Science.gov

Sample records for tetrachloroethylene

  1. Tetrachloroethylene

    Integrated Risk Information System (IRIS)

    EPA / 635 / R - 08 / 011F February 2012 TOXICOLOGICAL REVIEW OF Tetrachloroethylene ( Perchloroethylene ) ( CAS No . 127 - 18 - 4 ) In Support of Summary Information on the Integrated Risk Information System ( IRIS ) February 2012 U.S . Environmental Protection Agency Washington , DC ii DISCLAIMER T

  2. Tetrachloroethylene

    Integrated Risk Information System (IRIS)

    Tetrachloroethylene ( Perchloroethylene ) ; CASRN 127 - 18 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessm

  3. Tetrachloroethylene intoxication in an autoerotic fatality.

    PubMed

    Isenschmid, D S; Cassin, B J; Hepler, B R; Kanluen, S

    1998-01-01

    This case report describes an accidental death due to the inhalation of tetrachloroethylene during an autoerotic episode. Tetrachloroethylene was administered from a can of Fix-A-Flat tire repair. Analysis of tetrachloroethylene was performed using headspace gas chromatography and electron capture detection. The blood tetrachloroethylene concentration of 62 mg/L was consistent with acute tetrachloroethylene intoxication. PMID:9456554

  4. Toxicological profile for tetrachloroethylene. Final report

    SciTech Connect

    Stevens, Y.W.; McCarroll, N.E.; Kearns, E.A.

    1993-04-01

    The Statement was prepared to give you information about tetrachloroethylene and to emphasize the human health effects that may result from exposure to it. The Environmental Protection Agency (EPA) has identified 1,300 sites on its National Priorities List (NPL). Tetrachloroethylene has been found in at least 714 of these sites. As EPA evaluates more sites, the number of sites at which tetrachloroethylene is found may change. The information is important for one to know because tetrachloroethylene may cause harmful health effects and because these sites are potential or actual sources of human exposure to tetrachloroethylene.

  5. HEALTH ASSESSMENT DOCUMENT FOR TETRACHLOROETHYLENE (PERCHLOROETHYLENE)

    EPA Science Inventory

    Tetrachloroethylene (PERC) is believed to exert its adverse effects upon humans via metabolism by the liver. Concern that PERC is likely to be a human carcinogen is based upon the evidence of the National Cancer Institute bioassay, in which PERC induced a statistically significan...

  6. Reduction of hexachloroethane to tetrachloroethylene in groundwater

    NASA Astrophysics Data System (ADS)

    Criddle, Craig S.; McCarty, Perry L.; Claire Elliott, M.; Barker, James F.

    1986-02-01

    At the Canadian Forces Base, Borden, hexachloroethane (HCE) that was introduced into an unconfined sand aquifer disappeared rapidly, with a half-life of about 40 days. Laboratory-scale studies, initiated to help assess the fate of HCE, indicated that it is reductively biotransformed to tetrachloroethylene (PCE) both by aerobic cultures of wastewater microflora and by microcosms containing unhomogenized Borden aquifer material. The results also indicate that the agents involved in the aquifer transformation of HCE to PCE are not homogeneously distributed in the aquifer material.

  7. Residual tetrachloroethylene in dry-cleaned clothes

    SciTech Connect

    Kawauchi, T.; Nishiyama, K.

    1989-04-01

    A large amount of residual tetrachloroethylene (TCE), up to 13.6 mg/g, was found in dry-cleaned clothes. The amounts varied among dry-cleaning establishments as well as with the type of fiber. The causes of these variations are discussed. Air TCE concentrations in the closed environment of dry-cleaning outlets were elevated: the highest reading was 4.8 mg/m3. The expired air of outlet employees also showed an increased level of TCE (average, 36.9 micrograms/m3). Increased air contamination from TCE released from dry-cleaned clothes was also observed in the home of a consumer. To reduce environmental contamination from TCE released from any of these sources, the amount of residual TCE in dry-cleaned clothes should be minimized.

  8. Urinary excretion of tetrachloroethylene (perchloroethylene) in experimental and occupational exposure

    SciTech Connect

    Imbriani, M.; Ghittori, S.; Pezzagno, G.; Capodaglio, E.

    1988-07-01

    Fifteen human volunteers were exposed to tetrachloroethylene (perchloroethylene, tetrachloroethene) vapor at 3.6-316 mg/m3 for 2-4 hr at rest (10 cases) and during light physical exercise (5 cases). Subsequently, 55 workers who were occupationally exposed to tetrachloroethylene in eight commercial dry cleaning facilities were studied (median value, 66 mg/m3; geometric standard deviation, 3.15 mg/m3). In both the experimentally exposed subjects and occupationally exposed workers the urinary concentration of tetrachloroethylene showed a linear relationship to the corresponding environmental time-weighted average concentration. The findings indicate that the urinary concentration of tetrachloroethylene can be used as an appropriate biological exposure indicator. In occupationally exposed subjects performing moderate work, the urinary tetrachloroethylene concentration corresponding to the time-weighted average of the threshold limit value proved to be 120 mcg/L and its 95% lower confidence limit (biological threshold) 100 mcg/L. The effects of workload on the tetrachloroethylene urinary elimination are also accounted for.

  9. SURFACTANT ENHANCED REMEDIATION OF SOIL COLUMNS CONTAMINATED BY RESIDUAL TETRACHLOROETHYLENE

    EPA Science Inventory

    The ability of aqueous surfactant solutions to recover tetrachloroethylene (PCE) entrapped in Ottawa and was evaluated in four column experiments. esidual PCE was emplaced by injecting 14 C-labeled PCE into water-saturated soil columns and displacing the free product with water. ...

  10. SURFACTANT ENHANCED REMEDIATION OF SOIL COLUMNS CONTAMINATED BY RESIDUAL TETRACHLOROETHYLENE

    EPA Science Inventory

    The ability of aqueous surfactant solutions to recover tetrachloroethylene (PCE) entrapped in Ottawa sand was evaluated in four column experiments. Residual PCE was emplaced by injecting 14C-labeled PCE into water-saturated soil columns and displacing the free product ...

  11. IRIS Toxicological Review of Tetrachloroethylene (Perchloroethylene) (External Review Draft)

    EPA Science Inventory

    EPA conducted a peer review of the scientific basis supporting the human health hazard and dose-response assessment of tetrachloroethylene that will appear on the Integrated Risk Information System (IRIS) database. Peer review is meant to ensure that science is used credibly and ...

  12. IRIS TOXICOLOGICAL REVIEW OF TETRACHLOROETHYLENE (PERCHLOROETHYLENE) (INTERAGENCY SCIENCE DISCUSSION DRAFT)

    EPA Science Inventory

    EPA is releasing the draft report, Toxicological Review of Tetrachloroethylene (Perchloroethylene), that was distributed to Federal agencies and White House Offices for comment during the Science Discussion step of the IRIS Assessment...

  13. 40 CFR 721.3560 - Derivative of tetra-chloro-ethy-lene.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Health Administration regulations and set forth at 29 CFR 1910.134, and 30 CFR part 11, respectively, and... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Derivative of tetra-chloro-ethy-lene... Substances § 721.3560 Derivative of tetra-chloro-ethy-lene. (a) Chemical substance and significant new...

  14. 40 CFR 721.3560 - Derivative of tetra-chloro-ethy-lene.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Health Administration regulations and set forth at 29 CFR 1910.134, and 30 CFR part 11, respectively, and... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Derivative of tetra-chloro-ethy-lene... Substances § 721.3560 Derivative of tetra-chloro-ethy-lene. (a) Chemical substance and significant new...

  15. 40 CFR 721.3560 - Derivative of tetra-chloro-ethy-lene.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Health Administration regulations and set forth at 29 CFR 1910.134, and 30 CFR part 11, respectively, and... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Derivative of tetra-chloro-ethy-lene... Substances § 721.3560 Derivative of tetra-chloro-ethy-lene. (a) Chemical substance and significant new...

  16. 40 CFR 721.3560 - Derivative of tetra-chloro-ethy-lene.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Health Administration regulations and set forth at 29 CFR 1910.134, and 30 CFR part 11, respectively, and... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Derivative of tetra-chloro-ethy-lene... Substances § 721.3560 Derivative of tetra-chloro-ethy-lene. (a) Chemical substance and significant new...

  17. 40 CFR 721.3560 - Derivative of tetra-chloro-ethy-lene.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Health Administration regulations and set forth at 29 CFR 1910.134, and 30 CFR part 11, respectively, and... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Derivative of tetra-chloro-ethy-lene... Substances § 721.3560 Derivative of tetra-chloro-ethy-lene. (a) Chemical substance and significant new...

  18. Death due to acute tetrachloroethylene intoxication in a chronic abuser.

    PubMed

    Amadasi, Alberto; Mastroluca, Lavinia; Marasciuolo, Laura; Caligara, Marina; Sironi, Luca; Gentile, Guendalina; Zoja, Riccardo

    2015-05-01

    Volatile substances are used widespread, especially among young people, as a cheap and easily accessible drug. Tetrachloroethylene is one of the solvents exerting effects on the central nervous system with experiences of disinhibition and euphoria. The case presented is that of a 27-year-old female, found dead by her father at home with cotton swabs dipped in the nostrils. She was already known for this type of abuse and previously admitted twice to the hospital for nonfatal acute poisonings. The swabs were still soaked in tetrachloroethylene. Toxicological and histological investigations demonstrated the presence of an overlap between chronic intake of the substance (with high concentrations in sites of accumulation, e.g., the adipose tissue, and contemporary tissue damage, as histologically highlighted) and acute intoxication as final cause of death, with a concentration of 158 mg/L in cardiac blood and 4915 mg/kg in the adipose tissue. No other drugs or medicines were detected in body fluids or tissues, and to our knowledge, this is the highest concentration ever detected in forensic cases. This peculiar case confirms the toxicity of this substance and focuses on the importance of complete histological and toxicological investigations in the distinction between chronic abuse and acute intoxication. PMID:25605280

  19. Metalloporphyrin solubility: a trigger for catalyzing reductive dechlorination of tetrachloroethylene.

    PubMed

    Dror, Ishai; Schlautman, Mark A

    2004-02-01

    Metalloporphyrins are well known for their electron-transfer roles in many natural redox systems. In addition, several metalloporphyrins and related tetrapyrrole macrocycles complexed with various core metals have been shown to catalyze the reductive dechlorination of certain organic compounds, thus demonstrating the potential for using naturally occurring metalloporphyrins to attenuate toxic and persistent chlorinated organic pollutants in the environment. However, despite the great interest in reductive dechlorination reactions and the wide variety of natural and synthetic porphyrins currently available, only soluble porphyrins, which comprise a small fraction of this particular family of organic macrocycles, have been used as electron-transfer shuttles in these reactions. Results from the present study clearly demonstrate that metalloporphyrin solubility is a key factor in their ability to catalyze the reductive dechlorination of tetrachloroethylene and its daughter compounds. Additionally, we show that certain insoluble and nonreactive metalloporphyrins can be activated as catalysts merely by changing solution conditions to bring about their dissolution. Furthermore, once a metalloporphyrin is fully dissolved and activated, tetrachloroethylene transformation proceeds rapidly, giving nonchlorinated and less toxic alkenes as the major reaction products. Results from the present study suggest that if the right environmental conditions exist or can be created, specific metalloporphyrins may provide a solution for cleaning up sites that are contaminated with chlorinated organic pollutants. PMID:14982369

  20. Visual contrast sensitivity in children exposed to tetrachloroethylene.

    PubMed

    Storm, Jan E; Mazor, Kimberly A; Aldous, Kenneth M; Blount, Benjamin C; Brodie, Scott E; Serle, Janet B

    2011-01-01

    This study examined relationships between indoor air, breath, and blood tetrachloroethylene (perc) levels and visual contrast sensitivity (VCS) among adult and child residents of buildings with or without a colocated dry cleaner using perc. Decreasing trends in proportions of adults or children with maximum VCS scores indicated decreased VCS at a single spatial frequency (12 cycles per degree [cpd]) among children residing in buildings with colocated dry cleaners when indoor air perc level averaged 336 ?g/m³; breath perc level averaged 159.5 ?g/m³; and blood perc level averaged 0.51 ?g/L. Adjusted logistic regression indicated that increases in indoor air, breath, and blood perc levels among all child participants significantly increased the odds for decreased VCS at 12 cpd. Adult VCS was not significantly decreased by increasing indoor air, breath, or blood perc level. These results suggest that elevated residential perc exposures may alter children's VCS, a possible subclinical central nervous system effect. PMID:21864105

  1. Reductive dechlorination of tetrachloroethylene (PCE) catalyzed by cyanocobalamin

    SciTech Connect

    Habeck, B.D.; Sublette, K.L.

    1995-12-31

    A biomimetic system has been developed for the reductive dechlorination of tetrachloroethylene (PCE). PCE was dechlorinated to trichloroethylene (TCE) and 1,2-dichloroethylene (DCE) in the presence of dithiothreitol or Ti (III) citrate and catalytic amounts of cyanocobalamin in both homogeneous reaction mixtures and packed bed reactor systems. In packed bed reactors with Ti (III) citrate as the reductant, PCE (0.18 mM) conversion averaged 55% at residence times of 1.75 and 3.5 h. The product distribution was 94% TCE and 6% DCE at the lower residence time. DCE formation increased to 45% at the higher residence time. No reduction of PCE was observed in the absence of cyanocobalamin. This system may be useful as a means of pretreatment of halogenated aliphatic hydrocarbons in advance of biological treatment.

  2. RESPONSE TO ISSUES AND DATA SUBMISSIONS ON THE CARCINOGENICITY OF TETRACHLOROETHYLENE (PERCHLOROETHYLENE)

    EPA Science Inventory

    The scientific debate over the potential carcinogenicity of tetrachloroethylene (perchloroethylene, perc, PCE) spans several years. his document reviews the issues considered by the EPA's Science Advisory Board (SAB) during its review of the Draft Addendum to the Health Assessmen...

  3. SURFACTANT-ENHANCED SOLUBILIZATION OF TETRACHLOROETHYLENE AND DEGRADATION PRODUCTS IN PUMP AND TREAT REMEDIATION

    EPA Science Inventory

    Experiments were conducted to investigate the enhanced solubilization of tetrachloroethylene (PCE), trichloroethylene (TCE), and 1,2-dichloroethylene (DCE) in nonionic surfactant solutions of Triton X-100, Brij-30, Igepal CA-720, and Tergitol NP-10 (alkylpolyoxyethylenes). urfact...

  4. Indoor tetrachloroethylene levels and determinants in Paris dwellings.

    PubMed

    Roda, Célina; Kousignian, Isabelle; Ramond, Anna; Momas, Isabelle

    2013-01-01

    There is growing public health concern about indoor air quality. Tetrachloroethylene (PERC), a chlorinated volatile organic compound widely used as a solvent in dry cleaning facilities, can be a residential indoor air pollutant. As part of an environmental investigation included in the PARIS (Pollution and asthma Risk: an Infant Study) birth cohort, this study firstly aimed to document domestic PERC levels, and then to identify the factors influencing these levels using standardized questionnaires about housing characteristics and living conditions. Air samples were collected in the child's bedroom over one week using passive devices when infants were 1, 6, 9, and 12 months. PERC was identified and quantified by gas chromatography/mass spectrometry. PERC annual domestic level was calculated by averaging seasonal levels. PERC was omnipresent indoors, annual levels ranged from 0.6 to 124.2 ?g/m3. Multivariate linear and logistic regression models showed that proximity to dry cleaning facilities, do-it-yourself activities (e.g.: photographic development, silverware), presence of air vents, and building construction date (<1945) were responsible for higher domestic levels of PERC. This study, conducted in an urban context, provides helpful information on PERC contamination in dwellings, and identifies parameters influencing this contamination. PMID:23127492

  5. Prenatal and Early Childhood Exposure to Tetrachloroethylene and Adult Vision

    PubMed Central

    Getz, Kelly D.; Janulewicz, Patricia A.; Rowe, Susannah; Weinberg, Janice M.; Winter, Michael R.; Martin, Brett R.; Vieira, Veronica M.; White, Roberta F.

    2012-01-01

    Background: Tetrachloroethylene (PCE; or perchloroethylene) has been implicated in visual impairments among adults with occupational and environmental exposures as well as children born to women with occupational exposure during pregnancy. Objectives: Using a population-based retrospective cohort study, we examined the association between prenatal and early childhood exposure to PCE-contaminated drinking water on Cape Cod, Massachusetts, and deficits in adult color vision and contrast sensitivity. Methods: We estimated the amount of PCE that was delivered to the family residence from participants’ gestation through 5 years of age. We administered to this now adult study population vision tests to assess acuity, contrast sensitivity, and color discrimination. Results: Participants exposed to higher PCE levels exhibited lower contrast sensitivity at intermediate and high spatial frequencies compared with unexposed participants, although the differences were generally not statistically significant. Exposed participants also exhibited poorer color discrimination than unexposed participants. The difference in mean color confusion indices (CCI) was statistically significant for the Farnsworth test but not Lanthony’s D-15d test [Farnsworth CCI mean difference = 0.05, 95% confidence interval (CI): 0.003, 0.10; Lanthony CCI mean difference = 0.07, 95% CI: –0.02, 0.15]. Conclusions: Prenatal and early childhood exposure to PCE-contaminated drinking water may be associated with long-term subclinical visual dysfunction in adulthood, particularly with respect to color discrimination. Further investigation of this association in similarly exposed populations is necessary. PMID:22784657

  6. Anaerobic and aerobic/anaerobic treatment for tetrachloroethylene (PCE)

    SciTech Connect

    Guiot, S.R.; Kuang, X.; Beaulieu, C.; Corriveau, A.; Hawari, J.

    1995-12-31

    The reductive dechlorination of tetrachloroethylene (PCE) was studied in a laboratory-scale upflow anaerobic sludge bed (UASB) reactor using sucrose, lactic acid, propionic acid, and methanol as cosubstrates. Parallel experiments were performed to compare the novel coupled anaerobic/aerobic reactor with the conventional UASB. More than 95% of PCE was transformed in both reactors. Complete dechlorination in the UASB reactor decreased with increased PCE loading, declining from 45 to 19%. Minor concentrations of trichloroethylene and of undegraded PCE were detected in the liquid effluent throughout the experiment. Dichloroethylene was the dominant metabolite of all PCE loads, while vinyl chloride was not detected in the liquid effluent. For both reactor types, increased PCE loading led to lower chemical oxygen demand (COD) removal rates caused by a decrease in the specific acetate utilization rate. This, combined with a decline of the specific total PCE dechlorination activity, may cause long-term stability problems in the UASB reactor. The coupled reactor demonstrated higher specific PCE degradation rates at all PCE loading levels and a higher specific total dechlorination rate at the highest PCE loading. These characteristics may promote long-term stability of the coupled reactor system.

  7. [Measurement of tetrachloroethylene emissions at dry-cleaning establishments and their relation to MPEL values].

    PubMed

    Ponsold, B; Kath, H

    1990-10-01

    The existing tetrachloroethylene was measured with the gas chromatographic method (FID detector), the spectro-photometric method (ICI Manual) based on the Fujiwava reaction, and using the gas detector (as approximation). The results obtained, however, do not differ in principle. Contaminated room air and leakages are the main sources of tetrachloroethylene at the dry cleaners and prevent the lowering of the traditional MEC value set at 100 mgm-3. Therefore the trend of diminishing the emission of exhaust air form machines can be neglected as factor in a general assessment. From the point of process engineering the problem of absorption of tetrachloroethylene in the indoor air with in the concentration range of 50 to 500 mgm-3 will be in the foreground. The excess of the MEC values is reflected by excess of the MIC values. It is difficult to keep to the MIC value within a distance of less than 50 m from the affected area of a dry cleaner. PMID:2284811

  8. Tetrachloroethylene Exposure and Bladder Cancer Risk: A Meta-Analysis of Dry-Cleaning-Worker Studies

    PubMed Central

    Vlaanderen, Jelle; Straif, Kurt; Ruder, Avima; Blair, Aaron; Hansen, Johnni; Lynge, Elsebeth; Charbotel, Barbara; Loomis, Dana; Kauppinen, Timo; Kyyronen, Pentti; Pukkala, Eero; Weiderpass, Elisabete

    2014-01-01

    Background: In 2012, the International Agency for Research on Cancer classified tetrachloroethylene, used in the production of chemicals and the primary solvent used in dry cleaning, as “probably carcinogenic to humans” based on limited evidence of an increased risk of bladder cancer in dry cleaners. Objectives: We assessed the epidemiological evidence for the association between tetrachloroethylene exposure and bladder cancer from published studies estimating occupational exposure to tetrachloroethylene or in workers in the dry-cleaning industry. Methods: Random-effects meta-analyses were carried out separately for occupational exposure to tetrachloroethylene and employment as a dry cleaner. We qualitatively summarized exposure–response data because of the limited number of studies available. Results: The meta-relative risk (mRR) among tetrachloroethylene-exposed workers was 1.08 (95% CI: 0.82, 1.42; three studies; 463 exposed cases). For employment as a dry cleaner, the overall mRR was 1.47 (95% CI: 1.16, 1.85; seven studies; 139 exposed cases), and for smoking-adjusted studies, the mRR was 1.50 (95% CI: 0.80, 2.84; 4 case–control studies). Conclusions: Our meta-analysis demonstrates an increased risk of bladder cancer in dry cleaners, reported in both cohort and case–control studies, and some evidence for an exposure–response relationship. Although dry cleaners incur mixed exposures, tetrachloroethylene could be responsible for the excess risk of bladder cancer because it is the primary solvent used and it is the only chemical commonly used by dry cleaners that is currently identified as a potential bladder carcinogen. Relatively crude approaches in exposure assessment in the studies of “tetrachloroethylene-exposed workers” may have attenuated the relative risks. Citation: Vlaanderen J, Straif K, Ruder A, Blair A, Hansen J, Lynge E, Charbotel B, Loomis D, Kauppinen T, Kyyronen P, Pukkala E, Weiderpass E, Guha N. 2014. Tetrachloroethylene exposure and bladder cancer risk: a meta-analysis of dry-cleaning-worker studies. Environ Health Perspect 122:661–666;?http://dx.doi.org/10.1289/ehp.1307055 PMID:24659585

  9. SUBCHRONIC TOXICITY OF TETRACHLOROETHYLENE (PERCHLOROETHYLENE) ADMINISTERED IN THE DRINKING WATER OF RATS

    EPA Science Inventory

    The study provides data on the effects of tetrachloroethylene in drinking solutions. The acute oral LD(50) was determined in male and female Charles River rats and found to be 3835 mg/kg for males and 3005 mg/kg for females. Male and female rats received theoretical daily doses o...

  10. SUMMARY REPORT OF THE PEER REVIEW WORKSHOP ON THE NEUROTOXICITY OF TETRACHLOROETHYLENE (PERCHLOROETHYLENE) DISCUSSION PAPER

    EPA Science Inventory

    The report, Summary Report of the Peer Review Workshop on the Neurotoxicity of Tetrachloroethylene (Perchloroethylene) Discussion, summarizes the discussions at a February 25, 2004, workshop that brought together recognized scientific experts to engage in a public discussi...

  11. Continuous Determination of High-Vapor Phase Concentrations of Tetrachloroethylene Using On-Line Mass Spectrometry

    EPA Science Inventory

    A method was developed to determine the vapor concentration of tetrachloroethylene (PCE) at and below its equilibrium vapor phase concentration, 168,000 ?g/L (25°C). Vapor samples were drawn by vacuum into a six-port sampling valve and injected through a jet separator into an io...

  12. EVALUATION OF GEOPHYSICAL METHODS FOR THE DETECTION OF SUBSURFACE TETRACHLOROETHYLENE (PCE) IN CONTROLLED SPILL EXPERIMENTS

    EPA Science Inventory

    Tetrachloroethylene (PCE), typically used as a dry cleaning solvent, is a predominant contaminant in the subsurface at Superfund Sites. PCE is a dense non-aqueous phase liquid (DNAPL) that migrates downward into the earth, leaving behind areas of residual saturation and free prod...

  13. Response to issues and data submissions on the carcinogenicity of tetrachloroethylene (perchloroethylene)

    SciTech Connect

    Parker, J.C.

    1991-09-01

    The scientific debate over the potential carciongenicity of tetrachloroethylene (perchloroethylene, perc, PCE) spans several years. The document reviews the issues considered by the EPA`s Science Advisory Board (SAB) during its review of the Draft Addenedum to the Health Assessment Document for Tetrachloroethylene (1986) and discusses relevant research data published between 1986 and early 1991. The topics include three tumor end points observed in rodents: (1) hepatocellular carcinoma in male and female mice, (2) renal tubule neoplasia in male rats, and (3) mononuclear cell leukemia in male and female rats, and data on metabolism, metagenicity, peroxisome proliferation, and alpha-2u-globulin. EPA`s recommended weight-of-evidence classification of perc is B2, probable human carcinogen.

  14. Tetrachloroethylene exposure and risk of schizophrenia: offspring of dry cleaners in a population birth cohort, preliminary findings.

    PubMed

    Perrin, Mary C; Opler, Mark G; Harlap, Susan; Harkavy-Friedman, Jill; Kleinhaus, Karine; Nahon, Daniella; Fennig, Shmuel; Susser, Ezra S; Malaspina, Dolores

    2007-02-01

    Tetrachloroethylene is a solvent used in dry cleaning with reported neurotoxic effects. Using proportional hazard methods, we examined the relationship between parental occupation as a dry cleaner and risk for schizophrenia in a prospective population-based cohort of 88,829 offspring born in Jerusalem from 1964 through 1976, followed from birth to age 21-33 years. Of 144 offspring whose parents were dry cleaners, 4 developed schizophrenia. We observed an increased incidence of schizophrenia in offspring of parents who were dry cleaners (RR=3.4, 95% CI, 1.3-9.2, p=0.01). Tetrachloroethylene exposure warrants further investigation as a risk factor for schizophrenia. PMID:17113267

  15. Role of methanogenic and sulfate-reducing bacteria in the reductive dechlorination of tetrachloroethylene in mixed culture

    SciTech Connect

    Cabirol, N.; Perrier, J.; Jacob, F.

    1996-05-01

    Tetrachloroethylene (perchloroethylene, PCE) is widely used in many industries and particularly as a degreasing and dry-cleaning solvent. It is commonly found as a groundwater contaminant and because of its carcinogenic properties is considered a pollutant, which must be eliminated by proper treatment. This research examines the role of a mixed culture in PCE dechlorination at high concentration from an ecological point of view. The respective role of sulfate-reducing and methaogenic bacteria in tetrachloroethylene cechlorination is studied. 19 refs., 5 figs., 2 tabs.

  16. Use of Mini-Sprinklers to Strip Trichloroethylene and Tetrachloroethylene from Contaminated Ground Water.

    SciTech Connect

    Brerisford, Yvette, C.; Bush, Parshall, B.; Blake, John, I.; Bayer, Cassandra L.

    2003-01-01

    Berisford, Y.C., P.B. Bush, J.I. Blake, and C.L. Bayer. 2003. Use of mini-sprinklers to strip trichloroethylene and tetrachloroethylene from contaminated ground water. J. Env. Qual. 32:801-815. Three low-volume mini-sprinklers were tested for their efficacy to strip trichloroethylene (TCE) and tetrachloroethylene (PCE) from water. Deionized water spiked with TCE and PCE was pumped through a mini-sprinkler supported on top of a 1.8-m-tall. Water was collected in collection vessels at 0.61 and 1.22 m above the ground on support columns that were spaced at 0.61-m intervals from the riser base, and samples were composited per height and distance from the riser. Overall, air-stripping reduced dissolved concentrations of TCE and PCE by 99.1 to 100 and 96.9 to 100%, respectively. Mini-sprinklers offer the advantages of (i) easy setup in series that can be used on practically any terrain; (ii) operation over a long period of time that does not threaten aquifer depletion; (iii) use in small or confined aquifers in which the capacity is too low to support large irrigation or pumping systems; and (iv) use in forests in which the small, low-impact droplets of the mini-sprinklers do not damage bark and in which trees can help manage (via evapotransporation) excess waste water.

  17. SURFACTANT ENHANCED RECOVERY OF TETRACHLOROETHYLENE FROM A POROUS MEDIUM CONTAINING LOW PERMEABILITY LENSES. 1. EXPERIMENTAL STUDIES. (R825409)

    EPA Science Inventory

    Abstract

    A matrix of batch, column and two-dimensional (2-D) box experiments was conducted to investigate the coupled effects of rate-limited solubilization and layering on the entrapment and subsequent recovery of a representative dense NAPL, tetrachloroethylene (PCE)...

  18. Can we still miss tetrachloroethylene-induced lung disease? The emperor returns in new clothes.

    PubMed

    Tanios, Maged A; El Gamal, Hesham; Rosenberg, Beth J; Hassoun, Paul M

    2004-01-01

    Hypersensitivity pneumonitis (HP) is a complex syndrome of varying intensity and clinical presentation, and has been described in association with numerous exposures. Early diagnosis is essential to limit irreversible lung damage. We describe a case of HP in a 42-year-old dry cleaner following occupational exposure to tetrachloroethylene (TCE). The diagnosis was suspected based on clinical presentation and radiographic studies, and confirmed by lung biopsy. A review of the literature reveals that HP has not been reported previously as an occupational lung disease in dry cleaners. We conclude that HP should be suspected in dry cleaners presenting with pulmonary complaints, and TCE should be considered as a potential trigger of disease. The spectrum of TCE-related occupational diseases and the diagnosis of HP are reviewed. PMID:15627878

  19. Exposure to Tetrachloroethylene-Contaminated Drinking Water and the Risk of Pregnancy Loss

    PubMed Central

    Aschengrau, Ann; Weinberg, Janice M.; Gallagher, Lisa G.; Winter, Michael R.; Vieira, Veronica M.; Webster, Thomas F.; Ozonoff, David M.

    2010-01-01

    There is little information on the impact of solvent-contaminated drinking water on pregnancy outcomes. This retrospective cohort study examined whether maternal exposure to tetrachloroethylene (PCE) - contaminated drinking water in the Cape Cod region of Massachusetts influenced the risk of clinically recognized pregnancy loss. The study identified exposed (n=959) and unexposed (1,087) women who completed a questionnaire on their residential and pregnancy histories, and confounding variables. Exposure was estimated using water distribution system modeling software. No meaningful associations were seen between PCE exposure level and the risk of clinically recognized pregnancy loss at the exposure levels experienced by the study population. Because PCE remains a common water contaminant, it is important to continue monitoring its impact on women and their pregnancies. PMID:20613966

  20. Reductive degradation of tetrachloroethylene by biogenic and chemogenic carbonate green rust

    NASA Astrophysics Data System (ADS)

    Lee, N.; Bae, S.; Lee, W.

    2013-12-01

    Degradation of contaminants with microorganisms and natural soil minerals has been extensively studied for understanding of complex interaction mechanism in bio-geochemical reactions. In this study, we conducted a batch experiment to demonstrate the different degradation mechanism of tetrachloroethylene (PCE) in biogenic and chemogenic carbonate green rust suspensions. Both green rusts were characterized by measurement of Fe(II) content, BET, X-ray diffraction, and transmission electron spectroscopy before and after the reaction. The effects of mineral loading, initial concentration of PCE, and solution pH on the degradation kinetic of PCE were investigated. The concentration profiles of transformation products were also monitored to investigate the different degradation mechanism of PCE by biogenic and chemogenic green rust.

  1. In situ study of tetrachloroethylene bioremediation with different microbial community shifting.

    PubMed

    Bhowmik, Arpita; Asahino, Akane; Shiraki, Takanori; Nakamura, Kohei; Takamizawa, Kazuhiro

    2009-12-14

    In this study, we characterized the microbial community in groundwater contaminated with tetrachloroethylene (PCE) in order to evaluate the intrinsic and enhanced bioremediation of PCE. Variable behaviour of microbes was observed between natural attenuation and biostimulation, where the latter was mediated by the addition of nutrients. Results of denaturing gradient gel electrophoresis (DGGE) of amplified bacterial 16S rDNA in the case of biostimulation showed that the microbial community was dominated by species phylogenetically related to the beta-proteobacteria. With regards to natural attenuation, sequences were found belonging to multiple species of different phyla. Interestingly, we found sequences that matched the species belonging to the Firmicutes, which contains bacteria capable of reductive dehalogenation. These results suggest the possibility of the presence of some Clostridium-like PCE degraders within the microbial community when using bioremediation or biostimulation. PMID:20184006

  2. Integrating Address Geocoding, Land Use Regression, and Spatiotemporal Geostatistical Estimation for Groundwater Tetrachloroethylene

    PubMed Central

    Messier, Kyle P.; Akita, Yasuyuki; Serre, Marc L.

    2012-01-01

    Geographic Information Systems (GIS) based techniques are cost-effective and efficient methods used by state agencies and epidemiology researchers for estimating concentration and exposure. However, budget limitations have made statewide assessments of contamination difficult, especially in groundwater media. Many studies have implemented address geocoding, land use regression, and geostatistics independently, but this is the first to examine the benefits of integrating these GIS techniques to address the need of statewide exposure assessments. A novel framework for concentration exposure is introduced that integrates address geocoding, land use regression (LUR), below detect data modeling, and Bayesian Maximum Entropy (BME). A LUR model was developed for Tetrachloroethylene that accounts for point sources and flow direction. We then integrate the LUR model into the BME method as a mean trend while also modeling below detects data as a truncated Gaussian probability distribution function. We increase available PCE data 4.7 times from previously available databases through multistage geocoding. The LUR model shows significant influence of dry cleaners at short ranges. The integration of the LUR model as mean trend in BME results in a 7.5% decrease in cross validation mean square error compared to BME with a constant mean trend. PMID:22264162

  3. Reductive dechlorination of tri- and tetrachloroethylenes depends on transition from aerobic to anaerobic conditions

    SciTech Connect

    Kastner, M. )

    1991-07-01

    Aerobic enrichment cultures from contaminated groundwaters dechlorinated trichloroethylene (TCE) (14.6 mg/liter; 111 {mu}mol/liter) and tetrachloroethylene (PCE) (16.2 mg/liter; 98 {mu}mol/liter) reductively within 4 days after the transition from aerobic to anaerobic conditions. The transformation products were equimolar amounts of cis-1,2-dichloroethylene and traces of 1,1-dichloroethylene. No other chlorinated product and no methane were detected. The change was accompanied by the release of sulfide, which caused a decrease in the redox potential from 0 - {minus}150 mV. In sterile control experiments, sulfide led to the abiotic formation of traces of 1,1-dichloroethylene without cis-1,2-dichloroethylene production. The reductive dechlorination of PCE via TCE depended on these specific transition conditions after consumption of the electron acceptor oxygen or nitrate. Repeated feeding of TCE or PCE to cultures after the change to anaerobic conditions yielded no further dechlorination. Only aerobic subcultures with an air/liquid ratio of 1:4 maintained dechlorination activities; anaerobic subcultures showed no transformation. Bacteria from noncontaminated sites showed no reduction under the same conditions.

  4. Adult Neuropsychological Performance Following Prenatal and Early Postnatal Exposure to Tetrachloroethylene (PCE)-contaminated Drinking Water

    PubMed Central

    Janulewicz, Patricia A; White, Roberta F; Martin, Brett M; Winter, Michael R; Weinberg, Janice M; Vieira, Veronica; Aschengrau, Ann

    2012-01-01

    This population-based retrospective cohort study examined adult performance on a battery of neuropsychological tests in relation to prenatal and early postnatal exposure to tetrachloroethylene (PCE)-contaminated drinking water on Cape Cod, Massachusetts. Subjects were identified through birth records from 1969 through 1983. Exposure was modeled using pipe network information from town water departments, a PCE leaching and transport algorithm, EPANet water flow modeling software, and a Geographic Information System (GIS). Results of crude and multivariate analyses among 35 exposed and 28 unexposed subjects showed no association between prenatal and early postnatal exposure and decrements on tests that assess abilities in the domains of omnibus intelligence, academic achievement or language. The results were suggestive of an association between prenatal and early postnatal PCE exposure and diminished performance on tests that assessed abilities in the domains of visuospatial functioning, learning and memory, motor, attention and mood. Because the sample size was small, most findings were not statistically significant. Future studies with larger sample sizes should be conducted to further define the neuropsychological consequences of early developmental PCE exposure. PMID:22522125

  5. Tetrachloroethylene-contaminated drinking water and the risk of breast cancer.

    PubMed Central

    Aschengrau, A; Paulu, C; Ozonoff, D

    1998-01-01

    We conducted a population-based case-control study to evaluate the relationship between cases of breast cancer and exposure to tetrachloroethylene (PCE) from public drinking water ( n = 258 cases and 686 controls). Women were exposed to PCE when it leached from the vinyl lining of water distribution pipes. The relative delivered dose was estimated using an algorithm that accounted for residential history, water flow, and pipe characteristics. Only small increases in breast cancer risk were seen among ever-exposed women either when latency was ignored or when 5 to 15 years of latency was considered. No or small increases were seen among highly exposed women either when latency was ignored or when 5 years of latency was considered. However, the adjusted odds ratios (ORs) were more increased for highly exposed women when 7 and 9 years of latency, respectively, were considered (OR 1.5 95% CI 0.5-4.7 and OR 2.3, 95% CI 0.6-8.8 for the 75th percentile, and OR 2.7, 95% CI 0.4-15.8 and OR 7.6, 95% CI 0.9-161.3 for the 90th percentile). The number of highly exposed women was too small for meaningful analysis when more years of latency were considered. Because firm conclusions from these data are limited, we recently undertook a new study with a large number of more recently diagnosed cases. PMID:9703477

  6. Cultivation-independent identification of candidate dehalorespiring bacteria in tetrachloroethylene degradation.

    PubMed

    Yamasaki, Shouhei; Nomura, Nobuhiko; Nakajima, Toshiaki; Uchiyama, Hiroo

    2012-07-17

    Tetrachloroethylene (PCE) is one of the major pollutants and is degraded by dissimilation by dehalorespiring bacteria. The dehalorespiring bacteria are anaerobic, and most cannot be cultured by conventional agar plating methods. Therefore, to identify the dehalorespiring bacteria that dissimilatively degrade PCE, a cultivation-independent method is required. To achieve accurate and detailed analysis of the bacteria, we developed a novel stable isotope probing (SIP) method. This technique involves 2 steps, namely, a labeling step, in which a labeled carbon source is incorporated into the sample's DNA, and an analysis step, in which the DNA is isolated, fractionated, and analyzed by polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE). Subsequently, 16S rRNA sequencing and phylogenetic analysis were performed to identify the bacteria. Initially, we examined the effectiveness of this method by using Dehalococcoides ethenogenes 195 consortium as a defined model system. The result indicated the method was able to correctly identify the dehalorespiring bacteria D. ethenogenes 195 from the consortium. Moreover, in an artificially contaminated microcosm experiment, we confirmed that the method was able to identify the indigenous dehalorespiring bacteria Dehalobacter sp. Thus, we concluded that this novel method was a feasible tool to identify dehalorespiring bacteria in natural environments. PMID:22708499

  7. Trichloroethylene and tetrachloroethylene elimination from the air by means of a hybrid bioreactor with immobilized biomass.

    PubMed

    Tabernacka, Agnieszka; Zborowska, Ewa

    2012-09-01

    Two-phase bioreactors consisting of bacterial consortium in suspension and sorbents with immobilized biomass were used to treat waste air containing chlorinated ethenes, trichloroethylene (TCE) and tetrachloroethylene (PCE). Synthetic municipal sewage was used as the medium for bacterial growth. The system was operated with loadings in the range 1.48-4.76 gm(-3)h(-1) for TCE and 1.49-5.96 gm(-3)h(-1) for PCE. The efficiency of contaminant elimination was 55-86% in the bioreactor with wood chips and 33-89% in the bioreactor filled with zeolite. The best results were observed 1 week after the pollutant loading was increased. However, in these conditions, the stability of the process was not achieved. In the next 7 days the effectiveness of the system decreased. Contaminant removal efficiency, enzymatic activity and the biomass content were all diminished. The system was working without being supplied with additional hydrocarbons as the growth-supporting substrates. It is assumed that ammonia produced during the transformation of wastewater components induced enzymes for the cometabolic degradation of TCE and PCE. However, the evaluation of nitrogen compound transformations in the system is difficult due to the sorption on carriers and the combined processes of nitrification and the aerobic denitrification. An applied method of air treatment is advantageous from both economic and environmental point of views. PMID:22621954

  8. Biological degradation of tetrachloroethylene in methanogenic conditions. Final report, 12 July 1991-11 January 1993

    SciTech Connect

    Gossett, J.M.; DiStefano, T.D.; Stover, M.A.

    1994-06-01

    Research objective: investigate anaerobic biodegradation of perchloroethylene (PCE). Specific objectives: determine if the presence of PCE is necessary to sustain dechlorination of vinyl chloride (VC), delineate the role of hydrogen (H2) in PCE reductive dechlorination, investigate the ability of the high level PCE/methanol (MeOH) culture to utilize low levels of PCE, and determine the applicability of an Anaerobic Attached-film Expanded-bed (AAFEB) reactor to achieve PCE dechlorination. The investigators determined: by using a VC-fed culture unable to sustain ETH production, that the presence of PCE is required to sustain VC dechlorination, H2 acts as the electron donor directly used for the reductive dechlorination of PCE to ethene, the PCE/MeOH culture was able to use ppb levels of PCE due to the small requirement for electron donor (H2) by the culture, and that the loss of the dechlorinating biomass from the support matrix, and/or the inability of the culture to support PCE dechlorination at low concentrations, led to the failure of the AAFEB reactor system. Biodegradation, Tetrachloroethylene, Methanogenesis, Fixed-film reactors, Biological treatment, Chlorinated hydrocarbons.

  9. [Effects of soil compositions on sorption and desorption behavior of tetrachloroethylene in soil].

    PubMed

    Hu, Lin; Qiu, Zhao-Fu; He, Long; Dou, Ying; Lü, Shu-Guang; Sui, Qian; Lin, Kuang-Fei

    2013-12-01

    Sorption and desorption play an important role in the transport and the fate of tetrachloroethylene (PCE) in soil. In order to examine influences of different soil compositions on PCE sorption-desorption, equilibrium batch experiments were carried out using four sorbents (natural soil with 2.23% total organic carbon (TOC), H2O2-treated soil, 375 degrees C-treated soil and 600 degrees C-treated soil) with different initial PCE liquid concentrations (c0). The effects of main parameters (TOC, soft carbon, hard carbon, minerals, c0) on PCE sorption-desorption were investigated. At 16 degrees C, when c0 was increased from 5 to 80 mg x L(-1), the results showed that sorption and desorption isotherms of PCE on four sorbents can be best described by the Freundlich model (r2 > 0.96). The sorption contribution rate of SOM was higher than 60% in natural soil, and hard carbon was the main influencing factor,while the desorption contribution rate of SOM was close to that of minerals in natural soil, and soft carbon accounted for more than 80% in the total desorption contribution rate of SOM. In addition, the higher the c0, the higher the sorption contribution rate of PCE in hard carbon and desorption contribution rate of PCE in soft carbon and minerals were. Moreover, desorption of PCE from four sorbents exhibited hysteresis, and hard carbon played a remarkable role in the hysteresis of natural soil. PMID:24640901

  10. Adult neuropsychological performance following prenatal and early postnatal exposure to tetrachloroethylene (PCE)-contaminated drinking water.

    PubMed

    Janulewicz, Patricia A; White, Roberta F; Martin, Brett M; Winter, Michael R; Weinberg, Janice M; Vieira, Veronica; Aschengrau, Ann

    2012-01-01

    This population-based retrospective cohort study examined adult performance on a battery of neuropsychological tests in relation to prenatal and early postnatal exposure to tetrachloroethylene (PCE)-contaminated drinking water on Cape Cod, Massachusetts. Subjects were identified through birth records from 1969 through 1983. Exposure was modeled using pipe network information from town water departments, a PCE leaching and transport algorithm, EPANet water flow modeling software, and a Geographic Information System (GIS). Results of crude and multivariate analyses among 35 exposed and 28 unexposed subjects showed no association between prenatal and early postnatal exposure and decrements on tests that assess abilities in the domains of omnibus intelligence, academic achievement or language. The results were suggestive of an association between prenatal and early postnatal PCE exposure and diminished performance on tests that assessed abilities in the domains of visuospatial functioning, learning and memory, motor, attention and mood. Because the sample size was small, most findings were not statistically significant. Future studies with larger sample sizes should be conducted to further define the neuropsychological consequences of early developmental PCE exposure. PMID:22522125

  11. In vitro dehalogenation of tetrachloroethylene (PCE) by cell-free extracts of Clostridium bifermentans DPH-1.

    PubMed

    Chang, Y C; Okeke, B C; Hatsu, M; Takamizawa, K

    2001-06-01

    Cell-free extracts of Clostridium bifermentans DPH-1 catalyzed tetrachloroethylene (PCE) dechlorination. PCE degradation was stimulated by addition of a variety of electron donors. Ethanol (0.61 mM) was the most effective electron donor for PCE dechlorination. Maximum activity was recorded at 30 degrees C and pH 7.5. Addition of NADH as a cofactor stimulated enzymatic activity but the activity was not stimulated by addition of metal ions. When the cell-free enzyme extract was incubated in the presence of titanium citrate as a reducing agent, the dehalogenase was rapidly inactivated by propyl iodide (0.5 mM). The activity of propyliodide-reacted enzyme was restored by illumination with a 250 W lamp. The dehalogenase activity was also inhibited by cyanide. The substrate spectrum of activity included trichloroethylene (TCE), cis-1,2-dichloroethylene (cDCE), trans-dichloroethylene, 1,1-dichloroethylene, 1,2-dichloroethane, and 1,1,2-trichloroethane. The highest rate of degradation of the chlorinated aliphatic compounds was achieved with PCE, and PCE was principally degraded via TCE to cDCE. Results indicate that the dehalogenase could play a vital role in the breakdown of PCE as well as a variety of other chlorinated aliphatic compounds. PMID:11333032

  12. Kinetics of tetrachloroethylene-reductive dechlorination catalyzed by vitamin B{sub 12}

    SciTech Connect

    Burris, D.R.; Deng, B.; Buck, L.E.; Hatfield, K.

    1998-09-01

    Reductive dechlorination kinetics of tetrachloroethylene (PCE) to ethylene catalyzed by vitamin B{sub 12} using Ti[III] citrate as the bulk reductant was examined in a vapor-water batch system. A kinetic model incorporating substrate-B{sub 12} electron-transfer complex formation and subsequent product release was developed. The model also accounted for the primary reductive dechlorination pathways (hydrogenolysis and reductive {beta} elimination) and vapor/water-phase partitioning. Reaction rate constants were sequentially determined by fitting the model to experimental kinetic data while moving upward through consecutive reaction pathways. The release of product from the complex was found to be second order with respect to substrate concentration for both PCE and acetylene; all other substrates appeared to release by first order. Reductive {beta} elimination was found to be a significant reaction pathway for trichloroethylene (TCE), and chloroacetylene was observed as a reactive intermediate. Acetylene production appears to be primarily due to the reduction of chloroacetylene derived from TCE. The reduction of cis-dichloroethylene (cis-DCE), the primary DCE isomer formed, was extremely slow, leading to a significant buildup of cis-DCE. The kinetics of acetylene and vinyl chloride reduction appeared to be limited by the formation of relatively stable substrate-B{sub 12} complexes. The relatively simple model examined appears to adequately represent the main features of the experimental data.

  13. Dependence of tetrachloroethylene dechlorination on methanogenic substrate consumption by Methanosarcina sp. strain DCM.

    PubMed Central

    Fathepure, B Z; Boyd, S A

    1988-01-01

    Tetrachloroethylene (perchloroethylene, PCE) is a suspected carcinogen and a common groundwater contaminant. Although PCE is highly resistant to aerobic biodegradation, it is subject to reductive dechlorination reactions in a variety of anaerobic habitats. The data presented here clearly establish that axenic cultures of Methanosarcina sp. strain DCM dechlorinate PCE to trichloroethylene and that this is a biological reaction. Growth on methanol, acetate, methylamine, and trimethylamine resulted in PCE dechlorination. The reductive dechlorination of PCE occurred only during methanogenesis, and no dechlorination was noted when CH4 production ceased. There was a clear dependence of the extent of PCE dechlorination on the amount of methanogenic substrate (methanol) consumed. The amount of trichloroethylene formed per millimole of CH4 formed remained essentially constant for a 20-fold range of methanol concentrations and for growth on acetate, methylamine, and trimethylamine. These results suggest that the reducing equivalents for PCE dechlorination are derived from CH4 biosynthesis and that the extent of chloroethylene dechlorination can be enhanced by stimulating methanogenesis. It is proposed that electrons transferred during methanogenesis are diverted to PCE by a reduced electron carrier involved in methane formation. Images PMID:3223763

  14. A risk-based cleanup criterion for PCE in soil. [Tetrachloroethylene

    SciTech Connect

    Daniels, J.I.; McKone, T.E.; Hall, L.C.

    1990-09-26

    The most important attribute of a chemical contaminant at a hazardous-wastes site for decision makers to consider with regard to its cleanup is the potential risk associated with human exposure. For this reason we have developed a strategy for establishing a risk-based cleanup criterion for chemicals in soil. We describe this strategy by presenting a cleanup criterion for tetrachloroethylene (PCE) in soil associated with a representative California landscape. We being by discussing the environmental fate and transport model, developed at the Lawrence Livermore National Laboratory (LLNL), that we used to predict the equilibrium concentration of PCE in five environmental media from a steady-state source in soil. Next, we explain the concept and application of pathway-exposure factors (PEFs), the hazard index, and cancer-potency factors (CPFs) for translating the predicted concentrations of PCE into estimated potential hazard or risk for hypothetically exposed individuals. Finally, the relationship between concentration and an allowable level of risk is defined and the societal and financial implications are discussed. 22 refs., 6 tabs.

  15. THE EFFECT OF LOW CONCENTRATIONS OF TETRACHLOROETHYLENE ON THE PERFORMANCE OF PEM FUEL CELLS

    SciTech Connect

    COLON-MERCHADO, H.; MARTINEZ-RODRIGUEZ, M.; FOX, E.; RHODES, W.; MCWHORTER, C.; GREENWAY, S.

    2011-04-18

    Polymer electrolyte membrane (PEM) fuel cells use components that are susceptible to contaminants in the fuel stream. To ensure fuel quality, standards are being set to regulate the amount of impurities allowable in fuel. The present study investigates the effect of chlorinated impurities on fuel cell systems using tetrachloroethylene (PCE) as a model compound for cleaning and degreasing agents. Concentrations between 0.05 parts per million (ppm) and 30 ppm were studied. We show how PCE causes rapid drop in cell performances for all concentrations including 0.05 ppm. At concentrations of 1 and 0.05 ppm, PCE poisoned the cell at a rate dependent on the dosage of the contaminant delivered to the cell. PCE appears to affect the cell when the cell potential was over potentials higher than approximately 0.2 V. No effects were observed at voltages around or below 0.2 V and the cells could be recovered from previous poisoning performed at higher potentials. Recoveries at those low voltages could be induced by changing the operating voltage or by purging the system. Poisoning did not appear to affect the membrane conductivity. Measurements with long-path length IR results suggested catalytic decomposition of the PCE by hydrogen over the anode catalyst.

  16. Tetrachloroethylene (PCE, Perc) levels in residential dry cleaner buildings in diverse communities in New York City.

    PubMed

    McDermott, Michael J; Mazor, Kimberly A; Shost, Stephen J; Narang, Rajinder S; Aldous, Kenneth M; Storm, Jan E

    2005-10-01

    Fugitive tetrachloroethylene (PCE, perc) emissions from dry cleaners operating in apartment buildings can contaminate residential indoor air. In 1997, New York State and New York City adopted regulations to reduce and contain perc emissions from dry cleaners located in residential and other buildings. As part of a New York State Department of Health (NYSDOH) study, indoor air perc levels were determined in 65 apartments located in 24 buildings in New York City where dry cleaners used perc on site. Sampling occurred during 2001-2003, and sampled buildings were dispersed across minority and nonminority as well as low-income and higher income neighborhoods. For the entire study area, the mean apartment perc level was 34 microg/m3, 10-fold lower than mean apartment levels of 340-360 microg/m3 documented before 1997. The maximum detected perc level was 5,000 microg/m3, 5-fold lower than the maximum of 25,000 microg/m3 documented before 1997. Despite these accomplishments, perc levels in 17 sampled apartments still exceeded the NYSDOH residential air guideline of 100 microg/m3, and perc levels in 4 sampled apartments exceeded 1,000 microg/m3. Moreover, mean indoor air perc levels in minority neighborhoods (75 microg/m3) were four times higher than in nonminority households (19 microg/m3) and were > 10 times higher in low-income neighborhoods (256 microg/m3) than in higher income neighborhoods (23 microg/m3). Logistic regression suitable for clustered data (apartments within buildings) indicated that perc levels on floors 1-4 were significantly more likely to exceed 100 microg/m3 in buildings located in minority neighborhoods (odds ratio = 6.7; 95% confidence interval, 1.5-30.5) than in nonminority neighborhoods. Factors that may be contributing to the elevated perc levels detected, especially in minority and low-income neighborhoods, are being explored. PMID:16203243

  17. Mutagenicity of the cysteine S-conjugate sulfoxides of trichloroethylene and tetrachloroethylene in the Ames test.

    PubMed

    Irving, Roy M; Elfarra, Adnan A

    2013-04-01

    The nephrotoxicity and nephrocarcinogenicity of trichloroethylene (TCE) and tetrachloroethylene (PCE) are believed to be mediated primarily through the cysteine S-conjugate ?-lyase-dependent bioactivation of the corresponding cysteine S-conjugate metabolites S-(1,2-dichlorovinyl)-l-cysteine (DCVC) and S-(1,2,2-trichlorovinyl)-l-cysteine (TCVC), respectively. DCVC and TCVC have previously been demonstrated to be mutagenic by the Ames Salmonella mutagenicity assay, and reduction in mutagenicity was observed upon treatment with the ?-lyase inhibitor aminooxyacetic acid (AOAA). Because DCVC and TCVC can also be bioactivated through sulfoxidation to yield the potent nephrotoxicants S-(1,2-dichlorovinyl)-l-cysteine sulfoxide (DCVCS) and S-(1,2,2-trichlorovinyl)-l-cysteine sulfoxide (TCVCS), respectively, the mutagenic potential of these two sulfoxides was investigated using the Ames Salmonella typhimurium TA100 mutagenicity assay. The results show both DCVCS and TCVCS were mutagenic, and TCVCS exhibited 3-fold higher mutagenicity than DCVCS. However, DCVCS and TCVCS mutagenic activity was approximately 700-fold and 30-fold lower than DCVC and TCVC, respectively. DCVC and DCVCS appeared to induce toxicity in TA100, as evidenced by increased microcolony formation and decreased mutant frequency above threshold concentrations. TCVC and TCVCS were not toxic in TA100. The toxic effects of DCVC limited the sensitivity of TA100 to DCVC mutagenic effects and rendered it difficult to investigate the effects of AOAA on DCVC mutagenic activity. Collectively, these results suggest that DCVCS and TCVCS exerted a definite but weak mutagenicity in the TA100 strain. Therefore, despite their potent nephrotoxicity, DCVCS and TCVCS are not likely to play a major role in DCVC or TCVC mutagenicity in this strain. PMID:23416178

  18. Effect of trichloroethylene and tetrachloroethylene on methane oxidation and community structure of methanotrophic consortium.

    PubMed

    Choi, Sun-Ah; Lee, Eun-Hee; Cho, Kyung-Suk

    2013-01-01

    The methane oxidation rate and community structure of a methanotrophic consortium were analyzed to determine the effects of trichloroethylene (TCE) and tetrachloroethylene (PCE) on methane oxidation. The maximum methane oxidation rate (Vmax ) of the consortium was 326.8 ?mol·g-dry biomass(-1)·h(-1), and it had a half-saturation constant (Km ) of 143.8 ?M. The addition of TCE or PCE resulted in decreased methane oxidation rates, which were decreased from 101.73 to 5.47-24.64 ?mol·g-dry biomass(-1)·h(-1) with an increase in the TCE-to-methane ratio, and to 61.95-67.43 ?mol·g-dry biomass(-1)·h(-1) with an increase in the PCE-to-methane ratio. TCE and PCE were non-competitive inhibitors for methane oxidation, and their inhibition constants (Ki ) were 33.4 and 132.0 ?M, respectively. When the methanotrophic community was analyzed based on pmoA using quantitative real-time PCR (qRT-PCR), the pmoA gene copy numbers were shown to decrease from 7.3 ± 0.7 × 10(8) to 2.1-5.0 × 10(7) pmoA gene copy number · g-dry biomass(-1) with an increase in the TCE-to-methane ratio and to 2.5-7.0 × 10(7) pmoA gene copy number · g-dry biomass(-1) with an increase in the PCE-to-methane ratio. Community analysis by microarray demonstrated that Methylocystis (type II methanotrophs) were the most abundant in the methanotrophic community composition in the presence of TCE. These results suggest that toxic effects caused by TCE and PCE change not only methane oxidation rates but also the community structure of the methanotrophic consortium. PMID:23947712

  19. Lactate Injection by Electric Currents for Bioremediation of Tetrachloroethylene in Clay.

    PubMed

    Wu, Xingzhi; Gent, David B; Davis, Jeffrey L; Alshawabkeh, Akram N

    2012-12-30

    Biological transformation of tetrachloroethylene (PCE) in silty clay samples by ionic injection of lactate under electric fields is evaluated. To prepare contaminated samples, a silty clay slurry was mixed with PCE, inoculated with KB-1(®) dechlorinators and was consolidated in a 40 cm long cell. A current density between 5.3 and 13.3 A m(-2) was applied across treated soil samples while circulating electrolytes containing 10 mg L(-1) lactate concentration between the anode and cathode compartments to maintain neutral pH and chemically reducing boundary conditions. The total adsorbed and aqueous PCE was degraded in the soil to trichloroethylene (TCE), cis-1,2-dichloroethene (cis-DCE), vinyl chloride (VC) and ethene in 120 d, which is about double the time expected for transformation. Lactate was delivered into the soil by a reactive transport rate of 3.7 cm(2) d(-1) V(-1). PCE degradation in the clay samples followed zero order transformation rates ranging from 1.5 to 5 mg L(-1) d(-1) without any significant formation of TCE. cis-DCE transformation followed first order transformation rates of 0.06 to 0.10 per day. A control experiment conducted with KB-1 and lactate, but without electricity did not show any significant lactate buildup or cis-DCE transformation because the soil was practically impermeable (hydraulic conductivity of 2×10(-7) cm s(-1)). It is concluded that ionic migration will deliver organic additives and induce biological activity and complete PCE transformation in clay, even though the transformation occurs under slower rates compared to ideal conditions. PMID:23264697

  20. Tetrachloroethylene (PCE, Perc) Levels in Residential Dry Cleaner Buildings in Diverse Communities in New York City

    PubMed Central

    McDermott, Michael J.; Mazor, Kimberly A.; Shost, Stephen J.; Narang, Rajinder S.; Aldous, Kenneth M.; Storm, Jan E.

    2005-01-01

    Fugitive tetrachloroethylene (PCE, perc) emissions from dry cleaners operating in apartment buildings can contaminate residential indoor air. In 1997, New York State and New York City adopted regulations to reduce and contain perc emissions from dry cleaners located in residential and other buildings. As part of a New York State Department of Health (NYSDOH) study, indoor air perc levels were determined in 65 apartments located in 24 buildings in New York City where dry cleaners used perc on site. Sampling occurred during 2001–2003, and sampled buildings were dispersed across minority and nonminority as well as low-income and higher income neighborhoods. For the entire study area, the mean apartment perc level was 34 ?g/m3, 10-fold lower than mean apartment levels of 340–360 ?g/m3 documented before 1997. The maximum detected perc level was 5,000 ?g/m3, 5-fold lower than the maximum of 25,000 ?g/m3 documented before 1997. Despite these accomplishments, perc levels in 17 sampled apartments still exceeded the NYSDOH residential air guideline of 100 ?g/m3, and perc levels in 4 sampled apartments exceeded 1,000 ?g/m3. Moreover, mean indoor air perc levels in minority neighborhoods (75 ?g/m3) were four times higher than in nonminority households (19 ?g/m3) and were > 10 times higher in low-income neighborhoods (256 ?g/m3) than in higher income neighborhoods (23 ?g/m3). Logistic regression suitable for clustered data (apartments within buildings) indicated that perc levels on floors 1–4 were significantly more likely to exceed 100 ?g/m3 in buildings located in minority neighborhoods (odds ratio = 6.7; 95% confidence interval, 1.5–30.5) than in nonminority neighborhoods. Factors that may be contributing to the elevated perc levels detected, especially in minority and low-income neighborhoods, are being explored. PMID:16203243

  1. Enhanced dechlorination of tetrachloroethylene by zerovalent silicon in the presence of polyethylene glycol under anoxic conditions.

    PubMed

    Lee, Chun-Chi; Doong, Ruey-An

    2011-03-15

    The combination of zerovalent silicon (Si(0)) with polyethylene glycol (PEG) is a novel technique to enhance the dechlorination efficiency and rate of chlorinated hydrocarbons. In this study, the dechlorination of tetrachloroethylene (PCE) by Si(0) in the presence of various concentrations of PEG was investigated under anoxic conditions. Several surfactants including cetyltrimethylammonium bromide (CTAB), sodium dodecyl sulfate (SDS), and Tween 80 were also selected for comparison. Addition of SDS and Tween 80 had little effect on the enhancement of PCE dechlorination, while CTAB and PEG significantly enhanced the dechlorination efficiency and rate of PCE by Si(0) under anoxic conditions. The Langmuir-Hinshelwood model was used to describe the dechlorination kinetics of PCE and could be simplified to pseudo-first-order kinetics at low PCE concentration. The rate constants (k(obs)) for PCE dechlorination were 0.21 and 0.36 h(-1) in the presence of CTAB and PEG, respectively. However, the reaction mechanisms for CTAB and PEG are different. CTAB could enhance the apparent water solubility of PCE in solution containing Si(0), leading to the enhancement of dechlorination efficiency and rate of PCE, while PEG prevented the formation of silicon dioxide, and significantly enhanced the dechlorination efficiency and rate of PCE at pH 8.3 ± 0.2. In addition, the dechlorination rate increased upon increasing PEG concentration and then leveled off to a plateau when the PEG concentration was higher than 0.2 ?M. The k(obs) for PCE dechlorination by Si(0) in the presence of PEG was 106 times higher than that by Si(0) alone. Results obtained in this study would be helpful in facilitating the development of processes that could be useful for the enhanced degradation of cocontaminants by zerovalent silicon. PMID:21341692

  2. Kinetics of the transformation of trichloroethylene and tetrachloroethylene by iron sulfide

    SciTech Connect

    Butler, E.C.; Hayes, K.F. . Dept. of Civil and Environmental Engineering)

    1999-06-15

    The transformation of trichloroethylene (TCE), tetrachloroethylene (PCE), and 1,1-dichloroethylene FeS in aqueous solution at pH 8.3 was studied in batch experiments. TCE and PCE were transformed by FeS with pseudo-first-order rate constants, corrected for partitioning to the sample headspace, of (1.49 [+-] 0.14) [times] 10[sup [minus]3] h[sup [minus]1] (TCE) and (5.7 [+-] 1.0) [times] 10[sup [minus]4] h[sup [minus]1] (PCE). A 17% decrease in the concentration of 1,3-DCE was observed over 120 days; however, no reaction products were detected. TCE and PCE transformation data were fit to a rate law assuming transformation of TCE via parallel reaction pathways to acetylene and cis-1,2-dichloroethylene (cis-DCE) and transformation of PCE via parallel reaction pathways to acetylene and TCE. Acetylene was the major reaction product for both TCE and PCE. Determination of rate constants for each reaction pathway indicated that TCE was transformed to acetylene 11.8 [+-] 1.1 times faster than to cis-DCE and that PCE was transformed to acetylene 8.2 [+-] 1.8 times faster than to TCE. Additional minor reaction products were vinyl chloride (VC) for TCE and cis-DCE for PCE. Detection of acetylene as the major product of both TCE and PCE transformation by FeS contrasts with the sequential hydrogenolysis products typically observed in the microbial transformation of these compounds, making acetylene a potential indicator of abiotic transformation of TCE and PCE by FeS in natural systems.

  3. Lactate Injection by Electric Currents for Bioremediation of Tetrachloroethylene in Clay

    PubMed Central

    Wu, Xingzhi; Gent, David B.; Davis, Jeffrey L.; Alshawabkeh, Akram N.

    2012-01-01

    Biological transformation of tetrachloroethylene (PCE) in silty clay samples by ionic injection of lactate under electric fields is evaluated. To prepare contaminated samples, a silty clay slurry was mixed with PCE, inoculated with KB-1® dechlorinators and was consolidated in a 40 cm long cell. A current density between 5.3 and 13.3 A m−2 was applied across treated soil samples while circulating electrolytes containing 10 mg L−1 lactate concentration between the anode and cathode compartments to maintain neutral pH and chemically reducing boundary conditions. The total adsorbed and aqueous PCE was degraded in the soil to trichloroethylene (TCE), cis-1,2-dichloroethene (cis-DCE), vinyl chloride (VC) and ethene in 120 d, which is about double the time expected for transformation. Lactate was delivered into the soil by a reactive transport rate of 3.7 cm2 d−1 V−1. PCE degradation in the clay samples followed zero order transformation rates ranging from 1.5 to 5 mg L−1 d−1 without any significant formation of TCE. cis-DCE transformation followed first order transformation rates of 0.06 to 0.10 per day. A control experiment conducted with KB-1 and lactate, but without electricity did not show any significant lactate buildup or cis-DCE transformation because the soil was practically impermeable (hydraulic conductivity of 2×10−7 cm s−1). It is concluded that ionic migration will deliver organic additives and induce biological activity and complete PCE transformation in clay, even though the transformation occurs under slower rates compared to ideal conditions. PMID:23264697

  4. Biological exposure assessment to tetrachloroethylene for workers in the dry cleaning industry

    PubMed Central

    McKernan, Lauralynn T; Ruder, Avima M; Petersen, Martin R; Hein, Misty J; Forrester, Christy L; Sanderson, Wayne T; Ashley, David L; Butler, Mary A

    2008-01-01

    Background The purpose of this study was to assess the feasibility of conducting biological tetrachloroethylene (perchloroethylene, PCE) exposure assessments of dry cleaning employees in conjunction with evaluation of possible PCE health effects. Methods Eighteen women from four dry cleaning facilities in southwestern Ohio were monitored in a pilot study of workers with PCE exposure. Personal breathing zone samples were collected from each employee on two consecutive work days. Biological monitoring included a single measurement of PCE in blood and multiple measurements of pre- and post-shift PCE in exhaled breath and trichloroacetic acid (TCA) in urine. Results Post-shift PCE in exhaled breath gradually increased throughout the work week. Statistically significant correlations were observed among the exposure indices. Decreases in PCE in exhaled breath and TCA in urine were observed after two days without exposure to PCE. A mixed-effects model identified statistically significant associations between PCE in exhaled breath and airborne PCE time weighted average (TWA) after adjusting for a random participant effect and fixed effects of time and body mass index. Conclusion Although comprehensive, our sampling strategy was challenging to implement due to fluctuating work schedules and the number (pre- and post-shift on three consecutive days) and multiplicity (air, blood, exhaled breath, and urine) of samples collected. PCE in blood is the preferred biological index to monitor exposures, but may make recruitment difficult. PCE TWA sampling is an appropriate surrogate, although more field intensive. Repeated measures of exposure and mixed-effects modeling may be required for future studies due to high within-subject variability. Workers should be monitored over a long enough period of time to allow the use of a lag term. PMID:18412959

  5. Characteristics and influencing factors of tetrachloroethylene sorption-desorption on soil and its components.

    PubMed

    Qiu, Zhaofu; Yang, Weiwei; He, Long; Zhao, Zhexuan; Lu, Shuguang; Sui, Qian

    2016-02-01

    To investigate the effects of soil structure, soil organic carbon (SOC), minerals, initial tetrachloroethylene (PCE) concentration (C0), and ionic strength (Ci) on PCE sorption-desorption, six types of soil were adopted as adsorbents, including two types of natural soil and four types of soil with most of the "soft carbon" pre-treated by H2O2 or with all SOC removed from the original soil by 600 °C ignition. The results showed that all of the sorption-desorption isotherms of PCE were non-linear within the experimental range, and the H2O2-treated samples exhibited higher non-linear sorption isotherms than those of the original soils. The hysteresis index of PCE sorption to original soil is less pronounced than that of the H2O2-treated and 600 °C-heated samples due to the entrapment of sorbate molecules in the "hard carbon" domain, together with the meso- and microporous structures within the 600 °C-heated samples. Both SOC and minerals have impacts on the sorption-desorption of PCE, and the sorption-desorption contribution rate of minerals increased with decreasing SOC content. C0 has almost no influence on the sorption to minerals of the soils, but the contribution rate of minerals decreased with increasing C0 in the desorption stage. As a result of the salting-out effect, PCE sorption capacity was increased by increasing Ci, especially when Ci ? 0.1 M. Moreover, desorption increased and hysteresis weakened with increasing Ci, except for the 600 °C-heated samples. In addition, no significant effect of Ci on desorption of PCE and no hysteresis was observed in this experimental range for the 600 °C-heated samples. PMID:26421630

  6. Isobaric vapor-liquid equilibria of tetrachloroethylene + 1-propanol and + 2-propanol at 20 and 100 kPa

    SciTech Connect

    Dejoz, A.; Gonzalez-Alfaro, V.; Miguel, P.J.; Vazquez, M.I.

    1996-11-01

    Isobaric vapor-liquid equilibria were obtained for tetrachloroethylene + 1-propanol and +2-propanol systems at 20 and 100 kPa using a dynamic still. The experimental error in temperature was {+-} 0.1 K, in pressure {+-} 0.01 kPa and {+-} 0.1 kPa for the experiments carried out at 20 and 100 kPa, respectively, and in liquid and vapor composition 0.001. The two systems satisfy the point-to-point thermodynamic consistency test. Both systems show a positive deviation from ideality. The data were well correlated with the Wilson equation.

  7. CONCENTRATION OF TETRACHLOROETHYLENE IN INDOOR AIR AT A FORMER DRY CLEANER FACILITY AS A FUNCTION OF SUBSURFACE CONTAMINATION: A CASE STUDY

    EPA Science Inventory

    A field study was performed to evaluate indoor air concentrations and vapor intrusion (VI) of tetrachloroethylene (PCE) and other chlorinated solvents at a commercial retail site in Dallas, TX. The building is approximately 40 years old and once housed a dry cleaning operation. R...

  8. Remediation of an aquifer polluted with dissolved tetrachloroethylene by an array of wells filled with activated carbon.

    PubMed

    Bortone, I; Di Nardo, A; Di Natale, M; Erto, A; Musmarra, D; Santonastaso, G F

    2013-09-15

    In this work, an array of deep passive wells filled with activated carbon, namely a Discontinuous Permeable Adsorptive Barrier (PAB-D), has been proposed for the remediation of an aquifer contaminated by tetrachloroethylene (PCE). The dynamics of the aquifer in the particular PAB-D configuration chosen, including the contaminant transport in the aquifer and the adsorption onto the barrier material, has been accurately performed by means of a computer code which allows describing all the phenomena occurring in the aquifer, simultaneously. A PAB-D design procedure is presented and the main dimensions of the barrier (number and position of passive wells) have been evaluated. Numerical simulations have been carried out over a long time span to follow the contaminant plume and to assess the effectiveness of the remediation method proposed. The model results show that this PAB-D design allows for a complete remediation of the aquifer under a natural hydraulic gradient, the PCE concentrations flowing out of the barrier being always lower than the corresponding Italian regulation limit. Finally, the results have been compared with those obtained for the design of a more traditional continuous barrier (PAB-C) for the same remediation process. PMID:23876256

  9. Reductive dechlorination of tetrachloroethylene and trichloroethylene catalyzed by vitamin B{sub 12} in homogeneous and heterogeneous systems

    SciTech Connect

    Burris, D.R.; Smith, M.H.; Delcomyn, C.A.; Roberts, A.L.

    1996-10-01

    The reduction of tetrachloroethylene (PCE) and trichloroethylene (TCE) catalyzed by vitamin B{sub 12} was examined in homogeneous and heterogeneous (B{sub 12} bound to agarose) batch systems using titanium(III) citrate as the bulk reductant. The solution and surface-mediated reaction rates at similar B{sub 12} loadings were comparable, indicating that binding vitamin B{sub 12} to a surface did not lower catalytic activity. No loss in PCE reducing activity was observed with repeated usage of surface-bound vitamin B{sub 12}. Carbon mass recoveries were 81-84% for PCE reduction and 89% for TCE reduction, relative to controls. In addition to sequential hydrogenolysis, a second competing reaction mechanism for the reduction of PCE and TCE by B{sub 12}, reductive {beta}-elimination, is proposed to account for the observation of acetylene as a significant reaction intermediate. Reductive {beta}-elimination should be considered as a potential pathway in other reactive systems involving the reduction of vicinal polyhaloethenes. Surface-bound catalysts such as vitamin B{sub 12} may have utility in the engineered degradation of aqueous phase chlorinated ethenes. 19 refs., 6 figs., 1 tab.

  10. Adverse Birth Outcomes and Maternal Exposure to Trichloroethylene and Tetrachloroethylene through Soil Vapor Intrusion in New York State

    PubMed Central

    Lewis-Michl, Elizabeth L.; Gomez, Marta I.

    2011-01-01

    Background: Industrial spills of volatile organic compounds (VOCs) in Endicott, New York (USA), have led to contamination of groundwater, soil, and soil gas. Previous studies have reported an increase in adverse birth outcomes among women exposed to VOCs in drinking water. Objective: We investigated the prevalence of adverse birth outcomes among mothers exposed to trichloroethylene (TCE) and tetrachloroethylene [or perchloroethylene (PCE)] in indoor air contaminated through soil vapor intrusion. Methods: We examined low birth weight (LBW), preterm birth, fetal growth restriction, and birth defects among births to women in Endicott who were exposed to VOCs, compared with births statewide. We used Poisson regression to analyze births and malformations to estimate the association between maternal exposure to VOCs adjusting for sex, mother’s age, race, education, parity, and prenatal care. Two exposure areas were identified based on environmental sampling data: one area was primarily contaminated with TCE, and the other with PCE. Results: In the TCE-contaminated area, adjusted rate ratios (RRs) were significantly elevated for LBW [RR = 1.36; 95% confidence interval (CI): 1.07, 1.73; n = 76], small for gestational age (RR = 1.23; 95% CI: 1.03, 1.48; n = 117), term LBW (RR = 1.68; 95% CI: 1.20, 2.34; n = 37), cardiac defects (RR = 2.15; 95% CI: 1.27, 3.62; n = 15), and conotruncal defects (RR = 4.91; 95% CI: 1.58, 15.24; n = 3). In the PCE-contaminated area, RRs for cardiac defects (five births) were elevated but not significantly. Residual socioeconomic confounding may have contributed to elevations of LBW outcomes. Conclusions: Maternal residence in both areas was associated with cardiac defects. Residence in the TCE area, but not the PCE area, was associated with LBW and fetal growth restriction. PMID:22142966

  11. Spatiotemporal variability of tetrachloroethylene in residential indoor air due to vapor intrusion: a longitudinal, community-based study.

    PubMed

    Johnston, Jill E; Gibson, Jacqueline MacDonald

    2014-11-01

    The migration of volatile contaminants from groundwater and soil into indoor air is a potential health threat at thousands of contaminated sites across the country. This phenomenon, known as vapor intrusion, is characterized by spatial and temporal heterogeneity. This study examined short-term fluctuations in concentrations of tetrachloroethylene (PCE) in the indoor air of residential homes due to vapor intrusion in a community in San Antonio, Texas, that sits atop an extensive, shallow plume of contaminated groundwater. Using a community-based design, we removed potential indoor sources of PCE and then collected twelve 3-day passive indoor air samples in each of the 20 homes. Results demonstrated a one-order-of-magnitude variability in concentration across both space and time among the study homes, although all measured concentrations were below risk-based screening levels. We found that within any given home, indoor concentrations increase with the magnitude of the barometric pressure drop (P=0.048) and humidity (P<0.001), while concentrations decrease as wind speed increases (P<0.001) and also during winter (P=0.001). In a second analysis to examine sources of spatial variability, we found that indoor air PCE concentrations between homes increase with groundwater concentration (P=0.030) and a slab-on-grade (as compared with a crawl space) foundation (P=0.028), whereas concentrations decrease in homes without air conditioners (P=0.015). This study offers insights into the drivers of temporal and spatial variability in vapor intrusion that can inform decisions regarding monitoring and exposure assessment at affected sites. PMID:23549403

  12. Concentration of tetrachloroethylene in indoor air at a former dry cleaner facility as a function of subsurface contamination: a case study.

    PubMed

    Eklund, Bart M; Simon, Michelle A

    2007-06-01

    A field study was performed to evaluate indoor air concentrations and vapor intrusion (VI) of tetrachloroethylene (PCE) and other chlorinated solvents at a commercial retail site in Dallas, TX. The building is approximately 40 yr old and once housed a dry cleaning operation. Results from an initial site characterization were used to select sampling locations for the VI study. The general approach for evaluating VI was to collect time-integrated canister samples for off-site U.S. Environmental Protection Agency Method TO-15 analyses. PCE and other chlorinated solvents were measured in shallow soil gas, subslab soil-gas, indoor air, and ambient air. The subslab soil gas exhibited relatively high values: PCE < or =2,600,000 parts per billion by volume (ppbv) and trichloroethylene < or =170 ppbv. The attenuation factor, the ratio of indoor air and subslab soil-gas concentrations, was unusually low: approximately 5 x 10(-6) based on the maximum subslab soil-gas concentration of PCE and 1.4 x 10(-5) based on average values. PMID:17608009

  13. Structural Magnetic Resonance Imaging in an Adult Cohort Following Prenatal and Early Postnatal Exposure to Tetrachloroethylene (PCE)-contaminated Drinking Water

    PubMed Central

    Janulewicz, Patricia A; Killiany, Ronald J; White, Roberta F; Martin, Brett M; Winter, Michael R; Weinberg, Janice M; Aschengrau, Ann

    2013-01-01

    This population-based retrospective cohort study examined Structural Magnetic Resonance Imaging (MRI) of the brain in relation to prenatal and early postnatal exposure to tetrachloroethylene (PCE)-contaminated drinking water on Cape Cod, Massachusetts. Subjects were identified through birth records from 1969 through 1983. Exposure was modeled using pipe network information from town water departments, a PCE leaching and transport algorithm, EPANet water flow modeling software, and Geographic Information System (GIS) methodology. Brain imaging was performed on 26 exposed and 16 unexposed subjects. Scans were acquired on a Philips 3T whole body scanner using the ADNI T1-weighted MP-RAGE scan. The scans were processed by FreeSurfer version 4.3.1 software to obtain measurements of specific brain regions. There were no statistically significant differences between exposed and unexposed subjects on measures of white matter hypointensities (β: 127.5 mm3, 95% CI: −259.1, 1514.0), white matter volumes (e.g. total cerebral white matter: β: 21230.0 mm3, 95% CI: −4512.6, 46971.7) or gray matter volumes (e.g. total cerebral gray matter: β: 11976.0 mm3, 95% CI: −13657.2, 37609.3). The results of this study suggest that exposure to PCE during gestation and early childhood, at the levels observed in this population, is not associated with alterations in the brain structures studied. PMID:23571160

  14. Distributions and sea-to-air fluxes of chloroform, trichloroethylene, tetrachloroethylene, chlorodibromomethane and bromoform in the Yellow Sea and the East China Sea during spring.

    PubMed

    He, Zhen; Yang, Gui-Peng; Lu, Xiao-Lan; Zhang, Hong-Hai

    2013-06-01

    Halocarbons including chloroform (CHCl3), trichloroethylene (C2HCl3), tetrachloroethylene (C2Cl4), chlorodibromomethane (CHBr2Cl) and bromoform (CHBr3) were measured in the Yellow Sea (YS) and the East China Sea (ECS) during spring 2011. The influences of chlorophyll a, salinity and nutrients on the distributions of these gases were examined. Elevated levels of these gases in the coastal waters were attributed to anthropogenic inputs and biological release by phytoplankton. The vertical distributions of these gases in the water column were controlled by different source strengths and water masses. Using atmospheric concentrations measured in spring 2012 and seawater concentrations obtained from this study, the sea-to-air fluxes of these gases were estimated. Our results showed that the emissions of C2HCl3, C2Cl4, CHBr2Cl, and CHBr3 from the study area could account for 16.5%, 10.5%, 14.6%, and 3.5% of global oceanic emissions, respectively, indicating that the coastal shelf may contribute significantly to the global oceanic emissions of these gases. PMID:23466729

  15. Structural Magnetic Resonance Imaging in an adult cohort following prenatal and early postnatal exposure to tetrachloroethylene (PCE)-contaminated drinking water.

    PubMed

    Janulewicz, Patricia A; Killiany, Ronald J; White, Roberta F; Martin, Brett M; Winter, Michael R; Weinberg, Janice M; Aschengrau, Ann

    2013-01-01

    This population-based retrospective cohort study examined Structural Magnetic Resonance Imaging (MRI) of the brain in relation to prenatal and early postnatal exposure to tetrachloroethylene (PCE)-contaminated drinking water on Cape Cod, Massachusetts. Subjects were identified through birth records from 1969 through 1983. Exposure was modeled using pipe network information from town water departments, a PCE leaching and transport algorithm, EPANet water flow modeling software, and Geographic Information System (GIS) methodology. Brain imaging was performed on 26 exposed and 16 unexposed subjects. Scans were acquired on a Philips 3T whole body scanner using the ADNI T1-weighted MP-RAGE scan. The scans were processed by FreeSurfer version 4.3.1 software to obtain measurements of specific brain regions. There were no statistically significant differences between exposed and unexposed subjects on the measures of white matter hypointensities (?: 127.5mm(3), 95% CI: -259.1, 1514.0), white matter volumes (e.g. total cerebral white matter: ?: 21230.0mm(3), 95% CI: -4512.6, 46971.7) or gray matter volumes (e.g. total cerebral gray matter: ?: 11976.0mm(3), 95% CI: -13657.2, 37609.3). The results of this study suggest that exposure to PCE during gestation and early childhood, at the levels observed in this population, is not associated with alterations in the brain structures studied. PMID:23571160

  16. Impact of tetrachloroethylene-contaminated drinking water on the risk of breast cancer: Using a dose model to assess exposure in a case-control study

    PubMed Central

    Vieira, Verónica; Aschengrau, Ann; Ozonoff, David

    2005-01-01

    Background A population-based case-control study was undertaken in 1997 to investigate the association between tetrachloroethylene (PCE) exposure from public drinking water and breast cancer among permanent residents of the Cape Cod region of Massachusetts. PCE, a volatile organic chemical, leached from the vinyl lining of certain water distribution pipes into drinking water from the late 1960s through the early 1980s. The measure of exposure in the original study, referred to as the relative delivered dose (RDD), was based on an amount of PCE in the tap water entering the home and estimated with a mathematical model that involved only characteristics of the distribution system. Methods In the current analysis, we constructed a personal delivered dose (PDD) model that included personal information on tap water consumption and bathing habits so that inhalation, ingestion, and dermal absorption were also considered. We reanalyzed the association between PCE and breast cancer and compared the results to the original RDD analysis of subjects with complete data. Results The PDD model produced higher adjusted odds ratios than the RDD model for exposures > 50th and >75th percentile when shorter latency periods were considered, and for exposures < 50th and >90th percentile when longer latency periods were considered. Overall, however, the results from the PDD analysis did not differ greatly from the RDD analysis. Conclusion The inputs that most heavily influenced the PDD model were initial water concentration and duration of exposure. These variables were also included in the RDD model. In this study population, personal factors like bath and shower temperature, bathing frequencies and durations, and water consumption did not differ greatly among subjects, so including this information in the model did not significantly change subjects' exposure classification. PMID:15733317

  17. Affinity for risky behaviors following prenatal and early childhood exposure to tetrachloroethylene (PCE)-contaminated drinking water: a retrospective cohort study

    PubMed Central

    2011-01-01

    Background Many studies of adults with acute and chronic solvent exposure have shown adverse effects on cognition, behavior and mood. No prior study has investigated the long-term impact of prenatal and early childhood exposure to the solvent tetrachloroethylene (PCE) on the affinity for risky behaviors, defined as smoking, drinking or drug use as a teen or adult. Objectives This retrospective cohort study examined whether early life exposure to PCE-contaminated drinking water influenced the occurrence of cigarette smoking, alcohol consumption, and drug use among adults from Cape Cod, Massachusetts. Methods Eight hundred and thirty-one subjects with prenatal and early childhood PCE exposure and 547 unexposed subjects were studied. Participants completed questionnaires to gather information on risky behaviors as a teenager and young adult, demographic characteristics, other sources of solvent exposure, and residences from birth through 1990. PCE exposure was estimated using the U.S. EPA's water distribution system modeling software (EPANET) that was modified to incorporate a leaching and transport model to estimate PCE exposures from pipe linings. Results Individuals who were highly exposed to PCE-contaminated drinking water during gestation and early childhood experienced 50-60% increases in the risk of using two or more major illicit drugs as a teenager or as an adult (Relative Risk (RR) for teen use = 1.6, 95% CI: 1.2-2.2; and RR for adult use = 1.5, 95% CI: 1.2-1.9). Specific drugs for which increased risks were observed included crack/cocaine, psychedelics/hallucinogens, club/designer drugs, Ritalin without a prescription, and heroin (RRs:1.4-2.1). Thirty to 60% increases in the risk of certain smoking and drinking behaviors were also seen among highly exposed subjects. Conclusions The results of this study suggest that risky behaviors, particularly drug use, are more frequent among adults with high PCE exposure levels during gestation and early childhood. These findings should be confirmed in follow-up investigations of other exposed populations. PMID:22136431

  18. Risk of breast cancer following exposure to tetrachloroethylene-contaminated drinking water in Cape Cod, Massachusetts: reanalysis of a case-control study using a modified exposure assessment

    PubMed Central

    2011-01-01

    Background Tetrachloroethylene (PCE) is an important occupational chemical used in metal degreasing and drycleaning and a prevalent drinking water contaminant. Exposure often occurs with other chemicals but it occurred alone in a pattern that reduced the likelihood of confounding in a unique scenario on Cape Cod, Massachusetts. We previously found a small to moderate increased risk of breast cancer among women with the highest exposures using a simple exposure model. We have taken advantage of technical improvements in publically available software to incorporate a more sophisticated determination of water flow and direction to see if previous results were robust to more accurate exposure assessment. Methods The current analysis used PCE exposure estimates generated with the addition of water distribution modeling software (EPANET 2.0) to test model assumptions, compare exposure distributions to prior methods, and re-examine the risk of breast cancer. In addition, we applied data smoothing to examine nonlinear relationships between breast cancer and exposure. We also compared a set of measured PCE concentrations in water samples collected in 1980 to modeled estimates. Results Thirty-nine percent of individuals considered unexposed in prior epidemiological analyses were considered exposed using the current method, but mostly at low exposure levels. As a result, the exposure distribution was shifted downward resulting in a lower value for the 90th percentile, the definition of "high exposure" in prior analyses. The current analyses confirmed a modest increase in the risk of breast cancer for women with high PCE exposure levels defined by either the 90th percentile (adjusted ORs 1.0-1.5 for 0-19 year latency assumptions) or smoothing analysis cut point (adjusted ORs 1.3-2.0 for 0-15 year latency assumptions). Current exposure estimates had a higher correlation with PCE concentrations in water samples (Spearman correlation coefficient = 0.65, p < 0.0001) than estimates generated using the prior method (0.54, p < 0.0001). Conclusions The incorporation of sophisticated flow estimates in the exposure assessment method shifted the PCE exposure distribution downward, but did not meaningfully affect the exposure ranking of subjects or the strength of the association with the risk of breast cancer found in earlier analyses. Thus, the current analyses show a slightly elevated breast cancer risk for highly exposed women, with strengthened exposure assessment and minimization of misclassification by using the latest technology. PMID:21600013

  19. Simulation of solute transport of tetrachloroethylene in ground water of the glacial-drift aquifer at the Savage Municipal Well Superfund Site, Milford, New Hampshire, 1960-2000

    USGS Publications Warehouse

    Harte, Philip T.

    2004-01-01

    The Savage Municipal Well Superfund site, named after the former municipal water-supply well for the town of Milford, is underlain by a 0.5-square mile plume of volatile organic compounds (VOCs), primarily tetrachloroethylene (PCE). The plume occurs mostly within a highly transmissive sand-and-gravel unit, but also extends to an underlying till and bedrock unit. The plume logistically is divided into two areas termed Operable Unit No. 1 (OU1), which contains the primary source area, and Operable Unit No. 2 (OU2), which is the extended plume area. PCE concentrations in excess of 100,000 parts per billion (ppb) had been detected in the OU1 area in 1995, indicating a likely Dense Non-Aqueous Phase Liquid (DNAPL) source. In the fall of 1998, the New Hampshire Department of Environmental Services (NHDES) and the U.S. Environmental Protection Agency (USEPA) installed a remedial system in OU1. The OU1 remedial system includes a low-permeability barrier that encircles the highest detected concentrations of PCE, and a series of injection and extraction wells. The barrier primarily sits atop bedrock and penetrates the full thickness of the sand and gravel; and in some places, the full thickness of the underlying basal till. The sand and gravel unit and the till comprise the aquifer termed the Milford-Souhegan glacial-drift aquifer (MSGD). Two-dimensional and three-dimensional finite-difference solute-transport models of the unconsolidated sediments (MSGD aquifer) were constructed to help evaluate solute-transport processes, assess the effectiveness of remedial activities in OU1, and to help design remedial strategies in OU2. The solute-transport models simulate PCE concentrations, and model results were compared to observed concentrations of PCE. Simulations were grouped into the following three time periods: an historical calibration of the distribution of PCE from the initial input (circa 1960) of PCE into the subsurface to the 1990s, a pre-remedial calibration from 1995 to 1998, and a remedial (post-barrier wall) calibration from 1998 to 1999. Model results also were checked against observed PCE concentrations from May and June 2000 as a post-audit of model performance. Results of the simulations of the two-dimensional model for the historical calibration indicate that the model-computed length of the plume is affected by the retardation factor (retardation). Values of retardation greater than 3 caused the longitudinal length of the computed plume to be too short compared to the observed plume. A retardation of 2-2.5 produced a reasonable comparison between computed and observed PCE concentrations. Testing of different starting times and rates of mass input of PCE indicated that the plume reaches a quasi steady-state distribution in about 20 years regardless of the rate of mass input or values of the solute-transport parameters (retardation, dispersion, and irreversible reaction) assigned the model. Results of the simulations of the three-dimensional model for the pre-remedial (1995-98) calibration of PCE for the OU2 area identified some spatial biases in computed concentrations that generally were unaffected by changes in retardation. The computed PCE concentrations exceeded observed concentrations along the northern part of the plume in OU2, where PCE increases were observed in a bedrock well. These results indicate that some PCE in this area may be entering the bedrock, which is not simulated in the model. Conversely, computed PCE concentrations were less than observed concentrations along the southern part of the plume in OU2. Because testing of high (above 4) values of retardation did little to reduce residuals, it is concluded that the low computed PCE concentrations along the southern flank are likely the result of an underestimation of the initial PCE mass in this area or an unaccounted source of PCE. Results of the simulations of the three-dimensional model for the remedial calibration period (1998-99) and po

  20. The increases in mRNA expressions of inflammatory cytokines by adding cleaning solvent or tetrachloroethylene in the murine macrophage cell line J774.1 evaluated by real-time PCR.

    PubMed

    Kido, Takamasa; Sugaya, Chiemi; Ikeuchi, Ryutaro; Kudo, Yuichiro; Tsunoda, Masashi; Aizawa, Yoshiharu

    2013-01-01

    The use of a petroleum-derived cleaning solvent for dry cleaning, instead of tetrachloroethylene (perchloroethylene, PCE), has increased. The cleaning solvent may induce immunological alteration. In this study, murine macrophage-lineage J774.1 cells were exposed to the cleaning solvent at 0, 25, 50, and 75 µg/ml or PCE at 0, 400, 600, 800, and 1,000 µg/ml by vigorous vortexing. Cell viability was determined. The mRNA expressions of tumor necrosis factor-alpha (TNF-?), interleukin-1 beta (IL-1?), IL-6, IL-10, IL-12p40 (a dimer of IL-12), and IL-27p28 (a dimer of IL-27) were evaluated by real-time PCR. The mean viabilities in the 50 and 75 µg/ml groups of the cleaning solvent were significantly lower than that of the control. The mean mRNA expressions of TNF-? and IL-1? in the 50 µg/ml group were significantly higher than those in the control. For PCE, the mean viabilities at 600 µg/ml and over were significantly lower than that of the control. The mean expressions of IL-6 and IL-10 in the 800 µg/ml group were significantly higher than that in the control. The productions of IL-1? and TNF-? may be altered in human during intoxication of the cleaning solvent as well as those of IL-6 and IL-10 in human during that of PCE, and these may affect on immune cells. PMID:23538726

  1. NEUROTOXICITY OF TETRACHLOROETHYLENE (PERCHLOROETHYLENE): DISCUSSION PAPER

    EPA Science Inventory

    This paper is a background document for a meeting of neurotoxicity experts to discuss the central nervous system effects of exposure to perchloroethylene (perc). The document reviews the literature on neurological testing of people exposed to perc occupationally in dry cleanin...

  2. REDUCTION OF HEXACHLOROETHANE TO TETRACHLOROETHYLENE IN GROUNDWATER

    EPA Science Inventory

    At the Canadian Forces Base, Borden, hexachloroethane (HCE) that was introduced into an unconfined sand aquifer disappeared rapidly, with a half-life of about 40 days. Laboratory-scale studies, initiated to help assess the fate of HCE, indicated that it is reductively biotransfor...

  3. Charge to the Tetrachloroethylene (Perchloroethylene) Neurotoxicity Expert Panel

    EPA Science Inventory

    Today NCEA is posting the charge which will be discussed at the expert panel meeting on neurotoxicity issues associated with exposure to tetrachlroroethylene. This charge is to be the main agenda topic for the meeting. The time and place of the meeting will be announced in a fu...

  4. IRIS TOXICOLOGICAL REVIEW AND SUMMARY DOCUMENTS FOR TETRACHLOROETHYLENE

    EPA Science Inventory

    The known toxic effects of perchloroethylene will be summarized, with citations from current scientific literature. The critical effects will be identified, and from this the RfD and RfC and cancer unit risk factors will be derived. The RfD and RfC are reference doses and air c...

  5. EVALUATION OF GEOPHYSICAL METHODS FOR THE DETECTION OF SUBSURFACE TETRACHLOROETHYLENE IN CONTROLLED SPILL EXPERIMENTS

    EPA Science Inventory

    The purpose of the work was to determine the capability of various geophysical methods to detect PCE in the subsurface. Measurements were made with ten different geophysical techniques before, during, and after the PCE injection. This approach provided a clear identification of a...

  6. KINETIC STUDIES OF THE REACTION OF HYDROXYL RADICALS WITH TRICHLOROETHYLENE AND TETRACHLOROETHYLENE. (R826169)

    EPA Science Inventory

    Rate coefficients are reported for the gas-phase reaction of the hydroxyl radical (OH) with C2HCl3 (k1) and C2Cl4 (k2) over an extended temperature range at 740±10 Torr in a He bath gas. These...

  7. KINETIC AND MODELING STUDIES OF THE REACTION OF HYDROXYL RADICALS WITH TETRACHLOROETHYLENE. (R826169)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  8. KINETICS OF THE TRANSFORMATION OF TRICHLOROETHYLENE AND TETRACHLOROETHYLENE BY IRON SULFIDE. (R825958)

    EPA Science Inventory

    The transformation of nine halogenated aliphatic compounds
    by 10 g/L (0.5 m2/L) FeS at pH 8.3 was studied in batch
    experiments. These compounds were as follows:
    pentachloroethane (PCA), 1,1,2,2- and 1,1,1,2-tetrachloroethanes (1122-TeCA and 1112-TeCA), 1,1,...

  9. KINETIC STUDIES OF THE REACTION OF HYDROXYL RADICALS WITH TRICHLOROETHYLENE AND TETRACHLOROETHYLENE. (R826169)

    EPA Science Inventory

    Rate coefficients are reported for the gas-phase reaction of the hydroxyl radical (OH) with C2HCl3 (k1) and C2Cl4 (k2) over an extended temperature range at 740±10 Torr in a He bath gas. These...

  10. SOLUBILIZATION OF DODECANE, TETRACHLOROETHYLENE, AND 1,2-DICHLOROBENZENE IN MICELLAR SOLUTIONS OF ETHOXYLATED NONIONIC SURFACTANTS

    EPA Science Inventory

    Although surfactants have received considerable attention as a potential means for enhancing the recovery of organic compounds from the subsurface, only limited information is available regarding the micellar solubilization of common groundwater contaminants by nonionic surfactan...

  11. INFLUENCE OF VISCOUS AND BUOYANCY FORCES ON THE MOBILIZATION OF RESIDUAL TETRACHLOROETHYLENE DURING SURFACTANT FLUSHING

    EPA Science Inventory

    The potential for nonaqueous phase liquid (NAPL) mobilization is one of the most important considerations in the development and implementation of surfactant-based remediation technologies. Column experiments were performed to investigate the onset and extent of tetrachloroethyle...

  12. EVALUATION OF GEOPHYSICAL METHODS FOR THE DETECTION OF SUBSURFACE TETRACHLOROETHYLENE IN CONTROLLED SPILL EXPERIMENTS

    EPA Science Inventory

    This paper presents some of the results of five of the techniques: cross borehole complex resistivity (CR) also referred to as spectral induced polarization (SIP), cross borehole high resolution seismic (HRS), borehole self potential (SP), surface ground penetration radar (GPR), ...

  13. SURFACTANT ENHANCED RECOVERY OF TETRACHLOROETHYLENE FROM A POROUS MEDIUM CONTAINING LOW PERMEABILITY LENSES. 2. NUMERICAL SIMULATION. (R825409)

    EPA Science Inventory

    Abstract

    A numerical model of surfactant enhanced solubilization was developed and applied to the simulation of nonaqueous phase liquid recovery in two-dimensional heterogeneous laboratory sand tank systems. Model parameters were derived from independent, small-scale, ...

  14. Volatile halocarbons in butter: elevated tetrachloroethylene levels in samples obtained in close proximity to dry-cleaning establishments

    SciTech Connect

    Miller, L.J.; Uhler, A.D.

    1988-09-01

    In recent years materials not directly associated with food production, such as polychlorinated and brominated biphenyls, have been found in foods. According to the criteria to evaluate the likelihood for a chemical to contaminate food, the volatile halocarbons (VHCs) were selected as target compounds in an examination for potential contaminants in selected foods. The technique of multiple headspace extraction (MHE) was used in this study to minimize sample handling, and thereby reduce the potential for laboratory contamination and maximize throughput. Recently this laboratory reported findings of several VHCs in margarine, including PCE in four samples at levels above the usual background findings. Those samples had been obtained from a food store located immediately next to a dry-cleaning establishment. Follow-up investigation was conducted to determine the frequency of occurrence and levels of PCE that may be present in fatty foods purchased from stores located both near and distant from dry cleaners. Butter was chosen as a model food because it is a highly uniform product of very high fat content, which would be expected to act as a good absorber of the lipophilic VHCs. This paper presents results of these analyses and correlations between level of VHCs in butter and the proximity to dry cleaners of the food store where the butter was purchased.

  15. Evaluation of modeling for groundwater flow and tetrachloroethylene transport in the Milford-Souhegan glacial-drift aquifer at the Savage Municipal Well Superfund site, Milford, New Hampshire, 2011

    USGS Publications Warehouse

    Harte, Philip T.

    2012-01-01

    The U.S. Geological Survey and the New Hampshire Department of Environmental Services entered into a cooperative agreement to assist in the evaluation of remedy simulations of the MSGD aquifer that are being performed by various parties to track the remedial progress of the PCE plume. This report summarizes findings from this evaluation. Topics covered include description of groundwater flow and transport models used in the study of the Savage Superfund site (section 2), evaluation of models and their results (section 3), testing of several new simulations (section 4), an assessment of the representation of models to simulate field conditions (section 5), and an assessment of models as a tool in remedial operational decision making (section 6).

  16. FIELD APPLICATIONS OF CHEMICAL TIME-SERIES SAMPLING

    EPA Science Inventory

    Two municipal supply wells in Lakewood, Washington, were found to be contaminated with trichloroethylene, transdichloroethylene, and tetrachloroethylene. Sequential samples were taken for chemical analyses, in conjunction with drawdown measurement during aquifer (pump) tests desi...

  17. FIELD EVALUATION OF THE SOLVENT EXTRACTION RESIDUAL BIOTREATMENT (SERB) TECHNOLOGY

    EPA Science Inventory

    The Solvent Extraction Residual Biotreatment (SERB) technology was demonstrated at the former Sage's Dry Cleaner site in Jacksonville, FL where an area of PCE (tetrachloroethylene) contamination was identified. The SERB technology is a treatment train approach to complete site...

  18. EMISSIONS OF PERCHLOROETHYLENE FROM DRY CLEANED FABRICS

    EPA Science Inventory

    The paper gives results of an evaluation of emissions of perchloroethylene (tetrachloroethylene) from dry cleaned fabrics to determine: how introducing fresh dry cleaning into a home affects the indoor concentration of perchloroethylene, and the effectiveness of "airing out" dry ...

  19. ANAEROBIC BIOTRANSFORMATIONS OF POLLUTANT CHEMICALS IN AQUIFERS (JOURNAL VERSION)

    EPA Science Inventory

    Anaerobic microbial communities sampled from either a methanogenic or sulfate-reducing aquifer site have been tested for their ability to degrade a variety of groundwater pollutants, including halogenated aromatic compounds, simple alkyl phenols and tetrachloroethylene. The haloa...

  20. EMISSIONS OF PERCHLOROETHYLENE FROM DRY CLEANED FABRICS

    EPA Science Inventory

    A study was conducted to evaluate the emissions of perchloroethylene (tetrachloroethylene) from dry cleaned fabrics to determine: (a) how the introduction of fresh dry cleaning into a home affects the indoor concentration of perchloroethylene, and (b) the effectiveness of ‘airing...

  1. MICROEMULSION OF MIXED CHLORINATED SOLVENTS USING FOOD GRADE (EDIBLE) SURFACTANTS

    EPA Science Inventory

    Ground water contamination frequently consists of mixed chlorinated solvents [e.g., tetrachloroethylene (PCE), trichloroethylene (TCE), and trans-1,2- dichloroethylene (DCE)]. In this research, mixtures of the food grade (edible) surfactants bis(2-ethylhexyl) sodium sulfosuccinat...

  2. FIELD EVALUATION OF A SIMPLE MICROCOSM SIMULATING THE BEHAVIOR OF VOLATILE ORGANIC COMPOUNDS IN SUBSURFACE MATERIALS

    EPA Science Inventory

    A simple batch microcosm had previously been developed to simulate the behavior of volatile organic compounds in unconsolidated subsurface material. The microcosm was evaluated by comparing the behavior of tetrachloroethylene, bromoform, carbon tetrachloride, 1,2-dichlorobenzene,...

  3. NATURAL GRADIENT EXPERIMENT ON SOLUTE TRANSPORT IN A SAND AQUIFER. 4. SORPTION OF ORGANIC SOLUTES AND ITS INFLUENCE ON MOBILITY

    EPA Science Inventory

    Laboratory investigations were conducted to determine whether the observed field retardation of bromoform, carbon tetrachloride, tetrachloroethylene, 1,2-dichlorobenzene, and hexachloroethane at the Borden field site could be explained by the linear, reversible, equilibrium sorpt...

  4. Determination of adsorption isotherms of chlorinated hydrocarbons on halloysite adsorbent by inverse gas chromatography.

    PubMed

    Czech, K; S?omkiewicz, P M

    2013-05-01

    Inverse gas chromatographic methods of isotherm determination peak maximum (PM) and peak division (PD) were compared. These methods were applied to determine adsorption isotherms of dichloroethylene, trichloroethylene and tetrachloroethylene on acid-activated halloysite and adsorption enthalpy. PMID:23523065

  5. IN-PLACE REGENERATION OF SVE LOADED GAC USING FENTON'S REAGENTS

    EPA Science Inventory

    Ten out of the 25 most frequently detected groundwater contaminants at hazardous waste sites are chlorinated volatile organic compounds (VOCs) 1. Trichloroethylene (TCE) and tetrachloroethylene (PCE) are among the top three 1. Granular activated carbon (GAC) adsorption is widel...

  6. TEMPERATURE DEPENDENCE OF THE EMISSION OF PERCHLOROETHYLENE FROM DRY CLEANED FABRICS

    EPA Science Inventory

    The article discusses an evaluation of the emission of perchloroethylene (tetrachloroethylene) from freshly dry cleaned fabrics using small environment test chambers. he temperature dependence of the release of perchloroethylene was evaluated over a temperature range of 20 to 45 ...

  7. MULTIDISCIPLINARY APPROACH TO TOXICOLOGICAL SCREENING: I. SYSTEMIC TOXICITY

    EPA Science Inventory

    The toxicity of 10 chemicals (carbaryl, carbon tetrachloride, chlordane, ethylhexylphthalate, dichloromethane, heptachlor, phenol, tetrachloroethylene, triadimefon, and trichloroethylene were examined in the liver, kidney, spleen, thymus, and adrenal of female F-344 rats. cute le...

  8. EVALUATION OF EMISSION TEST METHODS FOR HALOGENATED HYDROCARBONS. VOLUME I, CC14, C2H4C12, C2C14, AND C2HC13

    EPA Science Inventory

    A test method for halogenated hydrocarbons has been evaluated and information is provided for the user. Four compounds were investigated, carbon tetrachloride, ethylene dichloride, tetrachloroethylene, and trichloroethylene. The subject compounds remained stable in compressed gas...

  9. IN-PLACE REGENERATION OF SVE LOADED GAC USING FENTON'S REAGENTS

    EPA Science Inventory

    Ten out of the 25 most frequently detected groundwater contaminants at hazardous waste sites are chlorinated volatile organic compounds (VOCs) 1 . Trichloroethylene (TCE) and tetrachloroethylene (PCE) are among the top three 1 . Granular activated carbon (GAC) adsorption is w...

  10. EMERGING TECHNOLOGY BULLETIN: TWO-ZONE PCE BIOREMEDIATION SYSTEM - ABB ENVIRONMENTAL SERVICES, INC. - U.S. ENVIRONMENTAL PROTECTION AGENCY

    EPA Science Inventory

    ABB Environmental Services, Inc.'s (ABB-ES), research has demonstrated that sequential anaerobic/aerobic biodegradation of tetrachloroethylene (PCE) is feasible if the proper conditions can be established. The anaerobic process can potentially completely dechlorinate PCE. Howeve...

  11. THE TEMPERATURE DEPENDENCE OF THE EMISSION OF PERCHLORO- ETHYLENE FROM DRY CLEANED FABRICS

    EPA Science Inventory

    A study was conducted to evaluate the emission of perchloroethylene (tetrachloroethylene) from freshly dry cleaned fabrics using small environmental test chambers. The temperature dependence of the release of perchloroethylene was evaluated over a temperature range of 20 to 45°C....

  12. BIOVENTING OF CHLORINATED SOLVENTS FOR GROUND-WATER CLEANUP THROUGH BIOREMEDIATION

    EPA Science Inventory

    Chlorinated solvents such as tetrachloroethylene, trichloroethylene, carbon tetrachloride, chloroform, 1,2-dichloroethane, and dichloromethane (methylene chloride) can exist in contaminated subsurface material as (1) the neat oil, (2) a component of a mixed oily waste, (3) a solu...

  13. Applications of Monitored Natural Attenuation in the USA (Abstract)

    EPA Science Inventory

    Monitored Natural Attenuation (MNA) is widely applied in the USA to control the risk associated with ground water contamination from chlorinated solvents such a tetrachloroethylene (PCE) and trichloroethylene (TCE). MNA relies on the natural processes of degradation, sorption an...

  14. Applications of Monitored Natural Attenuation in the USA (Presentation)

    EPA Science Inventory

    Monitored Natural Attenuation (MNA) is widely applied in the USA to control the risk associated with ground water contamination from chlorinated solvents such a tetrachloroethylene (PCE) and trichloroethylene (TCE). MNA relies on the natural processes of degradation, sorption an...

  15. Does increasing the temperature induce DNAPL migration?

    EPA Science Inventory

    Tetrachloroethylene, trichloroethylene, and chlorobenzene have been identified as contaminants in groundwater and are sometimes called Dense Non-Aqueous Phase Liquids (DNAPL). Thermal methods for remediation of contaminated soils and groundwater rely on raising the temperature o...

  16. IMPACT OF COSOLVENT FLUSHING ON SUBSURFACE MICROBIAL ECOLOGY AT THE FORMER SAGE'S DRY CLEANER SITE

    EPA Science Inventory

    The Solvent Extraction Residual Biotreatment (SERB) technology was evaluated at the former Sage's Dry Cleaner site in Jacksonville, FL where an area of tetrachloroethylene (PCE) contamination was identified. The SERB technology is a treatment train approach to complete site rest...

  17. 40 CFR Table 8 to Subpart Ffff of... - Partially Soluble Hazardous Air Pollutants

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-Trichlorophenol 95954 10. 1,4-Dichlorobenzene 106467 11. 2-Nitropropane 79469 12. 4-Methyl-2-pentanone (MIBK.... Bromomethane 74839 22. Butadiene 106990 23. Carbon disulfide 75150 24. Chlorobenzene 108907 25. Chloroethane.... Styrene 100425 50. Tetrachloroethylene (perchloroethylene) 127184 51. Tetrachloromethane...

  18. DEMONSTRATION BULLETIN: AQUADETOX®/ SVE SYSTEM and AWD Technologies, Inc.

    EPA Science Inventory

    The AWD technology simultaneously treats groundwater and soil-gas contaminated with volatile or ganic compounds (VOC), such as trichloroethylene (TCE) and tetrachloroethylene (PCE). This technology integrates two processes: (1) AquaDetox®, a moderate vacuum (pressure about 50 ...

  19. BIOTRANSFORMATION OF TRICHLOROETHYLENE IN SOIL

    EPA Science Inventory

    The organic contaminants that are most commonly detected in groundwater are low-molecular-weight, chlorinated aliphatic hydrocarbons such as trichloroethylene (TCE), tetrachloroethylene (PCE), 1,1,1-trichloroethane, carbon tetrachloride, and chloroform. The authors exposed unsatu...

  20. DEMONSTRATION BULLETIN: AQUADETOX®/ SVE SYSTEM and AWD Technologies, Inc.

    EPA Science Inventory

    The AWD technology simultaneously treats groundwater and soil-gas contaminated with volatile or ganic compounds (VOC), such as trichloroethylene (TCE) and tetrachloroethylene (PCE). This technology integrates two processes: (1) AquaDetox®, a moderate vacuum (pressure about 50 ...

  1. Characterization of Chloroethylene Dehalogenation by Cell Extracts of Desulfomonile tiedjei and Its Relationship to Chlorobenzoate Dehalogenation.

    PubMed

    Townsend, G T; Suflita, J M

    1996-08-01

    We characterized the reductive dehalogenation of tetrachloroethylene in cell extracts of Desulfomonile tiedjei and compared it with this organism's 3-chlorobenzoate dehalogenation activity. Tetrachloroethylene was sequentially dehalogenated to trichloro- and dichloroethylene; there was no evidence for dichloroethylene dehalogenation. Like the previously characterized 3-chlorobenzoate dehalogenation activity, tetrachloroethylene dehalogenation was heat sensitive, not oxygen labile, and increased in proportion to the amount of protein in assay mixtures. In addition, both dehalogenation activities were dependent on hydrogen or formate as an electron donor and had an absolute requirement for either methyl viologen or triquat as an electron carrier in vitro. Both activities appear to be catalyzed by integral membrane proteins with similar solubilization characteristics. Dehalogenation of tetrachloroethylene was inhibited by 3-chlorobenzoate but not by the structural isomers 2- and 4-chlorobenzoate. The last two compounds are not substrates for D. tiedjei. These findings lead us to suggest that the dehalogenation of tetrachloroethylene in D. tiedjei is catalyzed by a dehalogenase previously thought to be specific for meta-halobenzoates. PMID:16535377

  2. Some hepatotoxic actions of hexachloroethane and its metabolites in sheep.

    PubMed

    Fowler, J S

    1969-03-01

    1. Pentachloroethane and tetrachloroethylene were major metabolites of hexachloroethane in sheep.2. Concentrations of hexachloroethane, pentachloroethane and tetrachloroethylene were determined by gas-liquid chromatography in blood, bile, faeces, urine and tissues after oral administration of hexachloroethane emulsions to sheep.3. Increased blood concentrations of sorbitol dehydrogenase, glutamate dehydrogenase, and ornithine carbamoyl transferase were found to follow oral administration of hexachloroethane or pentachloroethane.4. The rate of bromsulphthalein transfer from liver cells to bile was found to decrease after oral administration of hexachloroethane. PMID:5809742

  3. Some hepatotoxic actions of hexachloroethane and its metabolites in sheep

    PubMed Central

    Fowler, J. S. L.

    1969-01-01

    1. Pentachloroethane and tetrachloroethylene were major metabolites of hexachloroethane in sheep. 2. Concentrations of hexachloroethane, pentachloroethane and tetrachloroethylene were determined by gas-liquid chromatography in blood, bile, faeces, urine and tissues after oral administration of hexachloroethane emulsions to sheep. 3. Increased blood concentrations of sorbitol dehydrogenase, glutamate dehydrogenase, and ornithine carbamoyl transferase were found to follow oral administration of hexachloroethane or pentachloroethane. 4. The rate of bromsulphthalein transfer from liver cells to bile was found to decrease after oral administration of hexachloroethane. PMID:5809742

  4. 40 CFR Table 7 to Subpart Hhhhh of... - Partially Soluble Hazardous Air Pollutants

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 106898 34. Ethyl acrylate 140885 35. Ethylbenzene 100414 36. Ethylene oxide 75218 37. Ethylidene...-Dichloroethane (ethylene dichloride) 107062 7. 1,2-Dichloropropane 78875 8. 1,3-Dichloropropene 542756 9. 2,4,5... 49. Propylene oxide 75569 50. Styrene 100425 51. Tetrachloroethylene (perchloroethylene) 127184...

  5. 40 CFR Table 7 to Subpart Hhhhh of... - Partially Soluble Hazardous Air Pollutants

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 106898 34. Ethyl acrylate 140885 35. Ethylbenzene 100414 36. Ethylene oxide 75218 37. Ethylidene...-Dichloroethane (ethylene dichloride) 107062 7. 1,2-Dichloropropane 78875 8. 1,3-Dichloropropene 542756 9. 2,4,5... 49. Propylene oxide 75569 50. Styrene 100425 51. Tetrachloroethylene (perchloroethylene) 127184...

  6. BINARY DESORPTION ISOTHERMS OF TCE AND PCE FROM SILICA GEL AND NATURAL SOLIDS. (R822626)

    EPA Science Inventory

    Binary solute desorption isotherms of trichloroethylene (TCE) and tetrachloroethylene (PCE) at 100% relative humidity from silica gel and two well-characterized natural solids were investigated. Results indicated that the ideal adsorbed solution theory (IAST) was able to descr...

  7. CATALYTIC HYDRODEHALOGENATION OF CHLORINATED ETHYLENES USING PALLADIUM AND HYDROGEN FOR THE TREATMENT OF CONTAMINATED WATER. (R825689C054,R825689C060)

    EPA Science Inventory

    Abstract

    A kinetic model is presented for the catalytic hydrodehalogenation of chlorinated ethylenes using Pd and H2 under water treatment conditions. All five chlorinated ethylenes, including tetrachloroethylene (PCE) and vinyl chloride, were completely rem...

  8. FIELD MEASUREMENT OF VAPOR INTRUSION RATES AT A PCE SITE (ABSTRACT ONLY)

    EPA Science Inventory

    A field study was performed to evaluate vapor intrusion (VI) of tetrachloroethylene (PCE) and other chlorinated solvents at a commercial retail site in Dallas, TX. The building is approximately 40 years old and once housed a dry cleaning operation. Results from an initial site ch...

  9. SYNERGISTIC AND ANTAGONISTIC EFFECTS ON GENOTOXICITY OF CHEMICALS COMMONLY FOUND IN HAZARDOUS WASTE SITES

    EPA Science Inventory

    Synergistic and antagonistic effects on genotoxicity of mixtures of four chemicals; i.e., lead tetraacetate (LTA), arsenic trioxide (ATO), dieldrin (DED), and tetrachloroethylene (TCE), were evaluated by the Tradescantia-Micronucleus (Trad-MCN) assay. he concentration of stock so...

  10. 40 CFR 414.91 - Toxic pollutant effluent limitations and standards for direct discharge point sources that use...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... based upon a determination that such streams contain significant amounts of the pollutants identified... reduction of these pollutants. This determination must be based upon a review of relevant engineering...-Nitrophenol 124 72 Phenanthrene 59 22 Phenol 26 15 Pyrene 67 25 Tetrachloroethylene 56 22 Toluene 80 26...

  11. 40 CFR 414.101 - Toxic pollutant effluent limitations and standards for direct discharge point sources that do not...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... cyanide bearing based upon a determination that such streams contain significant amounts of the pollutants... reduction of these pollutants. This determination must be based upon a review of relevant engineering...-Nitrophenol 231 65 4-Nitrophenol 576 162 Phenanthrene 47 19 Phenol 47 19 Pyrene 48 20 Tetrachloroethylene...

  12. 40 CFR 414.101 - Toxic pollutant effluent limitations and standards for direct discharge point sources that do not...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... cyanide bearing based upon a determination that such streams contain significant amounts of the pollutants... reduction of these pollutants. This determination must be based upon a review of relevant engineering...-Nitrophenol 231 65 4-Nitrophenol 576 162 Phenanthrene 47 19 Phenol 47 19 Pyrene 48 20 Tetrachloroethylene...

  13. 40 CFR 414.91 - Toxic pollutant effluent limitations and standards for direct discharge point sources that use...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... based upon a determination that such streams contain significant amounts of the pollutants identified... reduction of these pollutants. This determination must be based upon a review of relevant engineering...-Nitrophenol 124 72 Phenanthrene 59 22 Phenol 26 15 Pyrene 67 25 Tetrachloroethylene 56 22 Toluene 80 26...

  14. 40 CFR 414.91 - Toxic pollutant effluent limitations and standards for direct discharge point sources that use...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... based upon a determination that such streams contain significant amounts of the pollutants identified... reduction of these pollutants. This determination must be based upon a review of relevant engineering...-Nitrophenol 124 72 Phenanthrene 59 22 Phenol 26 15 Pyrene 67 25 Tetrachloroethylene 56 22 Toluene 80 26...

  15. 40 CFR 414.91 - Toxic pollutant effluent limitations and standards for direct discharge point sources that use...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... based upon a determination that such streams contain significant amounts of the pollutants identified... reduction of these pollutants. This determination must be based upon a review of relevant engineering...-Nitrophenol 124 72 Phenanthrene 59 22 Phenol 26 15 Pyrene 67 25 Tetrachloroethylene 56 22 Toluene 80 26...

  16. 40 CFR 414.101 - Toxic pollutant effluent limitations and standards for direct discharge point sources that do not...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... cyanide bearing based upon a determination that such streams contain significant amounts of the pollutants... reduction of these pollutants. This determination must be based upon a review of relevant engineering...-Nitrophenol 231 65 4-Nitrophenol 576 162 Phenanthrene 47 19 Phenol 47 19 Pyrene 48 20 Tetrachloroethylene...

  17. 40 CFR 414.101 - Toxic pollutant effluent limitations and standards for direct discharge point sources that do not...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... cyanide bearing based upon a determination that such streams contain significant amounts of the pollutants... reduction of these pollutants. This determination must be based upon a review of relevant engineering...-Nitrophenol 231 65 4-Nitrophenol 576 162 Phenanthrene 47 19 Phenol 47 19 Pyrene 48 20 Tetrachloroethylene...

  18. 40 CFR 414.91 - Toxic pollutant effluent limitations and standards for direct discharge point sources that use...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... based upon a determination that such streams contain significant amounts of the pollutants identified... reduction of these pollutants. This determination must be based upon a review of relevant engineering...-Nitrophenol 124 72 Phenanthrene 59 22 Phenol 26 15 Pyrene 67 25 Tetrachloroethylene 56 22 Toluene 80 26...

  19. Cocaine detection by a mid-infrared waveguide integrated with a microfluidic chip.

    PubMed

    Chang, Yu-Chi; Wägli, Philip; Paeder, Vincent; Homsy, Alexandra; Hvozdara, Lubos; van der Wal, Peter; Di Francesco, Joab; de Rooij, Nico F; Peter Herzig, Hans

    2012-09-01

    A germanium (Ge) strip waveguide on a silicon (Si) substrate is integrated with a microfluidic chip to detect cocaine in tetrachloroethylene (PCE) solutions. In the evanescent field of the waveguide, cocaine absorbs the light near 5.8 ?m, which is emitted from a quantum cascade laser. This device is ideal for (bio-)chemical sensing applications. PMID:22806146

  20. THE TEMPERATURE DEPENDENCE OF THE EMISSION OF PERCHLORO- ETHYLENE FROM DRY CLEANED FABRICS

    EPA Science Inventory

    A study was conducted to evaluate the emission of perchloroethylene (tetrachloroethylene) from freshly dry cleaned fabrics using small environmental test chambers. The temperature dependence of the release of perchloroethylene was evaluated over a temperature range of 20 to 45°C....

  1. MEASUREMENT OF PERCHLOROETHYLENE IN AMBIENT AIR

    EPA Science Inventory

    Perchloroethylene (i.e., tetrachloroethylene) is an organic solvent widely used in dry cleaning and industrial metal degreasing operations. Short-term field studies were conducted in each of three major metropolitan areas which were selected on the basis of the number, density an...

  2. 40 CFR Appendix A to Subpart O of... - Regulated Contaminants

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... experience skin damage or problems with their circulatory system, and may have an increased risk of getting... circulatory system. Tetrachloroethylene (ppb) .005 1000 5 0 Discharge from factories and dry cleaners Some... problems with their liver, nervous system, or circulatory system. 1,1,2-Trichloroethane (ppb) .005 1000 5...

  3. 40 CFR Appendix A to Subpart O of... - Regulated Contaminants

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... experience skin damage or problems with their circulatory system, and may have an increased risk of getting... circulatory system. Tetrachloroethylene (ppb) .005 1000 5 0 Discharge from factories and dry cleaners Some... problems with their liver, nervous system, or circulatory system. 1,1,2-Trichloroethane (ppb) .005 1000 5...

  4. 40 CFR Appendix A to Subpart O of... - Regulated Contaminants

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... experience skin damage or problems with their circulatory system, and may have an increased risk of getting... circulatory system. Tetrachloroethylene (ppb) .005 1000 5 0 Discharge from factories and dry cleaners Some... problems with their liver, nervous system, or circulatory system. 1,1,2-Trichloroethane (ppb) .005 1000 5...

  5. 40 CFR Appendix A to Subpart O of... - Regulated Contaminants

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... experience skin damage or problems with their circulatory system, and may have an increased risk of getting... circulatory system. Tetrachloroethylene (ppb) .005 1000 5 0 Discharge from factories and dry cleaners Some... problems with their liver, nervous system, or circulatory system. 1,1,2-Trichloroethane (ppb) .005 1000 5...

  6. INFILTRATION OF PCE IN A SYSTEM CONTAINING SPATIAL WETTABILITY VARIATIONS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A two-dimensional infiltration experiment was conducted to investigate and quantify the effect of spatial wettability variations on DNAPL migration and entrapment in saturated sands. Visual observations of tetrachloroethylene (PCE) infiltration show that organic-wet sand lenses act as very effective...

  7. OXIDATION OF WATER SUPPLY REFRACTORY SPECIES BY OZONE WITH ULTRAVIOLET RADIATION

    EPA Science Inventory

    The use of ozone with ultraviolet radiation was studied as an advanced treatment process for the removal of micropollutants and trihalomethane precursors from drinking water. The model compounds chloroform, bromo-dichloromethane, tetrachloroethylene and 2,2',4,4',6,6'-hexachlorob...

  8. PULSED AIR SPARGING IN AQUIFERS CONTAMINATED WITH DENSE NONAQUEOUS PHASE LIQUIDS

    EPA Science Inventory

    Air sparging was evaluated for remediation of tetrachloroethylene (PCE) present as dense nonaqueous phase liquid (DNAPL) in aquifers. A two-dimensional laboratory tank with a transparent front wall allowed for visual observation of DNAPL mobilization. A DNAPL zone 50 cm high was ...

  9. Residues of volatile halocarbons in margarines.

    PubMed

    Entz, R C; Diachenko, G W

    1988-01-01

    Findings of residues of volatile halocarbons (VHCs) such as 1,1,1-trichloroethane, trichloroethylene and tetrachloroethylene in margarine are reported. VHCs were determined by a headspace gas chromatographic method with electron capture detection. Identity was confirmed by headspace gas chromatography-mass spectrometry for some of the higher level (100-5000 ppb) residues. A total of 70 stick, soft and diet soft margarines were purchased in the Washington, DC, metropolitan area. In addition, margarines and margarine ingredients were collected from 19 production lines. These products plus the adhesives used in the packaging were examined. Levels of VHCs ranging from 5 to 100 ppb (ng/g) were found in many of the margarines. The highest concentrations of any individual VHC (tetrachloroethylene at 1-5 ppm) were found in margarines obtained from a supermarket located next to a dry cleaner. Possible sources of VHC residues are discussed. PMID:3396733

  10. Critical contaminant/critical pathway analysis - surface water transport for nonradioactive contaminants

    SciTech Connect

    Chen, Kuo-Fu

    1996-11-01

    The health risks for an individual exposed to contaminants released from SRS outfalls from 1989 to 1995 were estimated. The exposure pathways studied are ingestion of drinking water, ingestion of contaminated fish and dermal contact with contaminants in water while swimming. The estimated incremental risks for an individual developing cancer vary from 3.E-06 to 1.0E-05. The estimated total exposure chronic noncancer hazard indices vary from 6.E-02 to 1.E-01. The critical contaminants were ranked based on their cancer risks and chronic noncarcinogenic hazard quotients. For cancer risks, the critical contaminants released from SRS outfalls are arsenic, tetrachloroethylene, and benzene. For chronic noncarcinogenic risks, the critical contaminants released from srs outfalls are cadmium, arsenic, silver, chromium, mercury, selenium, nitrate, manganese, zinc, nickel, uranium, barium, copper, tetrachloroethylene, cyanide, and phenol. The critical pathways in decreasing risk order are ingestion of contaminated fish, ingestion of drinking water and dermal contact with contaminants in water while swimming.

  11. Health assessment for Keystone Sanitation Landfill, Union Township, Adams County, Pennsylvania, Region 3. CERCLIS No. PAD054142781. Preliminary report

    SciTech Connect

    Not Available

    1988-10-11

    The Keystone Sanitation Landfill site is a former farm which began receiving municipal waste and industrial construction debris in September 1966. The still active site is situated on a ridge, and runoff leaves the site from all directions. The environmental contamination on-site consists of 1,1,1-trichloroethane, trichloroethylene, vinyl chloride, benzene, 1,1-dichloroethane, 1,1-dichloroethylene, tetrachloroethylene, trans-1,2-dichloroethylene, chromium, lead, and N-nitrosodiphenylamine in groundwater. The environmental contamination off-site consists of tetrachloroethylene, 1,1,1-trichloroethane, 1,1-dichloroethylene, 1,1-dichloroethane, trichloroethylene in surface water; and lead, vinyl chloride, and 1,2-dichloroethylene in private wells. The site is considered to be of potential public health concern because of the risk to human health caused by the possibility of exposure to hazardous substances via groundwater, soil, and surface water.

  12. Health assessment for Delta Quarries/Stotler Landfill, Antis/Logan Township, Blair County, Pennsylvania, Region 3. CERCLIS No. PAD981038052. Preliminary report

    SciTech Connect

    Not Available

    1988-11-15

    The Delta Quarries (Stotler Landfill) site is an inactive, unpermitted municipal waste facility which operated from the 1960s until 1985. The environmental contamination on-site consists of trans-1,2-dichloroethylene, trichloroethylene, and 1,1-dichloroethane in groundwater. In addition, lead was detected in groundwater during one sampling event. The environmental contamination off-site consists of trichloroethylene, tetrachloroethylene, and 1,1,1-trichloroethane in surface water; and tetrachloroethylene in groundwater. The off-site groundwater contamination was found in a residential well and in a spring. The site is considered to be of potential public health concern because of the risk to human health caused by the possibility of exposure to hazardous substances via contaminated groundwater and surface water.

  13. Synthesis and Application of Carbon–Iron Oxide Microspheres’ Black Pigments in Electrophoretic Displays

    PubMed Central

    2010-01-01

    Carbon–iron oxide microspheres’ black pigments (CIOMBs) had been prepared via ultrasonic spray pyrolysis of aqueous solutions containing ferrous chloride and glucose. Due to the presence of carbon, CIOMBs not only exhibited remarkably acid resistance, but also could be well dispersed in both polar solvents and nonpolar solvent. Finally, dispersions of hollow CIOMBs in tetrachloroethylene had successfully been applied in electrophoretic displays. PMID:21076669

  14. Degradation of halogenated aliphatic compounds by the ammonia-oxidizing bacterium nitrosomonas europaea

    SciTech Connect

    Vannelli, T.; Logan, M.; Arciero, D.M.; Hooper, A.B. )

    1990-04-01

    Suspensions of Nitrosomonas europaea catalyzed the ammonia-stimulated aerobic transformation of the halogenated aliphatic compounds dichloromethane, dibromomethane, trichloromethane (chloroform), bromoethane, 1,2-dibromoethane (ethylene dibromide), 1,1,2-trichloroethane, 1,1,1-trichloroethane, monochloroethylene (vinyl chloride), gem-dichloroethylene, cis- and trans-dichloroethylene, cis-dibromoethylene, trichloroethylene, and 1,2,3-trichloropropane. Tetrachloromethane (carbon tetrachloride), tetrachloroethylene (perchloroethylene), and trans-dibromoethylene were not degraded.

  15. Degradation of halogenated aliphatic compounds by the ammonia- oxidizing bacterium Nitrosomonas europaea.

    PubMed

    Vannelli, T; Logan, M; Arciero, D M; Hooper, A B

    1990-04-01

    Suspensions of Nitrosomonas europaea catalyzed the ammonia-stimulated aerobic transformation of the halogenated aliphatic compounds dichloromethane, dibromomethane, trichloromethane (chloroform), bromoethane, 1,2-dibromoethane (ethylene dibromide), 1,1,2-trichloroethane, 1,1,1-trichloroethane, monochloroethylene (vinyl chloride), gem-dichloroethylene, cis- and trans-dichloroethylene, cis-dibromoethylene, trichloroethylene, and 1,2,3-trichloropropane, Tetrachloromethane (carbon tetrachloride), tetrachloroethylene (perchloroethylene), and trans-dibromoethylene were not degraded. PMID:2339874

  16. Degradation of halogenated aliphatic compounds by the ammonia-oxidizing bacterium Nitrosomonas europaea

    SciTech Connect

    Vannelli, T.; Logan, M.; Arciero, D.M.; Hooper, A.B.

    1990-01-01

    Suspensions of Nitrosomonas europaea catalyzed the ammonia-stimulated aerobic transformation of the halogenated aliphatic compounds dichloromethane, dibromomethane, trichloromethane (chloroform), bromoethane, 1,2-dibromoethane (ethylene dibromide), 1,1,2-trichloroethane, 1,1,1-trichloroethane, monochloroethylene (vinyl chloride), gem-dichloroethylene, cis- and trans-dichloroethylene, cis-dibromoethylene, trichloroethylene, and 1,2,3-trichloropropane. Tetrachloromethane (carbon tetrachloride), tetrachloroethylene (perchloroethylene), and trans-dibromoethylene were not degraded.

  17. Aerobic microorganism for the degradation of chlorinated aliphatic hydrocarbons

    DOEpatents

    Fliermans, Carl B.

    1989-01-01

    A chlorinated aliphatic hydrocarbon-degrading microorganism, having American Type Culture Collection accession numbers ATCC 53570 and 53571, in a biologically pure culture aseptically collected from a deep subsurface habitat and enhanced, mineralizes trichloroethylene and tetrachloroethylene to HCl, H.sub.2 O and Co.sub.2 under aerobic conditions stimulated by methane, acetate, methanol, tryptone-yeast extract, propane and propane-methane.

  18. In situ air stripping using horizontal wells. Innovative technology summary report

    SciTech Connect

    1995-04-01

    In-situ air stripping employs horizontal wells to inject or sparge air into the ground water and vacuum extract VOC`S from vadose zone soils. The horizontal wells provide better access to the subsurface contamination, and the air sparging eliminates the need for surface ground water treatment systems and treats the subsurface in-situ. A full-scale demonstration was conducted at the Savannah River Plant in an area polluted with trichloroethylene and tetrachloroethylene. Results are described.

  19. Distribution of selected volatile organic compounds determined with water-to-vapor diffusion samplers at the interface between ground water and surface water, Centredale Manor site, North Providence, Rhode Island, September 1999

    USGS Publications Warehouse

    Church, Peter E.; Lyford, Forest P.; Clifford, Scott

    2000-01-01

    Volatile organic compounds are present in soils and ground water at the Centredale Manor Superfund Site in North Providence, Rhode Island. In September 1999, water-to-vapor diffusion samplers were placed in the bottom sediments of waterways adjacent to the site to identify possible contaminated ground-water discharge areas. The approximate12-acre site is a narrow stretch of land between the eastern bank of the Woonasquatucket River, downstream from the U.S. Route 44 bridge and a former mill raceway. The samplers were placed along a 2,250-foot reach of the Woonasquatucket River, in the former mill raceway several hundred feet to the east and parallel to the river, and in a cross channel between the river and former mill raceway. Volatile organic compounds were detected in 84 of the 104 water-to-vapor diffusion samplers retrieved. Trichloroethylene and tetrachloro-ethylene were the principal volatile organic compounds detected. The highest vapor concentrations measured for these two chemicals were from diffusion samplers located along an approximate 100-foot reach of the Woonasquatucket River about 500 feet downstream of the bridge; here trichloroethylene and tetrachloroethylene vapor concentrations ranged from about 2,000 to 180,000 and 1,600 to 1,400,000 parts per billion by volume, respectively. Upstream and downstream from this reach and along the former mill raceway, trichloroethylene and tetrachloroethylene vapor concentrations from the diffusion samples were generally less than 100 parts per billion by volume. Along the lower reaches of the river and mill raceway, however, and in the cross channel, vapor concentrations of trichloroethylene exceeded 100 parts per billion by volume and tetrachloroethylene exceeded 1,000 parts per billion by volume in several diffusion samples. Although diffusion sample vapor concentrations are higher than water concentrations in surface waters and in ground water, and they should only be interpreted qualitatively as relative values, these values provide important information as to potential discharge areas of contaminants.

  20. H-Area Seepage Basins groundwater monitoring report

    SciTech Connect

    Not Available

    1992-09-01

    During second quarter 1992, tritium, nitrate, nonvolatile beta, total alpha-emitting radium (radium-224 and radium-226), gross alpha, mercury, lead, tetrachloroethylene, arsenic, and cadmium exceeded the US Environmental Protection Agency Primary Drinking Water Standards (PDWS) in groundwater samples from monitoring wells at the H-Area Seepage Basins (HASB) at the Savannah River Plant. This report gives the results of the analyses of groundwater from the H-Area Seepage Basin.

  1. H-Area Seepage Basins groundwater monitoring report. Second quarter 1992

    SciTech Connect

    Not Available

    1992-09-01

    During second quarter 1992, tritium, nitrate, nonvolatile beta, total alpha-emitting radium (radium-224 and radium-226), gross alpha, mercury, lead, tetrachloroethylene, arsenic, and cadmium exceeded the US Environmental Protection Agency Primary Drinking Water Standards (PDWS) in groundwater samples from monitoring wells at the H-Area Seepage Basins (HASB) at the Savannah River Plant. This report gives the results of the analyses of groundwater from the H-Area Seepage Basin.

  2. Health assessment for Nutmeg Valley, Wolcott, Connecticut, Region 1. CERCLIS No. CTSI88045. Preliminary report

    SciTech Connect

    Not Available

    1988-05-02

    The Nutmeg Valley Industrial Park is listed on the National Priorities List. The site is an industrial park containing 40 companies (light industry metal working and finishing) and 20 private residences. The contaminants present in groundwater at the site are trichloroethylene, benzene, ethyl benzene, toluene, xylene, methylene chloride, trans 1,2-dichloroethane, 1,1,1-trichloroethane, tetrachloroethylene, pentane, carbon tetrachloride, and chloroform. Investigation into the extent of contamination in other pathways is ongoing.

  3. H-Area Seepage Basins groundwater monitoring report. First quarter 1992

    SciTech Connect

    Thompson, C.Y.

    1992-06-01

    During first quarter 1992, tritium, nitrate, nonvolatile beta, total alpha-emitting radium (radium-224 and radium-226), gross alpha, antimony, mercury, lead, tetrachloroethylene, arsenic, and cadmium exceeded the US Environmental Protection Agency Primary Drinking Water Standards (PDWS) in groundwater samples from monitoring wells at the H-Area Seepage Basins (HASB) at the Savannah River Site. This report presents and discusses the groundwater monitoring results in the H-Area for first quarter 1992.

  4. H-Area Seepage Basins groundwater monitoring report

    SciTech Connect

    Thompson, C.Y.

    1992-06-01

    During first quarter 1992, tritium, nitrate, nonvolatile beta, total alpha-emitting radium (radium-224 and radium-226), gross alpha, antimony, mercury, lead, tetrachloroethylene, arsenic, and cadmium exceeded the US Environmental Protection Agency Primary Drinking Water Standards (PDWS) in groundwater samples from monitoring wells at the H-Area Seepage Basins (HASB) at the Savannah River Site. This report presents and discusses the groundwater monitoring results in the H-Area for first quarter 1992.

  5. Interaction of abiotic and microbial processes in hexachloroethane reduction in groundwater

    NASA Astrophysics Data System (ADS)

    Roberts, A. Lynn; Gschwend, Philip M.

    1994-06-01

    In order to gain insight into mechanisms of hexachloroethane reduction, hexa- and pentachloroethane transformation rates were measured in anaerobic groundwater samples. For samples spiked with pentachloroethane, disappearance of pentachloroethane was accompanied by tetrachloroethylene production. Transformation rates were similar in unpoisoned and in HgCl 2-poisoned samples, and rates were within ±20% of predictions based on measured pH and second-order dehydrochlorination rate constants determined in clean laboratory systems, indicating that the fate of pentachloroethane in this system is dominated by abiotic reactions. No hexachloroethane transformation was observed in HgCl 2-poisoned samples, whereas in unpoisoned samples, hexachloroethane disappearance was accompanied by production of tetrachloroethylene as well as traces of pentachloroethane. Although only minor amounts of pentachloroethane accumulated, as much as 30% of the hexachloroethane transformation pathway proceeds via a pentachloroethane intermediate. This suggests that the microbial reduction of hexachloroethane proceeds at least in part through a free-radical mechanism. To the extent that hexachloroethane reduction to tetrachloroethylene occurs through a pentachloroethane intermediate, the first step in the sequence, the microbially-mediated step, is the slow step; the subsequent abiotic dehydrohalogenation step occurs much more rapidly.

  6. Children’s Exposure to Volatile Organic Compounds as Determined by Longitudinal Measurements in Blood

    PubMed Central

    Sexton, Ken; Adgate, John L.; Church, Timothy R.; Ashley, David L.; Needham, Larry L.; Ramachandran, Gurumurthy; Fredrickson, Ann L.; Ryan, Andrew D.

    2005-01-01

    Blood concentrations of 11 volatile organic compounds (VOCs) were measured up to four times over 2 years in a probability sample of more than 150 children from two poor, minority neighborhoods in Minneapolis, Minnesota. Blood levels of benzene, carbon tetrachloride, trichloroethene, and m-/p-xylene were comparable with those measured in selected adults from the Third National Health and Nutrition Examination Survey (NHANES III), whereas concentrations of ethylbenzene, tetrachloroethylene, toluene, 1,1,1-trichloroethane, and o-xylene were two or more times lower in the children. Blood levels of styrene were more than twice as high, and for about 10% of the children 1,4-dichlorobenzene levels were ?10 times higher compared with NHANES III subjects. We observed strong statistical associations between numerous pairwise combinations of individual VOCs in blood (e.g., benzene and m-/p-xylene, m-/p-xylene and o-xylene, 1,1,1-trichloroethane and m-/p-xylene, and 1,1,1-trichloroethane and trichloroethene). Between-child variability was higher than within-child variability for 1,4-dichlorobenzene and tetrachloroethylene. Between- and within-child variability were approximately the same for ethylbenzene and 1,1,1-trichloroethane, and between-child was lower than within-child variability for the other seven compounds. Two-day, integrated personal air measurements explained almost 79% of the variance in blood levels for 1,4-dichlorobenzene and approximately 20% for tetrachloroethylene, toluene, m-/p-xylene, and o-xylene. Personal air measurements explained much less of the variance (between 0.5 and 8%) for trichloroethene, styrene, benzene, and ethylbenzene. We observed no significant statistical associations between total urinary cotinine (a biomarker for exposure to environmental tobacco smoke) and blood VOC concentrations. For siblings living in the same household, we found strong statistical associations between measured blood VOC concentrations. PMID:15743726

  7. Contamination of shallow ground water in the area of building 95, Picatinny Arsenal, New Jersey, 1985-90

    USGS Publications Warehouse

    Sargent, B.P.; Storck, D.A.

    1994-01-01

    A zone of contaminated ground water at Picatinny Arsenal has resulted from the operation of a metal- plating facility in building 95 during 1960-81, and the wastewater-treatment system that is in and adjacent to the building. Thirty-two monitoring wells were installed in 1989 to supplement 12 previously installed wells. All wells were sampled in 1989 and 1990 for analysis of ground water for inorganic constituents, trace elements, volatile organic compounds, and nutrients. Four wells also were sampled for analysis for base/neutral- and acid-extractable compounds and pesticides, and soil gas from the unsaturated zone at eight sites was analyzed for volatile organic compounds. Concentrations of dissolved solids and sulfate in the study area were consistently above the U.S. Environmental Protection Agency's secondary drinking-water regulations. The areal distribution of sulfate differed from that of the volatile organic compounds. Concentrations of trace elements were not elevated downgradient from the source. The estimated average velocity of contaminant movement is 0.1 to 1.1 feet per day. The major organic contaminants identified in the study area are trichloroethylene, tetrachloroethylene, and 1,1,1-trichloroethane. Trichloroethylene was detected in wells upgradient from the wastewater- treatment site. Tetrachloroethylene and 1,1,1-trichloroethane might originate at tanks in the basement of building 95 rather than at the adjacent wastewater-treatment system. The pre- dominant gas-phase contaminant, 1,1,1- trichloroethane, was detected at a maximum con- centration of 15.7 micrograms per liter. Both trichoroethylene and tetrachloroethylene were detected in concentrations greater than 0.10 micrograms per liter in five of the eight soil- gas samples, indicating that volatilization and diffusion through the unsaturated zone could be a significant mechanism of contaminant loss from the aquifer.

  8. Metallurgical Laboratory Hazardous Waste Management Facility groundwater monitoring report: Third quarter 1993

    SciTech Connect

    Not Available

    1993-12-01

    During third quarter 1993, samples from AMB groundwater monitoring wells at the Metallurgical Laboratory Hazardous Waste Management Facility were analyzed for certain heavy metals, indicator parameters, radionuclides, volatile organic compounds, and other constituents. Eight parameters exceeded standards during the quarter. As in previous quarters, tetrachloroethylene and trichloroethylene exceeded final Primary Drinking Water Standards; and aluminum, iron, lead, manganese, pH, and total organic halogens exceeded the Savannah River Site Flag 2 criteria in one or more of the wells. Groundwater flow direction and rate in the water-table unit were similar to previous quarters.

  9. Distribution of methyl iodide, ethyl iodide, bromoform, and dibromomethane over the ocean (east and southeast Asian seas and the western Pacific)

    NASA Astrophysics Data System (ADS)

    Yokouchi, Y.; Mukai, H.; Yamamoto, H.; Otsuki, A.; Saitoh, C.; Nojiri, Y.

    1997-04-01

    Ambient concentrations of four marine-derived halocarbons (methyl iodide, ethyl iodide, bromoform and dibromomethane) and two man-made halocarbons (trichloroethylene and tetrachloroethylene) were measured during western Pacific cruises and east and southeast Asian cruises. Ethyl iodide was detected in the atmosphere for the first time and was identified as an atmospheric iodine source compound. Bromoform concentrations were positively correlated with those of dibromomethane, and methyl iodide showed variations similar to those of ethyl iodide. However, there was no correlation between the bromocarbons and the iodocarbons. The concentrations of methyl iodide and ethyl iodide changed more markedly, possibly owing to higher rates of photodecomposition of iodocarbons.

  10. H-Area Seepage Basins

    SciTech Connect

    Stejskal, G.

    1990-12-01

    During the third quarter of 1990 the wells which make up the H-Area Seepage Basins (H-HWMF) monitoring network were sampled. Laboratory analyses were performed to measure levels of hazardous constituents, indicator parameters, tritium, nonvolatile beta, and gross alpha. A Gas Chromatograph Mass Spectrometer (GCMS) scan was performed on all wells sampled to determine any hazardous organic constituents present in the groundwater. The primary contaminants observed at wells monitoring the H-Area Seepage Basins are tritium, nitrate, mercury, gross alpha, nonvolatile beta, trichloroethylene (TCE), tetrachloroethylene, lead, cadmium, arsenic, and total radium.

  11. H-Area Seepage Basins. Third quarter 1990 groundwater quality assessment report

    SciTech Connect

    Stejskal, G.

    1990-12-01

    During the third quarter of 1990 the wells which make up the H-Area Seepage Basins (H-HWMF) monitoring network were sampled. Laboratory analyses were performed to measure levels of hazardous constituents, indicator parameters, tritium, nonvolatile beta, and gross alpha. A Gas Chromatograph Mass Spectrometer (GCMS) scan was performed on all wells sampled to determine any hazardous organic constituents present in the groundwater. The primary contaminants observed at wells monitoring the H-Area Seepage Basins are tritium, nitrate, mercury, gross alpha, nonvolatile beta, trichloroethylene (TCE), tetrachloroethylene, lead, cadmium, arsenic, and total radium.

  12. Mixed Waste Management Facility (MWMF) groundwater monitoring report. Second quarter 1993

    SciTech Connect

    Not Available

    1993-09-01

    Groundwater monitoring continued at the Savannah River Plant. During second quarter 1993, nine constituents exceeded final Primary Drinking Water Standards in groundwater samples from downgradient monitoring wells at the Mixed Waste Management Facility, the Old Burial Ground, the E-Area Vaults, and the proposed Hazardous Waste/Mixed Waste Disposal Vaults. As in previous quarters, tritium and trichloroethylene were the most widespread constituents. Chloroethene (vinyl chloride), dichloromethane (methylene chloride), 1,1-dichloroethylene, gross alpha, lead, nonvolatile beta, or tetrachloroethylene also exceeded standards in one or more wells. The groundwater flow directions and rates in the three hydrostratigraphic units were similar to those of previous quarters.

  13. Sulfur species in perchloroethylene and other coal extracts

    SciTech Connect

    Vorres, K.S.

    1990-01-01

    Earlier work has indicated that elemental sulfur can be removed from coal by the use of perchloroethylene (tetrachloroethylene). The unique ability to remove the elemental form of the sulfur has led to considerable interest in the process and mechanism of action. An effort has been made to understand the species that can be removed by extraction with perchloroethylene (PCE). The effort involved the extraction of a set of coals, and the related effort to identify the species in the extract by the use of gas chromatography-mass spectrometry at the Argonne National Laboratory (ANL). This paper reports on the analytical work on the extracts. 4 refs.

  14. Subsurface transport of hydrocarbon fuel additives and a dense chlorinated solvent. Final report, 1 July 1993-30 September 1995

    SciTech Connect

    Guven, O.; Dane, J.H.; Hill, W.E.; Hofstee, C.; Walker, R.C.

    1996-12-01

    This report provides a description of the work done at Auburn University for the research project `Subsurface Transport of Hydrocarbon Fuel additives and a Chlorinated Solvent`, supported by Armstrong Laboratory, Headquarters Air Force Civil Engineering Support Agency, Environics Directorate, under contract F08635-93-C-0071. The project is focused on the subsurface environmental behavior of quadricyclane, which is a light nonaqueous phase liquid (LNAPL) cyclic hydrocarbon fuel additive, and on the behavior of tetrachloroethylene (or perchloroethylene), which is a dense nonaqueous phase liquid (DNAPL) chlorinated hydrocarbon solvent.

  15. Temperature dependence of the emission of perchloroethylene from dry-cleaned fabrics

    SciTech Connect

    Guo, Z.; Tichenor, B.A.; Mason, M.A.; Plunket, C.M.

    1990-01-01

    The article discusses an evaluation of the emission of perchloroethylene (tetrachloroethylene) from freshly dry cleaned fabrics using small environmental test chambers. The temperature dependence of the release of perchloroethylene was evaluated over a temperature range of 20 to 45 C. A linear relation exists between the logarithm of perchloroethylene retention time and the reciprocal of the absolute temperature. Study results for 100% wool and 55% polyester/45% wool indicate that airing out freshly dry cleaned fabrics at above ambient temperature will increase the rate at which perchloroethylene is emitted from the fabrics.

  16. Subsurface transport of hydrocarbon fuel additives and a dense chlorinated solvent. Final technical report, 1 July 1993-30 June 1994

    SciTech Connect

    Guven, O.; Dane, J.H.; Hill, W.E.; Hofstee, C.; Mamballikalathil, R.

    1995-01-01

    This interim report provides a description of the work done at Auburn University during the first year of the research project `Subsurface Transport of Hydrocarbon Fuel Additives and a Chlorinated Solvent`, supported by Armstrong Laboratory, Headquarters Air Force Civil Engineering Support Agency, Environics Directorate, under contract F08635-93-C-0071. The project is focused on the subsurface environmental behavior of quadricyclane, which is a light nonaqueous phase liquid (LNAPL) cyclic hydrocarbon fuel additive, and on the behavior of tetrachloroethylene (or, perchloroethylene), which is a dense nonaqueous phase liquid (DNAPL) chlorinated hydrocarbon solvent.

  17. Spectrum of the Reductive Dehalogenation Activity of Desulfitobacterium frappieri PCP-1

    PubMed Central

    Dennie, D.; Gladu, I.; Lépine, F.; Villemur, R.; Bisaillon, J.-G.; Beaudet, R.

    1998-01-01

    Desulfitobacterium frappieri PCP-1 was induced for ortho- and para-dechlorinating activities by different chlorophenols. Dehalogenation rates ranging from 25 to 1,158 nmol/min/mg of cell protein were observed according to the chlorophenol tested and the position of the chlorine removed. D. frappieri shows a broad substrate specificity; in addition to tetrachloroethylene and pentachloropyridine, strain PCP-1 can dehalogenate at ortho, meta, and para positions a large variety of aromatic molecules with substituted hydroxyl or amino groups. Reactions of O demethylation and reduction of nitro to amino substituents on aromatic molecules were also observed. PMID:9797330

  18. TNX area groundwater monitoring report. 1996 Annual report

    SciTech Connect

    1997-04-01

    During 1996, samples from selected wells of well cluster P 26 and the TBG, TIR, TNX, TRW, XSB, and YSB well series at the TNX Area of the Savannah River Plant were analyzed for selected heavy metals, indicator parameters, radionuclides, volatile organic compounds, and other constituents. Sixteen parameters exceeded the final Primary Drinking Water Standards (PDWS). Trichloroethylene exceeded the final PDWS most frequently. Antimony, arsenic beryllium, carbon tetrachloride, chloroform, chromium, copper, dichloromethane, gross alpha, lead, mercury, nitrate, nitrate-nitrite, tetrachloroethylene, or trichloroethylene were evaluated in one or more wells during the year. Groundwater flow directions and rates in the Unconfined Aquifer were similar from quarter to quarter during the year.

  19. Radiation induced dechlorination of some chlorinated hydrocarbons in aqueous suspensions of various solid particles

    NASA Astrophysics Data System (ADS)

    Mú?ka, V.; Bu?ata, M.; ?uba, V.; Silber, R.; Juha, L.

    2015-07-01

    Radiation induced dechlorination of trichloroethylene (TCE) and tetrachloroethylene (PCE) in aqueous solutions containing the active carbon (AC) or cupric oxide (CuO) as the modifiers was studied. The obtained results were compared to the previously studied dechlorination of polychlorinated biphenyls (PCBs). Both modifiers were found to decrease the efficiency of dechlorination. The AC modifier acts mainly via adsorption of the aliphatic (unlike the aromatic) hydrocarbons and the CuO oxide mainly inhibits the mineralization of the perchloroethylene. The results presented in this paper will be also helpful for the studies of the impact of chlorinated hydrocarbons on the membrane permeability of living cells.

  20. Health assessment for Savage Municipal Well, Milford, Hillsborough County, New Hampshire, Region 1. CERCLIS No. NHD980671002. Preliminary report

    SciTech Connect

    Not Available

    1989-04-10

    The Savage Municipal Well Site is on the National Priorities List (NPL). Groundwater, surface water, and soil have been analyzed for VOCs and acid and base/neutral extrable compounds (ABNs). Specific contaminants included tetrachloroethylene, trans-1,2-dichloroethylene, trichloroethylene, vinyl chloride, and bis(2-ethylhexyl)phthalate. Lead, chromium, and mercury were detected in groundwater samples from wells below the surface discharge stream. Further environmental characterization and sampling of the site and impacted off-site areas during the Remedial Investigation and Feasibility Study (RI/FS) should be designed to address the environmental and human exposure pathways.

  1. Supplemental Technical Data Summary M-Area Groundwater Investigation

    SciTech Connect

    Marine, I.W., Bledsoe, H.W.

    1995-10-01

    This supplement to the Preliminary Technical Data Summary (TDS) (Gordon, 1982) presents the state of knowledge on the hydrogeology and contaminant plume characteristics in the vicinity of M Area as of October 1984. As discussed in the previous TDS, the contaminants consist of organic solvents used for metal degreasing, namely trichloroethylene, tetrachloroethylene, and 1,1,1-trichloroethane. Since the issuance of the previous TDS, the groundwater consulting firm of Geraghty & Miller, Inc. has been retained to assist with program strategy, planning, and investigative techniques

  2. Azo Dyes and Their Interfacial Activity: Implications for Multiphase Flow Experiments

    SciTech Connect

    Tuck, D.M.

    1999-04-21

    Interfacial effects play an important role in governing multiphase fluid behavior in porous media (Neustadter 1984; Tuck et al. 1988). For instance, several dimensionless numbers have been developed to express important force ratios applicable to multiphase flow in porous media (Morrow and Songkran 1981; Chatzis and Morrow 1984; Wardlaw 1988; Pennell et al. 1996; Dawson and Roberts 1997). These force ratios emphasize the importance of interfacial properties. Our objectives are to provide chemical information regarding the dyes commonly used in multiphase flow visualization studies and to show the surface chemistry effects of the most commonly used dye, Sudan IV, in the tetrachloroethylene (PCE)-water-glass system

  3. Search for Neutrinos from the Sun

    DOE R&D Accomplishments Database

    Davis, Raymond Jr.

    1968-09-01

    A solar neutrino detection system has been built to observe the neutrino radiation from the sun. The detector uses 3,900,000 liters of tetrachloroethylene as the neutrino capturing medium. Argon is removed from the liquid by sweeping with helium gas, and counted in a small low level proportional counter. The recovery efficiency of the system was tested with Ar{sup 36} by the isotope dilution method, and also with Ar{sup 37} produced in the liquid by fast neutrons. These tests demonstrate that Ar{sup 37} produced in the liquid by neutrino capture can be removed with a 95 percent efficiency by the procedure used.

  4. Test plan for in situ bioremediation demonstration of the Savannah River Integrated Demonstration Project DOE/OTD TTP No.: SR 0566-01. Revision 3

    SciTech Connect

    Hazen, T.C.

    1991-09-18

    This project is designed to demonstrate in situ bioremediation of groundwater and sediment contaminated with chlorinated solvents. Indigenous microorganisms will be simulated to degrade trichloroethylene (TCE), tetrachloroethylene (PCE) and their daughter products in situ by addition of nutrients to the contaminated zone. in situ biodegradation is a highly attractive technology for remediation because contaminants are destroyed, not simply moved to another location or immobilized, thus decreasing costs, risks, and time, while increasing efficiency and public and regulatory acceptability. Bioremediation has been found to be among the least costly technologies in applications where it will work.

  5. Intermedia transfer factors for fifteen toxic pollutants released to air basins in California

    SciTech Connect

    McKone, T.E.; Daniels, J.I.; Chiao, F.F.; Hsieh, D.P.H.

    1993-10-01

    This report provides a summary definition of the intermedia-transfer factors (ITFs). Methods are discussed for estimating these parameters in the absence of measured values, and the estimation errors inherent in these estimation methods are considered. A detailed summary is provided of measured and estimated ITF values for fifteen air contaminants. They include: 1,3 butadiene; cadmium; cellosolve; cellosolve acetate; chloroform; di-2-ethylhexylphthalate; 1,4-dioxame; hexachlorobenzene; inorganic arsenic; inorganic lead; nickel; tetrachloroethylene; toluene; toluene-2,4-diisocyanate; and 1,3-xylene. Recommendations are made regarding the expected value and variance in these values for use in exposure models.

  6. Spectrum of the reductive dehalogenation activity of Desulfitobacterium frappieri PCP-1

    SciTech Connect

    Dennie, D.; Gladu, I.; Lepine, F.; Villemur, R.; Bisaillon, J.G.; Beaudet, R.

    1998-11-01

    Desulfitobacterium frappieri PCP-1 was induced for ortho- and para-dechlorinating activities by different chlorophenols. Dehalogenation rates ranging from 25 to 1,158 nmol/min/mg of cell protein were observed according to the chlorophenol tested and the position of the chlorine removed. D. frappieri shows a broad substrate specificity; in addition to tetrachloroethylene and pentachloropyridine, strain PCP-1 can dehalogenate at ortho, meta, and para positions a large variety of aromatic molecules with substituted hydroxyl or amino groups. Reactions of O demethylation and reduction of nitro to amino substituents on aromatic molecules were also observed.

  7. Health assessment for Metal Working Shop Site, Lake Ann, Michigan, Region 5. CERCLIS No. MID980992952. Preliminary report

    SciTech Connect

    Not Available

    1988-09-30

    The Metal Working Shop Site is listed on the National Priorities List. The site consists of an operating metal-working facility in a sparsely populated rural area in Benzie, Michigan. Identified contaminants of potential concern on the site include chromium, tetrachloroethylene (PCE), trichloroethane, and toluene in water and trichloroethylene (TCE), trichloroethane, xylenes, ethylbenzene, and toluene in soil. The site is considered to be of potential public health concern because of the risk to human health caused by the possibility of exposure to hazardous substances via contaminated well water and soil. Confirmation of sampling results that show contamination in well water and soil is needed.

  8. Desorption Behavior of Trichloroethene and Tetrachloroethene in U.S. Department of Energy Savannah River Site Unconfined Aquifer Sediments

    SciTech Connect

    Riley, Robert G.; Szecsody, Jim E.; Mitroshkov, Alexandre V.; Brown, Christopher F.

    2006-06-21

    The DOE Savannah River Site (SRS) is evaluating the potential applicability of the monitored natural attenuation (MNA) process as a contributor to the understanding of the restoration of its unconfined groundwater aquifer known to be contaminated with the chlorinated hydrocarbon compounds trichloroethylene (TCE) and tetrachloroethylene (PCE). This report discusses the results from aqueous desorption experiments on SRS aquifer sediments from two different locations at the SRS (A/M Area; P-Area) with the objective of providing technically defensible TCE/PCE distribution coefficient (Kd) data and data on TCE/PCE reversible and irreversible sorption behavior needed for further MNA evaluation.

  9. Mixed Waste Management Facility (MWMF) groundwater monitoring report, second quarter 1992

    SciTech Connect

    Not Available

    1992-09-01

    During second quarter 1992, tritium, trichloroethylene, tetrachloroethylene, chloroethene, antimony, 1,1-dichloroethylene, lead, nonvolatile beta, radium-228, thorium-228, or total alpha-emitting radium (radium-226 and radium-228) exceeded the US Environmental Protection Agency Primary Drinking Water Standards (PDWS) in groundwater samples from monitoring wells at the Mixed Waste Management Facility (MWMF) and adjacent facilities. Tritium and trichloroethylene were the most widespread constituents; 55 (48%) of the 115 monitored wells contained elevated tritium activities, and 23 (20%) wells exhibited elevated trichloroethylene concentrations. Sixty-three downgradient wells screened in Aquifer Zone IIB2 (Water Table), Aquifer Zone IIB{sub 2} (Barnwell/McBean), and Aquifer Unit IIA (Congaree) contained concentrations of tritium, trichloroethylene, tetrachloroethylene, chloroethene, antimony, 1,1-dichloroethylene, lead, nonvolatile beta, radium-228, thorium-228, or total alpha-emitting radium that exceeded the PDWS during second quarter 1992. Upgradient wells BGO 1D and 2D and HSB 85A, 85B, and 85C did not contain any constituents that exceeded the PDWS.

  10. Mixed Waste Management Facility (MWMF) groundwater monitoring report, second quarter 1992

    SciTech Connect

    Not Available

    1992-09-01

    During second quarter 1992, tritium, trichloroethylene, tetrachloroethylene, chloroethene, antimony, 1,1-dichloroethylene, lead, nonvolatile beta, radium-228, thorium-228, or total alpha-emitting radium (radium-226 and radium-228) exceeded the US Environmental Protection Agency Primary Drinking Water Standards (PDWS) in groundwater samples from monitoring wells at the Mixed Waste Management Facility (MWMF) and adjacent facilities. Tritium and trichloroethylene were the most widespread constituents; 55 (48%) of the 115 monitored wells contained elevated tritium activities, and 23 (20%) wells exhibited elevated trichloroethylene concentrations. Sixty-three downgradient wells screened in Aquifer Zone IIB2 (Water Table), Aquifer Zone IIB[sub 2] (Barnwell/McBean), and Aquifer Unit IIA (Congaree) contained concentrations of tritium, trichloroethylene, tetrachloroethylene, chloroethene, antimony, 1,1-dichloroethylene, lead, nonvolatile beta, radium-228, thorium-228, or total alpha-emitting radium that exceeded the PDWS during second quarter 1992. Upgradient wells BGO 1D and 2D and HSB 85A, 85B, and 85C did not contain any constituents that exceeded the PDWS.

  11. Impacts of environmental conditions on the sorption of volatile organic compounds onto tire powder.

    PubMed

    Oh, Dong I; Nam, Kyongphile; Park, Jae W; Khim, Jee H; Kim, Yong K; Kim, Jae Y

    2008-05-01

    A series of batch tests were performed and the impacts of environmental conditions and phase change on the sorption of volatile organic compounds (VOCs) were investigated. Benzene, trichloroethylene, tetrachloroethylene, and ethylbenzene were selected as target VOCs. Sorption of VOCs onto tire powder was well demonstrated by a linear-partitioning model. Water-tire partition coefficients of VOCs (not tested in this study) could be estimated using a logarithmic relationship between observed water-tire partition coefficients and octanol-water partition coefficients of the VOCs tested. The target VOCs did not seem to compete with other VOCs significantly when sorbed onto the tire powder for the range of concentrations tested. The influence of environmental conditions, such as pH and ionic strength also did not seem to be significant. Water-tire partition coefficients of benzene, trichloroethylene, tetrachloroethylene, and ethylbenzene decreased as the sorbent dosage increased. However, they showed stable values when the sorbent dosage was greater than 10 g/L. Air-tire partition coefficient could be extrapolated from Henry's law constants and water-tire partition coefficient of VOCs. PMID:17889437

  12. Reductive dechlorination catalyzed by bacterial transition-metal coenzymes

    SciTech Connect

    Gantzer, C.J.; Wackett, L.P. )

    1991-04-01

    The bacterial transition-metal coenzymes vitamin B{sub 12} (Co), coenzyme F{sub 430} (ni), and hematin (Fe) catalyzed the reductive dechlorination of polychlorinated ethylenes and benzenes, whereas the electron-transfer proteins four-iron ferredoxin, two-iron ferredoxin, and azurin (Cu) did not. For vitamin B{sub 12} and coenzyme F{sub 430}, reductive dechlorination rates for different classes of perchlorinated compounds had the following order: carbon tetrachloride > tetrachloroethylene > hexachlorobenzene. For hematin, the order of reductive dechlorination rates was carbon tetrachloride > hexachlorobenzene > tetrachloroethylene. Within each class of compounds, rates of dechlorination decreased with decreasing chlorine content. Regio- and stereospecificity were observed in these reactions. In the reductive dechlorination of trichloroethylene, cis-1,2-dichloroethylene was the predominant product formed with vitamin B{sub 12}, coenzyme F{sub 430}, and hematin. Pentachlorobenzene and pentachlorophenol were each dechlorinated by vitamin B{sub 12} to yield two out of three possible isomeric tetrachlorobenzenes. Similar relative kinetics and dechlorination products have been observed in anaerobic cultures, suggesting a possible role of transition-metal coenzymes in the reductive dechlorination of poly-chlorinated compounds in natural and engineered environments.

  13. Mixed Waste Management Facility (MWMF) Groundwater Monitoring Report: Fourth quarter 1991 and 1991 summary

    SciTech Connect

    Thompson, C.Y.

    1992-03-01

    During fourth quarter 1991, tritium, trichloroethylene, tetrachloroethylene, chloroethene (vinyl chloride), total radium, mercury, and lead exceeded the US Environmental Protection Agency primary drinking water standards (PDWS) in groundwater samples from monitoring wells at the Mixed Waste Management Facility (MWMF) and adjacent facilities. Tritium and trichloroethylene were the most widespread contaminants; 55 (49%) wells exhibited elevated tritium activities, and 24 (21%) wells exhibited elevated trichloroethylene concentrations. Tritium and trichloroethylene levels exceeding the PDWS also occurred in several wells in Aquifer Unit IIA (Congaree). Levels of manganese, total organic halogens, nickel, iron, 1,1-dichloroethane, aluminum, nonvolatile beta, and trichlorofluoromethane that exceeded Flag 2 criteria were found in one or more wells beneath the MWMF. Downgradient wells in the three hydrostratigraphic units at the MWMF contained elevated levels of tritium, trichloroethylene, tetrachloroethylene, total radium, chloroethene (vinyl chloride), lead, mercury, manganese, total organic halogens, nickel, iron, 1,1-dichloroethane, aluminum, nonvolatile beta, or trichlorofluoromethane. Groundwater samples from 81 (72%) of the monitoring wells at the MWMF and adjacent facilities contained elevated levels of several contaminants.

  14. Mixed Waste Management Facility groundwater monitoring report. Second quarter 1994

    SciTech Connect

    Chase, J.A.

    1994-09-01

    Currently, 125 wells monitor groundwater quality in the uppermost aquifer beneath the Mixed Waste Management Facility (MWMF) at the Savannah River Site. Samples from the wells are analyzed for selected heavy metals, indicator parameters, radionuclides, volatile organic compounds, and other constituents. During second quarter 1994, chloroethene (vinyl chloride), 1,1-dichloroethylene, gross alpha, lead, tetrachloroethylene, trichloroethylene, or tritium exceeded final Primary Drinking Water Standards (PDWS) in approximately half of the downgradient wells at the MWMF. Consistent with historical trends, elevated constituent levels were found primarily in Aquifer Zone. As in previous quarters, tritium and trichloroethylene were the most widespread elevated constituents during second quarter 1994. Sixty-two of the 125 monitoring wells contained elevated tritium activities. Trichloroethylene concentrations exceeded the final PDWS in 23 wells. Chloroethene, 1,1-dichloroethylene, lead, and tetrachloroethylene, elevated in one or more wells during second quarter 1994, also occurred in elevated levels during first quarter 1994. These constituents generally were elevated in the same wells during both quarters. Gross alpha, which was not elevated in any well during first quarter 1994, was elevated in one well during second quarter. Copper, mercury, and nonvolatile beta were elevated during first quarter 1994 but not during second quarter.

  15. Improvement of health risk factors after reduction of VOC concentrations in industrial and urban areas.

    PubMed

    Lerner, Jorge Esteban Colman; Kohajda, Tibor; Aguilar, Myriam Elisabeth; Massolo, Laura Andrea; Sánchez, Erica Yanina; Porta, Atilio Andrés; Opitz, Philipp; Wichmann, Gunnar; Herbarth, Olf; Mueller, Andrea

    2014-01-01

    After reductions of fugitive and diffuse emissions by an industrial complex, a follow-up study was performed to determine the time variability of volatile organic compounds (VOCs) and the lifetime cancer risk (LCR). Passive samplers (3 M monitors) were placed outdoors (n?=?179) and indoors (n?=?75) in industrial, urban, and control areas for 4 weeks. Twenty-five compounds including n-alkanes, cycloalkanes, aromatics, chlorinated hydrocarbons, and terpenes were determined by GC/MS. The results show a significant decrease of all VOCs, especially in the industrial area and to a lesser extent in the urban area. The median outdoor concentration of benzene in the industrial area declined compared to the former study, around 85% and about 50% in the urban area, which in the past was strongly influenced by industrial emissions. Other carcinogenic compounds like styrene and tetrachloroethylene were reduced to approximately 60%. VOC concentrations in control areas remained nearly unchanged. According to the determined BTEX ratios and interspecies correlations, in contrast to the previous study, traffic was identified as the main emission source in the urban and control areas and showed an increased influence in the industrial area. The LCR, calculated for benzene, styrene, and tetrachloroethylene, shows a decrease of one order of magnitude in accordance to the decreased total VOC concentrations and is now acceptable according to values proposed by the World Health Organization. PMID:24788932

  16. Short duration needle trap sampling with gas chromatography analysis to determine nearly instantaneous concentrations of selected organic vapor contaminants.

    PubMed

    Strating, Simon J; Juarez, Theodore J; Stevens, Michael E; White, Duvel W; Smith, Philip A

    2013-01-01

    Needle trap device samplers were used for rapid (60 s) quantitative sampling of short-term exposure limit (STEL) and peak exposure standard concentrations using a manually operated pump to collect small volume (10 mL) gas phase samples containing methylene chloride, benzene, toluene, and tetrachloroethylene vapors. Solventless introduction of chemical samples for gas chromatography analysis with flame ionization detection yielded linear results (R(2) > 0.99) for vapor standard mixtures of the four target analytes ranging from 10% to 200% of their respective nominal STEL or peak exposure standard concentrations. Needle trap samplers showed ?86% recovery (as GC-FID peak area responses) following 14-day storage at room temperature compared to the same samplers analyzed immediately, with better recovery values observed with shorter storage (?95% at room temperature for seven days, except for methylene chloride) or with storage at 4°C. Calibration for quantitation of concentrations of benzene, toluene, and tetrachloroethylene was shown to be possible with the use of an internal standard to account for injector discrimination between the solventless NTD approach and injections of target analytes in carbon disulfide. Due to the simple sampling method (no field calibration and battery-free pumping) and the avoidance of solvent dilution, a needle trap sampling approach could simplify sample collection and analysis to chromatographically determine nearly instantaneous (1 min) exposure concentrations. PMID:24195534

  17. Inhalation risk assessment of exposure to the selected volatile organic compounds (VOCs) emitted from the facilities of a steel plant.

    PubMed

    Chiang, Hung L; Lin, Wen H; Lai, Jim S; Wang, Wei C

    2010-09-01

    Concentrations of volatile organic compounds (VOCs) were investigated in the workplace air of four processes: sintering, cokemaking, hot forming, and cold forming in an integrated iron and steel plant. In addition, the cancer risk was measured for workers in these 4 processes. Seven VOCs (chloroform, carbon tetrachloride, 1,1,2-trichloroethane, trichloroethylene, tetrachloroethylene, benzene, and ethylbenzene) were selected for cancer risk measurement. Trichloroethylene concentrations are high in the 4 processes, and carbon tetrachloride and tetrachloroethylene concentrations are high in both the cold and hot forming processes. The sequence of the total cancer risk of the 7 species was as follows: cokemaking > sintering > cold forming congruent with hot forming. About 66-93% of the cancer risk of the four processes was caused by trichloroethylene. The cancer risks (3.7 x 10(-3)-30 x 10(-3)) of the average VOC concentrations suggest that improvement of workplace air quality and protection of workers are necessary to reduce cancer risks. PMID:20665324

  18. Health risk assessment of exposure to selected volatile organic compounds emitted from an integrated iron and steel plant.

    PubMed

    Chang, E-E; Wei-Chi, Wang; Li-Xuan, Zeng; Hung-Lung, Chiang

    2010-12-01

    Workplace air samples from sintering, cokemaking, and hot and cold forming processes in the integrated iron and steel industry were analyzed to determine their volatile organic compound (VOC) concentration. Sixteen VOC species including three paraffins (cyclohexane, n-hexane, methylcyclohexane), five chlorinated VOC species (trichloroethylene, 1,1,1-trichloroethane, tetrachloroethylene, chlorobenzene, 1,4-dichlorobenzene), and eight aromatics (benzene, ethylbenzene, styrene, toluene, m,p-xylene, o-xylene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene) were selected to measure their noncancer risk for workers. Concentrations of toluene, xylene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, dichlorobenzene, and trichloroethylene were high in all four processes. Carbon tetrachloride and tetrachloroethylene concentrations were high in the hot and cold forming processes. The noncancer risk followed the increasing order: cokemaking > sintering > hot forming > cold forming. 1,2,4-trimethylbenzene and 1,3,5-trimethylbenzene contributed 44% to 65% and 13% to 20% of noncancer risk, respectively, for the four processes. Benzene accounted for a high portion of the noncancer risk in cokemaking. The hazard index (HI: 17-108) of the average VOC concentrations suggests that health risks can be reduced by improving workplace air quality and protecting workers. PMID:20828338

  19. A dechlorination pathway for synthesis of horn shaped carbon nanotubes and its adsorption properties for CO2, CH4, CO and N2.

    PubMed

    Sawant, Sandesh Y; Somani, Rajesh S; Bajaj, Hari C; Sharma, Sangita S

    2012-08-15

    Using metallic copper as reductant and tetrachloroethylene as carbon precursor, a simple, low temperature solvothermal method for the synthesis of horn shaped carbon nanotubes is reported. The detail study of reaction parameters such as temperature, time, carbon precursor amount, type and catalyst proportion has been carried out to optimize the conditions wherein that the copper metal (10 g) mediated reduction of tetrachloroethylene (25 mL) at 200°C for 5h resulted in the horn shaped carbon nanotubes with high yield and structural selectivity. The adsorption properties of horn shaped carbon nanotubes were investigated for carbon dioxide, methane, carbon monoxide and nitrogen as adsorbate by volumetric measurements up to 850 mm Hg. The prepared horn shaped carbon nanotubes showed good adsorption capacity for CO(2) (45 cm(3)/g) and CO (17 cm(3)/g), at 303 K and 850 mm Hg pressure, with high equilibrium selectivity (73.3 for CO(2) and 110.7 for CO at 318 K) and capacity selectivity (9.1 for CO(2) and 3.1 for CO at 850 mm Hg and 318 K) over nitrogen which provides the tool for the separation of CO(2) from its mixture with nitrogen observed in flue gas of thermal power plants and boilers, as well as with CO such as syngas. PMID:22682801

  20. Appraisal of ground-water quality in the Bunker Hill Basin of San Bernardino Valley, California

    USGS Publications Warehouse

    Duell, L.F., Jr.; Schroeder, R.A.

    1989-01-01

    Water samples were collected from 47 wells and analyzed for concentration of major inorganic ions, nitrogen species, and volatile (purgeable) organic priority pollutants to assess groundwater quality in the Bunker Hill basin, California. Data were supplemented with additional analysis of nitrate, tetrachloroethylene, and trichloroethylene made by other agencies. The organic quality of groundwater in the basin generally is suitable for most uses, although fluoride concentration exceeded the California public drinking water standard of 1.4 mg/L in water from 5 of 47 wells. Nitrate (as nitrogen) concentration equaled or exceeded the public drinking water standard of 10 mg/L in water from 13 of 47 wells sampled for this study and in an additional 19 of 120 samples analyzed by other agencies. Concentration generally decreased with increasing depth below land surface. Twenty-four of the 33 volatile organic priority pollutants were detected in water from wells sampled during this study. When supplemental data from other agencies are included, tetrachloroethylene concentration exceeded the standard of 5 micrograms/L in water from 49 of 128 wells. No basinwide relation between contamination by these two chemicals and well depth or land use was discerned. A network of 11 observation wells that could be sampled twice a year would enhance the monitoring of changes groundwater quality in the Bunker Hill basin. (USGS)

  1. The influence of personal activities on exposure to volatile organic compounds.

    PubMed

    Wallace, L A; Pellizzari, E D; Hartwell, T D; Davis, V; Michael, L C; Whitmore, R W

    1989-10-01

    Seven persons volunteered to perform 25 common activities thought to increase personal exposure to volatile organic chemicals (VOCs) during a 3-day monitoring period. Personal, indoor, and outdoor air samples were collected on Tenax cartridges three times per day (evening, overnight, and daytime) and analyzed by GC-MS for 17 target VOCs. Samples of exhaled breath were also collected before and after each monitoring period. About 20 activities resulted in increasing exposure to one or more of the target VOCs, often by factors of 10, sometimes by factors of 100, compared to exposures during the sleep period. These concentrations were far above the highest observed outdoor concentrations during the length of the study. Breath levels were often significantly correlated with previous personal exposures. Major exposures were associated with use of deodorizers (p-dichlorobenzene); washing clothes and dishes (chloroform); visiting a dry cleaners (1,1,1-trichloroethane, tetrachloroethylene); smoking (benzene, styrene); cleaning a car engine (xylenes, ethylbenzene, tetrachloroethylene); painting and using paint remover (n-decane, n-undecane); and working in a scientific laboratory (many VOCs). Continuously elevated indoor air levels of p-dichlorobenzene, trichloroethylene, 1,1,1-trichloroethane, carbon tetrachloride, decane, and undecane were noted in several homes and attributed to unknown indoor sources. Measurements of exhaled breath suggested biological residence times in tissue of 12-18 hr and 20-30 hr for 1,1,1-trichloroethane and p-dichlorobenzene, respectively. PMID:2792060

  2. Mixed Waste Management Facility (MWMF) groundwater monitoring report. Fourth quarter 1992 and 1992 summary

    SciTech Connect

    Not Available

    1993-03-01

    During fourth quarter 1992, nine constituents exceeded final Primary Drinking Water Standards (PDWS) in one or more groundwater samples from monitoring wells at the Mixed Waste Management Facility (MWMF) and adjacent facilities. As in previous quarters, tritium and trichloroethylene were the most widespread constituents. Fifty-seven (48%) of the 120 monitoring wells, contained elevated tritium activities, and 23 (19%) contained elevated trichloroethylene concentrations. Total alpha-emitting radium, tetrachloroethylene, chloroethene, cadmium, 1,1-dichloroethylene, lead, or nonvolatile beta levels exceeded standards in one or more wells. During 1992, elevated levels of 13 constituents were found in one or more of 80 of the 120 groundwater monitoring wells (67%) at the MWMF and adjacent facilities. Tritium and trichloroethylene exceeded their final PDWS more frequently and more consistently than did other constituents. Tritium activity exceeded its final PDWS m 67 wells and trichloroethylene was. elevated in 28 wells. Lead, tetrachloroethylene, total alpha-emitting radium, gross alpha, cadmium, chloroethene, 1,1-dichloroethylene 1,2-dichloroethane, mercury, or nitrate exceeded standards in one or more wells during the year. Nonvolatile beta exceeded its drinking water screening level in 3 wells during the year.

  3. Health assessment for Naval Air Development Center, Warminster, Pennsylvania, Region 3. CERCLIS No. PA6170024545. Preliminary report

    SciTech Connect

    Not Available

    1989-01-17

    The U.S. Naval Air Development Center (NADC) site is located in Warminster (Bucks County), Pennsylvania. Of the six landfills of concern, one is an active waste disposal consisting of industrial solids, sludges, and liquids, all generated on-site from various NADC activities. Preliminary on-site groundwater sampling results have identified various volatile organic compounds. They include trichloroethylene (TCE), tetrachloroethylene, 1,1,1-trichloroethane, 1,1-dichloroethane. In addition, chromium, cadmium, mercury, and lead were identified. Preliminary off-site groundwater sampling information identified TCE, tetrachloroethylene, and 1,1,1-trichloroethane. Neither on- or off-site soil sampling has been performed. The site is considered to be of potential public health concern because of the risk to human health caused by the possibility of human exposure to hazardous substances. Direct contact, ingestion, and possible inhalation of contaminated soil by on-base residents, especially children, is a major pathway of exposure. Other possible exposure pathways include ingestion of and direct contact with groundwater and ingestion of contaminants that bioaccumulate in the food chain.

  4. Adsorption of low molecular weight halocarbons by montmorillonite

    SciTech Connect

    Estes, T.J.; Shah, R.V.; Vilker, V.L. )

    1988-04-01

    Montmorillonite clay from Clay Spur, WY, was found to adsorb several low molecular weight, hydrophobic halocarbons from aqueous solution at sub-parts-per-million levels. The halocarbons studied were trichloroethylene, tetrachloroethylene, hexachloroethane, and dibromochloropropane. When the montmorillonite was treated with sodium citrate-bicarbonate-dithionite (CBD), it adsorbed higher levels of halocarbons than the untreated clay. In addition, the CBD-treated clay exhibited a maximum in halocarbon adsorption around pH 4, while untreated clay showed little variation in adsorption over the pH range 2-10. Adsorption of trichloroethylene was inhibited by low concentrations of sodium chloride (0.01 M or greater) in solution. Aging the CBD-treated clay in water decreased its capacity to adsorb trichloroethylene. Desorption studies showed that the sorption of tetrachloroethylene to CBD-treated clay is an irreversible process when compared to sorption by fumed silica. The ability of montmorillonite to adsorb halocarbons and the instability of the clay in water are postulated to involve changes in the oxide surface coating on the clay.

  5. Henry's law constants and micellar partitioning of volatile organic compounds in surfactant solutions

    SciTech Connect

    Vane, L.M.; Giroux, E.L.

    2000-02-01

    Partitioning of volatile organic compounds (VOCs) into surfactant micelles affects the apparent vapor-liquid equilibrium of VOCs in surfactant solutions. This partitioning will complicate removal of VOCs from surfactant solutions by standard separation processes. Headspace experiments were performed to quantify the effect of four anionic surfactants and one nonionic surfactant on the Henry's law constants of 1,1,1-trichloroethane, tirchloroethylene, toluene, and tetrachloroethylene at temperatures ranging from 30 to 60 C. Although the Henry's law constant increased markedly with temperature for all solutions, the amount of VOC in micelles relative to that in the extramicellar region was comparatively insensitive to temperature. The effect of adding sodium chloride and isopropyl alcohol as consolutes also was evaluated. Significant partitioning of VOCs into miscelles was observed, with the micellar partitioning coefficient (tendency to partition from water into mecelle) increasing according to the following series: trichloroethane < trichloroethylene < toluene < tetrachloroethylene. The addition of surfactant was capable of reversing the normal sequence observed in Henry's law constants for these four VOCs.

  6. The influence of personal activities on exposure to volatile organic compounds

    SciTech Connect

    Wallace, L.A.; Pellizzari, E.D.; Hartwell, T.D.; Davis, V.; Michael, L.C.; Whitmore, R.W. )

    1989-10-01

    Seven persons volunteered to perform 25 common activities thought to increase personal exposure to volatile organic chemicals (VOCs) during a 3-day monitoring period. Personal, indoor, and outdoor air samples were collected on Tenax cartridges three times per day (evening, overnight, and daytime) and analyzed by GC-MS for 17 target VOCs. Samples of exhaled breath were also collected before and after each monitoring period. About 20 activities resulted in increasing exposure to one or more of the target VOCs, often by factors of 10, sometimes by factors of 100, compared to exposures during the sleep period. These concentrations were far above the highest observed outdoor concentrations during the length of the study. Breath levels were often significantly correlated with previous personal exposures. Major exposures were associated with use of deodorizers (p-dichlorobenzene); washing clothes and dishes (chloroform); visiting a dry cleaners (1,1,1-trichloroethane, tetrachloroethylene); smoking (benzene, styrene); cleaning a car engine (xylenes, ethylbenzene, tetrachloroethylene); painting and using paint remover (n-decane, n-undecane); and working in a scientific laboratory (many VOCs). Continuously elevated indoor air levels of p-dichlorobenzene, trichloroethylene, 1,1,1-trichloroethane, carbon tetrachloride, decane, and undecane were noted in several homes and attributed to unknown indoor sources. Measurements of exhaled breath suggested biological residence times in tissue of 12-18 hr and 20-30 hr for 1,1,1-trichloroethane and p-dichlorobenzene, respectively.

  7. Health assessment for Cryochem, Inc. , Worman, Berks County, Pennsylvania, Region 3. CERCLIS No. PAD002360444. Preliminary report

    SciTech Connect

    Not Available

    1988-12-02

    The Cryochem, Inc. approximately 19-acre site is a metal fabrication company that has been in operation since 1962. Prior to 1962, an organic solvent was used to remove a dye that was applied to welded connections to check for weld integrity. Excess solvent was placed in the shop drain system which discharged into nearby surface waters. The environmental contamination on-site consists of 1,1-dichloroethylene, 1,1-dichloroethane, 1,1,1-trichloroethane, trichloroethylene, and tetrachloroethylene in groundwater; 1,1-dichloroethylene, 1,1-dichloroethane, and 1,1,1-trichloroethane in surface water; and 1,1,1-trichloroethane in sediment. Contamination off-site consists of 1,1-dichloroethylene and 1,1-dichloroethane in surface water; and 1,1,1-trichloroethane, trichloroethylene, and tetrachloroethylene in residential well water. The site is considered to be of public health concern because of the risk to human health caused by the likelihood of exposure to hazardous substances via contaminated groundwater.

  8. Dissolving efficacy of different organic solvents on gutta-percha and resilon root canal obturating materials at different immersion time intervals

    PubMed Central

    Mushtaq, Mubashir; Farooq, Riyaz; Ibrahim, Mohammed; Khan, Fayiza Yaqoob

    2012-01-01

    Background Aim: The purpose of this study was to compare and evaluate the dissolving capability of various endodontic solvents used during endodontic retreatment on resilon and gutta-percha at different immersion time intervals. Materials and Methods: 160 ISO no. 40 cones (0.06 taper), 80 each of resilon and gutta-percha were taken as samples for the study. Both resilon and gutta-percha were divided into eight experimental groups of 20 cones (four groups each of resilon and gutta-percha) for immersion in xylene, tetrachloroethylene, refined orange oil and distilled water. Each group was further divided into two equal subgroups (n=10) for 2- and 5-minute immersion time intervals at room temperature to investigate the potential of these solvents for clinical use in dissolving resilon and gutta-percha. Each sample was weighed initially before immersing in the solvent on a digital analytical scale. Distilled water served as a control. Samples were removed from the respective solvents after the specified immersion period and washed in 100 ml of distilled water and allowed to dry for 24 h at 37°C in a humidifier. The samples were then again weighed after immersion in the specific solvent on a digital analytical scale. The extent of gutta-percha or resilon removed from the specimen was calculated from the difference between the original weight of gutta-percha or resilon sample and its final weight. Means and standard deviations of percentage loss of weight were calculated at each time interval for each group of specimens. The values were compared by statistical parametric tests using SPSS 16.0 Software. The data was subjected to paired ‘t‘ test, independent ‘t’ test, one-way ANOVA test and multiple comparisons with Scheffe's test. Results: There was no significance in the amount of gutta-percha dissolved at 2- and 5-minute immersion time intervals in all groups (P>0.05) except the tetrachloroethylene group (P=0.00). There was a very high significance in the amount of resilon dissolved at 2- and 5-minute immersion time intervals in all groups (P=0.00) except the xylene and distilled water (Control) groups (P>0.05). Conclusion: The results showed that xylene, refined orange oil and tetrachloroethylene can be used for softening gutta-percha/resilon during retreatment with various techniques- xylene being the best solvent both for gutta-percha and resilon. PMID:22557812

  9. Ground-water levels and water-quality data for wells in the Spring Creek area near Arnold Air Force Base, Tennessee, April and May 2000

    USGS Publications Warehouse

    Williams, Shannon D.; Aycock, Robert A.

    2001-01-01

    Arnold Air Force Base (AAFB) occupies about 40,000 acres in Coffee and Franklin Counties, Tennessee. Numerous site-specific ground-water contamination investigations have been conducted at designated solid waste management units (SWMU?s) at AAFB. Several synthetic volatile organic compounds (VOC?s), primarily chlorinated solvents, have been identified in groundwater samples collected from monitoring wells near SWMU 8 in the Spring Creek area. During April and May 2000, a study of the groundwater resources in the Spring Creek area was conducted to determine if VOC?s from AAFB have affected local private water supplies and to advance understanding of the ground-water-flow system in this area. The study focused on sampling private wells located within the Spring Creek area that are used as a source of drinking water. Ground-water-flow directions were determined by measuring water levels in wells and constructing a potentiometric-surface map of the Manchester aquifer in the study area. Data were collected from a total of 35 private wells and 22 monitoring wells during the period of study. Depths to ground water were determined for 22 of the private wells and all 22 of the monitoring wells. The wells ranged in depth from 21 to 105 feet. Water-level altitudes ranged from 930 to 1,062 feet above sea level. Depths to water ranged from 8 to 83 feet below land surface. Water-quality samples were collected from 29 private wells which draw water from either gravel zones in the upper part of the Manchester aquifer, fractured bedrock in the lower part of the Manchester aquifer, or a combination of these two zones. Concentrations of 50 of the 55 VOC?s analyzed for were less than method detection limits. Chloroform, acetone, chloromethane, 2-butanone, and tetrachloroethylene were detected in concentrations exceeding the method detection limits. Only chloroform and acetone were detected in concentrations equal to or exceeding reporting limits. Chloroform was detected in a sample from one well at a concentration of 1.2 micrograms per liter (?g/L). Acetone was detected in a sample from another well at a concentration of 10 ?g/L. Acetone also was detected in a duplicate sample from the same well at an estimated concentration of 7.2 ?g/L, which is less than the reporting limit for acetone. The only contaminant of concern detected was tetrachloroethylene. Tetrachloroethylene was detected in only one sample, and this detection was at an estimated concentration below the reporting limit. None of the VOC concentrations exceeded drinking water maximum contaminant levels for public water systems.

  10. Health Hazard Evaluation Report HETA 84-340-1606, Denver Laundry and Dry Cleaning, Denver, Colorado

    SciTech Connect

    Pryor, P.

    1985-07-01

    Environmental and breathing zone samples were analyzed for tetrachloroethylene (perchloroethylene) (PCE) at Denver Laundry and Dry Cleaning, Denver, Colorado in July, 1984. The evaluation was requested by a company representative to determine if a health hazard from exposure to PCE existed during the commercial laundry and dry cleaning processes. A noise evaluation was also requested. The author concludes that a health hazard exists due to overexposure to PCE and noise at the facility. Recommendations include replacing the present transfer system by a dry/to/dry closed system if possible, improving work practices, removing clothing from each machine at the same time replacing or cleaning and oiling the bearings in the dryers, and establishing an educational program to instruct new employees on the hazards of chemical and noise exposure.

  11. Gas phase photocatalytic degradation on TiO{sub 2} pellets of volatile chlorinated organic compounds from a soil vapor extraction well

    SciTech Connect

    Yamazaki-Nishida, S.; Read, H.W.; Nagano, J.K.; Anderson, M.A.; Cervera-March, S.; Jarosch, T.R.; Eddy-Dilek, C.A.

    1993-05-20

    The mineralization of trichloroethylene (TCE) and tetrachloroethylene (PCE) in gas stream from a soil vapor extraction (SVE) well was demonstrated with an annular photocatalytic reactor packed with porous TiO{sub 2} pellets in field trials at the Savannah River Site in Aiken, SC. The TiO{sub 2} pellets were prepared using a sol-gel method. The experiments were performed at 55 to 60{degree}C using space times of 10{sup 8} to 10{sup 10} g s/mol for TCE and PCE. Chloroform (CHCl{sub 3}) and carbon tetrachloride (CCl{sub 4}) were detected as minor products from side reactions. On a molar basis, CCl{sub 4} and CHCl{sub 3} produced were about 2% and 0.2 % of the reactants.

  12. Health assessment for National Presto Industries, Eau Claire, Wisconsin, Region 5. CERCLIS No. WID006196174. Preliminary report

    SciTech Connect

    Not Available

    1988-11-09

    The National Presto Industries, Inc. facility at Eau Claire, Wisconsin included facilities for powder storage and mixing, chemical storage and mixing, and primer manufacture and storage. Major contaminants on-site include VOCs, polychlorinated biphenyls (PCBs), and heavy metals. The highest concentrations of heavy metals are in lagoon water, spent forging compound, and waste drums from the East Disposal Area. Four chemicals, all of which are carcinogenic in laboratory animals, were measured in concentrations exceeding Wisconsin ground water enforcement standards: 1,2-dichloroethane, 1,1-dichloroethylene, tetrachloroethylene, and trichloroethylene. The presence of VOCs in residential wells in the area adjacent to the site is a public health concern. Previous studies indicate that VOCs in residential well water of forty residences near the site exceed Wisconsin ground water enforcement standards.

  13. Mixed Waste Management Facility (MWMF) groundwater monitoring report. First quarter 1993

    SciTech Connect

    Not Available

    1993-06-01

    During first quarter 1993, eight constituents exceeded final Primary Drinking Water Standards in groundwater samples from downgradient monitoring wells at the Mixed Waste anagement Facility, the Old Burial Ground, the E-Area Vaults, and the proposed Hazardous Waste/Mixed Waste Disposal Vaults (HWMWDV). As in previous quarters, tritium and trichloroethylene were the most widespread constituents. Tetrachloroethylene, chloroethene, 1,1-dichloroethylene, gross alpha, lead, or nonvolatile beta levels also exceeded standards in one or more wells. The elevated constituents were found primarily in Aquifer Zone IIB{sub 2} (Water Table) and Aquifer Zone IIB{sub 1}, (Barnwell/McBean) wells. However, several Aquifer Unit IIA (Congaree) wells also contained elevated constituent levels. The groundwater flow directions and rates in the three hydrostratigraphic units were similar to previous quarters.

  14. Volatile chlorinated organic compound levels in rain water from Kobe City in Japan

    SciTech Connect

    Adachi, Atsuko; Kobayashi, Tadashi

    1994-01-01

    Water pollution by volatile chlorinated organic compounds has become a serious environmental problem. The Environmental Agency of Japan has defined the regulations on trichloroethylene, tetrachloroethylene, 1,1,1-trichloroethane and carbon tetrachloride in wastewater in 1989. In order to protect against water pollution, it is important to keep concentrations in these compounds in environmental water as low as possible. Therefore, the determination of these compounds in rain water is very important to evaluate the loading amounts of these compounds into environmental water. Since few detailed reports have been made as to the assay of these volatile substances in rain water, we investigated this and compared these compound levels in rain water collected from three different locations in Kobe, Japan. The assayed values were compared to each other. 3 refs., 4 figs., 1 tab.

  15. Measurements of Al(NO sub 3 ) sub 3 activities in aqueous nitrate solutions

    SciTech Connect

    Chaiko, D.J.; Fredrickson, D.R.; Difilippo, A.A.; Smidt, S.M.; Vandegrift, G.F. ); Tasker, I.R. )

    1992-01-01

    Aluminum nitrate activity coefficient obtained by vapor pressure osmometry are compared with activity coefficients derived from nitric acid extraction measurements using Bromley's correlation. This solvent extraction approach was possible because of the poor extraction of Al{sup 3+}(D{sub Al} {le} 10{sup {minus}3}) by the chosen solvents. The solvent compositions were 0.25M CMPO (octyl(phenyl)-N,N-diisobutylcarbamoyl-methylphosphine oxide) in tetrachloroethylene (TCE) and 0.25M CMPO with 0.75M tributyle phosphate (TBP) in TCE. In both approaches, nitric acid was used to supress the hydrolysis of Al{sup 3+}. At high ionic strengths, the two techniques yielded very similar activity coefficients for Al(NO{sub 3}){sub 3}. However, at intermediate and very low ionic strengths, the two procedures produced activity coefficients which differed considerably from each other. 2 figures, 3 tables, 18 references.

  16. Measurements of Al(NO{sub 3}){sub 3} activities in aqueous nitrate solutions

    SciTech Connect

    Chaiko, D.J.; Fredrickson, D.R.; Difilippo, A.A.; Smidt, S.M.; Vandegrift, G.F.; Tasker, I.R.

    1992-09-01

    Aluminum nitrate activity coefficient obtained by vapor pressure osmometry are compared with activity coefficients derived from nitric acid extraction measurements using Bromley`s correlation. This solvent extraction approach was possible because of the poor extraction of Al{sup 3+}(D{sub Al} {le} 10{sup {minus}3}) by the chosen solvents. The solvent compositions were 0.25M CMPO (octyl(phenyl)-N,N-diisobutylcarbamoyl-methylphosphine oxide) in tetrachloroethylene (TCE) and 0.25M CMPO with 0.75M tributyle phosphate (TBP) in TCE. In both approaches, nitric acid was used to supress the hydrolysis of Al{sup 3+}. At high ionic strengths, the two techniques yielded very similar activity coefficients for Al(NO{sub 3}){sub 3}. However, at intermediate and very low ionic strengths, the two procedures produced activity coefficients which differed considerably from each other. 2 figures, 3 tables, 18 references.

  17. Water-Quality Data for Pharmaceuticals and Other Organic Wastewater Contaminants in Ground Water and in Untreated Drinking Water Sources in the United States, 2000-01

    USGS Publications Warehouse

    Barnes, Kimberlee K.; Kolpin, Dana W.; Focazio, Michael J.; Furlong, Edward T.; Meyer, Michael T.; Zaugg, Steven D.; Haack, Sheridan K.; Barber, Larry B.; Thurman, E. Michael

    2008-01-01

    The five most frequently detected compounds in samples collected from ambient ground-water sites are N,N-diethyltoluamide (35 percent, insect repellant), bisphenol A (30 percent, plasticizer), tri(2-chloroethy) phosphate (30 percent, fire retardant), sulfamethoxazole (23 percent, veterinary and human antibiotic), and 4-octylphenol monoethoxylate (19 percent, detergent metabolite). The five most frequently detected organic wastewater contaminants in samples of untreated drinking water from surface-water sources are cholesterol (59 percent, natural sterol), metolachlor (53 percent, herbicide), cotinine (51 percent, nicotine metabolite), β-sitosterol (37 percent, natural plant sterol), and 1,7-dimethylxanthine (27 percent, caffeine metabolite). The five most frequently detected organic wastewater contaminants in samples of untreated drinking water from ground-water sources are tetrachloroethylene (24 percent, solvent), carbamazepine (20 percent, pharmaceutical), bisphenol A (20 percent, plasticizer), 1,7-dimethylxanthine (16 percent, caffeine metabolite), and tri(2-chloroethyl) phosphate (12 percent, fire retardant).

  18. Distribution of natural halocarbons in marine boundary air over the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Yokouchi, Yoko; Inoue, Jun; Toom-Sauntry, Desiree

    2013-08-01

    Ongoing environmental changes in the Arctic will affect the exchange of natural volatile organic compounds between the atmosphere and the Arctic Ocean. Among these compounds, natural halocarbons play an important role in atmospheric ozone chemistry. We measured the distribution of five major natural halocarbons (methyl iodide, bromoform, dibromomethane, methyl chloride, and methyl bromide) together with dimethyl sulfide and tetrachloroethylene in the atmosphere over the Arctic Ocean (from the Bering Strait to 79°N) and along the cruise path to and from Japan. Methyl iodide, bromoform, and dibromomethane were most abundant near perennial sea ice in air masses derived from coastal regions and least abundant in the northernmost Arctic, where the air masses had passed over the ice pack, whereas methyl chloride and methyl bromide showed the opposite distribution pattern. Factors controlling those distributions and future prospects for natural halocarbons in the Arctic are discussed.

  19. Health assessment for American Lake Gardens, Tacoma, Pierce County, Washington, Region 10. CERCLIS No. WAD980833065. Preliminary report

    SciTech Connect

    Not Available

    1989-01-19

    The American Lake Gardens site is on the National Priorities List. Two areas within the site are the areas of primary contamination; the northeast section's contamination is believed to have come from the closed landfill (now a golf course) on McChord AFB, and the southwest section's contamination from Fort Lewis. Both Fort Lewis and McChord AFB are NPL sites. The environmental contamination on-site consists of trans-1,2-dichloroethylene (530 ppb), trichloroethylene (260 ppb), methylene chloride (38 ppb), tetrachloroethylene (52 ppb), benzene (6 ppb), and 1,1,1-trichloroethane (18 ppb) in ground water. The site is considered to be of potential public health concern because of the risk to human health caused by the possibility of exposure to hazardous substances via ground water (from private wells still in use) and surface water.

  20. Enhanced formation of dioxins and furans from combustion devices by addition of trace quantities of bromine

    SciTech Connect

    Lemieux, P.M.; Ryan, J.V.

    1998-12-31

    Past pilot-scale experimental studies have shown a dramatic increase in the formation of certain chlorinated products of incomplete combustion (PICs) caused by the addition of trace amounts of bromine (Br). Emissions of trichloroethylene and tetrachloroethylene, generated as PICs from the fuel-lean combustion of methylene chloride, were enhanced by up to 3 orders of magnitude by introducing Br in the form of methylene bromide at a constant halogen molar input rate with a 1:10 Br/chlorine (Cl) molar ratio. The two chlorinated PICs in question are both potential ring growth precursors, which could lead to enhanced formation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDDs/PCDFs). The experiments described in this paper expand on this earlier work by examining the effect of trace amounts of Br on the formation of PCDDs/PCDFs, in addition to other chlorinated, brominated, and mixed bromo-chloro organic PICs.

  1. Comparison of temporal trends in VOCs as measured with PDB samplers and low-flow sampling methods

    USGS Publications Warehouse

    Harte, P.T.

    2002-01-01

    Analysis of temporal trends in tetrachloroethylene (PCE) concentration determined by two sample techniques showed that passive diffusion bag (pdb) samplers adequately sample the large variation in PCE concentrations at the site. The slopes of the temporal trends in concentrations were comparable between the two techniques, and the pdb sample concentration generally reflected the instantaneous concentration sampled by the low-flow technique. Thus, the pdb samplers provided an appropriate sampling technique for PCE at these wells. One or two wells did not make the case for widespread application of pdb samples at all sites. However, application of pdb samples in some circumstances was appropriate for evaluating temporal and spatial variations in VOC concentrations, thus, should be considered as a useful tool in hydrogeology.

  2. Operations Support of Phase 2 Integrated Demonstration In Situ Bioremediation. Volume 1, Final report: Final report text data in tabular form, Disk 1

    SciTech Connect

    Hazen, T.C.

    1993-09-01

    This project was designed to demonstrate in situ bioremediation of ground water and sediment contaminated with chlorinated solvents. Indigenous microorganisms were stimulated to degrade trichlorethylene (TCE), tetrachloroethylene (PCE) and their daughter products in situ by addition of nutrients to the contaminated aquifer and adjacent vadose zone. The principle carbon/energy source nutrient used in this demonstration was methane (natural gas). In situ biodegradation is a highly attractive technology for remediation because contaminants are destroyed, not simply moved to another location or immobilized, thus decreasing costs, risks, and time, while increasing efficiency, safety, and public and regulatory acceptability. This report describes the preliminary results of the demonstration and provides conclusions only for those measures that the Bioremediation Technical Support Group felt were so overwhelmingly convincing that they do not require further analyses. Though this report is necessarily superficial it does intend to provide a basis for further evaluating the technology and for practitioners to immediately apply some parts of the technology.

  3. Sanitary landfill groundwater monitoring report. Fourth quarter 1994 and 1994 summary

    SciTech Connect

    1995-02-01

    Eighty-nine wells of the LFW series monitor groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill at the Savannah River Site (SRS). These wells are sampled quarterly to comply with the South Carolina Department of Health and Environmental Control Domestic Waste Permit DWP-087A and as part of the SRS Groundwater Monitoring Program. Dichloromethane, a common laboratory contaminant, and trichloroethylene were the most widespread constituents exceeding standards during 1994. Benzene, chloroethene (vinyl chloride), 1,2-dichloroethane, 1,1-dichloroethylene, 1,2-dichloropropane, gross alpha, mercury, nonvolatile beta, tetrachloroethylene, and tritium also exceeded standards in one or more wells. The groundwater flow direction in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill was to the southeast (universal transverse Mercator coordinates). The flow rate in this unit was approximately 140 ft/year during first and fourth quarters 1994.

  4. Mixed Waste Management Facility (MWMF) groundwater monitoring report: Third quarter 1993

    SciTech Connect

    Not Available

    1993-12-01

    During third quarter 1993, eight constituents exceeded final Primary Drinking Water Standards in groundwater samples from downgradient monitoring wells at the Mixed Waste Management Facility, the Old Burial Ground, the E-Area Vaults, and the proposed Hazardous Waste/Mixed Waste Disposal Vaults. As in previous quarters, tritium and trichloroethylene were the most widespread constituents Chloroethene (vinyl chloride), 1,1-dichloroethylene, dichloromethane (methylene chloride), lead, mercury, or tetrachloroethylene also exceeded standards in one or more wells. The elevated constituents were found in Aquifer Zone IIB{sub 2} (Water Table) and Aquifer Zone IIB{sub 1} (Barnwell/McBean) wells. No elevated constituents were exhibited in Aquifer Unit IIA (Congaree) wells. The groundwater flow directions and rates in the three hydrostratigraphic units were similar to those of previous quarters.

  5. Mixed Waste Management Facility (MWMF) groundwater monitoring report. Fourth quarter 1993 and 1993 summary

    SciTech Connect

    Butler, C.T.

    1994-03-01

    During fourth quarter 1993, 10 constituents exceeded final Primary Drinking Water Standards in groundwater samples from downgradient monitoring wells at the Mixed Waste Management Facility, the Old Burial Ground, the E-Area Vaults, and the proposed Hazardous Waste/Mixed Waste Disposal Vaults. As in previous quarters, tritium and trichloroethylene were the most widespread elevated constituents. Carbon tetrachloride, chloroform, chloroethane (vinyl chloride), 1,1-dichloroethylene, dichloromethane (methylene chloride), lead, mercury, or tetrachloroethylene also exceeded standards in one or more wells. Elevated constituents were found in numerous Aquifer Zone 2B{sub 2} (Water Table) and Aquifer Zone 2B{sub 1}, (Barnwell/McBean) wells and in two Aquifer Unit 2A (Congaree) wells. The groundwater flow direction and rates in the three hydrostratigraphic units were similar to those of previous quarters.

  6. Mixed Waste Management Facility groundwater monitoring report, First quarter 1994

    SciTech Connect

    Not Available

    1994-06-01

    During first quarter 1994, nine constituents exceeded final Primary Drinking Water Standards in groundwater samples from downgradient monitoring wells at the Mixed Waste Management Facility, the Old Burial Ground, the E-Area Vaults, the proposed Hazardous Waste/Mixed Waste Disposal Vaults, and the F-Area Sewage Sludge Application Site. As in previous quarters, tritium and trichloroethylene were the most widespread elevated constituents. Chloroethene (vinyl chloride), copper, 1,1-dichloroethylene, lead, mercury, nonvolatile beta, or tetrachloroethylene also exceeded standards in one or more wells. Elevated constituents were found in numerous Aquifer Zone IIB{sub 2} (Water Table) and Aquifer Zone IIB{sub 1}, (Barnwell/McBean) wells and in one Aquifer Unit IIA (Congaree) well. The groundwater flow directions and rates in the three hydrostratigraphic units were similar to those of previous quarters.

  7. Analysis of organic compounds (VOC) in the forest air of the Southern Black Forest

    SciTech Connect

    Juettner, F.

    1986-01-01

    The volatile organic compounds of forest air (Kaelbelescheuer, Southern Black Forest) and, for comparison, suburban air (Tuebingen) were qualitatively analyzed by gas chromatographic and mass spectrometric methods. 94 Individual compounds were identified, 6 of them belonged to biogenic monoterpenes (..cap alpha..-pinene, ..delta..3-carene, myrcene, limonene, eucalyptol, camphene). While the monoterpenes were enriched in forest air, a similar collection of the pollution products was observed in both locations. Predominant substances were aromatic compounds (toluene, ethylbenzene, benzene, xylenes, ethyltoluenes, pseudocumene and naphthalene) which can be regarded as constituents of vehicle exhaust fumes and incineration processes. Other important substances in forest air were various solvents, of which butyl acetate, isobutyl acetate, tetrachloroethylene and trichloroethylene, butanol-1, and several ketones were prominent species.

  8. Remotion of organic compounds of actual industrial effluents by electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Sampa, M. H. O.; Duarte, C. L.; Rela, P. R.; Somessari, E. S. R.; Silveira, C. G.; Azevedo, A. L.

    1998-06-01

    Organic compounds has been a great problem of environmental pollution, the traditional methods are not effecient on removing these compounds and most of them are deposited to ambient and stay there for long time causing problems to the environment. Ionizing radiation has been used with success to destroy organic molecules. Actual industrial effluents were irradiated using IPEN's electron beam wastewater pilot plant to study organic compounds degradation. The samples were irradiated with and without air mixture by different doses. Irradiation treatment efficiency was evaluated by the Cromatography Gas Analyses of the samples before and after irradiation. The studied organic compounds were: phenol, chloroform, tetrachloroethylene (PCE), carbon tetrachloride, trichloroethylene (TCE), 1,1-dichloroethane, dichloromethane, benzene, toluene and xilene. A degradation superior to 80% was achieved for the majority of the compounds with air addition and 2kGy delivered dose condition. For the samples that were irradiated without air addition the degradation was higher.

  9. Mechanisms and controlling characteristics of the catalytic oxidation of methane

    SciTech Connect

    Klier, Kamil; Simmons, Gary W.; Herman, Richard G.; Park, Kenneth T.; Hess, James S.; Hunsicker, Robert A.

    1999-07-01

    Methane dissociation and oxygen activation have been found to be structure sensitive on different single crystal palladium surfaces. Geometrically restricted surfaces on Pd single crystal and polycrystalline surfaces using tetrachloroethylene and pentamethylcyclopentasiloxane have been formed and compared with surface structures formed using dichloromethane and chlorine. The adsorption and activation of O{sub 2}, CO, and H{sub 2}O on clean Pd surfaces and those containing the surface ensembles have also been investigated. To interpret high-resolution angle-resolved x-ray photoelectron spectra (HR AR-XPS), a new self-modeling method of resolving HR-XPS spectra was developed and applied to the experimental spectra. The effects of electron-accepting Cl, O{sub 2}, and H{sub 2}O adsobated on Cs/MoS{sub 2} were determined.

  10. Metallurgical Laboratory Hazardous Waste Management Facility groundwater monitoring report. Second quarter 1994

    SciTech Connect

    Not Available

    1994-09-01

    During second quarter 1994, samples from AMB groundwater monitoring wells at the Metallurgical Laboratory Hazardous Waste Management Facility were analyzed for selected heavy metals, indicator parameters, radionuclides, volatile organic compounds, and other constituents. Three parameters exceeded standards during the quarter. As in previous quarters, tetrachloroethylene and trichloroethylene exceeded final Primary Drinking Water Standards. Total organic halogens exceeded the Savannah River Site (SRS) Flag 2 criteria in two of the wells. Groundwater flow direction and rate in the M-Area Aquifer Zone were similar to previous quarters. Conditions affecting determination of groundwater flow directions and rates in the Upper Lost Lake Aquifer Zone, Lower Lost Lake Aquifer Zone, and the Middle Sand Aquifer Zone of the Crouch Branch Confining Unit were also similar to previous quarters. During second quarter 1994, SRS received SCDHEC approval for five point-of-compliance wells and two plume definition wells near the Met Lab HWMF. Field work has begun on this project.

  11. Mutagenicity testing of condensates of smoke from titanium dioxide/hexachloroethane and zinc/hexachloroethane pyrotechnic mixtures.

    PubMed

    Karlsson, N; Fängmark, I; Häggqvist, I; Karlsson, B; Rittfeldt, L; Marchner, H

    1991-05-01

    Condensates of smoke from titanium dioxide/hexachloroethane and zinc/hexachloroethane pyrotechnic mixtures were investigated for their potential to produce genetic damage in the tester strains TA98, TA100, TA1535 and TA1537 of Salmonella typhimurium and in the mouse bone marrow micronucleus assay. Both smoke condensates contained several chlorinated hydrocarbons among which tetrachloroethylene, hexachloroethane, hexachlorobutadiene and hexachlorobenzene were identified by GC/MS. Condensate of smoke from titanium dioxide/hexachloroethane showed a dose-related positive response in the Salmonella assay with strains TA98 and TA100 in the absence of metabolic activation from rat liver S9 fraction. Both smoke condensates were negative in the micronucleus assay but produced a small but significant depression of erythropoietic activity. The results indicate that smoke condensate from titanium dioxide/hexachloroethane mixtures contains unidentified compound(s) that may be considered mutagenic in the Salmonella assay. PMID:2027339

  12. Survey of subsurface treatment technologies for environmental restoration sites at Sandia National Laboratories, New Mexico.

    SciTech Connect

    McGrath, Lucas K.; Ho, Clifford Kuofei; Wright, Jerome L.

    2003-08-01

    This report provides a survey of remediation and treatment technologies for contaminants of concern at environmental restoration (ER) sites at Sandia National Laboratories, New Mexico. The sites that were evaluated include the Tijeras Arroyo Groundwater, Technical Area V, and Canyons sites. The primary contaminants of concern at these sites include trichloroethylene (TCE), tetrachloroethylene (PCE), and nitrate in groundwater. Due to the low contaminant concentrations (close to regulatory limits) and significant depths to groundwater ({approx}500 feet) at these sites, few in-situ remediation technologies are applicable. The most applicable treatment technologies include monitored natural attenuation and enhanced bioremediation/denitrification to reduce the concentrations of TCE, PCE, and nitrate in the groundwater. Stripping technologies to remove chlorinated solvents and other volatile organic compounds from the vadose zone can also be implemented, if needed.

  13. Geohydrology and the occurrence of volatile organic compounds in ground water, Culpeper basin of Prince William County, Virginia

    SciTech Connect

    Nelms, D.L.; Richardson, D.L. )

    1990-01-01

    The Culpeper basin of Prince William County comprises an interbedded sequence of Upper Triassic and Lower Jurassic sedimentary and volcanic rocks. This sequence is intersected by diabase intrusives and thermally metamorphosed rocks. The rocks of the Culpeper basin are highly fractured and overlain by a thin cover of overburden. Groundwater in the Culpeper basin flows generally from the uplands along lineaments to the lowlands or valleys. Pumping from municipal-supply wells has caused two cones of depression in the Manassas-Manassas Park area. Volatile organic compounds have been detected in groundwater in 5 areas of the Culpeper basin in the county. The dominant volatile organic compounds detected are tetrachloroethylene, trichloroethylene, and 1,1,1-trichloroethane. Concentrations of the volatile organic compounds range from 0.1 to 5,300 microg/L. 62 refs., 20 figs., 15 tabs.

  14. Different behavioral effect dose-response profiles in mice exposed to two-carbon chlorinated hydrocarbons: influence of structural and physical properties.

    PubMed

    Umezu, Toyoshi; Shibata, Yasuyuki

    2014-09-01

    The present study aimed to clarify whether dose-response profiles of acute behavioral effects of 1,2-dichloroethane (DCE), 1,1,1-trichloroethane (TCE), trichloroethylene (TRIC), and tetrachloroethylene (PERC) differ. A test battery involving 6 behavioral endpoints was applied to evaluate the effects of DCE, TCE, TRIC, and PERC in male ICR strain mice under the same experimental conditions. The behavioral effect dose-response profiles of these compounds differed. Regression analysis was used to evaluate the relationship between the dose-response profiles and structural and physical properties of the compounds. Dose-response profile differences correlated significantly with differences in specific structural and physical properties. These results suggest that differences in specific structural and physical properties of DCE, TCE, TRIC, and PERC are responsible for differences in behavioral effects that lead to a variety of dose-response profiles. PMID:24910396

  15. Public health assessment for Grand Traverse Overall Supply Company, Greilickville, Leelanau County, Michigan, Region 5. Cerclis No. MID017418559. Final report

    SciTech Connect

    Not Available

    1994-01-21

    The United States Environmental Protection Agency (U.S. EPA) placed the Grand Traverse Overall Supply site on the National Priorities List (NPL) on September 8, 1983. From 1953 through 1977, GTOS disposed of waste water from the process in a dry well and four lagoons on their property. Since 1977, they have used the township sewer system. In 1978, tetrachloroethylene (also known as perchloroethylene or PCE) and trichloroethylene (TCE) were found in the water in wells serving a school adjacent to GTOS and several nearby residences. The soil around the dry well was excavated and taken off-site for disposal. The lagoons were filled in, and covered with gravel or grass. The site currently poses no apparent public health hazard. Trace amounts of PCE in well water have been detected in the most recent testing, however, the amounts are below the level of public health concern.

  16. Sulfur species in perchloroethylene and other coal extracts

    SciTech Connect

    Vorres, K.S. )

    1990-01-01

    Earlier work (1,2,3) has indicated that elemental sulfur can be removed from coal by the use of perchloroethylene (tetrachloroethylene). The unique ability to remove the elemental form of the sulfur has led to considerable interest in the process and mechanism of action. Under joint CRSC-EPRI sponsorship, an effort has been made to understand the species that can be removed by extraction with perchloroethylene (PCE). The effort involved the extraction of a set of coals at Eastern Illinois University by Prof. David Buchanan and coworkers, and the related effort to identify the species in the extract by the use of gas chromatography- mass spectrometry at the Argonne National Laboratory (ANL). This paper reports on the analytical work on the extracts.

  17. Neurobehavioural effects of developmental toxicity

    PubMed Central

    Grandjean, Philippe; Landrigan, Philip J

    2015-01-01

    Neurodevelopmental disabilities, including autism, attention-deficit hyperactivity disorder, dyslexia, and other cognitive impairments, affect millions of children worldwide, and some diagnoses seem to be increasing in frequency. Industrial chemicals that injure the developing brain are among the known causes for this rise in prevalence. In 2006, we did a systematic review and identified five industrial chemicals as developmental neurotoxicants: lead, methylmercury, polychlorinated biphenyls, arsenic, and toluene. Since 2006, epidemiological studies have documented six additional developmental neurotoxicants—manganese, fluoride, chlorpyrifos, dichlorodiphenyltrichloroethane, tetrachloroethylene, and the polybrominated diphenyl ethers. We postulate that even more neurotoxicants remain undiscovered. To control the pandemic of developmental neurotoxicity, we propose a global prevention strategy. Untested chemicals should not be presumed to be safe to brain development, and chemicals in existing use and all new chemicals must therefore be tested for developmental neurotoxicity. To coordinate these efforts and to accelerate translation of science into prevention, we propose the urgent formation of a new international clearinghouse. PMID:24556010

  18. Diluent effects in the extraction of Am(III) from nitric acid solutions by selected carbamoyl-phosphoryl extractants and related monofunctional compounds

    SciTech Connect

    Chiarizia, R.; Horwitz, E.P.

    1992-02-01

    The extraction of Am(III) from nitric acid solutions by a series of bifunctional extractants containing the carbamoylphosphoryl moiety and of monofunctional extractants containing the P = O donor group, has been investigated using a number of different diluents. In some diluents, such as chloroform, dichloroethane and nitrobenzene, the existence of an apparently anomalous order of Am(III) extraction (that is higher metal extraction for lower basicity of the extractant) has been confirmed with phenyl substituted carbamoylmethylphosphine oxides. No evidence of anomalies was found in other diluents, for example carbon tetrachloride, tetrachloroethylene and o-xylene. While it seems unlikely that the `anomalous aryl strengthening` effect, recently reported in the soviet literature, can account for the extraction behavior of Am(III) by the bifunctional extractants and diluents investigated in this work, the apparent anomalies have been simply explained by strong solvation effects between the diluent and the very basic extractants. 11 refs., 7 figs., 3 tabs.

  19. Method for detecting toxic gases

    DOEpatents

    Stetter, J.R.; Zaromb, S.; Findlay, M.W. Jr.

    1991-10-08

    A method is disclosed which is capable of detecting low concentrations of a pollutant or other component in air or other gas. This method utilizes a combination of a heating filament having a catalytic surface of a noble metal for exposure to the gas and producing a derivative chemical product from the component. An electrochemical sensor responds to the derivative chemical product for providing a signal indicative of the product. At concentrations in the order of about 1-100 ppm of tetrachloroethylene, neither the heating filament nor the electrochemical sensor is individually capable of sensing the pollutant. In the combination, the heating filament converts the benzyl chloride to one or more derivative chemical products which may be detected by the electrochemical sensor. 6 figures.

  20. Surfactant enhanced remediation of subsurface petroleum contamination: Results of a field test

    SciTech Connect

    Sabatini, D.A.; Knox, R.C.; Shiau, B.J.

    1996-10-01

    Pump-and-treat remediation of petroleum contaminated ground water is frequently limited by the presence of residual saturation; surfactant enhanced subsurface remediation is one approach for overcoming this limitation. A field test of surfactant enhanced solubilization was conducted at a U.S. Coast Guard in Traverse City, Michigan. The contaminants of interest were jet fuel and tetrachloroethylene (PCE); micellar solubilization was evaluated at this site using 60 mM Dowfax 8390. Excellent surfactant recovery was realized in the field test using a vertical circulation well system - the regulatory permit was based on 95% surfactant recovery with the actual results exceeding this level. During the test the contaminant mass removal increased by a factor of seven relative to water alone. This is an abstract of a proposed presentation and does not necessarily reflect EPA policy.

  1. TNX-Area groundwater monitoring report. 1993 Annual report

    SciTech Connect

    Not Available

    1994-05-01

    During 1993, samples from well cluster P 26 and the TBG, TNX, XSB, and YSB well series at the TNX Area were analyzed for selected heavy metals, indicator parameters, radionuclides, volatile organic compounds, and other constituents. Seven parameters exceeded the final Primary Drinking Water Standards (PDWS). Dichloromethane (methylene chloride), a common laboratory contaminant, nitrate, and trichloroethylene exceeded PDWS most frequently. Four wells in this area currently are part of the Purge Water Contaminant Program due to high trichloroethylene concentrations. Carbon tetrachloride, gross alpha, lead, and tetrachloroethylene were elevated sporadically in one or more wells during the year. Groundwater flow directions and rates in the Unconfined Aquifer were similar from quarter to quarter during the year.

  2. Sanitary Landfill Groundwater Monitoring Report. Fourth Quarter 1997 and 1997 Summary

    SciTech Connect

    Chase, J.

    1998-02-01

    A maximum of forty-eight wells of the LFW series monitor groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill at the Savannah River Site (SRS). These wells are sampled quarterly to comply with the South Carolina Department of Health and Environmental Control Domestic Water Permit DWP-087A and as part of the SRS Groundwater Monitoring Program. Chloroethene (vinyl chloride) and trichloroethylene were the most widespread constituents exceeding standards during 1997. Lead (total recoverable), 1,4-dichlorobenzene, mercury, benzene, dichloromethane (methylene chloride), a common laboratory contaminant, tetrachloroethylene, 1,2-dichloroethane, gross alpha, tritium, and 1.2-dichloropropane also exceeded standards in one or more wells. The groundwater flow direction in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill was to the southeast (universal transverse Mercator coordinates). The flow rate in this unit was approximately 139 ft/year during first quarter 1997 and 132 ft/year during fourth quarter.

  3. Quarterly sampling of the wetlands along the old F-Area effluent ditch: August 1994. Revision 1

    SciTech Connect

    Cummins, C.L.; Dixon, K.L.

    1994-08-01

    In August 1994, well point water and near-surface water samples were collected to further characterize tritium and volatile organic compounds in the Wetlands along the old F-Area effluent ditch south of 643-E at the Savannah River Plant. Well point samples were collected from seven locations and near-surface water samples were collected at four locations. Results of the August 1994 sampling event further support findings that tritium and volatile organic compounds are outcropping in the Wetlands near the old F-area effluent ditch. Four analytes (1,2-dichloroethylene, trichloroethylene, tritium, and vinyl chloride) were detected at least once at concentrations above the primary Drinking Water Standards or the Maximum Contaminant Levels. Five analytes (the above chemicals plus tetrachloroethylene) were detected at least once in the near-surface water samples at concentrations greater than the method detection limit.

  4. Investigation of the behavior of VOCs in ground water across fine- and coarse-grained geological contacts using a medium-scale physical model

    SciTech Connect

    Hoffman, F.; Chiarappa, M.L.

    1998-03-01

    One of the serious impediments to the remediation of ground water contaminated with volatile organic compounds (VOCs) is that the VOCs are retarded with respect to the movement of the ground water. Although the processes that result in VOC retardation are poorly understood, we have developed a conceptual model that includes several retarding mechanisms. These include adsorption to inorganic surfaces, absorption to organic carbon, and diffusion into areas of immobile waters. This project was designed to evaluate the relative contributions of these mechanisms; by improving our understanding, we hope to inspire new remediation technologies or approaches. Our project consisted of a series of column experiments designed to measure the retardation, in different geological media, of four common ground water VOCs (chloroform, carbon tetrachloride, trichloroethylene, and tetrachloroethylene) which have differing physical and chemical characteristics. It also included a series of diffusion parameters that constrain the model, we compared the data from these experiments to the output of a computational model.

  5. Mixed Waste Management Facility (MWMF) groundwater monitoring report. Third quarter 1992

    SciTech Connect

    Thompson, C.Y.

    1992-12-01

    During third quarter 1992, 12 constituents exceeded the US Environmental Protection Agency Primary Drinking Water Standards (PDWS) in one or more groundwater samples from monitoring wells at the Mixed Waste Management Facility and adjacent facilities. Tritium and trichloroethylene were the most widespread constituents: 57 (48%) and 23 (19%) of the 119 monitoring wells contained elevated tritium and trichloroethylene levels, respectively. Elevated constituents were found primarily in Aquifer Zone IIB{sub 2} (Water Table) and Aquifer Zone IIB{sub 1} (Barnwell/McBean). Elevated constituents also occurred in five Aquifer Unit IIA (Congaree) wells. Upgradient wells BGO 1D and 2D and HSB 85A, 85B, and 85C did not contain any constituents that exceeded the PDWS. Downgradient wells in the three hydrostratigraphic units contained elevated levels of tritium, trichloroethylene, tetrachloroethylene, chloroethene, antimony, 1,1-dichloroethylene, gross alpha, lead, nonvolatile beta, thallium, total alpha-emitting radium (radium-224 and radium-226), or cadmium.

  6. Mixed Waste Management Facility (MWMF) groundwater monitoring report

    SciTech Connect

    Thompson, C.Y.

    1992-12-01

    During third quarter 1992, 12 constituents exceeded the US Environmental Protection Agency Primary Drinking Water Standards (PDWS) in one or more groundwater samples from monitoring wells at the Mixed Waste Management Facility and adjacent facilities. Tritium and trichloroethylene were the most widespread constituents: 57 (48%) and 23 (19%) of the 119 monitoring wells contained elevated tritium and trichloroethylene levels, respectively. Elevated constituents were found primarily in Aquifer Zone IIB[sub 2] (Water Table) and Aquifer Zone IIB[sub 1] (Barnwell/McBean). Elevated constituents also occurred in five Aquifer Unit IIA (Congaree) wells. Upgradient wells BGO 1D and 2D and HSB 85A, 85B, and 85C did not contain any constituents that exceeded the PDWS. Downgradient wells in the three hydrostratigraphic units contained elevated levels of tritium, trichloroethylene, tetrachloroethylene, chloroethene, antimony, 1,1-dichloroethylene, gross alpha, lead, nonvolatile beta, thallium, total alpha-emitting radium (radium-224 and radium-226), or cadmium.

  7. Thermal decomposition of captan and formation pathways of toxic air pollutants.

    PubMed

    Chen, Kai; Mackie, John C; Kennedy, Eric M; Dlugogorski, Bogdan Z

    2010-06-01

    This study investigates the thermal decomposition of a widely used fungicide, captan, under gas phase conditions, similar to those occurring in fires, cigarette burning, and combustion of biomass treated or contaminated with pesticides. The laboratory-scale apparatus consisted of a plug flow reactor equipped with sampling trains for gaseous, volatile organic compounds (VOC) and condensed products, with analysis performed by Fourier transform infrared spectroscopy (FTIR) and gas chromatography-mass spectrometry (GC-MS), respectively. Under oxidative conditions, the thermal decomposition of captan generated gaseous pollutants including carbon disulfide, thiophosgene, phosgene, and hydrogen cyanide. The VOC analysis revealed the formation of tetrachloroethylene, hexachloroethane, and benzonitrile. Quantum chemical calculations indicated that captan decomposes unimolecularly, via fission of the C-S bond, with the ensuing radicals reacting with O(2). The results of the present study provide an improved understanding of the formation pathways of toxic air pollutants in the accidental or deliberate combustion of captan. PMID:20433167

  8. Alloyed steel wastes utilization

    SciTech Connect

    Sokol, I.V.

    1995-12-31

    Alloyed steel chips and swarf formed during metal processing are looked upon as additional raw materials in metallurgical production. This paper presents some new methods for steel waste chips and swarf cleaning. One of them is swarf and steel chips cleaning in tetrachloroethylene with ultrasonic assistance and solvent regeneration. Thermal cleaning of waste chips and swarf provides off gas products utilization. The catalyst influence of the metal surface on the thermal decomposition of liquid hydrocarbons during the cleaning process has been studied. It has been determined that the efficiency of this metal waste cleaning technique depends on the storage time of the swarf. The waste chips and swarf cleaning procedures have been proven to be economically advantageous and environmentally appropriate.

  9. Health assessment for Aberdeen Proving Grounds, Aberdeen, Maryland, Region 3. CERCLIS Nos. MD3210021355 and MD10020036. Preliminary report

    SciTech Connect

    Not Available

    1989-01-19

    The Aberdeen Proving Grounds site is located in Aberdeen (Harford County) Maryland. Preliminary on-site groundwater and surface water sampling results have identified various metals, phosphorus, and volatile organic compounds. They include: 1,2-dichloroethylene, chloroform, 1,2-dichloroethane, trichloroethylene, benzene, 1,1,2,2-tetrachloroethane, tetrachloroethylene, 1,4-dithiane and 1,2-dichloroethylene. In addition, it has been reported that among the substances disposed of on-site are significant quantities of toxic metals, cyanide compounds, phosphorus, phosgene, napalm, and mustard gas. The site is considered to be of public health concern because of the risk to human health caused by the likelihood of human exposure to hazardous substances. Potential environmental pathways include those related to contaminated groundwater, surface water, on-site soils, and volatilization of contaminants in ambient air.

  10. Sonolytical decomposition of harmful substances in the atmospheric environment

    SciTech Connect

    Maeda, Yasuaki; Okitsu, Kenji; Takenaka, Norimichi; Bandow, Hiroshi; Nagata, Yoshio

    1996-12-31

    Reaction kinetics and mechanisms of sonolytical decomposition of flone, alternative flone, insecticides, organic halogen compounds such as trichloroethylene, tetrachloroethylene, tetrachloroethane, carbon tetrachloride, chlorophenol have been investigated. These environmental harmful substances were readily decomposed to carbon dioxide and halogen ions by the sonolysis in aqueous solution. Decomposition took place in two paths. One was seemed to be the attack of OH radicals which were produced in the sonolysis of water (path 1). The other was the combustion at high temperature (5000C) in the cavities (path 2). The attack of OH radicals were retarded by the addition of t-butyl alcohol which is well known as scavenger of OH radicals. Addition of Zn powder accelerate the decomposition of chlorine containing compounds. The harmful substances which have high hydrophobicities and high boiling points were decomposed mainly in path 2 and substances which have low boiling points and low solubilities in the water could be readily decomposed by the combustion in the cavities.

  11. Risk assessment of seeps from the 317 Area of Argonne National Laboratory

    SciTech Connect

    1996-09-17

    Chlorinated hydrocarbon contaminants have recently been detected in groundwater seeps on forest preserve property south of the 317 Area at ANL. The 317 Area is near ANL`s southern boundary and is considered the source of the contamination. Five seeps are about 200 m south of the ANL property line and about same distance from the nearest developed trails in the forest preserve. Conservative assumptions were used to assess the possibility of adverse health effects associated with forest preserve seeps impacted by the 317 Area. Results indicate that neither cancer risks nor noncarcinogenic effects associated with exposures to seep contaminants are a concern; thus, the area is safe for all visitors. The ecological impact study found that the presence of the three contaminants (CCl{sub 4}, CHCl{sub 3}, tetrachloroethylene) in the seep water does not pose a risk to biota in the area.

  12. Competitive Sorption and Desorption of Chlorinated Organic Solvents (DNAPLs) in Engineered Natural Organic Matter

    SciTech Connect

    Tang, Jixin; Weber, Walter J., Jr.

    2004-03-31

    The effects of artificially accelerated geochemical condensation and maturation of natural organic matter on the sorption and desorption of trichloroethylene (TCE) and tetrachloroethylene (PCE) were studied. The sorption and desorption of TCE in the presence and absence of the competing PCE and 1,2-dichlorobenzene (DCB) were also examined. A sphagnum peat comprising geologically young organic matter was artificially ''aged'' using superheated water, thus increasing the aromaticity and the degree of condensation of its associated organic matter. The sorption of all solutes tested were increased remarkably and their respective desorptions reduced, by the aged peat. The sorption capacities and isotherm nonlinearities of the peat for both TCE and PCE were found to increase as treatment temperature increased. In the competitive sorption studies, both PCE and DCB were found to depress TCE sorption, with PCE having greater effects than DCB, presumably because the molecular structure o f the former is more similar to that of TCE.

  13. Variability in biological monitoring of solvent exposure. I. Development of a population physiological model.

    PubMed Central

    Droz, P O; Wu, M M; Cumberland, W G; Berode, M

    1989-01-01

    Biological indicators of exposure to solvents are often characterised by a high variability that may be due either to fluctuations in exposure or individual differences in the workers. To describe and understand this variability better a physiological model for differing workers under variable industrial environments has been developed. Standard statistical distributions are used to simulate variability in exposure concentration, physical workload, body build, liver function, and renal clearance. For groups of workers exposed daily, the model calculates air monitoring indicators and biological monitoring results (expired air, blood, and urine). The results obtained are discussed and compared with measured data, both physiological (body build, cardiac output, alveolar ventilation) and toxicokinetic for six solvents: 1,1,1-trichloroethane, trichloroethylene, tetrachloroethylene, benzene, toluene, styrene, and their main metabolites. Possible applications of this population physiological model are presented. PMID:2765418

  14. Public health assessment for American Anodco Incorporated, Ionia, Ionia County, Michigan. Region 5. Cerclis No. MID006029102. Final report

    SciTech Connect

    1995-09-07

    The American Anodco, Inc. site, a former anodizing facility, is located in the industrial zone area in the eastern part of the City of Ionia, Michigan. The waste water in seepage lagoons at this site was allowed to seep into the ground and the lagoons were filled with clean soils in 1987. There is some evidence that groundwater at the site is contaminated with arsenic, boron, nitrate and nitrite, 1,1,1-trichloroethane and traces of tetrachloroethylene. There may be some potential health risk to the public if groundwater at this site is used for drinking and other household purposes in the future. Monitoring well OW-6 should be sampled again to confirm the concentration of 1,1,1-trichloroethane, if any, present in water from the well.

  15. Neurobehavioural effects of developmental toxicity.

    PubMed

    Grandjean, Philippe; Landrigan, Philip J

    2014-03-01

    Neurodevelopmental disabilities, including autism, attention-deficit hyperactivity disorder, dyslexia, and other cognitive impairments, affect millions of children worldwide, and some diagnoses seem to be increasing in frequency. Industrial chemicals that injure the developing brain are among the known causes for this rise in prevalence. In 2006, we did a systematic review and identified five industrial chemicals as developmental neurotoxicants: lead, methylmercury, polychlorinated biphenyls, arsenic, and toluene. Since 2006, epidemiological studies have documented six additional developmental neurotoxicants-manganese, fluoride, chlorpyrifos, dichlorodiphenyltrichloroethane, tetrachloroethylene, and the polybrominated diphenyl ethers. We postulate that even more neurotoxicants remain undiscovered. To control the pandemic of developmental neurotoxicity, we propose a global prevention strategy. Untested chemicals should not be presumed to be safe to brain development, and chemicals in existing use and all new chemicals must therefore be tested for developmental neurotoxicity. To coordinate these efforts and to accelerate translation of science into prevention, we propose the urgent formation of a new international clearinghouse. PMID:24556010

  16. Use of a 2-inch, dual screen well to conduct aquifer tests in the upper and lower Lost lake aquifer zones: Western sector, A/M area, SRS

    SciTech Connect

    Hiergesell, R.A.; Novick, J.S.

    1996-09-01

    The Western Sector, A/M Area is located just west of the M-Area Settling Basin on an upland area. The area is adjacent to the gently inclined area where the upland drops off to the Savannah River floodplain. Water in the parts of the uppermost aquifers contains dissolved contaminants which originated at the land surface and have leached downward into the groundwater. Subsurface contamination originated in the locality of the M-Area Settling Basin and Lost Lake, which is a Carolina Bay. These locations functioned as disposal sites for industrial solvents during the early years of operation of the Savannah River Site. The primary groundwater contaminants are trichloroethylene (TCE) and tetrachloroethylene (PCE), and groundwater concentrations of TCE are significantly greater than the PCE.

  17. Electrochemical Processes for In-situ Treatment of Contaminated Soils

    SciTech Connect

    Huang, C.P.; Cha, Daniel

    1999-06-01

    Soils at typical DOE (Department of Energy) waste sites are known to be contaminated by a host of hazardous organic chemicals, heavy metals and radionuclides. Typical hazardous organic contaminants include chlorinated solvents such as trichloroethylene (TCE), tetrachloroethylene (PCE), chloroform, and carbon tetrachloride, and polycyclic aromatic hydrocarbons (PAHs) such as naphthalene, fluorene, phenanthrene, anthracene and pyrene. It is also known that major toxic heavy metals such as Pb, Cr, As, Zn, Cu, Hg, and Cd and major radionuclides such as Tritium, U, Sr90, Pu, Cs137, and Tc are also commonly present at some DOE waste sites. Some of these chemicals are relatively mobile and can migrate down to the vadose zone and/or the aquifer region.

  18. Vapor vacuum extraction treatability study at the Idaho National Engineering Laboratory

    SciTech Connect

    Herd, M.D.; Matthern, G.; Michael, D.L.; Spang, N.; Downs, W.; Weidner, J.; Cleary, P.

    1993-05-01

    During the 1960s and early 1970s, barreled mixed waste containing volatile organic compounds (VOCS) and radioactive waste was buried at the Subsurface Disposal Area (SDA) at the Idaho National Engineering Laboratory (INEL) Radioactive Waste Management Complex (RWMC). Over time, some of the barrels have deteriorated allowing, VOC vapors to be released into the vadose zone. The primary VOC contaminates of concern are CCl{sub 4} and trichloroethylene; however, chloroform, tetrachloroethylene, and 1,1,1-trichloroethane have also been detected. Vapor Vacuum Extraction (VVE) is one alternative being considered for remediation of the RWMC SDA vadose zone. A proposed pilot-scale treatability study (TS) will provide operation and maintenance costs for the design of the potential scale-up of the system.

  19. Bioremediation of contaminated groundwater

    DOEpatents

    Hazen, Terry C.; Fliermans, Carl B.

    1995-01-01

    An apparatus and method for in situ remediation of contaminated subsurface soil or groundwater contaminated by chlorinated hydrocarbons. A nutrient fluid is selected to stimulate the growth and reproduction of indigenous subsurface microorganisms that are capable of degrading the contaminants; an oxygenated fluid is selected to create a generally aerobic environment for these microorganisms to degrade the contaminants, leaving only pockets that are anaerobic. The nutrient fluid is injected periodically while the oxygenated fluid is injected continuously and both are extracted so that both are drawn across the plume. The nutrient fluid stimulates microbial colony growth; withholding it periodicially forces the larger, healthy colony of microbes to degrade the contaminants. Treatment is continued until the subsurface concentration of contaminants is reduced to an acceptable, preselected level. The nutrient fluid can be methane and the oxygenated fluid air for stimulating production of methanotrophs to break down chlorohydrocarbons, especially trichloroethylene (TCE) and tetrachloroethylene.

  20. Bioremediation of contaminated groundwater

    DOEpatents

    Hazen, T.C.; Fliermans, C.B.

    1995-01-24

    An apparatus and method are described for in situ remediation of contaminated subsurface soil or groundwater contaminated by chlorinated hydrocarbons. A nutrient fluid is selected to stimulate the growth and reproduction of indigenous subsurface microorganisms that are capable of degrading the contaminants. An oxygenated fluid is selected to create a generally aerobic environment for these microorganisms to degrade the contaminants, leaving only pockets that are anaerobic. The nutrient fluid is injected periodically while the oxygenated fluid is injected continuously and both are extracted so that both are drawn across the plume. The nutrient fluid stimulates microbial colony growth. Withholding it periodically forces the larger, healthy colony of microbes to degrade the contaminants. Treatment is continued until the subsurface concentration of contaminants is reduced to an acceptable, preselected level. The nutrient fluid can be methane and the oxygenated fluid air for stimulating production of methanotrophs to break down chlorohydrocarbons, especially trichloroethylene (TCE) and tetrachloroethylene. 3 figures.

  1. Metallurgical Laboratory Hazardous Waste Management Facility groundwater monitoring report. First quarter 1995

    SciTech Connect

    1995-06-01

    During first quarter 1995, samples from AMB groundwater monitoring wells at the Metallurgical Laboratory Hazardous Waste Management Facility (Met Lab HWMF) were analyzed for selected heavy metals, field measurements, radionuclides, volatile organic compounds, and other constituents. Six parameters exceeded standards during the quarter. As in previous quarters, tetrachloroethylene and trichloroethylene exceeded final Primary Drinking Water Standards (PDWS). Total organic halogens exceeded its Savannah River Site (SRS) Flag 2 criterion during first quarter 1995 as in fourth quarter 1994. Aluminum, iron, and manganese, which were not analyzed for during fourth quarter 1994, exceeded the Flag 2 criteria in at least two wells each during first quarter 1995. Groundwater flow direction and rate in the M-Area Aquifer Zone were similar to previous quarters. Conditions affecting the determination of groundwater flow directions and rates in the Upper Lost Lake Aquifer Zone, Lower Lost Lake Aquifer Zone, and the Middle Sand Aquifer Zone of the Crouch Branch Confining Unit were also similar to previous quarters.

  2. Method for detecting toxic gases

    DOEpatents

    Stetter, Joseph R. (Naperville, IL); Zaromb, Solomon (Hinsdale, IL); Findlay, Jr., Melvin W. (Bolingbrook, IL)

    1991-01-01

    A method capable of detecting low concentrations of a pollutant or other component in air or other gas, utilizing a combination of a heating filament having a catalytic surface of a noble metal for exposure to the gas and producing a derivative chemical product from the component, and an electrochemical sensor responsive to the derivative chemical product for providing a signal indicative of the product. At concentrations in the order of about 1-100 ppm of tetrachloroethylene, neither the heating filament nor the electrochemical sensor is individually capable of sensing the pollutant. In the combination, the heating filament converts the benzyl chloride to one or more derivative chemical products which may be detected by the electrochemical sensor.

  3. Analysis and evaluation of VOC removal technologies demonstrated at Savannah River

    SciTech Connect

    Chesnut, D.A.; Wagoner, J.; Nitao, J.J.; Boyd, S.; Shaffer, R.J.; Kansa, E.J.; Buscheck, T.A.; Pruess, K.; Falta, R.W.

    1993-09-01

    Volatile Organic Compounds, or VOCs, are ubiquitous subsurface contaminants at industrial as well as DOE sites. At the Savannah River Plant, the principles VOCs contaminating the subsurface below A-Area and M-Area are Trichloroethylene (C{sub 2}HCl{sub 3}, or TCE) and Tetrachloroethylene (C{sub 2}Cl{sub 4}, or PCE). These compounds were used extensively as degreasing solvents from 1952 until 1979, and the waste solvent which did not evaporate (on the order of 2{times}10{sup 6} pounds) was discharged to a process sewer line leading to the M-Area Seepage Basin (Figure I.2). These compounds infiltrated into the soil and underlying sediments from leaks in the sewer line and elsewhere thereby contaminating the vadose zone between the surface and the water table as well as the aquifer.

  4. Organics in soils and groundwater at non-arid sites (A-1) integrated demonstration

    SciTech Connect

    Steele, J.L.; Kaback, D.S.; Looney, B.B.

    1994-06-01

    One of the most common environmental problems in the United States is soils and groundwater contaminated with volatile chemical solvents classified as Volatile Organic Compounds (VOCs), which were used as degreasers and cleaning agents. Leakage of solvents (trichloroethylene and tetrachloroethylene) from an underground process sewer line has contaminated soils and underlying groundwaters at SRS. This site was chosen for DOE-OTD`s integrated demonstration program to demonstrate innovative technologies for cleanup of soils and groundwater contaminated with VOCs. The Savannah River Site was especially well suited as the test bed for this integrated demonstration project due to the presence of a pre-existing line source of soil and groundwater-based contamination, on-going environmental remediation efforts at the site, and full cooperation from the concerned environmental regulatory agencies. The Integrated Demonstration (ID) at the Savannah River Site has demonstrated systems of technologies and evaluated them with respect to performance, safety and cost effectiveness.

  5. Volatile organic compounds in 600 US homes: major sources of personal exposure

    SciTech Connect

    Wallace, L.; Clayton, C.A.

    1987-05-01

    The USEPA carried out the Total Exposure Assessment Methodology (TEAM) Study (1980-85) on 600 subjects in five cities representing a total population of more than 700,000 persons. Personal exposures to all prevalent target compounds exceeded outdoor concentrations. Major sources were smoking (benzene, styrene, xylenes, and octane); using hot water (chloroform); wearing dry-cleaned clothes (tetrachloroethylene); and using moth crystals or room air deodorants (para-dichlorobenzene). Eleven of 14 occupations also showed elevated exposures to one or more chemicals (particularly aromatics). Auto related activities (lengthy commuting, filling gas tanks) were associated with increased exposures to several aromatics. Breath concentrations were significantly associated with personal air exposures but not with outdoor concentrations. Residence in major chemical-manufacturing and petroleum-refining areas did not significantly affect personal exposures.

  6. Bioremediation of contaminated groundwater

    DOEpatents

    Hazen, T.C.; Fliermans, C.B.

    1994-01-01

    Disclosed is an apparatus and method for in situ remediation of contaminated subsurface soil or groundwater contaminated by chlorinated hydrocarbons. A nutrient fluid (NF) is selected to simulated the growth and reproduction of indigenous subsurface microorganisms capable of degrading the contaminants; an oxygenated fluid (OF) is selected to create an aerobic environment with anaerobic pockets. NF is injected periodically while OF is injected continuously and both are extracted so that both are drawn across the plume. NF stimulates microbial colony growth; withholding it periodically forces the larger, healthy colony of microbes to degrade the contaminants. Treatment is continued until the subsurface concentration of contaminants is acceptable. NF can be methane and OF be air, for stimulating production of methanotrophs to break down chlorohydrocarbons, especially TCE and tetrachloroethylene.

  7. Health assessment for Vega Alta Public Supply Wells Site, Vega Alta, Puerto Rico, Region 2. CERCLIS No. PRS187147. Final report

    SciTech Connect

    Not Available

    1988-12-02

    The Vega Alta Public Supply Wells Site is a public water supply wellfield located in the municipality of Vega Alta, Puerto Rico. Based on data collected from 1983 to 1985, the ground water is contaminated with volatile organic chemicals (VOCs), notably trichloroethylene, tetrachloroethylene, and 1,2-trans-dichloroethylene. A remediation alternative selected in a Record of Decision dated September 29, 1987 calls for treatment of 4 of the more highly contaminated wells and shutting down 2 others. Remediation efforts are to include air stripping and possibly treatment by carbon adsorption. Monitoring of the effectiveness of these efforts will determined their adequacy to bring the quality of the tap water to acceptable levels. It is not known whether the water currently supplied through the municipality has elevated concentrations of VOCs. Therefore, based on the limited information available, ATSDR has concluded that the Vega Alta Wells site is of public health concern.

  8. Sanitary Landfill groundwater monitoring report. Fourth quarterly report and summary 1993

    SciTech Connect

    Not Available

    1994-02-01

    Fifty-seven wells of the LFW series monitor groundwater quality in Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill at the Savannah River Site (SRS). These wells are sampled quarterly to comply with the South Carolina Department of Health and Environmental Control Domestic Waste Permit DWP-087A and as part of the SRS Groundwater Monitoring Program. Dichloromethane a common laboratory contaminant, and trichloroethylene were the most widespread constituents exceeding standards during 1993. Benzene, chlorobenzene, chloroethene 1,2 dichloroethane, 1,1-dichloroethylene, 1,2-dichloropropane, gross alpha, lindane, mercury, tetrachloroethylene, and tritium also exceeded standards in one or more wells. No groundwater contaminants were observed in wells screened in the lower section of Steed Pond Aquifer.

  9. Health assessment for Van Waters and Rogers, Incorporated, San Jose, Santa Clara County, California, Region 9. CERCLIS No. CAD010925576. Preliminary report

    SciTech Connect

    Not Available

    1988-12-05

    The Van Waters and Peters, Inc. site is on the National Priorities List. The 12-acre site is the location of a chemical blending, storage, and distribution facility in the city of San Jose. The environmental contamination on-site consists of 1,1,1-trichloroethane (997 ppm), acetone (295 ppm), methylene chloride (45 ppm), tetrachloroethylene (100 ppm), methanol (1,600 ppm), and isopropanol (1,400 ppm) in soil; and 1,1,1-trichloroethane (380 ppm), acetone (630 ppm), methylene chloride (280 ppm), isopropanol (800 ppm), ethylene glycol (2,700 ppm), and dichloroethylene (23 ppm) in ground water. The site is considered to be of potential public health concern because of the risk to human health caused by the possibility of exposure to hazardous substances via contaminated ground water.

  10. Health assessment for National Semiconductor Corporation, Santa Clara, Santa Clara County, California, Region 9. CERCLIS No. CAD041472986. Preliminary report

    SciTech Connect

    Not Available

    1988-12-05

    The National Semiconductor Corporation site is on the National Priorities List. Underground-storage tanks, sumps, and pipes are suspected to be the source of contaminated ground water and subsurface soil. The environmental contamination on-site consists of tetrachloroethylene 1,1,1-trichloroethane, trichlorobenzene, benzene, methanol, and ethylbenzene and xylenes in subsurface soil; and trichloroethylene, 1,1,1-trichloroethane, xylene and acetone in groundwater. The environmental contamination off-site consists of 1,2-dichloroethylene in groundwater. The site is considered to be of potential public health concern because of the risk to human health caused by the possibility of exposure to hazardous substances via migration of contaminants from on-site subsurface soil and ground water to off-site public-water-supply wells.

  11. Metallurgical Laboratory Hazardous Waste Management Facility groundwater monitoring report. First quarter 1993

    SciTech Connect

    Not Available

    1993-06-01

    During first quarter 1993, samples from 18 groundwater monitoring wells of the AMB series at the Metallurgical Laboratory Hazardous Waste Management Facility were analyzed for certain heavy metals, indicator parameters, radionuclides, volatile organic compounds, and other constituents. Nine parameters exceeded standards during the quarter. As in fourth quarter 1992, tetrachloroethylene and trichloroethylene exceeded the final Primary Drinking Water Standards in 4 and 7 wells, respectively. Dichloromethane (methylene chloride), not previously compared to a standard in the Savannah River Site Groundwater Monitoring Program, was elevated in one well. Aluminum, iron, manganese, pH, specific conductance, and total organic halogens exceeded the Savannah River Site Flag 2 criteria; all of these parameters, with the exception of aluminum, were reported as elevated in AMB wells during previous quarters. Groundwater flow directions and rates in the water-table unit and the upper section of the Congaree were similar to previous quarters.

  12. Mixed waste management facility groundwater monitoring report. Fourth quarter 1995 and 1995 summary

    SciTech Connect

    1996-03-01

    During fourth quarter 1995, seven constituents exceeded final Primary Drinking Water Standards (PDWS) in groundwater samples from downgradient monitoring wells at the Mixed Waste Management Facility. No constituents exceeded final PDWS in samples from the upgradient monitoring wells. As in previous quarters, tritium and trichloroethylene were the most widespread elevated constituents. Chloroethene, gross alpha, lead, mercury, and tetrachloroethylene also exceeded final PDWS in one or more wells. Elevated constituents were found in numerous Aquifer Zone IIB{sub 2} (Water Table) and Aquifer Zone IIB{sub 1} (Barnwell/McBean) wells and in three Aquifer Unit IIA (Congaree) wells. The groundwater flow directions and rates in the three hydrostratigraphic units were similar to those of previous quarters.

  13. P-Area Reactor 1993 annual groundwater monitoring report

    SciTech Connect

    1994-11-01

    Groundwater was sampled and analyzed during 1993 from wells monitoring the water table at the following locations in P Area: well P 24A in the eastern section of P Area, the P-Area Acid/Caustic Basin, the P-Area Coal Pile Runoff Containment Basin, the P-Area Disassembly Basin, the P-Area Burning/Rubble Pit, and the P-Area Seepage Basins. During 1993, pH was above its alkaline standard in well P 24A. Specific conductance was above its standard in one well each from the PAC and PCB series. Lead exceeded its 50 {mu}g/L standard in one well of the PDB series during one quarter. Tetrachloroethylene and trichloroethylene were detected above their final primary drinking water standards in one well of the PRP well series. Tritium was consistently above its DWS in the PDB and PSB series. Also during 1993, radium-228 exceeded the DWS for total radium in three wells of the PAC series and one well of the PCB series; total alpha-emitting radium exceeded the same standard in a different PCB well. These results are fairly consistent with those from previous years. Unlike results from past years, however, no halogenated volatiles other than trichloroethylene and tetrachloroethylene exceeded DWS in the PRP well series although gas chromatographic volatile organic analyses were performed throughout the year. Some of the regulated units in P Area appear to need additional monitoring by new wells because there are insufficient downgradient wells, sometimes because the original well network, installed prior to regulation, included sidegradient rather than downgradient wells. No monitoring wells had been installed through 1993 at one of the RCRA/CERCLA units named in the Federal Facilities Agreement, the Bingham Pump Outage Pits.

  14. Micellar partitioning and its effects on Henry's law constants of chlorinated solvents in anionic and nonionic surfactant solutions.

    PubMed

    Zhang, Chunlong; Zheng, Gang; Nichols, Courtney M

    2006-01-01

    Micellar partitioning of volatile chlorinated hydrocarbons in surfactant solutions and its effects on vapor-liquid equilibrium is fundamental to the overall design and implementation of surfactant-enhanced aquifer remediation. Surfactant micelles greatly enhance contaminant recovery from the subsurface; however, the reduced volatility of organic compounds compromises the aboveground treatment of surfactant-laden wastewaters using air-stripping process. Batch equilibrium tests were performed to acquire micellar partition coefficients (Km) and apparent Henry's law constants (H*) of three prominent groundwater contaminants (tetrachloroethylene, trichloroethylene, cis-dichlorethylene) in the presence of two anionic surfactants (sodium dodecyl sulfate, SDS; sodium dodecylbenzene sulfonate, SDBS) and two nonionic surfactants (Triton X-100 and Tween 80). The H* values were significantly reduced in the presence of all four surfactants over their critical micelle concentrations (cmc's). On a cmc basis, the anionic surfactant SDS had the greatest effect on H*, followed by SDBS, Triton X-100, and Tween 80. Anionic surfactants decreased H* to an order of magnitude lower than nonionic surfactants, although nonionic surfactants decreased the H* at concentrations significantly lower than the anionic surfactants due to their lower cmc's. Nonionic surfactants present higher Km and molar solubilization ratio than anionic surfactants. Tetrachloroethylene has the highest Km values among three chlorinated solvents, which agrees well with the hydrophobicity (Kow) of these chemicals. An empirical correlation between log Km and log Kow is developed on the basis of data from this study and the Km values reported for a number of chlorinated and nonchlorinated hydrocarbons. Equilibrium data were also tested against three sets of models that describe the partitioning of volatile compounds in vapor-water-micelle phases. Applications of these models in experimentally determining Km from batch vapor-water equilibrium data are discussed. PMID:16433353

  15. Physiological characterization of a broad spectrum reductively dechlorinating consortium

    USGS Publications Warehouse

    Lorah, M.M.; Majcher, E.; Jones, E.; Driedger, G.; Dworatzek, S.; Graves, D.

    2005-01-01

    A wetland sediment-derived microbial consortium (WBC-2) was developed by the US Geological Survey and propagated in vitro to large quantities by SiREM Laboratory for potential use in bioaugmentation applications. On the basis of bench-scale tests, the consortium could completely dechlorinate 1,1,2,2-tetrachloroethylene, tetrachloroethylene, trichloroethylene, 1,1,2-trichloroethane, cis- and trans-1,2-dichoroethylene, 1,1-dichloroethylene, 1,2-dichloroethane, and vinyl chloride in culture medium. Batch microcosms were carried out under anaerobic conditions in culture medium with neutral pH and with pH adjusted from acidic (pH 4, 5, and 6) to alkaline (pH 8 and 9). To evaluate oxygen sensitivity of WBC-2, an aliquot was removed from an anaerobic culture vessel and poured into smaller containers on the bench top where a series of oxygen exposures were applied to the culture by bubbling ambient air through the culture at a rate of ??? 100 mL/min. Chlorinated methanes tended to inhibit activity of a wide range of microorganisms. Although toxicity effects from CT addition were observed with WBC-2 in liquid culture at 3 mg/L concentration, WBC-2 in the columns could maintain degradation of CT and chloroform (CF) and of the chlorinated ethanes and ethylenes at CT and CF concentrations of 10 and 20 mg/L, respectively. This is an abstract of a paper presented at the Proceedings of the 8th International In Situ and On-Site Bioremediation Symposium (Baltimore, MD 6/6-9/2005).

  16. Simultaneous indoor and outdoor on-line hourly monitoring of atmospheric volatile organic compounds in an urban building. The role of inside and outside sources.

    PubMed

    de Blas, Maite; Navazo, Marino; Alonso, Lucio; Durana, Nieves; Gomez, Maria Carmen; Iza, Jon

    2012-06-01

    Indoor air quality (IAQ) has become a very important issue in recent years. As in developed countries people spend more than 90% of their time indoors, besides outdoor pollution assessment, the indoor one is also required. IAQ is not only affected by indoor sources linked to indoor activities, outdoor sources such as road or street traffic and industrial and commercial activities have their role too. Volatile organic compounds (VOCs) frequently show higher indoor mixing ratios with respect to the outdoor ones, and monitoring is required to report their indoor mixing ratios. Many studies have reported average indoor VOCs' mixing ratios in different environments, but their temporal variability has not been well documented. The main objective of this work was to simultaneously measure VOCs' indoor and outdoor mixing ratios with high time-resolution in order to assess the effect of sources inside and outside the building upon indoor mixing ratios of individual VOCs. Simultaneous hourly, continuous, and on-line measurements of C(2)-C(11) VOCs were performed inside and outside the School of Engineering of Bilbao (ETSI) building, located in the city center of Bilbao, an urban area in Northern Spain. The analysis of simultaneous data allowed the classification of VOCs based on their main sources. Some VOCs were mainly emitted by indoor sources (1-pentene, 2-methylpentane, n-hexane, methylcyclopentane, benzene, 1-heptene+2,2,4-trimethylbenzene, and tetrachloroethylene) or by outdoor sources (n-heptane, C(8) alkanes except trimethylpentanes and C(9) aromatics). Other VOCs, such as toluene, were emitted by both indoor and outdoor sources. The isoprene indoor pattern indicated that its main indoor source could be the air exhaled by people occupying the building. Some halocarbons, such as trichloroethylene, tetrachloroethylene, and carbon tetrachloride may be generated from the use inside the building of chlorine bleach containing products. PMID:22542255

  17. Surfactant Behavior and Application with a Brine-Based Remediation Technology

    NASA Astrophysics Data System (ADS)

    Pedit, J. A.; Sanderson, P. M.; Johnson, D. N.; Miller, C. T.

    2006-12-01

    With the general inability of existing groundwater remediation techniques to efficiently remove dense nonaqueous phase liquids (DNAPLs) from the subsurface, a novel strategy known as the Brine-Based Remediation Technology (BBRT), which relies upon a brine barrier to control downward migration of DNAPL after exposure to an interfacial tension reducing surfactant, has been proposed as a potential alternative to currently used remedial strategies. The choice of surfactants is a challenging problem and much effort has been devoted to screening of surfactants for DNAPL systems. However, due to the sensitivity of many of these surfactant solutions to electrolyte concentrations, they are unsuitable for BBRTs due to the presence of a high concentration brine. Therefore, it is necessary to characterize and evaluate potential surfactant formulations that possess favorable phase behavior, do not precipitate in the presence of high concentration brines, perform favorably in subsurface systems, (i.e., low viscosities and limited losses due to sorption), and effectively reduce interfacial tension to levels required for mobilization. Batch reactor studies were performed that identified surfactant formulations that did not precipitate in solutions containing high concentrations of calcium bromide brine and that possessed favorable phase behavior. The best behaved formulations contained a mixture of a nonionic surfactant, Triton X-100, and an anionic surfactant, Aerosol MA-80. Sorption of one of these mixtures was evaluated in experiments conducted in batch and one-dimensional column reactors. The ability of the mixture to mobilize tetrachloroethylene was evaluated in column experiments. The mixture was used in a BBRT demonstration at the Dover National Test Site in Dover, DE, where a test cell was contaminated with tetrachloroethylene.

  18. Volatile organic compounds detected in vapor-diffusion samplers placed in sediments along and near the shoreline at Allen Harbor Landfill and Calf Pasture Point, Davisville, Rhode Island, March-April 1998

    USGS Publications Warehouse

    Lyford, F.P.; Kliever, J.D.; Scott, Clifford

    1999-01-01

    Volatile organic compounds are present in ground water at the Allen Harbor Landfill and the Calf Pasture Point sites on the former Naval Construction Battalion Center in Davisville, R.I. Vapor-diffusion samplers were used at the two sites during March-April 1998 to identify possible discharge points for contaminants along the shore of Allen Harbor and in two wetland areas near the shore. Results from vapor-diffusion samplers will be used in conjunction with other site information to evaluate proposed ground-water monitoring programs. Volatile organic compounds were detected in 41 of 115 samplers placed along the shoreline at the Allen Harbor Landfill. Trichloroethylene was the principal volatile organic compound detected of eight target compounds. The highest vapor concentration measured exceeded 300,000 parts per billion by volume in an area where TCE was detected in groundwater from nearby monitoring wells. Other chemicals detected in vapor-diffusion samplers included tetrachloroethylene, toluene, and benzene. Concentrations of individual volatile organic compounds were less than 100 parts per billion by volume in most samplers. Volatile organic compounds, principally trichloroethylene, were detected in 7 of 30 samplers placed along the shoreline at Calf Pasture Point; the highest trichloroethylene concentration was 1,900 parts per billion by volume. A trace concentration of tetrachloroethylene was detected in one of the samplers. One of 24 samplers placed in two wetland areas near the shore (suspected discharge areas for ground-water containing volatile organic compounds) detected trichloroethylene at a vapor concentration of 14 parts per billion by volume.

  19. Three common pathways of nephrotoxicity induced by halogenated alkenes.

    PubMed

    Cristofori, Patrizia; Sauer, Aisha V; Trevisan, Andrea

    2015-02-01

    Glutathione-dependent bioactivation is a common pathway in nephrotoxicity caused by haloalkanes and haloalkenes. Glutathione conjugation forms the link between halogenated hydrocarbons, based on the formation of an episulfonium ion (vicinal halomethanes) or a cysteine conjugate (haloalkenes). Herein, we review the metabolic pathways underlying the nephrotoxic effects of the three well-known haloalkenes trichloroethylene, tetrachloroethylene, and hexachloro-1:3-butadiene to emphasize the role of cysteine-conjugate β-lyase and the oxidative metabolism in renal toxicity. Activation by cysteine-conjugate β-lyase is the best-characterized mechanism causing toxicity due to haloalkene treatment in experimental models. However, the severity of toxicity differs considerably, with S-(1,2,2-trichlorovinyl)-L-cysteine being more toxic than S-(1,2-dichlorovinyl)-L-cysteine, which is in turn more toxic than S-(1,2,3,4,4-pentachloro-1:3-butadienyl)-L-cysteine. Moreover, two oxidative pathways involving cysteine S-conjugates (mediated by flavin-containing monooxigenase 3) and N-acetyl-L-cysteine conjugates (mediated by cytochrome P-450 3A) form derived sulfoxides, which represent alternative metabolites with toxic effects. In vitro and in vivo studies showed that sulfoxide metabolites are more toxic than cysteine-conjugate derivates. The cytochrome P-450 3A family, on the other hand, is sex specific, and its expression has only been reported in adult male rats and rabbits. In summary, haloalkenes are highly nephrotoxic in vivo and in vitro and their toxicity mechanisms are well documented experimentally. However, little information is available on their toxicity in humans, except for the carcinogenic effects established for high exposure levels of trichloroethylene and tetrachloroethylene. PMID:25665826

  20. Evaluation of exposure to contaminated drinking water and specific birth defects and childhood cancers at Marine Corps Base Camp Lejeune, North Carolina: a case–control study

    PubMed Central

    2013-01-01

    Background Drinking water supplies at Marine Corps Base Camp Lejeune were contaminated with trichloroethylene, tetrachloroethylene, benzene, vinyl chloride and trans-1,2-dichloroethylene during 1968 through 1985. Methods We conducted a case control study to determine if children born during 1968–1985 to mothers with residential exposure to contaminated drinking water at Camp Lejeune during pregnancy were more likely to have childhood hematopoietic cancers, neural tube defects (NTDs), or oral clefts. For cancers, exposures during the first year of life were also evaluated. Cases and controls were identified through a survey of parents residing on base during pregnancy and confirmed by medical records. Controls were randomly sampled from surveyed participants who had a live birth without a major birth defect or childhood cancer. Groundwater contaminant fate and transport and distribution system models provided estimates of monthly levels of drinking water contaminants at mothers’ residences. Magnitude of odds ratios (ORs) was used to assess associations. Confidence intervals (CIs) were used to indicate precision of ORs. We evaluated parental characteristics and pregnancy history to assess potential confounding. Results Confounding was negligible so unadjusted results were presented. For NTDs and average 1st trimester exposures, ORs for any benzene exposure and for trichloroethylene above 5 parts per billion were 4.1 (95% CI: 1.4-12.0) and 2.4 (95% CI: 0.6-9.6), respectively. For trichloroethylene, a monotonic exposure response relationship was observed. For childhood cancers and average 1st trimester exposures, ORs for any tetrachloroethylene exposure and any vinyl chloride exposure were 1.6 (95% CI: 0.5-4.8), and 1.6 (95% CI: 0.5-4.7), respectively. The study found no evidence suggesting any other associations between outcomes and exposures. Conclusion Although CIs were wide, ORs suggested associations between drinking water contaminants and NTDs. ORs suggested weaker associations with childhood hematopoietic cancers. PMID:24304547

  1. Ground-water contamination in East Bay Township, Michigan

    USGS Publications Warehouse

    Twenter, F.R.; Cummings, T.R.; Grannemann, N.G.

    1985-01-01

    Glacial deposits, as much as 360 feet thick, underlie the study area. The upper 29 to 118 feet, a sand and gravel unit, is the aquifer tapped by all wells in the area. This unit is underlain by impermeable clay that is at least 100 feet thick. Ground-water flow is northeastward at an estimated rate of 2 to 5 feet per day. Hydraulic conductivities in the aquifer range from 85 to 250 feet per day; 120 feet per day provided the best match of field data in a ground-water flow model. The depth to water ranged from 1 to 20 feet. Chemical analyses indicate that ground water is contaminated with organic chemicals from near the Hangar/Administration building at the U.S. Coast Guard Air Station at East Bay, about 4,300 feet northeast. The plume, which follows ground-water flow lines, ranges from 180 to 400 feet wide. In the upper reach of the plume, hydrocarbons less dense than water occur at the surface of the water table; they move downward in the aquifer as they move toward east Bay. Maximum concentrations of the major organic compounds include: benzene, 3,390 ug/L; toluene, 55,500 ug/L; xylene, 3,900 ug/L, tetrachloroethylene, 3,410 ug/L; amd bis (2-ethyl hexyl) phthalate, 2,100 ug/L. Soils are generally free of these hydrocarbons; however, in the vicinity of past drum storage, aircraft maintenance operations, and fuel storage and dispensing , as much as 1,100 ug/kg of tetrachloroethylene and 1,500 ug/kg of bis (-ethyl hexyl) phthalate were detected. At a few locations higher molecular weight hydrocarbons, characteristic of petroleum distillates were found. (USGS)

  2. Evaluation of the atmosphere as a source of volatile organic compounds in shallow groundwater

    USGS Publications Warehouse

    Baehr, A.L.; Stackelberg, P.E.

    1999-01-01

    The atmosphere as a source of volatile organic compounds (VOCs) in shallow groundwater was evaluated over an area in southern New Jersey. Chloroform, methyl tertbutyl ether (MTBE), 1,1,1-trichloroethane, tetrachloroethylene (PCE), and carbon disulfide (not a VOC) were detected frequently at low-level concentrations in a network of 78 shallow wells in the surficial Kirkwood-Cohansey aquifer system. The atmosphere was sampled for these compounds and only MTBE concentrations were high enough to potentially explain frequent detection in shallow groundwater. A mathematical model of reactive transport through the unsaturated zone is presented to explain how variations in unsaturated properties across the study area could explain differences in MTBE concentrations in shallow groundwater given the atmosphere as the source. Even when concentrations of VOCs in groundwater are low compared to regulatory concentration limits, it is critical to know the source. If the VOCs originate from a point source(s), concentrations in groundwater could potentially increase over time to levels of concern as groundwater plumes evolve, whereas if the atmosphere is the source, then groundwater concentrations would be expected to remain at low-level concentrations not exceeding those in equilibrium with atmospheric concentrations. This is the first analysis of VOC occurrence in shallow groundwater involving colocated atmosphere data.The atmosphere as a source of volatile organic compounds (VOCs) in shallow groundwater was evaluated over an area in southern New Jersey. Chloroform, methyl tert-butyl ether (MTBE), 1,1,1-trichloroethane, tetrachloroethylene (PCE), and carbon disulfide (not a VOC) were detected frequently at low-level concentrations in a network of 78 shallow wells in the surficial Kirkwood-Cohansey aquifer system. The atmosphere was sampled for these compounds and only MTBE concentrations were high enough to potentially explain frequent detection in shallow groundwater. A mathematical model of reactive transport through the unsaturated zone is presented to explain how variations in unsaturated properties across the study area could explain differences in MTBE concentrations in shallow groundwater given the atmosphere as the source. Even when concentrations of VOCs in groundwater are low compared to regulatory concentration limits, it is critical to know the source. If the VOCs originate from a point source(s), concentrations in groundwater could potentially increase over time to levels of concern as groundwater plumes evolve, whereas if the atmosphere is the source, then groundwater concentrations would be expected to remain at low-level concentrations not exceeding those in equilibrium with atmospheric concentrations. This is the first analysis of VOC occurrence in shallow groundwater involving collocated atmosphere data.

  3. Surface acoustic wave sensors/gas chromatography; and Low quality natural gas sulfur removal and recovery CNG Claus sulfur recovery process

    SciTech Connect

    Klint, B.W.; Dale, P.R.; Stephenson, C.

    1997-12-01

    This topical report consists of the two titled projects. Surface Acoustic Wave/Gas Chromatography (SAW/GC) provides a cost-effective system for collecting real-time field screening data for characterization of vapor streams contaminated with volatile organic compounds (VOCs). The Model 4100 can be used in a field screening mode to produce chromatograms in 10 seconds. This capability will allow a project manager to make immediate decisions and to avoid the long delays and high costs associated with analysis by off-site analytical laboratories. The Model 4100 is currently under evaluation by the California Environmental Protection Agency Technology Certification Program. Initial certification focuses upon the following organics: cis-dichloroethylene, chloroform, carbon tetrachloride, trichlorethylene, tetrachloroethylene, tetrachloroethane, benzene, ethylbenzene, toluene, and o-xylene. In the second study the CNG Claus process is being evaluated for conversion and recovery of elemental sulfur from hydrogen sulfide, especially found in low quality natural gas. This report describes the design, construction and operation of a pilot scale plant built to demonstrate the technical feasibility of the integrated CNG Claus process.

  4. Metallurgical Laboratory Hazardous Waste Management Facility groundwater monitoring report

    SciTech Connect

    Thompson, C.Y.

    1993-03-01

    During fourth quarter 1992, samples from 18 groundwater monitoring wells of the AMB series at the Metallurgical Laboratory Hazardous Waste Management Facility were analyzed for certain heavy metals, indicator parameters, radionuclides, volatile organic compounds, and other constituents. Six parameters exceeded final Primary Drinking Water Standards (PDWS) and the Savannah River Site Flag 2 criteria during the quarter. The results for fourth quarter 1992 are fairly consistent with the rest of the year's data. Tetrachloroethylene exceeded the final PDWS in well AMB 4D only two of the four quarters; in the other three wells in which it was elevated, it was present at similar levels throughout the year. Trichloroethylene consistently exceeded its PDWS in wells AMB 4A, 4B, 4D, 5, and 7A during the year. Trichloroethylene was elevated in well AMB 6 only during third and fourth quarters and in well AMB 7 only during fourth quarter. Total alpha-emitting radium was above the final PDWS for total radium in well AMB 5 at similar levels throughout the year and exceeded the PDWS during one of the three quarters it was analyzed for (third quarter 1992) in well AMB 10B.

  5. Metallurgical Laboratory Hazardous Waste Management Facility groundwater monitoring report. Fourth quarter 1992 and 1992 summary

    SciTech Connect

    Thompson, C.Y.

    1993-03-01

    During fourth quarter 1992, samples from 18 groundwater monitoring wells of the AMB series at the Metallurgical Laboratory Hazardous Waste Management Facility were analyzed for certain heavy metals, indicator parameters, radionuclides, volatile organic compounds, and other constituents. Six parameters exceeded final Primary Drinking Water Standards (PDWS) and the Savannah River Site Flag 2 criteria during the quarter. The results for fourth quarter 1992 are fairly consistent with the rest of the year`s data. Tetrachloroethylene exceeded the final PDWS in well AMB 4D only two of the four quarters; in the other three wells in which it was elevated, it was present at similar levels throughout the year. Trichloroethylene consistently exceeded its PDWS in wells AMB 4A, 4B, 4D, 5, and 7A during the year. Trichloroethylene was elevated in well AMB 6 only during third and fourth quarters and in well AMB 7 only during fourth quarter. Total alpha-emitting radium was above the final PDWS for total radium in well AMB 5 at similar levels throughout the year and exceeded the PDWS during one of the three quarters it was analyzed for (third quarter 1992) in well AMB 10B.

  6. Metallurgical Laboratory Hazardous Waste Management Facility groundwater monitoring report. Fourth quarter 1993 and 1993 summary

    SciTech Connect

    Not Available

    1994-03-01

    The AMB wells at the Metallurgical Laboratory Hazardous Waste Management Facility (Met Lab HWMF) are monitored for selected constituents to comply with the Natural Resources Defense council et al. Consent Decree of May 1988 that identifies the Met Lab HWMF as subject to the Resource Conservation and Recovery Act. In addition, the wells are monitored, as requested, for other constituents as part of the Savannah River Site (SRS) Groundwater Monitoring Program. During the fourth quarter 1993, samples from AMB groundwater monitoring wells at the Metallurgical Laboratory Hazardous Waste Management Facility were analyzed for selected heavy metals, indicator parameters, radionuclides, volatile organic compounds, and other constituents. Six parameters exceeded standards during the quarter. As in previous quarters, dichloromethane (methylene chloride), tetrachloroethylene, and trichloroethylene exceeded final Primary Drinking Water Standards; pH, specific conductance, and total organic halogens exceeded the Savannah River Site Flag 2 criteria in one or more of the wells. Groundwater flow direction and rate in the water-table unit were similar to previous quarters.

  7. Characterization and simulation of fate and transport of selected volatile organic compounds in the vicinities of the Hadnot Point Industrial Area and landfill: Chapter A Supplement 6 in Analyses and historical reconstruction of groundwater flow, contaminant fate and transport, and distribution of drinking water within the service areas of the Hadnot Point and Holcomb Boulevard Water Treatment Plants and vicinities, U.S. Marine Corps Base Camp Lejeune, North Carolina

    USGS Publications Warehouse

    Jones, L. Elliott; Suárez-Soto, René J.; Anderson, Barbara A.; Maslia, Morris L.

    2013-01-01

    This supplement of Chapter A (Supplement 6) describes the reconstruction (i.e. simulation) of historical concentrations of tetrachloroethylene (PCE), trichloroethylene (TCE), and benzene3 in production wells supplying water to the Hadnot Base (USMCB) Camp Lejeune, North Carolina (Figure S6.1). A fate and transport model (i.e., MT3DMS [Zheng and Wang 1999]) was used to simulate contaminant migration from source locations through the groundwater system and to estimate mean contaminant concentrations in water withdrawn from water-supply wells in the vicinity of the Hadnot Point Industrial Area (HPIA) and the Hadnot Point landfill (HPLF) area.4 The reconstructed contaminant concentrations were subsequently input into a flow-weighted, materials mass balance (mixing) model (Masters 1998) to estimate monthly mean concentrations of the contaminant in finished water 5 at the HPWTP (Maslia et al. 2013). The calibrated fate and transport models described herein were based on and used groundwater velocities derived from groundwater-flow models that are described in Suárez-Soto et al. (2013). Information data pertinent to historical operations of water-supply wells are described in Sautner et al. (2013) and Telci et al. (2013).

  8. Final disposal of VOCs from industrial wastewaters

    SciTech Connect

    Ying, W.; Bonk, R.R.; Hannam, S.C. ); Qi-dong Li )

    1994-08-01

    Vapor phase carbon adsorption followed by spent carbon regeneration and catalytic oxidation were evaluated as methods for disposal of volatile organic compounds (VOCs) released from industrial wastewaters during treatment operations such as aeration, air-stripping and aerobic biodegradation. Adsorptive capacities and breakthrough characteristics for eight VOCs found in many hazardous landfill leachates and contaminated groundwater were compared for selection of the best adsorbent and optimum treatment conditions. Coconut shell-based activated carbons exhibited higher VOC loading capacities than coal-based carbons, fiber carbon, molecular sieve and zeolite. Steam and hot nitrogen were both effective for regeneration of the spent carbon. A small quantity of adsorbates left in the regenerated carbon did not result in immediate VOC breakthrough in the next cycle adsorption treatment. Catalytic oxidation was found to be an attractive alternative for VOC disposal. Using a new commercial catalyst developed for destruction of halogenated organic compounds, even stable VOCs such as trichloroethylene and tetrachloroethylene were completely destroyed at <350[degrees]C when oxidation was conducted at a space velocity of 17000/hr. 25 refs., 10 figs., 10 tabs.

  9. Note: A top-view optical approach for observing the coalescence of liquid drops

    NASA Astrophysics Data System (ADS)

    Wang, Luhai; Zhang, Guifu; Wu, Haiyi; Yang, Jiming; Zhu, Yujian

    2016-02-01

    We developed a new device that is capable of top-view optical examination of the coalescence of liquid drops. The device exhibits great potential for visualization, particularly for the early stage of liquid bridge expansion, owing to the use of a high-speed shadowgraph technique. The fluid densities of the two approaching drops and that of the ambient fluid are carefully selected to be negligibly different, which allows the size of the generated drops to be unlimitedly large in principle. The unique system design allows the point of coalescence between two drops to serve as an undisturbed optical pathway through which to image the coalescence process. The proposed technique extended the dimensionless initial finite radius of the liquid bridge to 0.001, in contrast to 0.01 obtained for conventional optical measurements. An examination of the growth of the bridge radius for a water and oil-tetrachloroethylene system provided results similar to Paulsen's power laws of the inertially limited viscous and inertial regimes. Furthermore, a miniscule shift in the center of the liquid bridge was detected at the point of crossover between the two regimes, which can be scarcely distinguished with conventional side-view techniques.

  10. Savannah River Site A/M Area Southern Sector Characterization Cone Penetrometer Report

    SciTech Connect

    Raabe, B.A.

    1993-05-01

    The Savannah River Site (SRS) is located in the Atlantic Coastal Plaingeologic province. This area is characterized by low relief, predominantly unconsolidated sediments of Cretaceous though Tertiary age. A multiple aquifer system underlies the A/M Area and affects the definition and distribution of a contaminant plume. The water table and uppermost confined aquifer (Steed Pond Aquifer) are contaminated with elevated concentrations of trichloroethylene(TCE) and tetrachloroethylene (PCE) and their associated compounds. The deeper aquifers in this area have less widely spread chlorinated hydrocarbon contamination.Cone penetrometer testing was selected as the method of investigation because it is minimally invasive, offers advanced technological capabilities in gathering lithologic data, and offers groundwater sampling capabilities. CPT testing utilizes a hydraulic push tool system. The probe collects real-time data that is processed by computer into soil/lithology classifications. The system can also be used to collect sediment and soil vapor samples although these features were not utilized during this project. Advantages of the CPT system include a small borehole diameter which minimizes cross-contamination of lithologic units, virtual elimination of drill cuttings and fluids that require disposal, collection of various types of undisturbed sediment and water samples and plotting of hydrostratigraphic and lithologic data while in the field.

  11. Health assessment for Welsh Road/Barkman Landfill, Honey Brook, Chester County, Pennsylvania, Region 3. CERCLIS No. PAD980829527. Preliminary report

    SciTech Connect

    Not Available

    1988-12-02

    The Welsh Road/Barkman Landfill site in Honey Brook, Pennsylvania was an unpermitted residential and commercial refuse disposal facility that operated from 1963 to sometime in the 1980s. After 1977, the landfill continued to operate in defiance of legal action to support a closure plan. Various investigations conducted in the 1980s revealed that industrial and hazardous waste had been accepted by the site. The environmental contamination on-site consists of copper, lead, 1,2-dichloropropane, toluene, chloroform and methylene chloride in drummed wastes; and mercury, toluene, dichlorofluoromethane, methylene chloride, trichlorofluoromethane, 5-methyl-2-hexanone, trichloroethylene, 1,2-dichloroethane, and 1,3,5-cycloheptatriene in groundwater. One time sampling indicated the presence of volatile compounds in air (hydrogen chloride and chloroform). The environmental contamination off-site consists of cadmium in sediment; and chloromethane, chloroform, xylenes, dichlorofluoromethane, 1,1-dichloroethane, tetrachloroethylene, p-cresol, toluene, methyl isobutyl ketone, di-n-butyl phthalate, lead, mercury, and zinc in residential well water. The site is considered to be of potential public health concern because of the risk to human health caused by the possibility of exposure to hazardous substances via contaminated groundwater, surface water, soil, sediment, and airborne gases, vapors, and particulate.

  12. Retrospective Cohort Study of a Microelectronics and Business Machine Facility

    PubMed Central

    Silver, Sharon R.; Pinkerton, Lynne E.; Fleming, Donald A.; Jones, James H.; Allee, Steven; Luo, Lian; Bertke, Stephen J.

    2015-01-01

    Objectives We examined health outcomes among 34,494 workers employed at a microelectronics and business machine facility 1969–2001. Methods Standardized mortality ratio (SMR) and standardized incidence ratios were used to evaluate health outcomes in the cohort and Cox regression modeling to evaluate relations between scores for occupational exposures and outcomes of a priori interest. Results Just over 17% of the cohort (5,966 people) had died through 2009. All cause, all cancer, and many cause-specific SMRs showed statistically significant deficits. In hourly males, SMRs were significantly elevated for non-Hodgkin’s lymphoma and rectal cancer. Salaried males had excess testicular cancer incidence. Pleural cancer and mesothelioma excesses were observed in workers hired before 1969, but no available records substantiate use of asbestos in manufacturing processes. A positive, statistically significant relation was observed between exposure scores for tetrachloroethylene and nervous system diseases. Conclusions Few significant exposure–outcome relations were observed, but risks from occupational exposures cannot be ruled out due to data limitations and the relative youth of the cohort. PMID:24375784

  13. Ground-water-quality data for Picatinny arsenal, New Jersey, 1958-85

    USGS Publications Warehouse

    Sargent, B.P.; Green, J.W.; Harte, P.T.; Vowinkel, E.F.

    1986-01-01

    The water resources of Picatinny Arsenal in northern New Jersey are described using the results of 1,129 analyses of groundwater , including 522 determinations of inorganic constituents and 607 determinations of organic constituents. Water samples were collected from 56 wells on the site from 1958 through 1985. Of these wells, 50 are screened in stratified drift aquifers and 6 are in bedrock. Samples were collected and analyzed by a total of four agencies: one State, one Federal, and two private. Of the 1,129 samples, 51 were collected and analyzed by the U.S. Geological Survey. The data on inorganic constituents exhibit much variability. Specific conductance ranges from 40 to 2,150 microsiemens per centimeter at 25 degrees C, pH ranges from 2.9 units to 10 units, and dissolved solids ranges from 51 to 1,210 milligrams per liter. Trace elements that display wide variations in concentration ranges are iron (<2 to 540,000 micrograms/L), manganese (<1 to 55,000 micrograms/L), and zinc (<3 to 1,900 micrograms/L). The organic compounds with the widest variations in concentration are: 1 ,2-transdichloroethylene (<1 to 542 micrograms/L), tetrachloroethylene (<1 to 386 micrograms/L), 1,1 ,1-trichloroethane (<1 to 1,780 micrograms/L), and trichloroethylene (<1 to 25,000 micrograms/L). (USGS)

  14. Chemical oxidation of volatile and semi-volatile organic compounds in soil

    SciTech Connect

    Gates, D.D.; Siegrist, R.L.; Cline, S.R.

    1995-06-01

    Subsurface contamination with fuel hydrocarbons or chlorinated hydrocarbons is prevalent throughout the Department of Energy (DOE) complex and in many sites managed by the Environmental Protection Agency (EPA) Superfund program. The most commonly reported chlorinated hydrocarbons (occurring > 50% of DOE contaminated sites) were trichloroethylene (TCE), 1, 1, 1,-trichloroethane (TCA), and tetrachloroethylene (PCE) with concentrations in the range of 0.2 {mu}g/kg to 12,000 mg/kg. The fuel hydrocarbons most frequently reported as being present at DOE sites include aromatic compounds and polyaromatic compounds such as phenanthrene, pyrene, and naphthalene. The primary sources of these semi-volatile organic compounds (SVOCs) are coal waste from coal fired electric power plants used at many of these facilities in the past and gasoline spills and leaks. Dense non-aqueous phase liquids (DNAPLs) can migrate within the subsurface for long periods of time along a variety of pathways including fractures, macropores, and micropores. Diffusion of contaminants in the non-aqueous, aqueous, and vapor phase can occur from the fractures and macropores into the matrix of fine-textured media. As a result of these contamination processes, removal of contaminants from the subsurface and the delivery of treatment agents into and throughout contaminated regions are often hindered, making rapid and extensive remediation difficult.

  15. A paired comparison between human skin and hairless guinea pig skin in vitro permeability and lag time measurements for 6 industrial chemicals.

    PubMed

    Frasch, H Frederick; Barbero, Ana M

    2009-01-01

    The purpose of the present study was to measure and compare permeability coefficients (k(p)) and lag times (tau) in human skin and hairless guinea pig (HGP) skin. Paired experiments employed heat-separated epidermal membranes from human and HGP sources mounted on static in vitro diffusion cells. Infinite-dose, saturated aqueous solutions of 6 industrial chemicals were used as donors: aniline, benzene, 1,2- dichloroethane, diethyl phthalate, naphthalene, and tetrachloroethylene. No significant differences were found between human and HGP skin for either k(p) or tau for any of these chemicals (p >or= .24). HGP vs. human k(p) measurements, and HGP vs. human tau measurements, were highly correlated. For k(p), the slope of the linear correlation was close to unity (1.080 +/- 0.182) and the intercept close to 0 (0.015 +/- 0. 029 cm/h), with a correlation coefficient (r(2)) = 0.898. For tau, the slope was also close to unity (0.818 +/- 0.030) and the intercept close to 0 (-0.014 +/- 0.023 h), with r(2) = 0.994. These results suggest that HGP skin may serve as an excellent surrogate for human skin in in vitro dermal penetration studies. PMID:19552540

  16. Seed germination and root elongation as indicators of exposure of wetland seedlings to metals

    SciTech Connect

    Sutton, H.D.; Stokes, S.L.; Hook, D.D.; Klaine, S.J.

    1995-12-31

    Wetland ecosystems have often been impacted by the addition of hazardous waste materials. Methods are needed to evaluate the effect of these substances on wetland ecosystems and the organisms within them. This study evaluates the response of various wetland plant species to representative contaminants (cadmium, nickel, atrazine, anthracene, and tetrachloroethylene). Species tested include Caphalanthus occidentalis (buttonbush), Saururus cernuus (lizard`s tail), Liquidambar styraciflua (sweetgum), Sparganium americanum (bur-reed), and Fraxinus pennsylvanica (green ash). To the authors` knowledge these species have rarely if ever been used in toxicological assays. The endpoints used are germination and root elongation. Preliminary studies using a petri dish system have shown decreased germination at the highest metal concentration (50mg/L) and decreased root elongation in the higher metal concentrations (10, 25, and 50mg/L). Interference from the carrier was observed in the organic tests. Root elongation studies using the metals are being continued using tubes with various sand and vermiculite mixes into which freshly germinated seeds are placed. Species with the best responses will be tested in the field at the Savannah River Site, SC, and also with fuel oil. Lettuce (Lactuca saliva) and radish (Raphanus sativus) are being tested alongside the wetland species as reference organisms for which tests are well established.

  17. Membrane-Extraction Ion Mobility Spectrometry for In-Situ Detection of Chlorinated Hydrocarbons in Water

    SciTech Connect

    Du, Yongzhai; Zhang, Wei; Whitten, William B; Li, Haiyang; Watson, David B; Xu, Jun

    2010-01-01

    Membrane-extraction ion mobility spectrometry (ME-IMS) has been developed for in-situ sampling and analysis of trace chlorinated hydrocarbons in water in a single procedure. The sampling is configured so that aqueous contaminants permeate through a spiral hollow polydimethylsiloxane (PDMS) membrane and are carried away by a vapor flow through the membrane tube. The extracted analyte flows into an atmospheric pressure chemical ionization (APCI) chamber and is analyzed in a home-made IMS analyzer. PDMS membrane is found to effectively extract chlorinated hydrocarbon solvents from liquid phase to vapor. The specialized IMS analyzer has been found to have resolutions of R=33 and 41, respectively, for negative- and positive-modes and is capable of detecting aqueous tetrachloroethylene (PCE) and trichloroethylene (TCE) as low as 80 g/L and 74 g/L in negative ion mode, respectively. The time-dependent characteristics of sampling and detection of TCE are both experimentally and theoretically studied for various concentrations, membrane lengths, and flow rates. These characteristics demonstrate that membrane-extraction IMS is feasible for the continuous monitoring of chlorinated hydrocarbons in water.

  18. A laboratory study of surfactant flushing of DNAPL in the presence of macroemulsion.

    PubMed

    Gupta, D K; Mohanty, K K

    2001-07-01

    Computed tomography (CT) monitored experiments are conducted in a three-dimensional water-saturated sandpack to evaluate the performance of a biodegradable surfactant (Glucopon-425N) in recovering a residually trapped dense nonaqueous phase liquid (DNAPL) tetrachloroethylene (PCE) from two sandpacks. Effects of flow rate, surfactant concentration, and pore size on the remediation process are evaluated. Axial variation in porosity of a sandpack has significant effect on the residual distribution of DNAPL in the sandpack and its subsequent recovery. DNAPL is recovered in two stages in general: mobilization followed by macroemulsion-solubilization. Mobilized DNAPL is recovered as a free-phase for all the experiments in the 30-mesh sandpack and only limited mobilization was observed in the 50-mesh sandpack. The dominant mechanism of recovery is macroemulsion flow (accounts for 46-86% of solubilized-emulsified PCE) in both the sands which leads to much higher PCE effluent concentration than the solubility limit as determined in batch solubilization studies. The effluent PCE concentration in the later stage depends on surfactant concentration but not on surfactant flow rate or pore size. PMID:11452618

  19. Microwave-swing adsorption to capture and recover vapors from air streams with activated carbon fiber cloth.

    PubMed

    Hashisho, Zaher; Rood, Mark; Botich, Leon

    2005-09-01

    Adsorption with regeneration is a desirable means to control the emissions of organic vapors such as hazardous air pollutants (HAPs) and volatile organic compounds (VOCs) from air streams as it allows for capture, recovery, and reuse of those VOCs/HAPS. Integration of activated-carbon fiber-cloth (ACFC) adsorbent with microwave regeneration provides promise as a new adsorption/ regeneration technology. This research investigates the feasibility of using microwaves to regenerate ACFC as part of a process for capture and recovery of organic vapors from gas streams. A bench-scale fixed-bed microwave-swing adsorption (MSA) system was built and tested for adsorption of water vapor, methyl ethyl ketone (MEK), and tetrachloroethylene (PERC) from an airstream and then recovery of those vapors with microwave regeneration. The electromagnetic heating behavior of dry and vapor-saturated ACFC was also characterized. The MSA system successfully adsorbed organic vapors from the airstreams, allowed for rapid regeneration of the ACFC cartridge, and recovered the water and organic vapors as liquids. PMID:16190249

  20. Dermal absorption of neat and aqueous volatile organic chemicals in the Fischer 344 rat. (Reannouncement with new availability information). Final report, July 1986-December 1990

    SciTech Connect

    Morgan, D.L.; Cooper, S.W.; Carlock, D.L.; Sykora, J.J.; Sutton, B.

    1991-12-31

    Quantification of dermal absorption of volatile organic chemicals (VOCs) from aqueous solutions is required to understand the potential health hazards resulting from skin exposure to these chemicals in contaminated water. Male Fischer 344 rats were dermally exposed to neat, one-third saturated, two-thirds saturated, or saturated aqueous solutions of 14 VOCs for 24 hr. Blood samples were obtained via indwelling jugular catheters during exposure and analyzed for the VOCs by gas chromatography using headspace analysis. Absorption of the neat VOCs in this series of chemicals decreased as water solubility decreased. Peak blood levels of VOCs attained during exposure for 24 hr to neat chemical were: 1,2-dichloroethane, bromochloromethane, chloroform, benzene, tetrachloroethylene, dibromomethane, trichloroethylene, toluene, xylene, hexane, ethylbenzene, styrene, carbon tetrachloride, and 1,1,1-trichloroethane. Blood levels of 1,2-dichloroethane and benzene continued to increase during the 24-hr exposure to neat chemical, while blood levels of 1,2-dichloroethane and benzene continued to increase during the 24 hr exposure to neat chemical, while blood levels of the other neat VOCs peaked within 4 hr and then either decreased or remained about the same for the duration of the exposure. Absorption of VOCs from one-third, two-thirds, or saturated aqueous solutions was rapid, and resulted in depletion of the chemical from the solution although only a small amount of water was absorbed. Blood levels of each VOC were directly related to the exposure concentrations.

  1. An experimental and numerical study of the thermal oxidation of carbon tetrachloride

    SciTech Connect

    Lou, J.C.; Chou, Z.H.

    1996-12-31

    Thermal decomposition of CCl{sub 4} was investigated at a high temperature under oxygen-rich, isothermal conditions. The temperature ranges from 400-1000 {degrees}C under the conditions of reaction time 2 seconds and an equivalence ratio 0.5. According to those results, CCl{sub 4} can destruct 99.99 percent at a temperature of 900 {degrees}C. Products obtained from thermal oxidation are carbon dioxide, chlorine and carbon monoxide. Tetrachloroethylene is observed as an intermediate in the oxidation process, being formed to an insignificant extent only between 600 {degrees}C and 850 {degrees}C. No carbon-chlorine bonds are left at 900 {degrees}C. A detailed mechanism describing oxidation of CCl{sub 4} is obtained and comparisons with experimental results are made. Moreover, sensitivity analysis is performed to identify major reaction equations by combining with a rate of production analysis for key species observed experimentally. 24 refs., 4 figs., 1 tab.

  2. Surface changes in well-casing pipe exposed to high concentrations of organics in aqueous solution. Special report

    SciTech Connect

    Taylor, S.; Parker, L.

    1990-03-01

    This preliminary study was undertaken to assess how the surface structural characteristics of four common well casing materials-polyvinyl chloride (PVC), Teflon (polytetrafluoroethylene, PTFE), stainless steel 304 (SS304) and stainless steel 316 (SS316)-are affected by exposure to an aqueous solution containing tetrachloroethylene, toluene, p-dichlorobenzene and 0-dichlorobenzene in concentrations near their solubility. Casing samples that had been exposed to a test solution for 1 week, 1 month and 6 months were examined with a scanning electron microscope (SEM) and compared with control samples placed in well water for an equivalent time period. Pieces of casing that had not been placed in any aqueous solution were also examined and are assumed to be representative of the initial structure of the casing's surface. These organics are of concern at hazardous waste sites, where they often occur in ground water. The observations indicate that the surface characteristics of PVC, SS316 and SS304 did not change when exposed to the organic aqueous solution. The surface variability and lack of distinguishing features at high magnification made it difficult to tell if the PTFE surface had changed. However, no obvious changes (swelling, pitting etc.) were seen.

  3. In situ treatability testing of reductive dechlorination in wetland sediments

    USGS Publications Warehouse

    Lorah, M.M.; Majcher, E.; Jones, E.; Driedger, G.; Dworatzek, S.; Graves, D.

    2005-01-01

    In situ treatability testing was conducted in the discharge wetlands along West Branch Canal Creek at Aberdeen Proving Ground, MD. The potential for stimulating reductive dechlorination of 1,1,2,2-tetrachloroethane, tetrachloroethylene, trichloroethylene, and carbon tetrachloride in areas of preferential discharge or seeps was evaluated. Geological Survey that degrades chlorinated ethanes and ethylenes was tested using MICRO-Trac??? devices. At seep 3-4W, results of the C and BA MICRO-Trac??? treatments showed essentially no biodegradation of chlorinated solvents occurring under natural and bioaugmented conditions. Results of geochemical samples at this site indicated predominantly iron- and sulfate-reducing conditions consistent with the rapid discharge rates previously measured. The biostimulated treatment showed stimulation of methanogenic conditions and partial degradation of the parent chlorinated VOC to intermediate chlorinated compounds. The bioaugmented and bistimulated treatment showed the highest production of methane, the highest removal of parent compounds and intermediate daughter products, and the highest production of the non-chlorinated end product ethylene. This is an abstract of a paper presented at the proceedings of the 8th International In Situ and On-Site Bioremediation Symposium (Baltimore, MD 6/6-9/2005).

  4. Sanitary Landfill 1991 annual groundwater monitoring report

    SciTech Connect

    Thompson, C.Y.; Norrell, G.T.; Bennett, C.B.

    1992-02-01

    The Savannah River Site (SRS) Sanitary Landfill is an approximately seventy acre site located just south of SRS Road C between the Savannah River Site`s B-Area and Upper Three Runs Creek. Results from the first through third quarter 1991 groundwater monitoring date continue to show evidence of elevated levels of several hazardous constituents beneath the Sanitary Landfill: tritium, vinyl chloride, total radium, cadmium, 1,1,1-trichloroethane, 1,2 dichloroethane, 1,4 dichlorobenzene, trichloroethylene (TCE), tetrachloroethylene, and 1,1 dichloroethylene in excess of the primary drinking water standards were observed in at least one well monitoring the Sanitary Landfill during the third quarter of 1991. All of these constituents, except radium, were observed in the lower half of the original thirty-two acre site or the southern expansion site. Trichloroethylene and vinyl chloride are the primary organic contaminants in groundwater beneath the Sanitary Landfill. Vinyl chloride has become the primary contaminant during 1991. Elevated levels of benzene were consistently detected in LFW 7 in the past, but were not present in any LFW wells during the third quarter of 1991. A minor tritium plume is present in the central part of original thirty-two acre landfill. Elevated levels of tritium above the PDWS were consistently present in LFW 10A through 1991. This well has exhibited elevated tritium activities since the second quarter of 1989. Contaminant concentrations in the Sanitary Landfill are presented and discussed in this report.

  5. Sanitary Landfill 1991 annual groundwater monitoring report

    SciTech Connect

    Thompson, C.Y.; Norrell, G.T.; Bennett, C.B.

    1992-02-01

    The Savannah River Site (SRS) Sanitary Landfill is an approximately seventy acre site located just south of SRS Road C between the Savannah River Site's B-Area and Upper Three Runs Creek. Results from the first through third quarter 1991 groundwater monitoring date continue to show evidence of elevated levels of several hazardous constituents beneath the Sanitary Landfill: tritium, vinyl chloride, total radium, cadmium, 1,1,1-trichloroethane, 1,2 dichloroethane, 1,4 dichlorobenzene, trichloroethylene (TCE), tetrachloroethylene, and 1,1 dichloroethylene in excess of the primary drinking water standards were observed in at least one well monitoring the Sanitary Landfill during the third quarter of 1991. All of these constituents, except radium, were observed in the lower half of the original thirty-two acre site or the southern expansion site. Trichloroethylene and vinyl chloride are the primary organic contaminants in groundwater beneath the Sanitary Landfill. Vinyl chloride has become the primary contaminant during 1991. Elevated levels of benzene were consistently detected in LFW 7 in the past, but were not present in any LFW wells during the third quarter of 1991. A minor tritium plume is present in the central part of original thirty-two acre landfill. Elevated levels of tritium above the PDWS were consistently present in LFW 10A through 1991. This well has exhibited elevated tritium activities since the second quarter of 1989. Contaminant concentrations in the Sanitary Landfill are presented and discussed in this report.

  6. Volatile chlorinated hydrocarbons in Antarctic superficial snow sampled during Italian ITASE expeditions.

    PubMed

    Zoccolillo, Lelio; Amendola, Luca; Cafaro, Claudia; Insogna, Susanna

    2007-05-01

    In order to detect the presence of some volatile chlorinated hydrocarbons (VCHCs) and to understand their transport and deposition mechanism, superficial snow was sampled during two Italian ITASE (International Trans Antarctic Scientific Expedition) expeditions: the first traverse was carried out in 1998/1999 from Terra Nova Bay to Dome Concordia; the second traverse was carried out in 2001/2002 through Adélie, George V, Oates and Northern Victoria Lands. Some VCHCs (chloroform; 1,1,1-trichloroethane; tetrachloromethane; 1,1,2-trichloroethylene; tetrachloroethylene) were analysed using a highly sensitive and selective hyphenated technique composed of a purge-and-trap injector coupled to a gas chromatograph with a mass spectrometric detector (PTI-GC-MS) operating in SIM mode. Investigated VCHCs were present in all analysed snow samples with concentration levels of several units, tens, or sometimes hundreds of ng kg(-1). VCHC snow concentration levels remained approximately constant with changing distance from the coast and the comparison between fresh and aged snow did not show any substantial differences; on the basis of this evidence marine aerosol and dry deposition may be rejected as principal VCHC transport and deposition mechanism hypotheses. VCHC concentration levels in Antarctic snow samples were comparable to or greater than those found in snow from temperate zones. PMID:17287006

  7. Effects of Hydrogeologic Conditions on Groundwater Contamination of CVOCs in the North Coast Karst Aquifer of Puerto Rico

    NASA Astrophysics Data System (ADS)

    Torres Torres, N. I.; Howard, J.; Padilla, I. Y.; Torres, P.; Cotto, I.; Irizarry, C.

    2012-12-01

    The karst system of northern Puerto Rico is the most productive aquifer of the island. It serves freshwater to industrial, domestic and agricultural purposes, and contributes to the ecological integrity of the region. The same characteristics that make this a highly productive aquifer, make it vulnerable to contamination of groundwater. Of particular importance is contamination with chlorinated volatile organic compounds (CVOCs), which have been related to preterm birth problems. A great extent of CVOC contamination has been seen in the North Coast of Puerto Rico since the 1970s. The main purposes of this study are (1) to relate the water quality of wells and springs with the hydrogeological conditions in the north coast limestone aquifer of Puerto Rico, and (2) to make a statistical analysis of the historical groundwater contamination in that area. To achieve these objectives, groundwater samples are collected from wells and springs during dry and wet seasons. Results show that trichloroethylene (TCE), tetrachloroethylene (PCE) and chloroform (TCM) are frequently detected in groundwater samples. A greater detection of CVOCs is detected during the wet season than the dry season. This is attributed to a greater capacity to flush stored contaminants during the wet season. Historical analysis of contamination in the north coast of Puerto Rico shows a high capacity of the aquifer to store and release contaminants. Future work will be focused the statistical analysis of the historical groundwater contamination data to understand the behavior of the contaminants in different hydrologic conditions.

  8. Mechanism of alternating copolymerization of methyl methacrylate with styrene in the presence of diethylaluminum chloride

    SciTech Connect

    Zubov, V.P.; Lachinov, M.B.; Ignatova, E.V.; Georgiev, G.S.; Golubev, V.B.; Kabanov, V.A.

    1982-03-01

    A kinetic study of the propagation mechanism of the alternating copolymerization of styrene (St) with methyl methacrylate (MMA) in the presence of a complexing agent (diethylaluminum chloride, DEAC) in bulk and in tetrachloroethylene solutions at a molar ratio DEAC/MMA = 0.5 has been carried out. It has been shown that the copolymerization is a chain radical process characterized by a short active-center lifetime, bimolecular termination, and high rate of chain transfer to the complexed MMA. A kinetic scheme has been proposed for the propagation mechanism of alternating copolymerization in the presence of a complexing agent not requiring independent measurements of the equilibrium constant of complexation. It has been found that spontaneous and uv-initiated copolymerizations in the system have different mechanisms of initiation and a common mechanism of propagation. The propagation proceeds by addition of single monomers as well as donor-acceptor complexes of the comonomers to the propagation radicals, with the first mechanism being predominant. Inclusion of the monomers in the complex leads to an increase of the St reactivity and to a decrease of the MMA reactivity in propagation to the corresponding macroradicals in comparison with the reactivity of the free monomers. A number of kinetic and statistical parameters of the propagation reaction have been calculated.

  9. Comparison of capillary pressure relationships of organic liquid water systems containing an organic acid or base

    NASA Astrophysics Data System (ADS)

    Lord, D. L.; Demond, A. H.; Hayes, K. F.

    2005-04-01

    The presence of surface-active solutes such as organic acids and bases may have a profound influence on the transport of organic liquid contaminants through their impact on the constitutive relationship of capillary pressure vs. saturation. This relationship is a function of the interfacial tension and wettability of the system, which, in turn, depend on the pH and the concentration of organic acids and bases that are present. This study examines the impact of pH and the concentration on the interfacial tension, contact angle, and capillary pressure of systems consisting of tetrachloroethylene, water, and quartz containing either octanoic acid or dodecylamine. In general, the ionic form of the solute tended to remain in the aqueous phase and reduced the capillary pressure through its impact on the interfacial tension and contact angle; on the other hand, the neutral form of the solute partitioned into the organic liquid phase and had a lesser impact on the capillary pressure for the same total mass of solute. A comparison of these data with data generated in previous research in similar systems where o-xylene was the organic liquid showed that the trends are analogous. Thus, the behavior of these two solvent systems seems to be driven primarily by the aqueous phase speciation of the solute, and the differences between the capillary pressure relationships for the two systems could be attributed to the pure system interfacial tension.

  10. Groundwater quality assessment/corrective action feasibility plan. Savannah River Laboratory Seepage Basins

    SciTech Connect

    Stejskal, G.F.

    1989-11-15

    The Savannah River Laboratory (SRL) Seepage Basins are located in the northeastern section of the 700 Area at the Savannah River Site. Currently the four basins are out of service and are awaiting closure in accordance with the Consent Decree settled under Civil Act No. 1:85-2583. Groundwater monitoring data from the detection monitoring network around the SRL Basins was recently analyzed using South Carolina Hazardous Waste Management Regulations R.61-79.264.92 methods to determine if groundwater in the immediate vicinity of the SRL Basins had been impacted. Results from the data analysis indicate that the groundwater has been impacted by both volatile organic constituents (VOCs) and inorganic constituents. The VOCs, specifically trichloroethylene and tetrachloroethylene, are currently being addressed under the auspices of the SRS Hazardous Waste Permit Application (Volume III, Section J.6.3). The impacts resulting from elevated levels of inorganic constituent, such as barium, calcium, and zinc in the water table, do not pose a threat to human health and the environment. In order to determine if vertical migration of the inorganic constituents has occurred three detection monitoring wells are proposed for installation in the upper portion of the Congaree Aquifer.

  11. Groundwater quality assessment/corrective action feasibility plan

    SciTech Connect

    Stejskal, G.F.

    1989-11-15

    The Savannah River Laboratory (SRL) Seepage Basins are located in the northeastern section of the 700 Area at the Savannah River Site. Currently the four basins are out of service and are awaiting closure in accordance with the Consent Decree settled under Civil Act No. 1:85-2583. Groundwater monitoring data from the detection monitoring network around the SRL Basins was recently analyzed using South Carolina Hazardous Waste Management Regulations R.61-79.264.92 methods to determine if groundwater in the immediate vicinity of the SRL Basins had been impacted. Results from the data analysis indicate that the groundwater has been impacted by both volatile organic constituents (VOCs) and inorganic constituents. The VOCs, specifically trichloroethylene and tetrachloroethylene, are currently being addressed under the auspices of the SRS Hazardous Waste Permit Application (Volume III, Section J.6.3). The impacts resulting from elevated levels of inorganic constituent, such as barium, calcium, and zinc in the water table, do not pose a threat to human health and the environment. In order to determine if vertical migration of the inorganic constituents has occurred three detection monitoring wells are proposed for installation in the upper portion of the Congaree Aquifer.

  12. Sanitary landfill groundwater monitoring report. Fourth quarter 1996 and 1996 summary

    SciTech Connect

    1997-02-01

    A maximum of eighty-nine wells of the LFW series monitor groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill at the Savannah River Site (SRS). These wells are sampled quarterly to comply with the South Carolina Department of Health and Environmental Control Domestic Waste Permit DWP-087A and as part of the SRS Groundwater Monitoring Program. Dichloromethane, a common laboratory contaminant, and chloroethene (vinyl chloride) were the most widespread constituents exceeding standards during 1996. Benzene, trichloroethylene, 1,4-dichlorobenzene, 1,1-dichloroethylene, lead (total recoverable), gross alpha, mercury (total recoverable), tetrachloroethylene, fluoride, thallium, radium-226, radium-228, and tritium also exceeded standards in one or more wells. The groundwater flow direction in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill was to the southeast (universal transverse Mercator coordinates). The flow rate in this unit was approximately 141 ft/year during first quarter 1996 and 132 ft/year during fourth quarter 1996

  13. Mixed Waste Management Facility groundwater monitoring report: Third quarter 1994

    SciTech Connect

    Not Available

    1994-12-01

    Currently, 125 wells monitor groundwater quality in the uppermost aquifer beneath the Mixed Waste Management Facility (MWMF) at the Savannah River Site. Samples from the wells are analyzed for selected heavy metals, herbicides/pesticides, indicator parameters, radionuclides, volatile organic compounds, and other constituents. As in previous quarters, tritium and trichloroethylene were the most widespread elevated constituents during third quarter 1994. Sixty-four (51%) of the 125 monitoring wells contained elevated tritium activities. Trichloroethylene concentrations exceeded the final PDWS in 22 (18%) wells. Chloroethene, 1,1-dichloroethylene, and tetrachloroethylene, elevated in one or more wells during third quarter 1994, also occurred in elevated levels during second quarter 1994. These constituents generally were elevated in the same wells during both quarters. Gross alpha, which was elevated in only one well during second quarter 1994, was elevated again during third quarter. Mercury, which was elevated during first quarter 1994, was elevated again in one well. Dichloromethane was elevated in two wells for the first time in several quarters.

  14. Elimination kinetics of volatile organics in humans using breath measurements

    SciTech Connect

    Pellizzari, E.D.; Wallace, L.A.; Gordon, S.M. )

    1992-07-01

    During the past decade significant strides have been made toward understanding the sources and factors which lead to volatile organic chemical (VOC) exposure in the general population. Less is known, however, about the impact of low-level environmental exposure on human health. Investigations are underway in a number of laboratories in an effort to determine the uptake, distribution, metabolism, and elimination kinetics for VOCs in humans. We examined the elimination kinetics for the third phase for ten VOCs--1,1,-trichloroethane, trichloroethylene, tetrachloroethylene, benzene, toluene, m,p-xylenes, o-xylene, ethylbenzene, p-dichlorobenzene, and limonene--in human subjects. Subjects were exposed to a variety of common consumer products and breath samples were collected post-exposure while the subjects spent up to 10 hr in a clean air environment. VOCs from breath samples were collected into canisters or onto Tenax GC cartridges and analyzed by gas chromatography-mass spectrometry. Exponential modeling of the decay data was performed to obtain kinetic parameters. The half-lives for trichloroethylene and 1,1,1-trichloroethane were approximately 5 to 8 hr for the four subjects. In general, the magnitude and range of variability was larger for toluene, limonene, and p-dichlorobenzene than for the other VOCs; the elimination rate spanning a few hours to a day or two. Thus, VOCs exhibit relatively short residence times in the body relative to other halo-carbons, such as polychlorinated biphenyls and dioxins.

  15. Vibrational analysis and structural implications of H-bonding in isolated and aggregated 2-amino-1-propanol: a study by MI-IR and Raman spectroscopy and molecular orbital calculations

    NASA Astrophysics Data System (ADS)

    Fausto, R.; Cacela, C.; Duarte, M. L.

    2000-09-01

    Isolated 2-amino-1-propanol ( 2AP) was studied by matrix-isolation infrared spectroscopy (MI-IR) in Ar and Kr and ab initio 6-31G ? calculations undertaken at the HF-SCF and MP2 levels of theory. For the first time, five different conformational states of 2AP could be experimentally observed, which could be correlated with the most stable forms predicted by the calculations. The first and second lowest energy forms correspond to conformers which exhibit a considerably strong intramolecular OH⋯N hydrogen bond (g'Gg' and gG'g), while the less abundant forms observed in the matrices (gGg', gGt and g'G'g) are characterized by having a weak intramolecular NH⋯O or OH⋯N bond. These results were reinforced by infrared solution studies of the compound in tetrachloromethane and tetrachloroethylene. The experimental data obtained for the pure liquid, where OH⋯N intermolecular hydrogen bonding dominates, indicate that the preferred conformation of the monomeric unit within the aggregates is similar to conformer gGt.

  16. F-Area seepage basins, groundwater quality assessment report, first quarter 1990

    SciTech Connect

    Not Available

    1990-06-01

    During the first quarter of 1990, wells which make up the F-Area Seepage Basins (F-HWMF) monitoring network were sampled. Laboratory analyses were performed to measure levels of hazardous constituents, indicator parameters, tritium, gross alpha, and nonvolatile beta. The primary contaminants observed at wells monitoring the F-Area Seepage Basins are tritium, nitrate, cadmium, lead, total radium, gross alpha, and nonvolatile beta. Concentrations of at least one of the following constituents: tritium, nitrate, total radium, gross alpha, cadmium, lead, tetrachloroethylene, nonvolatile beta, endrin, lindane, barium, fluoride, mercury, and trichlorethylene in excess of the primary drinking water standard (PDWS) were observed in at least one well monitoring the F-Area Seepage Basins. Tritium concentrations above the PDWS occur in forty-four of the fifty-nine (75%) groundwater monitoring wells. Nitrate concentrations above the PDWS occur in thirty-four of the fifty-nine (59%) groundwater wells. The radionuclides, total radium, gross alpha, and nonvolatile beta, exceed the PDWS is over twenty-five percent of the groundwater wells. Heavy metals, cadmium and lead in particular, exceed the PDWS in over twelve percent of the wells. Since 1987, tritium and nitrate concentrations have been steadily declining in a majority of the wells. However, tritium concentrations, from fourth quarter 1989 to first quarter 1990, have increased.

  17. Relation between land use and ground-water quality in the upper glacial aquifer in Nassau and Suffolk Counties, Long Island, New York

    USGS Publications Warehouse

    Eckhardt, D.A.; Flipse, W.J., Jr.; Oaksford, E.T.

    1989-01-01

    The chemical quality of groundwater in the upper glacial (water-table) aquifer beneath the 10 types of land-use areas of Nassau and Suffolk Counties, NY was examined to evaluate the effect of human activities on groundwater. The highest median chloride and total dissolved-solids concentrations were found in wells in high-density residential areas (more than five dwellings/acre), and the highest median nitrate, sulfate, and calcium concentrations were found in wells in agricultural and high density residential areas. Relatively low median concentrations of inorganic chemical constituents were found in wells in undeveloped and low-density residential areas (1 or fewer/acre): volatile organic compounds were rarely detected in these same areas. The highest concentrations and most frequent detection of volatile organic compounds were in industrial and commercial areas. The most commonly detected volatile organic compounds were 1,1,1-trichloroethane (24% of wells), tetrachloroethylene (20%), trichloroethylene (18%), chloroform (9%), and 1,2-dichloroethylene (5%). The spatial distributions of trichloroethylene, chloroform and other volatile organic compounds in the upper glacial aquifer are directly correlated with population density in the two-county area. (USGS)

  18. Test plan for Geo-Cleanse{reg_sign} demonstration (in situ destruction of dense non-aqueous phase liquid (DNAPL))

    SciTech Connect

    Jerome, K.M.; Looney, B.B.; Accorsi, F.; Dingens, M.; Wilson, J.T.

    1996-09-01

    Soils and groundwater beneath an abandoned process sewer line in the A/M Area of the Savannah River Site (SRS) contain elevated levels of volatile organic compounds, specifically trichloroethylene (TCE) and tetrachloroethylene (PCE), two common chlorinated solvents. These compounds have low aqueous solubilities, thus when released to the subsurface in sufficient quantity, tend to exist as immiscible fluids or nonaqueous phase liquids (NAPLs). Because chlorinated solvents are also denser than water, they are referred to by the acronym DNAPLs, or dense non-aqueous phase liquids. Technologies targeted at the efficient characterization or removal of DNAPL are not currently proven. For example, most DNAPL studies rely on traditional soil and water sampling and the fortuitous observation of immiscible solvent. Once DNAPL is identified, soil excavation (which is only applicable to small contained spill sites) is the only proven cleanup method. New cleanup approaches based on destruction of DNAPL either in situ or ex situ have been proposed and tested at the pilot scale. The proposed demonstration, as described in this report will evaluate the applicability to DNAPL plumes of a technology proven for in situ destruction of light non-aqueous phase liquids (LNAPLs) such as oils.

  19. An evaluation of employee exposure to volatile organic compounds in three photocopy centers.

    PubMed

    Stefaniak, A B; Breysse, P N; Murray, M P; Rooney, B C; Schaefer, J

    2000-06-01

    Personal and area samples from three copy centres were collected in thermal desorption tubes and analyzed using gas chromatography-mass spectrometry. Real-time personal total volatile organic compounds (TVOC) were measured using a data-logging photoionization detector. Fifty-four different VOCs were detected in the area samples. The maximum concentration measured was 1132.0 ppb (toluene, copy center 3, day 1). Thirty-eight VOCs were detected in the personal samples and concentrations ranged from 0.1 ppb (1,1-biphenyl, p-dichlorobenzene, propylbenzene, styrene, and tetrachloroethylene) to 689.6 ppb (toluene). Real-time TVOC measurements indicated daily fluctuations in exposure, ranging from <71 to 21,300 ppb. The time-weighted average exposures for the photocopier operators on days 1 and 2 were 235 and 266 ppb and 6155 and 3683 ppb, in copy centers 2 and 3, respectively. Personal exposure measurements of individual VOCs were below accepted occupational standards and guidelines. For example, the maximum concentration was 0.3% of the permissible exposure limits (toluene, copy center 3). Exposures were highest in copy center 3; this is likely due to the presence of offset printing presses. It is concluded that photocopiers contribute a wide variety of VOCs to the indoor air of photocopy centers; however, exposures are at least 100 times below established standards. PMID:10856189

  20. Biotransformation of chlorinated aliphatic solvents in the presence of aromatic compounds under methanogenic conditions

    SciTech Connect

    Liang, L.N.; Grbic-Galic, D. . Dept. of Civil Engineering)

    1993-08-01

    Transformation of carbon tetrachloride (CT) and tetrachloroethylene (PCE) was studied under methanogenic conditions, in the presence or absence of toluene, ethylbenzene, phenol, and benzoate. Microbial inoculate for the experiments were derived from three groundwater aquifers contaminated by jet fuel or creosote. CT and PCE were reductively dechlorinated in all the examined castes (CT to chloroform [CF]; PCE to trichloroethylene [TCE], trans-1,2-dichloroethylene [DCE], and vinyl chloride [VC]). In the aquifer microcosms, the electron donors used for the reductive transformations were most likely the unidentified organic compounds present on aquifer solids, or storage materials in microorganisms. Alternatively, molecular hydrogen from the anaerobic incubator atmosphere could have been used. The addition of benzoate caused a decrease in rates of dechlorination if benzoate was transformed. Phenol and ethylbenzene were not degraded and did not influence the transformation of CT or PCE. Toluene, in most of the studied cases, had no influence on reductive dechlorination of either CT or PCE. Only in microcosms derived from a JP-4 jet fuel-contaminated aquifer did the anaerobic degradation of toluene occur simultaneously with reductive dechlorination of PCE, suggesting that toluene might possibly have been used as an electron donor for reductive transformation of chlorinated solvents.

  1. Complete degradation of polychlorinated hydrocarbons by a two-stage biofilm reactor

    SciTech Connect

    Fathepure, B.Z. ); Vogel, T.M. )

    1991-12-01

    A two-stage anaerobic-aerobic biofilm reactor successfully degraded a mixture of chlorinated organic compounds to water-soluble metabolic intermediates and carbon dioxide. Reductive dechlorination of hexachlorobenzene (HCB), tetrachloroethylene (PCE), and chloroform (CF) occurred on all tested primary carbon sources such as glucose, methanol, and acetate. However, the extent of dechlorination was maximum when the anaerobic biofilm column was fed acetate as a primary carbon source. HCB, PCE, and CF were dechlorinated to the levels of tri- and dichlorinated products (99, 80, and 32%, respectively) with acetate in the feed. This is important, since these less-chlorinated compounds can be metabolized by the aerobic biofilm. The effluent from the anaerobic biofilm column was fed directly into the aerobic column. After both columns, the total amount transformed into nonvolatile intermediates and carbon dioxide was 94, 96, and 83% for ({sup 14}C)HCB, ({sup 14}C)trichloroethylene, and ({sup 14}C)CF, respectively. This research shows the potential application of this novel two-stage bioreactor system for treating groundwaters and industrial effluents composed of highly chlorinated aliphatic and aromatic hydrocarbons.

  2. Chemical Degradation of Dichloroethylenes by Pyrite

    NASA Astrophysics Data System (ADS)

    Hara, Junko; Inoue, Chihiro; Chida, Tadashi; Komai, Takeshi

    2006-05-01

    Chlorinated ethylenes have been recognized for their environmental persistence and risk. Main initial environmental contaminants are tetrachloroethylene and trichloroethylene but dichloroethylenes persist as a by-product of them, because the dechlorination rate of dichloroethylenes is inferior to initial chemicals in general chemical degradation or bioremediation. They protract the absolute remediation of soil and groundwater. This paper describes the dechlorination ability of pyrite, which can degradate the dichloroethylenes at the grater than or equal to the rate of tetra- or tri- chlorothylenes. In our previous research, the chemical reductive ability of natural sulfide for trichloroethylene was clarified and the reaction process differs completely from that with transitional metals. As same as the reaction of trichloroethylene with sulfide, the dichloroethylenes are entirely dechlorinated and change into to non-contaminated hydrocarbone or sulfur compounds. These reaction products adsorb on hydrophobic pyrite surface in this system. The chemical dechlorination is caused by electron sourced from the dissolution of pyrite at normal temperature and pressure condition. The remediation is easy to proceed in the natural environment.

  3. Sewer Gas: An Indoor Air Source of PCE to Consider During Vapor Intrusion Investigations

    PubMed Central

    Pennell, Kelly G.; Scammell, Madeleine Kangsen; McClean, Michael D.; Ames, Jennifer; Weldon, Brittany; Friguglietti, Leigh; Suuberg, Eric M.; Shen, Rui; Indeglia, Paul A.; Heiger-Bernays, Wendy J.

    2013-01-01

    The United States Environmental Protection Agency (USEPA) is finalizing its vapor intrusion guidelines. One of the important issues related to vapor intrusion is background concentrations of volatile organic chemicals (VOCs) in indoor air, typically attributed to consumer products and building materials. Background concentrations can exist even in the absence of vapor intrusion and are an important consideration when conducting site assessments. In addition, the development of accurate conceptual models that depict pathways for vapor entry into buildings is important during vapor intrusion site assessments. Sewer gas, either as a contributor to background concentrations or as part of the site conceptual model, is not routinely evaluated during vapor intrusion site assessments. The research described herein identifies an instance where vapors emanating directly from a sanitary sewer pipe within a residence were determined to be a source of tetrachloroethylene (PCE) detected in indoor air. Concentrations of PCE in the bathroom range from 2.1 to 190 ug/m3 and exceed typical indoor air concentrations by orders of magnitude resulting in human health risk classified as an “Imminent Hazard” condition. The results suggest that infiltration of sewer gas resulted in PCE concentrations in indoor air that were nearly two-orders of magnitude higher as compared to when infiltration of sewer gas was not known to be occurring. This previously understudied pathway whereby sewers serve as sources of PCE (and potentially other VOC) vapors is highlighted. Implications for vapor intrusion investigations are also discussed. PMID:23950637

  4. Photochemical pollution at two southern California smog receptor sites

    SciTech Connect

    Grosjean, D.; Williams, E.L. II. )

    1992-06-01

    A one-year survey of air quality has been carried out at two southern California inland locations, Perris and Palm Springs to evaluate transport of photochemical smog from the Los Angeles area and to assess population exposure to toxic air pollutants in the Coachella Valley and eastern Riverside County. Air pollutants measured included formaldehyde, acetaldehyde, nitric acid, and peroxyacetyl nitrate (PAN). Acetic acid was also measured as part of the time-integrated method employed to measure PAN. In addition, intensive studies were carried out at both locations and included measurements of aldehydes, nitric acid, PAN, peroxypropionyl nitrate (PPN), methylchloroform and tetrachloroethylene. Maximum concentrations of HCHO, CH{sub 3}CHO, HNO{sub 3}, PAN, PPN, CH{sub 3}COOH and C{sub 2}Cl{sub 4} were 26, 21, 4.5, 7.6, 0.42, 6.6 and 0.29 ppb in Palm Springs and 15, 30, 6.3, 9.1, 0.73, 7.8 and 0.43 ppb in Perris. Pollutant concentrations measured in Palm Springs and Perris are compared to those measured in the Los Angeles area, and are discussed in terms of formation and removal during transport.

  5. Modeling DNAPL Migration and Persistence: Twenty Years of Progress and Challenges for the Future

    NASA Astrophysics Data System (ADS)

    Abriola, L. M.

    2001-12-01

    It is now widely recognized that conventional pump-and-treat technologies are often an inefficient and ineffective approach for the remediation of aquifers contaminated by nonaqueous phase organic liquids (NAPLs). Of particular concern are dense NAPLs (DNAPLs) of low solubility, such as chlorinated solvents, that can migrate along tortuous flow paths deep into a formation and pool in relatively inaccessible locations. Capillary entrapped residuals and pools of DNAPL may then serve as persistent sources of contamination to flowing groundwater. The mechanisms of DNAPL migration and persistence were first introduced in the hydrology literature in the early 1980's, and the last fifteen years have seen extensive development of multiphase flow and transport models for applications to DNAPL contamination and remediation scenarios. This presentation provides an overview of research focused on the development and application of these models. An historical perspective is provided for the parallel evolution of conceptual models and numerical simulators. The capabilities of state-of-the-art simulators are then illustrated through a series of comparisons of model predictions with laboratory and field observations of tetrachloroethylene (PCE) infiltration and recovery. Model/experimental comparisons highlight the importance of accounting for rate-limited solubilization, buoyancy forces, and chemical/physical heterogeneity in predictions of PCE migration and remediation. Example simulations reveal the extreme sensitivity of model predictions to grid resolution and subsurface heterogeneity, and point to the need for further conceptual and computational advances.

  6. Research to Support the Determination of Spacecraft Maximum Acceptable Concentrations of Potential Atmospheric Contaminants

    NASA Technical Reports Server (NTRS)

    Orr, John L.

    1997-01-01

    In many ways, the typical approach to the handling of bibliographic material for generating review articles and similar manuscripts has changed little since the use of xerographic reproduction has become widespread. The basic approach is to collect reprints of the relevant material and place it in folders or stacks based on its dominant content. As the amount of information available increases with the passage of time, the viability of this mechanical approach to bibliographic management decreases. The personal computer revolution has changed the way we deal with many familiar tasks. For example, word processing on personal computers has supplanted the typewriter for many applications. Similarly, spreadsheets have not only replaced many routine uses of calculators but have also made possible new applications because the cost of calculation is extremely low. Objective The objective of this research was to use personal computer bibliographic software technology to support the determination of spacecraft maximum acceptable concentration (SMAC) values. Specific Aims The specific aims were to produce draft SMAC documents for hydrogen sulfide and tetrachloroethylene taking maximum advantage of the bibliographic software.

  7. [Trends of the biological monitoring measurements from 1991 to 1995].

    PubMed

    Kawamoto, T; Ohara, A

    1998-09-01

    Partial amendments to the Japanese Regulation on the Prevention of Lead Poisoning and that of Organic Solvent Poisoning were made in 1989. As a result, the measurement of blood lead and urinary delta-aminolevulinic acid (delta-ALA) became indispensable items of the occupational health examination for workers who handle lead. Also, the measurement of urinary metabolites of workers who handle eight kinds of organic solvents (xylene, N,N-dimethylformamide, styrene, tetrachloroethylene, 1,1,1-trichloroethane, trichloroethylene, toluene, and normal-hexane) became mandatory. The results of the biological monitoring mentioned above are classified into one of three categories, that is, distribution 1, 2 and 3, according to the concentration of the determinants. In this paper, the incidence of distribution 1, 2 and 3 of each determinant is reported and its change from 1991 to 1995 is discussed. The incidence of distribution 3 was 0.1-5.0% in each determinant. Although the ratio of distribution 1, 2 and 3 seems to have been almost the same for 5 years some determinants decreased their percentage of distribution 3. It is important to utilize the biological monitoring results for the improvement of working environments and working styles, and health management. PMID:9760707

  8. Replacement Technologies for Precision Cleaning of Aerospace Hardware for Propellant Service

    NASA Technical Reports Server (NTRS)

    Beeson, Harold; Kirsch, Mike; Hornung, Steven; Biesinger, Paul

    1997-01-01

    The NASA White Sands Test Facility (WSTF) is developing cleaning and verification processes to replace currently used chlorofluorocarbon-l13- (CFC-113-) based processes. The processes being evaluated include both aqueous- and solvent-based techniques. Replacement technologies are being investigated for aerospace hardware and for gauges and instrumentation. This paper includes the findings of investigations of aqueous cleaning and verification of aerospace hardware using known contaminants, such as hydraulic fluid and commonly used oils. The results correlate nonvolatile residue with CFC 113. The studies also include enhancements to aqueous sampling for organic and particulate contamination. Although aqueous alternatives have been identified for several processes, a need still exists for nonaqueous solvent cleaning, such as the cleaning and cleanliness verification of gauges used for oxygen service. The cleaning effectiveness of tetrachloroethylene (PCE), trichloroethylene (TCE), ethanol, hydrochlorofluorocarbon 225 (HCFC 225), HCFC 141b, HFE 7100(R), and Vertrel MCA(R) was evaluated using aerospace gauges and precision instruments and then compared to the cleaning effectiveness of CFC 113. Solvents considered for use in oxygen systems were also tested for oxygen compatibility using high-pressure oxygen autogenous ignition and liquid oxygen mechanical impact testing.

  9. Inverse gas chromatography applied in the surface properties evaluation of mesocellular silica foams modified by sized nickel nanoparticles.

    PubMed

    Qian, Linping; Lv, Ximeng; Ren, Yu; Wang, Haitao; Chen, Guoping; Wang, Yuanli; Shen, Jianzhong

    2013-12-27

    The mesocellular silica foams (MCF) modified by different sized Ni nanoparticles (?27.4nm) were prepared through the wetness impregnation of low metal content (0.5-2.0wt%). The technology of inverse gas chromatography (IGC) was used to evaluate the size effect of Ni nanoparticles on the surface property of Ni/MCF and the probes of four n-alkanes (C6-C9), cyclohexane, benzene, toluene, trichloroethylene, and tetrachloroethylene were tested in the 463.2-493.2K temperature range. High free energy of adsorption and enthalpy of adsorption for the aromatic hydrocarbons were found over 1.0wt% Ni/MCF with small nanoparticles of ca. 5nm. The dispersive interaction parameter ?S(D), and specific interaction parameter I(sp) increase with Ni nanoparticle size decreasing over Ni/MCF. The results indicate that Ni species highly dispersed on MCF support significantly promote the surface property of the specific interaction with the aromatic structure. PMID:24267318

  10. Retinal and visual system: occupational and environmental toxicology.

    PubMed

    Fox, Donald A

    2015-01-01

    Occupational chemical exposure often results in sensory systems alterations that occur without other clinical signs or symptoms. Approximately 3000 chemicals are toxic to the retina and central visual system. Their dysfunction can have immediate, long-term, and delayed effects on mental health, physical health, and performance and lead to increased occupational injuries. The aims of this chapter are fourfold. First, provide references on retinal/visual system structure, function, and assessment techniques. Second, discuss the retinal features that make it especially vulnerable to toxic chemicals. Third, review the clinical and corresponding experimental data regarding retinal/visual system deficits produced by occupational toxicants: organic solvents (carbon disulfide, trichloroethylene, tetrachloroethylene, styrene, toluene, and mixtures) and metals (inorganic lead, methyl mercury, and mercury vapor). Fourth, discuss occupational and environmental toxicants as risk factors for late-onset retinal diseases and degeneration. Overall, the toxicants altered color vision, rod- and/or cone-mediated electroretinograms, visual fields, spatial contrast sensitivity, and/or retinal thickness. The findings elucidate the importance of conducting multimodal noninvasive clinical, electrophysiologic, imaging and vision testing to monitor toxicant-exposed workers for possible retinal/visual system alterations. Finally, since the retina is a window into the brain, an increased awareness and understanding of retinal/visual system dysfunction should provide additional insight into acquired neurodegenerative disorders. PMID:26563796

  11. Carbonaceous sorbents for high-temperature interactive liquid chromatography of polyolefins.

    PubMed

    Chitta, Rajesh; Macko, Tibor; Brüll, Robert; Miller, Matthew; Cong, Rongjuan; deGroot, Willem

    2013-07-01

    The elution behavior of polyethylene (PE) and the three stereoisomers of polypropylene (PP) was studied on porous graphite along with three other carbon-based sorbents, carbon-clad zirconia particles, activated carbon, and exfoliated graphite in a systematic way in this work. Decahydronaphthalene, 1,2,3,4-tetrahydronaphthalene, 1,3,5-trimethylbenzene, tetrachloroethylene, xylene and p-xylene were used as mobile phases. While PE is adsorbed to various extents on all the tested carbonaceous sorbents from the majority of the solvents, PP is fully adsorbed only in selected cases. Testing alcohols (C7-C9) as mobile phase with Hypercarb™ indicates that all stereoisomers of PP are selectively adsorbed and desorbed when a solvent gradient alcohol?1,2,4-trichlorobenzene is used at 160°C. The retention of all stereoisomers of PP increases with the polarity of the alcohol. Linear PE is retained on Hypercarb™ even from 1,2-dichloro- and 1,2,4-trichlorobenzene, when a temperature below 120°C is applied, while it is not retained from these solvents at higher temperatures. All stereoisomeric forms of PP are not adsorbed under the same conditions. Some of the tested new sorbent/solvent systems have potential to be applied in routine analysis of industrially synthesised polyolefins. PMID:23616412

  12. Analysis of BTEX and chlorinated solvents in meconium by headspace-solid-phase microextraction gas chromatography coupled with mass spectrometry.

    PubMed

    Meyer-Monath, Marie; Beaumont, Jérôme; Morel, Isabelle; Rouget, Florence; Tack, Karine; Lestremau, Francois

    2014-07-01

    Meconium is the earliest stool of newborns, and is a complex matrix that reflects the degree of exposure of the fetus to xenobiotics. To investigate fetal exposure to volatile organic compounds, an analytical method was developed to identify and quantify BTEX (benzene, toluene, ethylbenzene, and o,m,p-xylene) and two chlorinated solvents (trichloroethylene and tetrachloroethylene) in meconium. Headspace-solid-phase microextraction coupled with gas chromatography-mass spectrometry was selected because it is simple, sensitive, can be automated, and requires no extensive sample preparation. Several extraction variables were optimized (fiber type, incubation time, temperature of fiber, and use of salt). Because meconium is a complex matrix, quantification by SPME was considered carefully because of potential interference, for example competitive adsorption. Calibration in water was compared with calibration in meconium using external and internal methods (with isotope-labeled compounds). In meconium, limits of quantification were determined to be in the range 0.064-0.096 ng g(-1) for the investigated compounds. All target compounds were determined in "real-case" meconium samples. PMID:24838489

  13. Monitoring polycyclic aromatic hydrocarbons in seawaters and wastewaters using a dispersive liquid-liquid microextraction method.

    PubMed

    Ramos-Dorta, Carmen V; Pino, Verónica; Afonso, Ana M

    2013-01-01

    An evaluation has been made of a dispersive liquid-liquid microextraction (DLLME) procedure for the determination of 16 polycyclic aromatic hydrocarbons (PAHs) in different environmental waters including seawaters and wastewaters, using gas-chromatography (GC) with flame-ionization detection (FID). The optimized method requires 18 microL of the extractant solvent tetrachloroethylene (C2Cl4), 1 mL of acetonitrile as dispersive solvent, and 5 mL of aqueous sample. After centrifugation (5 min), 2 microL of the obtained micro-droplet containing the extracted PAHs, which varied from - 15 microL for seawaters to - 9 microL for wastewaters, is directly injected in the GC-FID. The performance of the method is characterized for average extraction efficiencies of 99.0% and 98.1% when analysing real seawaters and wastewaters, respectively, at low spiked levels (3 ng x mL(-1)); and average precision values of 8.4% as relative standard deviation. The performance of the method was also compared with conventional liquid-liquid extraction. The DLLME calibrations have been obtained in different aqueous matrices to thoroughly evaluate the matrix effect. The application of the joint-confidence ellipse F-test showed that seawaters can be simply analysed using DLLME calibrations obtained in the laboratory using deionized water. However, important caution must be taken into account when dealing with wastewater, because of matrix effects. PMID:23837310

  14. Biological reductive dechlorination of chlorinated ethylenes: Implications for natural attenuation and biostimulation

    SciTech Connect

    Distefano, T.D.

    1995-12-31

    Chlorinated organic compounds are the most frequently found contaminants at many hazardous waste sites and industrial facilities. Numerous industries use chlorinated organics such as tetrachloroethylene also known as perchloroethylene (PCE) -- and trichloroethylene (TCE), as degreasing agents, paint strippers, and in textile processing. These solvents are often detected as soil and ground water contaminants due to improper storage and disposal practices. Laboratory and full-scale investigations have proven that complete biological transformation of PCE and TCE is possible under anaerobic conditions. Biological treatment of chlorinated ethenes has received much interest due to the prevalence of these contaminants and the need to develop technologies that destroy contaminants rather than transfer them to other media. The purpose of this paper is to give an overview of the biological process by which anaerobic bacteria biodegrade chlorinated ethylenes. The benefits of this process are discussed along with key findings that may be employed to determine if dechlorination is occurring under natural conditions. Requirements of these bacteria are described and an assessment of future research needs is provided.

  15. Behavior of DNAPL mixture of organometallic and chlorinated solvent in the presence of surfactants and alcohols as density modifying agents.

    PubMed

    Talawat, Jaruwan; Sabatini, David A; Tongcumpou, Chantra

    2013-01-01

    This work evaluates the behavior of surfactant and alcohols in combination with a mixture of tributyltinchloride (TBT) and tetrachloroethylene (PCE) with the goal of modifying the mixed oil from being a dense non-aqueous phase liquid (DNAPL) to a light non-aqueous phase liquid (LNAPL). Phase behavior of the mixed oil was studied under various combinations of surfactant, alcohol, and salinity. Phase density conversion was examined using pseudo-ternary phase diagrams constructed between the mixed oil, surfactant solution (4 wt%), and two types of alcohols (n-butyl alcohol (BuOH) and tert-butyl alcohol (TBA)). Aqueous phase solubilization and oil phase density modification were studied at varying alcohol to surfactant (A/S) ratios. The results showed that the optimum surfactant system was sodium dihexylsulfosuccinate (SDHS) and hexadecyl diphenyloxidedisulfonate (C16DPDS) (3.6 wt% and 0.4 wt%, respectively) with salt (NaCl) of 3 wt%. From pseudo-ternary phase diagrams, BuOH was found to produce a larger LNAPL region than TBA. From solubilization studies, the surfactant system plus either TBA or BuOH caused PCE preferential solubilization and this preference was more pronounced at higher total surfactant concentration in the system with TBA addition. In terms of density modification, BuOH produced lower oil density than TBA at high A/S ratio. This phase behavior knowledge can be used to optimize site remediation of organometallic DNAPLs. PMID:23947699

  16. Malignant tumors of the female reproductive system.

    PubMed

    Weiderpass, Elisabete; Labrèche, France

    2012-09-01

    This review summarizes the epidemiology of cancer of the female reproductive system and associated lifestyle factors. It also assesses the available evidence for occupational factors associated with these cancers. Cervical, endometrial, and ovarian cancers are relatively common, and cause significant cancer morbidity and mortality worldwide, whereas vulvar, vaginal, fallopian tube cancers, and choriocarcinomas are very rare. As several lifestyle factors are known to play a major role in the etiology of these cancers, very few published studies have investigated possible relationships with occupational factors. Some occupational exposures have been associated with increased risks of these cancers, but apart from the available evidence on the relationships between asbestos fibers and ovarian cancer, and tetrachloroethylene and cervical cancer, the data is rather scarce. Given the multifactorial nature of cancers of the female reproductive system, it is of the utmost importance to conduct occupational studies that will gather detailed data on potential individual confounding factors, in particular reproductive history and other factors that influence the body's hormonal environment, together with information on socio-economic status and lifestyle factors, including physical activity from multiple sources. Studies on the mechanisms of carcinogenesis in the female reproductive organs are also needed in order to elucidate the possible role of chemical exposures in the development of these cancers. PMID:23019529

  17. Spatial distribution characteristics of volatile halogenated hydrocarbons in unsaturated zone of Xiaodian sewage irrigation area, Taiyuan, China.

    PubMed

    Liao, Yuan; Ma, Teng; Cui, Yahui; Qi, Zhichong

    2014-12-01

    Sewage irrigation is one of the best options to reduce the stress on limited fresh water and to meet the nutrient requirement of crops. Environment pollution caused by volatile halogenated hydrocarbons (VHCs) associated with sewage irrigation has received increasing attention due to the toxicological importance in ecosystem. The aim of this study was to discuss the spatial distribution characteristics of VHCs in unsaturated zone under sewage irrigation and their migration in the environment. Soil samples were collected from XiaoDian district of TaiYuan city and measured for the major VHCs including of chloroform (CHCl3), tetrachloromethane (CCl4), trichloroethylene (C(2)HCl(3)), tetrachloroethylene(C(2)Cl(4)), pentachlorobenzene (C(6)HCl(5)), hexachlorobenzene (C(6)Cl(6)). Results showed that VHCs were accumulated in the unsaturated zone with long-term sewage irrigation. The contents of VHCs in the unsaturated zone of the study area were 34, 2, 3, 1.5, 8.3, 4.8 times higher than the background value respectively. Soils with long-term irrigation of sewage showed higher contents of VHCs than that with short-term irrigation of sewage. Not only the irrigation time, soil physical properties (e.g. soil texture) also played an important role on VHCs accumulation in soil. PMID:25193606

  18. Microfluidic droplet-based liquid-liquid extraction and on-chip IR spectroscopy detection of cocaine in human saliva.

    PubMed

    Wägli, Philip; Chang, Yu-Chi; Hans, Kerstin; Homsy, Alexandra; Hvozdara, Lubos; Herzig, Hans Peter; Sigrist, Markus; de Rooij, Nico F

    2013-08-01

    We present a portable microsystem to quantitatively detect cocaine in human saliva. In this system, we combine a microfluidic-based multiphase liquid-liquid extraction method to transfer cocaine continuously from IR-light-absorbing saliva to an IR-transparent solvent (tetrachloroethylene) with waveguide IR spectroscopy (QC-laser, waveguide, detector) to detect the cocaine on-chip. For the fabrication of the low-cost polymer microfluidic chips a simple rapid prototyping technique based on Scotch-tape masters was further developed and applied. To perform the droplet-based liquid-liquid extraction, we designed and integrated a simple and robust droplet generation method based on the capillary focusing effect within the device. Compared to well-characterized and commonly used microfluidic H-filters, our system showed at least two times higher extraction efficiencies with potential for further improvements. The current liquid-liquid extraction method alone can efficiently extract cocaine and pre-concentrate the analytes in a new solvent. Our fully integrated optofluidic system successfully detected cocaine in real saliva samples spiked with the drug (500 ?g/mL) and allowed real time measurements, which makes this approach suitable for point-of-care applications. PMID:23815182

  19. Toxicity of industrially relevant chlorinated organic solvents in vitro.

    PubMed

    McDermott, Catherine; Heffron, James J A

    2013-01-01

    The cytotoxic effects of 4 industrially important chlorinated organic solvents, dichloromethane (DCM), 1,2-dichloroethane (DCE), trichloroethylene (TCE), and tetrachloroethylene (PERC) in vitro, were investigated. Jurkat T cells were exposed to the solvents individually for 72 hours and changes in reactive oxygen species (ROS) formation, cell proliferation, intracellular free calcium concentration ([Ca(2+)]), and caspase-3 activity were measured. There was a concentration-dependent increase in the ROS formation and intracellular free [Ca(2+)] following exposure to each of the solvents. This was accompanied by a decrease in the cell proliferation. Solvent potency decreased in the following order: PERC > TCE > DCM > DCE. Caspase-3 activity was increased in a concentration-dependent manner by TCE and PERC but was not significantly altered by DCM or DCE. n-Acetyl-l-cysteine pretreatment showed that changes in the intracellular free [Ca(2+)] and caspase-3 activity were independent of ROS formation. However, increased ROS formation did play a causal role in the decreased cell proliferation observed. PMID:23559643

  20. Aerobic/anaerobic/aerobic sequenced biodegradation of a mixture of chlorinated ethenes, ethanes and methanes in batch bioreactors.

    PubMed

    Frascari, Dario; Fraraccio, Serena; Nocentini, Massimo; Pinelli, Davide

    2013-01-01

    A novel aerobic/anaerobic/aerobic treatment was implemented in batch reactors containing aquifer materials from a site contaminated by tetrachloroethylene (PCE), trichloroethylene (TCE), vinyl chloride (VC), 1,1,2-trichloroethane (1,1,2-TCA) and chloroform (CF). Consortia grown aerobically on methane, propane, n-pentane and n-hexane completely biodegraded the chlorinated solvent mixture, via aerobic cometabolism of VC, CF, TCE and 1,1,2-TCA, followed by PCE reductive dechlorination (RD) to 1,2-cis-dichlorothylene (cis-DCE) or TCE, and cis-DCE/TCE cometabolism in a further aerobic phase. n-Hexane was the best substrate. No electron donor was supplied for RD, which likely utilized cellular material produced during the aerobic phase. Chloride release was stoichiometric with chlorinated solvent biodegradation. According to the Lepidium sativum ecotoxicity test, a decreased toxicity was observed with propane, n-pentane and n-hexane, but not methane. A kinetic study of PCE RD allowed to estimate the PCE maximum specific rate (0.57 ± 0.07 mg mg(protein)(-1) day(-1)) and half-saturation constant (6.7 ± 1.5 mg L(-1)). PMID:23201903

  1. Sewer Gas: An Indoor Air Source of PCE to Consider During Vapor Intrusion Investigations.

    PubMed

    Pennell, Kelly G; Scammell, Madeleine Kangsen; McClean, Michael D; Ames, Jennifer; Weldon, Brittany; Friguglietti, Leigh; Suuberg, Eric M; Shen, Rui; Indeglia, Paul A; Heiger-Bernays, Wendy J

    2013-01-01

    The United States Environmental Protection Agency (USEPA) is finalizing its vapor intrusion guidelines. One of the important issues related to vapor intrusion is background concentrations of volatile organic chemicals (VOCs) in indoor air, typically attributed to consumer products and building materials. Background concentrations can exist even in the absence of vapor intrusion and are an important consideration when conducting site assessments. In addition, the development of accurate conceptual models that depict pathways for vapor entry into buildings is important during vapor intrusion site assessments. Sewer gas, either as a contributor to background concentrations or as part of the site conceptual model, is not routinely evaluated during vapor intrusion site assessments. The research described herein identifies an instance where vapors emanating directly from a sanitary sewer pipe within a residence were determined to be a source of tetrachloroethylene (PCE) detected in indoor air. Concentrations of PCE in the bathroom range from 2.1 to 190 ug/m(3) and exceed typical indoor air concentrations by orders of magnitude resulting in human health risk classified as an "Imminent Hazard" condition. The results suggest that infiltration of sewer gas resulted in PCE concentrations in indoor air that were nearly two-orders of magnitude higher as compared to when infiltration of sewer gas was not known to be occurring. This previously understudied pathway whereby sewers serve as sources of PCE (and potentially other VOC) vapors is highlighted. Implications for vapor intrusion investigations are also discussed. PMID:23950637

  2. Air purification from TCE and PCE contamination in a hybrid bioreactors and biofilter integrated system.

    PubMed

    Tabernacka, Agnieszka; Zborowska, Ewa; Lebkowska, Maria; Borawski, Maciej

    2014-01-15

    A two-stage waste air treatment system, consisting of hybrid bioreactors (modified bioscrubbers) and a biofilter, was used to treat waste air containing chlorinated ethenes - trichloroethylene (TCE) and tetrachloroethylene (PCE). The bioreactor was operated with loadings in the range 0.46-5.50gm(-3)h(-1) for TCE and 2.16-9.02gm(-3)h(-1) for PCE. The biofilter loadings were in the range 0.1-0.97gm(-3)h(-1) for TCE and 0.2-2.12gm(-3)h(-1) for PCE. Under low pollutant loadings, the efficiency of TCE elimination was 23-25% in the bioreactor and 54-70% in the biofilter. The efficiency of PCE elimination was 44-60% in the bioreactor and 50-75% in the biofilter. The best results for the bioreactor were observed one week after the pollutant loading was increased. However, the process did not stabilize. In the next seven days contaminant removal efficiency, enzymatic activity and biomass content were all diminished. PMID:24316808

  3. [Rapid detection of chlorinated organic mixture by laser Raman spectroscopy].

    PubMed

    Ma, Jing

    2014-07-01

    In order to realize the rapid, nondestructive detection of organic compounds, a two-dimensional analysis method based on technology of laser Raman spectroscopy was proposed. The results show that using 532 nm laser as excitation light source, the observation of 236.2, 348.9, 449.4 and 513.6 cm(-1), the four vibrational Raman spectra, and the intensity ratio of 6.4 : 1.7: 9.4 : 1.0 can determine the existence of tetrachloroethylene. The observation of 707.5, 1 087.9, 1 175.8 and 3 078.6 cm(-1), the four vibrational Raman spectra, and the intensity ratio of 9.6 : 6.4 : 1.0 : 3.9 can determine the existence of chlorobenzene. In other words, that through the comprehensive study of spectral lines and intensity ratio of some spectral lines, the presence of organic compounds in the mixed solution can be determined quickly. In the aspect of quantitative analysis, using multi-spectral analysis combined with least square fitting method can improve the reliability of the measurement, The accuracy of sample concentration was 98.4%. This spectral measurement method is a potential tool for organic component identification and concentration analysis which has a prosperous application prospects. PMID:25269297

  4. Near-infrared (NIR) study of hydrogen bonding of methanol molecules in polar and nonpolar solvents: an approach from concentration-dependent molar absorptivity.

    PubMed

    Mikami, Yuho; Ikehata, Akifumi; Hashimoto, Chihiro; Ozaki, Yukihiro

    2014-01-01

    Differences in the hydrogen-bonding states of methanol in polar and nonpolar solvents were studied by using the first overtone of O-H stretching vibrations observed in the near-infrared (NIR) band ranging from 7500 to 6000 cm(-1). To eliminate the absorption of solvents, NIR-inactive nonpolar solvents carbon tetrachloride (CCl4) and tetrachloroethylene (C2Cl4) were chosen, along with deuterium-substituted polar solvents acetone-d6, acetonitrile-d3, 1,4-dioxane-d8, and tetrahydrofuran (THF)-d8. The changes in the hydrogen-bonding states of methanol during mixing with the solvents were estimated using the extended molar absorption spectrum, which was defined as the concentration difference. The extended molar absorption spectra in different concentrations were decomposed into a finite number of independent factors using a multivariate curve resolution-alternating least squares calculation. Two and three such factors were sufficient to reproduce the extended molar absorption spectra for the nonpolar and polar solvents, respectively. The detailed assignments of each factor were estimated using the calculated loadings and scores. A similarity analysis was also applied to the extended molar absorption spectra of methanol and effectively quantified the deviation from the spectrum of pure methanol. The methanol and solvent affinities were also compared. PMID:25198653

  5. Inspection and monitoring plan, contaminated groundwater seeps 317/319/ENE Area, Argonne National Laboratory

    SciTech Connect

    1996-10-11

    During the course of completing the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) in the 317/319/East-Northeast (ENE) Area of Argonne National Laboratory-East (ANL-E), groundwater was discovered moving to the surface through a series of groundwater seeps. The seeps are located in a ravine approximately 600 ft south of the ANL-E fence line in Waterfall Glen Forest Preserve. Samples of the seep water were collected and analyzed for selected parameters. Two of the five seeps sampled were found to contain detectable levels of organic contaminants. Three chemical species were identified: chloroform (14--25 {micro}g/L), carbon tetrachloride (56--340 {micro}g/L), and tetrachloroethylene (3--6 {micro}g/L). The other seeps did not contain detectable levels of volatile organics. The nature of the contaminants in the seeps will also be monitored on a regular basis. Samples of surface water flowing through the bottom of the ravine and groundwater emanating from the seeps will be collected and analyzed for chemical and radioactive constituents. The results of the routine sampling will be compared with the concentrations used in the risk assessment. If the concentrations exceed those used in the risk assessment, the risk calculations will be revised by using the higher numbers. This revised analysis will determine if additional actions are warranted.

  6. Preparation and response behavior of blue electronic ink microcapsules

    NASA Astrophysics Data System (ADS)

    Wang, J. P.; Zhao, X. P.; Guo, H. L.; Zheng, Q.

    2008-04-01

    The blue electronic ink microcapsules containing phthalocyanine blue BGS (PB15:3) particles homodispersed in tetrachloroethylene (TCE) were prepared by in situ polymerization. The effects of the various factors, such as the type of modifier, the reaction conditions, and the concentration of surfactant in TCE, on the dispersibility of PB15:3 particles in TCE and capsule morphology and the adsorption of PB15:3 particles on internal surface of capsule wall were experimentally investigated. It was shown that using octadecylamine (ODA) to modify PB15:3 particles resulted in a significant increase of the dispersing extent (D.E) (about 4 times more than that of unmodified). The response time of particles to 0.1 V/?m dc electric field improved from 2.6 s to 0.6 s. The concentration of Span80 in TCE was no less than 0.062 mM, the adsorption of PB15:3 particles on internal surface of wall were restrained. Finally, the microcapsules in which PB15:3 particles possess reversible response to dc electric field were obtained.

  7. Time series geophysical monitoring of permanganate injections and in situ chemical oxidation of PCE, OU1 area, Savage Superfund Site, Milford, NH, USA.

    PubMed

    Harte, Philip T; Smith, Thor E; Williams, John H; Degnan, James R

    2012-05-01

    In situ chemical oxidation (ISCO) treatment with sodium permanganate, an electrically conductive oxidant, provides a strong electrical signal for tracking of injectate transport using time series geophysical surveys including direct current (DC) resistivity and electromagnetic (EM) methods. Effective remediation is dependent upon placing the oxidant in close contact with the contaminated aquifer. Therefore, monitoring tools that provide enhanced tracking capability of the injectate offer considerable benefit to guide subsequent ISCO injections. Time-series geophysical surveys were performed at a superfund site in New Hampshire, USA over a one-year period to identify temporal changes in the bulk electrical conductivity of a tetrachloroethylene (PCE; also called tetrachloroethene) contaminated, glacially deposited aquifer due to the injection of sodium permanganate. The ISCO treatment involved a series of pulse injections of sodium permanganate from multiple injection wells within a contained area of the aquifer. After the initial injection, the permanganate was allowed to disperse under ambient groundwater velocities. Time series geophysical surveys identified the downward sinking and pooling of the sodium permanganate atop of the underlying till or bedrock surface caused by density-driven flow, and the limited horizontal spread of the sodium permanganate in the shallow parts of the aquifer during this injection period. When coupled with conventional monitoring, the surveys allowed for an assessment of ISCO treatment effectiveness in targeting the PCE plume and helped target areas for subsequent treatment. PMID:22459605

  8. In planta passive sampling devices for assessing subsurface chlorinated solvents.

    PubMed

    Shetty, Mikhil K; Limmer, Matt A; Waltermire, Kendra; Morrison, Glenn C; Burken, Joel G

    2014-06-01

    Contaminant concentrations in trees have been used to delineate groundwater contaminant plumes (i.e., phytoscreening); however, variability in tree composition hinders accurate measurement of contaminant concentrations in planta, particularly for long-term monitoring. This study investigated in planta passive sampling devices (PSDs), termed solid phase samplers (SPSs) to be used as a surrogate tree core. Characteristics studied for five materials included material-air partitioning coefficients (Kma) for chlorinated solvents, sampler equilibration time and field suitability. The materials investigated were polydimethylsiloxane (PDMS), low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), polyoxymethylene (POM) and plasticized polyvinyl chloride (PVC). Both PDMS and LLDPE samplers demonstrated high partitioning coefficients and diffusivities and were further tested in greenhouse experiments and field trials. While most of the materials could be used for passive sampling, the PDMS SPSs performed best as an in planta sampler. Such a sampler was able to accurately measure trichloroethylene (TCE) and tetrachloroethylene (PCE) concentrations while simultaneously incorporating simple operation and minimal impact to the surrounding property and environment. PMID:24268175

  9. Influence of sulfur oxyanions on reductive dehalogenation activities in Desulfomonile tiedjei.

    PubMed

    Townsend, G T; Suflita, J M

    1997-09-01

    The inhibition of aryl reductive dehalogenation reactions by sulfur oxyanions has been demonstrated in environmental samples, dehalogenating enrichments, and the sulfate-reducing bacterium Desulfomonile tiedjei; however, this phenomenon is not well understood. We examined the effects of sulfate, sulfite, and thiosulfate on reductive dehalogenation in the model microorganism D. tiedjei and found separate mechanisms of inhibition due to these oxyanions under growth versus nongrowth conditions. Dehalogenation activity was greatly reduced in extracts of cells grown in the presence of both 3-chlorobenzoate, the substrate or inducer for the aryl dehalogenation activity, and either sulfate, sulfite, or thiosulfate, indicating that sulfur oxyanions repress the requisite enzymes. In extracts of fully induced cells, thiosulfate and sulfite, but not sulfate, were potent inhibitors of aryl dehalogenation activity even in membrane fractions lacking the cytoplasmically located sulfur oxyanion reductase. These results suggest that under growth conditions, sulfur oxyanions serve as preferred electron acceptors and negatively influence dehalogenation activity in D. tiedjei by regulating the amount of active aryl dehalogenase in cells. Additionally, in vitro inhibition by sulfur oxyanions is due to the interaction of the reactive species with enzymes involved in dehalogenation and need not involve competition between two respiratory processes for reducing equivalents. Sulfur oxyanions also inhibited tetrachloroethylene dehalogenation by the same mechanisms, further indicating that chloroethylenes are fortuitously dehalogenated by the aryl dehalogenase. The commonly observed inhibition of reductive dehalogenation reactions under sulfate-reducing conditions may be due to similar regulation mechanisms in other dehalogenating microorganisms that contain multiple respiratory activities. PMID:9293011

  10. Malignant Tumors of the Female Reproductive System

    PubMed Central

    Labrèche, France

    2012-01-01

    This review summarizes the epidemiology of cancer of the female reproductive system and associated lifestyle factors. It also assesses the available evidence for occupational factors associated with these cancers. Cervical, endometrial, and ovarian cancers are relatively common, and cause significant cancer morbidity and mortality worldwide, whereas vulvar, vaginal, fallopian tube cancers, and choriocarcinomas are very rare. As several lifestyle factors are known to play a major role in the etiology of these cancers, very few published studies have investigated possible relationships with occupational factors. Some occupational exposures have been associated with increased risks of these cancers, but apart from the available evidence on the relationships between asbestos fibers and ovarian cancer, and tetrachloroethylene and cervical cancer, the data is rather scarce. Given the multifactorial nature of cancers of the female reproductive system, it is of the utmost importance to conduct occupational studies that will gather detailed data on potential individual confounding factors, in particular reproductive history and other factors that influence the body's hormonal environment, together with information on socio-economic status and lifestyle factors, including physical activity from multiple sources. Studies on the mechanisms of carcinogenesis in the female reproductive organs are also needed in order to elucidate the possible role of chemical exposures in the development of these cancers. PMID:23019529

  11. Groundwater quality assessment plan for the Metallurgical Laboratory Hazardous Waste Management Facility

    SciTech Connect

    Jerome, K.M.

    1990-10-01

    The Metallurgical Laboratory Hazardous Waste Management Facility (MLHWMF) will be closed under interim status regulation and permitted as a hazardous waste management facility by a Post Closure Part B Permit under 40 CFR 264. This report discusses the ground water quality assessment plan for the MLHWMF. The Metallurgical Laboratory Hazardous Waste Management Facility consists of the process sewer line leading to the Metallurgical Laboratory basin from the fence, the Metallurgical Laboratory basin, the drainage outfall to the Carolina bay, and the Carolina bay itself. The Metallurgical Laboratory HWMF received F001, F003, F007, and D011 waste. F001 waste includes spent halogenated solvents used in degreasing (trichloroethylene, 1,1,1-trichloroethane, and carbon tetrachloride). F003 waste includes spent nonhalogenated solvents (acetone), and F007 waste is spent cyanide plating bath solution. At present forty-three constituents are analyzed per sample. Trichloroethylene, tetrachloroethylene, and total radium are the only constituents that were reported above Primary Drinking Water Standards (PDWS) during the second quarter of 1990. Listed in this report are the constituents that are being analyzed at present. Appendix A presents the trends for the analyzed constituents from the fourth quarter of 1988 to the second quarter of 1990. 5 figs., 5 tabs.

  12. Note: A top-view optical approach for observing the coalescence of liquid drops.

    PubMed

    Wang, Luhai; Zhang, Guifu; Wu, Haiyi; Yang, Jiming; Zhu, Yujian

    2016-02-01

    We developed a new device that is capable of top-view optical examination of the coalescence of liquid drops. The device exhibits great potential for visualization, particularly for the early stage of liquid bridge expansion, owing to the use of a high-speed shadowgraph technique. The fluid densities of the two approaching drops and that of the ambient fluid are carefully selected to be negligibly different, which allows the size of the generated drops to be unlimitedly large in principle. The unique system design allows the point of coalescence between two drops to serve as an undisturbed optical pathway through which to image the coalescence process. The proposed technique extended the dimensionless initial finite radius of the liquid bridge to 0.001, in contrast to 0.01 obtained for conventional optical measurements. An examination of the growth of the bridge radius for a water and oil-tetrachloroethylene system provided results similar to Paulsen's power laws of the inertially limited viscous and inertial regimes. Furthermore, a miniscule shift in the center of the liquid bridge was detected at the point of crossover between the two regimes, which can be scarcely distinguished with conventional side-view techniques. PMID:26931902

  13. Plume and lithologic profiling with surface resistivity and seismic tomography

    SciTech Connect

    Watson, David B; Doll, William E.; Gamey, Jeff; Sheehan, Jacob R; Jardine, Philip M

    2005-03-01

    Improved surface-based geophysical technologies that are commercially available provide a new level of detail that can be used to guide ground water remediation. Surface-based multielectrode resistivity methods and tomographic seismic refraction techniques were used to image to a depth of approximately 30 m below the surface at the Natural and Accelerated Bioremediation Research Field Research Center. The U.S. Department of Energy (DOE) established the research center on the DOE Oak Ridge Reservation in Oak Ridge, Tennessee, to conduct in situ field-scale studies on bioremediation of metals and radionuclides. Bioremediation studies are being conducted on the saprolite, shale bedrock, and ground water at the site that have been contaminated with nitrate, uranium, technetium, tetrachloroethylene, and other contaminants (U.S. DOE 1997). Geophysical methods were effective in imaging the high-ionic strength plume and in defining the transition zone between saprolite and bedrock zones that appears to have a significant influence on contaminant transport. The geophysical data were used to help select the location and depth of investigation for field research plots. Drilling, borehole geophysics, and ground water sampling were used to verify the surface geophysical studies.

  14. Chlorinated organic compounds in ground water at Roosevelt Field, Nassau County, Long Island, New York

    USGS Publications Warehouse

    Eckhardt, D.A.; Pearsall, K.A.

    1989-01-01

    Trichloroethylene (TCE), 1,2-dichloroethylene (DCE), and tetrachloroethylene (PCE) have been detected in water from five public-supply wells and six cooling-water wells that tap the Magothy aquifer at Roosevelt Field, a 200-acre area that is now a large shopping mall and office-building complex. The cooling water is discharged after use to the water table (upper glacial) aquifer through a nearby recharge basin and a subsurface drain field. Three plumes of TCE in groundwater have been delineated--the source plume, which has penetrated both aquifers , and two more recent plumes emanating from the two discharge sites in the water-table aquifer. Concentrations of inorganic constituents in the three plumes are the same as those in ambient water in the area. The two secondary plumes discharged cooling water extended at least 1,000 ft south-southeastward in the direction of regional groundwater flow. Pumping at wells screened in the middle and basal sections of the Magothy aquifers, where clay layers are absent and sandy zones provide good vertical hydraulic connection within the aquifer system, has increased the rate of downward contaminant advection. The transient increases in downward movement are cumulative over time and have brought TCE to the bottom of the Magothy aquifer, 500 ft below land surface. (USGS)

  15. Stress survival of a genetically engineered Pseudomonas in soil slurries: Cytochrome P-450cam-catalyzed dehalogenation of chlorinated hydrocarbons

    SciTech Connect

    Rattan, K.; Shanker, R.; Khanna, P.; Atkins, W.M.

    1999-10-01

    Biological treatment of hazardous chemical wastes has potential as an effective, practical, and economically viable process in above the ground treatment systems that consist of both genetically engineered microorganisms (GEMs) and bioreactors with process control instruments to create ideal conditions for biodegradation. A strain of Pseudomonas putida coexpressing cytochrome P-450cam and luciferase (lux) that provides both the reductive detoxification potential of the hemoprotein and a mechanism for its reduction to survive and remain metabolically competent under nutrient stress in soil slurry microcosms. More than 74% of the cells of engineered Pseudomonas were culturable after 7 days of multiple nutrient (C,N,P) starvation. The diagnostic luminescence and carbon monoxide-difference spectra for the two engineered traits could be detected in a significant fraction of the surviving population. The GEM could be revived after repeated desiccation and starvation using Luria broth, benzoate, or citrate as nutrients. Soil slurries inoculated with the GEM transformed hexachloroethane (HCE) to tetrachloroethylene (tetraCE) 8--10 fold faster than uninoculated slurries. The GEM also transformed the insecticide, {gamma}-HCH ({gamma}-3,4,5,6-hexachlorocyclhexene), to {gamma}-3,4,5,6-tetrachlorocyclohexene ({gamma}tetraCH) in soil slurries under subatmospheric conditions. These results indicate that GEMs can be constructed with broad substrate range detoxification catalysts such as cytochrome P-450 for remediation.

  16. Oxidative Stress Mechanisms Do Not Discriminate between Genotoxic and Nongenotoxic Liver Carcinogens.

    PubMed

    Deferme, Lize; Wolters, Jarno; Claessen, Sandra; Briedé, Jacco; Kleinjans, Jos

    2015-08-17

    It is widely accepted that in chemical carcinogenesis different modes-of-action exist, e.g., genotoxic (GTX) versus nongenotoxic (NGTX) carcinogenesis. In this context, it has been suggested that oxidative stress response pathways are typical for NGTX carcinogenesis. To evaluate this, we examined oxidative stress-related changes in gene expression, cell cycle distribution, and (oxidative) DNA damage in human hepatoma cells (HepG2) exposed to GTX-, NGTX-, and noncarcinogens, at multiple time points (4-8-24-48-72 h). Two GTX (azathriopine (AZA) and furan) and two NGTX (tetradecanoyl-phorbol-acetate, (TPA) and tetrachloroethylene (TCE)) carcinogens as well as two noncarcinogens (diazinon (DZN, d-mannitol (Dman)) were selected, while per class one compound was deemed to induce oxidative stress and the other not. Oxidative stressors AZA, TPA, and DZN induced a 10-fold higher number of gene expression changes over time compared to those of furan, TCE, or Dman treatment. Genes commonly expressed among AZA, TPA, and DZN were specifically involved in oxidative stress, DNA damage, and immune responses. However, differences in gene expression between GTX and NGTX carcinogens did not correlate to oxidative stress or DNA damage but could instead be assigned to compound-specific characteristics. This conclusion was underlined by results from functional readouts on ROS formation and (oxidative) DNA damage. Therefore, oxidative stress may represent the underlying cause for increased risk of liver toxicity and even carcinogenesis; however, it does not discriminate between GTX and NGTX carcinogens. PMID:26198647

  17. Development of CFC-Free Cleaning Processes at the NASA White Sands Test Facility

    NASA Technical Reports Server (NTRS)

    Beeson, Harold; Kirsch, Mike; Hornung, Steven; Biesinger, Paul

    1995-01-01

    The NASA White Sands Test Facility (WSTF) is developing cleaning and verification processes to replace currently used chlorofluorocarbon-113- (CFC-113-) based processes. The processes being evaluated include both aqueous- and solvent-based techniques. The presentation will include the findings of investigations of aqueous cleaning and verification processes that are based on a draft of a proposed NASA Kennedy Space Center (KSC) cleaning procedure. Verification testing with known contaminants, such as hydraulic fluid and commonly used oils, established correlations between nonvolatile residue and CFC-113. Recoveries ranged from 35 to 60 percent of theoretical. WSTF is also investigating enhancements to aqueous sampling for organics and particulates. Although aqueous alternatives have been identified for several processes, a need still exists for nonaqueous solvent cleaning, such as the cleaning and cleanliness verification of gauges used for oxygen service. The cleaning effectiveness of tetrachloroethylene (PCE), trichloroethylene (TCE), ethanol, hydrochlorofluorocarbon-225 (HCFC-225), tert-butylmethylether, and n-Hexane was evaluated using aerospace gauges and precision instruments and then compared to the cleaning effectiveness of CFC-113. Solvents considered for use in oxygen systems were also tested for oxygen compatibility using high-pressure oxygen autoignition and liquid oxygen mechanical impact testing.

  18. Advanced oxidation processes. Test of a kinetic model for the oxidation of organic compounds with ozone and hydrogen peroxide in a semibatch reactor

    SciTech Connect

    Glaze, W.H.; Kang, J.W.

    1989-01-01

    Experimental data are presented to test a kinetic model of the OE/H{sub 2}O{sub 2} process in a semibatch reactor. The effect of bicarbonate and carbonate ions is measured and found to be in concurrence with model predictions. The effect of pH in the ozone mass-transfer-limited region was examined in bicarbonate-spiked distilled water. Since the reaction is mass transfer limited, the primary effect above pH 7 is the result of changes in the distribution of inorganic carbon species which are OH-radical scavengers. Below pH 7, there is a lag period during which ozone and peroxide increase until the chain reaction begins. The effects of chloride ion and the concentration of radical scavengers other than carbonate species in ground waters are also measured. The mass-transfer/reaction rate model has been used to estimate rate constants for the reaction of hydroxyl radicals with trichloroethylene, 1,2-dibromoethane, 1,2-dibromo-3-chloropropane, carbon tetrachloride, and two bicyclic alcohols, 2-methylisoborneol and geosmin. While the model developed for the distilled water system was successful in predicting the rate of tetrachloroethylene (PCE) oxidation and the concentration of residual ozone and peroxide in regions I and III, respectively, there are several features of the model that remain unresolved when the matrix is changed to a real surface or ground water. This and subsequent papers will investigate these effects.

  19. FT-IR measurement of tagitinin C after solvent extraction from Tithonia diversifolia.

    PubMed

    Ziémons, E; Goffin, E; Lejeune, R; Angenot, L; Thunus, L

    2004-02-01

    Tagitinin C, an antiplasmodial compound, identified as one major compound of the subtropical medicinal plant, Tithonia diversifolia, was determined by FT-IR spectroscopy method. The crude ether extracts from aerial parts of the plant were evaporated to dryness and re-dissolved in tetrachloroethylene (C(2)Cl(4)) before analysis. The magnitude of the absorbance of the very specific CO stretching vibration (nu(CO)) at 1664.8cm(-1) was exploited in order to quantify tagitinin C. The determination coefficient (r(2)) of the calibration scale was 0.9994, the detection limit was lower than 3mugml(-1) and the quantification limit was lower than 10mugml(-1). Recovery values from 100.5 to 101.7% were found for spiked concentration levels from 19.91 to 89.95mugml(-1). The main characteristics of the curves obtained from the calibration standards and from the standard addition technique were not statistically different (Student t-test) suggesting that matrix effects were negligible. The results obtained for the determination of tagitinin C in the crude ether extract from aerial parts of T. diversifolia by LC and FT-IR spectroscopic method agreed well: 0.76+/-0.02 and 0.773+/-0.009, of tagitinin C in dried plant respectively. PMID:18969306

  20. Steam reforming of DOE complex waste simulants

    SciTech Connect

    Miller, J.E.; Kuehne, P.B.

    1995-03-01

    Sandia National Laboratories has worked with Synthetica Technologies and Manufacturing and Technology Conversion International (MTCl) to demonstrate the applicability of their commercial steam reforming technologies for treating DOE low-level mixed wastes. Previously, Synthetica successfully demonstrated destruction of a Sandia formulated lab trash simulant. During November 1994 Synthetica did not adequately process the aqueous halogenated organic liquid mixed waste simulant (MWTP-2110) formulated by the DOE Mixed Waste Integrated Program (MWIP). Testing at MTCl is ongoing and initial results appear to be favorable. Approximately 200 lbs each of the MWIP aqueous halogenated organic liquids (MWTP-2110), and absorbed aqueous and organic liquids (MWTP-3113/3114) simulants have been processed. At 1650{degree}F, destruction efficiencies of greater than 99% were obtained for tetrachloroethylene, toluene, and 1,2 dichlorobenzene. Product cases consisted primarily of H{sub 2}, C0{sub 2}, CO, and CH{sub 4} and had higher heating values of up to 355 BTU/SCF. Conclusions concerning the suitability of the MTCI process for treating DOE mixed wastes will be drawn upon the completion of testing.

  1. Ultralow temperature synthesis and improved adsorption performance of graphene oxide nanosheets

    NASA Astrophysics Data System (ADS)

    Tao, Xiaojun; Wang, Xiaodong; Li, Zhiwei; Zhou, Shaomin

    2015-01-01

    In this article, we first report an ultralow temperature (-60 °C) synthesis of graphene oxide nanosheets (GONs), which is achieved via the reduction reaction of tetrachloroethylene (C2Cl4) and potassium in liquid ammonia solution at atmospheric pressure. The as-obtained multilayer GONs with a high quality exhibit a low C/O atomic ratio of approximately 2:1, indicating that GONs are rich in the oxygen-containing functional groups. In order to improve their adsorption property, GONs are reduced at 500 °C for 2 h in flowing N2, which results in the successful preparation of graphene nanosheets (GNs) with a high C/O atomic ratio of approximately 32:1. GNs show high specific surface area (508 m2/g), high adsorption capacity (Qe = 148.36 mg/g, Co = 180 mg/L), and rapid adsorption rate (>96%, 10 min) of organic dye rhodamine B (RhB) from water, suggesting that GNs have potential environmental applications as alternatives to commercial materials in wastewater treatment for the removal of organic dye. Compared with the reported methods to prepare GONs, our techniques have attractive advantages, such as low reaction temperature and being friendly to environment.

  2. Carcinogenicity studies on halogenated hydrocarbons.

    PubMed Central

    Weisburger, E K

    1977-01-01

    A series of halogenated compounds was tested by oral intubation in 200 Osborne-Mendel rats and 200 B6C3F1 mice of both sexes. Carbon tetrachloride, used as a positive control, induced liver and adrenal tumors in mice and neoplastic nodules in the livers of rats. 1,2-Dibromoethane and 1,2-dibromo-3-chloropropane caused stomach tumors with many metastases in both rats and mice. Chloroform, known to cause hepatocellular carcinomas in mice, led in addition to kidney tumors in male rats. 1,2-Dichloroethane was much weaker than the analog, 1,2-dibromoethane, and induced only a few stomach tumors in rats. It increased liver and lung tumors in mice. Most of the compounds, namely, trichloroethylene, 1,1-dichloroethane, 1,1,2-trichloroethane, hexachloroethane, and tetrachloroethylene, increased hepatocellular carcinomas in mice but had little or no action in rats. Iodoform tended to increase thyroid tumors in male rats and hepatocellular carcinomas in male mice. The action of 3-chloropropene was questionable. No tumors could be attributed to 1,1,1-trichloroethane (methyl-chloroform). PMID:206428

  3. Monitoring of odor compounds produced by solid waste treatment plants with diffusive samplers.

    PubMed

    Bruno, P; Caselli, M; de Gennaro, G; Solito, M; Tutino, M

    2007-01-01

    Nuisance caused by odors is one of the most important problems for waste management plants. To control an odor nuisance, it must first be quantified. The analytical difficulties in odor measurements are related to the high number of volatile components (belonging to several chemical classes), above all when the concentration is lower than the detection limit of the technique used for the measurement. In this work, 2-butanone, alpha-pinene, tetrachloroethylene, dimethyldisulfide, beta-pinene, limonene, phenol and benzoic acid are determined, because they are representative of some important classes of compounds with higher odor impact. The compounds are sampled with thermal desorbable radial diffusive samplers Radiello containing Tenax cartridges. The analytical repeatability and the complete thermal desorption of the cartridges were verified for each odor compound; the relative standard deviations for repeated samples and the recovery percentage were, respectively, less than 7% and about 97% for all compounds. The measurements of the linearity of sampling showed no systematic difference according to the collection period. The comparison between the odor threshold and the limit of detection demonstrated that this method is reliable for the recognition and quantification of odor compounds, allowing Public Administration to impose legal limits and the control agencies to verify them. PMID:16713237

  4. Simulation of solute transport across low-permeability barrier walls

    USGS Publications Warehouse

    Harte, P.T.; Konikow, L.F.; Hornberger, G.Z.

    2006-01-01

    Low-permeability, non-reactive barrier walls are often used to contain contaminants in an aquifer. Rates of solute transport through such barriers are typically many orders of magnitude slower than rates through the aquifer. Nevertheless, the success of remedial actions may be sensitive to these low rates of transport. Two numerical simulation methods for representing low-permeability barriers in a finite-difference groundwater-flow and transport model were tested. In the first method, the hydraulic properties of the barrier were represented directly on grid cells and in the second method, the intercell hydraulic-conductance values were adjusted to approximate the reduction in horizontal flow, allowing use of a coarser and computationally efficient grid. The alternative methods were tested and evaluated on the basis of hypothetical test problems and a field case involving tetrachloroethylene (PCE) contamination at a Superfund site in New Hampshire. For all cases, advective transport across the barrier was negligible, but preexisting numerical approaches to calculate dispersion yielded dispersive fluxes that were greater than expected. A transport model (MODFLOW-GWT) was modified to (1) allow different dispersive and diffusive properties to be assigned to the barrier than the adjacent aquifer and (2) more accurately calculate dispersion from concentration gradients and solute fluxes near barriers. The new approach yields reasonable and accurate concentrations for the test cases. ?? 2006.

  5. Compendium of technical papers on the reductive dechlorination of chlorinated solvents. Final report, August 1993--October 1996

    SciTech Connect

    Gossett, J.M.; Zinder, S.H.

    1997-08-01

    This compendium of technical papers represents three years of work in the investigation of the anaerobic biodegradation of tetrachloroethylene (PCE). Cornell researchers had previously developed a methanol (MeOH)/PCE enrichment culture which dechlorinates high concentrations of PCE and other chlorinated ethenes to ethene (ETH), representing complete detoxification. This culture dechlorinates PCE at unprecedented, high rates with efficient use of MeOH as the electron donor for reductive dechlorination. However, research at Cornell showed that MeOH was not the direct donor for PCE dechlorination, but rather H{sub 2}. MeOH and other reductants found to support dechlorination merely serve as H{sub 2} precursors. Three alternative electron donors (ethanol, butyrate, and lactate) were evaluated to circumvent the problem of methanogenic competition for the supplied donor. The final selected substrate was used in a continuous-flow reactor study with the H{sub 2}/PCE enrichment culture. Engineering studies examined the kinetics of chlorinated ETH utilization with emphasis on vinyl chloride (VC) dechlorination to ETH. Acclimation and induction issues were explored. Microbiological studies towards a better understanding of the nature and the requirements of the dechlorinating organisms were explored. The nutrition of the dechlorinating organisms was examined with the goal of finding and identifying reliable high-potency sources if the nutrients.

  6. Effects of chlorinated solvents on four species of North American amphibians.

    PubMed

    McDaniel, T V; Martin, P A; Ross, N; Brown, S; Lesage, S; Pauli, B D

    2004-07-01

    Tetrachloroethylene (PCE), a dry cleaning and degreasing solvent, can enter groundwater through accidental leaks or spills, and concentrations as high as 75 mg/L have been reported in Canadian aquifers. Amphibians in wetlands receiving contaminated groundwater may be exposed to PCE and its degradation products, but little information is available on the impacts of these compounds on indigenous amphibian species. Acute (96-h static renewal) exposures to PCE and its major degradation products, trichloroethylene (TCE) and cisand trans-dichloroethylene, were conducted on embryos of four North American amphibian species: wood frogs (Rana sylvatica), green frogs (R. clamitans), American toads (Bufo americanus), and spotted salamanders (Ambystoma maculatum). Subsequently, chronic exposures to PCE and TCE were conducted with the larvae of American toads. Both PCE and TCE were teratogenic to amphibian embryos; median effective concentrations (EC50s) for developmental deformities produced by PCE and TCE exposure for wood frogs and green frogs were 12 and 40 mg/L, respectively. Embryonic survivorship, however, was not compromised at these concentrations. American toads were less sensitive; the EC50 for developmental abnormalities was not attained at the highest test concentrations, 45 and 85 mg/L PCE and TCE, respectively. These results are pertinent in assessing the impact of groundwater pollution on an aquifer-fed wetland. PMID:15346783

  7. Anaerobic microbial transformation of aromatic hydrocarbons and mixtures of aromatic hydrocarbons and halogenated solvents. Final report, 30 September 1988-31 March 1992

    SciTech Connect

    Edwards, E.A.; Liang, L.N.; Dunia, G.G.

    1992-08-25

    Anaerobic microbial transformation of monoaromatic hydrocarbons (NM), chlorinated benzenes (CB), and mixtures of MAH and CB, as well as MAH and chlorinated aliphatic solvents (tetrachloroethylene -- PCE, and carbon tetrachloride -CT) was studied in laboratory microcosms derived from hydrocarbon-contaminated groundwater aquifers. Some MAH , such as toluene and o-xylene, were completely degraded to CO 2 and CH by mixed methanogenic cultures from a creosote-contaminated aquifer. This degradation was inhibited by the addition of accessory electron acceptors (oxygen, nitrate, sulfate), indicating acclimation of the microbial community to methanogenic conditions. The addition of preferred substrates, such as acetate, propionate, methanol, fatty acids, glucose, casamino acids, pepton, yeast extract, or acetone also inhibited MAH degradation, indicating that the presence of natural organic substrates may preclude anaerobic biodegradation of in situ. Cyclohexane, CT, and high concentrations of toluene and o-xylene had a toxic effect. Under sulfate-reducing conditions, several MAH -- toluene, all three xylene isomers, and benzene were mineralized to CO by microorganisms from a petroleum-contaminated, sulfidogenic aquifer. Whereas 2 toluene and xylenes were sequentially degraded in a mixture, benzene was degraded only if alone, or slowly transformed in a mixture with toluene. This explains previously reported recalcitrance of benzene under anaerobic conditions. The addition of preferred substrates (lactate, glucose, or yeast extract) to the cultures temporarily inhibited the degradation of MAH. Methanogenic microcosms from the creosote-contaminated aquifer reductively dechlorinated hexa-, penta-, tetra-, tri-, and di-chlorobenzene.

  8. Anaerobic microbial transformation of aromatic hydrocarbons and mixtures of aromatic hydrocarbons and halogenated solvents. Final report, 30 Sep 88-31 Mar 92

    SciTech Connect

    Edwards, E.A.; Liang, L.N.; Grbic-Galic, D.

    1992-08-25

    Anaerobic microbial transformation of monoaromatic hydrocarbons (MAH), chlorinated benzenes (CB), and mixtures of MAH and CB, as well as MAH and chlorinated aliphatic solvents (tetrachloroethylene -- PCE, and carbon tetrachloride -CT) was studied in laboratory microcosms derived from hydrocarbon-contaminated groundwater aquifers. Some MAH, such as toluene and o-xylene, were completely degraded to CO2 and CH4 by mixed methanogenic cultures from a creosote-contaminated aquifer. This degradation was inhibited by the addition of accessory electron acceptors (oxygen, nitrate, sulfate), indicating acclimation of the microbial community to methanogenic conditions. The addition of preferred substrates, such as acetate, propionate, methanol, fatty acids, glucose, casamino acids, pepton, yeast extract, or acetone also inhibited MAH degradation, indicating that the presence of natural organic substrates may preclude anaerobic biodegradation of MAH in situ. Cyclohexane, CT, and high concentrations of toluene and o-xylene had a toxic effect Under sulfate-reducing conditions, several MAH -toluene, all three xylene isomers, and benzene were mineralized to CO2, by microorganisms from a petroleum-contaminated, sulfidogenic aquifer. Whereas-toluene and xylenes were sequentially degraded in a mixture, benzene was degraded only if alone, or slowly transformed in a mixture with toluene. This explains previously reported recalcitrance of benzene under anaerobic conditions.

  9. Gas-solid alkali destruction of volatile chlorocarbons

    SciTech Connect

    Foropoulos, J. Jr.

    1995-12-01

    Many chlorocarbons are environmental dangers and health hazards. The simplest perchlorinated hydrocarbon, carbon tetrachloride, is near the top of the list of hazardous compounds. Carbon tetrachloride was used as a cleaning fluid, solvent, and fire-extinguishing agent. The nuclear and defense complexes also employed great quantities of carbon tetrachloride and other chlorocarbons as cleaning and degreasing agents. Many sites nationwide have underground chlorocarbon contamination plumes. Bulk chlorocarbon inventories at many locations await treatment and disposal. Often the problem is compounded by the chlorocarbon being radioactively contaminated. Waste inventory and groundwater contamination problems exist for many other chlorocarbons, especially methylene chloride, chloroform, and tri- and tetrachloroethylene. In this work solid soda lime (a fused mixture of approximately 95% CaO and 5% NaOH in a coarse, granulated form) at 350 C to 400 C acts as the hydrolyzing degradation, and off-gas scrubbing medium. Within soda lime CO{sub 2} and HCl from hydrolysis and degradation convert immediately to calcium and sodium chlorides and carbonates, with water vapor as a volatile byproduct.

  10. D-area oil seepage basin bioventing optimization test plan

    SciTech Connect

    Berry, C.J.; Radway, J.C.; Alman, D.; Hazen, T.C.

    1998-12-31

    The D Area Oil Seepage Basin (DOSB) was used from 1952 to 1975 for disposal of petroleum-based products (waste oils), general office and cafeteria waste, and apparently some solvents [trichloroethylene (TCE)/tetrachloroethylene (PCE)]. Numerous analytical results have indicated the presence of TCE and its degradation product vinyl chloride in groundwater in and around the unit, and of petroleum hydrocarbons in soils within the unit. The DOSB is slated for additional assessment and perhaps for environmental remediation. In situ bioremediation represents a technology of demonstrated effectiveness in the reclamation of sites contaminated with petroleum hydrocarbons and chlorinated solvents, and has been retained as an alternative for the cleanup of the DOSB. The Savannah River Site is therefore proposing to conduct a field treatability study designed to demonstrate and optimize the effectiveness of in situ microbiological biodegradative processes at the DOSB. The introduction of air and gaseous nutrients via two horizontal injection wells (bioventing) is expected to enhance biodegradation rates of petroleum components and stimulate microbial degradation of chlorinated solvents. The data gathered in this test will allow a determination of the biodegradation rates of contaminants of concern in the soil and groundwater, allow an evaluation of the feasibility of in situ bioremediation of soil and groundwater at the DOSB, and provide data necessary for the functional design criteria for the final remediation system.

  11. Estimating human exposure through multiple pathways from air, water, and soil

    SciTech Connect

    McKone, T.E.; Daniels, J.I. )

    1991-02-01

    This paper describes a set of multipathway, multimedia models for estimating potential human exposure to environmental contaminants. The models link concentrations of an environmental contaminant in air, water, and soil to human exposure through inhalation, ingestion, and dermal-contact routes. The relationship between concentration of a contaminant in an environmental medium and human exposure is determined with pathway exposure factors (PEFs). A PEF is an algebraic expression that incorporates information on human physiology and lifestyle together with models of environmental partitioning and translates a concentration (i.e., mg/m3 in air, mg/liter in water, or mg/kg in soil) into a lifetime-equivalent chronic daily intake (CDI) in mg/kg-day. Human, animal, and environmental data used in calculating PEFs are presented and discussed. Generalized PEFs are derived for air-inhalation, air-ingesstion, water-inhalation, water-ingestion, water-dermal uptake, soil-inhalation, soil-ingestion, and soil-dermal uptake pathways. To illustrate the application of the PEF expressions, we apply them to soil-based contamination of multiple environmental media by arsenic, tetrachloroethylene (PCE), and trinitrotoluene (TNT).

  12. Sorption of vapors of some organic liquids on soil humic acid and its relation to partitioning of organic compounds in soil organic matter

    USGS Publications Warehouse

    Chlou, G.T.; Kile, D.E.; Malcolm, R.L.

    1988-01-01

    Vapor sorption of water, ethanol, benzene, hexane, carbon tetrachloride, 1,1,1-trichloroethane, trichloroethylene, tetrachloroethylene, and 1,2-dibromoethane on (Sanhedron) soil humic acid has been determined at room temperature. Isotherms for all organic liquids are highly linear over a wide range of relative pressure (P/P??), characteristic of the partitioning (dissolution) of the organic compounds in soil humic acid. Polar liquids exhibit markedly greater sorption capacities on soil humic acid than relatively nonpolar liquids, in keeping with the polar nature of the soil humic acid as a partition medium. The limiting sorption (partition) capacities of relatively non-polar liquids are remarkably similar when expressed in terms of volumes per unit weight of soil humic acid. The soil humic acid is found to be about half as effective as soil organic matter in sorption of relatively nonpolar organic compounds. The nearly constant limiting sorption capacity for nonpolar organic liquids with soil humic acid on a volume-to-weight basis and its efficiency in sorption relative to soil organic matter provide a basis for predicting the approximate sorption (partition) coefficients of similar compounds in uptake by soil in aqueous systems.

  13. Evaluation of geophysical methods for the detection of subsurfacetetracgloroethyene in controlled spill experiments

    SciTech Connect

    Mazzella, Aldo; Majer, Ernest L.

    2006-04-10

    A controlled Tetrachloroethylene (PCE) spill experiment was conducted in a multi-layer formation consisting of sand and clayey-sandlayers. The purpose of the work was to determine the detection limits and capability of various geophysical methods. Measurements were made with ten different geophysical techniques before, during, and after the PCE injection. This experiment provided a clear identification of any geophysical anomalies associated with the presence of the PCE. During the injection period all the techniques indicated anomalies associated with the PCE. In order to quantify the results and provide an indication of the PCE detection limits of the various geophysical methods, the tank was subsequently excavated and samples of the various layers were analyzed for residual PCE concentration with gas chromatography (GC). This paper presents some of the results of five of the techniques: cross borehole complex resistivity (CR) also referred to as spectral induced polarization (SIP), cross borehole high resolution seismic (HRS), borehole self potential (SP), surface ground penetration radar (GPR), and borehole video (BV).

  14. Field test of single well DNAPL characterization using alcohol injection/extraction

    SciTech Connect

    Jerome, K.M.; Looney, B.B.; Rhoden, M.L.; Riha, B.; Burdick, S.

    1996-10-29

    Soils and groundwater beneath an abandoned process sewer line in the A/M Area of the Savannah River Site (SRS) contain elevated levels of volatile organic compounds, specifically trichloroethylene (TCE) and tetrachloroethylene (PCE), two common chlorinated solvents. These compounds have low aqueous solubilities, thus when released to the subsurface in sufficient quantity, tend to exist as immiscible fluids or nonaqueous phase liquids (NAPLs). Because chlorinated solvents are also denser than water, they are referred to by the acronym DNAPLs, or dense non-aqueous phase liquids. Technologies targeted at efficient characterization or removal of DNAPL are not currently proven. The authors performed injection/extraction characterization tests in six existing wells in A/M Area. Water concentrations for TCE and/or PCE in these wells ranged from 0% to 100% of solubility. For each test, small amounts of solubilizing solution were used to try to confirm or deny the presence or absence of DNAPL in the immediate vicinity of the well screen.

  15. Public health assessment for Sturgis Municipal Wells, Sturgis, St. Joseph County, Michigan, Region 5. CERCLIS No. MID980703011. Final report

    SciTech Connect

    Not Available

    1993-11-01

    The Sturgis Municipal Wells site was listed on the U.S. Environmental Protection Agency (U.S. EPA) National Priorities List (NPL) in September 1984. In 1982, two of the four wells supplying the City of Sturgis municipal water system were found to be contaminated with trichloroethylene (TCE). Traces of TCE were also found in food products prepared in a plant whose wells were contaminated. Tetrachloroethylene (also called perchloroethylene or PCE) also was found in the original contaminated municipal wells. The contamination in the groundwater has been linked to two source areas: the site of a former woodworking and furniture manufacturing facility and a manufacturer of automotive electrical equipment. TCE, PCE, and other volatile organic compounds have been found in groundwater from monitoring wells within the city, and in soil and soil gas from the source areas. The site currently poses an indeterminate public health hazard. Although there are no indications that exposure to contaminants is occurring at levels of health concern, there is no information available on air concentrations either in the open or in basements.

  16. Testing of stack-unit/aquifer sensitivity analysis using contaminant plume distribution in the subsurface of Savannah River Site, South Carolina, USA

    USGS Publications Warehouse

    Rine, J.M.; Shafer, J.M.; Covington, E.; Berg, R.C.

    2006-01-01

    Published information on the correlation and field-testing of the technique of stack-unit/aquifer sensitivity mapping with documented subsurface contaminant plumes is rare. The inherent characteristic of stack-unit mapping, which makes it a superior technique to other analyses that amalgamate data, is the ability to deconstruct the sensitivity analysis on a unit-by-unit basis. An aquifer sensitivity map, delineating the relative sensitivity of the Crouch Branch aquifer of the Administrative/Manufacturing Area (A/M) at the Savannah River Site (SRS) in South Carolina, USA, incorporates six hydrostratigraphic units, surface soil units, and relevant hydrologic data. When this sensitivity map is compared with the distribution of the contaminant tetrachloroethylene (PCE), PCE is present within the Crouch Branch aquifer within an area classified as highly sensitive, even though the PCE was primarily released on the ground surface within areas classified with low aquifer sensitivity. This phenomenon is explained through analysis of the aquifer sensitivity map, the groundwater potentiometric surface maps, and the plume distributions within the area on a unit-by- unit basis. The results of this correlation show how the paths of the PCE plume are influenced by both the geology and the groundwater flow. ?? Springer-Verlag 2006.

  17. Spatiotemporal changes of CVOC concentrations in karst aquifers: analysis of three decades of data from Puerto Rico.

    PubMed

    Yu, Xue; Ghasemizadeh, Reza; Padilla, Ingrid; Irizarry, Celys; Kaeli, David; Alshawabkeh, Akram

    2015-04-01

    We studied the spatial and temporal distribution patterns of Chlorinated Volatile Organic Compounds (CVOCs) in the karst aquifers in northern Puerto Rico (1982-2013). Seventeen CVOCs were widely detected across the study area, with the most detected and persistent contaminated CVOCs including trichloroethylene (TCE), tetrachloroethylene (PCE), carbon tetrachloride (CT), chloroform (TCM), and methylene chloride (DCM). Historically, 471 (76%) and 319 (52%) of the 615 sampling sites have CVOC concentrations above the detection limit and maximum contamination level (MCL), respectively. The spatiotemporal patterns of the CVOC concentrations showed two clusters of contaminated areas, one near the Superfund site "Upjohn" and another near "Vega Alta Public Supply Wells." Despite a decreasing trend in concentrations, there is a general northward movement and spreading of contaminants even beyond the extent of known sources of the Superfund and landfill sites. Our analyses suggest that, besides the source conditions, karst characteristics (high heterogeneity, complex hydraulic and biochemical environment) are linked to the long-term spatiotemporal patterns of CVOCs in groundwater. PMID:25522355

  18. Predicting Optimal Resolving Power for Ambient Pressure Ion Mobility Spectrometry (IMS)

    PubMed Central

    Kanu, Abu B.; Gribb, Molly M.; Hill, Herbert H

    2010-01-01

    Although diffusion theory predicts that IMS resolving power increases with the square root of the voltage applied across the drift tube, in practice there exists an optimum voltage above which resolving power decreases. This optimum voltage was determined to be both compound and initial ion pulse width-dependent. A “conditional” resolving power equation is introduced that can be used to quickly approximate realistic resolving powers for specific instrumental operating parameters and compounds. Using four common environmental contaminants [trichloroethylene (TCE), tetrachloroethylene (PCE), methyl tert-butyl ether (MTBE) and methyl iso-butyl ketone (MIBK)], diffusion-limited (theoretical), Rd, conditional, Rc, and actual (or measured), Rm, IMS resolving powers were determined and compared for a small IMS instrument designed for subsurface measurements. Detection limits determined at the optimal resolving power for the environmental contaminants ranged from 18 parts per trillion volume-to-volume (pptv) to 80 parts per billion volume-to-volume (ppbv). The maximal measured resolving power for our small, ambient-pressure stand-alone IMS ranged from 42 to 54, yielding an IMS resolving power efficiency, defined as Rm/Rc × 100%, of 56 to 74% of the maximal conditional resolving power possible. PMID:18683951

  19. Interpretation of Borehole Geophysical Logs at Area C, Former Naval Air Warfare Center, Warminster Township, Bucks County, Pennsylvania, 2007

    USGS Publications Warehouse

    Sloto, Ronald A.

    2008-01-01

    This study was done by the U.S. Geological Survey in cooperation with the U.S. Navy at Area C of the former Naval Air Warfare Center in Warminster Township, Bucks County, Pa., in support of hydrogeological investigations conducted by the Navy to address ground-water contamination in the Stockton Formation. Borehole geophysical logs were collected, heatpulse-flowmeter measurements were made, and borehole television surveys were run in seven boreholes ranging from 31 to 75 feet deep. Caliper logs and borehole television surveys were used to identify fractures and the location of possible water-bearing zones. Heatpulse-flowmeter measurements were used to identify fractures that were water-bearing zones. Natural-gamma and single-point-resistance logs were used to correlate lithology across the area. Elevated concentrations of tetrachloroethylene (PCE) were measured in water samples from wells with water-bearing zones in the interval of the aquifer where monitor well HN-23A is screened. Water samples from wells with water-bearing zones above or below this interval had substantially lower concentrations of PCE. Wells screened in this interval yielded less than 0.5 gallon per minute, indicating that the interval has low permeability; this may account for the small areal extent and slow migration of PCE.

  20. Crucible melts and bench-scale ISV (in situ vitrification) tests on simulated wastes in INEL (Idaho National Engineering Laboratory) soils

    SciTech Connect

    Farnsworth, R.K.; Oma, K.H.; Reimus, M.A.H.

    1990-05-01

    This report summarizes the results of eight crucible melt tests and three bench-scale in situ vitrification (ISV) test that were performed on simulated metals/soils mixtures containing actual site soils from the Idaho National Engineering Laboratory (INEL). The crucible melt and bench-scale ISV tests are a part of efforts by the Pacific Northwest Laboratory (PNL) to assist the INEL in conducting a treatability study on ISV for application to the mixed waste buried at the INEL subsurface disposal area (SDA). The crucible melt tests were performed to evaluate the effect of various chemical additives and metal oxidation techniques on soil melting temperatures, melt viscosities, metals versus electrode oxidation potentials, and metals incorporation in the glass. The bench-scale ISV tests were performed to supplement the existing ISV data base with information on certain hazardous materials that have not been adequately evaluated in previous ISV tests. These materials included five EP toxicity metals, various volatile organic materials fixed in a cementitious matrix (including carbon tetrachloride (CCl{sub 4}), trichloroethylene (TCE), and tetrachloroethylene (PCE)), and asbestos. In addition, the bench-scale test were used to evaluated the effect of the proposed chemical additive on ISV processing performance and product quality. 8 refs., 24 figs., 19 tabs.

  1. Use of Sonification for In-Well Softening of Semivolatile Organic Compounds

    SciTech Connect

    Peters, Robert W.; Manning, John L.; Ayyiliz, Onder; Wilkey, Michael L.

    2003-03-26

    This study examined an integrated sonication/vapor stripping system's ability to remove/destroy chlorinated organics from groundwater. Chlorinated solvents studied included carbon tetrachloride, trichloroethylene, trichloroethane and tetrachloroethylene. Contaminant concentrations ranged from {approx}1 to {approx}100 mg/L. The sonicator had an ultrasonic frequency of 20 kHz; applied power intensities were 12.3-, 25.3- and 35.8-W/cm2. Batch reactions were operated for up to 10 minutes treatment time, with samples drawn for GC analysis every 2 minutes. Batch experimental results were obtained using sonication, vapor stripping and combined sonication/vapor stripping. For the chlorinated solvents, the first order rate constants were in the range of 0.02 to 0.06 min-1, 0.23 to 0.53 min-1 and 0.34 to 0.90 min-1 for sonication, vapor stripping and combined sonication/vapor stripping. For the chlorinated organics (treatment time {approx}10 min.), the fraction remaining after sonication and vapor stripping ranged from 62% to 82%, while less than 3% remained from the combined sonication/vapor stripping system.

  2. Polymer coating behavior of Rayleigh-SAW resonators with gold electrode structure for gas sensor applications.

    PubMed

    Avramov, Ivan D; Länge, Kerstin; Rupp, Swen; Rapp, Bastian; Rapp, Michael

    2007-01-01

    Results from systematic polymer coating experiments on surface acoustic wave (SAW) resonators and coupled resonator filters (CRF) on ST-cut quartz with a corrosion-proof electrode structure entirely made of gold (Au) are presented and compared with data from similar SAW devices using aluminium (Al) electrodes. The recently developed Au devices are intended to replace their earlier Al counterparts in sensor systems operating in highly reactive chemical gas environments. Solid parylene C and soft poly[chlorotrifluoroethylene-co-vinylidene fluoride] (PCFV) polymer films are deposited under identical conditions onto the surface of Al and Au devices. The electrical performance of the Parylene C coated devices is monitored online during film deposition. The PCVF coated devices are evaluated after film deposition. The experimental data show that the Au devices can stand up to 40% thicker solid films for the same amount of loss increase than the Al devices and retain better resonance and phase characteristics. The frequency sensitivities of Au and Al devices to parylene C deposition are nearly identical. After coating with soft PCFV sensing film, the Au devices provide up to two times higher gas sensitivity when probed with cooling agent, octane, or tetrachloroethylene. PMID:17225810

  3. Metabolic activation of the nephrotoxic haloalkene 1,1,2-trichloro-3,3,3-trifluoro-1-propene by glutathione conjugation.

    PubMed

    Vamvakas, S; Kremling, E; Dekant, W

    1989-07-15

    1,1,2-Trichloro-3,3,3-trifluoro-1-propene (TCTFP) is structurally closely related to the stable and non-toxic tetrachloroethylene. However, in TCTFP, the trifluoromethyl group enhances chemical reactivity with nucleophiles. This fact suggested that TCTFP may be metabolized intensively by glutathione (GSH) conjugation and therefore, like hexachlorobutadiene, would be expected to be nephrotoxic. We have investigated the nephrotoxicity and metabolism of TCTFP. Administration of 20 and 40 mg/kg to male rats resulted in a large, dose-dependent increase in urinary excretion of gamma-glutamyl transpeptidase (GGT) indicative of proximal tubular damage. No increase in plasma transaminase concentrations indicative of liver damage was found. In rats, N-acetyl-S-(1,2-dichloro-3,3,3-trifluoro-1-propenyl)-L-cysteine was a major urinary metabolite of TCTFP. TCTFP was transformed by microsomal and cytosolic GSH S-transferases from rat liver to S-(1,2-dichloro-3,3,3-trifluoro-1-propenyl)glutathione (DCTFPG) (identified by NMR and mass spectrometry). DCTFPG was toxic to rat renal cortex cells. Inhibition of GGT and cysteine conjugate beta-lyase blocked DCTFPG cytotoxicity. These results suggest the following TCTFP bioactivation: conjugation with GSH in the liver, catabolism of the GSH S-conjugate to the cysteine S-conjugate and cleavage of the cysteine S-conjugate by beta-lyase with formation of reactive intermediates in the kidney. PMID:2751695

  4. A pilot study for delineation of areas contributing water to wellfields at Jackson, Tennessee

    USGS Publications Warehouse

    Broshears, R.E.; Connell, J.F.; Short, N.C.

    1991-01-01

    The U.S. Geological Survey, in cooperation with the Tennessee Department of Health and Environment, Division of Groundwater Protection, and the Jackson Utility Division, conducted a pilot study to determine data needs and the applicability of four methods for the delineation of wellhead protection areas. Jackson Utility Division in Jackson, Madison County, Tennessee, pumps about 9 million gallons of ground water daily from two municipal wellfields that tap an unconfined sand aquifer. Under natural hydraulic gradients, ground waterflows southward toward the South Wellfield at approximately 2 to 3 feet per day; natural flow toward the North Wellfield from the east at 1 to 2 feet per day. Water quality generally is suitable for most uses. Concentrations of dissolved solids are low, and excessive iron is the only significant naturally occurring water-quality problem. However, trace concentrations of volatile organic compounds have been detected in water pumps from the South Wellfield; the highest concentration of a single compound has been 23 micrograms per liter of tetrachloroethylene. Potential sources of ground-water contamination in the Jackson area include a hazardous-waste site, municipal and industrial landfill, and underground-storage tanks. Some of the four method for delineating wellhead protection areas did not adequately describe zones contributing flow to the wellfields. Calculations based on a uniform flow equation provided a preliminary delineation of zones of contribution for the wellfields and ground-water time-of-travel contours. Limitations of the applied methods motivated the design of a more rigorous hydrogeologic investigation.

  5. Uptake and fate of organohalogens from contaminated groundwater in woody plants

    SciTech Connect

    Sytsma, L.; Mulder, J.; Schneider, J.

    1997-12-31

    The emerging technology of phytoremediation uses green plants for low-cost, low-tech remediation processes in which selected plants and natural or engineered microorganisms work together to metabolize, convert, absorb, accumulate, sequester, or otherwise render harmless multiple environmental contaminants. For many organic contaminants, such as tricholoroethylene (TCE) and tetrachloroethylene (PCE), there is evidence that plants can degrade a portion of the organohalogen that is taken up to form less volatile compounds, such as trichloroacetic acid (TCAA), which are sequestered in the plant tissue while the remainder is passed out of the leaf tissue with the transpiration stream. Analysis of leaves from trees in uncontaminated areas gives TCAA concentrations that are typically under 100 ng/g TCAA, while in contaminated areas concentrations run as high as 1,000 ng/g. Hybrid poplar plants fed by TCE- and PCE-spiked nutrient solutions in a greenhouse showed elevated TCAA levels in the leaves within a week, as well as evidence for evapotranspiration of the TCE and PCE.

  6. Metallurgical Laboratory Hazardous Waste Management Facility groundwater monitoring report. Third quarter, 1994

    SciTech Connect

    Not Available

    1994-12-01

    During third quarter 1994, samples from AMB groundwater monitoring wells at the Metallurgical Laboratory Hazardous Waste Management Facility (Met Lab HWMF) were analyzed for selected heavy metals, indicator parameters, radionuclides, volatile organic compounds, and other constituents. Eight parameters exceeded standards during the quarter. As in previous quarters, tetrachloroethylene and trichloroethylene exceeded final Primary Drinking Water Standards (PDWS). Bis(2-ethylhexyl) phthalate exceeded final PDWS in one well. Aluminum, iron, manganese, tin, and total organic halogens exceeded the Savannah River Site (SRS) Flag 2 criteria. Groundwater flow direction and rate in the M-Area Aquifer Zone were similar to previous quarters. Conditions affecting determination of groundwater flow directions and rates in the Upper Lost Lake Aquifer Zone, Lower Lost Lake Aquifer Zone, and the Middle Sand Aquifer Zone of the Crouch Branch Confining Unit were also similar to previous quarters. During second quarter 1994, SRS received South Carolina Department of Health and Environmental Control approval for constructing five point-of-compliance wells and two plume definition wells near the Met Lab HWMF. This project began in July 1994 and is complete; however, analytical data from these wells is not available yet.

  7. A national reconnaissance for pharmaceuticals and other organic wastewater contaminants in the United States - II) Untreated drinking water sources

    USGS Publications Warehouse

    Focazio, M.J.; Kolpin, D.W.; Barnes, K.K.; Furlong, E.T.; Meyer, M.T.; Zaugg, S.D.; Barber, L.B.; Thurman, M.E.

    2008-01-01

    Sixty-three of the 100 targeted chemicals were detected in at least one water sample. Interestingly, in spite of the low detection levels 60% of the 36 pharmaceuticals (including prescription drugs and antibiotics) analyzed were not detected in any water sample. The five most frequently detected chemicals targeted in surface water were: cholesterol (59%, natural sterol), metolachlor (53%, herbicide), cotinine (51%, nicotine metabolite), β-sitosterol (37%, natural plant sterol), and 1,7-dimethylxanthine (27%, caffeine metabolite); and in ground water: tetrachloroethylene (24%, solvent), carbamazepine (20%, pharmaceutical), bisphenol-A (20%, plasticizer), 1,7-dimethylxanthine (16%, caffeine metabolite), and tri (2-chloroethyl) phosphate (12%, fire retardant). A median of 4 compounds were detected per site indicating that the targeted chemicals generally occur in mixtures (commonly near detection levels) in the environment and likely originate from a variety of animal and human uses and waste sources. These data will help prioritize and determine the need, if any, for future occurrence, fate and transport, and health-effects research for subsets of these chemicals and their degradates most likely to be found in water resources used for drinking water in the United States.

  8. Immobilization of proteins on glow discharge treated polymers

    NASA Astrophysics Data System (ADS)

    Kiaei, D.; Safranj, A.; Chen, J. P.; Johnston, A. B.; Zavala, F.; Deelder, A.; Castelino, J. B.; Markovic, V.; Hoffman, A. S.

    Certain glow discharge-treated surfaces have been shown to enhance retention of adsorbed proteins. On the basis of this phenomenon, we have investigated the possibility of immobilizing (a) albumin for developing thromboresistant and non-fouling surfaces, (b) antibodies for immuno-diagnostic assays and (c) enzymes for various biosensors and industrial bioprocesses. Albumin retention was highest on surfaces treated with tetrafluoroethylene (TFE) compared to untreated surfaces or other glow discharge treatments studied. Preadsorption of albumin on TFE-treated surfaces resulted in low fibrinogen adsorption and platelet adhesion. IgG retention was also highest on TFE-treated surfaces. The lower detection limits of both malaria antigen and circulating anodic antigen of the schistosomiasis worm were enhanced following glow discharge treatment of the assay plates with TFE. Both TFE and tetrachloroethylene (TCE) glow discharge treated surfaces showed high retention of adsorbed horseradish peroxidase (HRP). However, the retained specific activity of HRP after adsorption on TCE-treated surfaces was remarkably higher than on TFE-treated surfaces.

  9. Modeling human exposure to hazardous-waste sites: A question of completeness

    SciTech Connect

    Daniels, J.I.; McKone, T.E.

    1991-06-01

    In risk analysis, we use human-exposure assessments to translate contaminant sources into quantitative estimates of the amount of contaminant that comes in contact with human-environment boundaries, that is, the lungs, the gastrointestinal tract, and the skin surface of individuals within a specified population. An assessment of intake requires that we determine how much crosses these boundaries. Exposure assessments often rely implicitly on the assumption that exposure can be linked by simple parameters to ambient concentrations in air, water, and soil. However, more realistic exposure models require that we abandon such simple assumptions. To link contaminant concentrations in water, air, or soil with potential human intakes, we construct pathway-exposure factors (PEFs). For each PEF we combine information on environmental partitioning as well as human anatomy, physiology, and behavior patterns into an algebraic term that converts concentrations of contaminants into a daily intake per unit body weight in mg/kg-d for a specific route of exposure such as inhalation, ingestion, or dermal uptake. Using examples involving human exposure to either a radionuclide (tritium, {sup 3}H) or a toxic organic chemical (tetrachloroethylene, PCE) in soil, water, and air, we illustrate the use of PEFs and consider the implications for risk assessment. 12 refs., 4 tabs.

  10. Alterations of phytoplankton assemblages treated with chlorinated hydrocarbons: effects of dominant species sensitivity and initial diversity.

    PubMed

    Bácsi, István; Gonda, Sándor; B-Béres, Viktória; Novák, Zoltán; Nagy, Sándor Alex; Vasas, Gábor

    2015-05-01

    Changes in composition of phytoplankton assemblages due to short-chained chlorinated hydrocarbons (tetrachloroethane, tetrachloroethylene and trichloroethylene) were studied in microcosm experiments with different initial diversities. Diversity decreased further during treatments in the less diverse 2011 summer assemblages, dominated by the euglenid Trachelomonas volvocinopsis (its relative abundance was nearly 70 %). Diversity did not change significantly during treatments in the more diverse 2012 summer assemblages, dominated by cryptomonads (their relative abundance was 40 %). The dominant Trachelomonas volvocinopsis in 2011, due to its insensitivity to the treatment and presumably high competition skills, filled released habitats occurring when sensitive species were not detectable any more. In contrast, cryptomonads were extremely sensitive to the treatments, their abundance decreased under detection limit in the treated assemblages, regardless of diversity conditions. Our results showed that population dynamics of dominant species determine the response to the contamination of the entire community, if these species display high resistance or resilience. If the dominant species was highly sensitive and recovered slowly, compensatory growth of rare species maintained high levels of ecosystem performance. PMID:25680969

  11. Synergistic and antagonistic effects on genotoxicity of chemicals commonly found in hazardous waste sites

    SciTech Connect

    Ma, T.H.; Sandhu, S.S.; Peng, Y.; Chen, T.D.; Kim, T.W.

    1992-01-01

    Synergistic and antagonistic effects on genotoxicity of mixtures of four chemicals; i.e., lead tetraacetate (LTA), arsenic trioxide (ATO), dieldrin (DED), and tetrachloroethylene (TCE), were evaluated by the Tradescantia-micronucleus (Trad-MCN) assay. The chemicals were mixed in ratios of 1:1, 1:2 and 2:1 for mixtures of two chemicals and 1:1:1 each for three chemicals. The concentration of stock solution of these chemicals was around the minimum effective dose (MED) or below the MED for these chemicals as reported by Sandhu et al. (1989). Treatments were applied to plant cuttings by hydroponic uptake of the mixed solutions through the stems of the plant for 30 h followed by fixation of the flower buds in aceto-alcohol (1:3 ratio) without a recovery period. Microslides were prepared for scoring MCN frequencies. Results of two series of repeated experiments indicated that all mixtures of LTA/ATO exhibited antagonistic effects. On the other hand, all mixtures of TCE and DED exhibited synergistic effect. These data indicate that for evaluating biological hazards at chemical waste sites, it is prudent to evaluate the genotoxicity of complex chemical mixtures as these exist in nature because the biological effects based on evaluating individual chemicals may not be true predictors of the interactive effects of the pollutants.

  12. Well venting and application of passive soil vapor extraction at Hanford and Savannah River

    SciTech Connect

    Rohay, V.J.; Rossabi, J.; Looney, B.; Cameron, R.; Peters, B.

    1993-09-01

    At the Hanford and Savannah River Sites, wells with open intervals in the unsaturated zone have been observed to {open_quotes}breathe{close_quotes}, i.e., to inhale ambient air from the surface and to exhale soil gas to the atmosphere. This breathing results primarily from the difference in pressure that develops between the soil pressure near the open interval of a well and the barometric pressure. Volatile organic compounds (VOC) have been identified at both Hanford (carbon tetrachloride) and Savannah River (trichloroethylene and tetrachloroethylene). Passive vapor extraction (PVE) refers to the enhancement and application of this natural breathing phenomenon as a remediation method for increased VOC removal rates from the unsaturated zone. Passive vapor extraction is proposed as a complementary technology to be used with active vapor extraction (AVE). The AVE system would be used to extract soil gas from the high VOC concentration, highly permeable zones. The enhanced PVE would be used to address those zones of lower VOC concentration and those zones where extraction is limited by mass transfer and diffusion. The primary advantages of PVE application are low capital costs and minimal operating costs. This combination allows for many small PVE systems to be placed on individual wells and for the systems to operate for the extended periods of time associated with remediation of sites in which soil-gas transport is diffusion limited.

  13. Development of a method for assessing the toxicity of volatile organic contaminants (VOCs) to soil biota

    SciTech Connect

    Cureton, P.M.; Lintott, D.; Balch, G.; Goudey, S.

    1994-12-31

    A method was developed to assess the toxicity of VOCs to plants and earthworms (survival of Eisenia foetida). The procedures followed were based on Greene et al. Gas samples for head space analyses were removed, at test initiation a termination, through a bulkhead fitting in the lid equipped with septa. Treatment levels were prepared, at low temperature to minimize volatilization, by spiking a soil sample with the compound of interest and then serially diluting it with clean soil. Root elongation tests were conducted on filter paper supported by 70 mesh silica sand spiked with the volatile of interest. Soils were then inundated with water, shaken with heating, and the headspace reanalyzed for the total contaminant concentration in the test system (total equals headspace plus adsorbed). Enclosing the seeds and worms in containers did not appear to have detrimental effects. VOCs tested included benzene, xylene, toluene, ethylbenzene, tetrachloroethylene, and 1,1,2-trichloroethylene. Each test was repeated three times with different batches of soil, seed lots and worms from different colonies. Endpoints derived based on nominal and measured concentrations included: NOEC, LOEC, LC{sub 50} and LC{sub 25} for earthworm mortality and EC{sub 50} and EC{sub 25} for emergence and root elongation.

  14. Electron donor preference of a reductive dechlorinating consortium

    USGS Publications Warehouse

    Lorah, M.M.; Majcher, E.; Jones, E.; Driedger, G.; Dworatzek, S.; Graves, D.

    2005-01-01

    A wetland sediment-derived microbial consortium was developed by the USGS and propagated in vitro to large quantities by SiREM Laboratory for use in bioaugmentation applications. The consortium had the capacity to completely dechlorinate 1,1,2,2-tetrachloroethene, tetrachloroethylene, trichloroethylene, 1,1,2-trichloroethane, cis- and trans-1,2-dichoroethylene, 1.1-dichloroethylene, 1,2-dichloroethane, vinyl chloride, carbon tetrachloride and chloroform. A suite of electron donors with characteristics useful for bioaugmentation applications was tested. The electron donors included lactate (the donor used during WBC-2 development), ethanol, chitin (Chitorem???), hydrogen releasing compound (HRC???), emulsified vegetable oil (Newman Zone???), and hydrogen gas. Ethanol, lactate, and chitin were particularly effective with respect to stimulating, supporting, and sustaining reductive dechlorination of the broad suite of chemicals that WBC-2 biodegraded. Chitorem??? was the most effective "slow release" electron donor tested. This is an abstract of a paper presented at the Proceedings of the 8th International In Situ and On-Site Bioremediation Symposium (Baltimore, MD 6/6-9/2005).

  15. Six interaction profiles for simple mixtures.

    PubMed

    Pohl, Hana R; Roney, Nickolette; Wilbur, Sharon; Hansen, Hugh; De Rosa, Christopher T

    2003-10-01

    The Agency for Toxic Substances and Disease Registry (ATSDR) has a program for chemical mixtures that encompasses research on chemical mixtures toxicity, health risk assessment, and development of innovative computational methods. ATSDR prepared a guidance document that instructs users on how to conduct health risk assessment on chemical mixtures (Guidance Manual for the Assessment of Joint Toxic Action of Chemical Mixtures). ATSDR also developed six interaction profiles for chemical mixtures. Two profiles were developed for persistent environmental chemicals that are often found in contaminated fish and also can be detected in human breast milk. The mixture included chlorinated dibenzo-p-dioxins, hexachlorobenzene, dichlorodiphenyl dichloroethane, methyl mercury, and polychlorinated biphenyls. Two profiles each were developed for mixtures of metals and mixtures of volatile organic chemicals (VOCs) that are frequently found at hazardous waste sites. The two metal profiles dealt with (a) lead, manganese, zinc, and copper; and (b) arsenic, cadmium, chromium, and lead; the two VOCs mixtures dealt with (a) 1,1,1-trichloroethane, 1,1-dichloroethane, trichloroethylene, and tetrachloroethylene; and (b) benzene, ethylbenzene, toluene, and xylenes (BTEX). Weight-of-evidence methodology was used to assess the joint toxic action for most of the mixtures. Physiologically based pharmacokinetic modeling was used for BTEX. In most cases, a target-organ toxicity dose modification of the hazard index approach is recommended for conducting exposure-based assessments of noncancer health hazards. PMID:12892681

  16. Improved analysis of volatile halogenated hydrocarbons in water by purge-and-trap with gas chromatography and mass spectrometric detection.

    PubMed

    Zoccolillo, Lelio; Amendola, Luca; Cafaro, Claudia; Insogna, Susanna

    2005-06-10

    An analytical system composed of a purge-and-trap injection system coupled to gas chromatography with mass spectrometric detection (PTI-GC-MS) specific for the analysis of volatile chlorinated hydrocarbons (VCHCs) (chloroform; 1,1,1-trichloroethane; tetrachloromethane; 1,1,2-trichloroethylene; tetrachloroethylene) and trihalomethanes (THMs) (chloroform; bromodichloromethane; dibromochloromethane; bromoform) in water was optimised. Samples were purged and trapped in a cold trap (-100 degrees C) fed with liquid nitrogen (cryo-concentration). In order to make this method suitable also for only slightly contaminated waters, some modifications were made to PTI sample introduction, in order to avoid any air intake into the system. PTI, GC and MS conditions were optimised for halogenated compound analysis and limits of detection (LOD) were evaluated. The proposed method allows analysis of samples whose concentrations range from microg/L to ng/L. It is, therefore, applicable to drinking waters, in analyses required by law, and to slightly contaminated aqueous matrices, such as those found in remote areas, in environmental monitoring. Moreover, by changing cold trap temperature, even sparkling mineral waters can be analysed, thus avoiding CO2 interference during the cryo-concentration phase. Our method has been successfully used on real samples: tap water, mineral water and Antarctic snow. PMID:16001554

  17. FIELD SCREENING FOR HALOGENATED VOLATILE ORGANIC COMPOUNDS

    SciTech Connect

    John F. Schabron; Joseph F. Rovani Jr.; Theresa M. Bomstad

    2002-06-01

    Western Research Institute (WRI) initiated exploratory work towards the development of new field screening methodology and a test kit to measure halogenated volatile organic compounds (VOCs) in the field. Heated diode and corona discharge sensors are commonly used to detect leaks of refrigerants from air conditioners, freezers, and refrigerators. They are both selective to the presence of carbon-halogen bonds. Commercially available heated diode and corona discharge leak detectors were procured and evaluated for halogenated VOC response. The units were modified to provide a digital readout of signal related to VOC concentration. Sensor response was evaluated with carbon tetrachloride and tetrachloroethylene (perchloroethylene, PCE), which represent halogenated VOCs with and without double bonds. The response characteristics were determined for the VOCs directly in headspace in Tedlar bag containers. Quantitation limits in air were estimated. Potential interferences from volatile hydrocarbons, such as toluene and heptane, were evaluated. The effect of humidity was studied also. The performance of the new devices was evaluated in the laboratory by spiking soil samples and monitoring headspace for halogenated VOCs. A draft concept of the steps for a new analytical method was outlined. The results of the first year effort show that both devices show potential utility for future analytical method development work towards the goal of developing a portable test kit for screening halogenated VOCs in the field.

  18. DESORPTION BEHAVIOR OF TRICHLOROETHENE AND TETRACHLOROETHENE IN U.S. DEPARTMENT OF ENERGY SAVANNAH RIVER SITE UNCONFINED AQUIFER SEDIMENTS

    SciTech Connect

    Vangelas, K; Robert G. Riley, R; James E. Szecsody, J; A. V. Mitroshkov, A; C. F. Brown, C; Brian02 Looney, B

    2007-01-10

    Sorption is governed by the physico-chemical processes that partition solutes between the aqueous and solid phases in aquifers. For environmental systems, a linear equilibrium relationship between the amount of contaminant in the alternative phases is often assumed. In this traditional approach, the distribution coefficient, or K{sub d}, is a ratio of contaminant associated with the solid phase to the contaminant in the water phase. Recent scientific literature has documented time-dependant behaviors in which more contaminant mass is held in the solid phase than predicted by the standard model. Depending on the specific conceptualization, this has been referred to as nonlinear sorption, time-variable sorption, or ''irreversible sorption''. The potential impact of time-variable sorption may be beneficial or detrimental depending on the specific conditions and remediation goals. Researchers at the Pacific Northwest National Laboratory (PNNL) have been studying this process to evaluate how various soil types will affect this process for sites contaminated with chlorinated solvents. The results described in this report evaluate sorption-desorption of trichloroethylene (TCE) and tetrachloroethylene (PCE) in Savannah River Site (SRS) soils. The results of this study will be combined with ongoing PNNL research to provide a more comprehensive look at this process and its impact on contaminant plume stability and sustainability. Importantly, while the results of the study documented differences in sorption properties between two tested SRS soils, the data indicated that ''irreversible sorption'' is not influencing the sorption-desorption behaviors of TCE and PCE for these soils.

  19. The Site of Oxygen Limitation in Soybean Nodules1

    PubMed Central

    Kuzma, Monika M.; Winter, Heike; Storer, Paul; Oresnik, Ivan; Atkins, Craig A.; Layzell, David B.

    1999-01-01

    In legume nodules the [O2] in the infected cells limits respiration and nitrogenase activity, becoming more severe if nodules are exposed to subambient O2 levels. To identify the site of O2 limitation, adenylate pools were measured in soybean (Glycine max) nodules that were frozen in liquid N2 before being ground, lyophilized, sonicated, and separated on density gradients of nonaqueous solvents (heptane/tetrachloroethylene) to yield fractions enriched in bacteroid or plant components. In nodules maintained in air, the adenylate energy charge (AEC = [ATP + 0.5 ADP]/[ATP + ADP + AMP]) was lower in the plant compartment (0.65 ± 0.04) than in the bacteroids (0.76 ± 0.095), but did not change when the nodulated root system was exposed to 10% O2. In contrast, 10% O2 decreased the bacteroid AEC to 0.56 ± 0.06, leading to the conclusion that they are the primary site of O2 limitation in nodules. To account for the low but unchanged AEC in the plant compartment and for the evidence that mitochondria are localized in O2-enriched microenvironments adjacent to intercellular spaces, we propose that steep adenylate gradients may exist between the site of ATP synthesis (and ADP use) in the mitochondria and the extra-mitochondrial sites of ATP use (and ADP production) throughout the large, infected cells. PMID:9952434

  20. Occurrence of organic wastewater contaminants, pharmaceuticals, and personal care products in selected water supplies, Cape Cod, Massachusetts, June 2004

    USGS Publications Warehouse

    Zimmerman, Marc J.

    2005-01-01

    In June 2004, the U.S. Geological Survey, in cooperation with the Barnstable County Department of Health and Environment, sampled water from 14 wastewater sources and drinking-water supplies on Cape Cod, Massachusetts, for the presence of organic wastewater contaminants, pharmaceuticals, and personal care products. The geographic distribution of sampling locations does not represent the distribution of drinking-water supplies on Cape Cod. The environmental presence of the analyte compounds is mostly unregulated; many of the compounds are suspected of having adverse ecological and human health effects. Of the 85 different organic analyte compounds, 43 were detected, with 13 detected in low concentrations (less than 1 microgram per liter) from drinking-water supplies thought to be affected by wastewater because of previously detected high nitrate concentrations. (Phenol and d-limonene, detected in equipment blanks at unacceptably high concentrations, are not included in counts of detections in this report.) Compounds detected in the drinking-water supplies included the solvent, tetrachloroethylene; the analgesic, acetaminophen; the antibiotic, sulfamethoxazole; and the antidepressant, carbamazapine. Nitrate nitrogen, an indicator of wastewater, was detected in water supplies in concentrations ranging from 0.2 to 8.8 milligrams per liter.

  1. Source proximity and outdoor-residential VOC concentrations: results from the RIOPA study.

    PubMed

    Kwon, Jaymin; Weisel, Clifford P; Turpin, Barbara J; Zhang, Junfeng; Korn, Leo R; Morandi, Maria T; Stock, Thomas H; Colome, Steven

    2006-07-01

    Ambient volatile organic compound concentrations outside residences were measured in Elizabeth, New Jersey as part of the Relationship of Indoor, Outdoor, and Personal A:r (RIOPA) study to assess the influence of proximity of the residences to known ambient emissions sources. The closest distances between the outdoor samplers and emission sources were determined using Geographic Information Systems (GIS)techniques. Multiple regression models were developed for residential ambient concentrations of aromatic hydrocarbons (BTEX), methyl tert butyl ether (MTBE), and tetrachloroethylene (PCE). The natural log transformed ambient concentrations of BTEX were inversely associated with distances to major roadways with high traffic densities and gasoline stations, atmospheric stability, temperature, and wind speed. Ambient MTBE levels were associated with inverse distance to gas stations and interstate highways. Residential ambient PCE concentration was inversely associated with distance to dry cleaning facilities, atmospheric stability, temperature, wind speed, and relative humidity. The linear regression models that include proximity to emission sources and meteorological variables explained 16-45% of the overall variation of ambient residential VOC concentrations. Meteorological conditions, especially atmospheric stability and temperature, explained 60-90% of the total variation in the regression models. The residential ambient air concentrations were 1.5-4 times higher than the urban background levels outside homes very close (<50 m) to ambient emission sources where approximately 7% of the population live. However, the relative increase of risk for disease is small and variations in air concentration in the background urban atmosphere are greater than those from the proximity to roadways. PMID:16856719

  2. Preliminary Engineering Report contaminated groundwater seeps 317/319/ENE area

    SciTech Connect

    1996-10-01

    When the Resource Conservation and Recovery Act Facility Investigation (RFI) in the 317/319/ENE Area of Argonne National Laboratory-East (ANL-E) was being completed, groundwater was discovered moving to the surface through a series of seeps. The seeps are located approximately 600 ft south of the ANL fence line in Waterfall Glen Forest Preserve. Samples of this water were collected and analyzed for selected parameters. Two of five seeps sampled were found to contain detectable levels of organic contaminants. Three chemical species were identified: chloroform (14-25 {mu}g/L), carbon tetrachloride (56-340 {mu}g/L), and tetrachloroethylene (3-6 {mu}g/L). The other seeps did not contain detectable levels of volatile organic compounds (VOCs). The water issuing from these two contaminated seeps flows into a narrow ravine, where it is visible as a trickle of water flowing through sand and gravel deposits on the floor of the ravine. Approximately 100-ft downstream of the seep area, the contaminated water is no longer visible, having drained back into the soil in the bed of the ravine. Figure 1 shows the location of the 317/319/ENE Area in relation to the ANL-E site and the Waterfall Glen Forest Preserve.

  3. Contaminant flux response to source zone remediation at dry cleaner site

    NASA Astrophysics Data System (ADS)

    Annable, M. D.; Sillan, R. K.; Cho, J.; Hatfield, K.

    2003-04-01

    The quantification of contaminant mass flux is emerging as an alternative approach to assessing sites with source zone contaminants. Mass flux emanating from a source can serve as a performance metric for technologies aimed at source zone management. The link between source zone remediation and contaminant plume response is being explored and a key to this link is the mass flux leaving the source zone. Unfortunately there is little field data to help define this linkage. Mass flux from source zones is rarely measured and long term monitoring following source zone remediaiton is typically inadequate. The Sages dry cleaner site in Jacksonville Florida is an exception where a cosolvent flood was conducted in 1998 and extensive monitoring continues. The monitoring network includes multilevel samplers in the source zone and along a transect located downgradient. This transect provides data needed to assess contaminant mass flux during the four years following the cosolvent flood. Tetrachloroethylene and degradation byproducts were monitored along with residual ethanol from the cosolvent flood. The changes in the mass flux associated with these constituents, along with mass removal assessed during the cosolvent flood, are use to provide insight on the relationship between mass removal and mass flux at this site. Issues associated with estimating mass flux using multilevel sampler transects will be discussed along with alternative methods for flux measurement.

  4. Different behavioral effect dose–response profiles in mice exposed to two-carbon chlorinated hydrocarbons: Influence of structural and physical properties

    SciTech Connect

    Umezu, Toyoshi Shibata, Yasuyuki

    2014-09-01

    The present study aimed to clarify whether dose–response profiles of acute behavioral effects of 1,2-dichloroethane (DCE), 1,1,1-trichloroethane (TCE), trichloroethylene (TRIC), and tetrachloroethylene (PERC) differ. A test battery involving 6 behavioral endpoints was applied to evaluate the effects of DCE, TCE, TRIC, and PERC in male ICR strain mice under the same experimental conditions. The behavioral effect dose–response profiles of these compounds differed. Regression analysis was used to evaluate the relationship between the dose–response profiles and structural and physical properties of the compounds. Dose–response profile differences correlated significantly with differences in specific structural and physical properties. These results suggest that differences in specific structural and physical properties of DCE, TCE, TRIC, and PERC are responsible for differences in behavioral effects that lead to a variety of dose–response profiles. - Highlights: • We examine effects of 4 chlorinated hydrocarbons on 6 behavioral endpoints in mice. • The behavioral effect dose–response profiles for the 4 compounds are different. • We utilize regression analysis to clarify probable causes of the different profiles. • The compound's physicochemical properties probably produce the different profiles.

  5. Development of a simplified chlorinated hydrocarbon screening technique for water and sediment

    SciTech Connect

    Templet, P.H.

    1984-08-01

    The development of a simple screening technique for chlorinated hydrocarbons in water and sediment was undertaken. Extraction and concentration techniques were used as an alternative to the present costly and time-consuming methods. Water samples spiked with known amounts of six chlorinated hydrocarbons were passed through Sep-Paks, a Waters Assocs. C-18 disposable column, and the adsorbed compounds eluted with methanol. The methanol extract was analyzed directly by furnace evaporation and decomposition into a microcoulometer cell and reported as total organic halide (TOX). Recoveries were variable and were a function of the Sep-Pak loading, concentration, and volume of samples and type of chlorinated hydrocarbon. Chlorinated phenols exhibited the best recoveries (100%) and volatile compounds the worst (20%). The technique offers promise as a qualitative screening procedure for natural waters. Dried sediment were spiked with known amounts of the same six chlorinated hydrocarbons, extracted with hexane and analyzed for TOX using furnace microcoulometry. Sediments run directly without the extraction step exhibited interferences from naturally occurring sulfur compounds and inorganic chlorides. The extraction step affords an additionally opportunity for a 100-fold concentration. Recoveries ranged from 100% (PCB and chlorophenols) to 20-30% (tetrachloroethylene and chloroform) for volatile compounds. The lower recoveries may never be encountered in field samples since volatiles may have already been evaporated from the sediment or soil.

  6. Time scales of DNAPL migration in sandy aquifers examined via numerical simulation

    SciTech Connect

    Gerhard, J.I.; Pang, T.; Kueper, B.H.

    2007-03-15

    The time required for dense nonaqueous phase liquid (DNAPL) to cease migrating following release to the subsurface is a valuable component of a site conceptual model. This study uses numerical simulation to investigate the migration of six different DNAPLs in sandy aquifers. The most influential parameters governing migration cessation time are the density and viscosity of the DNAPL and the mean hydraulic conductivity of the aquifer. Releases of between 1 and 40 drums of chlorinated solvent DNAPLs, characterized by relatively high density and low viscosity, require on the order of months to a few years to cease migrating in a heterogeneous medium sand aquifer having an average hydraulic conductivity of 7.4 x 10{sup -3} cm/s. In contrast to this, the release of 20 drums of coal tar {rho}{sub D} = 1061 kg/m{sup 3}, {mu}{sub D} = 0.161 Pa(.)s) requires more than 100 years to cease migrating in the same aquifer. Altering the mean hydraulic conductivity of the aquifer results in a proportional change in cessation times. Parameters that exhibit relatively little influence on migration time scales are the DNAPL-water interfacial tension, release volume, source capillary pressure, mean aquifer porosity, and ambient ground water hydraulic gradient. This study also demonstrates that low-density DNAPLs (e.g., coal tar) give rise to greater amounts of lateral spreading and greater amounts of pooling on capillary barriers than high-density DNAPLs such as trichloroethylene or tetrachloroethylene.

  7. Permeable Adsorptive Barrier (PAB) for the remediation of groundwater simultaneously contaminated by some chlorinated organic compounds.

    PubMed

    Erto, A; Bortone, I; Di Nardo, A; Di Natale, M; Musmarra, D

    2014-07-01

    In this paper, a Permeable Reactive Barrier (PRB) made with activated carbon, namely a Permeable Adsorptive Barrier (PAB), is put forward as an effective technique for the remediation of aquifers simultaneously contaminated by some chlorinated organic compounds. A design procedure, based on a computer code and including different routines, is presented as a tool to accurately describe mass transport within the aquifer and adsorption/desorption phenomena occurring inside the barrier. The remediation of a contaminated aquifer near a solid waste landfill in the district of Napoli (Italy), where Tetrachloroethylene (PCE) and Trichloroethylene (TCE) are simultaneously present, is considered as a case study. A complete hydrological and geotechnical site characterization, as well as a number of dedicated adsorption laboratory tests for the determination of activated carbon PCE/TCE adsorption capacity in binary systems, are carried out to support the barrier design. By means of a series of numerical simulations it is possible to determine the optimal barrier location, orientation and dimensions. PABs appear to be an effective remediation tool for the in-situ treatment of an aquifer contaminated by PCE and TCE simultaneously, as the concentration of both compounds flowing out of the barrier is everywhere lower than the regulatory limits on groundwater quality. PMID:24747934

  8. A procedure to design a Permeable Adsorptive Barrier (PAB) for contaminated groundwater remediation.

    PubMed

    Erto, A; Lancia, A; Bortone, I; Di Nardo, A; Di Natale, M; Musmarra, D

    2011-01-01

    A procedure to optimize the design of a Permeable Adsorptive Barrier (PAB) for the remediation of a contaminated aquifer is presented in this paper. A computer code, including different routines that describe the groundwater contaminant transport and the pollutant capture by adsorption in unsteady conditions over the barrier solid surface, has been developed. The complete characterization of the chemical-physical interactions between adsorbing solids and the contaminated water, required by the computer code, has been obtained by experimental measurements. A case study in which the procedure developed has been applied to a tetrachloroethylene (PCE)-contaminated aquifer near a solid waste landfill, in the district of Napoli (Italy), is also presented and the main dimensions of the barrier (length and width) have been evaluated. Model results show that PAB is effective for the remediation of a PCE-contaminated aquifer, since the concentration of PCE flowing out of the barrier is everywhere always lower than the concentration limit provided for in the Italian regulations on groundwater quality. PMID:20846781

  9. Test plan for single well injection/extraction characterization of DNAPL

    SciTech Connect

    Looney, B.B.; Jerome, K.M.; Burdick, S.; Rossabi, J.; Jarosch, T.R.; Eddy-Dilek, C.A.

    1995-12-01

    Soils and groundwater beneath an abandoned Process sewer line in the A/M Area of the Savannah River Site (SRS) contain elevated levels of volatile organic compounds, specifically trichloroethylene (TCE) and tetrachloroethylene (PCE), two common chlorinated solvents. These compounds have low aqueous solubilities, thus when released to the subsurface in sufficient quantity, tend to exist as immiscible fluids or nonaqueous phase liquids (NAPLs). Because chlorinated solvents are also denser than water, they are referred to by the acronym DNAPLS, or dense non aqueous Phase liquids. Technologies targeted at the efficient characterization or removal of DNAPL are not currently proven. For example, most DNAPL studies rely on traditional soil and water sampling and the fortuitous observation of immiscible solvent. Once DNAPL is identified, soil excavation (which is only applicable to small contained spill sites) is the only ``proven`` cleanup method. New cleanup approaches based on enhanced removal by surfactants and/or alcohols have been proposed and tested at the pilot scale. As described below, carefully designed experiments similar to the enhanced removal methods may provide important characterization information on DNAPLs.

  10. Recommended Canadian soil quality guidelines

    SciTech Connect

    1997-12-31

    This document introduces a new set of Canadian soil quality guidelines derived specifically for the protection of ecological receptors in the environment or for the protection of human health associated with four land uses: Agricultural, residential/parkland, commercial, and industrial. Environmental soil quality guidelines are derived using toxicological data to determine the threshold level on key receptors. Another derivation procedure based on soil and food ingestion is also applied in the case of agricultural land use. Derivation of human health guidelines is based on a different procedure using steps similar to those employed in a site-specific risk assessment. Direct and indirect soil exposure pathways (such as leaching into groundwater) are considered through the use of check mechanisms. The soil quality guidelines are presented on a chemical by chemical basis in a summarized fact sheet format, including information on properties, sources, Canadian production and uses, environmental fate and behaviour, and toxicity. Substances for which guidelines are given include arsenic, benzene, metals, naphthalene, phenol, xylene, ethylene glycol, tetrachloroethylene, and toluene.

  11. Demonstration and evaluation of the pulsed ultraviolet-irradiation gas-treatment system, Savannah River Site

    SciTech Connect

    Schneider, J.; Wilkey, M.; Peters, R.; Tomczyk, N.; Friedlund, J.; Farber, P.; Mass, B.; Haag, W.

    1994-10-01

    Argonne National Laboratory was asked to demonstrate and evaluate a pulsed ultraviolet-irradiation system developed by Purus, Inc., at the Volatile Organic Compounds Non-Arid Integrated Demonstration at the Savannah River Site near aiken, South Carolina. The Purus system consists of four reactor chambers, each containing a xenon flash lamp. During the two weeks of testing, samples were taken and analyzed from the inlet and outlet sides of the Purus system. The contaminants of concern on the inlet were tetrachloroethylene (PCE), trichloroethylene (TCE), and 1,1,1-trichloroethane (TCA); the contaminants of concern on the outlet were PCE, TCE, TCA, carbon tetrachloride (CT), and chloroform. The evaluation of the Purus system included an examination of the reduction of both TCE and PCE and a search for any change in the concentrations. (Operating conditions included flow rates, ranging from 25 to 100 standard cubic feet per minute; inlet concentration of PCE, ranging from 360 to 10,700 parts per million volume; and flash lamp rates, ranging from 1 to 30 hertz.) The Purus system was quite efficient at reducing the concentrations of both PCE and TCE. The potential by-products, TCA, CT, and chloroform, showed no significant increases throughout the range of the various operating parameters. Overall, the Purus system appears to be a cost-efficient means of reducing the concentrations of PCE and TCE, while the removal of the initial photo-oxidation products and TCA is slower and needs further evaluation.

  12. By-products of oxidation processes in water and wastewater treatment

    SciTech Connect

    Glaze, H.; Le Lacheur, R.M.; Pullin, J.J.

    1995-12-31

    In a series of papers beginning with the seminal article in Science in 1975, Hoigne and co-workers developed the concept that ozone chemistry in the aqueous phase was fundamentally different from ozone chemistry in non-aqueous solvents or in the gas phase. The distinction is due to the formation of reactive intermediates formed when ozone decomposes in water, a phenomenon which Hoigne et al. also elucidated in subsequent papers. Since this pioneering work, only a few articles have examined ozone reactions with organic or inorganic chemicals in water in sufficient detail to sort out the interplay of ozone versus hydroxyl radical chemistry. Indeed, although the literature is replete with articles on the kinetics of OH reactions, relatively few have examined the detailed chemistry beyond the first step. This paper will describe recent studies in our laboratory which illustrate facets of ozone and OH-radical chemistry that Hoigne anticipated. We will summarize the reaction of ozone with amino acids in aqueous solution, the reaction of OH radicals with a compound (p-chlorobenzoic acid, PCBA) that apparently produces a propagating agent (superoxide) that {open_quotes}promotes{close_quotes} the chain radical decomposition of ozone, the formation of haloaldehydes and haloacetic acids from AOP destruction of tri- and tetrachloroethylene, and preliminary studies on the photolysis and OH radical products from 1,3,5-trinitro-sym-triazacyclohexane (RDX).

  13. 1992 toxic hazards research unit annual report. Annual report, 1 October 1991-30 September 1992

    SciTech Connect

    Wall, H.G.; Dodd, D.E.; Vinegar, A.; Schneider, M.G.

    1993-04-01

    This report presents a review of the activities of the Toxic Hazards Research Unit (THRU) for the period 1 October 1991 through 30 September 1992. The THRU conducts descriptive, mechanistic, and predictive toxicology research and toxicological risk assessments to provide data to predict health hazards and to assess health risks associated with human exposure to chemicals and materials associated with military systems and operational environments. The report includes summaries of ongoing or completed research activities for the individual toxicology research requirements of the U.S. Air Force, Army, and Navy; highlights of the research support elements and conference activities of the THRU; and appendices that describe the THRU organization and its publications and presentations. 1,3,3-Trinitroazetidine (TNAZ), 1,3,5-Trinitrobenzene (TNB), Carboxylic acid metabolite, Chlorofluorocarbon, Chloroform, Delayed neurotoxicity, Halon replacement, Hydraulic fluid, Hydrazine, Inhalation, Jet engine oil, Lactational transfer, Methylene chloride, MIL-H-19457C, Neurotoxic Esterase (NTE), OTTO Fuel II, Perchloroethylene (PCE), Physiologically Based Pharmacokinetic (PBPK) modeling, Polychlorotrifluoroethylene (pCTFE), Quantitative Structure-Activity Relationships (QSAR), Reproductive, Risk assessment, Smoke, Tetrachloroethylene (PCE), Toxic dust, Vinyl Chloride (VC) and Trichloroethylene (TCE) mixture.

  14. Synthesis of nanoporous Al2O3 membranes from polybutyl methacrylate functionalized SiO2 particles as a sacrificial template.

    PubMed

    Tseng, Wenjea J; Guo, Shiuan-Fu

    2012-10-01

    SiO2 surface is first modified with 3-trimethoxysilyl propyl methacrylate (MPS) in order to graft with polymerized butyl methacrylate (BMA) to form SiO2@MPS-BMA core--shell hybrid particles. The polymeric BMA shell enables anchoring of aluminum ions in tetrachloroethylene solvent, results in SiO2 @Al2O3 composite particles upon subjected to calcination. Removal of the SiO2 core by acid etching forms nanoporous gamma-Al2O3 membrane with a Horvath-Kawazoe (HK) pore size of 1.4 nm and a Brunauer-Emmett-Teller (BET) surface area of 78.6 m2 x g(-1). Transmission electron microscopy reveals formation of interconnected pore channels in the membrane. It is interesting to note that the Al2O3 membrane remains at a reasonably high surface area (53.9 m2 x g(-1)) after an isothermal holding at 1200 degrees C, when gamma-Al2O3 changed into predominately alpha-Al2O3. The process is indeed general and can be extended to the synthesis of other inorganic porous solids. PMID:23421155

  15. On-line analysis of volatile chlorinated hydrocarbons in air by gas chromatography-mass spectrometry Improvements in preconcentration and injection steps.

    PubMed

    Zoccolillo, Lelio; Amendola, Luca; Insogna, Susanna; Pastorini, Elisabetta

    2010-06-11

    An analytical system composed of a cryofocusing trap injector device coupled to a gas chromatograph with mass spectrometric detection (CTI-GC-MS) specific for the on-line analysis in air of volatile chlorinated hydrocarbons (VCHCs) (dichloromethane; chloroform; 1,1,1-trichloroethane; tetrachloromethane; 1,1,2-trichloroethylene; tetrachloroethylene) was developed. The cryofocusing trap injector was the result of appropriate low cost modifications to an original purge-and-trap device to make it suitable for direct air analysis even in the case of only slightly contaminated air samples, such as those from remote zones. The CTI device can rapidly and easily be rearranged into the purge-and-trap allowing water and air analysis with the same apparatus. Air samples, collected in stainless steel canisters, were introduced directly into the CTI-GC-MS system to realize cryo-concentration (at -120 degrees C), thermal desorption (at 200 degrees C) and for the subsequent analysis of volatiles. The operating phases and conditions were customised and optimized. Recovery efficiency was optimized in terms of moisture removal, cold trap temperature and sampling mass flow. The injection of entrapped volatiles was realized through a direct transfer with high chromatographic reliability (capillary column-capillary column). These improvements allowed obtaining limits of detection (LODs) at least one order of magnitude lower than current LODs for the investigated substances. The method was successfully employed on real samples: air from urban and rural areas and air from remote zones such as Antarctica. PMID:20444461

  16. Anionic surfactant remediation of soil columns contaminated by nonaqueous phase liquids

    NASA Astrophysics Data System (ADS)

    Dwarakanath, V.; Kostarelos, K.; Pope, Gary A.; Shotts, Doug; Wade, William H.

    1999-06-01

    A variety of column experiments have been completed for the purpose of selecting and evaluating suitable surfactants for remediation of nonaqueous phase liquids (NAPLs). The various NAPLs tested in the laboratory experiments were tetrachloroethylene (PCE), trichloroethylene (TCE), jet fuel (JP4) and a dense nonaqueous phase liquid from a site at Hill Air Force Base, UT. Both Ottawa sand and Hill field soil were used in these experiments. Surfactant candidates were first screened using phase behavior experiments and only the best ones were selected for the subsequent column experiments. Surfactants which showed high contaminant solubilization, fast coalescence times, and the absence of liquid crystal phases and gels during the phase behavior experiments were tested in soil column experiments. The primary objective of the soil column experiments was to identify surfactants that recovered at least 99% of the contaminant. The secondary objective was to identify surfactants that show low adsorption and little or no loss of hydraulic conductivity during the column experiments. Results demonstrated that up to 99.9% of the contaminants were removed as a result of surfactant flooding of the soil columns. The addition of xanthan gum polymer to the surfactant solution was shown to increase remediation efficiency as a lower volume of surfactant was required for recovering a given volume of NAPL. Based on these experimental results, guidelines for designing highly efficient and robust surfactant floods have been developed and applied to a field demonstration.

  17. Electrochemical continuous decomposition of chloroform and other volatile chlorinated hydrocarbons in water using a column type metal impregnated carbon fiber electrode

    SciTech Connect

    Sonoyama, Noriyuki; Sakata, Tadayoshi

    1999-10-01

    Trihalomethane and other chlorinated hydrocarbons are known to be toxic to human health. However, removal of these compounds from water is not easy. The authors attempted continuous electrochemical decomposition of chloroform that is the main compound of trihalomethanes and some toxic chlorinated hydrocarbons in water using a metal-impregnated CFE, concentration of chloroform in 0.5 M K{sub 2}SO{sub 4} (the supporting electrolyte) solution was decreased from 0.23m mol/L to below the limit of detection of their analysis system (1 ppm) at a flow rate of 1 mL/min. The main product of electrolysis was methane. This high efficiency, determined by the chemical yield, hardly changed at a flow rate of 20 mL/min at a Ag-impregnated CFE. At a flow rate of 1 mL/min, chloroform was degraded with a decomposition efficiency of almost 100% even in the solution without the supporting electrolyte, whereas at a higher flow rate, the efficiency for the decomposition of chloroform decreased with a decrease in the concentration of the supporting electrolyte. Tetrachloroethylene, 1,1,1-trichloroethane, and 1,1,2-trichloroethane were also decomposed at a Ag-impregnated CFE with an efficiency of almost 100%.

  18. Stable hydrogen, carbon and chlorine isotope measurements of selected chlorinated organic solvents

    NASA Astrophysics Data System (ADS)

    Shouakar-Stash, Orfan; Frape, Shaun K.; Drimmie, Robert J.

    2003-02-01

    Stable hydrogen isotopes of two chlorinated solvents, trichloroethylene (TCE) and 1,1,1-trichloroethane (TCA), provided by five different manufacturers, were determined and compared to their carbon and chlorine isotopic signatures. The isotope ratio for ?2H of different TCEs ranged between +466.9‰ and +681.9‰, for ?13C between -31.57‰ and -27.37‰, and for ?37Cl between -3.19‰ and +3.90‰. In the case of the TCAs, the isotope ratio for ?2H ranged between -23.1‰ and +15.1‰, for ?13C between -27.39‰ and -25.84‰, and for ?37Cl between -3.54‰ and +1.39‰. As well, a column experiment was carried out to dechlorinate tetrachloroethylene (PCE) to TCE using iron. The dechlorination products have completely different hydrogen isotope ratios than the manufactured TCEs. Compared to the positive values of ?2H in manufactured TCEs (between +466.9‰ and +681.9‰), the dechlorinated products had a very depleted ?2H (less than -300‰). This finding has strong implications for distinguishing dechlorination products (PCE to TCE) from manufactured TCE. In addition, the results of this study show the potential of combining 2H/ 1H analyses with 13C/ 12C and 37Cl/ 35Cl for isotopic fingerprinting applications in organic contaminant hydrogeology.

  19. Health assessment for Whitmoyer Laboratories, Jackson Township, Lebanon County, Pennsylvania, Region 3. CERCLIS No. PAD003005014. Preliminary report

    SciTech Connect

    Not Available

    1988-11-17

    The Whitmoyer Laboratories 17.5-acre site is formerly an animal arsenical pharmaceutical manufacturing facility that operated from 1934 to 1984. In the early 1960s, approximately four million pounds of soluble arsenic wastes were placed into unlined lagoons. The environmental contamination on-site consists of arsenic and aniline in solid material in the concrete vault; arsenic, anile, 1,1-trichloroethane, and trans-1,2-dichloroethene in groundwater; arsenic in soil; and arsenic in surface water. Contamination off-site consists of arsenic, aniline, 1,1,1-trichloroethane in groundwater from an industrial well; arsenic in surface water; and arsenic in sediment. In addition, extensive sampling of domestic and industrial wells off-site has found arsenic, aniline, 1,2-dichloroethane, trans-1,2-dichloroethylene, trichloroethylene, 1,1,1-trichloroethane, and tetrachloroethylene. The site is considered to be of potential public health concern because of the risk to human health caused by the possibility of exposure to hazardous substances via contaminated groundwater, surface water, sediment, soil, and possibly air.

  20. Household solvent products: a shelf survey with laboratory analysis. Final report, October 1984-July 1987

    SciTech Connect

    Maklan, D.M.; Steele, D.H.; Dietz, S.K.; Brown, G.L.; Fallah, S.

    1987-07-01

    This study was conducted to provide information on the incidence and concentration of six chlorocarbons in common household products. The objectives of the study were to: (1) determine which categories of consumer products contain the chemical methylene chloride and/or five potential substitute solvents (1,1,1-trichloroethane, trichloroethylene, tetrachloroethylene, carbon tetrachloride, and 1,1,2-trichlorotrifluoroethane); and (2) analyze brands representing each product category to determine the concentration of these chemicals in household products. A national sample of household products was selected and laboratory tested to determine the incidence and concentration of the six target chlorocarbons. The following are some of the major findings. Fifty-eight percent of the 67 product categories had at least one brand test positive for one or more of the target analytes. Thirty-four percent of the 1026 brands tested positive for at least one of the six target chlorocarbons. Thirty-four percent of the brands tested positive for methylene chloride, 14% tested positive for 1,1,1-trichloroethane, and less than 4% of the brands were positive on any of the remaining four chlorocarbons. The concentration of analyte varied considerably between brands of the same product category. Only 56% of the brands with chlorocarbons were so labeled.

  1. Sustainable in-well vapor stripping: A design, analytical model, and pilot study for groundwater remediation.

    PubMed

    Sutton, Patrick T; Ginn, Timothy R

    2014-12-15

    A sustainable in-well vapor stripping system is designed as a cost-effective alternative for remediation of shallow chlorinated solvent groundwater plumes. A solar-powered air compressor is used to inject air bubbles into a monitoring well to strip volatile organic compounds from a liquid to vapor phase while simultaneously inducing groundwater circulation around the well screen. An analytical model of the remediation process is developed to estimate contaminant mass flow and removal rates. The model was calibrated based on a one-day pilot study conducted in an existing monitoring well at a former dry cleaning site. According to the model, induced groundwater circulation at the study site increased the contaminant mass flow rate into the well by approximately two orders of magnitude relative to ambient conditions. Modeled estimates for 5h of pulsed air injection per day at the pilot study site indicated that the average effluent concentrations of dissolved tetrachloroethylene and trichloroethylene can be reduced by over 90% relative to the ambient concentrations. The results indicate that the system could be used cost-effectively as either a single- or multi-well point technology to substantially reduce the mass of dissolved chlorinated solvents in groundwater. PMID:25461885

  2. Sustainable in-well vapor stripping: A design, analytical model, and pilot study for groundwater remediation

    NASA Astrophysics Data System (ADS)

    Sutton, Patrick T.; Ginn, Timothy R.

    2014-12-01

    A sustainable in-well vapor stripping system is designed as a cost-effective alternative for remediation of shallow chlorinated solvent groundwater plumes. A solar-powered air compressor is used to inject air bubbles into a monitoring well to strip volatile organic compounds from a liquid to vapor phase while simultaneously inducing groundwater circulation around the well screen. An analytical model of the remediation process is developed to estimate contaminant mass flow and removal rates. The model was calibrated based on a one-day pilot study conducted in an existing monitoring well at a former dry cleaning site. According to the model, induced groundwater circulation at the study site increased the contaminant mass flow rate into the well by approximately two orders of magnitude relative to ambient conditions. Modeled estimates for 5 h of pulsed air injection per day at the pilot study site indicated that the average effluent concentrations of dissolved tetrachloroethylene and trichloroethylene can be reduced by over 90% relative to the ambient concentrations. The results indicate that the system could be used cost-effectively as either a single- or multi-well point technology to substantially reduce the mass of dissolved chlorinated solvents in groundwater.

  3. Natural formation of vinyl chloride in the terrestrial environment.

    PubMed

    Keppler, Frank; Borchers, Reinhard; Pracht, Jens; Rheinberger, Stefan; Scholer, Heinz F

    2002-06-01

    Vinyl chloride is a highly reactive and toxic substance which is widely used in industry. It is the parent compound of poly(vinyl chloride) (PVC), one of the most important industrial polymers. Until now, it was thought that vinyl chloride found in the environment is exclusively man-made or results from the degradation of other anthropogenic substances, such as trichloroethylene and tetrachloroethylene. Here, we demonstrate that vinyl chloride also has natural sources. Soil air and ambient air from a rural area in Northern Germany were investigated for volatile chlorinated halocarbons. The concentrations of vinyl chloride in the soil air were significantly enhanced as compared to ambient air, indicating a natural formation of this compound in the soil. A series of laboratory experiments using different soils and model compounds was conducted, which clearly proved that vinyl chloride could be produced during soil processes. We propose that this highly reactive compound can be formed during the oxidative degradation of organic matter in soil, for example, in a reaction between humic substances, chloride ions and an oxidant (ferric ions or hydroxyl radicals). The redox-sensitive aromatic compounds in soil such as catechols and o-quinones can be degraded to CO2, accompanied by the release of vinyl chloride and other volatile chlorinated compounds. This process could have started in the Late Silurian to Early Devonian, 400 million years ago, when the first soils on earth evolved. PMID:12075808

  4. Role of vibrational dynamics in electronic relaxation of Cr(acac)₃.

    PubMed

    Maçôas, Ermelinda M S; Mustalahti, Satu; Myllyperkiö, Pasi; Kunttu, Henrik; Pettersson, Mika

    2015-03-19

    Ultrafast energy relaxation of Cr(acac)3 dissolved in tetrachloroethylene (TCE) is studied by time-resolved infrared (TRIR) spectroscopy by using electronic and vibrational excitation. After electronic excitation at 400 or 345 nm, the ground state recovers in two time scales: 15 ps (major pathway) and 800 ps (minor pathway), corresponding to fast electronic transition to the ground state and intermediate trapping on the long-lived (2)E state followed by intersystem crossing (ISC) to the ground state. The quantum yield for the fast recovery of the ground state depends on the excitation wavelength, being higher for 345 nm. Vibrational cooling (VC) occurs on the electronic excited states with a time constant of ∼7 ps and on the ground electronic state with a time constant of ∼12 ps. A kinetic model that explains the observed dynamics is presented. The key point of the model is that the ground-state recovery occurs via thermally activated back-intersystem-crossing (b-ISC) to the quartet manifold presumably via multiple curve crossings that are sampled while the system is vibrationally hot. This underlines the importance of vibrational cooling as a determining factor for the electronic relaxation chain. Vibrational excitation of the νC═C and νCO vibrations also revealed a subpicosecond (300-700 fs) intramolecular vibrational redistribution (IVR) process from the localized vibrational states to the bath of vibrational excitations. PMID:25590671

  5. The use of upward hydraulic gradients to arrest downward DNAPL migration in rock fractures

    SciTech Connect

    Chown, J.C.; Kueper, B.H.; McWhorter, D.B.

    1997-05-01

    Upward water flow can arrest the downward migration of dense, nonaqueous phase liquids (DNAPLs) through rough-walled fractures provided that a sufficient hydraulic gradient exists. An exact analytical solution to predict the arresting gradient demonstrates that there is little difference between the gradient required to arrest DNAPL migration near the top of the fracture, and the gradient required to arrest migration once DNAPL has extended to the bottom of the fracture. Laboratory experiments involving the migration of tetrachloroethylene (PCE) through two samples of fractured limestone demonstrate the ability of upward water flow to arrest downward DNAPL migration under both wetting and drainage conditions. It is suggested that upward gradients can be generated beneath contaminated regions of the subsurface to provide a hydraulic bottom. A hydraulic bottom at a site would protect against potential downward mobilization of DNAPL in response to the application of aggressive remediation technologies such as surfactant flooding, alcohol flooding, and steam flooding. Upward gradients applied during drilling may also protect against downward mobilization of DNAPL in the formation while drilling through source zones.

  6. Sanitary Landfill Groundwater Monitoring Report, Fourth Quarter 1999 and 1999 Summary

    SciTech Connect

    Chase, J.

    2000-03-13

    A maximum of thirty eight-wells of the LFW series monitor groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill Area at the Savannah River Site (SRS). These wells are sampled quarterly to comply with the South Carolina Department of Health and Environmental Control Domestic Water Permit DWP-087A and as part of the SRS Groundwater Monitoring Program. Iron (Total Recoverable), Chloroethene (Vinyl Chloride) and 1,1-Dichloroethane were the most widespread constituents exceeding the Final Primary Drinking Water Standards during 1999. Trichloroethylene, 1,1-Dichloroethylene, 1,2-Dichloroethane, 1,4-Dichlorobenzene, Aluminum (Total Recoverable), Benzene, cis-1,2-Dichloroethylene, Dichlorodifluoromethane, Dichloromethane (Methylene Chloride), Gross Alpha, Mercury (Total Recoverable), Nonvolatile Beta, Tetrachloroethylene, Total Organic Halogens, Trichlorofluoromethane, Tritium also exceeded standards in one or more wells. The groundwater flow direction in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill is to the southeast (universal transverse Mercator coordinates). The flow rate in this unit was approximately 144.175 ft/year during first quarter 1999 and 145.27 ft/year during fourth quarter 1999.

  7. Occurrence of Selected Organic Compounds in Groundwater Used for Public Supply in the Plio-Pleistocene Deposits in East-Central Nebraska and the Dawson and Denver Aquifers near Denver, Colorado, 2002-2004

    USGS Publications Warehouse

    Bails, Jeffrey B.; Dietsch, Benjamin J.; Landon, Matthew K.; Paschke, Suzanne S.

    2009-01-01

    The National Water-Quality Assessment Program of the U.S. Geological Survey has an ongoing Source Water-Quality Assessment program designed to characterize the quality of water in aquifers used as a source of drinking-water supply for some of the largest metropolitan areas in the Nation. In addition to the sampling of the source waters, sampling of finished or treated waters was done in the second year of local studies to evaluate if the organic compounds detected in the source waters also were present in the water supplied to the public. An evaluation of source-water quality used in selected groundwater-supplied public water systems in east-central Nebraska and in the south Denver metropolitan area of Colorado was completed during 2002 through 2004. Fifteen wells in the Plio-Pleistocene alluvial and glacial deposits in east-central Nebraska (the High Plains study) and 12 wells in the Dawson and Denver aquifers, south of Denver (the South Platte study), were sampled during the first year to obtain information on the occurrence and distribution of selected organic chemicals in the source waters. During the second year of the study, two wells in east-central Nebraska were resampled, along with the associated finished water derived from these wells, to determine if organic compounds detected in the source water also were present in the finished water. Selection of the second-phase sampling sites was based on detections of the most-frequently occurring organic compounds from the first-year Source Water-Quality Assessment study results. The second-year sampling also required that finished waters had undergone water-quality treatment processes before being distributed to the public. Sample results from the first year of sampling groundwater wells in east-central Nebraska show that the most-frequently detected organic compounds were the pesticide atrazine and its degradate, deethylatrazine (DEA, otherwise known as 2-chloro-4-isopropylamino-6-amino-s-triazine or CIAT), which were detected in 9 of the 15 wells (60 percent of the samples). The second most frequently detected organic compound was tetrachloroethylene, detected in 4 of the 15 wells (27 percent of the samples), followed by chloroform, trichloroethylene, and 2-hydroxyatrazine (2-hydroxy-4-isopropylamino-6-ethylamino-s-triazine, or OIET), present in 3 of the 15 wells (20 percent of the samples). The pesticide compounds deisopropylatrazine (2-chloro-6-ethylamino-4-amino-s-triazine, or CEAT), metolachlor, and simazine and the volatile organic compound cis-1,2-dichloroethylene were detected in 2 of the 15 wells, and the compounds diuron and 1,2-dichloroethane were detected in only 1 of the 15 wells during the first-year sampling. Most detections of these compounds were at or near the minimum reporting levels, and none were greater than their regulatory maximum contaminant level. There were few detections of organic compounds during the first year of sampling groundwater wells in the South Platte study area. The compounds atrazine, deethylatrazine, picloram, tetrachloroethylene, methyl-tert-butyl-ether (MTBE), tris(2-butoxyethyl)phosphate, and bromoform were detected only once in all the samples from the 12 wells. Most detections of these compounds were at or near the minimum reporting levels, and none were greater than their regulatory maximum contaminant level. Second-year sampling, which included the addition of paired source- and finished-water samples, was completed at two sites in the High Plains study area. Source-water samples from the second-year sampling had detections of atrazine and deethylatrazine; at one site deisopropylatrazine and chloroform also were detected. The finished-water samples, which represent the source water after blending with water from other wells and treatment, indicated a decrease in the concentrations of the pesticides at one site, whereas concentrations remained nearly constant at a second site. The trihalomethanes (THMs or disinfec

  8. Analysis of nitrate and volatile organic compound data for ground water in the Great Salt Lake Basins, Utah, Idaho, and Wyoming, 1980-98, National Water-Quality Assessment Program

    USGS Publications Warehouse

    Thiros, Susan A.

    2000-01-01

    In 1995, ground water was the source of drinking water to about 52 percent of the population served by public drinking water systems in the Great Salt Lake Basins study unit, which includes parts of Utah, Idaho, and Wyoming. Existing nitrate and volatile organic compound data for ground water collected in the study unit were compiled and summarized as part of the National Water-Quality Assessment Program?s objective to describe water-quality conditions in the Nation?s aquifers. Prerequisites for the inclusion of nitrate and volatile organic compound data into this retrospective analysis are that the data set is available in electronic form, the data were collected during 1980-98, the data set is somewhat regional in coverage, and the locations of the sampled sites are known. Ground-water data stored in the U.S. Geological Survey?s National Water Information Systemand the Idaho and Utah Public DrinkingWater Systems databases were reviewed. Only the most recent analysis was included in the data sets if more than one analysis was available for a site. The National Water Information System data set contained nitrate analyses for water from 480 wells. The median concentration of nitratewas 1.30 milligrams per liter for the 388 values above minimum reporting limits. The maximum contaminant level for nitrate as established by the U.S. Environmental Protection Agency was exceeded in water from 10 of the 200 wells less than or equal to 150 feet deep and in water from3 of 280 wells greater than 150 feet deep. The Public Drinking Water Systems data set contained nitrate analyses for water from 587 wells. The median concentration of nitrate was 1.12 milligrams per liter for the 548 values above minimum reporting limits. The maximum contaminant level for nitrate was exceeded at 1 site and 22 sites had concentrations equal to or greater than 5 milligrams per liter. The types of land use surrounding a well and the well depth were related to measured nitrate concentrations in the sampled ground water. Overall, water sampled from wells in rangeland areas had a lowermedianmeasured nitrate concentration (0.76 milligrams per liter) than water from areas with an agricultural or urban/residential land use (1.41 and 1.20 milligrams per liter, respectively). In the NationalWater Information System data set, the median measured nitrate concentration in water from urban/residential areas varied from 1.00 milligrams per liter for wells greater than 150 feet deep to 1.84 milligrams per liter for wells less than or equal to 150 feet deep. The Public DrinkingWater Systems and the National Water Information System data sets contained analyses for most of the State and Federally regulated volatile organic compounds in water from about 368 and 74 wells, respectively. Fifteen different volatile organic compounds were detected at least once in ground water sampled from the Great Salt Lake Basins study unit. Water from 21 wells contained at least 1 volatile organiccompound at detectable concentrations. About 68 percent of the volatile organic compounds detected were in water sampled from wells in Salt Lake County, Utah. Tetrachloroethylene was the most commonly detected volatile organic compound in ground water sampled from the study unit, present in 8 out of 442 samples. Maximum contaminant levels for tetrachloroethylene and 1,1-dichloroethylene as established by the U.S. Environmental Protection Agency were exceeded in water from one well each.

  9. Exposure to carcinogens for defined job categories in Norway's offshore petroleum industry, 1970 to 2005

    PubMed Central

    Steinsvåg, Kjersti; Bråtveit, Magne; Moen, Bente E

    2007-01-01

    Objectives To identify and describe the exposure to selected known and suspected carcinogenic agents, mixtures and exposure circumstances for defined job categories in Norway's offshore petroleum industry from 1970 to 2005, in order to provide exposure information for a planned cohort study on cancer. Methods Background information on possible exposure was obtained through company visits, including interviewing key personnel (n?=?83) and collecting monitoring reports (n?=?118) and other relevant documents (n?=?329). On the basis of a previous questionnaire administered to present and former offshore employees in 1998, 27 job categories were defined. Results This study indicated possible exposure to 18 known and suspected carcinogenic agents, mixtures or exposure circumstances. Monitoring reports were obtained on seven agents (benzene, mineral oil mist and vapour, respirable and total dust, asbestos fibres, refractory ceramic fibres, formaldehyde and tetrachloroethylene). The mean exposure level of 367 personal samples of benzene was 0.037?ppm (range: less than the limit of detection to 2.6?ppm). Asbestos fibres were detected (0.03?fibres/cm3) when asbestos?containing brake bands were used in drilling draw work in 1988. Personal samples of formaldehyde in the process area ranged from 0.06 to 0.29?mg/m3. Descriptions of products containing known and suspected carcinogens, exposure sources and processes were extracted from the collected documentation and the interviews of key personnel. Conclusions This study described exposure to 18 known and suspected carcinogenic agents, mixtures and exposure circumstances for 27 job categories in Norway's offshore petroleum industry. For a planned cohort study on cancer, quantitative estimates of exposure to benzene, and mineral oil mist and vapour might be developed. For the other agents, information in the present study can be used for further assessment of exposure, for instance, by expert judgement. More systematic exposure surveillance is needed in this industry. For future studies, new monitoring programmes need to be implemented. PMID:17043075

  10. Valiant 'Zero-Valent' Effort Restores Contaminated Grounds

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Dense non-aqueous phase liquids (DNAPLs) are chemical compounds that can contaminate soil and groundwater to the point of irreparability. These substances are only slightly soluble in water, and are much denser than water. Because of their solubility, DNAPLs form separate liquid phases in groundwater, and because of their density, DNAPLs sink in aquifers instead of floating at the water table, making it extremely difficult to detect their presence. If left untreated in the ground, they can taint fresh water sources. Common DNAPLs include chlorinated hydrocarbon compounds such as carbon tetrachloride, chloroform, tetrachloroethylene, and trichloroethylene. Trichloroethylene was used during the early days of the Space Program, as a solvent for flushing rocket engines, and for metal cleaning and degreasing of equipment, electronics, and heavy machinery. As a result, areas of Cape Canaveral s Launch Complex 34, the site of several historic Saturn rocket launches occurring from 1959 to 1968, were polluted with chlorinated DNAPLs. Through the direction and guidance of Dr. Jacqueline Quinn, an environmental engineer in the Spaceport Engineering and Technology Directorate at NASA s Kennedy Space Center, a biodegradable environmental cleanup technology was developed to reductively dechlorinate DNAPL sources in polluted water at Launch Complex 34. It was important for Kennedy to nip this problem in the bud, in light of the fact that the Space Center is also a National Wildlife Refuge, home to thousands of shorebirds, endangered sea turtles and eagles, manatees, alligators, and diverse habitats that include brackish marshes and salt water estuaries. The success in remediating this historic launch site has led to numerous commercial applications that are restoring the health of our environmental surroundings.

  11. Reaching soil cleanup levels by vapor extraction: Laboratory approach

    SciTech Connect

    Hoag, G.E.; Nadim, F.; Dahmani, A.M.

    1996-11-01

    Nonaqueous phase liquids (NAPLs) such as gasoline and chlorinated solvents have a very low water solubility. When these compounds enter the unsaturated soil, buoyancy and capillary forces may hold a portion of them in the soil pores as residual saturation. Hoag and Marley have reported 12--20% residual saturation for gasoline in a partially water saturated sand. Soil Vapor Extraction (SVE) is a technique that removes volatile and some semi-volatile organic compounds from the unsaturated soil by induced flow of air. Through contacts with each state`s EPA office, it was concluded that 21 states have their own regulations for soil cleanup levels and the others follow the guidelines set forth by the Federal RCRA and CERCLA regulations. The State of Connecticut Department of Environmental Protection (DEP) requires contaminated soils to be remediated to a level such that the amount of contaminant partitioning into the liquid phase remains below the drinking water standard, under equilibrium condition. These standards are 0.001 mg/L for benzene, 1 mg/L for toluene, 0.7 mg/L for ethyl benzene, and 0.005 mg/L for trichloroethylene and tetrachloroethylene. In order to determine the amount of volatile organics that partition into the liquid phase a test called Toxic Characteristics Leaching Procedure with Zero Headspace Extraction (TCLP-ZHE) is applied to contaminated soils. This test determines the amount of VOC that would partition into the liquid phase in the TCLP-ZHE procedure. This study presents two different laboratory experiments to determine where SVE technology alone, can be an adequate remedy selection for sites that are contaminated with VOCs.

  12. Determinants of personal, indoor and outdoor VOC concentrations: an analysis of the RIOPA data.

    PubMed

    Su, Feng-Chiao; Mukherjee, Bhramar; Batterman, Stuart

    2013-10-01

    Community and environmental exposure to volatile organic compounds (VOCs) has been associated with a number of emission sources and activities, e.g., environmental tobacco smoke and pumping gasoline. Such factors have been identified from mostly small studies with relatively limited information regarding influences on VOC levels. This study uses data from the Relationship of Indoor Outdoor and Personal Air (RIOPA) study to investigate environmental, individual and social determinants of VOC concentrations. RIOPA included outdoor, indoor and personal measurements of 18 VOCs from 310 non-smoking households and adults in three cities and two seasons, and collected a wide range of information pertaining to participants, family members, households, and neighborhoods. Exposure determinants were identified using stepwise regressions and linear mixed-effect models. Most VOC exposure (66 to 78% of the total exposure, depending on VOC) occurred indoors, and outdoor VOC sources accounted for 5 (d-limonene) to 81% (carbon tetrachloride) of the total exposure. Personal exposure and indoor measurements had similar determinants, which depended on the VOC. Gasoline-related VOCs (e.g., benzene, methyl tertiary butyl ether) were associated with city, residences with attached garages, self-pumping of gas, wind speed, and house air exchange rate (AER). Odorant and cleaning-related VOCs (e.g., 1,4-dichlorobenzene and chloroform) also were associated with city and AER, and with house size and family members showering. Dry-cleaning and industry-related VOCs (e.g., tetrachloroethylene and trichloroethylene) were associated with city, residence water supply type, and dry-cleaner visits. These and other relationships were significant, explained from 10 to 40% of the variation, and are consistent with known emission sources and the literature. Outdoor concentrations had only two common determinants: city and wind speed. Overall, personal exposure was dominated by the home setting, although a large fraction of VOC concentrations were due to outdoor sources. City, personal activities, household characteristics and meteorology were significant determinants. PMID:24034784

  13. Field-scale prediction of enhanced DNAPL dissolution based on partitioning tracers.

    PubMed

    Wang, Fang; Annable, Michael D; Jawitz, James W

    2013-09-01

    The equilibrium streamtube model (EST) has demonstrated the ability to accurately predict dense nonaqueous phase liquid (DNAPL) dissolution in laboratory experiments and numerical simulations. Here the model is applied to predict DNAPL dissolution at a tetrachloroethylene (PCE)-contaminated dry cleaner site, located in Jacksonville, Florida. The EST model is an analytical solution with field-measurable input parameters. Measured data from a field-scale partitioning tracer test were used to parameterize the EST model and the predicted PCE dissolution was compared to measured data from an in-situ ethanol flood. In addition, a simulated partitioning tracer test from a calibrated, three-dimensional, spatially explicit multiphase flow model (UTCHEM) was also used to parameterize the EST analytical solution. The EST ethanol prediction based on both the field partitioning tracer test and the simulation closely matched the total recovery well field ethanol data with Nash-Sutcliffe efficiency E=0.96 and 0.90, respectively. The EST PCE predictions showed a peak shift to earlier arrival times for models based on either field-measured or simulated partitioning tracer tests, resulting in poorer matches to the field PCE data in both cases. The peak shifts were concluded to be caused by well screen interval differences between the field tracer test and ethanol flood. Both the EST model and UTCHEM were also used to predict PCE aqueous dissolution under natural gradient conditions, which has a much less complex flow pattern than the forced-gradient double five spot used for the ethanol flood. The natural gradient EST predictions based on parameters determined from tracer tests conducted with a complex flow pattern underestimated the UTCHEM-simulated natural gradient total mass removal by 12% after 170 pore volumes of water flushing indicating that some mass was not detected by the tracers likely due to stagnation zones in the flow field. These findings highlight the important influence of well configuration and the associated flow patterns on dissolution. PMID:23911784

  14. Concentrations, loads and yields of selected water-quality constituents during low flow and storm runoff from three watersheds at Fort Leavenworth, Kansas, May 1994 through September 1996

    USGS Publications Warehouse

    Rasmussen, P.P.

    1998-01-01

    A study of the effects of storm runoff from urban areas on water quality at Fort Leavenworth, Kansas, was conducted from May 1994 through September 1996. The purpose of this report is to present information to assess the current (1994-96) conditions and possible methods for anticipating future water-quality effects from storm runoff and changes in land use. Three sampling sites were established to monitor streamflow and water quality from three watersheds draining the study area. Streamflow was monitored continuously, and water-quality samples were collected during low-flow (12 samples) and storm-runoff (21 samples) conditions to determine mean annual constituent loads. Constituent concentrations for the most part were smallest during low flow with the exception of major ions, dissolved solids, and some nutrients. Concentrations of suspended solids and total recoverable metals at all three sites were much larger in storm-runoff samples than in low-flow samples--typically an order of magnitude larger than low-flow concentrations. Mean low-flow nutrient concentrations were either larger than or smaller than storm-runoff concentrations depending on the watershed. Total chloroform and total tetrachloroethylene were the only two volatile organic compounds detected, and acid-base/neutral organic compounds were not detected in any of the samples collected. Eight pesticides were detected in low-flow samples, and 15 pesticides were detected in storm-runoff samples. The only mean concentrations of the selected constituents in this study that exceeded either the U.S. Environmental Protection Agency's Maximum Contaminant Level or the Secondary Maximum Contaminant Level were dissolved solids and total recoverable iron and manganese.

  15. Dermal absorption of neat and aqueous volatile organic chemicals in the Fischer 344 rat

    SciTech Connect

    Morgan, D.L.; Cooper, S.W.; Carlock, D.L.; Sykora, J.J.; Sutton, B.; Mattie, D.R.; McDougal, J.N. )

    1991-06-01

    Quantification of dermal absorption of volatile organic chemicals (VOCs) from aqueous solutions is required to understand the potential health hazards resulting from skin exposure to these chemicals in contaminated water. Male Fischer 344 rats were dermally exposed (3.1-cm2 dorsal skin) to neat, one-third saturated, two-thirds saturated, or saturated aqueous solutions of 14 VOCs for 24 hr. Blood samples were obtained via indwelling jugular catheters during exposure (0, 0.5, 1, 2, 4, 8, 12, and 24 hr), and analyzed for the VOCs by gas chromatography using headspace analysis. Absorption of the neat VOCs in this series of chemicals decreased as water solubility decreased. Peak blood levels of VOCs attained during exposure for 24 hr to neat chemicals were: 1,2-dichloroethane (135.1 micrograms/ml), bromochloromethane (113.3 micrograms/ml), chloroform (51.0 micrograms/ml), benzene (24.2 micrograms/ml), tetrachloroethylene (21.1 micrograms/ml), dibromomethane (18.2 micrograms/ml), trichloroethylene (11.6 micrograms/ml), toluene (9.5 micrograms/ml), xylene (8.8 micrograms/ml), hexane (8.0 micrograms/ml), ethylbenzene (5.6 micrograms/ml), styrene (5.3 micrograms/ml), carbon tetrachloride (5.0 micrograms/ml), and 1,1,1-trichloroethane (3.4 micrograms/ml). Blood levels of 1,2-dichloroethane and benzene continued to increase during the 24-hr exposure to neat chemical, while blood levels of the other neat VOCs peaked within 4 hr and then either decreased or remained about the same for the duration of the exposure. Absorption of VOCs from one-third, two-thirds, or saturated aqueous solutions was rapid, and resulted in depletion of the chemical from the solution although only a small amount of water was absorbed. Blood levels of each VOC were directly related to the exposure concentrations.

  16. Organic and inorganic composition and microbiology of produced waters from Pennsylvania shale gas wells

    USGS Publications Warehouse

    Akob, Denise M.; Cozzarelli, Isabelle M.; Dunlap, Darren S.; Rowan, Elisabeth L.; Lorah, Michelle M.

    2015-01-01

    Hydraulically fractured shales are becoming an increasingly important source of natural gas production in the United States. This process has been known to create up to 420 gallons of produced water (PW) per day, but the volume varies depending on the formation, and the characteristics of individual hydraulic fracture. PW from hydraulic fracturing of shales are comprised of injected fracturing fluids and natural formation waters in proportions that change over time. Across the state of Pennsylvania, shale gas production is booming; therefore, it is important to assess the variability in PW chemistry and microbiology across this geographical span. We quantified the inorganic and organic chemical composition and microbial communities in PW samples from 13 shale gas wells in north central Pennsylvania. Microbial abundance was generally low (66–9400 cells/mL). Non-volatile dissolved organic carbon (NVDOC) was high (7–31 mg/L) relative to typical shallow groundwater, and the presence of organic acid anions (e.g., acetate, formate, and pyruvate) indicated microbial activity. Volatile organic compounds (VOCs) were detected in four samples (?1 to 11.7 ?g/L): benzene and toluene in the Burket sample, toluene in two Marcellus samples, and tetrachloroethylene (PCE) in one Marcellus sample. VOCs can be either naturally occurring or from industrial activity, making the source of VOCs unclear. Despite the addition of biocides during hydraulic fracturing, H2S-producing, fermenting, and methanogenic bacteria were cultured from PW samples. The presence of culturable bacteria was not associated with salinity or location; although organic compound concentrations and time in production were correlated with microbial activity. Interestingly, we found that unlike the inorganic chemistry, PW organic chemistry and microbial viability were highly variable across the 13 wells sampled, which can have important implications for the reuse and handling of these fluids

  17. Reductive capacity of natural reductants.

    PubMed

    Lee, Woojin; Batchelor, Bill

    2003-02-01

    Reductive capacities of soil minerals and soil for Cr(VI) and chlorinated ethylenes were measured and characterized to provide basic knowledge for in-situ and ex-situ treatment using these natural reductants. The reductive capacities of iron-bearing sulfide (pyrite), hydroxide (green rust; GR(SO4)), and oxide (magnetite) minerals for Cr(VI) and tetrachloroethylene (PCE) were 1-3 orders of magnitude greater than those of iron-bearing phyllosilicates (biotite, vermiculite, and montmorillonite). The reductive capacities of surface soil collected from the plains of central Texas were similar and slightly greater than those of iron-bearing phyllosilicates. The reductive capacity of iron-bearing soil minerals for Cr(VI) was roughly 3-16 times greater than that for PCE, implying that Cr(VI) is more susceptible to being reduced by soil minerals than is PCE. GR(SO4) has the greatest reductive capacity for both Cr(VI) and PCE followed by magnetite, pyrite, biotite, montmorillonite, and vermiculite. This order was the same for both target compounds, which indicates that the relative reductive capacities of soil minerals are consistent. The reductive capacities of pyrite and GR(SO4) for chlorinated ethylenes decreased in the order: trichloroethylene (TCE) > PCE > cis-dichloroethylene (c-DCE) > vinyl chloride (VC). Fe(II) content in soil minerals was directly proportional to the reductive capacity of soil minerals for Cr(VI) and PCE, suggesting that Fe(II) content is an important factor that significantly affects reductive transformations of target contaminants in natural systems. PMID:12630469

  18. Abiotic reductive dechlorination of chlorinated ethylenes by iron-bearing phyllosilicates.

    PubMed

    Lee, Woojin; Batchelor, Bill

    2004-09-01

    Abiotic reductive dechlorination of chlorinated ethylenes (tetrachloroethylene (PCE), trichloroethylene (TCE), cis-dichloroethylene (c-DCE), and vinylchloride (VC)) by iron-bearing phyllosilicates (biotite, vermiculite, and montmorillonite) was characterized to obtain better understanding of the behavior of these contaminants in systems undergoing remediation by natural attenuation and redox manipulation. Batch experiments were conducted to evaluate dechlorination kinetics and some experiments were conducted with addition of Fe(II) to simulate impact of microbial iron reduction. A modified Langmuir-Hinshelwood kinetic model adequately described reductive dechlorination kinetics of target organics by the iron-bearing phyllosilicates. The rate constants stayed between 0.08 (+/-10.4%) and 0.401 (+/-8.1%) day(-1) and the specific initial reductive capacity of iron-bearing phyllosilicates for chlorinated ethylenes stayed between 0.177 (+/-6.1%) and 1.06 (+/-7.1%) microM g(-1). The rate constants for the reductive dechlorination of TCE at reactive biotite surface increased as pH (5.5-8.5) and concentration of sorbed Fe(II) (0-0.15 mM g(-1)) increased. The appropriateness of the model is supported by the fact that the rate constants were independent of solid concentration (0.0085-0.17 g g(-1)) and initial TCE concentration (0.15-0.60 mM). Biotite had the greatest rate constant among the phyllosilicates both with and without Fe(II) addition. The rate constants were increased by a factor of 1.4-2.5 by Fe(II) addition. Between 1.8% and 36% of chlorinated ethylenes removed were partitioned to the phyllosilicates. Chloride was produced as a product of degradation and no chlorinated intermediates were observed throughout the experiment. PMID:15268967

  19. Field demonstration of surfactant-enhanced solubilization of DNAPL at Dover Air Force Base, Delaware.

    PubMed

    Childs, Jeffrey; Acosta, Edgar; Annable, Michael D; Brooks, Michael C; Enfield, Carl G; Harwell, Jeffrey H; Hasegawa, Mark; Knox, Robert C; Rao, P Suresh C; Sabatini, David A; Shiau, Ben; Szekeres, Erika; Wood, A Lynn

    2006-01-01

    This study reports on a surfactant-based flood for tetrachloroethylene (PCE) removal from a control test cell at the Dover National Test Site. The surfactant formulation (sodium dihexyl sulfosuccinate (Aerosol-MA or AMA), isopropanol and calcium chloride) was able to achieve a high concentration of PCE in swollen micelles (supersolubilization) without vertical PCE migration. The hydraulic system included eight screened wells that were operated in both vertical circulation and line drive configurations. After 10 pore volumes of flushing, the overall PCE removal was 68% (65% of which corresponded to the surfactant flooding alone). In addition, the residual PCE saturation was reduced from 0.7% to 0.2%, and the concentration of PCE in the groundwater was reduced from 37-190 mg/L before the flushing to 7.3 mg/L after flooding. Recycling the surfactant solution reduced the required surfactant mass (and thus cost, and waste) by 90%. Close to 80% of the total PCE removal was obtained during the first five pore volumes which were operated in an upward vertical circulation flow scheme. No free oil phase was observed during the test. Further analysis of multilevel sampler data suggests that most of the trapped oil remaining in the cell was likely localized in secluded regions of the aquifer, which helps explain the lower PCE groundwater concentration after remedial activities. In summary, this field study demonstrated the feasibility of surfactant-enhanced remediation to reduce the mass in the source zone and significantly reduce the PCE aqueous concentration and therefore the risk associated with the contaminant plume. PMID:16233935

  20. Partitioning of non-ionic surfactants between water and non-aqueous phase liquids (NAPLs) of chlorinated organics

    NASA Astrophysics Data System (ADS)

    KANG, S.; Jeong, H. Y.

    2013-12-01

    Due to the hydrophobic nature, chlorinated organic compounds penetrate soil and groundwater to form non-aqueous phase liquids (NAPLs). At the sites contaminated with such NAPLs, thus, surfactants are applied to increase the aqueous solubility of chlorinated organics via micellar solubilization. However, a portion of surfactants can be partitioned into NAPL phases by forming reverse micelles within them. Consequently, lesser amounts of surfactants are available for the micellar solubilization of chlorinated organics in the aqueous phase. In this study, we investigated the partitioning behavior of non-ionic surfactants (Tween 20, Tween 40, Tween 80, and Triton X-100) between water and a NAPL phase consisting of tetrachloroethylene (PCE), trichloroethylene (TCE), or chloroform (CF). According to the experimental results, the partitioning of surfactants in the water-NAPL systems was found to follow linear or Langmuir-type isotherms. Regardless of type of surfactants, the partitioning loss of surfactants into NAPLs became greater with the more hydrophilic (i.e., the lower water-NAPL interfacial tension) chlorinated organics: PCE < TCE < CF. Notably, the partitioning of all Tween surfactants into the NAPLs consisting of the least hydrophilic PCE was minimal. The partitioning behavior among different surfactants was somewhat complicated. The partitioning extent into CF-NAPLs increased in the order of Tween 20 < Tween 40 < Tween 80 << Triton X-100, suggesting that the greater partitioning occurred with the more hydrophobic (i.e., the lower hydrophilic-lipophilic balance, HLB) surfactant. Consistent with this postulation, the surfactant partitioning into PCE-NAPLs showed the similar trend. In case of TCE-NAPLs, however, the more hydrophobic Tween 40 was partitioned to a less extent than Tween 20. Therefore, the specific interaction of a NAPL-surfactant pair as well as their individual properties should be considered when selecting an effective surfactant for the remediation of a NAPL-contaminated site.

  1. Hydrogeologic Setting of A/M Area: Framework for Groundwater Transport. Book 1

    SciTech Connect

    Van Pelt, R.; Lewis, S.E.; Aadland, R.K.

    1994-03-11

    This document includes a brief summary of the regional geology within a 200--mile radius of the A/M Area, a summary of stratigraphy and hydrostratigraphic nomenclature as it applies to the A/M Area, and a summary of stratigraphy and hydrostratigraphy specific to the A/M Area. Five different stratigraphic cross sections show site-specific geology of the Tertiary section of the Upper Atlantic Coastal Plain geologic province within the A/M Area. The Cretaceous section lacks detail because the deepest wells penetrate only the uppermost part of the Upper Cretaceous sediments. Most of the wells are confined to the Tertiary section. The A/M Area is located in the northwestern corner of the Savannah River Site (SRS). The area serves as a main administrative hub for the site. Between 1958 and 1985, approximately 2,000,000 pounds of volatile organic solvents (metal degreasers, primarily trichloroethylene and tetrachloroethylene) were routed to the M Area Settling Basin. Between 1954 and 1958, effluent also was discharged to Tim`s Branch via the A014 Outfall. In the main M Area Solvent Handling/Storage Area, a significant amount of leakage occurred from drums stored during this time period. Extensive quantities of solvents were transported, via the Process Sewer Line, to the M Area Settling Basin, and leaks occurred along this line as well. A smaller source area has been identified and is centered around the Savannah River Laboratory (SRL) (now called the Savannah River Technology Center [SRTC]) Complex. All of these source areas are represented by solvent contamination in the groundwater system. (Abstract Truncated)

  2. Air pollution: assessing total exposure in the United States

    SciTech Connect

    Smith, K.R.

    1988-10-01

    In recent years air pollution science has been undergoing two revolutions as the result of shifts of perception in the volumetric scale on which important adverse impacts occur. One revolution has come about because of the realization that some pollutants produce impacts at an extremely large scale. The second revolution is the result of the growing realization that the health impacts of many pollutants can only be understood through careful consideration of such microenvironments as those inside homes, vehicles, and work places. In both cases, the traditional focus of air pollution monitoring and regulation, which has been principally at the intermediate scale of urban outdoor air quality, is no longer adequate. The shift in perception has revealed a whole new set of sources and control needs along with impacts what far-reaching consequences for human well-being. Important changes in perspective result from the shift in focus to air pollution on a small scale. Not only does another set of impacts become apparent but also a new ordering of priorities for affected populations is revealed. A symptom of this second revolution that has frequently come to public attention in recent years is the growing concern with indoor air pollution. The revolution is due to the realization that health-damaging pollutants must be measured where the people are. Part 1 of this series explains the total exposure assessment revolution as it has occurred in the United States. Part 2 extends the discussion to other countries. Attention is focused on benzene, tetrachloroethylene, p-dichlorobenzene, limonene, and particulates.

  3. Survey of bottled drinking water sold in Canada. Part 2. Selected volatile organic compounds

    SciTech Connect

    Page, B.D.; Conacher, H.B.S.; Salminen, J.

    1993-01-01

    Selected volatile organic compound (VOC) contaminants were determined in 182 samples of retail bottled waters purchased in Canada. Samples included spring water (86) packaged in containers of polyethylene or in smaller containers of transparent plastic or glass, mineral water (61) packaged only in transparent plastic or glass, and miscellaneous bottled waters (35). Analyses were performed by 3 laboratories, each using headspace sampling and capillary gas chromatography with either mass spectrometric (1 laboratory) or flame ionization detection with mass spectrometric confirmation, if required (2 laboratories). Benzene, the contaminant of primary interest, was detected in only 1 of the 182 samples at 2 {mu}g/kg. Other VOC contaminants detected (number of positive samples, average, and range of positives in {mu}g/kg) included toluene (20, 6.92, 0.5-63), cyclohexane (23, 39.2, 3-108), chloroform (12, 25.8, 3.7-70), and dichloromethane (4, 59, 22-97). Cyclohexane was found in the plastic and as a migrant from the plastic in 20 samples of spring water, but it was found in only 1 of 61 mineral water samples analyzed at only 3 {mu}g/kg/. Chloroform was found almost exclusively in samples that could have been obtained from public water supplies. It was not found in mineral water samples, but it was found in 1 spring water sample at 3.7 {mu}g/kg. The source of the toluene contamination was not known. Other VOCs detected include ethanol and limonene, associated with added flavoring; pentane, as a migrant from a foamed polystyrene cap liner; and 1,1,2,2-tetra-chloroethylene in a sample of demineralized water. 10 refs., 6 tabs.

  4. Determination of volatile organic compounds in water by headspace solid-phase microextraction gas chromatography coupled to tandem mass spectrometry with triple quadrupole analyzer.

    PubMed

    Cervera, M I; Beltran, J; Lopez, F J; Hernandez, F

    2011-10-17

    In the present work, a rapid method with little sample handling has been developed for determination of 23 selected volatile organic compounds in environmental and wastewater samples. The method is based on headspace solid-phase microextraction (SPME) followed by gas chromatography coupled to tandem mass spectrometry (GC-MS/MS) determination using triple quadrupole analyzer (QqQ) in electron ionization mode. The best conditions for extraction were optimised with a factorial design taking into account the interaction between different parameters and not only individual effects of variables. In the optimized procedure, 4 mL of water sample were extracted using a 10 mL vial and adding 0.4 g NaCl (final NaCl content of 10%). An SPME extraction with carboxen/polydimethylsiloxane 75 ?m fiber for 30 min at 50°C (with 5 min of previous equilibration time) with magnetic stirring was applied. Chromatographic determination was carried out by GC-MS/MS working in Selected Reaction Monitoring (SRM) mode. For most analytes, two MS/MS transitions were acquired, although for a few compounds it was difficult to obtain characteristic abundant fragments. In those cases, a pseudo selected reaction monitoring (pseudo-SRM) with three ions was used instead. The intensity ratio between quantitation (Q) and confirmation (q) signals was used as a confirmatory parameter. The method was validated by means of recovery experiments (n=6) spiking mineral water samples at three concentration levels (0.1, 5 and 50 ?g L(-1)). Recoveries between 70% and 120% were generally obtained with relative standard deviations (RSDs) lower than 20%. The developed method was applied to surface water and wastewater from a wastewater treatment plant and from a municipal solid-waste treatment plant. Several compounds, like chloroform, benzene, trichloroethylene, toluene, tetrachloroethylene, dibromochloromethane, xylenes and bromoform were detected and confirmed in all the samples analyzed. PMID:21907025

  5. Perchloroethylene-contaminated drinking water and the risk of breast cancer: additional results from Cape Cod, Massachusetts, USA.

    PubMed Central

    Aschengrau, Ann; Rogers, Sarah; Ozonoff, David

    2003-01-01

    In 1998 we published the results of a study suggesting an association between breast cancer and perchloroethylene (PCE; also called tetrachloroethylene) exposure from public drinking water. The present case-control study was undertaken to evaluate this association further. The cases were composed of female residents of eight towns in the Cape Cod region of Massachusetts who had been diagnosed with breast cancer from 1987 through 1993 (n = 672). Controls were composed of demographically similar women from the same towns (n = 616). Women were exposed to PCE when it leached from the vinyl lining of water distribution pipes from the late 1960s through the early 1980s. A relative delivered dose of PCE that entered a home was estimated using an algorithm that took into account residential history, water flow, and pipe characteristics. Small to moderate elevations in risk were seen among women whose exposure levels were above the 75th and 90th percentiles when 0-15 years of latency were considered (adjusted odds ratios, 1.5-1.9 for > 75th percentile, 1.3-2.8 for > 90th percentile). When data from the present and prior studies were combined, small to moderate increases in risk were also seen among women whose exposure levels were above the 75th and 90th percentiles when 0-15 years of latency were considered (adjusted odds ratios, 1.6-1.9 for > 75th percentile, 1.3-1.9 for > 90th percentile). The results of the present study confirm those of the previous one and suggest that women with the highest PCE exposure levels have a small to moderate increased risk of breast cancer. PMID:12573900

  6. Reconnaissance of volatile organic compounds in the subsurface at Rutgers University, Busch Campus, Piscataway Township, New Jersey

    USGS Publications Warehouse

    dePaul, V.T.

    1996-01-01

    During 1991-92, the U.S. Geological Survey conducted a hydrogeologic reconnaissance at a site near the Rutgers University, Busch Campus, Chemical Engineering building, C-Wing. Results of analyses of the soil-gas samples, which were collected at 43 locations, indicated the presence of volatile organic compounds, primarily carbon tetrachloride, near the C-Wing building and about 550 feet downgradient from and southwest of the C-Wing building. Concentrations of the compound in soil-gas samples were highest (2.1 ug/L (micrograms per liter)) along the southwestern wall of the C-Wing building. Ground-water samples were collected at depths as great as 55 feet from five wells and piezometers near the C-Wing building. Samples collected along the southwestern wall of the building also contained the highest concentrations of volatile organic compounds. Concentrations of carbon tetrachloride in the ground-water samples ranged from < 0.35 ug/L to 3,400 ug/L, and concentrations of tetrachloro- ethylene ranged from < 0.28 ug/L to 85 ug/L. Ground-water samples collected at depths of 55 feet or more from two wells located on the Rutgers University Golf Course about 2,400 feet down- gradient from the C-Wing building contained concentrations of tetrachloroethylene as great as 17.7 ug/L. Water levels measured in six wells and six piezometers indicated that the general flow direction in the shallow part of the aquifer is to the southwest of the C-Wing building. An electrical-resistivity survey was conducted by azimuthal resistivity techniques. The results of the survey were consistent with field measurements, and the dominant vertical fractures near the Busch Campus trend northeast. An electromagnetic survey was ineffective as a result of cultural interferences and could not be used to determine the hydrogeologic characteristics of the site.

  7. Measurements of chlorinated volatile organic compounds emitted from office printers and photocopiers.

    PubMed

    Kowalska, Joanna; Szewczy?ska, Ma?gorzata; Po?niak, Ma?gorzata

    2015-04-01

    Office devices can release volatile organic compounds (VOCs) partly generated by toners and inks, as well as particles of paper. The aim of the presented study is to identify indoor emissions of volatile halogenated organic compounds into the office workspace environment. Mixtures of organic pollutants emitted by seven office devices, i.e. printers and copiers, were analyzed by taking samples in laboratory conditions during the operation of these appliances. Tests of volatile organic compound emissions from selected office devices were conducted in a simulated environment (test chamber). Samples of VOCs were collected using three-layered thermal desorption tubes. Separation and identification of organic pollutant emissions were made using thermal desorption combined with gas chromatography coupled to mass spectrometry. Test chamber studies indicated that operation of the office printer and copier would contribute to the significant concentration level of VOCs in typical office indoor air. Among the determined volatile halogenated compounds, only chlorinated organic compounds were identified, inter alia: trichloroethylene - carcinogenic - and tetrachloroethylene - possibly carcinogenic to human. The results show that daily exposure of an office worker to chemical factors released by the tested printing and copying units can be variable in terms of concentrations of VOCs. The highest emissions in the test chamber during printing were measured for ethylbenzene up to 41.3 ?g m(-3), xylenes up to 40.5 ?g m(-3) and in case of halogenated compounds the highest concentration for chlorobenzene was 6.48 ?g m(-3). The study included the comparison of chamber concentrations and unit-specific emission rates of selected VOCs and the identified halogenated compounds. The highest amount of total VOCs was emitted while copying with device D and was rated above 1235 ?g m(-3) and 8400 ?g unit(-1) h(-1) on average. PMID:25323406

  8. Simultaneous analysis of 28 urinary VOC metabolites using ultra high performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (UPLC-ESI/MSMS).

    PubMed

    Alwis, K Udeni; Blount, Benjamin C; Britt, April S; Patel, Dhrusti; Ashley, David L

    2012-10-31

    Volatile organic compounds (VOCs) are ubiquitous in the environment, originating from many different natural and anthropogenic sources, including tobacco smoke. Long-term exposure to certain VOCs may increase the risk for cancer, birth defects, and neurocognitive impairment. Therefore, VOC exposure is an area of significant public health concern. Urinary VOC metabolites are useful biomarkers for assessing VOC exposure because of non-invasiveness of sampling and longer physiological half-lives of urinary metabolites compared with VOCs in blood and breath. We developed a method using reversed-phase ultra high performance liquid chromatography (UPLC) coupled with electrospray ionization tandem mass spectrometry (ESI/MSMS) to simultaneously quantify 28 urinary VOC metabolites as biomarkers of exposure. We describe a method that monitors metabolites of acrolein, acrylamide, acrylonitrile, benzene, 1-bromopropane, 1,3-butadiene, carbon-disulfide, crotonaldehyde, cyanide, N,N-dimethylformamide, ethylbenzene, ethylene oxide, propylene oxide, styrene, tetrachloroethylene, toluene, trichloroethylene, vinyl chloride and xylene. The method is accurate (mean accuracy for spiked matrix ranged from 84 to 104%), sensitive (limit of detection ranged from 0.5 to 20 ng mL(-1)) and precise (the relative standard deviations ranged from 2.5 to 11%). We applied this method to urine samples collected from 1203 non-smokers and 347 smokers and demonstrated that smokers have significantly elevated levels of tobacco-related biomarkers compared to non-smokers. We found significant (p<0.0001) correlations between serum cotinine and most of the tobacco-related biomarkers measured. These findings confirm that this method can effectively quantify urinary VOC metabolites in a population exposed to volatile organics. PMID:23062436

  9. Ultrasound-assisted dispersive liquid-liquid microextraction plus simultaneous silylation for rapid determination of salicylate and benzophenone-type ultraviolet filters in aqueous samples.

    PubMed

    Wu, Jen-Wen; Chen, Hsin-Chang; Ding, Wang-Hsien

    2013-08-01

    A rapid procedure, using minimal amounts of solvent, for the reliable determination of five salicylate and benzophenone-type ultraviolet (UV) filters: ethylhexyl salicylate (EHS), 3,3,5-trimethyl-cyclohexyl salicylate (HMS), 2-hydroxy-4-methoxybenzophenone (BP-3), 2,4-dihydroxy-benzophenone (BP-1) and 2,2'-dihydroxy-4-methoxybenzophenone (BP-8), in aqueous samples is described. The method involves an ultrasound-assisted dispersive liquid-liquid microextraction (UA-DLLME) plus simultaneous silylation prior to their determination by gas chromatography-mass spectrometry (GC-MS). The parameters affecting the extraction and derivatization efficiency of the target UV filters from aqueous samples were systematically investigated and the conditions optimized. The optimal silylation and extraction conditions involved the rapid injection of a mixture of 750?L of acetone (as a dispersant), 15?L of tetrachloroethylene (as an extractant), and 20?L of BSTFA (as a derivatizing agent) into a 10-mL volume of aqueous samples (pH 7.0) containing 0.5g of sodium chloride in a glass tube with a conical bottom. After ultrasonication for 2.0min and centrifugation at 5000rpm (10min), the sedimented phase 5.0?L was directly introduced into the GC-MS. The limits of quantitation (LOQs) were less than 6ng/L. The precision for these analytes, as indicated by the relative standard deviations (RSDs), was less than 9% for both intra- and inter-day analysis. Accuracy, expressed as the mean extraction recovery, was between 74 and 92%. The method was then applied to environmental aqueous samples, using a standard addition method, showing the occurrence of BP-3 in samples of both river water and municipal wastewater treatment plant (MWTP) effluents. PMID:23831000

  10. Distributions and sea-to-air fluxes of volatile halocarbons in the East China Sea in early winter.

    PubMed

    He, Zhen; Yang, Gui-Peng; Lu, Xiao-Lan

    2013-01-01

    The concentrations of six volatile halogenated organic compounds (VHOC)-chloroform (CHCl(3)), trichloroethylene (C(2)HCl(3)), tetrachloroethylene (C(2)Cl(4)), carbon tetrachloride (CCl(4)), methylchloroform (CH(3)CCl(3)), and bromoform (CHBr(3)) in the East China Sea (ECS) in November and December 2010 were measured by a purge and trap system coupled to a gas chromatograph with an electron capture detection (ECD). Mean (range) concentrations of CHCl(3), C(2)HCl(3), C(2)Cl(4), CH(3)CCl(3), CCl(4) and CHBr(3) in the surface water were 16.90 (0.40-62.92), 16.27 (2.78-83.33), 2.40 (0.39-9.33), 32.29 (19.72-57.68), 1.70 (0.39-8.73) and 17.11 (4.33-34.46) pM, respectively. With the exception of C(2)HCl(3), the concentrations of other five kinds of VHOC generally exhibited a decreasing trend with distance from the coast, with the low values found in the open sea. The anthropogenic sources contributed to the elevated levels of CCl(4) and CH(3)CCl(3), whereas a combination of the anthropogenic and biogenic sources might be responsible for the elevated levels of CHCl(3), C(2)HCl(3), C(2)Cl(4) and CHBr(3). In the depth profiles, vertical distributions of the six VHOC in the water column were complicated, with the maxima occurring at 0-100 m depths. The mean sea-to-air fluxes of CHCl(3), C(2)HCl(3), C(2)Cl(4) and CHBr(3) were estimated to be 21.08, 29.94, 2.05 and 35.50 nmol m(-2) d(-1), respectively, indicating that the ECS was a source for the four VHOC in the atmosphere. PMID:23102696

  11. CROWTM PROCESS APPLICATION FOR SITES CONTAMINATED WITH LIGHT NON-AQUEOUS PHASE LIQUIDS AND CHLORINATED HYDROCARBONS

    SciTech Connect

    L.A. Johnson, Jr.

    2003-06-30

    Western Research Institute (WRI) has successfully applied the CROWTM (Contained Recovery of Oily Wastes) process at two former manufactured gas plants (MGPs), and a large wood treatment site. The three CROW process applications have all occurred at sites contaminated with coal tars or fuel oil and pentachlorophenol (PCP) mixtures, which are generally denser than water and are classified as dense non-aqueous phase liquids (DNAPLs). While these types of sites are abundant, there are also many sites contaminated with gasoline, diesel fuel, or fuel oil, which are lighter than water and lie on top of an aquifer. A third site type occurs where chlorinated hydrocarbons have contaminated the aquifer. Unlike the DNAPLs found at MGP and wood treatment sites, chlorinated hydrocarbons are approximately one and a half times more dense than water and have fairly low viscosities. These contaminants tend to accumulate very rapidly at the bottom of an aquifer. Trichloroethylene (TCE) and perchloroethylene, or tetrachloroethylene (PCE), are the major industrial chlorinated solvents that have been found contaminating soils and aquifers. The objective of this program was to demonstrate the effectiveness of applying the CROW process to sites contaminated with light non-aqueous phase liquids (LNAPLs) and chlorinated hydrocarbons. Individual objectives were to determine a range of operating conditions necessary to optimize LNAPL and chlorinated hydrocarbon recovery, to conduct numerical simulations to match the laboratory experiments and determine field-scale recoveries, and determine if chemical addition will increase the process efficiency for LNAPLs. The testing consisted of twelve TCE tests; eight tests with PCE, diesel, and wood treatment waste; and four tests with a fuel oil-diesel blend. Testing was conducted with both vertical and horizontal orientations and with ambient to 211 F (99 C) water or steam. Residual saturations for the horizontal tests ranged from 23.6% PV to 0.3% PV. Also conducted was screening of 13 chemicals to determine their relative effectiveness and the selection of three chemicals for further testing.

  12. Occupational cancer burden in Great Britain.

    PubMed

    Rushton, Lesley; Hutchings, Sally J; Fortunato, Lea; Young, Charlotte; Evans, Gareth S; Brown, Terry; Bevan, Ruth; Slack, Rebecca; Holmes, Phillip; Bagga, Sanjeev; Cherrie, John W; Van Tongeren, Martie

    2012-06-19

    A sound knowledge base is required to target resources to reduce workplace exposure to carcinogens. This project aimed to provide an objective estimate of the burden of cancer in Britain due to occupation. This volume presents extensive analyses for all carcinogens and occupational circumstances defined as definite or probable human occupational carcinogens by the International Agency for Research on Cancer. This article outlines the structure of the supplement - two methodological papers (statistical approach and exposure assessment), eight papers presenting the cancer-specific results grouped by broad anatomical site, a paper giving industry sector results and one discussing work-related cancer-prevention strategies. A brief summary of the methods and an overview of the updated overall results are given in this introductory paper. A general discussion of the overall strengths and limitations of the study is also presented. Overall, 8010 (5.3%) total cancer deaths in Britain and 13,598 cancer registrations were attributable to occupation in 2005 and 2004, respectively. The importance of cancer sites such as mesothelioma, sinonasal, lung, nasopharynx, breast, non-melanoma skin cancer, bladder, oesophagus, soft tissue sarcoma and stomach cancers are highlighted, as are carcinogens such as asbestos, mineral oils, solar radiation, silica, diesel engine exhaust, coal tars and pitches, dioxins, environmental tobacco smoke, radon, tetrachloroethylene, arsenic and strong inorganic mists, as well as occupational circumstances such as shift work and occupation as a painter or welder. The methods developed for this project are being adapted by other countries and extended to include social and economic impact evaluation. PMID:22710676

  13. Determination of bisphenol A and bisphenol B in canned seafood combining QuEChERS extraction with dispersive liquid-liquid microextraction followed by gas chromatography-mass spectrometry.

    PubMed

    Cunha, S C; Cunha, C; Ferreira, A R; Fernandes, J O

    2012-11-01

    A new simple and reliable method combining an acetonitrile partitioning extractive procedure followed by dispersive solid-phase cleanup (QuEChERS) with dispersive liquid-liquid microextraction (DLLME) and further gas chromatography mass spectrometry analysis was developed for the simultaneous determination of bisphenol A (BPA) and bisphenol B (BPB) in canned seafood samples. Besides the great enrichment factor provided, the final DLLME extractive step was designed in order to allow the simultaneous acetylation of the compounds required for their gas chromatographic analysis. Tetrachloroethylene was used as extractive solvent, while the acetonitrile extract obtained from QuEChERS was used as dispersive solvent, and anhydride acetic as derivatizing reagent. The main factors influencing QuEChERS and DLLME efficiency including nature of QuEChERS dispersive-SPE sorbents, amount of DLLME extractive and dispersive solvents and nature and amount of derivatizing reagent were evaluated. DLLME procedure provides an effective enrichment of the extract, allowing the required sensitivity even using a single quadropole MS as detector. The optimized method showed to be accurate (>68 % recovery), reproducible (<21 % relative standard deviation) and sensitive for the target analytes (method detection limits of 0.2 ?g/kg for BPA and 0.4 ?g/kg for BPB). The screening of several canned seafood samples commercialized in Portugal (total = 47) revealed the presence of BPA in more than 83 % of the samples with levels ranging from 1.0 to 99.9 ?g/kg, while BPB was found in only one sample at a level of 21.8 ?g/kg. PMID:22995997

  14. A purge and trap integrated microGC platform for chemical identification in aqueous samples.

    PubMed

    Akbar, Muhammad; Narayanan, Shree; Restaino, Michael; Agah, Masoud

    2014-07-01

    The majority of current micro-scale gas chromatography (?GC) systems focus on air sampling to detect volatile organic compounds (VOCs). However, purging the VOCs from a water sample using microsystems is an unchartered territory. Various organic compounds used in everyday life find their way to water bodies. Some of these water organic compounds (WOCs) persist or degrade slowly, threatening not just human existence but also aquatic life. This article reports the first micro-purge extractor (?PE) chip and its integration with a micro-scale gas chromatography (?GC) system for the extraction and analysis of water organic compounds (WOCs) from aqueous samples. The 2 cm × 3 cm ?PE chip contains two inlet and outlet ports and an etched cavity sealed with a Pyrex cover. The aqueous sample is introduced from the top inlet port while a pure inert gas is supplied from the side inlet to purge WOCs from the ?PE chip. The outlets are assigned for draining water from the chip and for directing purged WOCs to the micro-thermal preconcentrator (?TPC). The trapped compounds are desorbed from the ?TPC by resistive heating using the on-chip heater and temperature sensor, are separated by a 2 m long, 80 ?m wide, and 250 ?m deep polydimethylsiloxane (OV-1) coated ?GC separation column, and are identified using a micro-thermal conductivity detector (?TCD) monolithically integrated with the column. Our experiments indicate that the combined system is capable of providing rapid chromatographic separation (<1.5 min) for quaternary WOCs namely toluene, tetrachloroethylene (PCE), chlorobenzene and ethylbenzene with a minimum detection concentration of 500 parts-per-billion (ppb) in aqueous samples. The proposed method is a promising development towards the future realization of a miniaturized system for sensitive, on-site and real-time field analysis of organic contaminants in water. PMID:24837988

  15. Fates of chlorinated volatile organic compounds in aerobic biological treatment processes: the effects of aeration and sludge addition.

    PubMed

    Chen, Wei-Hsiang; Yang, Wen-Ben; Yuan, Chung-Shin; Yang, Jun-Chen; Zhao, Qing-Liang

    2014-05-01

    The emission of volatile organic compounds (VOCs) from wastewater treatment plants (WWTPs) is becoming an environmental issue of increasing concern. As biological treatment has been considered as one important approach for VOC removal, lab-scale batch experiments were conducted in this study to investigate the fates of four chlorinated hydrocarbons, including chloroform, carbon tetrachloride, trichloroethylene (TCE), and tetrachloroethylene (PERC), in the biological treatment processes with respect to the effects of aeration and sludge addition. The VOC concentrations in the phases of air, water, and sludge under four simulated treatment stages (the first sedimentation, the forepart and rear part of aerobic biological treatment, and the second sedimentation) were analyzed. The results were used to understand the three-phase partitioning of these compounds and to estimate their potentials for volatilization and biological sorption and degradation in these technologies with the concept of fugacity. It was observed that the VOCs were mainly present in the water phase through the experiments. The effects of aeration or sludge addition on the fates of these VOCs occurred but appeared to be relatively limited. The concentration distributions of the VOCs were well below the reported partitioning coefficients. It was suggested that these compounds were unsaturated in the air and sludge phases, enhancing their potentials for volatilization and biological sorption/degradation through the processes. However, the properties of these chlorinated VOCs such as the volatility, polarity, or even biodegradability caused by their structural characteristics (e.g., the number of chlorine, saturated or unsaturated) may represent more significant factors for their fates in the aerobic biological treatment processes. These findings prove the complication behind the current knowledge of VOC pollutions in WWTPs and are of help to manage the adverse impacts on the environment and public health by the VOCs from these particular sources. PMID:24321332

  16. Ultrasound-assisted dispersive liquid-liquid microextraction combined with gas chromatography-mass spectrometry in negative chemical ionization mode for the determination of polybrominated diphenyl ethers in water.

    PubMed

    Zhang, Qian; Liang, Tao; Guan, Lili

    2013-04-01

    A simple and economical method for the determination of eight polybrominated diphenyl ethers (BDE-28, 47, 99, 100,153,154,183, and 209) in water was developed. This method involves the use of ultrasound-assisted dispersive liquid-liquid microextraction combined with GC-MS in negative chemical ionization mode. Various parameters affecting the extraction efficiency, including the type and volume of extraction and dispersive solvents, salt concentration, extraction time, and ultrasonic time, were investigated. A volume of 1.0 mL of acetone (dispersive solvent) containing 10 ?L tetrachloroethylene (extraction solvent) was injected into 5.0 mL of water samples and then emulsified by ultrasound for 2.0 min to produce the cloudy solution. Under the optimal condition, the enrichment factors for the eight PBDEs were varied from 845- to 1050-folds. Good linearity was observed in the range of 1.0-200 ng L(-1) for BDE-28, 47, 99, and 100; 5.0-200 ng L(-1) for BDE-153, 154, and 183; and 5.0-500 ng L(-1) for BDE-209. The RSD values were in the range of 2.5-8.4% (n = 5) and the LODs ranged from 0.40 to 2.15 ng L(-1) (S/N = 3). The developed method was applied for the determination of eight BPDEs in the river and lake water samples, and the mean recoveries at spiking levels of 5.0 and 50.0 ng L(-1) were in the range of 70.6-105.1%. PMID:23483741

  17. Adhesion of biodegradative anaerobic bacteria to solid surfaces.

    PubMed

    van Schie, P M; Fletcher, M

    1999-11-01

    In order to exploit the ability of anaerobic bacteria to degrade certain contaminants for bioremediation of polluted subsurface environments, we need to understand the mechanisms by which such bacteria partition between aqueous and solid phases, as well as the environmental conditions that influence partitioning. We studied four strictly anaerobic bacteria, Desulfomonile tiedjei, Syntrophomonas wolfei, Syntrophobacter wolinii, and Desulfovibrio sp. strain G11, which theoretically together can constitute a tetrachloroethylene- and trichloroethylene-dechlorinating consortium. Adhesion of these organisms was evaluated by microscopic determination of the numbers of cells that attached to glass coverslips exposed to cell suspensions under anaerobic conditions. We studied the effects of the growth phase of the organisms on adhesion, as well as the influence of electrostatic and hydrophobic properties of the substratum. Results indicate that S. wolfei adheres in considerably higher numbers to glass surfaces than the other three organisms. Starvation greatly decreases adhesion of S. wolfei and Desulfovibrio sp. strain G11 but seems to have less of an effect on the adhesion of the other bacteria. The presence of Fe(3+) on the substratum, which would be electropositive, significantly increased the adhesion of S. wolfei, whereas the presence of silicon hydrophobic groups decreased the numbers of attached cells of all species. Measurements of transport of cells through hydrophobic-interaction and electrostatic-interaction columns indicated that all four species had negatively charged cell surfaces and that D. tiedjei and Desulfovibrio sp. strain G11 possessed some hydrophobic cell surface properties. These findings are an early step toward understanding the dynamic attachment of anaerobic bacteria in anoxic environments. PMID:10543826

  18. Adhesion of Biodegradative Anaerobic Bacteria to Solid Surfaces

    PubMed Central

    van Schie, Paula M.; Fletcher, Madilyn

    1999-01-01

    In order to exploit the ability of anaerobic bacteria to degrade certain contaminants for bioremediation of polluted subsurface environments, we need to understand the mechanisms by which such bacteria partition between aqueous and solid phases, as well as the environmental conditions that influence partitioning. We studied four strictly anaerobic bacteria, Desulfomonile tiedjei, Syntrophomonas wolfei, Syntrophobacter wolinii, and Desulfovibrio sp. strain G11, which theoretically together can constitute a tetrachloroethylene- and trichloroethylene-dechlorinating consortium. Adhesion of these organisms was evaluated by microscopic determination of the numbers of cells that attached to glass coverslips exposed to cell suspensions under anaerobic conditions. We studied the effects of the growth phase of the organisms on adhesion, as well as the influence of electrostatic and hydrophobic properties of the substratum. Results indicate that S. wolfei adheres in considerably higher numbers to glass surfaces than the other three organisms. Starvation greatly decreases adhesion of S. wolfei and Desulfovibrio sp. strain G11 but seems to have less of an effect on the adhesion of the other bacteria. The presence of Fe3+ on the substratum, which would be electropositive, significantly increased the adhesion of S. wolfei, whereas the presence of silicon hydrophobic groups decreased the numbers of attached cells of all species. Measurements of transport of cells through hydrophobic-interaction and electrostatic-interaction columns indicated that all four species had negatively charged cell surfaces and that D. tiedjei and Desulfovibrio sp. strain G11 possessed some hydrophobic cell surface properties. These findings are an early step toward understanding the dynamic attachment of anaerobic bacteria in anoxic environments. PMID:10543826

  19. Treatment of chlorinated ethenes in groundwater with ozone and hydrogen peroxide

    SciTech Connect

    Clancy, P.B.; Armstrong, J.; Couture, M.

    1996-12-31

    A study was conducted to enhance the performance of an advanced oxidation process in treating chlorinated ethenes in groundwater at IBM`s groundwater treatment system at its Essex Junction, Vermont facility. A model describing the reaction kinetics and mass transfer of a co-current ozone injection process is presented. This model, in conjunction with experiments, demonstrates that the treatment performance of the ozone treatment process at a given ozone/air concentration and ozone mass flowrate cannot be improved by varying process operating parameters such as number of ozone injectors utilized, use of a static mixer, or variation of groundwater flowrate through each injector. This is because dissolved ozone reaches equilibrium with the injected ozone/air mixture within two seconds of initial contact. Also, the Venturi-type ozone injection system presently in use destroys nearly half of the injected ozone. Injection of hydrogen peroxide in conjunction with ozone increases the overall tetrachloroethylene (PCE) treatment efficiency by a factor of four (in comparison to ozone alone) at a H{sub 2}O{sub 2}/O{sub 3} mass ratio of between 1 and 2. Treatment of trichloroethylene (TCE) is enhanced by a factor of two. This enhancement of the oxidative treatment process results in a reduction in solvent mass load to a granular activated carbon (GAC) adsorption system located downstream, thus potentially reducing the usage GAC and regeneration of spent GAC. However, residual hydrogen peroxide and/or hydroxyl free radicals from the oxidation process effluent may interact adversely with certain grades of GAC; the causes of this interaction and methods to attenuate it (i.e., the use of more resistant grades of GAC) are discussed. Overall O{sub 3}/H{sub 2}O{sub 2}/GAC system operating costs can potentially be reduced significantly (up to $20K annually). An economic analysis and system operation/cost optimization study are presented. 8 refs., 7 figs., 1 tab.

  20. Chronic toxicity of a mixture of chlorinated alkanes and alkenes in ICR mice.

    PubMed

    Wang, Fun-In; Kuo, Min-Liang; Shun, Chia-Tung; Ma, Yee-Chung; Wang, Jung-Der; Ueng, Tzuu-Huei

    2002-02-01

    The aim of this study was to determine the chronic toxicity of a mixture of chlorinated alkanes and alkenes (CA) consisting of chloroform, 1,1-dichloroethane, 1,1-dichloroethylene, 1,1,1-trichloroethane, trichloroethylene, and tetrachloroethylene. These chlorinated organic solvents were present in the underground water near an electronic appliances manufactory in Taoyuan, Taiwan. Male and female weanling ICR mice were treated with low-, medium-, and high-dose CA mixtures in drinking water for 16 and 18 mo, respectively. A significant number of male mice treated with the high-dose CA mixture developed tail alopecia and deformation, which was not prominent in CA-treated female mice. Medium- and high-dose CA mixtures induced marginal increases of liver and lung weights, blood urea nitrogen, and serum creatinine levels in male mice. In female mice, the high-dose CA mixture increased liver, kidney, and uterus and ovary total weights, without affecting serum biochemistry parameters. CA mixtures had no effects on the total glutathione content or the level of glutathione S-transferase activity in the livers and kid- neys of male and female mice. Treatments with CA mixtures produced a trend of increasing frequency of hepatocelluar neoplasms in male mice, compared to male and female controls and CA-treated female mice. The high-dose CA mixture induced a significantly higher incidence of mammary adenocarcinoma in female mice. The calculated odds ratios of mammary adenocarcinoma in female mice induced by low-, medium-, and high-dose CA mixtures were 1.14, 1.37, and 3.53 times that of the controls, respectively. The low-dose CA mixture induced a higher incidence of cysts and inflammation in and around the ovaries. This study has demonstrated that the CA mixture is a potential carcinogen to male and female mice. These animal toxicology data may be important in assessing the health effects of individuals exposed to the CA mixture. PMID:11911491

  1. Dechlorination of chlorinated hydrocarbons by bimetallic Ni/Fe immobilized on polyethylene glycol-grafted microfiltration membranes under anoxic conditions.

    PubMed

    Parshetti, Ganesh K; Doong, Ruey-an

    2012-01-01

    In this study, the dechlorination of chlorinated hydrocarbons including trichloroethylene (TCE), tetrachloroethylene (PCE) and carbon tetrachloride (CT) by bimetallic Ni/Fe nanoparticles immobilized on four different membranes was investigated under anoxic conditions. Effects of several parameters including the nature of membrane, initial concentration, pH value, and reaction temperature on the dechlorination efficiency were examined. The scanning electron microscopic images showed that the Ni/Fe nanoparticles were successfully immobilized inside the four membranes using polyethylene glycol as the cross-linker. The agglomeration of Ni/Fe were observed in poly(vinylidene fluoride), Millex GS and mixed cellulose ester membranes, while a relatively uniform distribution of Ni/Fe was found in nylon-66 membrane because of its hydrophilic nature. The immobilized Ni/Fe nanoparticles exhibited good reactivity towards the dechlorination of chlorinated hydrocarbons, and the pseudo-first-order rate constant for TCE dechlorination by Ni/Fe in nylon-66 were 3.7-11.7 times higher than those in other membranes. In addition, the dechlorination efficiency of chlorinated hydrocarbons followed the order TCE>PCE>CT. Ethane was the only end product for TCE and PCE dechlorination, while dichloromethane and methane were found to be the major products for CT dechlorination, clearly indicating the involvement of reactive hydrogen species in dechlorination. In addition, the initial rate constant for TCE dechlorination increased upon increasing initial TCE concentrations and the activation energy for TCE dechlorination by immobilized Ni/Fe was 34.9 kJ mol(-1), showing that the dechlorination of TCE by membrane-supported Ni/Fe nanoparticles is a surface-mediated reaction. PMID:22115467

  2. [Solute transport modeling application in groundwater organic contaminant source identification].

    PubMed

    Wang, Shu-Fang; Wang, Li-Ya; Wang, Xiao-Hong; Lin, Pei; Liu, Jiu-Rong; Xin, Bao-Dong; He, Guo-Ping

    2012-03-01

    Investigation and numerical simulation, based on RT3D (reactive transport in 3-dimensions)were used to identify the source of tetrachloroethylene (PCE) and trichloroethylene (TCE) in the groundwater of a city in the north of China and reverse the input intensity. Multiple regressions were applied to analyze the influenced factors of input intensity of PCE and TCE using Stepwise function in Matlab. The results indicate that the factories and industries are the source of the PCE and TCE in groundwater. Natural attenuation was identified and the natural attenuation rates are 93.15%, 61.70% and 61.00% for PCE, and 70.05%, 73.66% and 63.66% for TCE in 173 days. The 4 source points identified by the simulation have released 0.910 6 kg PCE and 95.693 8 kg TCE during the simulation period. The regression analysis results indicate that local precipitation and the thickness of vadose zone are the main factors influencing organic solution transporting from surface to groundwater. The PCE and TCE concentration are found to be 0 and 5 mg x kg(-1) from surface to 35 cm in vadose zone. All above results suggest that PCE and TCE in groundwater are from the source in the surface. Natural attenuation occurred when PCE and TCE transporting from the surface to groundwater, and the rest was transported to groundwater through vadose zone. Local precipitation was one of the critical factors influencing the transportation of PCE and TCE to aquifer through sand, pebble and gravel of the Quaternary. PMID:22624366

  3. Key comparison of liquid density standards

    NASA Astrophysics Data System (ADS)

    Buchner, Christian; Zelenka, Zoltan; Kajastie, Heikki; Madec, Tanguy; Wolf, Henning; Vámossy, Csilla; Lorefice, Salvatore; Garberg, Torgunn; Lenard, El?bieta; Spohr, Isabel; Mares, Gabriela; Spurný, Robert; Lumbreras, Angel; Medina, Nieves; Y Akçada?, Ümit; Perkin, Michael

    2015-01-01

    Hydrostatic density determination for liquids is mainly performed by laboratories to provide means for calibrating liquid density measuring instruments such as oscillation-type density meters. From 2002 to 2005 the CIPM key comparison CCM.D-K2 'comparison of liquid density standards' was carried out piloted by the PTB. The aim was to compare the results of the density determination by the participating laboratories to support entries to the CMC tables in this sub-field. To provide further laboratories the possibility to support their entries to the CMC tables at the meeting of the EUROMET Working Group on Density in 2007 this comparison was agreed on. BEV (Austria) organized the comparison supported by the PTB (Germany). For the comparison samples of pentadecane, water, tetrachloroethylene and of an oil of high viscosity were measured in the temperature range from 5 °C to 60 °C at atmospheric pressure by hydrostatic weighing. The measurements were completed in 2008. The reference values of the first reports based on the draft of the CCM.D-K2. After the official publication of the CCM.D-K2 the reference values were recalculated and the report was finalised in 2015. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  4. Determination of geosmin and 2-methylisoborneol in water and wine samples by ultrasound-assisted dispersive liquid-liquid microextraction coupled to gas chromatography-mass spectrometry.

    PubMed

    Cortada, Carol; Vidal, Lorena; Canals, Antonio

    2011-01-01

    A fast, simple and environmentally friendly ultrasound-assisted dispersive liquid-liquid microextraction (USADLLME) procedure has been developed to preconcentrate geosmin and 2-methylisoborneol (MIB) from water and wine samples prior to quantification by gas chromatography-mass spectrometry (GC-MS). A two-stage multivariate optimization approach was developed by means of a Plackett-Burman design for screening and selecting the significant variables involved in the USADLLME procedure, which was later optimized by means of a circumscribed central composite design. The optimum conditions were: solvent volume, 8?L; solvent type: tetrachloroethylene; sample volume, 12 mL; centrifugation speed, 2300 rpm; extraction temperature 20 °C; extraction time, 3 min; and centrifugation time, 3 min. Under the optimized experimental conditions the method gave good levels of repeatability with coefficient of variation under 11% (n=10). Limits of detection were 2 and 9 ng L?¹ for geosmin and MIB, respectively. Calculated calibration curves gave high levels of linearity with correlation coefficient values of 0.9988 and 0.9994 for geosmin and MIB, respectively. Finally, the proposed method was applied to the analysis of two water (reservoir and tap) samples and three wine (red, rose and white) samples. The samples were previously analyzed and confirmed free of target analytes. Recovery values ranged between 70 and 113% at two spiking levels (0.25 ?g L?¹ and 30 ng L?¹) showing that the matrix had a negligible effect upon extraction. Only red wine showed a noticeable matrix effect (70-72% recovery). Similar conclusions have been obtained from an uncertainty budget evaluation study. PMID:21112591

  5. Limited representation of drinking-water contaminants in pregnancy-birth cohorts.

    PubMed

    Makris, Konstantinos C; Andra, Syam S

    2014-01-15

    Water contamination and noise have been consistently the least assessed environmental/lifestyle exposures in pregnancy-birth cohorts (PBC). Water quality surveillance data collected during the past decade within urban drinking-water distribution systems call for re-evaluation of water and health issues in the developed world. The objectives of this scientific commentary were to (i) highlight the extent of appraisal of water contamination in exposure assessment studies of PBC, worldwide, and (ii) propose recommendations to increase awareness of emerging water-related risks through their improved representation into PBC study designs in urban centers. Three scientific literature databases (Scopus, PubMed, and Web of Science) were used for a systematic search on worldwide PBC and their publications that considered water contamination and health outcomes. Publicly-available e-databases (ENRIECO, BIRTHCOHORTS, and CHICOS) were also employed for detailed exploration of existing European Union (EU)-based PBC. Out of the 76 PBC identified in the EU territory, only 12 of them incorporated water contamination into their study designs. Among which only 6 PBC published scientific articles that either included data on water contamination and/or water intake estimates. Trihalomethanes but not other disinfection by-products were mostly studied in the PBC around the globe, while fluoride, atrazine, perfluorinated compounds, tetrachloroethylene, and lead were studied to a lesser extent as water contaminants. It appears that chemical-based water contamination and corresponding human exposures represent a largely underappreciated niche of exposure science pertaining to pregnant mother and children's health in PBC. Future PBC studies should grasp this opportunity to substantially reform elements of water contamination in their exposure assessment protocols and effectively combine them with their epidemiological study designs. PMID:24013514

  6. In-Situ Remediation of Mixed Radioactive Tank Waste, Via Air Sparging and Poly-Acrylate Solidification

    SciTech Connect

    Farnsworth, R.K.; Edgett, S.M.; Eaton, D.L.

    2007-07-01

    This paper describes remediation activities performed in accordance with the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) on an underground storage tank (UST) from the Idaho National Laboratory's Test Area North (TAN) complex. The UST had been used to collect radioactive liquid wastes from and for the TAN evaporator. Recent analyses had found that the residual waste in Tank V-14 had contained quantities of tetrachloroethylene (PCE) in excess of F001 treatment standards. In addition, the residual waste in Tank V-14 was not completely solidified. As a result, further remediation and solidification of the waste was required before the tank could be properly disposed of at the Idaho CERCLA Disposal Facility (ICDF). Remediation of the PCE-contaminated waste in Tank V-14 was performed by first adding sufficient water to fluidize the residual waste in the tank. This was followed by high-volume, in-situ air sparging of the fluidized waste, using air lances that were inserted to the bottom of V-14. The high-volume air sparging removed residual PCE from the fluidized waste, collecting it on granular activated carbon filters within the off-gas system. The sparged waste was then solidified by educting large-diameter crystals of an acrylic acrylate resin manufactured by WaterWorks America{sup TM} into the fluidized waste, via the air-sparging lances. To improve solidification, the air-sparging lances were rotated during the eduction step, while continuing to provide high-volume air flow into the waste. Eduction was continued until the waste had solidified sufficiently to not allow for further eduction of WaterWorks{sup TM} crystals into the waste. The tank was then disposed of at the ICDF, with the residual void volume in the tank filled with cement. (authors)

  7. Solvent exposure and malignant lymphoma: a population-based case-control study in Germany

    PubMed Central

    Seidler, Andreas; Möhner, Matthias; Berger, Jürgen; Mester, Birte; Deeg, Evelin; Elsner, Gine; Nieters, Alexandra; Becker, Nikolaus

    2007-01-01

    Aims To analyze the relationship between exposure to chlorinated and aromatic organic solvents and malignant lymphoma in a multi-centre, population-based case-control study. Methods Male and female patients with malignant lymphoma (n = 710) between 18 and 80 years of age were prospectively recruited in six study regions in Germany (Ludwigshafen/Upper Palatinate, Heidelberg/Rhine-Neckar-County, Würzburg/Lower Frankonia, Hamburg, Bielefeld/Gütersloh, and Munich). For each newly recruited lymphoma case, a gender, region and age-matched (± 1 year of birth) population control was drawn from the population registers. In a structured personal interview, we elicited a complete occupational history, including every occupational period that lasted at least one year. On the basis of job task-specific supplementary questionnaires, a trained occupational physician assessed the exposure to chlorinated hydrocarbons (trichloroethylene, tetrachloroethylene, dichloromethane, carbon tetrachloride) and aromatic hydrocarbons (benzene, toluene, xylene, styrene). Odds ratios (OR) and 95% confidence intervals (CI) were calculated using conditional logistic regression analysis, adjusted for smoking (in pack years) and alcohol consumption. To increase the statistical power, patients with specific lymphoma subentities were additionally compared with the entire control group using unconditional logistic regression analysis. Results We observed a statistically significant association between high exposure to chlorinated hydrocarbons and malignant lymphoma (Odds ratio = 2.1; 95% confidence interval 1.1–4.3). In the analysis of lymphoma subentities, a pronounced risk elevation was found for follicular lymphoma and marginal zone lymphoma. When specific substances were considered, the association between trichloroethylene and malignant lymphoma was of borderline statistical significance. Aromatic hydrocarbons were not significantly associated with the lymphoma diagnosis. Conclusion In accordance with the literature, this data point to a potential etiologic role of chlorinated hydrocarbons (particularly trichloroethylene) and malignant lymphoma. Chlorinated hydrocarbons might affect specific lymphoma subentities differentially. Our study does not support a strong association between aromatic hydrocarbons (benzene, toluene, xylene, or styrene) and the diagnosis of a malignant lymphoma. PMID:17407545

  8. Stripping of VOC`s from dissolved air flotation

    SciTech Connect

    Parker, W.J.; Monteith, H.D.

    1996-12-31

    A pilot scale study was performed to assess gas phase emissions of volatile organic compounds (VOCs) from the dissolved air flotation process. A high degree of mass closure was observed in experiments using tapwater dosed with a cocktail of VOCs, indicating that techniques employed to characterize the pilot plant were valid. Subsequent dosed wastewater experiments examined volatilization from a wastewater matrix that contained oils and suspended solids as well as investigating the impacts of hydraulic loading and recycle rate on the fate of the VOCs in the dissolved air flotation unit. Emissions of the dosed candidate compounds, calculated as a percentage of the influent mass flow, ranged from 0.2% of 1,1,2,2-tetrachloroethane to 9.9% of tetrachloroethylene. Hydraulic loading and compounding type had a statistically significant effect on the emissions of VOCs, however, a high degree of interaction between parameters was observed. Effluent recycle had a greater effect on emissions at the higher hydraulic loading than at the lower loading. A model which incorporated stripping by bubbles, volatilization from a quiescent oil-free surface and equilibrium partitioning to oil was developed. The model was able to simulate the candidate compound response under all experimental conditions except the case with low hydraulic loading and low recycle rate. The results suggest that the surface volatilization model may underestimate emissions. It is hypothesized that the presence of a float in the form of a foamy layer with a high surface area tends to increase liquid-gas mass transfer of the candidate compounds over that assumed in the surface volatilization model. 13 refs., 6 figs., 8 tabs.

  9. Piezo-resistivity electric cone penetration technology investigation of the M-basin at the Savannah River Site, Aiken, South Carolina. Progress report, May 1, 1992--October 31, 1992

    SciTech Connect

    Bowers, B.; Rossabi, J.; Shinn, J.D. II; Bratton, W.L.

    1997-05-01

    This report documents the results of a combined field and laboratory investigation program to: (1) delineate the geologic layering and (2) determine the location of a dense non-aqueous liquid-phase (DNAPL) contaminated plume beneath the M Area Hazardous Waste Management Facility at the Savannah River Plant. During April of 1991, DNAPLs were detected in monitoring well (MSB-3D), located adjacent to the capped M-Area Settling Basin. Solvents in the well consisted mainly of tetrachloroethylene and trichloroethylene, which are also the main solvents found in groundwater in the M Area. In permeable soils, DNAPLs move downward rapidly due to their high density and low viscosity as compared to water. Within the vadose zone, DNAPLs tend to be held by the less permeable clay and silts by capillary force. In the saturated zone, the downward movement is slowed by clays and silts and the DNAPL tends to pool on this layer, then spread laterally. The lateral movement continues until a permeable layer is encountered, which can be a sand lens, fracture or other high conductivity seam. The DNAPL then moves downward, until another low permeability layer is encountered. Applied Research Associates was contracted to conduct a program to: (1) field demonstrate the utility of Cone Penetration Technology to investigate DOE contaminant sites and, (2) conduct a laboratory and field program to evaluate the use of electric resistivity surveys to locate DNAPL contaminated soils. The field program was conducted in the M-Basin and laboratory tests were conducted on samples from the major stratigraphy units as identified in Eddy et. al. Cone Penetration Technology was selected to investigate the M-Basin as it: (1) is minimally invasive, (2) generates minimal waste, (3) is faster and less costly than drilling, (4) provides continuous, detailed in situ characterization data, (5) permits real-time data processing, and (6) can obtain soil, soil gas, and water samples without the need for a boring.

  10. Savannah River Site DNAPL technical program plan

    SciTech Connect

    Jordan, J.E.; Looney, B.B.; Rossabi, J.; Bergren, C.L.

    1993-12-31

    This document was developed by the environmental remediation and technology development organizations at the Savannah River Site (SRS) and is the Site technical program plan to address the remediation of residual chlorinated hydrocarbon solvents in the groundwater and the soil. These solvents are often labeled dense nonaqueous phase liquids (DNAPLs). At SRS, the primary DNAPL constituents of concern are trichloroethylene (TCE) and tetrachloroethylene (PCE); two commonly used industrial organic solvents. The goal of the technical program plan is to provide clear objectives for DNAPL characterization and remediation activities at SRS. Developed by a task team of researchers at SRS, the objectives and program description document a coordinated, programmatic approach to identify solutions to the complex problem of DNAPL contamination. The purposes of this program are to expedite the development and application of technologies for DNAPL characterization and remediation, to provide a well characterized {open_quotes}real{close_quotes} site to perform the work, and to facilitate DNAPL remediation at SRS. Given the appropriate resources, SRS will provide an intelligent application of technical skills and confidence toward the remediation of DNAPLS. We have completed an initial characterization of DNAPLs that provides unique data on the location, nature, and extent of DNAPL occurrences at a field site. Future activities will leverage the initial characterization data for DNAPLs at SRS to demonstrate efficient progression through the characterization phase leading to cleanup. The initial characterization data provides a tool to focus this program`s activities. As a result, solutions to the complex problem of DNAPL contamination will be tested and demonstrated in the most cost-effective manner. Where appropriate, the program will rely on identifying and utilizing innovative technologies developed by industry and universities.

  11. Semi-analytical Solution of One-dimensional Multispecies Reactive Transport in a Permeable Reactive Barrier-aquifer System

    NASA Astrophysics Data System (ADS)

    Mieles, J. M.; Zhan, H.

    2010-12-01

    Permeable reactive barriers (PRBs) have been accepted by the EPA as an effective groundwater remediation technology. Effective implementation of this in-situ technology requires accurate site characterization to identify the chemicals of concern (COCs) present, their interactions (if any), and their required residence time in the PRB to achieve regulatory concentrations at the point of compliance (POC). Therefore, minimizing performance uncertainties in the design phase is key. Among these uncertainties determining the required PRB thickness is the most important and has been examined in other studies. Less attention, however, has been devoted to developing a practical yet rigorous tool for modeling multi-species reactive transport in the barrier-aquifer system. In this study Park and Zhan’s [2009] mass conservative semi-analytical solution - developed to calculate the required PRB thickness based on the decay of one species - is expanded to four reactive species. For example, the expanded solution could be used to model the degradation pathway from tetrachloroethylene (PCE) to vinyl chloride (VC). The solution is presented in two forms: The steady-state solution programmed into Excel can quickly assist designers in determining the required PRB thickness so that all COCs involved in the degradation pathway achieve regulatory limits at the POC. The second form is the transient solution which is solved by numerically inverting the Laplace transform. The semi-analytical solution presented in this study has several advantages over prior solutions. For example, the influent and effluent boundary conditions of the PRB are mass conservative and both dispersion and decay rate differences between the PRB and aquifer are considered. In addition, the transient solution allows for different retardation factors to be considered in both transport media and for each species.

  12. Determinants of personal, indoor and outdoor VOC concentrations: An analysis of the RIOPA data

    PubMed Central

    Su, Feng-Chiao; Mukherjee, Bhramar; Batterman, Stuart

    2014-01-01

    Community and environmental exposure to volatile organic compounds (VOCs) has been associated with a number of emission sources and activities, e.g., environmental tobacco smoke and pumping gasoline. Such factors have been identified from mostly small studies with relatively limited information regarding influences on VOC levels. This study uses data from the Relationship of Indoor Outdoor and Personal Air (RIOPA) study to investigate environmental, individual and social determinants of VOC concentrations. RIOPA included outdoor, indoor and personal measurements of 18 VOCs from 310 non-smoking households and adults in three cities and two seasons, and collected a wide range of information pertaining to participants, family members, households, and neighborhoods. Exposure determinants were identified using stepwise regressions and linear mixed-effect models. Most VOC exposure (66 to 78% of the total exposure, depending on VOC) occurred indoors, and outdoor VOC sources accounted for 5 (d-limonene) to 81% (carbon tetrachloride) of the total exposure. Personal exposure and indoor measurements had similar determinants, which depended on the VOC. Gasoline-related VOCs (e.g., benzene, methyl tertiary butyl ether) were associated with city, residences with attached garages, self-pumping of gas, wind speed, and house air exchange rate (AER). Odorant and cleaning-related VOCs (e.g., 1,4-dichlorobenzene and chloroform) also were associated with city and AER, and with house size and family members showering. Dry-cleaning and industry-related VOCs (e.g., tetrachloroethylene and trichloroethylene) were associated with city, residence water supply type, and dry-cleaner visits. These and other relationships were significant, explained from 10 to 40% of the variation, and are consistent with known emission sources and the literature. Outdoor concentrations had only two common determinants: city and wind speed. Overall, personal exposure was dominated by the home setting, although a large fraction of VOC concentrations were due to outdoor sources. City, personal activities, household characteristics and meteorology were significant determinants. PMID:24034784

  13. A national reconnaissance for pharmaceuticals and other organic wastewater contaminants in the United States--II) untreated drinking water sources.

    PubMed

    Focazio, Michael J; Kolpin, Dana W; Barnes, Kimberlee K; Furlong, Edward T; Meyer, Michael T; Zaugg, Steven D; Barber, Larry B; Thurman, Michael E

    2008-09-01

    Numerous studies have shown that a variety of manufactured and natural organic compounds such as pharmaceuticals, steroids, surfactants, flame retardants, fragrances, plasticizers and other chemicals often associated with wastewaters have been detected in the vicinity of municipal wastewater discharges and livestock agricultural facilities. To provide new data and insights about the environmental presence of some of these chemicals in untreated sources of drinking water in the United States targeted sites were sampled and analyzed for 100 analytes with sub-parts per billion detection capabilities. The sites included 25 ground- and 49 surface-water sources of drinking water serving populations ranging from one family to over 8 million people. Sixty-three of the 100 targeted chemicals were detected in at least one water sample. Interestingly, in spite of the low detection levels 60% of the 36 pharmaceuticals (including prescription drugs and antibiotics) analyzed were not detected in any water sample. The five most frequently detected chemicals targeted in surface water were: cholesterol (59%, natural sterol), metolachlor (53%, herbicide), cotinine (51%, nicotine metabolite), beta-sitosterol (37%, natural plant sterol), and 1,7-dimethylxanthine (27%, caffeine metabolite); and in ground water: tetrachloroethylene (24%, solvent), carbamazepine (20%, pharmaceutical), bisphenol-A (20%, plasticizer), 1,7-dimethylxanthine (16%, caffeine metabolite), and tri (2-chloroethyl) phosphate (12%, fire retardant). A median of 4 compounds were detected per site indicating that the targeted chemicals generally occur in mixtures (commonly near detection levels) in the environment and likely originate from a variety of animal and human uses and waste sources. These data will help prioritize and determine the need, if any, for future occurrence, fate and transport, and health-effects research for subsets of these chemicals and their degradates most likely to be found in water resources used for drinking water in the United States. PMID:18433838

  14. Radionuclides, metals, and organic compounds in water, eastern part of A and B irrigation district, Minidoka County, Idaho

    SciTech Connect

    Mann, L.J.; Knobel, L.L. )

    1990-01-01

    The US Geological Survey, in response to a US Department of Energy request, collected and analyzed water samples from 15 sites in Minidoka County, Idaho. Samples were collected from 12 groundwater and 3 irrigation wastewater sites. Samples were analyzed for tritium, gross alpha-particle and beta-particle radioactivity, total uranium, radium, radon-222, strontium-90, gross gamma radioactivity, trace metals, purgeable organic compounds, nutrients, and pesticides. Seven samples had tritium concentrations larger than the reporting level, ranging from 0.045 [plus minus]0.013 to 0.106 [plus minus]0.013 pCi/ml. Ranges of dissolved concentrations for some other radionuclides or types of radioactivity follow: gross alpha-particles radioactivity as thorium-230 - 2.23 [plus minus]0.61 to 9.10 [plus minus]1.25 pCiL; gross beta-particle radioactivity as strontium-90 in equilibrium with yttrium-90 - 2.50 [plus minus]1.28 to 10.3 [plus minus]2.5 pCi/L; total uranium - 1.38 [plus]/[minus]0.16 to 5.22 [plus minus]1.02 microg/L; radium-226 - 0.0102 [plus minus]0.0064 to 0.149 [plus minus]0.024 pCi/L; and strontium-90 - from [lt] the reporting level to 0.483 [plus minus]0.071 pCi/L. Concentrations of nitrite plus nitrate as nitrogen ranged from 0.94 to 5 mg/L. Tetrachloroethylene and benzene were present in water from an irrigation drain.

  15. Cytogenetic analysis of an exposed-referent study: perchloroethylene-exposed dry cleaners compared to unexposed laundry workers

    PubMed Central

    2011-01-01

    Background Significant numbers of people are exposed to tetrachloroethylene (perchloroethylene, PCE) every year, including workers in the dry cleaning industry. Adverse health effects have been associated with PCE exposure. However, investigations of possible cumulative cytogenetic damage resulting from PCE exposure are lacking. Methods Eighteen dry cleaning workers and 18 laundry workers (unexposed controls) provided a peripheral blood sample for cytogenetic analysis by whole chromosome painting. Pre-shift exhaled air on these same participants was collected and analyzed for PCE levels. The laundry workers were matched to the dry cleaners on race, age, and smoking status. The relationships between levels of cytological damage and exposures (including PCE levels in the shop and in workers' blood, packyears, cumulative alcohol consumption, and age) were compared with correlation coefficients and t-tests. Multiple linear regressions considered blood PCE, packyears, alcohol, and age. Results There were no significant differences between the PCE-exposed dry cleaners and the laundry workers for chromosome translocation frequencies, but PCE levels were significantly correlated with percentage of cells with acentric fragments (R2 = 0.488, p < 0.026). Conclusions There does not appear to be a strong effect in these dry cleaning workers of PCE exposure on persistent chromosome damage as measured by translocations. However, the correlation between frequencies of acentric fragments and PCE exposure level suggests that recent exposures to PCE may induce transient genetic damage. More heavily exposed participants and a larger sample size will be needed to determine whether PCE exposure induces significant levels of persistent chromosome damage. PMID:21392400

  16. Volatile organic compounds in ground water west of LLNL

    SciTech Connect

    Dresen, M.D.; Hoffman, F.

    1986-07-01

    Using a methodology developed to evaluate the vertical extent of VOCs in multiple water-bearing zones in a single borehole, saturated soil samples were collected and analyzed for VOCs. Ground water from the 46 monitor wells and 14 existing offsite wells was analyzed for VOCs, metals, major inorganics, and other constituents. Geologic sections, prepared for this study, indicate that the western portion of LLNL and the vicinity of Arroyo Seco to the west are underlain by gently dipping, complexly interfingering, alluvial sediments of highly variable permeability. These sediments were probably deposited by northwest-flowing, meandering and/or braided streams. Seven VOCs, tetrachloroethylene (PCE), trichlorethylene (TCE), 1,1-dichloroethylene (1,1-DEC), trans-1,2-dichloroethylene (trans-1,2-DEC), 1,1-dichloroethane (1,1-DCA), 1,2-dichloroethane (1,2-DCA), and carbon tetrachloride (CCl/sub 4/), were detected in ground water in the study area in concentrations exceeding action levels recommended by the California Department of Health Services. Of these, trans-1,2-DCE, 1,1-DCA, 1,2-DCA, and CCl/sub 4/ have been detected only sporadically and/or in fewer than 6 of the 60 regularly sampled wells. Geologic and chemical data from saturated soil and ground water samples indicate that VOCs have migrated westward and downward from the southwest part of LLNL in overlapping, northwest-dipping alluvial sediments. Buried meandering and/or braided stream channels may constitute preferred pathways for migration of ground water and VOCs. The VOC plume west of LLNL is presently about 3600 ft. long and 1700 ft. wide. Near the apparent source of the VOC plume in the southwest corner of LLNL, VOCs are not present below a depth of about 90 ft. Near the leading edge of the plume, VOCs are not present below a depth of about 200 ft.

  17. Effects of Daily Precipitation and Evapotranspiration Patterns on Flow and VOC Transport to Groundwater along a Watershed Flow Path

    USGS Publications Warehouse

    Johnson, R.L.; Thoms, R.B.; Zogorski, J.S.

    2003-01-01

    MTBE and other volatile organic compounds (VOCs) are widely observed in shallow groundwater in the United States, especially in urban areas. Previous studies suggest that the atmosphere and/or nonpoint surficial sources could be responsible for some of those VOCs, especially in areas where there is net recharge to groundwater. However, in semiarid locations where annual potential evapotranspiration can exceed annual precipitation, VOC detections in groundwater can be frequent. VOC transport to groundwater under net discharge conditions has not previously been examined. A numerical model is used here to demonstrate that daily precipitation and evapotranspiration (ET) patterns can have a significant effect on recharge to groundwater, water table elevations, and VOC transport. Ten-year precipitation/ET scenarios from six sites in the United States are examined using both actual daily observed values and "average" pulsed precipitation. MTBE and tetrachloroethylene transport, including gas-phase diffusion, are considered. The effects of the precipitation/ET scenarios on net recharge and groundwater flow are significant and complicated, especially under low-precipitation conditions when pulsed precipitation can significantly underestimate transport to groundwater. In addition to precipitation and evapotranspiration effects, location of VOC entry into the subsurface within the watershed is important for transport in groundwater. This is caused by groundwater hydraulics at the watershed scale as well as variations in ET within the watershed. The model results indicate that it is important to consider both daily precipitation/ET patterns and location within the watershed in order to interpret VOC occurrence in groundwater, especially in low-precipitation settings.

  18. An assessment of the interindividual variability of internal dosimetry during multi-route exposure to drinking water contaminants.

    PubMed

    Valcke, Mathieu; Krishnan, Kannan

    2010-11-01

    The objective of this study was to evaluate inter-individual variability in absorbed and internal doses after multi-route exposure to drinking water contaminants (DWC) in addition to the corresponding variability in equivalent volumes of ingested water, expressed as liter-equivalents (LEQ). A multi-route PBPK model described previously was used for computing the internal dose metrics in adults, neonates, children, the elderly and pregnant women following a multi-route exposure scenario to chloroform and to tri- and tetra-chloroethylene (TCE and PERC). This scenario included water ingestion as well as inhalation and dermal contact during a 30-min bathroom exposure. Monte Carlo simulations were performed and distributions of internal dose metrics were obtained. The ratio of each of the dose metrics for inhalation, dermal and multi-route exposures to the corresponding dose metrics for the ingestion of drinking water alone allowed computation of LEQ values. Mean BW-adjusted LEQ values based on absorbed doses were greater in neonates regardless of the contaminant considered (0.129-0.134 L/kg BW), but higher absolute LEQ values were obtained in average adults (3.6-4.1 L), elderly (3.7-4.2 L) and PW (4.1-5.6 L). LEQ values based on the parent compound's AUC were much greater than based on the absorbed dose, while the opposite was true based on metabolite-based dose metrics for chloroform and TCE, but not PERC. The consideration of the 95th percentile values of BW-adjusted LEQ did not significantly change the results suggesting a generally low intra-subpopulation variability during multi-route exposure. Overall, this study pointed out the dependency of the LEQ on the dose metrics, with consideration of both the subpopulation and DWC. PMID:21139873

  19. Effect of Humic Acid on Migration, Distribution and Remediation of Dense Non-aqueous Phase Liquids: A laboratory investigation

    NASA Astrophysics Data System (ADS)

    Cheng, Z.; Wu, J.; Xu, H.; Gao, Y.

    2014-12-01

    Over the last decades, dense non-aqueous phase liquids (DNAPLs) contamination in the subsurface increases with the rapid development of oil industry and becomes the focus of many studies. The migration, distribution and remediation efficiency of DNAPLs in the subsurface environment are greatly affected by the solution chemistry besides the physical heterogeneities of aquifers. Humic acid (HA), which is ubiquitous in natural environments, is a surface active substance exhibiting solubility enhancement behavior for hydrophobic organic compounds such as DNAPLs. Here we reported a laboratory investigation to study the effects of HA on the infiltration, immobilization and subsequent recovery of DNAPL in porous media. Tetrachloroethylene (PCE) was selected as the representative DNAPL in this study. Two-dimensional (2-D) sandbox experiments were conducted to investigate the effects of different HA concentrations on the transport, distribution of PCE and the remediation of PCE using surfactant (Tween 80) flushing in a saturated porous media system. The surfactant flushing of PCE was performed after the PCE transport and distribution had reached equilibrium. A light transmission visualization method with charge-coupled device (CCD) camera was adopted to visualize PCE distribution and quantify its saturation. In addition, the experiments were also designed to gather data for the validation of multiphase flow models. Effluent samples were collected to determine dissolved PCE concentrations. PCE solubilization and PCE-water interfacial tension were experimentally determined in aqueous solutions of varying HA concentrations. The experimental results showed that the presence of HA can have a dramatic impact on PCE flow and entrapment, and significantly improved the recovery of PCE during surfactant enhanced aquifer remediation (SEAR). The findings are of use for better understanding of the migration and entrapment of DNAPLs and developing of SEAR technology.

  20. Relation of organic contaminant equilibrium sorption and kinetic uptake in plants

    USGS Publications Warehouse

    Li, H.; Sheng, G.; Chiou, C.T.; Xu, O.

    2005-01-01

    Plant uptake is one of the environmental processes that influence contaminant fate. Understanding the magnitude and rate of plant uptake is critical to assessing potential crop contamination and the development of phytoremediation technologies. We determined (1) the partition-dominated equilibrium sorption of lindane (LDN) and hexachlorobenzene (HCB) by roots and shoots of wheat seedlings, (2) the kinetic uptake of LDN and HCB by roots and shoots of wheat seedlings, (3) the kinetic uptake of HCB, tetrachloroethylene (PCE), and trichloroethylene (TCE) by roots and shoots of ryegrass seedlings, and (4) the lipid, carbohydrate, and water contents of the plants. Although the determined sorption and the plant composition together suggest the predominant role of plant lipids for the sorption of LDN and HCB, the predicted partition with lipids of LDN and HCB using the octanol-water partition coefficients is notably lower than the measured sorption, due presumably to underestimation of the plant lipid contents and to the fact that octanol is less effective as a partition medium than plant lipids. The equilibrium sorption or the estimated partition can be viewed as the kinetic uptake limits. The uptakes of LDN, PCE, and TCE from water at fixed concentrations increased with exposure time in approach to steady states. The uptake of HCB did not reach a plateau within the tested time because of its exceptionally high partition coefficient. In all of the cases, the observed uptakes were lower than their respective limits, due presumably to contaminant dissipation in and limited water transpiration by the plants. ?? 2005 American Chemical Society.

  1. Biodesulfurization techniques: Application of selected microorganisms for organic sulfur removal from coals. Final report

    SciTech Connect

    Elmore, B.B.

    1993-08-01

    As an alternative to post-combustion desulfurization of coal and pre-combustion desulfurization using physicochemical techniques, the microbial desulfurization of coal may be accomplished through the use of microbial cultures that, in an application of various microbial species, may remove both the pyritic and organic fractions of sulfur found in coal. Organisms have been isolated that readily depyritize coal but often at prohibitively low rates of desulfurization. Microbes have also been isolated that may potentially remove the organic-sulfur fraction present in coal (showing promise when acting on organic sulfur model compounds such as dibenzothiophene). The isolation and study of microorganisms demonstrating a potential for removing organic sulfur from coal has been undertaken in this project. Additionally, the organisms and mechanisms by which coal is microbially depyritized has been investigated. Three cultures were isolated that grew on dibenzothiophene (DBT), a model organic-sulfur compound, as the sole sulfur source. These cultures (UMX3, UMX9, and IGTS8) also grew on coal samples as the sole sulfur source. Numerous techniques for pretreating and ``cotreating`` coal for depyritization were also evaluated for the ability to improve the rate or extent of microbial depyritization. These include prewashing the coal with various solvents and adding surfactants to the culture broth. Using a bituminous coal containing 0.61% (w/w) pyrite washed with organic solvents at low slurry concentrations (2% w/v), the extent of depyritization was increased approximately 25% in two weeks as compared to controls. At slurry concentrations of 20% w/v, a tetrachloroethylene treatment of the coal followed by depyritization with Thiobacillus ferrooxidans increased both the rate and extent of depyritization by approximately 10%.

  2. Threats to water resources from hexachlorobenzene waste at Kalush City (Ukraine)--a review of the risks and the remediation options.

    PubMed

    Lysychenko, Georgii; Weber, Roland; Kovach, Valeria; Gertsiuk, Modest; Watson, Alan; Krasnova, Iryna

    2015-10-01

    The production of chlorinated solvents such as tetrachloroethylene and tetrachloromethane has resulted in large stockpiles of unintentionally produced persistent organic pollutants (POPs) including high content of hexachlorobenzene (HCB waste). HCB waste of 15,000 t arising from the production of chlorinated solvents at the Kalush factory in Ukraine was landfilled. In 2008, it was discovered that HCB and other pollutants were escaping from the landfill into local environment including the Sapogi-Limnytsia Rivers, tributaries of the Dniester River. This showed that the HCB waste was not appropriately contained and represented a threat to the Dniester River basin. A Presidential Decree of Ukraine was therefore issued requiring remediation of the site and excavation of the waste. Between 2010 and 2013, approximately 29,445 t of HCB waste and associated contaminated soil was excavated and exported to various EU countries for incineration. This excavation revealed that these wastes can corrode through their drums within a few decades with release of pollutants. Other sites at which chlorinated solvents were produced should therefore be assessed for possible similar pollution. Despite the remediation efforts and the excavation of the landfill, the Kalush area remains a POP-contaminated site requiring further assessment. A part of the waste was exported to Poland and is stored close to the Baltic Sea and is treated in an incinerator with small capacity over a time frame of years. This case and recent similar cases reveal that the control of POP waste for destruction even in EU countries needs to be improved. PMID:26286800

  3. Ambient air benzene at background sites in China's most developed coastal regions: exposure levels, source implications and health risks.

    PubMed

    Zhang, Zhou; Wang, Xinming; Zhang, Yanli; Lü, Sujun; Huang, Zhonghui; Huang, Xinyu; Wang, Yuesi

    2015-04-01

    Benzene is a known human carcinogen causing leukemia, yet ambient air quality objectives for benzene are not available in China. The ambient benzene levels at four background sites in China's most developed coastal regions were measured from March 2012 to February 2013. The sites are: SYNECP, in the Northeast China Plain (NECP); YCNCP, in the North China Plain (NCP); THYRD, in the Yangtze River Delta (YRD) and DHPRD, in the Pearl River Delta (PRD). It was found that the mean annual benzene levels (578-1297 ppt) at the background sites were alarmingly higher, especially when compared to those of 60-480 pptv monitored in 28 cities in the United States. Wintertime benzene levels were significantly elevated at both sites (SYNECP and YCNCP) in northern China due to heating with coal/biofuels. Even at these background sites, the lifetime cancer risks of benzene (1.7-3.7E-05) all exceeded 1E-06 set by USEPA as acceptable for adults. At both sites in northern China, good correlations between benzene and CO or chloromethane, together with much lower toluene/benzene (T/B) ratios, suggested that benzene was largely related to coal combustion and biomass/biofuel burning. At the DHPRD site in the PRD, benzene revealed a highly significant correlation with methyl tert-butyl ether (MTBE), indicating that its source was predominantly from vehicle emissions. At the THYRD site in the YRD, higher T/B ratios and correlations between benzene and tetrachloroethylene, or MTBE, implied that benzene levels were probably affected by both traffic-related and industrial emissions. PMID:25618820

  4. Three phase biological treatment process for chlorinated compounds in air streams

    SciTech Connect

    Parker, W.J.; Collins, J.; Wells, J.; Kennedy, K.

    1999-07-01

    A combination of experimental and modeling studies were carried out to evaluate the potential for biological treatment of air streams containing chlorinated organics in a hybrid process. The proposed process consists of a scrubbing column for transferring chlorinated compounds from the gas to the liquid phase and a high rate anaerobic reactor for biodegradation of the compounds. Carbon tetrachloride, tetrachloroethylene and dichloromethane were employed as target compounds in this study to assess compounds with a range of chemical, physical and biological properties. Batch tests provided conclusive evidence that the target compounds strongly partition to vegetable oil. Continuous flow test results suggested that high removal efficiencies for all three compounds ({gt}90%) could be obtained with gas-liquid flow ratios less than 200. It was found that the Onda correlations did not fit the experimental data of vegetable oil very well, hence the Onda correlations were modified by assuming that the gas phase resistance was controlling mass transfer. The assumption appeared to be valid for the compounds with lower gas-oil partitioning coefficients (CT and PCE). DCM appeared to have some component of liquid phase control. Experiments were conducted in high rate anaerobic reactors to evaluate the impact of cosubstrate loading and hydraulic retention time on the biodegradation of the target compounds. Removals approached 100% for all three target compounds when the UASB was operated at high values of OLR and HRT. Removals for PCE and DCM decreased when the UASB was run under more strenuous conditions. A hybrid anaerobic reactor that consisted of a liquid-liquid mass transfer zone and an anaerobic biodegradation zone was operated to assess the processes potential to degrade the target compounds when they entered in a vegetable oil matrix.

  5. Aromatic hydrocarbons as ozone precursors before and after outbreak of the 2008 financial crisis in the Pearl River Delta region, south China

    NASA Astrophysics Data System (ADS)

    Zhang, Yanli; Wang, Xinming; Blake, Donald R.; Li, Longfeng; Zhang, Zhou; Wang, Shaoyi; Guo, Hai; Lee, Frank S. C.; Gao, Bo; Chan, Loyin; Wu, Dui; Rowland, F. Sherwood

    2012-08-01

    In the second half of 2008 China's highly industrialized Pearl River Delta (PRD) region was hard-hit by the financial crisis (FC). This study reports volatile organic compounds measured in the PRD during November-December in both 2007 before the FC and 2008 after the FC. While total mixing ratios of non-methane hydrocarbons (NMHCs) on average were only about 7% lower from 40.2 ppbv in 2007 to 37.5 ppbv in 2008, their ozone formation potentials (OFPs) dropped about 30%, resulting from about 55% plummet of aromatic hydrocarbons (AHs) against a greater than 20% increase of total alkanes/alkenes. The elevated alkanes and alkenes in 2008 could be explained by greater emissions from vehicle exhausts and LPG combustion due to rapid increase of vehicle numbers and LPG consumption; the drop of AHs could be explained by reduced emissions from industries using AH-containing solvents due to the influence of the FC, as indicated by much lower ratios of toluene to benzene and of xylenes/trichloroethylene/tetrachloroethylene to carbon monoxide (CO) in 2008. Source apportionment by positive matrix factorization (PMF) also revealed much less contribution of industry solvents to total anthropogenic NMHCs and particularly to toluene and xylenes in 2008 than in 2007. Based on PMF reconstructed source contributions, calculated OFPs by industrial emissions were responsible for 40.8% in 2007 in contrast to 18.4% in 2008. Further investigation into local industry output statistics suggested that the plummet of AHs in 2008 should be attributed to small enterprises, which contributed largely to ambient AHs due to their huge numbers and non-existent emission treatment, but were much more influenced by the FC.

  6. Dispersive liquid-liquid microextraction followed by microwave-assisted silylation and gas chromatography-mass spectrometry analysis for simultaneous trace quantification of bisphenol A and 13 ultraviolet filters in wastewaters.

    PubMed

    Cunha, S C; Pena, A; Fernandes, J O

    2015-10-01

    A novel multi-residue gas chromatography-mass spectrometry (GC-MS) method was validated for the simultaneous determination of trace levels (ng/L) of 13 UV-filters and bisphenol A (BPA) in wastewater samples. It was based on dispersive liquid-liquid microextraction (DLMME) followed by rapid microwave-assisted silylation of the analytes. Several parameters of both extraction and derivatization steps such as type of extractive and dispersive solvents, solvent volumes, pH, salt addition, time and power of microwave were evaluated to achieve the highest yield and to attain the lowest detection limits. Optimized DLLME consisted in the formation of a cloudy solution promoted by the fast addition to the sample (10mL) of a mixture of tetrachloroethylene (50μL, extraction solvent) in acetone (1mL, dispersive solvent). The sedimented phase obtained was evaporated and further silylated under the irradiation of 600W microwave for 5min, being the derivatization yields similar to those obtained after a conventional heating process for 30min at 75°C. Limits of detection and quantification of the method using real samples were 2ng/L and 10ng/L, respectively. Mean extraction efficiency of 82% for three concentrations were achieved, supporting the accuracy of the method. Intra-day and inter-day repeatability of measurements (expressed as relative standard deviation) were lower than 22%. The method was successfully applied to the determination of UV-filters and BPA in samples collected from 15 wastewater treatment plants (WWTPs) in Portugal. Eight analytes were detected, among which 2-hydroxy-4-methoxybenzophenone, 2-ethylhexyl-4-(dimethylamino)benzoate, octocrylene, and BPA were consistently found in the three seasons of collection. PMID:26341596

  7. Survey of bottled drinking water sold in Canada. Part 2. Selected volatile organic compounds.

    PubMed

    Page, B D; Conacher, H B; Salminen, J; Nixon, G R; Riedel, G; Mori, B; Gagnon, J; Brousseau, Y

    1993-01-01

    Selected volatile organic compound (VOC) contaminants were determined in 182 samples of retail bottled waters purchased in Canada. Samples included spring water (86) packaged in containers of polyethylene or in smaller containers of transparent plastic or glass, mineral water (61) packaged only in transparent plastic or glass, and miscellaneous bottled waters (35). Analyses were performed by 3 laboratories, each using headspace sampling and capillary gas chromatography with either mass spectrometric (1 laboratory) or flame ionization detection with mass spectrometric confirmation, if required (2 laboratories). Benzene, the contaminant of primary interest, was detected in only 1 of the 182 samples at 2 micrograms/kg. Other VOC contaminants detected (number of positive samples, average, and range of positives in micrograms/kg) included toluene (20, 6.92, 0.5-63), cyclohexane (23, 39.2, 3-108), chloroform (12, 25.8, 3.7-70), and dichloromethane (4, 59, 22-97). Cyclohexane was found in the plastic and as a migrant from the plastic in 20 samples of spring water, but it was found in only 1 of 61 mineral water samples analyzed at only 3 micrograms/kg. Chloroform was found almost exclusively in samples that could have been obtained from public water supplies. It was not found in mineral water samples, but it was found in 1 spring water sample at 3.76 micrograms/kg. The source of the toluene contamination was not known. Other VOCs detected include ethanol and limonene, associated with added flavoring; pentane, as a migrant from a foamed polystyrene cap liner; and 1,1,2,2-tetrachloroethylene in a sample of demineralized water. PMID:8448439

  8. Enhanced PCE dechlorination by biobarrier systems under different redox conditions.

    PubMed

    Kao, C M; Chen, Y L; Chen, S C; Yeh, T Y; Wu, W S

    2003-12-01

    The industrial solvent tetrachloroethylene (PCE) is among the most ubiquitous chlorinated compounds found in groundwater contamination. The objective of this study was to evaluate the (1) feasibility of enhancing PCE biodegradation using cane molasses and sludge cakes as the primary substrates under methanogenic and iron reducing conditions, and (2) potential of installation a sludge cake/cane molasses biobarrier to clean up PCE-contaminated aquifers. The biodegradability of sludge cake (from secondary wastewater treatment system) and cane molasses was tested using bioavailability experiments. Results show that biodegradable materials were released from sludge cake/cane molasses and utilized by microbial consortia. Based on the chemical oxygen demand (COD) tests, approximately 28 and 248 mg of biodegradable COD can be released from 1g of sludge cake and 1g of cane molasses under anaerobic conditions, which have the potential to convert 70 and 620 mg of PCE to ethylene (ETH), respectively. Reductive dechlorination was evaluated using microcosms containing primary substrates (sludge cake/cane molasses) and inocula (aquifer sediments). Results indicate that sludge cake and cane molasses can serve as the diffusion sources of primary substrates, and enhance the reductive dechlorination of PCE under methanogenic processes. However, results from this study were not sufficient enough to show that reductive dechlorination of PCE would occur under iron-reducing conditions. This indicates that more studies need to be performed to further evaluate the role of iron reduction on the PCE dechlorination. Results reveal that it is feasible and applicable to install a sludge cake or cane molasses biobarrier to clean up PCE contaminated aquifers. From an engineering point of view, the sludge cake/cane molasses biobarrier has the potential to become an environmentally and economically acceptable technology for PCE bioremediation. PMID:14604634

  9. Characterization of the methanotrophic bacterial community present in a trichloroethylene-contaminated subsurface groundwater site.

    PubMed Central

    Bowman, J P; Jiménez, L; Rosario, I; Hazen, T C; Sayler, G S

    1993-01-01

    Groundwater, contaminated with trichloroethylene (TCE) and tetrachloroethylene (PCE), was collected from 13 monitoring wells at Area M on the U.S. Department of Energy Savannah River Site near Aiken, S.C. Filtered groundwater samples were enriched with methane, leading to the isolation of 25 methanotrophic isolates. The phospholipid fatty acid profiles of all the isolates were dominated by 18:1 omega 8c (60 to 80%), a signature lipid for group II methanotrophs. Subsequent phenotypic testing showed that most of the strains were members of the genus Methylosinus and one isolate was a member of the genus Methylocystis. Most of the methanotroph isolates exhibited soluble methane monooxygenase (sMMO) activity. This was presumptively indicated by the naphthalene oxidation assay and confirmed by hybridization with a gene probe encoding the mmoB gene and by cell extract assays. TCE was degraded at various rates by most of the sMMO-producing isolates, whereas PCE was not degraded. Savannah River Area M and other groundwaters, pristine and polluted, were found to support sMMO activity when supplemented with nutrients and then inoculated with Methylosinus trichosporium OB3b. The maximal sMMO-specific activity obtained in the various groundwaters ranged from 41 to 67% compared with maximal rates obtained in copper-free nitrate mineral salts media. This study partially supports the hypothesis that stimulation of indigenous methanotrophic communities can be efficacious for removal of chlorinated aliphatic hydrocarbons from subsurface sites and that the removal can be mediated by sMMO. PMID:8368829

  10. Field evaluation of ground water sampling devices for volatile organic compounds

    SciTech Connect

    Muska, C F; Colven, W P; Jones, V D; Scogin, J T; Looney, B B; Price, V Jr

    1986-01-01

    Previous studies conducted under laboratory conditions demonstrated that the type of device used to sample ground water contaminated with volatile organic compounds can significantly influence and analytical results. The purpose of this study was to evaluate, under field conditions, both commercial and developmental ground water sampling devices as part of an ongoing ground water contamination investigation and remediation program at the Savannah River Plant (SRP). Ground water samples were collected using six types of sampling devices in monitoring wells of different depths and concentrations of volatile organic contaminants (primarily trichloroethylene and tetrachloroethylene). The study matrix was designed to statistically compare the reuslts of each sampling device under the test conditions. Quantitative and qualitative evaluation criteria were used to determine the relative performance of each device. Two categories of sampling devices were evaluated in this field study, positive displacement pumps and grab samplers. The positive displacement pumps consisted of a centrifugal (mechanical) pump and a bladder pump. The grab samples tested were a syringe sampler, a dual-check valve bailer, a surface bomb sampler, and a pressurized bailer. Preliminary studies were conducted to establish the analytical and sampling variability associated with each device. All six devices were then used to collect ground water samples in water table (unconfined), semi-confined aquifer, and confined aquifer monitoring wells. Results were evaluated against a set of criteria that included intrasampling device variability (precision), volatile organic concentration (accuracy), sampling and analytical logistics, and cost. The study showed that, by using careful and reproducible procedures, overall sampling variability is low regardless of sampling device.

  11. Pathways of chlorinated ethylene and chlorinated acetylene reaction with Zn(0)

    SciTech Connect

    Arnold, W.A.; Roberts, A.L.

    1998-10-01

    The use of zero-valent metals as reductants of chloroalkanes and chloroethylenes represents a promising new approach for treating groundwater contaminated with such solvents. To successfully design treatment systems relying on reactions of chlorocarbons with zero-valent metals, information is needed concerning the kinetics and pathways through which transformations occur. In this study, pathways of chlorinated ethylene reaction with Zn(0) have been elucidated through batch experiments. Data for parent compound disappearance and product appearance were fit to pseudo-first-order rate expressions in order to develop a complete kinetic model. Results indicate that reductive {beta}-elimination plays an important role, accounting for 15% of tetrachloroethylene (PCE), 30% of trichloroethylene (TCE), 85% of cis-dichloroethylene (cis-DCE), and 95% of trans-dichloroethylene (trans-DCE) reaction. The fraction of PCE, TCE, trans-DCE, and cis-DCE transformation that occurs via reductive elimination increases as the two-electron reduction potential (E{sub 2}) for this reaction becomes more favorable relative to hydrogenolysis. IN the case of PCE and TCE, reductive elimination gives rise to chlorinated acetylenes. Chloroacetylene and dichloroacetylene were synthesized and found to react rapidly with zinc, displaying products consistent with both hydrogenolysis and reduction of the triple bond. Surface area-normalized rate constants (k{sub SA}) for chlorinated ethylene disappearance correlate well with both one-electron (E{sub 1}) and two-electron (E{sub 2}) reduction potentials for the appropriate reactions. Correlation with E{sub 2} allows prediction of the distribution of reaction products as well as the rate of disappearance of the parent compound.

  12. A random walk solution for modeling solute transport with network reactions and multi-rate mass transfer in heterogeneous systems: Impact of biofilms

    NASA Astrophysics Data System (ADS)

    Henri, Christopher V.; Fernàndez-Garcia, Daniel

    2015-12-01

    The interplay between the spatial variability of the aquifer hydraulic properties, mass transfer due to sub-grid heterogeneity and chemical reactions often complicates reactive transport simulations. It is well documented that hydro-biochemical properties are ubiquitously heterogeneous and that diffusion and slow advection at the sub-grid scale typically leads to the conceptualization of an aquifer as a multi-porosity system. Within this context, chemical reactions taking place in mobile/immobile water regions can be substantially different between each other. This paper presents a particle-based method that can efficiently simulate heterogeneity, network reactions and multi-rate mass transfer. The approach is based on the development of transition probabilities that describe the likelihood that particles belonging to a given species and mobile/immobile domain at a given time will be transformed into another species and mobile/immobile domain afterwards. The joint effect of mass transfer and sequential degradation is shown to be non-trivial. A characteristic rebound of degradation products can be observed. This late rebound of concentrations is not driven by any change in the flow regime (e.g., pumping ceases in the pump-and-treat remediation strategy) but due to the natural interplay between mass transfer and chemical reactions. To illustrate that the method can simultaneously represent mass transfer, spatially varying properties and network reactions without numerical problems, we have simulated the degradation of tetrachloroethylene (PCE) in a three-dimensional fully heterogeneous aquifer subjected to rate-limited mass transfer. Two types of degradation modes were considered to compare the effect of an active biofilm with that of clay pods present in the aquifer. Results of the two scenarios display significantly differences. Biofilms that promote the degradation of compounds in an immobile region are shown to significantly enhance degradation, rapidly producing daughter products and less tailing.

  13. Systematic selection of off-gas treatment at the Savannah River Site

    SciTech Connect

    McKillip, S.T.; Rehder, T.E.

    1992-01-01

    At the Savannah River Site (SRS), from 1958--1985, effluent waste from the reactor fuel and target rod fabrication area (M-Area) was discharged to a settling basin. In 1981, monitoring wells detected groundwater contamination, specifically trichloroethylene and tetrachloroethylene, in the immediate vicinity of the basin. Under the auspices of Resource Conservation and Recovery Act (RCRA) the M-Area contamination must be addressed by a corrective action program until the volatile organic compound (VOC) concentrations reach Drinking Water Standards. This was initiated in 1985 with startup of a full-scale pump-and-treat air stripper system. Recently, remediation efforts have focused on vacuum extraction to treat vadose zone contamination not addressed by the original recovery wells, and additional pump-and-treat systems to achieve hydraulic control of the plume. Regulatory requirements allowed for discharge of VOCs to the atmosphere when the original remediation system was installed; however, 1990 amendments to the Clean Air Act will eventually require treatment of VOC contaminated air prior to discharge. This has ramifications to systems currently being design, as well as the existing systems. In response to the 1990 Clean Air Act amendments, SRS initiated a study to assess commercially available off-gas treatment technologies. These included carbon adsorption, thermal incineration, catalytic oxidation, absorption, condensation, and UV/peroxide destruction, and xenon flashlamp. Criteria used to evaluate the technologies were the thirty (30) year life cycle cost, permitting considerations, and manpower requirements. The study concluded that catalytic oxidation provided the most desirable combination of these elements.

  14. Systematic selection of off-gas treatment at the Savannah River Site

    SciTech Connect

    McKillip, S.T.; Rehder, T.E.

    1992-05-01

    At the Savannah River Site (SRS), from 1958--1985, effluent waste from the reactor fuel and target rod fabrication area (M-Area) was discharged to a settling basin. In 1981, monitoring wells detected groundwater contamination, specifically trichloroethylene and tetrachloroethylene, in the immediate vicinity of the basin. Under the auspices of Resource Conservation and Recovery Act (RCRA) the M-Area contamination must be addressed by a corrective action program until the volatile organic compound (VOC) concentrations reach Drinking Water Standards. This was initiated in 1985 with startup of a full-scale pump-and-treat air stripper system. Recently, remediation efforts have focused on vacuum extraction to treat vadose zone contamination not addressed by the original recovery wells, and additional pump-and-treat systems to achieve hydraulic control of the plume. Regulatory requirements allowed for discharge of VOCs to the atmosphere when the original remediation system was installed; however, 1990 amendments to the Clean Air Act will eventually require treatment of VOC contaminated air prior to discharge. This has ramifications to systems currently being design, as well as the existing systems. In response to the 1990 Clean Air Act amendments, SRS initiated a study to assess commercially available off-gas treatment technologies. These included carbon adsorption, thermal incineration, catalytic oxidation, absorption, condensation, and UV/peroxide destruction, and xenon flashlamp. Criteria used to evaluate the technologies were the thirty (30) year life cycle cost, permitting considerations, and manpower requirements. The study concluded that catalytic oxidation provided the most desirable combination of these elements.

  15. Environmental protection investigations and corrections series: Distribution of VOCs (volatile organic compounds) in round water in the southeast area of LLNL and vicinity

    SciTech Connect

    Dresen, M.D.; Nichols, E.M.

    1986-12-01

    Lawrence Livermore National Laboratory (LLNL) drilled 22 soil borings and 25 monitor wells to investigate the distribution of volatile organic compounds (VOCs) in ground water in the southeast area of LLNL and vicinity. Samples of saturated and unsaturated soil and ground water were collected and analyzed for VOCs. We have used these geologic and chemical data to define the vertical and horizontal distribution of VOCs in ground water. Ground water flow and VOC migration appear to be generally southward in the study area and are integrally related to the subsurface geology. The relatively shallow depth of the low-permeability, low piezometric head, lower member of the Livermore Formation in the study area has induced a significant downward gradient, apparently causing ground water and VOCs to migrate southward in permeable sediments near the contact between the upper and lower members of the Livermore Formation. Trichloroethylene (TCE), tetrachloroethylene (PCE), 1,1-dichloroethylene (1,1-DCE), and carbon tetrachloride (CCl/sub 4/) have been detected in ground water in the study area in concentrations exceeding action levels recommended by the California Department of Health Services (DOHS). TCE is the predominant VOC in the study area. Ground water chemistry and site history data indicate that there are three main sources of VOCs in ground water in the study area and vicinity. A suspected VOC source just south of Building 518 is characterized by TCE with low concentrations of 1,1-DCE, PCE, and CCl/sub 4/. A second VOC source in the Building 612 yard/Building 514 area is characterized by higher concentrations of 1,1-DCE and CCl/sub 4/ relative to TCE. A third source in the Taxi Strip/Old Salvage Yard area north of the study area is characterized by TCE with or without very low concentrations of CCl/sub 4/.

  16. Occupation and cancer in Britain

    PubMed Central

    Rushton, L; Bagga, S; Bevan, R; Brown, T P; Cherrie, J W; Holmes, P; Fortunato, L; Slack, R; Van Tongeren, M; Young, C; Hutchings, S J

    2010-01-01

    Background: Prioritising control measures for occupationally related cancers should be evidence based. We estimated the current burden of cancer in Britain attributable to past occupational exposures for International Agency for Research on Cancer (IARC) group 1 (established) and 2A (probable) carcinogens. Methods: We calculated attributable fractions and numbers for cancer mortality and incidence using risk estimates from the literature and national data sources to estimate proportions exposed. Results: 5.3% (8019) cancer deaths were attributable to occupation in 2005 (men, 8.2% (6362); women, 2.3% (1657)). Attributable incidence estimates are 13?679 (4.0%) cancer registrations (men, 10?063 (5.7%); women, 3616 (2.2%)). Occupational attributable fractions are over 2% for mesothelioma, sinonasal, lung, nasopharynx, breast, non-melanoma skin cancer, bladder, oesophagus, soft tissue sarcoma, larynx and stomach cancers. Asbestos, shift work, mineral oils, solar radiation, silica, diesel engine exhaust, coal tars and pitches, occupation as a painter or welder, dioxins, environmental tobacco smoke, radon, tetrachloroethylene, arsenic and strong inorganic mists each contribute 100 or more registrations. Industries and occupations with high cancer registrations include construction, metal working, personal and household services, mining, land transport, printing/publishing, retail/hotels/restaurants, public administration/defence, farming and several manufacturing sectors. 56% of cancer registrations in men are attributable to work in the construction industry (mainly mesotheliomas, lung, stomach, bladder and non-melanoma skin cancers) and 54% of cancer registrations in women are attributable to shift work (breast cancer). Conclusion: This project is the first to quantify in detail the burden of cancer and mortality due to occupation specifically for Britain. It highlights the impact of occupational exposures, together with the occupational circumstances and industrial areas where exposures to carcinogenic agents occurred in the past, on population cancer morbidity and mortality; this can be compared with the impact of other causes of cancer. Risk reduction strategies should focus on those workplaces where such exposures are still occurring. PMID:20424618

  17. Determination of organochlorine pesticides in water samples by dispersive liquid-liquid microextraction coupled to gas chromatography-mass spectrometry.

    PubMed

    Cortada, Carol; Vidal, Lorena; Pastor, Raul; Santiago, Noemi; Canals, Antonio

    2009-09-01

    A rapid and simple dispersive liquid-liquid microextraction (DLLME) has been developed to preconcentrate eighteen organochlorine pesticides (OCPs) from water samples prior to analysis by gas chromatography-mass spectrometry (GC-MS). The studied variables were extraction solvent type and volume, disperser solvent type and volume, aqueous sample volume and temperature. The optimum experimental conditions of the proposed DLLME method were: a mixture of 10 microL tetrachloroethylene (extraction solvent) and 1 mL acetone (disperser solvent) exposed for 30 s to 10 mL of the aqueous sample at room temperature (20 degrees C). Centrifugation of cloudy solution was carried out at 2300 rpm for 3 min to allow phases separation. Finally, 2 microL of extractant was recovered and injected into the GC-MS instrument. Under the optimum conditions, the enrichment factors ranged between 46 and 316. The calculated calibration curves gave a high-level linearity for all target analytes with correlation coefficients ranging between 0.9967 and 0.9999. The repeatability of the proposed method, expressed as relative standard deviation, varied between 5% and 15% (n=8), and the detection limits were in the range of 1-25 ng L(-1). The LOD values obtained are able to detect these OCPs in aqueous matrices as required by EPA methods 525.2 and 625. Analysis of spiked real water samples revealed that the matrix had no effect on extraction for river, surface and tap waters; however, urban wastewater sample shown a little effect for five out of eighteen analytes. PMID:19699397

  18. Results from the Total Exposure Assessment Methodology (TEAM) study in selected communities in Northern and Southern California

    NASA Astrophysics Data System (ADS)

    Hartwell, T. D.; Pellizzari, E. D.; Perritt, R. L.; Whitmore, R. W.; Zelon, H. S.; Sheldon, L. S.; Sparacino, C. M.; Wallace, L.

    Volatile organic compound levels (VOCs) in breath, personal air, fixed outdoor air and drinking water samples were measured and compared for a probability sample of individuals in Los Angeles and Antioch/Pittsburg, California during 1984. In addition, comparisons were made between seasons (winter vs spring) in Los Angeles for individuals sampled in both seasons. The statistics presented to compare the sites and seasons were primarily percent measurable and concentration levels (e.g. sample medians). For most comparisons, 13 VOC levels were examined for breath, personal and outdoor air samples and four VOCs for water samples. In addition to the results for VOC levels, the paper also briefly describes (i) the sampling procedures used to obtain the study participants (ii) the collection of air, breath and water samples (iii) selected results from the quality assurance procedures used in this study. For most chemicals, the percent measurable and concentration levels were (i) higher in personal air samples than in breath or outdoor air samples, (ii) higher in Los Angeles in the winter for air and breath than in the, spring, (iii) higher in Los Angeles for air and breath than in Antioch/Pittsburg, (iv) quite different for water as compared with air and breath. Ubiquitous compounds in water were chloroform, bromodichloromethane, dibromochloromethane and bromoform while in air and breath they were 1,1,1-trichloroethane, benzene, tetrachloroethylene, ethylbenzene and the xylenes. Concentrations were higher in (i) outdoor air vs breath in the winter in Los Angeles (where outdoor air levels were much higher than in the spring), (ii) in personal air vs outdoor air in the upper tails of the concentration distribution (90th percentile) compared to the 50th percentile. For the water samples, relatively high concentrations were noted for chloroform, bromodichloromethane and dibromochloromethane. In most cases, water concentrations were higher for Los Angeles in the spring. Five VOCs known to be in tobacco smoke (benzene, styrene, ethylbenzene and the xylenes) had significantly higher levels in the breath of smokers.

  19. VOCs in Non-Arid Soils Integrated Demonstration: Technology summary

    SciTech Connect

    Not Available

    1994-02-01

    The Volatile Organic Compounds (VOCs) in Non-Arid Soils Integrated Demonstration (ID) was initiated in 1989. Objectives for the ID were to test the integrated demonstration concept, demonstrate and evaluate innovative technologies/systems for the remediation of VOC contamination in soils and groundwater, and to transfer technologies and systems to internal and external customers for use in fullscale remediation programs. The demonstration brought together technologies from DOE laboratories, other government agencies, and industry for demonstration at a single test bed. The Savannah River Site was chosen as the location for this ID as the result of having soil and groundwater contaminated with VOCS. The primary contaminants, trichlorethylene and tetrachloroethylene, originated from an underground process sewer line servicing a metal fabrication facility at the M-Area. Some of the major technical accomplishments for the ID include the successful demonstration of the following: In situ air stripping coupled with horizontal wells to remediate sites through air injection and vacuum extraction; Crosshole geophysical tomography for mapping moisture content and lithologic properties of the contaminated media; In situ radio frequency and ohmic heating to increase mobility, of the contaminants, thereby speeding recovery and the remedial process; High-energy corona destruction of VOCs in the off-gas of vapor recovery wells; Application of a Brayton cycle heat pump to regenerate carbon adsorption media used to trap VOCs from the offgas of recovery wells; In situ permeable flow sensors and the colloidal borescope to determine groundwater flow; Chemical sensors to rapidly quantify chlorinated solvent contamination in the subsurface; In situ bioremediation through methane/nutrient injection to enhance degradation of contaminants by methanotrophic bateria.

  20. Chemometric-based determination of polycyclic aromatic hydrocarbons in aqueous samples using ultrasound-assisted emulsification microextraction combined to gas chromatography-mass spectrometry.

    PubMed

    Ahmadvand, Mohammad; Sereshti, Hassan; Parastar, Hadi

    2015-09-25

    In the present research, ultrasonic-assisted emulsification-microextraction (USAEME) coupled with gas chromatography-mass spectrometry (GC-MS) has been proposed for analysis of thirteen environmental protection agency (EPA) polycyclic aromatic hydrocarbons (PAHs) in aqueous samples. Tetrachloroethylene was selected as extraction solvent. The main parameters of USAEME affecting the efficiency of the method were modeled and optimized using a central composite design (CCD). Under the optimum conditions (9μL for extraction solvent, 1.15% (w/v) NaCl (salt concentration) and 10min for ultrasonication time), preconcentration factor (PF) of the PAHs was in the range of 500-950. In order to have a comprehensive analysis, multivariate curve resolution-alternating least squares (MCR-ALS) as a second-order calibration algorithm was used for resolution, identification and quantification of the target PAHs in the presence of uncalibrated interferences. The regression coefficients and relative errors (REs, %) of calibration curves of the PAHs were in the satisfactory range of 0.9971-0.9999 and 1.17-6.59%, respectively. Furthermore, analytical figures of merit (AFOM) for univariate and second-order calibrations were obtained and compared. As an instance, the limit of detections (LODs) of target PAHs were in the range of 1.87-18.9 and 0.89-6.49ngmL(-1) for univariate and second-order calibration, respectively. Finally, the proposed strategy was used for determination of target PAHs in real water samples (tap and hookah waters). The relative recoveries (RR) and the relative standard deviations (RSDs) were 68.4-109.80% and 2.15-6.93%, respectively. It was concluded that combination of multivariate chemometric methods with USAEME-GC-MS can be considered as a new insight for the analysis of target analytes in complex sample matrices. PMID:26319375