 days (20.6 nmol of TCE/day plant), compared to the 9% of the initial TCE removed by negative controls consisting of microcosms containing wild-type P. fluorescens 2-79-inoculated wheat, uninoculated wheat, or sterile soil. PMID:9435067

  11. Toluene

    Integrated Risk Information System (IRIS)

    EPA / 635 / R - 05 / 004 TOXICOLOGICAL REVIEW OF TOLUENE ( CAS No . 108 - 88 - 3 ) In Support of Summary Information on the Integrated Risk Information System ( IRIS ) September 2005 U.S . Environmental Protection Agency Washington D.C . DISCLAIMER This docum ent has been reviewed in accordance wi

  12. Toluene

    Integrated Risk Information System (IRIS)

    Toluene ; CASRN 108 - 88 - 3 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effects )

  13. SURFACTANT-ENHANCED SOLUBILIZATION OF TETRACHLOROETHYLENE AND DEGRADATION PRODUCTS IN PUMP AND TREAT REMEDIATION

    EPA Science Inventory

    Experiments were conducted to investigate the enhanced solubilization of tetrachloroethylene (PCE), trichloroethylene (TCE), and 1,2-dichloroethylene (DCE) in nonionic surfactant solutions of Triton X-100, Brij-30, Igepal CA-720, and Tergitol NP-10 (alkylpolyoxyethylenes). urfact...

  14. TRICHLOROETHYLENE METABOLISM BY MICROORGANISMS THAT DEGRADE AROMATIC COMPOUNDS

    EPA Science Inventory

    Trichloroethylene (TCE) was metabolized by the natural microflora of three different environmental water samples when stimulated by the addition of either toluene or phenol. Two different strains of Pseudomonas putida that degrade toluene by a pathway containing a toluene dioxyge...

  15. Trichloroethylene metabolism by microorganisms that degrade aromatic compounds. [Pseudomonas putida

    SciTech Connect

    Nelson, M.J.; Montgomery, S.O.; Pritchard, P.H.

    1988-02-01

    Trichloroethylene (TCE) was metabolized by the natural microflora of three different environmental water samples when stimulated by the addition of either toluene or phenol. Two different strains of Pseudomonas putida that degrade toluene by a pathway containing a toluene dioxygenase also metabolized TCE. A mutant of one of these strains lacking an active toluene dioxygenase could not degrade TCE, but spontaneous revertants for toluene degradation also regained TCE-degradative ability. The results implicate toluene dioxygenase in TCE metabolism.

  16. Tetrachloroethylene intoxication in an autoerotic fatality.

    PubMed

    Isenschmid, D S; Cassin, B J; Hepler, B R; Kanluen, S

    1998-01-01

    This case report describes an accidental death due to the inhalation of tetrachloroethylene during an autoerotic episode. Tetrachloroethylene was administered from a can of Fix-A-Flat tire repair. Analysis of tetrachloroethylene was performed using headspace gas chromatography and electron capture detection. The blood tetrachloroethylene concentration of 62 mg/L was consistent with acute tetrachloroethylene intoxication. PMID:9456554

  17. Toxicological profile for tetrachloroethylene. Final report

    SciTech Connect

    Stevens, Y.W.; McCarroll, N.E.; Kearns, E.A.

    1993-04-01

    The Statement was prepared to give you information about tetrachloroethylene and to emphasize the human health effects that may result from exposure to it. The Environmental Protection Agency (EPA) has identified 1,300 sites on its National Priorities List (NPL). Tetrachloroethylene has been found in at least 714 of these sites. As EPA evaluates more sites, the number of sites at which tetrachloroethylene is found may change. The information is important for one to know because tetrachloroethylene may cause harmful health effects and because these sites are potential or actual sources of human exposure to tetrachloroethylene.

  18. MUTANTS OF PSEUDOMONAS CEPACIA G4 DEFECTIVE IN CATABOLISM OF AROMATIC COMPOUNDS AND TRICHLOROETHYLENE

    EPA Science Inventory

    Pseudomonas cepacia strain G4 possesses a novel pathway of toluene catabolism that is shown to be responsible for the degradation of trichloroethylene (TCE). his pathway involves conversion of toluene via o-cresol to 3-methylcatechol. o determine the enzyme f toluene degradation ...

  19. Reductive dechlorination of tetrachloroethylene (PCE) catalyzed by cyanocobalamin

    SciTech Connect

    Habeck, B.D.; Sublette, K.L.

    1995-12-31

    A biomimetic system has been developed for the reductive dechlorination of tetrachloroethylene (PCE). PCE was dechlorinated to trichloroethylene (TCE) and 1,2-dichloroethylene (DCE) in the presence of dithiothreitol or Ti (III) citrate and catalytic amounts of cyanocobalamin in both homogeneous reaction mixtures and packed bed reactor systems. In packed bed reactors with Ti (III) citrate as the reductant, PCE (0.18 mM) conversion averaged 55% at residence times of 1.75 and 3.5 h. The product distribution was 94% TCE and 6% DCE at the lower residence time. DCE formation increased to 45% at the higher residence time. No reduction of PCE was observed in the absence of cyanocobalamin. This system may be useful as a means of pretreatment of halogenated aliphatic hydrocarbons in advance of biological treatment.

  20. TRICHLOROETHYLENE IHIBITS VOLTAGE-SENSITIVE CALCIUM CURRENTS IN DIFFERENTIATED PC 12 CELLS.

    EPA Science Inventory

    ABSTRACT BODY: It has been demonstrated recently that volatile organic compounds (VOCs)such as toluene, perchloroethylene and trichloroethylene inhibit function of voltage-sensitive calcium channels (VSSC). Such actions are hypothesized to contribute to the acute neurotoxicity of...

  1. CONSTITUTIVE DEGRADATION OF TRICHLOROETHYLENE BY AN ALTERED BACTERIUM IN A GAS-PHASE BIOREACTOR

    EPA Science Inventory

    Pseudomonas cepacia G4 expresses a unique toluene ortho-monooxygenase (Tom) that enables it to degrade toluene and trichloroethylene (TCE). ransposon mutants of G4 have been isolated that constitutively express Tom. wo fixed-film bioreactor designs were investigated for the explo...

  2. Anaerobic and aerobic/anaerobic treatment for tetrachloroethylene (PCE)

    SciTech Connect

    Guiot, S.R.; Kuang, X.; Beaulieu, C.; Corriveau, A.; Hawari, J.

    1995-12-31

    The reductive dechlorination of tetrachloroethylene (PCE) was studied in a laboratory-scale upflow anaerobic sludge bed (UASB) reactor using sucrose, lactic acid, propionic acid, and methanol as cosubstrates. Parallel experiments were performed to compare the novel coupled anaerobic/aerobic reactor with the conventional UASB. More than 95% of PCE was transformed in both reactors. Complete dechlorination in the UASB reactor decreased with increased PCE loading, declining from 45 to 19%. Minor concentrations of trichloroethylene and of undegraded PCE were detected in the liquid effluent throughout the experiment. Dichloroethylene was the dominant metabolite of all PCE loads, while vinyl chloride was not detected in the liquid effluent. For both reactor types, increased PCE loading led to lower chemical oxygen demand (COD) removal rates caused by a decrease in the specific acetate utilization rate. This, combined with a decline of the specific total PCE dechlorination activity, may cause long-term stability problems in the UASB reactor. The coupled reactor demonstrated higher specific PCE degradation rates at all PCE loading levels and a higher specific total dechlorination rate at the highest PCE loading. These characteristics may promote long-term stability of the coupled reactor system.

  3. Cometabolic biodegradation of trichloroethylene in a biofilm reactor

    SciTech Connect

    Arcangeli, J.P.; Arvin, E.; Jensen, H.M.

    1995-12-31

    Cometabolic degradation of trichloroethylene (TCE) in an aerobic biofilm system with toluene as primary substrate was investigated. TCE degradation rate was first-order, giving an average first-order surface removal rate constant, k{sub 1,a}, of 0.26 m/d. TCE was probably degraded by a toluene-induced enzyme. However, if toluene was provided in high concentrations, degradation of TCE was inhibited. Furthermore, it appeared that TCE inhibited toluene degradation. This inhibition increased with the TCE concentration in the reactor, but it decreased with an increasing toluene concentration. The authors conclude that these interactions could be the result of a competitive inhibition between TCE and toluene. Practically, this shows that degradation of TCE can be maximized if an optimum concentration of toluene is provided. An example presented in this paper reveals that the optimum toluene concentration was in the range of 200 to 500 {micro}g/L for a TCE inlet concentration of 135 {micro}g/L. Under these optimal conditions, the TCE degradation rate was 0.045 g m{sup {minus}2} d{sup {minus}1}, leading to a first-order surface removal rate constant of 0.4 m/d and a transformation yield of 0.05 g TCE/g toluene degraded.

  4. HEALTH ASSESSMENT DOCUMENT FOR TETRACHLOROETHYLENE (PERCHLOROETHYLENE)

    EPA Science Inventory

    Tetrachloroethylene (PERC) is believed to exert its adverse effects upon humans via metabolism by the liver. Concern that PERC is likely to be a human carcinogen is based upon the evidence of the National Cancer Institute bioassay, in which PERC induced a statistically significan...

  5. ROUTE-DEPENDENT EFFECTS OF TOLUENE ON SIGNAL DETECTION BEHAVIOR IN RATS.

    EPA Science Inventory

    The acute effects of toluene and other solvents on behavior are thought to depend upon their concentration in the brain. We have shown previously that inhaled toluene and trichloroethylene disrupt sustained attention in rats as assessed with a visual signal detection task (SDT). ...

  6. Toluene embryopathy

    SciTech Connect

    Hersh, J.H.; Podruch, P.E.; Rogers, G.; Weisskopf, B.

    1985-06-01

    Three children with microcephaly, central nervous system dysfunction, minor craniofacial and limb anomalies, and variable growth deficiency were born to women who inhaled large quantities of pure toluene throughout pregnancy. The features in there patients were reminiscent of the patterns of malformation previously described following in utero exposure to alcohol, certain anticonvulsants, and hyperphenylalaninemia. It is possible that there is a variable and nonspecific teratogenic phenotype characterized by alterations in growth, development, and morphogenesis. Careful evaluation and monitoring of infants exposed to toluene in utero are needed to determine the significance of these findings.

  7. TRICHLOROETHYLENE (TCE) ISSUE PAPERS

    EPA Science Inventory

    These issue papers are a part of EPA's effort to develop a trichloroethylene (TCE) human health risk assessment. These issue papers were developed by EPA to provide scientific and technical information to the National Academy of Sciences (NAS) for use in developing their advice ...

  8. Dependence of tetrachloroethylene dechlorination on methanogenic substrate consumption by Methanosarcina sp. strain DCM.

    PubMed Central

    Fathepure, B Z; Boyd, S A

    1988-01-01

    Tetrachloroethylene (perchloroethylene, PCE) is a suspected carcinogen and a common groundwater contaminant. Although PCE is highly resistant to aerobic biodegradation, it is subject to reductive dechlorination reactions in a variety of anaerobic habitats. The data presented here clearly establish that axenic cultures of Methanosarcina sp. strain DCM dechlorinate PCE to trichloroethylene and that this is a biological reaction. Growth on methanol, acetate, methylamine, and trimethylamine resulted in PCE dechlorination. The reductive dechlorination of PCE occurred only during methanogenesis, and no dechlorination was noted when CH4 production ceased. There was a clear dependence of the extent of PCE dechlorination on the amount of methanogenic substrate (methanol) consumed. The amount of trichloroethylene formed per millimole of CH4 formed remained essentially constant for a 20-fold range of methanol concentrations and for growth on acetate, methylamine, and trimethylamine. These results suggest that the reducing equivalents for PCE dechlorination are derived from CH4 biosynthesis and that the extent of chloroethylene dechlorination can be enhanced by stimulating methanogenesis. It is proposed that electrons transferred during methanogenesis are diverted to PCE by a reduced electron carrier involved in methane formation. Images PMID:3223763

  9. SELECTION OF A PSEUDOMONAS CEPACIA STRAIN CONSTITUTIVE FOR THE DEGRADATION OF TRICHLOROETHYLENE

    EPA Science Inventory

    Tn5 insertion mutants of pseudomonas cepacia G4 were produced and were unable to degrade trichloroethylene (TCE), toluene, or phenol or to transform m-trifluoromethyl phenol (TEMP) to 7,7,7-trifluoro2-hydroxy-6-oxo-2,4-heptadienoic acid (TFHA). pontaneous reversion to growth on p...

  10. Biodegradation of trichloroethylene and involvement of an aromatic biodegradative pathway.

    PubMed Central

    Nelson, M J; Montgomery, S O; Mahaffey, W R; Pritchard, P H

    1987-01-01

    Biodegradation of trichloroethylene (TCE) by bacterial strain G4 resulted in complete dechlorination of the compound, as indicated by the production of inorganic chloride. A component of the water from which strain G4 was isolated that was required for TCE degradation was identified as phenol. Strain G4 degraded TCE in the presence of chloramphenicol only when preinduced with phenol. Toluene, o-cresol. and m-cresol could replace the phenol requirement. Two of the inducers of TCE metabolism, phenol and toluene, apparently induced the same aromatic degradative pathway that cleaved the aromatic ring by meta fission. Cells induced with either phenol or toluene had similar oxidation rates for several aromatic compounds and had similar levels of catechol-2,3-dioxygenase. The results indicate that one or more enzymes of an inducible pathway for aromatic degradation in strain G4 are responsible for the degradation of TCE. PMID:3606099

  11. Induction of the tod operon by trichloroethylene in Pseudomonas putida TVA8

    SciTech Connect

    Shingleton, J.T.; Applegate, B.M.; Nagel, A.C.; Bienkowski, P.R.; Sayler, G.S.

    1998-12-01

    Bioluminescence, mRNA levels, and toluene degradation rates in Pseudomonas putida TVA8 were measured as a function of various concentrations of toluene and trichloroethylene (TCE). TVA8 showed an increasing bioluminescence response to increasing TCE and toluene concentrations. Compared to uninduced TVA8 cultures, todC1 mRNA levels increased 11-fold for TCE-treated cultures and 13-fold for toluene-treated cultures. Compared to uninduced P. putida F1 cultures, todC1 mRNA levels increased 4,4-fold for TCE-induced cultures and 4.9-fold for toluene-induced cultures. Initial toluene degradation rates were linearly correlated with specific bioluminescence in TVA8 cultures.

  12. Reduction of hexachloroethane to tetrachloroethylene in groundwater

    NASA Astrophysics Data System (ADS)

    Criddle, Craig S.; McCarty, Perry L.; Claire Elliott, M.; Barker, James F.

    1986-02-01

    At the Canadian Forces Base, Borden, hexachloroethane (HCE) that was introduced into an unconfined sand aquifer disappeared rapidly, with a half-life of about 40 days. Laboratory-scale studies, initiated to help assess the fate of HCE, indicated that it is reductively biotransformed to tetrachloroethylene (PCE) both by aerobic cultures of wastewater microflora and by microcosms containing unhomogenized Borden aquifer material. The results also indicate that the agents involved in the aquifer transformation of HCE to PCE are not homogeneously distributed in the aquifer material.

  13. KINETIC STUDIES OF THE REACTION OF HYDROXYL RADICALS WITH TRICHLOROETHYLENE AND TETRACHLOROETHYLENE. (R826169)

    EPA Science Inventory

    Rate coefficients are reported for the gas-phase reaction of the hydroxyl radical (OH) with C2HCl3 (k1) and C2Cl4 (k2) over an extended temperature range at 74010 Torr in a He bath gas. These...

  14. KINETICS OF THE TRANSFORMATION OF TRICHLOROETHYLENE AND TETRACHLOROETHYLENE BY IRON SULFIDE. (R825958)

    EPA Science Inventory

    The transformation of nine halogenated aliphatic compounds
    by 10 g/L (0.5 m2/L) FeS at pH 8.3 was studied in batch
    experiments. These compounds were as follows:
    pentachloroethane (PCA), 1,1,2,2- and 1,1,1,2-tetrachloroethanes (1122-TeCA and 1112-TeCA), 1,1,...

  15. KINETIC STUDIES OF THE REACTION OF HYDROXYL RADICALS WITH TRICHLOROETHYLENE AND TETRACHLOROETHYLENE. (R826169)

    EPA Science Inventory

    Rate coefficients are reported for the gas-phase reaction of the hydroxyl radical (OH) with C2HCl3 (k1) and C2Cl4 (k2) over an extended temperature range at 740±10 Torr in a He bath gas. These...

  16. Residual tetrachloroethylene in dry-cleaned clothes

    SciTech Connect

    Kawauchi, T.; Nishiyama, K.

    1989-04-01

    A large amount of residual tetrachloroethylene (TCE), up to 13.6 mg/g, was found in dry-cleaned clothes. The amounts varied among dry-cleaning establishments as well as with the type of fiber. The causes of these variations are discussed. Air TCE concentrations in the closed environment of dry-cleaning outlets were elevated: the highest reading was 4.8 mg/m3. The expired air of outlet employees also showed an increased level of TCE (average, 36.9 micrograms/m3). Increased air contamination from TCE released from dry-cleaned clothes was also observed in the home of a consumer. To reduce environmental contamination from TCE released from any of these sources, the amount of residual TCE in dry-cleaned clothes should be minimized.

  17. UNCERTAINTIES IN TRICHLOROETHYLENE PHARMACOKINETIC MODELS

    EPA Science Inventory

    Understanding the pharmacokinetics of a chemicalits absorption, distribution, metabolism, and excretion in humans and laboratory animals is critical to the assessment of its human health risks. For trichloroethylene (TCE), numerous physiologically-based pharmacokinetic (PBPK)...

  18. Urinary excretion of tetrachloroethylene (perchloroethylene) in experimental and occupational exposure

    SciTech Connect

    Imbriani, M.; Ghittori, S.; Pezzagno, G.; Capodaglio, E.

    1988-07-01

    Fifteen human volunteers were exposed to tetrachloroethylene (perchloroethylene, tetrachloroethene) vapor at 3.6-316 mg/m3 for 2-4 hr at rest (10 cases) and during light physical exercise (5 cases). Subsequently, 55 workers who were occupationally exposed to tetrachloroethylene in eight commercial dry cleaning facilities were studied (median value, 66 mg/m3; geometric standard deviation, 3.15 mg/m3). In both the experimentally exposed subjects and occupationally exposed workers the urinary concentration of tetrachloroethylene showed a linear relationship to the corresponding environmental time-weighted average concentration. The findings indicate that the urinary concentration of tetrachloroethylene can be used as an appropriate biological exposure indicator. In occupationally exposed subjects performing moderate work, the urinary tetrachloroethylene concentration corresponding to the time-weighted average of the threshold limit value proved to be 120 mcg/L and its 95% lower confidence limit (biological threshold) 100 mcg/L. The effects of workload on the tetrachloroethylene urinary elimination are also accounted for.

  19. Chloroform mineralization by toluene-oxidizing bacteria.

    PubMed Central

    McClay, K; Fox, B G; Steffan, R J

    1996-01-01

    Seven toluene-oxidizing bacterial strains (Pseudomonas mendocina KR1, Burkholderia cepacia G4, Pseudomonas putida F1, Pseudomonas pickettii PKO1, and Pseudomonas sp. strains ENVPC5, ENVBF1, and ENV113) were tested for their ability to degrade chloroform (CF). The greatest rate of CF oxidation was achieved with strain ENVBF1 (1.9 nmol/min/mg of cell protein). CF also was oxidized by P. mendocina KR1 (0.48 nmol/min/mg of cell protein), strain ENVPC5 (0.49 nmol/min/mg of cell protein), and Escherichia coli DH510B(pRS202), which contained cloned toluene 4-monooxygenase genes from P. mendocina KR1 (0.16 nmol/min/mg of cell protein). Degradation of [14C]CF and ion analysis of culture extracts revealed that CF was mineralized to CO2 (approximately 30 to 57% of the total products), soluble metabolites (approximately 15%), a total carbon fraction irreversibly bound to particulate cellular constituents (approximately 30%), and chloride ions (approximately 75% of the expected yield). CF oxidation by each strain was inhibited in the presence of trichloroethylene, and acetylene significantly inhibited trichloroethylene oxidation by P. mendocina KR1. Differences in the abilities of the CF-oxidizing strains to degrade other halogenated compounds were also identified. CF was not degraded by B. cepacia G4, P. putida F1, P. pickettii PKO1, Pseudomonas sp. strain ENV113, or P. mendocina KRMT, which contains a tmo mutation. PMID:8702263

  20. Metabolism of trichloroethylene.

    PubMed Central

    Lash, L H; Fisher, J W; Lipscomb, J C; Parker, J C

    2000-01-01

    A major focus in the study of metabolism and disposition of trichloroethylene (TCE) is to identify metabolites that can be used reliably to assess flux through the various pathways of TCE metabolism and to identify those metabolites that are causally associated with toxic responses. Another important issue involves delineation of sex- and species-dependent differences in biotransformation pathways. Defining these differences can play an important role in the utility of laboratory animal data for understanding the pharmacokinetics and pharmacodynamics of TCE in humans. Sex-, species-, and strain-dependent differences in absorption and distribution of TCE may play some role in explaining differences in metabolism and susceptibility to toxicity from TCE exposure. The majority of differences in susceptibility, however, are likely due to sex-, species-, and strain-dependent differences in activities of the various enzymes that can metabolize TCE and its subsequent metabolites. An additional factor that plays a role in human health risk assessment for TCE is the high degree of variability in the activity of certain enzymes. TCE undergoes metabolism by two major pathways, cytochrome P450 (P450)-dependent oxidation and conjugation with glutathione (GSH). Key P450-derived metabolites of TCE that have been associated with specific target organs, such as the liver and lungs, include chloral hydrate, trichloroacetate, and dichloroacetate. Metabolites derived from the GSH conjugate of TCE, in contrast, have been associated with the kidney as a target organ. Specifically, metabolism of the cysteine conjugate of TCE by the cysteine conjugate ss-lyase generates a reactive metabolite that is nephrotoxic and may be nephrocarcinogenic. Although the P450 pathway is a higher activity and higher affinity pathway than the GSH conjugation pathway, one should not automatically conclude that the latter pathway is only important at very high doses. A synthesis of this information is then presented to assess how experimental data, from either animals or from (italic)in vitro (/italic)studies, can be extrapolated to humans for risk assessment. (italic)Key words(/italic): conjugate beta-lyase, cysteine glutathione, cytochrome P450, glutathione (italic)S(/italic)-transferases, metabolism, sex dependence, species dependence, tissue dependence, trichloroethylene. Images Figure 2 Figure 3 PMID:10807551

  1. Exposure assessment of trichloroethylene.

    PubMed Central

    Wu, C; Schaum, J

    2000-01-01

    This article reviews exposure information available for trichloroethylene (TCE) and assesses the magnitude of human exposure. The primary sources releasing TCE into the environment are metal cleaning and degreasing operations. Releases occur into all media but mostly into the air due to its volatility. It is also moderately soluble in water and can leach from soils into groundwater. TCE has commonly been found in ambient air, surface water, and groundwaters. The 1998 air levels in microg/m(3) across 115 monitors can be summarized as follows: range = 0.01-3.9, mean = 0.88. A California survey of large water utilities in 1984 found a median concentration of 3.0 microg/L. General population exposure to TCE occurs primarily by inhalation and water ingestion. Typical average daily intakes have been estimated as 11-33 microg/day for inhalation and 2-20 microg/day for ingestion. A small portion of the population is expected to have elevated exposures as a result of one or more of these pathways: inhalation exposures to workers involved in degreasing operations, ingestion and inhalation exposures occurring in homes with private wells located near disposal/contamination sites, and inhalation exposures to consumers using TCE products in areas of poor ventilation. More current and more extensive data on TCE levels in indoor air, water, and soil are needed to better characterize the distribution of background exposures in the general population and elevated exposures in special subpopulations. Images Figure 1 PMID:10807565

  2. Reductive dechlorination of tri- and tetrachloroethylenes depends on transition from aerobic to anaerobic conditions

    SciTech Connect

    Kastner, M. )

    1991-07-01

    Aerobic enrichment cultures from contaminated groundwaters dechlorinated trichloroethylene (TCE) (14.6 mg/liter; 111 {mu}mol/liter) and tetrachloroethylene (PCE) (16.2 mg/liter; 98 {mu}mol/liter) reductively within 4 days after the transition from aerobic to anaerobic conditions. The transformation products were equimolar amounts of cis-1,2-dichloroethylene and traces of 1,1-dichloroethylene. No other chlorinated product and no methane were detected. The change was accompanied by the release of sulfide, which caused a decrease in the redox potential from 0 - {minus}150 mV. In sterile control experiments, sulfide led to the abiotic formation of traces of 1,1-dichloroethylene without cis-1,2-dichloroethylene production. The reductive dechlorination of PCE via TCE depended on these specific transition conditions after consumption of the electron acceptor oxygen or nitrate. Repeated feeding of TCE or PCE to cultures after the change to anaerobic conditions yielded no further dechlorination. Only aerobic subcultures with an air/liquid ratio of 1:4 maintained dechlorination activities; anaerobic subcultures showed no transformation. Bacteria from noncontaminated sites showed no reduction under the same conditions.

  3. In vitro dehalogenation of tetrachloroethylene (PCE) by cell-free extracts of Clostridium bifermentans DPH-1.

    PubMed

    Chang, Y C; Okeke, B C; Hatsu, M; Takamizawa, K

    2001-06-01

    Cell-free extracts of Clostridium bifermentans DPH-1 catalyzed tetrachloroethylene (PCE) dechlorination. PCE degradation was stimulated by addition of a variety of electron donors. Ethanol (0.61 mM) was the most effective electron donor for PCE dechlorination. Maximum activity was recorded at 30 degrees C and pH 7.5. Addition of NADH as a cofactor stimulated enzymatic activity but the activity was not stimulated by addition of metal ions. When the cell-free enzyme extract was incubated in the presence of titanium citrate as a reducing agent, the dehalogenase was rapidly inactivated by propyl iodide (0.5 mM). The activity of propyliodide-reacted enzyme was restored by illumination with a 250 W lamp. The dehalogenase activity was also inhibited by cyanide. The substrate spectrum of activity included trichloroethylene (TCE), cis-1,2-dichloroethylene (cDCE), trans-dichloroethylene, 1,1-dichloroethylene, 1,2-dichloroethane, and 1,1,2-trichloroethane. The highest rate of degradation of the chlorinated aliphatic compounds was achieved with PCE, and PCE was principally degraded via TCE to cDCE. Results indicate that the dehalogenase could play a vital role in the breakdown of PCE as well as a variety of other chlorinated aliphatic compounds. PMID:11333032

  4. Kinetics of tetrachloroethylene-reductive dechlorination catalyzed by vitamin B{sub 12}

    SciTech Connect

    Burris, D.R.; Deng, B.; Buck, L.E.; Hatfield, K.

    1998-09-01

    Reductive dechlorination kinetics of tetrachloroethylene (PCE) to ethylene catalyzed by vitamin B{sub 12} using Ti[III] citrate as the bulk reductant was examined in a vapor-water batch system. A kinetic model incorporating substrate-B{sub 12} electron-transfer complex formation and subsequent product release was developed. The model also accounted for the primary reductive dechlorination pathways (hydrogenolysis and reductive {beta} elimination) and vapor/water-phase partitioning. Reaction rate constants were sequentially determined by fitting the model to experimental kinetic data while moving upward through consecutive reaction pathways. The release of product from the complex was found to be second order with respect to substrate concentration for both PCE and acetylene; all other substrates appeared to release by first order. Reductive {beta} elimination was found to be a significant reaction pathway for trichloroethylene (TCE), and chloroacetylene was observed as a reactive intermediate. Acetylene production appears to be primarily due to the reduction of chloroacetylene derived from TCE. The reduction of cis-dichloroethylene (cis-DCE), the primary DCE isomer formed, was extremely slow, leading to a significant buildup of cis-DCE. The kinetics of acetylene and vinyl chloride reduction appeared to be limited by the formation of relatively stable substrate-B{sub 12} complexes. The relatively simple model examined appears to adequately represent the main features of the experimental data.

  5. Trichloroethylene. I. An overview.

    PubMed

    Waters, E M; Gerstner, H B; Huff, J E

    1977-01-01

    Trichloroethylene (TCE) has been an industrial chemical of some importance for the past 50 years. First synthesized by Fischer in 1864, TCE has enjoyed considerable industrial usage as a degreaser and limited medical use as an inhalation anesthetic and analgesic. This TCE overview provides a narrative survey of the reference literature. Highlights include history, nomenclature, physical and chemical properties, manufacture, analysis, uses, metabolism, toxicology, carcinogenic potential, exposure routes, recommended standards, and conclusions. Chemically, TCE is a colorless, highly volatile liquid of molecular formula C2HCl3. Autoxidation of the unstable compound yields acidic products. Stabilizers are added to retard decomposition. TCE's multitude of industrial uses center around its highly effective fat-solvent properties. Metabolically, TCE is transformed in the liver to trichloroacetic acid, trichloroethanol, and trichloroethanol glucuronide; these breakdown products are excreted through the kidneys. Most toxic responses occur as a result of industrial exposures. TCE affects principally the central nervous system (CNS). Short exposures result in subjective symptoms such as headache, nausea, and incoordination. Longer exposures may result in CNS depression, hepatorenal failure, and increased cardiac output. Cases of sudden death following TCE exposure are generally attributed to ventricular fibrillation. Current interest in TCE has focused on recent experimental data that implicate TCE as a cause of hepatocellular carcinoma in mice. No epidemiological data are available that demonstrate a similar action in humans. The overall population may be exposed to TCE through household cleaning fluids, decaffeinated coffee, and some spice extracts. The NIOSH recommended standard for TCE is 100 ppm as a time-weighted average for an 8-hr day, with a maximum allowable peak concentration of 150 ppm for 10 min. PMID:403297

  6. Trichloroethylene and cancer: epidemiologic evidence.

    PubMed Central

    Wartenberg, D; Reyner, D; Scott, C S

    2000-01-01

    Trichloroethylene is an organic chemical that has been used in dry cleaning, for metal degreasing, and as a solvent for oils and resins. It has been shown to cause liver and kidney cancer in experimental animals. This article reviews over 80 published papers and letters on the cancer epidemiology of people exposed to trichloroethylene. Evidence of excess cancer incidence among occupational cohorts with the most rigorous exposure assessment is found for kidney cancer (relative risk [RR] = 1.7, 95% confidence interval [CI] 1.1-2.7), liver cancer (RR = 1.9, 95% CI(1.0-3.4), and non-Hodgkin's lymphoma (RR = 1.5, 95% CI 0.9-2.3) as well as for cervical cancer, Hodgkin's disease, and multiple myeloma. However, since few studies isolate trichloroethylene exposure, results are likely confounded by exposure to other solvents and other risk factors. Although we believe that solvent exposure causes cancer in humans and that trichloroethylene likely is one of the active agents, we recommend further study to better specify the specific agents that confer this risk and to estimate the magnitude of that risk. PMID:10807550

  7. Mutants of Pseudomonas cepacia G4 defective in catabolism of aromatic compounds and trichloroethylene

    SciTech Connect

    Sheilds, M.S.; Montgomery, S.O. ); Cuskey, S.M.; Chapman, P.J.; Pritchard, P.H. )

    1991-07-01

    Pseudomonas cepacia G4 possesses a novel pathway of toluene catabolism that is shown to be responsible for the degradation of trichloroethylene (TCE). This pathway involves conversion of toluene via o-cresol to 3-methylcatechol. In order to determine the enzyme of toluene degradation that is responsible for TCE degradation, chemically induced mutants, blocked in the toluene ortho-monooxygenase (TOM) pathway of G4, were examined. Mutants of the phenotypic class designated TOM A{sup {minus}} were all defective in their ability to oxidize toluene, o-cresol, m-cresol, and phenol, suggesting that a single enzyme is responsible for conversion of these compounds to their hydroxylated products (3-methylcatechol from toluene, o-cresol, and m-cresol and catechol from phenol) in the wild type. Mutants of this class did not degrade TCE. Two other mutant classes which lacked 2-hydroxy-6-oxoheptadienoic acid hydrolase activity, were fully capable of TCE degradation. Therefore, TCE degradation is directly associated with the monooxygenation capability responsible for toluene, cresol, and phenol hydroxylation.

  8. SURFACTANT ENHANCED REMEDIATION OF SOIL COLUMNS CONTAMINATED BY RESIDUAL TETRACHLOROETHYLENE

    EPA Science Inventory

    The ability of aqueous surfactant solutions to recover tetrachloroethylene (PCE) entrapped in Ottawa and was evaluated in four column experiments. esidual PCE was emplaced by injecting 14 C-labeled PCE into water-saturated soil columns and displacing the free product with water. ...

  9. SURFACTANT ENHANCED REMEDIATION OF SOIL COLUMNS CONTAMINATED BY RESIDUAL TETRACHLOROETHYLENE

    EPA Science Inventory

    The ability of aqueous surfactant solutions to recover tetrachloroethylene (PCE) entrapped in Ottawa sand was evaluated in four column experiments. Residual PCE was emplaced by injecting 14C-labeled PCE into water-saturated soil columns and displacing the free product ...

  10. IRIS Toxicological Review of Tetrachloroethylene (Perchloroethylene) (External Review Draft)

    EPA Science Inventory

    EPA conducted a peer review of the scientific basis supporting the human health hazard and dose-response assessment of tetrachloroethylene that will appear on the Integrated Risk Information System (IRIS) database. Peer review is meant to ensure that science is used credibly and ...

  11. IRIS TOXICOLOGICAL REVIEW OF TETRACHLOROETHYLENE (PERCHLOROETHYLENE) (INTERAGENCY SCIENCE DISCUSSION DRAFT)

    EPA Science Inventory

    EPA is releasing the draft report, Toxicological Review of Tetrachloroethylene (Perchloroethylene), that was distributed to Federal agencies and White House Offices for comment during the Science Discussion step of the IRIS Assessment...

  12. TCE degradation by toluene/benzene monooxygenase of Pseudomonas aeruginosa JI104 and Escherichia coli recombinant

    SciTech Connect

    Koizumi, Junichi; Kitayama, Atsushi

    1995-12-31

    Pseudomonas aeruginosa JI104 incorporates more than three degradation pathways for aromatic compounds such as benzene, toluene, and xylene. A dioxygenase and two monooxygenases were cloned in Escherichia coli XL1-Blue. The dioxygenase yielding cis-toluene dihydrodiol and one of the monooxygenases producing o-cresol from toluene did not exhibit conspicuous activity in trichloroethylene (TCE) oxygenation, although DNA sequencing proved that the former enzyme was an isozyme of toluene dioxygenase of the known TCE decomposer P.putida F1. The other toluene/benzene monooxygenase that could generate o-, m-, and p-cresol simultaneously from toluene showed TCE oxygenation activity resulting in TCE decomposition in E. coli. The activity was inhibited competitively by toluene, ethylbenzene, and o- and m-xylene: their inhibition constants were greater than those of propylbenzene and p-xylene. When the E. coli recombinant harboring the monooxygenase was induced by isopropyl {beta}-D-thiogalactopyranoside (IPTG) and incubated in the absence of toluene, TCE degradation activity decreased during incubation, compared to that with toluene. Toluene probably controlled the lifetime of the enzyme.

  13. Toluene emissions from plants

    NASA Astrophysics Data System (ADS)

    Heiden, A. C.; Kobel, K.; Komenda, M.; Koppmann, R.; Shao, M.; Wildt, J.

    The emission of toluene from different plants was observed in continuously stirred tank reactors and in field measurements. For plants growing without stress, emission rates were low and ranged from the detection limit up to 2·10-16 mol·cm-2·s-1. Under conditions of stress, the emission rates exceeded 10-14 mol·cm-2·s-1. Exposure of sunflower (Helianthus annuus L. cv. Gigantheus) to 13CO2 resulted in 13C-labeling of the emitted toluene on a time scale of hours. Although no biochemical pathway for the production of toluene is known, these results indicate that toluene is synthesized by the plants. The emission rates of toluene from sunflower are dependent on nutrient supply and wounding. Since α-pinene emission rates are also influenced by these factors, toluene and α-pinene emissions show a high correlation. During pathogen attack on Scots pines (Pinus sylvestris L.) significant toluene emissions were observed. In this case emissions of toluene and α-pinene also show a good correlation. Toluene emissions were also found in field experiments with pines using branch enclosures.

  14. Lactate Injection by Electric Currents for Bioremediation of Tetrachloroethylene in Clay.

    PubMed

    Wu, Xingzhi; Gent, David B; Davis, Jeffrey L; Alshawabkeh, Akram N

    2012-12-30

    Biological transformation of tetrachloroethylene (PCE) in silty clay samples by ionic injection of lactate under electric fields is evaluated. To prepare contaminated samples, a silty clay slurry was mixed with PCE, inoculated with KB-1() dechlorinators and was consolidated in a 40 cm long cell. A current density between 5.3 and 13.3 A m(-2) was applied across treated soil samples while circulating electrolytes containing 10 mg L(-1) lactate concentration between the anode and cathode compartments to maintain neutral pH and chemically reducing boundary conditions. The total adsorbed and aqueous PCE was degraded in the soil to trichloroethylene (TCE), cis-1,2-dichloroethene (cis-DCE), vinyl chloride (VC) and ethene in 120 d, which is about double the time expected for transformation. Lactate was delivered into the soil by a reactive transport rate of 3.7 cm(2) d(-1) V(-1). PCE degradation in the clay samples followed zero order transformation rates ranging from 1.5 to 5 mg L(-1) d(-1) without any significant formation of TCE. cis-DCE transformation followed first order transformation rates of 0.06 to 0.10 per day. A control experiment conducted with KB-1 and lactate, but without electricity did not show any significant lactate buildup or cis-DCE transformation because the soil was practically impermeable (hydraulic conductivity of 210(-7) cm s(-1)). It is concluded that ionic migration will deliver organic additives and induce biological activity and complete PCE transformation in clay, even though the transformation occurs under slower rates compared to ideal conditions. PMID:23264697

  15. Lactate Injection by Electric Currents for Bioremediation of Tetrachloroethylene in Clay

    PubMed Central

    Wu, Xingzhi; Gent, David B.; Davis, Jeffrey L.; Alshawabkeh, Akram N.

    2012-01-01

    Biological transformation of tetrachloroethylene (PCE) in silty clay samples by ionic injection of lactate under electric fields is evaluated. To prepare contaminated samples, a silty clay slurry was mixed with PCE, inoculated with KB-1® dechlorinators and was consolidated in a 40 cm long cell. A current density between 5.3 and 13.3 A m−2 was applied across treated soil samples while circulating electrolytes containing 10 mg L−1 lactate concentration between the anode and cathode compartments to maintain neutral pH and chemically reducing boundary conditions. The total adsorbed and aqueous PCE was degraded in the soil to trichloroethylene (TCE), cis-1,2-dichloroethene (cis-DCE), vinyl chloride (VC) and ethene in 120 d, which is about double the time expected for transformation. Lactate was delivered into the soil by a reactive transport rate of 3.7 cm2 d−1 V−1. PCE degradation in the clay samples followed zero order transformation rates ranging from 1.5 to 5 mg L−1 d−1 without any significant formation of TCE. cis-DCE transformation followed first order transformation rates of 0.06 to 0.10 per day. A control experiment conducted with KB-1 and lactate, but without electricity did not show any significant lactate buildup or cis-DCE transformation because the soil was practically impermeable (hydraulic conductivity of 2×10−7 cm s−1). It is concluded that ionic migration will deliver organic additives and induce biological activity and complete PCE transformation in clay, even though the transformation occurs under slower rates compared to ideal conditions. PMID:23264697

  16. Trichloroethylene

    Integrated Risk Information System (IRIS)

    E PA / 6 3 5 / R - 09 / 01 1 F www . e p a . g o v / i r i s T O X ICO L O G ICA L RE V IE W OF TR I C H LO R O ETH Y LEN E C H A P TER 1 ( CA S No . 79 - 01 - 6 ) I n S uppo r t o f S um m a r y I nf o r m a t i o n o n t he I n t e gr at e d R i s k I n f or m at i on S ys t e m ( I R I S ) 1 . IN

  17. 40 CFR 721.3560 - Derivative of tetra-chloro-ethy-lene.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Health Administration regulations and set forth at 29 CFR 1910.134, and 30 CFR part 11, respectively, and... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Derivative of tetra-chloro-ethy-lene... Substances 721.3560 Derivative of tetra-chloro-ethy-lene. (a) Chemical substance and significant new...

  18. 40 CFR 721.3560 - Derivative of tetra-chloro-ethy-lene.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Health Administration regulations and set forth at 29 CFR 1910.134, and 30 CFR part 11, respectively, and... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Derivative of tetra-chloro-ethy-lene... Substances 721.3560 Derivative of tetra-chloro-ethy-lene. (a) Chemical substance and significant new...

  19. 40 CFR 721.3560 - Derivative of tetra-chloro-ethy-lene.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Health Administration regulations and set forth at 29 CFR 1910.134, and 30 CFR part 11, respectively, and... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Derivative of tetra-chloro-ethy-lene... Substances 721.3560 Derivative of tetra-chloro-ethy-lene. (a) Chemical substance and significant new...

  20. 40 CFR 721.3560 - Derivative of tetra-chloro-ethy-lene.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Health Administration regulations and set forth at 29 CFR 1910.134, and 30 CFR part 11, respectively, and... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Derivative of tetra-chloro-ethy-lene... Substances 721.3560 Derivative of tetra-chloro-ethy-lene. (a) Chemical substance and significant new...

  1. 40 CFR 721.3560 - Derivative of tetra-chloro-ethy-lene.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Health Administration regulations and set forth at 29 CFR 1910.134, and 30 CFR part 11, respectively, and... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Derivative of tetra-chloro-ethy-lene... Substances 721.3560 Derivative of tetra-chloro-ethy-lene. (a) Chemical substance and significant new...

  2. DECHLORINATION OF TRICHLOROETHYLENE USING ELECTROCHEMICAL METHODS

    EPA Science Inventory

    Electrochemical degradation (ECD) is used to decontaminate organic and inorganic contaminants through oxidative or reductive processes. The ECD of Trichloroethylene (TCE) dechlorinates TCE through electric reduction. TCE dechlorination presented in the literature utilized electro...

  3. Cometabolic degradation of trichloroethylene by Burkholderia cepacia G4 with poplar leaf homogenate.

    PubMed

    Kang, Jun Won; Doty, Sharon Lafferty

    2014-07-01

    Trichloroethylene (TCE), a chlorinated organic solvent, is one of the most common and widespread groundwater contaminants worldwide. Among the group of TCE-degrading aerobic bacteria, Burkholderia cepacia G4 is the best-known representative. This strain requires the addition of specific substrates, including toluene, phenol, and benzene, to induce the enzymes to degrade TCE. However, the substrates are toxic and introducing them into the soil can result in secondary contamination. In this study, poplar leaf homogenate containing natural phenolic compounds was tested for the ability to induce the growth of and TCE degradation by B. cepacia G4. The results showed that the G4 strain could grow and degrade TCE well with the addition of phytochemicals. The poplar leaf homogenate also functioned as an inducer of the toluene-ortho-monooxygenase (TOM) gene in B. cepacia G4. PMID:24992516

  4. Death due to acute tetrachloroethylene intoxication in a chronic abuser.

    PubMed

    Amadasi, Alberto; Mastroluca, Lavinia; Marasciuolo, Laura; Caligara, Marina; Sironi, Luca; Gentile, Guendalina; Zoja, Riccardo

    2015-05-01

    Volatile substances are used widespread, especially among young people, as a cheap and easily accessible drug. Tetrachloroethylene is one of the solvents exerting effects on the central nervous system with experiences of disinhibition and euphoria. The case presented is that of a 27-year-old female, found dead by her father at home with cotton swabs dipped in the nostrils. She was already known for this type of abuse and previously admitted twice to the hospital for nonfatal acute poisonings. The swabs were still soaked in tetrachloroethylene. Toxicological and histological investigations demonstrated the presence of an overlap between chronic intake of the substance (with high concentrations in sites of accumulation, e.g., the adipose tissue, and contemporary tissue damage, as histologically highlighted) and acute intoxication as final cause of death, with a concentration of 158 mg/L in cardiac blood and 4915 mg/kg in the adipose tissue. No other drugs or medicines were detected in body fluids or tissues, and to our knowledge, this is the highest concentration ever detected in forensic cases. This peculiar case confirms the toxicity of this substance and focuses on the importance of complete histological and toxicological investigations in the distinction between chronic abuse and acute intoxication. PMID:25605280

  5. Metalloporphyrin solubility: a trigger for catalyzing reductive dechlorination of tetrachloroethylene.

    PubMed

    Dror, Ishai; Schlautman, Mark A

    2004-02-01

    Metalloporphyrins are well known for their electron-transfer roles in many natural redox systems. In addition, several metalloporphyrins and related tetrapyrrole macrocycles complexed with various core metals have been shown to catalyze the reductive dechlorination of certain organic compounds, thus demonstrating the potential for using naturally occurring metalloporphyrins to attenuate toxic and persistent chlorinated organic pollutants in the environment. However, despite the great interest in reductive dechlorination reactions and the wide variety of natural and synthetic porphyrins currently available, only soluble porphyrins, which comprise a small fraction of this particular family of organic macrocycles, have been used as electron-transfer shuttles in these reactions. Results from the present study clearly demonstrate that metalloporphyrin solubility is a key factor in their ability to catalyze the reductive dechlorination of tetrachloroethylene and its daughter compounds. Additionally, we show that certain insoluble and nonreactive metalloporphyrins can be activated as catalysts merely by changing solution conditions to bring about their dissolution. Furthermore, once a metalloporphyrin is fully dissolved and activated, tetrachloroethylene transformation proceeds rapidly, giving nonchlorinated and less toxic alkenes as the major reaction products. Results from the present study suggest that if the right environmental conditions exist or can be created, specific metalloporphyrins may provide a solution for cleaning up sites that are contaminated with chlorinated organic pollutants. PMID:14982369

  6. Acute, nonfatal intoxication with trichloroethylene.

    PubMed

    Carrieri, Mariella; Magosso, Doriano; Piccoli, Pierpaolo; Zanetti, Edoardo; Trevisan, Andrea; Bartolucci, Giovanni Battista

    2007-07-01

    Nonfatal acute inhalation of trichloroethylene (TRI) at work was described. The subject, male, 54 years old, was drawn unconscious by a metal-degreasing machine and immediately sheltered in intensive care unit. Other than basic life support and common laboratory indices, blood and urine were collected to measure dose and kidney effect parameters such as TRI in blood and urine, trichloroethanol (TCE) and trichloroacetic acid (TCA) in urine, and total urinary proteins (TUP), urinary glutamine synthetase (GS) and urinary N-acetyl-beta-D-glucosaminidase (NAG). Two hours after accident, TRI in blood was 9 mg/l, but after 38 h it was below 1 mg/l. TCE and TCA have a peak 11 and 62 h after poisoning, respectively. Acute renal involvement was revealed by a peak of urinary proteins and enzymes 7 h after exposure with a second peak 74 h after. Seven day after hospitalisation the patient was dismissed with complete recovery. This nonfatal intoxication with TRI shows that the exposure was approximately 150 ppm, three times the ACGIH TLV (50 ppm) and that kidney was the only organ affected. Urinary enzymes, in particular GS, are good indices to monitor transient effects of TRI on the kidney. PMID:17285313

  7. Visual contrast sensitivity in children exposed to tetrachloroethylene.

    PubMed

    Storm, Jan E; Mazor, Kimberly A; Aldous, Kenneth M; Blount, Benjamin C; Brodie, Scott E; Serle, Janet B

    2011-01-01

    This study examined relationships between indoor air, breath, and blood tetrachloroethylene (perc) levels and visual contrast sensitivity (VCS) among adult and child residents of buildings with or without a colocated dry cleaner using perc. Decreasing trends in proportions of adults or children with maximum VCS scores indicated decreased VCS at a single spatial frequency (12 cycles per degree [cpd]) among children residing in buildings with colocated dry cleaners when indoor air perc level averaged 336 ?g/m; breath perc level averaged 159.5 ?g/m; and blood perc level averaged 0.51 ?g/L. Adjusted logistic regression indicated that increases in indoor air, breath, and blood perc levels among all child participants significantly increased the odds for decreased VCS at 12 cpd. Adult VCS was not significantly decreased by increasing indoor air, breath, or blood perc level. These results suggest that elevated residential perc exposures may alter children's VCS, a possible subclinical central nervous system effect. PMID:21864105

  8. Solubilization of trichloroethylene by polyelectrolyte/surfactant complexes

    SciTech Connect

    Uchiyama, Hirotaka; Christian, S.D.; Tucker, E.E.; Scamehorn, J.F. )

    1994-12-01

    An automated vapor pressure method is used to obtain solubilization isotherms for trichloroethylene (TCE) in polyelectrolyte/surfactant complexes throughout a wide range of solute activities at 20 and 25 C. The polyelectrolyte chosen is sodium poly(styrenesulfonate), PSS< and the surfactant is cetylpyridinium chloride or N-hexadecylpyridinium chloride, CPC. Data are fitted to the quadratic equation K = K[sub 0](1[minus][alpha]X + [beta]X[sup 2]), which correlates the solubilization equilibrium constant (K) with the mole fraction of TCE (X) in the micelles or complexes at each temperature. Activity coefficients are also obtained for TCE in the PSS/CPC complexes as a function of X. The general solubilization of TCE in PSS/CPC complexes resembles that of TCE in CPC micelles, as well as that of benzene or toluene in CPC micelles, suggesting that TCE solubilizes in ionic micelles both within the hydrocarbon micellar interior and near the micellar surface. The presence of the polyelectrolyte causes a small decrease in the ability of the cationic surfactant to solubilize TCE, while greatly reducing the concentration of the surfactant present in monomeric form. PSS/CPC complexes may be useful in colloid-enhanced ultrafiltration processes to purify organic-contaminated water.

  9. Solubilization of trichloroethylene by N-hexadecylpyridinium chloride micelles

    SciTech Connect

    Uchiyama, Hirotaka; Tucker, E.E.; Christian, S.D.; Scamehorn, J.F. )

    1994-02-10

    An automated vapor pressure method has been used to obtain solubilization isotherms for trichloroethylene (TCE) in N-hexadecylpyridinium chloride (CPC) micelles, throughout a wide range of solute activities and at temperatures varying from 15 to 45[degree]C. The simple empirical expression K = K[sub 0](1 - [alpha]X + [beta]X[sup 2]) is used to correlate the solubilization equilibrium constant (K) with the mole fraction of TCE in the micelles (X) at each temperature. The solubilization equilibrium constant has a maximum value at approximately 30[degree]C, the temperature at which the solubility of TCE in water is a minimum. Activity coefficients are also reported for TCE in the micelle; these values increase slightly with increasing mole fraction of TCE. The general solubilization behavior of TCE in CPC micelles resembles that of benzene or toluene in CPC, suggesting that TCE solubilizes in ionic micelles both within the hydrocarbon micellar interior and near the micellar surface. The values of [alpha] for TCE are much smaller than those for phenol and phenol derivatives, indicating that TCE is not as tightly anchored in the head group region of the CPC micelles as are more polar solutes such as phenol and chlorinated phenols. With increasing temperature, the tendency of TCE to solubilize within the hydrocarbon core region of the micelles increases, relative to its tendency to solubilize in the micellar surface region. 31 refs., 7 figs., 1 tab.

  10. RESPONSE TO ISSUES AND DATA SUBMISSIONS ON THE CARCINOGENICITY OF TETRACHLOROETHYLENE (PERCHLOROETHYLENE)

    EPA Science Inventory

    The scientific debate over the potential carcinogenicity of tetrachloroethylene (perchloroethylene, perc, PCE) spans several years. his document reviews the issues considered by the EPA's Science Advisory Board (SAB) during its review of the Draft Addendum to the Health Assessmen...

  11. 21 CFR 173.290 - Trichloroethylene.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Trichloroethylene. 173.290 Section 173.290 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN...: Decaffeinated ground coffee 25 parts per million. Decaffeinated soluble (instant) coffee extract 10 parts...

  12. Silylene- and disilyleneacetylene polymers from trichloroethylene

    DOEpatents

    Barton, Thomas J. (Ames, IA); Ijadi-Maghsoodi, Sina (Ames, IA)

    1990-07-10

    Organosilane polymers having recurring silyleneacetylene and/or disilyleneacetylene units are prepared in a one-pot synthesis from trichloroethylene. Depending on the organic substituents (R and R'), these polymers have useful film-forming properties, and are converted to the ceramic, silicon carbide upon heating in very uniform high yields. They can also be pulled into fibers.

  13. Silylene- and disilyleneacetylene polymers from trichloroethylene

    DOEpatents

    Barton, T.J.; Ijadi-Maghsoodi, S.

    1990-07-10

    Organosilane polymers having recurring silyleneacetylene and/or disilyleneacetylene units are prepared in a one-pot synthesis from trichloroethylene. Depending on the organic substituents (R and R[prime]), these polymers have useful film-forming properties, and are converted to the ceramic, silicon carbide upon heating in very uniform high yields. They can also be pulled into fibers.

  14. Test Pile Reactivity Loss Due to Trichloroethylene

    SciTech Connect

    Plumlee, K.E.

    2001-03-09

    The presence of trichloroethylene in the test pile caused a continual decrease in pile reactivity. A system which removed, purified, and returned 12,000 cfh helium to the pile has held contamination to a negligible level and has permitted normal pile operation.

  15. Indoor tetrachloroethylene levels and determinants in Paris dwellings.

    PubMed

    Roda, Clina; Kousignian, Isabelle; Ramond, Anna; Momas, Isabelle

    2013-01-01

    There is growing public health concern about indoor air quality. Tetrachloroethylene (PERC), a chlorinated volatile organic compound widely used as a solvent in dry cleaning facilities, can be a residential indoor air pollutant. As part of an environmental investigation included in the PARIS (Pollution and asthma Risk: an Infant Study) birth cohort, this study firstly aimed to document domestic PERC levels, and then to identify the factors influencing these levels using standardized questionnaires about housing characteristics and living conditions. Air samples were collected in the child's bedroom over one week using passive devices when infants were 1, 6, 9, and 12 months. PERC was identified and quantified by gas chromatography/mass spectrometry. PERC annual domestic level was calculated by averaging seasonal levels. PERC was omnipresent indoors, annual levels ranged from 0.6 to 124.2 ?g/m3. Multivariate linear and logistic regression models showed that proximity to dry cleaning facilities, do-it-yourself activities (e.g.: photographic development, silverware), presence of air vents, and building construction date (<1945) were responsible for higher domestic levels of PERC. This study, conducted in an urban context, provides helpful information on PERC contamination in dwellings, and identifies parameters influencing this contamination. PMID:23127492

  16. Prenatal and Early Childhood Exposure to Tetrachloroethylene and Adult Vision

    PubMed Central

    Getz, Kelly D.; Janulewicz, Patricia A.; Rowe, Susannah; Weinberg, Janice M.; Winter, Michael R.; Martin, Brett R.; Vieira, Veronica M.; White, Roberta F.

    2012-01-01

    Background: Tetrachloroethylene (PCE; or perchloroethylene) has been implicated in visual impairments among adults with occupational and environmental exposures as well as children born to women with occupational exposure during pregnancy. Objectives: Using a population-based retrospective cohort study, we examined the association between prenatal and early childhood exposure to PCE-contaminated drinking water on Cape Cod, Massachusetts, and deficits in adult color vision and contrast sensitivity. Methods: We estimated the amount of PCE that was delivered to the family residence from participants gestation through 5 years of age. We administered to this now adult study population vision tests to assess acuity, contrast sensitivity, and color discrimination. Results: Participants exposed to higher PCE levels exhibited lower contrast sensitivity at intermediate and high spatial frequencies compared with unexposed participants, although the differences were generally not statistically significant. Exposed participants also exhibited poorer color discrimination than unexposed participants. The difference in mean color confusion indices (CCI) was statistically significant for the Farnsworth test but not Lanthonys D-15d test [Farnsworth CCI mean difference = 0.05, 95% confidence interval (CI): 0.003, 0.10; Lanthony CCI mean difference = 0.07, 95% CI: 0.02, 0.15]. Conclusions: Prenatal and early childhood exposure to PCE-contaminated drinking water may be associated with long-term subclinical visual dysfunction in adulthood, particularly with respect to color discrimination. Further investigation of this association in similarly exposed populations is necessary. PMID:22784657

  17. Concentration of tetrachloroethylene in indoor air at a former dry cleaner facility as a function of subsurface contamination: a case study.

    PubMed

    Eklund, Bart M; Simon, Michelle A

    2007-06-01

    A field study was performed to evaluate indoor air concentrations and vapor intrusion (VI) of tetrachloroethylene (PCE) and other chlorinated solvents at a commercial retail site in Dallas, TX. The building is approximately 40 yr old and once housed a dry cleaning operation. Results from an initial site characterization were used to select sampling locations for the VI study. The general approach for evaluating VI was to collect time-integrated canister samples for off-site U.S. Environmental Protection Agency Method TO-15 analyses. PCE and other chlorinated solvents were measured in shallow soil gas, subslab soil-gas, indoor air, and ambient air. The subslab soil gas exhibited relatively high values: PCE < or =2,600,000 parts per billion by volume (ppbv) and trichloroethylene < or =170 ppbv. The attenuation factor, the ratio of indoor air and subslab soil-gas concentrations, was unusually low: approximately 5 x 10(-6) based on the maximum subslab soil-gas concentration of PCE and 1.4 x 10(-5) based on average values. PMID:17608009

  18. Experimental study of electrochemical fluorination of trichloroethylene

    NASA Technical Reports Server (NTRS)

    Polisena, C.; Liu, C. C.; Savinell, R. F.

    1982-01-01

    The electrochemical fluorination of trichloroethylene in anhydrous hydrogen fluoride at 0 C and at constant cell potential was investigated. A microprocessor-aided electrochemical fluorination reactor system that yields highly reproducible results was utilized. The following major two-carbon-chain products were observed: CHCl2-CCl2F, CHCl2-CClF2, CHClF-CCl2F, and CCl2F-CClF2. The first step in the reaction sequence was determined to be fluorine addition to the double bond, followed by replacement of first hydrogen and then chlorine by fluorine. Polymerization reactions yielded higher molecular weight or possible ring-type chlorofluorohydrocarbons. A comparison of the reaction products of electrochemical and chemical fluorinations of trichloroethylene is also discussed.

  19. Abatement of trichloroethylene using DBD plasma

    NASA Astrophysics Data System (ADS)

    Vesali-Naseh, M.; Xu, S.; Xu, L.; Khodadadi, A.; Mortazavi, Y.; Ostrikov, K.

    2014-08-01

    Dielectric barrier discharge plasma was used to oxidize trichloroethylene (TCE) in 21% of O2 in carriers of N2 and He. The degradation products of TCE were analyzed using gas chromatography mass spectrometry. TCE was decomposed completely at optimum energy density of 260 and 300 J/l for He and N2, respectively and its conversion followed zero order reaction. The TCE removal efficiency is decreased in humid air due to interception of reactive intermediates by OH radicals.

  20. Soot formation in shock-tube pyrolysis of toluene, toluene-methanol, toluene-ethanol, and toluene-oxygen mixtures

    SciTech Connect

    Alexiou, A.; Williams, A.

    1996-01-01

    Soot formation during the pyrolysis of argon diluted mixtures of toluene and binary mixtures of toluene-methanol and toluene-ethanol, and during the oxidation of toluene has been studied in a reflected shock tube. Soot induction times and rates of soot formation were measured at 632.8 and 1,152.0 nm by a laser beam attenuation method and these showed an Arrhenius dependence on shock temperature. Soot yields and soot amounts were also measured. The soot yield and amount were found to decrease with the addition of methanol and ethanol to toluene, with more pronounced effects for the methanol addition. The addition of oxygen to toluene strongly suppressed soot with a shift of the soot yield to lower temperatures. This laser effect was not found during alcohol addition to the toluene and therefore an alternative route to the soot formation at lower temperatures is suggested. A kinetic model was used to interpret the experimental trends and reasonably reproduced the experimental observations. However, the lack of good quantitative agreement emphasized the urgent need in establishing reliable kinetic data and reaction pathways on the oxidation of the benzyl radical and PAH species.

  1. IMPACTS OF TRICHLOROETHYLENE AND TOLUENE ON NITROGEN CYCLING IN SOIL. (R825433)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  2. [Measurement of tetrachloroethylene emissions at dry-cleaning establishments and their relation to MPEL values].

    PubMed

    Ponsold, B; Kath, H

    1990-10-01

    The existing tetrachloroethylene was measured with the gas chromatographic method (FID detector), the spectro-photometric method (ICI Manual) based on the Fujiwava reaction, and using the gas detector (as approximation). The results obtained, however, do not differ in principle. Contaminated room air and leakages are the main sources of tetrachloroethylene at the dry cleaners and prevent the lowering of the traditional MEC value set at 100 mgm-3. Therefore the trend of diminishing the emission of exhaust air form machines can be neglected as factor in a general assessment. From the point of process engineering the problem of absorption of tetrachloroethylene in the indoor air with in the concentration range of 50 to 500 mgm-3 will be in the foreground. The excess of the MEC values is reflected by excess of the MIC values. It is difficult to keep to the MIC value within a distance of less than 50 m from the affected area of a dry cleaner. PMID:2284811

  3. Tetrachloroethylene Exposure and Bladder Cancer Risk: A Meta-Analysis of Dry-Cleaning-Worker Studies

    PubMed Central

    Vlaanderen, Jelle; Straif, Kurt; Ruder, Avima; Blair, Aaron; Hansen, Johnni; Lynge, Elsebeth; Charbotel, Barbara; Loomis, Dana; Kauppinen, Timo; Kyyronen, Pentti; Pukkala, Eero; Weiderpass, Elisabete

    2014-01-01

    Background: In 2012, the International Agency for Research on Cancer classified tetrachloroethylene, used in the production of chemicals and the primary solvent used in dry cleaning, as probably carcinogenic to humans based on limited evidence of an increased risk of bladder cancer in dry cleaners. Objectives: We assessed the epidemiological evidence for the association between tetrachloroethylene exposure and bladder cancer from published studies estimating occupational exposure to tetrachloroethylene or in workers in the dry-cleaning industry. Methods: Random-effects meta-analyses were carried out separately for occupational exposure to tetrachloroethylene and employment as a dry cleaner. We qualitatively summarized exposureresponse data because of the limited number of studies available. Results: The meta-relative risk (mRR) among tetrachloroethylene-exposed workers was 1.08 (95% CI: 0.82, 1.42; three studies; 463 exposed cases). For employment as a dry cleaner, the overall mRR was 1.47 (95% CI: 1.16, 1.85; seven studies; 139 exposed cases), and for smoking-adjusted studies, the mRR was 1.50 (95% CI: 0.80, 2.84; 4 casecontrol studies). Conclusions: Our meta-analysis demonstrates an increased risk of bladder cancer in dry cleaners, reported in both cohort and casecontrol studies, and some evidence for an exposureresponse relationship. Although dry cleaners incur mixed exposures, tetrachloroethylene could be responsible for the excess risk of bladder cancer because it is the primary solvent used and it is the only chemical commonly used by dry cleaners that is currently identified as a potential bladder carcinogen. Relatively crude approaches in exposure assessment in the studies of tetrachloroethylene-exposed workers may have attenuated the relative risks. Citation: Vlaanderen J, Straif K, Ruder A, Blair A, Hansen J, Lynge E, Charbotel B, Loomis D, Kauppinen T, Kyyronen P, Pukkala E, Weiderpass E, Guha N. 2014. Tetrachloroethylene exposure and bladder cancer risk: a meta-analysis of dry-cleaning-worker studies. Environ Health Perspect 122:661666;?http://dx.doi.org/10.1289/ehp.1307055 PMID:24659585

  4. Induction of toluene oxidation activity in pseudomonas mendocina KR1 and pseudomonas sp. strain ENVPC5 by chlorinated solvents and alkanes

    SciTech Connect

    McClay, K.; Streger, S.H.; Steffan, R.J.

    1995-09-01

    Toluene oxidation activity in Pseudomonas mendocina KR1 and Pseudomonas sp. strain ENVPC5 was induced by trichloroethylene (TCE), and induction was followed by the degradation of TCE. Higher levels of toluene oxidation activity were achieved in the presence of a supplemental growth substrate such as glutamate, with levels of activity of up to 86% of that observed with toluene-induced cells. Activity in P. mendocina KR1 was also induced by cis-1,2-dichloroethylene, perchloroethylene, chloroethane, hexane, pentane, and octane, but not by trans-1,2-dichloroethylene. Toluene oxidation was not induced by TCE in Burkholderia (Pseudomonas) cepacia G4, P. putida F1, Pseudomonas sp. strain ENV110, or Pseudomonas sp. strain ENV113. 22 refs., 4 tabs.

  5. Pulmonary reactions caused by welding-induced decomposed trichloroethylene

    SciTech Connect

    Sjoegren, B.P.; Plato, N.; Alexandersson, R.; Eklund, A.; Falkenberg, C. )

    1991-01-01

    This is the report of a welder who performed argon-shielded electric arc welding in an atmosphere containing trichloroethylene. He developed immediate respiratory symptoms, pulmonary edema 12 hours after exposure, and recurring dyspnea ten days after exposure. These pulmonary reactions might be explained by inhalation of decomposition products of trichloroethylene such as dichloroacetyl chloride and phosgene.

  6. Pulmonary reactions caused by welding-induced decomposed trichloroethylene.

    PubMed

    Sjögren, B; Plato, N; Alexandersson, R; Eklund, A; Falkenberg, C

    1991-01-01

    This is the report of a welder who performed argon-shielded electric arc welding in an atmosphere containing trichloroethylene. He developed immediate respiratory symptoms, pulmonary edema 12 hours after exposure, and recurring dyspnea ten days after exposure. These pulmonary reactions might be explained by inhalation of decomposition products of trichloroethylene such as dichloroacetyl chloride and phosgene. PMID:1984962

  7. Inhibited 1,1,1-trichloroethane replaces trichloroethylene for degreasing

    NASA Technical Reports Server (NTRS)

    Schuler, F. T.

    1970-01-01

    In fight against air pollution inhibited TCE /1,1,1-trichloroethane/ is effective substitute for trichloroethylene in degreasing plants. This chemical has only slight photochemical activity and causes little eye irritation. TCE is less toxic than trichloroethylene and can withstand production loads and conditions, or long term storage, without degradation.

  8. Mineralization of trichloroethylene by heterotrophic enrichment cultures

    SciTech Connect

    Phelps, T.J.; Ringelberg, D.; Mikell, A.T.; White, D.C. |; Fliermans, C.B.

    1988-12-31

    Microbial consortia capable of aerobically degrading greater than 99% of 50 mg/l exogenous trichloroethylene (TCE) have been enriched from TCE contaminated subsurface sediments. Concentrations of TCE greater than 300 mg/l were not degraded nor was TCE used as a sole energy source. Successful electron donors for growth included tryptone-yeast extract, methanol, methane or propane. The optimum temperature for growth was 22--37 C and the ph optimum was 7.0--8.1. Utilization of TCE occurred only after apparent microbial growth had ceased. The major end products recovered were hydrochloric acid and carbon dioxide. Minor products included dichloroethylene, vinylidine chloride and possibly chloroform.

  9. SUBCHRONIC TOXICITY OF TETRACHLOROETHYLENE (PERCHLOROETHYLENE) ADMINISTERED IN THE DRINKING WATER OF RATS

    EPA Science Inventory

    The study provides data on the effects of tetrachloroethylene in drinking solutions. The acute oral LD(50) was determined in male and female Charles River rats and found to be 3835 mg/kg for males and 3005 mg/kg for females. Male and female rats received theoretical daily doses o...

  10. SUMMARY REPORT OF THE PEER REVIEW WORKSHOP ON THE NEUROTOXICITY OF TETRACHLOROETHYLENE (PERCHLOROETHYLENE) DISCUSSION PAPER

    EPA Science Inventory

    The report, Summary Report of the Peer Review Workshop on the Neurotoxicity of Tetrachloroethylene (Perchloroethylene) Discussion, summarizes the discussions at a February 25, 2004, workshop that brought together recognized scientific experts to engage in a public discussi...

  11. Continuous Determination of High-Vapor Phase Concentrations of Tetrachloroethylene Using On-Line Mass Spectrometry

    EPA Science Inventory

    A method was developed to determine the vapor concentration of tetrachloroethylene (PCE) at and below its equilibrium vapor phase concentration, 168,000 ?g/L (25C). Vapor samples were drawn by vacuum into a six-port sampling valve and injected through a jet separator into an io...

  12. EVALUATION OF GEOPHYSICAL METHODS FOR THE DETECTION OF SUBSURFACE TETRACHLOROETHYLENE (PCE) IN CONTROLLED SPILL EXPERIMENTS

    EPA Science Inventory

    Tetrachloroethylene (PCE), typically used as a dry cleaning solvent, is a predominant contaminant in the subsurface at Superfund Sites. PCE is a dense non-aqueous phase liquid (DNAPL) that migrates downward into the earth, leaving behind areas of residual saturation and free prod...

  13. Characterization of the methanotrophic bacterial community present in a trichloroethylene-contaminated subsurface groundwater site.

    PubMed Central

    Bowman, J P; Jimnez, L; Rosario, I; Hazen, T C; Sayler, G S

    1993-01-01

    Groundwater, contaminated with trichloroethylene (TCE) and tetrachloroethylene (PCE), was collected from 13 monitoring wells at Area M on the U.S. Department of Energy Savannah River Site near Aiken, S.C. Filtered groundwater samples were enriched with methane, leading to the isolation of 25 methanotrophic isolates. The phospholipid fatty acid profiles of all the isolates were dominated by 18:1 omega 8c (60 to 80%), a signature lipid for group II methanotrophs. Subsequent phenotypic testing showed that most of the strains were members of the genus Methylosinus and one isolate was a member of the genus Methylocystis. Most of the methanotroph isolates exhibited soluble methane monooxygenase (sMMO) activity. This was presumptively indicated by the naphthalene oxidation assay and confirmed by hybridization with a gene probe encoding the mmoB gene and by cell extract assays. TCE was degraded at various rates by most of the sMMO-producing isolates, whereas PCE was not degraded. Savannah River Area M and other groundwaters, pristine and polluted, were found to support sMMO activity when supplemented with nutrients and then inoculated with Methylosinus trichosporium OB3b. The maximal sMMO-specific activity obtained in the various groundwaters ranged from 41 to 67% compared with maximal rates obtained in copper-free nitrate mineral salts media. This study partially supports the hypothesis that stimulation of indigenous methanotrophic communities can be efficacious for removal of chlorinated aliphatic hydrocarbons from subsurface sites and that the removal can be mediated by sMMO. PMID:8368829

  14. Effect of toluene concentration and hydrogen peroxide on Pseudomonas plecoglossicida cometabolizing mixture of cis-DCE and TCE in soil slurry.

    PubMed

    Li, Junhui; Lu, Qihong; de Toledo, Renata Alves; Lu, Ying; Shim, Hojae

    2015-12-01

    An indigenous Pseudomonas sp., isolated from the regional contaminated soil and identified as P. plecoglossicida, was evaluated for its aerobic cometabolic removal of cis-1,2-dichloroethylene (cis-DCE) and trichloroethylene (TCE) using toluene as growth substrate in a laboratory-scale soil slurry. The aerobic simultaneous bioremoval of the cis-DCE/TCE/toluene mixture was studied under different conditions. Results showed that an increase in toluene concentration level from 300 to 900 mg/kg prolonged the lag phase for the bacterial growth, while the bioremoval extent for cis-DCE, TCE, and toluene declined as the initial toluene concentration increased. In addition, the cometabolic bioremoval of cis-DCE and TCE was inhibited by the presence of hydrogen peroxide as the additional oxygen source, while the bioremoval of toluene (900 mg/kg) was enhanced after 9 days of incubation. The subsequent addition of toluene did not improve the cometabolic bioremoval of cis-DCE and TCE. The obtained results would help to enhance the applicability of bioremediation technology to the mixed waste contaminated sites. PMID:25963576

  15. Evaluation of toxicity of trichloroethylene for plants

    SciTech Connect

    Ryu, S.B.; Davis, L.C.; Dana, J.; Selk, K.; Erickson, L.E.

    1996-12-31

    Trichloroethylene (TCE) exposure of several species of plants was studied. Although earlier studies indicated that the root systems of plants could tolerate an aqueous phase concentration of 1 mM for a day, toxicity to whole plants was observed at somewhat lower levels in the gas phase in this study. The tested species included pumpkin (Cucurbita maxima), tomato (Lycopersicon esculentum), sweet potato (Dioscoria batata), tobacco (Nicotiana tabacum), soybean (Glycine max L. Merr), and alfalfa (Medicago sativa). Damage was observable as wilting or failure of the gravitropic response of shoots at levels above about 0.2 mM in the gas phase, which corresponds to 0.5 mM in the aqueous phase. Plants were usually killed quickly at gas phase concentrations above 0.4 mM.

  16. EVALUATION OF MULTIPLE PHARMACOKINETIC MODELING STRUCTURES FOR TRICHLOROETHYLENE

    EPA Science Inventory

    A series of PBPK models were developed for trichloroethylene (TCE) to evaluate biological processes that may affect the absorption, distribution, metabolism and excretion (ADME) of TCE and its metabolites.

  17. IRIS Toxicological Review of Trichloroethylene (TCE) (External Review Draft)

    EPA Science Inventory

    EPA is conducting a peer review and public comment of the scientific basis supporting the human health hazard and dose-response assessment of Trichloroethylene (TCE) that when finalized will appear on the Integrated Risk Information System (IRIS) database.

  18. IRIS Toxicological Review of Trichloroethylene (Interagency Science Discussion Draft)

    EPA Science Inventory

    EPA is releasing the draft report, Toxicological Review of Trichloroethylene, that was distributed to Federal agencies and White House Offices for comment during the Science Discussion step of the IRIS Assessment Development Process. Comments received from other Federal agencies ...

  19. Response to issues and data submissions on the carcinogenicity of tetrachloroethylene (perchloroethylene)

    SciTech Connect

    Parker, J.C.

    1991-09-01

    The scientific debate over the potential carciongenicity of tetrachloroethylene (perchloroethylene, perc, PCE) spans several years. The document reviews the issues considered by the EPA`s Science Advisory Board (SAB) during its review of the Draft Addenedum to the Health Assessment Document for Tetrachloroethylene (1986) and discusses relevant research data published between 1986 and early 1991. The topics include three tumor end points observed in rodents: (1) hepatocellular carcinoma in male and female mice, (2) renal tubule neoplasia in male rats, and (3) mononuclear cell leukemia in male and female rats, and data on metabolism, metagenicity, peroxisome proliferation, and alpha-2u-globulin. EPA`s recommended weight-of-evidence classification of perc is B2, probable human carcinogen.

  20. Trichloroethylene induces dopaminergic neurodegeneration in Fisher 344 rats.

    PubMed

    Liu, Mei; Choi, Dong-Young; Hunter, Randy L; Pandya, Jignesh D; Cass, Wayne A; Sullivan, Patrick G; Kim, Hyoung-Chun; Gash, Don M; Bing, Guoying

    2010-02-01

    Trichloroethylene, a chlorinated solvent widely used as a degreasing agent, is a common environmental contaminant. Emerging evidence suggests that chronic exposure to trichloroethylene may contribute to the development of Parkinson's disease. The purpose of this study was to determine if selective loss of nigrostriatal dopaminergic neurons could be reproduced by systemic exposure of adult Fisher 344 rats to trichloroethylene. In our experiments, oral administration of trichloroethylene induced a significant loss of dopaminergic neurons in the substantia nigra pars compacta in a dose-dependent manner, whereas the number of both cholinergic and GABAergic neurons were not decreased in the striatum. There was a robust decline in striatal levels of 3, 4-dihydroxyphenylacetic acid without a significant depletion of striatal dopamine. Rats treated with trichloroethylene showed defects in rotarod behavior test. We also found a significantly reduced mitochondrial complex I activity with elevated oxidative stress markers and activated microglia in the nigral area. In addition, we observed intracellular alpha-synuclein accumulation in the dorsal motor nucleus of the vagus nerve, with some in nigral neurons, but little in neurons of cerebral cortex. Overall, our animal model exhibits some important features of Parkinsonism, and further supports that trichloroethylene may be an environmental risk factors for Parkinson's disease. PMID:19922440

  1. Acute neurobehavioural effects of toluene.

    PubMed Central

    Echeverria, D; Fine, L; Langolf, G; Schork, A; Sampaio, C

    1989-01-01

    An acute inhalation chamber study of 42 college students was performed to investigate the relation between exposure to 0, 75, and 150 ppm of toluene and changes in central nervous system function and symptoms. Paid subjects were exposed for seven hours over three days. Verbal and visual short term memory (Sternberg, digit span, Benton, pattern memory); perception (pattern recognition); psychomotor skill (simple reaction time, continuous performance, digit symbol, hand-eye coordination, finger tapping, and critical tracking); manual dexterity (one hole); mood (profile of mood scales (POMS]; fatigue (fatigue checklist); and verbal ability were evaluated at 0800, 1200, and 1600 hours. Voluntary symptoms and observations of sleep were collected daily. An analysis of variance and test for trend was performed on the difference and score for each concentration reflecting an eight hour workday where each subject was their own control. A 3 x 3 Latin square study design evaluated toluene effects simultaneously, controlling for learning across the three days and the solvent order. Intersubject variation in solvent uptake was monitored in breath and urine. A 5-10% decrement in performance was considered significant if it was consistent with a linear trend at p less than 0.05. Adverse performance at 150 ppm toluene was found at 6.0% for digit span, 12.1% for pattern recognition (latency), 5.0% for pattern memory (number correct), 6.5% for one hole, and 3.0% for critical tracking. The number of headaches and eye irritation also increased in a dose response manner. The greatest effect was found for an increasing number of observations of sleep. Overall, no clear pattern of neurobehavioural effects was found consistent with the type 1 central nervous system as classified by the World Health Organisation. Subtle acute effects, however, were found just below and above the ACGIH TLV of 100 ppm toluene, supporting the position that the guideline be lowered since the biological threshold of behavioural effects may be comparable with the TLV. PMID:2765422

  2. Human variability and susceptibility to trichloroethylene.

    PubMed Central

    Pastino, G M; Yap, W Y; Carroquino, M

    2000-01-01

    Although humans vary in their response to chemicals, comprehensive measures of susceptibility have generally not been incorporated into human risk assessment. The U.S. EPA dose-response-based risk assessments for cancer and the RfD/RfC (reference dose-reference concentration) approach for noncancer risk assessments are assumed to protect vulnerable human subgroups. However, these approaches generally rely on default assumptions and do not consider the specific biological basis for potential susceptibility to a given toxicant. In an effort to focus more explicitly on this issue, this article addresses biological factors that may affect human variability and susceptibility to trichloroethylene (TCE), a widely used halogenated industrial solvent. In response to Executive Order 13045, which requires federal agencies to make protection of children a high priority in implementing their policies and to take special risks to children into account when developing standards, this article examines factors that may affect risk of exposure to TCE in children. The influence of genetics, sex, altered health state, coexposure to alcohol, and enzyme induction on TCE toxicity are also examined. PMID:10807552

  3. Trichloroethylene in urine as biological exposure index.

    TOXLINE Toxicology Bibliographic Information

    Imbriani M; Niu Q; Negri S; Ghittori S

    2001-07-01

    Occupational exposure to trichloroethylene (TRI) was studied by analysis of environmental air and urine from 49 workers operating in a special printing house on glass. For the measurement of environmental concentration of TRI (Cenv), the ambient air was sampled using personal passive dosimeters. The activated charcoal was desorbed with carbon disulfide and injected into a gas-cromatograph - mass spectrometer (GC-MSD). The biological monitoring of exposed workers was conducted by determining the concentration of TRI in urine (Curine) Urine concentration of TRI was determined by headspace analysis using GC-MSD. Significant correlation was found between the environmental TRI concentration and urinary TRI concentration. The use of a regression equation between Curine (microg/l) and Cenv (mg/m3) (Curine = 0.081 x Cenv + 4.27) resulted in a value of Curine corresponding to Threshold Limit Value-Time Weighted Average (TLV-TWA) exposure value (269 mg/m3) of 26.0 microg/L.

  4. Trichloroethylene in urine as biological exposure index.

    PubMed

    Imbriani, M; Niu, Q; Negri, S; Ghittori, S

    2001-07-01

    Occupational exposure to trichloroethylene (TRI) was studied by analysis of environmental air and urine from 49 workers operating in a special printing house on glass. For the measurement of environmental concentration of TRI (Cenv), the ambient air was sampled using personal passive dosimeters. The activated charcoal was desorbed with carbon disulfide and injected into a gas-cromatograph - mass spectrometer (GC-MSD). The biological monitoring of exposed workers was conducted by determining the concentration of TRI in urine (Curine) Urine concentration of TRI was determined by headspace analysis using GC-MSD. Significant correlation was found between the environmental TRI concentration and urinary TRI concentration. The use of a regression equation between Curine (microg/l) and Cenv (mg/m3) (Curine = 0.081 x Cenv + 4.27) resulted in a value of Curine corresponding to Threshold Limit Value-Time Weighted Average (TLV-TWA) exposure value (269 mg/m3) of 26.0 microg/L. PMID:11499997

  5. Current trends in trichloroethylene biodegradation: a review.

    PubMed

    Shukla, Awadhesh Kumar; Upadhyay, Siddh Nath; Dubey, Suresh Kumar

    2014-06-01

    Over the past few years biodegradation of trichloroethylene (TCE) using different microorganisms has been investigated by several researchers. In this review article, an attempt has been made to present a critical summary of the recent results related to two major processes--reductive dechlorination and aerobic co-metabolism used for TCE biodegradation. It has been shown that mainly Clostridium sp. DC-1, KYT-1, Dehalobacter, Dehalococcoides, Desulfuromonas, Desulfitobacterium, Propionibacterium sp. HK-1, and Sulfurospirillum bacterial communities are responsible for the reductive dechlorination of TCE. Efficacy of bacterial communities like Nitrosomonas, Pseudomonas, Rhodococcus, and Xanthobacter sp. etc. for TCE biodegradation under aerobic conditions has also been examined. Mixed cultures of diazotrophs and methanotrophs have been used for TCE degradation in batch and continuous cultures (biofilter) under aerobic conditions. In addition, some fungi (Trametes versicolor, Phanerochaete chrysosporium ME-446) and Actinomycetes have also been used for aerobic biodegradation of TCE. The available information on kinetics of biofiltration of TCE and its degradation end-products such as CO2 are discussed along with the available results on the diversity of bacterial community obtained using molecular biological approaches. It has emerged that there is a need to use metabolic engineering and molecular biological tools more intensively to improve the robustness of TCE degrading microbial species and assess their diversity. PMID:23057686

  6. Fogging in Polyvinyl Toluene Scintillators

    SciTech Connect

    Cameron, Richard J.; Fritz, Brad G.; Hurlbut, Charles; Kouzes, Richard T.; Ramey, Ashley; Smola, Richard

    2015-02-01

    It has been observed that large polyvinyl toluene (PVT)-based gamma ray detectors can suffer internal “fogging” when exposed to outdoor environmental conditions over long periods of time. When observed, this change results in reduced light collection by photomultiplier tubes connected to the PVT. Investigation of the physical cause of these changes has been explored, and a root cause identified. Water penetration into the PVT from hot, high-humidity conditions results in reversible internal water condensation at room temperature, and permanent micro-fracturing of the PVT at very low environmental temperatures. Mitigation procedures and methods are being investigated.

  7. Methanogenic toluene metabolism: community structure and intermediates.

    PubMed

    Fowler, S Jane; Dong, Xiaoli; Sensen, Christoph W; Suflita, Joseph M; Gieg, Lisa M

    2012-03-01

    Toluene is a model compound used to study the anaerobic biotransformation of aromatic hydrocarbons. Reports indicate that toluene is transformed via fumarate addition to form benzylsuccinate or by unknown mechanisms to form hydroxylated intermediates under methanogenic conditions. We investigated the mechanism(s) of syntrophic toluene metabolism by a newly described methanogenic enrichment from a gas condensate-contaminated aquifer. Pyrosequencing of 16S rDNA revealed that the culture was comprised mainly of Clostridiales. The predominant methanogens affiliated with the Methanomicrobiales. Methane production from toluene ranged from 72% to 79% of that stoichiometrically predicted. Isotope studies using (13)C(7) toluene showed that benzylsuccinate and benzoate transiently accumulated revealing that members of this consortium can catalyse fumarate addition and subsequent reactions. Detection of a BssA gene fragment in this culture further supported fumarate addition as a mechanism of toluene activation. Transient formation of cresols, benzylalcohol, hydroquinone and methylhydroquinone suggested alternative mechanism(s) for toluene metabolism. However, incubations of the consortium with (18)O-H(2)O showed that the hydroxyl group in these metabolites did not originate from water and abiotic control experiments revealed abiotic formation of hydroxylated species due to reactions of toluene with sulfide and oxygen. Our results suggest that toluene is activated by fumarate addition, presumably by the dominant Clostridiales. PMID:22040260

  8. Full-scale demonstration of in situ bioremediation of trichloroethylene--laboratory and modeling studies

    SciTech Connect

    Goltz, M.N.; Carrothers, T.J.; Hopkins, G.D.

    1995-12-31

    A full-scale study of in situ bioremediation is being planned for implementation at a trichloroethylene (TCE) contaminated site at Edwards Air Force Base. To support the demonstration, laboratory studies of sorption and biodegradation were performed. Column studies conducted with TCE and Edwards aquifer material determined the sorption distribution coefficient to be 0.1 millileters per gram, corresponding to a 1.5 retardation factor. Edwards aquifer material from four different depths was used to study cometabolic TCE biodegradation in the presence of toluene under aerobic conditions. The studies showed steady state TCE removal of greater than or equal to 85% in the microcosms. A base line simulation was performed using a computer model which incorporated all significant flow and transport processes. The simulation shows how TCE mass declines in both the dissolved and sorbed phases over the four months planned for the demonstration. Based on these preliminary studies, it appears that the planned operation of the bioremediation system can be expected to result in observable decreases in TCE mass and concentration at the Edwards demonstration site.

  9. Displacement of soil pore water by trichloroethylene

    USGS Publications Warehouse

    Wershaw, R. L.; Aiken, G.R.; Imbrigiotta, T.E.; Goldberg, M.C.

    1994-01-01

    Dense nonaqueous phase liquids (DNAPLS) are important pollutants because of their widespread use as chemical and industrial solvents. An example of the pollution caused by the discharge of DNAPLs is found at the Picatinny Arsenal, New Jersey, where trichloroethylene (TCE) has been discharged directly into the unsaturated zone. This discharge has resulted in the formation of a plume of TCE-contaminated water in the aquifer downgradient of the discharge. A zone of dark-colored groundwater containing a high dissolved organic C content has been found near the point of discharge of the TCE. The colored-water plume extends from the point of discharge at least 30 m (100 feet) downgradient. Fulvic acids isolated from the colored-waters plume, from water from a background well that has not been affected by the discharge of chlorinated solvents, and from soil pore water collected in a lysimeter installed at an uncontaminated site upgradient of the study area have been compared. Nuclear magnetic resonance spectra of the fulvic acids from the colored waters and from the lysimeter are very similar, but are markedly different from the nuclear magnetic resonance spectrum of the fulvic acid from the background well. The three-dimensional fluorescence spectrum and the DOC fractionation profile of the colored groundwater and the soil pore water are very similar to each other, but quite different from those of the background water. It is proposed from these observations that this colored water is soil pore water that has been displaced by a separate DNAPL liquid phase downward to the saturated zone.

  10. Behaviour of rats exposed to trichloroethylene vapour.

    PubMed Central

    Silverman, A P; Williams, H

    1975-01-01

    Rats were exposed to trichloroethylene (TCE) vapour for about five five-day weeks at concentrations from 100 to 1 000 ppm, and at 100 ppm for 12 1/2 weeks. The social behaviour of paired male rats was observed periodically in the home cage for five minutes after they had been exposed to TCE. The principal finding was a consistent reduction of up to 24% in the total acitivity. A single day's exposure to TCE was sufficient at the highest concentration. At 100 ppm, a similar decline in activity was significant after 1 1/2 weeks' exposure in one experiment and 8 1/2 weeks' in another. The decline in activity was fairly uniform and not usually because of specific reductions in particular kinds of behaviour. However, exploration of the cage and submission to, or escape from, the other rat were sometimes specifically reduced. In an 'exploration-thirst' test, rats were deprived of water overnight and placed on two or three occasions in a previously unfamiliar cage. Rats exposed to 100, 200, or 1 000 ppm TCE found water and began drinking sooner than their controls without altering the rate of movement about the cage. These results suggest lowered performance in a familiar situation where rats are usually very active and some loss of inhibitory control in an unfamiliar one. At the present threshold limit value, repeated exposure to TCE eventually had effects similar to those of one day's exposure to a higher concentration, but only after a widely variable delay. PMID:1238103

  11. Electrochemical fluorination of trichloroethylene and N, N-dimethyltrifluoroacetamide

    NASA Technical Reports Server (NTRS)

    Hsu, L.-C.

    1979-01-01

    The paper presents the results of experiments concerning the fluorination of trichloroethylene and N, N-dimethyltrifluoroacetamide carried out on a laboratory scale in an advanced 'Simons' type electrochemical apparatus which could be operated automatically from ambient to 50 psi pressure. It is shown that a variety of fluorine-substituted products are formed, depending upon electrolysis conditions and concentrations of reactant relative to the NaF, KF, HF electrolyte. A new reaction mechanism of electrochemical fluorination of trichloroethylene is proposed. Finally, the solvency-to-fluorine content relationship of fluorinated N, N-dimethyltrifluoroacetamide is described.

  12. Electrochemical fluorination of trichloroethylene and N, N-dimethyltrifluoroacetamide

    NASA Technical Reports Server (NTRS)

    Hsu, L. C.

    1979-01-01

    Fluorination of trichloroethylene and N, N-dimethyltrifluoroacetamide was carried out on a laboratory scale in an advanced Simons type electrochemical apparatus which could be operated automatically from ambient to 50 psi pressure. A variety of fluorine-substituted products are formed, depending upon electrolysis conditions and concentrations of reactant relative to the NaF, KF, HF electrolyte. A new reaction mechanism of electrochemical fluorination of trichloroethylene is proposed. The solvency-to-fluorine content relationship of fluorinated N, N-dimethyltrifluoroacetamide is described.

  13. Tetrachloroethylene exposure and risk of schizophrenia: offspring of dry cleaners in a population birth cohort, preliminary findings.

    PubMed

    Perrin, Mary C; Opler, Mark G; Harlap, Susan; Harkavy-Friedman, Jill; Kleinhaus, Karine; Nahon, Daniella; Fennig, Shmuel; Susser, Ezra S; Malaspina, Dolores

    2007-02-01

    Tetrachloroethylene is a solvent used in dry cleaning with reported neurotoxic effects. Using proportional hazard methods, we examined the relationship between parental occupation as a dry cleaner and risk for schizophrenia in a prospective population-based cohort of 88,829 offspring born in Jerusalem from 1964 through 1976, followed from birth to age 21-33 years. Of 144 offspring whose parents were dry cleaners, 4 developed schizophrenia. We observed an increased incidence of schizophrenia in offspring of parents who were dry cleaners (RR=3.4, 95% CI, 1.3-9.2, p=0.01). Tetrachloroethylene exposure warrants further investigation as a risk factor for schizophrenia. PMID:17113267

  14. Role of methanogenic and sulfate-reducing bacteria in the reductive dechlorination of tetrachloroethylene in mixed culture

    SciTech Connect

    Cabirol, N.; Perrier, J.; Jacob, F.

    1996-05-01

    Tetrachloroethylene (perchloroethylene, PCE) is widely used in many industries and particularly as a degreasing and dry-cleaning solvent. It is commonly found as a groundwater contaminant and because of its carcinogenic properties is considered a pollutant, which must be eliminated by proper treatment. This research examines the role of a mixed culture in PCE dechlorination at high concentration from an ecological point of view. The respective role of sulfate-reducing and methaogenic bacteria in tetrachloroethylene cechlorination is studied. 19 refs., 5 figs., 2 tabs.

  15. 27 CFR 21.132 - Toluene.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Toluene. 21.132 Section 21.132 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL FORMULAS FOR DENATURED ALCOHOL AND RUM Specifications for Denaturants 21.132 Toluene....

  16. 27 CFR 21.132 - Toluene.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Toluene. 21.132 Section 21.132 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS FORMULAS FOR DENATURED ALCOHOL AND RUM Specifications for Denaturants 21.132 Toluene....

  17. 27 CFR 21.132 - Toluene.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Toluene. 21.132 Section 21.132 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS FORMULAS FOR DENATURED ALCOHOL AND RUM Specifications for Denaturants 21.132 Toluene....

  18. HEALTH EFFECTS OF TOLUENE: A REVIEW

    EPA Science Inventory

    This evaluative review covers the neurotoxic effects of toluene. General health effects of toluene are also discussed in more limited detail. A brief description of chemical properties and environmental prevalence is given, followed by a review of pharmacokinetic data. General he...

  19. 27 CFR 21.132 - Toluene.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Toluene. 21.132 Section 21.132 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL FORMULAS FOR DENATURED ALCOHOL AND RUM Specifications for Denaturants 21.132 Toluene. (a) Distillation range. (For...

  20. 27 CFR 21.132 - Toluene.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Toluene. 21.132 Section 21.132 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS FORMULAS FOR DENATURED ALCOHOL AND RUM Specifications for Denaturants 21.132 Toluene. (a) Distillation range. (For...

  1. Para-methylstyrene from toluene and acetaldehyde

    SciTech Connect

    Innes, R.A.; Occelli, M.L.

    1984-08-01

    High yields of para-methylstyrene (PMS) were obtained in this study by coupling toluene and acetaldehyde then cracking the resultant 1,1-ditolylethane (DTE) to give equimolar amounts of PMS and toluene. In the first step, a total DTE and ''trimer'' yield of 98% on toluene and 93% on acetaldehyde was obtained using 98% sulfuric acid as catalyst at 5-10/sup 0/C. In the second step, a choline chloride-offretite cracked DTE with 84.0% conversion and 91% selectivity to PMS and toluene. Additional PMS can be obtained by cracking the by-product ''trimer'' formed by coupling DTE and toluene with acetaldehyde. Zeolite Rho was as active but yielded less PMS (86%) and produced more para-ethyltoluene (PET), an undesirable by-product.

  2. Ethnic Differences in the Metabolism of Toluene: Comparisons between Korean and Foreign Workers Exposed to Toluene

    PubMed Central

    Won, Young Lim; Ko, Kyung Sun

    2015-01-01

    The objectives of this study were to investigate the individual characteristics, lifestyle habits, exposure levels, and genetic diversity of xenobiotic-metabolizing enzymes involved in toluene metabolism in Korean and foreign workers exposed to toluene at a manufacturing plant. This study was conducted to determine the effects of culture or ethnicity on toluene metabolism. The results showed that blood and urinary toluene concentrations were dependent on the level of exposure to toluene. We analyzed the correlation between toluene metabolism and genetic diversity in glutathione S-transferase (GST) (M1), GSTT1, and cytochrome p-450 (CYP) 2E1*5 as well as lifestyle habits (smoking, drinking, and exercise habits). The results revealed significant correlations between toluene metabolism and GSTM1 and GSTT1 genetic diversity, as well as smoking and exercise. PMID:25874030

  3. Chronic dysphagia and trigeminal anesthesia after trichloroethylene exposure

    SciTech Connect

    Lawrence, W.H.; Partyka, E.K.

    1981-12-01

    A patient is described who inhaled trichloroethylene fumes while working in a closed underground pit. At the time of exposure he developed dysphagia, dysarthria and dyspnea. Assessment of his condition 11 years after the incident indicated major damage of cranial nerves, particularly the trigeminal, chronic involvement of the bulbar cranial nerves, and resultant esophageal and pharnygeal motility impairment. (JMT)

  4. USE OF GRANULAR GRAPHITE FOR ELECTROLYTIC DECHLORINATION OF TRICHLOROETHYLENE

    EPA Science Inventory

    Granular graphite is a potential electrode material for the electrochemical remediation of refractory chlorinated organic compounds such as trichloroethylene (TCE). However, the use of granular graphite can complicate the experimental results. On one hand, up to 99% of TCE was re...

  5. Impact of Iron Sulfide Transformation on Trichloroethylene Degradation

    EPA Science Inventory

    Trichloroethylene (TCE) is one of the most common and persistent groundwater contaminants encountered at hazardous waste sites around the world. A growing body of evidence indicates that iron sulfides play an important role in degrading TCE in natural environments and in enginee...

  6. EFFECTS OF THERMAL TREATMENTS ON THE CHEMICAL REACTIVITY OF TRICHLOROETHYLENE

    EPA Science Inventory

    A series of experiments was completed to investigate abiotic degradation and reaction product formation of trichloroethylene (TCE) when heated. A quartz-tube apparatus was used to study short residence time and high temperature conditions that are thought to occur during thermal ...

  7. EFFECTS OF ORAL EXPOSURE TO TRICHLOROETHYLENE ON FEMALE REPRODUCTIVE FUNCTION

    EPA Science Inventory

    In the present study, the distribution, metabolism and reproductive toxicity of trichloroethylene (TCE) administered by the oral route to female rats were examined. The distribution study with 14C-TCE indicated that relatively high levels of radioactivity accumulated in the ovary...

  8. AEROBIC METABOLISM OF TRICHLOROETHYLENE BY A BACTERIAL ISOLATE

    EPA Science Inventory

    A number of soil and water samples were screened for the biological capacity to metabolize trichloroethylene. One water sample was found to contain this capacity, and a gram-negative, rod-shaped bacterium which appeared to be responsible for the metabolic activity was isolated fr...

  9. THE EFFECT OF VOLTAGE ON ELECTROCHEMICAL DEGRADATION OF TRICHLOROETHYLENE

    EPA Science Inventory

    This study investigates electrochemical degradation of Trichloroethylene (TCE) using granular graphite as electrodes in a flow-through reactor system. The experiments were conducted to obtain information on the effect of voltage and flow rates on the degradation rates of TCE. The...

  10. BIODEGRADATION OF TRICHLOROETHYLENE AND INVOLVEMENT OF AN AROMATIC BIODEGRADATIVE PATHWAY

    EPA Science Inventory

    Biodegradation of trichloroethylene (TCE) by the bacterial isolate strain G4 resulted in complete dechlorination of the compound as indicated by the production of inorganic chloride. A component of the water from which strain G4 was isolated that was required for TCE degradation ...

  11. EFFECTS OF TRICHLOROETHYLENE EXPOSURE ON MALE REPRODUCTIVE FUNCTION IN RATS

    EPA Science Inventory

    The present study was designed to evaluate the influences of trichloroethylene (TCE) on the reproductive system of male rats. In addition, information was obtained on the distribution and metabolism of TCE. At 100 days of age, male rats were allowed to copulate with ovariectomize...

  12. EFFECT OF TRICHLOROETHYLENE ON MALE SEXUAL BEHAVIOR: POSSIBLE OPIOID ROLE

    EPA Science Inventory

    Trichloroethylene (TCE) is a chlorinated hydrocarbon solvent which is widely used as an industrial degreasing agent. Workers exposed to TCE often exhibit symptoms similar to those symptoms produced by narcotics. The present studies evaluated the effects of TCE exposure on measure...

  13. GASEOUS BEHAVIOR OF TCE (TRICHLOROETHYLENE) OVERLYING A CONTAMINATED AQUIFER

    EPA Science Inventory

    Shallow soil gas (<2 meters deep) was collected and analyzed for trichloroethylene (TCE) to determine the relationship with ground-water contamination directly below. The gaseous TCE plume was mapped with 46 probes and spanned three orders of magnitude in concentration (<0.001 to...

  14. ADSORPTION AND CATALYTIC DESTRUCTION OF TRICHLOROETHYLENE IN HYDROPHOBIC ZEOLITES

    EPA Science Inventory

    Several chromium exchanged ZSM-5 zeolites of varying SiO2/Al2O3 ratio were prepared and investigated for ambient (23 ?C) adsorption and subsequent oxidative destruction (250-400 ?C) of gaseous trichloroethylene (TCE, Cl2C=CHCl) in a humid air stream. With an increase in the SiO2...

  15. IRIS Toxicological Review of Trichloroethylene (Interagency Science Consultation Draft)

    EPA Science Inventory

    On November 3, 2009, the Toxicological Review of Trichloroethylene and the charge to external peer reviewers were released for external peer review and public comment. The Toxicological Review and charge were reviewed internally by EPA and by other federal agencies and White Hous...

  16. Transformation capacities of chlorinated organics by mixed cultures enriched on methane, propane, toluene, or phenol

    SciTech Connect

    Chang, H.L.; Alvarez-Cohen, L. . Dept. of Civil Engineering)

    1995-03-05

    The degradation of trichloroethylene (TCE), chloroform (CF), and 1,2-dichloroethane (1,2-DCA) by four aerobic mixed cultures (methane, propane, toluene, and phenol oxidizers) growth under similar chemostat conditions was measured. Methane and propane oxidizers were capable of degrading both saturated and unsaturated chlorinated organics (TCE, CF, and 1,2-DCA). Toluene and phenol oxidizers degraded TCE but were not able to degrade CF, 1,2-DCA, or other saturated organics. None of the cultures tested were able to degrade perchloroethylene (PCE) or carbon tetrachloride (CCl[sub 4]). For the four cultures tested, degradation of each of the chlorinated organics resulted in cell inactivation due to product toxicity. In all cases, the toxic products were rapidly depleted, leaving no toxic residues in solution. Among the four tested cultures, the resting cells of methane oxidizers exhibited the highest transformation capacities (T[sub c]) for TCE, CF, and 1,2-DCA. The T[sub c] for each chlorinated organic was observed to be inversely proportional to the chlorine carbon ratio (Cl/C). The addition of low concentrations of growth substrate or some catabolic intermediates enhanced TCE transformation capacities and degradation rates, presumably due to the regeneration of reducing energy (NADH); however, addition of higher concentrations of most amendments reduced TCE transformation capacities and degradation rates. Reducing energy limitations and amendment toxicity may significantly affect T[sub c] measurements, causing a masking of the toxicity associated with chlorinated organic degradation.

  17. Composition of Toluene-Degrading Microbial Communities from Soil at Different Concentrations of Toluene

    PubMed Central

    Hubert, Casey; Shen, Yin; Voordouw, Gerrit

    1999-01-01

    Toluene-degrading bacteria were isolated from hydrocarbon-contaminated soil by incubating liquid enrichment cultures and agar plate cultures in desiccators in which the vapor pressure of toluene was controlled by dilution with vacuum pump oil. Incubation in desiccators equilibrated with either 100, 10, or 1% (wt/wt) toluene in vacuum pump oil and testing for genomic cross-hybridization resulted in four genomically distinct strains (standards) capable of growth on toluene (strains Cstd1, Cstd2, Cstd5, and Cstd7). The optimal toluene concentrations for growth of these standards on plating media differed considerably. Cstd1 grew best in an atmosphere equilibrated with 0.1% (wt/wt) toluene, but Cstd5 failed to grow in this atmosphere. Conversely, Cstd5 grew well in the presence of 10% (wt/wt) toluene, which inhibited growth of Cstd1. 16S ribosomal DNA sequencing and cross-hybridization analysis indicated that both Cstd1 and Cstd5 are members of the genus Pseudomonas. An analysis of the microbial communities in soil samples that were incubated with 10% (wt/wt) toluene with reverse sample genome probing indicated that Pseudomonas strain Cstd5 was the dominant community member. However, incubation of soil samples with 0.1% (wt/wt) toluene resulted in a community that was dominated by Pseudomonas strain Q7, a toluene degrader that has been described previously (Y. Shen, L. G. Stehmeier, and G. Voordouw, Appl. Environ. Microbiol. 64:637–645, 1998). Q7 was not able to grow by itself in an atmosphere equilibrated with 0.1% (wt/wt) toluene but grew efficiently in coculture with Cstd1, suggesting that toluene or metabolic derivatives of toluene were transferred from Cstd1 to Q7. PMID:10388704

  18. Anticonvulsant and antipunishment effects of toluene

    SciTech Connect

    Wood, R.W.; Coleman, J.B.; Schuler, R.; Cox, C.

    1984-01-01

    Toluene can have striking acute behavioral effects and is subject to abuse by inhalation. To determine if its actions resemble those of drugs used in the treatment of anxiety (anxiolytics), two sets of experiments were undertaken. Inasmuch as prevention of pentylenetetrazol-induced convulsions is an identifying property of this class of agents, the authors first demonstrated that pretreatment of mice with injections of toluene delayed the onset of convulsive signs and prevented the tonic extension phase of the convulsant activity in a dose-related manner. Injections of another alkyl benzene, m-xylene, were of comparable potency to toluene. Inhalation of toluene delayed the time of death after pentylenetetrazol injection in a manner related to the duration and concentration of exposure; at lower convulsant doses, inhalation of moderate concentrations (EC/sub 58/, 1300 ppm) prevented death. Treatment with a benzodiazepine receptor antagonist (Ro 15-1788) failed to reduce the anticonvulsant activity of inhaled toluene. Anxiolytics also attenuate the reduction in response rate produced by punishment with electric shock. Toluene increased rates of responding suppressed by punishment when responding was maintained under a multiple fixed-interval fixed-interval punishment schedule of reinforcement. Distinct antipunishment effects were observed in rats after 2 hr of exposure to 1780 and 3000 ppm of toluene; the rate-increasing effects of toluene were related to concentration and to time after the termination of exposure. Thus, toluene and m-xylene resemble in several respects clinically useful drugs such as the benzodiazepines. 51 references, 3 figures, 2 tables.

  19. SURFACTANT ENHANCED RECOVERY OF TETRACHLOROETHYLENE FROM A POROUS MEDIUM CONTAINING LOW PERMEABILITY LENSES. 1. EXPERIMENTAL STUDIES. (R825409)

    EPA Science Inventory

    Abstract

    A matrix of batch, column and two-dimensional (2-D) box experiments was conducted to investigate the coupled effects of rate-limited solubilization and layering on the entrapment and subsequent recovery of a representative dense NAPL, tetrachloroethylene (PCE)...

  20. The pyrolysis of toluene and ethyl benzene

    NASA Technical Reports Server (NTRS)

    Sokolovskaya, V. G.; Samgin, V. F.; Kalinenko, R. A.; Nametkin, N. S.

    1987-01-01

    The pyrolysis of toluene at 850 to 950 C gave mainly H2, CH4, and benzene; PhEt at 650 to 750 C gave mainly H2, CH4, styrene, benzene, and toluene. The rate constants for PhEt pyrolysis were 1000 times higher than those for toluene pyrolysis; the chain initiation rate constants differed by the same factor. The activation energy differences were 46 kJ/mole for the total reaction and 54 kJ/mole for chain initiation. The chain length was evaluated for the PhEt case (10 + or - 2).

  1. Cometabolic biodegradation of trichloroethylene in microcosms

    USGS Publications Warehouse

    Kane, Allen C.; Wilson, Timothy P.; Fischer, Jeffrey M.

    1997-01-01

    Laboratory microcosms were used to determine the concentrations of oxygen (O2) and methane (CH4) that optimize trichloroethylene (TCE) biodegradation in sediment and ground-water samples from a TCE-contaminated aquifer at Picatinny Arsenal, Morris County, New Jersey. The mechanism for degradation is the cometabolic activity of methanotrophic bacteria. The laboratory data will be used to support a field study designed to demonstrate the effectiveness of combining air sparging with cometabolic degradation of TCE for the purpose of aquifer remediation. Microcosms were constructed in autoclaved 250-mL (milliliter) amber glass bottles with valves for repeated headspace sampling. Equal volumes (25 mL) of sediment and ground water, collected from a depth of 40 feet, were added. TCE was added to attain initial aqueous concentrations equal to the field level of 1,400 mu g/L (micrograms per liter). Nine microcosms were constructed with initial headspace O2 concentrations of 5%, 10%, or 14% and CH4 concentrations of 0.5%, 3%, or 5%, with nitrogen making up the balance. Sterile controls, controls without CH4, and controls without sediment were also constructed. A 4-mL gas sample was removed periodically and TCE, O2 , CH4 , and carbon dioxide (CO2) concentrations were measured by using gas chromatography. As biodegradation proceeded, the decrease in O2, CH4 , and TCE concentrations and the production of CO2 were monitored. An initial acclimation period of at least 100 days was observed in those microcosms in which significant microbial activity occurred, as determined from decreases in O2 and CH4 concentrations and an increase in CO2 content. Degradation of TCE occurred with O2 concentrations of 2.7 to 8.7% and CH4 concentrations of 0.5 to 3.5%. Microcosms that initially contained 10% O2 and 3% CH4 showed the greatest microbial activity and the greatest amount of TCE degradation. The greatest rates of TCE degradation occurred when O2 and CH4 headspace concentrations reached levels of 7.7 to 8.7% and 1.7 to 2.7%, respectively, which correspond to aqueous concentrations of 2.9 to 3.5 mg/L and 0.4 to 0.6 mg/L, respectively. Over these ranges, TCE degradation rates ranged from 15 to 20 mu g of TCE per kilogram of sediment per day. Analysis of the control microcosms indicated that these TCE degradation rates are much greater than those attributable to experimental variation. The results indicate that the microbial community of the sediment is capable of TCE degradation and that significant rates of degradation can be achieved with obtainable O2 and CH4 concentrations.

  2. Can we still miss tetrachloroethylene-induced lung disease? The emperor returns in new clothes.

    PubMed

    Tanios, Maged A; El Gamal, Hesham; Rosenberg, Beth J; Hassoun, Paul M

    2004-01-01

    Hypersensitivity pneumonitis (HP) is a complex syndrome of varying intensity and clinical presentation, and has been described in association with numerous exposures. Early diagnosis is essential to limit irreversible lung damage. We describe a case of HP in a 42-year-old dry cleaner following occupational exposure to tetrachloroethylene (TCE). The diagnosis was suspected based on clinical presentation and radiographic studies, and confirmed by lung biopsy. A review of the literature reveals that HP has not been reported previously as an occupational lung disease in dry cleaners. We conclude that HP should be suspected in dry cleaners presenting with pulmonary complaints, and TCE should be considered as a potential trigger of disease. The spectrum of TCE-related occupational diseases and the diagnosis of HP are reviewed. PMID:15627878

  3. Exposure to Tetrachloroethylene-Contaminated Drinking Water and the Risk of Pregnancy Loss

    PubMed Central

    Aschengrau, Ann; Weinberg, Janice M.; Gallagher, Lisa G.; Winter, Michael R.; Vieira, Veronica M.; Webster, Thomas F.; Ozonoff, David M.

    2010-01-01

    There is little information on the impact of solvent-contaminated drinking water on pregnancy outcomes. This retrospective cohort study examined whether maternal exposure to tetrachloroethylene (PCE) - contaminated drinking water in the Cape Cod region of Massachusetts influenced the risk of clinically recognized pregnancy loss. The study identified exposed (n=959) and unexposed (1,087) women who completed a questionnaire on their residential and pregnancy histories, and confounding variables. Exposure was estimated using water distribution system modeling software. No meaningful associations were seen between PCE exposure level and the risk of clinically recognized pregnancy loss at the exposure levels experienced by the study population. Because PCE remains a common water contaminant, it is important to continue monitoring its impact on women and their pregnancies. PMID:20613966

  4. Reductive degradation of tetrachloroethylene by biogenic and chemogenic carbonate green rust

    NASA Astrophysics Data System (ADS)

    Lee, N.; Bae, S.; Lee, W.

    2013-12-01

    Degradation of contaminants with microorganisms and natural soil minerals has been extensively studied for understanding of complex interaction mechanism in bio-geochemical reactions. In this study, we conducted a batch experiment to demonstrate the different degradation mechanism of tetrachloroethylene (PCE) in biogenic and chemogenic carbonate green rust suspensions. Both green rusts were characterized by measurement of Fe(II) content, BET, X-ray diffraction, and transmission electron spectroscopy before and after the reaction. The effects of mineral loading, initial concentration of PCE, and solution pH on the degradation kinetic of PCE were investigated. The concentration profiles of transformation products were also monitored to investigate the different degradation mechanism of PCE by biogenic and chemogenic green rust.

  5. In situ study of tetrachloroethylene bioremediation with different microbial community shifting.

    PubMed

    Bhowmik, Arpita; Asahino, Akane; Shiraki, Takanori; Nakamura, Kohei; Takamizawa, Kazuhiro

    2009-12-14

    In this study, we characterized the microbial community in groundwater contaminated with tetrachloroethylene (PCE) in order to evaluate the intrinsic and enhanced bioremediation of PCE. Variable behaviour of microbes was observed between natural attenuation and biostimulation, where the latter was mediated by the addition of nutrients. Results of denaturing gradient gel electrophoresis (DGGE) of amplified bacterial 16S rDNA in the case of biostimulation showed that the microbial community was dominated by species phylogenetically related to the beta-proteobacteria. With regards to natural attenuation, sequences were found belonging to multiple species of different phyla. Interestingly, we found sequences that matched the species belonging to the Firmicutes, which contains bacteria capable of reductive dehalogenation. These results suggest the possibility of the presence of some Clostridium-like PCE degraders within the microbial community when using bioremediation or biostimulation. PMID:20184006

  6. Primary atmospheric oxidation mechanism for toluene.

    PubMed

    Baltaretu, Cristian O; Lichtman, Eben I; Hadler, Amelia B; Elrod, Matthew J

    2009-01-01

    The products of the primary OH-initiated oxidation of toluene were investigated using the turbulent flow chemical ionization mass spectrometry technique at temperatures ranging from 228 to 298 K. A major dienedial-producing pathway was detected for the first time for toluene oxidation, and glyoxal and methylglyoxal were found to be minor primary oxidation products. The results suggest that secondary oxidation processes involving dienedial and epoxide primary products are likely responsible for previous observations of glyoxal and methylglyoxal products from toluene oxidation. Because the dienedial-producing pathway is a null cycle for tropospheric ozone production and glyoxal and methylglyoxal are important secondary organic aerosol precursors, these new findings have important implications for the modeling of toluene oxidation in the atmosphere. PMID:19118482

  7. Oxidation Mechanisms of Toluene and Benzene

    NASA Technical Reports Server (NTRS)

    Bittker, David A.

    1995-01-01

    An expanded and improved version of a previously published benzene oxidation mechanism is presented and shown to model published experimental data fairly successfully. This benzene submodel is coupled to a modified version of a toluene oxidation submodel from the recent literature. This complete mechanism is shown to successfully model published experimental toluene oxidation data for a highly mixed flow reactor and for higher temperature ignition delay times in a shock tube. A comprehensive sensitivity analysis showing the most important reactions is presented for both the benzene and toluene reacting systems. The NASA Lewis toluene mechanism's modeling capability is found to be equivalent to that of the previously published mechanism which contains a somewhat different benzene submodel.

  8. Modeling of TCE and Toluene Toxicity to Pseudomonas putida F1

    NASA Astrophysics Data System (ADS)

    Singh, R.; Olson, M. S.

    2009-12-01

    Prediction of viable bacterial distribution with respect to contaminants is important for efficient bioremediation of contaminated ground-water aquifers, particularly those contaminated with residual NAPLs. While bacterial motility and chemotaxis may help situate bacteria close to high concentrations of contaminant thereby enhancing bioremediation, prolonged exposure to high concentrations of contaminates is toxic to contaminant-degrading bacteria. The purpose of this work is to model the toxicity of trichloroethylene and toluene to Pseudomonas putida F1. The Live/Dead bacterial viability assay was used to determine the toxic effect of chemical contaminants on the viability of P. putida F1 in a sealed zero head-space experimental environment. Samples of bacterial suspensions were exposed to common ground-water pollutants, TCE and toluene, for different durations. Changes in live and dead cell populations were monitored over the course of experiments using fluorescence microscopy. Data obtained from these toxicity experiments were fit to simple linear and exponential bacterial decay models using non-linear regression to describe loss of bacterial viability. TCE toxicity to P. putida F1 was best described with an exponential decay model (Figure 1a), with a decay constant kTCE = 0.025 h-4.95 (r2 = 0.956). Toluene toxicity showed a marginally better fit to the linear decay model (Figure 1b) (r2 = 0.971), with a decay constant ktoluene = 0.204 h-1. Best-fit model parameters obtained for both TCE and toluene were used to predict bacterial viability in toxicity experiments with higher contaminant concentrations and matched well with experimental data. Results from this study can be used to predict bacterial accumulation and viability near NAPL sources, and thus may be helpful in improving bioremediation performance assessment of contaminated sites. Figure 1: Survival ratios (S = N/No) of P. putida F1 in TCE- (a) and toluene- (b) stressed samples (observed (x), linear model () and exponential model (---)) and non-TCE stressed samples (o) at different time intervals throughout toxicity experiments. Error bars represent standard errors for five replicate experiments.

  9. Reduction of benzene toxicity by toluene

    SciTech Connect

    Plappert, U.; Barthel, E.; Seidel, H.J.

    1994-12-31

    BDF{sub 1} mice were exposed in inhalation chambers to benzene (900 ppm, 300 ppm) and/or toluene (500 ppm, 250 ppm) 6 hr per day, 5 days per week, for up to 8 weeks. Benzene alone induced a slight anemia after 4 and 8 weeks and a reduction of BFU-E and CFU-E numbers in the marrow. The coexposure to toluene reduced the degree of anemia. These results confirm previous studies where toluene was found to reduce benzene toxicity. This protective effect was most pronounced when DNA damage was studied in peripheral blood cells, bone marrow, and liver using the single cell gel (SCG) assay. With benzene alone, either with 300 or 900 ppm, a significant increase in DNA damage was detected in cells sampled from all three organs. Toluene alone did not induce a significant increase in DNA damage. The coexposure of benzene and toluene reduced the extent of DNA damage to about 50% of benzene alone. This result is considered a clear indication for a protective effect of toluene on the genetic toxicity of benzene. 18 refs., 7 figs., 3 tabs.

  10. Toluene-induced ototoxicity by subcutaneous administration

    SciTech Connect

    Pryor, G.T.; Howd, R.A.

    1986-01-01

    Inhalation exposure of rats to toluene causes irreversible hearing loss (e.g., Pryor et al.). To determine whether noise emanating from the inhalation system was a major contributing factor and whether exposure by a noninhalation route would cause a similar effect, weanling, male Fischer-344 rats were injected SC twice daily in a quiet environment with PEG-300 (control) or with 1.5 or 1.7 g/kg of toluene for 7 days. After being trained to perform a multisensory conditioned avoidance response (CAR) task, tone intensity-response functions were generated at 4, 8, 12, and 20 kHz, and behavioral auditory response thresholds were estimated. Toluene caused a dose-related hearing loss at frequencies of 8 kHz and above, with no effect on performance of the CAR in response to light, nonaversive footshock, or the 4-kHz tone. The similarity of this effect to that observed following inhalation exposure indicates that noise is not a major factor in the toluene-induced hearing loss, although possible interactions between noise and toluene remain to be investigated. These results also demonstrate that direct penetration of the toluene vapors through the external ear structure, as might occur during inhalation exposure, is not a necessary condition for inducing the hearing loss.

  11. Aerobic mineralization of trichloroethylene, vinyl chloride, and aromatic compounds by Rhodococcus species

    SciTech Connect

    Malachowsky, K.J. ); Phelps, T.J. Oak Ridge National Laboratories, Oak Ridge, TN ); Teboli, A.B.; Minnikin, D.E. ); White, D.C. Oak Ridge National Laboratories, Oak Ridge, TN )

    1994-02-01

    Two Rhodococcus strains which were isolated from a trichloroethylene (TCE)-degrading bacterial mixture and Rhodococcus rhodochrous ATCC 21197 mineralized vinyl chloride (VC) and TCE. Greater than 99.9% of a 1-mg/liter concentration of VC was degraded by cell suspensions. [1,2-[sup 14]C]VC was degraded by cell suspensions, with the production of greater than 66% [sup 14]CO[sub 2] and 20% [sup 14]C-aqueous phase products and incorporation of 10% of the [sup 14]C into the biomass. Cultures that utilized propane as a substrate were able to mineralize greater than 28% of [1,2-[sup 14]C]TCE to [sup 14]CO[sup 2], with approximately 40% appearing in [sup 14]C-aqueous phase products and another 10% of [sup 14]C incorporated into the biomass. VC degradation was oxygen dependent and occurred at a pH range of 5 to 10 and temperatures of 4 to 35[degrees]C. Cell suspensions degraded up to 5 mg of TCE per liter and up to 40 mg of VC per liter. Propane competitively inhibited TCE degradation. Resting cell suspensions also degraded other chlorinated aliphatic hydrocarbons, such as chloroform, 1,1-dichloro-ethylene, and 1,1,1-trichloroethane. The isolates degraded a mixture of aromatic and chlorinated aliphatic solvents and utilized benzene, toluene, sodium benzoate, naphthalene, biphenyl, and n-alkanes ranging in size from propane to hexadecane as carbon and energy sources. The environmental isolates appeared more catabolically versatile than R. rhodochrous ATCC 21197. The data report that environmental isolates of Rhodococcus species and R. rhodochrous ATCC 21197 have the potential to degrade TCE and VC in addition to a variety of aromatic and chlorinated aliphatic compounds either individually or in mixtures.

  12. Aerobic Mineralization of Trichloroethylene, Vinyl Chloride, and Aromatic Compounds by Rhodococcus Species

    PubMed Central

    Malachowsky, K. J.; Phelps, T. J.; Teboli, A. B.; Minnikin, D. E.; White, D. C.

    1994-01-01

    Two Rhodococcus strains which were isolated from a trichloroethylene (TCE)-degrading bacterial mixture and Rhodococcus rhodochrous ATCC 21197 mineralized vinyl chloride (VC) and TCE. Greater than 99.9% of a 1-mg/liter concentration of VC was degraded by cell suspensions. [1,2-14C]VC was degraded by cell suspensions, with the production of greater than 66% 14CO2 and 20% 14C-aqueous phase products and incorporation of 10% of the 14C into the biomass. Cultures that utilized propane as a substrate were able to mineralize greater than 28% of [1,2-14C]TCE to 14CO2, with approximately 40% appearing in 14C-aqueous phase products and another 10% of 14C incorporated into the biomass. VC degradation was oxygen dependent and occurred at a pH range of 5 to 10 and temperatures of 4 to 35C. Cell suspensions degraded up to 5 mg of TCE per liter and up to 40 mg of VC per liter. Propane competitively inhibited TCE degradation. Resting cell suspensions also degraded other chlorinated aliphatic hydrocarbons, such as chloroform, 1,1-dichloroethylene, and 1,1,1-trichloroethane. The isolates degraded a mixture of aromatic and chlorinated aliphatic solvents and utilized benzene, toluene, sodium benzoate, naphthalene, biphenyl, and n-alkanes ranging in size from propane to hexadecane as carbon and energy sources. The environmental isolates appeared more catabolically versatile than R. rhodochrous ATCC 21197. The data report that environmental isolates of Rhodococcus species and R. rhodochrous ATCC 21197 have the potential to degrade TCE and VC in addition to a variety of aromatic and chlorinated aliphatic compounds either individually or in mixtures. PMID:16349184

  13. Neurobehavioral performance in workers exposed to toluene.

    PubMed

    Kang, Seong-Kyu; Rohlman, Diane S; Lee, Mi-Young; Lee, Hye-Sil; Chung, Soo-Young; Anger, W Kent

    2005-05-01

    Toluene is widely used in adhesive, printing, painting and petroleum industries in many countries. This study was conducted to examine the effect of chronic exposure to toluene below 100ppm on neurobehavioral performance using a computerized neurobehavioral test battery that emphasizes simple instructions and practice prior to testing. The Behavioral Assessment and Research System (BARS) with Korean language instructions was administered to 54 workers from three different industries: oil refinery, gravure printing, and rubber boat manufacturing. The battery consisted of the following tests: Digit Span (DS), Simple Reaction Time (SRT), Selective Attention (SAT), Finger Tapping (FT), and Symbol Digit (SD). Urine was collected at the end-of-shift to analyze urinary hippuric acid to assess exposure level to toluene. Based on the previous air toluene level, workers were divided into three groups: Low (21 workers, less than 10ppm), Moderate (13 workers, 20-30ppm) and High (20 workers, 70-80ppm) exposure status. Analysis of Covariance (ANCOVA) adjusting for age, education and work duration as covariates, was performed to examine the relationship between the neurobehavioral performance and the exposure groups. Poorer performance of the High exposure group was found on FT-preferred (F=7.034, p=0.002) and SAT latency (F=11.710, p=0.000). Age showed a significant correlation with SD (r=0.417, p=0.002) and SAT number correct (r=-0.460, p=0.000). Years of education and work duration were not significantly correlated with any items. This study supports that toluene exposure below 100ppm is associated with neurobehavioral changes and that high-level toluene exposure could cause not only attention and concentration, but also motor performance deficits. PMID:21783537

  14. Excited state of protonated benzene and toluene

    NASA Astrophysics Data System (ADS)

    Esteves-Lpez, Natalia; Dedonder-Lardeux, Claude; Jouvet, Christophe

    2015-08-01

    We present photo-fragmentation electronic spectra of the simplest protonated aromatic molecules, protonated benzene and toluene, recorded under medium resolution conditions and compared with the photo-fragmentation spectrum of protonated pyridine. Despite the resolution and cold temperature achieved in the experiment, the electronic spectra of protonated benzene and toluene are structure-less, thus intrinsically broadened. This is in agreement with the large geometrical changes and the fast dynamic toward internal conversion predicted by ab initio calculations for protonated benzene [Rode et al., J. Phys. Chem. A 113, 5865-5873 (2009)].

  15. USE OF CARBON STABLE ISOTOPE TO INVESTIGATE CHLOROMETHANE FORMATION IN THE ELECTROLYTIC DECHLORINATION OF TRICHLOROETHYLENE

    EPA Science Inventory

    Carbon stable isotope trichloroethylene (13C TCE) was used to investigate the formation of chloromethane (CM) during the electrolytic dechlorination of trichloroethylene (TCE) at a granular-graphite packed cathode. A method was developed to use a conventional GC/MS to ...

  16. Process waste assessment: Petroleum jelly removal from semiconductor die using trichloroethylene

    SciTech Connect

    Curtin, D.P.

    1993-05-01

    The process analyzed involves non-production, laboratory environment use of trichloroethylene for the cleaning of semiconductor devices. The option selection centered on the replacement of the trichloroethylene with a non-hazardous material. This process waste assessment was performed as part of a pilot project.

  17. Integrating Address Geocoding, Land Use Regression, and Spatiotemporal Geostatistical Estimation for Groundwater Tetrachloroethylene

    PubMed Central

    Messier, Kyle P.; Akita, Yasuyuki; Serre, Marc L.

    2012-01-01

    Geographic Information Systems (GIS) based techniques are cost-effective and efficient methods used by state agencies and epidemiology researchers for estimating concentration and exposure. However, budget limitations have made statewide assessments of contamination difficult, especially in groundwater media. Many studies have implemented address geocoding, land use regression, and geostatistics independently, but this is the first to examine the benefits of integrating these GIS techniques to address the need of statewide exposure assessments. A novel framework for concentration exposure is introduced that integrates address geocoding, land use regression (LUR), below detect data modeling, and Bayesian Maximum Entropy (BME). A LUR model was developed for Tetrachloroethylene that accounts for point sources and flow direction. We then integrate the LUR model into the BME method as a mean trend while also modeling below detects data as a truncated Gaussian probability distribution function. We increase available PCE data 4.7 times from previously available databases through multistage geocoding. The LUR model shows significant influence of dry cleaners at short ranges. The integration of the LUR model as mean trend in BME results in a 7.5% decrease in cross validation mean square error compared to BME with a constant mean trend. PMID:22264162

  18. Adult Neuropsychological Performance Following Prenatal and Early Postnatal Exposure to Tetrachloroethylene (PCE)-contaminated Drinking Water

    PubMed Central

    Janulewicz, Patricia A; White, Roberta F; Martin, Brett M; Winter, Michael R; Weinberg, Janice M; Vieira, Veronica; Aschengrau, Ann

    2012-01-01

    This population-based retrospective cohort study examined adult performance on a battery of neuropsychological tests in relation to prenatal and early postnatal exposure to tetrachloroethylene (PCE)-contaminated drinking water on Cape Cod, Massachusetts. Subjects were identified through birth records from 1969 through 1983. Exposure was modeled using pipe network information from town water departments, a PCE leaching and transport algorithm, EPANet water flow modeling software, and a Geographic Information System (GIS). Results of crude and multivariate analyses among 35 exposed and 28 unexposed subjects showed no association between prenatal and early postnatal exposure and decrements on tests that assess abilities in the domains of omnibus intelligence, academic achievement or language. The results were suggestive of an association between prenatal and early postnatal PCE exposure and diminished performance on tests that assessed abilities in the domains of visuospatial functioning, learning and memory, motor, attention and mood. Because the sample size was small, most findings were not statistically significant. Future studies with larger sample sizes should be conducted to further define the neuropsychological consequences of early developmental PCE exposure. PMID:22522125

  19. Tetrachloroethylene-contaminated drinking water and the risk of breast cancer.

    PubMed Central

    Aschengrau, A; Paulu, C; Ozonoff, D

    1998-01-01

    We conducted a population-based case-control study to evaluate the relationship between cases of breast cancer and exposure to tetrachloroethylene (PCE) from public drinking water ( n = 258 cases and 686 controls). Women were exposed to PCE when it leached from the vinyl lining of water distribution pipes. The relative delivered dose was estimated using an algorithm that accounted for residential history, water flow, and pipe characteristics. Only small increases in breast cancer risk were seen among ever-exposed women either when latency was ignored or when 5 to 15 years of latency was considered. No or small increases were seen among highly exposed women either when latency was ignored or when 5 years of latency was considered. However, the adjusted odds ratios (ORs) were more increased for highly exposed women when 7 and 9 years of latency, respectively, were considered (OR 1.5 95% CI 0.5-4.7 and OR 2.3, 95% CI 0.6-8.8 for the 75th percentile, and OR 2.7, 95% CI 0.4-15.8 and OR 7.6, 95% CI 0.9-161.3 for the 90th percentile). The number of highly exposed women was too small for meaningful analysis when more years of latency were considered. Because firm conclusions from these data are limited, we recently undertook a new study with a large number of more recently diagnosed cases. PMID:9703477

  20. Cultivation-independent identification of candidate dehalorespiring bacteria in tetrachloroethylene degradation.

    PubMed

    Yamasaki, Shouhei; Nomura, Nobuhiko; Nakajima, Toshiaki; Uchiyama, Hiroo

    2012-07-17

    Tetrachloroethylene (PCE) is one of the major pollutants and is degraded by dissimilation by dehalorespiring bacteria. The dehalorespiring bacteria are anaerobic, and most cannot be cultured by conventional agar plating methods. Therefore, to identify the dehalorespiring bacteria that dissimilatively degrade PCE, a cultivation-independent method is required. To achieve accurate and detailed analysis of the bacteria, we developed a novel stable isotope probing (SIP) method. This technique involves 2 steps, namely, a labeling step, in which a labeled carbon source is incorporated into the sample's DNA, and an analysis step, in which the DNA is isolated, fractionated, and analyzed by polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE). Subsequently, 16S rRNA sequencing and phylogenetic analysis were performed to identify the bacteria. Initially, we examined the effectiveness of this method by using Dehalococcoides ethenogenes 195 consortium as a defined model system. The result indicated the method was able to correctly identify the dehalorespiring bacteria D. ethenogenes 195 from the consortium. Moreover, in an artificially contaminated microcosm experiment, we confirmed that the method was able to identify the indigenous dehalorespiring bacteria Dehalobacter sp. Thus, we concluded that this novel method was a feasible tool to identify dehalorespiring bacteria in natural environments. PMID:22708499

  1. Biological degradation of tetrachloroethylene in methanogenic conditions. Final report, 12 July 1991-11 January 1993

    SciTech Connect

    Gossett, J.M.; DiStefano, T.D.; Stover, M.A.

    1994-06-01

    Research objective: investigate anaerobic biodegradation of perchloroethylene (PCE). Specific objectives: determine if the presence of PCE is necessary to sustain dechlorination of vinyl chloride (VC), delineate the role of hydrogen (H2) in PCE reductive dechlorination, investigate the ability of the high level PCE/methanol (MeOH) culture to utilize low levels of PCE, and determine the applicability of an Anaerobic Attached-film Expanded-bed (AAFEB) reactor to achieve PCE dechlorination. The investigators determined: by using a VC-fed culture unable to sustain ETH production, that the presence of PCE is required to sustain VC dechlorination, H2 acts as the electron donor directly used for the reductive dechlorination of PCE to ethene, the PCE/MeOH culture was able to use ppb levels of PCE due to the small requirement for electron donor (H2) by the culture, and that the loss of the dechlorinating biomass from the support matrix, and/or the inability of the culture to support PCE dechlorination at low concentrations, led to the failure of the AAFEB reactor system. Biodegradation, Tetrachloroethylene, Methanogenesis, Fixed-film reactors, Biological treatment, Chlorinated hydrocarbons.

  2. [Effects of soil compositions on sorption and desorption behavior of tetrachloroethylene in soil].

    PubMed

    Hu, Lin; Qiu, Zhao-Fu; He, Long; Dou, Ying; L, Shu-Guang; Sui, Qian; Lin, Kuang-Fei

    2013-12-01

    Sorption and desorption play an important role in the transport and the fate of tetrachloroethylene (PCE) in soil. In order to examine influences of different soil compositions on PCE sorption-desorption, equilibrium batch experiments were carried out using four sorbents (natural soil with 2.23% total organic carbon (TOC), H2O2-treated soil, 375 degrees C-treated soil and 600 degrees C-treated soil) with different initial PCE liquid concentrations (c0). The effects of main parameters (TOC, soft carbon, hard carbon, minerals, c0) on PCE sorption-desorption were investigated. At 16 degrees C, when c0 was increased from 5 to 80 mg x L(-1), the results showed that sorption and desorption isotherms of PCE on four sorbents can be best described by the Freundlich model (r2 > 0.96). The sorption contribution rate of SOM was higher than 60% in natural soil, and hard carbon was the main influencing factor,while the desorption contribution rate of SOM was close to that of minerals in natural soil, and soft carbon accounted for more than 80% in the total desorption contribution rate of SOM. In addition, the higher the c0, the higher the sorption contribution rate of PCE in hard carbon and desorption contribution rate of PCE in soft carbon and minerals were. Moreover, desorption of PCE from four sorbents exhibited hysteresis, and hard carbon played a remarkable role in the hysteresis of natural soil. PMID:24640901

  3. Adult neuropsychological performance following prenatal and early postnatal exposure to tetrachloroethylene (PCE)-contaminated drinking water.

    PubMed

    Janulewicz, Patricia A; White, Roberta F; Martin, Brett M; Winter, Michael R; Weinberg, Janice M; Vieira, Veronica; Aschengrau, Ann

    2012-01-01

    This population-based retrospective cohort study examined adult performance on a battery of neuropsychological tests in relation to prenatal and early postnatal exposure to tetrachloroethylene (PCE)-contaminated drinking water on Cape Cod, Massachusetts. Subjects were identified through birth records from 1969 through 1983. Exposure was modeled using pipe network information from town water departments, a PCE leaching and transport algorithm, EPANet water flow modeling software, and a Geographic Information System (GIS). Results of crude and multivariate analyses among 35 exposed and 28 unexposed subjects showed no association between prenatal and early postnatal exposure and decrements on tests that assess abilities in the domains of omnibus intelligence, academic achievement or language. The results were suggestive of an association between prenatal and early postnatal PCE exposure and diminished performance on tests that assessed abilities in the domains of visuospatial functioning, learning and memory, motor, attention and mood. Because the sample size was small, most findings were not statistically significant. Future studies with larger sample sizes should be conducted to further define the neuropsychological consequences of early developmental PCE exposure. PMID:22522125

  4. A risk-based cleanup criterion for PCE in soil. [Tetrachloroethylene

    SciTech Connect

    Daniels, J.I.; McKone, T.E.; Hall, L.C.

    1990-09-26

    The most important attribute of a chemical contaminant at a hazardous-wastes site for decision makers to consider with regard to its cleanup is the potential risk associated with human exposure. For this reason we have developed a strategy for establishing a risk-based cleanup criterion for chemicals in soil. We describe this strategy by presenting a cleanup criterion for tetrachloroethylene (PCE) in soil associated with a representative California landscape. We being by discussing the environmental fate and transport model, developed at the Lawrence Livermore National Laboratory (LLNL), that we used to predict the equilibrium concentration of PCE in five environmental media from a steady-state source in soil. Next, we explain the concept and application of pathway-exposure factors (PEFs), the hazard index, and cancer-potency factors (CPFs) for translating the predicted concentrations of PCE into estimated potential hazard or risk for hypothetically exposed individuals. Finally, the relationship between concentration and an allowable level of risk is defined and the societal and financial implications are discussed. 22 refs., 6 tabs.

  5. THE EFFECT OF LOW CONCENTRATIONS OF TETRACHLOROETHYLENE ON THE PERFORMANCE OF PEM FUEL CELLS

    SciTech Connect

    COLON-MERCHADO, H.; MARTINEZ-RODRIGUEZ, M.; FOX, E.; RHODES, W.; MCWHORTER, C.; GREENWAY, S.

    2011-04-18

    Polymer electrolyte membrane (PEM) fuel cells use components that are susceptible to contaminants in the fuel stream. To ensure fuel quality, standards are being set to regulate the amount of impurities allowable in fuel. The present study investigates the effect of chlorinated impurities on fuel cell systems using tetrachloroethylene (PCE) as a model compound for cleaning and degreasing agents. Concentrations between 0.05 parts per million (ppm) and 30 ppm were studied. We show how PCE causes rapid drop in cell performances for all concentrations including 0.05 ppm. At concentrations of 1 and 0.05 ppm, PCE poisoned the cell at a rate dependent on the dosage of the contaminant delivered to the cell. PCE appears to affect the cell when the cell potential was over potentials higher than approximately 0.2 V. No effects were observed at voltages around or below 0.2 V and the cells could be recovered from previous poisoning performed at higher potentials. Recoveries at those low voltages could be induced by changing the operating voltage or by purging the system. Poisoning did not appear to affect the membrane conductivity. Measurements with long-path length IR results suggested catalytic decomposition of the PCE by hydrogen over the anode catalyst.

  6. On synergetic effects at destroying of toluene and TCE by DC glow discharge and streamer corona at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Akishev, Yuri; Karalnik, Vladimir; Kochetov, Igor; Monich, Anton; Napartovich, Anatoly; Trushkin, Nikolay

    2003-10-01

    Results on toluene decomposition obtained from both experiments with DC glow discharge in gas flow and numerical calculations are compared in this report. In the case of a binary mixture of toluene and TCE (trichloroethylene), experiment shows synergetic effect, i.e. an addition of TCE in mixture increases the decomposition of toluene. Our numerical modeling showed this effect can be attributed to influence of ion-molecule reactions involving toluene and TCE molecules, which result in formation of heavy ions with better stability and lower mobility. The comparison of decomposition efficiencies between DC glow discharge and DC positive streamer corona is presented as well. In last case, the tested admixtures were toluene and TCE as well. Non-thermal plasma in humid airflow with dosed pollutants was created in a rectangular channel of 15 cm in width and 30 cm in length. The height of channel was 1.35 and 3.5 cm in the case of glow discharge and positive corona respectively. Gas flow velocity was 15-20 and 2.5 m/s in glow discharge and positive corona respectively. Humidity of airflow was varied up to 18% (volume concentration of water vapor). The electrode system consisted of 28 the paired elements (pin-to-crater) [1, 2] disposed evenly from each other. The pins served either as cathodes in the case of DC glow discharge or as anodes in the case of DC positive corona. Each pin had several emitting points. High-voltage power supply up to 30 kV was used to sustain both of the discharges mentioned above. Concentrations of toluene and TCE were varied from 15 to 500 ppm and measured with a gas chromatograph. 1. Yu. S. Akishev, M. E. Grushin, I. V. Kochetov, A. P. Napartovich, M. V. Pankin, and N. I. Trushkin, Plasma Physics Reports, 26, No. 2, 2000, pp. 157-163. 2. Yu. S. Akishev, A. A. Deryugin, V. B. Karalnik, I. V. Kochetov, A. P. Napartovich, and N. I. Trushkin, Fiz. Plazmy 20, 571 (1994) [Plasma Physics Reports, 20, 511 (1994)].

  7. [Advances in non-carcinogenic toxicity of trichloroethylene].

    PubMed

    Huang, Peiwu; Li, Xuan; Liu, Wei; Liu, Jianjun

    2015-09-01

    Trichloroethylene (TCE) is a widely used organic solvent and an important industrial material. Due to mass production and use, and improper waste disposal, TCE has become a common environmental contaminant, so there is a wide range of occupationally and environmentally exposed population. Occupational and environmental exposure to TCE can produce toxic effects on multiple organs and systems. This paper is a review of the immunotoxicity, reproductive toxicity, neurotoxicity, teratogenic effect and other non-carcinogenic toxic effects of TCE from the aspects of epidemiological study, experimental evidence on animals and toxic mechanisms. PMID:26733146

  8. HEALTH ASSESSMENT DOCUMENT FOR TOLUENE. FINAL REPORT

    EPA Science Inventory

    The health effect of primary concern with regard to exposures of humans to toluene is dysfunction of the central nervous system (CNS). Occupational exposures in the range of 200 to 1,500 ppm have elicited dose-related CNS alterations. Although myelotoxicity was previously attribu...

  9. Dynamics of toluene degradation in biofilters

    SciTech Connect

    Tang, Hsiu-Mu; Hwang, Shyh-Jye; Hwang, Sz-Chwun

    1995-12-31

    Biodegradation processes have been validated as a promising alternative to other conventional air pollution control technologies. The objective of this research was to systematically investigate the transient behavior of shut down and restart-up operation and shock loading of the biofilter. Experiments were conducted in three laboratory-scale biofilters with mixtures of chaff/compost, D.E. (diatomaceous earth)/compost, and GAC (granular activated carbon)/compost, respectively as the filter materials. Toluene was used as the gas pollutant in this study. The response of each biofilter to shock loading was studied by abruptly changing the concentration or flow rate of the inlet gas. For each transient operation, toluene concentration was continuously measured until a new steady state was achieved. The results indicated that the biofilters responded effectively to the shut down and restart-up operation and shock loading of toluene concentration or gas flow rate. Moreover, the highly adsorptive GAC could improve the biofilter performance, especially for the treatment of less water soluble compounds such as toluene. Therefore, the GAC/compost biofilter had the highest maximum elimination capacity of 97 (g hr{sup {minus}1} m{sup {minus}3}). 17 refs., 8 figs.

  10. Project Overview: IRIS TOXICOLOGICAL REVIEW AND SUMMARY DOCUMENTS FOR TOLUENE

    EPA Science Inventory

    Toluene is used as an additive to gasoline mixtures (BTEX) to increase octane ratings, in benzene production, and as a solvent in paints, coatings, inks, adhesives, and cleaners. Additionally, toluene is used in the production of nylon, plastics, and polyurethanes. Toluene was o...

  11. Tetrachloroethylene (PCE, Perc) levels in residential dry cleaner buildings in diverse communities in New York City.

    PubMed

    McDermott, Michael J; Mazor, Kimberly A; Shost, Stephen J; Narang, Rajinder S; Aldous, Kenneth M; Storm, Jan E

    2005-10-01

    Fugitive tetrachloroethylene (PCE, perc) emissions from dry cleaners operating in apartment buildings can contaminate residential indoor air. In 1997, New York State and New York City adopted regulations to reduce and contain perc emissions from dry cleaners located in residential and other buildings. As part of a New York State Department of Health (NYSDOH) study, indoor air perc levels were determined in 65 apartments located in 24 buildings in New York City where dry cleaners used perc on site. Sampling occurred during 2001-2003, and sampled buildings were dispersed across minority and nonminority as well as low-income and higher income neighborhoods. For the entire study area, the mean apartment perc level was 34 microg/m3, 10-fold lower than mean apartment levels of 340-360 microg/m3 documented before 1997. The maximum detected perc level was 5,000 microg/m3, 5-fold lower than the maximum of 25,000 microg/m3 documented before 1997. Despite these accomplishments, perc levels in 17 sampled apartments still exceeded the NYSDOH residential air guideline of 100 microg/m3, and perc levels in 4 sampled apartments exceeded 1,000 microg/m3. Moreover, mean indoor air perc levels in minority neighborhoods (75 microg/m3) were four times higher than in nonminority households (19 microg/m3) and were > 10 times higher in low-income neighborhoods (256 microg/m3) than in higher income neighborhoods (23 microg/m3). Logistic regression suitable for clustered data (apartments within buildings) indicated that perc levels on floors 1-4 were significantly more likely to exceed 100 microg/m3 in buildings located in minority neighborhoods (odds ratio = 6.7; 95% confidence interval, 1.5-30.5) than in nonminority neighborhoods. Factors that may be contributing to the elevated perc levels detected, especially in minority and low-income neighborhoods, are being explored. PMID:16203243

  12. Tetrachloroethylene (PCE, Perc) Levels in Residential Dry Cleaner Buildings in Diverse Communities in New York City

    PubMed Central

    McDermott, Michael J.; Mazor, Kimberly A.; Shost, Stephen J.; Narang, Rajinder S.; Aldous, Kenneth M.; Storm, Jan E.

    2005-01-01

    Fugitive tetrachloroethylene (PCE, perc) emissions from dry cleaners operating in apartment buildings can contaminate residential indoor air. In 1997, New York State and New York City adopted regulations to reduce and contain perc emissions from dry cleaners located in residential and other buildings. As part of a New York State Department of Health (NYSDOH) study, indoor air perc levels were determined in 65 apartments located in 24 buildings in New York City where dry cleaners used perc on site. Sampling occurred during 20012003, and sampled buildings were dispersed across minority and nonminority as well as low-income and higher income neighborhoods. For the entire study area, the mean apartment perc level was 34 ?g/m3, 10-fold lower than mean apartment levels of 340360 ?g/m3 documented before 1997. The maximum detected perc level was 5,000 ?g/m3, 5-fold lower than the maximum of 25,000 ?g/m3 documented before 1997. Despite these accomplishments, perc levels in 17 sampled apartments still exceeded the NYSDOH residential air guideline of 100 ?g/m3, and perc levels in 4 sampled apartments exceeded 1,000 ?g/m3. Moreover, mean indoor air perc levels in minority neighborhoods (75 ?g/m3) were four times higher than in nonminority households (19 ?g/m3) and were > 10 times higher in low-income neighborhoods (256 ?g/m3) than in higher income neighborhoods (23 ?g/m3). Logistic regression suitable for clustered data (apartments within buildings) indicated that perc levels on floors 14 were significantly more likely to exceed 100 ?g/m3 in buildings located in minority neighborhoods (odds ratio = 6.7; 95% confidence interval, 1.530.5) than in nonminority neighborhoods. Factors that may be contributing to the elevated perc levels detected, especially in minority and low-income neighborhoods, are being explored. PMID:16203243

  13. Enhanced dechlorination of tetrachloroethylene by zerovalent silicon in the presence of polyethylene glycol under anoxic conditions.

    PubMed

    Lee, Chun-Chi; Doong, Ruey-An

    2011-03-15

    The combination of zerovalent silicon (Si(0)) with polyethylene glycol (PEG) is a novel technique to enhance the dechlorination efficiency and rate of chlorinated hydrocarbons. In this study, the dechlorination of tetrachloroethylene (PCE) by Si(0) in the presence of various concentrations of PEG was investigated under anoxic conditions. Several surfactants including cetyltrimethylammonium bromide (CTAB), sodium dodecyl sulfate (SDS), and Tween 80 were also selected for comparison. Addition of SDS and Tween 80 had little effect on the enhancement of PCE dechlorination, while CTAB and PEG significantly enhanced the dechlorination efficiency and rate of PCE by Si(0) under anoxic conditions. The Langmuir-Hinshelwood model was used to describe the dechlorination kinetics of PCE and could be simplified to pseudo-first-order kinetics at low PCE concentration. The rate constants (k(obs)) for PCE dechlorination were 0.21 and 0.36 h(-1) in the presence of CTAB and PEG, respectively. However, the reaction mechanisms for CTAB and PEG are different. CTAB could enhance the apparent water solubility of PCE in solution containing Si(0), leading to the enhancement of dechlorination efficiency and rate of PCE, while PEG prevented the formation of silicon dioxide, and significantly enhanced the dechlorination efficiency and rate of PCE at pH 8.3 0.2. In addition, the dechlorination rate increased upon increasing PEG concentration and then leveled off to a plateau when the PEG concentration was higher than 0.2 ?M. The k(obs) for PCE dechlorination by Si(0) in the presence of PEG was 106 times higher than that by Si(0) alone. Results obtained in this study would be helpful in facilitating the development of processes that could be useful for the enhanced degradation of cocontaminants by zerovalent silicon. PMID:21341692

  14. Biological exposure assessment to tetrachloroethylene for workers in the dry cleaning industry

    PubMed Central

    McKernan, Lauralynn T; Ruder, Avima M; Petersen, Martin R; Hein, Misty J; Forrester, Christy L; Sanderson, Wayne T; Ashley, David L; Butler, Mary A

    2008-01-01

    Background The purpose of this study was to assess the feasibility of conducting biological tetrachloroethylene (perchloroethylene, PCE) exposure assessments of dry cleaning employees in conjunction with evaluation of possible PCE health effects. Methods Eighteen women from four dry cleaning facilities in southwestern Ohio were monitored in a pilot study of workers with PCE exposure. Personal breathing zone samples were collected from each employee on two consecutive work days. Biological monitoring included a single measurement of PCE in blood and multiple measurements of pre- and post-shift PCE in exhaled breath and trichloroacetic acid (TCA) in urine. Results Post-shift PCE in exhaled breath gradually increased throughout the work week. Statistically significant correlations were observed among the exposure indices. Decreases in PCE in exhaled breath and TCA in urine were observed after two days without exposure to PCE. A mixed-effects model identified statistically significant associations between PCE in exhaled breath and airborne PCE time weighted average (TWA) after adjusting for a random participant effect and fixed effects of time and body mass index. Conclusion Although comprehensive, our sampling strategy was challenging to implement due to fluctuating work schedules and the number (pre- and post-shift on three consecutive days) and multiplicity (air, blood, exhaled breath, and urine) of samples collected. PCE in blood is the preferred biological index to monitor exposures, but may make recruitment difficult. PCE TWA sampling is an appropriate surrogate, although more field intensive. Repeated measures of exposure and mixed-effects modeling may be required for future studies due to high within-subject variability. Workers should be monitored over a long enough period of time to allow the use of a lag term. PMID:18412959

  15. Characteristics and influencing factors of tetrachloroethylene sorption-desorption on soil and its components.

    PubMed

    Qiu, Zhaofu; Yang, Weiwei; He, Long; Zhao, Zhexuan; Lu, Shuguang; Sui, Qian

    2016-02-01

    To investigate the effects of soil structure, soil organic carbon (SOC), minerals, initial tetrachloroethylene (PCE) concentration (C0), and ionic strength (Ci) on PCE sorption-desorption, six types of soil were adopted as adsorbents, including two types of natural soil and four types of soil with most of the "soft carbon" pre-treated by H2O2 or with all SOC removed from the original soil by 600C ignition. The results showed that all of the sorption-desorption isotherms of PCE were non-linear within the experimental range, and the H2O2-treated samples exhibited higher non-linear sorption isotherms than those of the original soils. The hysteresis index of PCE sorption to original soil is less pronounced than that of the H2O2-treated and 600C-heated samples due to the entrapment of sorbate molecules in the "hard carbon" domain, together with the meso- and microporous structures within the 600C-heated samples. Both SOC and minerals have impacts on the sorption-desorption of PCE, and the sorption-desorption contribution rate of minerals increased with decreasing SOC content. C0 has almost no influence on the sorption to minerals of the soils, but the contribution rate of minerals decreased with increasing C0 in the desorption stage. As a result of the salting-out effect, PCE sorption capacity was increased by increasing Ci, especially when Ci?0.1M. Moreover, desorption increased and hysteresis weakened with increasing Ci, except for the 600C-heated samples. In addition, no significant effect of Ci on desorption of PCE and no hysteresis was observed in this experimental range for the 600C-heated samples. PMID:26421630

  16. Health assessment for Nutmeg Valley, Wolcott, Connecticut, Region 1. CERCLIS No. CTSI88045. Preliminary report

    SciTech Connect

    Not Available

    1988-05-02

    The Nutmeg Valley Industrial Park is listed on the National Priorities List. The site is an industrial park containing 40 companies (light industry metal working and finishing) and 20 private residences. The contaminants present in groundwater at the site are trichloroethylene, benzene, ethyl benzene, toluene, xylene, methylene chloride, trans 1,2-dichloroethane, 1,1,1-trichloroethane, tetrachloroethylene, pentane, carbon tetrachloride, and chloroform. Investigation into the extent of contamination in other pathways is ongoing.

  17. Isobaric vapor-liquid equilibria of tetrachloroethylene + 1-propanol and + 2-propanol at 20 and 100 kPa

    SciTech Connect

    Dejoz, A.; Gonzalez-Alfaro, V.; Miguel, P.J.; Vazquez, M.I.

    1996-11-01

    Isobaric vapor-liquid equilibria were obtained for tetrachloroethylene + 1-propanol and +2-propanol systems at 20 and 100 kPa using a dynamic still. The experimental error in temperature was {+-} 0.1 K, in pressure {+-} 0.01 kPa and {+-} 0.1 kPa for the experiments carried out at 20 and 100 kPa, respectively, and in liquid and vapor composition 0.001. The two systems satisfy the point-to-point thermodynamic consistency test. Both systems show a positive deviation from ideality. The data were well correlated with the Wilson equation.

  18. Blink reflex latency after exposure to trichloroethylene in well water

    SciTech Connect

    Feldman, R.G.; Chirico-Post, J.; Proctor, S.P.

    1988-03-01

    The electrophysiological measurement of the blink reflex (BR) can quantify the conduction latency in the reflex arc involving the Vth (trigeminal) and VIIth (facial) cranial nerves. We measured the electrophysiological BR in a population (N = 21), which had alleged chronic exposure to trichloroethylene (TCE) through the public drinking water at levels 30-80 times higher than the Environmental Protection Agency (EPA) Maximum Contamination Level (MCL). A highly significant difference was observed in the conduction latency means of the BR components (p less than .0001), when the study population was compared with laboratory controls (N = 27). This difference suggests a subclinical alteration of the Vth cranial nerve function due to chronic, environmental exposure to TCE.

  19. Biodegradation of vapor phase trichloroethylene (TCE) in compost packed biofilters

    SciTech Connect

    Sukesan, S.; Watwood, M.E.

    1996-10-01

    Batch and column scale biofiltration experiments were performed to measure biodegradation of gaseous trichloroethylene (TCE) in finished compost. Compost was amended with hydrocarbon gas (methane or propane) as primary substrate to support microorganisms capable of cometabolic TCE degradation. In column biofilter experiments hydrocarbon utilization was observed within 10-15 days; gaseous TCE (50 ppmv) was then introduced continuously into the biofilter at approximately 1 L min{sup -1}. Columns supplied with 0.5% v/v methane removed 73% TCE after 8 days of continuous column operation, whereas amendment with 0.25% v/v methane corresponded with TCE removal of 93%, which was observed after 1.5 h of column operation. Similar results were obtained for propane amendment. Biofilters without hydrocarbon amendment exhibited no TCE biodegradation over 35 days. These results, analyzed together with those obtained in batch experiments, indicate that hydrocarbon identity and concentration and other related parameters influence the extent of ICE breakdown.

  20. [Reductive Dechlorination of Trichloroethylene by Benzoate-Enriched Anaerobic Cultures].

    PubMed

    Li, Jiang-wei; Yang, Xiao-yong; Hu, An-yi; Yu, Chang-ping

    2015-10-01

    Gas chromatography was used to monitor the reductive dechlorination of trichloroethylene (TCE) by anaerobic enrichment cultures with benzoate as the sole carbon source. The 454 pyrosequencing technique was used to investigate the microbial community and the real-time quantitative PCR was used to quantify the gene copies of Dehalococcoides spp. (DHC). The results showed that TCE was dechlorinated to vinyl chloride along with the formation of methane in 94 days. The anaerobic enrichment cultures exhibited a high diversity, which were classified into 16 phyla, 33 classes, 52 orders, 88 families and 129 genera, while 51.2% of them belonged to unclassified group, which inferred that there were a large portion of bacteria with unknown functional in this system. Degradation of TCE was accomplished by reductive dechlorinating and other functional populations, and the DHC which carried tceA gene could be the dominant reductive dechlorinating populations in the system. PMID:26841609

  1. Air trichloroethylene oxidation in a corona plasma-catalytic reactor

    NASA Astrophysics Data System (ADS)

    Masoomi-Godarzi, S.; Ranji-Burachaloo, H.; Khodadadi, A. A.; Vesali-Naseh, M.; Mortazavi, Y.

    2014-08-01

    The oxidative decomposition of trichloroethylene (TCE; 300 ppm) by non-thermal corona plasma was investigated in dry air at atmospheric pressure and room temperature, both in the absence and presence of catalysts including MnOx, CoOx. The catalysts were synthesized by a co-precipitation method. The morphology and structure of the catalysts were characterized by BET surface area measurement and Fourier Transform Infrared (FTIR) methods. Decomposition of TCE and distribution of products were evaluated by a gas chromatograph (GC) and an FTIR. In the absence of the catalyst, TCE removal is increased with increases in the applied voltage and current intensity. Higher TCE removal and CO2 selectivity is observed in presence of the corona and catalysts, as compared to those with the plasma alone. The results show that MnOx and CoOx catalysts can dissociate the in-plasma produced ozone to oxygen radicals, which enhances the TCE decomposition.

  2. The role of testosterone in trichloroethylene penetration in vitro

    SciTech Connect

    McCormick, K.; Abdel-Rahman, M.S. )

    1991-02-01

    Sex differences are known to exist in the metabolism and bioavailability of trichloroethylene (TCE). This study revealed that dermal penetration of ({sup 14}C)TCE in vitro was twofold greater in untreated female than in untreated male Sprague-Dawley rats. Since testosterone has been shown to mediate a wide variety of sex differences, its role in dermal penetration of ({sup 14}C)TCE was investigated. Penetration was measured by using an in vitro evaporation-penetration cell with a 10-hour collection period. Depriving male rats of testosterone (by castration) resulted in increased values for total penetration, area under the curve (AUC), and penetration slopes compared to those found in the female control group. Administration of testosterone to female animals produced values for total penetration, AUC, and penetration slopes significantly lower than those of the female control group.

  3. Benzodiazepine-like discriminative stimulus effects of toluene vapor.

    PubMed

    Shelton, Keith L; Nicholson, Katherine L

    2013-11-15

    In vitro studies show that the abused inhalant toluene affects a number of ligand-gated ion channels.The two most consistently implicated of these are ?-aminobutyric acid type A(GABAA) receptors which are positively modulated by toluene and N-methyl-D-aspartate(NMDA) receptors which are negatively modulated by toluene. Behavioral studies also suggest an interaction of toluene with GABAA and/or NMDA receptors but it is unclear if these receptors underlie the abuse-related intoxicating effects of toluene. Seventeen B6SJLF1/J mice were trained using a two-choice operant drug discrimination procedure to discriminate 10 min of exposure to 2000 ppm toluene vapor from 10 min of exposure to air. The discrimination was acquired in a mean of 65 training sessions. The stimulus effects of 2000 ppm toluene vapor were exposure concentration-dependent but rapidly diminished following the cessation of vapor exposure. The stimulus effects of toluene generalized to the chlorinated hydrocarbon vapor perchloroethylene but not 1,1,2-trichloroethane nor the volatile anesthetic isoflurane. The competitive NMDA antagonist CGS-19755, the uncompetitive antagonist dizocilpine and the glycine-site antagonist L701,324 all failed to substitute for toluene. The classical nonselective benzodiazepines midazolam and chlordiazepoxide produced toluene-like stimulus effects but the alpha 1 subunit preferring positive GABAA modulator zaleplon failed to substitute for toluene. The barbiturates pentobarbital and methohexital and the GABAA positive modulator neurosteroid allopregnanolone did not substitute for toluene. These data suggest that the stimulus effects of toluene may be at least partially mediated by benzodiazepine-like positive allosteric modulation of GABAA receptors containing alpha 2, 3 or 5 subunits. PMID:24436974

  4. COVALENT BINDING OF TRICHLOROETHYLENE TO PROTEINS IN HUMAN AND RAT HEPATOCYTES. (R826409)

    EPA Science Inventory

    The environmental contaminant and occupational solvent trichloroethylene is metabolized to a reactive intermediate that covalently binds to specific hepatic proteins in exposed mice and rats. In order to compare covalent binding between humans and rodents, primary hepatocyte c...

  5. PHENOL AND TRICHLOROETHYLENE DEGRADATION BY PSEUDOMONAS CEPACIA STRAIN G4: KINETICS AND INTERACTIONS BETWEEN COMETABOLITES

    EPA Science Inventory

    Intact cells of pseudomonas cepacia strain G4 completely degraded trichloroethylene (TCE) following growth with phenol. egradation kinetics were determined for both phenol, used to induce requisite enzymes, and TCE, the target substrate. pparent Ks and Vmax values for degradation...

  6. ELECTROCHEMICAL DECHLORINATION OF TRICHLOROETHYLENE USING GRANULAR-GRAPHITE ELECTRODES: IDENTIFICATION AND QUANTIFICATION OF DECHLORINATION PRODUCTS

    EPA Science Inventory

    Electrochemical degradation (ECD) utilizes high redox potential at the anode and low redox potential at the cathode to oxidize and/or reduce organic and inorganic contaminants. ECD of Trichloroethylene (TCE), although theoretically possible, has not been experimentally proven. Th...

  7. Locating and estimating air emissions from sources of perchloroethylene and trichloroethylene. Final report

    SciTech Connect

    Most, C.C.

    1989-08-01

    To assist groups interested in inventorying air emissions of various potentially toxic substances, EPA is preparing a series of documents to compile available information on sources and emissions of these substances. This document deals specifically with perchloroethylene and trichloroethylene. Its intended audience includes Federal, State, and local air-pollution personnel and others in locating potential emitters of perchloroethylene and trichloroethylene and in making gross estimates of air emissions therefrom. The document presents information on the types of sources that may emit perchloroethylene and trichloroethylene, process variations and release points that may be expected within these sources, and available emissions information indicating the potential for trichloroethylene and perchloroethylene releases into the air from each operation.

  8. EFFECTS OF REACTION PARAMETERS ON ELECTROCHEMICAL DECHLORINATION OF TRICHLOROETHYLENE RATE AND BY-PRODUCTS

    EPA Science Inventory

    Trichloroethylene (TCE) was electrochemically dechlorinated in aqueous environments using granular graphite cathode in a mixed reactor. Effects of pH, current, electrolyte type, and flow rate on TCE dechlorination rate were evaluated. TCE dechlorination rate constant and gas prod...

  9. MODELING THE ELECTROLYTIC DECHLORINATION OF TRICHLOROETHYLENE IN A GRANULAR GRAPHITE-PACKED REACTOR

    EPA Science Inventory

    A comprehensive reactor model was developed for the electrolytic dechlorination of trichloroethylene (TCE) at a granular-graphite cathode. The reactor model describes the dynamic processes of TCE dechlorination and adsorption, and the formation and dechlorination of all the major...

  10. EFFECTS OF REACTOR CONDITIONS ON ELECTROCHEMICAL DECHLORINATION OF TRICHLOROETHYLENE USING GRANULAR-GRAPHITE ELECTRODE.

    EPA Science Inventory

    Trichloroethylene (TCE) was electrochemically dechlorinated in aqueous environments using granular graphite cathode in a mixed reactor. Effects of pH, current, electrolyte type, and flow rate on TCE dechlorination rate were evaluated. TCE dechlorination rate constant and gas pr...

  11. EFFECTS OF REACTOR CONDITIONS ON ELECTROCHEMICAL DECHLORINATION OF TRICHLOROETHYLENE USING GRANULAR-GRAPHITE ELECTRODE

    EPA Science Inventory

    Trichloroethylene (TCE) was electrochemically dechlorinated in aqueous environments using granular graphite cathode in a mixed reactor. Effects of pH, current, electrolyte type, and flow rate on TCE dechlorination rate were evaluated. TCE dechlorination rate constant and gas pr...

  12. Health Assessment Document for Trichloroethylene Synthesis and Characterization (2001, External Review Draft)

    EPA Science Inventory

    This assessment presents EPA's most current evaluation of the potential health risks from exposure to trichloroethylene (TCE). TCE exposure is associated with several adverse health effects, including neurotoxicity, immunotoxicity, developmental toxicity, liver toxicity, kidney t...

  13. Dual-wavelength absorption optrode for trace-level measurements of trichloroethylene and chloroform

    SciTech Connect

    Angel, S.M.; Ridley, M.N.

    1990-06-01

    Optrodes that provide trace-level detection of trichloroethylene and chloroform with high accuracy have been developed. High accuracy is obtained by providing an internal intensity reference. 11 refs., 7 figs.

  14. Fate and transport of trichloroethane and trichloroethylene contaminated groundwater, building 719, Dover Air Force Base, Delaware

    SciTech Connect

    Melchiorre, K.J.

    1996-08-01

    Trichloroethane and trichloroethylene are common chlorinated aliphatic industrial organic solvents used in degreasing operations. Both are typically found in groundwater environments as a result of leaking underground storage tanks, leachate from landfills, and contaminant migration from hazardous waste dump sites. Transformation by-products are also found in association with trichloroethane and trichloroethylene without any known source other than from reductive dechlorination. Dechlorinated by-products include 1,1-dichloroethane; cis and trans 1,2-dichloroethylene, 1,1-dichloroethylene, chloroethane, and vinyl chloride. Trichloroethane and trichloroethylene and their transformation by-products are suspected human health hazards. Vinyl chloride is a known human carcinogen, while trichloroethylene is considered a probable human carcinogen, and 1,1-dichloroethylene and 1,1-dichloroethane possible human carcinogens.

  15. PHASE-TRANSFER-CATALYST APPLIED TO THE OXIDATION OF TRICHLOROETHYLENE BY POTASSIUM PERMANGANATE

    EPA Science Inventory

    Chlorinated ethylenes such as trichloroethylene (TCE) and perchloroethylene (PCE) are common contaminants (Plumb 1991; Westrick et al., 1984). They opccur in the subsurface as zones of residual saturation or occasionally as free products. Because of their inherently low solubil...

  16. PHYSIOLOGICALLY BASED PHARMACOKINEITC (PBPK) MODELING OF METABOLIC INHIBITION FOR INTERACTION BETWEEN TRICHLOROETHYLENE AND CHLOROFORM

    EPA Science Inventory

    Trichloroethylene (TCE) and chloroform (CHCl3) are two of the most common environmental contaminants found in water. PBPK models have been increasingly used to predict target dose in internal tissues from available environmental exposure concentrations. A closed inhalation (or g...

  17. Permeation of polymeric materials by toluene

    SciTech Connect

    Vahdat, N.

    1987-02-01

    The permeation of toluene through protective clothing materials composed of butyl, butyl-coated nomex, neoprene, and polyvinyl alcohol was tested at 25/sup 0/C and 45/sup 0/C with the use of ASTM method F-739. Butyl exhibited breakthrough of 18 min at 25/sup 0/C and 11 min at 45/sup 0/ C. Butyl nomex exhibited breakthrough times of 11 min and 25/sup 0/C and 6 min at 45/sup 0/C. PVA showed no breakthrough in 20 hr. The steady-state permeation rates and the diffusion coefficients were determined.

  18. Electronic and Photoelectron Spectroscopy of Toluene

    NASA Astrophysics Data System (ADS)

    Gardner, Adrian M.; Green, Alistair M.; Tame-Reyes, Victor; Wright, Timothy G.

    2012-06-01

    Electronic and photoelectron spectra of toluene are presented and discussed. The utilization of a recently reported scheme for assigning the normal vibrations of substituted benzenes allows these spectra to be compared to those of other molecules with unprecedented clarity. Changes in vibrational activity within a series of substituted benzene molecules will be discussed, specifically the increased rate of intramolecular vibrational energy redistribution observed in molecules where the substituent is a methyl group. A. M. Gardner and T. G. Wright, J. Chem. Phys., 135, 114305 (2011)

  19. Anaerobic degradation of toluene by a denitrifying bacterium.

    PubMed Central

    Evans, P J; Mang, D T; Kim, K S; Young, L Y

    1991-01-01

    A denitrifying bacterium, designated strain T1, that grew with toluene as the sole source of carbon under anaerobic conditions was isolated. The type of agar used in solid media and the toxicity of toluene were determinative factors in the successful isolation of strain T1. Greater than 50% of the toluene carbon was oxidized to CO2, and 29% was assimilated into biomass. The oxidation of toluene to CO2 was stoichiometrically coupled to nitrate reduction and denitrification. Strain T1 was tolerant of and grew on 3 mM toluene after a lag phase. The rate of toluene degradation was 1.8 mumol min-1 liter-1 (56 nmol min-1 mg of protein-1) in a cell suspension. Strain T1 was distinct from other bacteria that oxidize toluene anaerobically, but it may utilize a similar biochemical pathway of oxidation. In addition, o-xylene was transformed to a metabolite in the presence of toluene but did not serve as the sole source of carbon for growth of strain T1. This transformation was dependent on the degradation of toluene. Images PMID:2059037

  20. Chemical detoxification of trichloroethylene and 1,1,1-trichloroethane in a microwave discharge plasma reactor at atmospheric pressure

    SciTech Connect

    Krause, T.R.; Helt, J.E.

    1991-12-31

    This report focuses on the application of plasma technology to hazardous waste treatment. Microwave sustained plasmas are used to thermal degrade trichloroethylene and trichloroethane at atmospheric pressure. (JL)

  1. Chemical detoxification of trichloroethylene and 1,1,1-trichloroethane in a microwave discharge plasma reactor at atmospheric pressure

    SciTech Connect

    Krause, T.R.; Helt, J.E.

    1991-01-01

    This report focuses on the application of plasma technology to hazardous waste treatment. Microwave sustained plasmas are used to thermal degrade trichloroethylene and trichloroethane at atmospheric pressure. (JL)

  2. CONCENTRATION OF TETRACHLOROETHYLENE IN INDOOR AIR AT A FORMER DRY CLEANER FACILITY AS A FUNCTION OF SUBSURFACE CONTAMINATION: A CASE STUDY

    EPA Science Inventory

    A field study was performed to evaluate indoor air concentrations and vapor intrusion (VI) of tetrachloroethylene (PCE) and other chlorinated solvents at a commercial retail site in Dallas, TX. The building is approximately 40 years old and once housed a dry cleaning operation. R...

  3. Effects of dynamic redox zonation on the potential for natural attenuation of trichloroethylene at a fire-training-impacted aquifer

    USGS Publications Warehouse

    Skubal, K.L.; Haack, S.K.; Forney, L.J.; Adriaens, P.

    1999-01-01

    Hydrogeochemical and microbiological methods were used to characterize temporal changes along a transect of an aquifer contaminated by mixed hydrocarbon and solvent wastes from fire training activities at Wurtsmith Air Force Base (Oscoda, MI). Predominant terminal electron accepting processes (TEAPs) as measured by dissolved hydrogen indicated reoxygenation along the transect between October 1995 and October 1996, possibly because of recharge, fluctuations in water table elevation, or microbial activity. Microbiological analyses using universal and archaeal probes revealed a relationship between groundwater hydrogen concentration, TEAP, and predominant bacterial phylogeny. Specifically, a raised water table level and evidence of methanogenesis corresponded to an order of magnitude increase in archaeal 16S rRNA relative to when this zone was unsaturated. Spatial microbial and geochemical dynamics did not result in measurable differences in trichloroethylene (TCE) mineralization potential in vadose, capillary fringe, and saturated zone soils during a 500-day microcosm experiment using unprocessed contaminated soil and groundwater. Aerobic systems indicated that methane, but not toluene, may serve as cosubstrate for TCE cometabolism. Anaerobic microcosms demonstrated evidence for methanogenesis, CO2 production and hydrogen consumption, yet dechlorination activity was only observed in a microcosm with sulfate-reduction as the dominant TEAP. Mass balance calculations indicated less than 5% mineralization, regardless of redox zone or degree of saturation, at maximum rates of 0.01-0.03 ??mol/g soil??d. The general lack of dechlorination activity under laboratory conditions corroborates the limited evidence for natural dechlorination at this site, despite abundant electron donor material and accumulated organic acids from microbial degradation of alkylbenzenes. Thus, the short-term temporal dynamics in redox conditions is unlikely to have measurable effects on the long-term natural remediation potential of the aquifer.

  4. Behavioral toxicology of carbon disulfide and toluene.

    PubMed Central

    Weiss, B; Wood, R W; Macys, D A

    1979-01-01

    Organic solvents are pervasive in the communal and industrial environments. Although many are potent central nervous system agents, clearly delineated behavioral effects have played only a minor role in the formation of exposure standards. A comprehensive behavioral pharmacology and toxicology of these compounds is one aim of US/USSR collaboration. The current report describes some actions of carbon disulfide and toulene. Earlier data about the actions of carbon disulfide on pigeon operant performance indicated disruption of schedule-controlled key-pecking. Primate data are now described from a situation designed to determine aversive thresholds to electrical stimulation. Effective concentrations of carbon disulfide produced both a rise in the amount of electric shock tolerated and a diminution of the response force exerted by the monkeys. In experiments with toluene, pigeons were shown to elevate key-pecking rate in an operant situation at certain concentrations. Toluene also was studied for its capacity to maintain self-administration in the same way as drugs of abuse. Monkeys worked to gain access to toulene vapor just as they work for opiates or amphetamines. The current experiments demonstrate how comprehensive the range of behavioral toxicology needs to be to deal with environmental health issues. Images FIGURE 3. FIGURE 5. PMID:109294

  5. Physiologically-based pharmacokinetic (PBPK) modeling of two binary mixtures: metabolic activation of carbon tetrachloride by trichloroethylene and metabolic inhibition of chloroform by trichloroethylene.

    EPA Science Inventory

    The interaction between trichloroethylene (TCE) and chloroform (CHCI3) has been described as less than additive, with co-exposure to TCE and CHC13 resulting in less hepatic and renal toxicity than observed with CHCl3 alone. In contrast, the nonadditive interaction between TCE and...

  6. Is toluene diamine a sensitizer and is there cross-reactivity between toluene diamine and toluene diisocyanate?

    PubMed

    Vanoirbeek, Jeroen A J; De Vooght, Vanessa; Synhaeve, Nicholas; Nemery, Benoit; Hoet, Peter H M

    2009-06-01

    Toluene diamine (TDA) is formed when toluene diisocyanate (TDI), a potent sensitizer, comes in contact with an aqueous environment. The sensitizing capacity of TDA and the cross-reactivity between TDI and TDA are unknown. TDA (5-25%) and TDI (0.3%), dissolved in acetone/olive oil (AOO) (4:1) were tested in the mouse local lymph node assay (LLNA). To determine the capacity of TDA to elicit an asthmatic response and to determine the cross-reaction with TDI, a locally developed experimental mouse model of chemical-induced asthma was used. On days 1 and 8, BALB/c mice received 20 microl of TDI (0.3%), TDA (20%), or AOO (4:1) on each ear. On day 15, they received an intranasal instillation of TDI (0.1%), TDA (0.5%) or AOO (3:2). The EC(3) of TDA in the LLNA is 19%. In the model of chemical-induced asthma, TDI induced a ventilatory response [increased Penh after challenge; increased airway hyperreactivity (AHR)], inflammatory changes (bronchoalveolar lavage neutrophils), and immunological changes (increased CD19(+) lymphocytes, IL-4 and total serum IgE), whereas TDA did not show any of these responses. Mice sensitized with TDI and challenged with TDA also did not show any airway or inflammatory response, although they had increased levels of total serum IgE. Mice sensitized with TDA and challenged with TDI did not show any response. According to the classification of sensitizers in the LLNA, TDA is a weak dermal sensitizer. In the experimental mouse model of chemical-induced asthma, TDA does not act as a respiratory sensitizer, at the concentration used. No cross-reactivity between TDI and TDA was found. PMID:19332649

  7. 78 FR 37818 - Request for Information on Toluene Diisocyanates

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-24

    ...The National Institute for Occupational Safety and Health (NIOSH) of the Centers for Disease Control and Prevention (CDC) intends to evaluate the scientific data on toluene diissocyanate (TDI) and other TDI-based isocyanate products to develop a Criteria Document to establish an updated Recommended Exposure Limit (REL) for toluene diisocyanate. The current NIOSH REL for 2,4-TDI is the lowest......

  8. PERFORMANCE OF TRICKLE BED BIOFILTERS UNDER HIGH TOLUENE LOADING

    EPA Science Inventory

    The performance of two pelletized media biofilters, highly loaded with toluene, was evaluated in this study. oth biofilters were operated as the same influent concentration of 250 ppmv toluene. iofilter "A" was operated at 1 minute EBRT and biofilter "B" at 0.67 minute EBRT. he i...

  9. CARDIOVASCULAR AND THERMOREGULATORY RESPONSE TO ORAL TOLUENE IN THE RAT.

    EPA Science Inventory

    Toluene and other volatile organic compounds have often been shown to affect behavior in animals when given by inhalation, and less effective when given orally. Previous work showed that toluene increased heart rate (HR) and motor activity (MA), and reduced core temperature (Tc) ...

  10. Organic aerosol formation during the atmospheric degradation of toluene.

    PubMed

    Hurley, M D; Sokolov, O; Wallington, T J; Takekawa, H; Karasawa, M; Klotz, B; Barnes, I; Becker, K H

    2001-04-01

    Organic aerosol formation during the atmospheric oxidation of toluene was investigated using smog chamber systems. Toluene oxidation was initiated by the UV irradiation of either toluene/air/NOx or toluene/air/CH3ONO/NO mixtures. Aerosol formation was monitored using scanning mobility particle sizers and toluene loss was monitored by in-situ FTIR spectroscopy or GC-FID techniques. The experimental results show that the reaction of OH radicals, NO3 radicals and/or ozone with the first generation products of toluene oxidation are sources of organic aerosol during the atmospheric oxidation of toluene. The aerosol results fall into two groups, aerosol formed in the absence and presence of ozone. An analytical expression for aerosol formation is developed and values are obtained for the yield of the aerosol species. In the absence of ozone the aerosol yield, defined as aerosol formed per unit toluene consumed once a threshold for aerosol formation has been exceeded, is 0.075 +/- 0.004. In the presence of ozone the aerosol yield is 0.108 +/- 0.004. This work provides experimental evidence and a simple theory confirming the formation of aerosol from secondary reactions. PMID:11348067

  11. TOLUENE EXPERIMENTAL EXPOSURES IN HUMANS: PHARMACOKINETICS AND BEHAVIOR

    EPA Science Inventory

    Toluene Experimental Exposures in Humans:
    Pharmacokinetics and Behavioral Effects
    (Ongoing Research)

    Vernon A. Benignus1, Philip J. Bushnell2 and William K. Boyes2

    Human subjects will be exposed to 250 and 500 ppm toluene for one hour in the Human St...

  12. BEHAVIOR OF TOLUENE ADDED TO SLUDGE-AMENDED SOILS

    EPA Science Inventory

    Toluene is a priority pollutant that can be introduced to soils in a variety of wastes, including some municipal sludges. Laboratory experiments were conducted to study the behavior of toluene in two soils in the presence and absence of municipal sludge. Sludge additions increa...

  13. Mass recovery methods for trichloroethylene in plant tissue.

    SciTech Connect

    Gopalakrishnan, G.; Negri, M. C.; Werth, C. J.; Energy Systems; Univ. of Illionis

    2009-06-01

    Monitoring expenses form a significant fraction of the costs associated with remediation of contaminated soil and groundwater sites. A novel monitoring method that could result in significant cost savings is the use of plants as monitoring devices; previous work indicates that plant tissue samples, especially trunk (core) and branch samples, can be used to delineate soil and groundwater plumes at phytoremediation sites. An important factor in reducing the uncertainty associated with this sampling method is development of a technique to analyze, both consistently and accurately, the chemicals stored in plant tissue samples. The present research presents a simple, robust, and inexpensive technique to recover most of the contaminant in plant branch tissue, irrespective of the age or species of the plant. Trichloroethylene (TCE) was the chemical analyzed. A number of headspace and solvent extraction techniques in the literature were evaluated, including headspace extraction at different incubation times and temperatures and solvent extraction using hexane or hot methanol. Extraction using hot methanol was relatively fast, simple, and reliable; this method recovered more than 89% of the TCE present in branches of five different tree species.

  14. Modes of action of trichloroethylene for kidney tumorigenesis.

    PubMed Central

    Lash, L H; Parker, J C; Scott, C S

    2000-01-01

    This article focuses on the various models for kidney toxicity due to trichloroethylene (TCE) and its glutathione-dependent metabolites, in particular S-(1,2-dichlorovinyl)-l-cysteine. Areas of controversy regarding the relative importance of metabolic pathways, species differences in toxic responses, rates of generation of reactive metabolites, and dose-dependent phenomena are highlighted. The first section briefly reviews information on the incidence and risk factors of kidney cancer in the general U.S. population. Epidemiological data on incidence of kidney cancer in male workers exposed occupationally to TCE are also summarized. This is contrasted with cancer bioassay data from laboratory animals, that highlights sex and species differences and, consequently, the difficulties in making risk assessments for humans based on animal data. The major section of the article considers proposed modes of action for TCE or its metabolites in kidney, including peroxisome proliferation, alpha(2u)-globulin nephropathy, genotoxicity, and acute and chronic toxicity mechanisms. The latter comprise oxidative stress, alterations in calcium ion homeostasis, mitochondrial dysfunction, protein alkylation, cellular repair processes, and alterations in gene expression and cell proliferation. Finally, the status of risk assessment for TCE based on the kidneys as a target organ and remaining questions and research needs are discussed. PMID:10807554

  15. Optimization of electrochemical dechlorination of trichloroethylene in reducing electrolytes

    PubMed Central

    Mao, Xuhui; Ciblak, Ali; Baek, Kitae; Amiri, Mohammad; Loch-Caruso, Rita; Alshawabkeh, Akram N.

    2012-01-01

    Electrochemical dechlorination of trichloroethylene (TCE) in aqueous solution is investigated in a closed, liquid-recirculation system. The anodic reaction of cast iron generates ferrous species, creating a chemically reducing electrolyte (negative ORP value). The reduction of TCE on the cathode surface is enhanced under this reducing electrolyte because of the absence of electron competition. In the presence of the iron anode, the performances of different cathodes are compared in a recirculated electrolysis system. The copper foam shows superior capability for dechlorination of aqueous TCE. Electrolysis by cast iron anode and copper foam cathode is further optimized though a multivariable experimental design and analysis. The conductivity of the electrolyte is identified as an important factor for both final elimination efficiency (FEE) of TCE and specific energy consumption. The copper foam electrode exhibits high TCE elimination efficiency in a wide range of initial TCE concentration. Under coulostatic conditions, the optimal conditions to achieve the highest FEE are 9.525 mm thick copper foam electrode, 40 mA current and 0.042 mol L?1 Na2SO4. This novel electrolysis system is proposed to remediate groundwater contaminated by chlorinated organic solvents, or as an improved iron electrocoagulation process capable of treating the wastewater co-contaminated with chlorinated compounds. PMID:22264798

  16. Key scientific issues in the health risk assessment of trichloroethylene.

    PubMed

    Chiu, Weihsueh A; Caldwell, Jane C; Keshava, Nagalakshmi; Scott, Cheryl Siegel

    2006-09-01

    Trichloroethylene (TCE) is a common environmental contaminant at hazardous waste sites and in ambient and indoor air. Assessing the human health risks of TCE is challenging because of its inherently complex metabolism and toxicity and the widely varying perspectives on a number of critical scientific issues. Because of this complexity, the U.S. Environmental Protection Agency (EPA) drew upon scientific input and expertise from a wide range of groups and individuals in developing its 2001 draft health risk assessment of TCE. This scientific outreach, which was aimed at engaging a diversity of perspectives rather than developing consensus, culminated in 2000 with 16 state-of-the-science articles published together as an Environmental Health Perspectives supplement. Since that time, a substantial amount of new scientific research has been published that is relevant to assessing TCE health risks. Moreover, a number of difficult or controversial scientific issues remain unresolved and are the subject of a scientific consultation with the National Academy of Sciences coordinated by the White House Office of Science and Technology Policy and co-sponsored by a number of federal agencies, including the U.S. EPA. The articles included in this mini-monograph provide a scientific update on the most prominent of these issues: the pharmacokinetics of TCE and its metabolites, mode(s) of action and effects of TCE metabolites, the role of peroxisome proliferator-activated receptor in TCE toxicity, and TCE cancer epidemiology. PMID:16966103

  17. Phytoremediation of Trichloroethylene and Perchloroethylene at the Savannah River Site

    SciTech Connect

    Brigmon, R.L.

    2001-01-10

    Bioremediation of chlorinated solvents, both natural and accelerated, is exemplified by phytoremediation and biodegradation by rhizosphere microorganisms. Phytoremediation is the use of vegetation for the treatment of contaminated soils, sediments, and water. The potential for phytoremediation of chlorinated solvents has been demonstrated at the Savannah River Site (SRS) Miscellaneous Chemical Basin, Southern Sector of A/M Area and TNX/D-Area. Recent characterization work at the SRS has delineated widespread plumes (1-2 miles) of low concentration (40 ppb -10-ppm range) trichloroethylene (TCE) and perchloroethylene (PCE) contaminated groundwater. Phytoremediation deployments are underway for TCE and PCE phytoremediation in select SRS areas. Phytoremediation appears to be an excellent technology to intercept and control plume migration. The ongoing Southern Sector treatability study is part of a multi-year field study of SRS seepline-soil systems maintained under saturated conditions. The primary focus is on determining how trees, seepline groundcover, soil microbial communities, and geochemical and surface-volatilization processes affect TCE and PCE in contaminated groundwater that flows through surface seepline areas. Therefore, FY00 represented an initial acclimation phase for soil and plant systems and will facilitate examination of seepline phyto- and bioactivity in subsequent growth season in FY01.

  18. Biotransformation of trichloroethylene by a phenol-induced mixed culture

    SciTech Connect

    Shurtliff, M.M.; Parkin, G.F.; Gibson, D.T.; Weathers, L.J.

    1996-07-01

    Biodegradation of trichloroethylene (TCE) was studied using a mixed culture of aerobic, phenol-induced organisms. Abiotic experiments showed that sorption of TCE to biomass was negligible in the systems studied. The effects of influent phenol and TCE concentration on the TCE degradation capacity of the culture were studied using chemostats. A relationship exists between the influent phenol/TCE ratio and TCE biodegradation. TCE transformation yields ranged from 0.052 to 0.222 mg TCE removed/mg phenol removed. Monod kinetic coefficients for phenol degradation were determined. Monod kinetic coefficients were also determined for TCE biotransformation by resting cells. The concept of transformation capacity was used to model the decrease in active biomass concentration caused by TCE transformation. In mineralization studies using {sup 14}C-labeled TCE, 22% of the degraded mass of TCE was transformed to carbon dioxide, 8.8% was incorporated into biomass, 42% was transformed to nonvolatile products, with the remaining, unrecovered 27% most likely transformed into volatile or semivolatile products.

  19. Complete dissolution of trichloroethylene in saturated porous media

    SciTech Connect

    Imhoff, P.T.; Arthur, M.H.; Miller, C.T.

    1998-08-15

    Porous media containing trichloroethylene (TCE) trapped at residual saturation in otherwise water-saturated porous media were flushed with water to asses the dissolution rate of TCE as TCE volumetric fractions approached zero. Careful attention to column design and experimental methods limited the effect of column materials on effluent concentrations. Effluent concentration measurements during TCE dissolution are presented for a glass bead porous medium, a mixed sand, and a treated soil. Effluent concentrations were measured as they decreased below 5 {micro}g/L, the maximum allowable contaminant level, in the glass bead and mixed sand media. Effluent concentrations from columns packed with treated soil were measured down to 20 {micro}g/L. Solvent extraction of the treated soil after the dissolution experiments revealed that extremely small quantities of TCE were retained in this medium. Results from parallel experiments on columns exposed to only aqueous TCE suggest that TCE remaining in the treated soil columns was sorbed to the porous medium. Existing power-law models were capable of describing TCE dissolution in these media, if the exponent on the TCE volume fraction was modified appropriately.

  20. Phosphoproteomic analyses of L-02 liver cells exposed to trichloroethylene.

    PubMed

    Ren, Xiaohu; Li, Jie; Xia, Bo; Liu, Wei; Yang, Xifei; Hong, Wen-Xu; Huang, Peiwu; Wang, Yong; Li, Shuiming; Zou, Fei; Liu, Jianjun

    2015-01-01

    Trichloroethylene (TCE) is an environmental and occupational toxicant that has been shown to cause serious hepatotoxicity. However, the mechanisms underlying the hepatotoxicity of TCE remain unclear. Previously, we identified several apoptosis-related proteins in TCE-induced hepatic cytotoxicity. This study is aimed to analyze the changes in phosphoproteins in L-02 liver cells exposed to TCE using iTRAQ labeling, IMAC enrichment and LC-MS/MS. We identified 1878 phosphorylation sites in 107 proteins and found that 20 sites in 16 phosphoproteins were differentially phosphorylated in L-02 cells after TCE treatment. Among these phosphoproteins, 20% were protein localization and formation processes-related proteins, 38% were metabolism-related proteins and 42% were cellular process-related proteins, including transcriptional regulation and biogenesis. Moreover, two phosphoproteins, 4E-BP1 (37T) and MCM2 (139S), were validated as TCE-induced alteration of phosphorylation at specific sites by Western-blot analysis. Taken together, our study demonstrated that TCE exposure changed the levels of multiple phosphoproteins in L-02 liver cells, and the functional analysis suggested that these differentially expressed phosphoproteins might be involved in TCE-induced hepatic cytotoxicity. PMID:26018768

  1. A Case of Occupational Hypersensitivity Pneumonitis Associated with Trichloroethylene

    PubMed Central

    Kim, Young Jae; Hwang, Eu Dong; Leem, Ah Young; Kang, Beo Deul; Chang, Soo Yun; Kim, Ho Keun; Park, In Kyu; Kim, Song Yee; Kim, Eun Young; Jung, Ji Ye; Kang, Young Ae; Park, Moo Suk; Kim, Young Sam; Kim, Se Kyu; Chang, Joon

    2014-01-01

    Trichloroethylene (TCE) is a toxic chemical commonly used as a degreasing agent, and it is usually found in a colorless or blue liquid form. TCE has a sweet, chloroform-like odor, and this volatile chlorinated organic chemical can cause toxic hepatitis, neurophysiological disorders, skin disorders, and hypersensitivity syndromes. However, the hypersensitivity pneumonitis (HP) attributed to TCE has rarely been reported. We hereby describe a case of HP associated with TCE in a 29-year-old man who was employed as a lead welder at a computer repair center. He was installing the capacitors on computer chip boards and had been wiped down with TCE. He was admitted to our hospital with complaints of dry coughs, night sweats, and weight losses for the past two months. HP due to TCE exposure was being suspected due to his occupational history, and the results of a video-associated thoracoscopic biopsy confirmed the suspicions. Symptoms have resolved after the steroid pulse therapy and his occupational change. TCE should be taken into consideration as a potential trigger of HP. Early recognition and avoidance of the TCE exposure in the future is important for the treatment of TCE induced HP. PMID:24624216

  2. Optimization of electrochemical dechlorination of trichloroethylene in reducing electrolytes.

    PubMed

    Mao, Xuhui; Ciblak, Ali; Baek, Kitae; Amiri, Mohammad; Loch-Caruso, Rita; Alshawabkeh, Akram N

    2012-04-15

    Electrochemical dechlorination of trichloroethylene (TCE) in aqueous solution is investigated in a closed, liquid-recirculation system. The anodic reaction of cast iron generates ferrous species, creating a chemically reducing electrolyte (negative ORP value). The reduction of TCE on the cathode surface is enhanced under this reducing electrolyte because of the absence of electron competition. In the presence of the iron anode, the performances of different cathodes are compared in a recirculated electrolysis system. The copper foam shows superior capability for dechlorination of aqueous TCE. Electrolysis by cast iron anode and copper foam cathode is further optimized though a multivariable experimental design and analysis. The conductivity of the electrolyte is identified as an important factor for both final elimination efficiency (FEE) of TCE and specific energy consumption. The copper foam electrode exhibits high TCE elimination efficiency in a wide range of initial TCE concentration. Under coulostatic conditions, the optimal conditions to achieve the highest FEE are 9.525 mm thick copper foam electrode, 40 mA current and 0.042 mol L(-1) Na(2)SO(4). This novel electrolysis system is proposed to remediate groundwater contaminated by chlorinated organic solvents, or as an improved iron electrocoagulation process capable of treating the wastewater co-contaminated with chlorinated compounds. PMID:22264798

  3. Removal of Trichloroethylene and Heavy Metals by Zerovalent Iron Nanoparticles

    NASA Astrophysics Data System (ADS)

    Boparai, H. K.; O'Carroll, D. M.

    2009-05-01

    Heavy metals combined with chlorinated solvents are one class of mixed waste found at various hazardous waste sites in North America. Nano zerovalent iron (nZVI), an emerging technology, is being successfully used for treating chlorinated solvents and heavy metals independently, however comparatively little research has investigated the remediation of the wastes when they are present in the same mixture. The remediation of trichloroethylene (TCE)/heavy metal waste mixtures via nZVI has been investigated in the present study. Results suggest that some metals are reduced by nZVI to their zerovalent state and thus precipitate on nZVI particles. This improves the contaminant removal performance of nZVI by forming bimetallic iron nanoparticles. Other metals are directly precipitated or adsorbed on the nZVI particles in their original oxidation state and are rendered immobile. In some cases the presence of the heavy metals in the waste mixture enhanced the dechlorination of TCE while in other cases it did not. This study suggests that nano zerovalent iron particles can be effectively used for the remediation of mixed contamination of heavy metals and chlorinated solvents. Results have been supported by a variety of techniques including X-ray photoelectron spectroscopy (XPS) analysis.

  4. Removal of trichloroethylene from waste gases via the peroxone process.

    PubMed

    Van Craeynest, K; Dewulf, J; Vandeburie, S; Van Langenhove, H

    2003-01-01

    In dealing with chlorinated organic compounds in waste gases, traditional treatment techniques show some severe shortcomings. Thermal oxidation may lead to the formation of dioxins, active carbon adsorption does not degrade the pollutants and biotechnological treatment is difficult since microorganisms do not always possess efficient degradation pathways for these compounds. These drawbacks explain the growing interest of the waste gas treatment sector for Advanced Oxidation Processes (AOPs) which were initially developed as water treatment techniques. AOPs generate highly reactive hydroxyl radicals that efficiently oxidise organic pollutants. In the peroxone process, this is done by a combination of ozone and hydrogen peroxide. In this work, the peroxone process is applied in an oxidative scrubber for the removal of trichloroethylene (TCE). Rapid oxidation of absorbed TCE in the liquid phase enhances TCE absorption Practically, a gas stream contaminated with TCE is mixed with an ozone loaded gas stream. The mixture is led through a bubble column that is fed with a buffered hydrogen peroxide solution. The effect of different process parameters (flow rates, buffer concentration, pH, hydrogen peroxide/ozone dosage ratio, TCE dosage) on TCE removal was investigated. Depending on the operating conditions, removal efficiencies up to 98% could be attained. PMID:14518856

  5. Trichloroethylene: Mechanistic, Epidemiologic and Other Supporting Evidence of Carcinogenic Hazard

    PubMed Central

    Rusyn, Ivan; Chiu, Weihsueh A.; Lash, Lawrence H.; Kromhout, Hans; Hansen, Johnni; Guyton, Kathryn Z.

    2013-01-01

    The chlorinated solvent trichloroethylene (TCE) is a ubiquitous environmental pollutant. The carcinogenic hazard of TCE was the subject of a 2012 evaluation by a Working Group of the International Agency for Research on Cancer (IARC). Information on exposures, relevant data from epidemiologic studies, bioassays in experimental animals, and toxicity and mechanism of action studies was used to conclude that TCE is carcinogenic to humans (Group 1). This article summarizes the key evidence forming the scientific bases for the IARC classification. Exposure to TCE from environmental sources (including from hazardous waste sites and contaminated water) is common throughout the world. While workplace use of TCE has been declining, occupational exposures remain of concern, especially in developing countries. Strongest human evidence is from studies of occupational TCE exposure and kidney cancer. Positive, although less consistent, associations were reported for liver cancer and non-Hodgkin's lymphoma. TCE is carcinogenic at multiple sites in multiple species and strains of experimental animals. The mechanistic evidence includes extensive data on the toxicokinetics and genotoxicity of TCE and its metabolites. Together, available evidence provided a cohesive database supporting the human cancer hazard of TCE, particularly in the kidney. For other target sites of carcinogenicity, mechanistic and other data were found to be more limited. Important sources of susceptibility to TCE toxicity and carcinogenicity were also reviewed by the Working Group. In all, consideration of the multiple evidence streams presented herein informed the IARC conclusions regarding the carcinogenicity of TCE. PMID:23973663

  6. Toluene inducing acute respiratory failure in a spray paint sniffer

    PubMed Central

    Peralta, Diego P.; Chang, Aymara Y.

    2012-01-01

    Summary Background: Toluene, formerly known as toluol, is an aromatic hydrocarbon that is widely used as an industrial feedstock and as a solvent. Like other solvents, toluene is sometimes also used as an inhalant drug for its intoxicating properties. It has potential to cause multiple effects in the body including death. Case Report: I report a case of a 27-year-old male, chronic spray paint sniffer, who presented with severe generalized muscle weakness and developed acute respiratory failure requiring ventilatory support. Toluene toxicity was confirmed with measurement of hippuric acid of 8.0 g/L (normal <5.0 g/L). Conclusions: Acute respiratory failure is a rare complication of chronic toluene exposure that may be lethal if it is not recognized immediately. To our knowledge, this is the second case of acute respiratory failure due to toluene exposure. PMID:23569498

  7. [Accumulation kinetics of trichloroethylene and its metabolites during multiple exposures. A theoretical study (author's transl)].

    PubMed

    Sato, A

    1979-07-01

    In attempting to establish an excretory TLV for trichloroethylene, the rates at which trichloroethylene and its metabolites accumulate in the body with increasing number of exposures and their plateau values attained after repetition of an infinite number of exposures were estimated theoretically with a mathematical model. After a single inhalation exposure to trichloroethylene is over, its concentration in the blood, x, and the amount of its urinary metabolites, [D]to, as a function of time t are expressed as a sum of three exponentials: (formula: see text). where A1-A3 and D1-D3 are constants depending on the inhaled air concentration of trichloroethylene, and alpha 1-alpha 2 and kA-K3 rate constants. When the same degree of exposure is repeated for n consecutive days, the blood concentration, t hours after the nth day's exposure, becomes (formula: see text). From the experimental results of a single human exposure reported previously, the concentration of trichloroethylene in the blood was predicted to change only to a negligible degree after repetition of an infinitive number of exposures, whereas the amount of total urinary metabolites was predicted to increase by twice as much as that excreted after the single exposure. PMID:537221

  8. TRICHLOROETHYLENE ACCELERATES AN AUTOIMMUNE RESPONSE IN ASSOCIATION WITH TH1 T-CELL ACTIVATION IN MRL+/+ MICE. (R826409)

    EPA Science Inventory

    Abstract

    Trichloroethylene (1,1,2-trichloroethene) is a major environmental contaminant. There is increasing evidence relating exposure to trichloroethylene with autoimmunity. To investigate potential mechanisms, we treated the autoimmune-prone MRL+/+ mice with trichlo...

  9. Health assessment for Metal Working Shop Site, Lake Ann, Michigan, Region 5. CERCLIS No. MID980992952. Preliminary report

    SciTech Connect

    Not Available

    1988-09-30

    The Metal Working Shop Site is listed on the National Priorities List. The site consists of an operating metal-working facility in a sparsely populated rural area in Benzie, Michigan. Identified contaminants of potential concern on the site include chromium, tetrachloroethylene (PCE), trichloroethane, and toluene in water and trichloroethylene (TCE), trichloroethane, xylenes, ethylbenzene, and toluene in soil. The site is considered to be of potential public health concern because of the risk to human health caused by the possibility of exposure to hazardous substances via contaminated well water and soil. Confirmation of sampling results that show contamination in well water and soil is needed.

  10. Role of heterotrophic bacteria in complete mineralization of trichloroethylene by Methylocystis sp. strain M.

    PubMed Central

    Uchiyama, H; Nakajima, T; Yagi, O; Nakahara, T

    1992-01-01

    Biodegradation experiments with radioactively labeled trichloroethylene showed that 32% of the radioactive carbon was converted to glyoxylic acid, dichloroacetic acid and trichloroacetic acid and that the same percentage was converted to CO2 and CO after 140 h of incubation by a pure culture of a type II methane-utilizing bacterium, Methylocystis sp. strain M, isolated from a mixed culture, MU-81, in our laboratory. In contrast, these water-soluble (14C)trichloroethylene degradation products were completely or partially degraded further and converted to CO2 by the MU-81 mixed culture. This phenomenon was attributed to the presence of a heterotrophic bacterium (strain DA4), which was identified as Xanthobacter autotrophicus, in the MU-81 culture. The results indicate that the heterotrophic bacteria play an important role in complete trichloroethylene degradation by methanotrophs. PMID:1444420

  11. Copper Enhanced Monooxygenase Activity and FT-IR Spectroscopic Characterisation of Biotransformation Products in Trichloroethylene Degrading Bacterium: Stenotrophomonas maltophilia PM102

    PubMed Central

    Mukherjee, Piyali; Roy, Pranab

    2013-01-01

    Stenotrophomonas maltophilia PM102 (NCBI GenBank Acc. no. JQ797560) is capable of growth on trichloroethylene as the sole carbon source. In this paper, we report the purification and characterisation of oxygenase present in the PM102 isolate. Enzyme activity was found to be induced 10.3-fold in presence of 0.7 mM copper with a further increment to 14.96-fold in presence of 0.05 mM NADH. Optimum temperature for oxygenase activity was recorded at 36°C. The reported enzyme was found to have enhanced activity at pH 5 and pH 8, indicating presence of two isoforms. Maximum activity was seen on incubation with benzene compared to other substrates like TCE, chloroform, toluene, hexane, and petroleum benzene. Km and Vmax for benzene were 3.8 mM and 340 U/mg/min and those for TCE were 2.1 mM and 170 U/mg/min. The crude enzyme was partially purified by ammonium sulphate precipitation followed by dialysis. Zymogram analysis revealed two isoforms in the 70% purified enzyme fraction. The activity stain was more prominent when the native gel was incubated in benzene as substrate in comparison to TCE. Crude enzyme and purified enzyme fractions were assayed for TCE degradation by the Fujiwara test. TCE biotransformation products were analysed by FT-IR spectroscopy. PMID:24083236

  12. Detailed mechanism of toluene oxidation and comparison with benzene

    NASA Technical Reports Server (NTRS)

    Bittker, David A.

    1988-01-01

    A detailed mechanism for the oxidation of toluene in both argon and nitrogen dilutents is presented. The mechanism was used to compute experimentally ignition delay times for shock-heated toluene-oxygen-argon mixtures with resonably good success over a wide range of initial temperatures and pressures. Attempts to compute experimentally measured concentration profiles for toluene oxidation in a turbulent reactor were partially successful. An extensive sensitivity analysis was performed to determine the reactions which control the ignition process and the rates of formation and destruction of various species. The most important step was found to be the reaction of toluene with molecular oxygen, followed by the reactions of hydroperoxyl and atomic oxygen with benzyl radicals. These findings contrast with the benzene oxidation, where the benzene-molecular oxygen reaction is quite unimportant and the reaction of phenyl with molecular oxygen dominates. In the toluene mechanism the corresponding reaction of benzyl radicals with oxygen is unimportant. Two reactions which are important in the oxidation of benzene also influence the oxidation of toluene for several conditions. These are the oxidations of phenyl and cyclopentadienyl radicals by molecular oxygen. The mechanism presented successfully computes the decrease of toluene concentration with time in the nitrogen diluted turbulent reactor. This fact, in addition to the good prediction of ignition delay times, shows that this mechanism can be used for modeling the ignition and combustion process in practical, well-mixed combustion systems.

  13. Photocatalytic oxidation of toluene to benzaldehyde by molecular oxygen

    SciTech Connect

    Mao, Y.; Bakac, A.

    1996-03-07

    The visible light irradiation of aqueous solutions containing toluene, uranyl(VI) ions, and O{sub 2} results in the formation of benzaldehyde as a major product. Small amounts of PhCH{sub 2}OH are also formed. The yields of benzaldehyde are 3 times greater for toluene-h{sub 8} than for toluene-d{sub 8}, but the kinetic isotope effect for the quenching of the excited state {sup *}UO{sub 2}{sup 2+} by toluene is negligible (k{sub toluene-h(8)}/k{sub toluene-d(8)}=1.2). This and other evidence indicate that the quenching takes place in two parallel pathways. The major one involves the aromatic portion of tolune and leads to the recovery of the reactants. The minor, productive path takes place by hydrogen atom abstraction from the methyl group, followed by the oxidation of PhCH{sub 2}{sup {center_dot}}. Cumene, benzyl alcohol, and benzaldehyde react similarly. 31 refs., 5 figs., 1 tab.

  14. Degradation of trichloroethylene using iron, bimetals and trimetals.

    PubMed

    Chao, Keh-Ping; Ong, Say Kee; Fryzek, Todd; Yuan, Wanchun; Braida, Washington

    2012-01-01

    A cold, electrodeless method was used to prepare bimetals (Fe/Cu, Fe/Ni) and trimetals (Fe/Cu/Ni) for the treatment of trichloroethylene (TCE). With Fe/Cu, the degradation of TCE was observed to increase with increasing copper content up to 9.26 % (w/w) with a first-order degradation rate constant approximately 10 times faster than that of zero-valent iron (ZVI) alone. For copper content greater than 9.26 %, the TCE degradation rate decreased. Dechlorinated compounds were initially observed but they were transitory and accounted for no more than 9 % of initial TCE mass on a carbon molar basis. Ethylene was the primary end product of TCE reduction. Similarly for Fe/Ni, increasing rates of degradation were observed with increasing amounts of nickel with a maximum degradation rate constant of about 30 times higher than that of ZVI alone. However, the amount of nickel needed to reach the maximum rate was only 0.25 %. When copper and nickel were plated onto iron, the maximum reaction rate constant was approximately 50 times higher than that of ZVI. The maximum degradation of TCE was observed for a copper and nickel content of 4.17 % and 0.40 %, respectively. The experimental results indicated that TCE degradation was enhanced by more than one order of magnitude when copper and/or nickel was plated onto the zero-valent iron. However, copper or nickel plated onto iron by the elctrodeless process was found to leach out during the reaction which may, in turn, impact the contaminated water. PMID:22702813

  15. Human Health Effects of Trichloroethylene: Key Findings and Scientific Issues

    PubMed Central

    Jinot, Jennifer; Scott, Cheryl Siegel; Makris, Susan L.; Cooper, Glinda S.; Dzubow, Rebecca C.; Bale, Ambuja S.; Evans, Marina V.; Guyton, Kathryn Z.; Keshava, Nagalakshmi; Lipscomb, John C.; Barone, Stanley; Fox, John F.; Gwinn, Maureen R.; Schaum, John; Caldwell, Jane C.

    2012-01-01

    Background: In support of the Integrated Risk Information System (IRIS), the U.S. Environmental Protection Agency (EPA) completed a toxicological review of trichloroethylene (TCE) in September 2011, which was the result of an effort spanning > 20 years. Objectives: We summarized the key findings and scientific issues regarding the human health effects of TCE in the U.S. EPA’s toxicological review. Methods: In this assessment we synthesized and characterized thousands of epidemiologic, experimental animal, and mechanistic studies, and addressed several key scientific issues through modeling of TCE toxicokinetics, meta-analyses of epidemiologic studies, and analyses of mechanistic data. Discussion: Toxicokinetic modeling aided in characterizing the toxicological role of the complex metabolism and multiple metabolites of TCE. Meta-analyses of the epidemiologic data strongly supported the conclusions that TCE causes kidney cancer in humans and that TCE may also cause liver cancer and non-Hodgkin lymphoma. Mechanistic analyses support a key role for mutagenicity in TCE-induced kidney carcinogenicity. Recent evidence from studies in both humans and experimental animals point to the involvement of TCE exposure in autoimmune disease and hypersensitivity. Recent avian and in vitro mechanistic studies provided biological plausibility that TCE plays a role in developmental cardiac toxicity, the subject of substantial debate due to mixed results from epidemiologic and rodent studies. Conclusions: TCE is carcinogenic to humans by all routes of exposure and poses a potential human health hazard for noncancer toxicity to the central nervous system, kidney, liver, immune system, male reproductive system, and the developing embryo/fetus. PMID:23249866

  16. Enhanced reductive dechlorination of trichloroethylene by sulfidated nanoscale zerovalent iron.

    PubMed

    Rajajayavel, Sai Rajasekar C; Ghoshal, Subhasis

    2015-07-01

    Direct injection of reactive nanoscale zerovalent iron particles (NZVI) is considered to be a promising approach for remediation of aquifers contaminated by chlorinated organic pollutants. In this study we show that the extent of sulfidation of NZVI enhances the rate of dechlorination of trichloroethylene (TCE) compared to that by unamended NZVI, and the enhancement depends on the Fe/S molar ratio. Experiments where TCE was reacted with NZVI sulfidated to different extents (Fe/S molar ratios 0.62-66) showed that the surface-area normalized first-order TCE degradation rate constant increased up to 40 folds compared to non-sulfidated NZVI. Fe/S ratios in the range of 12-25 provided the highest TCE dechlorination rates, and rates decreased at both higher and lower Fe/S. In contrast, sulfidated NZVI exposed to water in the absence of TCE showed significantly lower hydrogen evolution rate (2.75 μmol L(-1) h(-1)) compared to that by an unamended NZVI (6.92 μmol L(-1) h(-1)), indicating that sulfidation of NZVI suppressed corrosion reactions with water. Sulfide (HS(-)) ions reacted rapidly with NZVI and X-ray photoelectron spectroscopy analyses showed formation of a surface layer of FeS and FeS2. We propose that more electrons are preferentially conducted from sulfidated NZVI than from unamended NZVI to TCE, likely because of greater binding of TCE on the reactive sites of the iron sulfide outer layer. Resuspending sulfidated NZVI in sulfide-free or sulfide containing solutions altered the TCE degradation rate constants because of changes in the FeS layer thickness. Sulfidated NZVI maintained its high reactivity in the presence of multiple mono and divalent ions and with polyelectrolyte coatings. Thus, sulfide ions in groundwater can significantly alter NZVI reactivity. PMID:25935369

  17. Common-source community and industrial exposure to trichloroethylene

    SciTech Connect

    Landrigan, P.J.; Kominsky, J.R.; Stein, G.F.; Ruhe, R.L.; Watanabe, A.S.

    1987-11-01

    In July 1979, 1900 gallons of trichloroethylene (TCE) were released into ground and surface water from a pipe manufacturing plant in Montgomery County, Pennsylvania. To evaluate community and occupational exposure to TCE, we conducted environmental and medical surveys. In well water samples obtained in August 1979 within 1 km of the factory, TCE concentrations ranged to 183,000 parts per billion (ppb); EPA's proposed guideline for TCE in drinking water is 5 ppb. Levels of TCE declined with distance from the plant and decreased in the months following the spill. However, lower level TCE contamination was widespread and persistent, suggesting multiple releases. Within the plant, mean time-weighted occupational exposure to TCE of degreaser operators was 205 mg/m3; the recommended time-weighted exposure limit is 135 mg/m3. Mean short-term exposure was 1,084 mg/m3; the recommended short-term limit is 535 mg/m3. Seven of 9 exposed workers reported drowsiness, dizziness, or mental confusion. In exposed workers, mean urinary excretion of TCE metabolites rose from 298 micrograms/L pre-shift to 480 micrograms/L post-shift. On re-evaluation of the factory following improvements in ventilation and work practices, mean time-weighted occupational exposure to TCE had decreased to 84 mg/m3 and short-term exposure to 400 mg/m3; symptom frequency and concentrations of urinary TCE metabolites also were reduced. This episode demonstrates that community and occupational exposure to chemical toxins may share a common origin.

  18. Impact of iron sulfide transformation on trichloroethylene degradation

    SciTech Connect

    He, Y. Thomas; Wilson, John T.; Wilkin, Richard T.

    2010-05-04

    Trichloroethylene (TCE) is one of the most common and persistent groundwater contaminants encountered at hazardous waste sites around the world. A growing body of evidence indicates that iron sulfides play an important role in degrading TCE in natural environments and in engineered systems designed for groundwater cleanup. In this study, we investigate transformation processes of iron sulfides and consequent impacts on TCE degradation using batch experimental techniques, transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray absorption spectroscopy (XAS). Our results show that mackinawite is highly reactive toward TCE and no detectable mineralogical changes were detected during the course of reaction. However, freeze-dried FeS transformed to a mixture of mackinawite and greigite during the freeze drying process, with further mineralogical changes during reaction with TCE to lepidocrocite, goethite and pyrite. Newly formed lepidocrocite is a transient phase, with conversion to goethite over time. TCE transformation kinetics show that freeze-dried FeS is 20-50 times less reactive in degrading TCE than non-freeze-dried FeS, and the TCE degradation rate increases with pH (from 5.4 to 8.3), possibly due to an increase of surface deprotonation or electron transfer at higher pH. Results suggest that freeze drying could cause FeS particle aggregation, decreased surface area and availability of reactive sites; it also could change FeS mineralogy and accelerate mineral transformation. These aspects could contribute to the lower reactivity of freeze-dried FeS toward TCE degradation. Modeling results show that FeS transformation in natural environments depends on specific biogeochemical conditions, and natural FeS transformation may affect mineral reactivity in a similar way as compared to the freeze drying process. Rapid transformation of FeS to FeS{sub 2} could significantly slow down TCE degradation in both natural and engineered systems.

  19. Increase in cochlear microphonic potential after toluene administration.

    PubMed

    Lataye, Robert; Maguin, Katy; Campo, Pierre

    2007-08-01

    Human and animal studies have shown that toluene can cause hearing loss. In the rat, the outer hair cells are first disrupted by the ototoxicant. Because of their particular sensitivity to toluene, the cochlear microphonic potential (CMP) was used for monitoring the cochlea activity of anesthetized rats exposed to both noise (band noise centered at 4 kHz) and toluene. In the present experiment, the conditions were specifically designed to study the toluene effects on CMP and not those of its metabolites. To this end, 100-microL injections of a vehicle containing different concentrations of solvent were made into the carotid artery connected to the tested cochlea. Interestingly, an injection of 116.2-mM toluene dramatically increased in the CMP amplitude (approximately 4 dB) in response to an 85-dB SPL noise. Moreover, the rise in CMP magnitude was intensity dependent at this concentration suggesting that toluene could inhibit the auditory efferent system involved in the inner-ear or/and middle-ear acoustic reflexes. Because acetylcholine is the neurotransmitter mediated by the auditory efferent bundles, injections of antagonists of cholinergic receptors (AchRs) such as atropine, 4-diphenylacetoxy-N-methylpiperidine-methiodide (mAchR antagonist) and dihydro-beta-erythroidine (nAchR antagonist) were also tested in this investigation. They all provoked rises in CMP having amplitudes as large as those obtained with toluene. The results showed for the first time in an in vivo study that toluene mimics the effects of AchR antagonists. It is likely that toluene might modify the response of protective acoustic reflexes. PMID:17555896

  20. The role of glutathione conjugation in the development of kidney tumours in rats exposed to trichloroethylene.

    PubMed

    Green, T; Dow, J; Ellis, M K; Foster, J R; Odum, J

    1997-07-11

    Trichloroethylene is metabolised to a very minor extent (< 0.01% of the dose) by conjugation with glutathione, a metabolic pathway which leads to the formation of S-(1,2-dichlorovinyl)-L-cysteine (DCVC), a bacterial mutagen and nephrotoxin activated by the renal enzyme beta-lyase. The role of this metabolic pathway in the development of the nephrotoxicity and subsequent tumour formation seen in rats exposed to trichloroethylene has been evaluated. The pathway has been assessed quantitatively in vivo in rats, and in rats, mice and humans in vitro. Trichloroethylene was found to be a very weak nephrotoxin. There was no evidence of morphological change in the kidneys and only small increases in biochemical markers of kidney damage in rats dosed with 2000 mg/kg trichloroethylene by gavage for 42 days. N-acetyl-S-(1,2-dichlorovinyl)-L-cysteine was detected in the urine of rats dosed with 500 and 2000 mg/kg trichloroethylene for up to 10 days at levels equivalent to 0.001-0.008% of the dose. In vitro, the rate of conjugation of trichloroethylene with glutathione in the liver was higher in the mouse, 2.5 pmol/min per mg protein, than the rat, 1.6 pmol/min per mg protein, and in human liver the rates were extremely low, 0.02-0.37 pmol/min per mg protein. Comparisons of the metabolism of DCVC by renal beta-lyase and N-acetyl transferase showed that metabolism by N-acetyl transferase was two orders of magnitude greater than that by beta-lyase and that beta-lyase activity in rat kidney was 11-fold greater than that in human kidney. When the nephrotoxicity of DCVC was compared in rats and mice, the mouse was found to be 5-10 fold more sensitive than the rat. The no effect level in the rat was 10 mg/kg, a dose which is three orders of magnitude higher than the amount of DCVC formed from trichloroethylene in vivo. The lack of correlation between metabolism by this pathway and the rat specific tumours, together with questions concerning the potency of DCVC at the levels formed from trichloroethylene, suggests that DCVC may not be involved in the renal toxicity and subsequent tumour development seen in rats and that further evaluation of the mechanism(s) involved in the nephrotoxic response is warranted. PMID:9251723

  1. Benzene/toluene/p-xylene degradation. Part I. Solvent selection and toluene degradation in a two-phase partitioning bioreactor.

    PubMed

    Collins, L D; Daugulis, A J

    1999-09-01

    A two-phase organic/aqueous reactor configuration was developed for use in the biodegradation of benzene, toluene and p-xylene, and tested with toluene. An immiscible organic phase was systematically selected on the basis of predicted and experimentally determined properties, such as high boiling points, low solubilities in the aqueous phase, good phase stability, biocompatibility, and good predicted partition coefficients for benzene, toluene and p-xylene. An industrial grade of oleyl alcohol was ultimately selected for use in the two-phase partitioning bioreactor. In order to examine the behavior of the system, a single-component fermentation of toluene was conducted with Pseudomonas sp. ATCC 55595. A 0.5-1 sample of Adol 85 NF was loaded with 10.4 g toluene, which partitioned into the cell containing 1 l aqueous medium at a concentration of approximately 50 mg/l. In consuming the toluene to completion, the organisms were able to achieve a volumetric degradation rate of 0.115 g l-1 h-1. This system is self-regulating with respect to toluene delivery to the aqueous phase, and requires only feedback control of temperature and pH. PMID:10531648

  2. Rheology of asphaltene-toluene/water interfaces.

    PubMed

    Sztukowski, Danuta M; Yarranton, Harvey W

    2005-12-01

    The stability of water-in-crude oil emulsions is frequently attributed to a rigid asphaltene film at the water/oil interface. The rheological properties of these films and their relationship to emulsion stability are ill defined. In this study, the interfacial tension, elastic modulus, and viscous modulus were measured using a drop shape analyzer for model oils consisting of asphaltenes dissolved in toluene for concentrations varying from 0.002 to 20 kg/m(3). The effects of oscillation frequency, asphaltene concentration, and interface aging time were examined. The films exhibited viscoelastic behavior. The total modulus increased as the interface aged at all asphaltene concentrations. An attempt was made to model the rheology for the full range of asphaltene concentration. The instantaneous elasticity was modeled with a surface equation of state (SEOS), and the elastic and viscous moduli, with the Lucassen-van den Tempel (LVDT) model. It was found that only the early-time data could be modeled using the SEOS-LVDT approach; that is, the instantaneous, elastic, and viscous moduli of interfaces aged for at most 10 minutes. At longer interface aging times, the SEOS-LVDT approach was invalid, likely because of irreversible adsorption of asphaltenes on the interface and the formation of a network structure. PMID:16316096

  3. Thermophilic biofiltration of benzene and toluene.

    PubMed

    Cho, Kyung-Suk; Yoo, Sun-Kyung; Ryu, Hee Wook

    2007-12-01

    In the current studies, we characterized the degradation of a hot mixture of benzene and toluene (BT) gases by a thermophilic biofilter using polyurethane as packing material and high-temperature compost as a microbial source. We also examined the effect of supplementing the biofilter with yeast extract (YE). We found that YE substantially enhanced microbial activity in the thermophilic biofilter. The degrading activity of the biofilter supplied with YE was stable during long-term operation (approximately 100 d) without accumulating excess biomass. The maximum elimination capacity (1,650 g x m(-3) h(-1)) in the biofilter supplemented with YE was 3.5 times higher than that in the biofilter without YE (470 g g x m(-3) h(-1)). At similar retention times, the capacity to eliminate BT for the YE-supplemented biofilter was higher than for previously reported mesophilic biofilters. Thus, thermophilic biofiltration can be used to degrade hydrophobic compounds such as a BT mixture. Finally, 16S rDNA polymerase chain reaction-DGGE (PCR-DGGE) fingerprinting revealed that the thermophilic bacteria in the biofilter included Rubrobacter sp. and Mycobacterium sp. PMID:18167445

  4. Hepatotoxicity in Rats Treated with Dimethylformamide or Toluene or Both

    PubMed Central

    Chung, Yong Hyun

    2013-01-01

    The effects of toluene in dimethylformamide (DMF)-induced hepatotoxicity were investigated with respect to the induction of cytochrome P-450 (CYP) and the activities of related enzymes. The rats were treated intraperitoneally with the organic solvents in olive oil (Single treatment groups: 450 [D1], 900 [D2], 1,800 [D3] mg DMF, and 346 mg toluene [T] per kg of body weight; Combined treatment groups: D1+T, D2+T, and D3+T) once a day for three days, while the control group received just the olive oil. Each group consisted of 4 rats. The activities of the xenobiotic metabolic enzymes and the hepatic morphology were assessed. The immunoblots indicated that the expression of CYP2E1 was considerably enhanced depending on the dosage of DMF and the CYP2E1 blot densities were significantly increased after treatment with both DMF and toluene, compared to treatment with DMF alone. The activities of glutathione- S-transferase and glutathione peroxidase were either decreased or remained unaltered after treatment with DMF and toluene, whereas the lipid peroxide levels were increased with increasing dosage of DMF and toluene. The liver tissue in the D3 group (1,800 mg/kg of DMF) showed signs of microvacuolation in the central vein region and a large necrotic zone around the central vein, in rats treated with both DMF (1,800 mg/kg) and toluene (D3T). These results suggest that the expression of CYP2E1 is induced by DMF and enhanced by toluene. These changes may have facilitated the accelerated formation of Nmethylformamide (NMF) from toluene, and the generated NMF may directly induce liver damage. PMID:24386519

  5. Dioxinlike properties of a trichloroethylene combustion-generated aerosol.

    PubMed Central

    Villalobos, S A; Anderson, M J; Denison, M S; Hinton, D E; Tullis, K; Kennedy, I M; Jones, A D; Chang, D P; Yang, G; Kelly, P

    1996-01-01

    Conventional chemical analyses of incineration by-products identify compounds of known toxicity but often fail to indicate the presence of other chemicals that may pose health risks. In a previous report, extracts from soot aerosols formed during incomplete combustion of trichloroethylene (TCE) and pyrolysis of plastics exhibited a dioxinlike response when subjected to a keratinocyte assay. To verify this dioxinlike effect, the complete extract, its polar and nonpolar fractions, some containing primarily halogenated aromatic hydrocarbons, were evaluated for toxicity using an embryo assay, for antiestrogenicity using primary liver cell cultures, and for the ability to transform the aryl hydrocarbon receptor into its DNA binding form using liver cytosol in a gel retardation assay. Each of these assays detect dioxinlike effects. Medaka (Oryzias latipes) embryos and primary liver cell cultures of rainbow trout (Oncorhynchus mykiss) were exposed to concentrations of extract ranging from 0.05 to 45 micrograms/l. Cardiotoxicity with pericardial, yolk sac, and adjacent peritoneal edema occurred after exposure of embryos to concentrations of 7 micrograms/l or greater. These same exposure levels were associated with abnormal embryo development and, at the higher concentrations, death. Some of the fractions were toxic but none was as toxic as the whole extract. In liver cells, total cellular protein and cellular lactate dehydrogenase activity were not altered by in vitro exposure to whole extract (0.05-25 micrograms/l). However, induction of cytochrome P4501A1 protein and ethoxyresorufin O-deethylase activity occurred. In the presence of whole extract, estradiol-dependent vitellogenin synthesis was reduced. Of the fractions, only fraction 1 (nonpolar) showed a similar trend, although vitellogenin synthesis inhibition was not significant. The soot extract and fractions bound to the Ah receptor and showed a significantly positive result in the gel retardation/DNA binding test. Chemical analyses using GC-MS with detection limits for 2,3,7,8-tetrachlorodibenzo-p-dioxin and dibenzofuran in the picomole range did not show presence of these compounds. Our results indicate that other chemicals associated with TCE combustion and not originally targeted for analysis may also pose health risks through dioxinlike mechanisms. Images Figure 1. Figure 2. Figure 3. A Figure 3. B Figure 4. A Figure 4. B Figure 4. C Figure 4. D Figure 5. Figure 6. Figure 7. PMID:8841759

  6. Trichloroethylene effects on gene expression during cardiac development

    SciTech Connect

    Collier, John Michael; Selmin, Ornella; Johnson, Paula D.; Runyan, Raymond B.

    2003-05-09

    Background: Halogenated hydrocarbon exposure is associated with changes in gene expression in adult and embryonic tissue. The present study was undertaken to identify differentially expressed mRNA transcripts in embryonic hearts from Sprague-Dawley rats exposed to trichloroethylene (TCE) or potential bio-transformation products of TCE, Dichloroethylene (DCE) and Trichloroacetic acid (TCAA). Methods: cDNA subtractive hybridization was used to selectively amplify expressed mRNA in either control or day 11 embryonic rat hearts exposed to one of these halogenated hydrocarbons from day 0 to 11. The doses used were 1100 and 110 ppm (8300 and 830 mu M) TCE, 110 and 11 ppm (1100 and 110 mu M) DCE, 27.3 and 2.75 mg/ml (100 and 10 mM) TCAA. Control animals were given distilled drinking water throughout the period of experiments. Results: Sequencing of over 100 clones derived from halogenated hydrocarbon exposed groups=resulted in identification of numerous differentially regulate gene sequences. Up-regulated transcripts identified include genes associated with stress response (Hsp 70) and homeostasis (several ribosomal proteins). Down-regulated transcripts include extracellular matrix components (GPI-p137 and vimentin) and Ca2 + responsive proteins (Serca-2 Ca2+-ATPase and beta-catenin). Two possible markers for fetal TCE exposure were identified: Serca-2 and GPI-p137, a GPI-linked protein of unknown function. Both markers show a dose-related decrease in mRNA transcript levels associated with fetal exposure to TCE. Differential regulation of expression of both markers by TCE was confirmed by dot blot analysis and semi-quantitative RT-PCR. Levels of exposure between 100 and 250 ppb (0.76 and 1.9 mu M) TCE are sufficient to decrease expression of both the Ca2+-AT Pase and GPI-p137. Conclusion: Sequences down-regulated with TCE exposure appear to be those associated with cellular=housekeeping, cell adhesion and developmental processes, while TCE=exposure up-regulates expression of numerous stress response and homeostatic genes. Two potentially useful marker genes show a correlation between increasing levels of maternal TCE exposure and a decrease in marker transcript levels expressed at E11 in fetal rat heart tissue.

  7. Toluene diffusion and reaction in unsaturated Pseudomonas putida biofilms

    SciTech Connect

    Holden, P.A.; Hunt, J.R.; Firestone, M.K.

    1997-12-20

    Biofilms are frequently studied in the context of submerged or aquatic systems. However, much less is known about biofilms in unsaturated systems, despite their importance to such processes as food spoilage, terrestrial nutrient cycling, and biodegradation of environmental pollutants in soils. Using modeling and experimentation, the authors have described the biodegradation of toluene in unsaturated media by bacterial biofilms as a function of matric water potential, a dominant variable in unsaturated systems. They experimentally determined diffusion and kinetic parameters for Pseudomonas putida biofilms, then predicted biodegradation rates over a range of matric water potentials. For validation, the authors measured the rate of toluene depletion by intact biofilms and found the results to reasonably follow the model predictions. The diffusion coefficient for toluene through unsaturated P. putida biofilm averaged 1.3 {times} 10{sup {minus}7} cm{sup 2}/s, which is approximately two orders of magnitude lower than toluene diffusivity in water. Their studies show that, at the scale of the microbial biofilm, the diffusion of toluene to biodegrading bacteria can limit the overall rate of biological toluene depletion in unsaturated systems.

  8. HARMONIZATION AND COMMUNICATION OF PBPK MODELS USING THE EXPOSURE RELATED DOSE ESTIMATION MODEL (ERDEM) SYSTEM: TRICHLOROETHYLENE

    EPA Science Inventory

    In support of the trichloroethylene (TCE) risk assessment for the Office of Air and Radiation, Office of Solid Waste and Emergency Response, and Office of Water, NERL and NCEA are developing an updated physiologically-based pharmacokinetic (PBPK) model. The PBPK modeling effort ...

  9. HARMONIZATION AND COMMUNICATION OF PBPK MODELS USING THE EXPOSURE RELATED DOSE MODEL (ERDEM) SYSTEM: TRICHLOROETHYLENE

    EPA Science Inventory

    In support of the trichloroethylene (TCE) risk assessment for the Office of Air and Radiation, Office of Solid Waste and Emergency Response, and Office of Water, NERL and NCEA are developing an updated physiologically-based pharmacokinetic (PBPK) model. The PBPK modeling effor...

  10. TRICHLOROETHYLENE ADSORPTION BY ACTIVATED CARBON PRELOADED WITH HUMIC SUBSTANCES: EFFECTS OF SOLUTION CHEMISTRY. (R828157)

    EPA Science Inventory

    Abstract

    Trichloroethylene (TCE) adsorption by activated carbon previously loaded ("preloaded") with humic substances was found to decrease with increasing concentrations of monovalent ions (NaCl), calcium (until solubility was exceeded), or dissolved oxygen in...

  11. SPERMATID MICRONUCLEUS ANALYSES OF TRICHLOROETHYLENE AND CHLORAL HYDRATE EFFECTS IN MICE

    EPA Science Inventory

    Mice were exposed by inhalation to trichloroethylene (TCE), or by i.p. injection to the TCE metabolite, chloral hydrate (CH). arly spermatids were analyzed for micronucleus (MN) frequency and kinetochore status (presence or absence) using fluorochrome-labeled anti-kinetochore ant...

  12. Development of a replacement for trichloroethylene in the two-stage cleaning process

    SciTech Connect

    Harding, W.B.

    1992-12-01

    A solvent was sought to replace trichloroethylene in the two-stage cleaning process that is used in the Allied-Signal Inc., Kansas City Division (KCD) Miniature Electro-Mechanical Assembly Department. The process is an ultrasonic cleaning process in which product is first cleaned in trichloroethylene and then in isopropyl alcohol. After a general review of the properties of available solvents, isopropyl alcohol, d-limonene, and a synthetic mineral spirits, were chosen to be evaluated as trichloroethylene replacements. Stainless steel test panels were cleaned and then soiled with several different organic materials. Certain of the panels were cleaned by the two-stage process. The others were cleaned by the two-stage process using one or another of the solvents under evaluation in the place of the trichloroethylene. The cleanliness of the panels was determined by Auger and photoelectron spectroscopy. The panels cleaned with any of the three solvents under evaluation were found to be as clean as those cleaned by the standard two-stage process. Because of simplicity and minimization of inventory, it is recommended that the two-stage process be changed to use isopropyl alcohol in both stages.

  13. EFFECTS OF TEMPERATURE ON TRICHLOROETHYLENE DESORPTION FROM SILICA GEL AND NATURAL SEDIMENTS. 2. KINETICS. (R822626)

    EPA Science Inventory

    Isothermal desorption rates were measured at 15, 30, and 60 src="/ncer/pubs/images/deg.gif">C for trichloroethylene (TCE) on a silica gel,
    an aquifer sediment, a soil, a sand fraction, and a clay and silt fraction, all
    at 100% relative humidity. Temperature-st...

  14. DEGRADATION OF TRICHLOROETHYLENE UNDER HIGH-TEMPERATURE THERMAL SOURCE-ZONE REMOVAL CONDITIONS (POSTER PRESENTATION)

    EPA Science Inventory

    Trichloroethylene (TCE) is a contaminant commonly found in the subsurface at industrial and military installations in the United States. Oxidation of TCE (C2HCl3) to carbon dioxide (CO2) and chloride ions (Cl-) has been reported to occu...

  15. DEGRADATION OF TRICHLOROETHYLENE UNDER HIGH-TEMPERATURE THERMAL SOURCE-ZONE REMOVAL CONDITIONS (ABSTRACT ONLY)

    EPA Science Inventory

    Trichloroethylene (TCE) is a contaminant commonly found in the subsurface at industrial and military installations in the United States. Oxidation of TCE (C2HCl3) to carbon dioxide (CO2) and chloride ions (Cl-) has been reported to occu...

  16. FY00 Phytoremediation of Trichloroethylene and Perchloroethylene in the Southern Sector of SRS

    SciTech Connect

    Brigmon, R.L.

    2000-12-15

    This treatability study addresses the fate of volatile organic contaminants (VOCs) in an experiment that simulates a vegetated seepline supplied with trichloroethylene (TCE) and perchloroethylene (PCE) -contaminated groundwater. The primary objective is to determine how the trees uptake TCE and PCE, accumulate it, and/or transform it.

  17. TRICHLOROETHYLENE SORPTION AND OXIDATION USING A DUAL FUNCTION SORBENT/CATALYST IN A FALLING FURNACE REACTOR

    EPA Science Inventory

    A dual function medium (Cr-ZSM-5), capable of physisorbing trichloroethylene (TCE) at ambient temperature and catalytically oxidizing it at elevated temperature (-350 degrees C) was utilized in a novel continuous falling furnace reactor system to store and periodically destroy t...

  18. EFFECTS OF TRICHLOROETHYLENE AND ITS METABOLITES ON RODENT HEPATOCYTE INTERCELLULAR COMMUNICATION

    EPA Science Inventory

    Chronic exposure to trichloroethylene (TCE) results in hepatocellular cancer in mice but not rats. The induction of hepatic tumors by TCE appears to be mediated through nongenotoxic or tumor promotion mechanisms. One cellular effect exhibited by a number of nongentoxic carcinogen...

  19. INHIBITION OF HUMAN A7 NEURONAL NICOTINIC ACETYLCHOLINE RECEPTORS BY THE VOLATILE ORGANIC SOLVENT TRICHLOROETHYLENE.

    EPA Science Inventory

    Volatile organic compounds such as toleune, trichloroethylene and perchloroethylene are potent and reversible blockers of voltage-gated calcium current in nerve growth factor (NGF)-differentiated pheochromocytoma (PC12) cells. It is hypothesized that effects of VOCs on ICa contri...

  20. MICROCOSM AND IN SITU FIELD STUDIES OF ENHANCED BIOTRANSFORMATION OF TRICHLOROETHYLENE BY PHENOL-UTILIZING MICROORGANISMS

    EPA Science Inventory

    The ability of different aerobic groundwater microorganisms to cometabolically degrade trichloroethylene (TCE), 1,2-cis-dichloroethylene (c-DCE), and 1,2-trans-dichloroethylene (t-DCE) was evaluated both in groundwater-fed microcosms and in situ in a shallow aquifer. icrocosms am...

  1. COMPARISON OF MINERAL AND SOLUBLE IRON FENTON'S CATALYSTS FOR THE TREATMENT OF TRICHLOROETHYLENE. (R826163)

    EPA Science Inventory

    Abstract

    Contaminant degradation, stoichiometry, and role of hydroxyl radicals (OH·) in four Fenton's systems were investigated using trichloroethylene (TCE) as a model contaminant. A standard Fenton's system, a modified soluble iron system with a...

  2. HUMAN ALPHA-7 NICOTINIC ACETYLCHOLINE RECEPTORS EXPRESSED IN XENOPUS OOCYTES ARE INHIBITED BY TRICHLOROETHYLENE.

    EPA Science Inventory

    Trichloroethylene (TCE) is a volatile organic solvent (VOC) that is used as a metal degreasing agent and in paints and glue. In addition to being a commonly abused inhalant, run-off from hazardous waste sites contain enough TCE and other VOCs to contaminate ground water and near...

  3. A SEARCH FOR RESIDUAL BEHAVIORAL EFFECTS OF TRICHLOROETHYLENE (TCE) IN RATS EXPOSED AS YOUNG ADULTS

    EPA Science Inventory

    Trichloroethylene (TCE) is a solvent of concern to the EPA due to its extensive use in industry, its prevalence in urban air, and its appearance in water supplies. Human clinical studies have associated short and long-termsolvent exposures with cognitive dysfunction including att...

  4. Long-Term Capacity of Plant Mulch to Remediate Trichloroethylene in Groundwater

    EPA Science Inventory

    Passive reactive barriers are commonly used to treat groundwater that is contaminated with chlorinated solvents such as trichloroethylene (TCE). A number of passive reactive barriers have been constructed with plant mulch as the reactive medium. The TCE is removed in these barr...

  5. COMPARISON OF MINERAL AND SOLUBLE IRON FENTON'S CATALYSTS FOR THE TREATMENT OF TRICHLOROETHYLENE. (R826163)

    EPA Science Inventory

    Abstract

    Contaminant degradation, stoichiometry, and role of hydroxyl radicals (OH) in four Fenton's systems were investigated using trichloroethylene (TCE) as a model contaminant. A standard Fenton's system, a modified soluble iron system with a...

  6. CATALYTIC STEAM REFORMING OF CHLOROCARBONS: TRICHLOROETHANE, TRICHLOROETHYLENE AND PERCHLOROETHYLENE. (R826694C633)

    EPA Science Inventory

    The effective destruction of trichloroethane, trichloroethylene and perchloroethylene by steam reforming with a commercial nickel catalyst has been demonstrated. Conversion levels of up to 0.99999 were attained in both laboratory and semi-pilot experiments, with the products c...

  7. EFFECTS OF TEMPERATURE ON TRICHLOROETHYLENE DESORPTION FROM SILICA GEL AND NATURAL SEDIMENTS. 1. ISOTHERMS. (R822626)

    EPA Science Inventory

    Aqueous phase isotherms were calculated from vapor phase desorption isotherms
    measured at 15, 30, and 60 C for
    trichloroethylene on a silica gel, an aquifer sediment, a soil, a sand fraction,
    and a clay and silt fraction, all at...

  8. QUANTIFICATION OF PRODUCTS FROM ELECTROCHEMICAL DECHLORINATION OF TRICHLOROETHYLENE USING GRANULAR-GRAPHITE ELECTRODES

    EPA Science Inventory

    Electrochemical dechlorination of Trichloroethylene (TCE) in aqueous phase was studied using graphite as a cathode in a packed bed reactor in a closed system. TCE contaminated matrix solution was circulated through the electrochemical reactor where TCE was reduced at the graphite...

  9. MECHANISM INVOLVED IN TRICHLOROETHYLENE-INDUCED LIVER CANCER: IMPORTANCE TO ENVIRONMENTAL CLEANUP

    EPA Science Inventory

    Clean-up costs for chlorinated solvents found on DOE sites are most frequently driven by trichloroethylene (TCE). More permissive standards for TCE would reduce DOE's complex-wide clean up costs by several billions of dollars. EPA is currently reviewing its risk assessment for TC...

  10. CARCINOGENICITY OF TRICHLOROETHYLENE AND ITS METABOLITES, TRICHLOROACETIC ACID AND DICHLOROACETIC ACID, IN MOUSE LIVER

    EPA Science Inventory

    Trichloroethylene (TCE) has previously been shown to be carcinogenic in mouse liver when given by daily gavage in corn oil. The metabolism of TCE results, in part, in the formation of trichloroacetic acid (TCA) as a major metabolite and dichloroacetic acid (DCA) as a minor metabo...

  11. The Implication of Iron Oxide Nanoparticles on the Removal of Trichloroethylene by Adsorption

    EPA Science Inventory

    The fate and transport of Fe2O3 NPs in a granular activated carbon (GAC) adsorber and its impact on the removal of trichloroethylene (TCE) by GAC was investigated. The hydrodynamic diameter of Fe2O3 NPs was measured with time to evaluat...

  12. Remediation of an aquifer polluted with dissolved tetrachloroethylene by an array of wells filled with activated carbon.

    PubMed

    Bortone, I; Di Nardo, A; Di Natale, M; Erto, A; Musmarra, D; Santonastaso, G F

    2013-09-15

    In this work, an array of deep passive wells filled with activated carbon, namely a Discontinuous Permeable Adsorptive Barrier (PAB-D), has been proposed for the remediation of an aquifer contaminated by tetrachloroethylene (PCE). The dynamics of the aquifer in the particular PAB-D configuration chosen, including the contaminant transport in the aquifer and the adsorption onto the barrier material, has been accurately performed by means of a computer code which allows describing all the phenomena occurring in the aquifer, simultaneously. A PAB-D design procedure is presented and the main dimensions of the barrier (number and position of passive wells) have been evaluated. Numerical simulations have been carried out over a long time span to follow the contaminant plume and to assess the effectiveness of the remediation method proposed. The model results show that this PAB-D design allows for a complete remediation of the aquifer under a natural hydraulic gradient, the PCE concentrations flowing out of the barrier being always lower than the corresponding Italian regulation limit. Finally, the results have been compared with those obtained for the design of a more traditional continuous barrier (PAB-C) for the same remediation process. PMID:23876256

  13. Identification and removal of trichloroethylene contamination: A case study at Wright-Patterson Air Force Base. Master's thesis

    SciTech Connect

    Butterfield, G.A.

    1991-09-01

    The purpose of this thesis was to determine the parameters associated with installing monitoring wells to detect trichloroethylene contamination, and to determine what emphasis or weights were placed on the nine National Contingency Plan criteria to select a treatment method that would remove trichloroethylene. The results of this study should help installation restoration project officers understand what parameters should be investigated for determining the number and placement of monitoring wells during a remedial investigation for trichloroethylene. The results of this study should also give some insight into what emphasis should be placed on the nine National Contingency Plan criteria.

  14. Evaluation of the Role of Peroxisome Proliferator-Activated Receptor ? (PPAR?) in Mouse Liver Tumor Induction by Trichloroethylene and Metabolites

    EPA Science Inventory

    Trichloroethylene (TCE) is an industrial solvent and a widespread environmental contaminant. Induction of liver cancer in mice by TCE is thought to be mediated by two metabolites, dichloroacetate (DCA) and trichloroacetate (TCA), both of which are themselves mouse liver carcinoge...

  15. AN EXAMPLE OF MODEL STRUCTURE DIFFERENCES USING SENSITIVITY ANALYSES IN PHYSIOLOGICALLY BASED PHARMACOKINETIC MODELS OF TRICHLOROETHYLENE IN HUMANS

    EPA Science Inventory

    Abstract Trichloroethylene (TCE) is an industrial chemical and an environmental contaminant. TCE and its metabolites may be carcinogenic and affect human health. Physiologically based pharmacokinetic (PBPK) models that differ in compartmentalization are developed for TCE metabo...

  16. INFLUENCES OF PH AND CURRENT ON ELECTROLYTIC DECHLORINATION OF TRICHLOROETHYLENE AT A GRANULAR-GRAPHITE PACKED ELECTRODE

    EPA Science Inventory

    Electrolytic dechlorination using a granular-graphite packed cathode is an alternative method for the remediation of chlorinated organic compounds. Its effectiveness under various conditions needs experimental investigation. Dechlorination of trichloroethylene (TCE) was conducted...

  17. Asymmetric orientation of toluene molecules at oil-silica interfaces

    NASA Astrophysics Data System (ADS)

    Ledyastuti, Mia; Liang, Yunfeng; Kunieda, Makoto; Matsuoka, Toshifumi

    2012-08-01

    The interfacial structure of heptane and toluene at oil-silica interfaces has previously been studied by sum frequency generation [Z. Yang et al., J. Phys. Chem. C. 113, 20355 (2009)], 10.1021/jp9043122. It was found that the toluene molecule is almost perpendicular to the silica surface with a tilt angle of about 25. Here, we have investigated the structural properties of toluene and heptane at oil-silica interfaces using molecular dynamics simulations for two different surfaces: the oxygen-bridging (hydrophobic) and hydroxyl-terminated (hydrophilic) surfaces of quartz (silica). Based on the density profile, it was found that both heptane and toluene oscillate on silica surfaces, with heptane showing more oscillation peaks. Furthermore, the toluene molecules of the first layer were found to have an asymmetric distribution of orientations, with more CH3 groups pointed away from the silica surface than towards the silica surface. These findings are generally consistent with previous experiments, and reveal enhanced molecular structures of liquids at oil-silica interfaces.

  18. Spatiotemporal variability of tetrachloroethylene in residential indoor air due to vapor intrusion: a longitudinal, community-based study.

    PubMed

    Johnston, Jill E; Gibson, Jacqueline MacDonald

    2014-11-01

    The migration of volatile contaminants from groundwater and soil into indoor air is a potential health threat at thousands of contaminated sites across the country. This phenomenon, known as vapor intrusion, is characterized by spatial and temporal heterogeneity. This study examined short-term fluctuations in concentrations of tetrachloroethylene (PCE) in the indoor air of residential homes due to vapor intrusion in a community in San Antonio, Texas, that sits atop an extensive, shallow plume of contaminated groundwater. Using a community-based design, we removed potential indoor sources of PCE and then collected twelve 3-day passive indoor air samples in each of the 20 homes. Results demonstrated a one-order-of-magnitude variability in concentration across both space and time among the study homes, although all measured concentrations were below risk-based screening levels. We found that within any given home, indoor concentrations increase with the magnitude of the barometric pressure drop (P=0.048) and humidity (P<0.001), while concentrations decrease as wind speed increases (P<0.001) and also during winter (P=0.001). In a second analysis to examine sources of spatial variability, we found that indoor air PCE concentrations between homes increase with groundwater concentration (P=0.030) and a slab-on-grade (as compared with a crawl space) foundation (P=0.028), whereas concentrations decrease in homes without air conditioners (P=0.015). This study offers insights into the drivers of temporal and spatial variability in vapor intrusion that can inform decisions regarding monitoring and exposure assessment at affected sites. PMID:23549403

  19. Destruction of butanone and toluene with catalytic incineration

    SciTech Connect

    Lou, J.C.; Chen, C.L.

    1995-12-31

    Destructions of butanone and toluene are investigated at a low temperature over a catalyst composed of Pt, Ni and Cr alloy of foam type. These odorous volatile organic compounds are subjected to oxidation as single components and as a binary mixture at temperatures in the range 120-220{degrees}C to investigate the effects of destruction. The concentration of emitted volatile organic compounds are analyzed with a gas chromatograph. The first-order behavior of butanone and toluene causes inhibition of reactions in the mixture. The inhibition is insignificant at temperatures greater than 165{degrees}C. The destruction of the two component. Equations for destruction efficiency of single compounds and mixture compounds are derived to predict the efficiency of removal of butanone and toluene in terms of the operating temperature and residence period. Comparisons are made between experiments and results of calculations in a binary mixture. 11 refs., 11 figs., 3 tabs.

  20. Performance test plan for a space station toluene heater tube

    SciTech Connect

    Parekh, M.B.

    1987-10-01

    Sundstrand Energy Systems was awarded a contract to investigate the performance capabilities of a toluene heater tube integral to a heat pipe as applied to the Organic Rankine Cycle (ORC) solar dynamic power system for the Space Station. This heat pipe is a subassembly of the heat receiver. The heat receiver, the heat absorption component of the ORC solar dynamic power system, consists of forty liquid metal heat pipes located circumferentially around the heat receiver`s outside diameter. Each heat pipe contains a toluene heater, two thermal energy storage (TES) canisters and potassium. The function of the heater tube is to heat the supercritical toluene to the required turbine inlet temperature. During the orbit of the space station, the heat receiver and thereby the heat pipe and heater tube will be subjected to variable heat input. The design of the heater must be such that it can accommodate the thermal and hydraulic variations that will be imposed upon it.

  1. Biofiltration of toluene vapors in a carbon-medium biofilter

    SciTech Connect

    Medina, V.F.; Devinny, J.S.; Ramaratnam, M.

    1995-12-31

    Treatment of toluene vapors in a biofilter with a packed bed of activated carbon pellets was tested. The flowrate was 0.14 m{sup 3}/min, the volume of the bed was 0.25 m{sup 3}, and the bed depth was 1 m. The reactor was capable of removing 70% of the toluene at an input concentration of 2,700 {micro}g/L with an empty bed detection time of 1.8 min. Total removal was 64 g/m{sup 3}/h. Organic carbon removed from the air in a biofilter may be oxidized or incorporated into the biomass. Measurements of heat production and carbon dioxide production indicated, respectively, that 29% or 38% of the removed toluene was oxidized, while the remainder, 62% to 71%, was incorporated into biomass by cell synthesis. The rapid growth of the biomass indicates clogging may occur in biofilters operated at these rates.

  2. Incineration of toluene and chlorobenzene in a laboratory incinerator

    SciTech Connect

    Mao, Zhuoxiong; McIntosh, M.J.; Demirgian, J.C.

    1992-12-31

    This paper reports results on incineration of toluene and chlorobenzene in a small laboratory incinerator. The incinerator temperature, excess air ratio and mean residence time were varied to simulate both complete and incomplete combustion conditions. The flue gas was monitored on line using Fourier transform infrared (FTIR) spectroscopy coupling with a heated long path cell (LPC). Methane, toluene, benzene, chlorobenzene, hydrogen chloride and carbon monoxide in the flue gas were simultaneously analyzed. Experimental results indicate that benzene is a major product of incomplete combustion (PIC), besides carbon monoxide, in the incineration of toluene and chlorobenzene and is very sensitive to the combustion conditions. This suggests that benzene is a target analyte to be monitored in full-scale incinerators.

  3. Incineration of toluene and chlorobenzene in a laboratory incinerator

    SciTech Connect

    Mao, Z.; Mcintosh, M.J.; Demirgian, J.C.

    1992-01-01

    This paper reports experimental results on the incineration of toluene and chlorobenzene in a small laboratory incinerator. Temperature of the incinerator, excess air ratio and mean residence time were varied to simulate both complete and incomplete combustion conditions. The flue gas was monitored on line using Fourier transform infrared (FTIR) spectroscopy coupling with a heated long path cell (LPC). Methane, toluene, benzene, chlorobenzene, hydrogen chloride and carbon monoxide in the flue gas were simultaneously analyzed. Experimental results indicate that benzene is a major product of incomplete combustion (PIC) besides carbon monoxide in the incineration of toluene and chlorobenzene, and is very sensitive to combustion conditions. This suggests that benzene is a target analyle to be monitored in full-scale incinerators.

  4. Incineration of toluene and chlorobenzene in a laboratory incinerator

    SciTech Connect

    Mao, Zhuoxiong; McIntosh, M.J.; Demirgian, J.C.

    1992-01-01

    This paper reports results on incineration of toluene and chlorobenzene in a small laboratory incinerator. The incinerator temperature, excess air ratio and mean residence time were varied to simulate both complete and incomplete combustion conditions. The flue gas was monitored on line using Fourier transform infrared (FTIR) spectroscopy coupling with a heated long path cell (LPC). Methane, toluene, benzene, chlorobenzene, hydrogen chloride and carbon monoxide in the flue gas were simultaneously analyzed. Experimental results indicate that benzene is a major product of incomplete combustion (PIC), besides carbon monoxide, in the incineration of toluene and chlorobenzene and is very sensitive to the combustion conditions. This suggests that benzene is a target analyte to be monitored in full-scale incinerators.

  5. Benzyl alcohol as a marker of occupational exposure to toluene.

    PubMed

    Kawai, Toshio; Yamauchi, Tsuneyuki; Miyama, Yuriko; Sakurai, Haruhiko; Ukai, Hirohiko; Takada, Shiro; Ohashi, Fumiko; Ikeda, Masayuki

    2007-01-01

    Benzyl alcohol (BeOH) is a urinary metabolite of toluene, which has been seldom evaluated for biological monitoring of exposure to this popular solvent. The present study was initiated to develop a practical method for determination of BeOH in urine and to examine if this metabolite can be applied as a marker of occupational exposure to toluene. A practical gas-liquid chromatographic method was successfully developed in the present study with sensitivity low enough for the application (the limit of detection; 5 microg BeOH /l urine with CV=2.7%). Linearity was confirmed up to 10 mg BeOH/l, the highest concentration tested, and the reproducibility was also satisfactory with a coefficient of variation of 2.7% (n=10). A tentative application of the method in a small scale study with 45 male workers [exposed to toluene up to 130 ppm as an 8-h time-weighted average (8-h TWA)] showed that BeOH in the end-of-shift urine samples was proportional to the intensity of exposure to toluene. The calculated regression equation was Y=50+1.7X (r=0.80, p<0.01), where X was toluene in air (in ppm as 8-h TWA) and Y was BeOH in urine (in microg/l of end-of-shift urine). The levels of BeOH in the urine of the non-exposed was about 50 microg/l, and ingestion of benzoate as a preservative in soft drinks did not affect the BeOH level in urine. The findings as a whole suggest that BeOH is a promising candidate for biological monitoring of occupational exposure to toluene. PMID:17284886

  6. Transformations of toluene radical cation in ZSM-5 and Silicalite

    SciTech Connect

    Barnabas, M.V.; Werst, D.W.; Trifunac, A.D.

    1992-11-25

    Toluene radical cations produced by {gamma} irradiation at 77 K in ZSM-5 and Silicalite (isomorphous with ZSM-5 but nonpolar) undergo a reversible transformation to the norbornadiene radical cation at temperatures {le}150K. The transformation occurs to a greater extent in the more polar zeolite (ZSM-5). The substrate concentration plays an important role. Toluene radical cations undergo ion-molecule reactions to give benzyl radicals at low substrate loading at temperatures >200 K. At higher concentration, different adsorption sites become populated which allow the transformation to norbornadiene radical cation to take place.

  7. SYNCHROTRON X-RAY MICROTOMOGRAPHY, ELECTRON PROBE MICROANALYSIS, AND NMR OF TOLUENE WASTE IN CEMENT.

    SciTech Connect

    BUTLER,L.G.

    1999-07-22

    Synchrotron X-ray microtomography shows vesicular structures for toluene/cement mixtures, prepared with 1.22 to 3.58 wt% toluene. Three-dimensional imaging of the cured samples shows spherical vesicles, with diameters ranging from 20 to 250 {micro}m; a search with EPMA for vesicles in the range of 1-20 {micro}m proved negative. However, the total vesicle volume, as computed from the microtomography images, accounts for less than 10% of initial toluene. Since the cements were cured in sealed bottles, the larger portion of toluene must be dispersed within the cement matrix. Evidence for toluene in the cement matrix comes from {sup 29}Si MAS NMR spectroscopy, which shows a reduction in chain silicates with added toluene. Also, {sup 2}H NMR of d{sub 8}-toluene/cement samples shows high mobility for all, toluene and thus no toluene/cement binding. A model that accounts for all observations follows: For loadings below about 3 wt%, most toluene is dispersed in the cement matrix, with a small fraction of the initial toluene phase separating from the cement paste and forming vesicular structures that are preserved in the cured cement. Furthermore, at loadings above 3 wt%, the abundance of vesicles formed during toluene/cement paste mixing leads to macroscopic phase separation (most toluene floats to the surface of the cement paste).

  8. EFFECTS OF PH ON DECHLORINATION OF TRICHLOROETHYLENE BY ZERO-VALENT IRON

    EPA Science Inventory

    The surface normalized reaction rate constants (ksa) of trichloroethylene (TCE) and zero-valent iron (ZVI) was quantified in batch reactors at pH values between 1.7 and 10. The ksa of TCE linearly decreased from 0.044 to 0.009 L/hr-m2 between pH 3.8 and 8.0, whereas the ksa at pH...

  9. Physical properties of contaminated trichloroethylene and 1,1,1- trichloroethane

    SciTech Connect

    Holt, R.D.

    1990-10-01

    The specific gravity, volume change, dielectric constant, dissipation factor, boiling point, and nonvolatile residue carryover during distillation was measured for various contamination levels of rosin in trichloroethylene and 1,1,1-trichloroethane. Solvent stabilizers and the vapor pressure of solvents were examined. The effects of unknown contamination in solvents from manufacturing departments were measured. The theoretical effects of oil contamination on the boiling point are discussed. 18 refs., 15 figs., 13 tabs.

  10. Fasciitis (not scleroderma) following prolonged exposure to an organic solvent (trichloroethylene).

    PubMed

    Waller, P A; Clauw, D; Cupps, T; Metcalf, J S; Silver, R M; Leroy, E C

    1994-08-01

    We describe 2 cases of diffuse fasciitis with eosinophilia (DFE) associated with prolonged exposure to the industrial solvent trichloroethylene (TCE). The medical and personal histories, examinations, and laboratory and pathological investigations were reviewed and summarized. The 2 case reports, representing the first and 2nd cases of DFE associated with TCE, were compared with 8 reported cases of systemic sclerosis associated with TCE and suggest a direct association between TCE exposure and the development of fasciitis (DFE). PMID:7983667

  11. Oxidative degradation of trichloroethylene adsorbed on active carbons: Use of microwave energy

    SciTech Connect

    Varma, R.; Nandi, S.P.

    1991-01-01

    Chlorinated hydrocarbon compounds (CHCl), such as chlorinated alkanes/alkenes, benzene and biphenyl etc, represent an important fraction of the industrial hazardous wastes produced. Trichloroethylene (TCE) can be removed from waste streams by adsorption on active carbons. The primary objective of the present work was to study the detoxification in air-stream of TCE adsorbed on different types of active carbons using in situ microwave heating. A secondary objective was to examine the regeneration of used carbons from the effects of repeated cyclic operations (adsorption- detoxification). The experimental study has shown that trichloroethylene adsorbed on active carbon can be oxidatively degradated in presence of microwave radiation. Energy can be transferred efficiently to the reaction sites without losing heat to the surrounding vessel. One of the decomposition product of trichloroethylene is free chlorine which is held very strongly on active carbon. Hydrochloric acid on the other hand seems to be less strongly held and appears in large concentration in the exit gas. Production of free chlorine can be avoided by using chlorohydrocarbon mixed with sufficient internal hydrogen. This is also expected to minimize the problem of carbon regeneration encountered in this study. The results obtained from studies on the oxidative degradation of TCE under microwave radiation are promising in a number of respects: (1) the detoxification of TCE adsorbed on active carbon can be conducted at moderate (<400{degree}C) temperatures, and (2) the used carbon bed can be regenerated. A patent on the process has been issued. 9 refs., 2 figs., 2 tabs.

  12. Diffusion of trichloroethylene through the threaded joints of PVC (polyvinylchloride) pipe

    SciTech Connect

    Jerome, K.M. . Dept. of Civil Engineering)

    1990-12-01

    The data engineers and scientists use to determine if the groundwater supply is contaminated are derived from analysis of samples taken largely from monitoring wells. For these data to be reliable several factors must be considered. One factor is the integrity of the monitoring well. In this project, emphasis has been placed on the potential impact on water quality caused by diffusion across the threaded joints of PVC pipe. In this study, the diffusion of trichloroethylene across several common types of threaded joints (i.e., square flush, modified ACME, modified ACME stub, and ACME) has been measured. Samples were obtained from the water inside the pipe sections and analyzed for trichloroethylene by gas chromatography. Breakthrough occurs within days of the samples being placed in the baths. The softened PVC joints of the pipes in the pure trichloroethylene split before the first sample interval of 1.5 weeks. The data show great variability in casting joints from the same manufacturer, and indicate a need for increased precision in the manufacturing of the PVC pipe joints. A one-dimensional diffusion model is used to determine an equivalent gap size through which the diffusion occurs. Flow rates through the threaded joints are calculated by using the equivalent gap width and a formula for flow through a rectangular duct running full. Comparison of the results of the gap size calculations and of the flow rates is presented. 20 refs., 13 figs. 11 tabs.

  13. MICROBIAL DEGRADATION OF TOLUENE UNDER SULFATE- REDUCING CONDITIONS AND THE INFLUENCE OF IRON ON THE PROCESS

    EPA Science Inventory

    Toluene degradation occurred concomitantly with sulfate reduction in anaerobic microcosms inoculated with contaminated subsurface soil from an aviation fuel storage facility near the Patuxent River (Md.). Similar results were obtained for enrichment cultures in which toluene was ...

  14. FORMATION OF POLYKETONES IN IRRADIATED TOLUENE/PROPYLENE/NOX/AIR MIXTURES

    EPA Science Inventory

    A laboratory study was carried out to investigate the formation of polyketones in secondary organic aerosol from photooxidation of the aromatic hydrocarbon toluene, a major constituent of automobile exhaust. The laboratory experiments consisted of irradiating toluene/propylene...

  15. 2,4-/2,6-Toluene diisocyanate mixture (TDI)

    Integrated Risk Information System (IRIS)

    2,4 - / 2,6 - Toluene diisocyanate mixture ( TDI ) ; CASRN 26471 - 62 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Haz

  16. Draft Genome Sequence of Toluene-Resistant Staphylococcus epidermidis SNUT.

    PubMed

    Kim, Beomsoo; Kim, Jingyu; Park, Hyun; Park, Joonho

    2016-01-01

    Here, we report draft sequence of the Gram-positive toluene-resistant bacterium Staphylococcus epidermidis SNUT. The draft genome sequence is 2,511,658 bases, with 2,346 protein-coding genes, 57 tRNA-coding genes, and 8 rRNA genes. PMID:26941142

  17. TOLUENE DOSE-EFFECT META ANALYSIS AND IMPORTANCE OF EFFECTS

    EPA Science Inventory

    TOLUENE DOSE-EFFECT META ANALYSES AND IMPORTANCE OF EFFECTS
    Benignus, V.A., Research Psychologist, ORD, NHEERL, Human Studies Division,
    919-966-6242, benignus.vernon@epa.gov
    Boyes, W.K., Supervisory Health Scientist, ORD, NHEERL, Neurotoxicology Division
    919-541-...

  18. Draft Genome Sequence of Toluene-Resistant Staphylococcus epidermidis SNUT

    PubMed Central

    Kim, Beomsoo; Kim, Jingyu; Park, Hyun

    2016-01-01

    Here, we report draft sequence of the Gram-positive toluene-resistant bacterium Staphylococcus epidermidis SNUT. The draft genome sequence is 2,511,658 bases, with 2,346 protein-coding genes, 57 tRNA-coding genes, and 8 rRNA genes. PMID:26941142

  19. Fenton-like initiation of a toluene transformation mechanism

    EPA Science Inventory

    In Fenton-driven oxidation treatment systems, reaction intermediates derived from parent compounds can play a significant role in the overall treatment process. Fenton-like reactions in the presence of toluene or benzene, involved a transformation mechanism that was highly effici...

  20. HYPERTENSIVE AND TACHYCARDIC RESPONSES TO ORAL TOLUENE IN THE RAT.

    EPA Science Inventory

    Little is known regarding the effects of toluene and other volatile organic compounds on autonomic processes. Such studies should be performed in unrestrained and undisturbed animals to avoid the effects of handling stress on processes regulated by the autonomic nervous system. T...

  1. PHOSPHOLIPIDS OF FIVE PSEUDOMONAD ARCHETYPES FOR DIFFERENT TOLUENE DEGRADATION PATHWAYS

    EPA Science Inventory

    Liquid chromatography/electrospray ionization/mass spectrometry (LC/ESI/MS) was used to determine phospholipid profiles for five reference pseudomonad strains harboring distinct toluene catabolic pathways: Pseudomonas putida mt-2, Pseudomonas putida F1, Burkholderia cepacia G4, B...

  2. Fused iron catalyzed conversion of benzene to toluene

    SciTech Connect

    Davis, S.M.; Hudson, C.W. )

    1990-08-01

    Whereas benzene hydrogenation catalyzed over group VIII metals has been investigated, intensively, very few reports have considered ring hydrogenolysis of this simple aromatic hydrocarbon. The authors have recently discovered that surface carbon reincorporation to produce toluene and xylenes is an important reaction operating during benzene hydrogenolysis over a conventional fused iron ammonia synthesis catalyst.

  3. Ozonation and peroxone oxidation of toluene in aqueous solutions

    SciTech Connect

    Kuo, C.H.; Chen, S.M.

    1996-11-01

    This research investigates the kinetics of the aqueous-phase oxidation of toluene by ozone and ozone-hydrogen peroxide mixtures at 25 C. The oxidation kinetics is first order with respect to the ozone concentration, and the reaction order in toluene varies with pH and the presence or absence of hydrogen peroxide. The peroxone oxidation is one-half order with respect to hydrogen peroxide in distilled water (initial pH of 5.4) and other solutions of higher pH. In acidic solutions with an initial pH of 3 or less, the overall kinetics is second order; the direct oxidation of toluene by ozone molecules is predominant in determining the slow rate of reaction. The reaction becomes very fast and enhanced by hydrogen peroxide, if present, in alkaline solutions with an initial pH of 10 or above. Under these conditions, the reaction is controlled by hydroxyl radical reactions and is independent of the toluene concentration in the traditional and advanced ozonation processes.

  4. Metabolism of Benzene, Toluene, and Xylene Hydrocarbons in Soil

    PubMed Central

    Tsao, C.-W.; Song, H.-G.; Bartha, R.

    1998-01-01

    Enrichment cultures obtained from soil exposed to benzene, toluene, and xylene (BTX) mineralized benzene and toluene but cometabolized only xylene isomers, forming polymeric residues. This observation prompted us to investigate the metabolism of 14C-labeled BTX hydrocarbons in soil, either individually or as mixtures. BTX-supplemented soil was incubated aerobically for up to 4 weeks in a sealed system that automatically replenished any O2 consumed. The decrease in solvent vapors and the production of 14CO2 were monitored. At the conclusion of each experiment, 14C distribution in solvent-extractable polymers, biomass, and humic material was determined, obtaining 14C mass balances of 85 to 98%. BTX compounds were extensively mineralized in soil, regardless of whether they were presented singly or in combinations. No evidence was obtained for the formation of solvent-extractable polymers from xylenes in soil, but 14C distribution in biomass (5 to 10%) and humus (12 to 32%) was unusual for all BTX compounds and especially for toluene and the xylenes. The results suggest that catechol intermediates of BTX degradation are preferentially polymerized into the soil humus and that the methyl substituents of the catechols derived from toluene and especially from xylenes enhance this incorporation. In contrast to inhibitory residues formed from xylene cometabolism in culture, the humus-incorporated xylene residues showed no significant toxicity in the Microtox assay. PMID:9835584

  5. Modeling toxicodynamic effects of trichloroethylene on liver in mouse model of autoimmune hepatitis

    SciTech Connect

    Gilbert, Kathleen M.; Reisfeld, Brad; Zurlinden, Todd J.; Kreps, Meagan N.; Erickson, Stephen W.; Blossom, Sarah J.

    2014-09-15

    Chronic exposure to industrial solvent and water pollutant trichloroethylene (TCE) in female MRL +/+ mice generates disease similar to human autoimmune hepatitis. The current study was initiated to investigate why TCE-induced autoimmunity targeted the liver. Compared to other tissues the liver has an unusually robust capacity for repair and regeneration. This investigation examined both time-dependent and dose-dependent effects of TCE on hepatoprotective and pro-inflammatory events in liver and macrophages from female MRL +/+ mice. After a 12-week exposure to TCE in drinking water a dose-dependent decrease in macrophage production of IL-6 at both the transcriptional and protein level was observed. A longitudinal study similarly showed that TCE inhibited macrophage IL-6 production. In terms of the liver, TCE had little effect on expression of pro-inflammatory genes (Tnfa, Saa2 or Cscl1) until the end of the 40-week exposure. Instead, TCE suppressed hepatic expression of genes involved in IL-6 signaling (Il6r, gp130, and Egr1). Linear regression analysis confirmed liver histopathology in the TCE-treated mice correlated with decreased expression of Il6r. A toxicodynamic model was developed to estimate the effects of TCE on IL-6 signaling and liver pathology under different levels of exposure and rates of repair. This study underlined the importance of longitudinal studies in mechanistic evaluations of immuntoxicants. It showed that later-occurring liver pathology caused by TCE was associated with early suppression of hepatoprotection rather than an increase in conventional pro-inflammatory events. This information was used to create a novel toxicodynamic model of IL-6-mediated TCE-induced liver inflammation. - Highlights: • We developed a toxicodynamic model to study effects of trichloroethylene on liver. • We examined protective as well as pro-inflammatory events in the liver. • Trichloroethylene inhibits IL-6 production by macrophages. • Trichloroethylene inhibits components of the IL-6R in the liver. • Trichloroethylene inhibits events associated with IL-6-mediated hepatoprotection.

  6. Final amended report of the safety assessment of toluene-2,5-diamine, toluene-2,5-diamine sulfate, and toluene-3,4-diamine as used in cosmetics.

    PubMed

    Burnett, Christina L; Bergfeld, Wilma F; Belsito, Donald V; Klaassen, Curtis D; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Alan Andersen, F

    2010-05-01

    Toluene-2,5-diamine, toluene-2,5-diamine sulfate, and toluene-3,4-diamine are diaminotoluenes used as colorants in permanent hair dyes and tints. Toluene-2,5-diamine is used in 79 products at concentrations up to 3%; toluene-2,5-diamine sulfate is used in 168 products at concentrations up to 4%. Toluene-3,4-diamine does not appear to be in current use. Previously, the Cosmetic Ingredient Review Expert Panel determined that all 3 ingredients were safe for use as hair dyes. New data suggest that differences in toxicity, especially with respect to carcinogenicity, may exist as a function of placement of amine groups around the benzene ring. The Expert Panel concluded that toluene-2,5-diamine and toluene-2,5-diamine sulfate and are safe as hair dye ingredients in the present practices of use and concentrations but that there are insufficient data supporting the safety of toluene-3,4-diamine. PMID:20448268

  7. Audition and exhibition to toluene - a contribution for the theme

    PubMed Central

    Augusto, Lívia Sanches Calvi; Kulay, Luiz Alexandre; Franco, Eloisa Sartori

    2012-01-01

    Summary Introduction: With the technological advances and the changes in the productive processes, the workers are displayed the different physical and chemical agents in its labor environment. The toluene is solvent an organic gift in glues, inks, oils, amongst others. Objective: To compare solvent the literary findings that evidence that diligent displayed simultaneously the noise and they have greater probability to develop an auditory loss of peripheral origin. Method: Revision of literature regarding the occupational auditory loss in displayed workers the noise and toluene. Results: The isolated exposition to the toluene also can unchain an alteration of the auditory thresholds. These audiometric findings, for ototoxicity the exposition to the toluene, present similar audiograms to the one for exposition to the noise, what it becomes difficult to differentiate a audiometric result of agreed exposition - noise and toluene - and exposition only to the noise. Conclusion: The majority of the studies was projected to generate hypotheses and would have to be considered as preliminary steps of an additional research. Until today the agents in the environment of work and its effect they have been studied in isolated way and the limits of tolerance of these, do not consider the agreed expositions. Considering that the workers are displayed the multiples agent and that the auditory loss is irreversible, the implemented tests must be more complete and all the workers must be part of the program of auditory prevention exactly displayed the low doses of the recommended limit of exposition. PMID:25991943

  8. Simultaneous biodegradation of chlorobenzene and toluene by a Pseudomonas strain

    SciTech Connect

    Pettigrew, C.A.; Haigler, B.E.; Spain, J.C. )

    1991-01-01

    Pseudomonas sp. strain JS6 grows on a wide range of chloro- and methylaromatic substrates. The simultaneous degradation of these compounds is prevented in most previously studied isolates because the catabolic pathways are incompatible. The purpose of this study was to determine whether strain JS6 could degrade mixtures of chloro- and methyl-substituted aromatic compounds. Strain JS6 was maintained in a chemostat on a minimal medium with toluene or chlorobenzene as the sole carbon source, supplied via a syringe pump. Strain JS6 contained an active catechol 2,3-dioxygenase when grown in the presence of chloroaromatic compounds; however, in cell extracts, this enzyme was strongly inhibited by 3-chlorocatechol. When cells grown to steady state on toluene were exposed to 50% toluene-50% chlorobenzene, 3-chlorocatechol and 3-methylcatechol accumulated in the medium and the cell density decreased. After 3 h, the enzyme activities of the modified ortho ring fission pathway were induced, the metabolites disappeared, and the cell density returned to previous levels. In cell extracts, 3-methylcatechol was degraded by both catechol 1,2- and catechol 2,3-dioxygenase. Strain JS62, a catechol 2,3-dioxygenase mutant of JS6, grew on toluene, and ring cleavage of 3-methylcatechol was catalyzed by catechol 1,2-dioxygenase. The transient metabolite 2-methyllactone was identified in chlorobenzene-grown JS6 cultures exposed to toluene. These results indicate that strain JS6 can degrade mixtures of chloro- and methylaromatic compounds by means of a modified ortho ring fission pathway.

  9. 40 CFR 721.10610 - Toluene diisocyanate, polymers with polyalkylene glycol (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Toluene diisocyanate, polymers with... New Uses for Specific Chemical Substances § 721.10610 Toluene diisocyanate, polymers with polyalkylene... substances identified generically as toluene diisocyanate, polymers with polyalkylene glycol (PMNs...

  10. 40 CFR 721.10610 - Toluene diisocyanate, polymers with polyalkylene glycol (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Toluene diisocyanate, polymers with... New Uses for Specific Chemical Substances § 721.10610 Toluene diisocyanate, polymers with polyalkylene... substances identified generically as toluene diisocyanate, polymers with polyalkylene glycol (PMNs...

  11. Cardiovascular effects of oral toluene exposure in the rat monitored by radiotelemetry

    EPA Science Inventory

    Toluene is a hazardous air pollutant that can be toxic to the nervous and cardiovascular systems. The cardiotoxicity data for toluene come from acute studies in anesthetized animals and from clinical observations made on toluene abusers and there is little known on the response o...

  12. Toluene diisocyanate (TDI) regulates haem oxygenase-1/ferritin expression: implications for toluene diisocyanate-induced asthma

    PubMed Central

    Kim, S-H; Choi, G-S; Ye, Y-M; Jou, I; Park, H-S; Park, S M

    2010-01-01

    Diisocyanate is a leading cause of occupational asthma (OA). Diisocyanate-induced OA is an inflammatory disease of the airways that is associated with airway remodelling. Although the pathogenic mechanisms are unclear, oxidative stress may be related to the pathogenesis of diisocyanate-induced OA. In our previous report, we observed that the expression of ferritin light chain (FTL) was decreased in both of bronchoalveolar lavage fluid and serum of patients with diphenyl-methane diisocyanate (MDI)-induced OA compared to those of asymptomatic exposed controls and unexposed healthy controls. In this study of toluene diisocyanate (TDI)-OA, we found identical findings with increased transferrin and decreased ferritin levels in the serum of patients with TDI-OA. To elucidate whether diisocyanate suppresses FTL synthesis directly, we tested the effect of TDI on the FTL synthesis in A549 cells, a human airway epithelial cell line. We found that haem oxygenase-1 as well as FTL was suppressed by treatment with TDI in dose- and time-dependent manners. We also found that the synthesis of other anti-oxidant proteins such as thioredoxin-1, glutathione peroxidase, peroxiredoxin 1 and catalase were suppressed by TDI. Furthermore, TDI suppressed nuclear translocation of Nrf2 through suppressing the phosphorylation of mitogen-activated protein kinases (MAPKs); extracellular-regulated kinase 1/2 (ERK1/2); p38; and c-Jun N-terminal kinase (JNK). Peroxisome proliferator-activated receptor-γ (PPAR-γ) agonists, 15-deoxy-Δ12,14-PGJ2 and rosiglitazone rescued the effect of TDI on HO-1/FTL expression. Collectively, our findings suggest that TDI suppressed HO-1/FTL expression through the MAPK–Nrf2 signalling pathway, which may be involved in the pathogenesis of TDI-induced OA. Therefore, elucidating these observations further should help to develop the therapeutic strategies of diisocyanate-induced OA. PMID:20345975

  13. Methyl-substitution of benzene and toluene in preparations of human bone marrow

    SciTech Connect

    Flesher, J.W.; Myers, S.R. )

    1991-01-01

    The metabolism of benzene and toluene was investigated in preparations of human bone marrow incubated with S-adenosyl-L-methionine. Benzene undergoes a methyl-substitution reaction to yield toluene as a metabolite. Furthermore, toluene undergoes methyl-substitution in preparations of human bone marrow incubated with S-adenosyl-L-methionine to yield o-xylene, m-xylene, and p-xylene. Metabolites were detected by gas chromatography and mass spectroscopy. No metabolism of either benzene or toluene was detected when a boiled bone marrow preparation was used in the incubation, demonstrating the enzymatic nature of the S-adenosyl-L-methionine dependent methylation of both benzene and toluene.

  14. Comparison of measurement methods for benzene and toluene

    NASA Astrophysics Data System (ADS)

    Wideqvist, U.; Vesely, V.; Johansson, C.; Potter, A.; Brorstrm-Lundn, E.; Sjberg, K.; Jonsson, T.

    Diffusive sampling and active (pumped) sampling (tubes filled with Tenax TA or Carbopack B) were compared with an automatic BTX instrument (Chrompack, GC/FID) for measurements of benzene and toluene. The measurements were made during differing pollution levels and different weather conditions at a roof-top site and in a densely trafficked street canyon in Stockholm, Sweden. The BTX instrument was used as the reference method for comparison with the other methods. Considering all data the Perkin-Elmer diffusive samplers, containing Tenax TA and assuming a constant uptake rate of 0.406 cm3 min-1, showed about 30% higher benzene values compared to the BTX instrument. This discrepancy may be explained by a dose-dependent uptake rate with higher uptake rates at lower dose as suggested by laboratory experiments presented in the literature. After correction by applying the relationship between uptake rate and dose as suggested by Roche et al. (Atmos. Environ. 33 (1999) 1905), the two methods agreed almost perfectly. For toluene there was much better agreement between the two methods. No sign of a dose-dependent uptake could be seen. The mean concentrations and 95% confidence intervals of all toluene measurements (67 values) were (10.801.6) ?g m -3 for diffusive sampling and (11.31.6) ?g m -3 for the BTX instrument, respectively. The overall ratio between the concentrations obtained using diffusive sampling and the BTX instrument was 0.910.07 (95% confidence interval). Tenax TA was found to be equal to Carbopack B for measuring benzene and toluene in this concentration range, although it has been proposed not to be optimal for benzene. There was also good agreement between the active samplers and the BTX instrument.

  15. Photo-activated luminescence sensor and method of detecting trichloroethylene and related volatile organochloride compounds

    DOEpatents

    Dinh, T.V.

    1996-06-11

    A sensor for detecting trichloroethylene and related volatile organochloride compounds uses a photo-activator that produces a photo-product complex with the contaminant. Characteristics of the light emitted from the complex will indicate the presence of the contaminant. A probe containing the photo-activator has an excitation light interface and a contaminant interface. One particular embodiment uses a porous membrane as the contaminant interface, so that the contaminant can migrate there through to the photo-activator and thereby form the complex. 23 figs.

  16. Photo-activated luminescence sensor and method of detecting trichloroethylene and related volatile organochloride compounds

    DOEpatents

    Dinh, Tuan V.

    1996-01-01

    A sensor for detecting trichloroethylene and related volatile organochloride compounds uses a photo-activator that produces a photo-product complex with the contaminant. Characteristics of the light emitted from the complex will indicate the presence of the contaminant. A probe containing the photo-activator has an excitation light interface and a contaminant interface. One particular embodiment uses a porous membrane as the contaminant interface, so that the contaminant can migrate therethrough to the photo-activator and thereby form the complex.

  17. System for In-Situ Detection of Plant Exposure to Trichloroethylene (TCE)

    NASA Technical Reports Server (NTRS)

    Lewis, Mark D. (Inventor); Anderson, Daniel J. (Inventor); Newman, Lee A. (Inventor); Keith, Amy G. (Inventor)

    2013-01-01

    A system detects a plant's exposure to trichloroethylene (TCE) through plant leaf imaging. White light impinging upon a plant's leaf interacts therewith to produce interacted light. A detector is positioned to detect at least one spectral band of the interacted light. A processor coupled to the detector performs comparisons between photonic energy of the interacted light at the one or more spectral bands thereof and reference data defining spectral responses indicative of leaf exposure to TCE. An output device coupled to the processor provides indications of the comparisons.

  18. Microbial degradation of trichloroethylene in the rhizosphere: Potential application to biological remediation of waste sites

    SciTech Connect

    Walton, B.T.; Anderson, T.A. )

    1990-04-01

    The possibility that vegetation may be used to actively promote microbial restoration of chemically contaminated soils was tested by using rhizosphere and nonvegetated soils collected from a trichloroethylene (TCE)-contaminated field site. Biomass determinations, disappearance of TCE from the headspace of spiked soil slurries, and mineralization of (14C)TCE to 14CO2 all showed that microbial activity is greater in rhizosphere soils and that TCE degradation occurs faster in the rhizosphere than in the edaphosphere. Thus, vegetation may be an important variable in the biological restoration of surface and near-surface soils.

  19. Chloroform and trichloroethylene uptake from water into human skin in vitro: Kinetics and risk implications

    SciTech Connect

    Bogen, K.T.; Keating, G.A.; Vogel, J.S.

    1995-03-01

    A model recently proposed by the US Environmental Protection Agency (EPA) predicts that short-term dermal uptakes of organic environmental water contaminants are proportional to the square root of exposure time. The model appears to underestimate dermal uptake, based on very limited in vivo uptake data obtained primarily using human subjects. To further assess this model, we examined in vitro dermal uptake kinetics for aqueous organic chemicals using accelerator mass spectrometry (AMS). Specifically, we examined the kinetics of in vitro dermal uptake of {sup 14}C-labeled chloroform and trichloroethylene from dilute (5-ppb) aqueous solutions using full-thickness human cadaver skin exposed for ({le}1 hr).

  20. Psychological performance, toluene exposure and alcohol consumption in rotogravure printers.

    PubMed

    Hnninen, H; Antti-Poika, M; Savolainen, P

    1987-01-01

    A psychological test battery was administered to a group of 43 rotogravure printers exposed to toluene (mean age 41 years, mean duration of exposure 22 years) and to a referent group comprising 31 offset printers of the same age. Eighteen of the rotogravure printers and one of the referents were heavy drinkers of alcohol. The test battery included tests for verbal and visual cognition and memory, perceptual motor speed, and psychomotor abilities. A vocabulary test (Synonyms) was used as a measure of initial intelligence. Performances in the two groups were compared, and descriptive data analyses were made in four subgroups formed according to toluene exposure and drinking habits. The rotogravure printers performance was inferior to the referents in tests measuring visual cognitive abilities. The mean test performances in the subgroups indicated that the difference in drinking habits did not explain the differences: the heavy drinkers tended to perform better than those with more moderate drinking habits. An antagonistic interaction between toluene and alcohol was suggested by intact performances among the heavy drinkers with high exposure (n = 8). The question deserves to be investigated further. PMID:3653993

  1. Toluene nitration in irradiated nitric acid and nitrite solution

    SciTech Connect

    Gracy Elias; Bruce J. Mincher; Stephen P. Mezyk; Jim Muller; Leigh R. Martin

    2011-04-01

    The kinetics, mechanisms, and stable products produced for the aryl alkyl mild ortho-para director - toluene, in irradiated nitric acid and neutral nitrite solutions were investigated using ?, and pulse radiolysis. Electron pulse radiolysis was used to determine the bimolecular rate constants for the reaction of toluene with different transient species produced by irradiation. HPLC with UV detection was primarily used to assess the stable reaction products. GC-MS and LC-MS were used to confirm the results from HPLC. Free-radical nitration reaction products were found in irradiated acidic and neutral media. In acidic medium, the ring substitution and side chain substitution and oxidation produced different nitro products. In ring substitution, nitrogen oxide radicals were added mainly to hydroxyl radical-produced cyclohexadienyl radical, and in side chain substitution they were added to the carbon-centered benzyl radical produced by H-atom abstraction. In neutral nitrite toluene solution, radiolytic ring nitration products approached a statistically random distribution, suggesting a free-radical reaction involving addition of the NO2 radical.

  2. Photocatalytic degradation of toluene by platinized titanium dioxide photocatalysts.

    PubMed

    Young, C; Lim, T M; Chiang, K; Amal, R

    2004-01-01

    A photoreactor has been set up to study the photodegradation of volatile organic compound (VOC) in situ. In the reactor, TiO2 and Pt/TiO2 photocatalysts were immobilized on to UV-transparent quartz support. Scanning electron microscope (SEM) studies and Brunauer-Emmett-Teller (BET) surface area measurements revealed that the quartz fiber support was mostly coated with catalyst with a total surface area of 4.0 +/- 0.3 m2/g. The photocatalytic activity of the photocatalysts was evaluated for the photodegradation of 160 ppm toluene-laden air. It was found that 50-70% of toluene was degraded within the first 5 min of UV illumination. Both TiO2 and Pt/TiO2 photocatalysts suffered from deactivation after 18 hours of continuous operation, and the photocatalysts' activity was significantly reduced. However, platinization doubled the photocatalyst life and delayed the onset of de-activation. The presence of moisture was found to shift the onset of catalyst de-activation to an earlier time. It is concluded that the de-activation of the photocatalyst was due to the accumulation of intermediates on the photocatalysts surface preventing the toluene being adsorbed on the photocatalyst surface for degradation. PMID:15484768

  3. Molecular characterization of a toluene-degrading methanogenic consortium

    SciTech Connect

    Ficker, M.; Krastel, K.; Orlicky, S.; Edwards, E.

    1999-12-01

    A toluene-degrading methanogenic consortium enriched from creosote-contaminated aquifer material was maintained on toluene as the sole carbon and energy source for 10 years. The species in the consortium were characterized by using a molecular approach. Total genomic DNA was isolated, and 16S rRBA genes were amplified by using PCR performed with kingdom-specific primers that were specific for 16S rRBA genes from either members of the kingdom Bacteria or members of the kingdom Archaea. A total of 90 eubacterial clones and 75 archaeal clones were grouped by performing a restriction fragment length polymorphism (RFLP) analysis. Six eubacterial sequences and two archaeal sequences were found in the greatest abundance (in six or more clones) based on the RFLP analysis. The relative abundance of each putative species was estimated by using fluorescent in situ hybridization (FISH), and the presence of putative species was determined qualitatively by performing slot blot hybridization with consortium DNA. Both archael species and two of the six eubacterial species were detected in the DNA and FISH hybridization experiments. A phylogenetic analysis of these four dominant organisms suggested that the two archaeal species are related to the genera methanosaeta and Methanospirillum. One of the eubacterial species is related to the genus Desulfotomaculum, which the others is not related to any previously described genus. By elimination, the authors propose that the last organism probably initiates the attack on toluene.

  4. Draft Genome Sequence of Uncultivated Toluene-Degrading Desulfobulbaceae Bacterium Tol-SR, Obtained by Stable Isotope Probing Using [13C6]Toluene

    PubMed Central

    Abu Laban, Nidal; Tan, BoonFei; Dao, Anh

    2015-01-01

    The draft genome of a member of the bacterial family Desulfobulbaceae (phylum Deltaproteobacteria) was assembled from the metagenome of a sulfidogenic [13C6]toluene-degrading enrichment culture. The Desulfobulbaceae bacterium Tol-SR genome is distinguished from related, previously sequenced genomes by suites of genes associated with anaerobic toluene metabolism, including bss, bbs, and bam. PMID:25593261

  5. Effects of trichloroethylene and perchloroethylene on wild rodents at Edwards Air Force Base, California, USA

    USGS Publications Warehouse

    Spring, S.E.; Miles, A.K.; Anderson, M.J.

    2004-01-01

    Effects of inhalation of volatilized trichloroethylene (TCE) or perchloroethylene (PCE) were assessed based on the health and population size of wild, burrowing mammals at Edwards Air Force Base (CA, USA). Organic soil-vapor concentrations were measured at three sites with aquifer contamination of TCE or PCE of 5.5 to 77 mg/L and at two uncontaminated reference sites. Population estimates of kangaroo rats (Dipodomys merriami and D. panamintinus) as well as hematology, blood chemistry, and histopathology of kangaroo rats and deer mice (Peromyscus maniculatus) were compared between contaminated and uncontaminated populations. Maximum soil-gas concentrations associated with groundwater contamination were less than 1.5 ??l/L of TCE and 0.07 ??l/L of PCE. Population estimates of kangaroo rats were similar at contaminated and reference sites. Hematology, blood chemistry, and histopathology of kangaroo rats and deer mice indicated no evidence of health effects caused by exposure. Trichloroethylene or PCE in groundwater and in related soil gas did not appear to reduce the size of small mammal populations or impair the health of individuals.

  6. Performance of genetic risk factors in prediction of trichloroethylene induced hypersensitivity syndrome

    PubMed Central

    Dai, Yufei; Chen, Ying; Huang, Hanlin; Zhou, Wei; Niu, Yong; Zhang, Mingrong; Bin, Ping; Dong, Haiyan; Jia, Qiang; Huang, Jianxun; Yi, Juan; Liao, Qijun; Li, Haishan; Teng, Yanxia; Zang, Dan; Zhai, Qingfeng; Duan, Huawei; Shen, Juan; He, Jiaxi; Meng, Tao; Sha, Yan; Shen, Meili; Ye, Meng; Jia, Xiaowei; Xiang, Yingping; Huang, Huiping; Wu, Qifeng; Shi, Mingming; Huang, Xianqing; Yang, Huanming; Luo, Longhai; Li, Sai; Li, Lin; Zhao, Jinyang; Li, Laiyu; Wang, Jun; Zheng, Yuxin

    2015-01-01

    Trichloroethylene induced hypersensitivity syndrome is dose-independent and potentially life threatening disease, which has become one of the serious occupational health issues and requires intensive treatment. To discover the genetic risk factors and evaluate the performance of risk prediction model for the disease, we conducted genomewide association study and replication study with total of 174 cases and 1761 trichloroethylene-tolerant controls. Fifty seven SNPs that exceeded the threshold for genome-wide significance (P < 5 × 10−8) were screened to relate with the disease, among which two independent SNPs were identified, that is rs2857281 at MICA (odds ratio, 11.92; Pmeta = 1.33 × 10−37) and rs2523557 between HLA-B and MICA (odds ratio, 7.33; Pmeta = 8.79 × 10−35). The genetic risk score with these two SNPs explains at least 20.9% of the disease variance and up to 32.5-fold variation in inter-individual risk. Combining of two SNPs as predictors for the disease would have accuracy of 80.73%, the area under receiver operator characteristic curves (AUC) scores was 0.82 with sensitivity of 74% and specificity of 85%, which was considered to have excellent discrimination for the disease, and could be considered for translational application for screening employees before exposure. PMID:26190474

  7. Performance of genetic risk factors in prediction of trichloroethylene induced hypersensitivity syndrome.

    PubMed

    Dai, Yufei; Chen, Ying; Huang, Hanlin; Zhou, Wei; Niu, Yong; Zhang, Mingrong; Bin, Ping; Dong, Haiyan; Jia, Qiang; Huang, Jianxun; Yi, Juan; Liao, Qijun; Li, Haishan; Teng, Yanxia; Zang, Dan; Zhai, Qingfeng; Duan, Huawei; Shen, Juan; He, Jiaxi; Meng, Tao; Sha, Yan; Shen, Meili; Ye, Meng; Jia, Xiaowei; Xiang, Yingping; Huang, Huiping; Wu, Qifeng; Shi, Mingming; Huang, Xianqing; Yang, Huanming; Luo, Longhai; Li, Sai; Li, Lin; Zhao, Jinyang; Li, Laiyu; Wang, Jun; Zheng, Yuxin

    2015-01-01

    Trichloroethylene induced hypersensitivity syndrome is dose-independent and potentially life threatening disease, which has become one of the serious occupational health issues and requires intensive treatment. To discover the genetic risk factors and evaluate the performance of risk prediction model for the disease, we conducted genomewide association study and replication study with total of 174 cases and 1761 trichloroethylene-tolerant controls. Fifty seven SNPs that exceeded the threshold for genome-wide significance (P < 5 10(-8)) were screened to relate with the disease, among which two independent SNPs were identified, that is rs2857281 at MICA (odds ratio, 11.92; P meta = 1.33 10(-37)) and rs2523557 between HLA-B and MICA (odds ratio, 7.33; P meta = 8.79 10(-35)). The genetic risk score with these two SNPs explains at least 20.9% of the disease variance and up to 32.5-fold variation in inter-individual risk. Combining of two SNPs as predictors for the disease would have accuracy of 80.73%, the area under receiver operator characteristic curves (AUC) scores was 0.82 with sensitivity of 74% and specificity of 85%, which was considered to have excellent discrimination for the disease, and could be considered for translational application for screening employees before exposure. PMID:26190474

  8. Enhanced dechlorination of trichloroethylene using electrospun polymer nanofibrous mats immobilized with iron/palladium bimetallic nanoparticles.

    PubMed

    Ma, Hui; Huang, Yunpeng; Shen, Mingwu; Guo, Rui; Cao, Xueyan; Shi, Xiangyang

    2012-04-15

    Fe/Pd bimetallic nanoparticles (NPs) have held great promise for treating trichloroethylene (TCE)-contaminated groundwater, without the accumulation of chlorinated intermediates. However, the conventionally used colloidal Fe/Pd NPs usually aggregate rapidly, resulting in a reduced reactivity. To reduce the particle aggregation, we employed electrospun polyacrylic acid (PAA)/polyvinyl alcohol (PVA) polymer nanofibers as a nanoreactor to immobilize Fe/Pd bimetallic NPs. In the study, the water-stable PAA/PVA nanofibrous mats were complexed with Fe (III) ions via the binding with the free carboxyl groups of PAA for subsequent formation and immobilization of zero-valent iron (ZVI) NPs. Fe/Pd bimetallic NPs were then formed by the partial reduction of Pd(II) ions with ZVI NPs. The formed electrospun nanofibrous mats containing Fe/Pd bimetallic NPs with a diameter of 2.8 nm were characterized by scanning electron microscopy, energy-dispersive spectroscopy, transmission electron microscopy, thermogravimetric analysis, and inductively coupled plasma-atomic emission spectroscopy. The Fe/Pd NP-containing electrospun PAA/PVA nanofibrous mats exhibited higher reactivity than that of the ZVI NP-containing mats or colloidal Fe/Pd NPs in the dechlorination of trichloroethylene (TCE), which was used as a model contaminant. With the high surface area to volume ratio, high porosity, and great reusability of the fibrous mats immobilized with the bimetallic NPs, the composite nanofibrous mats should be amenable for applications in remediation of various environmental contaminants. PMID:22138171

  9. Possible role of complement activation in renal impairment in trichloroethylene-sensitized guinea pigs.

    PubMed

    Yu, Jun-Feng; Leng, Jing; Shen, Tong; Zhou, Cheng-Fan; Xu, Hui; Jiang, Tao; Xu, Shu-Hai; Zhu, Qi-Xing

    2012-12-16

    Recent studies have revealed that trichloroethylene (TCE) can induce occupational medicamentosa-like dermatitis (OMLD) with multi-system injuries, including liver, kidney and skin injuries, which can subsequently cause multiple organ failure later. But the mechanism of immune dysfunction leading to organ injury was rarely clarified. The present study was initiated to analyze the influence of trichloroethylene on renal injury and study the relevant mechanism in guinea pigs. Guinea pig maximization test (GPMT) was carried out. Inflammation on the guinea pigs' skin was scored. Kidney function, urine protein and ultra-structural change of kidney were determined by biochemical detection and electron microscope. Deposition of complement 3 and membrane attack complex (MAC, C5b-9) were determined by immunohistochemistry. Erythema and edema of skin impairment were observed in TCE sensitized groups, and sensitization rate was 63.16%. Through electron microscope, tubular epithelial cell mitochondrial swelling, vacuolar degeneration and atrophy of microvillus were observed in TCE sensitized groups. The parameters of urease and urinary protein elevated markedly, and a high degree of C3 and MAC deposition was found in the renal tubular epithelial cells in TCE sensitized groups. By demonstrating that TCE and its metabolites can cause the deposition of C3 and MAC in renal epithelial cells, we found that activated complement system may be the mechanism of the acceleration and the development of TCE-induced kidney disease. PMID:22728725

  10. USE OF CARBON STABLE ISOTOPE FOR THE DECHLORINATION OF TRICHLOROETHYLENE ON GRANULAR-GRAPHITE PACKED ELECTRODES (PRESENTATION)

    EPA Science Inventory

    Trichloroethylene (TCE) is widely used as a solvent in metal processing and electronic manufacturing industries, but waste and spilled TCE often results in blocks of non-aqueous liquid in vadose and saturated zones which become continuous contamination sources for groundwater. El...

  11. COUNTER-DIFFUSION OF ISOTOPICALLY LABELED TRICHLOROETHYLENE IN SILICA GEL AND GEOSORBENT MICROPORES: COLUMN RESULTS. (R822626)

    EPA Science Inventory

    To investigate counter-diffusion in microporous sorbents, the rate of
    exchange between deuterated trichloroethylene (DTCE) in fast desorbing sites and
    nondeuterated TCE (1HTCE) in slow desorbing sites was measured.
    Exchange rates were measured for a sili...

  12. MICROCOSM AND IN-SITU FIELD STUDIES OF ENHANCED BIOTRANSFORMATION OF TRICHLOROETHYLENE BY PHENOL-UTILIZING MICROORGANISMS

    EPA Science Inventory

    The ability of different aerobic groundwater microorganisms to cometabolically degrade trichloroethylene (TCE), 1,2-cis-dichloroethylene (c-DCE), and 1,2-trans-dichloroethylene (t-DCE) was evaluated both in groundwater-fed microcosms and in situ in a shallow aquifer. Microcosms a...

  13. MID-FREQUENCY HEARING LOSS IN RATS FOLLOWING INHALATION EXPOSURE TO TRICHLOROETHYLENE: EVIDENCE FROM REFLEX MODIFICATION AUDIOMETRY

    EPA Science Inventory

    The present experiments were undertaken in order to characterize the hearing loss associated with 1,1,2-trichloroethylene (TCE) exposure. dult male LE rats were exposed to TCE via inhalation (whole body) for 6hr/day for 5 days. he concentration-effect function (0-4000 ppm) was de...

  14. Fifteen-year assessment of a permeable reactive barrier for treatment of chromate and trichloroethylene in groundwater.

    PubMed

    Wilkin, Richard T; Acree, Steven D; Ross, Randall R; Puls, Robert W; Lee, Tony R; Woods, Leilani L

    2014-01-15

    The fifteen-year performance of a granular iron, permeable reactive barrier (PRB; Elizabeth City, North Carolina) is reviewed with respect to contaminant treatment (hexavalent chromium and trichloroethylene) and hydraulic performance. Due to in-situ treatment of the chromium source zone, reactive and hydraulic longevity of the PRB has outlived the mobile chromate plume. Chromium concentrations exceeding 3 ?g/L have not been detected in regions located hydraulically down-gradient of the PRB. Trichloroethylene treatment has also been effective, although non-constant influent concentrations of trichloroethylene have at times resulted in incomplete dechlorination. Daughter products: cis-1,2-dichloroethylene, vinyl chloride, ethene, and ethane have been observed within and down-gradient of the PRB at levels <10% of the influent trichloroethylene. Analysis of potentiometric surfaces up-gradient and across the PRB suggests that the PRB may currently represent a zone of reduced hydraulic conductivity; however, measurements of the in-situ hydraulic conductivity provide values in excess of 200 m/d in some intervals and indicate no discernible loss of bulk hydraulic conductivity within the PRB. The results presented here are particularly significant because they provide the longest available record of performance of a PRB. The longevity of the Elizabeth City PRB is principally the result of favorable groundwater geochemistry and hydrologic properties of the site. PMID:24021639

  15. Isobaric vapor-liquid equilibria of trichloroethylene with 1-butanol and 2-butanol at 20 and 100 kPa

    SciTech Connect

    Dejoz, A.; Gonzalez-Alfaro, V.; Miguel, P.J.; Vazquez, M.I.

    1996-01-01

    Knowledge of vapor-liquid equilibria is of great importance to the development of chemical processing and the design of separation equipment. Vapor-liquid equilibria for trichloroethylene + 1-butanol, and +2-butanol are reported at 20 and 100 kPa. The two systems satisfy the point-to-point thermodynamic consistency test. Both systems show a positive deviation from ideality.

  16. Evaluation of the Potential Impact of Inhibition of Trichloroethylene Metabolism in the Liver on Extra-Hepatic Toxicity

    EPA Science Inventory

    The interaction between trichloroethylene (TCE) and chloroform (CHCI3) is less than additive, with co-exposure to TCE and CHCl3 resulting in less hepatic and renal toxicity than observed with CHCl3 alone. Vapor uptake data demonstrate that co-exposure to CHCl3 decreases the rate ...

  17. Removal of Trichloroethylene by Activated Carbon in the Presence and Absence of TiO2 Nanoparticles

    EPA Science Inventory

    Nanoparticles (NPs) are emerging as a new type of contaminant in water and wastewater. The fate of titanium dioxide nanoparticles (TiO2NPs) in a granular activated carbon (GAC) adsorber and their impact on the removal of trichloroethylene (TCE) by GAC was investigated...

  18. Interactions between benzene, toluene, and p-xylene (BTX) during their biodegradation

    SciTech Connect

    Oh, Y.S.; Bartha, R. . Dept. of Biochemistry and Microbiology); Shareefdeen, Z.; Baltzis, B.C. . Dept. of Chemical Engineering)

    1994-08-05

    A microbial consortium and Pseudomonas strain (PPO1) were used in studying biodegradation of benzene, toluene, and p-xylene under aerobic conditions. Studies involved removal of each compound individually as well as in mixture with the others. Both cultures exhibited a qualitatively similar behavior toward each compound. Both the pure culture and the consortium grew on benzene following Monod kinetics, on toluene following inhibitory kinetics, whereas neither could grow on p-xylene. Benzene and toluene mixtures were removed under cross-inhibitory (competitive inhibition) kinetics. In the presence of benzene and/or toluene, p-xylene was cometabolically utilized by both cultures, but was not completely mineralized. Metabolic intermediates of p-xylene accumulated in the medium and were identified. Benzene and toluene were completely mineralized. Cometabolic removal of p-xylene reduced the yields on both benzene and toluene. Except for cometabolism, kinetic constants were determined from data analysis and are compared with values published recently by other researchers.

  19. Active site dynamics of toluene hydroxylation by cytochrome P-450

    SciTech Connect

    Hanzlik, R.P.; Kahhiing John Ling )

    1990-06-22

    Rat liver cytochrome P-450 hydroxylates toluene to benzyl alcohol plus o-, m-, and p-cresol. Deuterated toluenes were incubated under saturating conditions with liver microsomes from phenobarbital-pretreated rats, and product yields and ratios were measured. Stepwise deuteration of the methyl leads to stepwise decreases in the alcohol/cresol ratio without changing the cresol isomer ratios. Extensive deuterium retention in the benzyl alcohols from PhCH{sub 2}D and PhCHD{sub 2} suggests there is a large intrinsic isotope effect for benzylic hydroxylation. After replacement of the third benzylic H by D, the drop in the alcohol/cresol ratio was particularly acute, suggsting that metabolic switching from D to H within the methyl group was easier than switching from the methyl to the ring. Comparison of the alcohol/cresol ratio for PhCH{sub 3} vs PhCD{sub 3} indicated a net isotope effect of 6.9 for benzylic hydroxylation. From product yield data for PhCH{sub 3} and PhCD{sub 3}, {sup D}V for benzyl alcohol formation is only 1.92, whereas {sup D}V for total product formation is 0.67 (i.e., inverse). From competitive incubations of PhCH{sub 3}/PhCD{sub 3} mixtures {sup D}(V/K) isotope effects on benzyl alcohol formation and total product formation (3.6 and 1.23, respectively) are greatly reduced, implying strong commitment to catalysis. In contrast, {sup D}(V/K) for the alcohol/cresol ratio is 6.3, indicating that the majority of the intrinsic isotope effect is expressed through metabolic switching. Overall, these data are consistent with reversible formation of a complex between toluene and the active oxygen form of cytochrome P-450, which rearranges internally and reacts to form products faster than it dissociates back to release substrate.

  20. Kinetic Modeling of Toluene Oxidation for Surrogate Fuel Applications

    SciTech Connect

    Frassoldati, A; Mehl, M; Fietzek, R; Faravelli, T; Pitz, W J; Ranzi, E

    2009-04-21

    New environmental issues, like the effect of combustion-generated greenhouse gases, provide motivation to better characterize oxidation of hydrocarbons. Transportation, in particular, significantly contributes to energy consumption and CO{sub 2} emissions. Kinetic studies about the combustion of fuels under conditions typical of internal combustion engines provides important support to improve mechanism formulation and to eventually provide better computational tools that can be used to increase the engine performance. It is foreseeable that at least in the next 30 years the main transportation fuels will be either gasoline or diesel. Unfortunately, these fuels are very complex mixtures of many components. Moreover, their specifications and performance requirements significantly change the composition of these fuels: gasoline and diesel mixtures are different if coming from different refineries or they are different from winter to summer. At the same time a fuel with a well defined and reproducible composition is needed for both experimental and modeling work. In response to these issues, surrogate fuels are proposed. Surrogate fuels are defined as mixtures of a small number of hydrocarbons whose relative concentrations is adjusted in order to approximate the chemical and physical properties of a real fuel. Surrogate fuels are then very useful both for the design of reproducible experimental tests and also for the development of reliable kinetic models. The primary reference fuels (PRF) are a typical and old example of surrogate fuel: n-heptane and iso-octane mixtures are used to reproduce antiknock propensity of complex mixtures contained in a gasoline. PRFs are not able to surrogate gasoline in operating conditions different from standard ones and new surrogates have been recently proposed. Toluene is included in all of them as a species able to represent the behavior of aromatic compounds. On the other side, the toluene oxidation chemistry is not so well established and uncertainties still remain in the mechanism. This is especially true in the low temperature regime (< 850K). In these conditions, the toluene reactivity is too low to be conveniently investigated. Nonetheless, gasoline surrogates work in the engine at low temperatures, because of the presence of very reactive alkanes. The effect of these component interactions have to be taken into account. This work's aim is to present the model activity carried out by two different research groups, comparing the main pathways and results, matching data carried out in different devices both for pure toluene and mixtures. This is the starting point for a further activity to improve the two kinetic schemes.

  1. Toluene diisocyanate exposures in the flexible polyurethane foam industry

    SciTech Connect

    Rando, R.J.; Abdel-Kader, H.; Hughes, J.; Hammad, Y.Y.

    1987-06-01

    A 3-year survey of toluene diisocyanate exposure in two flexible polyurethane foam manufacturing facilities has been conducted. The geometric mean time-weighted average exposures were 2.36 ppb, 1.10 ppb, and 1.50 ppb for the foam line workers, finishing workers, and maintenance personnel, respectively. The OSHA ceiling standard of 20 ppb was exceeded by 1.3% of the short-term (12 min) exposure measurements taken. Exposures were shown to be predominantly to the 2,6 isomer of TDI.

  2. Nervous system effects of long-term occupational exposure to toluene.

    PubMed

    Juntunen, J; Matikainen, E; Antti-Poika, M; Suoranta, H; Valle, M

    1985-11-01

    Forty-three male rotogravure printers with long-term toluene exposure and 31 age- and sex-matched offset printers without toluene exposure were examined in detail. Clinical, neurophysiological, neuropsychological and neuroradiological examinations and assessment of autonomic functions did not reveal any statistically significant differences between the groups. The results suggest that occupational long-term exposure to toluene under these circumstances does not have clinically significant adverse effects on the nervous system. Exposure to toluene seemed to be associated with heavy drinking. PMID:4082918

  3. Diversity of Five Anaerobic Toluene-Degrading Microbial Communities Investigated Using Stable Isotope Probing

    PubMed Central

    Sun, Weimin

    2012-01-01

    Time-series DNA-stable isotope probing (SIP) was used to identify the microbes assimilating carbon from [13C]toluene under nitrate- or sulfate-amended conditions in a range of inoculum sources, including uncontaminated and contaminated soil and wastewater treatment samples. In all, five different phylotypes were found to be responsible for toluene degradation, and these included previously identified toluene degraders as well as novel toluene-degrading microorganisms. In microcosms constructed from granular sludge and amended with nitrate, the putative toluene degraders were classified in the genus Thauera, whereas in nitrate-amended microcosms constructed from a different source (agricultural soil), microorganisms in the family Comamonadaceae (genus unclassified) were the key putative degraders. In one set of sulfate-amended microcosms (agricultural soil), the putative toluene degraders were identified as belonging to the class Clostridia (genus Desulfosporosinus), while in other sulfate-amended microcosms, the putative degraders were in the class Deltaproteobacteria, within the family Syntrophobacteraceae (digester sludge) or Desulfobulbaceae (contaminated soil) (genus unclassified for both). Partial benzylsuccinate synthase gene (bssA, the functional gene for anaerobic toluene degradation) sequences were obtained for some samples, and quantitative PCR targeting this gene, along with SIP, was further used to confirm anaerobic toluene degradation by the identified species. The study illustrates the diversity of toluene degraders across different environments and highlights the utility of ribosomal and functional gene-based SIP for linking function with identity in microbial communities. PMID:22156434

  4. Degradation of off-gas toluene in continuous pyrite Fenton system.

    PubMed

    Choi, Kyunghoon; Bae, Sungjun; Lee, Woojin

    2014-09-15

    Degradation of off-gas toluene from a toluene reservoir and a soil vapor extraction (SVE) process was investigated in a continuous pyrite Fenton system. The removal of off-gas toluene from the toluene reservoir was >95% by 8h in the pyrite Fenton system, while it was ?97 % by 3h in classic Fenton system and then rapidly decreased to initial level by 8h. Continuous consumption of low Fe(II) concentration dissolved from pyrite surface (0.05-0.11 mM) was observed in the pyrite Fenton system, which can lead to the effective and successful removal of the gas-phase toluene due to stable production of OH radical (OH). Inhibitor and spectroscopic test results showed that OH was a dominant radical that degraded gas-phase toluene during the reaction. Off-gas toluene from the SVE process was removed by 96% in the pyrite Fenton system, and remnant toluene from rebounding effect was treated by 99%. Main transformation products from toluene oxidation were benzoic acid (31.4%) and CO2 (38.8%) at 4h, while traces of benzyl alcohol (1.3%) and benzaldehyde (0.7%) were observed. Maximum operation time of continuous pyrite Fenton system was estimated to be 56-61 d and its optimal operation time achieving emission standard was 28.9 d. PMID:25125037

  5. Enhanced toluene removal using granular activated carbon and a yeast strain Candida tropicalis in bubble-column bioreactors.

    PubMed

    Ahmed, Zubair; Hwang, Sun-Jin; Shin, Seung-Kyu; Song, JiHyeon

    2010-04-15

    The yeast strain Candida tropicalis was used for the biodegradation of gaseous toluene. Toluene was effectively treated by a liquid culture of C. tropicalis in a bubble-column bioreactor, and the toluene removal efficiency increased with decreasing gas flow rate. However, toluene mass transfer from the gas-to-liquid phase was a major limitation for the uptake of toluene by C. tropicalis. The toluene removal efficiency was enhanced when granular activated carbon (GAC) was added as a fluidized material. The GAC fluidized bioreactor demonstrated toluene removal efficiencies ranging from 50 to 82% when the inlet toluene loading was varied between 13.1 and 26.9 g/m(3)/h. The yield value of C. tropicalis ranged from 0.11 to 0.21 g-biomass/g-toluene, which was substantially lower than yield values for bacteria reported in the literature. The maximum elimination capacity determined in the GAC fluidized bioreactor was 172 g/m(3)/h at a toluene loading of 291 g/m(3)/h. Transient loading experiments revealed that approximately 50% of the toluene introduced was initially adsorbed onto the GAC during an increased loading period, and then slowly desorbed and became available to the yeast culture. Hence, the fluidized GAC mediated in improving the gas-to-liquid mass transfer of toluene, resulting in a high toluene removal capacity. Consequently, the GAC bubble-column bioreactor using the culture of C. tropicalis can be successfully applied for the removal of gaseous toluene. PMID:20031312

  6. Cation selectivity in a toluene emulsion membrane system

    SciTech Connect

    Izatt, R.M.; Dearden, D.V.; Witt, E.R.; McBride, D.W. Jr.; Christensen, J.J.

    1984-01-01

    Metal separations from various mixtures of alkali metal, alkaline earth metal, Cu/sup 2 +/, Zn/sup 2 +/, Ag/sup +/, Tl/sup +/, and Pb/sup 2 +/ nitrates were studied using an emulsion membrane system. The membrane consisted of a water-in-oil emulsion composed of 0.050 M Li/sub 4/P/sub 2/O/sub 7/ in H/sub 2/O and 0.020 M dicyclohexano-18-crown-6 (DC18C6) in toluene with sorbitan monooleate serving as surfactant. The emulsion was placed into an aqueous source phase solution of the metal nitrates of interest. Of the cations studied, Pb/sup 2 +/ was transported most rapidly and selectively. The selectivity of the system for particular cations is governed by the relative M/sup n+/-DC18C6 and M/sup n+/-P/sub 2/O/sub 7//sup 4 -/ complex stabilities. Formation of a sufficiently stable M/sup n+/-DC18C6 complex is necessary to partition cations into the toluene membrane, and formation of a more stable M/sup n+/-P/sub 2/O/sub 7//sup 4 -/ complex is necessary to strip cations from the membrane into the receiving phase. 17 references, 2 figures, 6 tables.

  7. Sonochemical treatment of benzene/toluene contaminated wastewater

    SciTech Connect

    Thoma, G.; Gleason, M.; Popov, V.

    1998-12-31

    Studies of the destruction of benzene and toluene in water were undertaken using ultrasonic irradiation in a parallel place Near Field Acoustic Processor (NAP). This magnetostrictive system is capable of degrading both benzene and toluene in a continuous stirred tank reactor configuration. The reaction kinetics were characterized by first order rate constants for the disappearance of the parent compound; these ranged from 2.7 {times} 1{sup {minus}3} to 3.7 {times} 10{sup {minus}2} mm{sup {minus}1} over an applied power density range of 0.6 to 3.6 watt mL{sup {minus}1} and target concentration of approximately 25 to 900 {micro}M. The rate constant is shown to be inversely proportional to the target compound concentration, indicating higher order reaction kinetics. The conversion efficiency for the system was characterized through the G efficiency commonly used in radiation chemistry. The G efficiency ranged between 4 {times} 10{sup {minus}5} to 2.2 {times} 10{sup {minus}4} molecules destroyed per 100 eV of electrical energy drawn from the wall outlet. These values are comparable to those of other advanced oxidation processes. Suggestions are made regarding methods to improve this technology.

  8. Control of toluene and xylene by absorption in mineral oil

    SciTech Connect

    Assuncao, J.V. de; Vasconcelos, S.M.F.

    1997-12-31

    Control of VOC is usually accomplished by thermal or catalytic incineration, by adsorption and more recently by biofiltration. In Brazil there is no specific environmental legislation for VOC control. The enforcement at the present time is based on population complaints in relation to odor outside the plant. The author feels that in the near future a regulation for VOC control will be enacted, aiming the attainment of the ozone standard or by ecological reason. This paper presents the results of a laboratory experiment for the absorption of toluene and xylene in mineral oil (fuel oil used in diesel buses and trucks) with a countercurrent flow packed tower. The resulting enriched mineral oil would still be used as a fuel and could be a more economical way of reducing emissions of VOC if it is not necessary to have collection efficiencies as high as those obtained by incineration or by adsorption. This control method could be also a way of waste recycling. Other organic liquids will be tested in the near future. A first set of experimental data showed collection efficiency of 92.69% for xylene, for inlet concentration in the tower of 1,471 ppmv, and 76.57% for toluene, for inlet concentration in the tower of 6,349.9 ppmv.

  9. Hydrotreating of wheat straw in toluene and ethanol.

    PubMed

    Murnieks, Raimonds; Kampars, Valdis; Malins, Kristaps; Apseniece, Lauma

    2014-07-01

    In the present work, wheat straw was hydroliquefied at a temperature of 300C for 4h in ethanol or toluene in order to obtain bio-components which are useful for fuel purposes. The experiments were performed in a 100mL batch reactor under hydrogen pressure of 70 bar. Typically, 2g of straw and 0.1g of catalyst (66%Ni/SiO2-Al2O3) were dispersed in 15 g of solvent. The main compounds of the oil produced during the liquefaction of hemicellulose, cellulose and lignin of wheat straw in both solvents are: tetrahydrofuran-2-methanol, 1,2-butanediol and butyrolactone. Besides the mentioned compounds, ethanol favoured the decomposition of bigger molecules to short-chain alcohols such as 1-butanol, 1,2-propanediol and 1,2-ethanediol. Toluene contributes to the production of furans and other cyclic compounds. The light fractions distilled together with the solvent also contain the following: 1-propanol, 2-methyl-cyclopentanone, acetic acid and ethyl acetate. PMID:24787323

  10. Toxicity of zero-valent iron nanoparticles to a trichloroethylene-degrading groundwater microbial community.

    PubMed

    Zabetakis, Kara M; Nio de Guzmn, Gabriela T; Torrents, Alba; Yarwood, Stephanie

    2015-01-01

    The microbiological impact of zero-valent iron used in the remediation of groundwater was investigated by exposing a trichloroethylene-degrading anaerobic microbial community to two types of iron nanoparticles. Changes in total bacterial and archaeal population numbers were analyzed using qPCR and were compared to results from a blank and negative control to assess for microbial toxicity. Additionally, the results were compared to those of samples exposed to silver nanoparticles and iron filings in an attempt to discern the source of toxicity. Statistical analysis revealed that the three different iron treatments were equally toxic to the total bacteria and archaea populations, as compared with the controls. Conversely, the silver nanoparticles had a limited statistical impact when compared to the controls and increased the microbial populations in some instances. Therefore, the findings suggest that zero-valent iron toxicity does not result from a unique nanoparticle-based effect. PMID:26030685

  11. Phytotoxicity and fate of 1,1,2-trichloroethylene: a laboratory study.

    PubMed

    Inderjit; Asakawa, Chikako; Kakuta, Hideo

    2003-06-01

    1,1,2-Trichloroethylene (TCE), a chlorinated organic contaminant, poses serious environmental concerns. A study was conducted to evaluate the phytotoxicity of TCE to a crop species and its fate in vermiculite. Growth bioassays were carried out using carrot (Daucus carota L.) as the test species. Three different concentrations, 0.25, 0.50, and 1 ppm were used to evaluate phytotoxicity of TCE. When added to petri plates with cotton pads, TCE did not have any effect on carrot seedling growth. However, when added to vermiculite, it significantly suppressed growth. Shoot growth was inhibited only at the 1 ppm concentration. Recovery experiments were carried out to study the fate of TCE in vermiculite. A significant decline in the percent recovery was observed with time. Interestingly, TCE additional peaks (unknown organic molecules) were detected with declining concentrations. The available chloride ion concentration in vermiculite containing 1 ppm of TCE for 24 hr was significantly higher compared to control. PMID:12918919

  12. Performance of prototype bioreactors for biodegradation of trichloroethylene by Methylocystis sp. M

    SciTech Connect

    Okada, Fusako; Shimomura, Tatsuo; Uchiyama, Hiroo; Yagi, Osami

    1995-12-31

    Two prototype bioreactors were tested for continuous biodegradation of trichloroethylene (TCE) by Methylocystis sp. M, a methane-utilizing bacterium. One bioreactor was a fluidized-bed bioreactor (FBB) containing alginate-immobilized cells and the other a membrane bioreactor (MB) in which hollow fiber membrane modules were employed for recovering free cells from treated water. TCE degradation efficiency was 80% to 90% with FBB, which was operated at an influent TCE concentration of about 1 mg/L and a hydraulic retention time (HRT) of 2.6 hours. MB, which was operated at an influent TCE concentration of about 0.25 mg/L and HRT of 3.3 hours, yielded a TCE degradation efficiency of 90 to 99%. In this study, MB was found to be more practical than FBB.

  13. Byproduct identification and mechanism determination in plasma chemical decomposition of trichloroethylene

    SciTech Connect

    Futamura, Shigeru; Yamamoto, Toshiaki

    1997-03-01

    Plasma chemical behavior of trichloroethylene (TCE) was investigated with a packed-bed ferroelectric pellet reactor and a pulsed corona reactor. Volatile byproducts were identified by gas chromatography and mass spectrometry (GC-MS), and it was shown that reactor type, TCE concentration, flow rate, background gas, and moisture affected TCE decomposition efficiency and product distribution. Byproduct distributions in nitrogen and the negative effect of oxygen and moisture on TCE decomposition efficiency show that TCE decomposition proceeds via initial elimination of chlorine and hydrogen atoms, the addition of which to TCE accelerates its decomposition. Active oxygen species like OH radical is less likely involved in the initial step of TCE decomposition in plasma. Triplet oxygen molecules ({sup 3}O{sub 2}) scavenge intermediate carbon radicals derived from TCE decomposition to give much lower yields of organic byproducts.

  14. Remediation of trichloroethylene in an artificial aquifer with trees: A controlled field study

    SciTech Connect

    Newman, L.A.; Wang, X.; Muiznieks, I.A.

    1999-07-01

    Poplar trees have been evaluated in the field for the control of contaminated groundwater movement, but to date, the fate of the contaminants has not been demonstrated. In the present study, the authors tested a hybrid poplar for the uptake and degradation of trichloroethylene (TCE). Plants were exposed to TCE-contaminated groundwater under field conditions in lined cells for three years. During the growing seasons, the trees were able to remove over 99% of the added TCE. Less than 9% of the TCE was transpired to the atmosphere during the second and third years, and examination of the tissue showed expected metabolites, but at low levels. Chloride did not significantly accumulate in the plant tissues, but chloride ion increased in the soil in amounts that approximately corresponded to TCE loss. These results demonstrate that treatment of TCE-contaminated groundwater with this poplar clone can result in efficient destruction of TCE.

  15. Anaerobic biodegradation of trichloroethylene with the addition of sugar using activated carbon-fluidized beds

    SciTech Connect

    Huang, Suxuan, D.

    1989-01-01

    Anaerobic biodegradation of trichloroethylene (TCE) was carried out in a two-stage granular activated carbon fluidized bed bioreactor. The intermediate products were identified as: dichloroethylene (DCE), vinyl chloride (VC), 1,2-dichloroethane (DCA) and chloroethane (CA). Of the three geometric isomers of DCE, the trans-1,2 dichloroethylene (TDCE) was found to be the most predominant species. The production of DCA suggested a diverted reaction sequence from the conventional sequential reductive dechlorination pathway postulated in the past literature. CA was believed to be a product of VC and/or DCA. The co-substrate glucose was implicated for this reaction specificity. Based on our data and on other's work, a modified degradation pathway for TCE in anaerobic environment is postulated. The quantitative product of CA strongly implied a potential for complete mineralization of TCE under reductive conditions.

  16. In-line measurement of trichloroethylene vapors using tin dioxide sensors

    SciTech Connect

    Heron, G.; Zutphen, M. van; Enfield, C.G.

    1998-12-31

    During thermally enhanced in situ remediation of soils and ground water, gas streams are generated with varying temperatures, moisture content, and organic compound concentrations. In this study, the authors evaluated the performance of tin dioxide sensors for measuring trichloroethylene (TCE) concentrations in gas streams from a thermally enhanced soil vapor extraction system. Temperature, pressure, moisture content, and vapor flow rates affected the resistivity of the sensors, and thus the signal. When fluctuations in these parameters were eliminated by condensing excess water and heating to a constant temperature prior to measurement, the sensors provided reliable in-line measurement of TCE concentrations. Gas tracers such as methane were easily monitored in-line, providing quick and inexpensive data on subsurface vapor flow velocities and direction.

  17. Degradation of trichloroethylene by hydrodechlorination using formic acid as hydrogen source over supported Pd catalysts.

    PubMed

    Yu, Xin; Wu, Ting; Yang, Xue-Jing; Xu, Jing; Auzam, Jordan; Semiat, Raphael; Han, Yi-Fan

    2016-03-15

    An advanced method for the degradation of trichloroethylene (TCE) over Pd/MCM-41 catalysts through a hydrogen-transfer was investigated. Formic acid (FA) was used instead of gaseous H2 as the hydrogen resource. As a model H-carrier compound, FA has proven to yield less by-products and second-hand pollution during the reaction. Several factors have been studied, including: the property of catalyst supports, Pd loading and size, temperature, initial concentrations of FA and TCE (potential impact on the reaction rates of TCE degradation), and FA decomposition. The intrinsic kinetics for TCE degradation were measured, while the apparent activation energies and the reaction orders with respect to TCE and FA were calculated through power law models. On the basis of kinetics, we assumed a plausible reaction pathway for TCE degradation in which the catalytic degradation of TCE is most likely the rate-determining step for this reaction. PMID:26685065

  18. Trichloroethylene adsorption by pine needle biochars produced at various pyrolysis temperatures.

    PubMed

    Ahmad, Mahtab; Lee, Sang Soo; Rajapaksha, Anushka Upamali; Vithanage, Meththika; Zhang, Ming; Cho, Ju Sik; Lee, Sung-Eun; Ok, Yong Sik

    2013-09-01

    In this study, pine needles were converted to biochar (BC) at different pyrolysis temperatures of 300, 500, and 700 C to sorb trichloroethylene (TCE), and the changes in BC properties with each temperature were evaluated. Pyrolysis temperature showed a pronounced effect on BC properties. Decreases in molar H/C and O/C ratios resulted from removing O- and H-containing functional groups with increasing temperature, and produced high aromaticity and low polarity BCs. BCs produced at higher temperature showed greater TCE removal efficiency from water due to their high surface area, micro-porosity, and carbonized extent. The performance of various BCs for TCE removal was assessed by the Freundlich, Langmuir, Temkin, and Dubinin-Radushkevich adsorption models, among which the Temkin and Dubinin-Radushkevich models best described TCE adsorption onto various BCs, indicating prevailing sorption mechanism as pore-filling. PMID:23838320

  19. Physiologically Based Pharmacokinetic (PBPK) Modeling of Interstrain Variability in Trichloroethylene Metabolism in the Mouse

    PubMed Central

    Campbell, Jerry L.; Clewell, Harvey J.; Zhou, Yi-Hui; Wright, Fred A.; Guyton, Kathryn Z.

    2014-01-01

    Background: Quantitative estimation of toxicokinetic variability in the human population is a persistent challenge in risk assessment of environmental chemicals. Traditionally, interindividual differences in the population are accounted for by default assumptions or, in rare cases, are based on human toxicokinetic data. Objectives: We evaluated the utility of genetically diverse mouse strains for estimating toxicokinetic population variability for risk assessment, using trichloroethylene (TCE) metabolism as a case study. Methods: We used data on oxidative and glutathione conjugation metabolism of TCE in 16 inbred and 1 hybrid mouse strains to calibrate and extend existing physiologically based pharmacokinetic (PBPK) models. We added one-compartment models for glutathione metabolites and a two-compartment model for dichloroacetic acid (DCA). We used a Bayesian population analysis of interstrain variability to quantify variability in TCE metabolism. Results: Concentrationtime profiles for TCE metabolism to oxidative and glutathione conjugation metabolites varied across strains. Median predictions for the metabolic flux through oxidation were less variable (5-fold range) than that through glutathione conjugation (10-fold range). For oxidative metabolites, median predictions of trichloroacetic acid production were less variable (2-fold range) than DCA production (5-fold range), although the uncertainty bounds for DCA exceeded the predicted variability. Conclusions: Population PBPK modeling of genetically diverse mouse strains can provide useful quantitative estimates of toxicokinetic population variability. When extrapolated to lower doses more relevant to environmental exposures, mouse population-derived variability estimates for TCE metabolism closely matched population variability estimates previously derived from human toxicokinetic studies with TCE, highlighting the utility of mouse interstrain metabolism studies for addressing toxicokinetic variability. Citation: Chiu WA, Campbell JL Jr, Clewell HJ III, Zhou YH, Wright FA, Guyton KZ, Rusyn I. 2014. Physiologically based pharmacokinetic (PBPK) modeling of interstrain variability in trichloroethylene metabolism in the mouse. Environ Health Perspect 122:456463;?http://dx.doi.org/10.1289/ehp.1307623 PMID:24518055

  20. An Animal Model of Trichloroethylene-Induced Skin Sensitization in BALB/c Mice.

    PubMed

    Wang, Hui; Zhang, Jia-xiang; Li, Shu-long; Wang, Feng; Zha, Wan-sheng; Shen, Tong; Wu, Changhao; Zhu, Qi-xing

    2015-01-01

    Trichloroethylene (TCE) is a major occupational hazard and environmental contaminant that can cause multisystem disorders in the form of occupational medicamentosa-like dermatitis. Development of dermatitis involves several proinflammatory cytokines, but their role in TCE-mediated dermatitis has not been examined in a well-defined experimental model. In addition, few animal models of TCE sensitization are available, and the current guinea pig model has apparent limitations. This study aimed to establish a model of TCE-induced skin sensitization in BALB/c mice and to examine the role of several key inflammatory cytokines on TCE sensitization. The sensitization rate of dorsal painted group was 38.3%. Skin edema and erythema occurred in TCE-sensitized groups, as seen in 2,4-dinitrochlorobenzene (DNCB) positive control. Trichloroethylene sensitization-positive (dermatitis [+]) group exhibited increased thickness of epidermis, inflammatory cell infiltration, swelling, and necrosis in dermis and around hair follicle, but ear painted group did not show these histological changes. The concentrations of serum proinflammatory cytokines including tumor necrosis factor (TNF)-?, interferon (IFN)-?, and interleukin (IL)-2 were significantly increased in 24, 48, and 72 hours dermatitis [+] groups treated with TCE and peaked at 72 hours. Deposition of TNF-?, IFN-?, and IL-2 into the skin tissue was also revealed by immunohistochemistry. We have established a new animal model of skin sensitization induced by repeated TCE stimulations, and we provide the first evidence that key proinflammatory cytokines including TNF-?, IFN-?, and IL-2 play an important role in the process of TCE sensitization. PMID:26111540

  1. Efficient degradation of trichloroethylene in water using persulfate activated by reduced graphene oxide-iron nanocomposite.

    PubMed

    Ahmad, Ayyaz; Gu, Xiaogang; Li, Li; Lv, Shuguang; Xu, Yisheng; Guo, Xuhong

    2015-11-01

    Graphene oxide (GO) and nano-sized zero-valent iron-reduced graphene oxide (nZVI-rGO) composite were prepared. The GO and nZVI-rGO composite were characterized by transmission electron microscopy (TEM), Fourier transform infrared (FTIR), energy-dispersive spectroscopy (EDS), and Raman spectroscopy. The size of nZVI was about 6nm as observed by TEM. The system of nZVI-rGO and persulfate (PS) was used for the degradation of trichloroethylene (TCE) in water, and showed 26.5% more efficiency as compared to nZVI/PS system. The different parameters were studied to determine the efficiency of nZVI-rGO to activate the PS system for the TCE degradation. By increasing the PS amount, TCE removal was also improved while no obvious effect was observed by varying the catalyst loading. Degradation was decreased as the TCE initial concentration was increased from 20 to 100mg/L. Moreover, when initial solution pH was increased, efficiency deteriorated to 80%. Bicarbonate showed more negative effect on TCE removal among the solution matrix. To better understand the effects of radical species in the system, the scavenger tests were performed. The SO4 (-) and O2 (-) were predominant species responsible for TCE removal. The nZVI-rGO-activated PS process shows potential applications in remediation of highly toxic organic contaminants such as TCE present in the groundwater. Graphical abstract Persulfate activated by reduced graphene oxide and nano-sized zero-valent iron composite can be used for efficient degradation of trichloroethylene (TCE) in water. PMID:26162447

  2. ESTABLISHING CHANGES IN METABOLISM OF CARBON TETRACHLORIDE IN THE PRESENCE OF TRICHLOROETHYLENE IN THE RAT THROUGH THE USE OF PHYSIOLOGICALLY BASED PHARMACOKINETIC (PBPK) MODELING

    EPA Science Inventory

    Toxicological interactions of chemicals can affect metabolism, often decreasing overall associated metabolic rates; and changes in metabolism can be evaluated through the use of mathematical models. Trichloroethylene (TCE) and carbon tetrachloride (CCl4) are common co...

  3. Suppression of Pulmonary Host Defenses and Enhanced Susceptibility to Respiratory bacterial Infection in mice Following Inhalation Exposure to Trichloroethylene and Chloroform

    EPA Science Inventory

    Numerous epidemiologic studies have associated episodes of increased air pollution with increased incidence of respiratory disease, including pneumonia, croup, and bronchitis. Trichloroethylene (TCE) and chloroform are among 33 hazardous air pollutants identified by the U.S. Env...

  4. Comparative Study on the Implication of Three Nanoparticles on the Removal of Trichloroethylene by Adsorption - The Pilot and Rapid Small-Scale Column Tests

    EPA Science Inventory

    The impact of three commercially-available nanoparticles (NPs) on trichloroethylene (TCE) adsorption onto granular activated carbon (GAC) was investigated. TCE Adsorption isotherm and column breakthrough experiments were conducted in the presence and absence of silicon dioxide (S...

  5. Evaluation of the Role of Peroxisome Proliferator-Activated Receptor α (PPARα) in Mouse Liver Tumor Induction by Trichloroethylene and Metabolites

    EPA Science Inventory

    Trichloroethylene (TCE) is an industrial solvent and a widespread environmental contaminant. Induction of liver cancer in mice by TCE is thought to be mediated by two metabolites, dichloroacetate (DCA) and trichloroacetate (TCA), both of which are themselves mouse liver carcinoge...

  6. An alternate metabolic hypothesis for a binary mixture of trichloroethylene and carbon tetrachloride: application of physiologically based pharmacokinetic (PBPK) modeling in rats.

    EPA Science Inventory

    Carbon tetrachloride (CC4) and trichloroethylene (TCE) are hepatotoxic volatile organic compounds (VOCs) and environmental contaminants. Previous physiologically based pharmacokinetic (PBPK) models describe the kinetics ofindividual chemical disposition and metabolic clearance fo...

  7. Anaerobic degradation of toluene and o-xylene by a methanogenic consortium.

    PubMed Central

    Edwards, E A; Grbi?-Gali?, D

    1994-01-01

    Toluene and o-xylene were completely mineralized to stoichiometric amounts of carbon dioxide, methane, and biomass by aquifer-derived microorganisms under strictly anaerobic conditions. The source of the inoculum was creosote-contaminated sediment from Pensacola, Fla. The adaptation periods before the onset of degradation were long (100 to 120 days for toluene degradation and 200 to 255 days for o-xylene). Successive transfers of the toluene- and o-xylene-degrading cultures remained active. Cell density in the cultures progressively increased over 2 to 3 years to stabilize at approximately 10(9) cells per ml. Degradation of toluene and o-xylene in stable mixed methanogenic cultures followed Monod kinetics, with inhibition noted at substrate concentrations above about 700 microM for o-xylene and 1,800 microM for toluene. The cultures degraded toluene or o-xylene but did not degrade m-xylene, p-xylene, benzene, ethylbenzene, or naphthalene. The degradative activity was retained after pasteurization or after starvation for 1 year. Degradation of toluene and o-xylene was inhibited by the alternate electron acceptors oxygen, nitrate, and sulfate. Degradation was also inhibited by the addition of preferred substrates such as acetate, H2, propionate, methanol, acetone, glucose, amino acids, fatty acids, peptone, and yeast extract. These data suggest that the presence of natural organic substrates or contaminants may inhibit anaerobic degradation of pollutants such as toluene and o-xylene at contaminated sites. Images PMID:8117084

  8. Aerobic and Anaerobic Toluene Degradation by a Newly Isolated Denitrifying Bacterium, Thauera sp. Strain DNT-1

    PubMed Central

    Shinoda, Yoshifumi; Sakai, Yasuyoshi; Uenishi, Hiroshi; Uchihashi, Yasumitsu; Hiraishi, Akira; Yukawa, Hideaki; Yurimoto, Hiroya; Kato, Nobuo

    2004-01-01

    A newly isolated denitrifying bacterium, Thauera sp. strain DNT-1, grew on toluene as the sole carbon and energy source under both aerobic and anaerobic conditions. When this strain was cultivated under oxygen-limiting conditions with nitrate, first toluene was degraded as oxygen was consumed, while later toluene was degraded as nitrate was reduced. Biochemical observations indicated that initial degradation of toluene occurred through a dioxygenase-mediated pathway and the benzylsuccinate pathway under aerobic and denitrifying conditions, respectively. Homologous genes for toluene dioxygenase (tod) and benzylsuccinate synthase (bss), which are the key enzymes in aerobic and anaerobic toluene degradation, respectively, were cloned from genomic DNA of strain DNT-1. The results of Northern blot analyses and real-time quantitative reverse transcriptase PCR suggested that transcription of both sets of genes was induced by toluene. In addition, the tod genes were induced under aerobic conditions, whereas the bss genes were induced under both aerobic and anaerobic conditions. On the basis of these results, it is concluded that strain DNT-1 modulates the expression of two different initial pathways of toluene degradation according to the availability of oxygen in the environment. PMID:15006757

  9. Examining the Impact of an Updated Toluene Mechanism on Air Quality in the Eastern US

    EPA Science Inventory

    Model simulations were performed using the CB05 chemical mechanism containing the base and an updated toluene mechanisms for the eastern US. The updated toluene mechanism increased monthly mean 8-hr ozone by 1.0-2.0 ppbv in urban areas of Chicago, the northeast US, Detroit, Cleve...

  10. Binge inhalation of toluene vapor produces dissociable motor and cognitive dysfunction in water maze tasks.

    PubMed

    Gmaz, Jimmie M; Yang, Linda; Ahrari, Aida; McKay, Bruce E

    2012-10-01

    Binge inhalation of toluene, a psychoactive chemical found in many household and industrial products, leads acutely to intoxication with comorbid impairments in motor function and cognitive abilities that appear to recover quickly. Recent evidence, however, indicates that the administration of toluene results in marked changes in neurons of the medial prefrontal cortex that persist for relatively longer periods compared with other brain regions. To elucidate the potential toluene-induced (?5000 ppm) cognitive dysfunctions that continue following the recovery of locomotor abilities, rats were entered into a series of water maze tasks. Following acute toluene intoxication, rats were initially severely impaired in their swimming ability and in their ability to learn and perform a visible platform task. After about 20 min, swimming behavior mostly returned to normal, although cognitive impairments were still evident. Whereas rats with extensive toluene-free training in the maze were able to show normal spatial recall following toluene intoxication, the same acute toluene exposure severely impaired reversal learning, with the rats showing a marked perseveration for the previously learned platform location. Our results indicate that toluene inhalation results in specific cognitive dysfunctions that outlast major impairments in motor abilities, which may be related to impairments in medial prefrontal cortex activity. PMID:22903072

  11. Circadian variations of acute toxicity and blood and brain concentrations of inhaled toluene in rats.

    PubMed Central

    Harabuchi, I; Kishi, R; Ikeda, T; Kiyosawa, H; Miyake, H

    1993-01-01

    To investigate circadian variations in the acute toxicity of toluene, rats were exposed to it (2000 ppm or 4000 ppm) both in the dark (the animals' active phase) and the light (the inactive phase) for 4 hours. The performance decrements of rats were greater in the light phase than in the dark phase in all time zones of exposure to toluene. In the dark phase, the performance recovered almost to that pre-exposure, whereas a significant delay of recovery was noted in the light phase. The differences in the number of lever presses between exposure to 2000 ppm toluene and control (air) exposure were also greater in the light phase than in the dark phase. Significant differences according to the time of exposure were also found in toluene concentrations in blood and the brain. Both blood and brain concentrations in the light phase were higher than those in the dark phase at four hours after exposure to 2000 ppm toluene or at two hours after exposure to 4000 ppm toluene. These results suggest that there was a significant difference in circadian susceptibility after exposure to toluene, which might be caused by circadian differences in the pharmacokinetics of toluene in the light and dark phases. PMID:8457497

  12. 40 CFR 721.1850 - Toluene sulfonamide bis-phe-nol A epoxy adduct.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... epoxy adduct. 721.1850 Section 721.1850 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.1850 Toluene sulfonamide bis-phe-nol A epoxy adduct. (a) Chemical... as toluene sulfonamide bisphenol A epoxy adduct (PMN P-90-113) is subject to reporting under...

  13. 40 CFR 721.1850 - Toluene sulfonamide bis-phe-nol A epoxy adduct.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... epoxy adduct. 721.1850 Section 721.1850 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.1850 Toluene sulfonamide bis-phe-nol A epoxy adduct. (a) Chemical... as toluene sulfonamide bisphenol A epoxy adduct (PMN P-90-113) is subject to reporting under...

  14. 40 CFR 721.1850 - Toluene sulfonamide bis-phe-nol A epoxy adduct.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... epoxy adduct. 721.1850 Section 721.1850 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.1850 Toluene sulfonamide bis-phe-nol A epoxy adduct. (a) Chemical... as toluene sulfonamide bisphenol A epoxy adduct (PMN P-90-113) is subject to reporting under...

  15. Anaerobic degradation of toluene and o-xylene by a methanogenic consortium

    SciTech Connect

    Edwards, E.A.; Grbic-Galic, D. )

    1994-01-01

    Toluene and o-xylene were completely mineralized to stoichiometric amounts of carbon dioxide, methane, and biomass by aquifer-derived microorganisms under strictly anaerobic conditions. The source of the inoculum was creosote-contaminated sediment from Pensacola, Fla. The adaptation periods before the onset of degradation were long (100 to 120 days for toluene degradation and 200 to 255 days for o-xylene). Successive transfers of the toluene- and o-xylene-degrading cultures remained active. Cell density in the cultures progressively increased over 2 to 3 years to stabilize at approximately 10[sup 9] cells per ml. Degradation of toluene and o-xylene in stable mixed methanogenic cultures followed Monod kinetics, with inhibition noted at substrate concentrations above about 700 [mu]M for o-xylene, and 1,800 [mu]M for toluene. The cultures degraded toluene or o-xylene but did not degrade m-xylene, p-xylene, benzene, ethylbenzene, or naphthalene. The degradative activity was retained after pasteurization or after starvation for 1 year. Degradation of toluene and o-xylene was inhibited by the alternate electron acceptors oxygen, nitrate, and sulfate. Degradation was also inhibited by the addition of preferred substrates such as acetate, H[sub 2] propionate, methanol, acetone, glucose, amino acids, fatty acids, peptone, and yeast extract. These data suggest that the presence of natural organic substrates or cocontaminants may inhibit anaerobic degradation of pollutants such as toluene and o-xylene at contaminated sites.

  16. Low-temperature anaerobic biological treatment of toluene-containing wastewater.

    PubMed

    Enright, Anne-Marie; Collins, Gavin; O'Flaherty, Vincent

    2007-04-01

    Two expanded granular sludge bed-anaerobic filter (EGSB-AF) bioreactors, R1 and R2, were operated at 15 degrees C for the treatment of toluene-contaminated volatile fatty acid-based wastewater. The seed inoculum and the R1 reactor were unexposed to toluene, prior to and during the trial, respectively. Both reactors were operated at a hydraulic retention time of 24h at applied organic loading rates of 0.71-1.43kg chemical oxygen demand (COD)m(-3)d(-1). Toluene was supplemented to the R2 influent at concentrations of 5-104 mg toluenel(-1) (solubilised in ethanol). Bioreactor performance was evaluated by COD and toluene removal efficiency, and the methane content of biogas (%). Specific methanogenic activity and toxicity assays were employed to investigate the activity and toluene toxicity thresholds of key trophic groups, respectively, within the seed and reactor biomass samples. COD and toluene removal efficiencies of 70-90% and 55-99%, respectively, were achieved during the 630-d trial. Metabolic assays suggested that a psychrotolerant H(2)/CO(2)-utilizing methanogenic community developed in the toluene-degrading biomass. The results indicate the viability of low-temperature anaerobic digestion for the treatment of wastewater containing toluene. PMID:17306857

  17. WHY DO THE ACUTE BEHAVIORAL EFFECTS OT TOLUENE IN RATS DEPEND ON THE ROUTE OF EXPOSURE?

    EPA Science Inventory

    Despite evidence suggesting that the acute effects of organic solvents are related to their concentration in the brain, we have observed route-dependent differences in the acute behavioral effects of toluene. Whereas inhaled toluene disrupts the performance of rats on a visual si...

  18. Behavioral Effects of Sub-Acute Inhalation of Toluene in Adult Rats

    EPA Science Inventory

    Reports of behavioral effects of repeated inhalation of toluene in rats have Yielded inconsistent fmdings. A recent study from this laboratory (Beasley et al., 2010) observed that after 13 weeks of inhaled toluene ("sub-chronic" exposure scenario), rats showed mild but persiste...

  19. Use of Selective Inhibitors and Chromogenic Substrates to Differentiate Bacteria Based on Toluene Oxygenase Activity

    SciTech Connect

    Keener, William Kelvin; Schaller, Kastli Dianne; Walton, Michelle Rene; Partin, Judy Kaye; Watwood, Mary Elizabeth; Smith, William Aaron; Chingenpeel, S. R.

    2001-09-01

    In whole-cell studies, two alkynes, 1-pentyne and phenylacetylene, were selective, irreversible inhibitors of monooxygenase enzymes in catabolic pathways that permit growth of bacteria on toluene. 1-Pentyne selectively inhibited growth of Burkholderia cepacia G4 (toluene 2-monooxygenase [T2MO] pathway) and B. pickettii PKO1 (toluene 3-monooxygenase [T3MO] pathway) on toluene, but did not inhibit growth of bacteria expressing other pathways. In further studies with strain G4, chromogenic transformation of a,a,a-Trifluoro-m-cresol (TFC) was irreversibly inhibited by 1-pentyne, but the presence of phenol prevented this inhibition. Transformation of catechol by G4 was unaffected by 1-pentyne. With respect to the various pathways and bacteria tested, phenylacetylene selectively inhibited growth of Pseudomonas mendocina KR1 (toluene 4-monooxygenase [T4MO] pathway) on toluene, but not on p-cresol. An Escherichia coli transformant expressing T4MO transformed indole or naphthalene in chromogenic reactions, but not after exposure to phenylacetylene. The naphthalene reaction remained diminished in phenylacetylene-treated cells relative to untreated cells after phenylacetylene was removed, indicating irreversible inhibition. These techniques were used to differentiate toluene-degrading isolates from an aquifer. Based on data generated with these indicators and inhibitors, along with results from Biolog analysis for sole carbon source oxidation, the groundwater isolates were assigned to eight separate groups, some of which apparently differ in their mode of toluene catabolism.

  20. CHANGES IN MRNA EXPRESSION PROFILES IN RAT CORTEX AND STRIATUM FOLLOWING SUB CHRONIC TOLUENE EXPOSURE.

    EPA Science Inventory

    Toluene, a volatile organic compound (VOC) used in many commercial products, is a ubiquitous air pollutant and therefore of interest to many EPA regulatory programs. A primary concern for toluene and other VOCs is the potential for persistent neurotoxic effects from long term e...

  1. A novel toluene-3-monooxygenase pathway cloned from Pseudomonas pickettii PKO1.

    PubMed Central

    Olsen, R H; Kukor, J J; Kaphammer, B

    1994-01-01

    Plasmid pRO1957, which contains a 26.5-kb fragment from the chromosome of Pseudomonas pickettii PKO1, allows P. aeruginosa PAO1 to grow on toluene or benzene as a sole carbon and energy source. A subclone of pRO1957, designated pRO1966, when present in P. aeruginosa PAO1 grown in lactate-toluene medium, accumulates m-cresol in the medium, indicating that m-cresol is an intermediate of toluene catabolism. Moreover, incubation of such cells in the presence of 18O2 followed by gas chromatography-mass spectrometry analysis of m-cresol extracts showed that the oxygen in m-cresol was derived from molecular oxygen. Accordingly, this suggests that toluene-3-monooxygenation is the first step in the degradative pathway. Toluene-3-monooxygenase activity is positively regulated from a locus designated tbuT. Induction of the toluene-3-monooxygenase is mediated by either toluene, benzene, ethylbenzene, or m-cresol. Moreover, toluene-3-monooxygenase activity induced by these effectors also metabolizes benzene and ethylbenzene to phenol and 3-ethylphenol, respectively, and also after induction, o-xylene, m-xylene, and p-xylene are metabolized to 3,4-dimethylphenol, 2,4-dimethylphenol, and 2,5-dimethylphenol, respectively, although the xylene substrates are not effectors. Styrene and phenylacetylene are transformed into more polar products. PMID:8206853

  2. EVALUATING THE NMDA-GLUTAMATE RECEPTOR AS A SITE OF ACTION FOR TOLUENE, IN VIVO

    EPA Science Inventory

    In vitro, toluene disrupts the function of NMDA-glutamate receptors, indicating that effects on NMDA receptor function may contribute to toluene neurotoxicity. NMDA-glutamate receptors are widely present in the visual system and contribute to pattern-elicited visual evoked potent...

  3. Effects of activated carbon fibre-supported metal oxide characteristics on toluene removal.

    PubMed

    Liu, Zhen-Shu; Peng, Yu-Hui; Li, Wen-Kai

    2014-01-01

    Few studies have investigated the use of activated carbon fibres (ACFs) impregnated with metal oxides for the catalytic oxidation of volatile organic compounds (VOCs). Thus, the effects of the ACF-supported metal oxides on toluene removal are determined in this study. Three catalysts, namely, Ce, Mn, and Cu, two pretreatment solutions NaOH and H2O2, and three reaction temperatures of 250 degrees C, 300 degrees C, and 350 degrees C, were employed to determine toluene removal. The composition and morphology of the catalysts were analysed using Brunauer-Emmett-Teller (BET), transmission electron microscope (TEM), inductively coupled plasma (ICP), X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectrometer (FTIR), and thermo-gravimetric analyser (TGA) to study the effects of the catalyst's characteristics on toluene removal. The results demonstrated that the metal catalysts supported on the ACFs could significantly increase toluene removal. The Mn/ACFs and Cu/ACFs were observed to be most active in toluene removal at a reaction temperature of 250 degrees C with 10% oxygen content. Moreover, the data also indicated that toluene removal was slightly improved after pretreating the ACFs with NaOH and H2O2. The results suggested that surface-metal loading and the surface characteristics of the ACFs were the determinant parameters for toluene removal. Furthermore, the removal of toluene over Mn/ACFs-H202 decreased when the reaction temperature considered was > 300 degrees C. PMID:24701949

  4. EVALUATING MOLECULAR SITES OF ACTION FOR TOLUENE USING AN IN VIVO MODEL.

    EPA Science Inventory


    In vitro studies have demonstrated that toluene disrupts the function of several ion channels localized in the brain, including the NMDA-glutamate receptor. This has led to the hypothesis that effects on ion channel function may contribute to toluene neurotoxicity, CNS depres...

  5. Metabolites formed during anaerobic transformation of toluene and o-xylene and their proposed relationship to the initial steps of toluene mineralization

    SciTech Connect

    Evans, P.J.; Ling, W.; Goldschmidt, B.; Young, L.Y. ); Ritter, E.R. )

    1992-02-01

    Strain T1 is a facultative bacterium that is capable of anaerobic toluene degradation under denitrifying conditions. While 80% of the carbon from toluene is either oxidized to carbon dioxide or assimilated into cellular carbon, a significant portion of the remainder is transformed into two dead-end metabolites. These metabolites were produced simultaneous to the mineralization of toluene and were identified as benzylsuccinic acid and benzylfumaric acid. Identification was based on comparison of mass spectra of the methyl esters of the metabolites and authentic compounds that were chemically synthesized. Strain T1 is also capable of o-xylene transformation during growth on toluene, o-Xylene does not serve as a source of carbon and is not mineralized. Rather, it is transformed to analogous dead-end metabolites, (2-methylbenzyl)-succinic acid and (2-methyl-benzyl)-fumaric acid. o-Xylene transformation also occurred during growth on succinic acid, which suggests that attack of the methyl group by succinyl-coenzyme A is a key reaction in this transformation. The authors reason that the main pathway for toluene oxidation to carbon dioxide involves a mechanism similar to that for the formation of the metabolites and involves an attack of the methyl group of toluene by acetyl-coenzyme A.

  6. Effects of Toluene on Microbially-Mediated Processes Involved in the Soil Nitrogen Cycle

    PubMed

    Fuller; Scow

    1996-07-01

    The effects of toluene on indigenous microbial populations involved in the soil nitrogen cycle were examined. Ammonia oxidation potential (AOP) and nitrite oxidation potential (NOP) were both reduced after incubation with high toluene concentrations for 45 days, with the former activity showing greater sensitivity. KCl-extractable ammonium (NH4+ext) levels increased dramatically in soil exposed to high toluene levels, and arginine ammonification was not significantly affected. Alfalfa-amended soil incubated in the presence of 200 &mgr;g toluene ml-1 showed progressive accumulation of NH4+ext over 37 days, indicating that mineralization of plant-associated nitrogen was not hindered by toluene. AOP in treated soil was much less than in control soil on days 7 and 37, but the MPN of ammonia oxidizers in control and exposed soil were not significantly different. Soil incubated with 100 &mgr;g toluene ml-1for 28 days, vented and allowed to incubate for an additional 7 to 30 days, exhibited only slight increases in AOP and NOP, while NH4+ext returned to control levels within a week. Soil exposed to 200 &mgr;g toluene ml-1 and treated in the same manner showed no increases in either AOP or NOP, and NH4+extremained elevated for the duration of the experiment, indicating more long-term effects on soil nitrogen cycling had occurred. Ammonia oxidizer levels in control soil and soil incubated with 100 &mgr;g toluene ml-1 were not appreciably different, whereas levels of ammonia oxidizers were very low in soil exposed to 200 &mgr;g toluene ml-1 and increased only slightly by 30 days post vent. Experiments to determine how toluene affects the AOP of soil indicated a competitive inhibition mechanism, with an effective concentration causing 50% reduction in activity (EC50) of 11 &mgr;M toluene, and a competitive inhibition constant (Ki) of 0.1 0.05 &mgr;M toluene. These results indicate the potential for toluene to adversely impact nitrogen cycling in the terrestrial ecosystem by affecting indigenous soil nitrifiers, which are sensitive to lower levels of toluene than has been previously reported. PMID:8688007

  7. Microporous organic-inorganic nanocomposites as the receptor in the QCM sensing of toluene vapors.

    PubMed

    Ishii, Ryo; Naganawa, Ryuichi; Nishioka, Masateru; Hanaoka, Taka-aki

    2013-01-01

    We have used novel microporous biphenylene-pillared layered silicates as receptors in a quartz crystal microbalance (QCM) for sensing toluene vapors. The silicate was successfully coated on a QCM electrode modified with 2-aminoethanethiol. The resultant electrode showed quantitative frequency responses due to enhanced adhesion between the silicate and the electrode. The silicate-coated electrodes also performed better than polystyrene-coated electrodes in terms of both sensitivity and reproducibility of the responses for toluene vapors exposures because the silicate has an organically-modified open-framework structure with a high surface area. In addition, the electrodes revealed the higher sensitivity for toluene vapors than those for alcohol vapors, suggesting selectivity toward sensing toluene vapors probably due to the ?-? stacking interaction between biphenylene units and toluene molecules. Hence, we anticipate that the materials are promising to be used as receptors in QCM devices for sensing aromatic vapors. PMID:23474716

  8. Impact of a new condensed toluene mechanism on air quality model predictions in the US

    NASA Astrophysics Data System (ADS)

    Sarwar, G.; Appel, K. W.; Carlton, A. G.; Mathur, R.; Schere, K.; Zhang, R.; Majeed, M. A.

    2011-03-01

    A new condensed toluene mechanism is incorporated into the Community Multiscale Air Quality Modeling system. Model simulations are performed using the CB05 chemical mechanism containing the existing (base) and the new toluene mechanism for the western and eastern US for a summer month. With current estimates of tropospheric emission burden, the new toluene mechanism increases monthly mean daily maximum 8-h ozone by 1.0-3.0 ppbv in Los Angeles, Portland, Seattle, Chicago, Cleveland, northeastern US, and Detroit compared to that with the base toluene chemistry. It reduces model mean bias for ozone at elevated observed ozone concentrations. While the new mechanism increases predicted ozone, it does not enhance ozone production efficiency. A sensitivity study suggests that it can further enhance ozone if elevated toluene emissions are present. While it increases in-cloud secondary organic aerosol substantially, its impact on total fine particle mass concentration is small.

  9. Impact of a new condensed toluene mechanism on air quality model predictions in the US

    NASA Astrophysics Data System (ADS)

    Sarwar, G.; Appel, K. W.; Carlton, A. G.; Mathur, R.; Schere, K.; Zhang, R.; Majeed, M. A.

    2010-12-01

    A new condensed toluene mechanism is incorporated into the Community Multiscale Air Quality Modeling system. Model simulations are performed using the CB05 chemical mechanism containing the existing (base) and the new toluene mechanism for the western and eastern US for a summer month. With current estimates of tropospheric emission burden, the new toluene mechanism increases monthly mean daily maximum 8-h ozone by 1.0-3.0 ppbv in Los Angeles, Portland, Seattle, Chicago, Cleveland, northeastern US, and Detroit compared to that with the base toluene chemistry. It reduces model mean bias for ozone at elevated observed ozone mixing ratios. While the new mechanism increases predicted ozone, it does not enhance ozone production efficiency. Sensitivity study suggests that it can further enhance ozone if elevated toluene emissions are present. While changes in total fine particulate mass are small, predictions of in-cloud SOA increase substantially.

  10. Multiple photon excitation of adsorbed toluene by KrF laser

    NASA Astrophysics Data System (ADS)

    Varakin, V. N.

    2016-01-01

    KrF laser-induced multiple photon dissociation and desorption of toluene condensed on fused silica have been studied using mass spectrometry. The three-photon (2-1) excitation of the molecule including its transition connected with laser stimulated emission was found to control this dissociation in all coverages as well as the ejection of single toluene molecules from the multilayer. Fragments were also produced in two successive steps of two-photon excitation that caused the release of toluene clusters from the adsorbed multilayer and the breaking of intramolecular bonds in the desorbed species. A mechanism of toluene and its cluster ejection has been proposed. The difference in the dynamics of the excited adsorbed and gaseous molecules has been discovered. The irradiation of the silica surface by KrF laser was found to lead to an increase of the local laser field acting on the adsorbed toluene of more than 50 times.

  11. MICROBIAL DEGRADATION OF TOLUENE UNDER SULFATE-REDUCING CONDITIONS AND THE INFLUENCE OF IRON ON THE PROCESS

    EPA Science Inventory

    Toluene degradation occurred concomitantly with sulfate reduction in anaerobic microcosms inoculated with contaminated subsurface soil from an aviation fuel storage facility near the Patuxent River (MD). imilar results were obtained for enrichment cultures in which toluene was th...

  12. Modeling the toxicokinetics of 24-hour toluene exposure in rats, impact of activity patterns and enzyme induction

    EPA Science Inventory

    Toluene, a solvent used in numerous consumer and industrial applications, exerts its critical effects on the brain and nervous system following inhalation exposure. Our previously published PBPK model successfully predicted toluene concentrations in blood and brain over a range o...

  13. DETERMINATION OF SECONDARY ORGANIC AEROSOL PRODUCTS FROM THE PHOTOOXIDATION OF TOLUENE AND THEIR IMPLICATIONS IN AMBIENT PM2.5

    EPA Science Inventory

    Laboratory study was carried out to investigate the secondary organic aerosol products from photooxidation of the aromatic hydrocarbon toluene. The laboratory experiments consisted of irradiating toluene/propylene/NOX/air mixtures in a smog chamber operated in the dynamic mode...

  14. Evaluation of a Polyvinyl Toluene Neutron Counter Array

    SciTech Connect

    Robert Hayes

    2008-03-01

    The purpose of this article is to simulate the performance of a neutron detector array for empirical configuration optimization and preliminary algorithm evaluation. Utilizing a compact array of borated Polyvinyl Toluene light pipes and Photomultiplier Tubes, pulse shape analysis, standard spectral histogramming, and multiplicity counting can enable neutron measurements for multiple applications. Results demonstrate that analysis with Monte Carlo N-Particle (MCNP) can be used to obtain a better understanding of field measurement results and aid in algorithm development for unfolding in conjunction with detector optimization. Use of a handheld neutron spectrometer has promise of widespread applicability. By correlating MCNP results with empirical measurements, substantial confidence can be placed on predicting detector response to sufficiently similar spectral sources under alternate experimental configurations. In addition, use of the detector has substantial promise for operational health physics applications.

  15. Structural Magnetic Resonance Imaging in an Adult Cohort Following Prenatal and Early Postnatal Exposure to Tetrachloroethylene (PCE)-contaminated Drinking Water

    PubMed Central

    Janulewicz, Patricia A; Killiany, Ronald J; White, Roberta F; Martin, Brett M; Winter, Michael R; Weinberg, Janice M; Aschengrau, Ann

    2013-01-01

    This population-based retrospective cohort study examined Structural Magnetic Resonance Imaging (MRI) of the brain in relation to prenatal and early postnatal exposure to tetrachloroethylene (PCE)-contaminated drinking water on Cape Cod, Massachusetts. Subjects were identified through birth records from 1969 through 1983. Exposure was modeled using pipe network information from town water departments, a PCE leaching and transport algorithm, EPANet water flow modeling software, and Geographic Information System (GIS) methodology. Brain imaging was performed on 26 exposed and 16 unexposed subjects. Scans were acquired on a Philips 3T whole body scanner using the ADNI T1-weighted MP-RAGE scan. The scans were processed by FreeSurfer version 4.3.1 software to obtain measurements of specific brain regions. There were no statistically significant differences between exposed and unexposed subjects on measures of white matter hypointensities (β: 127.5 mm3, 95% CI: −259.1, 1514.0), white matter volumes (e.g. total cerebral white matter: β: 21230.0 mm3, 95% CI: −4512.6, 46971.7) or gray matter volumes (e.g. total cerebral gray matter: β: 11976.0 mm3, 95% CI: −13657.2, 37609.3). The results of this study suggest that exposure to PCE during gestation and early childhood, at the levels observed in this population, is not associated with alterations in the brain structures studied. PMID:23571160

  16. Structural Magnetic Resonance Imaging in an adult cohort following prenatal and early postnatal exposure to tetrachloroethylene (PCE)-contaminated drinking water.

    PubMed

    Janulewicz, Patricia A; Killiany, Ronald J; White, Roberta F; Martin, Brett M; Winter, Michael R; Weinberg, Janice M; Aschengrau, Ann

    2013-01-01

    This population-based retrospective cohort study examined Structural Magnetic Resonance Imaging (MRI) of the brain in relation to prenatal and early postnatal exposure to tetrachloroethylene (PCE)-contaminated drinking water on Cape Cod, Massachusetts. Subjects were identified through birth records from 1969 through 1983. Exposure was modeled using pipe network information from town water departments, a PCE leaching and transport algorithm, EPANet water flow modeling software, and Geographic Information System (GIS) methodology. Brain imaging was performed on 26 exposed and 16 unexposed subjects. Scans were acquired on a Philips 3T whole body scanner using the ADNI T1-weighted MP-RAGE scan. The scans were processed by FreeSurfer version 4.3.1 software to obtain measurements of specific brain regions. There were no statistically significant differences between exposed and unexposed subjects on the measures of white matter hypointensities (?: 127.5mm(3), 95% CI: -259.1, 1514.0), white matter volumes (e.g. total cerebral white matter: ?: 21230.0mm(3), 95% CI: -4512.6, 46971.7) or gray matter volumes (e.g. total cerebral gray matter: ?: 11976.0mm(3), 95% CI: -13657.2, 37609.3). The results of this study suggest that exposure to PCE during gestation and early childhood, at the levels observed in this population, is not associated with alterations in the brain structures studied. PMID:23571160

  17. Health risk assessment of exposure to selected volatile organic compounds emitted from an integrated iron and steel plant.

    PubMed

    Chang, E-E; Wei-Chi, Wang; Li-Xuan, Zeng; Hung-Lung, Chiang

    2010-12-01

    Workplace air samples from sintering, cokemaking, and hot and cold forming processes in the integrated iron and steel industry were analyzed to determine their volatile organic compound (VOC) concentration. Sixteen VOC species including three paraffins (cyclohexane, n-hexane, methylcyclohexane), five chlorinated VOC species (trichloroethylene, 1,1,1-trichloroethane, tetrachloroethylene, chlorobenzene, 1,4-dichlorobenzene), and eight aromatics (benzene, ethylbenzene, styrene, toluene, m,p-xylene, o-xylene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene) were selected to measure their noncancer risk for workers. Concentrations of toluene, xylene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, dichlorobenzene, and trichloroethylene were high in all four processes. Carbon tetrachloride and tetrachloroethylene concentrations were high in the hot and cold forming processes. The noncancer risk followed the increasing order: cokemaking > sintering > hot forming > cold forming. 1,2,4-trimethylbenzene and 1,3,5-trimethylbenzene contributed 44% to 65% and 13% to 20% of noncancer risk, respectively, for the four processes. Benzene accounted for a high portion of the noncancer risk in cokemaking. The hazard index (HI: 17-108) of the average VOC concentrations suggests that health risks can be reduced by improving workplace air quality and protecting workers. PMID:20828338

  18. Microbial degradation of toluene under sulfate-reducing conditions and the influence of iron on the process.

    PubMed Central

    Beller, H R; Grbi?-Gali?, D; Reinhard, M

    1992-01-01

    Toluene degradation occurred concomitantly with sulfate reduction in anaerobic microcosms inoculated with contaminated subsurface soil from an aviation fuel storage facility near the Patuxent River (Md.). Similar results were obtained for enrichment cultures in which toluene was the sole carbon source. Several lines of evidence suggest that toluene degradation was directly coupled to sulfate reduction in Patuxent River microcosms and enrichment cultures: (i) the two processes were synchronous and highly correlated, (ii) the observed stoichiometric ratios of moles of sulfate consumed per mole of toluene consumed were consistent with the theoretical ratio for the oxidation of toluene to CO2 coupled with the reduction of sulfate to hydrogen sulfide, and (iii) toluene degradation ceased when sulfate was depleted, and conversely, sulfate reduction ceased when toluene was depleted. Mineralization of toluene was confirmed in experiments with [ring-U-14C]toluene. The addition of millimolar concentrations of amorphous Fe(OH)3 to Patuxent River microcosms and enrichment cultures either greatly facilitated the onset of toluene degradation or accelerated the rate once degradation had begun. In iron-amended microcosms and enrichment cultures, ferric iron reduction proceeded concurrently with toluene degradation and sulfate reduction. Stoichiometric data and other observations indicate that ferric iron reduction was not directly coupled to toluene oxidation but was a secondary, presumably abiotic, reaction between ferric iron and biogenic hydrogen sulfide. PMID:1575481

  19. Effect of relative humidity on gaseous air cleaner media performance: Toluene adsorption by activated carbon

    SciTech Connect

    Owen, M.K.; VanOsdell, D.W.; Jaffe, L.B.; Sparks, L.E.

    1998-09-01

    The paper gives results of an examination of the performance characteristics of activated carbon as a gas-phase air cleaner medium under various levels of relative humidity (RH) and a range of toluene concentrations. Toluene breakthrough curves at levels of humidity from below 5 to 80% were obtained. The concentration of the toluene challenge varied from 0.4 to 72.8 ppm. The experiments were performed in a small-scale test rig with temperature, flowrate, and humidity controls. These experiments provided data to explore the relationship of useful lifetime to RH. Below 50% RH, RH appears to have negligible influence on the adsorption of toluene but, by 75% RH, the toluene adsorption is decreased. Above the inflection point in the relationship between the carbon water content and the RH of the challenge air, the water interferes with the adsorption of toluene. Thus, the water adsorption curve supports the toluene adsorption data. The linearity of the relationship between the concentration and the 10% breakthrough time indicates that high concentration breakthrough data can be used to predict the breakthrough time for lower concentration challenges.

  20. Occupational exposure to toluene: neurotoxic effects with special emphasis on drinking habits.

    PubMed

    Antti-Poika, M; Juntunen, J; Matikainen, E; Suoranta, H; Hnninen, H; Sepplinen, A M; Liira, J

    1985-01-01

    Neurotoxic effects of toluene were examined in 43 male rotogravure printers exposed to toluene (age 27-63, mean 41 years; duration of exposure 11-40, mean 22 years) and 31 male offset printers of the same age with slight exposure to aliphatic hydrocarbons. A neurological examination, tests for autonomic nervous function, electroencephalography, psychological tests and computerized tomography of the brain were carried out in addition to a standardized interview. Exposure levels were evaluated for each person separately on the basis of his work history and the results of an earlier study on exposure levels at the same printing shops. Besides a thorough history of alcohol consumption, information about the printers' drinking habits was obtained from the occupational health care centers of the printing shops. The examinations found only slight abnormalities, and there were no statistically significant group differences in the prevalences of abnormalities. No correlations between the abnormalities and the exposure indices were found either. One of the retired workers, however, who had been exposed to high toluene concentrations for over 40 years, had been diagnosed as having chronic organic solvent intoxication. Heavy drinkers of alcohol were clearly more common in the toluene-exposed group. This study detected no clinically significant abnormalities attributable to toluene alone among workers exposed to 68-185 ppm (mean 117) of toluene for over 10 years. The connection between alcohol consumption and toluene exposure is interesting and deserves further study. PMID:4030116

  1. Two New Mycobacterium Strains and Their Role in Toluene Degradation in a Contaminated Stream

    PubMed Central

    Tay, Stephen T.-L.; Hemond, Harold F.; Polz, Martin F.; Cavanaugh, Colleen M.; Dejesus, Indhira; Krumholz, Lee R.

    1998-01-01

    Two toluene-degrading strains, T103 and T104, were isolated from rock surface biomass in a freshwater stream contaminated with toluene. The strains exhibit different capacities for degradation of toluene and other aromatic compounds and have characteristics of the genus Mycobacterium. Both are aerobic, rod-shaped, gram-positive, nonmotile, and acid-alcohol fast and produce yellow pigments. They have mainly straight-chain saturated and monounsaturated fatty acids with 10 to 20 carbon atoms and large amounts of tuberculostearic acid that are typical of mycobacteria. Fatty acid analyses indicate that T103 and T104 are different mycobacterial strains that are related at the subspecies level. Their identical 16S rDNA sequences are most similar to Mycobacterium aurum and Mycobacterium komossense, and they constitute a new species of fast-growing mycobacteria. Ecological studies reveal that toluene contamination has enriched for toluene-degrading bacteria in the epilithic microbial community. Strains T103 and T104 play only a small role in toluene degradation in the stream, although they are present in the habitat and can degrade toluene. Other microorganisms are consequently implicated in the biodegradation. PMID:9572941

  2. Exposure to toluene and stress during pregnancy impairs pups' growth and dams' lactation.

    PubMed

    Soberanes-Chávez, Paulina; López-Rubalcava, Carolina; de Gortari, Patricia; Cruz, Silvia L

    2013-01-01

    Inhalant misuse starts at an early age, and a large number of users are women in reproductive age. This study investigates whether exposure to toluene, a commonly misused solvent, alone or combined with restraint stress during pregnancy, produces adverse effects in pregnant mice and their offspring during lactation and adulthood. Pregnant animals were exposed to either 8000ppm toluene (30min/twice daily from gestational days 7-19), restraint stress (three times/day during the same gestation period) or both; control mice were only exposed to air. Our results show that toluene, stress and their combination reduced body weight gain in pregnant females without changing food consumption. In the offspring, all treatments resulted in low body weight at weaning, but with the toluene and stress combination this effect was seen from birth. Weight deficiency could not be attributed to poor maternal behavior during the first 3weeks of age, but to a reduction in pro-TRH mRNA expression in the hypothalamic paraventricular nucleus and serum prolactin levels in dams. After weaning, pups that were subjected to toluene and stress during gestation had lower body weight and ate less than control animals. In conclusion, the combined exposure to toluene and stress during pregnancy lead to more pronounced effects in dams and longer-lasting actions in pups than exposure to either toluene or stress. PMID:23933014

  3. Response of solvent-exposed printers and unexposed controls to six-hour toluene exposure.

    PubMed

    Baelum, J; Andersen, I B; Lundqvist, G R; Mølhave, L; Pedersen, O F; Vaeth, M; Wyon, D P

    1985-08-01

    The acute effects of toluene were studied in 43 male printers and 43 control subjects matched according to sex, age, educational level, and smoking habits. The mean age of the subjects was 36 (range 29-50) years. The printers had been exposed to solvents for 9 to 25 years during employment at flexo and rotogravure printing plants, while the controls had no history of solvent exposure. Each subject was exposed once in a climate chamber to either 100 ppm of toluene or clean air for 6.5 h preceded by a 1-h acclimatization period. The effects of toluene were measured from subjective votes with linear analogue rating scales on 16 items, and on the performance of 10 different tests measuring psychomotor skills, perceptual skills, and vigilance. Exposure to 100 ppm of toluene compared with exposure to clean air caused discomfort with complaints of low air quality, strong odor, fatigue, sleepiness, a feeling of intoxication, and irritation of the eyes, nose and throat. Furthermore, the subjects exposed to toluene showed decreased manual dexterity, decreased color discrimination, and decreased accuracy in visual perception. There was no significant difference in the effects of toluene on printers compared to those of toluene on controls, but tendencies toward a greater sensitivity were seen for the printers in two tests. PMID:4059890

  4. Enhanced degradation efficiency of toluene using titania/silica photocatalysis as a regeneration process.

    PubMed

    Luo, Y; Zou, L; Hu, E

    2006-04-01

    Three kinds of titania/silica pellets were prepared using the sol-gel method with surface areas of 50.4 m2 g(-1), 421.1 m2 x g(-1) and 89.1 m2 x g(-1). An annular reactor was designed and built to determine the degradation efficiency of toluene and to investigate the relationship between the adsorption and desorption-photocatalytic processes. Surface area is an important factor influencing the adsorption-photocatalytic efficiency. Higher surface areas of pellets contribute to high rates of conversion of toluene. Un-reacted toluene and reaction intermediates accumulating on their surface deactivated the titania/silica catalyst. To overcome this problem, the adsorption and regeneration process were alternated in a dual reactor system. Connecting or disconnecting the toluene feed gas enabled one reactor to adsorb toluene, while the second reactor was regenerated by photocatalysis. Using UV irradiation and titania/silica pellets with high BET surface area (421.1 m2 x g(-1)), the alternating adsorption/regeneration processes kept the degradation efficiency of toluene at 90% after 8 hours operation. By improving the adsorption-photocatalysis efficiency, and minimising the generation and accumulation of intermediate on the surface of pellets, the method extended catalyst life and maintained a high degradation efficiency of toluene. PMID:16583820

  5. Complete oxidation of toluene under strictly anoxic conditions by a new sulfate-reducing bacterium.

    PubMed Central

    Rabus, R; Nordhaus, R; Ludwig, W; Widdel, F

    1993-01-01

    A toluene-degrading sulfate-reducing bacterium, strain Tol2, was isolated from marine sediment under strictly anoxic conditions. Toluene was toxic if applied directly to the medium at concentrations higher than 0.5 mM. To provide toluene continuously at a nontoxic concentration, it was supplied in an inert hydrophobic carrier phase. The isolate had oval, sometimes motile cells (1.2 to 1.4 by 1.2 to 2.0 microns). The doubling time was 27 h. Toluene was completely oxidized to CO2, as demonstrated by measurement of the degradation balance. The presence of carbon monoxide dehydrogenase and formate dehydrogenase indicated a terminal oxidation of acetyl coenzyme A via the CO dehydrogenase pathway. The use of hypothetical intermediates of toluene degradation was tested in growth experiments and adaptation studies with dense cell suspensions. Results do not support a degradation of toluene via one of the cresols or methylbenzoates, benzyl alcohol, or phenylacetate as free intermediate. Benzyl alcohol did not serve as growth substrate; moreover, it was a strong, specific inhibitor of toluene degradation, whereas benzoate utilization was not affected by benzyl alcohol. Sequencing of 16S rRNA revealed a relationship to the metabolically dissimilar genus Desulfobacter and on a deeper level to the genus Desulfobacterium. The new genus and species Desulfobacula toluolica is proposed. Images PMID:7686000

  6. Biodegradation of toluene vapor in coir based upflow packed bed reactor by Trichoderma asperellum isolate.

    PubMed

    Gopinath, M; Mohanapriya, C; Sivakumar, K; Baskar, G; Muthukumaran, C; Dhanasekar, R

    2016-03-01

    In the present study, a new biofiltration system involving a selective microbial strain isolated from aerated municipal sewage water attached with coir as packing material was developed for toluene degradation. The selected fungal isolate was identified as Trichoderma asperellum by 16S ribosomal RNA (16S rRNA) sequencing method, and pylogenetic tree was constructed using BLASTn search. Effect of various factors on growth and toluene degradation by newly isolated T. asperellum was studied in batch studies, and the optimum conditions were found to be pH 7.0, temperature 30 °C, and initial toluene concentration 1.5 (v/v)%. Continuous removal of gaseous toluene was monitored in upflow packed bed reactor (UFPBR) using T. asperellum. Effect of various parameters like column height, flow rate, and the inlet toluene concentration were studied to evaluate the performance of the biofilter. The maximum elimination capacity (257 g m(-3) h(-1)) was obtained with the packing height of 100 cm with the empty bed residence time of 5 min. Under these optimum conditions, the T. asperellum showed better toluene removal efficiency. Kinetic models have been developed for toluene degradation by T. asperellum using macrokinetic approach of the plug flow model incorporated with Monod model. PMID:25903193

  7. Sarcosine attenuates toluene-induced motor incoordination, memory impairment, and hypothermia but not brain stimulation reward enhancement in mice

    SciTech Connect

    Chan, Ming-Huan; Institute of Neuroscience, National Changchi University, Taipei, Taiwan ; Chung, Shiang-Sheng; Department of Pharmacy, Yuli Veterans Hospital, Hualien, Taiwan ; Stoker, Astrid K.; Markou, Athina; Chen, Hwei-Hsien; Division of Mental Health and Addiction Medicine, Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Miaoli County, Taiwan

    2012-12-01

    Toluene, a widely used and commonly abused organic solvent, produces various behavioral disturbances, including motor incoordination and cognitive impairment. Toluene alters the function of a large number of receptors and ion channels. Blockade of N-methyl-D-aspartate (NMDA) receptors has been suggested to play a critical role in toluene-induced behavioral manifestations. The present study determined the effects of various toluene doses on motor coordination, recognition memory, body temperature, and intracranial self-stimulation (ICSS) thresholds in mice. Additionally, the effects of sarcosine on the behavioral and physiological effects induced by toluene were evaluated. Sarcosine may reverse toluene-induced behavioral manifestations by acting as an NMDA receptor co-agonist and by inhibiting the effects of the type I glycine transporter (GlyT1). Mice were treated with toluene alone or combined with sarcosine pretreatment and assessed for rotarod performance, object recognition memory, rectal temperature, and ICSS thresholds. Toluene dose-dependently induced motor incoordination, recognition memory impairment, and hypothermia and lowered ICSS thresholds. Sarcosine pretreatment reversed toluene-induced changes in rotarod performance, novel object recognition, and rectal temperature but not ICSS thresholds. These findings suggest that the sarcosine-induced potentiation of NMDA receptors may reverse motor incoordination, memory impairment, and hypothermia but not the enhancement of brain stimulation reward function associated with toluene exposure. Sarcosine may be a promising compound to prevent acute toluene intoxications by occupational or intentional exposure. -- Highlights: ► Toluene induces impairments in Rotarod test and novel object recognition test. ► Toluene lowers rectal temperature and ICSS thresholds in mice. ► Sarcosine reverses toluene-induced changes in motor, memory and body temperature. ► Sarcosine pretreatment does not affect toluene-induced reward enhancement.

  8. Autoignition of toluene reference fuels at high pressures modeled with detailed chemical kinetics

    SciTech Connect

    Andrae, J.C.G.; Bjoernbom, P.; Cracknell, R.F.; Kalghatgi, G.T.

    2007-04-15

    A detailed chemical kinetic model for the autoignition of toluene reference fuels (TRF) is presented. The toluene submechanism added to the Lawrence Livermore Primary Reference Fuel (PRF) mechanism was developed using recent shock tube autoignition delay time data under conditions relevant to HCCI combustion. For two-component fuels the model was validated against recent high-pressure shock tube autoignition delay time data for a mixture consisting of 35% n-heptane and 65% toluene by liquid volume. Important features of the autoignition of the mixture proved to be cross-acceleration effects, where hydroperoxy radicals produced during n-heptane oxidation dramatically increased the oxidation rate of toluene compared to the case when toluene alone was oxidized. Rate constants for the reaction of benzyl and hydroperoxyl radicals previously used in the modeling of the oxidation of toluene alone were untenably high for modeling of the mixture. To model both systems it was found necessary to use a lower rate and introduce an additional branching route in the reaction between benzyl radicals and O{sub 2}. Good agreement between experiments and predictions was found when the model was validated against shock tube autoignition delay data for gasoline surrogate fuels consisting of mixtures of 63-69% isooctane, 14-20% toluene, and 17% n-heptane by liquid volume. Cross reactions such as hydrogen abstractions between toluene and alkyl and alkylperoxy radicals and between the PRF were introduced for completion of chemical description. They were only of small importance for modeling autoignition delays from shock tube experiments, even at low temperatures. A single-zone engine model was used to evaluate how well the validated mechanism could capture autoignition behavior of toluene reference fuels in a homogeneous charge compression ignition (HCCI) engine. The model could qualitatively predict the experiments, except in the case with boosted intake pressure, where the initial temperature had to be increased significantly in order to predict the point of autoignition. (author)

  9. Abuse Pattern of Toluene Exposure Alters Mouse Behavior in a Waiting-for-Reward Operant Task

    PubMed Central

    Bowen, Scott E.; McDonald, Phillip

    2009-01-01

    Inhaling solvents for recreational purposes continues to be a world-wide public health concern. Toluene, a volatile solvent in many abused products, adversely affects the central nervous system. However, the long-term neurobehavioral effects of exposure to high-concentration, binge patterns typical of toluene abuse remain understudied. We studied the behavioral effects of repeated toluene exposure on cognitive function following binge toluene exposure on behavioral impulse control in Swiss Webster mice using a wait-for-reward operant task. Mice were trained on a fixed-ratio (FR) schedule using sweetened milk as a reward. Upon achieving FR15, a wait component was added which delivered free rewards in the absence of responses at increasing time intervals (2 sec, 4 sec, 6 sec, etc). Mice continued to receive free rewards until they pressed a lever that reinstated the FR component (FR Reset). Once proficient in the FR-Wait task, mice were exposed to either 1,000 ppm, 3,600 ppm or 6,000 ppm toluene, or 0 ppm (air controls) for 30 min per day for 40 days. To avoid acute effects of toluene exposure, behavior was assessed 23 hours later. Repeated toluene exposure decreased response rates, the number of FR resets, and increased mean wait time, resulting in a higher response-to-reinforcer ratio than exhibited by controls. Mice receiving the higher exposure level (6,000 ppm) showed a dramatic decrease in the number of rewards received, which was reversed when toluene exposure ceased. Mice receiving the lower exposure level (1,000 ppm) showed little change in the number of rewards. These results indicate that repeated binge exposures to high concentrations of toluene can significantly interfere with performance as measured by a waiting-for-reward task, suggesting a significant impact on cognitive and/or psychomotor function. PMID:18832024

  10. Inhaled toluene produces pentobarbital-like discriminative stimulus effects in mice

    SciTech Connect

    Rees, D.C.; Coggeshall, E.; Balster, R.L.

    1985-10-07

    The abuse of volatile solvents may be due to their ability to produce an intoxication similar to that produced by classical central nervous system depressants such as the barbiturates and ethanol. To evaluate this hypothesis, mice were trained to discriminate pentobarbital from saline injections in a two-lever operant task. Stimulus generalization was examined following 20-min inhalation exposures to toluene (300-5400 ppm). In 8 of 10 subjects, pentobarbital-lever responding occurred following toluene exposure indicating an overlap in the discriminative stimulus properties of toluene and pentobarbital.

  11. Interfacial properties of asphaltenes at toluene-water interfaces.

    PubMed

    Zarkar, Sharli; Pauchard, Vincent; Farooq, Umer; Couzis, Alexander; Banerjee, Sanjoy

    2015-05-01

    Asphaltenes are "n-alkane insoluble" species in crude oil that stabilize water-in-oil emulsions. To understand asphaltene adsorption mechanisms at oil-water interfaces and coalescence blockage, we first studied the behavior in aliphatic oil-water systems in which asphaltenes are almost insoluble. They adsorbed as monomers, giving a unique master curve relating interfacial tension (IFT) to interfacial coverage through a Langmuir equation of state (EoS). The long-time surface coverage was independent of asphaltene bulk concentration and asymptotically approached the 2-D packing limit for polydisperse disks. On coalescence, the surface coverage exceeded the 2-D limit and the asphaltene film appeared to become solidlike, apparently undergoing a transition to a soft glassy material and blocking further coalescence. However, real systems consist of mixtures of aliphatic and aromatic components in which asphaltenes may be quite soluble. To understand solubility effects, we focus here on how the increased bulk solubility of asphaltenes affects their interfacial properties in comparison to aliphatic oil-water systems. Unlike the "almost irreversible" adsorption of asphaltenes where the asymptotic interfacial coverage was independent of the bulk concentration, an equilibrium surface pressure, dependent on bulk concentration, was obtained for toluene-water systems because of adsorption being balanced by desorption. The equilibrium surface coverage could be obtained from the short- and long-term Ward-Tordai approximations. The behavior of the equilibrium surface pressure with the equilibrium surface coverage was then derived. These data for various asphaltene concentrations were used to determine the EoS, which for toluene-water could also be fitted by the Langmuir EoS with ?? = 3.3 molecule/nm(2), the same value as that found for these asphaltenes in aliphatic media. Asphaltene solubility in the bulk phase only appears to affect the adsorption isotherm but not the EoS. Further support for these observations is provided by dilatational rheology experiments for the EoS and contraction experiments in which desorption to the equilibrium surface pressure was observed. PMID:25865629

  12. Differential Immunotoxicity Induced by Two Different Windows of Developmental Trichloroethylene Exposure

    PubMed Central

    Gilbert, Kathleen M.; Woodruff, William; Blossom, Sarah J.

    2014-01-01

    Developmental exposure to environmental toxicants may induce immune system alterations that contribute to adult stage autoimmune disease. We have shown that continuous exposure of MRL+/+ mice to trichloroethylene (TCE) from gestational day (GD) 0 to postnatal day (PND) 49 alters several aspects of CD4+ T cell function. This window of exposure corresponds to conception-adolescence/young adulthood in humans. More narrowly defining the window of TCE developmental exposure causes immunotoxicity that would establish the stage at which avoidance and/or intervention would be most effective. The current study divided continuous TCE exposure into two separate windows, namely, gestation only (GD0 to birth (PND0)) and early-life only (PND0-PND49). The mice were examined for specific alterations in CD4+ T cell function at PND49. One potentially long-lasting effect of developmental exposure, alterations in retrotransposon expression indicative of epigenetic alterations, was found in peripheral CD4+ T cells from both sets of developmentally exposed mice. Interestingly, certain other effects, such as alterations in thymus cellularity, were only found in mice exposed to TCE during gestation. In contrast, expansion of memory/activation cell subset of peripheral CD4+ T cells were only found in mice exposed to TCE during early life. Different windows of developmental TCE exposure can have different functional consequences. PMID:24696780

  13. Gene expression profiling in the fetal cardiac tissue after folate and low dose trichloroethylene exposure

    PubMed Central

    Caldwell, Patricia T.; Manziello, Ann; Howard, Jamie; Palbykin, Brittany; Runyan, Raymond B.; Selmin, Ornella

    2014-01-01

    Background Previous studies show gene expression alterations in rat embryo hearts and cell lines that correspond to the cardio-teratogenic effects of trichloroethylene (TCE) in animal models. One potential mechanism of TCE teratogenicity may be through altered regulation of calcium homeostatic genes with a corresponding inhibition of cardiac function. It has been suggested that TCE may interfere with the folic acid/methylation pathway in liver and kidney and alter gene regulation by epigenetic mechanisms. According to this hypothesis, folate supplementation in the maternal diet should counteract TCE effects on gene expression in the embryonic heart. Approach To identify transcriptional targets altered in the embryonic heart after exposure to TCE, and possible protective effects of folate, we used DNA microarray technology to profile gene expression in embryonic mouse hearts with maternal TCE exposure and dietary changes in maternal folate. Results Exposure to low doses of TCE (10ppb) caused extensive alterations in transcripts encoding proteins involved in transport, ion channel, transcription, differentiation, cytoskeleton, cell cycle and apoptosis. Exogenous folate did not offset the effects of TCE exposure on normal gene expression and both high and low levels of folate produced additional significant changes in gene expression. Conclusions A mechanism where TCE induces a folate deficiency does not explain altered gene expression patterns in the embryonic mouse heart. The data further suggest that use of folate supplementation, in the presence of this toxin, may be detrimental and non-protective of the developing embryo. PMID:19813261

  14. Concentration of trichloroethylene in breast milk and household water from Nogales, Arizona.

    PubMed

    Beamer, Paloma I; Luik, Catherine E; Abrell, Leif; Campos, Swilma; Martínez, María Elena; Sáez, A Eduardo

    2012-08-21

    The United States Environmental Protection Agency has identified quantification of trichloroethylene (TCE), an industrial solvent, in breast milk as a high priority need for risk assessment. Water and milk samples were collected from 20 households by a lactation consultant in Nogales, Arizona. Separate water samples (including tap, bottled, and vending machine) were collected for all household uses: drinking, bathing, cooking, and laundry. A risk factor questionnaire was administered. Liquid-liquid extraction with diethyl ether was followed by GC-MS for TCE quantification in water. Breast milk underwent homogenization, lipid hydrolysis, and centrifugation prior to extraction. The limit of detection was 1.5 ng/mL. TCE was detected in 7 of 20 mothers' breast milk samples. The maximum concentration was 6 ng/mL. TCE concentration in breast milk was significantly correlated with the concentration in water used for bathing (ρ = 0.59, p = 0.008). Detection of TCE in breast milk was more likely if the infant had a body mass index <14 (RR = 5.2, p = 0.02). Based on average breast milk consumption, TCE intake for 5% of the infants may exceed the proposed U.S. EPA Reference Dose. Results of this exploratory study warrant more in depth studies to understand risk of TCE exposures from breast milk intake. PMID:22827160

  15. A Study of Groundwater Matrix Effects for the Destruction of Trichloroethylene Using Fe/Pd Nanoaggregates

    PubMed Central

    Meyer, D.E.; Hampson, S.; Ormsbee, L.; Bhattacharyya, D.

    2010-01-01

    Iron nanoaggregates have been prepared using the sodium borohydride reduction method and post-coated with Pd using aqueous phase electro-deposition. The Fe/Pd nanoaggregates were used to examine dechlorination of trichloroethylene (TCE) with regard to matrix effects using materials representative of a potential zero-valent metal remediation site surrounding the Paducah gaseous diffusion plant in Paducah, KY. A surface-area-normalized first-order rate constant of 1.4 101 L m2 h1 was obtained for the case of ideal dechlorination of 19.6 mg L1 TCE at room temperature and pH 6.2 using 0.5 g L1 Fe/Pd (0.42 wt % Pd) loading. This value decreases by an order of magnitude to 1.9 102 L m2 h1 when the reaction is carried out in a realistic background matrix when the pH is high (8.8). For all variables tested, Pd content has the most impact on reaction rates. Circulating batch-column experiments are used to study dechlorination under flow conditions and demonstrate the ability of nonstabilized Fe/Pd nanoaggregates to remove significant amounts of TCE (8090%) over a broad range of groundwater velocities (12.983 ft per day) using moderate metal loadings (0.230.5 g L1). PMID:20526423

  16. Concentration of Trichloroethylene in Breast Milk and Household Water from Nogales, Arizona

    PubMed Central

    Beamer, Paloma I.; Luik, Catherine E.; Abrell, Leif; Campos, Swilma; Martínez, María Elena; Sáez, A. Eduardo

    2013-01-01

    The United States Environmental Protection Agency has identified quantification of trichloroethylene (TCE), an industrial solvent, in breast milk as a high priority need for risk assessment. Water and milk samples were collected from 20 households by a lactation consultant in Nogales, Arizona. Separate water samples (including tap, bottled and vending machine) were collected for all household uses: drinking, bathing, cooking, and laundry. A risk factor questionnaire was administered. Liquid-liquid extraction with diethyl ether was followed by GC-MS for TCE quantification in water. Breast milk underwent homogenization, lipid hydrolysis and centrifugation prior to extraction. The limit of detection was 1.5 ng/mL. TCE was detected in 7 of 20 mothers’ breast milk samples. The maximum concentration was 6 ng/mL. TCE concentration in breast milk was significantly correlated with the concentration in water used for bathing (ρ=0.59, p=0.008). Detection of TCE in breast milk was more likely if the infant had a body mass index <14 (RR=5.2, p=0.02). Based on average breast milk consumption, TCE intake for 5% of the infants may exceed the proposed US EPA Reference Dose. Results of this exploratory study warrant more in depth studies to understand risk of TCE exposures from breast milk intake. PMID:22827160

  17. Humic acid aggregation in zero-valent iron systems and its effects on trichloroethylene removal.

    PubMed

    Tsang, Daniel C W; Graham, Nigel J D; Lo, Irene M C

    2009-06-01

    The influence of natural organic matter on contaminant removal by Fe(0) systems has been of increasing concern. Recent studies have shown that, in addition to direct sorption on the Fe(0) surfaces, humic acid complexation with dissolved iron released from corrosion results in the formation of colloids and aggregates in solution that may affect contaminant removal. High-pressure size-exclusion chromatographic analyses revealed increasing molecular weights of dissolved humic acids with reaction time. Humic acid aggregation occurred across a wide range of molecular weight fractions. Fourier transform infrared spectroscopic analysis of humic acid aggregates suggested the presence of inner-sphere complexation involving different oxygen-containing functional groups; hydrophobic interactions also probably contributed to aggregation as the humic acid of more aromatic and hydrophobic character was aggregated at a faster rate. Because of multiple underlying processes, a variety of cross-correlated physicochemical properties of humic acids contributed to their aggregation. The presence of humic acid aggregates provided an additional hydrophobic domain for partitioning that enhanced trichloroethylene removal, although steric blocking of the Fe(0) surfaces may inhibit its reduction to some extent. Comparable effects were demonstrated for various types of humic acids. PMID:19327814

  18. Synergetic degradation of Fe/Cu/C for groundwater polluted by trichloroethylene.

    PubMed

    Zhang, Wei; Li, Li; Lin, Kuangfei; Xiong, Bang; Li, Bingzhi; Lu, Shuguang; Guo, Meijin; Cui, Xinhong

    2012-01-01

    This study investigated the enhancement of synergetic degradation of Fe/Cu/C (Fe: commercial iron, Cu: solid product of Fe reacted with CuSO(4), C: carbon powder) for simulated groundwater contaminated by trichloroethylene (TCE). Zero valent iron (ZVI) as a reducing agent was proved to be effective for TCE removal. The Fe/Cu/C system resulted in higher reduction efficiency as a result of the synergetic role of Fe/Cu and Fe/C microelectrode than the Fe (ZVI) or Fe/Cu system, and the half-life was only about 0.4 h. When m(Fe) achieved 12.5 g L(-1), the residual concentration of TCE almost leveled off. Fe:Cu = 10:1 or m(C) = 0.0086 g can induce the optimum function for TCE degradation. A neutral condition was appropriate for TCE degradation, and an acidic system slightly favored TCE dechlorination compared with an alkaline system. GC/MS analysis indicated that TCE was dechlorinated to 1,1-dichloroethene (1,1-DCE), cis-1,2-dichloroethene (cis-DCE) and vinyl chloride (VC), and 1,1-DCE might be the precursor. Fe/Cu/C reduction is a highly promising technique for TCE removal, and it is an excellent alternative to enhance TCE reductive dechlorination. PMID:22643424

  19. pH dependence of persulfate activation by EDTA/Fe(III) for degradation of trichloroethylene

    NASA Astrophysics Data System (ADS)

    Liang, Chenju; Liang, Ching-Ping; Chen, Chi-Chin

    2009-05-01

    The ability of free ferrous ion activated persulfate (S 2O 82-) to generate sulfate radicals (SO 4- rad ) for the oxidation of trichloroethylene (TCE) is limited by the scavenging of SO 4- rad with excess Fe 2+ and a quick conversion of Fe 2+ to Fe 3+. This study investigated the applicability of ethylene-diamine-tetra-acetic acid (EDTA) chelated Fe 3+ in activating persulfate for the destruction of TCE in aqueous phase under pH 3, 7 and 10. Fe 3+ and EDTA alone did not appreciably degrade persulfate. The presence of TCE in the EDTA/Fe 3+ activated persulfate system can induce faster persulfate and EDTA degradation due to iron recycling to activate persulfate under a higher pH condition. Increasing the pH leads to increases in pseudo-first-order-rate constants for TCE, S 2O 82- and EDTA degradations, and Cl generation. Accordingly, the experiments at pH 10 with different EDTA/Fe 3+ molar ratios indicated that a 1/1 ratio resulted in a remarkably higher degradation rate at the early stage of reaction as compared to results by other ratios. Higher persulfate dosage under the EDTA/Fe 3+ molar ratio of 1/1 resulted in greater TCE degradation rates. However, increases in persulfate concentration may also lead to an increase in the rate of persulfate consumption.

  20. Bioremediation of Trichloroethylene-Contaminated Sediments Augmented with a Dehalococcoides Consortia

    SciTech Connect

    McKinsey, P.C.

    2003-02-20

    At the Department of Energy's (DOE) Savannah River Site (SRS) in Aiken, SC there are a number of sites contaminated with Chlorinated Ethenes (CE) due to past disposal practices. Sediments from two CE contaminated SRS locations were evaluated for trichloroethylene (TCE) biodegradation through anaerobic laboratory microcosms. The testing included addition of amendments and bioaugmentation of sediments. The anaerobic microcosms were first amended with substrates including acetate, lactate, molasses, soybean oil, methanol, sulfate, yeast extract, Regenesis HRC(R), and MEAL (methanol, ethanol, acetate, lactate mixture). Microcosms were analyzed after biostimulation for 9 months and no significant TCE biodegradation was observed. At 10 months, additional TCE, fresh amendments, and a mixed culture containing Dehalococcoides ethenogenes were added to active microcosms. A significant decrease in TCE concentrations and an increase in biodegradation products cis-dichloroethylene (cDCE) and vinyl chloride (VC) were noted within 2 weeks of bioaugmentation. Microcosms amended with lactate and sulfate showed complete transformation of TCE (3 ppm) to ethene within 40 days after bioaugmentation. Microcosms amended with other substrates - soybean oil, acetate, yeast extract, and methanol - also show enhanced biodegradation of TCE to ethene. Microcosms amended with molasses and Regenesis HRC showed limited TCE transformation. No TCE transformation was seen in killed control microcosms. On the basis of these successful results, plans are underway for field-scale in-situ deployment of biostimulation/bioaugmentation at SRS.

  1. Health-hazard evaluation report HETA 86-206-1744, Rotorex, Walkersville, Maryland. [Trichloroethylene

    SciTech Connect

    Kerndt, P.R.; Sinks, T.H.; Wallingford, K.M.

    1986-10-01

    In response to a labor/management request, an evaluation was made of sudden illness in workers at the Rotorex facility in Walkersville, Maryland, employing about 350 workers. The facility had been closed after an explosion on January 29, 1986, due to a malfunctioning boiler-regulator valve. After reopening on February 3, ten employees became ill with headaches, nausea, dizziness, and chest pain. Eight were tested for carbon-monoxide (CO) blood levels; five had elevated carboxyhemoglobin (COHb) levels. Another outbreak occurred on February 19, with 18 employees removed by stretcher. Tests for CO, trichloroethylene (TCE), fluorocarbons, and methylene chloride exposure were negative. The authors conclude that illness on February 3 was due to combined CO and TCE exposures; illness on February 19 was an anxiety reaction. It is recommended that a joint management/union health and safety committee be formed that meets regularly, with easy employee access. Development of evacuation procedures, evaluation of ventilation systems, study of welding and brazing operations for hazardous substances, determination of oil mist levels, weekly bacterial check of central coolant, evaluation of Freon-11 use in open cans, study of noise exposure, and replacement of a welding curtain are additional recommendations.

  2. Synthesis and characterization of supported polysugar-stabilized palladium nanoparticle catalysts for enhanced hydrodechlorination of trichloroethylene

    NASA Astrophysics Data System (ADS)

    Bacik, Deborah B.; Zhang, Man; Zhao, Dongye; Roberts, Christopher B.; Seehra, Mohinar S.; Singh, Vivek; Shah, Naresh

    2012-07-01

    Palladium (Pd) nanoparticle catalysts were successfully synthesized within an aqueous phase using sodium carboxymethyl cellulose (CMC) as a capping ligand which offers a green alternative to conventional nanoparticle synthesis techniques. The CMC-stabilized Pd nanoparticles were subsequently dispersed within support materials using the incipient wetness impregnation technique for utilization in heterogeneous catalyst systems. The unsupported and supported (both calcined and uncalcined) Pd nanoparticle catalysts were characterized using transmission electron microscopy, energy dispersive x-ray spectrometry, x-ray diffraction, and Brunauer-Emmett-Teller surface area measurement and their catalytic activity toward the hydrodechlorination of trichloroethylene (TCE) in aqueous media was examined using homogeneous and heterogeneous catalyst systems, respectively. The unsupported Pd nanoparticles showed considerable activity toward the degradation of TCE, as demonstrated by the reaction kinetics. Although the supported Pd nanoparticle catalysts had a lower catalytic activity than the unsupported particles that were homogeneously dispersed in the aqueous solutions, the supported catalysts retained sufficient activity toward the degradation of TCE. In addition, the use of the hydrophilic Al2O3 support material induced a mass transfer resistance to TCE that affected the initial hydrodechlorination rate. This paper demonstrates that supported Pd catalysts can be applied to the heterogeneous catalytic hydrodechlorination of TCE.

  3. Redox control for electrochemical dechlorination of trichloroethylene in bicarbonate aqueous media

    PubMed Central

    Mao, Xuhui; Ciblak, Ali; Amiri, Mohammad; Alshawabkeh, Akram N.

    2011-01-01

    The role of iron anode on electrochemical dechlorination of aqueous trichloroethylene (TCE) is evaluated using batch mixed-electrolyte experiments. A significantly higher dechlorination rate, up to 99%, is reported when iron anode and copper foam cathodes are used. In contrast to the oxygen-releasing inert anode, the cast iron anode generates ferrous species, which regulate the electrolyte to a reducing condition (low ORP value) and favor the reduction of TCE. The main products of TCE electrochemical reduction on copper foam cathode include ethene and ethane. The ratio of these two hydrocarbons gases varied with the electrolyte ORP condition and current density as more ethane gas generates at more reducing electrolyte condition and at higher current condition. A pseudo-first order model is used to describe the degradation of TCE, the first order rate constant (k) increased with the current applied, but exhibits a negative relation with initial concentration. Depending on the current, electrolysis by iron anode causes a reduction in the ORP and an increase in the pH of the mixed electrolyte. Enhanced reaction rates in this investigation indicate that the electrochemical reduction using copper foam and iron anode may be a promising process for remediation of groundwater contaminated with chlorinated organic compounds. PMID:21671641

  4. Characterization of trichloroethylene adsorption onto waste biocover soil in the presence of landfill gas.

    PubMed

    He, Ruo; Su, Yao; Kong, Jiaoyan

    2015-09-15

    Waste biocover soils (WBS) have been demonstrated to have great potential in mitigating trichloroethylene (TCE) emission from landfills, due to the relatively high TCE-degrading capacity. In this study, the characteristics of TCE adsorption on WBS in the presence of the major landfill gas components (i.e., CH4 and CO2) were investigated in soil microcosms. The adsorption isotherm of TCE onto WBS was fitted well with linear model within the TCE concentrations of 7000 ppmv. The adsorption capacity of TCE onto WBS was affected by temperature, soil moisture content and particle size, of which, temperature was the dominant factor. The adsorption capacity of TCE onto the experimental materials increased with the increasing organic matter content. A significantly positive correlation was observed between the adsorption capacity of TCE and the organic matter content of experimental materials that had relatively higher organic content (r = 0.988, P = 0.044). To better understand WBS application in practice, response surface methodology was developed to predict TCE adsorption capacity and emissions through WBS in different landfills in China. These results indicated that WBS had high adsorption capacity of TCE in LFG and temperature should be paid more attention to manipulate WBS to reduce TCE emissions from landfills. PMID:25909498

  5. Continuous degradation of trichloroethylene by Xanthobacter sp. strain Py2 during growth on propene

    SciTech Connect

    Reij, M.W.; Kieboom, J.; De Bont, J.A.M.; Hartmans, S.

    1995-08-01

    Propene-grown Xanthobacter sp. strain Py2 cells can degrade trichloroethylene (TCE), but the transformation capacity of such cells was limited and depended on both the TCE concentration and the biomass concentration. Toxic metabolites presumably accumulated extracellularly, because the fermentation of glucose by yeast cells was inhibited by TCE degradation products formed by strain Py2. The affinity of the propene monooxygenase for TCE was low, and this allowed strain Py2 to grow on propene in the presence of TCE. During batch growth with propene and TCE, the TCE was not degraded before most of the propene had been consumed. Continuous degradation of TCE in a chemostat culture of strain Py2 growing with propene was observed with TCE concentrations up to 206 {mu}M in the growth medium without washout of the fermentor occurring. At this TCE concentration the specific degradation rate was 1.5 nmol/min/mg of biomass. The total amount of TCE that could be degraded during simultaneous growth on propene depended on the TCE concentration and ranged from 0.03 to 0.34 g of TCE per g of biomass. The biomass yield on propene was not affected by the cometabolic degradation of TCE. 23 refs., 5 figs., 2 tabs.

  6. The kinetics of the combustion of trichloroethylene for low Cl/H ratios

    SciTech Connect

    Werner, J.H.; Cool, T.A.

    2000-01-01

    A kinetic model has been developed for the combustion of trichloroethylene (TCE) under low Cl/H ratio conditions. Flame species concentration profiles, measured for CH{sub 4}/O{sub 2}/Ar flames, reveal that the most important reaction channels in the decomposition of TCE in the CH{sub 4}/TCE/O{sub 2}/Ar flame are the displacement by H atoms of Cl atoms from TCE,1,1-dichloroethylene (DCE), and vinyl chloride. The displacement of Cl atoms from TCE by OH also contributes to the decomposition of TCE, and leads to the production of 2,2-dichloroethanol, a species unobserved in previous flame studies. Other species found in large concentrations in the present CH{sub 4}/TCE/O{sub 2}/Ar flames, but not observed in previous TCE/O{sub 2}/Ar flame studies at higher chlorine-too-hydrogen ratios, are ketene, chloroketene, and dichloroketene. Finally, the presence of TCE catalyzes the formation of C{sub 3}-C{sub 6} hydrocarbons. The presence of significant concentrations of C{sub 3}H{sub 3}, C{sub 3}H{sub 4}, and C{sub 6}H{sub 6} is consistent with odd carbon species mechanisms previously suggested for benzene formation in hydrocarbon flames.

  7. Hesperidin ameliorates trichloroethylene-induced nephrotoxicity by abrogation of oxidative stress and apoptosis in wistar rats.

    PubMed

    Siddiqi, Aisha; Nafees, Sana; Rashid, Summya; Sultana, Sarwat; Saidullah, Bano

    2015-08-01

    Trichloroethylene (TCE), a nephrotoxicant is known to cause severe damage to the kidney. In this study, the nephroprotective potential of hesperidin was evaluated against TCE-induced nephrotoxicity in wistar rats. Oral administration of TCE (1000 mg/kg b.wt) for 15 days enhanced renal lipid peroxidation and reduced antioxidant enzymes armoury viz., reduced renal glutathione, glutathione peroxidase, glutathione reductase, glutathione-S-transferase, catalase and superoxide dismutase. It also enhanced the levels of blood urea nitrogen, creatinine and kidney injury molecule (KIM-1). Caspase-3 and bax expression were found to be elevated, while that of bcl-2 reduced suggesting that TCE induces apoptosis. However, pretreatment with hesperidin at a dose of 100 and 200 mg/kg b.wt for 15 days significantly decreased lipid peroxidation, increased the levels of antioxidant enzymes and reduced blood urea, creatinine and KIM-1 levels. Hesperidin also modulated the apoptotic pathways by altering the expressions of caspase-3, bax and bcl-2 to normal. Our results suggest that hesperidin can be used as a nephroprotective agent against TCE-induced nephrotoxicity. PMID:25994504

  8. Biodegradation of trichloroethylene in continuous-recycle expanded-bed bioreactors

    SciTech Connect

    Phelps, T.J.; Niedzielski, J.J.; Schram, R.M. ); Herbes, S.E.; White, D.C. )

    1990-06-01

    Experimental bioreactors operated as recirculated closed systems were inoculated with bacterial cultures that utilized methane, propane, and tryptone-yeast extract as aerobic carbon and energy sources and degraded trichloroethylene (TCE). Up to 95% removal of TCE was observed after 5 days of incubation. Uninoculated bioreactors inhibited with 0.5% Formalin and 0.2% sodium azide retained greater than 95% of their TCE after 20 days. Each bioreactor consisted of an expanded-bed column through which the liquid phase was recirculated and a gas recharge column which allowed direct headspace sampling. Pulses of TCE (20 mg/liter) were added to bioreactors, and gas chromatography was used to monitor TCE, propane, methane, and carbon dioxide. Pulsed feeding of methane and propane with air resulted in 1 mol of TCE degraded per 55 mol of substrate utilized. Perturbation studies revealed the pH shifts from 7.2 to 7.5 decreased TCE degradation by 85%. The bioreactors recovered to baseline activities within 1 day after the pH returned to neutrality.

  9. Electrochemical transformation of trichloroethylene in aqueous solution by electrode polarity reversal

    PubMed Central

    Rajic, Ljiljana; Fallahpour, Noushin; Yuan, Songhu; Alshawabkeh, Akram N.

    2014-01-01

    Electrode polarity reversal is evaluated for electrochemical transformation of trichloroethylene (TCE) in aqueous solution using flow-through reactors with mixed metal oxide electrodes and Pd catalyst. The study tests the hypothesis that optimizing electrode polarity reversal will generate H2O2 in Pd presence in the system. The effect of polarity reversal frequency, duration of the polarity reversal intervals, current intensity and TCE concentration on TCE removal rate and removal mechanism were evaluated. TCE removal efficiencies under 6 cycles h?1 were similar in the presence of Pd catalyst (50.3%) and without Pd catalyst (49.8%), indicating that Pd has limited impact on TCE degradation under these conditions. The overall removal efficacies after 60 min treatment under polarity reversal frequencies of 6, 10, 15, 30 and 90 cycles h?1 were 50.3%, 56.3%, 69.3%, 34.7% and 23.4%, respectively. Increasing the frequency of polarity reversal increases TCE removal as long as sufficient charge is produced during each cycle for the reaction at the electrode. Electrode polarity reversal shifts oxidation/reduction and reduction/oxidation sequences in the system. The optimized polarity reversal frequency (15 cycles h?1 at 60 mA) enables two reaction zones formation where reduction/oxidation occurs at each electrode surface. PMID:25282093

  10. Historical Occupational Trichloroethylene Air Concentrations Based on Inspection Measurements From Shanghai, China

    PubMed Central

    Friesen, Melissa C.; Locke, Sarah J.; Chen, Yu-Cheng; Coble, Joseph B.; Stewart, Patricia A.; Ji, Bu-Tian; Bassig, Bryan; Lu, Wei; Xue, Shouzheng; Chow, Wong-Ho; Lan, Qing; Purdue, Mark P.; Rothman, Nathaniel; Vermeulen, Roel

    2015-01-01

    Purpose: Trichloroethylene (TCE) is a carcinogen that has been linked to kidney cancer and possibly other cancer sites including non-Hodgkin lymphoma. Its use in China has increased since the early 1990s with China’s growing metal, electronic, and telecommunications industries. We examined historical occupational TCE air concentration patterns in a database of TCE inspection measurements collected in Shanghai, China to identify temporal trends and broad contrasts among occupations and industries. Methods: Using a database of 932 short-term, area TCE air inspection measurements collected in Shanghai worksites from 1968 through 2000 (median year 1986), we developed mixed-effects models to evaluate job-, industry-, and time-specific TCE air concentrations. Results: Models of TCE air concentrations from Shanghai work sites predicted that exposures decreased 5–10% per year between 1968 and 2000. Measurements collected near launderers and dry cleaners had the highest predicted geometric means (GM for 1986 = 150–190mg m−3). The majority (53%) of the measurements were collected in metal treatment jobs. In a model restricted to measurements in metal treatment jobs, predicted GMs for 1986 varied 35-fold across industries, from 11mg m−3 in ‘other metal products/repair’ industries to 390mg m–3 in ‘ships/aircrafts’ industries. Conclusions: TCE workplace air concentrations appeared to have dropped over time in Shanghai, China between 1968 and 2000. Understanding differences in TCE concentrations across time, occupations, and industries may assist future epidemiologic studies in China. PMID:25180291

  11. Remediation of trichloroethylene-contaminated soils by star technology using vegetable oil smoldering.

    PubMed

    Salman, Madiha; Gerhard, Jason I; Major, David W; Pironi, Paolo; Hadden, Rory

    2015-03-21

    Self-sustaining treatment for active remediation (STAR) is an innovative soil remediation approach based on smoldering combustion that has been demonstrated to effectively destroy complex hydrocarbon nonaqueous phase liquids (NAPLs) with minimal energy input. This is the first study to explore the smoldering remediation of sand contaminated by a volatile NAPL (trichloroethylene, TCE) and the first to consider utilizing vegetable oil as supplemental fuel for STAR. Thirty laboratory-scale experiments were conducted to evaluate the relationship between key outcomes (TCE destruction, rate of remediation) to initial conditions (vegetable oil type, oil: TCE mass ratio, neat versus emulsified oils). Several vegetable oils and emulsified vegetable oil formulations were shown to support remediation of TCE via self-sustaining smoldering. A minimum concentration of 14,000 mg/kg canola oil was found to treat sand exhibiting up to 80,000 mg/kg TCE. On average, 75% of the TCE mass was removed due to volatilization. This proof-of-concept study suggests that injection and smoldering of vegetable oil may provide a new alternative for driving volatile contaminants to traditional vapour extraction systems without supplying substantial external energy. PMID:25528233

  12. Modulation of trichloroethylene in vitro metabolism by different drugs in human.

    PubMed

    Cheikh Rouhou, Mouna; Haddad, Sami

    2014-08-01

    Toxicological interactions with drugs have the potential to modulate the toxicity of trichloroethylene (TCE). Our objective is to identify metabolic interactions between TCE and 14 widely used drugs in human suspended hepatocytes and characterize the strongest using microsomal assays. Changes in concentrations of TCE and its metabolites were measured by headspace GC-MS. Results with hepatocytes show that amoxicillin, cimetidine, ibuprofen, mefenamic acid and ranitidine caused no significant interactions. Naproxen and salicylic acid showed to increase both TCE metabolites levels, whereas acetaminophen, carbamazepine and erythromycin rather decreased them. Finally, diclofenac, gliclazide, sulphasalazine and valproic acid had an impact on the levels of only one metabolite. Among the 14 tested drugs, 5 presented the most potent interactions and were selected for confirmation with microsomes, namely naproxen, salicylic acid, acetaminophen, carbamazepine and valproic acid. Characterization in human microsomes confirmed interaction with naproxen by competitively inhibiting trichloroethanol (TCOH) glucuronidation (Ki=2.329 mM). Inhibition of TCOH formation was also confirmed for carbamazepine (partial non-competitive with Ki=70 ?M). Interactions with human microsomes were not observed with salicylic acid and acetaminophen, similar to prior results in rat material. For valproic acid, interactions with microsomes were observed in rat but not in human. Inhibition patterns were shown to be similar in human and rat hepatocytes, but some differences in mechanisms were noted in microsomal material between species. Next research efforts will focus on determining the adequacy between in vitro observations and the in vivo situation. PMID:24632077

  13. Biodegradation of 1,4-dioxane: effects of enzyme inducers and trichloroethylene.

    PubMed

    Hand, Steven; Wang, Baixin; Chu, Kung-Hui

    2015-07-01

    1,4-Dioxane is a groundwater contaminant and probable human carcinogen. In this study, two well-studied degradative bacteria Mycobacterium vaccae JOB5 and Rhodococcus jostii RHA1 were examined for their 1,4-dioxane degradation ability in the presence and absence of its co-contaminant, trichloroethylene (TCE), under different oxygenase-expression conditions. These two strains were precultured with R2A broth (complex nutrient medium) before supplementation with propane or 1-butanol to induce the expression of different oxygenases. Both propane- and 1-butanol-induced JOB5 and RHA1 were able to degrade 1,4-dioxane, TCE, and mixtures of 1,4-dioxane/TCE. Complete degradation of 1,4-dioxane/TCE mixture was observed only in propane-induced strain JOB5. Inhibition was observed between 1,4-dioxane and TCE for all cells. Furthermore, product toxicity caused incomplete degradation of 1,4-dioxane by 1-butanol-induced JOB5. In general, the more TCE degraded, the greater extent of product toxicity cells experienced; however, susceptibility to product toxicity was found to be both strain- and inducer-dependent. The findings of this study provide fundamental basis for developing an effective in-situ remediation method for 1,4-dioxane-contaminated ground water and the first known study of 1,4-dioxane degradation by wild-type strain RHA1. PMID:25813968

  14. An analysis of trichloroethylene movement in groundwater at castle Air Force Base, California

    USGS Publications Warehouse

    Avon, L.; Bredehoeft, J.D.

    1989-01-01

    A trichloroethylene (TCE) plume has been identified in the groundwater under a U.S. Air Force Base in the Central Valley of California. An areal, two-dimensional numerical solute transport model indicates that the movement of TCE due to advection, dispersion, and linear sorption is simulated over a 25-year historic period. The model is used in several ways: (1) to estimate the extent of the plume; (2) to confirm the likely sources of contamination as suggested by a soil organic vapor survey of the site; and (3) to make predictions about future movement of the plume. Despite the noisy and incomplete data set, the model reproduces the general trends in contamination at a number of observation wells. The analysis indicates that soil organic vapor monitoring is an effective tool for identifying contaminant source locations. Leaky sewer pipes and underground tanks are the indicated pathways for TCE to have entered the groundwater system. The chemical mass balance indicates that a total of about 100 gallons of TCE - a relatively small amount of organic solvent - has created the observed groundwater plume. ?? 1989.

  15. In situ bioremediation of trichloroethylene-contaminated water by a resting-cell methanotrophic microbial filter

    SciTech Connect

    Taylor, R T; Duba, A G; Durham, W B; Hanna, M L; Jackson, K J; Jovanovich, M C; Knapp, R B; Knezovich, J P; Shah, N N; Shonnard, D R; Wijesinghe, A M

    1992-10-01

    The Lawrence Livermore National Laboratory is testing and developing an in situ microbial filter technology for remediating migrating subsurface plumes contaminated with low concentrations of trichloroethylene (TCE). Their current focus is the establishment of a replenishable bioactive zone (catalytic filter) along expanding plume boundaries by the Injection of a representative methanotrophic bacterium, Methylosinus trichosporium OB3b. We have successfully demonstrated this microbial filter strategy using emplaced, attached resting cells (no methane additions) in a 1.1-m flow-through test bed loaded with water-saturated sand. Two separate 24 h pulses of TCE (109 ppb and 85 ppb), one week apart, were pumped through the system at a flow velocity of 1.5 cm/h; no TCE (<0.5 ppb) was detected on the downstream side of the microbial filter. Subsequent excavation of the wet sand confirmed the existence of a TCE-bioactive zone 19 days after it had been created. An enhanced longevity of the cellular, soluble-form methane monooxygenase produced by this methanotroph Is a result of our laboratory bioreactor culturing conditions. Additional experiments with cells in sealed vials and emplaced in the 1.1-m test bed yielded a high resting-cell finite TCE biotransformation capacity of [approximately] 0.25 mg per mg of bacteria; this is suitable for a planned sand-filled trench field demonstration at a Lawrence Livermore National Laboratory site.

  16. Long-term effects of dissolved carbonate species on the degradation of trichloroethylene by zerovalent iron.

    PubMed

    Parbs, Anika; Ebert, Markus; Dahmke, Andreas

    2007-01-01

    The effect of different concentrations of total inorganic carbon (TIC) and flow rates on the reactivity of iron metal with trichloroethylene (TCE) was studied in column experiments to verify whether concentration or mass flux of TIC is the major key parameter for barrier performance. First-order rate coefficients (kobs) for TCE degradation vary initially between 0.15 and 0.32 h-' and are positively related to TIC influent concentration. Maximal kobs were reached after 164 and 591 PV, varied between 0.55 and 1.1 h(-1), and were positively correlated to the TIC mass flux, followed by a decrease resulting in values similar to the reference system at the end of the experiments. Enhancement of iron corrosion (0.7 to 3.5 mmol kgFe(-1) d(-1) and formation of gas bubbles during the initial experimental phase were observed and were also positively correlated to TIC mass flux. The higher gas bubble formation probably has a more significant effect on porosity than mineral precipitations in Fe0-systems. The results suggest that higher TIC mass fluxes cause a more pronounced acceleration in CHC degradation, but also a faster inhibition in the longer-term. This faster inhibition has serious implication for the design of funnel and gate systems. PMID:17265961

  17. Feasibility of bioremediation of trichloroethylene contaminated sites by nitrifying bacteria through cometabolism with ammonia.

    PubMed

    Yang, L; Chang, Y; Chou, M

    1999-10-01

    The autotrophic ammonia-oxidizing bacteria (Nitrosomonas sp.) are able to dechlorinate trichloroethylene (TCE) through cometabolism using ammonia (NH(3)) as a growth substrate. Cometabolic kinetics models suggest that TCE is a potent competitive inhibitor of NH(3) oxidation because it competes with NH(3) for oxidation by the enzyme of ammonia monooxygenase (AMO). In this study, an enriched culture of nitrifying bacteria was used to investigate the efficiencies of cometabolism of TCE by AMO. In addition, the relationships among specific growth substrate (NH(3)) utilization rate (qNH(3)), specific nongrowth substrate (TCE) cometabolic rate (qTCE), NH(3) and TCE concentrations, and NH(3)/TCE and TCE/NH(3) ratios were also analyzed. We found that the relationships between qNH(3) and NH(3) for the systems with and without TCE followed the Alvarez-Cohen competitive inhibition model and Monod model, respectively. Our results demonstrate that TCE could be cometabolized in a nitrification system when sufficient oxygen and NH(3)200 microg/l) were also found to show inhibitory effects towards NH(3) oxidation in enriched nitrifying culture. We also found that the NH(3)/TCE ratio rather than TCE concentrations alone exhibited strong correlation with qNH(3), much the same as the Ely activity recovery model presented. Our results suggest that the relationship between qTCE and TCE concentrations followed the Oldenhuis enzyme inactivation model for systems without NH(3). PMID:10502610

  18. Evaluation of the effectiveness of using alfalfa and buffalo grass for remediation of trichloroethylene from groundwater

    SciTech Connect

    Caravello, V.

    1998-06-03

    Phytoremediation is receiving increasing attention due to the potential for vegetation to play a significant role in bioremediation of contaminated soils and groundwater. The purpose of this research was to conduct a pilot study to determine if buffalo grass would enhance the remediation of groundwater contaminated with trichloroethylene (TCE). A mass-balance experiment was designed and executed to determine the extent of TCE remediation/degradation occurring through buffalo grass. Measurements for TCE in air, water, and soil were completed for three treatments: (1) buffalo grass, (2) alfalfa, and (3) soil following challenge with a water-TCE mixture. In total, 267 air samples, 43 water samples, 85 soil samples, and 40 vegetative samples were collected and analyzed. The analysis identified two important facts. First, there were no significant differences detected between TCE concentrations in soil, water, and air between groups. Second, there is a significant difference in the amount of the TCE-water mixture consumed in chambers with plants versus chambers without plants. The mass balance of the experiment was not achieved due to unaccountable losses of TCE from the chambers. The major loss mechanism for TCE appears to be from the breakthrough of air sampling media during the experiment. Thus, the data are insufficient to determine if remediation occurred via plants or by preferential pathways through the soil. Future experiments should be designed to include daily monitoring of the aquifer, humidity tolerant air sampling protocol, and relief from the build-up of humidity and transpiration inside the chambers.

  19. Removal of trichloroethylene by zerovalent iron/activated carbon derived from agricultural wastes.

    PubMed

    Su, Yuh-fan; Cheng, Yu-ling; Shih, Yang-hsin

    2013-11-15

    Activated carbon (AC) and zerovalent iron (ZVI) have been widely used in the adsorption and dehalogenation process, respectively, for the removal of organic compounds in environmental treatments. This study aims to prepare ZVI/AC derived from an agricultural waste, coir pith, through simple one-step pyrolysis. The effect of activation temperature and time on the surface area, iron content, and zerovalent iron ratio of ZVI/AC was systemically investigated. The results indicated that the activation of AC by FeSO4 significantly increased surface area of AC and distributed elemental iron over the AC. The X-ray diffraction (XRD), electron spectroscopy for chemical analysis (ESCA), and X-ray absorption near edge structure (XANES) spectra of ZVI/AC revealed that zerovalent iron was present. As compared to AC without FeSO4 activation, ZVI/AC increased the trichloroethylene removal rate constant by 7 times. The dechlorination ability of ZVI/AC was dominated by the zerovalent iron content. We have shown that lab-made ZVI/AC from coir pith can effectively adsorb and dehalogenate the chlorinated compounds in water. PMID:23994578

  20. Low dose trichloroethylene alters cytochrome P450 - 2C subfamily expression in the developing chick heart

    PubMed Central

    Makwana, Om; Ahles, Lauren; Lencinas, Alejandro; Selmin, Ornella I.; Runyan, Raymond B.

    2013-01-01

    Trichloroethylene (TCE) is an organic solvent and common environmental contaminant. TCE exposure is associated with heart defects in humans and animal models. Primary metabolism of TCE in adult rodent models is by specific hepatic cytochrome P450 enzymes (Lash et al., 2000). As association of TCE exposure with cardiac defects is in exposed embryos prior to normal liver development, we investigated metabolism of TCE in the early embryo. Developing chick embryos were dosed in ovo with environmentally relevant doses of TCE (8 ppb and 800 ppb) and RNA was extracted from cardiac and extra-cardiac tissue (whole embryo without heart). Real time PCR showed upregulation of CYP2H1 transcripts in response to TCE exposure in the heart. No detectable cytochrome expression was found in extra-cardiac tissue. As seen previously, the dose response was non-monotonic and 8ppb elicited stronger upregulation than 800 ppb. Immunostaining for CYP2C subfamily expression confirmed protein expression and showed localization in both myocardium and endothelium. TCE exposure increased protein expression in both tissues. These data demonstrate that the earliest embryonic expression of phase I detoxification enzymes is in the developing heart. Expression of these CYPs is likely to be relevant to the susceptibility of the developing heart to environmental teratogens. PMID:22855351

  1. Degradation of Trichloroethylene and Dichlorobiphenyls by Iron-Based Bimetallic Nanoparticles

    PubMed Central

    Tee, Yit-Hong; Bachas, Leonidas; Bhattacharyya, Dibakar

    2009-01-01

    Bimetallic nanoparticles of Ni/Fe and Pd/Fe were used to study the degradation of trichloroethylene (TCE) at room temperature. The activity for different iron-based nanoparticles with nickel as the catalytic dopant was analyzed using iron mass-normalized hydrogen generation rate. Degradation kinetics in terms of surface area-normalized rate constant was observed to have a strong correlation with the hydrogen generated by iron oxidation. A sorption study was conducted, and a mathematical model was derived that incorporates the reaction and Langmuirian-type sorption terms to estimate the intrinsic rate constant and rate-limiting step in the degradation process, assuming negligible mass transfer resistance of TCE to the solid particles phase. A longevity study through repeated cycle experiments was conducted to analyze the effect of activity loss on the reaction mechanistic pathway, and the results showed that the attenuation in the nanoparticles activity did not adversely affect the reaction mechanisms in generating gaseous products such as ethylene and ethane. PMID:20161161

  2. Biodegradation of trichloroethylene and its anaerobic daughter products in freshwater wetland sediments

    USGS Publications Warehouse

    Lorah, M.M.; Olsen, L.D.

    2001-01-01

    Laboratory microcosms were prepared under methanogenic, sulfate-reducing, and aerobic conditions using sediment and groundwater from a freshwater wetland that is a discharge area for a trichloroethylene (TCE) to evaluate potential biodegradation rates of TCE and its anaerobic daughter products (cis-1,2-dichloroethylene, trans-1,2-dichloroethylene, and vinyl chloride (VC)). Anaerobic degradation of TCE was about an order of magnitude faster under methanogenic conditions than under sulfate-reducing conditions. Both 12DCE and VC were found under sulfate-reducing conditions in the microcosms containing the wetland sediment, but their production, especially for VC, was substantially slower than under methanogenic conditions. Methane concentrations remained approximately constant (when losses in the formalin-amended controls are considered) in the microcosms amended with TCE and increased in the microcosms amended with the 12DCE isomers and VC during the first 18-25 days of incubation. The most rapid decrease in concentrations of TCE, cis-12DCE, trans-12DCE, and VC was found after aerobic methane-oxidizing conditions were definitely established.

  3. The Relationship between the Occupational Exposure of Trichloroethylene and Kidney Cancer

    PubMed Central

    2014-01-01

    Trichloroethylene (TCE) has been widely used as a degreasing agent in many manufacturing industries. Recently, the International Agency for Research on Cancer presented “sufficient evidence” for the causal relationship between TCE and kidney cancer. The aim of this study was to review the epidemiologic evidences regarding the relationship between TCE exposure and kidney cancer in Korean work environments. The results from the cohort studies were inconsistent, but according to the meta-analysis and case–control studies, an increased risk for kidney cancer was present in the exposure group and the dose–response relationship could be identified using various measures of exposure. In Korea, TCE is a commonly used chemical for cleaning or degreasing processes by various manufacturers; average exposure levels of TCE vary widely. When occupational physicians evaluate work-relatedness kidney cancers, they must consider past exposure levels, which could be very high (>100 ppm in some cases) and associated with jobs, such as plating, cleaning, or degreasing. The exposure levels at a manual job could be higher than an automated job. The peak level of TCE could also be considered an important exposure-related variable due to the possibility of carcinogenesis associated with high TCE doses. This review could be a comprehensive reference for assessing work-related TCE exposure and kidney cancer in Korea. PMID:24955246

  4. Degradation of trichloroethylene in aqueous solution by calcium peroxide activated with ferrous ion.

    PubMed

    Zhang, Xiang; Gu, Xiaogang; Lu, Shuguang; Miao, Zhouwei; Xu, Minhui; Fu, Xiaori; Qiu, Zhaofu; Sui, Qian

    2015-03-01

    The application of calcium peroxide (CaO2) activated with ferrous ion to stimulate the degradation of trichloroethylene (TCE) was investigated. The experimental results showed that TCE could be completely degraded in 5 min at a CaO2/Fe(II)/TCE molar ratio of 4/8/1. Probe compound tests demonstrated the presence of reactive oxygen species HO and O2(-) in CaO2/Fe(II) system, while scavenging tests indicated that HO was the dominant active species responsible for TCE removal, and O2(-) could promote TCE degradation in CaO2/Fe(II) system. In addition, the influences of initial solution pH and solution matrix were evaluated. It suggested that the elevation of initial solution pH suppressed TCE degradation. Cl(-) had significant scavenging effect on TCE removal, whereas HCO3(-) of high concentration showed favorable function. The influences of NO3(-) and SO4(2-) could be negligible, while natural organic matter (NOM) had a negative effect on TCE removal at a relatively high concentration. The results demonstrated that the technique of CaO2 activated with ferrous ion is a highly promising technique in in situ chemical oxidation (ISCO) remediation in TCE contaminated sites. PMID:25463240

  5. Catalytic hydrodechlorination of trichloroethylene in water with supported CMC-stabilized palladium nanoparticles.

    PubMed

    Zhang, Man; Bacik, Deborah B; Roberts, Christopher B; Zhao, Dongye

    2013-07-01

    In this work, we developed and tested a new class of supported Pd catalysts by immobilizing CMC (carboxymethyl cellulose) stabilized Pd nanoparticles onto alumina support. The alumina supported Pd nanoparticles were able to facilitate rapid and complete hydrodechlorination of TCE (trichloroethylene) without intermediate by-products detected. With a Pd mass loading of 0.33 wt% of the alumina mass, the observed pseudo first order reaction rate constant, k(obs), for the catalyst was increased from 28 to 109 L/min/g when CMC concentration was raised from 0.005 to 0.15 wt%. The activity increase was in accord with an increase of the Pd dispersion (measured via CO chemisorption) from 30.4% to 45.1%. Compared to the commercial alumina supported Pd, which has a lower Pd dispersion of 21%, our CMC-stabilized Pd nanoparticles offered more than 7 times greater activity. Pre-calcination treatment of the supported catalyst resulted in minor drop in activity, yet greatly reduced bleeding (<6%) of the Pd nanoparticles from the support during multiple cycles of applications. The presence of DOM (dissolved organic matter) at up to 10 mg/L as TOC had negligible effect on the catalytic activity. The alumina supported CMC-stabilized Pd nanoparticles may serve as a class of more effective catalysts for water treatment uses. PMID:23726707

  6. Second moment method for evaluating human health risks from groundwater contaminated by trichloroethylene.

    PubMed Central

    Jacobs, T L; Warmerdam, J M; Medina, M A; Piver, W T

    1996-01-01

    Pollutants in groundwater aquifers may constitute a significant human health risk. A large variation in response may result among human populations experiencing the same level and duration of exposure to pollutants. Variability in response, as a result of exposure to a carcinogenic contaminant such as trichloroethylene (TCE), can be represented by a distribution function of safe doses. Spatial variability in aquifer characteristics and contaminant transport parameters requires the use of stochastic transport models to quantify variability in exposure concentrations. A second moment method is used to evaluate the probability of exceeding safe dose levels for a contaminated aquifer. The name of this method stems from the fact that the formulation is based on the first and second moments of the random variables. With this method, the probability is a function of the variability of contaminant concentration (which incorporates variability in hydrogeologic parameters such as hydraulic conductivity) and the variability in response in the human population. In this manner, the severity of the health risk posed by a contaminated aquifer and the evaluation of appropriate strategies and technologies for aquifer remediation are a function of contaminant concentrations and human health risks. The applicability and limitations of this method are demonstrated with data on groundwater contaminated by TCE at Hill Air Force Base, Utah. Images Figure 1. Figure 2. Figure 3. Figure 4. PMID:8875161

  7. Deactivation model for the adsorption of trichloroethylene vapor on an activated carbon bed

    SciTech Connect

    Suyadal, Y.; Erol, M.; Oguz, H.

    2000-03-01

    In this work, the adsorption of trichloroethylene (TCE) vapor was investigated in a laboratory-scale packed-bed adsorber by using granular activated carbon (GAC) at constant pressure (101.3 kPa). The packed-bed adsorber (PBA) was operated batchwise with the charges of GAC particles in the ranges of 2.5--10.0 g for obtaining TCE breakthrough curves. Experiments were carried out at different temperatures (25.6 {le} T({degree}C) {le} 35.8) and TCE feedstock concentrations (6,350 {le} C (ppm TCE) {le} 7,950) within the range of space velocity (5,000 {le} {var_theta} (h{sup {minus}1}) {le} 17,000). The effects of TCE inlet concentration, operating temperature, and mass of adsorbent (m{sub Ads}) on the TCE breakthrough curves were investigated, respectively. The deactivation model (DM) was tested for these curves by using the analogy between the adsorption of TCE and the deactivation of catalyst particles. Observed adsorption rate constants (k{sub S}) and first-order deactivation rate constants (k{sub d}) were obtained from the model. It was found that the deactivation model describes the experimental breakthrough curves more accurately compared to the adsorption isotherms given in the literature.

  8. Immunological techniques as tools to characterize the subsurface microbial community at a trichloroethylene contaminated site

    SciTech Connect

    Fliermans, C.B.; Dougherty, J.M.; Franck, M.M.; McKinzey, P.C.; Hazen, T.C.

    1992-01-01

    Effective in situ bioremediation strategies require an understanding of the effects pollutants and remediation techniques have on subsurface microbial communities. Therefore, detailed characterization of a site's microbial communities is important. Subsurface sediment borings and water samples were collected from a trichloroethylene (TCE) contaminated site, before and after horizontal well in situ air stripping and bioventing, as well as during methane injection for stimulation of methane-utilizing microorganisms. Subsamples were processed for heterotrophic plate counts, acridine orange direct counts (AODC), community diversity, direct fluorescent antibodies (DFA) enumeration for several nitrogen-transforming bacteria, and Biolog [reg sign] evaluation of enzyme activity in collected water samples. Plate counts were higher in near-surface depths than in the vadose zone sediment samples. During the in situ air stripping and bioventing, counts increased at or near the saturated zone, remained elevated throughout the aquifer, but did not change significantly after the air stripping. Sporadic increases in plate counts at different depths as well as increased diversity appeared to be linked to differing lithologies. AODCs were orders of magnitude higher than plate counts and remained relatively constant with depth except for slight increases near the surface depths and the capillary fringe. Nitrogen-transforming bacteria, as measured by serospecific DFA, were greatly affected both by the in situ air stripping and the methane injection. Biolog[reg sign] activity appeared to increase with subsurface stimulation both by air and methane. The complexity of subsurface systems makes the use of selective monitoring tools imperative.

  9. Immunological techniques as tools to characterize the subsurface microbial community at a trichloroethylene contaminated site

    SciTech Connect

    Fliermans, C.B.; Dougherty, J.M.; Franck, M.M.; McKinzey, P.C.; Hazen, T.C.

    1992-12-31

    Effective in situ bioremediation strategies require an understanding of the effects pollutants and remediation techniques have on subsurface microbial communities. Therefore, detailed characterization of a site`s microbial communities is important. Subsurface sediment borings and water samples were collected from a trichloroethylene (TCE) contaminated site, before and after horizontal well in situ air stripping and bioventing, as well as during methane injection for stimulation of methane-utilizing microorganisms. Subsamples were processed for heterotrophic plate counts, acridine orange direct counts (AODC), community diversity, direct fluorescent antibodies (DFA) enumeration for several nitrogen-transforming bacteria, and Biolog {reg_sign} evaluation of enzyme activity in collected water samples. Plate counts were higher in near-surface depths than in the vadose zone sediment samples. During the in situ air stripping and bioventing, counts increased at or near the saturated zone, remained elevated throughout the aquifer, but did not change significantly after the air stripping. Sporadic increases in plate counts at different depths as well as increased diversity appeared to be linked to differing lithologies. AODCs were orders of magnitude higher than plate counts and remained relatively constant with depth except for slight increases near the surface depths and the capillary fringe. Nitrogen-transforming bacteria, as measured by serospecific DFA, were greatly affected both by the in situ air stripping and the methane injection. Biolog{reg_sign} activity appeared to increase with subsurface stimulation both by air and methane. The complexity of subsurface systems makes the use of selective monitoring tools imperative.

  10. Effect of Nitrogen Source on Growth and Trichloroethylene Degradation by Methane-Oxidizing Bacteria

    PubMed Central

    Chu, Kung-Hui; Alvarez-Cohen, Lisa

    1998-01-01

    The effect of nitrogen source on methane-oxidizing bacteria with respect to cellular growth and trichloroethylene (TCE) degradation ability were examined. One mixed chemostat culture and two pure type II methane-oxidizing strains, Methylosinus trichosporium OB3b and strain CAC-2, which was isolated from the chemostat culture, were used in this study. All cultures were able to grow with each of three different nitrogen sources: ammonia, nitrate, and molecular nitrogen. Both M. trichosporium OB3b and strain CAC-2 showed slightly lower net cellular growth rates and cell yields but exhibited higher methane uptake rates, levels of poly-?-hydroxybutyrate (PHB) production, and naphthalene oxidation rates when grown under nitrogen-fixing conditions. The TCE-degrading ability of each culture was measured in terms of initial TCE oxidation rates and TCE transformation capacities (mass of TCE degraded/biomass inactivated), measured both with and without external energy sources. Higher initial TCE oxidation rates and TCE transformation capacities were observed in nitrogen-fixing mixed, M. trichosporium OB3b, and CAC-2 cultures than in nitrate- or ammonia-supplied cells. TCE transformation capacities were found to correlate with cellular PHB content in all three cultures. The results of this study suggest that the nitrogen-fixing capabilities of methane-oxidizing bacteria can be used to select for high-activity TCE degraders for the enhancement of bioremediation in fixed-nitrogen-limited environments. PMID:9726896

  11. Trichloroethylene and 1,1,1-trichloroethane decomposition in an electron beam generated plasma reactor

    SciTech Connect

    Vitale, S.A.; Hadidi, K.; Cohn, D.R.

    1995-12-31

    This paper investigates the effect of a carbon-carbon double bond on the energy requirements of plasma induced decomposition of chlorinated ethylenes and ethanes in an electron beam generated plasma reactor. The decomposition of low concentrations of trichloroethylene (C{sub 2}HCl{sub 3}, TCE) and 1,1,1-trichloroethane (C{sub 2}H{sub 3}Cl{sub 3}, TCA) was studied in atmospheric pressure air streams. The primary decomposition products observed experimentally were carbon dioxide, phosgene, dichloroacetyl chloride, and hydrogen chloride, along with low concentrations of trichloroacetyl chloride, chloroform, and carbon monoxide. At high electron beam doses to the plasma, all of the intermedicate products of both TCA and TCE are converted to carbon dioxide, carbon monoxide, hydrogen chloride, and molecular chlorine. Greater than 99% removal of TCE in stream at flow rates up to 7 l/m were achieved. TCE required only 2 to 6% of the energy of that required to decompose the same amount of TCA. This was explained by the chlorine radical chain reaction mechanism available to chlorinated ethylenes. The chain length of the TCE reaction mechanism was determined to increase with increasing TCE concentration. A simple kinetic model was used to study the effects of inhibition of the decomposition through chlorine radical scavenging by reaction products; this inhibition was determined to be approximately ten times less important for TCe than for TCA.

  12. Effect of nitrogen source on growth and trichloroethylene degradation by methane-oxidizing bacteria

    SciTech Connect

    Chu, K.H.; Alvarez-Cohen, L.

    1998-09-01

    The effect of nitrogen source on methane-oxidizing bacteria with respect to cellular growth and trichloroethylene (TCE) degradation ability were examined. One mixed chemostat culture and two pure type II methane-oxidizing strains, Methylosinus trichosporium OB3b and strain CAC-2, which was isolated from the chemostat culture, were used in this study. All cultures were able to grow with each of three different nitrogen sources: ammonia, nitrate, and molecular nitrogen. Both M. trichosporium OB3b and strain CAC-2 showed slightly lower net cellular growth rates and cell yields but exhibited higher methane uptake rates, levels of poly-{beta}-hydroxybutyrate (PHB) production, and naphthalene oxidation rates when grown under nitrogen-fixing conditions. The TCE-degrading ability of each culture was measured in terms of initial TCE oxidation rates and TCE transformation capacities, measured both with and without external energy sources. Higher initial TCE oxidation rates and TCE transformation capacities were observed in nitrogen-fixing mixed, M. trichosporium OB3b, and CAC-2 cultures than in nitrate- or ammonia-supplied cells. TCE transformation capacities were found to correlate with cellular PHB content in all three cultures. The results of this study suggest that the nitrogen-fixing capabilities of methane-oxidizing bacteria can be used to select for high-activity TCE degraders for the enhancement of bioremediation in fixed-nitrogen-limited environments.

  13. In situ detection of organic molecules: Optrodes for TCE (trichloroethylene) and CHCl sub 3

    SciTech Connect

    Angel, S. M.; Langry, K. C.; Ridley, M. N.

    1990-05-01

    We have developed new absorption-based chemical indicators for detecting chloroform (CHCl{sub 3}) and trichloroethylene (TCE). These indicators were used to make very sensitive optical chemical sensors (optrodes) for each of these two contaminants. Concentrations below 10 ppb can be accurately measured using these sensors. Furthermore, they are selective and do not response to similar contaminants commonly found with TCE and CHCl{sub 3} in contaminated groundwater. In addition, the sensor response is linearly proportional to the chemical concentration. In this report, we describe the details of this optrode and the putative reaction sequences of the indicator chemistries with CHCl{sub 3} and TCE and present an analysis of the spectral data obtained from the reaction products. A key part of the development of this optrode was designing a simple readout device. The readout is a dual-channel fiber-optic fluorimeter modified to measure transmission or absorption of light. The system is controlled by a lap-top microcomputer and is fully field portable. In addition to describing the final absorption optrode, details of the chemical indicator reactions are presented for both absorption- (colorimetric) and fluorescence-based optrodes. Finally, we report on the syntheses of several compounds used to evaluate the indicator chemical reactions that led to the development of the absorption optrode. 23 refs., 26 figs., 1 tab.

  14. Impact of tetrachloroethylene-contaminated drinking water on the risk of breast cancer: Using a dose model to assess exposure in a case-control study

    PubMed Central

    Vieira, Vernica; Aschengrau, Ann; Ozonoff, David

    2005-01-01

    Background A population-based case-control study was undertaken in 1997 to investigate the association between tetrachloroethylene (PCE) exposure from public drinking water and breast cancer among permanent residents of the Cape Cod region of Massachusetts. PCE, a volatile organic chemical, leached from the vinyl lining of certain water distribution pipes into drinking water from the late 1960s through the early 1980s. The measure of exposure in the original study, referred to as the relative delivered dose (RDD), was based on an amount of PCE in the tap water entering the home and estimated with a mathematical model that involved only characteristics of the distribution system. Methods In the current analysis, we constructed a personal delivered dose (PDD) model that included personal information on tap water consumption and bathing habits so that inhalation, ingestion, and dermal absorption were also considered. We reanalyzed the association between PCE and breast cancer and compared the results to the original RDD analysis of subjects with complete data. Results The PDD model produced higher adjusted odds ratios than the RDD model for exposures > 50th and >75th percentile when shorter latency periods were considered, and for exposures < 50th and >90th percentile when longer latency periods were considered. Overall, however, the results from the PDD analysis did not differ greatly from the RDD analysis. Conclusion The inputs that most heavily influenced the PDD model were initial water concentration and duration of exposure. These variables were also included in the RDD model. In this study population, personal factors like bath and shower temperature, bathing frequencies and durations, and water consumption did not differ greatly among subjects, so including this information in the model did not significantly change subjects' exposure classification. PMID:15733317

  15. Two cases of paraoccupational asthma due to toluene diisocyanate (TDI).

    PubMed

    De Zotti, R; Muran, A; Zambon, F

    2000-12-01

    Two cases of paraoccupational asthma caused by toluene diisocyanate (TDI) are reported. The first patient was a metal worker in a machine shop situated near a factory producing polyurethane foam. Symptoms at work were not explainable by any specific exposure to irritants or allergens in the work site. As the patient recalled previous occasional work in the adjacent polyurethane factory with accompanying worsening of respiratory symptoms, a specific inhalation (SIC) test was performed with TDI, which confirmed the diagnosis of TDI asthma. The second case was a woman working part time as a secretary in the offices of her son's factory for varnishing wooden chairs. TDI was present in the products used in the varnishing shed. The SIC test confirmed the diagnosis of TDI asthma, despite the fact that the patient's job did not present risk of exposure to the substance. In both patients, symptoms disappeared when further exposure was avoided. These two cases confirm that paraoccupational exposure to TDI must be considered when evaluating patients with asthma not mediated by immunoglobulin E. They also suggest the need for more prospective studies evaluating the health risk for the general population living near polyurethane factories or other firms that use TDI. PMID:11077013

  16. Fatal asthma in a subject sensitized to toluene diisocyanate

    SciTech Connect

    Fabbri, L.M.; Danieli, D.; Crescioli, S.; Bevilacqua, P.; Meli, S.; Saetta, M.; Mapp, C.E.

    1988-06-01

    We report the case of a 43-yr-old car painter who died within 1 h of exposure to a polyurethane paint in the workplace. A diagnosis of asthma induced by toluene diisocyanate (TDI) had been established 6 yr before, when he underwent inhalation challenges with carbachol and with TDI. The subject had airway hyperresponsiveness to carbachol (PD20FEV1 carbachol = 0.32 mg; normal value greater than 1.0 mg) and developed an early and long-lasting asthmatic reaction after exposure to TDI in the laboratory. Although it was recommended that he change his job or stop using paints containing isocyanates, he continued to work as a car painter, taking antiasthmatic drugs both at work and at home to control asthma symptoms. On Monday, October 6, 1986, at 11:30 A. M., he developed a severe attack of asthma while he was mixing the 2 components of a polyurethane paint. Taken to hospital, he was dead on arrival. Autopsy showed no evidence of cardiac or brain disease; lungs were overinflated, the cut surface showed grey glistening mucous plugs in in the airways. Histologic examination showed denudation of airway epithelium and thickening of the basement membrane with infiltration of the lamina propria by polymorphonuclear leukocytes, mainly eosinophils, and diffuse mucous plugging of bronchioles. Bronchial smooth muscle appeared hyperplastic and disarrayed, and lung parenchyma showed focal areas of alveolar destruction adjacent to areas of perfectly intact alveolar walls.

  17. Uptake of 4-toluene sulfonate by Comamonas testosteroni T-2.

    PubMed Central

    Locher, H H; Poolman, B; Cook, A M; Konings, W N

    1993-01-01

    The mechanism of transport of the xenobiotic 4-toluene sulfonate (TS) in Comamonas testosteroni T-2 was investigated. Rapid uptake of TS was observed only in cells grown with TS or 4-methylbenzoate as a carbon and energy source. Initial uptake rates under aerobic conditions showed substrate saturation kinetics, with an apparent affinity constant (Kt) of 88 microM and a maximal velocity (Vmax) of 26.5 nmol/min/mg of protein. Uptake of TS was inhibited completely by uncouplers and only marginally by ATPase inhibitors and the phosphate analogs arsenate and vanadate. TS uptake was also studied under anaerobic conditions, which prevented intracellular TS metabolism. TS was accumulated under anaerobic conditions in TS-grown cells upon imposition of an artificial transmembrane pH gradient (delta pH, inside alkaline). Uptake of TS was inhibited by structurally related methylated and chlorinated benzenesulfonates and benzoates. The results provide evidence that the first step in the degradation of TS by C. testosteroni T-2 is uptake by an inducible secondary proton symport system. PMID:8432701

  18. Benzylic monooxygenation catalyzed by toluene dioxygenase from Pseudomonas putida

    SciTech Connect

    Wackett, L.P.; Kwart, L.D.; Gibson, D.T.

    1988-02-23

    Toluene dioxygenase, a multicomponent enzyme system known to oxidize mononuclear aromatic hydrocarbons to cis-dihydrodiols, oxidized indene and indan to 1-indenol and 1-indanol, respectively. In addition, the enzyme catalyzed dioxygen addition to the nonaromatic double bond of indene to form cis-1,2-indandiol. The oxygen atoms in 1-indenol and cis-1,2-indandiol were shown to be derived from molecular oxygen, whereas 70% of the oxygen in 1-indanol was derived from water. All of the isolated products were optically active as demonstrated by /sup 19/F NMR and HPLC discrimination of diastereomeric esters and by chiroptic methods. The high optical purity of (-)-(1R)-indanol (84% enantiomeric excess) and the failure of scavengers of reactive oxygen species to inhibit the monooxygenation reaction supported the contention that monooxygen insertion is mediated by an active-site process. Experiments with 3-(/sup 2/H) indene indicated that equilibration between C-1 and C-3 occurred prior to the formation of the carbon-oxygen bond to yield 1-indenol. Naphthalene dioxygenase also oxidized indan to 1-indanol, which suggested that benzylic monoxygenation may be typical of this group of dioxygenases.

  19. Toluene pyrolysis studies and high temperature reactions of propargyl chloride

    SciTech Connect

    Kern, R.D.; Chen, H.; Qin, Z.

    1993-12-01

    The main focus of this program is to investigate the thermal decompositions of fuels that play an important role in the pre-particle soot formation process. It has been demonstrated that the condition of maximum soot yield is established when the reaction conditions of temperature and pressure are sufficient to establish a radical pool to support the production of polyaromatic hydrocarbon species and the subsequent formation of soot particles. However, elevated temperatures result in lower soot yields which are attributed to thermolyses of aromatic ring structures and result in the bell-shaped dependence of soot yield on temperature. The authors have selected several acyclic hydrocarbons to evaluate the chemical thermodynamic and kinetic effects attendant to benzene formation. To assess the thermal stability of the aromatic ring, the authors have studied the pyrolyses of benzene, toluene, ethylbenzene, chlorobenzene and pyridine. Time-of-flight mass spectrometry (TOF) is employed to analyze the reaction zone behind reflected shock waves. Reaction time histories of the reactants, products, and intermediates are constructed and mechanisms are formulated to model the experimental data. The TOF work is often performed with use of laser schlieren densitometry (LS) to measure density gradients resulting from the heats of various reactions involved in a particular pyrolytic system. The two techniques, TOF and LS, provide independent and complementary information about ring formation and ring rupture reactions.

  20. Vibrations of the low energy states of toluene (tilde X 1A1 and tilde A 1B2) and the toluene cation (tilde X 2B1)

    NASA Astrophysics Data System (ADS)

    Gardner, Adrian M.; Green, Alistair M.; Tam-Reyes, Victor M.; Wilton, Victoria H. K.; Wright, Timothy G.

    2013-04-01

    We commence by presenting an overview of the assignment of the vibrational frequencies of the toluene molecule in its ground (S0) state. The assignment given is in terms of a recently proposed nomenclature, which allows the ring-localized vibrations to be compared straightforwardly across different monosubstituted benzenes. The frequencies and assignments are based not only on a range of previous work, but also on calculated wavenumbers for both the fully hydrogenated (toluene-h8) and the deuterated-methyl group isotopologue (?3-toluene-d3), obtained from density functional theory (DFT), including artificial-isotope shifts. For the S1 state, one-colour resonance-enhanced multiphoton ionization (REMPI) spectroscopy was employed, with the vibrational assignments also being based on previous work and time-dependent density functional theory (TDDFT) calculated values; but also making use of the activity observed in two-colour zero kinetic energy (ZEKE) spectroscopy. The ZEKE experiments were carried out employing a (1 + 1') ionization scheme, using various vibrational levels of the S1 state with an energy <630 cm-1 as intermediates; as such we only discuss in detail the assignment of the REMPI spectra at wavenumbers <700 cm-1, referring to the assignment of the ZEKE spectra concurrently. Comparison of the ZEKE spectra for the two toluene isotopologues, as well as with previously reported dispersed-fluorescence spectra, and with the results of DFT calculations, provide insight both into the assignment of the vibrations in the S1 and D0+ states, as well as the couplings between these vibrations. In particular, insight into the nature of a complicated Fermi resonance feature at 460 cm-1 in the S1 state is obtained, and Fermi resonances in the cation are identified. Finally, we compare activity observed in both REMPI and ZEKE spectroscopy for both toluene isotopologues with that for fluorobenzene and chlorobenzene.

  1. Detection of toluene in a body buried for years with a fatal cardiac contusion.

    PubMed

    Tanaka, Toshiko; Sato, Hiroaki; Kasai, Kentaro

    2016-03-01

    This report aimed to present the postmortem finding of toluene in a homicide victim buried under the ground for six years. The bones of the skull and limbs were exposed, and the remainder of the subcutaneous tissues, brain and heart had formed into adipocere. There were numerous fractures in the skull and the anterior side of the ribs. A cardiac contusion extending into the cavity of the right ventricle was also observed. No other obvious injuries were identified on the body. The concentration of toluene in the bone marrow within the head of the humerus was 58.4μg/g. The cause of death was suspected as heart rupture, possibly from a forceful impact or compression of the anterior chest under toluene intoxication. This report presents a rare case where toluene intake by a human was disclosed by autopsy even after several years of death. PMID:26980257

  2. REDUCTIVE BIOTRANSFORMATION OF TETRACHLOROETHENE TO ETHENE DURING ANAEROBIC DEGRADATION OF TOLUENE: EXPERIMENTAL EVIDENCE AND KINETICS

    EPA Science Inventory

    Reductive biotransformation of tetrachloroethene (PCE) to ethene occurred during anaerobic degradation of toluene in an enrichment culture. Ethene was detected as a dominant daughter product of PCE dechlorination with negligible accumulation of other partially chlorinated ethenes...

  3. Transient pressure induced by laser ablation of toluene, a highly laser-absorbing liquid

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Y.; Ding, X.; Narazaki, A.; Sato, T.; Niino, H.

    2005-02-01

    Transient processes of laser ablation of a highly laser-absorbing liquid, toluene, were investigated by directly measuring (by using a fast-response pressure gauge) the transient pressure caused by toluene ablation under KrF laser irradiation . The results were compared with time-resolved images . The peak pressure P due to a shock wave decreased slowly with increasing distance d for d=100 1000 ?m:P?d-0.33. By extrapolating P to d=8.9 ?m, the optical penetration depth of toluene at ?=248 nm, the estimated initial pressure due to toluene ablation was 65 MPa at 1.0 J cm-2 pulse-1. The estimated initial pressure increased linearly with the fluence. These results help clarify the mechanism of laser-induced backside wet etching.

  4. ENVIRONMENTAL FACTORS AFFECTING TOLUENE DEGRADATION IN GROUND WATER AT A HAZARDOUS WASTE SITE

    EPA Science Inventory

    The microbial ecology of pristine and contaminated ground water at a chemical waste disposal site was investigated. ecently, it was determined that ground water downslope from the disposal site contained elevated levels of toxic pollutants, including benzene, toluene, xylene and ...

  5. VISUAL FUNCTION CHANGES AFTER SUBCHRONIC TOLUENE INHALATION IN LONG-EVANS RATS.

    EPA Science Inventory

    Chronic exposure to volatile organic compounds, including toluene, has been associated with visual deficits such as reduced visual contrast sensitivity or impaired color discrimination in studies of occupational or residential exposure. These reports remain controversial, howeve...

  6. Oxidation of nitrotoluenes by toluene dioxygenase: Evidence for a monooxygenase reaction

    SciTech Connect

    Robertson, J.B.; Spain, J.C. ); Haddock, J.D.; Gibson, D.T. )

    1992-08-01

    Pseudomonas putida F1 and Pseudomonas sp. strain JS150 initiate toluene degradation by incorporating molecular oxygen into the aromatic nucleus to form cis-1,2-dihydroxy-3-methylcyclohexa-3,5-diene. When toluene-grown cells were incubated with 2- and 3-nitrotoluene, the major products identified were 2- and 3-nitrobenzyl alcohol, respectively. The same cells oxidized 4-nitrotoluene to 2-methyl-5-nitrophenol and 3-methyl-6-nitrocatechol. Escherichia coli JM109(pDTG601), which contains the toluene dioxygenase genes from P. putida F1 under the control of the tac promoter, oxidized the isomeric nitrotoluenes to the same metabolites as those formed by P. putida F1 and Pseudomonas sp. strain JS150. These results extend the range of substrates known to be oxidized by this versatile enzyme and demonstrate for the first time that toluene dioxygenase can oxidize an aromatic methyl substituent.

  7. Oxidation of nitrotoluenes by toluene dioxygenase: evidence for a monooxygenase reaction.

    PubMed Central

    Robertson, J B; Spain, J C; Haddock, J D; Gibson, D T

    1992-01-01

    Pseudomonas putida F1 and Pseudomonas sp. strain JS150 initiate toluene degradation by incorporating molecular oxygen into the aromatic nucleus to form cis-1,2-dihydroxy-3-methylcyclohexa-3,5-diene. When toluene-grown cells were incubated with 2- and 3-nitrotoluene, the major products identified were 2- and 3-nitrobenzyl alcohol, respectively. The same cells oxidized 4-nitrotoluene to 2-methyl-5-nitrophenol and 3-methyl-6-nitrocatechol. Escherichia coli JM109(pDTG601), which contains the toluene dioxygenase genes from P. putida F1 under the control of the tac promoter, oxidized the isomeric nitrotoluenes to the same metabolites as those formed by P. putida F1 and Pseudomonas sp. strain JS150. These results extend the range of substrates known to be oxidized by this versatile enzyme and demonstrate for the first time that toluene dioxygenase can oxidize an aromatic methyl substituent. PMID:1514810

  8. TOXICITY OF AROMATIC AEROBIC BIOTRANSFORMATION PRODUCTS OF TOLUENE TO HELA CELLS

    EPA Science Inventory

    Petroleum contamination of groundwater is widely recognized as a serious environmental problem. Toluene (methylbenzene) occurs naturally in crude oil and is commonly found as a contaminant in the subsurface as a result of waste disposal and storage activities. Biological transf...

  9. Deinococcus radiodurans Engineered for Complete Toluene Degradation Facilitates Cr(VI) Reduction

    SciTech Connect

    Brim, Hassan; Osborne, Jeffrey P.; Kostandarithis, Heather M.; Fredrickson, Jim K.; Wackett, L. P.; Daly, Michael J.

    2006-08-01

    Toluene and other fuel hydrocarbons are commonly found in association with radionuclides at numerous US Department of Energy sites, frequently occurring together with Cr(VI) and other heavy metals. In this study, the extremely radiation-resistant bacterium Deinococcus radiodurans, which naturally reduces Cr(VI) to the less mobile and less toxic Cr(III), was engineered for complete toluene degradation by cloned expression of tod and xyl genes of Pseudomonas putida. The recombinant Tod/Xyl strain showed incorporation of carbon from 14C-labelled toluene into cellular macromolecules and carbon dioxide, in the absence or presence of chronic ionizing radiation. The engineered bacteria were able to oxidize toluene under both minimal and complex nutrient conditions, and recombinant cells reduced Cr(VI) in sediment microcosms. As such, the Tod/Xyl strain could provide a model for examining the reduction of metals coupled to organic contaminant oxidation in aerobic radionuclide-contaminated sediments.

  10. Possible involvement of toluene-2,3-dioxygenase in defluorination of 3-fluoro-substituted benzenes by toluene-degrading Pseudomonas sp. strain T-12

    SciTech Connect

    Renganathan, V. )

    1989-02-01

    Pseudomonas sp. strain T-12 cells in which the toluene-degradative pathway enzymes have been induced can transform many 3-fluoro-substituted benzenes to the corresponding 2,3-catechols with simultaneous elimination of the fluorine substituent as inorganic fluoride. Substrates for this transformation included 3-fluorotoluen, 3-fluorotrifluorotuluene, 3-fluorohalobenzenes, 3-fluoroanisole, and 3-fluorobenzonitrile. While 3-fluorotoluene and 3-fluoroaniole produced only defluorinated catechols, other substrates generated catechol products with and without the fluorine substituent. The steric size of the C-1 substituent affected the ratio of defluorinated to fluorinated catechols formed from a substrate. A mechanism for the defluorination reaction involving toluene-2,3-dioxygenase is proposed.

  11. Direct Link between Toluene Degradation in Contaminated-Site Microcosms and a Polaromonas Strain ?

    PubMed Central

    Sun, Weimin; Xie, Shuguang; Luo, Chunling; Cupples, Alison M.

    2010-01-01

    Stable isotope probing (SIP) was used to identify the aerobic toluene-degrading microorganism in soil microcosms. Several approaches (terminal restriction fragment length polymorphism, 16S rRNA gene sequencing, and quantitative PCR) provided evidence that the microorganism responsible was a member of the genus Polaromonas and could grow on toluene. This microorganism also transformed benzene, but not m-xylene or cis-dichloroethene. PMID:20008173

  12. Dietary and ethanol induced alterations of the toxikokinetics of toluene in humans.

    PubMed Central

    Hjelm, E W; Lf, A; Sato, A; Colmsj, A; Lundmark, B O; Norstrm, A

    1994-01-01

    This study was undertaken to evaluate the influence of a carbohydrate restricted diet, a subacute ethanol intake, and their combined effect on the kinetics of toluene in humans. Eight healthy male volunteers were exposed by inhalation at four different occasions to 200 mg/m3 2H8-toluene for two hours at a work load of 50 W after a one week low (30%) carbohydrate (CH) diet or high (60%) CH diet with (+EtOH) or without (-EtOH) ethanol consumption (47 g ethanol) on the evening before exposure. Deuterium labelled toleune was used to measure the excretion of hippuric acid originating from toluene separately from hippuric acid from other sources. The results indicated that subacute ethanol consumption combined with a carbohydrate restricted diet, may enhance the metabolism of toluene in humans at an exposure concentration of 200 mg/m3. The cumulative amount of hippuric acid excreted in the urine up to 20 hours after the end of exposure in % of the net uptake of toluene was enhanced by 22% (p = 0.05) in the low CH + EtOH compared with the low CH-EtOH experiment. The apparent blood clearance of toluene was 37% higher in the low CH + EtOH than in the low CH-EtOH experiment, but this effect was not statistically significant (p = 0.1). There were no significant changes in the kinetics of toluene as a result of a low carbohydrate diet alone. Neither did subacute ethanol intake without the combination with a carbohydrate restricted diet influence the kinetics of toluene. PMID:8044249

  13. Recovery of organic material by supercritical toluene from Turkish Goynuk oil shale

    SciTech Connect

    Yurum, Y.; Karabakan, A. )

    1990-01-01

    The authors describe the effect of the mineral matrix on the recovery of organic material by supercritical toluene extraction from Turkish Goynuk oil shale. Samples were prepared by successive demineralization procedures to study the interaction of different mineral groups during the supercritical interaction. Extraction experiments were done in a stainless steel autoclave of 75 ml capacity at 350{sup 0}C for 60 minutes. Effect of the toluene/kerogen ratio and reaction time on the recovery of organic material was studied.

  14. HCCI experiments with toluene reference fuels modeled by a semidetailed chemical kinetic model

    SciTech Connect

    Andrae, J.C.G.; Brinck, T.; Kalghatgi, G.T.

    2008-12-15

    A semidetailed mechanism (137 species and 633 reactions) and new experiments in a homogeneous charge compression ignition (HCCI) engine on the autoignition of toluene reference fuels are presented. Skeletal mechanisms for isooctane and n-heptane were added to a detailed toluene submechanism. The model shows generally good agreement with ignition delay times measured in a shock tube and a rapid compression machine and is sensitive to changes in temperature, pressure, and mixture strength. The addition of reactions involving the formation and destruction of benzylperoxide radical was crucial to modeling toluene shock tube data. Laminar burning velocities for benzene and toluene were well predicted by the model after some revision of the high-temperature chemistry. Moreover, laminar burning velocities of a real gasoline at 353 and 500 K could be predicted by the model using a toluene reference fuel as a surrogate. The model also captures the experimentally observed differences in combustion phasing of toluene/n-heptane mixtures, compared to a primary reference fuel of the same research octane number, in HCCI engines as the intake pressure and temperature are changed. For high intake pressures and low intake temperatures, a sensitivity analysis at the moment of maximum heat release rate shows that the consumption of phenoxy radicals is rate-limiting when a toluene/n-heptane fuel is used, which makes this fuel more resistant to autoignition than the primary reference fuel. Typical CPU times encountered in zero-dimensional calculations were on the order of seconds and minutes in laminar flame speed calculations. Cross reactions between benzylperoxy radicals and n-heptane improved the model predictions of shock tube experiments for {phi}=1.0 and temperatures lower than 800 K for an n-heptane/toluene fuel mixture, but cross reactions had no influence on HCCI simulations. (author)

  15. Toluene and ethylbenzene oxidation by purified naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816-4

    SciTech Connect

    Lee, K.; Gibson, D.T.

    1996-09-01

    Naphthalene dioxygenase (NDO) catalyzes the first reaction in the aerobic catabolism of naphthalene by Pseudomonas sp strain NCIB 9816-4. Studies suggest that the enzyme may oxidize aromatic hydrocarbons such as toluene and ethylbenzene at the alkyl substituents rather than the aromatic nucleus. This paper reports on multiple pathways for the oxidation of the methyl and thyl groups of toluene and ethylbenzene by NDO. 47 refs., 6 figs., 3 tabs.

  16. Screening-level human health risk assessment of toluene and dibutyl phthalate in nail lacquers.

    PubMed

    Kopelovich, Luda; Perez, Angela L; Jacobs, Neva; Mendelsohn, Emma; Keenan, James J

    2015-07-01

    Toluene and dibutyl phthalate (DBP) are found in many consumer products, including cosmetics, synthetic fragrances, and nail polish. In 2012, the California Environmental Protection Agency evaluated 25 nail products and found that 83% of the products that claimed to be toluene-free contained toluene at concentrations ranging up to 190,000?ppm, and 14% of the products that claimed to be DBP-free contained DBP at concentrations ranging up to 88,000?ppm. We conducted a preliminary, screening-level analysis of the potential toluene and DBP-related health risks to consumers and professionals based on the medium and maximum concentrations of toluene and DBP presented in the 2012 report and evaluated dermal and inhalation exposure to a salon patron, nail technician, and home user. We concluded that the maximum toluene concentration for the technician and home user scenarios exceeded the California MADL, but the estimated air concentrations did not exceed the Federal or Cal OSHA PEL. The MADL for DBP was exceeded for all user scenarios at both the median and maximum concentrations. Using these highly conservative assumptions, exposures above regulatory limits could possibly occur during routine use of nail products; further research is needed in order to evaluate potential human health risks. PMID:25865937

  17. Microbial Toluene Removal in Hypoxic Model Constructed Wetlands Occurs Predominantly via the Ring Monooxygenation Pathway.

    PubMed

    Martínez-Lavanchy, P M; Chen, Z; Lünsmann, V; Marin-Cevada, V; Vilchez-Vargas, R; Pieper, D H; Reiche, N; Kappelmeyer, U; Imparato, V; Junca, H; Nijenhuis, I; Müller, J A; Kuschk, P; Heipieper, H J

    2015-09-01

    In the present study, microbial toluene degradation in controlled constructed wetland model systems, planted fixed-bed reactors (PFRs), was queried with DNA-based methods in combination with stable isotope fractionation analysis and characterization of toluene-degrading microbial isolates. Two PFR replicates were operated with toluene as the sole external carbon and electron source for 2 years. The bulk redox conditions in these systems were hypoxic to anoxic. The autochthonous bacterial communities, as analyzed by Illumina sequencing of 16S rRNA gene amplicons, were mainly comprised of the families Xanthomonadaceae, Comamonadaceae, and Burkholderiaceae, plus Rhodospirillaceae in one of the PFR replicates. DNA microarray analyses of the catabolic potentials for aromatic compound degradation suggested the presence of the ring monooxygenation pathway in both systems, as well as the anaerobic toluene pathway in the PFR replicate with a high abundance of Rhodospirillaceae. The presence of catabolic genes encoding the ring monooxygenation pathway was verified by quantitative PCR analysis, utilizing the obtained toluene-degrading isolates as references. Stable isotope fractionation analysis showed low-level of carbon fractionation and only minimal hydrogen fractionation in both PFRs, which matches the fractionation signatures of monooxygenation and dioxygenation. In combination with the results of the DNA-based analyses, this suggests that toluene degradation occurs predominantly via ring monooxygenation in the PFRs. PMID:26150458

  18. Liquid Phase adsorption kinetics and equilibrium of toluene by novel modified-diatomite.

    PubMed

    Sheshdeh, Reza Khalighi; Abbasizadeh, Saeed; Nikou, Mohammad Reza Khosravi; Badii, Khashayar; Sharafi, Mohammad Sadegh

    2014-01-01

    The adsorption equilibria of toluene from aqueous solutions on natural and modified diatomite were examined at different operation parameters such as pH, contact time, initial toluene concentration was evaluated and optimum experimental conditions were identified. The surface area and morphology of the nanoparticles were characterized by SEM, BET, XRD, FTIR and EDX analysis. It was found that in order to obtain the highest possible removal of toluene, the experiments can be carried out at pH 6, temperature 25°C, an agitation speed of 200 rpm, an initial toluene concentration of 150 mg/L, a centrifugal rate of 4000 rpm, adsorbent dosage = 0.1 g and a process time of 90 min. The results of this work show that the maximum percentage removal of toluene from aqueous solution in the optimum conditions for NONMD was 96.91% (145.36 mg/g). Furthermore, under same conditions, the maximum adsorption of natural diatomite was 71.45% (107.18 mg/g). Both adsorption kinetic and isotherm experiments were carried out. The experimental data showed that the adsorption follows the Langmuir model and Freundlich model on natural and modified diatomite respectively. The kinetics results were found to conform well to pseudo-second order kinetics model with good correlation. Thus, this study demonstrated that the modified diatomite could be used as potential adsorbent for removal of toluene from aqueous solution. PMID:25614826

  19. Coexposure to toluene and p-xylene in man: uptake and elimination.

    PubMed Central

    Wallén, M; Holm, S; Nordqvist, M B

    1985-01-01

    Eight male subjects were experimentally exposed to toluene, p-xylene, and a combination of toluene and p-xylene in order to study the influence of coexposure and exposure to different levels of each solvent on their uptake and elimination. The exposures were performed for four hours at exposure levels equivalent to or lower than the Swedish threshold limit value for toluene, 300 mg/m3 (3.2 mmol/m3). During and after the exposure, solvent concentrations were measured in blood and in expired air. In addition, the pulmonary ventilation rate was measured during the exposure. Decreases in the blood/end exhaled air concentration ratio were found for both toluene and p-xylene when given in combination compared with separate exposure. The total solvent uptake relative to the exposure level was decreased after exposure to the higher solvent concentrations, and the apparent clearance was also decreased after exposure to the higher concentrations of solvent. Finally, the blood solvent concentrations were lower at the end of the exposure compared with the maximal concentration during each exposure condition. In the kinetics of toluene and p-xylene the total amount of toluene or p-xylene, or both, seems to be of major importance. The change in blood/end exhaled air concentration ratio may indicate an effect of coexposure. PMID:3970869

  20. A detailed kinetic modeling study of toluene oxidation in a premixed laminar flame

    PubMed Central

    Tian, Zhenyu; Pitz, William J.; Fournet, René; Glaude, Pierre-Alexander; Battin-Leclerc, Frédérique

    2013-01-01

    An improved chemical kinetic model for the toluene oxidation based on experimental data obtained in a premixed laminar low-pressure flame with vacuum ultraviolet (VUV) photoionization and molecular beam mass spectrometry (MBMS) techniques has been proposed. The present mechanism consists of 273 species up to chrysene and 1740 reactions. The rate constants of reactions of toluene decomposition, reaction with oxygen, ipso-additions and metatheses with abstraction of phenylic H-atom are updated; new pathways of C4 + C2 species giving benzene and fulvene are added. Based on the experimental observations, combustion intermediates such as fulvenallene, naphtol, methylnaphthalene, acenaphthylene, 2-ethynylnaphthalene, phenanthrene, anthracene, 1-methylphenanthrene, pyrene and chrysene are involved in the present mechanism. The final toluene model leads to an overall satisfactory agreement between the experimentally observed and predicted mole fraction profiles for the major products and most combustion intermediates. The toluene depletion is governed by metathese giving benzyl radicals, ipso-addition forming benzene and metatheses leading to C6H4CH3 radicals. A sensitivity analysis indicates that the unimolecular decomposition via the cleavage of a methyl C-H bond has a strong inhibiting effect, while decomposition via C-C bond breaking, ipso-addition of H-atom to toluene, decomposition of benzyl radicals and reactions related to C6H4CH3 radicals have promoting effect for the consumption of toluene. Moreover, flow rate analysis is performed to illustrate the formation pathways of mono- and polycyclic aromatics. PMID:23762016