Sample records for tev range 100-1000

  1. Scattering database in the millimeter and submillimeter wave range of 100-1000 GHz for nonspherical ice particles

    NASA Astrophysics Data System (ADS)

    Hong, Gang; Yang, Ping; Baum, Bryan A.; Heymsfield, Andrew J.; Weng, Fuzhong; Liu, Quanhua; Heygster, Georg; Buehler, Stefan A.

    2009-03-01

    The inference of ice cloud properties from spaceborne sensors is sensitive to the retrieval algorithms and satellite sensors used. To approach a better understanding of ice cloud properties, it is necessary to combine satellite measurements from multiple platforms and sensors operating in visible, infrared, and millimeter and submillimeter-wave regions of the electromagnetic spectrum. The single-scattering properties of ice particles with consistent ice particle models are the basis for estimating the optical and microphysical properties of ice clouds from multiple satellite sensors. In this study, the single-scattering properties (extinction efficiency, absorption efficiency, single-scattering albedo, asymmetry factor, and scattering phase matrix) of nonspherical ice particles, assumed to be hexagonal solid and hollow columns, hexagonal plates, 3D bullet rosettes, aggregates, and droxtals, are computed from the discrete dipole approximation method for 21 millimeter and submillimeter-wave frequencies ranging from 100 to 1000 GHz. A database of the single-scattering properties of nonspherical ice particles are developed for 38 particle sizes ranging from 2 to 2000 ?m in terms of particle maximum dimension. The bulk scattering properties of ice clouds consisting of various ice particles, which are the fundamental to the radiative transfer in ice clouds, are developed on the basis of a set of 1119 particle size distributions obtained from various field campaigns.

  2. Energy distributions and yields of sputtered neutral copper monomers and dimers determined by mass spectrometry. [100-1000 EV range

    SciTech Connect

    Hamed, H.A.

    1983-01-01

    Secondary neutral mass spectrometry (SNMS) involving positionized sputtered neutrals, has been used to determine the relative yield and energy distribution of neutral Cu/sup 1/ and Cu/sup 2/ particles sputtered from a polycrystal Cu target by normally incident Ar/sup +/ ions with energies ranging 100-250 eV. A magnetically confined arc discharge (plasma) at low Ar pressure, located in the source region of the mass spectrometer, has been used for ion bombardment of the target, and simultaneously for electron impact post-ionization of sputtered neutrals ejected normal to the target. The energy distribution of sputtered neutral atoms was found to exhibit a peak at an ejection energy of 4.2 eV and tail-off above this energy, approximately, as E/sup -1/ /sup 72/. This asymptotic behavior is discussed in view of the available theoretical models, namely the Sigmund-Thompson model of the random collision cascade. The average energies of sputtered atoms show slight increase with the Ar/sup +/ ion bombarding energies. The average energy increases from 7 eV at ion energy of 100 eV to 9 eV at an ion energy of 250 eV. The energy distribution of sputtered neutral Cu/sub 2/ molecules is found to be narrower than that of the ejected atoms and is shifted to smaller ejection energies compared with the corresponding results of Cu/sub 1/ atoms and behave differently as the bombarding Ar/sup +/ ion increased. The ratio of the Cu/sub 2//Cu/sub 1/ (molecule/atom) increased with Ar/sup +/ ion bombarding energies to about 7.4% at 240 eV.

  3. A heavy Higgs particle in the TeV mass range?

    E-print Network

    Liu, C; Kuti, Julius; Chuan Liu; Karl Jansen; Julius Kuti

    1994-01-01

    The first simulation results are presented on Higgs mass calculations in the spontaneously broken phase of the Higgs sector in the minimal Standard Model with higher derivative regulator. A heavy Higgs particle is found in the TeV mass range in the presence of a complex conjugate ghost pair at higher energies. The ghost pair evades easy experimental detection and a nonperturbative reinterpretation of the triviality Higgs mass bound becomes necessary.

  4. 100-1000MHz Programmable Continuous-Time Filter with Auto-Tuning Schemes and Digital Calibration Sequences for HDD Read Channels

    NASA Astrophysics Data System (ADS)

    Terada, Takahide; Nasu, Koji; Yamawaki, Taizo; Kokubo, Masaru

    A 4th-order programmable continuous-time filter (CTF) for hard-disk-drive (HDD) read channels was developed with 65-nm CMOS process technology. The CTF cutoff frequency and boost are programmable by switching units of the operational trans-conductance amplifier (OTA) banks and the capacitor banks. The switches are operated by lifted local-supply voltage to reduce on-resistance of the transistors. The CTF characteristics were robust against process technology variations and supply voltage and temperature ranges due to the introduction of a digitally assisted compensation scheme with analog auto-tuning circuits and digital calibration sequences. The digital calibration sequences, which fit into the operation sequence of the HDD read channel, compensate for the tuning circuits of the process technology variations, and the tuning circuits compensate for the CTF characteristics over the supply voltage and temperature ranges. As a result, the CTF had a programmability of 100-1000-MHz cutoff frequency and 0-12-dB boost.

  5. Long-range and short-range dihadron angular correlations in central PbPb collisions at ?=?2.76 TeV

    Microsoft Academic Search

    S. Chatrchyan; V. Khachatryan; A. M. Sirunyan; A. Tumasyan; W. Adam; T. Bergauer; M. Dragicevic; J. Erö; C. Fabjan; M. Friedl; R. Frühwirth; V. M. Ghete; J. Hammer; S. Hänsel; M. Hoch; N. Hörmann; J. Hrubec; M. Jeitler; W. Kiesenhofer; M. Krammer; D. Liko; I. Mikulec; M. Pernicka; H. Rohringer; R. Schöfbeck; J. Strauss; A. Taurok; F. Teischinger; P. Wagner; W. Waltenberger; G. Walzel; E. Widl; C.-E. Wulz; V. Mossolov; N. Shumeiko; J. Suarez Gonzalez; S. Bansal; L. Benucci; E. A. De Wolf; X. Janssen; J. Maes; T. Maes; L. Mucibello; S. Ochesanu; B. Roland; R. Rougny; M. Selvaggi; H. Van Haevermaet; P. Van Mechelen; N. Van Remortel; F. Blekman; S. Blyweert; J. D’Hondt; O. Devroede; R. Gonzalez Suarez; A. Kalogeropoulos; M. Maes; W. Van Doninck; P. Van Mulders; G. P. Van Onsem; I. Villella; O. Charaf; B. Clerbaux; G. De Lentdecker; V. Dero; A. P. R. Gay; G. H. Hammad; T. Hreus; P. E. Marage; L. Thomas; C. Vander Velde; P. Vanlaer; V. Adler; A. Cimmino; S. Costantini; M. Grunewald; B. Klein; J. Lellouch; A. Marinov; J. Mccartin; D. Ryckbosch; F. Thyssen; M. Tytgat; L. Vanelderen; P. Verwilligen; S. Walsh; N. Zaganidis; S. Basegmez; G. Bruno; J. Caudron; L. Ceard; E. Cortina Gil; J. De Favereau De Jeneret; C. Delaere; D. Favart; A. Giammanco; G. Grégoire; J. Hollar; V. Lemaitre; J. Liao; O. Militaru; S. Ovyn; D. Pagano; A. Pin; K. Piotrzkowski; N. Schul; N. Beliy; T. Caebergs; E. Daubie; G. A. Alves; D. De Jesus Damiao; M. E. Pol; M. H. G. Souza; W. Carvalho; E. M. Da Costa; C. De Oliveira Martins; S. Fonseca De Souza; L. Mundim; H. Nogima; V. Oguri; W. L. Prado Da Silva; A. Santoro; S. M. Silva Do Amaral; A. Sznajder; C. A. Bernardes; F. A. Dias; T. R. Fernandez Perez Tomei; E. M. Gregores; C. Lagana; F. Marinho; P. G. Mercadante; S. F. Novaes; Sandra S. Padula; N. Darmenov; L. Dimitrov; V. Genchev; P. Iaydjiev; S. Piperov; M. Rodozov; S. Stoykova; G. Sultanov; V. Tcholakov; R. Trayanov; I. Vankov; A. Dimitrov; R. Hadjiiska; A. Karadzhinova; V. Kozhuharov; L. Litov; M. Mateev; B. Pavlov; P. Petkov; J. G. Bian; G. M. Chen; H. S. Chen; C. H. Jiang; D. Liang; S. Liang; X. Meng; J. Tao; J. Wang; X. Wang; Z. Wang; H. Xiao; M. Xu; J. Zang; Z. Zhang; Y. Ban; S. Guo; Y. Guo; W. Li; Y. Mao; S. J. Qian; H. Teng; L. Zhang; B. Zhu; W. Zou; A. Cabrera; B. Gomez Moreno; A. A. Ocampo Rios; A. F. Osorio Oliveros; J. C. Sanabria; N. Godinovic; D. Lelas; K. Lelas; R. Plestina; D. Polic; I. Puljak; Z. Antunovic; M. Dzelalija; V. Brigljevic; S. Duric; K. Kadija; S. Morovic; A. Attikis; M. Galanti; J. Mousa; C. Nicolaou; F. Ptochos; P. A. Razis; M. Finger; Y. Assran; S. Khalil; M. A. Mahmoud; A. Hektor; M. Kadastik; M. Müntel; M. Raidal; L. Rebane; V. Azzolini; P. Eerola; G. Fedi; S. Czellar; J. Härkönen; A. Heikkinen; V. Karimäki; R. Kinnunen; M. J. Kortelainen; T. Lampén; K. Lassila-Perini; S. Lehti; T. Lindén; P. Luukka; T. Mäenpää; E. Tuominen; J. Tuominiemi; E. Tuovinen; D. Ungaro; L. Wendland; K. Banzuzi; A. Korpela; T. Tuuva; D. Sillou; M. Besancon; S. Choudhury; M. Dejardin; D. Denegri; B. Fabbro; J. L. Faure; F. Ferri; S. Ganjour; F. X. Gentit; A. Givernaud; P. Gras; G. Hamel de Monchenault; P. Jarry; E. Locci; J. Malcles; M. Marionneau; L. Millischer; J. Rander; A. Rosowsky; I. Shreyber; M. Titov; P. Verrecchia; S. Baffioni; F. Beaudette; L. Benhabib; L. Bianchini; M. Bluj; C. Broutin; P. Busson; C. Charlot; T. Dahms; L. Dobrzynski; S. Elgammal; R. Granier de Cassagnac; M. Haguenauer; P. Miné; C. Mironov; C. Ochando; P. Paganini; D. Sabes; R. Salerno; Y. Sirois; C. Thiebaux; B. Wyslouch; A. Zabi; J.-L. Agram; J. Andrea; D. Bloch; D. Bodin; J.-M. Brom; M. Cardaci; E. C. Chabert; C. Collard; E. Conte; F. Drouhin; C. Ferro; J.-C. Fontaine; D. Gelé; U. Goerlach; S. Greder; P. Juillot; M. Karim; A.-C. Le Bihan; Y. Mikami; P. Van Hove; F. Fassi; D. Mercier; C. Baty; S. Beauceron; N. Beaupere; M. Bedjidian; O. Bondu; G. Boudoul; D. Boumediene; H. Brun; J. Chasserat; R. Chierici; D. Contardo; P. Depasse; H. El Mamouni; J. Fay; S. Gascon; B. Ille; T. Kurca; T. LeGrand; M. Lethuillier; L. Mirabito; S. Perries; V. Sordini; S. Tosi; Y. Tschudi; P. Verdier; D. Lomidze; G. Anagnostou; M. Edelhoff; L. Feld; N. Heracleous; O. Hindrichs; R. Jussen; K. Klein; J. Merz; N. Mohr; A. Ostapchuk; A. Perieanu; F. Raupach; J. Sammet; S. Schael; D. Sprenger; H. Weber; M. Weber; B. Wittmer; M. Ata; W. Bender; E. Dietz-Laursonn; M. Erdmann; J. Frangenheim; T. Hebbeker; A. Hinzmann; K. Hoepfner; T. Klimkovich; D. Klingebiel; P. Kreuzer; D. Lanske; C. Magass; M. Merschmeyer; A. Meyer; P. Papacz; H. Pieta; H. Reithler; S. A. Schmitz; L. Sonnenschein; J. Steggemann; D. Teyssier; M. Bontenackels; M. Davids; M. Duda; G. Flügge; H. Geenen; M. Giffels; W. Haj Ahmad; D. Heydhausen; T. Kress; Y. Kuessel; A. Linn; A. Nowack; L. Perchalla; O. Pooth; J. Rennefeld; P. Sauerland; A. Stahl; M. Thomas; D. Tornier

    2011-01-01

    First measurements of dihadron correlationsfor charged particles are presented for central PbPb collisions at a nucleon-nucleon\\u000a center-of-mass energy of 2.76TeV over a broad range in relative pseudorapidity (??) and the full range of relative azimuthal\\u000a angle (??). The data were collected with the CMS detector, at the LHC. A broadening of the away-side (??????) azimuthal correlation\\u000a is observed at all

  6. Observations of Thermospheric Na Layers up to 170 Km at Lijiang (26.7 N, 100.0 E)

    NASA Astrophysics Data System (ADS)

    Gao, Q.; Chu, X.; Xue, X.; Dou, X.

    2014-12-01

    We report the lidar observations of neutral Na layers in the thermosphere up to about 170 km at Lijiang in 2012. We get 4 cases with downward phase progression during whole 36 days observations. The maximum densities of these thermospheric Na layers range from 3.62 to 6.27 above 125 km. We calculate the detection limit for each case and find the densities of these layers are well above the detection limit, which makes the existence of Na layers up to so high latitudes definitely. Correlation with tides output from GSWM (Global Scale Wave Model) is also analyzed. Evidence has showed that the direct recombination Na+ +e-? Na + h? may account for the formation of neutral Na layers, similarly as the formation of neutral Fe layers analyzed in Chu et al. [2011], Fe+ +e-? Fe + h? , which is affected by the semidiurnal tides.

  7. Measurement of the inclusive 3-jet production differential cross section in proton-proton collisions at 7 TeV and determination of the strong coupling constant in the TeV range

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Luyckx, S.; Ochesanu, S.; Rougny, R.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Daci, N.; Heracleous, N.; Keaveney, J.; Lowette, S.; Maes, M.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Dobur, D.; Favart, L.; Gay, A. P. R.; Grebenyuk, A.; Léonard, A.; Mohammadi, A.; Pernič, L.; Reis, T.; Seva, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Zenoni, F.; Adler, V.; Beernaert, K.; Benucci, L.; Cimmino, A.; Costantini, S.; Crucy, S.; Dildick, S.; Fagot, A.; Garcia, G.; Mccartin, J.; Ocampo Rios, A. A.; Ryckbosch, D.; Salva Diblen, S.; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Nuttens, C.; Pagano, D.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Vizan Garcia, J. M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Júnior, W. L. Aldá; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Martins, T. Dos Reis; Mora Herrera, C.; Pol, M. E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santaolalla, J.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Bernardes, C. A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Aleksandrov, A.; Genchev, V.; Iaydjiev, P.; Marinov, A.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Tao, J.; Wang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Zou, W.; Avila, C.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Mekterovic, D.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Bodlak, M.; Finger, M.; Finger, M.; Assran, Y.; Ellithi Kamel, A.; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Eerola, P.; Fedi, G.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Baffioni, S.; Beaudette, F.; Busson, P.; Charlot, C.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Mastrolorenzo, L.; Miné, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Veelken, C.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Chabert, E. C.; Collard, C.; Conte, E.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Beaupere, N.; Boudoul, G.; Bouvier, E.; Brochet, S.; Carrillo Montoya, C. A.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Ruiz Alvarez, J. D.; Sabes, D.; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Xiao, H.; Bagaturia, I.

    2015-05-01

    This paper presents a measurement of the inclusive 3-jet production differential cross section at a proton-proton centre-of-mass energy of 7 TeV using data corresponding to an integrated luminosity of 5collected with the CMS detector. The analysis is based on the three jets with the highest transverse momenta. The cross section is measured as a function of the invariant mass of the three jets in a range of 445-3270 GeV and in two bins of the maximum rapidity of the jets up to a value of 2. A comparison between the measurement and the prediction from perturbative QCD at next-to-leading order is performed. Within uncertainties, data and theory are in agreement. The sensitivity of the observable to the strong coupling constant is studied. A fit to all data points with 3-jet masses larger than 664 GeV gives a value of the strong coupling constant of.

  8. The cosmic ray proton plus helium energy spectrum measured by the ARGO-YBJ experiment in the energy range 3-300 TeV

    E-print Network

    The ARGO-YBJ Collaboration; :; B. Bartoli; P. Bernardini; X. J. Bi; Z. Cao; S. Catalanotti; S. Z. Chen; T. L. Chen; S. W. Cui; B. Z. Dai; A. D'Amone; Danzengluobu; I. De Mitri; B. D'Ettorre Piazzoli; T. Di Girolamo; G. Di Sciascio; C. F. Feng; Zhaoyang Feng; Zhenyong Feng; Q. B. Gou; Y. Q. Guo; H. H. He; Haibing Hu; Hongbo Hu; M. Iacovacci; R. Iuppa; H. Y. Jia; Labaciren; H. J. Li; C. Liu; J. Liu; M. Y. Liu; H. Lu; L. L. Ma; X. H. Ma; G. Mancarella; S. M. Mari; G. Marsella; S. Mastroianni; P. Montini; C. C. Ning; L. Perrone; P. Pistilli; P. Salvini; R. Santonico; G. Settanta; P. R. Shen; X. D. Sheng; F. Shi; A. Surdo; Y. H. Tan; P. Vallania; S. Vernetto; C. Vigorito; H. Wang; C. Y. Wu; H. R. Wu; L. Xue; Q. Y. Yang; X. C. Yang; Z. G. Yao; A. F. Yuan; M. Zha; H. M. Zhang; L. Zhang; X. Y. Zhang; Y. Zhang; J. Zhao; Zhaxiciren; Zhaxisangzhu; X. X. Zhou; F. R. Zhu; Q. Q. Zhu

    2015-03-24

    The ARGO-YBJ experiment is a full-coverage air shower detector located at the Yangbajing Cosmic Ray Observatory (Tibet, People's Republic of China, 4300 m a.s.l.). The high altitude, combined with the full-coverage technique, allows the detection of extensive air showers in a wide energy range and offer the possibility of measuring the cosmic ray proton plus helium spectrum down to the TeV region, where direct balloon/space-borne measurements are available. The detector has been in stable data taking in its full configuration from November 2007 to February 2013. In this paper the measurement of the cosmic ray proton plus helium energy spectrum is presented in the region 3-300 TeV by analyzing the full collected data sample. The resulting spectral index is $\\gamma = -2.64 \\pm 0.01$. These results demonstrate the possibility of performing an accurate measurement of the spectrum of light elements with a ground based air shower detector.

  9. Cosmic ray proton plus helium energy spectrum measured by the ARGO-YBJ experiment in the energy range 3-300 TeV

    NASA Astrophysics Data System (ADS)

    Bartoli, B.; Bernardini, P.; Bi, X. J.; Cao, Z.; Catalanotti, S.; Chen, S. Z.; Chen, T. L.; Cui, S. W.; Dai, B. Z.; D'Amone, A.; Danzengluobu, De Mitri, I.; D'Ettorre Piazzoli, B.; Di Girolamo, T.; Di Sciascio, G.; Feng, C. F.; Feng, Zhaoyang; Feng, Zhenyong; Gou, Q. B.; Guo, Y. Q.; He, H. H.; Hu, Haibing; Hu, Hongbo; Iacovacci, M.; Iuppa, R.; Jia, H. Y.; Labaciren, Li, H. J.; Liu, C.; Liu, J.; Liu, M. Y.; Lu, H.; Ma, L. L.; Ma, X. H.; Mancarella, G.; Mari, S. M.; Marsella, G.; Mastroianni, S.; Montini, P.; Ning, C. C.; Perrone, L.; Pistilli, P.; Salvini, P.; Santonico, R.; Settanta, G.; Shen, P. R.; Sheng, X. D.; Shi, F.; Surdo, A.; Tan, Y. H.; Vallania, P.; Vernetto, S.; Vigorito, C.; Wang, H.; Wu, C. Y.; Wu, H. R.; Xue, L.; Yang, Q. Y.; Yang, X. C.; Yao, Z. G.; Yuan, A. F.; Zha, M.; Zhang, H. M.; Zhang, L.; Zhang, X. Y.; Zhang, Y.; Zhao, J.; Zhaxiciren, Zhaxisangzhu, Zhou, X. X.; Zhu, F. R.; Zhu, Q. Q.; ARGO-YBJ Collaboration

    2015-06-01

    The ARGO-YBJ experiment is a full-coverage air shower detector located at the Yangbajing Cosmic Ray Observatory (Tibet, People's Republic of China, 4300 m a.s.l.). The high altitude, combined with the full-coverage technique, allows the detection of extensive air showers in a wide energy range and offer the possibility of measuring the cosmic ray proton plus helium spectrum down to the TeV region, where direct balloon/space-borne measurements are available. The detector has been in stable data taking in its full configuration from November 2007 to February 2013. In this paper the measurement of the cosmic ray proton plus helium energy spectrum is presented in the region 3-300 TeV by analyzing the full collected data sample. The resulting spectral index is ? =-2.64 ą0.01 , the error is dominated by systematic uncertainties. The accurate measurement of the spectrum of light elements with a ground based air shower detector demonstrates the possibility of extending these measurements at larger energies, where galactic cosmic ray sources should run out of power in accelerating light elements.

  10. Long-range correlations in proton-lead collisions at sqrt{s_NN} = 5.02 TeV from ATLAS

    E-print Network

    Jiangyong Jia; for the ATLAS Collaboration

    2013-05-17

    Two-particle correlations in relative azimuth $\\Delta\\phi$ and relative pseudorapidity $\\Delta\\eta$ are studied in p+Pb collisions at sqrt{s_NN}=5.02 TeV with the ATLAS detector at LHC. The correlations are studied as a function of charged particle pT and the collision E_T^fcal summed over 3.1 ranges of E_T^fcal. The correlation analysis is repeated for event classes defined by the number of reconstructed charged particles N_ch^rec. This analysis gives nearly the same result as the analysis based on E_T^fcal for the long-range correlation at the near-side ($\\Delta\\phi~0$), but leads to biases in the long-range correlations at the away-side ($\\Delta\\phi\\sim\\pi$). HIJING simulation suggests that this bias is mainly associated with the contributions from dijets which are correlated strongly with the N_ch^rec.

  11. First measurements of long-range near-side angular correlations in $\\sqrt{s_{NN}}=5 TeV$ proton-lead collisions in the forward region

    E-print Network

    Meissner, Marco; The LHCb Collaboration

    2015-01-01

    Two-particle angular correlations are studied in proton-lead collisions at a nucleon-nucleon centre-of-mass energy of $\\sqrt{s_{NN}}=5 TeV$, collected with the \\lhcb detector at the \\lhc. The analysis is based on data recorded in two opposing beam configurations, in which either the direction of the proton or that of the lead remnant is analysed. The correlations are measured as a function of relative pseudorapidity, $\\Delta\\eta$, and relative azimuthal angle, $\\Delta\\phi$, for events in different classes of event activity and for different bins of particle transverse momentum. In high-activity events a long-range correlation on the near side is observed in the pseudorapidity range $2.0the first measurement of a long-range correlation on the near side in proton-lead collisions in the forward region and extends previous observations in the central region. The correlation increases with growing event activity and is found to be more pronounced in the direction of the lead beam. When c...

  12. Measurement of the inclusive 3-jet production differential cross section in proton-proton collisions at 7 TeV and determination of the strong coupling constant in the TeV range

    DOE PAGESBeta

    Khachatryan, Vardan [Yerevan Physics Institute (Armenia); et al.,

    2015-05-01

    This paper presents a measurement of the inclusive 3-jet production differential cross section at a proton-proton centre-of-mass energy of 7 TeV using data corresponding to an integrated luminosity of 5 fb$^{-1}$ collected with the CMS detector. The analysis is based on the three jets with the highest transverse momenta. The cross section is measured as a function of the invariant mass of the three jets in a range of 445-3270 GeV and in two bins of the maximum rapidity of the jets up to a value of 2. A comparison between the measurement and the prediction from perturbative QCD at next-to-leading order is performed. Within uncertainties, data and theory are in agreement. The sensitivity of the observable to parameters of the theory such as the parton distribution functions of the proton and the strong coupling constant $\\alpha_S$ is studied. A fit to all data points with 3-jet masses larger than 664 GeV gives a value of the strong coupling constant of $\\alpha_S(M_\\mathrm{Z})$ = 0.1171 $\\pm$ 0.0013 (exp) $^{+0.0073}_{-0.0047}$ (theo).

  13. Measurement of the inclusive 3-jet production differential cross section in proton-proton collisions at 7 TeV and determination of the strong coupling constant in the TeV range

    DOE PAGESBeta

    Khachatryan, Vardan; et al.,

    2015-05-01

    This paper presents a measurement of the inclusive 3-jet production differential cross section at a proton-proton centre-of-mass energy of 7 TeV using data corresponding to an integrated luminosity of 5 fb$^{-1}$ collected with the CMS detector. The analysis is based on the three jets with the highest transverse momenta. The cross section is measured as a function of the invariant mass of the three jets in a range of 445-3270 GeV and in two bins of the maximum rapidity of the jets up to a value of 2. A comparison between the measurement and the prediction from perturbative QCD atmore ťnext-to-leading order is performed. Within uncertainties, data and theory are in agreement. The sensitivity of the observable to parameters of the theory such as the parton distribution functions of the proton and the strong coupling constant $\\alpha_S$ is studied. A fit to all data points with 3-jet masses larger than 664 GeV gives a value of the strong coupling constant of $\\alpha_S(M_\\mathrm{Z})$ = 0.1171 $\\pm$ 0.0013 (exp) $^{+0.0073}_{-0.0047}$ (theo).Ť less

  14. Long-range angular correlations on the near and away side in p-Pb collisions at ?{sNN}=5.02 TeV

    NASA Astrophysics Data System (ADS)

    Abelev, Betty; Adam, Jaroslav; Adamova, Dagmar; Adare, Andrew Marshall; Aggarwal, Madan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agocs, Andras Gabor; Agostinelli, Andrea; Ahammed, Zubayer; Ahmad, Nazeer; Ahmad, Arshad; Ahn, Sul-Ah; Ahn, Sang Un; Ajaz, Muhammad; Akindinov, Alexander; Aleksandrov, Dmitry; Alessandro, Bruno; Alici, Andrea; Alkin, Anton; Almaraz Avina, Erick Jonathan; Alme, Johan; Alt, Torsten; Altini, Valerio; Altinpinar, Sedat; Altsybeev, Igor; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anson, Christopher Daniel; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshauser, Harald; Arbor, Nicolas; Arcelli, Silvia; Arend, Andreas; Armesto, Nestor; Arnaldi, Roberta; Aronsson, Tomas Robert; Arsene, Ionut Cristian; Arslandok, Mesut; Asryan, Andzhey; Augustinus, Andre; Averbeck, Ralf Peter; Awes, Terry; Aysto, Juha Heikki; Azmi, Mohd Danish; Bach, Matthias Jakob; Badala, Angela; Baek, Yong Wook; Bailhache, Raphaelle Marie; Bala, Renu; Baldini Ferroli, Rinaldo; Baldisseri, Alberto; Dos Santos Pedrosa, Fernando Baltasar; Ban, Jaroslav; Baral, Rama Chandra; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Barret, Valerie; Bartke, Jerzy Gustaw; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batyunya, Boris; Baumann, Christoph Heinrich; Bearden, Ian Gardner; Beck, Hans; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bellwied, Rene; Belmont-Moreno, Ernesto; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bergognon, Anais Annick Erica; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhati, Ashok Kumar; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Bjelogrlic, Sandro; Blanco, Francesco; Blanco, F.; Blau, Dmitry; Blume, Christoph; Boccioli, Marco; Boettger, Stefan; Bogdanov, Alexey; Boggild, Hans; Bogolyubsky, Mikhail; Boldizsar, Laszlo; Bombara, Marek; Book, Julian; Borel, Herve; Borissov, Alexander; Bossu, Francesco; Botje, Michiel; Botta, Elena; Braidot, Ermes; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Broker, Theo Alexander; Browning, Tyler Allen; Broz, Michal; Brun, Rene; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buncic, Predrag; Busch, Oliver; Zinhle Buthelezi, Edith; Caballero Orduna, Diego; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calvo Villar, Ernesto; Camerini, Paolo; Canoa Roman, Veronica; Romeo, Giovanni Cara; Carena, Wisla; Carena, Francesco; Filho, Nelson Carlin; Carminati, Federico; Casanova Diaz, Amaya Ofelia; Castillo Castellanos, Javier Ernesto; Castillo Hernandez, Juan Francisco; Casula, Ester Anna Rita; Catanescu, Vasile; Cavicchioli, Costanza; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiaio; Chang, Beomsu; Chapeland, Sylvain; Charvet, Jean-Luc Fernand; Chattopadhyay, Sukalyan; Chattopadhyay, Subhasis; Chawla, Isha; Cherney, Michael Gerard; Cheshkov, Cvetan; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Chinellato, David; Chochula, Peter; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Coccetti, Fabrizio; Colamaria, Fabio; Colella, Domenico; Collu, Alberto; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Connors, Megan Elizabeth; Contin, Giacomo; Contreras, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortese, Pietro; Maldonado, Ismael Cortes; Cosentino, Mauro Rogerio; Costa, Filippo; Cotallo, Manuel Enrique; Crescio, Elisabetta; Crochet, Philippe; Alaniz, Emilia Cruz; Albino, Rigoberto Cruz; Cuautle, Eleazar; Cunqueiro, Leticia; Dainese, Andrea; Hjersing Dalsgaard, Hans; Danu, Andrea; Das, Indranil; Das, Debasish; Das, Supriya; Das, Kushal; Dash, Ajay Kumar; Dash, Sadhana; de, Sudipan; de Barros, Gabriel; de Caro, Annalisa; de Cataldo, Giacinto; de Cuveland, Jan; de Falco, Alessandro; de Gruttola, Daniele; Delagrange, Hugues; Deloff, Andrzej; De Marco, Nora; Denes, Ervin; de Pasquale, Salvatore; Deppman, Airton; D'Erasmo, Ginevra; de Rooij, Raoul Stefan; Diaz Corchero, Miguel Angel; di Bari, Domenico; Dietel, Thomas; di Giglio, Carmelo; di Liberto, Sergio; di Mauro, Antonio; di Nezza, Pasquale; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Dobrowolski, Tadeusz Antoni

    2013-02-01

    Angular correlations between charged trigger and associated particles are measured by the ALICE detector in p-Pb collisions at a nucleon-nucleon centre-of-mass energy of 5.02 TeV for transverse momentum ranges within 0.5range ridge-like structures, one on the near side and one on the away side, are observed when the per-trigger yield obtained in low-multiplicity events is subtracted from the one in high-multiplicity events. The excess on the near-side is qualitatively similar to that recently reported by the CMS Collaboration, while the excess on the away-side is reported for the first time. The two-ridge structure projected onto azimuthal angle is quantified with the second and third Fourier coefficients as well as by near-side and away-side yields and widths. The yields on the near side and on the away side are equal within the uncertainties for all studied event multiplicity and pT bins, and the widths show no significant evolution with event multiplicity or pT. These findings suggest that the near-side ridge is accompanied by an essentially identical away-side ridge.

  15. Long-range and short-range dihadron angular correlations in central PbPb collisions at a nucleon-nucleon center of mass energy of 2.76 TeV

    E-print Network

    CMS Collaboration

    2011-05-12

    First measurements of dihadron correlations for charged particles are presented for central PbPb collisions at a nucleon-nucleon center-of-mass energy of 2.76 TeV over a broad range in relative pseudorapidity, Delta(eta), and the full range of relative azimuthal angle, Delta(phi). The data were collected with the CMS detector, at the LHC. A broadening of the away-side (Delta(phi) approximately pi) azimuthal correlation is observed at all Delta(eta), as compared to the measurements in pp collisions. Furthermore, long-range dihadron correlations in Delta(eta) are observed for particles with similar phi values. This phenomenon, also known as the "ridge", persists up to at least |Delta(eta)| = 4. For particles with transverse momenta (pt) of 2-4 GeV/c, the ridge is found to be most prominent when these particles are correlated with particles of pt = 2-6 GeV/c, and to be much reduced when paired with particles of pt = 10-12 GeV/c.

  16. Long-range and short-range dihadron angular correlations in central PbPb collisions at a nucleon-nucleon center of mass energy of 2.76 TeV

    SciTech Connect

    Chatrchyan, Serguei [Yerevan Physics Inst. (Armenia); et al.

    2011-07-01

    First measurements of dihadron correlations for charged particles are presented for central PbPb collisions at a nucleon-nucleon center-of-mass energy of 2.76 TeV over a broad range in relative pseudorapidity, Delta(eta), and the full range of relative azimuthal angle, Delta(phi). The data were collected with the CMS detector, at the LHC. A broadening of the away-side (Delta(phi) approximately pi) azimuthal correlation is observed at all Delta(eta), as compared to the measurements in pp collisions. Furthermore, long-range dihadron correlations in Delta(eta) are observed for particles with similar phi values. This phenomenon, also known as the "ridge", persists up to at least |Delta(eta)| = 4. For particles with transverse momenta (pt) of 2-4 GeV/c, the ridge is found to be most prominent when these particles are correlated with particles of pt = 2-6 GeV/c, and to be much reduced when paired with particles of pt = 10-12 GeV/c.

  17. Long-range angular correlations of ?, K and p in p-Pb collisions at ?{sNN}=5.02 TeV

    NASA Astrophysics Data System (ADS)

    Abelev, B.; Adam, J.; Adamová, D.; Adare, A. M.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agocs, A. G.; Agostinelli, A.; Ahammed, Z.; Ahmad, N.; Ahmad Masoodi, A.; Ahmed, I.; Ahn, S. A.; Ahn, S. U.; Aimo, I.; Aiola, S.; Ajaz, M.; Akindinov, A.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altini, V.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Anti?i?, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arbor, N.; Arcelli, S.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Arslandok, M.; Augustinus, A.; Averbeck, R.; Awes, T. C.; Äystö, J.; Azmi, M. D.; Bach, M.; Badalŕ, A.; Baek, Y. W.; Bailhache, R.; Bala, R.; Baldisseri, A.; Baltasar Dos Santos Pedrosa, F.; Bán, J.; Baral, R. C.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartke, J.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batyunya, B.; Batzing, P. C.; Baumann, C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bellwied, R.; Belmont-Moreno, E.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bergognon, A. A. E.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhati, A. K.; Bhom, J.; Bianchi, L.; Bianchi, N.; Biel?ík, J.; Biel?íková, J.; Bilandzic, A.; Bjelogrlic, S.; Blanco, F.; Blanco, F.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Břggild, H.; Bogolyubsky, M.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Bornschein, J.; Botje, M.; Botta, E.; Böttger, S.; Braidot, E.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Brun, R.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Caffarri, D.; Cai, X.; Caines, H.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Canoa Roman, V.; Cara Romeo, G.; Carena, F.; Carena, W.; Carminati, F.; Casanova Díaz, A.; Castillo Castellanos, J.; Casula, E. A. R.; Catanescu, V.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa del Valle, Z.; Connors, M. E.; Contin, G.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortese, P.; Cortés Maldonado, I.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dainese, A.; Dang, R.; Danu, A.; Das, K.; Das, D.; Das, I.; Dash, A.; Dash, S.; De, S.; Delagrange, H.; Deloff, A.; Dénes, E.; Deppman, A.; de Barros, G. O. V.; De Caro, A.; de Cataldo, G.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; de Rooij, R.; Diaz Corchero, M. A.; Dietel, T.; Diviŕ, R.; Di Bari, D.; Di Giglio, C.; Di Liberto, S.; Di Mauro, A.; Di Nezza, P.; Djuvsland, Ř.; Dobrin, A.; Dobrowolski, T.; Dönigus, B.; Dordic, O.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Dutta Majumdar, A. K.; D Erasmo, G.; Elia, D.; Emschermann, D.; Engel, H.; Erazmus, B.; Erdal, H. A.; Eschweiler, D.; Espagnon, B.; Estienne, M.; Esumi, S.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fehlker, D.; Feldkamp, L.; Felea, D.; Feliciello, A.; Feofilov, G.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floratos, E.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Fusco Girard, M.; Gaardhřje, J. J.; Gagliardi, M.; Gago, A.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Garishvili, I.; Gerhard, J.; Germain, M.; Gheata, A.; Gheata, M.; Ghidini, B.; Ghosh, P.; Gianotti, P.; Giubellino, P.; Gladysz-Dziadus, E.; Glässel, P.; Goerlich, L.; Gomez, R.; González-Zamora, P.; Gorbunov, S.; Gotovac, S.; Graczykowski, L. K.; Grajcarek, R.; Grelli, A.; Grigoras, C.; Grigoras, A.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Guilbaud, M.; Gulbrandsen, K.; Gulkanyan, H.; Gunji, T.; Gupta, A.; Gupta, R.; Khan, K. H.; Haake, R.; Haaland, Ř.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hanratty, L. D.; Hansen, A.; Harris, J. W.

    2013-10-01

    Angular correlations between unidentified charged trigger particles and various species of charged associated particles (unidentified particles, pions, kaons, protons and antiprotons) are measured by the ALICE detector in p-Pb collisions at a nucleon-nucleon centre-of-mass energy of 5.02 TeV in the transverse-momentum range 0.3range |?lab|<0.8. Fourier coefficients are extracted from the long-range correlations projected onto the azimuthal angle difference and studied as a function of pT and in intervals of event multiplicity. In high-multiplicity events, the second-order coefficient for protons, v2p, is observed to be smaller than that for pions, v2?, up to about pT=2 GeV/c. To reduce correlations due to jets, the per-trigger yield measured in low-multiplicity events is subtracted from that in high-multiplicity events. A two-ridge structure is obtained for all particle species. The Fourier decomposition of this structure shows that the second-order coefficients for pions and kaons are similar. The v2p is found to be smaller at low pT and larger at higher pT than v2?, with a crossing occurring at about 2 GeV/c. This is qualitatively similar to the elliptic-flow pattern observed in heavy-ion collisions. A mass ordering effect at low transverse momenta is consistent with expectations from hydrodynamic model calculations assuming a collectively expanding system.

  18. Search for diphoton resonances in the mass range from 150 to 850 GeV in pp collisions at $\\sqrt{s} = $ 8 TeV

    E-print Network

    CMS Collaboration

    2015-01-01

    Results are presented of a search for heavy particles decaying into two photons. The analysis is based on a 19.7 fb$^{-1}$ sample of proton-proton collisions at $\\sqrt{s }= $ 8 TeV collected with the CMS detector at the CERN LHC. The diphoton mass spectrum from 150 to 850 GeV is used to search for an excess of events over the background. The search is extended to new resonances with natural widths of up to 10% of the mass value. No evidence for new particle production is observed and limits at 95% confidence level on the production cross section times branching fraction to diphotons are determined. These limits are interpreted in terms of two-Higgs-doublet model parameters.

  19. Search for scalar diphoton resonances in the mass range 65-600 GeV with the ATLAS detector in pp collision data at ?s=8 TeV.

    PubMed

    Aad, G; Abbott, B; Abdallah, J; Abdel Khalek, S; Abdinov, O; Aben, R; Abi, B; Abolins, M; AbouZeid, O S; Abramowicz, H; Abreu, H; Abreu, R; Abulaiti, Y; Acharya, B S; Adamczyk, L; Adams, D L; Adelman, J; Adomeit, S; Adye, T; Agatonovic-Jovin, T; Aguilar-Saavedra, J A; Agustoni, M; Ahlen, S P; Ahmadov, F; Aielli, G; Akerstedt, H; Akesson, T P A; Akimoto, G; Akimov, A V; Alberghi, G L; Albert, J; Albrand, S; Alconada Verzini, M J; Aleksa, M; Aleksandrov, I N; Alexa, C; Alexander, G; Alexandre, G; Alexopoulos, T; Alhroob, M; Alimonti, G; Alio, L; Alison, J; Allbrooke, B M M; Allison, L J; Allport, P P; Almond, J; Aloisio, A; Alonso, A; Alonso, F; Alpigiani, C; Altheimer, A; Alvarez Gonzalez, B; Alviggi, M G; Amako, K; Amaral Coutinho, Y; Amelung, C; Amidei, D; Amor Dos Santos, S P; Amorim, A; Amoroso, S; Amram, N; Amundsen, G; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, G; Anderson, K J; Andreazza, A; Andrei, V; Anduaga, X S; Angelidakis, S; Angelozzi, I; Anger, P; Angerami, A; Anghinolfi, F; Anisenkov, A V; Anjos, N; Annovi, A; Antonaki, A; Antonelli, M; Antonov, A; Antos, J; Anulli, F; Aoki, M; Aperio Bella, L; Apolle, R; Arabidze, G; Aracena, I; Arai, Y; Araque, J P; Arce, A T H; Arguin, J-F; Argyropoulos, S; Arik, M; Armbruster, A J; Arnaez, O; Arnal, V; Arnold, H; Arratia, M; Arslan, O; Artamonov, A; Artoni, G; Asai, S; Asbah, N; Ashkenazi, A; Asman, B; Asquith, L; Assamagan, K; Astalos, R; Atkinson, M; Atlay, N B; Auerbach, B; Augsten, K; Aurousseau, M; Avolio, G; Azuelos, G; Azuma, Y; Baak, M A; Baas, A; Bacci, C; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Backus Mayes, J; Badescu, E; Bagiacchi, P; Bagnaia, P; Bai, Y; Bain, T; Baines, J T; Baker, O K; Balek, P; Balli, F; Banas, E; Banerjee, Sw; Bannoura, A A E; Bansal, V; Bansil, H S; Barak, L; Baranov, S P; Barberio, E L; Barberis, D; Barbero, M; Barillari, T; Barisonzi, M; Barklow, T; Barlow, N; Barnett, B M; Barnett, R M; Barnovska, Z; Baroncelli, A; Barone, G; Barr, A J; Barreiro, F; Barreiro Guimarăes da Costa, J; Bartoldus, R; Barton, A E; Bartos, P; Bartsch, V; Bassalat, A; Basye, A; Bates, R L; Batley, J R; Battaglia, M; Battistin, M; Bauer, F; Bawa, H S; Beattie, M D; Beau, T; Beauchemin, P H; Beccherle, R; Bechtle, P; Beck, H P; Becker, K; Becker, S; Beckingham, M; Becot, C; Beddall, A J; Beddall, A; Bedikian, S; Bednyakov, V A; Bee, C P; Beemster, L J; Beermann, T A; Begel, M; Behr, K; Belanger-Champagne, C; Bell, P J; Bell, W H; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belotskiy, K; Beltramello, O; Benary, O; Benchekroun, D; Bendtz, K; Benekos, N; Benhammou, Y; Benhar Noccioli, E; Benitez Garcia, J A; Benjamin, D P; Bensinger, J R; Benslama, K; Bentvelsen, S; Berge, D; Bergeaas Kuutmann, E; Berger, N; Berghaus, F; Beringer, J; Bernard, C; Bernat, P; Bernius, C; Bernlochner, F U; Berry, T; Berta, P; Bertella, C; Bertoli, G; Bertolucci, F; Bertsche, C; Bertsche, D; Besana, M I; Besjes, G J; Bessidskaia, O; Bessner, M; Besson, N; Betancourt, C; Bethke, S; Bhimji, W; Bianchi, R M; Bianchini, L; Bianco, M; Biebel, O; Bieniek, S P; Bierwagen, K; Biesiada, J; Biglietti, M; Bilbao De Mendizabal, J; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Black, C W; Black, J E; Black, K M; Blackburn, D; Blair, R E; Blanchard, J-B; Blazek, T; Bloch, I; Blocker, C; Blum, W; Blumenschein, U; Bobbink, G J; Bobrovnikov, V S; Bocchetta, S S; Bocci, A; Bock, C; Boddy, C R; Boehler, M; Boek, T T; Bogaerts, J A; Bogdanchikov, A G; Bogouch, A; Bohm, C; Bohm, J; Boisvert, V; Bold, T; Boldea, V; Boldyrev, A S; Bomben, M; Bona, M; Boonekamp, M; Borisov, A; Borissov, G; Borri, M; Borroni, S; Bortfeldt, J; Bortolotto, V; Bos, K; Boscherini, D; Bosman, M; Boterenbrood, H; Boudreau, J; Bouffard, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Bousson, N; Boutouil, S; Boveia, A; Boyd, J; Boyko, I R; Bracinik, J; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Brazzale, S F; Brelier, B; Brendlinger, K; Brennan, A J; Brenner, R; Bressler, S; Bristow, K; Bristow, T M; Britton, D; Brochu, F M; Brock, I; Brock, R; Bromberg, C; Bronner, J; Brooijmans, G; Brooks, T; Brooks, W K; Brosamer, J; Brost, E; Brown, J; Bruckman de Renstrom, P A; Bruncko, D; Bruneliere, R; Brunet, S; Bruni, A; Bruni, G; Bruschi, M; Bryngemark, L; Buanes, T; Buat, Q; Bucci, F; Buchholz, P; Buckingham, R M; Buckley, A G; Buda, S I; Budagov, I A; Buehrer, F; Bugge, L; Bugge, M K; Bulekov, O; Bundock, A C; Burckhart, H; Burdin, S; Burghgrave, B; Burke, S; Burmeister, I; Busato, E; Büscher, D; Büscher, V; Bussey, P; Buszello, C P; Butler, B; Butler, J M; Butt, A I; Buttar, C M; Butterworth, J M; Butti, P; Buttinger, W; Buzatu, A; Byszewski, M; Cabrera Urbán, S; Caforio, D; Cakir, O; Calafiura, P; Calandri, A; Calderini, G; Calfayan, P; Calkins, R; Caloba, L P; Calvet, D; Calvet, S

    2014-10-24

    A search for scalar particles decaying via narrow resonances into two photons in the mass range 65-600 GeV is performed using 20.3??fb(-1) of ?s 8 TeV pp collision data collected with the ATLAS detector at the Large Hadron Collider. The recently discovered Higgs boson is treated as a background. No significant evidence for an additional signal is observed. The results are presented as limits at the 95% confidence level on the production cross section of a scalar boson times branching ratio into two photons, in a fiducial volume where the reconstruction efficiency is approximately independent of the event topology. The upper limits set extend over a considerably wider mass range than previous searches. PMID:25379911

  20. Observation of Associated Near-Side and Away-Side Long-Range Correlations in ?[subscript NN]=5.02??TeV Proton-Lead Collisions with the ATLAS Detector

    E-print Network

    Taylor, Frank E.

    Two-particle correlations in relative azimuthal angle (??) and pseudorapidity (??) are measured in ?s[subscript NN]=5.02??TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using ...

  1. Accelerating Genome Sequencing 100-1000X with FPGAs

    SciTech Connect

    Storaasli, Olaf O [ORNL] [ORNL

    2008-01-01

    The performance of FPGAs on Cray XD1 and SGI/RASC systems (with Virtex-II Pro 50 and Virtex-4 LX160 FPGAs) was evaluated for human genome sequencing using FASTA1 and BLAST2, respectively. Scalable speedups of 100X for a Virtex-4 FPGA (and exceeding 1000X for multiple FPGAs) over a 2.2 GHz Opteron were achieved. Similar FPGA speedups were achieved using BLAST on a SGI/RASC system at Oak Ridge National Laboratory.

  2. TeV Blazars: Observations and Models

    NASA Technical Reports Server (NTRS)

    Krawczynski, Henric

    2004-01-01

    Since the first TeV blazar Markarian (Mrk) 421 was detected in 1992, the number of established TeV gamma-ray emitting BL Lac objects has grown to 6, with redshifts ranging from 0 031 (Mrk 421) to 0.129 (H 1426+428). The intensive study of these sources has had a major impact on our understanding of the blazar phenomenon. The most notable observational results have been extremely fast large amplitude flux and spectral variability on hour time scales, and a pronounced X-ray - TeV gamma-ray flux correlation. In this paper, we discuss recent observational results and report on progress in their theoretical interpretation.

  3. Survey and alignment for a 20-TeV on 20-TeV collider

    SciTech Connect

    Close, E.R.; Douglas, D.R.; Sah, R.C.

    1983-08-01

    The effects of magnet misalignments in a 20-TeV on 20-TeV anti pp collider are simulated numerically. Both short-range and long-range alignment errors are considered for an example lattice design, and closed-orbit errors are simulated. Finally, closed orbit corrections using a least-squares scheme are performed. Automatic surveying methods are attractive for a multi-TeV collider, because of the large accelerator circumference, the large number of magnets, and the small tunnel cross section. The specific example of an automatic surveying scheme based upon an Inertial Navigation System is discussed, and the most important sources of error are described.

  4. Neutral pion and ? meson production in proton-proton collisions at ?{s}=0.9 TeV and ?{s}=7 TeV

    NASA Astrophysics Data System (ADS)

    Abelev, B.; Abrahantes Quintana, A.; Adamová, D.; Adare, A. M.; Aggarwal, M. M.; Aglieri Rinella, G.; Agocs, A. G.; Agostinelli, A.; Aguilar Salazar, S.; Ahammed, Z.; Ahmad, N.; Ahmad Masoodi, A.; Ahn, S. U.; Akindinov, A.; Aleksandrov, D.; Alessandro, B.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Almaráz Avińa, E.; Alt, T.; Altini, V.; Altinpinar, S.; Altsybeev, I.; Andrei, C.; Andronic, A.; Anguelov, V.; Anson, C.; Anti?i?, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arbor, N.; Arcelli, S.; Arend, A.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Arslandok, M.; Asryan, A.; Augustinus, A.; Averbeck, R.; Awes, T. C.; Äystö, J.; Azmi, M. D.; Bach, M.; Badalŕ, A.; Baek, Y. W.; Bailhache, R.; Bala, R.; Baldini Ferroli, R.; Baldisseri, A.; Baldit, A.; Baltasar Dos Santos Pedrosa, F.; Bán, J.; Baral, R. C.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartke, J.; Basile, M.; Bastid, N.; Bathen, B.; Batigne, G.; Batyunya, B.; Baumann, C.; Bearden, I. G.; Beck, H.; Belikov, I.; Bellini, F.; Bellwied, R.; Belmont-Moreno, E.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bergmann, C.; Berzano, D.; Betev, L.; Bhasin, A.; Bhati, A. K.; Bianchi, N.; Bianchi, L.; Bianchin, C.; Biel?ík, J.; Biel?íková, J.; Bilandzic, A.; Blanco, F.; Blanco, F.; Blau, D.; Blume, C.; Boccioli, M.; Bock, F.; Bock, N.; Bogdanov, A.; Břggild, H.; Bogolyubsky, M.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Bortolin, C.; Bose, S.; Bossú, F.; Botje, M.; Böttger, S.; Boyer, B.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broz, M.; Brun, R.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Bugaiev, K.; Busch, O.; Buthelezi, Z.; Caffarri, D.; Cai, X.; Caines, H.; Calvo Villar, E.; Camerini, P.; Canoa Roman, V.; Cara Romeo, G.; Carena, F.; Carena, W.; Carlin Filho, N.; Carminati, F.; Carrillo Montoya, C. A.; Casanova Díaz, A.; Caselle, M.; Castillo Castellanos, J.; Castillo Hernandez, J. F.; Casula, E. A. R.; Catanescu, V.; Cavicchioli, C.; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chiavassa, E.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Chojnacki, M.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Coccetti, F.; Coffin, J.-P.; Colamaria, F.; Colella, D.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Constantin, P.; Contin, G.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortese, P.; Cortés Maldonado, I.; Cosentino, M. R.; Costa, F.; Cotallo, M. E.; Crescio, E.; Crochet, P.; Cruz Alaniz, E.; Cuautle, E.; Cunqueiro, L.; Dainese, A.; Dalsgaard, H. H.; Danu, A.; Das, I.; Das, K.; Das, D.; Dash, A.; Dash, S.; de, S.; de Azevedo Moregula, A.; de Barros, G. O. V.; de Caro, A.; de Cataldo, G.; de Cuveland, J.; de Falco, A.; de Gruttola, D.; Delagrange, H.; Del Castillo Sanchez, E.; Deloff, A.; Demanov, V.; De Marco, N.; Dénes, E.; de Pasquale, S.; Deppman, A.; D Erasmo, G.; de Rooij, R.; di Bari, D.; Dietel, T.; di Giglio, C.; di Liberto, S.; di Mauro, A.; di Nezza, P.; Diviŕ, R.; Djuvsland, Ř.; Dobrin, A.; Dobrowolski, T.; Domínguez, I.; Dönigus, B.; Dordic, O.; Driga, O.; Dubey, A. K.; Ducroux, L.; Dupieux, P.; Dutta Majumdar, M. R.; Dutta Majumdar, A. K.; Elia, D.; Emschermann, D.; Engel, H.; Erdal, H. A.; Espagnon, B.; Estienne, M.; Esumi, S.; Evans, D.; Eyyubova, G.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fearick, R.; Fedunov, A.; Fehlker, D.; Feldkamp, L.; Felea, D.; Feofilov, G.; Fernández Téllez, A.; Ferretti, A.; Ferretti, R.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Fini, R.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Fragkiadakis, M.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Fusco Girard, M.; Gaardhřje, J. J.; Gagliardi, M.; Gago, A.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Garabatos, C.; Garcia-Solis, E.; Garishvili, I.; Gerhard, J.; Germain, M.; Geuna, C.; Gheata, A.; Gheata, M.; Ghidini, B.; Ghosh, P.; Gianotti, P.; Girard, M. R.; Giubellino, P.; Gladysz-Dziadus, E.; Glässel, P.; Gomez, R.; Ferreiro, E. G.; González-Trueba, L. H.; González-Zamora, P.; Gorbunov, S.; Goswami, A.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Grajcarek, R.; Grelli, A.; Grigoras, C.; Grigoras, A.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Gros, P.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerra Gutierrez, C.; Guerzoni, B.; Guilbaud, M.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.

    2012-10-01

    The first measurements of the invariant differential cross sections of inclusive ?0 and ? meson production at mid-rapidity in proton-proton collisions at ?{s}=0.9 TeV and ?{s}=7 TeV are reported. The ?0 measurement covers the ranges 0.4TeV in the range 0.4TeV, overestimate those of ?0 and ? mesons at ?{s}=7 TeV, but agree with the measured ?/?0 ratio at ?{s}=7 TeV.

  5. 50 TeV HEGRA Sources and Infrared Radiation

    E-print Network

    V. Berezinsky; Lars Bergström; H. R. Rubinstein

    1997-05-20

    The recent observations of 50 TeV gamma radiation by HEGRA have the potential of determining the extragalactic flux of infrared radiation. The fact that radiation is observed in the range between 30 and 100 TeV sets an upper limit on the infrared flux, while a cutoff at $E_{\\gamma} \\approx 50$ TeV fixes this flux with a good accuracy. If the intrinsic radiation is produced due to interaction of high energy protons with gas or low-energy target photons, then an accompaning high-energy neutrino flux is unavoidable. We calculate this flux and underground muon flux produced by it. The muon flux is dominated by muons with energies about 1 TeV and can be marginally detected by a 1 km$^2$ detector like an expanded AMANDA.

  6. Sub-PeV Neutrinos from TeV Unidentified Sources in the Galaxy

    E-print Network

    D. B. Fox; K. Kashiyama; P. Meszaros

    2013-07-08

    The IceCube collaboration discovery of 28 high-energy neutrinos over the energy range 30 TeV Galaxy's TeV unidentified (TeV UnID) sources. While typically resolved at TeV energies, these sources lack prominent radio or X-ray counterparts, and so have been considered promising sites for hadron acceleration within our Galaxy. Modeling the TeV UnID sources as Galactic hypernova remnants, we predict Sub-PeV neutrino fluxes and spectra consistent with their contributing a minority of n_nu <~ 2 of the observed events. This is consistent with our analysis of the spatial distribution of the Sub-PeV neutrinos and TeV UnID sources, which finds that a best-fit of one, and maximum of 3.8 (at 90%-confidence), of the ~16 non-atmospheric Sub-PeV neutrinos may originate in TeV UnID sources, with the remaining 75% to 95% of events being drawn from an isotropic background. If our scenario is correct, we expect excess Sub-PeV neutrinos to accumulate along the Galactic plane, within |l| <~ 30 deg of the Galactic center and in the Cygnus region, as observations by IceCube and other high-energy neutrino facilities go forward. Our scenario also has implications for radio, X-ray, and TeV observations of the TeV UnID sources.

  7. Feasibility for p+\\/p- intensity-ratio evaluation in the 0.5 - 1.5 TeV primary energy range, based on Moon-shadow muon measurements, to be carried out in the Pyramid of the Sun, Teotihuacan, Experiment

    Microsoft Academic Search

    V. Grabski; A. Morales; R. Reche

    2008-01-01

    Several experimental works demonstrate the possibility of observation of shadows of the Moon and the Sun for the mean energy of primaries higher than 1 TeV. Calculations are presented to demonstrate the feasibility of Moon shadow observations for mean primary energies in the region 0.5-1 TeV in a muon detector operating under the Pyramid of the Sun at Teotihuacan, Mexico.

  8. Measurement of the differential dijet production cross section in proton–proton collisions at s = 7 TeV

    Microsoft Academic Search

    M. Anderson; M. Bachtis; J. N. Bellinger; D. Carlsmith; S. Dasu; J. Efron; L. Gray; K. S. Grogg; M. Grothe; R. Hall-Wilton; M. Herndon; P. Klabbers; J. Klukas; A. Lanaro; C. Lazaridis; J. Leonard; R. Loveless; A. Mohapatra; F. Palmonari; D. Reeder; I. Ross; A. Savin; W. H. Smith; J. Swanson; M. Weinberg; R. Schöfbeck; J. Strauss; F. Teischinger; P. Wagner; W. Waltenberger; G. Walzel; E. Widl; C.-E. Wulz; V. Mossolov; N. Shumeiko; J. Suarez Gonzalez; L. Benucci; E. A. de Wolf; X. Janssen; T. Maes; L. Mucibello; S. Ochesanu; B. Roland; R. Rougny; M. Selvaggi; H. van Haevermaet; P. van Mechelen; N. van Remortel; F. Blekman; S. Blyweert; J. D'Hondt; O. Devroede; R. Gonzalez Suarez; A. Kalogeropoulos; J. Maes; M. Maes; W. van Doninck; P. van Mulders; G. P. van Onsem; I. Villella; O. Charaf; B. Clerbaux; G. de Lentdecker; V. Dero; A. P. R. Gay; G. H. Hammad; T. Hreus; P. E. Marage; L. Thomas; C. Vander Velde; P. Vanlaer; V. Adler; A. Cimmino; S. Costantini; M. Grunewald; B. Klein; J. Lellouch; A. Marinov; J. McCartin; D. Ryckbosch; F. Thyssen; M. Tytgat; L. Vanelderen; P. Verwilligen; S. Walsh; N. Zaganidis; S. Basegmez; G. Bruno; J. Caudron; L. Ceard; E. Cortina Gil; J. de Favereau de Jeneret; C. Delaere; D. Favart; A. Giammanco; G. Grégoire; J. Hollar; V. Lemaitre; J. Liao; O. Militaru; S. Ovyn; D. Pagano; A. Pin; K. Piotrzkowski; N. Schul; N. Beliy; T. Caebergs; E. Daubie; G. A. Alves; D. de Jesus Damiao; M. E. Pol; M. H. G. Souza; W. Carvalho; E. M. da Costa; C. de Oliveira Martins; S. Fonseca de Souza; L. Mundim; H. Nogima; V. Oguri; W. L. Prado da Silva; A. Santoro; S. M. Silva Do Amaral; A. Sznajder; F. Torres da Silva de Araujo; F. A. Dias; T. R. Fernandez Perez Tomei; E. M. Gregores; C. Lagana; F. Marinho; P. G. Mercadante; S. F. Novaes; Sandra S. Padula; N. Darmenov; L. Dimitrov; V. Genchev; P. Iaydjiev; S. Piperov; M. Rodozov; S. Stoykova; G. Sultanov; V. Tcholakov; R. Trayanov; I. Vankov; A. Dimitrov; R. Hadjiiska; A. Karadzhinova; V. Kozhuharov; L. Litov; M. Mateev; B. Pavlov; P. Petkov; J. G. Bian; G. M. Chen; H. S. Chen; C. H. Jiang; D. Liang; S. Liang; X. Meng; J. Tao; J. Wang; X. Wang; Z. Wang; H. Xiao; M. Xu; J. Zang; Z. Zhang; Y. Ban; S. Guo; Y. Guo; W. Li; Y. Mao; S. J. Qian; H. Teng; L. Zhang; B. Zhu; W. Zou; A. Cabrera; B. Gomez Moreno; A. A. Ocampo Rios; A. F. Osorio Oliveros; J. C. Sanabria; N. Godinovic; D. Lelas; K. Lelas; R. Plestina; D. Polic; I. Puljak; Z. Antunovic; M. Dzelalija; V. Brigljevic; S. Duric; K. Kadija; S. Morovic; A. Attikis; M. Galanti; J. Mousa; C. Nicolaou; F. Ptochos; P. A. Razis; M. Finger; Y. Assran; S. Khalil; M. A. Mahmoud; A. Hektor; M. Kadastik; M. Müntel; M. Raidal; L. Rebane; V. Azzolini; P. Eerola; G. Fedi; S. Czellar; J. Härkönen; A. Heikkinen; V. Karimäki; R. Kinnunen; M. J. Kortelainen; T. Lampén; K. Lassila-Perini; S. Lehti; T. Lindén; P. Luukka; T. Mäenpää; E. Tuominen; J. Tuominiemi; E. Tuovinen; D. Ungaro; L. Wendland; K. Banzuzi; A. Korpela; T. Tuuva; D. Sillou; M. Besancon; S. Choudhury; M. Dejardin; D. Denegri; B. Fabbro; J. L. Faure; F. Ferri; S. Ganjour; F. X. Gentit; A. Givernaud; P. Gras; G. Hamel de Monchenault; P. Jarry; E. Locci; J. Malcles; M. Marionneau; L. Millischer; J. Rander; A. Rosowsky; I. Shreyber; M. Titov; P. Verrecchia; S. Baffioni; F. Beaudette; L. Benhabib; L. Bianchini; M. Bluj; C. Broutin; P. Busson; C. Charlot; T. Dahms; L. Dobrzynski; S. Elgammal; R. Granier de Cassagnac; M. Haguenauer; P. Miné; C. Mironov; C. Ochando; P. Paganini; D. Sabes; R. Salerno; Y. Sirois; C. Thiebaux; B. Wyslouch; A. Zabi; J.-L. Agram; J. Andrea; D. Bloch; D. Bodin; J.-M. Brom; M. Cardaci; E. C. Chabert; C. Collard; E. Conte; F. Drouhin; C. Ferro; J.-C. Fontaine; D. Gelé; U. Goerlach; S. Greder; P. Juillot; M. Karim; A.-C. Le Bihan; Y. Mikami; P. van Hove; F. Fassi; D. Mercier; C. Baty; S. Beauceron; N. Beaupere; M. Bedjidian; O. Bondu; G. Boudoul; D. Boumediene; H. Brun; R. Chierici; D. Contardo; P. Depasse; H. El Mamouni; J. Fay; S. Gascon; B. Ille; T. Kurca; T. Le Grand; M. Lethuillier; L. Mirabito; S. Perries; V. Sordini; S. Tosi; Y. Tschudi; P. Verdier; D. Lomidze; G. Anagnostou; M. Edelhoff; L. Feld; N. Heracleous; O. Hindrichs; R. Jussen; K. Klein; J. Merz; N. Mohr; A. Ostapchuk; A. Perieanu; F. Raupach; J. Sammet; S. Schael; D. Sprenger; H. Weber; M. Weber; B. Wittmer; M. Ata; W. Bender; E. Dietz-Laursonn; M. Erdmann; J. Frangenheim; T. Hebbeker; A. Hinzmann; K. Hoepfner; T. Klimkovich; D. Klingebiel; P. Kreuzer; D. Lanske; C. Magass; M. Merschmeyer; A. B. Meyer; P. Papacz; H. Pieta; H. Reithler; S. A. Schmitz; L. Sonnenschein; J. Steggemann; D. Teyssier; M. Tonutti; M. Bontenackels; M. Davids; M. Duda; G. Flügge; H. Geenen; M. Giffels; W. Haj Ahmad; D. Heydhausen; T. Kress; Y. Kuessel; A. Linn; A. Nowack; L. Perchalla; O. Pooth; J. Rennefeld; P. Sauerland; A. Stahl; M. Thomas; D. Tornier

    2011-01-01

    A measurement of the double-differential inclusive dijet production cross section in proton–proton collisions at s=7 TeV is presented as a function of the dijet invariant mass and jet rapidity. The data correspond to an integrated luminosity of 36 pb?1, recorded with the CMS detector at the LHC. The measurement covers the dijet mass range 0.2 TeV to 3.5 TeV and

  9. Scaling linear colliders to 5 TeV and above

    SciTech Connect

    Wilson, P.B.

    1997-04-01

    Detailed designs exist at present for linear colliders in the 0.5-1.0 TeV center-of-mass energy range. For linear colliders driven by discrete rf sources (klystrons), the rf operating frequencies range from 1.3 GHz to 14 GHz, and the unloaded accelerating gradients from 21 MV/m to 100 MV/m. Except for the collider design at 1.3 GHz (TESLA) which uses superconducting accelerating structures, the accelerating gradients vary roughly linearly with the rf frequency. This correlation between gradient and frequency follows from the necessity to keep the ac {open_quotes}wall plug{close_quotes} power within reasonable bounds. For linear colliders at energies of 5 TeV and above, even higher accelerating gradients and rf operating frequencies will be required if both the total machine length and ac power are to be kept within reasonable limits. An rf system for a 5 TeV collider operating at 34 GHz is outlined, and it is shown that there are reasonable candidates for microwave tube sources which, together with rf pulse compression, are capable of supplying the required rf power. Some possibilities for a 15 TeV collider at 91 GHz are briefly discussed.

  10. Search for a TeV Component of GRBs using the Milagrito Detector

    E-print Network

    R. Atkins; W. Benbow; D. Berley; M. -L. Chen; D. G. Coyne; R. S. Delay; B. L. Dingus; D. E. Dorfan; R. W. Ellsworth; D. Evans; A. Falcone; L. Fleysher; R. Fleysher; G. Gisler; J. A. Goodman; T. J. Haines; C. M. Hoffman; S. Hugenberger; L. A. Kelley; I. Leonor; J. Macri; M. McConnell; J. F. McCullough; J. E. McEnery; R. S. Miller; A. I. Mincer; M. F. Morales; P. Nemethy; J. M. Ryan; M. Schneider; B. Shen; A. Shoup; G. Sinnis; A. J. Smith; G. W. Sullivan; T. N. Thompson; O. T. Tumer; K. Wang; M. O. Wascko; S. Westerhoff; D. A. Williams; T. Yang; G. B. Yodh

    1999-06-24

    Observing gamma ray bursts (GRBs) in the TeV energy range can be extremely valuable in providing insight to GRB radiation mechanisms and in constraining source distances. The Milagrito detector was an air shower array which used the water Cherenkov technique to search for TeV sources. Data from this detector was analyzed to look for a TeV component of GRBs coincident with low energy -rays detected by the BATSE instrument on the Compton Gamma Ray Observatory. A sample of 54 BATSE GRBs which were in the field of view of the Milagrito detector during its lifetime (February 1997 to May 1998) was used.

  11. X-ray and TeV Gamma-Ray Emission from Parallel Electron-Positron or Electron-Proton Beams in BL Lac Objects

    E-print Network

    Henric Krawczynski

    2007-03-01

    In this paper we discuss models of the X-rays and TeV gamma-ray emission from BL Lac objects based on parallel electron-positron or electron-proton beams that form close to the central black hole owing to the strong electric fields generated by the accretion disk and possibly also by the black hole itself. Fitting the energy spectrum of the BL Lac object Mrk 501, we obtain tight constrains on the beam properties. Launching a sufficiently energetic beam requires rather strong magnetic fields close to the black hole 100-1000 G. However, the model fits imply that the magnetic field in the emission region is only 0.02 G. Thus, the particles are accelerated close to the black hole and propagate a considerable distance before instabilities trigger the dissipation of energy through synchrotron and self-Compton emission. We discuss various approaches to generate enough power to drive the jet and, at the same time, to accelerate particles to 20 TeV energies. Although the parallel beam model has its own problems, it explains some of the long-standing problems that plague models based on Fermi type particle acceleration, like the presence of a very high minimum Lorentz factor of accelerated particles. We conclude with a brief discussion of the implications of the model for the difference between the processes of jet formation in BL Lac type objects and in quasars.

  12. Charged particle multiplicities in pp interactions at , 2.36, and 7 TeV

    Microsoft Academic Search

    V. Khachatryan; A. M. Sirunyan; A. Tumasyan; W. Adam; T. Bergauer; M. Dragicevic; J. Erö; C. Fabjan; M. Friedl; R. Frühwirth; V. M. Hammer; J. Hammer; S. Hänsel; C. Hartl; M. Hoch; N. Hörmann; J. Hrubec; M. Jeitler; G. Kasieczka; W. Kiesenhofer; M. Krammer; D. Liko; I. Mikulec; M. Pernicka; H. Rohringer; R. Schöfbeck; J. Strauss; A. Taurok; F. Teischinger; W. Waltenberger; G. Walzel; E. Widl; C.-E. Wulz; V. Mossolov; N. Shumeiko; J. Suarez Gonzalez; L. Benucci; L. Ceard; K. Cerny; E. A. De Wolf; X. Janssen; T. Maes; L. Mucibello; S. Ochesanu; B. Roland; R. Rougny; M. Selvaggi; H. Van Haevermaet; P. Van Mechelen; N. Van Remortel; V. Adler; S. Beauceron; F. Blekman; S. Blyweert; J. D’Hondt; O. Devroede; A. Kalogeropoulos; J. Maes; M. Maes; S. Tavernier; W. Van Doninck; P. Van Mulders; G. P. Van Onsem; I. Villella; O. Charaf; B. Clerbaux; G. De Lentdecker; V. Dero; A. P. R. Gay; G. H. Hammad; T. Hreus; P. E. Marage; L. Thomas; C. Vander Velde; P. Vanlaer; J. Wickens; S. Costantini; M. Grunewald; B. Klein; A. Marinov; D. Ryckbosch; F. Thyssen; M. Tytgat; L. Vanelderen; P. Verwilligen; S. Walsh; N. Zaganidis; S. Basegmez; G. Bruno; J. Caudron; J. De Favereau De Jeneret; C. Delaere; P. Demin; D. Favart; A. Giammanco; G. Grégoire; J. Hollar; V. Lemaitre; J. Liao; O. Militaru; S. Ovyn; D. Pagano; A. Pin; K. Piotrzkowski; L. Quertenmont; N. Schul; N. Beliy; T. Caebergs; E. Daubie; G. A. Alves; D. De Jesus Damiao; M. E. Pol; M. H. G. Souza; W. Carvalho; E. M. Da Costa; C. De Oliveira Martins; S. Fonseca De Souza; L. Mundim; H. Nogima; V. Oguri; W. L. Prado Da Silva; A. Santoro; S. M. Silva Do Amaral; A. Sznajder; F. Torres Da Silva De Araujo; F. A. Dias; M. A. F. Dias; T. R. Fernandez Perez Tomei; E. M. Gregores; F. Marinho; S. F. Novaes; S. S. Padula; N. Darmenov; L. Dimitrov; V. Genchev; P. Iaydjiev; S. Piperov; M. Rodozov; S. Stoykova; G. Sultanov; V. Tcholakov; R. Trayanov; I. Vankov; M. Dyulendarova; R. Hadjiiska; V. Kozhuharov; L. Litov; E. Marinova; M. Mateev; B. Pavlov; P. Petkov; J. G. Bian; G. M. Chen; H. S. Chen; C. H. Jiang; D. Liang; S. Liang; J. Wang; X. Wang; Z. Wang; M. Yang; J. Zang; Z. Zhang; Y. Ban; S. Guo; W. Li; Y. Mao; S. J. Qian; H. Teng; B. Zhu; A. Cabrera; B. Gomez Moreno; A. A. Ocampo Rios; A. F. Osorio Oliveros; J. C. Sanabria; N. Godinovic; D. Lelas; K. Lelas; R. Plestina; D. Polic; I. Puljak; Z. Antunovic; M. Dzelalija; V. Brigljevic; S. Duric; K. Kadija; S. Morovic; A. Attikis; R. Fereos; M. Galanti; J. Mousa; C. Nicolaou; F. Ptochos; P. A. Razis; H. Rykaczewski; Y. Assran; M. A. Mahmoud; A. Hektor; M. Kadastik; K. Kannike; M. Müntel; M. Raidal; L. Rebane; V. Azzolini; P. Eerola; S. Czellar; J. Härkönen; A. Heikkinen; V. Karimäki; R. Kinnunen; J. Klem; M. J. Kortelainen; T. Lampén; K. Lassila-Perini; S. Lehti; T. Lindén; P. Luukka; T. Mäenpää; E. Tuominen; J. Tuominiemi; E. Tuovinen; D. Ungaro; L. Wendland; K. Banzuzi; A. Korpela; T. Tuuva; D. Sillou; M. Besancon; M. Dejardin; D. Denegri; B. Fabbro; J. L. Faure; F. Ferri; S. Ganjour; F. X. Gentit; A. Givernaud; P. Gras; G. Hamel de Monchenault; P. Jarry; E. Locci; J. Malcles; M. Marionneau; L. Millischer; J. Rander; A. Rosowsky; I. Shreyber; M. Titov; P. Verrecchia; S. Baffioni; F. Beaudette; L. Bianchini; M. Bluj; C. Broutin; P. Busson; C. Charlot; L. Dobrzynski; R. Granier de Cassagnac; M. Haguenauer; P. Miné; C. Mironov; C. Ochando; P. Paganini; R. Salerno; Y. Sirois; C. Thiebaux; B. Wyslouch; A. Zabi; J.-L. Agram; J. Andrea; A. Besson; D. Bloch; D. Bodin; J.-M. Brom; M. Cardaci; E. C. Chabert; C. Collard; E. Conte; F. Drouhin; C. Ferro; J.-C. Fontaine; D. Gelé; U. Goerlach; S. Greder; P. Juillot; M. Karim; A.-C. Le Bihan; Y. Mikami; P. Van Hove; F. Fassi; D. Mercier; C. Baty; N. Beaupere; M. Bedjidian; O. Bondu; G. Boudoul; D. Boumediene; H. Brun; N. Chanon; R. Chierici; D. Contardo; P. Depasse; H. El Mamouni; A. Falkiewicz; J. Fay; S. Gascon; B. Ille; T. Kurca; T. Le Grand; M. Lethuillier; L. Mirabito; S. Perries; V. Sordini; S. Tosi; Y. Tschudi; P. Verdier; H. Xiao; V. Roinishvili; G. Anagnostou; M. Edelhoff; L. Feld; N. Heracleous; O. Hindrichs; R. Jussen; K. Klein; J. Merz; N. Mohr; A. Ostapchuk; A. Perieanu; F. Raupach; J. Sammet; S. Schael; D. Sprenger; H. Weber; M. Weber; B. Wittmer; M. Ata; W. Bender; M. Erdmann; J. Frangenheim; T. Hebbeker; A. Hinzmann; K. Hoepfner; C. Hof; T. Klimkovich; D. Klingebiel; P. Kreuzer; D. Lanske; C. Magass; G. Masetti; M. Merschmeyer; A. Meyer; P. Papacz; H. Pieta; H. Reithler; S. A. Schmitz; L. Sonnenschein; J. Steggemann; D. Teyssier; M. Bontenackels; M. Davids; M. Duda; G. Flügge; H. Geenen; M. Giffels; W. Haj Ahmad; D. Heydhausen; T. Kress; Y. Kuessel; A. Linn; A. Nowack; L. Perchalla; O. Pooth; J. Rennefeld; P. Sauerland; A. Stahl; M. Thomas; D. Tornier; M. H. Zoeller; M. Aldaya Martin; W. Behrenhoff; U. Behrens; M. Bergholz

    2011-01-01

    Measurements of primary charged hadron multiplicity distributions are presented for non-single-diffractive events in proton-proton\\u000a collisions at centre-of-mass energies of , 2.36, and 7 TeV, in five pseudorapidity ranges from |?| .5 to |?| .4. The data were collected with the minimum-bias trigger of the CMS experiment during the LHC commissioning runs in 2009 and\\u000a the 7 TeV run in 2010.

  13. 0.01 0.1 1 10 100 1000 ELISASignal(OD450)

    E-print Network

    Wandless, Tom

    has shown superior results in tissue,tumor,whole blood,plasma,serum,urine,stool and bioreactor samples analytes.The sample is then introduced into the system where it separates,concentrates and quantitates a variety of complex matrices.Analytes of interest are separated,and concentrated directly from the sample

  14. Millenium Science Complex New clean room: 10,000 sq. ft. class 100/1000

    E-print Network

    ;1.5 nm graphene TiO2 SiC TiO2 on Ti-seeded graphene @250°C 1.5 nm graphene HfO2 SiC HfO2 on graphene @110;1.5 nm graphene Al2O3 SiC Al2O3 on Al-seeded graphene @300°C 1.5 nm graphene Ta2O5 SiC defective carbon year #12;High conformity of ALD coating Cross-sectional FESEM view of 20 nm HfO2 #12;Comparison between

  15. Prospects for electroweakino discovery at a 100 TeV hadron collider

    NASA Astrophysics Data System (ADS)

    Gori, Stefania; Jung, Sunghoon; Wang, Lian-Tao; Wells, James D.

    2014-12-01

    We investigate the prospects of discovering split Supersymmetry at a future 100 TeV proton-proton collider through the direct production of electroweakino next-to-lightest- supersymmetric-particles (NLSPs). We focus on signatures with multi-lepton and missing energy: 3?, opposite-sign dileptons and same-sign dileptons. We perform a comprehensive study of different electroweakino spectra. A 100 TeV collider with 3000 /fb data is expected to exclude Higgsino thermal dark matter candidates with m LSP ~ 1 TeV if Wino NLSPs are lighter than about 3.2 TeV. The 3? search usually offers the highest mass reach, which varies in the range of (2-4) TeV depending on scenarios. In particular, scenarios with light Higgsinos have generically simplified parameter dependences. We also demonstrate that, at a 100 TeV collider, lepton collimation becomes a crucial issue for NLSPs heavier than about 2.5 TeV. We finally compare our results with the discovery prospects of gluino pair productions and deduce which SUSY breaking model can be discovered first by electroweakino searches.

  16. Neutral pion and $\\\\eta$ meson production in proton-proton collisions at $\\\\sqrt{s}$=0.9 TeV and $\\\\sqrt{s}$=7 TeV

    Microsoft Academic Search

    B. Abelev; A. Abrahantes Quintana; D. Adamova; A. M. Adare; M. M. Aggarwal; G. Aglieri Rinella; A. G. Agocs; A. Agostinelli; S. Aguilar Salazar; Z. Ahammed; N. Ahmad; A. Ahmad Masoodi; S. U. Ahn; A. Akindinov; D. Aleksandrov; B. Alessandro; R. Alfaro Molina; A. Alici; A. Alkin; E. Almaraz Avina; T. Alt; V. Altini; S. Altinpinar; I. Altsybeev; C. Andrei; A. Andronic; V. Anguelov; C. Anson; T. Anticic; F. Antinori; P. Antonioli; L. Aphecetche; H. Appelshauser; N. Arbor; S. Arcelli; A. Arend; N. Armesto; R. Arnaldi; T. Aronsson; I. C. Arsene; M. Arslandok; A. Asryan; A. Augustinus; R. Averbeck; T. C. Awes; J. Aysto; M. D. Azmi; M. Bach; A. Badala; Y. W. Baek; R. Bailhache; R. Bala; R. Baldini Ferroli; A. Baldisseri; A. Baldit; F. Baltasar Dos Santos Pedrosa; J. Ban; R. C. Baral; R. Barbera; F. Barile; G. G. Barnafoldi; L. S. Barnby; V. Barret; J. Bartke; M. Basile; N. Bastid; B. Bathen; G. Batigne; B. Batyunya; C. Baumann; I. G. Bearden; H. Beck; I. Belikov; F. Bellini; R. Bellwied; E. Belmont-Moreno; S. Beole; I. Berceanu; A. Bercuci; Y. Berdnikov; D. Berenyi; C. Bergmann; D. Berzano; L. Betev; A. Bhasin; A. K. Bhati; N. Bianchi; L. Bianchi; C. Bianchin; J. Bielcik; J. Bielcikova; A. Bilandzic; F. Blanco; D. Blau; C. Blume; M. Boccioli; F. Bock; N. Bock; A. Bogdanov; H. Boggild; M. Bogolyubsky; L. Boldizsar; M. Bombara; H. Borel; A. Borissov; C. Bortolin; S. Bose; F. Bossu; M. Botje; S. Bottger; B. Boyer; P. Braun-Munzinger; M. Bregant; T. Breitner; M. Broz; R. Brun; E. Bruna; G. E. Bruno; D. Budnikov; H. Buesching; S. Bufalino; K. Bugaiev; O. Busch; Z. Buthelezi; D. Caffarri; X. Cai; H. Caines; E. Calvo Villar; P. Camerini; V. Canoa Roman; G. Cara Romeo; F. Carena; W. Carena; N. Carlin Filho; F. Carminati; C. A. Carrillo Montoya; A. Casanova Diaz; M. Caselle; J. Castillo Castellanos; J. F. Castillo Hernandez; E. A. R. Casula; V. Catanescu; C. Cavicchioli; J. Cepila; P. Cerello; B. Chang; S. Chapeland; J. L. Charvet; S. Chattopadhyay; M. Cherney; C. Cheshkov; B. Cheynis; E. Chiavassa; V. Chibante Barroso; D. D. Chinellato; P. Chochula; M. Chojnacki; P. Christakoglou; C. H. Christensen; P. Christiansen; T. Chujo; S. U. Chung; C. Cicalo; L. Cifarelli; F. Cindolo; J. Cleymans; F. Coccetti; J. P. Coffin; F. Colamaria; D. Colella; G. Conesa Balbastre; Z. Conesa del Valle; P. Constantin; G. Contin; J. G. Contreras; T. M. Cormier; Y. Corrales Morales; P. Cortese; I. Cortes Maldonado; M. R. Cosentino; F. Costa; M. E. Cotallo; E. Crescio; P. Crochet; E. Cruz Alaniz; E. Cuautle; L. Cunqueiro; A. Dainese; H. H. Dalsgaard; A. Danu; I. Das; K. Das; D. Das; A. Dash; S. Dash; S. De; A. De Azevedo Moregula; G. O. V. de Barros; A. De Caro; G. De Cataldo; J. de Cuveland; A. De Falco; D. De Gruttola; H. Delagrange; E. Del Castillo Sanchez; A. Deloff; V. Demanov; N. De Marco; E. Denes; S. De Pasquale; A. Deppman; G. D. Erasmo; R. de Rooij; D. Di Bari; T. Dietel; C. Di Giglio; S. Di Liberto; A. Di Mauro; P. Di Nezza; R. Divia; O. Djuvsland; A. Dobrin; T. Dobrowolski; I. Dominguez; B. Donigus; O. Dordic; O. Driga; A. K. Dubey; L. Ducroux; P. Dupieux; M. R. Dutta Majumdar; A. K. Dutta Majumdar; D. Elia; D. Emschermann; H. Engel; H. A. Erdal; B. Espagnon; M. Estienne; S. Esumi; D. Evans; G. Eyyubova; D. Fabris; J. Faivre; D. Falchieri; A. Fantoni; M. Fasel; R. Fearick; A. Fedunov; D. Fehlker; L. Feldkamp; D. Felea; G. Feofilov; A. Fernandez Tellez; A. Ferretti; R. Ferretti; J. Figiel; M. A. S. Figueredo; S. Filchagin; R. Fini; D. Finogeev; F. M. Fionda; E. M. Fiore; M. Floris; S. Foertsch; P. Foka; S. Fokin; E. Fragiacomo; M. Fragkiadakis; U. Frankenfeld; U. Fuchs; C. Furget; M. Fusco Girard; J. J. Gaardhoje; M. Gagliardi; A. Gago; M. Gallio; D. R. Gangadharan; P. Ganoti; C. Garabatos; E. Garcia-Solis; I. Garishvili; J. Gerhard; M. Germain; C. Geuna; A. Gheata; M. Gheata; B. Ghidini; P. Ghosh; P. Gianotti; M. R. Girard; P. Giubellino; E. Gladysz-Dziadus; P. Glassel; R. Gomez; E. G. Ferreiro; L. H. Gonzalez-Trueba; P. Gonzalez-Zamora; S. Gorbunov; A. Goswami; S. Gotovac; V. Grabski; L. K. Graczykowski; R. Grajcarek; A. Grelli; C. Grigoras; A. Grigoras; V. Grigoriev; A. Grigoryan; S. Grigoryan; B. Grinyov; N. Grion; P. Gros; J. F. Grosse-Oetringhaus; J. Y. Grossiord; R. Grosso; F. Guber; R. Guernane; C. Guerra Gutierrez; B. Guerzoni; M. Guilbaud; K. Gulbrandsen; T. Gunji; A. Gupta; R. Gupta; H. Gutbrod; O. Haaland; C. Hadjidakis; M. Haiduc; H. Hamagaki; G. Hamar; B. H. Han; L. D. Hanratty; A. Hansen; Z. Harmanova; J. W. Harris; M. Hartig; D. Hasegan; D. Hatzifotiadou; A. Hayrapetyan; S. T. Heckel; M. Heide; H. Helstrup; A. Herghelegiu; G. Herrera Corral; N. Herrmann; K. F. Hetland; B. Hicks; P. T. Hille; B. Hippolyte; T. Horaguchi; Y. Hori; P. Hristov; I. Hrivnacova; M. Huang; S. Huber; T. J. Humanic; D. S. Hwang; R. Ichou; R. Ilkaev; I. Ilkiv; M. Inaba

    2012-01-01

    The first measurements of the invariant differential cross sections of inclusive $\\\\pi^0$ and $\\\\eta$ meson production at mid-rapidity in proton-proton collisions at $\\\\sqrt{s}=0.9$ TeV and $\\\\sqrt{s}=7$ TeV are reported. The $\\\\pi^0$ measurement covers the ranges $0.4TeV in the range $0.4

  17. Feasibility for p+\\/p- flow-ratio evaluation in the 0.5 - 1.5 TeV primary energy range, based on Moon-shadow muon measurements, to be carried out in the Pyramid of the Sun, Teotihuacan, Experiment

    Microsoft Academic Search

    V Grabski; A Morales; R Reche; O Orozco

    2007-01-01

    Calculations are presented to demonstrate the feasibility of Moon shadow\\u000aobservations for mean primary energies in the region 0.5-1.5 TeV using a muon\\u000adetector operating under the Pyramid of the Sun at Teotihuacan, Mexico. Due to\\u000athe small height of that monument (65 m), the experiment is capable of\\u000aproviding considerably high statistics, although with reduced angular accuracy\\u000afor primary

  18. Measurement of Dijet Angular Distributions at s=1.96TeV and Searches for Quark Compositeness and Extra Spatial Dimensions

    Microsoft Academic Search

    V. M. Abazov; B. Abbott; M. Abolins; B. S. Acharya; M. Adams; T. Adams; E. Aguilo; M. Ahsan; G. D. Alexeev; G. Alkhazov; A. Alton; G. Alverson; G. A. Alves; L. S. Ancu; T. Andeen; M. S. Anzelc; M. Aoki; Y. Arnoud; M. Arov; M. Arthaud; A. Askew; B. Ĺsman; O. Atramentov; C. Avila; J. Backusmayes; F. Badaud; L. Bagby; B. Baldin; D. V. Bandurin; S. Banerjee; E. Barberis; A.-F. Barfuss; P. Bargassa; P. Baringer; J. Barreto; J. F. Bartlett; U. Bassler; D. Bauer; S. Beale; A. Bean; M. Begalli; M. Begel; C. Belanger-Champagne; L. Bellantoni; A. Bellavance; J. A. Benitez; S. B. Beri; G. Bernardi; R. Bernhard; I. Bertram; M. Besançon; R. Beuselinck; V. A. Bezzubov; P. C. Bhat; V. Bhatnagar; G. Blazey; S. Blessing; K. Bloom; A. Boehnlein; D. Boline; T. A. Bolton; E. E. Boos; G. Borissov; T. Bose; A. Brandt; R. Brock; G. Brooijmans; A. Bross; D. Brown; X. B. Bu; D. Buchholz; M. Buehler; V. Buescher; V. Bunichev; S. Burdin; T. H. Burnett; C. P. Buszello; P. Calfayan; B. Calpas; S. Calvet; J. Cammin; M. A. Carrasco-Lizarraga; E. Carrera; W. Carvalho; B. C. K. Casey; H. Castilla-Valdez; S. Chakrabarti; D. Chakraborty; K. M. Chan; A. Chandra; E. Cheu; D. K. Cho; S. Choi; B. Choudhary; T. Christoudias; S. Cihangir; D. Claes; J. Clutter; M.-C. Cousinou; W. E. Cooper; M. Corcoran; F. Couderc; S. Crépé-Renaudin; D. Cutts; M. Cwiok; A. Das; G. Davies; K. de; S. J. de Jong; E. de La Cruz-Burelo; K. Devaughan; F. Déliot; M. Demarteau; R. Demina; D. Denisov; S. P. Denisov; S. Desai; H. T. Diehl; M. Diesburg; A. Dominguez; T. Dorland; A. Dubey; L. V. Dudko; L. Duflot; D. Duggan; A. Duperrin; S. Dutt; A. Dyshkant; M. Eads; D. Edmunds; J. Ellison; V. D. Elvira; Y. Enari; S. Eno; M. Escalier; H. Evans; A. Evdokimov; V. N. Evdokimov; G. Facini; A. V. Ferapontov; T. Ferbel; F. Fiedler; F. Filthaut; W. Fisher; H. E. Fisk; M. Fortner; H. Fox; S. Fu; S. Fuess; T. Gadfort; C. F. Galea; A. Garcia-Bellido; V. Gavrilov; P. Gay; W. Geist; W. Geng; C. E. Gerber; Y. Gershtein; D. Gillberg; G. Ginther; B. Gómez; A. Goussiou; P. D. Grannis; S. Greder; H. Greenlee; Z. D. Greenwood; E. M. Gregores; G. Grenier; Ph. Gris; J.-F. Grivaz; A. Grohsjean; S. Grünendahl; M. W. Grünewald; F. Guo; J. Guo; G. Gutierrez; P. Gutierrez; A. Haas; P. Haefner; S. Hagopian; J. Haley; I. Hall; R. E. Hall; L. Han; K. Harder; A. Harel; J. M. Hauptman; J. Hays; T. Hebbeker; D. Hedin; J. G. Hegeman; A. P. Heinson; U. Heintz; C. Hensel; I. Heredia-de La Cruz; K. Herner; G. Hesketh; M. D. Hildreth; R. Hirosky; T. Hoang; J. D. Hobbs; B. Hoeneisen; M. Hohlfeld; S. Hossain; P. Houben; Y. Hu; Z. Hubacek; N. Huske; V. Hynek; I. Iashvili; R. Illingworth; A. S. Ito; S. Jabeen; M. Jaffré; S. Jain; K. Jakobs; D. Jamin; R. Jesik; K. Johns; C. Johnson; M. Johnson; D. Johnston; A. Jonckheere; P. Jonsson; A. Juste; E. Kajfasz; D. Karmanov; P. A. Kasper; I. Katsanos; V. Kaushik; R. Kehoe; S. Kermiche; N. Khalatyan; A. Khanov; A. Kharchilava; Y. N. Kharzheev; D. Khatidze; T. J. Kim; M. H. Kirby; M. Kirsch; B. Klima; J. M. Kohli; J.-P. Konrath; A. V. Kozelov; J. Kraus; T. Kuhl; A. Kumar; A. Kupco; T. Kurca; V. A. Kuzmin; J. Kvita; F. Lacroix; D. Lam; S. Lammers; G. Landsberg; P. Lebrun; W. M. Lee; A. Leflat; J. Lellouch; J. Li; L. Li; Q. Z. Li; S. M. Lietti; J. K. Lim; D. Lincoln; J. Linnemann; V. V. Lipaev; R. Lipton; Y. Liu; Z. Liu; A. Lobodenko; M. Lokajicek; P. Love; H. J. Lubatti; R. Luna-Garcia; A. L. Lyon; A. K. A. Maciel; D. Mackin; P. Mättig; R. Magańa-Villalba; A. Magerkurth; P. K. Mal; H. B. Malbouisson; S. Malik; V. L. Malyshev; Y. Maravin; B. Martin; R. McCarthy; C. L. McGivern; M. M. Meijer; A. Melnitchouk; L. Mendoza; D. Menezes; P. G. Mercadante; M. Merkin; K. W. Merritt; A. Meyer; J. Meyer; J. Mitrevski; N. K. Mondal; R. W. Moore; T. Moulik; G. S. Muanza; M. Mulhearn; O. Mundal; L. Mundim; E. Nagy; M. Naimuddin; M. Narain; H. A. Neal; J. P. Negret; P. Neustroev; H. Nilsen; H. Nogima; S. F. Novaes; T. Nunnemann; G. Obrant; C. Ochando; D. Onoprienko; J. Orduna; N. Oshima; N. Osman; J. Osta; R. Otec; G. J. Otero Y Garzón; M. Owen; M. Padilla; P. Padley; M. Pangilinan; N. Parashar; S.-J. Park; J. Parsons; R. Partridge; N. Parua; A. Patwa; G. Pawloski; B. Penning; M. Perfilov; K. Peters; Y. Peters; P. Pétroff; R. Piegaia; J. Piper; M.-A. Pleier; P. L. M. Podesta-Lerma; V. M. Podstavkov; Y. Pogorelov; M.-E. Pol; P. Polozov; A. V. Popov; W. L. Prado da Silva; S. Protopopescu; J. Qian; A. Quadt; B. Quinn; A. Rakitine; M. S. Rangel; K. Ranjan; P. N. Ratoff; P. Renkel; P. Rich; M. Rijssenbeek; I. Ripp-Baudot; F. Rizatdinova; S. Robinson; M. Rominsky; C. Royon; P. Rubinov; R. Ruchti; G. Safronov; G. Sajot; A. Sánchez-Hernández; M. P. Sanders; B. Sanghi; G. Savage; L. Sawyer; T. Scanlon; D. Schaile; R. D. Schamberger; Y. Scheglov; H. Schellman; T. Schliephake; S. Schlobohm; C. Schwanenberger; R. Schwienhorst; J. Sekaric; H. Severini

    2009-01-01

    We present the first measurement of dijet angular distributions in ppŻ collisions at s=1.96TeV at the Fermilab Tevatron Collider. The measurement is based on a dataset corresponding to an integrated luminosity of 0.7fb-1 collected with the D0 detector. Dijet angular distributions have been measured over a range of dijet masses, from 0.25 TeV to above 1.1 TeV. The data are

  19. Tev Scale Colored Particles, Baryogenesis and Dark Matter

    NASA Astrophysics Data System (ADS)

    Nasri, Salah

    2008-04-01

    We propose a unified scenario of two puzzles in particle physics and cosmology, namely, the dark matter and the origin of the baryon asymmetry of the universe in a simple extension of MSSM. Our model uses a gauge singlet chiral superfield field N, where the out-of equilibrium decay of the fermionic partner of N mediated by the exchange of a colored TeV scale scalar field generates adequate baryon asymmetry for MN~100 GeV. The scalar partner of N is naturally the lightest SUSY particle as it has no gauge interactions and plays the role of dark matter. The model is experimentally testable in (i) neutron-antineutron oscillations with a transition time estimated to be around 1010 sec, (ii) discovery of colored particles X at LHC with mass of order TeV, and (iii) direct dark matter detection with a predicted cross section in the observable range in next generation dark matter search experiments.

  20. Measurement of Dijet Angular Distributions at s?=1.96??TeV and Searches for Quark Compositeness and Extra Spatial Dimensions

    E-print Network

    Baringer, Philip S.; Bean, Alice; Clutter, Justace Randall; McGivern, Carrie Lynne; Moulik, Tania; Wilson, Graham Wallace

    2009-11-05

    with the D0 detector. Dijet angular distributions have been measured over a range of dijet masses, from 0.25 TeV to above 1.1 TeV. The data are in good agreement with the predictions of perturbative QCD and are used to constrain new physics models including...

  1. Search for resonances and quantum black holes using dijet mass spectra in proton-proton collisions at sqrt(s) = 8 TeV

    E-print Network

    CMS Collaboration

    2015-03-31

    A search for resonances and quantum black holes is performed using the dijet mass spectra measured in proton-proton collisions at sqrt(s) = 8 TeV with the CMS detector at the LHC. The data set corresponds to an integrated luminosity of 19.7 inverse femtobarns. In a search for narrow resonances that couple to quark-quark, quark-gluon, or gluon-gluon pairs, model-independent upper limits, at 95% confidence level, are obtained on the production cross section of resonances, with masses above 1.2 TeV. When interpreted in the context of specific models the limits exclude: string resonances with masses below 5.0 TeV; excited quarks below 3.5 TeV; scalar diquarks below 4.7 TeV; W' bosons below 1.9 TeV or between 2.0 and 2.2 TeV; Z' bosons below 1.7 TeV; and Randall-Sundrum gravitons below 1.6 TeV. A separate search is conducted for narrow resonances that decay to final states including b quarks. The first exclusion limit is set for excited b quarks, with a lower mass limit between 1.2 and 1.6 TeV depending on their decay properties. Searches are also carried out for wide resonances, assuming for the first time width-to-mass ratios up to 30%, and for quantum black holes with a range of model parameters. The wide resonance search excludes axigluons and colorons with mass below 3.6 TeV, and color-octet scalars with mass below 2.5 TeV. Lower bounds between 5.0 and 6.3 TeV are set on the masses of quantum black holes.

  2. Sub-PeV Neutrinos from TeV Unidentified Sources in the Galaxy

    E-print Network

    Fox, D B; Meszaros, P

    2013-01-01

    The IceCube collaboration discovery of 28 high-energy neutrinos over the energy range 30 TeV ~ 10 PeV. We review arguments that hypernova remnants provide a plausible astrophysical explanation for the number and properties of these sources. Exploring the spatial distribution of the Sub-PeV neutrinos and TeV UnID sources, we find that a best-fit of two, and maximum of 6.4 (at 90%-confidence), of the Sub-PeV neutrinos may originate in the Galaxy's TeV UnID sources, with the remaining 60% to 90% of events being drawn from an isotropic background. If our scenario is correct, we expect a track-type IceCube Sub-PeV neutrino to be found in coincidence with one of the TeV UnID sources within the next 0.5 to 3.5 years of observations. Our scenario can be further tested via observations of Sub-PeV neutrinos from ANTARES or other facilities, and has implications for observations of the TeV UnID sources at radio, X-ray, and TeV wavelengths.

  3. Detection of Gamma-Rays above 1.5 TeV from Mkn 501

    E-print Network

    S. M. Bradbury; T. Deckers; D. Petry; A. Konopelko

    1997-04-18

    A detection of TeV $\\gamma$-rays from Mkn 501 is reported, based on observations made between March and August 1996 with the first HEGRA Cherenkov telescope (CT1). From the image analysis, 351 excess candidate $\\gamma$-ray events are obtained from the 147 h dataset. The statistical significance of the excess is 5.2 $\\sigma$. The average excess rate is $2.4 \\pm 0.5$ h$^{-1}$ above the $\\approx$ 1.5 TeV threshold of CT1. Under the assumption that the spectrum of Mkn 501 follows a power law we find a differential spectral index of 2.6$\\pm0.5$ and obtain a time-averaged integral flux above 1.5 TeV of $2.3 (\\pm0.4)_{Stat} (+1.5-0.6)_{Syst} \\times 10^{-12}$ cm$^{-2}$s$^{-1}$. Comparison with our near contemporary observations of the Crab Nebula, used as a standard candle to test CT1 after upgrading to a 127 pixel camera, indicates that Mkn 501 has a spectrum similar to that of the Crab Nebula above 1.5 TeV. The integral flux above 1.5 TeV from Mkn 501 is found to have been between 2.2 and 3.6 times smaller than that from the Crab Nebula. HEGRA is the second experiment to have detected Mkn 501 in the TeV range.

  4. SURVEYING THE TEV SKY WITH SABRINA CASANOVA

    E-print Network

    California at Santa Cruz, University of

    SURVEYING THE TEV SKY WITH MILAGRO SABRINA CASANOVA for THE MILAGRO COLLABORATION Los Alamos survey of the Northern Hemisphere sky at TeV energies. In addition to detecting the Crab Nebula and Mrk it ideal to survey the very high energy gamma ray sky and continuously perform searches for transient

  5. Measurement of dijet angular distributions and search for quark compositeness in pp collisions at ?s = 7 TeV.

    PubMed

    Khachatryan, V; Sirunyan, A M; Tumasyan, A; Adam, W; Bergauer, T; Dragicevic, M; Erö, J; Fabjan, C; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hänsel, S; Hartl, C; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kasieczka, G; Kiesenhofer, W; Krammer, M; Liko, D; Mikulec, I; Pernicka, M; Rohringer, H; Schöfbeck, R; Strauss, J; Taurok, A; Teischinger, F; Wagner, P; Waltenberger, W; Walzel, G; Widl, E; Wulz, C-E; Mossolov, V; Shumeiko, N; Suarez Gonzalez, J; Benucci, L; Cerny, K; De Wolf, E A; Janssen, X; Maes, T; Mucibello, L; Ochesanu, S; Roland, B; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Beauceron, S; Blekman, F; Blyweert, S; D'Hondt, J; Devroede, O; Gonzalez Suarez, R; Kalogeropoulos, A; Maes, J; Maes, M; Tavernier, S; Van Doninck, W; Van Mulders, P; Van Onsem, G P; Villella, I; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Gay, A P R; Hammad, G H; Hreus, T; Marage, P E; Thomas, L; Vander Velde, C; Vanlaer, P; Wickens, J; Adler, V; Costantini, S; Grunewald, M; Klein, B; Marinov, A; McCartin, J; Ryckbosch, D; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Walsh, S; Zaganidis, N; Basegmez, S; Bruno, G; Caudron, J; Ceard, L; De Favereau De Jeneret, J; Delaere, C; Demin, P; Favart, D; Giammanco, A; Grégoire, G; Hollar, J; Lemaitre, V; Liao, J; Militaru, O; Ovyn, S; Pagano, D; Pin, A; Piotrzkowski, K; Schul, N; Beliy, N; Caebergs, T; Daubie, E; Alves, G A; De Jesus Damiao, D; Pol, M E; Souza, M H G; Carvalho, W; Da Costa, E M; De Oliveira Martins, C; Fonseca De Souza, S; Mundim, L; Nogima, H; Oguri, V; Prado Da Silva, W L; Santoro, A; Silva Do Amaral, S M; Sznajder, A; Torres Da Silva De Araujo, F; Dias, F A; Dias, M A F; Fernandez Perez Tomei, T R; Gregores, E M; Marinho, F; Novaes, S F; Padula, Sandra S; Darmenov, N; Dimitrov, L; Genchev, V; Iaydjiev, P; Piperov, S; Rodozov, M; Stoykova, S; Sultanov, G; Tcholakov, V; Trayanov, R; Vankov, I; Dyulendarova, M; Hadjiiska, R; Kozhuharov, V; Litov, L; Marinova, E; Mateev, M; Pavlov, B; Petkov, P; Bian, J G; Chen, G M; Chen, H S; Jiang, C H; Liang, D; Liang, S; Wang, J; Wang, J; Wang, X; Wang, Z; Xu, M; Yang, M; Zang, J; Zhang, Z; Ban, Y; Guo, S; Guo, Y; Li, W; Mao, Y; Qian, S J; Teng, H; Zhang, L; Zhu, B; Zou, W; Cabrera, A; Gomez Moreno, B; Ocampo Rios, A A; Osorio Oliveros, A F; Sanabria, J C; Godinovic, N; Lelas, D; Lelas, K; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Brigljevic, V; Duric, S; Kadija, K; Morovic, S; Attikis, A; Galanti, M; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Rykaczewski, H; Finger, M; Finger, M; Assran, Y; Mahmoud, M A; Hektor, A; Kadastik, M; Kannike, K; Müntel, M; Raidal, M; Rebane, L; Azzolini, V; Eerola, P; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Klem, J; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Tuominen, E; Tuominiemi, J; Tuovinen, E; Ungaro, D; Wendland, L; Banzuzi, K; Korpela, A; Tuuva, T; Sillou, D; Besancon, M; Choudhury, S; Dejardin, M; Denegri, D; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Gentit, F X; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Shreyber, I; Titov, M; Verrecchia, P; Baffioni, S; Beaudette, F; Bianchini, L; Bluj, M; Broutin, C; Busson, P; Charlot, C; Dahms, T; Dobrzynski, L; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Mironov, C; Ochando, C; Paganini, P; Sabes, D; Salerno, R; Sirois, Y; Thiebaux, C; Wyslouch, B; Zabi, A; Agram, J-L; Andrea, J; Besson, A; Bloch, D; Bodin, D; Brom, J-M; Cardaci, M; Chabert, E C; Collard, C; Conte, E; Drouhin, F; Ferro, C; Fontaine, J-C; Gelé, D; Goerlach, U; Greder, S; Juillot, P; Karim, M; Le Bihan, A-C; Mikami, Y; Van Hove, P; Fassi, F; Mercier, D; Baty, C; Beaupere, N; Bedjidian, M; Bondu, O; Boudoul, G; Boumediene, D; Brun, H; Chanon, N; Chierici, R; Contardo, D; Depasse, P; El Mamouni, H; Falkiewicz, A; Fay, J; Gascon, S; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Mirabito, L; Perries, S; Sordini, V; Tosi, S; Tschudi, Y; Verdier, P; Xiao, H; Megrelidze, L; Roinishvili, V; Lomidze, D; Anagnostou, G; Edelhoff, M; Feld, L; Heracleous, N; Hindrichs, O; Jussen, R; Klein, K; Merz, J; Mohr, N; Ostapchuk, A; Perieanu, A; Raupach, F; Sammet, J; Schael, S; Sprenger, D; Weber, H; Weber, M; Wittmer, B; Ata, M; Bender, W; Erdmann, M; Frangenheim, J; Hebbeker, T; Hinzmann, A; Hoepfner, K; Hof, C; Klimkovich, T; Klingebiel, D; Kreuzer, P; Lanske, D; Magass, C; Masetti, G; Merschmeyer, M; Meyer, A; Papacz, P; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Steggemann, J; Teyssier, D; Bontenackels, M; Davids, M; Duda, M; Flügge, G; Geenen, H; Giffels, M; Haj Ahmad, W; Heydhausen, D; Kress, T; Kuessel, Y; Linn, A; Nowack, A; Perchalla, L; Pooth, O; Rennefeld, J; Sauerland, P; Stahl, A; Thomas, M

    2011-05-20

    Dijet angular distributions are measured over a wide range of dijet invariant masses in pp collisions at ?s = 7 TeV, at the CERN LHC. The event sample, recorded with the CMS detector, corresponds to an integrated luminosity of 36 pb?š. The data are found to be in good agreement with the predictions of perturbative QCD, and yield no evidence of quark compositeness. With a modified frequentist approach, a lower limit on the contact interaction scale for left-handed quarks of ?? = 5.6 TeV (?? = 6.7 TeV) for destructive (constructive) interference is obtained at the 95% confidence level. PMID:21668222

  6. Measurement of Dijet Angular Distributions and Search for Quark Compositeness in pp Collisions at s=7TeV

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hammer, J.; Hänsel, S.; Hartl, C.; Hoch, M.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kasieczka, G.; Kiesenhofer, W.; Krammer, M.; Liko, D.; Mikulec, I.; Pernicka, M.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Teischinger, F.; Wagner, P.; Waltenberger, W.; Walzel, G.; Widl, E.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Benucci, L.; Cerny, K.; de Wolf, E. A.; Janssen, X.; Maes, T.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; van Haevermaet, H.; van Mechelen, P.; van Remortel, N.; Beauceron, S.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Devroede, O.; Gonzalez Suarez, R.; Kalogeropoulos, A.; Maes, J.; Maes, M.; Tavernier, S.; van Doninck, W.; van Mulders, P.; van Onsem, G. P.; Villella, I.; Charaf, O.; Clerbaux, B.; de Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hammad, G. H.; Hreus, T.; Marage, P. E.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wickens, J.; Adler, V.; Costantini, S.; Grunewald, M.; Klein, B.; Marinov, A.; McCartin, J.; Ryckbosch, D.; Thyssen, F.; Tytgat, M.; Vanelderen, L.; Verwilligen, P.; Walsh, S.; Zaganidis, N.; Basegmez, S.; Bruno, G.; Caudron, J.; Ceard, L.; de Favereau de Jeneret, J.; Delaere, C.; Demin, P.; Favart, D.; Giammanco, A.; Grégoire, G.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Ovyn, S.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Schul, N.; Beliy, N.; Caebergs, T.; Daubie, E.; Alves, G. A.; de Jesus Damiao, D.; Pol, M. E.; Souza, M. H. G.; Carvalho, W.; da Costa, E. M.; de Oliveira Martins, C.; Fonseca de Souza, S.; Mundim, L.; Nogima, H.; Oguri, V.; Prado da Silva, W. L.; Santoro, A.; Silva Do Amaral, S. M.; Sznajder, A.; Torres da Silva de Araujo, F.; Dias, F. A.; Dias, M. A. F.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Marinho, F.; Novaes, S. F.; Padula, Sandra S.; Darmenov, N.; Dimitrov, L.; Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.; Vankov, I.; Dyulendarova, M.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Marinova, E.; Mateev, M.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Wang, J.; Wang, J.; Wang, X.; Wang, Z.; Xu, M.; Yang, M.; Zang, J.; Zhang, Z.; Ban, Y.; Guo, S.; Guo, Y.; Li, W.; Mao, Y.; Qian, S. J.; Teng, H.; Zhang, L.; Zhu, B.; Zou, W.; Cabrera, A.; Gomez Moreno, B.; Ocampo Rios, A. A.; Osorio Oliveros, A. F.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Lelas, K.; Plestina, R.; Polic, D.; Puljak, I.; Antunovic, Z.; Dzelalija, M.; Brigljevic, V.; Duric, S.; Kadija, K.; Morovic, S.; Attikis, A.; Galanti, M.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Finger, M.; Finger, M., Jr.; Assran, Y.; Mahmoud, M. A.; Hektor, A.; Kadastik, M.; Kannike, K.; Müntel, M.; Raidal, M.; Rebane, L.; Azzolini, V.; Eerola, P.; Czellar, S.; Härkönen, J.; Heikkinen, A.; Karimäki, V.; Kinnunen, R.; Klem, J.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.; Banzuzi, K.; Korpela, A.; Tuuva, T.; Sillou, D.; Besancon, M.; Choudhury, S.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Gentit, F. X.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Marionneau, M.; Millischer, L.; Rander, J.; Rosowsky, A.; Shreyber, I.; Titov, M.; Verrecchia, P.; Baffioni, S.; Beaudette, F.; Bianchini, L.; Bluj, M.; Broutin, C.; Busson, P.; Charlot, C.; Dahms, T.; Dobrzynski, L.; Granier de Cassagnac, R.; Haguenauer, M.; Miné, P.; Mironov, C.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Thiebaux, C.; Wyslouch, B.; Zabi, A.; Agram, J.-L.; Andrea, J.; Besson, A.; Bloch, D.; Bodin, D.; Brom, J.-M.; Cardaci, M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Ferro, C.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Greder, S.; Juillot, P.; Karim, M.; Le Bihan, A.-C.; Mikami, Y.; van Hove, P.; Fassi, F.; Mercier, D.; Baty, C.; Beaupere, N.; Bedjidian, M.; Bondu, O.; Boudoul, G.; Boumediene, D.; Brun, H.; Chanon, N.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Falkiewicz, A.; Fay, J.; Gascon, S.; Ille, B.; Kurca, T.; Le Grand, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sordini, V.; Tosi, S.; Tschudi, Y.; Verdier, P.; Xiao, H.; Megrelidze, L.; Roinishvili, V.; Lomidze, D.; Anagnostou, G.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.; Klein, K.; Merz, J.; Mohr, N.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Weber, M.; Wittmer, B.; Ata, M.; Bender, W.; Erdmann, M.

    2011-05-01

    Dijet angular distributions are measured over a wide range of dijet invariant masses in pp collisions at s=7TeV, at the CERN LHC. The event sample, recorded with the CMS detector, corresponds to an integrated luminosity of 36pb-1. The data are found to be in good agreement with the predictions of perturbative QCD, and yield no evidence of quark compositeness. With a modified frequentist approach, a lower limit on the contact interaction scale for left-handed quarks of ?+=5.6TeV (?-=6.7TeV) for destructive (constructive) interference is obtained at the 95% confidence level.

  7. TeV Scale Lepton Number Violation and Baryogenesis

    E-print Network

    Dev, P S Bhupal; Mohapatra, R N

    2015-01-01

    Contrary to the common lore based on naive dimensional analysis, the seesaw scale for neutrino masses can be naturally in the TeV range, with small parameters coming from radiative corrections. We present one such class of type-I seesaw models, based on the left-right gauge group $SU(2)_L\\times SU(2)_R\\times U(1)_{B-L}$ realized at the TeV scale, which fits the observed neutrino oscillation parameters as well as other low energy constraints. We discuss how the small parameters of this scenario can arise naturally from one loop effects. The neutrino fits in this model use quasi-degenerate heavy Majorana neutrinos, as also required to explain the matter-antimatter asymmetry in our Universe via resonant leptogenesis mechanism. We discuss the constraints implied by the dynamics of this mechanism on the mass of the right-handed gauge boson in this class of models with enhanced neutrino Yukawa couplings compared to the canonical seesaw model and find a lower bound of $m_{W_R}\\geq 9.9$ TeV for successful leptogenesi...

  8. Milagro Observations of Potential TeV Emitters

    NASA Technical Reports Server (NTRS)

    Abdo, A. A.; Abeysekara, A. U.; Allen, B. T.; Aune, T.; Barber, A. S.; Berley, D.; Braun, J.; Chen, C.; Christopher, G. E.; DeYoung, T.; Dingus, B. L.; Ellsworth, R. W.; Gonzalez, M. M.; Goodman, J. A.; Hays, E.; Hoffman, C. M.; Huentemeyer, P. H.; Imran, A.; Kolterman, B. E.; Linnemann, J. T.; McEnery, J. E.; Morgan, T.; Mincer, A. I.; Nemethy, P.; Pretz, J.

    2014-01-01

    This paper reports the results from three targeted searches of Milagro TeV sky maps: two extragalactic point source lists and one pulsar source list. The first extragalactic candidate list consists of 709 candidates selected from the Fermi-LAT 2FGL catalog. The second extragalactic candidate list contains 31 candidates selected from the TeVCat source catalog that have been detected by imaging atmospheric Cherenkov telescopes (IACTs). In both extragalactic candidate lists Mkn 421 was the only source detected by Milagro. This paper presents the Milagro TeV flux for Mkn 421 and flux limits for the brighter Fermi- LAT extragalactic sources and for all TeVCat candidates. The pulsar list extends a previously published Milagro targeted search for Galactic sources. With the 32 new gamma-ray pulsars identified in 2FGL, the number of pulsars that are studied by both Fermi-LAT and Milagro is increased to 52. In this sample, we find that the probability of Milagro detecting a TeV emission coincident with a pulsar increases with the GeV flux observed by the Fermi-LAT in the energy range from 0.1 GeV to 100 GeV.

  9. Feasibility for p+/p- flow-ratio evaluation in the 0.5 - 1.5 TeV primary energy range, based on Moon-shadow muon measurements, to be carried out in the Pyramid of the Sun, Teotihuacan, Experiment

    E-print Network

    Grabskii, V; Reche, R; Orozco, O

    2007-01-01

    Calculations are presented to demonstrate the feasibility of Moon shadow observations for mean primary energies in the region 0.5-1.5 TeV using a muon detector operating under the Pyramid of the Sun at Teotihuacan, Mexico. Due to the small height of that monument (65 m), the experiment is capable of providing considerably high statistics, although with reduced angular accuracy for primary particle direction reconstruction. Our estimates are based on simulations of muon production and transport in the atmosphere by CORSIKA and along the body of the pyramid by GEANT4. The deflection of primaries in the earth magnetic field is calculated using the IGRF model. The statistics for the Moon shadow observations, which depends on different factors affecting the accuracy of the primary particle direction reconstruction, are analyzed in detail.

  10. Professor of Range Science Range Animal Nutrition, Range Wildlife

    E-print Network

    Johnson, Eric E.

    Professor of Range Science Range Animal Nutrition, Range Wildlife Interactions, Grazing Management M.S., Range Science, Montana State University, Bozeman, Montana, 1976 Ph.D., Animal Science/Range Nutrition, Oregon State University, Corvallis, Oregon, 1980 Range Science 294 - Range Management Range

  11. Studies of W and Z bosons at $sqrt{s}=7 TeV$ with ATLAS

    E-print Network

    Di Simone, A; The ATLAS collaboration

    2010-01-01

    The contribution describes the first observation of W and Z bosons produced in $sqrt{s}=7TeV$ collisions. Results for both electron and muon final states are presented, corresponding to an integrated luminosity ranging from 6.4 to 7.9 nb-1, depending on the specific channel. In all cases, the number of observed events is consistent with expectations.

  12. Supersymmetry and electroweak breaking from extra dimensions at the TeV scale

    Microsoft Academic Search

    A. Delgado; A. Pomarol; M. Quirós

    1999-01-01

    We analyze some features of the role that extra dimensions, of radius R in the TeV-1 range, can play in the soft breaking of supersymmetry and the spontaneous breaking of electroweak symmetry. We use a minimal model where the gauge and Higgs boson sector of the MSSM are living in the bulk of five dimensions and the chiral multiplets in

  13. Measurement of the inclusive isolated prompt photon cross-section in pp collisions at ?s = 7 TeV using 35 pb[superscript -1] of ATLAS data

    E-print Network

    Taylor, Frank E.

    A measurement of the differential cross-section for the inclusive production of isolated prompt photons in pp collisions at a center-of-mass energy ?s = 7 TeV is presented. The measurement covers the pseudorapidity ranges ...

  14. First-epoch VLBA Imaging of 20 New TeV Blazars

    NASA Astrophysics Data System (ADS)

    Piner, B. Glenn; Edwards, Philip G.

    2014-12-01

    We present Very Long Baseline Array (VLBA) images of 20 TeV blazars not previously well studied on the parsec scale. All 20 of these sources are high-frequency peaked BL Lac objects (HBLs). Observations were made between August and December of 2013 at a frequency of 8.4 GHz. These observations represent the first epoch of a VLBA monitoring campaign on these blazars, and they significantly increase the fraction of TeV HBLs studied with high-resolution imaging. The peak very long baseline interferometry (VLBI) flux densities of these sources range from ~10 to ~100 mJy bm-1, and parsec-scale jet structure is detected in all sources. About half of the VLBI cores are resolved, with brightness temperature upper limits of a few times 1010 K, and we find that a brightness temperature of ~2 × 1010 K is consistent with the VLBI data for all but one of the sources. Such brightness temperatures do not require any relativistic beaming to reduce the observed value below commonly invoked intrinsic limits; however, the lack of detection of counterjets does place a modest limit on the bulk Lorentz factor of ? >~ 2. These data are thus consistent with a picture where weak-jet sources like the TeV HBLs develop significant velocity structures on parsec scales. We also extend consideration to the full sample of TeV HBLs by combining the new VLBI data with VLBI and gamma-ray data from the literature. By comparing measured VLBI and TeV fluxes to samples with intrinsically uncorrelated luminosities generated by Monte Carlo simulations, we find a marginally significant correlation between the VLBI and TeV fluxes for the full TeV HBL sample.

  15. Measurement of V 0 production ratios in pp collisions at and 7 TeV

    Microsoft Academic Search

    R. Aaij; B. Adeva; M. Adinolfi; C. Adrover; A. Affolder; Z. Ajaltouni; J. Albrecht; F. Alessio; M. Alexander; G. Alkhazov; P. Alvarez Cartelle; A. A. Alves; S. Amato; Y. Amhis; J. Anderson; R. B. Appleby; O. Aquines Gutierrez; L. Arrabito; A. Artamonov; M. Artuso; E. Aslanides; G. Auriemma; S. Bachmann; J. J. Back; D. S. Bailey; V. Balagura; W. Baldini; R. J. Barlow; C. Barschel; S. Barsuk; W. Barter; A. Bates; C. Bauer; Th. Bauer; A. Bay; I. Bediaga; K. Belous; I. Belyaev; E. Ben-Haim; M. Benayoun; G. Bencivenni; S. Benson; R. Bernet; M.-O. Bettler; M. van Beuzekom; A. Bien; S. Bifani; A. Bizzeti; P. M. Bjřrnstad; T. Blake; F. Blanc; C. Blanks; J. Blouw; S. Blusk; A. Bobrov; V. Bocci; A. Bondar; N. Bondar; W. Bonivento; S. Borghi; A. Borgia; T. J. V. Bowcock; C. Bozzi; T. Brambach; J. vanden Brand; J. Bressieux; D. Brett; S. Brisbane; M. Britsch; T. Britton; N. H. Brook; A. Büchler-Germann; I. Burducea; A. Bursche; J. Buytaert; S. Cadeddu; J. M. Caicedo Carvajal; O. Callot; M. Calvi; M. Calvo Gomez; A. Camboni; P. Campana; A. Carbone; G. Carboni; R. Cardinale; A. Cardini; L. Carson; K. Carvalho Akiba; G. Casse; M. Cattaneo; M. Charles; Ph. Charpentier; N. Chiapolini; X. Cid Vidal; G. Ciezarek; P. E. L. Clarke; M. Clemencic; H. V. Cliff; J. Closier; C. Coca; V. Coco; J. Cogan; P. Collins; F. Constantin; G. Conti; A. Contu; M. Coombes; G. Corti; G. A. Cowan; R. Currie; B. D’Almagne; C. D’Ambrosio; P. David; I. De Bonis; S. De Capua; M. De Cian; F. De Lorenzi; J. M. De Miranda; L. De Paula; P. De Simone; D. Decamp; M. Deckenhoff; H. Degaudenzi; M. Deissenroth; L. Del Buono; C. Deplano; O. Deschamps; F. Dettori; J. Dickens; H. Dijkstra; P. Diniz Batista; D. Dossett; O. Dovbnya; F. Dupertuis; R. Dzhelyadin; C. Eames; S. Easo; U. Egede; V. Egorychev; S. Eidelman; D. van Eijk; F. Eisele; S. Eisenhardt; R. Ekelhof; L. Eklund; Ch. Elsasser; D. G. d’Enterria; D. Esperante Pereira; L. Estčve; A. Falabella; E. Fanchini; C. Färber; G. Fardell; C. Farinelli; S. Farry; V. Fave; V. Fernandez Albor; M. Ferro-Luzzi; S. Filippov; C. Fitzpatrick; M. Fontana; F. Fontanelli; R. Forty; M. Frank; C. Frei; M. Frosini; S. Furcas; A. Gallas Torreira; D. Galli; M. Gandelman; P. Gandini; Y. Gao; J. C. Garnier; J. Garofoli; J. Garra Tico; L. Garrido; C. Gaspar; N. Gauvin; M. Gersabeck; T. Gershon; Ph. Ghez; V. Gibson; V. V. Gligorov; C. Göbel; D. Golubkov; A. Golutvin; A. Gomes; H. Gordon; M. Grabalosa Gándara; R. Graciani Diaz; L. A. Granado Cardoso; E. Graugés; G. Graziani; A. Grecu; S. Gregson; B. Gui; E. Gushchin; Yu. Guz; T. Gys; G. Haefeli; C. Haen; S. C. Haines; T. Hampson; S. Hansmann-Menzemer; R. Harji; N. Harnew; J. Harrison; P. F. Harrison; J. He; V. Heijne; K. Hennessy; P. Henrard; J. A. Hernando Morata; E. van Herwijnen; W. Hofmann; K. Holubyev; P. Hopchev; W. Hulsbergen; P. Hunt; T. Huse; R. S. Huston; D. Hutchcroft; D. Hynds; V. Iakovenko; P. Ilten; J. Imong; R. Jacobsson; A. Jaeger; M. Jahjah Hussein; E. Jans; F. Jansen; P. Jaton; B. Jean-Marie; F. Jing; M. John; D. Johnson; C. R. Jones; B. Jost; S. Kandybei; M. Karacson; T. M. Karbach; J. Keaveney; U. Kerzel; T. Ketel; A. Keune; B. Khanji; Y. M. Kim; M. Knecht; S. Koblitz; P. Koppenburg; A. Kozlinskiy; L. Kravchuk; K. Kreplin; M. Kreps; G. Krocker; P. Krokovny; F. Kruse; K. Kruzelecki; M. Kucharczyk; S. Kukulak; R. Kumar; T. Kvaratskheliya; V. N. La Thi; D. Lacarrere; G. Lafferty; A. Lai; D. Lambert; R. W. Lambert; E. Lanciotti; G. Lanfranchi; C. Langenbruch; T. Latham; R. Le Gac; J. van Leerdam; J.-P. Lees; R. Lefčvre; A. Leflat; J. Lefranccois; O. Leroy; T. Lesiak; L. Li; Y. Y. Li; L. Li Gioi; M. Lieng; R. Lindner; C. Linn; B. Liu; G. Liu; J. H. Lopes; E. Lopez Asamar; N. Lopez-March; J. Luisier; F. Machefert; I. V. Machikhiliyan; F. Maciuc; O. Maev; J. Magnin; S. Malde; R. M. D. Mamunur; G. Manca; G. Mancinelli; N. Mangiafave; U. Marconi; R. Märki; J. Marks; G. Martellotti; A. Martens; L. Martin; A. Martín Sánchez; D. Martinez Santos; A. Massafferri; Z. Mathe; C. Matteuzzi; M. Matveev; E. Maurice; B. Maynard; A. Mazurov; G. McGregor; R. McNulty; C. Mclean; M. Meissner; M. Merk; J. Merkel; R. Messi; S. Miglioranzi; D. A. Milanes; M.-N. Minard; S. Monteil; D. Moran; P. Morawski; J. V. Morris; I. Mous; F. Muheim; K. Müller; R. Muresan; B. Muryn; M. Musy; P. Naik; T. Nakada; R. Nandakumar; J. Nardulli; I. Nasteva; M. Nedos; M. Needham; N. Neufeld; C. Nguyen-Mau; M. Nicol; S. Nies; V. Niess; N. Nikitin; A. Oblakowska-Mucha; V. Obraztsov; S. Oggero; S. Ogilvy; O. Okhrimenko; R. Oldeman; M. Orlandea; J. M. Otalora Goicochea; P. Owen; B. Pal; J. Palacios; M. Palutan; J. Panman; A. Papanestis; M. Pappagallo; C. Parkes; C. J. Parkinson; G. Passaleva; G. D. Patel; M. Patel; S. K. Paterson; G. N. Patrick; C. Patrignani; C. Pavel-Nicorescu; A. Pazos Alvarez; A. Pellegrino; G. Penso; M. Pepe Altarelli; S. Perazzini

    2011-01-01

    The and production ratios are measured by the LHCb detector from 0.3 nb?1 of pp collisions delivered by the LHC at TeV and 1.8 nb?1 at TeV. Both ratios are presented as a function of transverse momentum, p\\u000a T, and rapidity, y, in the ranges 0.15?p\\u000a T?c and 2.0?y?y?=?y\\u000a beam???y, and are consistent with previous measurements. The ratio , measuring

  16. Search for quark compositeness in dijet angular distributions from pp collisions at sqrt(s) = 7 TeV

    SciTech Connect

    Chatrchyan, Serguei [Yerevan Physics Inst. (Armenia); et al.

    2012-05-01

    A search for quark compositeness using dijet angular distributions from pp collisions at sqrt(s) = 7 TeV is presented. The search has been carried out using a data sample corresponding to an integrated luminosity of 2.2 inverse femtobarns, recorded by the CMS experiment at the LHC. Normalized dijet angular distributions have been measured for dijet invariant masses from 0.4 TeV to above 3 TeV and compared with a variety of contact interaction models, including those which take into account the effects of next-to-leading-order QCD corrections. The data are found to be in agreement with the predictions of perturbative QCD, and lower limits are obtained on the contact interaction scale, ranging from 7.5 up to 14.5 TeV at 95% confidence level.

  17. Multiwavelength modeling of TeV AGN observed by HESS

    E-print Network

    Jean-Philippe Lenain

    2007-09-12

    The High Energy Stereoscopic System (H.E.S.S.) experiment, a ground-based gamma-ray Cherenkov telescope array located in Namibia, has now detected many extragalactic objects, which redshifts range from z=0.00183 up to z=0.2, possibly more. With the increasing performances of Cherenkov telescopes, it now becomes possible to probe these objects at small timescales in gamma-ray, allowing the study of regions thought to be very close to the central supermassive black holes. Furthermore, H.E.S.S. has confirmed a gamma-ray emission from M87, which is thus the first extragalactic source seen at the TeV range that is not a blazar. Among blazars, TeV BL Lacs are the most challenging objects to test the jet emission models and to shed light on particle acceleration mechanisms. The study of blazars with H.E.S.S. also revealed various temporal behaviors among them. Some objects presents a highly variable X-ray flux with small variation of the gamma-ray, while others show the inverse behavior. The interpretation of such differences is puzzling. Observations at very high energies also bring indirect measurements of the infrared extragalactic background light (EBL). The interpretation of gamma-ray emission of radiogalaxies such as M87 in terms of misaligned blazars and the understanding of the properties of the EBL represent new challenges brought by H.E.S.S. observations of extragalactic sources.

  18. The utilization of tobosa (Hilaria mutica (Buckl.) Benth.) in relation to various grazing systems on the Texas Range Station 

    E-print Network

    Wright, John Allen

    1962-01-01

    phases ~ The general veget=tion of the ~ exes Range Dta" ion is considered to be a tobosa-bl ffalogra. ;-curly mesquite complex (Thorns and Yo' ng, I()(4), Cther species &f lesser abundanlce * i. 'e st' Sr u (B tel 'a ~urt1. 1u ), 1 s lrl ~tt, 1 e... Periods Average Time BtaIlding (Ninutes ) AN PN TOTAL kii PM "OTAL AX PN TOTAL AN A 165 ~ 0 23$?G 400 0 l, g~ 3 0 4. $ 113 5 14$. 0 258, 5 2 ~ 0 B 145 ~ 5 250 5 396 ~ 0 2?0 2. $4 $ 100?0 99. 5 199 5 2 ~ 0 Os 1/7 5 314?0 471 ~ $2?0 3 ~ 0 5 G 4...

  19. Controlled Intracellular Processing of Fusion Proteins by TEV Protease

    E-print Network

    because of steric hindrance at the cleavage site. Coexpression of the protease with its fusion proteinControlled Intracellular Processing of Fusion Proteins by TEV Protease Rachel B. Kapust and David S proteins by tobacco etch virus (TEV) protease. A fusion protein containing a TEV protease recognition site

  20. Tev Scale Colored Particles, Baryogenesis and Dark Matter

    SciTech Connect

    Nasri, Salah [Physics Department, United Arab Emirate University, P.O Box 17551, Al Ain (United Arab Emirates)

    2008-04-21

    We propose a unified scenario of two puzzles in particle physics and cosmology, namely, the dark matter and the origin of the baryon asymmetry of the universe in a simple extension of MSSM. Our model uses a gauge singlet chiral superfield field N, where the out-of equilibrium decay of the fermionic partner of N mediated by the exchange of a colored TeV scale scalar field generates adequate baryon asymmetry for M{sub N}{approx}100 GeV. The scalar partner of N is naturally the lightest SUSY particle as it has no gauge interactions and plays the role of dark matter. The model is experimentally testable in (i) neutron-antineutron oscillations with a transition time estimated to be around 10{sup 10} sec, (ii) discovery of colored particles X at LHC with mass of order TeV, and (iii) direct dark matter detection with a predicted cross section in the observable range in next generation dark matter search experiments.

  1. Femtoscopy of $pp$ collisions at $\\\\sqrt{s}$=0.9 and 7 TeV at the LHC with two-pion Bose-Einstein correlations

    Microsoft Academic Search

    Kenneth Aamodt; Arian Abrahantes Quintana; Dagmar Adamova; Andrew Marshall Adare; Madan Aggarwal; Gianluca Aglieri Rinella; Andras Gabor Agocs; Saul Aguilar Salazar; Zubayer Ahammed; Arshad Ahmad Masoodi; Nazeer Ahmad; Sang Un Ahn; Alexander Akindinov; Dmitry Aleksandrov; Bruno Alessandro; Jose Ruben Alfaro Molina; Andrea Alici; Anton Alkin; Erick Jonathan Almaraz Avina; Torsten Alt; Valerio Altini; Sedat Altinpinar; Igor Altsybeev; Cristian Andrei; Anton Andronic; Venelin Anguelov; Christopher Daniel Anson; Tome Anticic; Federico Antinori; Pietro Antonioli; Laurent Bernard Aphecetche; Harald Appelshauser; Nicolas Arbor; Silvia Arcelli; Andreas Arend; Nestor Armesto; Roberta Arnaldi; Tomas Robert Aronsson; Ionut Cristian Arsene; Andzhey Asryan; Andre Augustinus; Ralf Peter Averbeck; Terry Awes; Juha Heikki Aysto; Mohd Danish Azmi; Matthias Jakob Bach; Angela Badala; Yong Wook Baek; S Bagnasco; Raphaelle Marie Bailhache; Renu Bala; Rinaldo Baldini Ferroli; Alberto Baldisseri; Alain Baldit; Jaroslav Ban; Roberto Barbera; Francesco Barile; Gergely Gabor Barnafoldi; Lee Stuart Barnby; Valerie Barret; Jerzy Gustaw Bartke; Maurizio Basile; Nicole Bastid; Bastian Bathen; Guillaume Batigne; Boris Batyunya; Christoph Heinrich Baumann; Ian Gardner Bearden; Hans Beck; Iouri Belikov; Francesca Bellini; Rene Bellwied; Ernesto Belmont-Moreno; Stefania Beole; Ionela Berceanu; Alexandru Bercuci; Eleni Berdermann; Yaroslav Berdnikov; Latchezar Betev; Anju Bhasin; Ashok Kumar Bhati; Livio Bianchi; Nicola Bianchi; Chiara Bianchin; Jaroslav Bielcik; Jana Bielcikova; Ante Bilandzic; Emanuele Biolcati; Aurelien Joseph Blanc; F Blanco; Dmitry Blau; Christoph Blume; Marco Boccioli; Nicolas Bock; Alexey Bogdanov; Hans Boggild; Mikhail Bogolyubsky; Laszlo Boldizsar; Marek Bombara; Carlo Bombonati; Herve Borel; Claudio Bortolin; Suvendu Nath Bose; Francesco Bossu; Michiel Botje; Stefan Bottger; Bruno Alexandre Boyer; Peter Braun-Munzinger; Larisa Bravina; Marco Bregant; Timo Gunther Breitner; Michal Broz; Rene Brun; Elena Bruna; Giuseppe Eugenio Bruno; Dmitry Budnikov; Henner Buesching; Oliver Busch; Edith Zinhle Buthelezi; Davide Caffarri; Xu Cai; Helen Louise Caines; Ernesto Calvo Villar; Paolo Camerini; Veronica Canoa Roman; Giovanni Cara Romeo; Francesco Carena; Wisla Carena; Federico Carminati; Amaya Ofelia Casanova Diaz; Michele Caselle; Javier Ernesto Castillo Castellanos; Vasile Catanescu; Costanza Cavicchioli; Piergiorgio Cerello; Beomsu Chang; Sylvain Chapeland; Jean-Luc Fernand Charvet; Sukalyan Chattopadhyay; Subhasis Chattopadhyay; Michael Gerard Cherney; Cvetan Cheshkov; Brigitte Cheynis; Emilio Chiavassa; Vasco Miguel Chibante Barroso; David Chinellato; Peter Chochula; Marek Chojnacki; Panagiotis Christakoglou; Christian Holm Christensen; Peter Christiansen; Tatsuya Chujo; Corrado Cicalo; Luisa Cifarelli; Federico Cindolo; Jean Willy Andre Cleymans; Fabrizio Coccetti; S Coli; Jean-Pierre Michel Coffin; Gustavo Conesa Balbastre; Zaida Conesa del Valle; Paul Constantin; Giacomo Contin; Jesus Guillermo Contreras; Thomas Michael Cormier; Yasser Corrales Morales; Ismael Cortes Maldonado; Pietro Cortese; Mauro Rogerio Cosentino; Filippo Costa; Manuel Enrique Cotallo; Elisabetta Crescio; Philippe Crochet; Eleazar Cuautle; Leticia Cunqueiro; Ginevra D'Erasmo; Andrea Dainese; Hans Hjersing Dalsgaard; Andrea Danu; Debasish Das; Indranil Das; Ajay Kumar Dash; Sadhana Dash; Sudipan De; Andrea De Azevedo Moregula; Gabriel de Barros; Annalisa De Caro; Giacinto de Cataldo; Jan de Cuveland; Alessandro De Falco; Daniele De Gruttola; Nora De Marco; Salvatore De Pasquale; R De Remigis; Raoul Stefan de Rooij; Hugues Delagrange; Ydalia Delgado Mercado; Giuseppe Dellacasa; Andrzej Deloff; Vyacheslav Demanov; Ervin Denes; Airton Deppman; Domenico Di Bari; Carmelo Di Giglio; Sergio Di Liberto; Antonio Di Mauro; Pasquale Di Nezza; Thomas Dietel; Roberto Divia; Oeystein Djuvsland; Alexandru Florin Dobrin; Tadeusz Antoni Dobrowolski; Isabel Dominguez; Benjamin Donigus; Olja Dordic; O Driga; Anand Kumar Dubey; Laurent Ducroux; Pascal Dupieux; AK Dutta Majumdar; Mihir Ranjan Dutta Majumdar; Domenico Elia; David Philip Emschermann; Heiko Engel; Hege Austrheim Erdal; Bruno Espagnon; Magali Danielle Estienne; Shinichi Esumi; David Evans; Sebastien Evrard; Gyulnara Eyyubova; Christian Fabjan; Daniela Fabris; Julien Faivre; Davide Falchieri; Alessandra Fantoni; Markus Fasel; Roger Worsley Fearick; Anatoly Fedunov; Dominik Fehlker; Vladimir Fekete; Daniel Felea; Grigory Feofilov; Arturo Fernandez Tellez; Alessandro Ferretti; Roberta Ferretti

    2011-01-01

    We report on the high statistics two-pion correlation functions from pp collisions at $\\\\sqrt{s}$=0.9 TeV and $\\\\sqrt{s}$=7 TeV, measured by the ALICE experiment at the Large Hadron Collider. The correlation functions as well as the extracted source radii scale with event multiplicity and pair momentum. When analyzed in the same multiplicity and pair transverse momentum range, the correlation is similar

  2. Extragalactic background light absorption signal in the TeV gamma-ray spectra of blazars

    E-print Network

    V. V. Vassiliev

    1999-08-09

    Recent observations of the TeV gamma-ray spectra of the two closest active galactic nuclei (AGNs), Markarian 501 (Mrk 501) and Markarian 421 (Mrk 421), by the Whipple and HEGRA collaborations have stimulated efforts to estimate or limit the spectral energy density (SED) of extragalactic background light (EBL) which causes attenuation of TeV photons via pair-production when they travel cosmological distances. In spite of the lack of any distinct cutoff-like feature in the spectra of Mrk 501 and Mrk 421 (in the interval 0.26-10 TeV) which could clearly indicate the presence of such a photon absorption mechanism, we demonstrate that strong EBL attenuation signal (survival probability of 10 TeV photon <10^{-2}) may still be present in the spectra of these AGNs. By estimating the minimal and maximal opacity of the universe to TeV gamma-ray photons, we calculate the visibility range for current and future gamma-ray observatories. Finally, we show that the proposed experiments, VERITAS, HESS, and MAGIC, may even be able to actually measure the EBL SED because their observations extend to the critical 75-150 GeV regime. In this transition region a distinct ``knee-like'' feature should exist in the spectra of blazars, which is invariant with respect to their intrinsic properties. The change of the spectral index and flux amplitude across this knee, if observed for several blazars, will provide missing pieces of information needed to measure EBL in the wavelength range 0.1-30 $\\mu$m.

  3. Product Contents ProTEV Protease

    E-print Network

    Lebendiker, Mario

    enzyme that cleaves within a seven-amino-acid sequence. It can be used to cleave protein fusions: Four units of ProTEV Protease cleaves 85% of 20ľg of a test fusion protein in 30 minutes at 30°C that have been engineered to contain the seven-amino-acid sequence at the desired cleavage site. Pro

  4. Inclusive J/? production in pp collisions at ?{s}=2.76 TeV

    NASA Astrophysics Data System (ADS)

    Abelev, B.; Adam, J.; Adamová, D.; Adare, A. M.; Aggarwal, M. M.; Aglieri Rinella, G.; Agocs, A. G.; Agostinelli, A.; Aguilar Salazar, S.; Ahammed, Z.; Ahmad Masoodi, A.; Ahmad, N.; Ahn, S. U.; Akindinov, A.; Aleksandrov, D.; Alessandro, B.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Almaráz Avińa, E.; Alme, J.; Alt, T.; Altini, V.; Altinpinar, S.; Altsybeev, I.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Anson, C.; Anti?i?, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arbor, N.; Arcelli, S.; Arend, A.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Arslandok, M.; Asryan, A.; Augustinus, A.; Averbeck, R.; Awes, T. C.; Äystö, J.; Azmi, M. D.; Bach, M.; Badalŕ, A.; Baek, Y. W.; Bailhache, R.; Bala, R.; Baldini Ferroli, R.; Baldisseri, A.; Baldit, A.; Baltasar Dos Santos Pedrosa, F.; Bán, J.; Baral, R. C.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartke, J.; Basile, M.; Bastid, N.; Bathen, B.; Batigne, G.; Batyunya, B.; Baumann, C.; Bearden, I. G.; Beck, H.; Belikov, I.; Bellini, F.; Bellwied, R.; Belmont-Moreno, E.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bergmann, C.; Berzano, D.; Betev, L.; Bhasin, A.; Bhati, A. K.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Biel?ík, J.; Biel?íková, J.; Bilandzic, A.; Bjelogrlic, S.; Blanco, F.; Blanco, F.; Blau, D.; Blume, C.; Boccioli, M.; Bock, N.; Bogdanov, A.; Břggild, H.; Bogolyubsky, M.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Bose, S.; Bossú, F.; Botje, M.; Böttger, S.; Boyer, B.; Braidot, E.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Browning, T. A.; Broz, M.; Brun, R.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Bugaiev, K.; Busch, O.; Buthelezi, Z.; Caballero Orduna, D.; Caffarri, D.; Cai, X.; Caines, H.; Calvo Villar, E.; Camerini, P.; Canoa Roman, V.; Cara Romeo, G.; Carena, W.; Carena, F.; Carlin Filho, N.; Carminati, F.; Carrillo Montoya, C. A.; Casanova Díaz, A.; Castillo Castellanos, J.; Castillo Hernandez, J. F.; Casula, E. A. R.; Catanescu, V.; Cavicchioli, C.; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chawla, I.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chiavassa, E.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Chojnacki, M.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Coccetti, F.; Colamaria, F.; Colella, D.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Constantin, P.; Contin, G.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortese, P.; Cortés Maldonado, I.; Cosentino, M. R.; Costa, F.; Cotallo, M. E.; Crescio, E.; Crochet, P.; Cruz Alaniz, E.; Cuautle, E.; Cunqueiro, L.; Dainese, A.; Dalsgaard, H. H.; Danu, A.; Das, K.; Das, I.; Das, D.; Dash, A.; Dash, S.; de, S.; de Barros, G. O. V.; de Caro, A.; de Cataldo, G.; de Cuveland, J.; de Falco, A.; de Gruttola, D.; Delagrange, H.; Del Castillo Sanchez, E.; Deloff, A.; Demanov, V.; De Marco, N.; Dénes, E.; de Pasquale, S.; Deppman, A.; D Erasmo, G.; de Rooij, R.; Diaz Corchero, M. A.; di Bari, D.; Dietel, T.; di Giglio, C.; di Liberto, S.; di Mauro, A.; di Nezza, P.; Diviŕ, R.; Djuvsland, Ř.; Dobrin, A.; Dobrowolski, T.; Domínguez, I.; Dönigus, B.; Dordic, O.; Driga, O.; Dubey, A. K.; Ducroux, L.; Dupieux, P.; Dutta Majumdar, A. K.; Dutta Majumdar, M. R.; Elia, D.; Emschermann, D.; Engel, H.; Erdal, H. A.; Espagnon, B.; Estienne, M.; Esumi, S.; Evans, D.; Eyyubova, G.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fearick, R.; Fedunov, A.; Fehlker, D.; Feldkamp, L.; Felea, D.; Feofilov, G.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Ferretti, R.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Fragkiadakis, M.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Fusco Girard, M.; Gaardhřje, J. J.; Gagliardi, M.; Gago, A.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Garabatos, C.; Garcia-Solis, E.; Garishvili, I.; Gerhard, J.; Germain, M.; Geuna, C.; Gheata, A.; Gheata, M.; Ghidini, B.; Ghosh, P.; Gianotti, P.; Girard, M. R.; Giubellino, P.; Gladysz-Dziadus, E.; Glässel, P.; Gomez, R.; González-Trueba, L. H.; González-Zamora, P.; Gorbunov, S.; Goswami, A.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Grajcarek, R.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Gros, P.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerra Gutierrez, C.; Guerzoni, B.; Guilbaud, M.; Gulbrandsen, K.

    2012-12-01

    The ALICE Collaboration has measured inclusive J/? production in pp collisions at a center-of-mass energy ?{s}=2.76 TeV at the LHC. The results presented in this Letter refer to the rapidity ranges |y|<0.9 and 2.5range, d2?J/?/dy dpt in the transverse momentum domain 0TeV and with theoretical calculations.

  5. Pure Gravity Mediation with m_{3/2} = 10-100TeV

    E-print Network

    Masahiro Ibe; Shigeki Matsumoto; Tsutomu T. Yanagida

    2012-02-10

    Recently, the ATLAS and CMS collaborations reported exciting hints of a Standard Model-like Higgs boson with a mass around 125GeV. Such a Higgs boson mass can be easily obtained in the minimal supersymmetric Standard Model based on the "pure gravity mediation model" where the sfermion masses and the Higgs mass parameters are in tens to hundreds TeV range while the gauginos are in the hundreds GeV to TeV range. In this paper, we discuss detalis of the gaugino mass spectrum in the pure gravity mediation model. We also discuss the signals of the model at the current and future experiments such as cosmic ray observations and the LHC experiments. In particular, we show that the parameter space which is consistent with the thermal leptogenesis can be fully surveyed experimentally in the foreseeable future.

  6. Measurement of the Inclusive Jet Cross Section in pp Collisions at s=7TeV

    Microsoft Academic Search

    S. Chatrchyan; V. Khachatryan; A. M. Sirunyan; A. Tumasyan; W. Adam; T. Bergauer; M. Dragicevic; J. Erö; C. Fabjan; M. Friedl; R. Frühwirth; V. M. Ghete; J. Hammer; S. Hänsel; M. Hoch; N. Hörmann; J. Hrubec; M. Jeitler; W. Kiesenhofer; M. Krammer; D. Liko; I. Mikulec; M. Pernicka; H. Rohringer; R. Schöfbeck; J. Strauss; A. Taurok; F. Teischinger; P. Wagner; W. Waltenberger; G. Walzel; E. Widl; C.-E. Wulz; V. Mossolov; N. Shumeiko; J. Suarez Gonzalez; S. Bansal; L. Benucci; E. A. de Wolf; X. Janssen; J. Maes; T. Maes; L. Mucibello; S. Ochesanu; B. Roland; R. Rougny; M. Selvaggi; H. van Haevermaet; P. van Mechelen; N. van Remortel; F. Blekman; S. Blyweert; J. D'Hondt; O. Devroede; R. Gonzalez Suarez; A. Kalogeropoulos; M. Maes; W. van Doninck; P. van Mulders; G. P. van Onsem; I. Villella; O. Charaf; B. Clerbaux; G. de Lentdecker; V. Dero; A. P. R. Gay; G. H. Hammad; T. Hreus; P. E. Marage; L. Thomas; C. Vander Velde; P. Vanlaer; V. Adler; A. Cimmino; S. Costantini; M. Grunewald; B. Klein; J. Lellouch; A. Marinov; J. McCartin; D. Ryckbosch; F. Thyssen; M. Tytgat; L. Vanelderen; P. Verwilligen; S. Walsh; N. Zaganidis; S. Basegmez; G. Bruno; J. Caudron; L. Ceard; E. Cortina Gil; J. de Favereau de Jeneret; C. Delaere; D. Favart; A. Giammanco; G. Grégoire; J. Hollar; V. Lemaitre; J. Liao; O. Militaru; S. Ovyn; D. Pagano; A. Pin; K. Piotrzkowski; N. Schul; N. Beliy; T. Caebergs; E. Daubie; G. A. Alves; D. de Jesus Damiao; M. E. Pol; M. H. G. Souza; W. Carvalho; E. M. da Costa; C. de Oliveira Martins; S. Fonseca de Souza; L. Mundim; H. Nogima; V. Oguri; W. L. Prado da Silva; A. Santoro; S. M. Silva Do Amaral; A. Sznajder; C. A. Bernardes; F. A. Dias; T. R. Fernandez Perez Tomei; E. M. Gregores; C. Lagana; F. Marinho; P. G. Mercadante; S. F. Novaes; Sandra S. Padula; N. Darmenov; L. Dimitrov; V. Genchev; P. Iaydjiev; S. Piperov; M. Rodozov; S. Stoykova; G. Sultanov; V. Tcholakov; R. Trayanov; I. Vankov; A. Dimitrov; R. Hadjiiska; A. Karadzhinova; V. Kozhuharov; L. Litov; M. Mateev; B. Pavlov; P. Petkov; J. G. Bian; G. M. Chen; H. S. Chen; C. H. Jiang; D. Liang; S. Liang; X. Meng; J. Tao; J. Wang; X. Wang; Z. Wang; H. Xiao; M. Xu; J. Zang; Z. Zhang; Y. Ban; S. Guo; Y. Guo; W. Li; Y. Mao; S. J. Qian; H. Teng; L. Zhang; B. Zhu; W. Zou; A. Cabrera; B. Gomez Moreno; A. A. Ocampo Rios; A. F. Osorio Oliveros; J. C. Sanabria; N. Godinovic; D. Lelas; K. Lelas; R. Plestina; D. Polic; I. Puljak; Z. Antunovic; M. Dzelalija; V. Brigljevic; S. Duric; K. Kadija; S. Morovic; A. Attikis; M. Galanti; J. Mousa; C. Nicolaou; F. Ptochos; P. A. Razis; M. Finger; Y. Assran; S. Khalil; M. A. Mahmoud; A. Hektor; M. Kadastik; M. Müntel; M. Raidal; L. Rebane; V. Azzolini; P. Eerola; G. Fedi; S. Czellar; J. Härkönen; A. Heikkinen; V. Karimäki; R. Kinnunen; M. J. Kortelainen; T. Lampén; K. Lassila-Perini; S. Lehti; T. Lindén; P. Luukka; T. Mäenpää; E. Tuominen; J. Tuominiemi; E. Tuovinen; D. Ungaro; L. Wendland; K. Banzuzi; A. Korpela; T. Tuuva; D. Sillou; M. Besancon; S. Choudhury; M. Dejardin; D. Denegri; B. Fabbro; J. L. Faure; F. Ferri; S. Ganjour; F. X. Gentit; A. Givernaud; P. Gras; G. Hamel de Monchenault; P. Jarry; E. Locci; J. Malcles; M. Marionneau; L. Millischer; J. Rander; A. Rosowsky; I. Shreyber; M. Titov; P. Verrecchia; S. Baffioni; F. Beaudette; L. Benhabib; L. Bianchini; M. Bluj; C. Broutin; P. Busson; C. Charlot; T. Dahms; L. Dobrzynski; S. Elgammal; R. Granier de Cassagnac; M. Haguenauer; P. Miné; C. Mironov; C. Ochando; P. Paganini; D. Sabes; R. Salerno; Y. Sirois; C. Thiebaux; B. Wyslouch; A. Zabi; J.-L. Agram; J. Andrea; D. Bloch; D. Bodin; J.-M. Brom; M. Cardaci; E. C. Chabert; C. Collard; E. Conte; F. Drouhin; C. Ferro; J.-C. Fontaine; D. Gelé; U. Goerlach; S. Greder; P. Juillot; M. Karim; A.-C. Le Bihan; Y. Mikami; P. van Hove; F. Fassi; D. Mercier; C. Baty; S. Beauceron; N. Beaupere; M. Bedjidian; O. Bondu; G. Boudoul; D. Boumediene; H. Brun; J. Chasserat; R. Chierici; D. Contardo; P. Depasse; H. El Mamouni; J. Fay; S. Gascon; B. Ille; T. Kurca; T. Le Grand; M. Lethuillier; L. Mirabito; S. Perries; V. Sordini; S. Tosi; Y. Tschudi; P. Verdier; D. Lomidze; G. Anagnostou; M. Edelhoff; L. Feld; N. Heracleous; O. Hindrichs; R. Jussen; K. Klein; J. Merz; N. Mohr; A. Ostapchuk; A. Perieanu; F. Raupach; J. Sammet; S. Schael; D. Sprenger; H. Weber; M. Weber; B. Wittmer; M. Ata; W. Bender; E. Dietz-Laursonn; M. Erdmann; J. Frangenheim; T. Hebbeker; A. Hinzmann; K. Hoepfner; T. Klimkovich; D. Klingebiel; P. Kreuzer; D. Lanske; C. Magass; M. Merschmeyer; A. B. Meyer; P. Papacz; H. Pieta; H. Reithler; S. A. Schmitz; L. Sonnenschein; J. Steggemann; D. Teyssier; M. Bontenackels; M. Davids; M. Duda; G. Flügge; H. Geenen; M. Giffels; W. Haj Ahmad; D. Heydhausen; T. Kress; Y. Kuessel; A. Linn; A. Nowack; L. Perchalla; O. Pooth; J. Rennefeld; P. Sauerland; A. Stahl; M. Thomas; D. Tornier

    2011-01-01

    The inclusive jet cross section is measured in pp collisions with a center-of-mass energy of 7 TeV at the Large Hadron Collider using the CMS experiment. The data sample corresponds to an integrated luminosity of 34pb-1. The measurement is made for jet transverse momenta in the range 18-1100 GeV and for absolute values of rapidity less than 3. The measured

  7. Measurement of energy flow at large pseudorapidities in pp collisions at ?s = 0.9 and 7 TeV

    E-print Network

    Alver, B.

    The energy flow, dE/d?, is studied at large pseudorapidities in proton-proton collisions at the LHC, for centre-of-mass energies of 0.9 and 7 TeV. The measurements are made using the CMS detector in the pseudorapidity range ...

  8. Search for physics beyond the standard model in dilepton mass spectra in proton-proton collisions at TeV

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Luyckx, S.; Ochesanu, S.; Rougny, R.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Daci, N.; Heracleous, N.; Keaveney, J.; Lowette, S.; Maes, M.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Dobur, D.; Favart, L.; Gay, A. P. R.; Grebenyuk, A.; Léonard, A.; Mohammadi, A.; Pernič, L.; Reis, T.; Seva, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Zenoni, F.; Adler, V.; Beernaert, K.; Benucci, L.; Cimmino, A.; Costantini, S.; Crucy, S.; Dildick, S.; Fagot, A.; Garcia, G.; Mccartin, J.; Ocampo Rios, A. A.; Ryckbosch, D.; Salva Diblen, S.; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Nuttens, C.; Pagano, D.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Vizan Garcia, J. M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Dos Reis Martins, T.; Mora Herrera, C.; Pol, M. E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santaolalla, J.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Bernardes, C. A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Aleksandrov, A.; Genchev, V.; Iaydjiev, P.; Marinov, A.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Tao, J.; Wang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Zou, W.; Avila, C.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Mekterovic, D.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Bodlak, M.; Finger, M.; Finger, M.; Assran, Y.; Elgammal, S.; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Eerola, P.; Fedi, G.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Baffioni, S.; Beaudette, F.; Busson, P.; Charlot, C.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Mastrolorenzo, L.; Miné, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Veelken, C.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Chabert, E. C.; Collard, C.; Conte, E.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Beaupere, N.; Boudoul, G.; Bouvier, E.; Brochet, S.; Carrillo Montoya, C. A.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Ruiz Alvarez, J. D.; Sabes, D.; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Xiao, H.; Tsamalaidze, Z.; Autermann, C.

    2015-04-01

    Dimuon and dielectron mass spectra, obtained from data resulting from proton-proton collisions at 8 TeV and recorded by the CMS experiment, are used to search for both narrow resonances and broad deviations from standard model predictions. The data correspond to an integrated luminosity of 20.6 (19.7) fb-1 for the dimuon (dielectron) channel. No evidence for non-standard-model physics is observed and 95% confidence level limits are set on parameters from a number of new physics models. The narrow resonance analyses exclude a Sequential Standard Model Z{SSM/'} resonance lighter than 2.90 TeV, a superstring-inspired Z{/? '} lighter than 2.57 TeV, and Randall-Sundrum Kaluza-Klein gravitons with masses below 2.73, 2.35, and 1.27 TeV for couplings of 0.10, 0.05, and 0.01, respectively. A notable feature is that the limits have been calculated in a model-independent way to enable straightforward reinterpretation in any model predicting a resonance structure. The observed events are also interpreted within the framework of two non-resonant analyses: one based on a large extra dimensions model and one based on a quark and lepton compositeness model with a left-left isoscalar contact interaction. Lower limits are established on MS, the scale characterizing the onset of quantum gravity, which range from 4.9 to 3.3 TeV, where the number of additional spatial dimensions varies from 3 to 7. Similarly, lower limits on ?, the energy scale parameter for the contact interaction, are found to be 12.0 (15.2) TeV for destructive (constructive) interference in the dimuon channel and 13.5 (18.3) TeV in the dielectron channel. [Figure not available: see fulltext.

  9. Multi-wavelength study of Mrk 421 TeV flare observed with TACTIC telescope in February 2010

    NASA Astrophysics Data System (ADS)

    Singh, K. K.; Yadav, K. K.; Chandra, P.; Sahayanathan, S.; Bhatt, N.; Rannot, R. C.; Tickoo, A. K.; Koul, R.

    2015-02-01

    We present results from multi-wavelength study of intense flaring activity from a high frequency peaked BL Lac object Mrk 421. The source was observed in its flaring state on February 16, 2010 with the TACTIC at energies above 1.5 TeV. Near simultaneous multi-wavelength data were obtained from high energy (MeV-GeV) ?-ray observations with Fermi-LAT, X-ray observations by the Swift and MAXI satellites, optical V-band observation by SPOL at Steward Observatory and radio 15 GHz observation at OVRO 40 meter-telescope. We have performed a detailed spectral and temporal analysis of TACTIC, Fermi-LAT and Swift-XRT observations of Mrk 421 during February 10-23, 2010 (MJD 55237-55250). The flaring activity of the source is studied by investigating the properties of daily light curves from radio to TeV energy range and we present the correlation and variability analysis in each energy band. The TeV flare detected by TACTIC on February 16, 2010 is well correlated with the activity in lower energy bands. The differential energy spectrum of the source, in the energy range 1.5-11 TeV, as measured by TACTIC on this night is described by a power law (dN/dE?E) with spectral index ?=2.6ą0.3. After accounting for absorption of TeV photons by low energy extragalactic background light photons via pair production, the intrinsic TeV spectrum reveals a power law index of 2.3ą0.3. Finally the broad band spectral energy distribution of the source in flaring state is reproduced using a simple emission model involving synchrotron and synchrotron self Compton processes. The obtained parameters are then used to understand the energetics of the source during the flaring episode.

  10. FERMI view of the TeV blazar Markarian 421

    SciTech Connect

    Paneque, D; /SLAC /KIPAC, Menlo Park; Raino, S.; /Bari Polytechnic /INFN, Bari; Chiang, J.; /SLAC /KIPAC, Menlo Park; Mazziotta, M.N.; /INFN, Bari; Tramacere, A.; /SLAC /KIPAC, Menlo Park /CIFS, Turin

    2010-08-26

    The high energy component of the TeV blazar Markarian 421 has been extensively studied since the beginning of the 90s, when the source was first detected at gamma-rays with EGRET and the Whipple Telescope, yet the source is still far from being understood. The high sensitivity, large dynamic range, and excellent time coverage of the Fermi Large Area Telescope (LAT), all representing significant advances over previous gamma-ray observations, will play a key role in the elucidation of the physical processes underlying the high energy emission of this blazar. In this presentation we show the results from almost 6 months (4 August 2008 to 20 January 2009) of observation with LAT. We report significant flux/spectral variability on a range of time scales from weeks to days, and an energy spectrum from 0.1 GeV to 300 GeV, overlapping with the energy ranges covered by the current generation of Cherenkov Telescopes. Results on the observations of the BLLac object Markarian 421 collected in the first months of operation of the Fermi satellite have been presented. Light curves on weekly and daily timescales have been shown, as well as the results of the spectral analysis in the energy range between 100 MeV and 300 GeV, covered for the first time by a satellite experiment overlapping the lower energy observations from Cherenkov telescopes on earth. These results are still preliminary and will be enriched and completed soon by a forthcoming publication. The results shown here demonstrate the great performance of Fermi-LAT to study the gamma-emission from Mrk421 (and blazars in general) over a large dynamic range and also on short timescales, which is expected to be of key importance for the study of the emission of the source in a coordinated way with other instruments covering other energy ranges.

  11. Diffuse neutrinos from extragalactic supernova remnants: Dominating the 100 TeV IceCube flux

    NASA Astrophysics Data System (ADS)

    Chakraborty, Sovan; Izaguirre, Ignacio

    2015-05-01

    IceCube has measured a diffuse astrophysical flux of TeV-PeV neutrinos. The most plausible sources are unique high energy cosmic ray accelerators like hypernova remnants (HNRs) and remnants from gamma ray bursts in star-burst galaxies, which can produce primary cosmic rays with the required energies and abundance. In this case, however, ordinary supernova remnants (SNRs), which are far more abundant than HNRs, produce a comparable or larger neutrino flux in the ranges up to 100-150 TeV energies, implying a spectral break in the IceCube signal around these energies. The SNRs contribution in the diffuse flux up to these hundred TeV energies provides a natural baseline and then constrains the expected PeV flux.

  12. Observation of TeV gamma ray extended sources with ARGO-YBJ

    NASA Astrophysics Data System (ADS)

    Vernetto, Silvia

    2014-04-01

    More than 80% of TeV galactic gamma ray sources are spatially extended and many of them are still unidentified. The extended emission could be the result of cosmic ray interactions with the ambient medium which provides the target to produce TeV gamma rays. The sensitivity of ground based gamma ray detectors decreases for extended sources; shower detectors, due to their large field of view, are less affected with respect to Cherenkov telescopes. The ARGO-YBJ experiment (Yangbajing Cosmic Ray Laboratory, Tibet, China, 4300 m of altitude) is an air shower detector devoted to gamma ray astronomy at energies above a few hundred GeV, with an integrated sensitivity ranging from 0.24 to ~1 Crab units, depending on the source declination. In this paper the observation of galactic extended sources with ARGO-YBJ during 5 years is reviewed.

  13. Signatures of axionlike particles in the spectra of TeV gamma-ray sources

    NASA Astrophysics Data System (ADS)

    Mirizzi, Alessandro; Raffelt, Georg G.; Serpico, Pasquale D.

    2007-07-01

    One interpretation of the unexplained signature observed in the PVLAS experiment invokes a new axionlike particle (ALP) with a two-photon vertex, allowing for photon-ALP oscillations in the presence of magnetic fields. In the range of masses and couplings suggested by PVLAS, the same effect would lead to a peculiar dimming of high-energy photon sources. For typical parameters of the turbulent magnetic field in the galaxy, the effect sets in at E??10TeV, providing an ALP signature in the spectra of TeV gamma sources that can be probed with Cherenkov telescopes. A dedicated search will be strongly motivated if the ongoing photon regeneration experiments confirm the PVLAS particle interpretation.

  14. RF power sources for 5--15 TeV linear colliders

    SciTech Connect

    Wilson, P.B.

    1996-09-01

    After outlining the design of the NLC rf system at 1 TeV, the possibility of a leap in linear collider energy into the 5--15 TeV energy range is considered. To keep the active accelerator length and ac wall-plug power within reasonable bounds, higher accelerating gradients at higher rf frequencies will be necessary. Scaling relations are developed for basic rf system parameters as a function of frequency, and some specific parameter examples are given for colliders at 34 Ghz and 91 Ghz. Concepts for rf pulse compression system design and for high power microwave sources at 34 Ghz (for example sheet-beam and multiple-beam klystrons) are briefly discussed.

  15. BIODIVERSITY Reconstructing range dynamics and range

    E-print Network

    Radeloff, Volker C.

    BIODIVERSITY RESEARCH Reconstructing range dynamics and range fragmentation of European bison of European bison (Bison bonasus) by combining a time-calibrated species distribution models (SDM) with a dynamic vegetation model. Location Europe. Method We used European bison occurrences from the Holocene

  16. Gemini Range and Range Rate Measuring System

    Microsoft Academic Search

    Martin G. Woolfson

    1963-01-01

    To complete the terminal phase of a space rendezvous mission, it is essential that accurate indications of target vehicle range and relative range rate be presented to the astronauts commanding the chaser vehicle. The indicator characteristics and the method of data presentation assume prime importance in compliance with the above. Therefore, a discussion is given of the logical development and

  17. Reconnaissance of Colorado Front Range bogs for uranium and other elements

    SciTech Connect

    Owen, D.E.; Schumann, R.R.; Otton, J.K.

    1987-08-01

    Alpine bogs form along spring-fed valley floors and in steam drainages restricted by moraines, slides, and beaver dams. The bogs are generally young (Holocene) and contain a few tens of centimeters to several meters of peat and organic-rich muck. Organic matter has a great affinity for cations such as uranium; the geochemical enrichment factor between the peats and uraniferous ground water can approach 10,000 to 1. Because the bog sediments are geologically young, the uranium is in gross disequilibrium and has low radioactivity, thus it is undetectable by ground and aerial gamma surveys. Communities that derive a part of their water supplies from drainages containing uraniferous bogs face a potential health threat because the uranium is loosely bound and may easily be remobilized by ground water moving through the bogs. Reconnaissance sampling of bogs was conducted in the Colorado Front Range from the South Park area to the Colorado-Wyoming state line. Several bogs have uranium concentrations of 1000-3000 ppm, but most bogs have uranium concentrations in the 10-100 ppm range. Zinc concentrations of 100-1000 ppm are found in some bogs and many other metallic elements are present in concentrations between 10 and 100 ppm. Concentrations between 100 and 1000 ppm of some of the rare earth elements (e.g., Ce, La, Nd, Yb) were found in the Cripple Creek area.

  18. The time averaged TeV energy spectrum of MKN 501 of the extraordinary 1997 outburst as measured with the stereoscopic Cherenkov telescope system of HEGRA

    NASA Astrophysics Data System (ADS)

    Aharonian, F. A.; Akhperjanian, A. G.; Barrio, J. A.; Bernlöhr, K.; Bojahr, H.; Calle, I.; Contreras, J. L.; Cortina, J.; Daum, A.; Deckers, T.; Denninghoff, S.; Fonseca, V.; Gonzalez, J. C.; Heinzelmann, G.; Hemberger, M.; Hermann, G.; Heß, M.; Heusler, A.; Hofmann, W.; Hohl, H.; Horns, D.; Ibarra, A.; Kankanyan, R.; Kettler, J.; Köhler, C.; Konopelko, A.; Kornmeyer, H.; Kestel, M.; Kranich, D.; Krawczynski, H.; Lampeitl, H.; Lindner, A.; Lorenz, E.; Magnussen, N.; Meyer, H.; Mirzoyan, R.; Moralejo, A.; Padilla, L.; Panter, M.; Petry, D.; Plaga, R.; Plyasheshnikov, A.; Prahl, J.; Pühlhofer, G.; Rauterberg, G.; Renault, C.; Rhode, W.; Röhring, A.; Sahakian, V.; Samorski, M.; Schmele, D.; Schröder, F.; Stamm, W.; Völk, H. J.; Wiebel-Sooth, B.; Wiedner, C.; Willmer, M.; Wittek, W.

    1999-09-01

    During the several months of the outburst of Mkn 501 in 1997 the source has been monitored in TeV gamma -ray s with the HEGRA stereoscopic system of imaging atmospheric Cherenkov telescopes. Quite remarkably it turned out that the shapes of the daily gamma -ray energy spectra remained essentially stable throughout the entire state of high activity despite dramatic flux variations during this period. The derivation of a long term time-averaged energy spectrum, based on more than 38,000 detected TeV photons, is therefore physically meaningful. The unprecedented gamma -ray statistics combined with the 20% energy resolution of the instrument resulted in the first detection of gamma -rays from an extragalactic source well beyond 10 TeV, and the first high accuracy measurement of an exponential cutoff in the energy region above 5 TeV deeply into the exponential regime. From 500 GeV to 24 TeV the differential photon spectrum is well approximated by a power-law with an exponential cutoff: d N/d E=N_0 (E/1 TeV)(-alpha ) exp {(-E/E_0)}, with N_0=(10.8 +/-0.2_stat +/-2.1_sys) * 10(-11) cm(-2) s(-1) TeV(-1) , alpha =1.92 +/-0.03_stat +/-0.20_sys, and E_0=(6.2 +/-0.4_stat (-1.5 +2.9)_sys) TeV. We summarize the methods for the evaluation of the energy spectrum in a broad dynamical range which covers almost two energy decades, and study in detail the principal sources of systematic errors. We also discuss several important astrophysical implications of the observed result concerning the production and absorption mechanisms of gamma -ray s in the emitting jet and the modifications of the initial spectrum of TeV radiation due to its interaction with the diffuse extragalactic background radiation.

  19. UV Imaging of Extensive Air Showers at Tev Energies

    Microsoft Academic Search

    Mark Charles Chantell

    1995-01-01

    This work represents the first successful detection of a flux of cosmic gamma rays at TeV energies by an air -Cherenkov imaging telescope from observations made during periods of bright moon light. The detection is based on two years of observations made on the Crab Nebula, a known source of TeV gamma rays, during periods of bright moon light using

  20. Excited quark production at a 100 TeV VLHC

    E-print Network

    Anderson, Jacob

    2013-01-01

    I look for a dijet resonance produced by an excited quark q* in a simulated sample corresponding to 3 ab^{-1} of pp collisions at $\\sqrt{s} = 100$ TeV. Using a cut and count analysis approach I am able to explore q* masses up to 50 TeV, corresponding to a length scale of around 4 am.

  1. Excited quark production at a 100 TeV VLHC

    E-print Network

    Jacob Anderson

    2013-09-05

    I look for a dijet resonance produced by an excited quark q* in a simulated sample corresponding to 3 ab^{-1} of pp collisions at $\\sqrt{s} = 100$ TeV. Using a cut and count analysis approach I demonstrate the potential to explore q* masses up to 50 TeV, corresponding to a length scale of around 4 am.

  2. Probing microquasars with TeV neutrinos.

    PubMed

    Levinson, A; Waxman, E

    2001-10-22

    The jets associated with galactic microquasars are believed to be ejected by accreting stellar mass black holes or neutron stars. We show that if the energy content of the jets in the transient sources is dominated by electron-proton plasma, then a several hour outburst of 1-100 TeV neutrinos produced by photomeson interactions should precede the radio flares associated with major ejection events. Several neutrinos may be detected during a single outburst by a 1 km(2) detector, thereby providing a powerful probe of microquasar jet physics. PMID:11690259

  3. Measurement of the Ratio of the 3-jet to 2-jet Cross Sections in pp Collisions at sqrt(s) = 7 TeV

    SciTech Connect

    Chatrchyan, Serguei [Yerevan Physics Inst. (Armenia); et al.

    2011-08-01

    A measurement of the ratio of the inclusive 3-jet to 2-jet cross sections as a function of the total jet transverse momentum, HT, in the range 0.2 < HT < 2.5 TeV is presented. The data have been collected at a proton-proton centre-of-mass energy of 7 TeV with the CMS detector at the LHC, and correspond to an integrated luminosity of 36 inverse picobarns. Comparisons are made between the data and the predictions of different QCD-based Monte Carlo models for multijet production. All models considered in this study are consistent with the data for HT > 0.5 TeV. This measurement extends to an HT range that has not been explored before.

  4. MUON STOPPING POWER AND RANGE TABLES 10 MeV–100 TeV

    Microsoft Academic Search

    DONALD E. GROOM; Nikolai V. Mokhov; Sergei I. Striganov

    2001-01-01

    The mean stopping power for high-energy muons in matter can be described by ??dE\\/dx?=a(E)+b(E)E, where a(E) is the electronic stopping power and b(E) is the energy-scaled contribution from radiative processes—bremsstrahlung, pair production, and photonuclear interactions. a(E) and b(E) are both slowly varying functions of the muon energy E where radiative effects are important. Tables of these stopping power contributions and

  5. HEGRA search for TeV emission from BL Lacertae objects

    NASA Astrophysics Data System (ADS)

    Aharonian, F. A.; Akhperjanian, A. G.; Barrio, J. A.; Bernlöhr, K.; Bojahr, H.; Calle, I.; Contreras, J. L.; Cortina, J.; Daum, A.; Deckers, T.; Denninghoff, S.; Fonseca, V.; Gonzalez, J. C.; Heinzelmann, G.; Hemberger, M.; Hermann, G.; Heß, M.; Heusler, A.; Hofmann, W.; Hohl, H.; Horns, D.; Ibarra, A.; Kankanyan, R.; Kestel, M.; Kettler, J.; Köhler, C.; Konopelko, A.; Kornmeyer, H.; Kranich, D.; Krawczynski, H.; Lampeitl, H.; Lindner, A.; Lorenz, E.; Magnussen, N.; Mang, O.; Meyer, H.; Mirzoyan, R.; Moralejo, A.; Padilla, L.; Panter, M.; Petry, D.; Plaga, R.; Plyasheshnikov, A.; Prahl, J.; Pühlhofer, G.; Rauterberg, G.; Renault, C.; Rhode, W.; Röhring, A.; Sahakian, V.; Samorski, M.; Schmele, D.; Schilling, M.; Schröder, F.; Stamm, W.; Völk, H. J.; Wiebel-Sooth, B.; Wiedner, C.; Willmer, M.; Wittek, W.

    2000-01-01

    The HEGRA system of four Imaging Atmospheric Cherenkov Telescopes (IACTs) has been used to extensively observe extragalactic objects. In this paper we describe the search for TeV emission from nine very promising potential TeV sources, namely eight ``high frequency'' BL Lac objects (HBLs), and the object ``BL Lacertae'' itself. These objects were observed during 1997 and 1998 seasons, with total integration times ranging between one and fifteen hours. No evidence for emission was found from any of these objects and the upper limits on the integral energy flux above ~ 750 GeV are on the level of a few times 10-12 erg cm-2 s-1. For the two objects BL Lacertae and 1ES 2344+51.4, we discuss the astrophysical implications of the TeV flux upper limit, using also information from the X-ray and gamma -ray bands as measured with the All Sky Monitor (ASM) of RXTE (1.3-12.0 keV) and with EGRET (30 MeV - 20 GeV).

  6. Doubling the Sample of Jet Speed Measurements for the TeV Blazars

    NASA Astrophysics Data System (ADS)

    Piner, B. Glenn; Tiet, V. C.; Edwards, P. G.

    2011-05-01

    We report on our observations of the parsec-scale radio jet structures of five blazars that have been detected by ground-based TeV gamma-ray telescopes. These five blazars all belong to the class of High-frequency peaked BL Lac objects (HBLs), which are the most common blazar type detected at the TeV energy range. Because of their relative faintness in the radio, these HBLs are not well represented in other radio blazar surveys. Our observations consist of five epochs of Very Long Baseline Array (VLBA) imaging from 2006 to 2009, of each of the five blazars 1ES 1101-232, Markarian 180, 1ES 1218+304, PG 1553+113, and H 2356-309, at frequencies from 5 to 22 GHz. Fundamental jet properties, including the apparent jet speeds, that can be measured from these multi-epoch series of VLBA images are presented and compared with other gamma-ray blazars. This study approximately doubles the number of TeV blazars with multi-epoch parsec-scale structural measurements. This work was supported by the National Science Foundation under Grant 0707523.

  7. The Energy Spectrum of TEV Gamma Rays from the Crab Nebula as Measured by the HEGRA System of Imaging Air Cerenkov Telescopes

    NASA Astrophysics Data System (ADS)

    Aharonian, F. A.; Akhperjanian, A. G.; Barrio, J. A.; Bernlöhr, K.; Bojahr, H.; Calle, I.; Contreras, J. L.; Cortina, J.; Denninghoff, S.; Fonseca, V.; Gonzalez, J. C.; Götting, N.; Heinzelmann, G.; Hemberger, M.; Hermann, G.; Heusler, A.; Hofmann, W.; Horns, D.; Ibarra, A.; Kankanyan, R.; Kestel, M.; Kettler, J.; Köhler, C.; Kohnle, A.; Konopelko, A.; Kornmeyer, H.; Kranich, D.; Krawczynski, H.; Lampeitl, H.; Lindner, A.; Lorenz, E.; Lucarelli, F.; Magnussen, N.; Mang, O.; Meyer, H.; Mirzoyan, R.; Moralejo, A.; Padilla, L.; Panter, M.; Plaga, R.; Plyasheshnikov, A.; Prahl, J.; Pühlhofer, G.; Rauterberg, G.; Röhring, A.; Sahakian, V.; Samorski, M.; Schilling, M.; Schmele, D.; Schröder, F.; Stamm, W.; Tluczykont, M.; Völk, H. J.; Wiebel-Sooth, B.; Wiedner, C.; Willmer, M.; Wittek, W.

    2000-08-01

    The Crab Nebula has been observed by the HEGRA (High-Energy Gamma-Ray Astronomy) stereoscopic system of imaging air Cerenkov telescopes (IACTs) for a total of ~200 hr during two observational campaigns: from 1997 September to 1998 March and from 1998 August to 1999 April. The recent detailed studies of system performance give an energy threshold and an energy resolution for ?-rays of 500 GeV and ~18%, respectively. The Crab energy spectrum was measured with the HEGRA IACT system in a very broad energy range up to 20 TeV, using observations at zenith angles up to 65°. The Crab data can be fitted in the energy range from 1 to 20 TeV by a simple power law, which yields dJ?/dE=(2.79+/-0.02+/- 0.5)×10-7(E/1 TeV)-2.59+/-0.03+/-0.05 photons m-2 s-1 TeV-1. The Crab Nebula energy spectrum, as measured with the HEGRA IACT system, agrees within 15% in the absolute scale and within 0.1 units in the power-law index with the latest measurements by the Whipple, CANGAROO, and CAT groups, consistent within the statistical and systematic errors quoted by the experiments. The pure power-law spectrum of TeV ?-rays from the Crab Nebula constrains the physics parameters of the nebula environment as well as the models of photon emission.

  8. The influence of land use/land cover on climatological values of the diurnal temperature range

    SciTech Connect

    Gallo, K.P. [NOAA/NESDIS, Washington, DC (United States)] [NOAA/NESDIS, Washington, DC (United States); Easterling, D.R.; Peterson, T.C. [National Climatic Data Center, Asheville, NC (United States)] [National Climatic Data Center, Asheville, NC (United States)

    1996-11-01

    The diurnal temperature range (DTR) at weather observation stations that make up the U.S. Historical Climatology Network was evaluated with respect to the predominant land use/land cover associated with the stations within three radii intervals (100, 1000, and 10000 m) of the stations. Those stations that were associated with predominantly rural land use/land cover (LULC) usually displayed the greatest observed DTR, whereas those associated with urban related land use or land cover displayed the least observed DTR. The results of this study suggest that significant differences in the climatological DTR were observed and could be attributed to the predominant LULC associated with the observation stations. The results also suggest that changes in the pre-dominant LULC conditions, within as great as a 10,000 m radius of an observation station, could significantly influence the climatological DTR. Future changes in the predominant LULC associated with observation sites should be monitored similar to the current practice of monitoring changes in instruments or time of observation at the observations sites. 10 refs., 6 tabs.

  9. Trilateration ranging subsystem

    NASA Astrophysics Data System (ADS)

    Naito, Shuji; Akimoto, Kazuichirou; Morisaki, Masashi

    1989-03-01

    The trilateration ranging system provides data which are used in determining the orbit of the Geostationary Meteorological Satellite (GMS). The GMS system employed a trilateration ranging technique wherein a near simultaneous measurement of three range vectors are obtained from the Command and Data Acquisition Station (CDAS) and two Turn-Around Ranging Stations (TARS) which are located on Ishigaki Is., Japan, and on Crib Point, Australia.

  10. SAR ambiguous range suppression.

    SciTech Connect

    Doerry, Armin Walter

    2006-09-01

    Pulsed Radar systems suffer range ambiguities, that is, echoes from pulses transmitted at different times arrive at the receiver simultaneously. Conventional mitigation techniques are not always adequate. However, pulse modulation schemes exist that allow separation of ambiguous ranges in Doppler space, allowing easy filtering of problematic ambiguous ranges.

  11. Limited range of motion

    MedlinePLUS

    Limited range of motion is a term meaning that a joint or body part cannot move through its normal range of motion. ... A sudden loss of range of motion may be due to: Dislocation of a joint Fracture of an elbow or other joint Septic or infected ...

  12. Swift/XRT follow-up observations of TeV sources of the HESS Inner Galaxy survey

    E-print Network

    R. Landi; L. Bassani; A. Malizia; N. Masetti; J. B. Stephen; A. Bazzano; P. Ubertini; A. J. Bird; A. J. Dean

    2006-07-15

    In order to provide a firm identification of the newly discovered Galactic TeV sources, a search for counterparts in a broad band from soft X-ray to soft gamma-rays is crucial as data in these wavebands allow us to distinguish between different types of suggested models (for example leptonic versus hadronic) and, in turn, to disentangle their nature. In this paper, we report the results of a set of follow-up observations performed by the Swift/X-Ray Telescope (XRT) on seven sources recently discovered by HESS, in the range from few hundred GeV to about 10 TeV, during the inner Galaxy survey (Aharonian et al. 2006). In all, but one case, we detect X-ray sources inside or close-by the extended TeV emitting region. All these putative X-ray counterparts have accurate arc-second location and are consistent with being point sources. The main result of our search is the discovery that three of them are located at the center of the diffuse radio emission of the supernova remnants, which have been spatially associated to these TeV objects. HESS J1640-465, HESS J1834-087 and HESS J1813-178 show this evidence, suggestive of a possible Pulsar Wind Nebula association.

  13. Extending Higgs Inflation with TeV Scale New Physics

    E-print Network

    Hong-Jian He; Zhong-Zhi Xianyu

    2014-10-09

    Higgs inflation is among the most economical and predictive inflation models, although the original Higgs inflation requires tuning the Higgs or top mass away from its current experimental value by more than $2\\sigma$ deviations, and generally gives a negligible tensor-to-scalar ratio $r \\sim 10^{-3}$ (if away from the vicinity of critical point). In this work, we construct a minimal extension of Higgs inflation, by adding only two new weak-singlet particles at TeV scale, a vector-quark $T$ and a real scalar $S$. The presence of singlets $(T, S)$ significantly impact the renormalization group running of the Higgs boson self-coupling. With this, our model provides a wider range of the tensor-to-scalar ratio $r = O(0.1 - 10^{-3})$, consistent with the favored $r$ values by either BICEP2 or Planck data, while keeping the successful prediction of the spectral index $ n_s \\simeq 0.96 $. It further allows the Higgs and top masses to fully fit the collider measurements. We also discuss implications for searching the predicted TeV-scale vector-quark $T$ and scalar $S$ at the LHC and future high energy pp colliders.

  14. TeV and PeV gamma-ray emission from accreting pulsars

    SciTech Connect

    Kiraly, P.; Meszaros, P.

    1988-10-01

    A corotating jet model for the high-energy gamma-ray emission of accreting pulsars is discussed which explains the pulse, orbital, and longer time scale behavior reported in the TeV and PeV ranges for Her X-1, 4U 0115 + 63, Vela X-1, and LMC X-4. This model is compatible with the present observational and theoretical understanding of the X-ray properties of these objects, and is based on the fact that the accreting pulsars confirmed so far as high-energy sources appear to have a nearly corotating magnetosphere. 60 references.

  15. Upsilon production cross section in pp collisions at s=7TeV

    Microsoft Academic Search

    V. Khachatryan; A. M. Sirunyan; A. Tumasyan; W. Adam; T. Bergauer; M. Dragicevic; J. Erö; C. Fabjan; M. Friedl; R. Frühwirth; V. M. Ghete; J. Hammer; S. Hänsel; C. Hartl; M. Hoch; N. Hörmann; J. Hrubec; M. Jeitler; G. Kasieczka; W. Kiesenhofer; M. Krammer; D. Liko; I. Mikulec; M. Pernicka; H. Rohringer; R. Schöfbeck; J. Strauss; A. Taurok; F. Teischinger; W. Waltenberger; G. Walzel; E. Widl; C.-E. Wulz; V. Mossolov; N. Shumeiko; J. Suarez Gonzalez; L. Benucci; L. Ceard; K. Cerny; E. A. de Wolf; X. Janssen; T. Maes; L. Mucibello; S. Ochesanu; B. Roland; R. Rougny; M. Selvaggi; H. van Haevermaet; P. van Mechelen; N. van Remortel; V. Adler; S. Beauceron; F. Blekman; S. Blyweert; J. D'Hondt; O. Devroede; R. Gonzalez Suarez; A. Kalogeropoulos; J. Maes; M. Maes; S. Tavernier; W. van Doninck; P. van Mulders; G. P. van Onsem; I. Villella; O. Charaf; B. Clerbaux; G. de Lentdecker; V. Dero; A. P. R. Gay; G. H. Hammad; T. Hreus; P. E. Marage; L. Thomas; C. Vander Velde; P. Vanlaer; J. Wickens; S. Costantini; M. Grunewald; B. Klein; A. Marinov; J. McCartin; D. Ryckbosch; F. Thyssen; M. Tytgat; L. Vanelderen; P. Verwilligen; S. Walsh; N. Zaganidis; S. Basegmez; G. Bruno; J. Caudron; J. de Favereau de Jeneret; C. Delaere; P. Demin; D. Favart; A. Giammanco; G. Grégoire; J. Hollar; V. Lemaitre; J. Liao; O. Militaru; S. Ovyn; D. Pagano; A. Pin; K. Piotrzkowski; L. Quertenmont; N. Schul; N. Beliy; T. Caebergs; E. Daubie; G. A. Alves; D. de Jesus Damiao; M. E. Pol; M. H. G. Souza; W. Carvalho; E. M. da Costa; C. de Oliveira Martins; S. Fonseca de Souza; L. Mundim; H. Nogima; V. Oguri; W. L. Prado da Silva; A. Santoro; S. M. Silva Do Amaral; A. Sznajder; F. A. Dias; M. A. F. Dias; T. R. Fernandez Perez Tomei; E. M. Gregores; F. Marinho; S. F. Novaes; Sandra S. Padula; N. Darmenov; L. Dimitrov; V. Genchev; P. Iaydjiev; S. Piperov; M. Rodozov; S. Stoykova; G. Sultanov; V. Tcholakov; R. Trayanov; I. Vankov; M. Dyulendarova; R. Hadjiiska; V. Kozhuharov; L. Litov; E. Marinova; M. Mateev; B. Pavlov; P. Petkov; J. G. Bian; G. M. Chen; H. S. Chen; C. H. Jiang; D. Liang; S. Liang; J. Wang; X. Wang; Z. Wang; M. Xu; M. Yang; J. Zang; Z. Zhang; Y. Ban; S. Guo; W. Li; Y. Mao; S. J. Qian; H. Teng; L. Zhang; B. Zhu; A. Cabrera; B. Gomez Moreno; A. A. Ocampo Rios; A. F. Osorio Oliveros; J. C. Sanabria; N. Godinovic; D. Lelas; K. Lelas; R. Plestina; D. Polic; I. Puljak; Z. Antunovic; M. Dzelalija; V. Brigljevic; S. Duric; K. Kadija; S. Morovic; A. Attikis; M. Galanti; J. Mousa; C. Nicolaou; F. Ptochos; P. A. Razis; H. Rykaczewski; Y. Assran; M. A. Mahmoud; A. Hektor; M. Kadastik; K. Kannike; M. Müntel; M. Raidal; L. Rebane; V. Azzolini; P. Eerola; S. Czellar; J. Härkönen; A. Heikkinen; V. Karimäki; R. Kinnunen; J. Klem; M. J. Kortelainen; T. Lampén; K. Lassila-Perini; S. Lehti; T. Lindén; P. Luukka; T. Mäenpää; E. Tuominen; J. Tuominiemi; E. Tuovinen; D. Ungaro; L. Wendland; K. Banzuzi; A. Korpela; T. Tuuva; D. Sillou; M. Besancon; S. Choudhury; M. Dejardin; D. Denegri; B. Fabbro; J. L. Faure; F. Ferri; S. Ganjour; F. X. Gentit; A. Givernaud; P. Gras; G. Hamel de Monchenault; P. Jarry; E. Locci; J. Malcles; M. Marionneau; L. Millischer; J. Rander; A. Rosowsky; I. Shreyber; M. Titov; P. Verrecchia; S. Baffioni; F. Beaudette; L. Bianchini; M. Bluj; C. Broutin; P. Busson; C. Charlot; T. Dahms; L. Dobrzynski; R. Granier de Cassagnac; M. Haguenauer; P. Miné; C. Mironov; C. Ochando; P. Paganini; D. Sabes; R. Salerno; Y. Sirois; C. Thiebaux; B. Wyslouch; A. Zabi; J.-L. Agram; J. Andrea; A. Besson; D. Bloch; D. Bodin; J.-M. Brom; M. Cardaci; E. C. Chabert; C. Collard; E. Conte; F. Drouhin; C. Ferro; J.-C. Fontaine; D. Gelé; U. Goerlach; S. Greder; P. Juillot; M. Karim; A.-C. Le Bihan; Y. Mikami; P. van Hove; F. Fassi; D. Mercier; C. Baty; N. Beaupere; M. Bedjidian; O. Bondu; G. Boudoul; D. Boumediene; H. Brun; N. Chanon; R. Chierici; D. Contardo; P. Depasse; H. El Mamouni; A. Falkiewicz; J. Fay; S. Gascon; B. Ille; T. Kurca; T. Le Grand; M. Lethuillier; L. Mirabito; S. Perries; V. Sordini; S. Tosi; Y. Tschudi; P. Verdier; H. Xiao; V. Roinishvili; G. Anagnostou; M. Edelhoff; L. Feld; N. Heracleous; O. Hindrichs; R. Jussen; K. Klein; J. Merz; N. Mohr; A. Ostapchuk; A. Perieanu; F. Raupach; J. Sammet; S. Schael; D. Sprenger; H. Weber; M. Weber; B. Wittmer; M. Ata; W. Bender; M. Erdmann; J. Frangenheim; T. Hebbeker; A. Hinzmann; K. Hoepfner; C. Hof; T. Klimkovich; D. Klingebiel; P. Kreuzer; D. Lanske; C. Magass; G. Masetti; M. Merschmeyer; A. B. Meyer; P. Papacz; H. Pieta; H. Reithler; S. A. Schmitz; L. Sonnenschein; J. Steggemann; D. Teyssier; M. Bontenackels; M. Davids; M. Duda; G. Flügge; H. Geenen; M. Giffels; W. Haj Ahmad; D. Heydhausen; T. Kress; Y. Kuessel; A. Linn; A. Nowack; L. Perchalla; O. Pooth; J. Rennefeld; P. Sauerland; A. Stahl; M. Thomas; D. Tornier; M. H. Zoeller; M. Aldaya Martin

    2011-01-01

    The Upsilon(1S), Upsilon(2S), and Upsilon(3S) production cross sections in proton-proton collisions at s=7TeV are measured using a data sample collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 3.1ą0.3pb-1. Integrated over the rapidity range |y|Upsilon(1S)X)ˇB(Upsilon(1S)-->mu+mu-)=7.37ą0.13-0.42+0.61ą0.81nb, where the first uncertainty is statistical, the second is systematic, and the third is associated with the estimation of the

  16. Analytical representation for pp elastic scattering at 7 TeV

    SciTech Connect

    Kohara, A. K.; Ferreira, E. [Instituto de Fisica, Universidade Federal do Rio de Janeiro, C.P. 68528, Rio de Janeiro 21945-970, RJ (Brazil); Kodama, T. [Instituto de Fisica, Universidade Federal do Rio de Janeiro, C.P. 68528, Rio de Janeiro 21945-970, RJ (Brazil) and EMMI at FIAS-Frankfurt Institute for Advanced Study, Ruth-Moufang Str. 1, 60438, Frankfurt am Main (Germany)

    2013-04-15

    A precise analysis is performed of the recent pp elastic data at 7 TeV in terms of its real and imaginary amplitudes, that are fully disentangled, consistently with dispersion relations for amplitudes and for slopes. Real and imaginary slopes B{sub R} and B{sub I}, treated as independent quantities, influence the whole t-range and the determination of the total cross section {sigma}. The treatment includes extension to the universal perturbative tail at large |t|. Consistency is obtained in the values of {sigma}, ratio {rho}, B{sub R} and B{sub I} determined in forward and full-t approaches.

  17. Measurement of the inclusive jet cross section in pp collisions at ?s = 7 TeV.

    PubMed

    Chatrchyan, S; Khachatryan, V; Sirunyan, A M; Tumasyan, A; Adam, W; Bergauer, T; Dragicevic, M; Erö, J; Fabjan, C; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hänsel, S; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kiesenhofer, W; Krammer, M; Liko, D; Mikulec, I; Pernicka, M; Rohringer, H; Schöfbeck, R; Strauss, J; Taurok, A; Teischinger, F; Wagner, P; Waltenberger, W; Walzel, G; Widl, E; Wulz, C-E; Mossolov, V; Shumeiko, N; Gonzalez, J Suarez; Bansal, S; Benucci, L; De Wolf, E A; Janssen, X; Maes, J; Maes, T; Mucibello, L; Ochesanu, S; Roland, B; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Blekman, F; Blyweert, S; D'Hondt, J; Devroede, O; Suarez, R Gonzalez; Kalogeropoulos, A; Maes, M; Van Doninck, W; Van Mulders, P; Van Onsem, G P; Villella, I; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Gay, A P R; Hammad, G H; Hreus, T; Marage, P E; Thomas, L; Vander Velde, C; Vanlaer, P; Adler, V; Cimmino, A; Costantini, S; Grunewald, M; Klein, B; Lellouch, J; Marinov, A; Mccartin, J; Ryckbosch, D; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Walsh, S; Zaganidis, N; Basegmez, S; Bruno, G; Caudron, J; Ceard, L; Gil, E Cortina; De Favereau De Jeneret, J; Delaere, C; Favart, D; Giammanco, A; Grégoire, G; Hollar, J; Lemaitre, V; Liao, J; Militaru, O; Ovyn, S; Pagano, D; Pin, A; Piotrzkowski, K; Schul, N; Beliy, N; Caebergs, T; Daubie, E; Alves, G A; De Jesus Damiao, D; Pol, M E; Souza, M H G; Carvalho, W; Da Costa, E M; De Oliveira Martins, C; Fonseca De Souza, S; Mundim, L; Nogima, H; Oguri, V; Prado Da Silva, W L; Santoro, A; Silva Do Amaral, S M; Sznajder, A; Bernardes, C A; Dias, F A; Tomei, T R Fernandez Perez; Gregores, E M; Lagana, C; Marinho, F; Mercadante, P G; Novaes, S F; Padula, Sandra S; Darmenov, N; Dimitrov, L; Genchev, V; Iaydjiev, P; Piperov, S; Rodozov, M; Stoykova, S; Sultanov, G; Tcholakov, V; Trayanov, R; Vankov, I; Dimitrov, A; Hadjiiska, R; Karadzhinova, A; Kozhuharov, V; Litov, L; Mateev, M; Pavlov, B; Petkov, P; Bian, J G; Chen, G M; Chen, H S; Jiang, C H; Liang, D; Liang, S; Meng, X; Tao, J; Wang, J; Wang, J; Wang, X; Wang, Z; Xiao, H; Xu, M; Zang, J; Zhang, Z; Ban, Y; Guo, S; Guo, Y; Li, W; Mao, Y; Qian, S J; Teng, H; Zhang, L; Zhu, B; Zou, W; Cabrera, A; Moreno, B Gomez; Rios, A A Ocampo; Oliveros, A F Osorio; Sanabria, J C; Godinovic, N; Lelas, D; Lelas, K; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Brigljevic, V; Duric, S; Kadija, K; Morovic, S; Attikis, A; Galanti, M; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Finger, M; Finger, M; Assran, Y; Khalil, S; Mahmoud, M A; Hektor, A; Kadastik, M; Müntel, M; Raidal, M; Rebane, L; Azzolini, V; Eerola, P; Fedi, G; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Tuominen, E; Tuominiemi, J; Tuovinen, E; Ungaro, D; Wendland, L; Banzuzi, K; Korpela, A; Tuuva, T; Sillou, D; Besancon, M; Choudhury, S; Dejardin, M; Denegri, D; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Gentit, F X; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Shreyber, I; Titov, M; Verrecchia, P; Baffioni, S; Beaudette, F; Benhabib, L; Bianchini, L; Bluj, M; Broutin, C; Busson, P; Charlot, C; Dahms, T; Dobrzynski, L; Elgammal, S; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Mironov, C; Ochando, C; Paganini, P; Sabes, D; Salerno, R; Sirois, Y; Thiebaux, C; Wyslouch, B; Zabi, A; Agram, J-L; Andrea, J; Bloch, D; Bodin, D; Brom, J-M; Cardaci, M; Chabert, E C; Collard, C; Conte, E; Drouhin, F; Ferro, C; Fontaine, J-C; Gelé, D; Goerlach, U; Greder, S; Juillot, P; Karim, M; Le Bihan, A-C; Mikami, Y; Van Hove, P; Fassi, F; Mercier, D; Baty, C; Beauceron, S; Beaupere, N; Bedjidian, M; Bondu, O; Boudoul, G; Boumediene, D; Brun, H; Chasserat, J; Chierici, R; Contardo, D; Depasse, P; El Mamouni, H; Fay, J; Gascon, S; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Mirabito, L; Perries, S; Sordini, V; Tosi, S; Tschudi, Y; Verdier, P; Lomidze, D; Anagnostou, G; Edelhoff, M; Feld, L; Heracleous, N; Hindrichs, O; Jussen, R; Klein, K; Merz, J; Mohr, N; Ostapchuk, A; Perieanu, A; Raupach, F; Sammet, J; Schael, S; Sprenger, D; Weber, H; Weber, M; Wittmer, B; Ata, M; Bender, W; Dietz-Laursonn, E; Erdmann, M; Frangenheim, J; Hebbeker, T; Hinzmann, A; Hoepfner, K; Klimkovich, T; Klingebiel, D; Kreuzer, P; Lanske, D; Magass, C; Merschmeyer, M; Meyer, A; Papacz, P; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Steggemann, J; Teyssier, D; Bontenackels, M; Davids, M; Duda, M; Flügge, G; Geenen, H; Giffels, M; Haj Ahmad, W; Heydhausen, D; Kress, T; Kuessel, Y; Linn, A; Nowack, A; Perchalla, L; Pooth, O; Rennefeld, J; Sauerland, P; Stahl, A; Thomas, M; Tornier, D; Zoeller, M H; Martin, M Aldaya

    2011-09-23

    The inclusive jet cross section is measured in pp collisions with a center-of-mass energy of 7 TeV at the Large Hadron Collider using the CMS experiment. The data sample corresponds to an integrated luminosity of 34 pb(-1). The measurement is made for jet transverse momenta in the range 18-1100 GeV and for absolute values of rapidity less than 3. The measured cross section extends to the highest values of jet p(T) ever observed and, within the experimental and theoretical uncertainties, is generally in agreement with next-to-leading-order perturbative QCD predictions. PMID:22026843

  18. Measurement of the Inclusive Jet Cross Section in p pmacr Collisions at s=1.96TeV

    Microsoft Academic Search

    V. M. Abazov; B. Abbott; M. Abolins; B. S. Acharya; M. Adams; T. Adams; E. Aguilo; S. H. Ahn; M. Ahsan; G. D. Alexeev; G. Alkhazov; A. Alton; G. Alverson; G. A. Alves; M. Anastasoaie; L. S. Ancu; T. Andeen; S. Anderson; B. Andrieu; M. S. Anzelc; Y. Arnoud; M. Arov; M. Arthaud; A. Askew; B. Ĺsman; A. C. S. Assis Jesus; O. Atramentov; C. Autermann; C. Avila; C. Ay; F. Badaud; A. Baden; L. Bagby; B. Baldin; D. V. Bandurin; P. Banerjee; S. Banerjee; E. Barberis; A.-F. Barfuss; P. Bargassa; P. Baringer; J. Barreto; J. F. Bartlett; U. Bassler; D. Bauer; S. Beale; A. Bean; M. Begalli; M. Begel; C. Belanger-Champagne; L. Bellantoni; A. Bellavance; J. A. Benitez; S. B. Beri; G. Bernardi; R. Bernhard; I. Bertram; M. Besançon; R. Beuselinck; V. A. Bezzubov; P. C. Bhat; V. Bhatnagar; C. Biscarat; G. Blazey; F. Blekman; S. Blessing; D. Bloch; K. Bloom; A. Boehnlein; D. Boline; T. A. Bolton; G. Borissov; T. Bose; A. Brandt; R. Brock; G. Brooijmans; A. Bross; D. Brown; N. J. Buchanan; D. Buchholz; M. Buehler; V. Buescher; V. Bunichev; S. Burdin; S. Burke; T. H. Burnett; C. P. Buszello; J. M. Butler; P. Calfayan; S. Calvet; J. Cammin; W. Carvalho; B. C. K. Casey; H. Castilla-Valdez; S. Chakrabarti; D. Chakraborty; K. Chan; A. Chandra; F. Charles; E. Cheu; F. Chevallier; D. K. Cho; S. Choi; B. Choudhary; L. Christofek; T. Christoudias; S. Cihangir; D. Claes; Y. Coadou; M. Cooke; W. E. Cooper; M. Corcoran; F. Couderc; M.-C. Cousinou; S. Crépé-Renaudin; D. Cutts; M. Cwiok; H. da Motta; A. Das; G. Davies; K. de; S. J. de Jong; E. de La Cruz-Burelo; C. de Oliveira Martins; J. D. Degenhardt; F. Déliot; M. Demarteau; R. Demina; D. Denisov; S. P. Denisov; S. Desai; H. T. Diehl; M. Diesburg; A. Dominguez; H. Dong; L. V. Dudko; L. Duflot; S. R. Dugad; D. Duggan; A. Duperrin; J. Dyer; A. Dyshkant; M. Eads; D. Edmunds; J. Ellison; V. D. Elvira; Y. Enari; S. Eno; P. Ermolov; H. Evans; A. Evdokimov; V. N. Evdokimov; A. V. Ferapontov; T. Ferbel; F. Fiedler; F. Filthaut; W. Fisher; H. E. Fisk; M. Ford; M. Fortner; H. Fox; S. Fu; S. Fuess; T. Gadfort; C. F. Galea; E. Gallas; C. Garcia; A. Garcia-Bellido; V. Gavrilov; P. Gay; W. Geist; D. Gelé; C. E. Gerber; Y. Gershtein; D. Gillberg; G. Ginther; N. Gollub; B. Gómez; A. Goussiou; P. D. Grannis; H. Greenlee; Z. D. Greenwood; E. M. Gregores; G. Grenier; Ph. Gris; J.-F. Grivaz; A. Grohsjean; S. Grünendahl; M. W. Grünewald; F. Guo; J. Guo; G. Gutierrez; P. Gutierrez; A. Haas; N. J. Hadley; P. Haefner; S. Hagopian; J. Haley; I. Hall; R. E. Hall; L. Han; K. Harder; A. Harel; R. Harrington; J. M. Hauptman; R. Hauser; J. Hays; T. Hebbeker; D. Hedin; J. G. Hegeman; J. M. Heinmiller; A. P. Heinson; U. Heintz; C. Hensel; K. Herner; G. Hesketh; M. D. Hildreth; R. Hirosky; J. D. Hobbs; B. Hoeneisen; H. Hoeth; M. Hohlfeld; S. J. Hong; S. Hossain; P. Houben; Y. Hu; Z. Hubacek; V. Hynek; I. Iashvili; R. Illingworth; A. S. Ito; S. Jabeen; M. Jaffré; S. Jain; K. Jakobs; C. Jarvis; R. Jesik; K. Johns; C. Johnson; M. Johnson; A. Jonckheere; P. Jonsson; A. Juste; E. Kajfasz; A. M. Kalinin; J. M. Kalk; S. Kappler; D. Karmanov; P. A. Kasper; I. Katsanos; D. Kau; R. Kaur; V. Kaushik; R. Kehoe; S. Kermiche; N. Khalatyan; A. Khanov; A. Kharchilava; Y. M. Kharzheev; D. Khatidze; T. J. Kim; M. H. Kirby; M. Kirsch; B. Klima; J. M. Kohli; J.-P. Konrath; V. M. Korablev; A. V. Kozelov; J. Kraus; D. Krop; T. Kuhl; A. Kumar; A. Kupco; T. Kurca; J. Kvita; F. Lacroix; D. Lam; S. Lammers; G. Landsberg; P. Lebrun; W. M. Lee; A. Leflat; J. Lellouch; J. Leveque; J. Li; L. Li; Q. Z. Li; S. M. Lietti; J. G. R. Lima; D. Lincoln; J. Linnemann; V. V. Lipaev; R. Lipton; Y. Liu; Z. Liu; A. Lobodenko; M. Lokajicek; P. Love; H. J. Lubatti; R. Luna; A. L. Lyon; A. K. A. Maciel; D. Mackin; R. J. Madaras; P. Mättig; C. Magass; A. Magerkurth; P. K. Mal; H. B. Malbouisson; S. Malik; V. L. Malyshev; H. S. Mao; Y. Maravin; B. Martin; R. McCarthy; A. Melnitchouk; L. Mendoza; P. G. Mercadante; M. Merkin; K. W. Merritt; A. Meyer; J. Meyer; T. Millet; J. Mitrevski; J. Molina; R. K. Mommsen; N. K. Mondal; R. W. Moore; T. Moulik; G. S. Muanza; M. Mulders; M. Mulhearn; O. Mundal; L. Mundim; E. Nagy; M. Naimuddin; M. Narain; N. A. Naumann; H. A. Neal; J. P. Negret; P. Neustroev; H. Nilsen; H. Nogima; S. F. Novaes; T. Nunnemann; V. O'Dell; D. C. O'Neil; G. Obrant; C. Ochando; D. Onoprienko; N. Oshima; N. Osman; J. Osta; R. Otec; G. J. Otero Y Garzón; M. Owen; P. Padley; M. Pangilinan; N. Parashar; S.-J. Park; S. K. Park; J. Parsons; R. Partridge; N. Parua; A. Patwa; G. Pawloski; B. Penning; M. Perfilov; K. Peters; Y. Peters; P. Pétroff; M. Petteni; R. Piegaia; J. Piper; M.-A. Pleier; P. L. M. Podesta-Lerma; V. M. Podstavkov; Y. Pogorelov; M.-E. Pol; P. Polozov; B. G. Pope; A. V. Popov; C. Potter; W. L. Prado da Silva; H. B. Prosper; S. Protopopescu; J. Qian; A. Quadt; B. Quinn; A. Rakitine; M. S. Rangel; K. Ranjan

    2008-01-01

    We report on a measurement of the inclusive jet cross section in p pmacr collisions at a center-of-mass energy s=1.96TeV using data collected by the D0 experiment at the Fermilab Tevatron Collider corresponding to an integrated luminosity of 0.70fb-1. The data cover jet transverse momenta from 50 to 600 GeV and jet rapidities in the range -2.4 to 2.4. Detailed

  19. Rapidity and transverse momentum dependence of inclusive J \\/ ? production in pp collisions at s = 7 TeV

    Microsoft Academic Search

    K. Aamodt; A. Abrahantes Quintana; D. Adamová; A. M. Adare; M. M. Aggarwal; G. Aglieri Rinella; A. G. Agocs; A. Agostinelli; S. Aguilar Salazar; Z. Ahammed; N. Ahmad; A. Ahmad Masoodi; S. U. Ahn; A. Akindinov; D. Aleksandrov; B. Alessandro; R. Alfaro Molina; A. Alici; A. Alkin; E. Almaráz Avińa; J. Alme; T. Alt; V. Altini; I. Altsybeev; C. Andrei; A. Andronic; V. Anguelov; C. Anson; T. Anti?i?; F. Antinori; P. Antonioli; L. Aphecetche; H. Appelshäuser; N. Arbor; S. Arcelli; A. Arend; N. Armesto; R. Arnaldi; T. Aronsson; I. C. Arsene; A. Asryan; A. Augustinus; R. Averbeck; T. C. Awes; J. Äystö; M. D. Azmi; M. Bach; A. Badalŕ; Y. W. Baek; R. Bailhache; R. Bala; R. Baldini Ferroli; A. Baldisseri; A. Baldit; J. Bán; R. Barbera; F. Barile; G. G. Barnaföldi; L. S. Barnby; V. Barret; J. Bartke; M. Basile; N. Bastid; B. Bathen; G. Batigne; B. Batyunya; C. Baumann; I. G. Bearden; H. Beck; I. Belikov; F. Bellini; R. Bellwied; E. Belmont-Moreno; S. Beole; I. Berceanu; A. Bercuci; E. Berdermann; Y. Berdnikov; C. Bergmann; L. Betev; A. Bhasin; A. K. Bhati; L. Bianchi; N. Bianchi; C. Bianchin; J. Biel?ík; J. Biel?íková; A. Bilandzic; E. Biolcati; A. Blanc; F. Blanco; D. Blau; C. Blume; N. Bock; A. Bogdanov; H. Břggild; M. Bogolyubsky; L. Boldizsár; M. Bombara; C. Bombonati; H. Borel; A. Borissov; C. Bortolin; S. Bose; F. Bossú; M. Botje; S. Böttger; B. Boyer; P. Braun-Munzinger; L. Bravina; M. Bregant; T. Breitner; M. Broz; R. Brun; E. Bruna; G. E. Bruno; D. Budnikov; H. Buesching; S. Bufalino; O. Busch; Z. Buthelezi; D. Caffarri; X. Cai; H. Caines; E. Calvo Villar; P. Camerini; V. Canoa Roman; G. Cara Romeo; F. Carena; W. Carena; F. Carminati; A. Casanova Díaz; M. Caselle; J. Castillo Castellanos; V. Catanescu; C. Cavicchioli; J. Cepila; P. Cerello; B. Chang; S. Chapeland; J. L. Charvet; S. Chattopadhyay; M. Cherney; C. Cheshkov; B. Cheynis; E. Chiavassa; V. Chibante Barroso; D. D. Chinellato; P. Chochula; M. Chojnacki; P. Christakoglou; C. H. Christensen; P. Christiansen; T. Chujo; C. Cicalo; L. Cifarelli; F. Cindolo; J. Cleymans; F. Coccetti; J.-P. Coffin; G. Conesa Balbastre; Z. Conesa del Valle; P. Constantin; G. Contin; J. G. Contreras; T. M. Cormier; Y. Corrales Morales; I. Cortés Maldonado; P. Cortese; M. R. Cosentino; F. Costa; M. E. Cotallo; E. Crescio; P. Crochet; E. Cuautle; L. Cunqueiro; G. D Erasmo; A. Dainese; H. H. Dalsgaard; A. Danu; D. Das; I. Das; A. Dash; S. Dash; S. De; A. De Azevedo Moregula; G. O. V. de Barros; A. De Caro; G. de Cataldo; J. de Cuveland; A. De Falco; D. De Gruttola; N. De Marco; S. De Pasquale; R. de Rooij; E. Del Castillo Sanchez; H. Delagrange; Y. Delgado Mercado; G. Dellacasa; A. Deloff; V. Demanov; E. Dénes; A. Deppman; D. Di Bari; C. Di Giglio; S. Di Liberto; A. Di Mauro; P. Di Nezza; T. Dietel; R. Diviŕ; Ř. Djuvsland; A. Dobrin; T. Dobrowolski; I. Domínguez; B. Dönigus; O. Dordic; O. Driga; A. K. Dubey; L. Ducroux; P. Dupieux; A. K. Dutta Majumdar; M. R. Dutta Majumdar; D. Elia; D. Emschermann; H. Engel; H. A. Erdal; B. Espagnon; M. Estienne; S. Esumi; D. Evans; S. Evrard; G. Eyyubova; D. Fabris; J. Faivre; D. Falchieri; A. Fantoni; M. Fasel; R. Fearick; A. Fedunov; D. Fehlker; V. Fekete; D. Felea; G. Feofilov; A. Fernández Téllez; E. G. Ferreiro; A. Ferretti; R. Ferretti; M. A. S. Figueredo; S. Filchagin; R. Fini; D. Finogeev; F. M. Fionda; E. M. Fiore; M. Floris; S. Foertsch; P. Foka; S. Fokin; E. Fragiacomo; M. Fragkiadakis; U. Frankenfeld; U. Fuchs; F. Furano; C. Furget; M. Fusco Girard; J. J. Gaardhřje; S. Gadrat; M. Gagliardi; A. Gago; M. Gallio; P. Ganoti; C. Garabatos; E. Garcia-Solis; R. Gemme; J. Gerhard; M. Germain; C. Geuna; A. Gheata; M. Gheata; B. Ghidini; P. Ghosh; P. Gianotti; M. R. Girard; P. Giubellino; E. Gladysz-Dziadus; P. Glässel; R. Gomez; L. H. González-Trueba; P. González-Zamora; S. Gorbunov; S. Gotovac; V. Grabski; L. K. Graczykowski; R. Grajcarek; A. Grelli; A. Grigoras; C. Grigoras; V. Grigoriev; A. Grigoryan; S. Grigoryan; B. Grinyov; N. Grion; P. Gros; J. F. Grosse-Oetringhaus; J.-Y. Grossiord; F. Guber; R. Guernane; C. Guerra Gutierrez; B. Guerzoni; K. Gulbrandsen; H. Gulkanyan; T. Gunji; A. Gupta; R. Gupta; H. Gutbrod; Ř. Haaland; C. Hadjidakis; M. Haiduc; H. Hamagaki; G. Hamar; L. D. Hanratty; Z. Harmanova; J. W. Harris; M. Hartig; D. Hasegan; D. Hatzifotiadou; A. Hayrapetyan; M. Heide; M. Heinz; H. Helstrup; A. Herghelegiu; G. Herrera Corral; N. Herrmann; K. F. Hetland; B. Hicks; P. T. Hille; B. Hippolyte; T. Horaguchi; Y. Hori; P. Hristov; I. H?ivná?ová; M. Huang; S. Huber; T. J. Humanic; D. S. Hwang; R. Ilkaev; I. Ilkiv; M. Inaba; E. Incani; G. M. Innocenti; M. Ippolitov; M. Irfan; C. Ivan; A. Ivanov; M. Ivanov; V. Ivanov; A. Jacho?kowski; P. M. Jacobs; L. Jancurová; S. Jangal; M. A. Janik; R. Janik; P. H. S. Y. Jayarathna

    2011-01-01

    The ALICE experiment at the LHC has studied inclusive J\\/? production at central and forward rapidities in pp collisions at s=7 TeV. In this Letter, we report on the first results obtained detecting the J\\/? through the dilepton decay into e+e? and ?+?? pairs in the rapidity ranges |y|0.9 and 2.5y4, respectively, and with acceptance down to zero pT. In

  20. Inclusive J\\/$\\\\psi$ production in pp collisions at $\\\\sqrt{s}$ = 2.76 TeV

    Microsoft Academic Search

    B Abelev; J Adam; D Adamova; A M Adare; M M Aggarwal; G Aglieri Rinella; A G Agocs; A Agostinelli; S Aguilar Salazar; Z Ahammed; A Ahmad Masoodi; N Ahmad; S U Ahn; A Akindinov; D Aleksandrov; B Alessandro; R Alfaro Molina; A Alici; A Alkin; E Almaraz Avina; J Alme; T Alt; V Altini; S Altinpinar; I Altsybeev; C Andrei; A Andronic; V Anguelov; J Anielski; C Anson; T Anticic; F Antinori; P Antonioli; L Aphecetche; H Appelshauser; N Arbor; S Arcelli; A Arend; N Armesto; R Arnaldi; T Aronsson; I C Arsene; M Arslandok; A Asryan; A Augustinus; R Averbeck; T C Awes; J Aysto; M D Azmi; M Bach; A Badala; Y W Baek; R Bailhache; R Bala; R Baldini Ferroli; A Baldisseri; A Baldit; F Baltasar Dos Santos Pedrosa; J Ban; R C Baral; R Barbera; F Barile; G G Barnafoldi; L S Barnby; V Barret; J Bartke; M Basile; N Bastid; B Bathen; G Batigne; B Batyunya; C Baumann; I G Bearden; H Beck; I Belikov; F Bellini; R Bellwied; E Belmont-Moreno; G Bencedi; S Beole; I Berceanu; A Bercuci; Y Berdnikov; D Berenyi; C Bergmann; D Berzano; L Betev; A Bhasin; A K Bhati; L Bianchi; N Bianchi; C Bianchin; J Bielcik; J Bielcikova; A Bilandzic; S Bjelogrlic; F Blanco; D Blau; C Blume; M Boccioli; N Bock; A Bogdanov; H Boggild; M Bogolyubsky; L Boldizsar; M Bombara; H Borel; A Borissov; S Bose; F Bossu; M Botje; S Bottger; B Boyer; E Braidot; P Braun-Munzinger; M Bregant; T Breitner; T A Browning; M Broz; R Brun; E Bruna; G E Bruno; D Budnikov; H Buesching; S Bufalino; K Bugaiev; O Busch; Z Buthelezi; D Caballero Orduna; D Caffarri; X Cai; H Caines; E Calvo Villar; P Camerini; V Canoa Roman; G Cara Romeo; W Carena; F Carena; N Carlin Filho; F Carminati; C A Carrillo Montoya; A Casanova Diaz; J Castillo Castellanos; J F Castillo Hernandez; E A R Casula; V Catanescu; C Cavicchioli; J Cepila; P Cerello; B Chang; S Chapeland; J L Charvet; S Chattopadhyay; I Chawla; M Cherney; C Cheshkov; B Cheynis; E Chiavassa; V Chibante Barroso; D D Chinellato; P Chochula; M Chojnacki; P Christakoglou; C H Christensen; P Christiansen; T Chujo; S U Chung; C Cicalo; L Cifarelli; F Cindolo; J Cleymans; F Coccetti; F Colamaria; D Colella; G Conesa Balbastre; Z Conesa del Valle; P Constantin; G Contin; J G Contreras; T M Cormier; Y Corrales Morales; P Cortese; I Cortes Maldonado; M R Cosentino; F Costa; M E Cotallo; E Crescio; P Crochet; E Cruz Alaniz; E Cuautle; L Cunqueiro; A Dainese; H H Dalsgaard; A Danu; K Das; I Das; D Das; A Dash; S Dash; S De; G O V de Barros; A De Caro; G De Cataldo; J de Cuveland; A De Falco; D De Gruttola; H Delagrange; E Del Castillo Sanchez; A Deloff; V Demanov; N De Marco; E Denes; S De Pasquale; A Deppman; G D'Erasmo; R de Rooij; M A Diaz Corchero; D Di Bari; T Dietel; C Di Giglio; S Di Liberto; A Di Mauro; P Di Nezza; R Divia; O Djuvsland; A Dobrin; T Dobrowolski; I Dominguez; B Donigus; O Dordic; O Driga; A K Dubey; L Ducroux; P Dupieux; A K Dutta Majumdar; M R Dutta Majumdar; D Elia; D Emschermann; H Engel; H A Erdal; B Espagnon; M Estienne; S Esumi; D Evans; G Eyyubova; D Fabris; J Faivre; D Falchieri; A Fantoni; M Fasel; R Fearick; A Fedunov; D Fehlker; L Feldkamp; D Felea; G Feofilov; A Fernandez Tellez; E G Ferreiro; A Ferretti; R Ferretti; J Figiel; M A S Figueredo; S Filchagin; D Finogeev; F M Fionda; E M Fiore; M Floris; S Foertsch; P Foka; S Fokin; E Fragiacomo; M Fragkiadakis; U Frankenfeld; U Fuchs; C Furget; M Fusco Girard; J J Gaardhoje; M Gagliardi; A Gago; M Gallio; D R Gangadharan; P Ganoti; C Garabatos; E Garcia-Solis; I Garishvili; J Gerhard; M Germain; C Geuna; A Gheata; M Gheata; B Ghidini; P Ghosh; P Gianotti; M R Girard; P Giubellino; E Gladysz-Dziadus; P Glassel; R Gomez; S Gorbunov; A Goswami; S Gotovac; V Grabski; L K Graczykowski; R Grajcarek; A Grelli; A Grigoras; C Grigoras; V Grigoriev; A Grigoryan; S Grigoryan; B Grinyov; N Grion; P Gros; J F Grosse-Oetringhaus; J Y Grossiord; R Grosso; F Guber; R Guernane; C Guerra Gutierrez; B Guerzoni; M Guilbaud; K Gulbrandsen; T Gunji; A Gupta; R Gupta; H Gutbrod; O Haaland; C Hadjidakis; M Haiduc; H Hamagaki; G Hamar; B H Han; L D Hanratty; A Hansen; Z Harmanova; J W Harris; M Hartig; D Hasegan; D Hatzifotiadou; A Hayrapetyan; S T Heckel; M Heide; H Helstrup; A Herghelegiu; G Herrera Corral; N Herrmann; K F Hetland; B Hicks; P T Hille; B Hippolyte; T Horaguchi; Y Hori; P Hristov; I Hrivnacova; M Huang; S Huber; T J Humanic; D S Hwang; R Ichou; R Ilkaev; I Ilkiv; M Inaba; E Incani; G M Innocenti; P G Innocenti; M Ippolitov; M Irfan; C Ivan; V Ivanov; A Ivanov; M Ivanov; O Ivanytskyi; A Jacholkowski; P M Jacobs; L Jancurova; H J Jang; S Jangal; M A Janik; R Janik; P H S Y Jayarathna; S Jena; R T Jimenez Bustamante; L Jirden; P G Jones; H Jung; A Jusko; A B Kaidalov; V Kakoyan; S Kalcher; P Kalinak; M Kalisky; T Kalliokoski; A Kalweit; K Kanaki; J H Kang; V Kaplin; A Karasu Uysal; O Karavichev; T Karavicheva; E Karpechev; A Kazantsev; U Kebschull; R Keidel; M M Khan; S A Khan

    2012-01-01

    The ALICE Collaboration has measured inclusive J\\/psi production in pp collisions at a center of mass energy sqrt(s)=2.76 TeV at the LHC. The results presented in this Letter refer to the rapidity ranges |y|<0.9 and 2.5

  1. Fermi LAT observations of cosmic-ray electrons from 7 GeV to 1 TeV

    Microsoft Academic Search

    M. Ackermann; M. Ajello; W. B. Atwood; L. Baldini; J. Ballet; G. Barbiellini; D. Bastieri; B. M. Baughman; K. Bechtol; F. Bellardi; R. Bellazzini; F. Belli; B. Berenji; R. D. Blandford; E. D. Bloom; J. R. Bogart; E. Bonamente; A. W. Borgland; T. J. Brandt; J. Bregeon; A. Brez; M. Brigida; P. Bruel; R. Buehler; T. H. Burnett; G. Busetto; S. Buson; G. A. Caliandro; R. A. Cameron; P. A. Caraveo; P. Carlson; S. Carrigan; J. M. Casandjian; M. Ceccanti; C. Cecchi; Ö. Çelik; E. Charles; A. Chekhtman; C. C. Cheung; J. Chiang; A. N. Cillis; S. Ciprini; R. Claus; J. Cohen-Tanugi; J. Conrad; R. Corbet; M. Deklotz; C. D. Dermer; A. de Angelis; F. de Palma; S. W. Digel; G. di Bernardo; E. Do Couto E Silva; P. S. Drell; A. Drlica-Wagner; R. Dubois; D. Fabiani; C. Favuzzi; S. J. Fegan; P. Fortin; Y. Fukazawa; S. Funk; P. Fusco; D. Gaggero; F. Gargano; D. Gasparrini; N. Gehrels; S. Germani; N. Giglietto; P. Giommi; F. Giordano; M. Giroletti; T. Glanzman; G. Godfrey; D. Grasso; I. A. Grenier; M.-H. Grondin; J. E. Grove; S. Guiriec; M. Gustafsson; D. Hadasch; A. K. Harding; M. Hayashida; E. Hays; D. Horan; R. E. Hughes; G. Jóhannesson; A. S. Johnson; R. P. Johnson; W. N. Johnson; T. Kamae; H. Katagiri; J. Kataoka; M. Kerr; J. Knödlseder; M. Kuss; J. Lande; L. Latronico; M. Lemoine-Goumard; M. Llena Garde; F. Longo; F. Loparco; B. Lott; M. N. Lovellette; P. Lubrano; A. Makeev; M. N. Mazziotta; J. E. McEnery; J. Mehault; P. F. Michelson; M. Minuti; W. Mitthumsiri; T. Mizuno; A. A. Moiseev; C. Monte; M. E. Monzani; E. Moretti; A. Morselli; I. V. Moskalenko; S. Murgia; T. Nakamori; M. Naumann-Godo; P. L. Nolan; J. P. Norris; E. Nuss; T. Ohsugi; A. Okumura; N. Omodei; E. Orlando; J. F. Ormes; M. Ozaki; D. Paneque; J. H. Panetta; D. Parent; V. Pelassa; M. Pepe; M. Pesce-Rollins; V. Petrosian; M. Pinchera; F. Piron; T. A. Porter; S. Profumo; S. Rainň; R. Rando; E. Rapposelli; M. Razzano; A. Reimer; O. Reimer; T. Reposeur; J. Ripken; S. Ritz; L. S. Rochester; R. W. Romani; M. Roth; H. F.-W. Sadrozinski; N. Saggini; D. Sanchez; A. Sander; C. Sgrň; E. J. Siskind; P. D. Smith; G. Spandre; P. Spinelli; L. Stawarz; T. E. Stephens; M. S. Strickman; A. W. Strong; D. J. Suson; H. Tajima; H. Takahashi; T. Takahashi; T. Tanaka; J. B. Thayer; J. G. Thayer; D. J. Thompson; L. Tibaldo; O. Tibolla; D. F. Torres; G. Tosti; A. Tramacere; M. Turri; Y. Uchiyama; T. L. Usher; J. Vandenbroucke; V. Vasileiou; N. Vilchez; V. Vitale; A. P. Waite; E. Wallace; P. Wang; B. L. Winer; K. S. Wood; Z. Yang; T. Ylinen; M. Ziegler

    2010-01-01

    We present the results of our analysis of cosmic-ray electrons using about 8×106 electron candidates detected in the first 12 months on-orbit by the Fermi Large Area Telescope. This work extends our previously published cosmic-ray electron spectrum down to 7 GeV, giving a spectral range of approximately 2.5 decades up to 1 TeV. We describe in detail the analysis and

  2. First measurements of W and Z bosons at sqrt(s) = 7 TeV with the ATLAS detector

    E-print Network

    Di Simone, A; The ATLAS collaboration

    2010-01-01

    The contribution will describe the first observation of W and Z bosons produced in sqrt(s) = 7 TeV collisions. Results for both electron and muon final states are presented, corresponding to an integrated luminosity ranging from 6.4 to 7.9 nb-1, depending on the specific channel. In all cases, the number of events observed is consistent with expectations

  3. Charged particle multiplicities in pp interactions at sqrt {s} = 0.9 , 2.36, and 7 TeV

    Microsoft Academic Search

    V. Khachatryan; A. M. Sirunyan; A. Tumasyan; W. Adam; T. Bergauer; M. Dragicevic; J. Erö; C. Fabjan; M. Friedl; R. Frühwirth; V. M. Hammer; J. Hammer; S. Hänsel; C. Hartl; M. Hoch; N. Hörmann; J. Hrubec; M. Jeitler; G. Kasieczka; W. Kiesenhofer; M. Krammer; D. Liko; I. Mikulec; M. Pernicka; H. Rohringer; R. Schöfbeck; J. Strauss; A. Taurok; F. Teischinger; W. Waltenberger; G. Walzel; E. Widl; C.-E. Wulz; V. Mossolov; N. Shumeiko; J. Suarez Gonzalez; L. Benucci; L. Ceard; K. Cerny; E. A. de Wolf; X. Janssen; T. Maes; L. Mucibello; S. Ochesanu; B. Roland; R. Rougny; M. Selvaggi; H. van Haevermaet; P. van Mechelen; N. van Remortel; V. Adler; S. Beauceron; F. Blekman; S. Blyweert; J. D'Hondt; O. Devroede; A. Kalogeropoulos; J. Maes; M. Maes; S. Tavernier; W. van Doninck; P. van Mulders; G. P. van Onsem; I. Villella; O. Charaf; B. Clerbaux; G. de Lentdecker; V. Dero; A. P. R. Gay; G. H. Hammad; T. Hreus; P. E. Marage; L. Thomas; C. Vander Velde; P. Vanlaer; J. Wickens; S. Costantini; M. Grunewald; B. Klein; A. Marinov; D. Ryckbosch; F. Thyssen; M. Tytgat; L. Vanelderen; P. Verwilligen; S. Walsh; N. Zaganidis; S. Basegmez; G. Bruno; J. Caudron; J. de Favereau de Jeneret; C. Delaere; P. Demin; D. Favart; A. Giammanco; G. Grégoire; J. Hollar; V. Lemaitre; J. Liao; O. Militaru; S. Ovyn; D. Pagano; A. Pin; K. Piotrzkowski; L. Quertenmont; N. Schul; N. Beliy; T. Caebergs; E. Daubie; G. A. Alves; D. de Jesus Damiao; M. E. Pol; M. H. G. Souza; W. Carvalho; E. M. da Costa; C. de Oliveira Martins; S. Fonseca de Souza; L. Mundim; H. Nogima; V. Oguri; W. L. Prado da Silva; A. Santoro; S. M. Silva Do Amaral; A. Sznajder; F. Torres da Silva de Araujo; F. A. Dias; M. A. F. Dias; T. R. Fernandez Perez Tomei; E. M. Gregores; F. Marinho; S. F. Novaes; S. S. Padula; N. Darmenov; L. Dimitrov; V. Genchev; P. Iaydjiev; S. Piperov; M. Rodozov; S. Stoykova; G. Sultanov; V. Tcholakov; R. Trayanov; I. Vankov; M. Dyulendarova; R. Hadjiiska; V. Kozhuharov; L. Litov; E. Marinova; M. Mateev; B. Pavlov; P. Petkov; J. G. Bian; G. M. Chen; H. S. Chen; C. H. Jiang; D. Liang; S. Liang; J. Wang; X. Wang; Z. Wang; M. Yang; J. Zang; Z. Zhang; Y. Ban; S. Guo; W. Li; Y. Mao; S. J. Qian; H. Teng; B. Zhu; A. Cabrera; B. Gomez Moreno; A. A. Ocampo Rios; A. F. Osorio Oliveros; J. C. Sanabria; N. Godinovic; D. Lelas; K. Lelas; R. Plestina; D. Polic; I. Puljak; Z. Antunovic; M. Dzelalija; V. Brigljevic; S. Duric; K. Kadija; S. Morovic; A. Attikis; R. Fereos; M. Galanti; J. Mousa; C. Nicolaou; F. Ptochos; P. A. Razis; H. Rykaczewski; Y. Assran; M. A. Mahmoud; A. Hektor; M. Kadastik; K. Kannike; M. Müntel; M. Raidal; L. Rebane; V. Azzolini; P. Eerola; S. Czellar; J. Härkönen; A. Heikkinen; V. Karimäki; R. Kinnunen; J. Klem; M. J. Kortelainen; T. Lampén; K. Lassila-Perini; S. Lehti; T. Lindén; P. Luukka; T. Mäenpää; E. Tuominen; J. Tuominiemi; E. Tuovinen; D. Ungaro; L. Wendland; K. Banzuzi; A. Korpela; T. Tuuva; D. Sillou; M. Besancon; M. Dejardin; D. Denegri; B. Fabbro; J. L. Faure; F. Ferri; S. Ganjour; F. X. Gentit; A. Givernaud; P. Gras; G. Hamel de Monchenault; P. Jarry; E. Locci; J. Malcles; M. Marionneau; L. Millischer; J. Rander; A. Rosowsky; I. Shreyber; M. Titov; P. Verrecchia; S. Baffioni; F. Beaudette; L. Bianchini; M. Bluj; C. Broutin; P. Busson; C. Charlot; L. Dobrzynski; R. Granier de Cassagnac; M. Haguenauer; P. Miné; C. Mironov; C. Ochando; P. Paganini; S. Porteboeuf Sabes D; R. Salerno; Y. Sirois; C. Thiebaux; B. Wyslouch; A. Zabi; J.-L. Agram; J. Andrea; A. Besson; D. Bloch; D. Bodin; J.-M. Brom; M. Cardaci; E. C. Chabert; C. Collard; E. Conte; F. Drouhin; C. Ferro; J.-C. Fontaine; D. Gelé; U. Goerlach; S. Greder; P. Juillot; M. Karim; A.-C. Le Bihan; Y. Mikami; P. van Hove; F. Fassi; D. Mercier; C. Baty; N. Beaupere; M. Bedjidian; O. Bondu; G. Boudoul; D. Boumediene; H. Brun; N. Chanon; R. Chierici; D. Contardo; P. Depasse; H. El Mamouni; A. Falkiewicz; J. Fay; S. Gascon; B. Ille; T. Kurca; T. Le Grand; M. Lethuillier; L. Mirabito; S. Perries; V. Sordini; S. Tosi; Y. Tschudi; P. Verdier; H. Xiao; V. Roinishvili; G. Anagnostou; M. Edelhoff; L. Feld; N. Heracleous; O. Hindrichs; R. Jussen; K. Klein; J. Merz; N. Mohr; A. Ostapchuk; A. Perieanu; F. Raupach; J. Sammet; S. Schael; D. Sprenger; H. Weber; M. Weber; B. Wittmer; M. Ata; W. Bender; M. Erdmann; J. Frangenheim; T. Hebbeker; A. Hinzmann; K. Hoepfner; C. Hof; T. Klimkovich; D. Klingebiel; P. Kreuzer; D. Lanske; C. Magass; G. Masetti; M. Merschmeyer; A. Meyer; P. Papacz; H. Pieta; H. Reithler; S. A. Schmitz; L. Sonnenschein; J. Steggemann; D. Teyssier; M. Bontenackels; M. Davids; M. Duda; G. Flügge; H. Geenen; M. Giffels; W. Haj Ahmad; D. Heydhausen; T. Kress; Y. Kuessel; A. Linn; A. Nowack; L. Perchalla; O. Pooth; J. Rennefeld; P. Sauerland; A. Stahl; M. Thomas; D. Tornier; M. H. Zoeller; M. Aldaya Martin; W. Behrenhoff

    2011-01-01

    Measurements of primary charged hadron multiplicity distributions are presented for non-single-diffractive events in proton-proton collisions at centre-of-mass energies of sqrt {s} = 0.9 , 2.36, and 7 TeV, in five pseudorapidity ranges from | eta| < 0 .5 to | eta| < 2 .4. The data were collected with the minimum-bias trigger of the CMS experiment during the LHC commissioning

  4. Measurement of electrons from semileptonic heavy-flavor hadron decays in pp collisions at s=7TeV

    NASA Astrophysics Data System (ADS)

    Abelev, B.; Adam, J.; Adamová, D.; Adare, A. M.; Aggarwal, M. M.; Aglieri Rinella, G.; Agocs, A. G.; Agostinelli, A.; Aguilar Salazar, S.; Ahammed, Z.; Ahmad Masoodi, A.; Ahmad, N.; Ahn, S. A.; Ahn, S. U.; Akindinov, A.; Aleksandrov, D.; Alessandro, B.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Almaráz Avińa, E.; Alme, J.; Alt, T.; Altini, V.; Altinpinar, S.; Altsybeev, I.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Anson, C.; Anti?i?, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arbor, N.; Arcelli, S.; Arend, A.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Arslandok, M.; Asryan, A.; Augustinus, A.; Averbeck, R.; Awes, T. C.; Äystö, J.; Azmi, M. D.; Bach, M.; Badalŕ, A.; Baek, Y. W.; Bailhache, R.; Bala, R.; Baldini Ferroli, R.; Baldisseri, A.; Baldit, A.; Baltasar Dos Santos Pedrosa, F.; Bán, J.; Baral, R. C.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartke, J.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batyunya, B.; Baumann, C.; Bearden, I. G.; Beck, H.; Behera, N. K.; Belikov, I.; Bellini, F.; Bellwied, R.; Belmont-Moreno, E.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bergognon, A. A. E.; Berzano, D.; Betev, L.; Bhasin, A.; Bhati, A. K.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Biel?ík, J.; Biel?íková, J.; Bilandzic, A.; Bjelogrlic, S.; Blanco, F.; Blanco, F.; Blau, D.; Blume, C.; Boccioli, M.; Bock, N.; Böttger, S.; Bogdanov, A.; Břggild, H.; Bogolyubsky, M.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Bose, S.; Bossú, F.; Botje, M.; Boyer, B.; Braidot, E.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Browning, T. A.; Broz, M.; Brun, R.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Bugaiev, K.; Busch, O.; Buthelezi, Z.; Caballero Orduna, D.; Caffarri, D.; Cai, X.; Caines, H.; Calvo Villar, E.; Camerini, P.; Canoa Roman, V.; Cara Romeo, G.; Carena, F.; Carena, W.; Carlin Filho, N.; Carminati, F.; Carrillo Montoya, C. A.; Casanova Díaz, A.; Castillo Castellanos, J.; Castillo Hernandez, J. F.; Casula, E. A. R.; Catanescu, V.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chawla, I.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Coccetti, F.; Colamaria, F.; Colella, D.; Conesa Balbastre, G.; Conesa del Valle, Z.; Constantin, P.; Contin, G.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortese, P.; Cortés Maldonado, I.; Cosentino, M. R.; Costa, F.; Cotallo, M. E.; Crescio, E.; Crochet, P.; Cruz Alaniz, E.; Cuautle, E.; Cunqueiro, L.; Dainese, A.; Dalsgaard, H. H.; Danu, A.; Das, D.; Das, I.; Das, K.; Dash, S.; Dash, A.; De, S.; de Barros, G. O. V.; De Caro, A.; de Cataldo, G.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; Delagrange, H.; Deloff, A.; Demanov, V.; De Marco, N.; Dénes, E.; De Pasquale, S.; Deppman, A.; Erasmo, G. D.; de Rooij, R.; Diaz Corchero, M. A.; Di Bari, D.; Dietel, T.; Di Liberto, S.; Di Mauro, A.; Di Nezza, P.; Diviŕ, R.; Djuvsland, Ř.; Dobrin, A.; Dobrowolski, T.; Domínguez, I.; Dönigus, B.; Dordic, O.; Driga, O.; Dubey, A. K.; Ducroux, L.; Dupieux, P.; Dutta Majumdar, M. R.; Dutta Majumdar, A. K.; Elia, D.; Emschermann, D.; Engel, H.; Erdal, H. A.; Espagnon, B.; Estienne, M.; Esumi, S.; Evans, D.; Eyyubova, G.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fearick, R.; Fedunov, A.; Fehlker, D.; Feldkamp, L.; Felea, D.; Fenton-Olsen, B.; Feofilov, G.; Fernández Téllez, A.; Ferretti, A.; Ferretti, R.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Fusco Girard, M.; Gaardhřje, J. J.; Gagliardi, M.; Gago, A.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Garabatos, C.; Garcia-Solis, E.; Garishvili, I.; Gerhard, J.; Germain, M.; Geuna, C.; Gheata, A.; Gheata, M.; Ghidini, B.; Ghosh, P.; Di Giglio, C.; Gianotti, P.; Girard, M. R.; Giubellino, P.; Gladysz-Dziadus, E.; Glässel, P.; Gomez, R.; Gonschior, A.; Ferreiro, E. G.; González-Trueba, L. H.; González-Zamora, P.; Gorbunov, S.; Goswami, A.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Grajcarek, R.; Grelli, A.; Grigoras, C.; Grigoras, A.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Gros, P.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.

    2012-12-01

    The differential production cross section of electrons from semileptonic heavy-flavor hadron decays has been measured at midrapidity (|y|<0.5) in proton-proton collisions at s=7TeV with ALICE at the LHC. Electrons were measured in the transverse momentum range 0.5

  5. Limits on the masses of supersymmetric particles from 1.8-TeV pp-bar collisions

    Microsoft Academic Search

    F. Abe; D. Amidei; G. Apollinari; G. Ascoli; M. Atac; P. Auchincloss; A. R. Baden; A. Barbaro-Galtieri; V. E. Barnes; F. Bedeschi; S. Behrends; S. Belforte; G. Bellettini; J. Bellinger; J. Bensinger; P. Berge; S. Bertolucci; S. Bhadra; M. Binkley; R. Blair; C. Blocker; J. Bofill; A. Booth; G. Brandenburg; D. Brown; A. Byon; K. Byrum; M. Campbell; R. Carey; W. Carithers; D. Carlsmith; J. Carroll; R. Cashmore; F. Cervelli; K. Chadwick; T. Chapin; G. Chiarelli; W. Chinowsky; S. Cihangir; D. Cline; D. Connor; M. Contreras; J. Cooper; M. Cordelli; M. Curatolo; C. Day; R. DelFabbro; M. Dell’Orso; L. DeMortier; T. Devlin; D. DiBitonto; R. Diebold; F. Dittus; A. DiVirgilio; J. Elias; R. Ely; S. Errede; B. Esposito; B. Flaugher; E. Focardi; G. Foster; M. Franklin; J. Freeman; H. Frisch; Y. Fukui; A. Garfinkel; P. Giannetti; N. Giokaris; P. Giromini; L. Gladney; M. Gold; K. Goulianos; C. Grosso-Pilcher; C. Haber; S. Hahn; R. Handler; R. Harris; J. Hauser; T. Hessing; R. Hollebeek; P. Hu; B. Hubbard; P. Hurst; J. Huth; H. Jensen; R. Johnson; U. Joshi; R. Kadel; T. Kamon; S. Kanda; D. Kardelis; I. Karliner; E. Kearns; R. Kephart; P. Kesten; H. Keutelian; S. Kim; L. Kirsch; K. Kondo; U. Kruse; S. Kuhlmann; A. Laasanen; W. Li; T. Liss; N. Lockyer; F. Marchetto; R. Markeloff; L. Markosky; P. McIntyre; A. Menzione; T. Meyer; S. Mikamo; M. Miller; T. Mimashi; S. Miscetti; M. Mishina; S. Miyashita; N. Mondal; S. Mori; Y. Morita; A. Mukherjee; C. Newman-Holmes; L. Nodulman; R. Paoletti; A. Para; J. Patrick; T. Phillips; H. Piekarz; R. Plunkett; L. Pondrom; J. Proudfoot; G. Punzi; D. Quarrie; K. Ragan; G. Redlinger; J. Rhoades; F. Rimondi; L. Ristori; T. Rohaly; A. Roodman; A. Sansoni; R. Sard; V. Scarpine; P. Schlabach; E. Schmidt; P. Schoessow; M. Schub; R. Schwitters; A. Scribano; S. Segler; M. Sekiguchi; P. Sestini; M. Shapiro; M. Sheaff; M. Shibata; M. Schochet; J. Siegrist; P. Sinervo; J. Skarha; D. Smith; F. Snider; R. St. Denis; A. Stefanini; Y. Takaiwa; K. Takikawa; D. Theriot; A. Tollestrup; G. Tonelli; Y. Tsay; F. Ukegawa; D. Underwood; R. Vidal; R. Wagner; J. Walsh; T. Watts; R. Webb; T. Westhusing; S. White; A. Wicklund; H. Williams; T. Yamanouchi; A. Yamashita; K. Yasuoka; G. Yeh; J. Yoh; F. Zetti

    1989-01-01

    An analysis of pp-bar collision events at ..sqrt..s = 1.8 TeV with jets and large missing transverse energy finds no event with missing transverse energy >40 GeV. This result yields a 90%-C.L. limit on the cross section for one-jet-event production of <0.1 nb for events with the jet in the pseudorapidity range chemically bondetachemically bond<1.0 and with jet E\\/sub T\\/>52

  6. Measurement of electrons from beauty hadron decays in pp collisions at $\\\\sqrt{s}$ = 7 TeV

    Microsoft Academic Search

    Betty Abelev; Jaroslav Adam; Dagmar Adamova; Andrew Marshall Adare; Madan Aggarwal; Gianluca Aglieri Rinella; Andras Gabor Agocs; Andrea Agostinelli; Saul Aguilar Salazar; Zubayer Ahammed; Nazeer Ahmad; Arshad Ahmad; Sul-Ah Ahn; Sang Un Ahn; Alexander Akindinov; Dmitry Aleksandrov; Bruno Alessandro; Jose Ruben Alfaro Molina; Andrea Alici; Anton Alkin; Erick Jonathan Almaraz Avina; Johan Alme; Torsten Alt; Valerio Altini; Sedat Altinpinar; Igor Altsybeev; Cristian Andrei; Anton Andronic; Venelin Anguelov; Jonas Anielski; Christopher Daniel Anson; Tome Anticic; Federico Antinori; Pietro Antonioli; Laurent Bernard Aphecetche; Harald Appelshauser; Nicolas Arbor; Silvia Arcelli; Andreas Arend; Nestor Armesto; Roberta Arnaldi; Tomas Robert Aronsson; Ionut Cristian Arsene; Mesut Arslandok; Andzhey Asryan; Andre Augustinus; Ralf Peter Averbeck; Terry Awes; Juha Heikki Aysto; Mohd Danish Azmi; Matthias Jakob Bach; Angela Badala; Yong Wook Baek; Raphaelle Marie Bailhache; Renu Bala; Rinaldo Baldini Ferroli; Alberto Baldisseri; Alain Baldit; Fernando Baltasar Dos Santos Pedrosa; Jaroslav Ban; Rama Chandra Baral; Roberto Barbera; Francesco Barile; Gergely Gabor Barnafoldi; Lee Stuart Barnby; Valerie Barret; Jerzy Gustaw Bartke; Maurizio Basile; Nicole Bastid; Sumit Basu; Bastian Bathen; Guillaume Batigne; Boris Batyunya; Christoph Heinrich Baumann; Ian Gardner Bearden; Hans Beck; Nirbhay Kumar Behera; Iouri Belikov; Francesca Bellini; Rene Bellwied; Ernesto Belmont-Moreno; Gyula Bencedi; Stefania Beole; Ionela Berceanu; Alexandru Bercuci; Yaroslav Berdnikov; Daniel Berenyi; Anais Annick Erica Bergognon; Dario Berzano; Latchezar Betev; Anju Bhasin; Ashok Kumar Bhati; Jihyun Bhom; Livio Bianchi; Nicola Bianchi; Chiara Bianchin; Jaroslav Bielcik; Jana Bielcikova; Ante Bilandzic; Sandro Bjelogrlic; F Blanco; Dmitry Blau; Christoph Blume; Marco Boccioli; Nicolas Bock; Stefan Boettger; Alexey Bogdanov; Hans Boggild; Mikhail Bogolyubsky; Laszlo Boldizsar; Marek Bombara; Herve Borel; Alexander Borissov; Suvendu Nath Bose; Francesco Bossu; Michiel Botje; Elena Botta; Bruno Alexandre Boyer; Ermes Braidot; Peter Braun-Munzinger; Marco Bregant; Timo Gunther Breitner; Tyler Allen Browning; Michal Broz; Rene Brun; Elena Bruna; Giuseppe Eugenio Bruno; Dmitry Budnikov; Henner Buesching; Stefania Bufalino; Oliver Busch; Edith Zinhle Buthelezi; Diego Caballero Orduna; Davide Caffarri; Xu Cai; Helen Louise Caines; Ernesto Calvo Villar; Paolo Camerini; Veronica Canoa Roman; Giovanni Cara Romeo; Francesco Carena; Wisla Carena; Nelson Carlin Filho; Federico Carminati; Amaya Ofelia Casanova Diaz; Javier Ernesto Castillo Castellanos; Juan Francisco Castillo Hernandez; Ester Anna Rita Casula; Vasile Catanescu; Costanza Cavicchioli; Cesar Ceballos Sanchez; Jan Cepila; Piergiorgio Cerello; Beomsu Chang; Sylvain Chapeland; Jean-Luc Fernand Charvet; Subhasis Chattopadhyay; Sukalyan Chattopadhyay; Isha Chawla; Michael Gerard Cherney; Cvetan Cheshkov; Brigitte Cheynis; Vasco Miguel Chibante Barroso; David Chinellato; Peter Chochula; Marek Chojnacki; Subikash Choudhury; Panagiotis Christakoglou; Christian Holm Christensen; Peter Christiansen; Tatsuya Chujo; Suh-Urk Chung; Corrado Cicalo; Luisa Cifarelli; Federico Cindolo; Jean Willy Andre Cleymans; Fabrizio Coccetti; Fabio Colamaria; Domenico Colella; Gustavo Conesa Balbastre; Zaida Conesa del Valle; Paul Constantin; Giacomo Contin; Jesus Guillermo Contreras; Thomas Michael Cormier; Yasser Corrales Morales; Pietro Cortese; Ismael Cortes Maldonado; Mauro Rogerio Cosentino; Filippo Costa; Manuel Enrique Cotallo; Elisabetta Crescio; Philippe Crochet; Emilia Cruz Alaniz; Eleazar Cuautle; Leticia Cunqueiro; Andrea Dainese; Hans Hjersing Dalsgaard; Andrea Danu; Debasish Das; Indranil Das; Kushal Das; Ajay Kumar Dash; Sadhana Dash; Sudipan De; Gabriel de Barros; Annalisa De Caro; Giacinto de Cataldo; Jan de Cuveland; Alessandro De Falco; Daniele De Gruttola; Hugues Delagrange; Andrzej Deloff; Vyacheslav Demanov; Nora De Marco; Ervin Denes; Salvatore De Pasquale; Airton Deppman; Ginevra D'Erasmo; Raoul Stefan de Rooij; Miguel Angel Diaz Corchero; Domenico Di Bari; Thomas Dietel; Carmelo Di Giglio; Sergio Di Liberto; Antonio Di Mauro; Pasquale Di Nezza; Roberto Divia; Oeystein Djuvsland; Alexandru Florin Dobrin; Tadeusz Antoni Dobrowolski; Isabel Dominguez; Benjamin Donigus; Olja Dordic; Olga Driga; Anand Kumar Dubey; Andrea Dubla; Laurent Ducroux; Pascal Dupieux; Mihir Ranjan Dutta Majumdar; AK Dutta Majumdar; Domenico Elia; David Philip Emschermann; Heiko Engel; Barbara Erazmus; Hege Austrheim Erdal

    2012-01-01

    The production cross section of electrons from semileptonic decays of beauty hadrons was measured at mid-rapidity (|y| < 0.8) in the transverse momentum range 1 < pt < 8 Gev\\/c with the ALICE experiment at the CERN LHC in pp collisions at a center of mass energy $\\\\sqrt{s}$ = 7 TeV using an integrated luminosity of 2.2 nb$^{-1}$. Electrons from

  7. Multi-strange baryon production in pp collisions at $\\\\sqrt{s}$ = 7 TeV with ALICE

    Microsoft Academic Search

    Betty Abelev; Jaroslav Adam; Dagmar Adamova; Andrew Marshall Adare; Madan Aggarwal; Gianluca Aglieri Rinella; Andras Gabor Agocs; Andrea Agostinelli; Saul Aguilar Salazar; Zubayer Ahammed; Arshad Ahmad; Nazeer Ahmad; Sang Un Ahn; Alexander Akindinov; Dmitry Aleksandrov; Bruno Alessandro; Jose Ruben Alfaro Molina; Andrea Alici; Anton Alkin; Erick Jonathan Almaraz Avina; Johan Alme; Torsten Alt; Valerio Altini; Sedat Altinpinar; Igor Altsybeev; Cristian Andrei; Anton Andronic; Venelin Anguelov; Jonas Anielski; Christopher Daniel Anson; Tome Anticic; Federico Antinori; Pietro Antonioli; Laurent Bernard Aphecetche; Harald Appelshauser; Nicolas Arbor; Silvia Arcelli; Andreas Arend; Nestor Armesto; Roberta Arnaldi; Tomas Robert Aronsson; Ionut Cristian Arsene; Mesut Arslandok; Andzhey Asryan; Andre Augustinus; Ralf Peter Averbeck; Terry Awes; Juha Heikki Aysto; Mohd Danish Azmi; Matthias Jakob Bach; Angela Badala; Yong Wook Baek; Raphaelle Marie Bailhache; Renu Bala; Rinaldo Baldini Ferroli; Alberto Baldisseri; Alain Baldit; Fernando Baltasar Dos Santos Pedrosa; Jaroslav Ban; Rama Chandra Baral; Roberto Barbera; Francesco Barile; Gergely Gabor Barnafoldi; Lee Stuart Barnby; Valerie Barret; Jerzy Gustaw Bartke; Maurizio Basile; Nicole Bastid; Sumit Basu; Bastian Bathen; Guillaume Batigne; Boris Batyunya; Christoph Heinrich Baumann; Ian Gardner Bearden; Hans Beck; Nirbhay Kumar Behera; Iouri Belikov; Francesca Bellini; Rene Bellwied; Ernesto Belmont-Moreno; Gyula Bencedi; Stefania Beole; Ionela Berceanu; Alexandru Bercuci; Yaroslav Berdnikov; Daniel Berenyi; Dario Berzano; Latchezar Betev; Anju Bhasin; Ashok Kumar Bhati; Jihyun Bhom; Livio Bianchi; Nicola Bianchi; Chiara Bianchin; Jaroslav Bielcik; Jana Bielcikova; Ante Bilandzic; Sandro Bjelogrlic; Francesco Blanco; Dmitry Blau; Christoph Blume; Marco Boccioli; Nicolas Bock; Stefan Boettger; Alexey Bogdanov; Hans Boggild; Mikhail Bogolyubsky; Laszlo Boldizsar; Marek Bombara; Herve Borel; Alexander Borissov; Suvendu Nath Bose; Francesco Bossu; Michiel Botje; Bruno Alexandre Boyer; Ermes Braidot; Peter Braun-Munzinger; Marco Bregant; Timo Gunther Breitner; Tyler Allen Browning; Michal Broz; Rene Brun; Elena Bruna; Giuseppe Eugenio Bruno; Dmitry Budnikov; Henner Buesching; Stefania Bufalino; Kyrylo Bugaiev; Oliver Busch; Edith Zinhle Buthelezi; Diego Caballero Orduna; Davide Caffarri; Xu Cai; Helen Louise Caines; Ernesto Calvo Villar; Paolo Camerini; Veronica Canoa Roman; Giovanni Cara Romeo; Francesco Carena; Wisla Carena; Nelson Carlin Filho; Federico Carminati; Camilo Andres Carrillo Montoya; Amaya Ofelia Casanova Diaz; Javier Ernesto Castillo Castellanos; Juan Francisco Castillo Hernandez; Ester Anna Rita Casula; Vasile Catanescu; Costanza Cavicchioli; Cesar Ceballos Sanchez; Jan Cepila; Piergiorgio Cerello; Beomsu Chang; Sylvain Chapeland; Jean-Luc Fernand Charvet; Sukalyan Chattopadhyay; Subhasis Chattopadhyay; Isha Chawla; Michael Gerard Cherney; Cvetan Cheshkov; Brigitte Cheynis; Vasco Miguel Chibante Barroso; David Chinellato; Peter Chochula; Marek Chojnacki; Subikash Choudhury; Panagiotis Christakoglou; Christian Holm Christensen; Peter Christiansen; Tatsuya Chujo; Suh-Urk Chung; Corrado Cicalo; Luisa Cifarelli; Federico Cindolo; Jean Willy Andre Cleymans; Fabrizio Coccetti; Fabio Colamaria; Domenico Colella; Gustavo Conesa Balbastre; Zaida Conesa del Valle; Paul Constantin; Giacomo Contin; Jesus Guillermo Contreras; Thomas Michael Cormier; Yasser Corrales Morales; Pietro Cortese; Ismael Cortes Maldonado; Mauro Rogerio Cosentino; Filippo Costa; Manuel Enrique Cotallo; Elisabetta Crescio; Philippe Crochet; Emilia Cruz Alaniz; Eleazar Cuautle; Leticia Cunqueiro; Andrea Dainese; Hans Hjersing Dalsgaard; Andrea Danu; Debasish Das; Kushal Das; Indranil Das; Sadhana Dash; Ajay Kumar Dash; Sudipan De; Gabriel de Barros; Annalisa De Caro; Giacinto de Cataldo; Jan de Cuveland; Alessandro De Falco; Daniele De Gruttola; Hugues Delagrange; Eduardo Del Castillo Sanchez; Andrzej Deloff; Vyacheslav Demanov; Nora De Marco; Ervin Denes; Salvatore De Pasquale; Airton Deppman; Ginevra D'Erasmo; Raoul Stefan de Rooij; Miguel Angel Diaz Corchero; Domenico Di Bari; Thomas Dietel; Sergio Di Liberto; Antonio Di Mauro; Pasquale Di Nezza; Roberto Divia; Oeystein Djuvsland; Alexandru Florin Dobrin; Tadeusz Antoni Dobrowolski; Isabel Dominguez; Benjamin Donigus; Olja Dordic; Olga Driga; Anand Kumar Dubey; Laurent Ducroux; Pascal Dupieux; AK Dutta Majumdar; Mihir Ranjan Dutta Majumdar; Domenico Elia; David Philip Emschermann; Heiko Engel; Hege Austrheim Erdal; Bruno Espagnon

    2012-01-01

    A measurement of the multi-strange Xi- and Omega- baryons and their antiparticles by the ALICE experiment at the CERN Large Hadron Collider (LHC) is presented for proton-proton collisions at centre of mass energy of 7 TeV. The transverse momentum (pt) distributions were studied at mid-rapidity (|y| < 0.5) in the range of 0.6 < pt < 8.5 GeV\\/c for Xi-

  8. Measurement of the ratio of the 3-jet to 2-jet cross sections in pp collisions at ?s = 7 TeV

    E-print Network

    Wyslouch, Boleslaw

    A measurement of the ratio of the inclusive 3-jet to 2-jet cross sections as a function of the total jet transverse momentum, HT, in the range 0.2TeV is presented. The data have been collected at a proton–proton ...

  9. Measurement of pseudorapidity distributions of charged particles in proton–proton collisions at ?s = 8 TeV by the CMS and TOTEM experiments

    E-print Network

    Apyan, Aram

    Pseudorapidity ( ? ) distributions of charged particles produced in proton–proton collisions at a centre-of-mass energy of 8 TeV are measured in the ranges |?|<2.2 and 5.3<|?|<6.4 covered by the CMS and TOTEM detectors, ...

  10. Proceedings of ICRC 2001: 1 c Copernicus Gesellschaft 2001 A Search for TeV Gamma-Ray Emission from Selected AGN Using

    E-print Network

    California at Santa Cruz, University of

    such as muons, hadrons and very energetic electromagnetic particles. Due to the low cross section for photo by gamma rays incident on the atmosphere in the energy range 200 GeV to 20 TeV. Milagro, which operates-production of hadrons, one expects many more muons and hadrons at Correspondence to: Benbow (wrb@scipp.ucsc.edu) ground

  11. Azimuthal anisotropy of charged hadrons at very high p[subscript T] in PbPb collisions at 2.76 TeV with CMS

    E-print Network

    Wyslouch, Victoria

    Measurements of the azimuthal anisotropy of charged hadrons are presented for PbPb collisions at 2.76 TeV over an extended transverse momentum range up to approximately 60 GeV/c. The data were collected with the CMS detector ...

  12. Measurement of the atmospheric muon charge ratio at TeV energies with MINOS

    SciTech Connect

    Adamson, P.; Andreopoulos, C.; Arms, K.E.; Armstrong, R.; Auty, D.J.; Avvakumov, S.; Ayres, D.S.; Baller, B.; Barish, B.; Barnes, P.D., Jr.; Barr, G.; /Fermilab /University Coll. London /Rutherford /Minnesota U. /Indiana U. /Sussex U. /Stanford U., Phys. Dept. /Argonne /Caltech /LLNL, Livermore /Oxford U.

    2007-05-01

    The 5.4 kton MINOS far detector has been taking charge-separated cosmic ray muon data since the beginning of August, 2003 at a depth of 2070 m.w.e. in the Soudan Underground Laboratory, Minnesota, USA. The data with both forward and reversed magnetic field running configurations were combined to minimize systematic errors in the determination of the underground muon charge ratio. When averaged, two independent analyses find the charge ratio underground to be N{sub {mu}}+/N{sub {mu}}-=1.374{+-}0.004(stat)-0.010{sup +0.012}(sys). Using the map of the Soudan rock overburden, the muon momenta as measured underground were projected to the corresponding values at the surface in the energy range 1-7 TeV. Within this range of energies at the surface, the MINOS data are consistent with the charge ratio being energy independent at the 2 standard deviation level. When the MINOS results are compared with measurements at lower energies, a clear rise in the charge ratio in the energy range 0.3-1.0 TeV is apparent. A qualitative model shows that the rise is consistent with an increasing contribution of kaon decays to the muon charge ratio.

  13. Search for physics beyond the standard model in dilepton mass spectra in proton-proton collisions at ? = 8 TeV

    DOE PAGESBeta

    Khachatryan, Vardan

    2015-04-01

    Dimuon and dielectron mass spectra, obtained from data resulting from proton-proton collisions at 8 TeV and recorded by the CMS experiment, are used to search for both narrow resonances and broad deviations from standard model predictions. The data correspond to an integrated luminosity of 20.6 (19.7) fb?š for the dimuon (dielectron) channel. No evidence for non-standard-model physics is observed and 95% confidence level limits are set on parameters from a number of new physics models. The narrow resonance analyses exclude a Sequential Standard Model Z'SSM resonance lighter than 2.90 TeV, a superstring-inspired Z'? lighter than 2.57 TeV and Randall-Sundrummore ťKaluza-Klein gravitons with masses below 2.73, 2.35, and 1.27 TeV for couplings of 0.10, 0.05, and 0.01, respectively. A notable feature is that the limits have been calculated in a model-independent way to enable straightforward reinterpretation in any model predicting a resonance structure. The observed events are also interpreted within the framework of two non-resonant analyses: one based on a large extra dimensions model and one based on a quark and lepton compositeness model with a left-left isoscalar contact interaction. Lower limits are established on MS, the scale characterizing the onset of quantum gravity, which range from 4.9 to 3.3 TeV, where the number of additional spatial dimensions varies from 3 to 7. Similarly, lower limits on ?, the energy scale parameter for the contact interaction, are found to be 12.0 (15.2) TeV for destructive (constructive) interference in the dimuon channel and 13.5 (18.3) TeV in the dielectron channel.Ť less

  14. Measurement of Dijet Angular Distributions and Search for Quark Compositeness in pp Collisions at $sqrt{s} = 7$ TeV

    SciTech Connect

    Khachatryan, Vardan [Yerevan Physics Inst. (Armenia); et al.

    2011-05-01

    Dijet angular distributions are measured over a wide range of dijet invariant masses in pp collisions at s? = 7 TeV, at the CERN LHC. The event sample, recorded with the CMS detector, corresponds to an integrated luminosity of 36 inverse picobarns. The data are found to be in good agreement with the predictions of perturbative QCD, and yield no evidence of quark compositeness. With a modified frequentist approach, a lower limit on the contact interaction scale for left-handed quarks of Lambda = 5.6 TeV is obtained at the 95% confidence level.

  15. Measurement of three-jet production cross-sections in pp collisions at 7 TeV centre-of-mass energy using the ATLAS detector

    E-print Network

    ATLAS Collaboration

    2015-05-26

    Double-differential three-jet production cross-sections are measured in proton-proton collisions at a centre-of-mass energy of $\\sqrt{s} = 7$ TeV using the ATLAS detector at the Large Hadron Collider. The measurements are presented as a function of the three-jet mass $(m_{jjj})$, in bins of the sum of the absolute rapidity separations between the three leading jets $(|Y^\\ast|)$. Invariant masses extending up to 5 TeV are reached for $8sets of parton distribution functions, over the full kinematic range, covering almost seven orders of magnitude in the measured cross-section values.

  16. Measurement of $V^0$ production ratios in $pp$ collisions at $\\\\sqrt{s} = 0.9$ and 7\\\\,TeV

    Microsoft Academic Search

    R. Aaij; B. Adeva; M. Adinolfi; C. Adrover; A. Affolder; Z. Ajaltouni; J. Albrecht; F. Alessio; M. Alexander; G. Alkhazov; P. Alvarez Cartelle; A. A. Alves Jr; S. Amato; Y. Amhis; J Anderson; J. Anderson; R. B. Appleby; O. Aquines Gutierrez; L. Arrabito; A. Artamonov; M. Artuso; E. Aslanides; G. Auriemma; S. Bachmann; J. J. Back; D. S. Bailey; V. Balagura; W. Baldini; R. J. Barlow; C. Barschel; S. Barsuk; W. Barter; A. Bates; C. Bauer; Th. Bauer; A. Bay; I. Bediaga; K. Belous; I. Belyaev; E. Ben-Haim; M. Benayoun; G. Bencivenni; S. Benson; J. Benton; R. Bernet; M van Beuzekom; A. Bien; S. Bifani; A. Bizzeti; P. M. Bjřrnstad; T. Blake; F. Blanc; C. Blanks; J. Blouw; S. Blusk; A. Bobrov; V. Bocci; A. Bondar; N. Bondar; W. Bonivento; S. Borghi; A. Borgia; T. J. V. Bowcock; C. Bozzi; T. Brambach; J. van den Brand; J. Bressieux; S. Brisbane; M. Britsch; T. Britton; N. H. Brook; A. Büchler-Germann; A. Bursche; J. Buytaert; S. Cadeddu; J. M. Caicedo Carvajal; O. Callot; M. Calvi; M. Calvo Gomez; A. Camboni; P. Campana; A. Carbone; G. Carboni; R. Cardinale; A. Cardini; L. Carson; K. Carvalho Akiba; G. Casse; M. Cattaneo; M. Charles; Ph. Charpentier; N. Chiapolini; X. Cid Vidal; P. E. L. Clarke; M. Clemencic; H. V. Cliff; J. Closier; C. Coca; V. Coco; J. Cogan; P. Collins; F. Constantin; G. Conti; A. Contu; A. Cook; M. Coombes; G A Cowan; R. Currie; B. D'Almagne; C. D'Ambrosio; P. David; I. De Bonis; S. De Capua; M. De Cian; F. De Lorenzi; J. M. De Miranda; L. De Paula; P. De Simone; D. Decamp; M. Deckenhoff; H. Degaudenzi; M. Deissenroth; L. Del Buono; C. Deplano; O. Deschamps; F. Dettori; J. Dickens; H. Dijkstra; P. Diniz Batista; D. Dossett; A. Dovbnya; F. Dupertuis; R. Dzhelyadin; C. Eames; S. Easo; U. Egede; V. Egorychev; S. Eidelman; D. van Eijk; F. Eisele; S. Eisenhardt; R. Ekelhof; L. Eklund; Ch. Elsasser; D. G. d'Enterria; D. Esperante Pereira; L. Estčve; A. Falabella; E. Fanchini; C. Färber; G. Fardell; C. Farinelli; S. Farry; V. Fave; V. Fernandez Albor; M. Ferro-Luzzi; S. Filippov; C. Fitzpatrick; M. Fontana; F. Fontanelli; R. Forty; M. Frank; C. Frei; M. Frosini; S. Furcas; A. Gallas Torreira; D. Galli; M. Gandelman; P. Gandini; Y. Gao; J. C. Garnier; J. Garofoli; L. Garrido; C. Gaspar; N. Gauvin; M. Gersabeck; T. Gershon; Ph. Ghez; V V Gligorov; C. Göbel; D. Golubkov; A. Golutvin; A. Gomes; H. Gordon; M. Grabalosa Gándara; R. Graciani Diaz; L. A. Granado Cardoso; E. Graugés; G. Graziani; A. Grecu; S. Gregson; B. Gui; E. Gushchin; Yu. Guz; T. Gys; G. Haefeli; S. C. Haines; T. Hampson; S. Hansmann-Menzemer; R. Harji; N. Harnew; J. Harrison; P. F. Harrison; J. He; V. Heijne; K. Hennessy; P. Henrard; J. A. Hernando Morata; E. van Herwijnen; W. Hofmann; K. Holubyev; P. Hopchev; W. Hulsbergen; P. Hunt; T. Huse; R. S. Huston; D. Hutchcroft; D. Hynds; V. Iakovenko; P. Ilten; J. Imong; R. Jacobsson; M. Jahjah Hussein; E. Jans; F. Jansen; P. Jaton; B. Jean-Marie; F. Jing; M. John; D. Johnson; C. R. Jones; B. Jost; S. Kandybei; T. M. Karbach; J. Keaveney; U. Kerzel; T. Ketel; A. Keune; B. Khanji; Y. M. Kim; M. Knecht; S. Koblitz; P. Koppenburg; A. Kozlinskiy; L. Kravchuk; K. Kreplin; G. Krocker; P. Krokovny; F. Kruse; K. Kruzelecki; M. Kucharczyk; S. Kukulak; R. Kumar; T. Kvaratskheliya; V. N. La Thi; D. Lacarrere; G. Lafferty; A. Lai; D. Lambert; R. W. Lambert; E. Lanciotti; G. Lanfranchi; C. Langenbruch; T. Latham; R. Le Gac; J. van Leerdam; J.-P. Lees; R. Lefčvre; A. Leflat; J. Lefranccois; O. Leroy; T. Lesiak; L. Li; Y. Y. Li; L. Li Gioi; M. Lieng; R. Lindner; C. Linn; B. Liu; G. Liu; J. H. Lopes; E. Lopez Asamar; N. Lopez-March; J. Luisier; F. Machefert; I. V. Machikhiliyan; F. Maciuc; O. Maev; J. Magnin; A. Maier; S. Malde; R. M. D. Mamunur; G Mancinelli; N. Mangiafave; U. Marconi; R. Märki; J. Marks; G. Martellotti; A. Martens; L. Martin; A. Martín Sánchez; D. Martinez Santos; A. Massafferri; Z. Mathe; C. Matteuzzi; M. Matveev; E. Maurice; B. Maynard; A. Mazurov; G. McGregor; R. McNulty; C. Mclean; M. Meissner; M. Merk; J. Merkel; R. Messi; S. Miglioranzi; D. A. Milanes; M.-N. Minard; S. Monteil; D. Moran; P. Morawski; J. V. Morris; I. Mous; F. Muheim; K. Müller; R. Muresan; B. Muryn; M. Musy; P. Naik; T. Nakada; R. Nandakumar; J. Nardulli; M Needham; N. Neufeld; C. Nguyen-Mau; M. Nicol; S. Nies; V. Niess; N. Nikitin; A. Oblakowska-Mucha; V. Obraztsov; S. Oggero; S. Ogilvy; O. Okhrimenko; R. Oldeman; M. Orlandea; J. M. Otalora Goicochea; B. Pal; J. Palacios; M. Palutan; J. Panman; A. Papanestis; M. Pappagallo; C J Parkinson; G. Passaleva; G. D. Patel; M. Patel; S. K. Paterson; G. N. Patrick; C Pavel-Nicorescu; A. Pazos Alvarez; A. Pellegrino; G. Penso; M. Pepe Altarelli; S. Perazzini; D. L. Perego; E. Perez Trigo; A. Pérez-Calero Yzquierdo; P. Perret; M. Perrin-Terrin; G. Pessina; A Petrolini; A. Petrolini; B. Pie Valls; B. Pietrzyk; T. Pilar

    2011-01-01

    The $\\\\bar{\\\\Lambda} \\/ \\\\Lambda$ and $\\\\bar{\\\\Lambda} \\/ K^0_\\\\mathrm{S}$ production ratios are measured by the LHCb detector from $0.3\\\\,\\\\mathrm{nb}^{-1}$ of $pp$ collisions delivered by the LHC at $\\\\sqrt{s} = 0.9$\\\\,TeV and $1.8\\\\,\\\\mathrm{nb}^{-1}$ at $\\\\sqrt{s} = 7$\\\\,TeV. Both ratios are presented as a function of transverse momentum, $p_\\\\mathrm{T}$, and rapidity, $y$, in the ranges {$0.15 < p_\\\\mathrm{T} < 2.50\\\\,\\\\mathrm{GeV}\\/c$} and {$2.0

  17. Constraints on the synchrotron self-Compton mechanism of TeV gamma ray emission from the Milagro TeV source MGRO J2019+37 within the pulsar wind nebula scenario

    E-print Network

    Lab Saha; Pijushpani Bhattacharjee

    2015-05-22

    Origin of the TeV gamma ray emission from MGRO J2019+37 discovered by the Milagro experiment is investigated within the pulsar wind nebula (PWN) scenario using multiwavelength information on sources suggested to be associated with this object. We find that the synchrotron self-Compton (SSC) mechanism of origin of the observed TeV gamma rays within the PWN scenario is severely constrained by the upper limit on the radio flux from the region around MGRO J2019+37 given by the Giant Metrewave Radio Telescope (GMRT) as well as by the x-ray flux upper limit from SWIFT/XRT. Specifically, for the SSC mechanism to explain the observed TeV flux from MGRO J2019+37 without violating the GMRT and/or Swift/XRT flux upper limits in the radio and x-ray regions, respectively, the emission region must be extremely compact with the characteristic size of the emission region restricted to $\\lsim{\\mathcal O}(10^{-4}\\pc)$ for an assumed distance of $\\sim$ few kpc to the source. This is at least four orders of magnitude less than the characteristic size of the emission region typically invoked in explaining the TeV emission through the SSC mechanism within the PWN scenario. On the other hand, inverse Compton (IC) scattering of the nebular high energy electrons on the cosmic microwave background (CMB) photons can, for reasonable ranges of values of various parameters, explain the observed TeV flux without violating the GMRT and/or SWIFT/XRT flux bounds.

  18. TeV Blazars and Cosmic Infrared Background Radiation

    E-print Network

    F. A. Aharonian

    2001-12-13

    The recent developments in studies of TeV radiation from blazars are highlighted and the implications of these results for derivation of cosmologically important information about the cosmic infrared background radiation are discussed.

  19. Summary of the TeV33 working group

    SciTech Connect

    Bagley, P.P.; Bieniosek, F.M.; Colestock, P. [and others

    1996-10-01

    This summary of the TeV33 working group at Snowmass reports on work in the areas of Tevatron store parameters, the beam-beam interaction, Main Injector intensity (slip stacking), antiproton production, and electron cooling.

  20. VERITAS OBSERVATIONS OF THE TeV BINARY LS I +61{sup 0} 303 DURING 2008-2010

    SciTech Connect

    Acciari, V. A.; Benbow, W. [Fred Lawrence Whipple Observatory, Harvard-Smithsonian Center for Astrophysics, Amado, AZ 85645 (United States); Aliu, E.; Errando, M. [Department of Physics and Astronomy, Barnard College, Columbia University, NY 10027 (United States); Arlen, T. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Aune, T. [Santa Cruz Institute for Particle Physics and Department of Physics, University of California, Santa Cruz, CA 95064 (United States); Beilicke, M.; Buckley, J. H.; Bugaev, V.; Dickherber, R. [Department of Physics, Washington University, St. Louis, MO 63130 (United States); Bradbury, S. M. [School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT (United Kingdom); Byrum, K. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Cannon, A.; Collins-Hughes, E. [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Cesarini, A.; Connolly, M. P. [School of Physics, National University of Ireland Galway, University Road, Galway (Ireland); Ciupik, L. [Astronomy Department, Adler Planetarium and Astronomy Museum, Chicago, IL 60605 (United States); Cui, W. [Department of Physics, Purdue University, West Lafayette, IN 47907 (United States); Duke, C. [Department of Physics, Grinnell College, Grinnell, IA 50112-1690 (United States); Falcone, A., E-mail: awsmith@hep.anl.gov, E-mail: jholder@physics.udel.edu [Department of Astronomy and Astrophysics, 525 Davey Lab, Pennsylvania State University, University Park, PA 16802 (United States)

    2011-09-01

    We present the results of observations of the TeV binary LS I +61{sup 0} 303 with the VERITAS telescope array between 2008 and 2010, at energies above 300 GeV. In the past, both ground-based gamma-ray telescopes VERITAS and MAGIC have reported detections of TeV emission near the apastron phases of the binary orbit. The observations presented here show no strong evidence for TeV emission during these orbital phases; however, during observations taken in late 2010, significant emission was detected from the source close to the phase of superior conjunction (much closer to periastron passage) at a 5.6 standard deviation (5.6{sigma}) post-trials significance. In total, between 2008 October and 2010 December a total exposure of 64.5 hr was accumulated with VERITAS on LS I +61{sup 0} 303, resulting in an excess at the 3.3{sigma} significance level for constant emission over the entire integrated data set. The flux upper limits derived for emission during the previously reliably active TeV phases (i.e., close to apastron) are less than 5% of the Crab Nebula flux in the same energy range. This result stands in apparent contrast to previous observations by both MAGIC and VERITAS which detected the source during these phases at 10% of the Crab Nebula flux. During the two year span of observations, a large amount of X-ray data were also accrued on LS I +61{sup 0} 303 by the Swift X-ray Telescope and the Rossi X-ray Timing Explorer Proportional Counter Array. We find no evidence for a correlation between emission in the X-ray and TeV regimes during 20 directly overlapping observations. We also comment on data obtained contemporaneously by the Fermi Large Area Telescope.

  1. Charged particle multiplicities in pp interactions at sqrt(s) = 0.9, 2.36, and 7 TeV

    SciTech Connect

    Khachatryan, V. [Yerevan Physics Institute (Aremenia); et al.,

    2011-01-01

    Measurements of primary charged hadron multiplicity distributions are presented for non-single-diffractive events in proton-proton collisions at centre-of-mass energies of sqrt(s) = 0.9, 2.36, and 7 TeV, in five pseudorapidity ranges from |eta|<0.5 to |eta|<2.4. The data were collected with the minimum-bias trigger of the CMS experiment during the LHC commissioning runs in 2009 and the 7 TeV run in 2010. The multiplicity distribution at sqrt(s) = 0.9 TeV is in agreement with previous measurements. At higher energies the increase of the mean multiplicity with sqrt(s) is underestimated by most event generators. The average transverse momentum as a function of the multiplicity is also presented. The measurement of higher-order moments of the multiplicity distribution confirms the violation of Koba-Nielsen-Olesen scaling that has been observed at lower energies.

  2. Suppression of high transverse momentum D mesons in central Pb-Pb collisions at sqrt{{{s_{NN}}}}=2.76TeV

    NASA Astrophysics Data System (ADS)

    Abelev, B.; Adam, J.; Adamová, D.; Adare, A. M.; Aggarwal, M. M.; Aglieri Rinella, G.; Agocs, A. G.; Agostinelli, A.; Aguilar Salazar, S.; Ahammed, Z.; Ahmad, N.; Ahmad Masoodi, A.; Ahn, S. U.; Akindinov, A.; Aleksandrov, D.; Alessandro, B.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Almaráz Avińa, E.; Alme, J.; Alt, T.; Altini, V.; Altinpinar, S.; Altsybeev, I.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Anson, C.; Anti?i?, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arbor, N.; Arcelli, S.; Arend, A.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Arslandok, M.; Asryan, A.; Augustinus, A.; Averbeck, R.; Awes, T. C.; Äystö, J.; Azmi, M. D.; Bach, M.; Badalŕ, A.; Baek, Y. W.; Bailhache, R.; Bala, R.; Baldini Ferroli, R.; Baldisseri, A.; Baldit, A.; Baltasar Dos Santos Pedrosa, F.; Bán, J.; Baral, R. C.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartke, J.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batyunya, B.; Baumann, C.; Bearden, I. G.; Beck, H.; Belikov, I.; Bellini, F.; Bellwied, R.; Belmont-Moreno, E.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Berzano, D.; Betev, L.; Bhasin, A.; Bhati, A. K.; Bhom, J.; Bianchi, N.; Bianchi, L.; Bianchin, C.; Biel?ík, J.; Biel?íková, J.; Bilandzic, A.; Bjelogrlic, S.; Blanco, F.; Blanco, F.; Blau, D.; Blume, C.; Boccioli, M.; Bock, N.; Bogdanov, A.; Břggild, H.; Bogolyubsky, M.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Bose, S.; Bossú, F.; Botje, M.; Böttger, S.; Boyer, B.; Braidot, E.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Browning, T. A.; Broz, M.; Brun, R.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Bugaiev, K.; Busch, O.; Buthelezi, Z.; Caballero Orduna, D.; Caffarri, D.; Cai, X.; Caines, H.; Calvo Villar, E.; Camerini, P.; Canoa Roman, V.; Cara Romeo, G.; Carena, W.; Carena, F.; Carlin Filho, N.; Carminati, F.; Carrillo Montoya, C. A.; Casanova Díaz, A.; Castillo Castellanos, J.; Castillo Hernandez, J. F.; Casula, E. A. R.; Catanescu, V.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chawla, I.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Coccetti, F.; Colamaria, F.; Colella, D.; Conesa Balbastre, G.; Conesa del Valle, Z.; Constantin, P.; Contin, G.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortese, P.; Cortés Maldonado, I.; Cosentino, M. R.; Costa, F.; Cotallo, M. E.; Crescio, E.; Crochet, P.; Cruz Alaniz, E.; Cuautle, E.; Cunqueiro, L.; Dainese, A.; Dalsgaard, H. H.; Danu, A.; Das, K.; Das, I.; Das, D.; Dash, A.; Dash, S.; De, S.; de Barros, G. O. V.; De Caro, A.; de Cataldo, G.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; Delagrange, H.; Del Castillo Sanchez, E.; Deloff, A.; Demanov, V.; De Marco, N.; Dénes, E.; De Pasquale, S.; Deppman, A.; Erasmo, G. D.; de Rooij, R.; Diaz Corchero, M. A.; Di Bari, D.; Dietel, T.; Di Giglio, C.; Di Liberto, S.; Di Mauro, A.; Di Nezza, P.; Diviŕ, R.; Djuvsland, Ř.; Dobrin, A.; Dobrowolski, T.; Domínguez, I.; Dönigus, B.; Dordic, O.; Driga, O.; Dubey, A. K.; Ducroux, L.; Dupieux, P.; Dutta Majumdar, A. K.; Dutta Majumdar, M. R.; Elia, D.; Emschermann, D.; Engel, H.; Erdal, H. A.; Espagnon, B.; Estienne, M.; Esumi, S.; Evans, D.; Eyyubova, G.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fearick, R.; Fedunov, A.; Fehlker, D.; Feldkamp, L.; Felea, D.; Fenton-Olsen, B.; Feofilov, G.; Fernández Téllez, A.; Ferretti, A.; Ferretti, R.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Fragkiadakis, M.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Fusco Girard, M.; Gaardhřje, J. J.; Gagliardi, M.; Gago, A.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Garabatos, C.; Garcia-Solis, E.; Garishvili, I.; Gerhard, J.; Germain, M.; Geuna, C.; Gheata, M.; Gheata, A.; Ghidini, B.; Ghosh, P.; Gianotti, P.; Girard, M. R.; Giubellino, P.; Gladysz-Dziadus, E.; Glässel, P.; Gomez, R.; Ferreiro, E. G.; González-Trueba, L. H.; González-Zamora, P.; Gorbunov, S.; Goswami, A.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Grajcarek, R.; Grelli, A.; Grigoras, C.; Grigoras, A.; Grigoriev, V.; Grigoryan, S.; Grigoryan, A.; Grinyov, B.; Grion, N.; Gros, P.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerra Gutierrez, C.

    2012-09-01

    The production of the prompt charm mesons D0, D+, D*+, and their antiparticles, was measured with the ALICE detector in Pb-Pb collisions at the LHC, at a centre-of-mass energy sqrt{{{s_{NN}}}}=2.76TeV per nucleon-nucleon collision. The p t-differential production yields in the range 2 < p t < 16 GeV/ c at central rapidity, | y| < 0.5, were used to calculate the nuclear modification factor R AA with respect to a proton-proton reference obtained from the cross section measured at sqrt{s}=7TeV and scaled to sqrt{s}=2.76TeV . For the three meson species, R AA shows a suppression by a factor 3-4, for transverse momenta larger than 5 GeV/ c in the 20% most central collisions. The suppression is reduced for peripheral collisions.

  3. Measurement of dijet angular distributions at sqrt{s}=1.96TeV and searches for quark compositeness and extra spatial dimensions

    SciTech Connect

    Collaboration, D0

    2009-06-01

    We present the first measurement of dijet angular distributions in p{bar p} collisions at {radical}s = 1.96 TeV at the Fermilab Tevatron Collider. The measurement is based on a dataset corresponding to an integrated luminosity of 0.7 fb{sup -1} collected with the D0 detector. Dijet angular distributions have been measured over a range of dijet masses, from 0.25 TeV to above 1.1 TeV. The data are in good agreement with the predictions of perturbative QCD and are used to constrain new physics models including quark compositeness, large extra dimensions, and TeV{sup -1} scale extra dimensions. For all models considered, we set the most stringent direct limits to date.

  4. Restriction of Range

    NSDL National Science Digital Library

    Lane, David M.

    This applet, by David M. Lane of Rice University, shows how the correlation between two variables is affected by the range of the variable plotted on the X-axis. Exercises and definitions to key terms are given for students to fully explore and understand correlation and restriction of range.

  5. Underwater laser range finder

    NASA Astrophysics Data System (ADS)

    Laux, Alan; Mullen, Linda; Perez, Paul; Zege, Eleonora

    2012-06-01

    The conventional method used to detect the range to an underwater object is by sending and receiving some form of acoustic energy. However, acoustic systems have limitations in the range resolution and accuracy they can provide under certain conditions. The potential benefits of a laser-based range finder include high-directionality and covertness, speed of response, and the potential for high-precision, range accuracy. These benefits have been exploited in the above-water environment where kilometer propagation ranges are achieved with sub-meter range precision. The challenge in using optical techniques in the underwater environment is overcoming the exponential loss due to scattering and absorption. While absorption extinguishes photons, scattering redistributes the light and produces a 'clutter' signal component from the surrounding water environment. Optical modulation techniques using compact laser diode sources are being investigated to help suppress this 'clutter' and provide accurate target range information in a wide range of underwater environments. To complement the experimental efforts, a theoretical model has been developed to help optimize the system parameters and test the performance of various configurations as a function of different water optical properties. Results from laboratory water tank experiments will be discussed and compared with model predictions.

  6. Range Scheduling Aid (RSA)

    NASA Technical Reports Server (NTRS)

    Logan, J. R.; Pulvermacher, M. K.

    1991-01-01

    Range Scheduling Aid (RSA) is presented in the form of the viewgraphs. The following subject areas are covered: satellite control network; current and new approaches to range scheduling; MITRE tasking; RSA features; RSA display; constraint based analytic capability; RSA architecture; and RSA benefits.

  7. Measurement of charm production at central rapidity in proton-proton collisions at sqrt {s} = 2.76{{TeV}}

    NASA Astrophysics Data System (ADS)

    Abelev, B.; Adam, J.; Adamová, D.; Adare, A. M.; Aggarwal, M. M.; Aglieri Rinella, G.; Agocs, A. G.; Agostinelli, A.; Aguilar Salazar, S.; Ahammed, Z.; Ahmad Masoodi, A.; Ahmad, N.; Ahn, S. A.; Ahn, S. U.; Akindinov, A.; Aleksandrov, D.; Alessandro, B.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Almaráz Avińa, E.; Alme, J.; Alt, T.; Altini, V.; Altinpinar, S.; Altsybeev, I.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Anson, C.; Anti?i?, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arbor, N.; Arcelli, S.; Arend, A.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Arslandok, M.; Asryan, A.; Augustinus, A.; Averbeck, R.; Awes, T. C.; Äystö, J.; Azmi, M. D.; Bach, M.; Badalŕ, A.; Baek, Y. W.; Bailhache, R.; Bala, R.; Baldini Ferroli, R.; Baldisseri, A.; Baldit, A.; Baltasar Dos Santos Pedrosa, F.; Bán, J.; Baral, R. C.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartke, J.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batyunya, B.; Baumann, C.; Bearden, I. G.; Beck, H.; Belikov, I.; Bellini, F.; Bellwied, R.; Belmont-Moreno, E.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bergognon, A. A. E.; Berzano, D.; Betev, L.; Bhasin, A.; Bhati, A. K.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Biel?ík, J.; Biel?íková, J.; Bilandzic, A.; Bjelogrlic, S.; Blanco, F.; Blanco, F.; Blau, D.; Blume, C.; Boccioli, M.; Bock, N.; Böttger, S.; Bogdanov, A.; Břggild, H.; Bogolyubsky, M.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Bose, S.; Bossú, F.; Botje, M.; Boyer, B.; Braidot, E.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Browning, T. A.; Broz, M.; Brun, R.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Bugaiev, K.; Busch, O.; Buthelezi, Z.; Caballero Orduna, D.; Caffarri, D.; Cai, X.; Caines, H.; Calvo Villar, E.; Camerini, P.; Canoa Roman, V.; Cara Romeo, G.; Carena, W.; Carena, F.; Carlin Filho, N.; Carminati, F.; Carrillo Montoya, C. A.; Casanova Díaz, A.; Castillo Castellanos, J.; Castillo Hernandez, J. F.; Casula, E. A. R.; Catanescu, V.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chawla, I.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Coccetti, F.; Colamaria, F.; Colella, D.; Conesa Balbastre, G.; Conesa del Valle, Z.; Constantin, P.; Contin, G.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortese, P.; Cortés Maldonado, I.; Cosentino, M. R.; Costa, F.; Cotallo, M. E.; Crescio, E.; Crochet, P.; Cruz Alaniz, E.; Cuautle, E.; Cunqueiro, L.; Dainese, A.; Dalsgaard, H. H.; Danu, A.; Das, D.; Das, I.; Das, K.; Dash, S.; Dash, A.; De, S.; de Barros, G. O. V.; De Caro, A.; de Cataldo, G.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; Delagrange, H.; Deloff, A.; Demanov, V.; De Marco, N.; Dénes, E.; De Pasquale, S.; Deppman, A.; Erasmo, G. D.; de Rooij, R.; Diaz Corchero, M. A.; Di Bari, D.; Dietel, T.; Di Liberto, S.; Di Mauro, A.; Di Nezza, P.; Diviŕ, R.; Djuvsland, Ř.; Dobrin, A.; Dobrowolski, T.; Domínguez, I.; Dönigus, B.; Dordic, O.; Driga, O.; Dubey, A. K.; Ducroux, L.; Dupieux, P.; Dutta Majumdar, M. R.; Dutta Majumdar, A. K.; Elia, D.; Emschermann, D.; Engel, H.; Erdal, H. A.; Espagnon, B.; Estienne, M.; Esumi, S.; Evans, D.; Eyyubova, G.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fearick, R.; Fedunov, A.; Fehlker, D.; Feldkamp, L.; Felea, D.; Fenton-Olsen, B.; Feofilov, G.; Fernández Téllez, A.; Ferretti, R.; Ferretti, A.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Fusco Girard, M.; Gaardhřje, J. J.; Gagliardi, M.; Gago, A.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Garabatos, C.; Garcia-Solis, E.; Garishvili, I.; Gerhard, J.; Germain, M.; Geuna, C.; Gheata, M.; Gheata, A.; Ghidini, B.; Ghosh, P.; Gianotti, P.; Girard, M. R.; Giubellino, P.; Gladysz-Dziadus, E.; Glässel, P.; Gomez, R.; Gonschior, A.; Ferreiro, E. G.; González-Trueba, L. H.; González-Zamora, P.; Gorbunov, S.; Goswami, A.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Grajcarek, R.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Gros, P.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerra Gutierrez, C.; Guerzoni, B.

    2012-07-01

    The p t-differential production cross sections of the prompt (B feed-down subtracted) charmed mesons D0, D+, and D*+ in the rapidity range | y| < 0 .5, and for transverse momentum 1 < p t < 12 GeV /c, were measured in proton-proton collisions at sqrt {s} = 2.76{{TeV}} with the ALICE detector at the Large Hadron Collider. The analysis exploited the hadronic decays D0 ? K-?+, D+ ? K-?+?+, D*+ ? D0?+, and their charge conjugates, and was performed on a {{L}_{{int }}} = 1.1{{n}}{{{b}}^{{ - 1}}} event sample collected in 2011 with a minimum-bias trigger. The total charm production cross section at sqrt {s} = 2.76{{TeV}} and at 7 TeV was evaluated by extrapolating to the full phase space the p t-differential production cross sections at sqrt {s} = 2.76{{TeV}} and our previous measurements at sqrt {s} = 7{{TeV}} . The results were compared to existing measurements and to perturbative-QCD calculations. The fraction of {{c}}overline {{d}} D mesons produced in a vector state was also determined.[Figure not available: see fulltext.

  8. Search for ttŻ resonances in the lepton plus jets final state with ATLAS using 4.7 fb?š of pp collisions at ?s=7 TeV

    DOE PAGESBeta

    Aad, G.; Abajyan, T.; Abbott, B.; Abdallah, J.; Abdel Khalek, S.; Abdelalim, A. A.; Abdinov, O.; Aben, R.; Abi, B.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Addy, T. N.; Adelman, J.; Adomeit, S.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J. A.; Agustoni, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahsan, M.; Aielli, G.; Ĺkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Alam, M. A.; Albert, J.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Allbrooke, B. M. M.; Allison, L. J.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alonso, F.; Altheimer, A.; Alvarez Gonzalez, B.; Alviggi, M. G.; Amako, K.; Amelung, C.; Ammosov, V. V.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Anduaga, X. S.; Angelidakis, S.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Arfaoui, S.; Arguin, J-F.; Argyropoulos, S.; Arik, E.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnal, V.; Artamonov, A.; Artoni, G.; Arutinov, D.; Asai, S.; Ask, S.; Ĺsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Astbury, A.; Atkinson, M.; Auerbach, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Avolio, G.; Axen, D.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Baccaglioni, G.; Bacci, C.; Bach, A. M.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Backus Mayes, J.; Badescu, E.; Bagnaia, P.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, S.; Balek, P.; Balli, F.; Banas, E.; Banerjee, P.; Banerjee, Sw.; Banfi, D.; Bangert, A.; Bansal, V.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarăes da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartsch, V.; Basye, A.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battaglia, A.; Battistin, M.; Bauer, F.; Bawa, H. S.; Beale, S.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, S.; Beckingham, M.; Becks, K. H.; Beddall, A. J.; Beddall, A.; Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behar Harpaz, S.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellomo, M.; Belloni, A.; Beloborodova, O.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernat, P.; Bernhard, R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Bertella, C.; Bertin, A.; Bertolucci, F.; Besana, M. I.; Besjes, G. J.; Besson, N.; Bethke, S.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Bierwagen, K.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bittner, B.; Black, C. W.; Black, J. E.; Black, K. M.; Blair, R. E.; Blanchard, J.-B.; Blazek, T.; Bloch, I.; Blocker, C.; Blocki, J.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Boddy, C. R.; Boehler, M.; Boek, J.; Boek, T. T.; Boelaert, N.; Bogaerts, J. A.; Bogdanchikov, A.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Bolnet, N. M.; Bomben, M.; Bona, M.; Boonekamp, M.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borri, M.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boutouil, S.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozovic-Jelisavcic, I.; Bracinik, J.; Branchini, P.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brazzale, S. F.; Brelier, B.; Bremer, J.; Brendlinger, K.; Brenner, R.; Bressler, S.; Bristow, T. M.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Broggi, F.; Bromberg, C.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brown, G.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Bryngemark, L.

    2013-07-01

    A search for new particles that decay into top quark pairs (ttŻ) is performed with the ATLAS experiment at the LHC using an integrated luminosity of 4.7 fb?š of proton–proton (pp ) collision data collected at a center-of-mass energy ?s =7 TeV . In the ttŻ ?WbWb decay, the lepton plus jets final state is used, where one W boson decays leptonically and the other hadronically. The ttŻ system is reconstructed using both small-radius and large-radius jets, the latter being supplemented by a jet substructure analysis. A search for local excesses in the number of data events compared to the Standard Model expectation in the ttŻ invariant mass spectrum is performed. No evidence for a ttŻ resonance is found and 95% credibility-level limits on the production rate are determined for massive states predicted in two benchmark models. The upper limits on the cross section times branching ratio of a narrow Z' resonance range from 5.1 pb for a boson mass of 0.5 TeV to 0.03 pb for a mass of 3 TeV. A narrow leptophobic topcolor Z' resonance with a mass below 1.74 TeV is excluded. Limits are also derived for a broad color-octet resonance with ?/m=15.3% . A Kaluza–Klein excitation of the gluon in a Randall–Sundrum model is excluded for masses below 2.07 TeV.

  9. High Dynamic Range Processing

    NASA Astrophysics Data System (ADS)

    Crawford, Ken

    Deep sky astronomical Images are produced by capturing and building up very faint signals over an extended period of time. Although faint, some objects produce a wide range of signal intensity between the very brightest and the dimmest parts of an image. For instance; capturing bright detail of the surface of the Sun and displaying it alongside the exceedingly fainter prominences on the edge of the solar disk demands expert management of the very high dynamic range of brightness values. Currently, modern digital cameras can manage broad dynamic range in terrestrial scenes by taking several images at different exposure settings and then combining these exposures to make a coherent image. High Dynamic Range (HDR) imaging and processing are now the catch terms that refer to imaging and processing techniques that effectively manage high dynamic range data to produce images with high visual and informational impact.

  10. Home range and travels

    USGS Publications Warehouse

    Stickel, L.F.

    1968-01-01

    The concept of home range was expressed by Seton (1909) in the term 'home region,' which Burr (1940, 1943) clarified with a definition of home range and exemplified in a definitive study of Peromyscus in the field. Burt pointed out the ever-changing characteristics of home-range area and the consequent absence of boundaries in the usual sense--a finding verified by investigators thereafter. In the studies summarized in this paper, sizes of home ranges of Peromyscus varied within two magnitudes, approximately from 0.1 acre to ten acres, in 34 studies conducted in a variety of habitats from the seaside dunes of Florida to the Alaskan forests. Variation in sizes of home ranges was correlated with both environmental and physiological factors; with habitat it was conspicuous, both in the same and different regions. Food supply also was related to size of home range, both seasonally and in relation to habitat. Home ranges generally were smallest in winter and largest in spring, at the onset of the breeding season. Activity and size also were affected by changes in weather. Activity was least when temperatures were low and nights were bright. Effects of rainfall were variable. Sizes varied according to sex and age; young mice remained in the parents' range until they approached maturity, when they began to travel more widely. Adult males commonly had larger home ranges than females, although there were a number of exceptions. An inverse relationship between population density and size of home range was shown in several studies and probably is the usual relationship. A basic need for activity and exploration also appeared to influence size of home range. Behavior within the home range was discussed in terms of travel patterns, travels in relation to home sites and refuges, territory, and stability of size of home range. Travels within the home range consisted of repeated use of well-worn trails to sites of food, shelter, and refuge, plus more random exploratory travels. Peromyscus generally used and maintained several or many different home sites and refuges in various parts of their home ranges, and frequently shifted about so that their principal activities centered on different sets of holes at different times. Once established, many Peromyscus remained in the same general area for a long time, perhaps for the duration of their lives. Extent of their travels in different directions and intensity of use of different portions of their home ranges varied within a general area in response to habitat changes, loss of neighbors, or other factors. Various authors have obtained both direct and indirect evidence of territoriality, in some degree, among certain species of Peromyscus. Young mice dispersed from their birth sites to establish home ranges of their own. Adults also sometimes left their home areas; some re-established elsewhere; others returned after exploratory travels. Most populations contained a certain proportion of transients; these may have been wanderers or individuals exploring out from established home ranges or seeking new ones. When areas were depopulated by removal trapping, other Peromyscus invaded. Invasion rates generally followed seasonal trends of reproduction and population density. Peromyscus removed from their home areas and released elsewhere returned home from various distances, but fewer returned from greater distances than from nearby; speed of return increased with successive trials. The consensus from present evidence is that ho-ming is made possible by a combination of random wandering and familiarity with a larger area than the day-to-day range. Records of juvenile wanderings during the dispersal phase and of adult explorations very nearly encompassed the distances over which any substantial amount of successful homing occurred. Methods of measuring sizes of home ranges and the limitations of these measurements were discussed in brief synopsis. It was co

  11. Centrality Dependence of Charged Particle Production at Large Transverse Momentum in Pb--Pb Collisions at $\\\\sqrt{s_{\\\\rm{NN}}} = 2.76$ TeV

    Microsoft Academic Search

    Betty Abelev; Jaroslav Adam; Dagmar Adamova; Andrew Marshall Adare; Madan Aggarwal; Gianluca Aglieri Rinella; Andras Gabor Agocs; Andrea Agostinelli; Saul Aguilar Salazar; Zubayer Ahammed; Nazeer Ahmad; Arshad Ahmad; Sul-Ah Ahn; Sang Un Ahn; Alexander Akindinov; Dmitry Aleksandrov; Bruno Alessandro; Jose Ruben Alfaro Molina; Andrea Alici; Anton Alkin; Erick Jonathan Almaraz Avina; Johan Alme; Torsten Alt; Valerio Altini; Sedat Altinpinar; Igor Altsybeev; Cristian Andrei; Anton Andronic; Venelin Anguelov; Jonas Anielski; Christopher Daniel Anson; Tome Anticic; Federico Antinori; Pietro Antonioli; Laurent Bernard Aphecetche; Harald Appelshauser; Nicolas Arbor; Silvia Arcelli; Andreas Arend; Nestor Armesto; Roberta Arnaldi; Tomas Robert Aronsson; Ionut Cristian Arsene; Mesut Arslandok; Andzhey Asryan; Andre Augustinus; Ralf Peter Averbeck; Terry Awes; Juha Heikki Aysto; Mohd Danish Azmi; Matthias Jakob Bach; Angela Badala; Yong Wook Baek; Raphaelle Marie Bailhache; Renu Bala; Rinaldo Baldini Ferroli; Alberto Baldisseri; Alain Baldit; Fernando Baltasar Dos Santos Pedrosa; Jaroslav Ban; Rama Chandra Baral; Roberto Barbera; Francesco Barile; Gergely Gabor Barnafoldi; Lee Stuart Barnby; Valerie Barret; Jerzy Gustaw Bartke; Maurizio Basile; Nicole Bastid; Sumit Basu; Bastian Bathen; Guillaume Batigne; Boris Batyunya; Christoph Heinrich Baumann; Ian Gardner Bearden; Hans Beck; Nirbhay Kumar Behera; Iouri Belikov; Francesca Bellini; Rene Bellwied; Ernesto Belmont-Moreno; Gyula Bencedi; Stefania Beole; Ionela Berceanu; Alexandru Bercuci; Yaroslav Berdnikov; Daniel Berenyi; Anais Annick Erica Bergognon; Dario Berzano; Latchezar Betev; Anju Bhasin; Ashok Kumar Bhati; Jihyun Bhom; Livio Bianchi; Nicola Bianchi; Chiara Bianchin; Jaroslav Bielcik; Jana Bielcikova; Ante Bilandzic; Sandro Bjelogrlic; F Blanco; Dmitry Blau; Christoph Blume; Marco Boccioli; Nicolas Bock; Stefan Boettger; Alexey Bogdanov; Hans Boggild; Mikhail Bogolyubsky; Laszlo Boldizsar; Marek Bombara; Herve Borel; Alexander Borissov; Suvendu Nath Bose; Francesco Bossu; Michiel Botje; Elena Botta; Bruno Alexandre Boyer; Ermes Braidot; Peter Braun-Munzinger; Marco Bregant; Timo Gunther Breitner; Tyler Allen Browning; Michal Broz; Rene Brun; Elena Bruna; Giuseppe Eugenio Bruno; Dmitry Budnikov; Henner Buesching; Stefania Bufalino; Oliver Busch; Edith Zinhle Buthelezi; Diego Caballero Orduna; Davide Caffarri; Xu Cai; Helen Louise Caines; Ernesto Calvo Villar; Paolo Camerini; Veronica Canoa Roman; Giovanni Cara Romeo; Francesco Carena; Wisla Carena; Nelson Carlin Filho; Federico Carminati; Amaya Ofelia Casanova Diaz; Javier Ernesto Castillo Castellanos; Juan Francisco Castillo Hernandez; Ester Anna Rita Casula; Vasile Catanescu; Costanza Cavicchioli; Cesar Ceballos Sanchez; Jan Cepila; Piergiorgio Cerello; Beomsu Chang; Sylvain Chapeland; Jean-Luc Fernand Charvet; Subhasis Chattopadhyay; Sukalyan Chattopadhyay; Isha Chawla; Michael Gerard Cherney; Cvetan Cheshkov; Brigitte Cheynis; Vasco Miguel Chibante Barroso; David Chinellato; Peter Chochula; Marek Chojnacki; Subikash Choudhury; Panagiotis Christakoglou; Christian Holm Christensen; Peter Christiansen; Tatsuya Chujo; Suh-Urk Chung; Corrado Cicalo; Luisa Cifarelli; Federico Cindolo; Jean Willy Andre Cleymans; Fabrizio Coccetti; Fabio Colamaria; Domenico Colella; Gustavo Conesa Balbastre; Zaida Conesa del Valle; Paul Constantin; Giacomo Contin; Jesus Guillermo Contreras; Thomas Michael Cormier; Yasser Corrales Morales; Pietro Cortese; Ismael Cortes Maldonado; Mauro Rogerio Cosentino; Filippo Costa; Manuel Enrique Cotallo; Elisabetta Crescio; Philippe Crochet; Emilia Cruz Alaniz; Eleazar Cuautle; Leticia Cunqueiro; Andrea Dainese; Hans Hjersing Dalsgaard; Andrea Danu; Debasish Das; Indranil Das; Kushal Das; Ajay Kumar Dash; Sadhana Dash; Sudipan De; Gabriel de Barros; Annalisa De Caro; Giacinto de Cataldo; Jan de Cuveland; Alessandro De Falco; Daniele De Gruttola; Hugues Delagrange; Andrzej Deloff; Vyacheslav Demanov; Nora De Marco; Ervin Denes; Salvatore De Pasquale; Airton Deppman; Ginevra D'Erasmo; Raoul Stefan de Rooij; Miguel Angel Diaz Corchero; Domenico Di Bari; Thomas Dietel; Carmelo Di Giglio; Sergio Di Liberto; Antonio Di Mauro; Pasquale Di Nezza; Roberto Divia; Oeystein Djuvsland; Alexandru Florin Dobrin; Tadeusz Antoni Dobrowolski; Isabel Dominguez; Benjamin Donigus; Olja Dordic; Olga Driga; Anand Kumar Dubey; Andrea Dubla; Laurent Ducroux; Pascal Dupieux; Mihir Ranjan Dutta Majumdar; AK Dutta Majumdar; Domenico Elia; David Philip Emschermann; Heiko Engel; Barbara Erazmus; Hege Austrheim Erdal

    2012-01-01

    The inclusive transverse momentum (pT) distributions of primary charged particles are measured in the pseudo-rapidity range |$\\\\eta$| < 0.8 as a function of event centrality in Pb–Pb collisions at $\\\\sqrt{s_{NN}}$ = 2.76 TeV with ALICE at the LHC. The data are presented in the transverse momentum range 0.15 < pT < 50 GeV\\/c for nine centrality intervals from 70–80% to

  12. Aquifer - Basin and range

    NSDL National Science Digital Library

    Aquifer basics outlining the makeup of the basin and range aquifers. Description and maps of unconsolidated sand and gravel aquifers. This site consists of information for the Southwestern portion of the United States, consisted of Arizona, California, Nevada, and Utah.

  13. Mu-2 ranging

    NASA Technical Reports Server (NTRS)

    Martin, W. L.; Zygielbaum, A. I.

    1977-01-01

    The Mu-II Dual-Channel Sequential Ranging System designed as a model for future Deep Space Network ranging equipment is described. A list of design objectives is followed by a theoretical explanation of the digital demodulation techniques first employed in this machine. Hardware and software implementation are discussed, together with the details relating to the construction of the device. Two appendixes are included relating to the programming and operation of this equipment to yield the maximum scientific data.

  14. Global Anisotropies in TeV Cosmic Rays Related to the Sun's Local Galactic Environment from IBEX

    NASA Technical Reports Server (NTRS)

    Schwadron, N. A.; Adams, F. C.; Christian, E. R.; Desiati, P.; Frisch, P.; Funsten, H. O.; Jokipii, J. R.; McComas, D. J.; Moebius, E.; Zank, G. P.

    2014-01-01

    Observations with the Interstellar Boundary Explorer (IBEX) have shown enhanced energetic neutral atom (ENA) emission from a narrow, circular ribbon likely centered on the direction of the local interstellar medium (LISM) magnetic field. Here, we show that recent determinations of the local interstellar velocity, based on interstellar atom measurements with IBEX, are consistent with the interstellar modulation of high-energy (tera-electron volts, TeV) cosmic rays and diffusive propagation from supernova sources revealed in global anisotropy maps of ground-based high-energy cosmic-ray observatories (Milagro, Asg, and IceCube). Establishing a consistent local interstellar magnetic field direction using IBEX ENAs at hundreds to thousands of eV and galactic cosmic rays at tens of TeV has wide-ranging implications for the structure of our heliosphere and its interactions with the LISM, which is particularly important at the time when the Voyager spacecraft are leaving our heliosphere.

  15. Search for new resonances decaying via WZ to leptons in proton-proton collisions at ?{ s} = 8TeV

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Luyckx, S.; Ochesanu, S.; Roland, B.; Rougny, R.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Daci, N.; Heracleous, N.; Keaveney, J.; Kim, T. J.; Lowette, S.; Maes, M.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Dobur, D.; Favart, L.; Gay, A. P. R.; Grebenyuk, A.; Léonard, A.; Mohammadi, A.; Pernič, L.; Reis, T.; Seva, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Adler, V.; Beernaert, K.; Benucci, L.; Cimmino, A.; Costantini, S.; Crucy, S.; Dildick, S.; Fagot, A.; Garcia, G.; Mccartin, J.; Ocampo Rios, A. A.; Ryckbosch, D.; Salva Diblen, S.; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jez, P.; Komm, M.; Lemaitre, V.; Liao, J.; Nuttens, C.; Pagano, D.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Vizan Garcia, J. M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, G. A.; Correa Martins Junior, M.; Dos Reis Martins, T.; Pol, M. E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santaolalla, J.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Bernardes, C. A.; Dias, F. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Aleksandrov, A.; Genchev, V.; Iaydjiev, P.; Marinov, A.; Piperov, S.; Rodozov, M.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Du, R.; Jiang, C. H.; Liang, D.; Liang, S.; Plestina, R.; Tao, J.; Wang, X.; Wang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Guo, Y.; Li, Q.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Zhang, L.; Zou, W.; Avila, C.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Mekterovic, D.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Bodlak, M.; Finger, M.; Finger, M.; Assran, Y.; Elgammal, S.; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Eerola, P.; Fedi, G.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Baffioni, S.; Beaudette, F.; Busson, P.; Charlot, C.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Mastrolorenzo, L.; Miné, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Veelken, C.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Chabert, E. C.; Collard, C.; Conte, E.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Beaupere, N.; Boudoul, G.; Brochet, S.; Carrillo Montoya, C. A.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Ruiz Alvarez, J. D.; Sabes, D.; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Xiao, H.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Bontenackels, M.

    2015-01-01

    A search is performed in proton-proton collisions at ?{ s} = 8 TeV for exotic particles decaying via WZ to fully leptonic final states with electrons, muons, and neutrinos. The data set corresponds to an integrated luminosity of 19.5 fb-1. No significant excess is observed above the expected standard model background. Upper bounds at 95% confidence level are set on the production cross section of a W? boson as predicted by an extended gauge model, and on the W? WZ coupling. The expected and observed mass limits for a W? boson, as predicted by this model, are 1.55 and 1.47 TeV, respectively. Stringent limits are also set in the context of low-scale technicolor models under a range of assumptions for the model parameters.

  16. Latest LHCf results and preparation to the LHC run for 13 TeV proton-proton interactions

    NASA Astrophysics Data System (ADS)

    Bonechi, L.; Adriani, O.; Berti, E.; Bongi, M.; Castellini, G.; D'Alessandro, R.; Del Prete, M.; Haguenauer, M.; Itow, Y.; Kasahara, K.; Makino, Y.; Masuda, K.; Matsubara, Y.; Matsubayashi, E.; Menjo, H.; Mitsuka, G.; Muraki, Y.; Okuno, Y.; Papini, P.; Perrot, A.-L.; Ricciarini, S.; Sako, T.; Sakurai, N.; Shimizu, Y.; Sugiura, Y.; Suzuki, T.; Tamura, T.; Tiberio, A.; Torii, S.; Tricomi, A.; Turner, W. C.; Yoshida, K.; Zhou, Q. D.

    2015-05-01

    The LHCf experiment is a CERN experiment dedicated to forward physics which is optimized to measure the neutral particle flow at extreme pseudo-rapidity values, ranging from 8.4 up to infinity. LHCf results are extremely important for the calibration of the hadronic interaction models used for the study of the development of atmospheric showers in the Earth atmosphere. Starting from the recent run of proton-Lead nucleus interactions at LHC, the LHCf and ATLAS collaborations have performed a common data taking which allows a combined study of the central and forward regions of the interaction. The latest results of LHCf, the upgrade of the detectors for the next 6.5 TeV + 6.5 TeV proton-proton run and the status of the LHCf-ATLAS common activities are summarized in this paper.

  17. Charged particle multiplicities in pp interactions at sqrt {s} = 0.9 , 2.36, and 7 TeV

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Hammer, V. M.; Hammer, J.; Hänsel, S.; Hartl, C.; Hoch, M.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kasieczka, G.; Kiesenhofer, W.; Krammer, M.; Liko, D.; Mikulec, I.; Pernicka, M.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Teischinger, F.; Waltenberger, W.; Walzel, G.; Widl, E.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Benucci, L.; Ceard, L.; Cerny, K.; De Wolf, E. A.; Janssen, X.; Maes, T.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Adler, V.; Beauceron, S.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Devroede, O.; Kalogeropoulos, A.; Maes, J.; Maes, M.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Charaf, O.; Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hammad, G. H.; Hreus, T.; Marage, P. E.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wickens, J.; Costantini, S.; Grunewald, M.; Klein, B.; Marinov, A.; Ryckbosch, D.; Thyssen, F.; Tytgat, M.; Vanelderen, L.; Verwilligen, P.; Walsh, S.; Zaganidis, N.; Basegmez, S.; Bruno, G.; Caudron, J.; De Favereau De Jeneret, J.; Delaere, C.; Demin, P.; Favart, D.; Giammanco, A.; Grégoire, G.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Ovyn, S.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Quertenmont, L.; Schul, N.; Beliy, N.; Caebergs, T.; Daubie, E.; Alves, G. A.; De Jesus Damiao, D.; Pol, M. E.; Souza, M. H. G.; Carvalho, W.; Da Costa, E. M.; De Oliveira Martins, C.; De Souza, S. Fonseca; Mundim, L.; Nogima, H.; Oguri, V.; Da Silva, W. L. Prado; Santoro, A.; Silva Do Amaral, S. M.; Sznajder, A.; Torres Da Silva De Araujo, F.; Dias, F. A.; Dias, M. A. F.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Marinho, F.; Novaes, S. F.; Padula, S. S.; Darmenov, N.; Dimitrov, L.; Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.; Vankov, I.; Dyulendarova, M.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Marinova, E.; Mateev, M.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Wang, J.; Wang, J.; Wang, X.; Wang, Z.; Yang, M.; Zang, J.; Zhang, Z.; Ban, Y.; Guo, S.; Li, W.; Mao, Y.; Qian, S. J.; Teng, H.; Zhu, B.; Cabrera, A.; Gomez Moreno, B.; Ocampo Rios, A. A.; Osorio Oliveros, A. F.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Lelas, K.; Plestina, R.; Polic, D.; Puljak, I.; Antunovic, Z.; Dzelalija, M.; Brigljevic, V.; Duric, S.; Kadija, K.; Morovic, S.; Attikis, A.; Fereos, R.; Galanti, M.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Assran, Y.; Mahmoud, M. A.; Hektor, A.; Kadastik, M.; Kannike, K.; Müntel, M.; Raidal, M.; Rebane, L.; Azzolini, V.; Eerola, P.; Czellar, S.; Härkönen, J.; Heikkinen, A.; Karimäki, V.; Kinnunen, R.; Klem, J.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.; Banzuzi, K.; Korpela, A.; Tuuva, T.; Sillou, D.; Besancon, M.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Gentit, F. X.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Malcles, J.; Marionneau, M.; Millischer, L.; Rander, J.; Rosowsky, A.; Shreyber, I.; Titov, M.; Verrecchia, P.; Baffioni, S.; Beaudette, F.; Bianchini, L.; Bluj, M.; Broutin, C.; Busson, P.; Charlot, C.; Dobrzynski, L.; de Cassagnac, R. Granier; Haguenauer, M.; Miné, P.; Mironov, C.; Ochando, C.; Paganini, P.; Sabes, S. Porteboeuf, D.; Salerno, R.; Sirois, Y.; Thiebaux, C.; Wyslouch, B.; Zabi, A.; Agram, J.-L.; Andrea, J.; Besson, A.; Bloch, D.; Bodin, D.; Brom, J.-M.; Cardaci, M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Ferro, C.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Greder, S.; Juillot, P.; Karim, M.; Le Bihan, A.-C.; Mikami, Y.; Van Hove, P.; Fassi, F.; Mercier, D.; Baty, C.; Beaupere, N.; Bedjidian, M.; Bondu, O.; Boudoul, G.; Boumediene, D.; Brun, H.; Chanon, N.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Falkiewicz, A.; Fay, J.; Gascon, S.; Ille, B.; Kurca, T.; Le Grand, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sordini, V.; Tosi, S.; Tschudi, Y.; Verdier, P.; Xiao, H.; Roinishvili, V.; Anagnostou, G.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.; Klein, K.; Merz, J.; Mohr, N.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Weber, M.; Wittmer, B.; Ata, M.; Bender, W.; Erdmann, M.; Frangenheim, J.; Hebbeker, T.; Hinzmann, A.; Hoepfner, K.; Hof, C.; Klimkovich, T.; Klingebiel, D.; Kreuzer, P.; Lanske, D.

    2011-01-01

    Measurements of primary charged hadron multiplicity distributions are presented for non-single-diffractive events in proton-proton collisions at centre-of-mass energies of sqrt {s} = 0.9 , 2.36, and 7 TeV, in five pseudorapidity ranges from | ?| < 0 .5 to | ?| < 2 .4. The data were collected with the minimum-bias trigger of the CMS experiment during the LHC commissioning runs in 2009 and the 7 TeV run in 2010. The multiplicity distribution at sqrt {s} = 0.9{text{TeV}} is in agreement with previous measurements. At higher energies the increase of the mean multiplicity with sqrt {s} is underestimated by most event generators. The average transverse momentum as a function of the multiplicity is also presented. The measurement of higher-order moments of the multiplicity distribution confirms the violation of Koba-Nielsen-Olesen scaling that has been observed at lower energies.

  18. Decelerating Flows in the TeV Blazars

    NASA Technical Reports Server (NTRS)

    Kazanas, Demosthenes

    2004-01-01

    TeV emission from a class of BL Lacertae (BL) objects is commonly modeled as radiation from relativistically moving homogeneous plasma blobs. In the context of these models, the blob Lorentz factors needed to reproduce the (corrected for absorption by the IR background) TeV emission are large ($\\delta \\gtrsim 50$) are required to reproduce via Synchrotron-Self Compton (SSC) the observed TeV emission. The main reason for this is that stronger beaming eases the problem of the lack of $\\sim$ IR-UV synchrotron seed photons needed to produce the de-absorbed $\\sim$ few TeV peak of the spectral energy distribution (SED). However, such high Doppler factors are in strong disagreement with the unified scheme, according to which BLs are FR I radio galaxies with their jets closely aligned to the line of sight. Here, motivated by the detection of sub-luminal velocities in the sub-pc scale jets of the best studied TeV blazars, MKN 421 and MKN 501. we examine the possibility that the relativistic flow in the TeV BLs is longitudinally decelerating. In this case, the problem of the missing seed photons is solved due to Upstream Compton (UC) scattering, a process in which the upstream energetic electrons from the fast base of the flow 'see' the synchrotron seed photons produced in the slow part of the flow relativistically beamed. Modest Lorentz factors ($\\Gamma kim 15s). decelerating down to values compatible with the recent radio interferometric observations, reproduce the $\\sim$ few TeV peak energy of these sources. Furthermore, such decelerating flows are shown to be in agreement with the BL - FR I unification.

  19. Heavy flavour decay muon production at forward rapidity in proton-proton collisions at ?{ s} = 7 TeV

    NASA Astrophysics Data System (ADS)

    Abelev, B.; Adam, J.; Adamová, D.; Adare, A. M.; Aggarwal, M. M.; Aglieri Rinella, G.; Agocs, A. G.; Agostinelli, A.; Aguilar Salazar, S.; Ahammed, Z.; Ahmad, N.; Ahmad Masoodi, A.; Ahn, S. U.; Akindinov, A.; Aleksandrov, D.; Alessandro, B.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Almaráz Avińa, E.; Alt, T.; Altini, V.; Altinpinar, S.; Altsybeev, I.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Anson, C.; Anti?i?, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arbor, N.; Arcelli, S.; Arend, A.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Arslandok, M.; Asryan, A.; Augustinus, A.; Averbeck, R.; Awes, T. C.; Äystö, J.; Azmi, M. D.; Bach, M.; Badalŕ, A.; Baek, Y. W.; Bailhache, R.; Bala, R.; Baldini Ferroli, R.; Baldisseri, A.; Baldit, A.; Baltasar Dos Santos Pedrosa, F.; Bán, J.; Baral, R. C.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartke, J.; Basile, M.; Bastid, N.; Bathen, B.; Batigne, G.; Batyunya, B.; Baumann, C.; Bearden, I. G.; Beck, H.; Belikov, I.; Bellini, F.; Bellwied, R.; Belmont-Moreno, E.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bergmann, C.; Berzano, D.; Betev, L.; Bhasin, A.; Bhati, A. K.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Biel?ík, J.; Biel?íková, J.; Bilandzic, A.; Bjelogrlic, S.; Blanco, F.; Blanco, F.; Blau, D.; Blume, C.; Boccioli, M.; Bock, N.; Bogdanov, A.; Břggild, H.; Bogolyubsky, M.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Bose, S.; Bossú, F.; Botje, M.; Böttger, S.; Boyer, B.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Browning, T. A.; Broz, M.; Brun, R.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Bugaiev, K.; Busch, O.; Buthelezi, Z.; Caballero Orduna, D.; Caffarri, D.; Cai, X.; Caines, H.; Calvo Villar, E.; Camerini, P.; Canoa Roman, V.; Cara Romeo, G.; Carena, W.; Carena, F.; Carlin Filho, N.; Carminati, F.; Carrillo Montoya, C. A.; Casanova Díaz, A.; Caselle, M.; Castillo Castellanos, J.; Castillo Hernandez, J. F.; Casula, E. A. R.; Catanescu, V.; Cavicchioli, C.; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chiavassa, E.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Chojnacki, M.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Coccetti, F.; Coffin, J.-P.; Colamaria, F.; Colella, D.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Constantin, P.; Contin, G.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortese, P.; Cortés Maldonado, I.; Cosentino, M. R.; Costa, F.; Cotallo, M. E.; Crescio, E.; Crochet, P.; Cruz Alaniz, E.; Cuautle, E.; Cunqueiro, L.; Dainese, A.; Dalsgaard, H. H.; Danu, A.; Das, K.; Das, I.; Das, D.; Dash, A.; Dash, S.; de, S.; de Azevedo Moregula, A.; de Barros, G. O. V.; de Caro, A.; de Cataldo, G.; de Cuveland, J.; de Falco, A.; de Gruttola, D.; Delagrange, H.; Del Castillo Sanchez, E.; Deloff, A.; Demanov, V.; De Marco, N.; Dénes, E.; de Pasquale, S.; Deppman, A.; D Erasmo, G.; de Rooij, R.; di Bari, D.; Dietel, T.; di Giglio, C.; di Liberto, S.; di Mauro, A.; di Nezza, P.; Diviŕ, R.; Djuvsland, Ř.; Dobrin, A.; Dobrowolski, T.; Domínguez, I.; Dönigus, B.; Dordic, O.; Driga, O.; Dubey, A. K.; Ducroux, L.; Dupieux, P.; Dutta Majumdar, A. K.; Dutta Majumdar, M. R.; Elia, D.; Emschermann, D.; Engel, H.; Erdal, H. A.; Espagnon, B.; Estienne, M.; Esumi, S.; Evans, D.; Eyyubova, G.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fearick, R.; Fedunov, A.; Fehlker, D.; Feldkamp, L.; Felea, D.; Feofilov, G.; Fernández Téllez, A.; Ferretti, R.; Ferretti, A.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Fini, R.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Fragkiadakis, M.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Fusco Girard, M.; Gaardhřje, J. J.; Gagliardi, M.; Gago, A.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Garabatos, C.; Garcia-Solis, E.; Garishvili, I.; Gerhard, J.; Germain, M.; Geuna, C.; Gheata, M.; Gheata, A.; Ghidini, B.; Ghosh, P.; Gianotti, P.; Girard, M. R.; Giubellino, P.; Gladysz-Dziadus, E.; Glässel, P.; Gomez, R.; Ferreiro, E. G.; González-Trueba, L. H.; González-Zamora, P.; Gorbunov, S.; Goswami, A.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Grajcarek, R.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, S.; Grigoryan, A.; Grinyov, B.; Grion, N.; Gros, P.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerra Gutierrez, C.; Guerzoni, B.; Guilbaud, M.

    2012-02-01

    The production of muons from heavy flavour decays is measured at forward rapidity in proton-proton collisions at ?{ s} = 7 TeV collected with the ALICE experiment at the LHC. The analysis is carried out on a data sample corresponding to an integrated luminosity Lint = 16.5nb-1. The transverse momentum and rapidity differential production cross sections of muons from heavy flavour decays are measured in the rapidity range 2.5 < y < 4, over the transverse momentum range 2

  20. Laser Ranging Simulation Program

    NASA Technical Reports Server (NTRS)

    Piazolla, Sabino; Hemmati, Hamid; Tratt, David

    2003-01-01

    Laser Ranging Simulation Program (LRSP) is a computer program that predicts selected aspects of the performances of a laser altimeter or other laser ranging or remote-sensing systems and is especially applicable to a laser-based system used to map terrain from a distance of several kilometers. Designed to run in a more recent version (5 or higher) of the MATLAB programming language, LRSP exploits the numerical and graphical capabilities of MATLAB. LRSP generates a graphical user interface that includes a pop-up menu that prompts the user for the input of data that determine the performance of a laser ranging system. Examples of input data include duration and energy of the laser pulse, the laser wavelength, the width of the laser beam, and several parameters that characterize the transmitting and receiving optics, the receiving electronic circuitry, and the optical properties of the atmosphere and the terrain. When the input data have been entered, LRSP computes the signal-to-noise ratio as a function of range, signal and noise currents, and ranging and pointing errors.

  1. The range scheduling aid

    NASA Technical Reports Server (NTRS)

    Halbfinger, Eliezer M.; Smith, Barry D.

    1991-01-01

    The Air Force Space Command schedules telemetry, tracking and control activities across the Air Force Satellite Control network. The Range Scheduling Aid (RSA) is a rapid prototype combining a user-friendly, portable, graphical interface with a sophisticated object-oriented database. The RSA has been a rapid prototyping effort whose purpose is to elucidate and define suitable technology for enhancing the performance of the range schedulers. Designing a system to assist schedulers in their task and using their current techniques as well as enhancements enabled by an electronic environment, has created a continuously developing model that will serve as a standard for future range scheduling systems. The RSA system is easy to use, easily ported between platforms, fast, and provides a set of tools for the scheduler that substantially increases his productivity.

  2. A study of Tycho's SNR at TeV energies with the HEGRA CT-System

    NASA Astrophysics Data System (ADS)

    Aharonian, F. A.; Akhperjanian, A. G.; Barrio, J. A.; Bernlöhr, K.; Börst, H.; Bojahr, H.; Bolz, O.; Contreras, J. L.; Cortina, J.; Denninghoff, S.; Fonseca, V.; Gonzalez, J. C.; Götting, N.; Heinzelmann, G.; Hermann, G.; Heusler, A.; Hofmann, W.; Horns, D.; Ibarra, A.; Jung, I.; Kankanyan, R.; Kestel, M.; Kettler, J.; Kohnle, A.; Konopelko, A.; Kornmeyer, H.; Kranich, D.; Krawczynski, H.; Lampeitl, H.; Lorenz, E.; Lucarelli, F.; Magnussen, N.; Mang, O.; Meyer, H.; Mirzoyan, R.; Moralejo, A.; Padilla, L.; Panter, M.; Plaga, R.; Plyasheshnikov, A.; Prahl, J.; Pühlhofer, G.; Rauterberg, G.; Röhring, A.; Rhode, W.; Rowell, G. P.; Sahakian, V.; Samorski, M.; Schilling, M.; Schröder, F.; Stamm, W.; Tluczykont, M.; Völk, H. J.; Wiedner, C.; Wittek, W.

    2001-07-01

    Tycho's supernova remnant (SNR) was observed during 1997 and 1998 with the HEGRA ?erenkov Telescope System in a search for gamma-ray emission at energies above ~ 1 TeV. An analysis of these data, ~ 65 hours in total, resulted in no evidence for TeV gamma-ray emission. The 3sigma upper limit to the gamma-ray flux (>1 TeV) from Tycho is estimated at 5.78x 10-13 photons cm-2 s-1, or 33 milli-Crab. We interpret our upper limit within the framework of the following scenarios: (1) that the observed hard X-ray tail is due to synchrotron emission. A lower limit on the magnetic field within Tycho may be estimated B>=22 mu G, assuming that the RXTE-detected X-rays were due to synchrotron emission. However, using results from a detailed model of the ASCA emission, a more conservative lower limit B>=6 mu G is derived. (2) The hadronic model of Drury and (3) the more recent time-dependent kinetic theory of Berezhko & Völk. Our upper limit lies within the range of predicted values of both hadronic models, according to uncertainties in physical parameters of Tycho, and shock acceleration details. In the latter case, the model was scaled to suit the parameters of Tycho and re-normalised to account for a simplification of the original model. We find that we cannot rule out Tycho as a potential contributor at an average level to the Galactic cosmic-ray flux.

  3. STUDY OF FOUR YOUNG TeV PULSAR WIND NEBULAE WITH A SPECTRAL EVOLUTION MODEL

    SciTech Connect

    Tanaka, Shuta J.; Takahara, Fumio, E-mail: tanaka@vega.ess.sci.osaka-u.ac.jp [Department of Earth and Space Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043 (Japan)

    2011-11-01

    We study four young pulsar wind nebulae (PWNe) detected in TeV {gamma}-rays, G21.5-0.9, G54.1+0.3, Kes 75, and G0.9+0.1, using the spectral evolution model developed and applied to the Crab Nebula in our previous work. We model the evolution of the magnetic field and the particle distribution function inside a uniformly expanding PWN considering a time-dependent injection from the pulsar and radiative and adiabatic losses. Considering uncertainties in the interstellar radiation field (ISRF) and their distance, we study two cases for each PWN. Because TeV PWNe have a large TeV {gamma}-ray to X-ray flux ratio, the magnetic energy of the PWNe accounts for only a small fraction of the total energy injected (typically a few Multiplication-Sign 10{sup -3}). The {gamma}-ray emission is dominated by inverse Compton scattering off the infrared photons of the ISRF. A broken power-law distribution function for the injected particles reproduces the observed spectrum well, except for G0.9+0.1. For G0.9+0.1, we do not need a low-energy counterpart because adiabatic losses alone are enough to reproduce the radio observations. High-energy power-law indices at injection are similar (2.5-2.6), while low-energy power-law indices range from 1.0 to 1.6. The lower limit of the particle injection rate indicates that the pair multiplicity is larger than 10{sup 4}. The corresponding upper limit of the bulk Lorentz factor of the pulsar winds is close to the break energy of the broken power-law injection, except for Kes 75. The initial rotational energy and the magnetic energy of the pulsars seem anticorrelated, although the statistics are poor.

  4. Laser ranging retroreflector

    NASA Technical Reports Server (NTRS)

    Faller, J. E.; Alley, C. O.; Bender, P. L.; Currie, D. G.; Dicke, R. H.; Kaula, W. M.; Macdonald, G. J. F.; Mulholland, J. D.; Plotkin, H. H.; Silverberg, E. C.

    1972-01-01

    The lunar laser ranging retroreflector (LRRR) experiments to define the motion of the moon in its orbit are described, and the properties of the LRRR arrays and ground-station operation are discussed. It is concluded that primary benchmarks on the lunar surface are provided by the Apollo 11 and 14 arrays, and the placement of the Apollo 15 reflector.

  5. Laser ranging data analysis

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Center for Space Research efforts have focused on the near real-time analysis of Lageos laser ranging data and on the production of predictive ephemerides. The data are analyzed in terms of range bias, time bias, and internal precision, and estimates for the Earth orientation parameters X(sub p), Y(sub p) and UT1 are obtained. The results of these analyses are reported in a variety of formats. In addition several additional stations began sending not only quick-look observations but also normal points created on-site with new software. These normal points are transmitted in a new standard format different from either current quick-look or MERIT-II full-rate formats. Thus new preprocessing software was written and successfully tested on these data. Inspection of the Bendix produced Lageos full-rate normal points continued, with detailed analyses and filtering of all 1991 A and B release normal points for Lageos through the beginning of 1992. A summary of the combined full-rate and quick-look normal point data set created for 1991 is provided. New long-term ephemerides for Lageos satellite, as well as for Etalon-1 and Etalon-2 (the so-called high satellites used for laser ranging) were produced and distributed to the network stations in cooperation with the Crustal Dynamics Project and Eurolas. These predictions are used by essentially every laser ranging site obtaining regular returns from any of these three satellites.

  6. STDN ranging equipment

    NASA Technical Reports Server (NTRS)

    Jones, C. E.

    1975-01-01

    Final results of the Spaceflight Tracking and Data Network (STDN) Ranging Equipment program are summarized. Basic design concepts and final design approaches are described. Theoretical analyses which define requirements and support the design approaches are presented. Design verification criteria are delineated and verification test results are specified.

  7. Fact Sheet: Range Complex

    NASA Technical Reports Server (NTRS)

    Cornelson, C.; Fretter, E.

    2004-01-01

    NASA Ames has a long tradition in leadership with the use of ballistic ranges and shock tubes for the purpose of studying the physics and phenomena associated with hypervelocity flight. Cutting-edge areas of research run the gamut from aerodynamics, to impact physics, to flow-field structure and chemistry. This legacy of testing began in the NACA era of the 1940's with the Supersonic Free Flight Tunnel, and evolved dramatically up through the late 1950s with the pioneering work in the Ames Hypersonic Ballistic Range. The tradition continued in the mid-60s with the commissioning of the three newest facilities: the Ames Vertical Gun Range (AVGR) in 1964, the Hypervelocity Free Flight Facility (HFFF) in 1965 and the Electric Arc Shock Tube (EAST) in 1966. Today the Range Complex continues to provide unique and critical testing in support of the Nation's programs for planetary geology and geophysics; exobiology; solar system origins; earth atmospheric entry, planetary entry, and aerobraking vehicles; and various configurations for supersonic and hypersonic aircraft.

  8. WIDE RANGE AEROSOL CLASSIFIER

    EPA Science Inventory

    The purpose of this project was to design, construct, calibrate, and field test a mobile ambient particulate matter sampler (Wide Range Aerosol Classifier) to collect size-classified samples of large aerosol particles. The sampler design was based on a similar stationary sampling...

  9. Agriculture, forestry, range resources

    NASA Technical Reports Server (NTRS)

    Macdonald, R. B.

    1974-01-01

    The necessary elements to perform global inventories of agriculture, forestry, and range resources are being brought together through the use of satellites, sensors, computers, mathematics, and phenomenology. Results of ERTS-1 applications in these areas, as well as soil mapping, are described.

  10. Agriculture, forestry, range resources

    NASA Technical Reports Server (NTRS)

    Crea, W. J.

    1974-01-01

    In the area of crop specie identification, it has been found that temporal data analysis, preliminary stratification, and unequal probability analysis were several of the factors that contributed to high identification accuracies. Single data set accuracies on fields of greater than 80,000 sq m (20 acres) are in the 70- to 90-percent range; however, with the use of temporal data, accuracies of 95 percent have been reported. Identification accuracy drops off significantly on areas of less than 80,000 sq m (20 acres) as does measurement accuracy. Forest stratification into coniferous and deciduous areas has been accomplished to a 90- to 95-percent accuracy level. Using multistage sampling techniques, the timber volume of a national forest district has been estimated to a confidence level and standard deviation acceptable to the Forest Service at a very favorable cost-benefit time ratio. Range specie/plant community vegetation mapping has been accomplished at various levels of success (69- to 90-percent accuracy). However, several investigators have obtained encouraging initial results in range biomass (forage production) estimation and range readiness predictions. Soil association map correction and soil association mapping in new area appear to have been proven feasible on large areas; however, testing in a complex soil area should be undertaken.

  11. Lunar Laser Ranging Science

    Microsoft Academic Search

    James G. Williams; Dale H. Boggs; Slava G. Turyshev; J. Todd Ratcliff

    2004-01-01

    Analysis of Lunar Laser Ranging (LLR) data provides science results: gravitational physics and ephemeris information from the orbit, lunar science from rotation and solid-body tides, and Earth science. Sensitive tests of gravitational physics include the Equivalence Principle, limits on the time variation of the gravitational constant G, and geodetic precession. The equivalence principle test is used for an accurate determination

  12. Higgs boson search sensitivity in the H{yields}WW dilepton decay mode at {radical}(s)=7 and 10 TeV

    SciTech Connect

    Berger, Edmond L.; Jackson, C. B. [High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Cao, Qing-Hong [High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637 (United States); Liu, Tao [Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637 (United States); Shaughnessy, Gabe [High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208 (United States)

    2010-09-01

    Prospects for discovery of the standard model Higgs boson are examined at center-of-mass energies of 7 and 10 TeV at the CERN Large Hadron Collider. We perform a simulation of the signal and principal backgrounds for Higgs boson production and decay in the W{sup +}W{sup -} dilepton mode, finding good agreement with the ATLAS and CMS collaboration estimates of signal significance at 14 TeV for Higgs boson masses near m{sub H}=160 GeV. At the lower energy of 7 TeV, using the same analysis cuts as these collaborations, we compute expected signal sensitivities of about 2 standard deviations ({sigma}'s) at m{sub H}=160 GeV in the ATLAS case, and about 3.6{sigma} in the CMS case for 1 fb{sup -1} of integrated luminosity. Integrated luminosities of 8 fb{sup -1} and 3 fb{sup -1} are needed in the ATLAS case at 7 and 10 TeV, respectively, for 5{sigma} level discovery. In the CMS case, the numbers are 2 fb{sup -1} and 1 fb{sup -1} at 7 and 10 TeV. Our different stated expectations for the two experiments arise from the more restrictive analysis cuts in the CMS case and from the different event samples in the two cases. Recast as exclusion limits, our results show that with 1 fb{sup -1} of integrated luminosity at 7 TeV, the LHC may be able to exclude m{sub H} values in the range 160 to 180 GeV provided no signal is seen.

  13. Correlated Intense X-Ray and TEV Activity of Markarian 501 in 1998 June

    Microsoft Academic Search

    R. M. Sambruna; F. A. Aharonian; H. Krawczynski; A. G. Akhperjanian; J. A. Barrio; K. Bernlöhr; H. Bojahr; I. Calle; J. L. Contreras; J. Cortina; S. Denninghoff; V. Fonseca; J. C. Gonzalez; N. Götting; G. Heinzelmann; M. Hemberger; G. Hermann; A. Heusler; W. Hofmann; D. Horns; A. Ibarra; R. Kankanyan; M. Kestel; J. Kettler; C. Köhler; A. Kohnle; A. Konopelko; H. Kornmeyer; D. Kranich; H. Lampeitl; A. Lindner; E. Lorenz; N. Magnussen; O. Mang; H. Meyer; R. Mirzoyan; A. Moralejo; L. Padilla; M. Panter; R. Plaga; A. Plyasheshnikov; J. Prahl; G. Pühlhofer; G. Rauterberg; A. Röhring; V. Sahakian; M. Samorski; M. Schilling; D. Schmele; F. Schröder; W. Stamm; M. Tluczykont; H. J. Völk; B. Wiebel-Sooth; C. Wiedner; M. Willmer; W. Wittek; L. Chou; P. S. Coppi; R. Rothschild; C. M. Urry

    2000-01-01

    We present exactly simultaneous X-ray and TeV monitoring with RXTE and HEGRA of the TeV blazar Mrk 501 during 15 days in 1998 June. After an initial period of very low flux at both wavelengths, the source underwent a remarkable flare in the TeV and X-ray energy bands, lasting for about 6 days and with a larger amplitude at TeV

  14. Phenomenology of TeV little string theory from holography.

    PubMed

    Antoniadis, Ignatios; Arvanitaki, Asimina; Dimopoulos, Savas; Giveon, Amit

    2012-02-24

    We study the graviton phenomenology of TeV little string theory by exploiting its holographic gravity dual five-dimensional theory. This dual corresponds to a linear dilaton background with a large bulk that constrains the standard model fields on the boundary of space. The linear dilaton geometry produces a unique Kaluza-Klein graviton spectrum that exhibits a ~TeV mass gap followed by a near continuum of narrow resonances that are separated from each other by only ~30 GeV. Resonant production of these particles at the LHC is the signature of this framework that distinguishes it from large extra dimensions, where the Kaluza-Klein states are almost a continuum with no mass gap, and warped models, where the states are separated by a TeV. PMID:22463515

  15. Phenomenology of TeV Little String Theory from Holography

    E-print Network

    Ignatios Antoniadis; Asimina Arvanitaki; Savas Dimopoulos; Amit Giveon

    2011-02-20

    We study the graviton phenomenology of TeV Little String Theory by exploiting its holographic gravity dual five-dimensional theory. This dual corresponds to a linear dilaton background with a large bulk that constrains the Standard Model fields on the boundary of space. The linear dilaton geometry produces a unique Kaluza-Klein graviton spectrum that exhibits a ~ TeV mass gap followed by a near continuum of narrow resonances that are separated from each other by only ~ 30 GeV. Resonant production of these particles at the LHC is the signature of this framework that distinguishes it from large extra dimensions where the KK states are almost a continuum with no mass gap, and warped models where the states are separated by a TeV.

  16. TeV GAMMA RAYS FROM PLERIONS AND RESULTS OF CAN-GAROO PROJECT

    E-print Network

    TeV GAMMA RAYS FROM PLERIONS AND RESULTS OF CAN- GAROO PROJECT T. Kifune for CANGAROO Group1@icrr.u-tokyo.ac.jp ABSTRACT Ground-based detection of very high energy gamma rays at Tev energies is discussed by using and positrons characterizes the point sources of gamma rays, and the radiation of electrons links TeV region

  17. TeV gamma-rays from Galactic objects: pulsars, pulsar nebulae and supernova remnants

    E-print Network

    Enomoto, Ryoji

    TeV gamma-rays from Galactic objects: pulsars, pulsar nebulae and supernova remnants T. Kifune nebula, supernova remnant and nu- cleus of active galaxy are found as TeV gamma ray emit- ter to investigate production, acceleration and interaction of energetic particles. The ab- soption of TeV gamma rays

  18. Surveying the TeV Sky with Milagro C.P. Lansdell for the Milagro Collaboration

    E-print Network

    California at Santa Cruz, University of

    Surveying the TeV Sky with Milagro C.P. Lansdell for the Milagro Collaboration University or are extended. Milagro is such a TeV detector and has performed the deepest survey of the Northern Hemisphere Survey Milagro has the opportunity to search for extended or diffuse sources of TeV emission

  19. Range expansion of mutualists

    NASA Astrophysics Data System (ADS)

    Muller, Melanie J. I.; Korolev, Kirill S.; Murray, Andrew W.; Nelson, David R.

    2012-02-01

    The expansion of a species into new territory is often strongly influenced by the presence of other species. This effect is particularly striking for the case of mutualistic species that enhance each other's proliferation. Examples range from major events in evolutionary history, such as the spread and diversification of flowering plants due to their mutualism with pollen-dispersing insects, to modern examples like the surface colonisation of multi-species microbial biofilms. Here, we investigate the spread of cross-feeding strains of the budding yeast Saccharomyces cerevisiae on an agar surface as a model system for expanding mutualists. Depending on the degree of mutualism, the two strains form distinctive spatial patterns during their range expansion. This change in spatial patterns can be understood as a phase transition within a stepping stone model generalized to two mutualistic species.

  20. Light beam range finder

    DOEpatents

    McEwan, T.E.

    1998-06-16

    A ``laser tape measure`` for measuring distance is disclosed which includes a transmitter such as a laser diode which transmits a sequence of electromagnetic pulses in response to a transmit timing signal. A receiver samples reflections from objects within the field of the sequence of visible electromagnetic pulses with controlled timing, in response to a receive timing signal. The receiver generates a sample signal in response to the samples which indicates distance to the object causing the reflections. The timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The receive timing signal causes the receiver to sample the reflection such that the time between transmission of pulses in the sequence in sampling by the receiver sweeps over a range of delays. The transmit timing signal causes the transmitter to transmit the sequence of electromagnetic pulses at a pulse repetition rate, and the received timing signal sweeps over the range of delays in a sweep cycle such that reflections are sampled at the pulse repetition rate and with different delays in the range of delays, such that the sample signal represents received reflections in equivalent time. The receiver according to one aspect of the invention includes an avalanche photodiode and a sampling gate coupled to the photodiode which is responsive to the received timing signal. The transmitter includes a laser diode which supplies a sequence of visible electromagnetic pulses. A bright spot projected on to the target clearly indicates the point that is being measured, and the user can read the range to that point with precision of better than 0.1%. 7 figs.

  1. Light beam range finder

    DOEpatents

    McEwan, Thomas E. (Livermore, CA)

    1998-01-01

    A "laser tape measure" for measuring distance which includes a transmitter such as a laser diode which transmits a sequence of electromagnetic pulses in response to a transmit timing signal. A receiver samples reflections from objects within the field of the sequence of visible electromagnetic pulses with controlled timing, in response to a receive timing signal. The receiver generates a sample signal in response to the samples which indicates distance to the object causing the reflections. The timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The receive timing signal causes the receiver to sample the reflection such that the time between transmission of pulses in the sequence in sampling by the receiver sweeps over a range of delays. The transmit timing signal causes the transmitter to transmit the sequence of electromagnetic pulses at a pulse repetition rate, and the received timing signal sweeps over the range of delays in a sweep cycle such that reflections are sampled at the pulse repetition rate and with different delays in the range of delays, such that the sample signal represents received reflections in equivalent time. The receiver according to one aspect of the invention includes an avalanche photodiode and a sampling gate coupled to the photodiode which is responsive to the received timing signal. The transmitter includes a laser diode which supplies a sequence of visible electromagnetic pulses. A bright spot projected on to the target clearly indicates the point that is being measured, and the user can read the range to that point with precision of better than 0.1%.

  2. Lunar Laser Ranging Science

    Microsoft Academic Search

    James G. Williams; Dale H. Boggs; Slava G. Turyshev; J. Todd Ratcliff

    2004-01-01

    Analysis of Lunar Laser Ranging (LLR) data provides science results:\\u000agravitational physics and ephemeris information from the orbit, lunar science\\u000afrom rotation and solid-body tides, and Earth science. Sensitive tests of\\u000agravitational physics include the Equivalence Principle, limits on the time\\u000avariation of the gravitational constant G, and geodetic precession. The\\u000aequivalence principle test is used for an accurate determination

  3. Substructure and strong interactions at the TeV scale

    SciTech Connect

    Peskin, M.E.

    1985-12-01

    A review is given of the current status of the three main theoretical ideas relevant to strong-interaction 1 TeV physics. These are composite vector bosons, Higgs bosons (''Technicolor''), and matter fermions. All involve the assumption that some object which is assumed to be fundamental in the standard model actually has dynamical internal structure. Complex, mechanistic models of the new physics are discussed. A brief digression is then made on how the weak interaction allows probing for this new structure. Direct manifestations of new 1 TeV strong interactions are discussed. 125 refs., 18 figs. (LEW)

  4. Two Loop Unification of Non-SUSY SO(10) GUT with TeV Scalars

    E-print Network

    T. Daniel Brennan

    2015-03-30

    In this paper we examine gauge coupling unification at the two loop level in the the non-SUSY SO(10) grand unified theory proposed by Babu and Mohapatra \\cite{BM}. This GUT, which breaks down to the standard model in a single step, has the distinguishing feature of containing non-standard model scalars at the TeV scale. This leads to a plethora of interesting effects in the TeV range, most prominently predicting the possibility of discovering new particles at the LHC in run 2. This model also gives rise to measurable proton decay, neutron-antineutron oscillations, provides a mechanism for baryogenesis, and contains potential dark matter candidates. In this paper, we compute the two loop beta function and show that this model unifies to two loop order around $10^{15}$ GeV. We then compute the proton lifetime and argue that threshold effects place it comfortably above the Super Kamiokande limit. In this paper, we demonstrate that this model passes the baseline for physical plausibility and therefore is worth studying due to its interesting low energy phenomenology.

  5. Two Loop Unification of Non-SUSY SO(10) GUT with TeV Scalars

    E-print Network

    Brennan, T Daniel

    2015-01-01

    In this paper we examine gauge coupling unification at the two loop level in the the non-SUSY SO(10) grand unified theory proposed by Babu and Mohapatra \\cite{BM}. This GUT, which breaks down to the standard model in a single step, has the distinguishing feature of containing non-standard model scalars at the TeV scale. This leads to a plethora of interesting effects in the TeV range, most prominently predicting the possibility of discovering new particles at the LHC in run 2. This model also gives rise to measurable proton decay, neutron-antineutron oscillations, provides a mechanism for baryogenesis, and contains potential dark matter candidates. In this paper, we compute the two loop beta function and show that this model unifies to two loop order around $10^{15}$ GeV. We then compute the proton lifetime and argue that threshold effects place it comfortably above the Super Kamiokande limit. In this paper, we demonstrate that this model passes the baseline for physical plausibility and therefore is worth st...

  6. Observation of Markarian 421 in TeV Gamma Rays Over a 14-Year Time Span

    NASA Technical Reports Server (NTRS)

    Acciari, V. A.; Arlen, T.; Aune, T.; Benbow, W.; Bird, R.; Bouvier, A.; Bradbury, S. M.; Buckley, J. H.; Bugaev, V.; McEnery, Julie E.

    2013-01-01

    The variability of the blazar Markarian 421 in TeV gamma rays over a 14-year time period has been explored with theWhipple 10 m telescope. It is shown that the dynamic range of its flux variations is large and similar to that in X-rays. A correlation between the X-ray and TeV energy bands is observed during some bright flares and when the complete data sets are binned on long timescales. The main database consists of 878.4 hours of observation with theWhipple telescope, spread over 783 nights. The peak energy response of the telescope was 400 GeV with 20% uncertainty. This is the largest database of any TeV-emitting active galactic nucleus (AGN) and hence was used to explore the variability profile of Markarian 421. The time-averaged flux from Markarian 421 over this period was 0.446+/-0.008 Crab flux units. The flux exceeded 10 Crab flux units on three separate occasions. For the 2000-2001 season the average flux reached 1.86 Crab units, while in the 1996-1997 season the average flux was only 0.23 Crab units.

  7. An updated search of steady TeV ?-ray point sources in northern hemisphere using the Tibet air shower array

    NASA Astrophysics Data System (ADS)

    Wang, Yue; Bi, Xiao-Jun; Cui, Shu-Wang; Ding, Lin-Kai; Dan, Zeng-Luo-Bu; Ding, Xiao-Hong; Fan, Chao; Feng, Cun-Feng; Feng, Zhao-Yang; Feng, Zhen-Yong; Gao, Xiao-Yu; Geng, Qing-Xi; Guo, Hong-Wei; He, Hui-Hai; He, Mao; Hu, Hai-Bing; Hu, Hong-Bo; Huang, Qing; Jia, Huan-Yu; La, Ba-Ci-Ren; Le, Gui-Ming; Li, Ai-Feng; Li, Jin-Yu; Lou, Yu-Qing; Lu, Hong; Lu, Sui-Ling; Meng, Xian-Ru; Mu, Jun; Ren, Jing-Ru; Tan, You-Heng; Wang, Bo; Wang, Hui; Wang, Yong-Gang; Wu, Han-Rong; Xue, Liang; Yang, Xian-Chu; Ye, Zong-Hai; Yuan, Ai-Fang; Zhang, Hui-Min; Zhang, Ji-Long; Zhang, Nai-Jian; Zhang, Xue-Yao; Zhang, Yong; Zhang, Yi; Zha, Xi-Sang-Zhu; Zhou, Xun-Xiu; Yuan, Qiang

    2008-11-01

    Using the data taken from Tibet II High Density (HD) Array (1997 February-1999 September) and Tibet-III array (1999 November-2005 November), our previous northern sky survey for TeV ?-ray point sources has now been updated by a factor of 2.8 improved statistics. From 0.0° to 60.0° in declination (Dec) range, no new TeV ?-ray point sources with sufficiently high significance were identified while the well-known Crab Nebula and Mrk421 remain to be the brightest TeV ?-ray sources within the field of view of the Tibet air shower array. Based on the currently available data and at the 90% confidence level (C.L.), the flux upper limits for different power law index assumption are re-derived, which are approximately improved by 1.7 times as compared with our previous reported limits. Supported by Grants-in-Aid for Scientific Research on Priority Areas (712) (MEXT), Japan Society for Promotion of Science (JSPS), National Natural Science Foundation of China (10675134, 10533020) and Chinese Academy of Sciences

  8. KS0 and ? Production in Pb-Pb Collisions at sNN=2.76TeV

    NASA Astrophysics Data System (ADS)

    Abelev, B.; Adam, J.; Adamová, D.; Adare, A. M.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agocs, A. G.; Agostinelli, A.; Ahammed, Z.; Ahmad, N.; Ahmad Masoodi, A.; Ahmed, I.; Ahn, S. U.; Ahn, S. A.; Aimo, I.; Aiola, S.; Ajaz, M.; Akindinov, A.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altini, V.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Anti?i?, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arbor, N.; Arcelli, S.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Arslandok, M.; Augustinus, A.; Averbeck, R.; Awes, T. C.; Azmi, M. D.; Bach, M.; Badalŕ, A.; Baek, Y. W.; Bailhache, R.; Bairathi, V.; Bala, R.; Baldisseri, A.; Baltasar Dos Santos Pedrosa, F.; Bán, J.; Baral, R. C.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartke, J.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batyunya, B.; Batzing, P. C.; Baumann, C.; Bearden, I. G.; Beck, H.; Behera, N. K.; Belikov, I.; Bellini, F.; Bellwied, R.; Belmont-Moreno, E.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bergognon, A. A. E.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhati, A. K.; Bhom, J.; Bianchi, L.; Bianchi, N.; Biel?ík, J.; Biel?íková, J.; Bilandzic, A.; Bjelogrlic, S.; Blanco, F.; Blanco, F.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Břggild, H.; Bogolyubsky, M.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Bornschein, J.; Botje, M.; Botta, E.; Böttger, S.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Brun, R.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Caffarri, D.; Cai, X.; Caines, H.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Canoa Roman, V.; Cara Romeo, G.; Carena, F.; Carena, W.; Carminati, F.; Casanova Díaz, A.; Castillo Castellanos, J.; Casula, E. A. R.; Catanescu, V.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa del Valle, Z.; Connors, M. E.; Contin, G.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortese, P.; Cortés Maldonado, I.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dainese, A.; Dang, R.; Danu, A.; Das, K.; Das, D.; Das, I.; Dash, A.; Dash, S.; De, S.; Delagrange, H.; Deloff, A.; Dénes, E.; Deppman, A.; D'Erasmo, G.; de Barros, G. O. V.; De Caro, A.; de Cataldo, G.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; de Rooij, R.; Diaz Corchero, M. A.; Dietel, T.; Diviŕ, R.; Di Bari, D.; Di Giglio, C.; Di Liberto, S.; Di Mauro, A.; Di Nezza, P.; Djuvsland, Ř.; Dobrin, A.; Dobrowolski, T.; Dönigus, B.; Dordic, O.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Dutta Majumdar, A. K.; Elia, D.; Emschermann, D.; Engel, H.; Erazmus, B.; Erdal, H. A.; Eschweiler, D.; Espagnon, B.; Estienne, M.; Esumi, S.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fehlker, D.; Feldkamp, L.; Felea, D.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floratos, E.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Fusco Girard, M.; Gaardhřje, J. J.; Gagliardi, M.; Gago, A.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Garishvili, I.; Gerhard, J.; Germain, M.; Gheata, A.; Gheata, M.; Ghidini, B.; Ghosh, P.; Gianotti, P.; Giubellino, P.; Gladysz-Dziadus, E.; Glässel, P.; Goerlich, L.; Gomez, R.; González-Zamora, P.; Gorbunov, S.; Gotovac, S.; Graczykowski, L. K.; Grajcarek, R.; Grelli, A.; Grigoras, C.; Grigoras, A.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Guilbaud, M.; Gulbrandsen, K.; Gulkanyan, H.; Gunji, T.; Gupta, A.; Gupta, R.; Khan, K. H.; Haake, R.; Haaland, Ř.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hanratty, L. D.; Hansen, A.; Harris, J. W.

    2013-11-01

    The ALICE measurement of KS0 and ? production at midrapidity in Pb-Pb collisions at sNN=2.76TeV is presented. The transverse momentum (pT) spectra are shown for several collision centrality intervals and in the pT range from 0.4GeV/c (0.6GeV/c for ?) to 12GeV/c. The pT dependence of the ?/KS0 ratios exhibits maxima in the vicinity of 3GeV/c, and the positions of the maxima shift towards higher pT with increasing collision centrality. The magnitude of these maxima increases by almost a factor of three between most peripheral and most central Pb-Pb collisions. This baryon excess at intermediate pT is not observed in pp interactions at s=0.9TeV and at s=7TeV. Qualitatively, the baryon enhancement in heavy-ion collisions is expected from radial flow. However, the measured pT spectra above 2GeV/c progressively decouple from hydrodynamical-model calculations. For higher values of pT, models that incorporate the influence of the medium on the fragmentation and hadronization processes describe qualitatively the pT dependence of the ?/KS0 ratio.

  9. A search for $t\\bar{t}$ resonances using lepton-plus-jets events in proton-proton collisions at $\\sqrt{s} = 8$ TeV with the ATLAS detector

    E-print Network

    ATLAS Collaboration

    2015-05-26

    A search for new particles that decay into top quark pairs is reported. The search is performed with the ATLAS experiment at the LHC using an integrated luminosity of 20.3 fb$^{-1}$ of proton-proton collision data collected at a centre-of-mass energy of $\\sqrt{s}=8$ TeV. The lepton-plus-jets final state is used, where the top pair decays to $W^+bW^-\\bar{b}$, with one $W$ boson decaying leptonically and the other hadronically. The invariant mass spectrum of top quark pairs is examined for local excesses or deficits that are inconsistent with the Standard Model predictions. No evidence for a top quark pair resonance is found, and 95% confidence-level limits on the production rate are determined for massive states in benchmark models. The upper limits on the cross-section times branching ratio of a narrow $Z'$ boson decaying to top pairs range from 4.2 pb to 0.03 pb for resonance masses from 0.4 TeV to 3.0 TeV. A narrow leptophobic topcolour $Z'$ boson with mass below 1.8 TeV is excluded. Upper limits are set on the cross-section times branching ratio for a broad colour-octet resonance with $\\Gamma/m =$ 15% decaying to $t\\bar{t}$. These range from 2.5 pb to 0.03 pb for masses from 0.4 TeV to 3.0 TeV. A Kaluza-Klein excitation of the gluon in a Randall-Sundrum model is excluded for masses below 2.2 TeV.

  10. Andoya Rocket Range

    NSDL National Science Digital Library

    The National Aeronautic and Space Administration (NASA) has sponsored the Cleft Accelerated Plasma Experimental Rocket, CAPER, campaign. The objective of this mission is to "probe a fountain of ions that is always blowing into space." Scientists have launched this project just after a solar storm tore apart a part of the Earth's upper atmosphere. The CAPER Rocket launch will take place at the Andoya Rocket Range in January, 1999. This Website offers more information about the CAPER project as well as the launch site.

  11. Gas cooking range

    SciTech Connect

    Narang, R.K.; Narang, K.

    1984-02-14

    An energy-efficient gas cooking range features an oven section with improved heat circulation and air preheat, a compact oven/broiler burner, a smoke-free drip pan, an efficient piloted ignition, flame-containing rangetop burner rings, and a small, portable oven that can be supported on the burner rings. Panels spaced away from the oven walls and circulation fans provide very effective air flow within the oven. A gas shutoff valve automatically controls the discharge of heated gases from the oven so that they are discharged only when combustion is occurring.

  12. Neutron range spectrometer

    DOEpatents

    Manglos, S.H.

    1988-03-10

    A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are colliminated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. 1 fig.

  13. Range Process Simulation Tool

    NASA Technical Reports Server (NTRS)

    Phillips, Dave; Haas, William; Barth, Tim; Benjamin, Perakath; Graul, Michael; Bagatourova, Olga

    2005-01-01

    Range Process Simulation Tool (RPST) is a computer program that assists managers in rapidly predicting and quantitatively assessing the operational effects of proposed technological additions to, and/or upgrades of, complex facilities and engineering systems such as the Eastern Test Range. Originally designed for application to space transportation systems, RPST is also suitable for assessing effects of proposed changes in industrial facilities and large organizations. RPST follows a model-based approach that includes finite-capacity schedule analysis and discrete-event process simulation. A component-based, scalable, open architecture makes RPST easily and rapidly tailorable for diverse applications. Specific RPST functions include: (1) definition of analysis objectives and performance metrics; (2) selection of process templates from a processtemplate library; (3) configuration of process models for detailed simulation and schedule analysis; (4) design of operations- analysis experiments; (5) schedule and simulation-based process analysis; and (6) optimization of performance by use of genetic algorithms and simulated annealing. The main benefits afforded by RPST are provision of information that can be used to reduce costs of operation and maintenance, and the capability for affordable, accurate, and reliable prediction and exploration of the consequences of many alternative proposed decisions.

  14. Aspects of jets at 100 TeV

    E-print Network

    Thaler, Jesse

    We present three case studies at a 100 TeV proton collider for how jet analyses can be improved using new jet (sub)structure techniques. First, we use the winner-take-all recombination scheme to define a recoil-free jet ...

  15. Final focus supports for a TeV Linear Collider

    SciTech Connect

    Ash, W.W.

    1988-11-01

    Final focus quadrupoles supported from structures in the endcap region of a physics experiment appear to meet the high-frequency vibration and stability criteria for a TeV Linear Collider (TLC). The support stays within a ten-degree cone, minimizing interference with the experimental apparatus. 3 refs., 3 figs.

  16. Present optics options for TeV colliders

    Microsoft Academic Search

    1986-01-01

    A practical approach for implementing TeV collider optics with high luminosities pounds approx. = 10łł (cm˛ s)š but without large pinch effects is given using current alternatives. Characteristics are considered that constrain the optics and the types and orders of magnets required. A modified linac FoDo cell based on permanent magnet hybrid quadrupoles is discussed. Similarly, a demagnifying, permanent magnet

  17. Rock on the Range

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] Click on the image for Rock on the Range (QTVR)

    This mosaic of images from the Mars Exploration Rover Opportunity panoramic camera looks to the southeast from inside Eagle Crater. This was among the first peeks out into the plains, revealing the enigmatic dark feature dubbed 'Bounce' rock, seen on the left side of the mosaic. This feature is right next to one of the large bounce marks that the airbag-packaged rover made as it was bouncing across the plains during landing. This enhanced color mosaic was made on sol 36 from the camera's the infrared (750 nanometer), green (530 nanometer), and violet (430 nanometer) filters.

  18. Measurement of differential cross sections for the production of a pair of isolated photons in pp collisions at $$\\sqrt{s}=7\\,\\text {TeV} $$ s = 7 TeV

    SciTech Connect

    Chatrchyan, Serguei [Yerevan Physics Institute (Armenia); et al.,

    2014-11-01

    A measurement of differential cross sections for the production of a pair of isolated photons in proton–proton collisions at $\\sqrt{s}=7\\,\\text {TeV} $ is presented. The data sample corresponds to an integrated luminosity of 5.0 $\\,\\text {fb}^{-1}$ collected with the CMS detector. A data-driven isolation template method is used to extract the prompt diphoton yield. The measured cross section for two isolated photons, with transverse energy above 40 and 25 $\\,\\text {GeV}$ respectively, in the pseudorapidity range $|\\eta |<2.5$ , $|\\eta |\

  19. The temporal characteristics of the TeV gamma-radiation from MKN 501 in 1997. I. Data from the stereoscopic imaging atmospheric Cherenkov telescope system of HEGRA

    NASA Astrophysics Data System (ADS)

    Aharonian, F. A.; Akhperjanian, A. G.; Barrio, J. A.; Bernlöhr, K.; Bojahr, H.; Contreras, J. L.; Cortina, J.; Daum, A.; Deckers, T.; Fonseca, V.; Gonzalez, J. C.; Heinzelmann, G.; Hemberger, M.; Hermann, G.; Heß, M.; Heusler, A.; Hofmann, W.; Hohl, H.; Horns, D.; Ibarra, A.; Kankanyan, R.; Kirstein, O.; Köhler, C.; Konopelko, A.; Kornmeyer, H.; Kranich, D.; Krawczynski, H.; Lampeitl, H.; Lindner, A.; Lorenz, E.; Magnussen, N.; Meyer, H.; Mirzoyan, R.; Moralejo, A.; Padilla, L.; Panter, M.; Petry, D.; Plaga, R.; Plyasheshnikov, A.; Prahl, J.; Pühlhofer, G.; Rauterberg, G.; Renault, C.; Rhode, W.; Sahakian, V.; Samorski, M.; Schmele, D.; Schröder, F.; Stamm, W.; Völk, H. J.; Wiebel-Sooth, B.; Wiedner, C.; Willmer, M.; Wirth, H.

    1999-02-01

    During 1997, the BL Lac Object Mkn 501 was the brightest known object in the TeV gamma-ray sky. The emission was characterized by dramatic variations in intensity with a mean flux exceeding by a factor of three the steady gamma-ray flux of the Crab Nebula. The stereoscopic HEGRA system of 4 Imaging Atmospheric Cherenkov Telescopes, with an energy threshold of about 500 GeV, an angular resolution of 0.1(deg) , an energy resolution of 20%, and a flux sensitivity nu F_nu at 1 TeV of 10(-11) ergs/cm(2) sec =~ 1/4 Crab for 1 hour of observation time (S/sqrt {B}=5sigma ), has been used in 1997 for a comprehensive study of the spectral and temporal characteristics of the TeV gamma-ray emission from Mkn 501 on time scales of several hours or less. In this paper (Part I) the gamma-ray fluxes and spectra on a diurnal basis during the period March to October 1997 are presented. Furthermore, the correlation of the TeV emission with the flux measured by the RXTE All Sky Monitor in the energy range from 2 to 12 keV are studied. Finally the implications of these results on the physics of relativistic jets in BL Lac objects are briefly discussed. The companion paper (Part II) describes the results from the stand alone telescopes CT1 and CT2.

  20. Lunar Laser Ranging Science

    E-print Network

    James G. Williams; Dale H. Boggs; Slava G. Turyshev; J. Todd Ratcliff

    2004-11-18

    Analysis of Lunar Laser Ranging (LLR) data provides science results: gravitational physics and ephemeris information from the orbit, lunar science from rotation and solid-body tides, and Earth science. Sensitive tests of gravitational physics include the Equivalence Principle, limits on the time variation of the gravitational constant G, and geodetic precession. The equivalence principle test is used for an accurate determination of the parametrized post-Newtonian (PPN) parameter \\beta. Lunar ephemerides are a product of the LLR analysis used by current and future spacecraft missions. The analysis is sensitive to astronomical parameters such as orbit, masses and obliquity. The dissipation-caused semimajor axis rate is 37.9 mm/yr and the associated acceleration in orbital longitude is -25.7 ''/cent^2, dominated by tides on Earth with a 1% lunar contribution. Lunar rotational variation has sensitivity to interior structure, physical properties, and energy dissipation. The second-degree lunar Love numbers are detected; k_2 has an accuracy of 11%. Lunar tidal dissipation is strong and its Q has a weak dependence on tidal frequency. A fluid core of about 20% the Moon's radius is indicated by the dissipation data. Evidence for the oblateness of the lunar fluid-core/solid-mantle boundary is getting stronger. This would be independent evidence for a fluid lunar core. Moon-centered coordinates of four retroreflectors are determined. Station positions and motion, Earth rotation variations, nutation, and precession are determined from analyses. Extending the data span and improving range accuracy will yield improved and new scientific results. Adding either new retroreflectors or precise active transponders on the Moon would improve the accuracy of the science results.

  1. Charged kaon femtoscopic correlations in pp collisions at s=7TeV

    NASA Astrophysics Data System (ADS)

    Abelev, B.; Adam, J.; Adamová, D.; Adare, A. M.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agocs, A. G.; Agostinelli, A.; Ahammed, Z.; Ahmad, N.; Ahmad Masoodi, A.; Ahn, S. U.; Ahn, S. A.; Ajaz, M.; Akindinov, A.; Aleksandrov, D.; Alessandro, B.; Alici, A.; Alkin, A.; Almaráz Avińa, E.; Alme, J.; Alt, T.; Altini, V.; Altinpinar, S.; Altsybeev, I.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Anson, C.; Anti?i?, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arbor, N.; Arcelli, S.; Arend, A.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Arslandok, M.; Asryan, A.; Augustinus, A.; Averbeck, R.; Awes, T. C.; Äystö, J.; Azmi, M. D.; Bach, M.; Badalŕ, A.; Baek, Y. W.; Bailhache, R.; Bala, R.; Baldini Ferroli, R.; Baldisseri, A.; Baltasar Dos Santos Pedrosa, F.; Bán, J.; Baral, R. C.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartke, J.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batyunya, B.; Baumann, C.; Bearden, I. G.; Beck, H.; Behera, N. K.; Belikov, I.; Bellini, F.; Bellwied, R.; Belmont-Moreno, E.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bergognon, A. A. E.; Berzano, D.; Betev, L.; Bhasin, A.; Bhati, A. K.; Bhom, J.; Bianchi, L.; Bianchi, N.; Biel?ík, J.; Biel?íková, J.; Bilandzic, A.; Bjelogrlic, S.; Blanco, F.; Blanco, F.; Blau, D.; Blume, C.; Boccioli, M.; Böttger, S.; Bogdanov, A.; Břggild, H.; Bogolyubsky, M.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Bossú, F.; Botje, M.; Botta, E.; Braidot, E.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Browning, T. A.; Broz, M.; Brun, R.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Caffarri, D.; Cai, X.; Caines, H.; Calvo Villar, E.; Camerini, P.; Canoa Roman, V.; Cara Romeo, G.; Carena, F.; Carena, W.; Carlin Filho, N.; Carminati, F.; Casanova Díaz, A.; Castillo Castellanos, J.; Castillo Hernandez, J. F.; Casula, E. A. R.; Catanescu, V.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chawla, I.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Coccetti, F.; Colamaria, F.; Colella, D.; Collu, A.; Conesa Balbastre, G.; Conesa del Valle, Z.; Connors, M. E.; Contin, G.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortese, P.; Cortés Maldonado, I.; Cosentino, M. R.; Costa, F.; Cotallo, M. E.; Crescio, E.; Crochet, P.; Cruz Alaniz, E.; Cuautle, E.; Cunqueiro, L.; Dainese, A.; Dalsgaard, H. H.; Danu, A.; Das, S.; Das, I.; Das, D.; Das, K.; Dash, A.; Dash, S.; De, S.; de Barros, G. O. V.; De Caro, A.; de Cataldo, G.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; Delagrange, H.; Deloff, A.; De Marco, N.; Dénes, E.; De Pasquale, S.; Deppman, A.; D Erasmo, G.; de Rooij, R.; Diaz Corchero, M. A.; Di Bari, D.; Dietel, T.; Di Giglio, C.; Di Liberto, S.; Di Mauro, A.; Di Nezza, P.; Diviŕ, R.; Djuvsland, Ř.; Dobrin, A.; Dobrowolski, T.; Dönigus, B.; Dordic, O.; Driga, O.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Dutta Majumdar, A. K.; Dutta Majumdar, M. R.; Elia, D.; Emschermann, D.; Engel, H.; Erazmus, B.; Erdal, H. A.; Espagnon, B.; Estienne, M.; Esumi, S.; Evans, D.; Eyyubova, G.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fearick, R.; Fehlker, D.; Feldkamp, L.; Felea, D.; Feliciello, A.; Fenton-Olsen, B.; Feofilov, G.; Fernández Téllez, A.; Ferretti, A.; Festanti, A.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floratos, E.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Fusco Girard, M.; Gaardhřje, J. J.; Gagliardi, M.; Gago, A.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Garabatos, C.; Garcia-Solis, E.; Garishvili, I.; Gerhard, J.; Germain, M.; Geuna, C.; Gheata, M.; Gheata, A.; Ghosh, P.; Gianotti, P.; Girard, M. R.; Giubellino, P.; Gladysz-Dziadus, E.; Glässel, P.; Gomez, R.; Ferreiro, E. G.; González-Trueba, L. H.; González-Zamora, P.; Gorbunov, S.; Goswami, A.; Gotovac, S.; Graczykowski, L. K.; Grajcarek, R.; Grelli, A.; Grigoras, C.; Grigoras, A.; Grigoriev, V.; Grigoryan, S.; Grigoryan, A.; Grinyov, B.; Grion, N.; Gros, P.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Guilbaud, M.; Gulbrandsen, K.; Gulkanyan, H.; Gunji, T.; Gupta, A.; Gupta, R.; Haaland, Ř.

    2013-03-01

    Correlations of two charged identical kaons (KchKch) are measured in pp collisions at s=7TeV by the ALICE experiment at the Large Hadron Collider (LHC). One-dimensional KchKch correlation functions are constructed in three multiplicity and four transverse momentum ranges. The KchKch femtoscopic source parameters R and ? are extracted. The KchKch correlations show a slight increase of femtoscopic radii with increasing multiplicity and a slight decrease of radii with increasing transverse momentum. These trends are similar to the ones observed for ?? and Ks0Ks0 correlations in pp and heavy-ion collisions. However at high multiplicities, there is an indication that the one-dimensional correlation radii for charged kaons are larger than those for pions in contrast to what was observed in heavy-ion collisions at the Relativistic Heavy-Ion Collider.

  2. Measurement of electrons from beauty hadron decays in pp collisions at ?{s}=7 TeV

    NASA Astrophysics Data System (ADS)

    Abelev, B.; Adam, J.; Adamová, D.; Adare, A. M.; Aggarwal, M. M.; Aglieri Rinella, G.; Agocs, A. G.; Agostinelli, A.; Aguilar Salazar, S.; Ahammed, Z.; Ahmad, N.; Ahmad Masoodi, A.; Ahn, S. A.; Ahn, S. U.; Akindinov, A.; Aleksandrov, D.; Alessandro, B.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Almaráz Avińa, E.; Alme, J.; Alt, T.; Altini, V.; Altinpinar, S.; Altsybeev, I.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Anson, C.; Anti?i?, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arbor, N.; Arcelli, S.; Arend, A.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Arslandok, M.; Asryan, A.; Augustinus, A.; Averbeck, R.; Awes, T. C.; Äystö, J.; Azmi, M. D.; Bach, M.; Badalŕ, A.; Baek, Y. W.; Bailhache, R.; Bala, R.; Baldini Ferroli, R.; Baldisseri, A.; Baldit, A.; Baltasar Dos Santos Pedrosa, F.; Bán, J.; Baral, R. C.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartke, J.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batyunya, B.; Baumann, C.; Bearden, I. G.; Beck, H.; Behera, N. K.; Belikov, I.; Bellini, F.; Bellwied, R.; Belmont-Moreno, E.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bergognon, A. A. E.; Berzano, D.; Betev, L.; Bhasin, A.; Bhati, A. K.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Biel?ík, J.; Biel?íková, J.; Bilandzic, A.; Bjelogrlic, S.; Blanco, F.; Blanco, F.; Blau, D.; Blume, C.; Boccioli, M.; Bock, N.; Böttger, S.; Bogdanov, A.; Břggild, H.; Bogolyubsky, M.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Bose, S.; Bossú, F.; Botje, M.; Botta, E.; Boyer, B.; Braidot, E.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Browning, T. A.; Broz, M.; Brun, R.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Busch, O.; Buthelezi, Z.; Caballero Orduna, D.; Caffarri, D.; Cai, X.; Caines, H.; Calvo Villar, E.; Camerini, P.; Canoa Roman, V.; Cara Romeo, G.; Carena, F.; Carena, W.; Carlin Filho, N.; Carminati, F.; Casanova Díaz, A.; Castillo Castellanos, J.; Castillo Hernandez, J. F.; Casula, E. A. R.; Catanescu, V.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chawla, I.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Coccetti, F.; Colamaria, F.; Colella, D.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Constantin, P.; Contin, G.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortese, P.; Cortés Maldonado, I.; Cosentino, M. R.; Costa, F.; Cotallo, M. E.; Crescio, E.; Crochet, P.; Cruz Alaniz, E.; Cuautle, E.; Cunqueiro, L.; Dainese, A.; Dalsgaard, H. H.; Danu, A.; Das, D.; Das, I.; Das, K.; Dash, A.; Dash, S.; de, S.; de Barros, G. O. V.; de Caro, A.; de Cataldo, G.; de Cuveland, J.; de Falco, A.; de Gruttola, D.; Delagrange, H.; Deloff, A.; Demanov, V.; De Marco, N.; Dénes, E.; de Pasquale, S.; Deppman, A.; D Erasmo, G.; de Rooij, R.; Diaz Corchero, M. A.; di Bari, D.; Dietel, T.; di Giglio, C.; di Liberto, S.; di Mauro, A.; di Nezza, P.; Diviŕ, R.; Djuvsland, Ř.; Dobrin, A.; Dobrowolski, T.; Domínguez, I.; Dönigus, B.; Dordic, O.; Driga, O.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Dutta Majumdar, M. R.; Dutta Majumdar, A. K.; Elia, D.; Emschermann, D.; Engel, H.; Erazmus, B.; Erdal, H. A.; Espagnon, B.; Estienne, M.; Esumi, S.; Evans, D.; Eyyubova, G.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fearick, R.; Fedunov, A.; Fehlker, D.; Feldkamp, L.; Felea, D.; Fenton-Olsen, B.; Feofilov, G.; Fernández Téllez, A.; Ferretti, A.; Ferretti, R.; Festanti, A.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Fusco Girard, M.; Gaardhřje, J. J.; Gagliardi, M.; Gago, A.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Garabatos, C.; Garcia-Solis, E.; Garishvili, I.; Gerhard, J.; Germain, M.; Geuna, C.; Gheata, A.; Gheata, M.; Ghidini, B.; Ghosh, P.; Gianotti, P.; Girard, M. R.; Giubellino, P.; Gladysz-Dziadus, E.; Glässel, P.; Gomez, R.; Ferreiro, E. G.; González-Trueba, L. H.; González-Zamora, P.; Gorbunov, S.; Goswami, A.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Grajcarek, R.; Grelli, A.; Grigoras, C.; Grigoras, A.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Gros, P.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.

    2013-04-01

    The production cross section of electrons from semileptonic decays of beauty hadrons was measured at mid-rapidity (|y|<0.8) in the transverse momentum range 1TeV using an integrated luminosity of 2.2 nb. Electrons from beauty hadron decays were selected based on the displacement of the decay vertex from the collision vertex. A perturbative QCD calculation agrees with the measurement within uncertainties. The data were extrapolated to the full phase space to determine the total cross section for the production of beauty quark-antiquark pairs.

  3. Upsilon production cross section in pp collisions at ?s=7??TeV

    DOE PAGESBeta

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; et al

    2011-06-01

    The ?(1S), ?(2S), and ?(3S) production cross sections in proton-proton collisions at ?s=7 TeV are measured using a data sample collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 3.1ą0.3 pb?š. Integrated over the rapidity range |y|+0.61-0.42ą0.81 nb, where the first uncertainty is statistical, the second is systematic, and the third is associated with the estimation of the integrated luminosity of the data sample. This cross section is obtained assuming unpolarized ?(1S) production. With themore ťassumption of fully transverse or fully longitudinal production polarization, the measured cross section changes by about 20%. We also report the measurement of the ?(1S), ?(2S), and ?(3S) differential cross sections as a function of transverse momentum and rapidity.Ť less

  4. Charged-Particle Multiplicity ppbar Collisions at (s) = 1.8 TeV

    NASA Astrophysics Data System (ADS)

    Affolder, T.; Akimoto, H.; Akopian, A.; Albrow, M. G.; Amaral, P.; Amidei, D.; Anikeev, K.; Antos, J.; Apollinari, G.; Arisawa, T.; Artikov, A.; Asakawa, T.; Ashmanskas, W.; Azfar, F.; Azzi-Bacchetta, P.; Bacchetta, N.; Bachacou, H.; Bailey, S.; de Barbaro, P.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Baroiant, S.; Barone, M.; Bauer, G.; Bedeschi, F.; Belforte, S.; Bell, W. H.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Bensinger, J.; Beretvas, A.; Berge, J. P.; Berryhill, J.; Bhatti, A.; Binkley, M.; Bisello, D.; Bishai, M.; Blair, R. E.; Blocker, C.; Bloom, K.; Blumenfeld, B.; Blusk, S. R.; Bocci, A.; Bodek, A.; Bokhari, W.; Bolla, G.; Bonushkin, Y.; Bortoletto, D.; Boudreau, J.; Brandl, A.; van Brink, S.; Bromberg, C.; Brozovic, M.; Brubaker, E.; Bruner, N.; Buckley-Geer, E.; Budagov, J.; Budd, H. S.; Burkett, K.; Busetto, G.; Byon-Wagner, A.; Byrum, K. L.; Cabrera, S.; Calafiura, P.; Campbell, M.; Carithers, W.; Carlson, J.; Carlsmith, D.; Caskey, W.; Castro, A.; Cauz, D.; Cerri, A.; Chan, A. W.; Chang, P. S.; Chang, P. T.; Chapman, J.; Chen, C.; Chen, Y. C.; Cheng, M.-T.; Chertok, M.; Chiarelli, G.; Chirikov-Zorin, I.; Chlachidze, G.; Chlebana, F.; Christofek, L.; Chu, M. L.; Chung, Y. S.; Ciobanu, C. I.; Clark, A. G.; Connolly, A.; Conway, J.; Cordelli, M.; Cranshaw, J.; Cropp, R.; Culbertson, R.; Dagenhart, D.; D'Auria, S.; Dejongh, F.; dell'Agnello, S.; dell'Orso, M.; Demortier, L.; Deninno, M.; Derwent, P. F.; Devlin, T.; Dittmann, J. R.; Dominguez, A.; Donati, S.; Done, J.; D'Onofrio, M.; Dorigo, T.; Eddy, N.; Einsweiler, K.; Elias, J. E.; Engels, E.; Erbacher, R.; Errede, D.; Errede, S.; Fan, Q.; Feild, R. G.; Fernandez, J. P.; Ferretti, C.; Field, R. D.; Fiori, I.; Flaugher, B.; Foster, G. W.; Franklin, M.; Freeman, J.; Friedman, J.; Fukui, Y.; Furic, I.; Galeotti, S.; Gallas, A.; Gallinaro, M.; Gao, T.; Garcia-Sciveres, M.; Garfinkel, A. F.; Gatti, P.; Gay, C.; Gerdes, D. W.; Giannetti, P.; Giromini, P.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldstein, J.; Gorelov, I.; Goshaw, A. T.; Gotra, Y.; Goulianos, K.; Green, C.; Grim, G.; Gris, P.; Groer, L.; Grosso-Pilcher, C.; Guenther, M.; Guillian, G.; Guimaraes de Costa, J.; Haas, R. M.; Haber, C.; Hahn, S. R.; Hall, C.; Handa, T.; Handler, R.; Hao, W.; Happacher, F.; Hara, K.; Hardman, A. D.; Harris, R. M.; Hartmann, F.; Hatakeyama, K.; Hauser, J.; Heinrich, J.; Heiss, A.; Herndon, M.; Hill, C.; Hoffman, K. D.; Holck, C.; Hollebeek, R.; Holloway, L.; Hughes, R.; Huston, J.; Huth, J.; Ikeda, H.; Incandela, J.; Introzzi, G.; Iwai, J.; Iwata, Y.; James, E.; Jones, M.; Joshi, U.; Kambara, H.; Kamon, T.; Kaneko, T.; Karr, K.; Kasha, H.; Kato, Y.; Keaffaber, T. A.; Kelley, K.; Kelly, M.; Kennedy, R. D.; Kephart, R.; Khazins, D.; Kikuchi, T.; Kilminster, B.; Kim, B. J.; Kim, D. H.; Kim, H. S.; Kim, M. J.; Kim, S. B.; Kim, S. H.; Kim, Y. K.; Kirby, M.; Kirk, M.; Kirsch, L.; Klimenko, S.; Koehn, P.; Kondo, K.; Konigsberg, J.; Korn, A.; Korytov, A.; Kovacs, E.; Kroll, J.; Kruse, M.; Kuhlmann, S. E.; Kurino, K.; Kuwabara, T.; Laasanen, A. T.; Lai, N.; Lami, S.; Lammel, S.; Lancaster, J.; Lancaster, M.; Lander, R.; Lath, A.; Latino, G.; Lecompte, T.; Lee, A. M.; Lee, K.; Leone, S.; Lewis, J. D.; Lindgren, M.; Liss, T. M.; Liu, J. B.; Liu, Y. C.; Litvintsev, D. O.; Lobban, O.; Lockyer, N.; Loken, J.; Loreti, M.; Lucchesi, D.; Lukens, P.; Lusin, S.; Lyons, L.; Lys, J.; Madrak, R.; Maeshima, K.; Maksimovic, P.; Malferrari, L.; Mangano, M.; Mariotti, M.; Martignon, G.; Martin, A.; Matthews, J. A.; Mayer, J.; Mazzanti, P.; McFarland, K. S.; McIntyre, P.; McKigney, E.; Menguzzato, M.; Menzione, A.; Mesropian, C.; Meyer, A.; Miao, T.; Miller, R.; Miller, J. S.; Minato, H.; Miscetti, S.; Mishina, M.; Mitselmakher, G.; Moggi, N.; Moore, E.; Moore, R.; Morita, Y.; Moulik, T.; Mulhearn, M.; Mukherjee, A.; Muller, T.; Munar, A.; Murat, P.; Murgia, S.; Nachtman, J.; Nagaslaev, V.; Nahn, S.; Nakada, H.; Nakano, I.; Nelson, C.; Nelson, T.; Neu, C.; Neuberger, D.; Newman-Holmes, C.; Ngan, C.-Y. P.; Niu, H.; Nodulman, L.; Nomerotski, A.; Oh, S. H.; Oh, Y. D.; Ohmoto, T.; Ohsugi, T.; Oishi, R.; Okusawa, T.; Olsen, J.; Orejudos, W.; Pagliarone, C.; Palmonari, F.; Paoletti, R.; Papadimitriou, V.; Partos, D.; Patrick, J.; Pauletta, G.; Paulini, M.; Paus, C.; Pescara, L.; Phillips, T. J.; Piacentino, G.; Pitts, K. T.; Plunkett, R.; Pompos, A.; Pondrom, L.; Pope, G.; Popovic, M.; Prokoshin, F.; Proudfoot, J.; Ptohos, F.; Pukhov, O.; Punzi, G.; Rakitine, A.; Ratnikov, F.; Reher, D.; Reichold, A.; Ribon, A.; Riegler, W.; Rimondi, F.; Ristori, L.; Riveline, M.; Robertson, W. J.; Robinson, A.; Rodrigo, T.; Rolli, S.; Rosenson, L.; Roser, R.; Rossin, R.; Roy, A.; Ruiz, A.; Safonov, A.; St. Denis, R.; Sakumoto, W. K.; Saltzberg, D.; Sanchez, C.; Sansoni, A.; Santi, L.; Sato, H.; Savard, P.

    2001-11-01

    We report on a measurement of the mean charged-particle multiplicity of jets in dijet events with dijet masses in the range 80-630 GeV/c2, produced at the Tevatron in ppbar collisions with (s) = 1.8 TeV and recorded by the Collider Detector at Fermilab. The data are fit to perturbative-QCD calculations carried out in the framework of the modified leading log approximation and the hypothesis of local parton-hadron duality. The fit yields values for two parameters in that framework: the ratio of parton multiplicities in gluon and quark jets, r?Ng-jetpartons/Nq- jetpartons = 1.7+/-0.3, and the ratio of the number of charged hadrons to the number of partons in a jet, KchargedLPHD?Nchargedhadrons/Npartons = 0.57+/-0.11.

  5. Measurement of the Forward-Backward Asymmetry in Z/?* ? ?? Events in CMS at 7 TeV

    NASA Astrophysics Data System (ADS)

    Yazgan, Efe; CMS Collaboration

    2011-05-01

    We present the initial steps in the measurement of the forward-backward asymmetry (AFB) for ?+ ?- pairs produced via an intermediate Z/?* at ?s = 7 TeV in the CMS experiment. Our results are based on an integrated luminosity of 198 nb-1. The uncorrected forward-backward asymmetry is measured to be -0.50ą0.40 in the mass range 40-70 GeV, and 0.14ą0.11 in 70-110 GeV. The measured values are consistent with POWHEG + PYTHIA + full CMS simulation predictions of -0.03 and 0.01 in these two mass bins.

  6. Study of hadronic event-shape variables in multijet final states in pp collisions at TeV

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Luyckx, S.; Ochesanu, S.; Roland, B.; Rougny, R.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Daci, N.; Heracleous, N.; Kalogeropoulos, A.; Keaveney, J.; Kim, T. J.; Lowette, S.; Maes, M.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Dobur, D.; Favart, L.; Gay, A. P. R.; Grebenyuk, A.; Léonard, A.; Mohammadi, A.; Pernič, L.; Reis, T.; Seva, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Adler, V.; Beernaert, K.; Benucci, L.; Cimmino, A.; Costantini, S.; Crucy, S.; Dildick, S.; Fagot, A.; Garcia, G.; Klein, B.; Mccartin, J.; Ocampo Rios, A. A.; Ryckbosch, D.; Salva Diblen, S.; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jez, P.; Komm, M.; Lemaitre, V.; Liao, J.; Nuttens, C.; Pagano, D.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Vizan Garcia, J. M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Aldá, W. L.; Alves, G. A.; Correa Martins Junior, M.; Dos Reis Martins, T.; Pol, M. E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Malbouisson, H.; Malek, M.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santaolalla, J.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Bernardes, C. A.; Dias, F. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Aleksandrov, A.; Genchev, V.; Iaydjiev, P.; Marinov, A.; Piperov, S.; Rodozov, M.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Du, R.; Jiang, C. H.; Liang, D.; Liang, S.; Plestina, R.; Tao, J.; Wang, X.; Wang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Guo, Y.; Li, Q.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Zhang, L.; Zou, W.; Avila, C.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Mekterovic, D.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Bodlak, M.; Finger, M.; Finger, M.; Assran, Y.; Ellithi Kamel, A.; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Eerola, P.; Fedi, G.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Baffioni, S.; Beaudette, F.; Busson, P.; Charlot, C.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Mastrolorenzo, L.; Miné, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Veelken, C.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Chabert, E. C.; Collard, C.; Conte, E.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Beaupere, N.; Boudoul, G.; Brochet, S.; Carrillo Montoya, C. A.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Ruiz Alvarez, J. D.; Sabes, D.; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Xiao, H.; Tsamalaidze, Z.

    2014-10-01

    Event-shape variables, which are sensitive to perturbative and nonperturbative aspects of quantum chromodynamic (QCD) interactions, are studied in multijet events recorded in proton-proton collisions at TeV. Events are selected with at least one jet with transverse momentum p T > 110 GeV and pseudorapidity | ?| < 2.4, in a data sample corresponding to integrated luminosities of up to 5 fb-1. The distributions of five event-shape variables in various leading jet p T ranges are compared to predictions from different QCD Monte Carlo event generators. [Figure not available: see fulltext.

  7. The Energy Spectrum of Atmospheric Neutrinos between 2 and 200 TeV with the AMANDA-II Detector

    SciTech Connect

    IceCube Collaboration; Abbasi, R.

    2010-05-11

    The muon and anti-muon neutrino energy spectrum is determined from 2000-2003 AMANDA telescope data using regularised unfolding. This is the first measurement of atmospheric neutrinos in the energy range 2-200 TeV. The result is compared to different atmospheric neutrino models and it is compatible with the atmospheric neutrinos from pion and kaon decays. No significant contribution from charm hadron decays or extraterrestrial neutrinos is detected. The capabilities to improve the measurement of the neutrino spectrum with the successor experiment IceCube are discussed.

  8. Measurement of the Inclusive Jet Cross Section in pp Collisions at sqrt[s]=7??TeV

    SciTech Connect

    Chatrchyan, Serguei; et al.

    2011-09-01

    The inclusive jet cross section is measured in pp collisions with a center-of-mass energy of 7 TeV at the LHC using the CMS experiment. The data sample corresponds to an integrated luminosity of 34 inverse picobarns. The measurement is made for jet transverse momenta in the range 18-1100 GeV and for absolute values of rapidity less than 3. The measured cross section extends to the highest values of jet pT ever observed and, within the experimental and theoretical uncertainties, is generally in agreement with next-to-leading-order perturbative QCD predictions.

  9. The energy spectrum of atmospheric neutrinos between 2 and 200 TeV with the AMANDA-II detector

    NASA Astrophysics Data System (ADS)

    Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Benabderrahmane, M. L.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bissok, M.; Blaufuss, E.; Boersma, D. J.; Bohm, C.; Böser, S.; Botner, O.; Bradley, L.; Braun, J.; Buitink, S.; Carson, M.; Chirkin, D.; Christy, B.; Clem, J.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D. F.; D'Agostino, M. V.; Danninger, M.; De Clercq, C.; Demirörs, L.; Depaepe, O.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; DeYoung, T.; Díaz-Vélez, J. C.; Dreyer, J.; Dumm, J. P.; Duvoort, M. R.; Ehrlich, R.; Eisch, J.; Ellsworth, R. W.; Engdegĺrd, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feusels, T.; Filimonov, K.; Finley, C.; Foerster, M. M.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Ganugapati, R.; Geisler, M.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gunasingha, R. M.; Gurtner, M.; Ha, C.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Helbing, K.; Herquet, P.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Homeier, A.; Hoshina, K.; Hubert, D.; Huelsnitz, W.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Imlay, R. L.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Joseph, J. M.; Kampert, K.-H.; Kappes, A.; Karg, T.; Karle, A.; Kelley, J. L.; Kemming, N.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Knops, S.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Koskinen, D. J.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Krings, T.; Kroll, G.; Kuehn, K.; Kuwabara, T.; Labare, M.; Lafebre, S.; Laihem, K.; Landsman, H.; Lauer, R.; Lehmann, R.; Lennarz, D.; Lünemann, J.; Madsen, J.; Majumdar, P.; Maruyama, R.; Mase, K.; Matis, H. S.; Matusik, M.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Middell, E.; Milke, N.; Montaruli, T.; Morse, R.; Movit, S. M.; Münich, K.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nießen, P.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; Ono, M.; Panknin, S.; Paul, L.; Pérez de los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Porrata, R.; Posselt, J.; Price, P. B.; Prikockis, M.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Rizzo, A.; Rodrigues, J. P.; Roth, P.; Rothmaier, F.; Rott, C.; Roucelle, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Sarkar, S.; Schatto, K.; Schlenstedt, S.; Schmidt, T.; Schneider, D.; Schukraft, A.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Slipak, A.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stephens, G.; Stezelberger, T.; Stokstad, R. G.; Stoyanov, S.; Strahler, E. A.; Straszheim, T.; Sullivan, G. W.; Swillens, Q.; Taboada, I.; Tamburro, A.; Tarasova, O.; Tepe, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Tosi, D.; Tur?an, D.; van Eijndhoven, N.; Vandenbroucke, J.; Van Overloop, A.; van Santen, J.; Voigt, B.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Wikström, G.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Woschnagg, K.; Xu, C.; Xu, X. W.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.

    2010-08-01

    The muon and anti-muon neutrino energy spectrum is determined from 2000-2003 AMANDA telescope data using regularised unfolding. This is the first measurement of atmospheric neutrinos in the energy range 2-200 TeV. The result is compared to different atmospheric neutrino models and it is compatible with the atmospheric neutrinos from pion and kaon decays. No significant contribution from charm hadron decays or extraterrestrial neutrinos is detected. The capabilities to improve the measurement of the neutrino spectrum with the successor experiment IceCube are discussed.

  10. Production of K*(892)^0 and $\\\\phi$(1020) in pp collisions at $\\\\sqrt{s}$ =7 TeV

    Microsoft Academic Search

    Betty Abelev; Jaroslav Adam; Dagmar Adamova; Andrew Marshall Adare; Madan Aggarwal; Gianluca Aglieri Rinella; Andras Gabor Agocs; Andrea Agostinelli; Saul Aguilar Salazar; Zubayer Ahammed; Arshad Ahmad; Nazeer Ahmad; Sang Un Ahn; Alexander Akindinov; Dmitry Aleksandrov; Bruno Alessandro; Jose Ruben Alfaro Molina; Andrea Alici; Anton Alkin; Erick Jonathan Almaraz Avina; Johan Alme; Torsten Alt; Valerio Altini; Sedat Altinpinar; Igor Altsybeev; Cristian Andrei; Anton Andronic; Venelin Anguelov; Jonas Anielski; Tome Anticic; Federico Antinori; Pietro Antonioli; Laurent Bernard Aphecetche; Harald Appelshauser; Nicolas Arbor; Silvia Arcelli; Nestor Armesto; Roberta Arnaldi; Tomas Robert Aronsson; Ionut Cristian Arsene; Mesut Arslandok; Andre Augustinus; Ralf Peter Averbeck; Terry Awes; Juha Heikki Aysto; Mohd Danish Azmi; Matthias Jakob Bach; Angela Badala; Yong Wook Baek; Raphaelle Marie Bailhache; Renu Bala; Rinaldo Baldini Ferroli; Alberto Baldisseri; Alain Baldit; Fernando Baltasar Dos Santos Pedrosa; Jaroslav Ban; Rama Chandra Baral; Roberto Barbera; Francesco Barile; Gergely Gabor Barnafoldi; Lee Stuart Barnby; Valerie Barret; Jerzy Gustaw Bartke; Maurizio Basile; Nicole Bastid; Sumit Basu; Bastian Bathen; Guillaume Batigne; Boris Batyunya; Christoph Heinrich Baumann; Ian Gardner Bearden; Hans Beck; Nirbhay Kumar Behera; Iouri Belikov; Francesca Bellini; Rene Bellwied; Ernesto Belmont-Moreno; Gyula Bencedi; Stefania Beole; Ionela Berceanu; Alexandru Bercuci; Yaroslav Berdnikov; Daniel Berenyi; Anais Annick Erica Bergognon; Dario Berzano; Latchezar Betev; Anju Bhasin; Ashok Kumar Bhati; Jihyun Bhom; Livio Bianchi; Nicola Bianchi; Chiara Bianchin; Jaroslav Bielcik; Jana Bielcikova; Ante Bilandzic; Sandro Bjelogrlic; F Blanco; Dmitry Blau; Christoph Blume; Nicolas Bock; Stefan Boettger; Alexey Bogdanov; Hans Boggild; Mikhail Bogolyubsky; Laszlo Boldizsar; Marek Bombara; Herve Borel; Alexander Borissov; Suvendu Nath Bose; Francesco Bossu; Michiel Botje; Bruno Alexandre Boyer; Ermes Braidot; Peter Braun-Munzinger; Marco Bregant; Timo Gunther Breitner; Tyler Allen Browning; Michal Broz; Rene Brun; Elena Bruna; Giuseppe Eugenio Bruno; Dmitry Budnikov; Henner Buesching; Stefania Bufalino; Oliver Busch; Edith Zinhle Buthelezi; Davide Caffarri; Xu Cai; Helen Louise Caines; Ernesto Calvo Villar; Paolo Camerini; Veronica Canoa Roman; Giovanni Cara Romeo; Francesco Carena; Wisla Carena; Federico Carminati; Amaya Ofelia Casanova Diaz; Javier Ernesto Castillo Castellanos; Ester Anna Rita Casula; Vasile Catanescu; Costanza Cavicchioli; Cesar Ceballos Sanchez; Jan Cepila; Piergiorgio Cerello; Beomsu Chang; Sylvain Chapeland; Jean-Luc Fernand Charvet; Sukalyan Chattopadhyay; Subhasis Chattopadhyay; Isha Chawla; Michael Gerard Cherney; Cvetan Cheshkov; Brigitte Cheynis; Emilio Chiavassa; Vasco Miguel Chibante Barroso; David Chinellato; Peter Chochula; Marek Chojnacki; Subikash Choudhury; Panagiotis Christakoglou; Christian Holm Christensen; Peter Christiansen; Tatsuya Chujo; Suh-Urk Chung; Corrado Cicalo; Luisa Cifarelli; Federico Cindolo; Jean Willy Andre Cleymans; Fabrizio Coccetti; Fabio Colamaria; Domenico Colella; Gustavo Conesa Balbastre; Zaida Conesa del Valle; Paul Constantin; Giacomo Contin; Jesus Guillermo Contreras; Thomas Michael Cormier; Yasser Corrales Morales; Ismael Cortes Maldonado; Pietro Cortese; Mauro Rogerio Cosentino; Filippo Costa; Manuel Enrique Cotallo; Philippe Crochet; Emilia Cruz Alaniz; Eleazar Cuautle; Leticia Cunqueiro; Ginevra D'Erasmo; Andrea Dainese; Hans Hjersing Dalsgaard; Andrea Danu; Debasish Das; Indranil Das; Kushal Das; Ajay Kumar Dash; Sadhana Dash; Sudipan De; Gabriel de Barros; Annalisa De Caro; Giacinto de Cataldo; Jan de Cuveland; Alessandro De Falco; Daniele De Gruttola; Nora De Marco; Salvatore De Pasquale; Raoul Stefan de Rooij; Hugues Delagrange; Andrzej Deloff; Vyacheslav Demanov; Ervin Denes; Airton Deppman; Domenico Di Bari; Carmelo Di Giglio; Sergio Di Liberto; Antonio Di Mauro; Pasquale Di Nezza; Miguel Angel Diaz Corchero; Thomas Dietel; Roberto Divia; Oeystein Djuvsland; Alexandru Florin Dobrin; Tadeusz Antoni Dobrowolski; Isabel Dominguez; Benjamin Donigus; Olja Dordic; Olga Driga; Anand Kumar Dubey; Andrea Dubla; Laurent Ducroux; Pascal Dupieux; AK Dutta Majumdar; Mihir Ranjan Dutta Majumdar; Domenico Elia; David Philip Emschermann; Heiko Engel; Barbara Erazmus; Hege Austrheim Erdal; Bruno Espagnon; Magali Danielle Estienne; Shinichi Esumi; David Evans; Gyulnara Eyyubova; Daniela Fabris; Julien Faivre; Davide Falchieri; Alessandra Fantoni; Markus Fasel

    2012-01-01

    The production of K*(892)$^0$ and $\\\\phi$(1020) in pp collisions at $\\\\sqrt{s}$=7 TeV was measured by the ALICE experiment at the LHC. The yields and the transverse momentum spectra $d^2 N\\/dydp_T$ at midrapidity |y|<0.5 in the range 0 < $p_T$ < 6 GeV\\/c for K*(892)$^0$ and 0.4 < $p_T$ < 6 GeV\\/c for $\\\\phi$(1020) are reported and compared to model predictions.

  11. Measurement of the atmospheric ? ? energy spectrum from 100 GeV to 200 TeV with the ANTARES telescope

    NASA Astrophysics Data System (ADS)

    Adrián-Martínez, S.; Albert, A.; Al Samarai, I.; André, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Astraatmadja, T.; Aubert, J.-J.; Baret, B.; Barrios-Martí, J.; Basa, S.; Bertin, V.; Biagi, S.; Bigongiari, C.; Bogazzi, C.; Bouhou, B.; Bouwhuis, M. C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Cârloganu, C.; Carr, J.; Cecchini, S.; Charif, Z.; Charvis, Ph.; Chiarusi, T.; Circella, M.; Classen, F.; Core, L.; Costantini, H.; Coyle, P.; Creusot, A.; Curtil, C.; Dekeyser, I.; Deschamps, A.; De Bonis, G.; Decowski, M. P.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drouhin, D.; Dumas, A.; Eberl, T.; Emanuele, U.; Enzenhöfer, A.; Ernenwein, J.-P.; Escoffier, S.; Fehn, K.; Fermani, P.; Flaminio, V.; Folger, F.; Fritsch, U.; Fusco, L. A.; Galatŕ, S.; Gay, P.; Geißelsöder, S.; Geyer, K.; Giacomelli, G.; Giordano, V.; Gleixner, A.; Gómez-González, J. P.; Graf, K.; Guillard, G.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Herold, B.; Hößl, J.; James, C. W.; de Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U.; Kooijman, P.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lambard, E.; Lambard, G.; Larosa, G.; Lattuada, D.; Lefčvre, D.; Leonora, E.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Louis, F.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martínez-Mora, J. A.; Martini, S.; Michael, T.; Montaruli, T.; Morganti, M.; Motz, H.; Mueller, C.; Neff, M.; Nezri, E.; Palioselitis, D.; P?v?la?, G. E.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Racca, C.; Richter, R.; Rivičre, C.; Robert, A.; Roensch, K.; Rostovtsev, A.; Samtleben, D. F. E.; Sanguineti, M.; Sapienza, P.; Schmid, J.; Schnabel, J.; Schulte, S.; Schüssler, F.; Seitz, T.; Shanidze, R.; Sieger, C.; Simeone, F.; Spies, A.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Sánchez-Losa, A.; Taiuti, M.; Tamburini, C.; Tayalati, Y.; Trovato, A.; Vallage, B.; Vallée, C.; Van Elewyck, V.; Vernin, P.; Visser, E.; Wagner, S.; Wilms, J.; de Wolf, E.; Yatkin, K.; Yepes, H.; Zornoza, J. D.; Zúńiga, J.

    2013-10-01

    Atmospheric neutrinos are produced during cascades initiated by the interaction of primary cosmic rays with air nuclei. In this paper, a measurement of the atmospheric energy spectrum in the energy range 0.1-200 TeV is presented, using data collected by the ANTARES underwater neutrino telescope from 2008 to 2011. Overall, the measured flux is ˜25 % higher than predicted by the conventional neutrino flux, and compatible with the measurements reported in ice. The flux is compatible with a single power-law dependence with spectral index ? meas=3.58ą0.12. With the present statistics the contribution of prompt neutrinos cannot be established.

  12. Observation of $J\\/\\\\psi$ pair production in pp collisions at $\\\\sqrt{s}=7 TeV$

    Microsoft Academic Search

    R. Aaij; B. Adeva; M. Adinolfi; C. Adrover; A. Affolder; Z. Ajaltouni; J. Albrecht; F. Alessio; M. Alexander; G. Alkhazov; P. Alvarez Cartelle; A. A. Alves Jr; S. Amato; Y. Amhis; J. Anderson; R. B. Appleby; O. Aquines Gutierrez; F. Archilli; L. Arrabito; A. Artamonov; M. Artuso; E. Aslanides; G. Auriemma; S. Bachmann; J. J. Back; D. S. Bailey; V. Balagura; W. Baldini; R. J. Barlow; C. Barschel; S. Barsuk; W. Barter; A. Bates; C. Bauer; Th. Bauer; A. Bay; I. Bediaga; K. Belous; I. Belyaev; E. Ben-Haim; M. Benayoun; G. Bencivenni; S. Benson; J. Benton; R. Bernet; M van Beuzekom; A. Bien; S. Bifani; A. Bizzeti; P. M. Bjřrnstad; T. Blake; F. Blanc; C. Blanks; J. Blouw; S. Blusk; A. Bobrov; V. Bocci; A. Bondar; N. Bondar; W. Bonivento; S. Borghi; A. Borgia; T. J. V. Bowcock; C. Bozzi; T. Brambach; J. van den Brand; J. Bressieux; D. Brett; S. Brisbane; M. Britsch; T. Britton; N. H. Brook; H. Brown; A. Büchler-Germann; I. Burducea; A. Bursche; J. Buytaert; S. Cadeddu; J. M. Caicedo Carvajal; O. Callot; M. Calvi; M. Calvo Gomez; A. Camboni; P. Campana; A. Carbone; G. Carboni; R. Cardinale; A. Cardini; L. Carson; K. Carvalho Akiba; G. Casse; M. Cattaneo; M. Charles; Ph. Charpentier; N. Chiapolini; K. Ciba; X. Cid Vidal; G. Ciezarek; P. E. L. Clarke; M. Clemencic; H. V. Cliff; J. Closier; C. Coca; V. Coco; J. Cogan; P. Collins; F. Constantin; G. Conti; A. Contu; A. Cook; M. Coombes; G A Cowan; R. Currie; B. D'Almagne; C. D'Ambrosio; P. David; I. De Bonis; S. De Capua; M. De Cian; F. De Lorenzi; J. M. De Miranda; L. De Paula; P. De Simone; D. Decamp; M. Deckenhoff; H. Degaudenzi; M. Deissenroth; L. Del Buono; C. Deplano; O. Deschamps; F. Dettori; J. Dickens; H. Dijkstra; P. Diniz Batista; S. Donleavy; A. Dosil Suárez; D. Dossett; A. Dovbnya; F. Dupertuis; R. Dzhelyadin; C. Eames; S. Easo; U. Egede; V. Egorychev; S. Eidelman; D. van Eijk; F. Eisele; S. Eisenhardt; R. Ekelhof; L. Eklund; Ch. Elsasser; D. G. d'Enterria; D. Esperante Pereira; L. Estčve; A. Falabella; E. Fanchini; C. Färber; G. Fardell; C. Farinelli; S. Farry; V. Fave; V. Fernandez Albor; M. Ferro-Luzzi; S. Filippov; C. Fitzpatrick; M. Fontana; F. Fontanelli; R. Forty; M. Frank; C. Frei; M. Frosini; S. Furcas; A. Gallas Torreira; D. Galli; M. Gandelman; P. Gandini; Y. Gao; J. C. Garnier; J. Garofoli; J. Garra Tico; L. Garrido; C. Gaspar; N. Gauvin; M. Gersabeck; T. Gershon; Ph. Ghez; V V Gligorov; C. Göbel; D. Golubkov; A. Golutvin; A. Gomes; H. Gordon; M. Grabalosa Gándara; R. Graciani Diaz; L. A. Granado Cardoso; E. Graugés; G. Graziani; A. Grecu; S. Gregson; B. Gui; E. Gushchin; Yu. Guz; T. Gys; G. Haefeli; C. Haen; S. C. Haines; T. Hampson; S. Hansmann-Menzemer; R. Harji; N. Harnew; J. Harrison; P. F. Harrison; J. He; V. Heijne; K. Hennessy; P. Henrard; J. A. Hernando Morata; E. van Herwijnen; E. Hicks; W. Hofmann; K. Holubyev; P. Hopchev; W. Hulsbergen; P. Hunt; T. Huse; R. S. Huston; D. Hutchcroft; D. Hynds; V. Iakovenko; P. Ilten; J. Imong; R. Jacobsson; A. Jaeger; M. Jahjah Hussein; E. Jans; F. Jansen; P. Jaton; B. Jean-Marie; F. Jing; M. John; D. Johnson; C. R. Jones; B. Jost; S. Kandybei; M. Karacson; T. M. Karbach; J. Keaveney; U. Kerzel; T. Ketel; A. Keune; B. Khanji; Y. M. Kim; M. Knecht; S. Koblitz; P. Koppenburg; A. Kozlinskiy; L. Kravchuk; K. Kreplin; M. Kreps; G. Krocker; P. Krokovny; F. Kruse; K. Kruzelecki; M. Kucharczyk; S. Kukulak; R. Kumar; T. Kvaratskheliya; V. N. La Thi; D. Lacarrere; G. Lafferty; A. Lai; D. Lambert; R. W. Lambert; E. Lanciotti; G. Lanfranchi; C. Langenbruch; T. Latham; R. Le Gac; J. van Leerdam; J.-P. Lees; R. Lefčvre; A. Leflat; J. Lefrançois; O. Leroy; T. Lesiak; L. Li; L. Li Gioi; M. Lieng; M. Liles; R. Lindner; C. Linn; B. Liu; G. Liu; J. H. Lopes; E. Lopez Asamar; N. Lopez-March; J. Luisier; F. Machefert; I. V. Machikhiliyan; F. Maciuc; O. Maev; J. Magnin; S. Malde; R. M. D. Mamunur; G Mancinelli; N. Mangiafave; U. Marconi; R. Märki; J. Marks; G. Martellotti; A. Martens; L. Martin; A. Martín Sánchez; D. Martinez Santos; A. Massafferri; Z. Mathe; C. Matteuzzi; M. Matveev; E. Maurice; B. Maynard; A. Mazurov; G. McGregor; R. McNulty; C. Mclean; M. Meissner; M. Merk; J. Merkel; R. Messi; S. Miglioranzi; D. A. Milanes; M.-N. Minard; S. Monteil; D. Moran; P. Morawski; I. Mous; F. Muheim; K. Müller; R. Muresan; B. Muryn; M. Musy; J. Mylroie-Smith; P. Naik; T. Nakada; R. Nandakumar; J. Nardulli; I. Nasteva; M Needham; N. Neufeld; C. Nguyen-Mau; M. Nicol; S. Nies; V. Niess; N. Nikitin; A. Novoselov; A. Oblakowska-Mucha; V. Obraztsov; S. Oggero; S. Ogilvy; O. Okhrimenko; R. Oldeman; M. Orlandea; J. M. Otalora Goicochea; P. Owen; B. Pal; J. Palacios; M. Palutan; J. Panman; A. Papanestis; M. Pappagallo; C J Parkinson; G. Passaleva; G. D. Patel; M. Patel; S. K. Paterson; G. N. Patrick; C Pavel-Nicorescu; A. Pazos Alvarez; A. Pellegrino; G. Penso; M. Pepe Altarelli

    2011-01-01

    The production of $J\\/\\\\psi$ pairs in proton-proton collisions at a centre-of-mass energy of 7 TeV has been observed using an integrated luminosity of $37.5 pb^{-1}$ collected with the LHCb detector. The production cross-section for pairs with both \\\\jpsi in the rapidity range $2

  13. Measurement of charm production at central rapidity in proton-proton collisions at $\\\\sqrt{s}$ = 7 TeV

    Microsoft Academic Search

    Betty Abelev; Arian Abrahantes Quintana; Dagmar Adamova; Andrew Marshall Adare; Madan Aggarwal; Gianluca Aglieri Rinella; Andras Gabor Agocs; Andrea Agostinelli; Saul Aguilar Salazar; Zubayer Ahammed; Arshad Ahmad; Nazeer Ahmad; Sang Un Ahn; Alexander Akindinov; Dmitry Aleksandrov; Bruno Alessandro; Jose Ruben Alfaro Molina; Andrea Alici; Anton Alkin; Erick Jonathan Almaraz Avina; Johan Alme; Torsten Alt; Valerio Altini; Sedat Altinpinar; Igor Altsybeev; Cristian Andrei; Anton Andronic; Venelin Anguelov; Jonas Anielski; Tome Anticic; Federico Antinori; Pietro Antonioli; Laurent Bernard Aphecetche; Harald Appelshauser; Nicolas Arbor; Silvia Arcelli; Andreas Arend; Nestor Armesto; Roberta Arnaldi; Tomas Robert Aronsson; Ionut Cristian Arsene; Mesut Arslandok; Andzhey Asryan; Andre Augustinus; Ralf Peter Averbeck; Terry Awes; Juha Heikki Aysto; Mohd Danish Azmi; Matthias Jakob Bach; Angela Badala; Yong Wook Baek; Raphaelle Marie Bailhache; Renu Bala; Rinaldo Baldini Ferroli; Alberto Baldisseri; Alain Baldit; Fernando Baltasar Dos Santos Pedrosa; Jaroslav Ban; Rama Chandra Baral; Roberto Barbera; Francesco Barile; Gergely Gabor Barnafoldi; Lee Stuart Barnby; Valerie Barret; Jerzy Gustaw Bartke; Maurizio Basile; Nicole Bastid; Bastian Bathen; Guillaume Batigne; Boris Batyunya; Christoph Heinrich Baumann; Ian Gardner Bearden; Hans Beck; Iouri Belikov; Francesca Bellini; Rene Bellwied; Ernesto Belmont-Moreno; Stefania Beole; Ionela Berceanu; Alexandru Bercuci; Yaroslav Berdnikov; Daniel Berenyi; Cyrano Bergmann; Latchezar Betev; Anju Bhasin; Ashok Kumar Bhati; Livio Bianchi; Nicola Bianchi; Chiara Bianchin; Jaroslav Bielcik; Jana Bielcikova; Ante Bilandzic; F Blanco; Dmitry Blau; Christoph Blume; Nicolas Bock; Alexey Bogdanov; Hans Boggild; Mikhail Bogolyubsky; Laszlo Boldizsar; Marek Bombara; Herve Borel; Alexander Borissov; Claudio Bortolin; Suvendu Nath Bose; Francesco Bossu; Michiel Botje; Stefan Bottger; Bruno Alexandre Boyer; Peter Braun-Munzinger; Marco Bregant; Timo Gunther Breitner; Michal Broz; Rene Brun; Elena Bruna; Giuseppe Eugenio Bruno; Dmitry Budnikov; Henner Buesching; Stefania Bufalino; Kyrylo Bugaiev; Oliver Busch; Edith Zinhle Buthelezi; Davide Caffarri; Xu Cai; Helen Louise Caines; Ernesto Calvo Villar; Paolo Camerini; Veronica Canoa Roman; Giovanni Cara Romeo; Francesco Carena; Wisla Carena; Federico Carminati; Amaya Ofelia Casanova Diaz; Michele Caselle; Javier Ernesto Castillo Castellanos; Ester Anna Rita Casula; Vasile Catanescu; Costanza Cavicchioli; Jan Cepila; Piergiorgio Cerello; Beomsu Chang; Sylvain Chapeland; Jean-Luc Fernand Charvet; Sukalyan Chattopadhyay; Subhasis Chattopadhyay; Michael Gerard Cherney; Cvetan Cheshkov; Brigitte Cheynis; Emilio Chiavassa; Vasco Miguel Chibante Barroso; David Chinellato; Peter Chochula; Marek Chojnacki; Panagiotis Christakoglou; Christian Holm Christensen; Peter Christiansen; Tatsuya Chujo; Suh-Urk Chung; Corrado Cicalo; Luisa Cifarelli; Federico Cindolo; Jean Willy Andre Cleymans; Fabrizio Coccetti; Jean-Pierre Michel Coffin; Fabio Colamaria; Domenico Colella; Gustavo Conesa Balbastre; Zaida Conesa del Valle; Paul Constantin; Giacomo Contin; Jesus Guillermo Contreras; Thomas Michael Cormier; Yasser Corrales Morales; Ismael Cortes Maldonado; Pietro Cortese; Mauro Rogerio Cosentino; Filippo Costa; Manuel Enrique Cotallo; Philippe Crochet; Emilia Cruz Alaniz; Eleazar Cuautle; Leticia Cunqueiro; Ginevra D'Erasmo; Andrea Dainese; Hans Hjersing Dalsgaard; Andrea Danu; Debasish Das; Indranil Das; Kushal Das; Ajay Kumar Dash; Sadhana Dash; Sudipan De; Andrea De Azevedo Moregula; Gabriel de Barros; Annalisa De Caro; Giacinto de Cataldo; Jan de Cuveland; Alessandro De Falco; Daniele De Gruttola; Nora De Marco; Salvatore De Pasquale; Raoul Stefan de Rooij; Eduardo Del Castillo Sanchez; Hugues Delagrange; Andrzej Deloff; Vyacheslav Demanov; Ervin Denes; Airton Deppman; Domenico Di Bari; Carmelo Di Giglio; Sergio Di Liberto; Antonio Di Mauro; Pasquale Di Nezza; Thomas Dietel; Roberto Divia; Oeystein Djuvsland; Alexandru Florin Dobrin; Tadeusz Antoni Dobrowolski; Isabel Dominguez; Benjamin Donigus; Olja Dordic; Olga Driga; Anand Kumar Dubey; Laurent Ducroux; Pascal Dupieux; AK Dutta Majumdar; Mihir Ranjan Dutta Majumdar; Domenico Elia; David Philip Emschermann; Heiko Engel; Hege Austrheim Erdal; Bruno Espagnon; Magali Danielle Estienne; Shinichi Esumi; David Evans; Gyulnara Eyyubova; Daniela Fabris; Julien Faivre; Davide Falchieri; Alessandra Fantoni; Markus Fasel; Roger Worsley Fearick; Anatoly Fedunov; Dominik Fehlker; Linus Feldkamp; Daniel Felea

    2012-01-01

    The pt-differential inclusive production cross sections of the prompt charmed mesons D0, D+, and D*+ in the rapidity range |y|<0.5 were measured in proton-proton collisions at sqrt(s) = 7 TeV at the LHC using the ALICE detector. Reconstructing the decays D0->K-pi+, D+->K-pi+pi+, D*+->D0pi+, and their charge conjugates, about 8,400 D0, 2,900 D+, and 2,600 D*+ mesons with 1

  14. Inclusive mu and b-Quark Production Cross Sections in ppŻ Collisions at &surd;s = 1.8 TeV

    Microsoft Academic Search

    S. Abachi; B. Abbott; M. Abolins; B. S. Acharya; I. Adam; D. L. Adams; M. Adams; S. Ahn; H. Aihara; G. Álvarez; G. A. Alves; E. Amidi; N. Amos; E. W. Anderson; S. H. Aronson; R. Astur; R. E. Avery; A. Baden; V. Balamurali; J. Balderston; B. Baldin; J. Bantly; J. F. Bartlett; K. Bazizi; T. Behnke; J. Bendich; S. B. Beri; I. Bertram; V. A. Bezzubov; P. C. Bhat; V. Bhatnagar; M. Bhattacharjee; A. Bischoff; N. Biswas; G. Blazey; S. Blessing; A. Boehnlein; N. I. Bojko; F. Borcherding; J. Borders; C. Boswell; A. Brandt; R. Brock; A. Bross; D. Buchholz; V. S. Burtovoi; J. M. Butler; O. Callot; D. Casey; H. Castilla-Valdez; D. Chakraborty; S.-M. Chang; S. V. Chekulaev; L.-P. Chen; W. Chen; L. Chevalier; S. Chopra; B. C. Choudhary; J. H. Christenson; M. Chung; D. Claes; A. R. Clark; W. G. Cobau; J. Cochran; W. E. Cooper; C. Cretsinger; D. Cullen-Vidal; M. Cummings; J. P. Cussonneau; D. Cutts; O. I. Dahl; K. de; M. Demarteau; R. Demina; K. Denisenko; N. Denisenko; D. Denisov; S. P. Denisov; W. Dharmaratna; H. T. Diehl; M. Diesburg; R. Dixon; P. Draper; J. Drinkard; Y. Ducros; S. Durston-Johnson; D. Eartly; D. Edmunds; A. O. Efimov; J. Ellison; V. D. Elvira; R. Engelmann; S. Eno; G. Eppley; P. Ermolov; O. V. Eroshin; V. N. Evdokimov; S. Fahey; T. Fahland; M. Fatyga; J. Featherly; S. Feher; D. Fein; T. Ferbel; G. Finocchiaro; H. E. Fisk; Yu. Fisyak; E. Flattum; G. E. Forden; M. Fortner; K. C. Frame; P. Franzini; S. Fredriksen; S. Fuess; E. Gallas; C. S. Gao; T. L. Geld; R. J. Genik II; K. Genser; C. E. Gerber; B. Gibbard; V. Glebov; S. Glenn; J. F. Glicenstein; B. Gobbi; M. Goforth; A. Goldschmidt; B. Gomez; M. L. Good; H. Gordon; N. Graf; P. D. Grannis; D. R. Green; J. Green; H. Greenlee; N. Grossman; P. Grudberg; S. Grünendahl; J. A. Guida; J. M. Guida; W. Guryn; N. J. Hadley; H. Haggerty; S. Hagopian; V. Hagopian; K. S. Hahn; R. E. Hall; S. Hansen; J. M. Hauptman; D. Hedin; A. P. Heinson; U. Heintz; T. Heuring; R. Hirosky; J. D. Hobbs; B. Hoeneisen; J. S. Hoftun; Ting Hu; Tong Hu; J. R. Hubbard; T. Huehn; S. Igarashi; A. S. Ito; E. James; J. Jaques; S. A. Jerger; J. Z.-Y. Jiang; T. Joffe-Minor; H. Johari; K. Johns; M. Johnson; H. Johnstad; A. Jonckheere; M. Jones; H. Jöstlein; S. Y. Jun; C. K. Jung; S. Kahn; J. S. Kang; R. Kehoe; M. Kelly; A. Kernan; L. Kerth; C. L. Kim; A. Klatchko; B. Klima; B. I. Klochkov; C. Klopfenstein; V. I. Klyukhin; V. I. Kochetkov; J. M. Kohli; D. Koltick; J. Kotcher; J. Kourlas; A. V. Kozelov; E. A. Kozlovski; M. R. Krishnaswamy; S. Krzywdzinski; S. Kunori; S. Lami; G. Landsberg; R. E. Lanou; J.-F. Lebrat; J. Lee-Franzini; A. Leflat; H. Li; J. Li; R. B. Li; Y. K. Li; Q. Z. Li-Demarteau; J. G. Lima; S. L. Linn; J. Linnemann; R. Lipton; Y. C. Liu; F. Lobkowicz; P. Loch; S. C. Loken; S. Lökös; L. Lueking; A. L. Lyon; A. K. Maciel; R. J. Madaras; R. Madden; Ph. Mangeot; S. Mani; I. Manning; B. Mansoulié; H. S. Mao; S. Margulies; R. Markeloff; L. Markosky; T. Marshall; M. I. Martin; M. Marx; B. May; A. A. Mayorov; R. McCarthy; T. McKibben; J. McKinley; J. R. de Mello Neto; X. C. Meng; K. W. Merritt; H. Miettinen; A. Milder; C. Milner; A. Mincer; J. M. de Miranda; N. Mokhov; N. K. Mondal; H. E. Montgomery; P. Mooney; M. Mudan; C. Murphy; F. Nang; M. Narain; V. S. Narasimham; H. A. Neal; J. P. Negret; P. Nemethy; D. NesiC; D. Norman; L. Oesch; V. Oguri; E. Oltman; N. Oshima; D. Owen; P. Padley; M. Pang; A. Para; C. H. Park; R. Partridge; M. Paterno; A. Peryshkin; M. Peters; B. Pi; H. Piekarz; D. Pizzuto; A. Pluquet; V. M. Podstavkov; B. G. Pope; H. B. Prosper; S. Protopopescu; D. Puseljic; J. Qian; Y.-K. Que; P. Z. Quintas; G. Rahal-Callot; R. Raja; S. Rajagopalan; O. Ramirez; M. V. Rao; L. Rasmussen; A. L. Read; S. Reucroft; M. Rijssenbeek; N. A. Roe; J. M. Roldan; P. Rubinov; R. Ruchti; S. Rusin; J. Rutherfoord; A. Santoro; L. Sawyer; R. D. Schamberger; H. Schellman; D. Schmid; J. Sculli; A. Serna; E. Shabalina; C. Shaffer; H. C. Shankar; Y. Shao; R. K. Shivpuri; M. Shupe; J. B. Singh; V. Sirotenko; J. Skeens; W. Smart; A. Smith; R. P. Smith; R. Snihur; G. R. Snow; S. Snyder; J. Solomon; P. M. Sood; M. Sosebee; M. Souza; A. L. Spadafora; R. W. Stephens; M. L. Stevenson; D. Stewart; F. Stocker; D. A. Stoianova; D. Stoker; K. Streets; M. Strovink; A. Taketani; P. Tamburello; M. Tartaglia; T. L. Taylor; J. Teiger; J. Thompson; T. G. Trippe; P. M. Tuts; E. W. Varnes; P. R. Virador; A. A. Volkov; A. P. Vorobiev; H. D. Wahl; D. C. Wang; L. Z. Wang; J. Warchol; M. Wayne; H. Weerts; W. A. Wenzel; A. White; J. T. White; J. A. Wightman; J. Wilcox; S. Willis; S. J. Wimpenny; Z. Wolf; J. Womersley; E. Won; D. R. Wood; Y. Xia; D. Xiao; R. P. Xie; H. Xu; R. Yamada; P. Yamin; C. Yanagisawa; J. Yang; T. Yasuda; C. Yoshikawa; S. Youssef; J. Yu; C. Zeitnitz; D. Zhang; Y. Zhang; Z. Zhang; Y. H. Zhou; Q. Zhu; Y. S. Zhu; D. Zieminska; A. Zieminski; A. Zinchenko; A. Zylberstejn

    1995-01-01

    We report a measurement of the inclusive muon and b-quark production cross sections in ppŻ collisions at s = 1.8 TeV using the D0 detector at the Fermilab Tevatron collider. The inclusive muon spectrum extends over the kinematic range \\\\| ymu\\\\|<0.8 and 3.5

  15. Elliptic Flow of Charged Particles in Pb-Pb Collisions at root s(NN)=2.76 TeV

    Microsoft Academic Search

    K. Aamodt; B. Abelev; A. A. Quintana; D. Adamova; A. M. Adare; M. M. Aggarwal; G. A. Rinella; A. G. Agocs; S. A. Salazar; Z. Ahammed; A. A. Masoodi; N. Ahmad; S. U. Ahn; A. Akindinov; D. Aleksandrov; B. Alessandro; R. A. Molina; A. Alici; A. Alkin; E. A. Avina; T. Alt; V. Altini; S. Altinpinar; I. Altsybeev; C. Andrei; A. Andronic; V. Anguelov; C. Anson; T. Anticic; F. Antinori; P. Antonioli; L. Aphecetche; H. Appelshauser; N. Arbor; S. Arcelli; A. Arend; N. Armesto; R. Arnaldi; T. Aronsson; I. C. Arsene; A. Asryan; A. Augustinus; R. Averbeck; T. C. Awes; J. Aysto; M. D. Azmi; M. Bach; A. Badala; Y. W. Baek; S. Bagnasco; R. Bailhache; R. Bala; R. B. Ferroli; A. Baldisseri; A. Baldit; F. B. D. Pedrosa; J. Ban; R. Barbera; F. Barile; G. G. Barnafoldi; L. S. Barnby; V. Barret; J. Bartke; M. Basile; N. Bastid; B. Bathen; G. Batigne; B. Batyunya; C. Baumann; I. G. Bearden; H. Beck; I. Belikov; F. Bellini; R. Bellwied; E. Belmont-Moreno; S. Beole; I. Berceanu; A. Bercuci; E. Berdermann; Y. Berdnikov; C. Bergmann; L. Betev; A. Bhasin; A. K. Bhati; L. Bianchi; N. Bianchi; C. Bianchin; J. Bielcik; J. Bielcikova; A. Bilandzic; E. Biolcati; A. Blanc; F. Blanco; D. Blau; C. Blume; M. Boccioli; N. Bock; A. Bogdanov; H. Boggild; M. Bogolyubsky; L. Boldizsar; M. Bombara; C. Bombonati; H. Borel; A. Borissov; C. Bortolin; S. Bose; F. Bossu; M. Botje; S. Bottger; B. Boyer; P. Braun-Munzinger; L. Bravina; M. Bregant; T. Breitner; M. Broz; R. Brun; E. Bruna; G. E. Bruno; D. Budnikov; H. Buesching; K. Bugaiev; O. Busch; Z. Buthelezi; D. Caffarri; X. Cai; H. Caines; E. C. Villar; P. Camerini; V. C. Roman; G. C. Romeo; F. Carena; W. Carena; F. Carminati; A. C. Diaz; M. Caselle; J. C. Castellanos; V. Catanescu; C. Cavicchioli; J. Cepila; P. Cerello; B. Chang; S. Chapeland; J. L. Charvet; S. Chattopadhyay; M. Cherney; C. Cheshkov; B. Cheynis; E. Chiavassa; V. C. Barroso; D. D. Chinellato; P. Chochula; M. Chojnacki; P. Christakoglou; C. H. Christensen; P. Christiansen; T. Chujo; C. Cicalo; L. Cifarelli; F. Cindolo; J. Cleymans; F. Coccetti; J. P. Coffin; S. Coli; G. C. Balbastre; Z. C. del Valle; P. Constantin; G. Contin; J. G. Contreras; T. M. Cormier; Y. C. Morales; I. C. Maldonado; P. Cortese; M. R. Cosentino; F. Costa; M. E. Cotallo; E. Crescio; P. Crochet; E. Cuautle; L. Cunqueiro; G. D. Erasmo; A. Dainese; H. H. Dalsgaard; A. Danu; D. Das; I. Das; K. Das; A. Dash; S. Dash; S. De; A. D. Moregula; G. O. V. de Barros; A. De Caro; G. de Cataldo; J. de Cuveland; A. De Falco; D. De Gruttola; N. De Marco; S. De Pasquale; R. De Remigis; R. de Rooij; P. R. Debski; E. D. Sanchez; H. Delagrange; Y. D. Mercado; G. Dellacasa; A. Deloff; V. Demanov; E. Denes; A. Deppman; D. Di Bari; C. Di Giglio; S. Di Liberto; A. Di Mauro; P. Di Nezza; T. Dietel; R. Divia; O. Djuvsland; A. Dobrin; T. Dobrowolski; I. Dominguez; B. Donigus; O. Dordic; O. Driga; A. K. Dubey; J. Dubuisson; L. Ducroux; P. Dupieux; A. K. D. Majumdar; M. R. D. Majumdar; D. Elia; D. Emschermann; H. Engel; H. A. Erdal; B. Espagnon; M. Estienne; S. Esumi; D. Evans; S. Evrard; G. Eyyubova; C. W. Fabjan; D. Fabris; J. Faivre; D. Falchieri; A. Fantoni; M. Fasel; R. Fearick; A. Fedunov; D. Fehlker; V. Fekete; D. Felea; G. Feofilov; A. F. Tellez; A. Ferretti; R. Ferretti; J. Figiel; M. A. S. Figueredo; S. Filchagin; R. Fini; D. Finogeev; F. M. Fionda; E. M. Fiore; M. Floris; S. Foertsch; P. Foka; S. Fokin; E. Fragiacomo; M. Fragkiadakis; U. Frankenfeld; U. Fuchs; F. Furano; C. Furget; M. F. Girard; J. J. Gaardhoje; S. Gadrat; M. Gagliardi; A. Gago; M. Gallio; D. R. Gangadharan; P. Ganoti; M. S. Ganti; C. Garabatos; E. Garcia-Solis; I. Garishvili; R. Gemme; J. Gerhard; M. Germain; C. Geuna; A. Gheata; M. Gheata; B. Ghidini; P. Ghosh; P. Gianotti; M. R. Girard; G. Giraudo; P. Giubellino; E. Gladysz-Dziadus; P. Glassel; R. Gomez; E. G. Ferreiro; H. G. Santos; L. H. Gonzalez-Trueba; P. Gonzalez-Zamora; S. Gorbunov; S. Gotovac; V. Grabski; R. Grajcarek; A. Grelli; A. Grigoras; C. Grigoras; V. Grigoriev; A. Grigoryan; S. Grigoryan; B. Grinyov; N. Grion; P. Gros; J. F. Grosse-Oetringhaus; J. Y. Grossiord; R. Grosso; F. Guber; R. Guernane; C. G. Gutierrez; B. Guerzoni; K. Gulbrandsen; T. Gunji; A. Gupta; R. Gupta; H. Gutbrod; O. Haaland; C. Hadjidakis; M. Haiduc; H. Hamagaki; G. Hamar; J. W. Harris; M. Hartig; D. Hasch; D. Hasegan; D. Hatzifotiadou; A. Hayrapetyan; M. Heide; M. Heinz; H. Helstrup; A. Herghelegiu; C. Hernandez; G. H. Corral; N. Herrmann; K. F. Hetland; B. Hicks; P. T. Hille; B. Hippolyte; T. Horaguchi; Y. Hori; P. Hristov; I. Hrivnacova; M. Huang; S. Huber; T. J. Humanic; D. S. Hwang; R. Ichou; R. Ilkaev; I. Ilkiv; M. Inaba; E. Incani; G. M. Innocenti; P. G. Innocenti; M. Ippolitov; M. Irfan; C. Ivan; A. Ivanov; M. Ivanov; V. Ivanov; A. Jacholkowski; P. M. Jacobs; L. Jancurova; S. Jangal; R. Janik; S. Jena; L. Jirden; G. T. Jones

    2010-01-01

    We report the first measurement of charged particle elliptic flow in Pb-Pb collisions at root s(NN) p = 2.76 TeV with the ALICE detector at the CERN Large Hadron Collider. The measurement is performed in the central pseudorapidity region (vertical bar eta vertical bar < 0.8) and transverse momentum range 0.2 < p(t) < 5.0 GeV\\/c. The elliptic flow signal

  16. Measurement of Z0 and Drell-Yan production cross sections using dimuons in pŻp collisions at s=1.8 TeV

    Microsoft Academic Search

    F. Abe; H. Akimoto; A. Akopian; M. G. Albrow; A. Amadon; S. R. Amendolia; D. Amidei; J. Antos; S. Aota; G. Apollinari; T. Arisawa; T. Asakawa; W. Ashmanskas; M. Atac; P. Azzi-Bacchetta; N. Bacchetta; S. Bagdasarov; M. W. Bailey; P. de Barbaro; A. Barbaro-Galtieri; V. E. Barnes; B. A. Barnett; M. Barone; G. Bauer; T. Baumann; F. Bedeschi; S. Behrends; S. Belforte; G. Bellettini; J. Bellinger; D. Benjamin; J. Bensinger; A. Beretvas; J. P. Berge; J. Berryhill; S. Bertolucci; S. Bettelli; B. Bevensee; A. Bhatti; K. Biery; C. Bigongiari; M. Binkley; D. Bisello; R. E. Blair; C. Blocker; K. Bloom; S. Blusk; A. Bodek; W. Bokhari; G. Bolla; Y. Bonushkin; D. Bortoletto; J. Boudreau; L. Breccia; C. Bromberg; N. Bruner; R. Brunetti; E. Buckley-Geer; H. S. Budd; K. Burkett; G. Busetto; A. Byon-Wagner; K. L. Byrum; M. Campbell; A. Caner; W. Carithers; D. Carlsmith; J. Cassada; A. Castro; D. Cauz; A. Cerri; P. S. Chang; H. Y. Chao; J. Chapman; M.-T. Cheng; M. Chertok; G. Chiarelli; C. N. Chiou; F. Chlebana; L. Christofek; R. Cropp; M. L. Chu; S. Cihangir; A. G. Clark; M. Cobal; E. Cocca; M. Contreras; J. Conway; J. Cooper; M. Cordelli; D. Costanzo; C. Couyoumtzelis; D. Cronin-Hennessy; R. Culbertson; D. Dagenhart; T. Daniels; F. Dejongh; S. dell'agnello; M. dell'orso; R. Demina; L. Demortier; M. Deninno; P. F. Derwent; T. Devlin; J. R. Dittmann; S. Donati; J. Done; T. Dorigo; N. Eddy; K. Einsweiler; J. E. Elias; R. Ely; E. Engels; W. Erdmann; D. Errede; S. Errede; Q. Fan; R. G. Feild; Z. Feng; C. Ferretti; I. Fiori; B. Flaugher; G. W. Foster; M. Franklin; J. Freeman; J. Friedman; H. Frisch; Y. Fukui; S. Gadomski; S. Galeotti; M. Gallinaro; O. Ganel; M. Garcia-Sciveres; A. F. Garfinkel; C. Gay; S. Geer; D. W. Gerdes; P. Giannetti; N. Giokaris; P. Giromini; G. Giusti; M. Gold; A. Gordon; A. T. Goshaw; Y. Gotra; K. Goulianos; H. Grassmann; L. Groer; C. Grosso-Pilcher; G. Guillian; J. Guimaraes da Costa; R. S. Guo; C. Haber; E. Hafen; S. R. Hahn; T. Handa; R. Handler; W. Hao; F. Happacher; K. Hara; A. D. Hardman; R. M. Harris; F. Hartmann; J. Hauser; E. Hayashi; J. Heinrich; A. Heiss; B. Hinrichsen; K. D. Hoffman; M. Hohlmann; C. Holck; R. Hollebeek; L. Holloway; Z. Huang; B. T. Huffman; R. Hughes; J. Huston; J. Huth; H. Ikeda; M. Incagli; J. Incandela; G. Introzzi; J. Iwai; Y. Iwata; E. James; H. Jensen; U. Joshi; E. Kajfasz; H. Kambara; T. Kamon; T. Kaneko; K. Karr; H. Kasha; Y. Kato; T. A. Keaffaber; K. Kelley; R. D. Kennedy; R. Kephart; D. Kestenbaum; D. Khazins; T. Kikuchi; B. J. Kim; H. S. Kim; S. H. Kim; Y. K. Kim; L. Kirsch; S. Klimenko; D. Knoblauch; P. Koehn; A. Köngeter; K. Kondo; J. Konigsberg; K. Kordas; A. Korytov; E. Kovacs; W. Kowald; J. Kroll; M. Kruse; S. E. Kuhlmann; E. Kuns; K. Kurino; T. Kuwabara; A. T. Laasanen; S. Lami; S. Lammel; J. I. Lamoureux; M. Lancaster; M. Lanzoni; G. Latino; T. Lecompte; S. Leone; J. D. Lewis; M. Lindgren; T. M. Liss; J. B. Liu; Y. C. Liu; N. Lockyer; O. Long; M. Loreti; D. Lucchesi; P. Lukens; S. Lusin; J. Lys; K. Maeshima; P. Maksimovic; M. Mangano; M. Mariotti; J. P. Marriner; G. Martignon; A. Martin; J. A. Matthews; P. Mazzanti; K. McFarland; P. McIntyre; P. Melese; M. Menguzzato; A. Menzione; E. Meschi; S. Metzler; C. Miao; T. Miao; G. Michail; R. Miller; H. Minato; S. Miscetti; M. Mishina; S. Miyashita; N. Moggi; E. Moore; Y. Morita; A. Mukherjee; T. Muller; P. Murat; S. Murgia; M. Musy; H. Nakada; T. Nakaya; I. Nakano; C. Nelson; D. Neuberger; C. Newman-Holmes; C.-Y. P. Ngan; L. Nodulman; A. Nomerotski; S. H. Oh; T. Ohmoto; T. Ohsugi; R. Oishi; M. Okabe; T. Okusawa; J. Olsen; C. Pagliarone; R. Paoletti; V. Papadimitriou; S. P. Pappas; N. Parashar; A. Parri; J. Patrick; G. Pauletta; M. Paulini; A. Perazzo; L. Pescara; M. D. Peters; T. J. Phillips; G. Piacentino; M. Pillai; K. T. Pitts; R. Plunkett; A. Pompos; L. Pondrom; J. Proudfoot; F. Ptohos; G. Punzi; K. Ragan; D. Reher; M. Reischl; A. Ribon; F. Rimondi; L. Ristori; W. J. Robertson; A. Robinson; T. Rodrigo; S. Rolli; L. Rosenson; R. Roser; T. Saab; W. K. Sakumoto; D. Saltzberg; A. Sansoni; L. Santi; H. Sato; P. Schlabach; E. E. Schmidt; M. P. Schmidt; A. Scott; A. Scribano; S. Segler; S. Seidel; Y. Seiya; F. Semeria; T. Shah; M. D. Shapiro; N. M. Shaw; P. F. Shepard; T. Shibayama; M. Shimojima; M. Shochet; J. Siegrist; A. Sill; P. Sinervo; P. Singh; K. Sliwa; C. Smith; F. D. Snider; J. Spalding; T. Speer; P. Sphicas; F. Spinella; M. Spiropulu; L. Spiegel; L. Stanco; J. Steele; A. Stefanini; R. Ströhmer; J. Strologas; F. Strumia; D. Stuart; K. Sumorok; J. Suzuki; T. Suzuki; T. Takahashi; T. Takano; R. Takashima; K. Takikawa; M. Tanaka; B. Tannenbaum; F. Tartarelli; W. Taylor; M. Tecchio; P. K. Teng; Y. Teramoto; K. Terashi; S. Tether; D. Theriot; T. L. Thomas; R. Thurman-Keup; M. Timko; P. Tipton; A. Titov; S. Tkaczyk; D. Toback; K. Tollefson; A. Tollestrup; H. Toyoda; W. Trischuk; J. F. de Troconiz

    1999-01-01

    We present a measurement of Z0 boson and Drell-Yan production cross sections in pŻp collisions at s=1.8 TeV using a sample of 107 pb-1 accumulated by the Collider Detector at Fermilab. The Drell-Yan cross section is measured in the mass range of Mmumu>40 GeV\\/c2. We compare the measurements with the predictions of quantum chromodynamics in both leading order and next-to-leading

  17. Measurement of the sigma\\\\(W+ >=1 Jet\\\\)\\/sigma\\\\(W\\\\) Cross Section Ratiofrom pŻp Collisions at &surd;s = 1.8 TeV

    Microsoft Academic Search

    F. Abe; H. Akimoto; A. Akopian; M. G. Albrow; A. Amadon; S. R. Amendolia; D. Amidei; J. Antos; S. Aota; G. Apollinari; T. Arisawa; T. Asakawa; W. Ashmanskas; M. Atac; P. Azzi-Bacchetta; N. Bacchetta; S. Bagdasarov; M. W. Bailey; P. de Barbaro; A. Barbaro-Galtieri; V. E. Barnes; B. A. Barnett; M. Barone; G. Bauer; T. Baumann; F. Bedeschi; S. Behrends; S. Belforte; G. Bellettini; J. Bellinger; D. Benjamin; J. Bensinger; A. Beretvas; J. P. Berge; J. Berryhill; S. Bertolucci; S. Bettelli; B. Bevensee; A. Bhatti; K. Biery; C. Bigongiari; M. Binkley; D. Bisello; R. E. Blair; C. Blocker; S. Blusk; A. Bodek; W. Bokhari; G. Bolla; Y. Bonushkin; D. Bortoletto; J. Boudreau; L. Breccia; C. Bromberg; N. Bruner; R. Brunetti; E. Buckley-Geer; H. S. Budd; K. Burkett; G. Busetto; A. Byon-Wagner; K. L. Byrum; M. Campbell; A. Caner; W. Carithers; D. Carlsmith; J. Cassada; A. Castro; D. Cauz; A. Cerri; P. S. Chang; P. T. Chang; H. Y. Chao; J. Chapman; M.-T. Cheng; M. Chertok; G. Chiarelli; C. N. Chiou; F. Chlebana; L. Christofek; M. L. Chu; S. Cihangir; A. G. Clark; M. Cobal; E. Cocca; M. Contreras; J. Conway; J. Cooper; M. Cordelli; D. Costanzo; C. Couyoumtzelis; D. Cronin-Hennessy; R. Culbertson; D. Dagenhart; T. Daniels; F. Dejongh; S. dell'Agnello; M. dell'Orso; R. Demina; L. Demortier; M. Deninno; P. F. Derwent; T. Devlin; J. R. Dittmann; S. Donati; J. Done; T. Dorigo; N. Eddy; K. Einsweiler; J. E. Elias; R. Ely; E. Engels; W. Erdmann; D. Errede; S. Errede; Q. Fan; R. G. Feild; Z. Feng; C. Ferretti; I. Fiori; B. Flaugher; G. W. Foster; M. Franklin; J. Freeman; J. Friedman; H. Frisch; Y. Fukui; S. Gadomski; S. Galeotti; M. Gallinaro; O. Ganel; M. Garcia-Sciveres; A. F. Garfinkel; C. Gay; S. Geer; D. W. Gerdes; P. Giannetti; N. Giokaris; P. Giromini; G. Giusti; M. Gold; A. Gordon; A. T. Goshaw; Y. Gotra; K. Goulianos; H. Grassmann; L. Groer; C. Grosso-Pilcher; G. Guillian; J. Guimaraes da Costa; R. S. Guo; C. Haber; E. Hafen; S. R. Hahn; T. Handa; R. Handler; F. Happacher; K. Hara; A. D. Hardman; R. M. Harris; F. Hartmann; J. Hauser; E. Hayashi; J. Heinrich; W. Hao; B. Hinrichsen; K. D. Hoffman; M. Hohlmann; C. Holck; R. Hollebeek; L. Holloway; Z. Huang; B. T. Huffman; R. Hughes; J. Huston; J. Huth; H. Ikeda; M. Incagli; J. Incandela; G. Introzzi; J. Iwai; Y. Iwata; E. James; H. Jensen; U. Joshi; E. Kajfasz; H. Kambara; T. Kamon; T. Kaneko; K. Karr; H. Kasha; Y. Kato; T. A. Keaffaber; K. Kelley; R. D. Kennedy; R. Kephart; D. Kestenbaum; D. Khazins; T. Kikuchi; B. J. Kim; H. S. Kim; S. H. Kim; Y. K. Kim; L. Kirsch; S. Klimenko; D. Knoblauch; P. Koehn; A. Köngeter; K. Kondo; J. Konigsberg; K. Kordas; A. Korytov; E. Kovacs; W. Kowald; J. Kroll; M. Kruse; S. E. Kuhlmann; E. Kuns; K. Kurino; T. Kuwabara; A. T. Laasanen; S. Lami; S. Lammel; J. I. Lamoureux; M. Lancaster; M. Lanzoni; G. Latino; T. Lecompte; S. Leone; J. D. Lewis; P. Limon; M. Lindgren; T. M. Liss; J. B. Liu; Y. C. Liu; N. Lockyer; O. Long; C. Loomis; M. Loreti; D. Lucchesi; P. Lukens; S. Lusin; J. Lys; K. Maeshima; P. Maksimovic; M. Mangano; M. Mariotti; J. P. Marriner; A. Martin; J. A. Matthews; P. Mazzanti; P. McIntyre; P. Melese; M. Menguzzato; A. Menzione; E. Meschi; S. Metzler; C. Miao; T. Miao; G. Michail; R. Miller; H. Minato; S. Miscetti; M. Mishina; S. Miyashita; N. Moggi; E. Moore; Y. Morita; A. Mukherjee; T. Muller; P. Murat; S. Murgia; M. Musy; H. Nakada; I. Nakano; C. Nelson; D. Neuberger; C. Newman-Holmes; C.-Y. P. Ngan; L. Nodulman; A. Nomerotski; S. H. Oh; T. Ohmoto; T. Ohsugi; R. Oishi; M. Okabe; T. Okusawa; J. Olsen; C. Pagliarone; R. Paoletti; V. Papadimitriou; S. P. Pappas; N. Parashar; A. Parri; J. Patrick; G. Pauletta; M. Paulini; A. Perazzo; L. Pescara; M. D. Peters; T. J. Phillips; G. Piacentino; M. Pillai; K. T. Pitts; R. Plunkett; A. Pompos; L. Pondrom; J. Proudfoot; F. Ptohos; G. Punzi; K. Ragan; D. Reher; M. Reischl; A. Ribon; F. Rimondi; L. Ristori; W. J. Robertson; T. Rodrigo; S. Rolli; L. Rosenson; R. Roser; T. Saab; W. K. Sakumoto; D. Saltzberg; A. Sansoni; L. Santi; H. Sato; P. Schlabach; E. E. Schmidt; M. P. Schmidt; A. Scott; A. Scribano; S. Segler; S. Seidel; Y. Seiya; F. Semeria; T. Shah; M. D. Shapiro; N. M. Shaw; P. F. Shepard; T. Shibayama; M. Shimojima; M. Shochet; J. Siegrist; A. Sill; P. Sinervo; P. Singh; K. Sliwa; C. Smith; F. D. Snider; J. Spalding; T. Speer; P. Sphicas; F. Spinella; M. Spiropulu; L. Spiegel; L. Stanco; J. Steele; A. Stefanini; R. Ströhmer; J. Strologas; F. Strumia; D. Stuart; K. Sumorok; J. Suzuki; T. Suzuki; T. Takahashi; T. Takano; R. Takashima; K. Takikawa; M. Tanaka; B. Tannenbaum; F. Tartarelli; W. Taylor; M. Tecchio; P. K. Teng; Y. Teramoto; K. Terashi; S. Tether; D. Theriot; T. L. Thomas; R. Thurman-Keup; M. Timko; P. Tipton; A. Titov; S. Tkaczyk; D. Toback; K. Tollefson; A. Tollestrup; H. Toyoda; W. Trischuk; J. F. de Troconiz; S. Truitt; J. Tseng; N. Turini; T. Uchida; F. Ukegawa

    1998-01-01

    The ratio of the W+>=1 jet cross section to the inclusive W cross section is measured using W+\\/--->e+\\/-nu events from pŻp collisions at s = 1.8 TeV. The data are from 108 pb-1 of integrated luminosity collected with the Collider Detector at Fermilab. Measurements of the cross section ratio for jet transverse energy thresholds \\\\(EminT\\\\) ranging from 15 to 95

  18. Two-particle Bose-Einstein correlations in $pp$ collisions at $\\mathbf {\\sqrt{s} =}$ 0.9 and 7 TeV measured with the ATLAS detector

    E-print Network

    ATLAS Collaboration

    2015-02-27

    The paper presents studies of Bose-Einstein Correlations (BEC) for pairs of like-sign charged particles measured in the kinematic range $p_{\\rm T}>$ 100 MeV and $|\\eta|up to 240. A saturation effect in the multiplicity dependence of the correlation source size is observed using the high-multiplicity 7 TeV data sample. The dependence of the BEC parameters on the average transverse momentum of the particle pair is also investigated.

  19. J\\/$\\\\psi$ production at low transverse momentum in Pb-Pb collisions at $\\\\sqrt{s_{NN}}$ = 2.76 TeV

    Microsoft Academic Search

    Betty Abelev; Jaroslav Adam; Dagmar Adamova; Andrew Marshall Adare; Madan Aggarwal; Gianluca Aglieri Rinella; Andras Gabor Agocs; Andrea Agostinelli; Saul Aguilar Salazar; Zubayer Ahammed; Arshad Ahmad; Nazeer Ahmad; Sang Un Ahn; Alexander Akindinov; Dmitry Aleksandrov; Bruno Alessandro; Jose Ruben Alfaro Molina; Andrea Alici; Anton Alkin; Erick Jonathan Almaraz Avina; Johan Alme; Torsten Alt; Valerio Altini; Sedat Altinpinar; Igor Altsybeev; Cristian Andrei; Anton Andronic; Venelin Anguelov; Jonas Anielski; Christopher Daniel Anson; Tome Anticic; Federico Antinori; Pietro Antonioli; Laurent Bernard Aphecetche; Harald Appelshauser; Nicolas Arbor; Silvia Arcelli; Andreas Arend; Nestor Armesto; Roberta Arnaldi; Tomas Robert Aronsson; Ionut Cristian Arsene; Mesut Arslandok; Andzhey Asryan; Andre Augustinus; Ralf Peter Averbeck; Terry Awes; Juha Heikki Aysto; Mohd Danish Azmi; Matthias Jakob Bach; Angela Badala; Yong Wook Baek; Raphaelle Marie Bailhache; Renu Bala; Rinaldo Baldini Ferroli; Alberto Baldisseri; Alain Baldit; Fernando Baltasar Dos Santos Pedrosa; Jaroslav Ban; Rama Chandra Baral; Roberto Barbera; Francesco Barile; Gergely Gabor Barnafoldi; Lee Stuart Barnby; Valerie Barret; Jerzy Gustaw Bartke; Maurizio Basile; Nicole Bastid; Bastian Bathen; Guillaume Batigne; Boris Batyunya; Christoph Heinrich Baumann; Ian Gardner Bearden; Hans Beck; Iouri Belikov; Francesca Bellini; Rene Bellwied; Ernesto Belmont-Moreno; Gyula Bencedi; Stefania Beole; Ionela Berceanu; Alexandru Bercuci; Yaroslav Berdnikov; Daniel Berenyi; Cyrano Bergmann; Dario Berzano; Latchezar Betev; Anju Bhasin; Ashok Kumar Bhati; Livio Bianchi; Nicola Bianchi; Chiara Bianchin; Jaroslav Bielcik; Jana Bielcikova; Ante Bilandzic; Sandro Bjelogrlic; F Blanco; Dmitry Blau; Christoph Blume; Marco Boccioli; Nicolas Bock; Alexey Bogdanov; Hans Boggild; Mikhail Bogolyubsky; Laszlo Boldizsar; Marek Bombara; Herve Borel; Alexander Borissov; Suvendu Nath Bose; Francesco Bossu; Michiel Botje; Stefan Bottger; Bruno Alexandre Boyer; Ermes Braidot; Peter Braun-Munzinger; Marco Bregant; Timo Gunther Breitner; Tyler Allen Browning; Michal Broz; Rene Brun; Elena Bruna; Giuseppe Eugenio Bruno; Dmitry Budnikov; Henner Buesching; Stefania Bufalino; Kyrylo Bugaiev; Oliver Busch; Edith Zinhle Buthelezi; Diego Caballero Orduna; Davide Caffarri; Xu Cai; Helen Louise Caines; Ernesto Calvo Villar; Paolo Camerini; Veronica Canoa Roman; Giovanni Cara Romeo; Wisla Carena; Francesco Carena; Nelson Carlin Filho; Federico Carminati; Camilo Andres Carrillo Montoya; Amaya Ofelia Casanova Diaz; Javier Ernesto Castillo Castellanos; Juan Francisco Castillo Hernandez; Ester Anna Rita Casula; Vasile Catanescu; Costanza Cavicchioli; Jan Cepila; Piergiorgio Cerello; Beomsu Chang; Sylvain Chapeland; Jean-Luc Fernand Charvet; Subhasis Chattopadhyay; Sukalyan Chattopadhyay; Isha Chawla; Michael Gerard Cherney; Cvetan Cheshkov; Brigitte Cheynis; Emilio Chiavassa; Vasco Miguel Chibante Barroso; David Chinellato; Peter Chochula; Marek Chojnacki; Panagiotis Christakoglou; Christian Holm Christensen; Peter Christiansen; Tatsuya Chujo; Suh-Urk Chung; Corrado Cicalo; Luisa Cifarelli; Federico Cindolo; Jean Willy Andre Cleymans; Fabrizio Coccetti; Fabio Colamaria; Domenico Colella; Gustavo Conesa Balbastre; Zaida Conesa del Valle; Paul Constantin; Giacomo Contin; Jesus Guillermo Contreras; Thomas Michael Cormier; Yasser Corrales Morales; Pietro Cortese; Ismael Cortes Maldonado; Mauro Rogerio Cosentino; Filippo Costa; Manuel Enrique Cotallo; Elisabetta Crescio; Philippe Crochet; Emilia Cruz Alaniz; Eleazar Cuautle; Leticia Cunqueiro; Andrea Dainese; Hans Hjersing Dalsgaard; Andrea Danu; Kushal Das; Indranil Das; Debasish Das; Ajay Kumar Dash; Sadhana Dash; Sudipan De; Gabriel de Barros; Annalisa De Caro; Giacinto de Cataldo; Jan de Cuveland; Alessandro De Falco; Daniele De Gruttola; Hugues Delagrange; Eduardo Del Castillo Sanchez; Andrzej Deloff; Vyacheslav Demanov; Nora De Marco; Ervin Denes; Salvatore De Pasquale; Airton Deppman; Ginevra D'Erasmo; Raoul Stefan de Rooij; Miguel Angel Diaz Corchero; Domenico Di Bari; Thomas Dietel; Carmelo Di Giglio; Sergio Di Liberto; Antonio Di Mauro; Pasquale Di Nezza; Roberto Divia; Oeystein Djuvsland; Alexandru Florin Dobrin; Tadeusz Antoni Dobrowolski; Isabel Dominguez; Benjamin Donigus; Olja Dordic; Olga Driga; Anand Kumar Dubey; Laurent Ducroux; Pascal Dupieux; AK Dutta Majumdar; Mihir Ranjan Dutta Majumdar; Domenico Elia; David Philip Emschermann; Heiko Engel; Hege Austrheim Erdal; Bruno Espagnon; Magali Danielle Estienne; Shinichi Esumi

    2012-01-01

    The ALICE experiment has measured the inclusive J\\/? production in Pb-Pb collisions at ?sNN = 2.76 TeV down to pt = 0 in the rapidity range 2.5 < y < 4. A suppression of the inclusive J\\/? yield in Pb-Pb is observed with respect to the one measured in pp collisions scaled by the number of binary nucleon-nucleon collisions. The

  20. Rapidity and transverse momentum dependence of inclusive J\\/$\\\\psi$ production in pp collisions at $\\\\sqrt{s}$ = 7 TeV

    Microsoft Academic Search

    Kenneth Aamodt; Arian Abrahantes Quintana; Dagmar Adamova; Andrew Marshall Adare; Madan Aggarwal; Gianluca Aglieri Rinella; Andras Gabor Agocs; Andrea Agostinelli; Saul Aguilar Salazar; Zubayer Ahammed; Arshad Ahmad; Nazeer Ahmad; Sang Un Ahn; Alexander Akindinov; Dmitry Aleksandrov; Bruno Alessandro; Jose Ruben Alfaro Molina; Andrea Alici; Anton Alkin; Erick Jonathan Almaraz Avina; Johan Alme; Torsten Alt; Valerio Altini; Igor Altsybeev; Cristian Andrei; Anton Andronic; Venelin Anguelov; Christopher Daniel Anson; Tome Anticic; Federico Antinori; Pietro Antonioli; Laurent Bernard Aphecetche; Harald Appelshauser; Nicolas Arbor; Silvia Arcelli; Andreas Arend; Nestor Armesto; Roberta Arnaldi; Tomas Robert Aronsson; Ionut Cristian Arsene; Andzhey Asryan; Andre Augustinus; Ralf Peter Averbeck; Terry Awes; Juha Heikki Aysto; Mohd Danish Azmi; Matthias Jakob Bach; Angela Badala; Yong Wook Baek; Raphaelle Marie Bailhache; Renu Bala; Rinaldo Baldini Ferroli; Alberto Baldisseri; Alain Baldit; Jaroslav Ban; Roberto Barbera; Francesco Barile; Gergely Gabor Barnafoldi; Lee Stuart Barnby; Valerie Barret; Jerzy Gustaw Bartke; Maurizio Basile; Nicole Bastid; Bastian Bathen; Guillaume Batigne; Boris Batyunya; Christoph Heinrich Baumann; Ian Gardner Bearden; Hans Beck; Iouri Belikov; Francesca Bellini; Rene Bellwied; Ernesto Belmont-Moreno; Stefania Beole; Ionela Berceanu; Alexandru Bercuci; Eleni Berdermann; Yaroslav Berdnikov; Cyrano Bergmann; Latchezar Betev; Anju Bhasin; Ashok Kumar Bhati; Livio Bianchi; Nicola Bianchi; Chiara Bianchin; Jaroslav Bielcik; Jana Bielcikova; Ante Bilandzic; Emanuele Biolcati; Aurelien Joseph Blanc; F Blanco; Dmitry Blau; Christoph Blume; Nicolas Bock; Alexey Bogdanov; Hans Boggild; Mikhail Bogolyubsky; Laszlo Boldizsar; Marek Bombara; Carlo Bombonati; Herve Borel; Alexander Borissov; Claudio Bortolin; Suvendu Nath Bose; Francesco Bossu; Michiel Botje; Stefan Bottger; Bruno Alexandre Boyer; Peter Braun-Munzinger; Larisa Bravina; Marco Bregant; Timo Gunther Breitner; Michal Broz; Rene Brun; Elena Bruna; Giuseppe Eugenio Bruno; Dmitry Budnikov; Henner Buesching; Stefania Bufalino; Oliver Busch; Edith Zinhle Buthelezi; Davide Caffarri; Xu Cai; Helen Louise Caines; Ernesto Calvo Villar; Paolo Camerini; Veronica Canoa Roman; Giovanni Cara Romeo; Francesco Carena; Wisla Carena; Federico Carminati; Amaya Ofelia Casanova Diaz; Michele Caselle; Javier Ernesto Castillo Castellanos; Vasile Catanescu; Costanza Cavicchioli; Jan Cepila; Piergiorgio Cerello; Beomsu Chang; Sylvain Chapeland; Jean-Luc Fernand Charvet; Sukalyan Chattopadhyay; Subhasis Chattopadhyay; Michael Gerard Cherney; Cvetan Cheshkov; Brigitte Cheynis; Vasco Miguel Chibante Barroso; David Chinellato; Peter Chochula; Marek Chojnacki; Panagiotis Christakoglou; Christian Holm Christensen; Peter Christiansen; Tatsuya Chujo; Corrado Cicalo; Luisa Cifarelli; Federico Cindolo; Jean Willy Andre Cleymans; Fabrizio Coccetti; Jean-Pierre Michel Coffin; Gustavo Conesa Balbastre; Zaida Conesa del Valle; Paul Constantin; Giacomo Contin; Jesus Guillermo Contreras; Thomas Michael Cormier; Yasser Corrales Morales; Ismael Cortes Maldonado; Pietro Cortese; Mauro Rogerio Cosentino; Filippo Costa; Manuel Enrique Cotallo; Elisabetta Crescio; Philippe Crochet; Eleazar Cuautle; Leticia Cunqueiro; Ginevra D'Erasmo; Andrea Dainese; Hans Hjersing Dalsgaard; Andrea Danu; Debasish Das; Indranil Das; Ajay Kumar Dash; Sadhana Dash; Sudipan De; Andrea De Azevedo Moregula; Gabriel de Barros; Annalisa De Caro; Giacinto de Cataldo; Jan de Cuveland; Alessandro De Falco; Daniele De Gruttola; Nora De Marco; Salvatore De Pasquale; Raoul Stefan de Rooij; Eduardo Del Castillo Sanchez; Hugues Delagrange; Ydalia Delgado Mercado; Giuseppe Dellacasa; Andrzej Deloff; Vyacheslav Demanov; Ervin Denes; Airton Deppman; Domenico Di Bari; Carmelo Di Giglio; Sergio Di Liberto; Antonio Di Mauro; Pasquale Di Nezza; Thomas Dietel; Roberto Divia; Oeystein Djuvsland; Alexandru Florin Dobrin; Tadeusz Antoni Dobrowolski; Isabel Dominguez; Benjamin Donigus; Olja Dordic; Olga Driga; Anand Kumar Dubey; Laurent Ducroux; Pascal Dupieux; AK Dutta Majumdar; Mihir Ranjan Dutta Majumdar; Domenico Elia; David Philip Emschermann; Heiko Engel; Hege Austrheim Erdal; Bruno Espagnon; Magali Danielle Estienne; Shinichi Esumi; David Evans; Sebastien Evrard; Gyulnara Eyyubova; Christian Fabjan; Daniela Fabris; Julien Faivre; Davide Falchieri; Alessandra Fantoni; Markus Fasel; Roger Worsley Fearick; Anatoly Fedunov; Dominik Fehlker; Vladimir Fekete; Daniel Felea; Grigory Feofilov; Arturo Fernandez Tellez

    2011-01-01

    The ALICE experiment at the LHC has studied inclusive J\\/psi production at central and forward rapidities in pp collisions at sqrt(s) = 7 TeV. In this Letter, we report on the first results obtained detecting the J\\/psi through its dilepton decay into e+e- and mu+mu- pairs in the rapidity range |y|<0.9 and 2.5

  1. Measurement of electrons from semileptonic heavy-flavour hadron decays in pp collisions at $\\\\sqrt{s}$ = 7 TeV

    Microsoft Academic Search

    Betty Abelev; Jaroslav Adam; Dagmar Adamova; Andrew Marshall Adare; Madan Aggarwal; Gianluca Aglieri Rinella; Andras Gabor Agocs; Andrea Agostinelli; Saul Aguilar Salazar; Zubayer Ahammed; Arshad Ahmad; Nazeer Ahmad; Sang Un Ahn; Alexander Akindinov; Dmitry Aleksandrov; Bruno Alessandro; Jose Ruben Alfaro Molina; Andrea Alici; Anton Alkin; Erick Jonathan Almaraz Avina; Johan Alme; Torsten Alt; Valerio Altini; Sedat Altinpinar; Igor Altsybeev; Cristian Andrei; Anton Andronic; Venelin Anguelov; Jonas Anielski; Tome Anticic; Federico Antinori; Pietro Antonioli; Laurent Bernard Aphecetche; Harald Appelshauser; Nicolas Arbor; Silvia Arcelli; Nestor Armesto; Roberta Arnaldi; Tomas Robert Aronsson; Ionut Cristian Arsene; Mesut Arslandok; Andre Augustinus; Ralf Peter Averbeck; Terry Awes; Juha Heikki Aysto; Mohd Danish Azmi; Matthias Jakob Bach; Angela Badala; Yong Wook Baek; Raphaelle Marie Bailhache; Renu Bala; Rinaldo Baldini Ferroli; Alberto Baldisseri; Alain Baldit; Fernando Baltasar Dos Santos Pedrosa; Jaroslav Ban; Rama Chandra Baral; Roberto Barbera; Francesco Barile; Gergely Gabor Barnafoldi; Lee Stuart Barnby; Valerie Barret; Jerzy Gustaw Bartke; Maurizio Basile; Nicole Bastid; Sumit Basu; Bastian Bathen; Guillaume Batigne; Boris Batyunya; Christoph Heinrich Baumann; Ian Gardner Bearden; Hans Beck; Nirbhay Kumar Behera; Iouri Belikov; Francesca Bellini; Rene Bellwied; Ernesto Belmont-Moreno; Gyula Bencedi; Stefania Beole; Ionela Berceanu; Alexandru Bercuci; Yaroslav Berdnikov; Daniel Berenyi; Anais Annick Erica Bergognon; Dario Berzano; Latchezar Betev; Anju Bhasin; Ashok Kumar Bhati; Jihyun Bhom; Livio Bianchi; Nicola Bianchi; Chiara Bianchin; Jaroslav Bielcik; Jana Bielcikova; Ante Bilandzic; Sandro Bjelogrlic; F Blanco; Dmitry Blau; Christoph Blume; Nicolas Bock; Stefan Boettger; Alexey Bogdanov; Hans Boggild; Mikhail Bogolyubsky; Laszlo Boldizsar; Marek Bombara; Herve Borel; Alexander Borissov; Suvendu Nath Bose; Francesco Bossu; Michiel Botje; Bruno Alexandre Boyer; Ermes Braidot; Peter Braun-Munzinger; Marco Bregant; Timo Gunther Breitner; Tyler Allen Browning; Michal Broz; Rene Brun; Elena Bruna; Giuseppe Eugenio Bruno; Dmitry Budnikov; Henner Buesching; Stefania Bufalino; Kyrylo Bugaiev; Oliver Busch; Edith Zinhle Buthelezi; Davide Caffarri; Xu Cai; Helen Louise Caines; Ernesto Calvo Villar; Paolo Camerini; Veronica Canoa Roman; Giovanni Cara Romeo; Francesco Carena; Wisla Carena; Federico Carminati; Amaya Ofelia Casanova Diaz; Javier Ernesto Castillo Castellanos; Ester Anna Rita Casula; Vasile Catanescu; Costanza Cavicchioli; Cesar Ceballos Sanchez; Jan Cepila; Piergiorgio Cerello; Beomsu Chang; Sylvain Chapeland; Jean-Luc Fernand Charvet; Sukalyan Chattopadhyay; Subhasis Chattopadhyay; Isha Chawla; Michael Gerard Cherney; Cvetan Cheshkov; Brigitte Cheynis; Emilio Chiavassa; Vasco Miguel Chibante Barroso; David Chinellato; Peter Chochula; Marek Chojnacki; Subikash Choudhury; Panagiotis Christakoglou; Christian Holm Christensen; Peter Christiansen; Tatsuya Chujo; Suh-Urk Chung; Corrado Cicalo; Luisa Cifarelli; Federico Cindolo; Jean Willy Andre Cleymans; Fabrizio Coccetti; Fabio Colamaria; Domenico Colella; Gustavo Conesa Balbastre; Zaida Conesa del Valle; Paul Constantin; Giacomo Contin; Jesus Guillermo Contreras; Thomas Michael Cormier; Yasser Corrales Morales; Ismael Cortes Maldonado; Pietro Cortese; Mauro Rogerio Cosentino; Filippo Costa; Manuel Enrique Cotallo; Philippe Crochet; Emilia Cruz Alaniz; Eleazar Cuautle; Leticia Cunqueiro; Ginevra D'Erasmo; Andrea Dainese; Hans Hjersing Dalsgaard; Andrea Danu; Debasish Das; Indranil Das; Kushal Das; Ajay Kumar Dash; Sadhana Dash; Sudipan De; Gabriel de Barros; Annalisa De Caro; Giacinto de Cataldo; Jan de Cuveland; Alessandro De Falco; Daniele De Gruttola; Nora De Marco; Salvatore De Pasquale; Raoul Stefan de Rooij; Hugues Delagrange; Andrzej Deloff; Vyacheslav Demanov; Ervin Denes; Airton Deppman; Domenico Di Bari; Carmelo Di Giglio; Sergio Di Liberto; Antonio Di Mauro; Pasquale Di Nezza; Miguel Angel Diaz Corchero; Thomas Dietel; Roberto Divia; Oeystein Djuvsland; Alexandru Florin Dobrin; Tadeusz Antoni Dobrowolski; Isabel Dominguez; Benjamin Donigus; Olja Dordic; Olga Driga; Anand Kumar Dubey; Laurent Ducroux; Pascal Dupieux; AK Dutta Majumdar; Mihir Ranjan Dutta Majumdar; Domenico Elia; David Philip Emschermann; Heiko Engel; Hege Austrheim Erdal; Bruno Espagnon; Magali Danielle Estienne; Shinichi Esumi; David Evans; Gyulnara Eyyubova; Daniela Fabris; Julien Faivre; Davide Falchieri; Alessandra Fantoni; Markus Fasel; Anatoly Fedunov

    2012-01-01

    The differential production cross section of electrons from semileptonic heavy-flavour hadron decays has been measured at mid-rapidity (|y|<0.5) in proton-proton collisions at $\\\\sqrt{s}$= 7 TeV with ALICE at the LHC. Data were obtained in the transverse momentum range 0.5 < $p_t$ < 8 GeV\\/c. Predictions from a fixed order perturbative QCD calculation with next-to-leading-log resummation agree with the data within

  2. Neutron range spectrometer

    DOEpatents

    Manglos, Stephen H. (East Syracuse, NY)

    1989-06-06

    A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are collimnated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. The computer solves the following equation in the analysis: ##EQU1## where: N(x).DELTA.x=the number of neutron interactions measured between a position x and x+.DELTA.x, A.sub.i (E.sub.i).DELTA.E.sub.i =the number of incident neutrons with energy between E.sub.i and E.sub.i +.DELTA.E.sub.i, and C=C(E.sub.i)=N .sigma.(E.sub.i) where N=the number density of absorbing atoms in the position sensitive counter means and .sigma. (E.sub.i)=the average cross section of the absorbing interaction between E.sub.i and E.sub.i +.DELTA.E.sub.i.

  3. Azimuthal quadrupole correlation from gluon interference in 200 GeV and 7 TeV p +p collisions

    NASA Astrophysics Data System (ADS)

    Ray, R. L.

    2014-09-01

    The Balitskii-Fadin-Kuraev-Lipatov multi-Pomeron model of Levin and Rezaeian, with extension to the gluon saturation region, is applied to long-range pseudorapidity correlations on relative azimuth for low-momentum final-state hadrons produced in ?s =200 GeV and 7 TeV p +p collisions. The multi-Pomeron exchange probabilities in the model were estimated by fitting the minimum-bias p +p multiplicity frequency distributions. The multi-Pomeron model prediction for the amplitude of the minimum-bias average quadrupole correlation, proportional to cos2(?1-?2), is consistent with the 200 GeV data when theoretically expected gluon saturation momentum scales are used. Correlation predictions for the high-multiplicity 7 TeV p +p collision data are also consistent with the long-range pseudorapidity correlations at small relative azimuth observed in the data. The results presented here show that the present application of a multiple-parton-shower gluon interference mechanism for generating the long-range pseudorapidity, azimuthal quadrupole correlation is not excluded by the data.

  4. J/? elliptic flow in Pb-Pb collisions at ?(s(NN))=2.76 TeV.

    PubMed

    Abbas, E; Abelev, B; Adam, J; Adamová, D; Adare, A M; Aggarwal, M M; Aglieri Rinella, G; Agnello, M; Agocs, A G; Agostinelli, A; Ahammed, Z; Ahmad, N; Ahmad Masoodi, A; Ahn, S A; Ahn, S U; Aimo, I; Ajaz, M; Akindinov, A; Aleksandrov, D; Alessandro, B; Alici, A; Alkin, A; Almaráz Avińa, E; Alme, J; Alt, T; Altini, V; Altinpinar, S; Altsybeev, I; Andrei, C; Andronic, A; Anguelov, V; Anielski, J; Anson, C; Anti?i?, T; Antinori, F; Antonioli, P; Aphecetche, L; Appelshäuser, H; Arbor, N; Arcelli, S; Arend, A; Armesto, N; Arnaldi, R; Aronsson, T; Arsene, I C; Arslandok, M; Asryan, A; Augustinus, A; Averbeck, R; Awes, T C; Äystö, J; Azmi, M D; Bach, M; Badalŕ, A; Baek, Y W; Bailhache, R; Bala, R; Baldisseri, A; Baltasar Dos Santos Pedrosa, F; Bán, J; Baral, R C; Barbera, R; Barile, F; Barnaföldi, G G; Barnby, L S; Barret, V; Bartke, J; Basile, M; Bastid, N; Basu, S; Bathen, B; Batigne, G; Batyunya, B; Batzing, P C; Baumann, C; Bearden, I G; Beck, H; Behera, N K; Belikov, I; Bellini, F; Bellwied, R; Belmont-Moreno, E; Bencedi, G; Beole, S; Berceanu, I; Bercuci, A; Berdnikov, Y; Berenyi, D; Bergognon, A A E; Bertens, R A; Berzano, D; Betev, L; Bhasin, A; Bhati, A K; Bhom, J; Bianchi, N; Bianchi, L; Bianchin, C; Biel?ík, J; Biel?íková, J; Bilandzic, A; Bjelogrlic, S; Blanco, F; Blanco, F; Blau, D; Blume, C; Boccioli, M; Böttger, S; Bogdanov, A; Břggild, H; Bogolyubsky, M; Boldizsár, L; Bombara, M; Book, J; Borel, H; Borissov, A; Bossú, F; Botje, M; Botta, E; Braidot, E; Braun-Munzinger, P; Bregant, M; Breitner, T; Broker, T A; Browning, T A; Broz, M; Brun, R; Bruna, E; Bruno, G E; Budnikov, D; Buesching, H; Bufalino, S; Buncic, P; Busch, O; Buthelezi, Z; Caffarri, D; Cai, X; Caines, H; Calvo Villar, E; Camerini, P; Canoa Roman, V; Cara Romeo, G; Carena, W; Carena, F; Carlin Filho, N; Carminati, F; Casanova Díaz, A; Castillo Castellanos, J; Castillo Hernandez, J F; Casula, E A R; Catanescu, V; Cavicchioli, C; Ceballos Sanchez, C; Cepila, J; Cerello, P; Chang, B; Chapeland, S; Charvet, J L; Chattopadhyay, S; Chattopadhyay, S; Cherney, M; Cheshkov, C; Cheynis, B; Chibante Barroso, V; Chinellato, D D; Chochula, P; Chojnacki, M; Choudhury, S; Christakoglou, P; Christensen, C H; Christiansen, P; Chujo, T; Chung, S U; Cicalo, C; Cifarelli, L; Cindolo, F; Cleymans, J; Colamaria, F; Colella, D; Collu, A; Conesa Balbastre, G; Conesa del Valle, Z; Connors, M E; Contin, G; Contreras, J G; Cormier, T M; Corrales Morales, Y; Cortese, P; Cortés Maldonado, I; Cosentino, M R; Costa, F; Cotallo, M E; Crescio, E; Crochet, P; Cruz Alaniz, E; Cruz Albino, R; Cuautle, E; Cunqueiro, L; Dainese, A; Dang, R; Danu, A; Das, D; Das, K; Das, S; Das, I; Dash, A; Dash, S; De, S; de Barros, G O V; De Caro, A; de Cataldo, G; de Cuveland, J; De Falco, A; De Gruttola, D; Delagrange, H; Deloff, A; De Marco, N; Dénes, E; De Pasquale, S; Deppman, A; D'Erasmo, G; de Rooij, R; Diaz Corchero, M A; Di Bari, D; Dietel, T; Di Giglio, C; Di Liberto, S; Di Mauro, A; Di Nezza, P; Diviŕ, R; Djuvsland, Ř; Dobrin, A; Dobrowolski, T; Dönigus, B; Dordic, O; Driga, O; Dubey, A K; Dubla, A; Ducroux, L; Dupieux, P; Dutta Majumdar, A K; Elia, D; Emschermann, D; Engel, H; Erazmus, B; Erdal, H A; Eschweiler, D; Espagnon, B; Estienne, M; Esumi, S; Evans, D; Evdokimov, S; Eyyubova, G; Fabris, D; Faivre, J; Falchieri, D; Fantoni, A; Fasel, M; Fehlker, D; Feldkamp, L; Felea, D; Feliciello, A; Fenton-Olsen, B; Feofilov, G; Fernández Téllez, A; Ferretti, A; Festanti, A; Figiel, J; Figueredo, M A S; Filchagin, S; Finogeev, D; Fionda, F M; Fiore, E M; Floratos, E; Floris, M; Foertsch, S; Foka, P; Fokin, S; Fragiacomo, E; Francescon, A; Frankenfeld, U; Fuchs, U; Furget, C; Fusco Girard, M; Gaardhřje, J J; Gagliardi, M; Gago, A; Gallio, M; Gangadharan, D R; Ganoti, P; Garabatos, C; Garcia-Solis, E; Gargiulo, C; Garishvili, I; Gerhard, J; Germain, M; Geuna, C; Gheata, A; Gheata, M; Ghidini, B; Ghosh, P; Gianotti, P; Girard, M R; Giubellino, P; Gladysz-Dziadus, E; Glässel, P; Gomez, R; Ferreiro, E G; González-Trueba, L H; González-Zamora, P; Gorbunov, S; Goswami, A; Gotovac, S; Graczykowski, L K; Grajcarek, R; Grelli, A; Grigoras, A; Grigoras, C; Grigoriev, V; Grigoryan, A; Grigoryan, S; Grinyov, B; Grion, N; Gros, P; Grosse-Oetringhaus, J F; Grossiord, J-Y; Grosso, R; Guber, F; Guernane, R; Guerzoni, B; Guilbaud, M; Gulbrandsen, K; Gulkanyan, H; Gunji, T; Gupta, A; Gupta, R; Haake, R; Haaland, Ř; Hadjidakis, C; Haiduc, M; Hamagaki, H; Hamar, G; Han, B H; Hanratty, L D; Hansen, A; Harmanová-Tóthová, Z; Harris, J W; Hartig, M; Harton, A; Hatzifotiadou, D; Hayashi, S; Hayrapetyan, A; Heckel, S T; Heide, M; Helstrup, H; Herghelegiu, A; Herrera Corral, G; Herrmann, N; Hess, B A; Hetland, K F; Hicks, B; Hippolyte, B; Hori, Y; Hristov, P; H?ivná?ová, I; Huang, M; Humanic, T J

    2013-10-18

    We report on the first measurement of inclusive J/? elliptic flow v2 in heavy-ion collisions at the LHC. The measurement is performed with the ALICE detector in Pb-Pb collisions at ?(s(NN))=2.76 TeV in the rapidity range 2.5range 0?p(T)<10 GeV/c. For semicentral Pb-Pb collisions at ?(s(NN))=2.76 TeV, an indication of nonzero v2 is observed with a largest measured value of v2=0.116ą0.046(stat)ą0.029(syst) for J/? in the transverse momentum range 2?p(T)<4 GeV/c. The elliptic flow measurement complements the previously reported ALICE results on the inclusive J/? nuclear modification factor and favors the scenario of a significant fraction of J/? production from charm quarks in a deconfined partonic phase. PMID:24182258

  5. Azimuthal quadrupole correlation from gluon interference in 200 GeV and 7 TeV p+p collisions

    E-print Network

    R. L. Ray

    2014-08-28

    The Balitskii-Fadin-Kuraev-Lipatov (BFKL) multi-Pomeron model of Levin and Rezaeian, with extension to the gluon saturation region, is applied to long-range pseudorapidity correlations on relative azimuth for low momentum final-state hadrons produced in $\\sqrt{s}$ = 200~GeV and 7~TeV p+p collisions. The multi-Pomeron exchange probabilities in the model were estimated by fitting the minimum-bias p+p multiplicity frequency distributions. The multi-Pomeron model prediction for the amplitude of the minimum-bias average quadrupole correlation, proportional to $\\cos 2(\\phi_1 - \\phi_2)$, is consistent with the 200~GeV data when theoretically expected gluon saturation momentum scales are used. Correlation predictions for the high multiplicity 7~TeV p+p collision data are also consistent with the long-range pseudorapidity correlations at small relative azimuth observed in the data. The results presented here show that the present application of a multiple parton-shower, gluon interference mechanism for generating the long-range pseudorapidity, azimuthal quadrupole correlation is not excluded by the data.

  6. J/? Elliptic Flow in Pb-Pb Collisions at sNN=2.76TeV

    NASA Astrophysics Data System (ADS)

    Abbas, E.; Abelev, B.; Adam, J.; Adamová, D.; Adare, A. M.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agocs, A. G.; Agostinelli, A.; Ahammed, Z.; Ahmad, N.; Ahmad Masoodi, A.; Ahn, S. A.; Ahn, S. U.; Aimo, I.; Ajaz, M.; Akindinov, A.; Aleksandrov, D.; Alessandro, B.; Alici, A.; Alkin, A.; Almaráz Avińa, E.; Alme, J.; Alt, T.; Altini, V.; Altinpinar, S.; Altsybeev, I.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Anson, C.; Anti?i?, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arbor, N.; Arcelli, S.; Arend, A.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Arslandok, M.; Asryan, A.; Augustinus, A.; Averbeck, R.; Awes, T. C.; Äystö, J.; Azmi, M. D.; Bach, M.; Badalŕ, A.; Baek, Y. W.; Bailhache, R.; Bala, R.; Baldisseri, A.; Baltasar Dos Santos Pedrosa, F.; Bán, J.; Baral, R. C.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartke, J.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batyunya, B.; Batzing, P. C.; Baumann, C.; Bearden, I. G.; Beck, H.; Behera, N. K.; Belikov, I.; Bellini, F.; Bellwied, R.; Belmont-Moreno, E.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bergognon, A. A. E.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhati, A. K.; Bhom, J.; Bianchi, N.; Bianchi, L.; Bianchin, C.; Biel?ík, J.; Biel?íková, J.; Bilandzic, A.; Bjelogrlic, S.; Blanco, F.; Blanco, F.; Blau, D.; Blume, C.; Boccioli, M.; Böttger, S.; Bogdanov, A.; Břggild, H.; Bogolyubsky, M.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Bossú, F.; Botje, M.; Botta, E.; Braidot, E.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Brun, R.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Caffarri, D.; Cai, X.; Caines, H.; Calvo Villar, E.; Camerini, P.; Canoa Roman, V.; Cara Romeo, G.; Carena, W.; Carena, F.; Carlin Filho, N.; Carminati, F.; Casanova Díaz, A.; Castillo Castellanos, J.; Castillo Hernandez, J. F.; Casula, E. A. R.; Catanescu, V.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Conesa Balbastre, G.; Conesa del Valle, Z.; Connors, M. E.; Contin, G.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortese, P.; Cortés Maldonado, I.; Cosentino, M. R.; Costa, F.; Cotallo, M. E.; Crescio, E.; Crochet, P.; Cruz Alaniz, E.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dainese, A.; Dang, R.; Danu, A.; Das, D.; Das, K.; Das, S.; Das, I.; Dash, A.; Dash, S.; De, S.; de Barros, G. O. V.; De Caro, A.; de Cataldo, G.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; Delagrange, H.; Deloff, A.; De Marco, N.; Dénes, E.; De Pasquale, S.; Deppman, A.; D'Erasmo, G.; de Rooij, R.; Diaz Corchero, M. A.; Di Bari, D.; Dietel, T.; Di Giglio, C.; Di Liberto, S.; Di Mauro, A.; Di Nezza, P.; Diviŕ, R.; Djuvsland, Ř.; Dobrin, A.; Dobrowolski, T.; Dönigus, B.; Dordic, O.; Driga, O.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Dutta Majumdar, A. K.; Elia, D.; Emschermann, D.; Engel, H.; Erazmus, B.; Erdal, H. A.; Eschweiler, D.; Espagnon, B.; Estienne, M.; Esumi, S.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fehlker, D.; Feldkamp, L.; Felea, D.; Feliciello, A.; Fenton-Olsen, B.; Feofilov, G.; Fernández Téllez, A.; Ferretti, A.; Festanti, A.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floratos, E.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Fusco Girard, M.; Gaardhřje, J. J.; Gagliardi, M.; Gago, A.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Garishvili, I.; Gerhard, J.; Germain, M.; Geuna, C.; Gheata, A.; Gheata, M.; Ghidini, B.; Ghosh, P.; Gianotti, P.; Girard, M. R.; Giubellino, P.; Gladysz-Dziadus, E.; Glässel, P.; Gomez, R.; Ferreiro, E. G.; González-Trueba, L. H.; González-Zamora, P.; Gorbunov, S.; Goswami, A.; Gotovac, S.; Graczykowski, L. K.; Grajcarek, R.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Gros, P.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Guilbaud, M.; Gulbrandsen, K.

    2013-10-01

    We report on the first measurement of inclusive J/? elliptic flow v2 in heavy-ion collisions at the LHC. The measurement is performed with the ALICE detector in Pb-Pb collisions at sNN=2.76TeV in the rapidity range 2.5range 0?pT<10GeV/c. For semicentral Pb-Pb collisions at sNN=2.76TeV, an indication of nonzero v2 is observed with a largest measured value of v2=0.116ą0.046(stat)ą0.029(syst) for J/? in the transverse momentum range 2?pT<4GeV/c. The elliptic flow measurement complements the previously reported ALICE results on the inclusive J/? nuclear modification factor and favors the scenario of a significant fraction of J/? production from charm quarks in a deconfined partonic phase.

  7. Microquasar LS 5039: a TeV gamma-ray emitter and a potential TeV neutrino source

    E-print Network

    Felix A. Aharonian; Luis A. Anchordoqui; Dmitry Khangulyan; Teresa Montaruli

    2006-05-19

    The recent detection of TeV gamma-rays from the microquasar LS 5039 by HESS is one of the most exciting discoveries of observational gamma-ray astronomy in the very high energy regime. This result clearly demonstrates that X-ray binaries with relativistic jets (microquasars) are sites of effective acceleration of particles (electrons and/or protons) to multi-TeV energies. Whether the gamma-rays are of hadronic or leptonic origin is a key issue related to the origin of Galactic Cosmic Rays. We discuss different possible scenarios for the production of gamma-rays, and argue in favor of hadronic origin of TeV photons, especially if they are produced within the binary system. If so, the detected gamma-rays should be accompanied by a flux of high energy neutrinos emerging from the decays of \\pi^\\pm mesons produced at pp and/or p \\gamma interactions. The flux of TeV neutrinos, which can be estimated on the basis of the detected TeV gamma-ray flux, taking into account the internal \\gamma \\gamma \\to e^+e^- absorption, depends significantly on the location of gamma-ray production region(s). The minimum neutrino flux above 1 TeV is expected to be at the level of 10^{-12} cm^{-2} s^{-1}; however, it could be up to a factor of 100 larger. The detectability of the signal of multi-TeV neutrinos significantly depends on the high energy cutoff in the spectrum of parent protons; if the spectrum of accelerated protons continues to 1 PeV and beyond, the predicted neutrino fluxes can be probed by the planned km^3-scale neutrino detector.

  8. PACIFIC SOUTHWEST Forest and Range

    E-print Network

    Standiford, Richard B.

    PACIFIC SOUTHWEST Forest and Range Experiment Station FOREST SERVICE. U. S. DEPARTMENT;"Rest-Rotation Grazing at Harvey Valley...range, health, cattle gains, costs," by Raymond D, Ratliff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Trends in Range Health and Condition . . . . . . . . . . . . . . . . . . . . . . . . . 5

  9. ELLIPTICAL RANGE THEOREMS FOR GENERALIZED NUMERICAL RANGES OF QUADRATIC OPERATORS

    E-print Network

    Li, Chi-Kwong

    ELLIPTICAL RANGE THEOREMS FOR GENERALIZED NUMERICAL RANGES OF QUADRATIC OPERATORS CHI-KWONG LI, YIU-TUNG POON, AND NUNG-SING SZE Abstract. The classical numerical range of a quadratic operator is an elliptical disk. This result is extended to different kinds of generalized numerical ranges. In particular

  10. Electromagnetic deep-probing (100-1000 KMS) of the Earth's interior from artificial satellites: Constraints on the regional emplacement of crustal resources

    NASA Technical Reports Server (NTRS)

    Hermance, J. F. (principal investigator)

    1980-01-01

    The applicability of electromagnetic deep sounding experiments using natural sources in the magnetosphere by incorporating Magsat data with other geophysical data was evaluated. Magsat satellite data, ground based magnetic observations, appropriate reference field models, and other satellite data was analyzed. The optimal combination of observations which lead first to a global and then to a regional characterization of the conductivity of the Earth's upper mantle is sought.

  11. Electromagnetic deep-probing (100-1000 KMS) of the Earth's interior from artificial satellites: Constraints on the regional emplacement of crustal resources

    NASA Technical Reports Server (NTRS)

    Hermance, J. F. (principal investigator)

    1981-01-01

    An algorithm was developed to address the problem of electromagnetic coupling of ionospheric current systems to both a homogeneous Earth having finite conductivity, and to an Earth having gross lateral variations in its conductivity structure, e.g., the ocean-land interface. Typical results from the model simulation for ionospheric currents flowing parallel to a representative geologic discontinuity are shown. Although the total magnetic field component at the satellite altitude is an order of magnitude smaller than at the Earth's surface (because of cancellation effects from the source current), the anomalous behavior of the satellite observations as the vehicle passes over the geologic contact is relatively more important pronounced. The results discriminate among gross lithospheric structures because of difference in electrical conductivity.

  12. New limits on the density of the extragalactic background light in the optical to the far-infrared from the spectra of all known TeV blazars

    E-print Network

    Daniel Mazin; Martin Raue

    2007-06-27

    Aims: We derive limits on the EBL density from the energy spectra of distant sources of very high energetic gamma-rays (VHE gamma-rays). Methods: VHE gamma-rays are attenuated by the photons of the EBL via pair production, which leaves an imprint in the measured spectra from distant sources. In this paper we present a new method to derive constraints on the EBL. Hereby, we use only very basic assumptions about TeV blazar physics and no pre-defined EBL model, but rather a large number of generic shapes constructed from a grid in EBL density vs. wavelength. In our study we utilize spectral data from all known TeV blazars, making this the most complete study so far. Results: We derive limits on the EBL for three individual TeV blazar spectra (Mkn 501, H1426+428, 1ES1101-232) and for all spectra combined. Combining the results from individual spectra leads to significantly stronger constraints over a wide wavelength range from the optical (~ 1 micron) to the far-infrared (~ 80 microns). The limits are only a factor of 2 to 3 above the absolute lower limits derived from source counts. In the mid-infrared our limits are the strongest constraints derived from TeV blazar spectra so far. A high density of the EBL around 1 micron, reported by direct detection experiments, can be excluded. Conclusions: Our results can be interpreted in two ways: (i) The EBL is almost resolved by source counts, leaving only little room for additional components by e.g. the first stars or (ii) the assumptions about the underlying physics are not valid, which would require substantial changes in the standard emission models of TeV blazars.

  13. Discovery of TeV ?-ray emission from PKS 0447-439 and derivation of an upper limit on its redshift

    NASA Astrophysics Data System (ADS)

    H.E.S.S. Collaboration; Abramowski, A.; Acero, F.; Akhperjanian, A. G.; Anton, G.; Balenderan, S.; Balzer, A.; Barnacka, A.; Becherini, Y.; Becker Tjus, J.; Behera, B.; Bernlöhr, K.; Birsin, E.; Biteau, J.; Bochow, A.; Boisson, C.; Bolmont, J.; Bordas, P.; Brucker, J.; Brun, F.; Brun, P.; Bulik, T.; Carrigan, S.; Casanova, S.; Cerruti, M.; Chadwick, P. M.; Chaves, R. C. G.; Cheesebrough, A.; Colafrancesco, S.; Cologna, G.; Conrad, J.; Couturier, C.; Dalton, M.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; deWilt, P.; Dickinson, H. J.; Djannati-Ataď, A.; Domainko, W.; O'C. Drury, L.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Egberts, K.; Eger, P.; Espigat, P.; Fallon, L.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fernandez, D.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Gast, H.; Giebels, B.; Glicenstein, J. F.; Glück, B.; Göring, D.; Grondin, M.-H.; Grudzi?ska, M.; Häffner, S.; Hague, J. D.; Hahn, J.; Hampf, D.; Harris, J.; Heinz, S.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Holler, M.; Horns, D.; Jacholkowska, A.; Jahn, C.; Jamrozy, M.; Jung, I.; Kastendieck, M. A.; Katarzy?ski, K.; Katz, U.; Kaufmann, S.; Khélifi, B.; Klepser, S.; Klochkov, D.; Klu?niak, W.; Kneiske, T.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Kossakowski, R.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lefaucheur, J.; Lemoine-Goumard, M.; Lenain, J.-P.; Lennarz, D.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Masbou, J.; Maurin, G.; Maxted, N.; Mayer, M.; McComb, T. J. L.; Medina, M. C.; Méhault, J.; Menzler, U.; Moderski, R.; Mohamed, M.; Moulin, E.; Naumann, C. L.; Naumann-Godo, M.; de Naurois, M.; Nedbal, D.; Nguyen, N.; Niemiec, J.; Nolan, S. J.; Ohm, S.; de Ońa Wilhelmi, E.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Parsons, R. D.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Perez, J.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Raue, M.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Ripken, J.; Rob, L.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Sanchez, D. A.; Santangelo, A.; Schlickeiser, R.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Sheidaei, F.; Skilton, J. L.; Sol, H.; Spengler, G.; Stawarz, ?.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Szostek, A.; Tavernet, J.-P.; Terrier, R.; Tluczykont, M.; Trichard, C.; Valerius, K.; van Eldik, C.; Vasileiadis, G.; Venter, C.; Viana, A.; Vincent, P.; Völk, H. J.; Volpe, F.; Vorobiov, S.; Vorster, M.; Wagner, S. J.; Ward, M.; White, R.; Wierzcholska, A.; Wouters, D.; Zacharias, M.; Zajczyk, A.; Zdziarski, A. A.; Zech, A.; Zechlin, H.-S.; Pelat, D.

    2013-04-01

    Very high-energy ?-ray emission from PKS 0447-439 was detected with the H.E.S.S. Cherenkov telescope array in December 2009. This blazar is one of the brightest extragalactic objects in the Fermi bright source list and has a hard spectrum in the MeV to GeV range. In the TeV range, a photon index of 3.89 ą 0.37 (stat) ą0.22 (sys) and a flux normalisation at 1 TeV, ?1 TeV = (3.5 ą 1.1(stat) ą 0.9(sys)) × 10-13 cm-2 s-1 TeV-1 were found. The detection with H.E.S.S. triggered observations in the X-ray band with the Swift and RXTE telescopes. Simultaneous UV and optical data from Swift UVOT and data from the optical telescopes ATOM and ROTSE are also available. The spectrum and light curve measured with H.E.S.S. are presented and compared to the multi-wavelength data at lower energies. A rapid flare is seen in the Swift XRT and RXTE data, together with a flux variation in the UV band, at a time scale of the order of one day. A firm upper limit of z < 0.59 on the redshift of PKS 0447-439 is derived from the combined Fermi-LAT and H.E.S.S. data, given the assumptions that there is no upturn in the intrinsic spectrum above the Fermi-LAT energy range and that absorption on the extragalactic background light (EBL) is not weaker than the lower limit provided by current models. The spectral energy distribution is well described by a simple one-zone synchrotron self-Compton scenario, if the redshift of the source is less than z ? 0.4.

  14. Hadron supercolliders: The 1-TeV scale and beyond

    SciTech Connect

    Quigg, C.

    1990-08-10

    Greater understanding of the connection between the weak and electromagnetic interactions is central to progress in elementary-particle physics. A definitive exploration of the mechanism for electroweak symmetry breaking will require collisions between fundamental constituents at energies on the order of 1 TeV. This goal drives the design of high-energy, high-luminosity hadron colliders that will be commissioned during the next decade, but by no means completely defines their scientific potential. These three lectures are devoted to a review of the standard-model issues that motivated an experimental assault on the 1-TeV scale, an introduction to the machines and the experimental environment they will present, and a survey of possibilities for measurement and discovery with a multi-TeV hadron collider. 72 refs., 29 figs.

  15. TeV scale dark matter and electroweak radiative corrections

    SciTech Connect

    Ciafaloni, Paolo; Urbano, Alfredo [INFN - Sezione di Lecce and Universita del Salento, Via per Arnesano, I-73100 Lecce (Italy)

    2010-08-15

    Recent anomalies in cosmic rays data, namely, from the PAMELA Collaboration, can be interpreted in terms of TeV scale decaying/annihilating dark matter. We analyze the impact of radiative corrections coming from the electroweak sector of the standard model on the spectrum of the final products at the interaction point. As an example, we consider virtual one loop corrections and real gauge bosons emission in the case of a very heavy vector boson annihilating into fermions. We find electroweak corrections that are relevant, but not as big as sometimes found in the literature; we relate this mismatch to the issue of gauge invariance. At scales much higher than the symmetry breaking scale, one loop electroweak effects are so big that eventually higher orders/resummations have to be considered: we advocate for the inclusion of these effects in parton shower Monte Carlo models aiming at the description of TeV scale physics.

  16. Implications of very rapid TeV variability in blazars

    NASA Astrophysics Data System (ADS)

    Begelman, Mitchell C.; Fabian, Andrew C.; Rees, Martin J.

    2008-02-01

    We discuss the implications of rapid (few-minute) variability in the TeV flux of blazars, which has been observed recently with the HESS and MAGIC telescopes. The variability time-scales seen in PKS 2155-304 and Mrk 501 are much shorter than inferred light-crossing times at the black hole horizon, suggesting that the variability involves enhanced emission in a small region within an outflowing jet. The enhancement could be triggered by dissipation in part of the black hole magnetosphere at the base of the outflow, or else by instabilities in the jet itself. By considering the energetics of the observed flares, along with the requirement that TeV photons escape without producing pairs, we deduce that the bulk Lorentz factors in the jets must be >~50. The distance of the emission region from the central black hole is less well-constrained. We discuss possible consequences for multi-wavelength observations.

  17. TeV resonances in top physics at the LHC

    E-print Network

    T. Han; D. Rainwater; G. Valencia

    2003-05-20

    We consider the possibility of studying novel particles at the TeV scale with enhanced couplings to the top quark via top quark pair production at the LHC and VLHC. In particular we discuss the case of neutral scalar and vector resonances associated with a strongly interacting electroweak symmetry breaking sector. We constrain the couplings of these resonances by imposing appropriate partial wave unitarity conditions and known low energy constraints. We evaluate the new physics signals via WW -> tt~ for various models without making approximation for the initial state W bosons, and optimize the acceptance cuts for the signal observation. We conclude that QCD backgrounds overwhelm the signals in both the LHC and a 200 TeV VLHC, making it impossible to study this type of physics in the tt~ channel at those machines.

  18. TeV resonances in top physics at the LHC

    E-print Network

    Han, T; Valencia, G

    2003-01-01

    We consider the possibility of studying novel particles at the TeV scale with enhanced couplings to the top quark via top quark pair production at the LHC and VLHC. In particular we discuss the case of neutral scalar and vector resonances associated with a strongly interacting electroweak symmetry breaking sector. We constrain the couplings of these resonances by imposing appropriate partial wave unitarity conditions and known low energy constraints. We evaluate the new physics signals via WW -> tt~ for various models without making approximation for the initial state W bosons, and optimize the acceptance cuts for the signal observation. We conclude that QCD backgrounds overwhelm the signals in both the LHC and a 200 TeV VLHC, making it impossible to study this type of physics in the tt~ channel at those machines.

  19. Reaching for Squarks and Gauginos at a 100 TeV p-p Collider

    E-print Network

    Ellis, Sebastian A R

    2015-01-01

    We analyse the prospect of extending the reach for squarks and gauginos via associated production at a $\\sqrt{s} = 100$ TeV proton-proton collider, given 3 ab$^{-1}$ integrated luminosity. Depending on the gluino mass, the discovery reach for squarks in associated production with a gluino can be up to 40 TeV for compressed spectra (small gluino-LSP mass splitting), and up to 32 TeV for non-compressed spectra. The discovery reach for Winos can be up to between 4 and 6 TeV depending on squark masses and Wino decay kinematics. Binos of up to 2 TeV could similarly be discovered. Squark-gaugino associated production could prove to be the discovery mode for supersymmetry at a 100 TeV collider in a large region of parameter space.

  20. Gamma Ray Astronomy at TeV Energies

    Microsoft Academic Search

    Trevor C. Weekes

    1994-01-01

    Cosmic sources of gamma-rays of energy in excess of 0.25 TeV are now well-established using the ground-based atmospheric Cherenkov technique. Recently high resolution cameras (arrays of phototubes) on large optical reflectors have achieved significant improvements in flux sensitivity. Observations with the Compton Gamma Ray Observatory have shown that many sources have significant fluxes at the highest useful energy of EGRET

  1. Electron-positron physics at 1 TeV

    SciTech Connect

    Feldman, G.J.

    1988-03-01

    We discuss the motivation for TeV e/sup +/ e/sup )minus/) linear colliders, some aspects of their design, and the experimental consequences that follow from the design. After a brief discussion of the general physics environment, we consider the discovery potential of these colliders by examining three sample processes: the detection of new heavy leptons, standard Higgs bosons, and charged Higgs bosons. 13 refs., 22 figs., 5 tabs.

  2. Cosmic Ray and Tev Gamma Ray Generation by Quasar Remnants

    NASA Technical Reports Server (NTRS)

    Boldt, Elihu; Loewenstein, Michael; White, Nicholas E. (Technical Monitor)

    2000-01-01

    Results from new broadband (radio to X-ray) high-resolution imaging studies of the dormant quasar remnant cores of nearby giant elliptical galaxies are now shown to permit the harboring of compact dynamos capable of generating the highest energy cosmic ray particles and associated curvature radiation of TeV photons. Confirmation would imply a global inflow of interstellar gas all the way to the accretion powered supermassive black hole at the center of the host galaxy.

  3. Milagrito Detection of TeV Emission from Mrk 501

    E-print Network

    R. Atkins; W. Benbow; D. Berley; M. -L. Chen; D. G. Coyne; R. S. Delay; B. L. Dingus; D. E. Dorfan; R. W. Ellsworth; D. Evans; A. Falcone; L. Fleysher; R. Fleysher; G. Gisler; J. A. Goodman; T. J. Haines; C. M. Hoffman; S. Hugenberger; L. A. Kelley; I. Leonor; J. Macri; M. McConnell; J. F. McCullough; J. E. McEnery; R. S. Miller; A. I. Mincer; M. F. Morales; P. Nemethy; J. M. Ryan; M. Schneider; B. Shen; A. Shoup; G. Sinnis; A. J. Smith; G. W. Sullivan; T. N. Thompson; O. T. Tumer; K. Wang; M. O. Wascko; S. Westerhoff; D. A. Williams; T. Yang; G. B. Yodh

    1999-06-24

    The Milagro water Cherenkov detector near Los Alamos, New Mexico, has been operated as a sky monitor at energies of a few TeV between February 1997 and April 1998. Serving as a test run for the full Milagro detector, Milagrito has taken data during the strong and long-lasting 1997 flare of Mrk 501. We present results from the analysis of Mrk 501 and compare the excess and background rates with expectations from the detector simulations.

  4. The Role of GLAST in Multiwavelength Observations of Bright TeV Blazars

    NASA Astrophysics Data System (ADS)

    Paneque, D.; Chiang, J.; Giebels, B.; Lonjou, V.; Lott, B.; Madejski, G.

    2008-06-01

    The TeV blazars PKS 2155-304, 1ES 1959+650, Mrk 421 and Mrk 501 are among the brightest known blazars, yet the existing experimental set of data does not allow one to make unambiguous statements about the physical mechanisms responsible for the electromagnetic emission. The lack of sensitive coverage in the energy range 1 MeV to 500 GeV (up to 2004), and the scarce truly simultaneous data result in a big inter-model and intra-model degeneracy. The LAT instrument on board of the GLAST satellite, which will start operation at the beginning of 2008, aims to perform gamma-ray astronomy in the energy range 20 MeV to 300 GeV. The sensitivity of LAT is about 25 times better than its predecessor, EGRET. Together with the enhanced sensitivity of the current generation of Imaging Air Cherenkov Telescopes (IACTs) in the energy range 100 GeV-500 GeV, LAT observations offer unprecedented capabilities to study the high energy emission of these objects in both quiescent and flaring state.

  5. DETECTION OF GAMMA RAYS OF UP TO 50 TeV FROM THE CRAB NEBULA

    E-print Network

    Enomoto, Ryoji

    DETECTION OF GAMMA RAYS OF UP TO 50 TeV FROM THE CRAB NEBULA T. Tanimori1 , K. Sakurazawa1 , S. A Letters #12;{ 3 { ABSTRACT Gamma rays with energies greater than 7 TeV from the Crab pulsar/nebula have, but in the nebula where the magnetic #12;eld is not strong enough to allow pair creation from the TeV photons

  6. Diffraction dissociation in proton-proton collisions at $\\sqrt{s}$ = 0.9 TeV, 2.76 TeV and 7 TeV with ALICE at the LHC

    E-print Network

    Poghosyan, M G

    2011-01-01

    The relative rates of single- and double- diffractive processes were measured with the ALICE detector by studying properties of gaps in the pseudorapidity distribution of particles produced in proton-proton collisions at $\\sqrt{s}$ = 0.9 TeV, 2.76 TeV and 7 TeV. ALICE triggering efficiencies are determined for various classes of events, using a detector simulation validated with data on inclusive particle production. Cross-sections are determined using van der Meer scans to measure beam properties and obtain a measurement of the luminosity.

  7. Production of $K*(892)^0$ and $\\phi$(1020) in pp collisions at $\\sqrt{s}$ =7 TeV

    E-print Network

    Abelev, Betty; Adamova, Dagmar; Adare, Andrew Marshall; Aggarwal, Madan; Aglieri Rinella, Gianluca; Agocs, Andras Gabor; Agostinelli, Andrea; Aguilar Salazar, Saul; Ahammed, Zubayer; Ahmad, Arshad; Ahmad, Nazeer; Ahn, Sang Un; Akindinov, Alexander; Aleksandrov, Dmitry; Alessandro, Bruno; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Almaraz Avina, Erick Jonathan; Alme, Johan; Alt, Torsten; Altini, Valerio; Altinpinar, Sedat; Altsybeev, Igor; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshauser, Harald; Arbor, Nicolas; Arcelli, Silvia; Armesto, Nestor; Arnaldi, Roberta; Aronsson, Tomas Robert; Arsene, Ionut Cristian; Arslandok, Mesut; Augustinus, Andre; Averbeck, Ralf Peter; Awes, Terry; Aysto, Juha Heikki; Azmi, Mohd Danish; Bach, Matthias Jakob; Badala, Angela; Baek, Yong Wook; Bailhache, Raphaelle Marie; Bala, Renu; Baldini Ferroli, Rinaldo; Baldisseri, Alberto; Baldit, Alain; Baltasar Dos Santos Pedrosa, Fernando; Ban, Jaroslav; Baral, Rama Chandra; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Barret, Valerie; Bartke, Jerzy Gustaw; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batyunya, Boris; Baumann, Christoph Heinrich; Bearden, Ian Gardner; Beck, Hans; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bellwied, Rene; Belmont-Moreno, Ernesto; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bergognon, Anais Annick Erica; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhati, Ashok Kumar; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Bjelogrlic, Sandro; Blanco, F; Blanco, Francesco; Blau, Dmitry; Blume, Christoph; Bock, Nicolas; Boettger, Stefan; Bogdanov, Alexey; Boggild, Hans; Bogolyubsky, Mikhail; Boldizsar, Laszlo; Bombara, Marek; Book, Julian; Borel, Herve; Borissov, Alexander; Bose, Suvendu Nath; Bossu, Francesco; Botje, Michiel; Boyer, Bruno Alexandre; Braidot, Ermes; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Browning, Tyler Allen; Broz, Michal; Brun, Rene; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Busch, Oliver; Buthelezi, Edith Zinhle; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calvo Villar, Ernesto; Camerini, Paolo; Canoa Roman, Veronica; Cara Romeo, Giovanni; Carena, Francesco; Carena, Wisla; Carminati, Federico; Casanova Diaz, Amaya Ofelia; Castillo Castellanos, Javier Ernesto; Casula, Ester Anna Rita; Catanescu, Vasile; Cavicchioli, Costanza; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Chang, Beomsu; Chapeland, Sylvain; Charvet, Jean-Luc Fernand; Chattopadhyay, Sukalyan; Chattopadhyay, Subhasis; Chawla, Isha; Cherney, Michael Gerard; Cheshkov, Cvetan; Cheynis, Brigitte; Chiavassa, Emilio; Chibante Barroso, Vasco Miguel; Chinellato, David; Chochula, Peter; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Coccetti, Fabrizio; Colamaria, Fabio; Colella, Domenico; Conesa Balbastre, Gustavo; Conesa del Valle, Zaida; Constantin, Paul; Contin, Giacomo; Contreras, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortes Maldonado, Ismael; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Cotallo, Manuel Enrique; Crochet, Philippe; Cruz Alaniz, Emilia; Cuautle, Eleazar; Cunqueiro, Leticia; D'Erasmo, Ginevra; Dainese, Andrea; Dalsgaard, Hans Hjersing; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Kushal; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; de Barros, Gabriel; De Caro, Annalisa; de Cataldo, Giacinto; de Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; de Rooij, Raoul Stefan; Delagrange, Hugues; Deloff, Andrzej; Demanov, Vyacheslav; Denes, Ervin; Deppman, Airton; Di Bari, Domenico; Di Giglio, Carmelo; Di Liberto, Sergio; Di Mauro, Antonio; Di Nezza, Pasquale; Diaz Corchero, Miguel Angel; Dietel, Thomas; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Dobrowolski, Tadeusz Antoni; Dominguez, Isabel; Donigus, Benjamin; Dordic, Olja; Driga, Olga; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Dutta Majumdar, AK; Dutta Majumdar, Mihir Ranjan

    2012-01-01

    The production of K*(892)$^0$ and $\\phi$(1020) in pp collisions at $\\sqrt{s}$=7 TeV was measured by the ALICE experiment at the LHC. The yields and the transverse momentum spectra $d^2 N/dydp_T$ at midrapidity |y|<0.5 in the range 0 < $p_T$ < 6 GeV/c for K*(892)$^0$ and 0.4 < $p_T$ < 6 GeV/c for $\\phi$(1020) are reported and compared to model predictions. Using the yield of pions, kaons, and Omega baryons measured previously by ALICE at $\\sqrt{s}$=7 TeV, the ratios $K^*/K^-, \\phi/K^*, \\phi/K^-, \\phi/\\pi^-$, and ($\\Omega + anti-\\Omega)/\\phi$ are presented. The values of the $K^*/K^-, \\phi/K^*$ and $\\phi/K^-$ ratios are similar to those found at lower centre-of-mass energies. In contrast, the $\\phi/\\pi^-$ ratio, which has been observed to increase with energy, seems to saturate above 200 GeV. The ($\\Omega + anti-\\Omega)/\\phi$ ratio in the $p_T$ range 1-5 GeV/c is found to be in good agreement with the prediction of the HIJING/$B\\bar{B}$ v2.0 model with a strong colour field.

  8. Range Searching in Categorical Data: Colored Range Searching on Grid

    E-print Network

    Agarwal, Pankaj K.

    Range Searching in Categorical Data: Colored Range Searching on Grid Pankaj K. Agarwal½, Sathish Govindarajan½, and S. Muthukrishnanž ½ Department of Computer Science, Duke University, Durham, NC 27708 pankaj@research.att.com Abstract. Range searching, a fundamental problem in numerous applications areas, has been widely studied

  9. APPROXIMATE RANGE MODE AND RANGE MEDIAN QUERIES Prosenjit Bose

    E-print Network

    Kranakis, Evangelos

    APPROXIMATE RANGE MODE AND RANGE MEDIAN QUERIES Prosenjit Bose Evangelos Kranakis Pat Morin Yihui Tang School of Computer Science, Carleton University 5302 Herzberg Building 1125 Colonel By Drive answer range median queries with a guaranteed accuracy of × |j - i + 1|/2 . 1 Introduction Let A = a1

  10. Hiding a Heavy Higgs Boson at the 7 TeV LHC

    SciTech Connect

    Bai, Yang; Fan, JiJi; Hewett, JoAnne L.

    2012-03-20

    A heavy Standard Model Higgs boson is not only disfavored by electroweak precision observables but is also excluded by direct searches at the 7 TeV LHC for a wide range of masses. Here, we examine scenarios where a heavy Higgs boson can be made consistent with both the indirect constraints and the direct null searches by adding only one new particle beyond the Standard Model. This new particle should be a weak multiplet in order to have additional contributions to the oblique parameters. If it is a color singlet, we find that a heavy Higgs with an intermediate mass of 200-300 GeV can decay into the new states, suppressing the branching ratios for the standard model modes, and thus hiding a heavy Higgs at the LHC. If the new particle is also charged under QCD, the Higgs production cross section from gluon fusion can be reduced significantly due to the new colored particle one-loop contribution. Current collider constraints on the new particles allow for viable parameter space to exist in order to hide a heavy Higgs boson. We categorize the general signatures of these new particles, identify favored regions of their parameter space and point out that discovering or excluding them at the LHC can provide important indirect information for a heavy Higgs. Finally, for a very heavy Higgs boson, beyond the search limit at the 7 TeV LHC, we discuss three additional scenarios where models would be consistent with electroweak precision tests: including an additional vector-like fermion mixing with the top quark, adding another U(1) gauge boson and modifying triple-gauge boson couplings.

  11. Transverse momentum dependence of inclusive primary charged-particle production in p-Pb collisions at $\\sqrt{s_{\\rm NN}}$ = 5.02 TeV

    E-print Network

    ALICE Collaboration

    2015-02-02

    The transverse momentum ($p_{\\mathrm T}$) distribution of primary charged particles is measured at midrapidity in minimum-bias p-Pb collisions at $\\sqrt{s_{\\mathrm{NN}}}=5.02$ TeV with the ALICE detector at the LHC in the range $0.15expectation based on binary collision scaling of particle production in pp collisions, leading to a nuclear modification factor consistent with unity for $p_{\\mathrm T}$ larger than 2 GeV/$c$, with a weak indication of a Cronin-like enhancement for $p_{\\rm T}$ around 4 GeV/$c$. The measurement is compared to theoretical calculations and to data in Pb-Pb collisions at $\\sqrt{s_{\\mathrm{NN}}}=2.76$ TeV.

  12. Measurement of 1/sigma dsigma/dy for Z/gamma* ---> e+e- at s**(1/2) = 1.96 TeV

    SciTech Connect

    Yan, Ming; /Maryland U.

    2007-03-01

    The author presents the measurement of p{bar p} {yields} Z/{gamma}* {yields} e{sup +}e{sup -} + X inclusive differential cross section as a function of boson rapidity. The data, which correspond to an integrated luminosity of 0.4 fb{sup -1}, were collected with D0 detector at Tevatron p{bar p} collider. At the Run II energy of {radical}s = 1.96 TeV, Z bosons are produced with rapidity out to {+-} 3. The cross section is measured in a mass range between 71 to 111 GeV for the allowed kinematic range.

  13. Why Range Forage Quality Changes

    E-print Network

    Lyons, Robert K.; Machen, Richard V.; Forbes, T. D. A.

    1999-02-15

    Range plants vary in nutritional quality. Forage quality is determined by the plant part eaten, plant age, season, soils and range sites, stocking rates, and other factors. Periods of high animal nutritional demand must match periods of high forage...

  14. Close-range photogrammetry Definition

    E-print Network

    Giger, Christine

    Close-range photogrammetry #12;Definition ˇ What is "close-range"? ˇ Historically, 3D modeling from terrestrial images - note: terrestrial recordings were the earliest form of photogrammetry ­ Aimé Laussedat 1859: "Métrophotographie" from rooftops ­ Albrecht Meydenbauer 1867: architectural "Photogrammetrie

  15. Range-Aggregate Proximity Queries

    Microsoft Academic Search

    R. Sharathkumar; Prosenjit Gupta

    In a range-aggegate query problem we wish to preprocess a set S of geometric objects such that given a query orthogonal range q, a certain intersection or proximity query on the objects of S intersected by q can be answered efficiently. Although range-aggregate queries have been widely investigated in the past for aggregation functions like average, count, min, max, sum

  16. Interstellar protons in the TeV ?-ray SNR HESS J1731-347: Possible evidence for the coexistence of hadronic and leptonic ?-rays

    SciTech Connect

    Fukuda, T.; Yoshiike, S.; Sano, H.; Torii, K.; Yamamoto, H.; Fukui, Y. [Department of Physics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601 (Japan); Acero, F., E-mail: tfukuda@a.phys.nagoya-u.ac.jp [ORAU/NASA Goddard Space Flight Center, Astrophysics Science Division, Code 661, Greenbelt, MD 20771 (United States)

    2014-06-10

    HESS J1731-347 (G353.6-0.7) is one of the TeV ?-ray supernova remnants (SNRs) that shows the shell-like morphology. We have made a new analysis of the interstellar protons toward the SNR by using both the {sup 12}CO(J = 1-0) and H I data sets. The results indicate that the TeV ?-ray shell shows significant spatial correlation with the interstellar protons at a velocity range from –90 km s{sup –1} to –75 km s{sup –1}. The total mass of the interstellar medium (ISM) protons is estimated to be 6.4 × 10{sup 4} M {sub ?}, 25% of which is atomic gas, and the distance corresponding to the velocity range is ?5.2 kpc, a factor of 2 larger than the previous figure, 3 kpc. We have identified the cold H I gas observed as self-absorption which shows significant correspondence with the northeastern ?-ray peak. While the good correspondence between the ISM protons and TeV ?-rays in the north of the SNR lends support to the hadronic scenario for the TeV ?-rays, the southern part of the shell shows a break in the correspondence; in particular, the southwestern rim of the SNR shell shows a significant decrease of the interstellar protons by a factor of two. We argue that this discrepancy can be explained due to leptonic ?-rays because this region coincides well with the bright shell that emits non-thermal radio continuum emission and non-thermal X-rays, suggesting that the ?-rays of HESS J1713-347 consist of both the hadronic and leptonic components. The leptonic contribution corresponds to ?20% of the total ?-rays.

  17. range

    Microsoft Academic Search

    Isabelle Chuine; G. Beaubien

    Global warming is expected to have a major impact on plant distributions, an issue of key importance in biological conservation. However, very few models are able to predict species distribution accurately, although we know species respond individually to climate change. Here we show, using a process-based model (PHENOFIT), that tree species distributions can be predicted precisely if the biological processes

  18. Measurement of the Differential Cross Section for Isolated Prompt Photon Production in pp Collisions at 7 TeV

    SciTech Connect

    Chatrchyan, S. [Yerevan Physics Institute (Armenia); et al.,

    2011-09-01

    A measurement of the differential cross section for the inclusive production of isolated prompt photons in proton-proton collisions at a centre-of-mass energy of 7 TeV is presented. The data sample corresponds to an integrated luminosity of 36 inverse picobarns recorded by the CMS detector at the LHC. The measurement covers the pseudorapidity range |eta|<2.5 and the transverse energy range 25 < ET < 400 GeV, corresponding to the kinematic region 0.007 < xT < 0.114. Photon candidates are identified with two complementary methods, one based on photon conversions in the silicon tracker and the other on isolated energy deposits in the electromagnetic calorimeter. The measured cross section is presented as a function of ET in four pseudorapidity regions. The next-to-leading-order perturbative QCD calculations are consistent with the measured cross section.

  19. D Meson Elliptic Flow in Noncentral Pb-Pb Collisions at sNN=2.76TeV

    NASA Astrophysics Data System (ADS)

    Abelev, B.; Adam, J.; Adamová, D.; Adare, A. M.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agocs, A. G.; Agostinelli, A.; Ahammed, Z.; Ahmad, N.; Ahmad Masoodi, A.; Ahmed, I.; Ahn, S. U.; Ahn, S. A.; Aimo, I.; Ajaz, M.; Akindinov, A.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altini, V.; Altinpinar, S.; Altsybeev, I.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Anson, C.; Anti?i?, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arbor, N.; Arcelli, S.; Arend, A.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Arslandok, M.; Asryan, A.; Augustinus, A.; Averbeck, R.; Awes, T. C.; Äystö, J.; Azmi, M. D.; Bach, M.; Badalŕ, A.; Baek, Y. W.; Bailhache, R.; Bala, R.; Baldisseri, A.; Baltasar Dos Santos Pedrosa, F.; Bán, J.; Baral, R. C.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartke, J.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batyunya, B.; Batzing, P. C.; Baumann, C.; Bearden, I. G.; Beck, H.; Behera, N. K.; Belikov, I.; Bellini, F.; Bellwied, R.; Belmont-Moreno, E.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bergognon, A. A. E.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhati, A. K.; Bhom, J.; Bianchi, N.; Bianchi, L.; Bianchin, C.; Biel?ík, J.; Biel?íková, J.; Bilandzic, A.; Bjelogrlic, S.; Blanco, F.; Blanco, F.; Blau, D.; Blume, C.; Boccioli, M.; Böttger, S.; Bogdanov, A.; Břggild, H.; Bogolyubsky, M.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Bossú, F.; Botje, M.; Botta, E.; Braidot, E.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Brun, R.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Caffarri, D.; Cai, X.; Caines, H.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Canoa Roman, V.; Cara Romeo, G.; Carena, F.; Carena, W.; Carlin Filho, N.; Carminati, F.; Casanova Díaz, A.; Castillo Castellanos, J.; Castillo Hernandez, J. F.; Casula, E. A. R.; Catanescu, V.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Conesa Balbastre, G.; Conesa del Valle, Z.; Connors, M. E.; Contin, G.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortese, P.; Cortés Maldonado, I.; Cosentino, M. R.; Costa, F.; Cotallo, M. E.; Crescio, E.; Crochet, P.; Cruz Alaniz, E.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dainese, A.; Dang, R.; Danu, A.; Das, S.; Das, K.; Das, I.; Das, D.; Dash, S.; Dash, A.; De, S.; de Barros, G. O. V.; De Caro, A.; de Cataldo, G.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; Delagrange, H.; Deloff, A.; De Marco, N.; Dénes, E.; De Pasquale, S.; Deppman, A.; D'Erasmo, G.; de Rooij, R.; Diaz Corchero, M. A.; Di Bari, D.; Dietel, T.; Di Giglio, C.; Di Liberto, S.; Di Mauro, A.; Di Nezza, P.; Diviŕ, R.; Djuvsland, Ř.; Dobrin, A.; Dobrowolski, T.; Dönigus, B.; Dordic, O.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Dutta Majumdar, A. K.; Elia, D.; Elwood, B. G.; Emschermann, D.; Engel, H.; Erazmus, B.; Erdal, H. A.; Eschweiler, D.; Espagnon, B.; Estienne, M.; Esumi, S.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fehlker, D.; Feldkamp, L.; Felea, D.; Feliciello, A.; Fenton-Olsen, B.; Feofilov, G.; Fernández Téllez, A.; Ferretti, A.; Festanti, A.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floratos, E.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Fusco Girard, M.; Gaardhřje, J. J.; Gagliardi, M.; Gago, A.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Garishvili, I.; Gerhard, J.; Germain, M.; Geuna, C.; Gheata, A.; Gheata, M.; Ghidini, B.; Ghosh, P.; Gianotti, P.; Giubellino, P.; Gladysz-Dziadus, E.; Glässel, P.; Goerlich, L.; Gomez, R.; Ferreiro, E. G.; González-Zamora, P.; Gorbunov, S.; Goswami, A.; Gotovac, S.; Graczykowski, L. K.; Grajcarek, R.; Grelli, A.; Grigoras, C.; Grigoras, A.; Grigoriev, V.; Grigoryan, S.; Grigoryan, A.; Grinyov, B.; Grion, N.; Gros, P.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Guilbaud, M.; Gulbrandsen, K.; Gulkanyan, H.; Gunji, T.

    2013-09-01

    Azimuthally anisotropic distributions of D0, D+, and D*+ mesons were studied in the central rapidity region (|y|<0.8) in Pb-Pb collisions at a center-of-mass energy sNN=2.76TeV per nucleon-nucleon collision, with the ALICE detector at the LHC. The second Fourier coefficient v2 (commonly denoted elliptic flow) was measured in the centrality class 30%-50% as a function of the D meson transverse momentum pT, in the range 2-16GeV/c. The measured v2 of D mesons is comparable in magnitude to that of light-flavor hadrons. It is positive in the range 2

  20. D meson elliptic flow in noncentral Pb-Pb collisions at sqrt[sNN]=2.76 Tev.

    PubMed

    Abelev, B; Adam, J; Adamová, D; Adare, A M; Aggarwal, M M; Aglieri Rinella, G; Agnello, M; Agocs, A G; Agostinelli, A; Ahammed, Z; Ahmad, N; Ahmad Masoodi, A; Ahmed, I; Ahn, S U; Ahn, S A; Aimo, I; Ajaz, M; Akindinov, A; Aleksandrov, D; Alessandro, B; Alexandre, D; Alici, A; Alkin, A; Alme, J; Alt, T; Altini, V; Altinpinar, S; Altsybeev, I; Andrei, C; Andronic, A; Anguelov, V; Anielski, J; Anson, C; Anti?i?, T; Antinori, F; Antonioli, P; Aphecetche, L; Appelshäuser, H; Arbor, N; Arcelli, S; Arend, A; Armesto, N; Arnaldi, R; Aronsson, T; Arsene, I C; Arslandok, M; Asryan, A; Augustinus, A; Averbeck, R; Awes, T C; Äystö, J; Azmi, M D; Bach, M; Badalŕ, A; Baek, Y W; Bailhache, R; Bala, R; Baldisseri, A; Baltasar Dos Santos Pedrosa, F; Bán, J; Baral, R C; Barbera, R; Barile, F; Barnaföldi, G G; Barnby, L S; Barret, V; Bartke, J; Basile, M; Bastid, N; Basu, S; Bathen, B; Batigne, G; Batyunya, B; Batzing, P C; Baumann, C; Bearden, I G; Beck, H; Behera, N K; Belikov, I; Bellini, F; Bellwied, R; Belmont-Moreno, E; Bencedi, G; Beole, S; Berceanu, I; Bercuci, A; Berdnikov, Y; Berenyi, D; Bergognon, A A E; Bertens, R A; Berzano, D; Betev, L; Bhasin, A; Bhati, A K; Bhom, J; Bianchi, N; Bianchi, L; Bianchin, C; Biel?ík, J; Biel?íková, J; Bilandzic, A; Bjelogrlic, S; Blanco, F; Blanco, F; Blau, D; Blume, C; Boccioli, M; Böttger, S; Bogdanov, A; Břggild, H; Bogolyubsky, M; Boldizsár, L; Bombara, M; Book, J; Borel, H; Borissov, A; Bossú, F; Botje, M; Botta, E; Braidot, E; Braun-Munzinger, P; Bregant, M; Breitner, T; Broker, T A; Browning, T A; Broz, M; Brun, R; Bruna, E; Bruno, G E; Budnikov, D; Buesching, H; Bufalino, S; Buncic, P; Busch, O; Buthelezi, Z; Caffarri, D; Cai, X; Caines, H; Caliva, A; Calvo Villar, E; Camerini, P; Canoa Roman, V; Cara Romeo, G; Carena, F; Carena, W; Carlin Filho, N; Carminati, F; Casanova Díaz, A; Castillo Castellanos, J; Castillo Hernandez, J F; Casula, E A R; Catanescu, V; Cavicchioli, C; Ceballos Sanchez, C; Cepila, J; Cerello, P; Chang, B; Chapeland, S; Charvet, J L; Chattopadhyay, S; Chattopadhyay, S; Cherney, M; Cheshkov, C; Cheynis, B; Chibante Barroso, V; Chinellato, D D; Chochula, P; Chojnacki, M; Choudhury, S; Christakoglou, P; Christensen, C H; Christiansen, P; Chujo, T; Chung, S U; Cicalo, C; Cifarelli, L; Cindolo, F; Cleymans, J; Colamaria, F; Colella, D; Collu, A; Conesa Balbastre, G; Conesa del Valle, Z; Connors, M E; Contin, G; Contreras, J G; Cormier, T M; Corrales Morales, Y; Cortese, P; Cortés Maldonado, I; Cosentino, M R; Costa, F; Cotallo, M E; Crescio, E; Crochet, P; Cruz Alaniz, E; Cruz Albino, R; Cuautle, E; Cunqueiro, L; Dainese, A; Dang, R; Danu, A; Das, S; Das, K; Das, I; Das, D; Dash, S; Dash, A; De, S; de Barros, G O V; De Caro, A; de Cataldo, G; de Cuveland, J; De Falco, A; De Gruttola, D; Delagrange, H; Deloff, A; De Marco, N; Dénes, E; De Pasquale, S; Deppman, A; D'Erasmo, G; de Rooij, R; Diaz Corchero, M A; Di Bari, D; Dietel, T; Di Giglio, C; Di Liberto, S; Di Mauro, A; Di Nezza, P; Diviŕ, R; Djuvsland, Ř; Dobrin, A; Dobrowolski, T; Dönigus, B; Dordic, O; Dubey, A K; Dubla, A; Ducroux, L; Dupieux, P; Dutta Majumdar, A K; Elia, D; Elwood, B G; Emschermann, D; Engel, H; Erazmus, B; Erdal, H A; Eschweiler, D; Espagnon, B; Estienne, M; Esumi, S; Evans, D; Evdokimov, S; Eyyubova, G; Fabris, D; Faivre, J; Falchieri, D; Fantoni, A; Fasel, M; Fehlker, D; Feldkamp, L; Felea, D; Feliciello, A; Fenton-Olsen, B; Feofilov, G; Fernández Téllez, A; Ferretti, A; Festanti, A; Figiel, J; Figueredo, M A S; Filchagin, S; Finogeev, D; Fionda, F M; Fiore, E M; Floratos, E; Floris, M; Foertsch, S; Foka, P; Fokin, S; Fragiacomo, E; Francescon, A; Frankenfeld, U; Fuchs, U; Furget, C; Fusco Girard, M; Gaardhřje, J J; Gagliardi, M; Gago, A; Gallio, M; Gangadharan, D R; Ganoti, P; Garabatos, C; Garcia-Solis, E; Gargiulo, C; Garishvili, I; Gerhard, J; Germain, M; Geuna, C; Gheata, A; Gheata, M; Ghidini, B; Ghosh, P; Gianotti, P; Giubellino, P; Gladysz-Dziadus, E; Glässel, P; Goerlich, L; Gomez, R; Ferreiro, E G; González-Zamora, P; Gorbunov, S; Goswami, A; Gotovac, S; Graczykowski, L K; Grajcarek, R; Grelli, A; Grigoras, C; Grigoras, A; Grigoriev, V; Grigoryan, S; Grigoryan, A; Grinyov, B; Grion, N; Gros, P; Grosse-Oetringhaus, J F; Grossiord, J-Y; Grosso, R; Guber, F; Guernane, R; Guerzoni, B; Guilbaud, M; Gulbrandsen, K; Gulkanyan, H; Gunji, T; Gupta, A; Gupta, R; Haake, R; Haaland, Ř; Hadjidakis, C; Haiduc, M; Hamagaki, H; Hamar, G; Han, B H; Hanratty, L D; Hansen, A; Harris, J W; Harton, A; Hatzifotiadou, D; Hayashi, S; Hayrapetyan, A; Heckel, S T; Heide, M; Helstrup, H; Herghelegiu, A; Herrera Corral, G; Herrmann, N; Hess, B A; Hetland, K F; Hicks, B; Hippolyte, B; Hori, Y; Hristov, P; H?ivná?ová, I; Huang, M; Humanic, T J; Hwang, D S; Ichou, R; Ilkaev, R; Ilkiv, I; Inaba, M; Incani, E

    2013-09-01

    Azimuthally anisotropic distributions of D0, D+, and D*+ mesons were studied in the central rapidity region (|y|<0.8) in Pb-Pb collisions at a center-of-mass energy sqrt[sNN]=2.76??TeV per nucleon-nucleon collision, with the ALICE detector at the LHC. The second Fourier coefficient v2 (commonly denoted elliptic flow) was measured in the centrality class 30%-50% as a function of the D meson transverse momentum pT, in the range 2-16??GeV/c. The measured v2 of D mesons is comparable in magnitude to that of light-flavor hadrons. It is positive in the range 2

  1. Study of Z Boson Production in PbPb Collisions at ?S(NN)=2.76 TeV.

    PubMed

    Chatrchyan, S; Khachatryan, V; Sirunyan, A M; Tumasyan, A; Adam, W; Bergauer, T; Dragicevic, M; Erö, J; Fabjan, C; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hänsel, S; Hartl, C; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kasieczka, G; Kiesenhofer, W; Krammer, M; Liko, D; Mikulec, I; Pernicka, M; Rohringer, H; Schöfbeck, R; Strauss, J; Teischinger, F; Wagner, P; Waltenberger, W; Walzel, G; Widl, E; Wulz, C-E; Mossolov, V; Shumeiko, N; Suarez Gonzalez, J; Benucci, L; De Wolf, E A; Janssen, X; Maes, T; Mucibello, L; Ochesanu, S; Roland, B; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Blekman, F; Blyweert, S; D'Hondt, J; Devroede, O; Gonzalez Suarez, R; Kalogeropoulos, A; Maes, J; Maes, M; Van Doninck, W; Van Mulders, P; Van Onsem, G P; Villella, I; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Gay, A P R; Hammad, G H; Hreus, T; Marage, P E; Thomas, L; Vander Velde, C; Vanlaer, P; Wickens, J; Adler, V; Costantini, S; Grunewald, M; Klein, B; Marinov, A; McCartin, J; Ryckbosch, D; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Walsh, S; Zaganidis, N; Basegmez, S; Bruno, G; Caudron, J; Ceard, L; Cortina Gil, E; Delaere, C; Favart, D; Giammanco, A; Grégoire, G; Hollar, J; Lemaitre, V; Liao, J; Militaru, O; Ovyn, S; Pagano, D; Pin, A; Piotrzkowski, K; Schul, N; Beliy, N; Caebergs, T; Daubie, E; Alves, G A; De Jesus Damiao, D; Pol, M E; Souza, M H G; Carvalho, W; Da Costa, E M; De Oliveira Martins, C; Fonseca De Souza, S; Mundim, L; Nogima, H; Oguri, V; Prado Da Silva, W L; Santoro, A; Silva Do Amaral, S M; Sznajder, A; Torres Da Silva De Araujo, F; Dias, F A; Fernandez Perez Tomei, T R; Gregores, E M; Lagana, C; Marinho, F; Mercadante, P G; Novaes, S F; Padula, Sandra S; Darmenov, N; Dimitrov, L; Genchev, V; Iaydjiev, P; Piperov, S; Rodozov, M; Stoykova, S; Sultanov, G; Tcholakov, V; Trayanov, R; Vankov, I; Dyulendarova, M; Hadjiiska, R; Kozhuharov, V; Litov, L; Marinova, E; Mateev, M; Pavlov, B; Petkov, P; Bian, J G; Chen, G M; Chen, H S; Jiang, C H; Liang, D; Liang, S; Meng, X; Tao, J; Wang, J; Wang, J; Wang, X; Wang, Z; Xiao, H; Xu, M; Zang, J; Zhang, Z; Ban, Y; Guo, S; Guo, Y; Li, W; Mao, Y; Qian, S J; Teng, H; Zhang, L; Zhu, B; Zou, W; Cabrera, A; Gomez Moreno, B; Ocampo Rios, A A; Osorio Oliveros, A F; Sanabria, J C; Godinovic, N; Lelas, D; Lelas, K; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Brigljevic, V; Duric, S; Kadija, K; Morovic, S; Attikis, A; Galanti, M; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Finger, M; Finger, M; Assran, Y; Khalil, S; Radi, A; Hektor, A; Kadastik, M; Müntel, M; Raidal, M; Rebane, L; Azzolini, V; Eerola, P; Czellar, S; Härkönen, J; Karimäki, V; Kinnunen, R; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Tuominen, E; Tuominiemi, J; Tuovinen, E; Ungaro, D; Wendland, L; Banzuzi, K; Korpela, A; Tuuva, T; Sillou, D; Besancon, M; Choudhury, S; Dejardin, M; Denegri, D; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Gentit, F X; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Shreyber, I; Titov, M; Verrecchia, P; Baffioni, S; Beaudette, F; Benhabib, L; Bianchini, L; Bluj, M; Broutin, C; Busson, P; Charlot, C; Dahms, T; Dobrzynski, L; Elgammal, S; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Mironov, C; Ochando, C; Paganini, P; Sabes, D; Salerno, R; Sirois, Y; Thiebaux, C; Wyslouch, B; Zabi, A; Agram, J-L; Andrea, J; Bloch, D; Bodin, D; Brom, J-M; Cardaci, M; Chabert, E C; Collard, C; Conte, E; Drouhin, F; Ferro, C; Fontaine, J-C; Gelé, D; Goerlach, U; Greder, S; Juillot, P; Karim, M; Le Bihan, A-C; Mikami, Y; Van Hove, P; Fassi, F; Mercier, D; Baty, C; Beauceron, S; Beaupere, N; Bedjidian, M; Bondu, O; Boudoul, G; Boumediene, D; Brun, H; Chanon, N; Chierici, R; Contardo, D; Depasse, P; El Mamouni, H; Falkiewicz, A; Fay, J; Gascon, S; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Mirabito, L; Perries, S; Sordini, V; Tosi, S; Tschudi, Y; Verdier, P; Roinishvili, V; Lomidze, D; Anagnostou, G; Edelhoff, M; Feld, L; Heracleous, N; Hindrichs, O; Jussen, R; Klein, K; Merz, J; Mohr, N; Ostapchuk, A; Perieanu, A; Raupach, F; Sammet, J; Schael, S; Sprenger, D; Weber, H; Weber, M; Wittmer, B; Ata, M; Bender, W; Erdmann, M; Frangenheim, J; Hebbeker, T; Hinzmann, A; Hoepfner, K; Hof, C; Klimkovich, T; Klingebiel, D; Kreuzer, P; Lanske, D; Magass, C; Masetti, G; Merschmeyer, M; Meyer, A; Papacz, P; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Steggemann, J; Teyssier, D; Tonutti, M; Bontenackels, M; Davids, M; Duda, M; Flügge, G; Geenen, H; Giffels, M; Haj Ahmad, W; Heydhausen, D; Kress, T; Kuessel, Y; Linn, A; Nowack, A; Perchalla, L; Pooth, O; Rennefeld, J; Sauerland, P; Stahl, A; Thomas, M; Tornier, D; Zoeller, M H; Aldaya Martin, M

    2011-05-27

    A search for Z bosons in the ?(+)?(-) decay channel has been performed in PbPb collisions at ?S(NN)=2.76 ?TeV with the CMS detector at the LHC, in a 7.2 ?b(-1) data sample. The number of opposite-sign muon pairs observed in the 60-120 GeV/c(2) invariant mass range is 39, corresponding to a yield per unit of rapidity (y) and per minimum bias event of [33.8ą5.5(stat)ą4.4(syst)]×10(-8), in the |y|<2.0 range. Rapidity, transverse momentum, and centrality dependencies are also measured. The results agree with next-to-leading order QCD calculations, scaled by the number of incoherent nucleon-nucleon collisions. PMID:21699291

  2. Sequential ranging: How it works

    NASA Technical Reports Server (NTRS)

    Baugh, Harold W.

    1993-01-01

    This publication is directed to the users of data from the Sequential Ranging Assembly (SRA), and to others who have a general interest in range measurements. It covers the hardware, the software, and the processes used in acquiring range data; it does not cover analytical aspects such as the theory of modulation, detection, noise spectral density, and other highly technical subjects. In other words, it covers how ranging is done, but not the details of why it works. The publication also includes an appendix that gives a brief discussion of PN ranging, a capability now under development.

  3. Correlated Intense X-Ray and TEV Activity of Markarian 501 in 1998 June

    NASA Astrophysics Data System (ADS)

    Sambruna, R. M.; Aharonian, F. A.; Krawczynski, H.; Akhperjanian, A. G.; Barrio, J. A.; Bernlöhr, K.; Bojahr, H.; Calle, I.; Contreras, J. L.; Cortina, J.; Denninghoff, S.; Fonseca, V.; Gonzalez, J. C.; Götting, N.; Heinzelmann, G.; Hemberger, M.; Hermann, G.; Heusler, A.; Hofmann, W.; Horns, D.; Ibarra, A.; Kankanyan, R.; Kestel, M.; Kettler, J.; Köhler, C.; Kohnle, A.; Konopelko, A.; Kornmeyer, H.; Kranich, D.; Lampeitl, H.; Lindner, A.; Lorenz, E.; Magnussen, N.; Mang, O.; Meyer, H.; Mirzoyan, R.; Moralejo, A.; Padilla, L.; Panter, M.; Plaga, R.; Plyasheshnikov, A.; Prahl, J.; Pühlhofer, G.; Rauterberg, G.; Röhring, A.; Sahakian, V.; Samorski, M.; Schilling, M.; Schmele, D.; Schröder, F.; Stamm, W.; Tluczykont, M.; Völk, H. J.; Wiebel-Sooth, B.; Wiedner, C.; Willmer, M.; Wittek, W.; Chou, L.; Coppi, P. S.; Rothschild, R.; Urry, C. M.

    2000-07-01

    We present exactly simultaneous X-ray and TeV monitoring with RXTE and HEGRA of the TeV blazar Mrk 501 during 15 days in 1998 June. After an initial period of very low flux at both wavelengths, the source underwent a remarkable flare in the TeV and X-ray energy bands, lasting for about 6 days and with a larger amplitude at TeV energies than in the X-ray band. At the peak of the TeV flare, rapid TeV flux variability on subhour timescales is found. Large spectral variations are observed at X-rays, with the 3-20 keV photon index of a pure power-law continuum flattening from ?=2.3 to ?=1.8 on a timescale of 2-3 days. This implies that during the maximum of the TeV activity the synchrotron peak shifted to energies >~50 keV, a behavior similar to that observed during the longer lasting, more intense flare in 1997 April. The TeV spectrum during the flare is described by a power law with photon index ?=1.9 and an exponential cutoff at ~4 TeV; an indication for spectral softening during the flare decay is observed in the TeV hardness ratios. Our results generally support a scenario in which the TeV photons are emitted via inverse Compton scattering of ambient seed photons by the same electron population responsible for the synchrotron X-rays. The simultaneous spectral energy distributions can be fit with a one-zone synchrotron self-Compton model assuming a substantial increase of the magnetic field and the electron energy by factors of 3 and 10, respectively.

  4. Search for high-mass diboson resonances with boson-tagged jets in proton-proton collisions at $\\sqrt{s}$ = 8 TeV with the ATLAS detector

    E-print Network

    ATLAS Collaboration

    2015-06-15

    A search is performed for narrow resonances decaying into $WW$, $WZ$, or $ZZ$ boson pairs using 20.3 fb$^{-1}$ of proton-proton collision data at a centre-of-mass energy of $\\sqrt{s}$ = 8 TeV recorded with the ATLAS detector at the Large Hadron Collider. Diboson resonances with masses in the range from 1.3 to 3.0 TeV are sought after using the invariant mass distribution of dijets where both jets are tagged as a boson jet, compatible with a highly boosted $W$ or $Z$ boson decaying to quarks, using jet mass and substructure properties. The largest deviation from a smoothly falling background in the observed dijet invariant mass distribution occurs around 2 TeV in the $WZ$ channel, with a global significance of 2.5 standard deviations. Exclusion limits at the 95% confidence level are set on the production cross section times branching ratio for the $WZ$ final state of a new heavy gauge boson, $W'$, and for the $WW$ and $ZZ$ final states of Kaluza--Klein excitations of the graviton in a bulk Randall--Sundrum model, as a function of the resonance mass. $W'$ bosons with couplings predicted by the extended gauge model in the mass range from 1.3 to 1.5 TeV are excluded at 95% confidence level.

  5. Zinc deficiency or excess within the physiological range increases genome instability and cytotoxicity, respectively, in human oral keratinocyte cells.

    PubMed

    Sharif, Razinah; Thomas, Philip; Zalewski, Peter; Fenech, Michael

    2012-04-01

    Zinc (Zn) is an essential component of Zn-finger proteins and acts as a cofactor for enzymes required for cellular metabolism and in the maintenance of DNA integrity. The study investigated the genotoxic and cytotoxic effects of Zn deficiency or excess in a primary human oral keratinocyte cell line and determined the optimal concentration of two Zn compounds (Zn Sulphate (ZnSO(4)) and Zn Carnosine (ZnC)) to minimise DNA damage. Zn-deficient medium (0 ?M) was produced using Chelex treatment, and the two Zn compounds ZnSO(4) and ZnC were tested at concentrations of 0.0, 0.4, 4.0, 16.0, 32.0 and 100.0 ?M. Cell viability was decreased in Zn-depleted cells (0 ?M) as well as at 32 ?M and 100 ?M for both Zn compounds (P < 0.0001) as measured via the MTT assay. DNA strand breaks, as measured by the comet assay, were found to be increased in Zn-depleted cells compared with the other treatment groups (P < 0.05). The Cytokinesis Block Micronucleus Cytome assay showed a significant increase in the frequency of both apoptotic and necrotic cells under Zn-deficient conditions (P < 0.05). Furthermore, elevated frequencies of micronuclei (MNi), nucleoplasmic bridges (NPBs) and nuclear buds (NBuds) were observed at 0 and 0.4 ?M Zn, whereas these biomarkers were minimised for both Zn compounds at 4 and 16 ?M Zn (P < 0.05), suggesting these concentrations are optimal to maintain genome stability. Expression of PARP, p53 and OGG1 measured by western blotting was increased in Zn-depleted cells indicating that DNA repair mechanisms are activated. These results suggest that maintaining Zn concentrations within the range of 4-16 ?M is essential for DNA damage prevention in cultured human oral keratinocytes. PMID:21935692

  6. Search for a TeV gamma-ray halo of Mkn 501

    NASA Astrophysics Data System (ADS)

    Aharonian, F. A.; Akhperjanian, A. G.; Barrio, J. A.; Bernlöhr, K.; Bolz, O.; Börst, H.; Bojahr, H.; Contreras, J. L.; Cortina, J.; Denninghoff, S.; Fonseca, V.; Gonzalez, J. C.; Götting, N.; Heinzelmann, G.; Hermann, G.; Heusler, A.; Hofmann, W.; Horns, D.; Ibarra, A.; Iserlohe, C.; Jung, I.; Kankanyan, R.; Kestel, M.; Kettler, J.; Kohnle, A.; Konopelko, A.; Kornmeyer, H.; Kranich, D.; Krawczynski, H.; Lampeitl, H.; Lorenz, E.; Lucarelli, F.; Magnussen, N.; Mang, O.; Meyer, H.; Mirzoyan, R.; Moralejo, A.; Padilla, L.; Panter, M.; Plaga, R.; Plyasheshnikov, A.; Prahl, J.; Pühlhofer, G.; Rhode, W.; Röhring, A.; Rowell, G. P.; Sahakian, V.; Samorski, M.; Schilling, M.; Schröder, F.; Siems, M.; Stamm, W.; Tluczykont, M.; Völk, H. J.; Wiedner, C.; Wittek, W.

    2001-02-01

    For distant extragalactic sources of gamma-rays in the PeV (1015 eV) energy range, interactions of the gamma rays with intergalactic diffuse radiation fields will initiate a pair cascade. Depending on the magnetic fields in the vicinity of the source, the cascade can either result in an isotropic halo around an initially beamed source, or remain more or less collimated. Data recorded by the HEGRA system of imaging atmospheric Cherenkov telescopes are used to derive limits on the halo flux from the AGN Mrk 501. This is achieved by comparing the angular distribution of TeV gamma-rays during the 1997 burst phase - where direct photons should dominate - with the distribution during the 1998/99 quiescent state, where a steady-state halo contribution should be most pronounced. The results depend on the assumptions concerning the angular distribution of the halo; limits on the halo flux within 0.5o to 1o from the source range between 0.1% and 1% of the peak burst flux.

  7. Photon Production from Proton-Antiproton Collisions at SQRT.S = 1.8TEV

    NASA Astrophysics Data System (ADS)

    Carter, Thomas Gordon

    1990-01-01

    The first measurement of low energy photon production from pp collisions at sqrt{s} = 1.8TeV is presented. The transverse momentum spectrum for photons is measured between 260 and 1500MeV/c. The < P_{t}> between those limits is 511 +/- 11MeV/c. The absolute photon production rate in the range P_{t} = 0-1500MeV/c for -0.48 >=q eta >=q 0.97 is found to be {dN _gammaover deta} = 3.44 +/- 0.15 +/- 0.34. The photon to charged pi ratio is measured in this range and found to be 1.40 +/- 0.07 +/- 0.20. For values of average charged particle multiplicity between 20 and 123, the value of < P_ {t}> varies linearly between 487MeV/c and 560MeV/c, the absolute production rate varies linearly between 1.55 and 10.1 and the photon to charge pi ratio remains constant. The eta to pi^0 ratio for the data sample is determined to be 0.33 +/- 0.19.

  8. Estimation of the Extragalactic Background Light Using TeV Observations of BL Lac Objects

    NASA Astrophysics Data System (ADS)

    Sinha, Atreyee; Sahayanathan, S.; Misra, R.; Godambe, S.; Acharya, B. S.

    2014-11-01

    The very high-energy (VHE) gamma-ray spectral index of high-energy peaked blazars correlates strongly with its corresponding redshift, whereas no such correlation is observed in the X-ray or GeV bands. We attribute this correlation to photon-photon absorption of TeV photons with the extragalactic background light (EBL), and utilizing this we compute the allowed flux range for the EBL, which is independent of previous estimates. The observed VHE spectrum of the sources in our sample can be well approximated by a power law, and if the de-absorbed spectrum is also assumed to be a power law, then we show that the spectral shape of EBL will be epsilonn(epsilon) ~ klog (epsilon/epsilon p ). We estimate the range of values for the parameters defining the EBL spectrum, k and epsilon p , such that the correlation of the intrinsic VHE spectrum with redshift is nullified. The estimated EBL depends only on the observed correlation and the assumption of a power-law source spectrum. Specifically, it does not depend on the spectral modeling or radiative mechanism of the sources or on any theoretical shape of the EBL spectrum obtained through cosmological calculations. The estimated EBL spectrum is consistent with the upper and lower limits imposed by different observations. Moreover, it also agrees closely with the theoretical estimates obtained through cosmological evolution models.

  9. A Search for TeV Emission from Active Galaxies using the Milagro Observatory

    E-print Network

    California at Santa Cruz, University of

    the results of two separate searches of the Milagro data for TeV emission. A real-time search of the entire field of view has been running since 2002. The real-time search provides early notification (>90%) permits searches for TeV sources over a variety of time exposures. This thesis presents

  10. DETECTION OF GAMMA RAYS OF UP TO 50 TeV FROM THE CRAB NEBULA

    E-print Network

    Enomoto, Ryoji

    DETECTION OF GAMMA RAYS OF UP TO 50 TeV FROM THE CRAB NEBULA T. Tanimori 1 , K. Sakurazawa 1 , S. A Letters #12; -- 3 -- ABSTRACT Gamma rays with energies greater than 7 TeV from the Crab pulsar/nebula have of the pulsar, but in the nebula where the magnetic field is not strong enough to allow pair creation from

  11. Surveying The TeV Sky With Milagro G. P. Walker for the Milagro Collaboration

    E-print Network

    California at Santa Cruz, University of

    Surveying The TeV Sky With Milagro G. P. Walker for the Milagro Collaboration Los Alamos National highly variable or are extended. Milagro is such a TeV detector and has performed the deepest surveyV. OBSERVATIONS An all-sky survey was conducted with data collected between July 2000 and March 2006, using the A4

  12. 50 TeV high-field VLHC with a low field injector

    Microsoft Academic Search

    G. Dugan; M. J. Syphers

    1999-01-01

    The 50 TeV very large hadron colliders studied at the 1996 Snowmass workshop were taken to have an injection energy of 3 TeV. As the injection energy increases, the cost and complexity of the final injector increases, while that of the collider decreases. In this paper, we would like to consider the extreme case of a full energy injector. Presumably,

  13. 2 TeV Walking Technirho at LHC?

    E-print Network

    Hidenori S. Fukano; Masafumi Kurachi; Shinya Matsuzaki; Koji Terashi; Koichi Yamawaki

    2015-06-11

    The ATLAS collaboration has recently reported an excess of about 2.5 $\\sigma$ global significance at around 2 TeV in the diboson channel with the boson-tagged fat dijets, which may imply a new resonance beyond the standard model. We provide a possible explanation of the excess as the isospin-triplet technivector mesons (technirhos, denoted as $\\rho_\\Pi^{\\pm,3}$) of the walking technicolor in the case of the one-family model as a benchmark. As the effective theory for the walking technicolor at the scales relevant to the LHC experiment, we take a scale-invariant version of the hidden local symmetry model so constructed as to accommodate technipions, technivector mesons, and the technidilaton in such a way that the model respects spontaneously broken chiral and scale symmetries of the underlying walking technicolor. In particular, the technidilaton, a (pseudo) Nambu-Goldstone boson of the (approximate) scale symmetry predicted in the walking technicolor, has been shown to be successfully identified with the 125 GeV Higgs. Together with the best fit parameter to the 125 GeV Higgs, currently available LHC limits on those technihadrons are used to fix the couplings of technivector mesons to the standard-model fermions and weak gauge bosons. We find that the technirho's are mainly produced through the Drell-Yan process and predominantly decay to the dibosons, which accounts for the currently reported excess at around 2 TeV. The consistency with the electroweak precision test and other possible discovery channels of the 2 TeV technirhos are also addressed.

  14. 20 TeV collider lattices with low-. beta. insertions

    SciTech Connect

    Garren, A.A.

    1983-08-01

    A lattice containing insertions designed for collisions of 20 TeV proton beams at crossing points having beta values of two meters or less is presented. The machine would use high-field double bore superconducting magnets, with opposite focusing action on the two beams passing through each quadrupole. Hence the focusing pattern in the insertions is antisymmetric about the crossings. The beams, separated by 16 cms in the arcs are made colinear by dipoles common to both beams and then focused to the low-..beta.. collision points by quadrupole triplets. A similar machine design for pp collisions is also included.

  15. Electromagnetic leptogenesis at the TeV scale

    E-print Network

    Debajyoti Choudhury; Namit Mahajan; Sudhanwa Patra; Utpal Sarkar

    2011-04-11

    We construct an explicit model implementing electromagnetic leptogenesis. In a simple extension of the Standard Model, a discrete symmetry forbids the usual decays of the right-handed neutrinos, while allowing for an effective coupling between the left-handed and right-handed neutrinos through the electromagnetic dipole moment. This generates correct leptogenesis with resonant enhancement and also the required neutrino mass via a TeV scale seesaw mechanism. The model is consistent with low energy phenomenology and would have distinct signals in the next generation colliders, and, perhaps even the LHC.

  16. Study of TeV Cosmic Rays with HAWC

    NASA Astrophysics Data System (ADS)

    Fiorino, Daniel; Buelo, Collin; The HAWC Collaboration

    2015-04-01

    The High-Altitude Water Cherenkov (HAWC) Observatory is an extensive air-shower detector located at an altitude of 4100 meters in Mexico. HAWC is sensitive to cosmic rays and gamma rays at TeV energies. The cosmic-ray arrival-direction distribution at these energies shows significant anisotropy on large and small angular scales, including several regions of part-per-mille excess flux. We present studies of the anisotropy and the excess regions based on data observed with HAWC since June 2013 during the construction phase.

  17. Rapid Notification of TeV Transients with the Milagro Miguel F. Morales for the Milagro Collaboration

    E-print Network

    California at Santa Cruz, University of

    Rapid Notification of TeV Transients with the Milagro Telescope Miguel F. Morales for the Milagro of transients in the 300 GeV-10 TeV band. Milagro has a very large field of view (about 2 sr), nearly continuous performing real time searches for TeV transients, with the goal of prompt notification and multi

  18. Multi-strange baryon production in pp collisions at ?{s}=7 TeV with ALICE

    NASA Astrophysics Data System (ADS)

    Abelev, B.; Adam, J.; Adamová, D.; Adare, A. M.; Aggarwal, M. M.; Aglieri Rinella, G.; Agocs, A. G.; Agostinelli, A.; Aguilar Salazar, S.; Ahammed, Z.; Ahmad, N.; Ahmad Masoodi, A.; Ahn, S. U.; Akindinov, A.; Aleksandrov, D.; Alessandro, B.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Almaráz Avińa, E.; Alme, J.; Alt, T.; Altini, V.; Altinpinar, S.; Altsybeev, I.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Anson, C.; Anti?i?, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arbor, N.; Arcelli, S.; Arend, A.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Arslandok, M.; Asryan, A.; Augustinus, A.; Averbeck, R.; Awes, T. C.; Äystö, J.; Azmi, M. D.; Bach, M.; Badalŕ, A.; Baek, Y. W.; Bailhache, R.; Bala, R.; Baldini Ferroli, R.; Baldisseri, A.; Baldit, A.; Baltasar Dos Santos Pedrosa, F.; Bán, J.; Baral, R. C.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartke, J.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batyunya, B.; Baumann, C.; Bearden, I. G.; Beck, H.; Belikov, I.; Bellini, F.; Bellwied, R.; Belmont-Moreno, E.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Berzano, D.; Betev, L.; Bhasin, A.; Bhati, A. K.; Bhom, J.; Bianchi, N.; Bianchi, L.; Bianchin, C.; Biel?ík, J.; Biel?íková, J.; Bilandzic, A.; Bjelogrlic, S.; Blanco, F.; Blanco, F.; Blau, D.; Blume, C.; Boccioli, M.; Bock, N.; Böttger, S.; Bogdanov, A.; Břggild, H.; Bogolyubsky, M.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Bose, S.; Bossú, F.; Botje, M.; Boyer, B.; Braidot, E.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Browning, T. A.; Broz, M.; Brun, R.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Bugaiev, K.; Busch, O.; Buthelezi, Z.; Caballero Orduna, D.; Caffarri, D.; Cai, X.; Caines, H.; Calvo Villar, E.; Camerini, P.; Canoa Roman, V.; Cara Romeo, G.; Carena, W.; Carena, F.; Carlin Filho, N.; Carminati, F.; Carrillo Montoya, C. A.; Casanova Díaz, A.; Castillo Castellanos, J.; Castillo Hernandez, J. F.; Casula, E. A. R.; Catanescu, V.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chawla, I.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Coccetti, F.; Colamaria, F.; Colella, D.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Constantin, P.; Contin, G.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortese, P.; Cortés Maldonado, I.; Cosentino, M. R.; Costa, F.; Cotallo, M. E.; Crescio, E.; Crochet, P.; Cruz Alaniz, E.; Cuautle, E.; Cunqueiro, L.; Dainese, A.; Dalsgaard, H. H.; Danu, A.; Das, I.; Das, K.; Das, D.; Dash, A.; Dash, S.; de, S.; de Barros, G. O. V.; de Caro, A.; de Cataldo, G.; de Cuveland, J.; de Falco, A.; de Gruttola, D.; Delagrange, H.; Deloff, A.; Demanov, V.; De Marco, N.; Dénes, E.; de Pasquale, S.; Deppman, A.; D Erasmo, G.; de Rooij, R.; Diaz Corchero, M. A.; di Bari, D.; Dietel, T.; di Liberto, S.; di Mauro, A.; di Nezza, P.; Diviŕ, R.; Djuvsland, Ř.; Dobrin, A.; Dobrowolski, T.; Domínguez, I.; Dönigus, B.; Dordic, O.; Driga, O.; Dubey, A. K.; Ducroux, L.; Dupieux, P.; Dutta Majumdar, A. K.; Dutta Majumdar, M. R.; Elia, D.; Emschermann, D.; Engel, H.; Erdal, H. A.; Espagnon, B.; Estienne, M.; Esumi, S.; Evans, D.; Eyyubova, G.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fearick, R.; Fedunov, A.; Fehlker, D.; Feldkamp, L.; Felea, D.; Fenton-Olsen, B.; Feofilov, G.; Fernández Téllez, A.; Ferretti, R.; Ferretti, A.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Fusco Girard, M.; Gaardhřje, J. J.; Gagliardi, M.; Gago, A.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Garabatos, C.; Garcia-Solis, E.; Garishvili, I.; Gerhard, J.; Germain, M.; Geuna, C.; Gheata, A.; Gheata, M.; Ghidini, B.; Ghosh, P.; Gianotti, P.; Girard, M. R.; Giubellino, P.; Gladysz-Dziadus, E.; Glässel, P.; Gomez, R.; Ferreiro, E. G.; González-Trueba, L. H.; González-Zamora, P.; Gorbunov, S.; Goswami, A.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Grajcarek, R.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Gros, P.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerra Gutierrez, C.; Guerzoni, B.; Guilbaud, M.; Gulbrandsen, K.; Gunji, T.

    2012-06-01

    A measurement of the multi-strange ?- and ?- baryons and their antiparticles by the ALICE experiment at the CERN Large Hadron Collider (LHC) is presented for inelastic proton-proton collisions at a centre-of-mass energy of 7 TeV. The transverse momentum (pT) distributions were studied at mid-rapidity (|y|<0.5) in the range of 0.6range of 0.8range of the measurement. The statistical precision of the current data has allowed us to measure a difference between the mean pT of ?- (?) and ?- (?). Particle yields, mean pT, and the spectra in the intermediate pT range are not well described by the PYTHIA Perugia 2011 tune Monte Carlo event generator, which has been tuned to reproduce the early LHC data. The discrepancy is largest for ?- (?). This PYTHIA tune approaches the pT spectra of ?- and ? baryons below pT<0.85 GeV/c and describes the ?- and ? spectra above pT>6.0 GeV/c. We also illustrate the difference between the experimental data and model by comparing the corresponding ratios of (?-+?)/(?-+?) as a function of transverse mass.

  19. The lunar laser ranging experiment

    NASA Technical Reports Server (NTRS)

    Bender, P. L.; Dicke, R. H.; Wilkinson, D. T.; Alley, C. O.; Currie, D. G.; Faller, J. E.; Mulholland, J. D.; Silverberg, E. C.; Plotkin, H. E.; Kaula, W. M.

    1971-01-01

    With data from two or more well-located observing stations, the lunar range can be corrected accurately for the effects of polar motion and fluctuations in the earth's rotation rate. Very accurate corrections can be made for the earth tides at each station. It appears that the use of lasers giving roughly 0.1-msec pulse lengths is highly desirable. With them, single-shot ranging accuracies of about 3 cm are expected. The actual lunar range results will be analyzed by fitting a numerical integration for the lunar motion to the data. A mathematical model for lunar range is given. Tests of the theory of gravitation are considered.

  20. The lunar laser ranging experiment.

    NASA Technical Reports Server (NTRS)

    Bender, P. L.; Currie, D. G.; Poultney, S. K.; Dicke, R. H.; Eckhardt, D. H.; Kaula, W. M.; Mulholland, J. D.; Plotkin, H. H.; Silverberg, E. C.; Faller, J. E.

    1973-01-01

    The scientific objectives achievable through high-accuracy range measurements to lunar retroreflectors are considered. A specific study of design questions related to the operation of retroreflectors on the lunar surface indicated that a reflector panel containing a number of solid fused silica corner reflectors would be capable of maintaining essentially diffraction limited performance under direct solar illumination. Initial Apollo 11 observations are discussed together with the installation of additional lunar retroreflectors in connection with the Luna 17, Apollo 14, Apollo 15, and Luna 21 missions. Range measurements at the McDonald Observatory are considered along with new results from lunar range data, and prospects regarding future lunar ranging stations.

  1. Simultaneous X-Ray and TeV Gamma-Ray Observation of the TeV Blazar Markarian 421 during 2000 February and May

    Microsoft Academic Search

    H. Krawczynski; R. Sambruna; A. Kohnle; P. S. Coppi; F. Aharonian; A. Akhperjanian; J. Barrio; K. Bernlöhr; H. Börst; H. Bojahr; O. Bolz; J. Contreras; J. Cortina; S. Denninghoff; V. Fonseca; J. Gonzalez; N. Götting; G. Heinzelmann; G. Hermann; A. Heusler; W. Hofmann; D. Horns; A. Ibarra; I. Jung; R. Kankanyan; M. Kestel; J. Kettler; A. Konopelko; H. Kornmeyer; D. Kranich; H. Lampeitl; E. Lorenz; F. Lucarelli; N. Magnussen; O. Mang; H. Meyer; R. Mirzoyan; A. Moralejo; L. Padilla; M. Panter; R. Plaga; A. Plyasheshnikov; G. Pühlhofer; G. Rauterberg; A. Röhring; W. Rhode; G. Rowell; V. Sahakian; M. Samorski; M. Schilling; F. Schröder; M. Siems; W. Stamm; M. Tluczykont; H. J. Völk; C. A. Wiedner; W. Wittek

    2001-01-01

    We present the results of simultaneous observations of the TeV blazar Markarian 421 at X-ray and TeV gamma-ray energies with the Rossi X-Ray Timing Explorer and the stereoscopic Cerenkov telescope system of the High Energy Gamma-Ray Astronomy (HEGRA) experiment, respectively. The source was monitored from 2000 February 2 to 16 and from 2000 May 3 to 8. In both energy

  2. Charged particle transverse momentum spectra in pp collisions at sqrt(s) = 0.9 and 7 TeV

    SciTech Connect

    Chatrchyan, Serguei [Yerevan Physics Inst. (Armenia); et al.

    2011-08-01

    The charged particle transverse momentum (pT) spectra are presented for pp collisions at sqrt(s)=0.9 and 7 TeV. The data samples were collected with the CMS detector at the LHC and correspond to integrated luminosities of 231 inverse microbarns and 2.96 inverse picobarns, respectively. Calorimeter-based high-transverse-energy triggers are employed to enhance the statistical reach of the high-pT measurements. The results are compared with both leading-order QCD and with an empirical scaling of measurements at different collision energies using the scaling variable xT = 2 pT/sqrt(s) over the pT range up to 200 GeV/c. Using a combination of xT scaling and direct interpolation at fixed pT, a reference transverse momentum spectrum at sqrt(s)=2.76 TeV is constructed, which can be used for studying high-pT particle suppression in the dense QCD medium produced in heavy-ion collisions at that centre-of-mass energy.

  3. Measurement of Inclusive W and Z Boson Production Cross Sections in pp Collisions at ?s =8 TeV

    NASA Astrophysics Data System (ADS)

    Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, C.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Luyckx, S.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Kalogeropoulos, A.; Keaveney, J.; Maes, M.; Olbrechts, A.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Clerbaux, B.; De Lentdecker, G.; Favart, L.; Gay, A. P. R.; Hreus, T.; Léonard, A.; Marage, P. E.; Mohammadi, A.; Pernič, L.; Reis, T.; Seva, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Adler, V.; Beernaert, K.; Benucci, L.; Cimmino, A.; Costantini, S.; Dildick, S.; Garcia, G.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Ocampo Rios, A. A.; Ryckbosch, D.; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Walsh, S.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Popov, A.; Selvaggi, M.; Vizan Garcia, J. M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Alves, G. A.; Correa Martins Junior, M.; Martins, T.; Pol, M. E.; Souza, M. H. G.; Aldá Júnior, W. L.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Malbouisson, H.; Malek, M.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Soares Jorge, L.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Anjos, T. S.; Bernardes, C. A.; Dias, F. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Lagana, C.; Marinho, F.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, J.; Wang, X.; Wang, Z.; Xiao, H.; Xu, M.; Asawatangtrakuldee, C.; Ban, Y.; Guo, Y.; Li, Q.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Zhang, L.; Zou, W.; Avila, C.; Carrillo Montoya, C. A.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Plestina, R.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Duric, S.; Kadija, K.; Luetic, J.; Mekterovic, D.; Morovic, S.; Tikvica, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Finger, M.; Finger, M.; Abdelalim, A. A.; Assran, Y.; Ellithi Kamel, A.; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Müntel, M.; Murumaa, M.; Raidal, M.; Rebane, L.; Tiko, A.; Eerola, P.; Fedi, G.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Korpela, A.; Tuuva, T.; Besancon, M.; Choudhury, S.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Millischer, L.; Nayak, A.; Rander, J.; Rosowsky, A.; Titov, M.; Baffioni, S.; Beaudette, F.; Benhabib, L.; Bianchini, L.; Bluj, M.; Busson, P.; Charlot, C.; Daci, N.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Florent, A.; Granier de Cassagnac, R.; Haguenauer, M.; Miné, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Veelken, C.; Zabi, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Bodin, D.; Brom, J.-M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Juillot, P.; Le Bihan, A.-C.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Beaupere, N.; Boudoul, G.; Brochet, S.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sgandurra, L.; Sordini, V.; Tschudi, Y.; Vander Donckt, M.; Verdier, P.; Viret, S.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Calpas, B.; Edelhoff, M.; Feld, L.

    2014-05-01

    A measurement of total and fiducial inclusive W and Z boson production cross sections in pp collisions at ?s =8 TeV is presented. Electron and muon final states are analyzed in a data sample collected with the CMS detector corresponding to an integrated luminosity of 18.2ą0.5 pb-1. The measured total inclusive cross sections times branching fractions are ?(pp?WX)×B(W???)=12.21ą0.03(stat)ą0.24(syst)ą0.32(lum) nb and ?(pp?ZX)×B(Z??+?-)=1.15ą0.01(stat)ą0.02(syst)ą0.03(lum) nb for the dilepton mass in the range of 60—120 GeV. The measured values agree with next-to-next-to-leading-order QCD cross section calculations. Ratios of cross sections are reported with a precision of 2%. This is the first measurement of inclusive W and Z boson production in proton-proton collisions at ?s =8 TeV.

  4. Studies of the nuclear stopping power in PbPb collisions at 2.76 TeV with CMS

    NASA Astrophysics Data System (ADS)

    Wöhrmann, Hauke

    2013-05-01

    The energy density, dE/d?, in PbPb collisions at 2.76 A TeV nucleus-nucleus center-of-mass energy is measured as a function of pseudorapidity, ?, and collision centrality using the CMS detector at the LHC. The very large pseudorapidity coverage of this measurement is used as a powerful constraint for various hadronic interaction models. The CASTOR calorimeter extends the ? coverage of CMS up to |?|=6.6, which is only 1.4 units away from the beam rapidity for ?{sNN}=2.76 TeV. This is comparable to the most forward measurements at RHIC. A comparison of the centrality dependence of the very forward energy density to that at smaller pseudorapidities is presented and compared to event generator predictions of models for nuclear collisions. The very wide pseudorapidity range of the presented measurement is unique at this center-of-mass energy and the average energy weighted pseudorapidity can be estimated which is compared with results at lower center-of-mass energy. The comparison shows the same energy dependence of the average energy weighted pseudorapidity as seen by RHIC.

  5. Studies of the nuclear stopping power in PbPb collisions at 2.76 TeV with CMS

    NASA Astrophysics Data System (ADS)

    Wöhrmann, Hauke

    2013-05-01

    The energy density, dE/d?, in PbPb collisions at 2.76 A TeV nucleus-nucleus center-of-mass energy is measured as a function of pseudorapidity, ?, and collision centrality using the CMS detector at the LHC. The very large pseudorapidity coverage of this measurement is used as a powerful constraint for various hadronic interaction models. The CASTOR calorimeter extends the ? coverage of CMS up to |?|=6.6, which is only 1.4 units away from the beam rapidity for sNN=2.76 TeV. This is comparable to the most forward measurements at RHIC. A comparison of the centrality dependence of the very forward energy density to that at smaller pseudorapidities is presented and compared to event generator predictions of models for nuclear collisions. The very wide pseudorapidity range of the presented measurement is unique at this center-of-mass energy and the average energy weighted pseudorapidity can be estimated which is compared with results at lower center-of-mass energy. The comparison shows the same energy dependence of the average energy weighted pseudorapidity as seen by RHIC.

  6. Experimental Constraints on ?-Ray Pulsar Gap Models and the Pulsar GeV to Pulsar Wind Nebula TeV Connection

    NASA Astrophysics Data System (ADS)

    Abeysekara, A. U.; Linnemann, J. T.

    2015-05-01

    The pulsar emission mechanism in the gamma ray energy band is poorly understood. Currently, there are several models under discussion in the pulsar community. These models can be constrained by studying the collective properties of a sample of pulsars, which became possible with the large sample of gamma ray pulsars discovered by the Fermi Large Area Telescope. In this paper we develop a new experimental multi-wavelength technique to determine the beaming factor ?ft( {{f}{? }} \\right) dependance on spin-down luminosity of a set of GeV pulsars. This technique requires three input parameters: pulsar spin-down luminosity, pulsar phase-averaged GeV flux, and TeV or X-ray flux from the associated pulsar wind nebula (PWN). The analysis presented in this paper uses the PWN TeV flux measurements to study the correlation between {{f}{? }} and \\dot{E}. The measured correlation has some features that favor the Outer Gap model over the Polar Cap, Slot Gap, and One Pole Caustic models for pulsar emission in the energy range of 0.1–100 GeV, but one must keep in mind that these simulated models failed to explain many of the most important pulsar population characteristics. A tight correlation between the pulsar GeV emission and PWN TeV emission was also observed, which suggests the possibility of a linear relationship between the two emission mechanisms. In this paper we also discuss a possible mechanism to explain this correlation.

  7. Search for low-scale gravity signatures in multi-jet final states with the ATLAS detector at $\\sqrt{s} = 8$ TeV

    E-print Network

    ATLAS Collaboration

    2015-07-20

    We search for evidence of physics beyond the Standard Model in the production of final states with multiple high transverse momentum jets, using 20.3 fb$^{-1}$ of proton-proton collision data recorded by the ATLAS detector at $\\sqrt{s} = 8$ TeV. No excess of events beyond Standard Model expectations is observed, and upper limits on the visible cross-section for non-Standard Model production of multi-jet final states are set. Using a wide variety of models for black hole and string ball production and decay, the limit on the cross-section times acceptance is as low as 0.16 fb at the 95% CL for a minimum scalar sum of jet transverse momentum in the event of about 4.3 TeV. Using models for black hole and string ball production and decay, exclusion contours are determined as a function of the production mass threshold and the gravity scale. These limits can be interpreted in terms of lower-mass limits on black hole and string ball production that range from 4.6 to 6.2 TeV.

  8. Search for low-scale gravity signatures in multi-jet final states with the ATLAS detector at $\\sqrt{s} = 8$ TeV

    E-print Network

    ATLAS Collaboration

    2015-03-31

    We search for evidence of physics beyond the Standard Model in the production of final states with multiple high transverse momentum jets, using 20.3 fb$^{-1}$ of proton-proton collision data recorded by the ATLAS detector at $\\sqrt{s} = 8$ TeV. No excess of events beyond Standard Model expectations is observed, and upper limits on the visible cross-section for non-Standard Model production of multi-jet final states are set. Using a wide variety of models for black hole and string ball production and decay, the limit on the cross-section times acceptance is as low as 0.16 fb at the 95% CL for a minimum scalar sum of jet transverse momentum in the event of about 4.3 TeV. Using models for black hole and string ball production and decay, exclusion contours are determined as a function of the production mass threshold and the gravity scale. These limits can be interpreted in terms of lower-mass limits on black hole and string ball production that range from 4.6 to 6.2 TeV.

  9. The NEAR laser ranging investigation

    Microsoft Academic Search

    M. T. Zuber; D. E. Smith; A. F. Cheng; T. D. Cole

    1997-01-01

    The objective of the NEAR-Earth Asteriod Rendezvous (NEAR) laser ranging investigation is to obtain high integrity profiles and grids of topography for use in geophysical, geodetic and geological studies of asteroid 433 Eros. The NEAR laser rangefinder (NLR) will determine the slant range of the NEAR spacecraft to the asteroid surface by measuring precisely the round trip time of flight

  10. The Apollo VHF ranging system

    Microsoft Academic Search

    E. J. Nossen

    1977-01-01

    As the Apollo program proceeded, redundancy became a requirement for all crew safety functions. One critical period of the Apollo missions was the rendezvous of the Command Module and the Lunar Module. The rendezvous radar provided the critical range, range rate, and angle measurements necessary to complete the rendezvous. Use of a redundant radar for backup was out of the

  11. Extended range chemical sensing apparatus

    DOEpatents

    Hughes, Robert C. (Albuquerque, NM); Schubert, W. Kent (Albuquerque, NM)

    1994-01-01

    An apparatus for sensing chemicals over extended range of concentrations. In particular, first and second sensors each having separate, but overlapping ranges for sensing concentrations of hydrogen are provided. Preferably, the first sensor is a MOS solid state device wherein the metal electrode or gate is a nickel alloy. The second sensor is a chemiresistor comprising a nickel alloy.

  12. The NEAR laser ranging investigation

    Microsoft Academic Search

    M. T. Zuber; D. E. Smith; A. F. Cheng; T. D. Cole

    1997-01-01

    The objective of the Near-Earth Asteroid Rendezvous (NEAR) laser ranging investigation is to obtain high integrity profiles and grids of topography for use in geophysical, geodetic and geological studies of asteroid 433 Eros. The NEAR laser rangefinder (NLR) will determine the slant range of the NEAR spacecraft to the asteroid surface by measuring precisely the round trip time of flight

  13. Long range handheld thermal imager

    Microsoft Academic Search

    Edward Seibel; Andrew Struckhoff; Robert McDaniel; Shlomo Shamai

    2006-01-01

    Today's warfighter requires a lightweight, high performance thermal imager for use in night and reduced visibility conditions. To fill this need, the United States Marine Corps issued requirements for a Thermal Binocular System (TBS) Long Range Thermal Imager (LRTI). The requirements dictated that the system be lightweight, but still have significant range capabilities and extended operating time on a single

  14. Extended range chemical sensing apparatus

    DOEpatents

    Hughes, R.C.; Schubert, W.K.

    1994-01-18

    An apparatus is described for sensing chemicals over extended range of concentrations. In particular, first and second sensors each having separate, but overlapping ranges for sensing concentrations of hydrogen are provided. Preferably, the first sensor is a MOS solid state device wherein the metal electrode or gate is a nickel alloy. The second sensor is a chemiresistor comprising a nickel alloy. 6 figures.

  15. Foraging optimally for home ranges

    USGS Publications Warehouse

    Mitchell, Michael S.; Powell, Roger A.

    2012-01-01

    Economic models predict behavior of animals based on the presumption that natural selection has shaped behaviors important to an animal's fitness to maximize benefits over costs. Economic analyses have shown that territories of animals are structured by trade-offs between benefits gained from resources and costs of defending them. Intuitively, home ranges should be similarly structured, but trade-offs are difficult to assess because there are no costs of defense, thus economic models of home-range behavior are rare. We present economic models that predict how home ranges can be efficient with respect to spatially distributed resources, discounted for travel costs, under 2 strategies of optimization, resource maximization and area minimization. We show how constraints such as competitors can influence structure of homes ranges through resource depression, ultimately structuring density of animals within a population and their distribution on a landscape. We present simulations based on these models to show how they can be generally predictive of home-range behavior and the mechanisms that structure the spatial distribution of animals. We also show how contiguous home ranges estimated statistically from location data can be misleading for animals that optimize home ranges on landscapes with patchily distributed resources. We conclude with a summary of how we applied our models to nonterritorial black bears (Ursus americanus) living in the mountains of North Carolina, where we found their home ranges were best predicted by an area-minimization strategy constrained by intraspecific competition within a social hierarchy. Economic models can provide strong inference about home-range behavior and the resources that structure home ranges by offering falsifiable, a priori hypotheses that can be tested with field observations.

  16. Range indices of geomagnetic activity

    USGS Publications Warehouse

    Stuart, W.F.; Green, A.W., Jr.

    1988-01-01

    The simplest index of geomagnetic activity is the range in nT from maximum to minimum value of the field in a given time interval. The hourly range R was recommended by IAGA for use at observatories at latitudes greater than 65??, but was superceded by AE. The most used geomagnetic index K is based on the range of activity in a 3 h interval corrected for the regular daily variation. In order to take advantage of real time data processing, now available at many observatories, it is proposed to introduce a 1 h range index and also a 3 h range index. Both will be computed hourly, i.e. each will have a series of 24 per day, the 3 h values overlapping. The new data will be available as the range (R) of activity in nT and also as a logarithmic index (I) of the range. The exponent relating index to range in nT is based closely on the scale used for computing K values. The new ranges and range indices are available, from June 1987, to users in real time and can be accessed by telephone connection or computer network. Their first year of production is regarded as a trial period during which their value to the scientific and commercial communities will be assessed, together with their potential as indicators of regional and global disturbances' and in which trials will be conducted into ways of eliminating excessive bias at quiet times due to the rate of change of the daily variation field. ?? 1988.

  17. Unbroken SU(2) at a 100 TeV collider

    NASA Astrophysics Data System (ADS)

    Hook, Anson; Katz, Andrey

    2014-09-01

    A future 100 TeV pp collider will explore energies much higher than the scale of electroweak (EW) symmetry breaking. In this paper we study some of the phenomenological consequences of this fact, concentrating on enhanced bremsstrahlung of EW gauge bosons. We survey a handful of possible new physics experimental searches one can pursue at a 100 TeV collider using this phenomenon. The most dramatic effect is the non-negligible radiation of EW gauge bosons from neutrinos, making them partly visible objects. The presence of collinear EW radiation allows for the full reconstruction of neutrinos under certain circumstances. We also show that the presence of EW radiation allows one to distinguish the SU(2) quantum numbers of various new physics particles. We consider examples of two completely different new physics paradigms, additional gauge groups and SUSY, where the bremsstrahlung radiation of W and Z from W 's, Z 's or stops allows one to determine the couplings and the mixing angles of the new particles (respectively). Finally, we show how the emission of W s and Zs from high p T Higgs bosons can be used to test the couplings of new physics to the Higgs boson.

  18. Flavor at the TeV scale with extra dimensions

    SciTech Connect

    Arkani-Hamed, Nima [Department of Physics, University of California, Berkeley, California 94720 (United States) [Department of Physics, University of California, Berkeley, California 94720 (United States); Theory Group, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Hall, Lawrence [Department of Physics, University of California, Berkeley, California 94720 (United States) [Department of Physics, University of California, Berkeley, California 94720 (United States); Smith, David [Department of Physics, University of California, Berkeley, California 94720 (United States) [Department of Physics, University of California, Berkeley, California 94720 (United States); Weiner, Neal [Department of Physics, University of California, Berkeley, California 94720 (United States) [Department of Physics, University of California, Berkeley, California 94720 (United States)

    2000-06-01

    Theories where the standard model fields reside on a 3-brane, with a low fundamental cutoff and extra dimensions, provide alternative solutions to the gauge hierarchy problem. However, generating flavor at the TeV scale while avoiding flavor-changing difficulties appears prohibitively difficult at first sight. We argue to the contrary that this picture allows us to lower flavor physics close to the TeV scale. Small Yukawa couplings are generated by ''shining'' badly broken flavor symmetries from distant branes, and flavor and CP-violating processes are adequately suppressed by these symmetries. We further show how the extra dimensions avoid four dimensional disasters associated with light fields charged under flavor. We construct elegant and realistic theories of flavor based on the maximal U(3){sup 5} flavor symmetry which naturally generate the simultaneous hierarchy of masses and mixing angles. Finally, we introduce a new framework for predictive theories of flavor, where our 3-brane is embedded within highly symmetrical configurations of higher-dimensional branes. (c) 2000 The American Physical Society.

  19. Deconfinement of Quarks with TeV Attosecond Photon Beams

    NASA Astrophysics Data System (ADS)

    Stefan, V. Alexander

    2010-02-01

    Recently, I have proposed a novel heuristic method for the deconfinement of quarks.footnotetextM. Gell-Mann. The Quark and the Jaguar: Adventures in the Simple and the Complex (New York, NY: W.H. Freeman and Co., 1994) [cf. M. Gell-Mann, The Garden of Live Flowers in: V. Stefan (Editor), Physics and Society. Essays Honoring Victor Frederick Weisskopf (Springer, 1998), pp. 109-121]. It proceeds in two phases.footnotetextV. Alexander Stefan, On a Heuristic Point of View About Inertial Deconfinement of Quarks, American Physical Society, 2009 APS April Meeting, May 2-5, 2009, abstract #E1.038. Firstly, a frozen hydrogen pellet is inertially confined by the ultra-intense lasers up to a solid state density. Secondly, a solid state nano-pellet is ``punched'' by the photon beam created in the beat wave driven free electron laser (BW-FEL), leading to the ``rapture'' (in a ``karate chop'' model) of the ``MIT Bag''footnotetextJ. I. Friedman and H. Kendall, Viki, in: V. Stefan (Editor), Physics and Society. (Springer, 1998), pp. 103-108]. before the asymptotically free quarks move apart. Hereby, I propose TeV, a few 100s attosecond, photon beams in interaction with the nano-pellet. The threshold ``rapture force'' of the TeV attosecond photon is 10^7 N. )

  20. Search for ttŻ resonances in the lepton plus jets final state with ATLAS using 4.7 fb?š of pp collisions at ?s=7 TeV

    DOE PAGESBeta

    Aad, G.; Abajyan, T.; Abbott, B.; Abdallah, J.; Abdel Khalek, S.; Abdelalim, A. A.; Abdinov, O.; Aben, R.; Abi, B.; Abolins, M.; et al

    2013-07-01

    A search for new particles that decay into top quark pairs (ttŻ) is performed with the ATLAS experiment at the LHC using an integrated luminosity of 4.7 fb?š of proton–proton (pp ) collision data collected at a center-of-mass energy ?s =7 TeV . In the ttŻ ?WbWb decay, the lepton plus jets final state is used, where one W boson decays leptonically and the other hadronically. The ttŻ system is reconstructed using both small-radius and large-radius jets, the latter being supplemented by a jet substructure analysis. A search for local excesses in the number of data events compared to themore ťStandard Model expectation in the ttŻ invariant mass spectrum is performed. No evidence for a ttŻ resonance is found and 95% credibility-level limits on the production rate are determined for massive states predicted in two benchmark models. The upper limits on the cross section times branching ratio of a narrow Z' resonance range from 5.1 pb for a boson mass of 0.5 TeV to 0.03 pb for a mass of 3 TeV. A narrow leptophobic topcolor Z' resonance with a mass below 1.74 TeV is excluded. Limits are also derived for a broad color-octet resonance with ?/m=15.3% . A Kaluza–Klein excitation of the gluon in a Randall–Sundrum model is excluded for masses below 2.07 TeV.Ť less

  1. Long-Range Near-Side Angular Correlations in Proton-Proton Interactions in CMS.

    ScienceCinema

    None

    2011-10-06

    The CMS Collaboration Results on two-particle angular correlations for charged particles emitted in proton-proton collisions at center of mass energies of 0.9, 2.36 and 7TeV over a broad range of pseudorapidity (?) and azimuthal angle (f) are presented using data collected with the CMS detector at the LHC. Short-range correlations in ??, which are studied in minimum bias events, are characterized using a simple independent cluster parameterization in order to quantify their strength (cluster size) and their extent in ? (cluster decay width). Long-range azimuthal correlations are studied more differentially as a function of charged particle multiplicity and particle transverse momentum using a 980nb-1 data set at 7TeV. In high multiplicity events, a pronounced structure emerges in the two-dimensional correlation function for particles in intermediate pT?s of 1-3GeV/c, 2.0< |??|<4.8 and ?f?0. This is the ?rst observation of such a ridge-like feature in two-particle correlation functions in pp or p-pbar collisions. EVO Universe, password "seminar"; Phone Bridge ID: 2330444 Password: 5142

  2. Charged-particle multiplicity measurement in proton–proton collisions at  TeV with ALICE at LHC

    Microsoft Academic Search

    K. Aamodt; N. Abel; U. Abeysekara; A. Abramyan; D. Adamová; M. M. Aggarwal; A. G. Agocs; Z. Ahammed; A. Ahmad; N. Ahmad; S. U. Ahn; R. Akimoto; A. Akindinov; D. Aleksandrov; B. Alessandro; A. Alici; J. Alme; T. Alt; V. Altini; S. Altinpinar; C. Andrei; A. Andronic; G. Anelli; V. Angelov; C. Anson; T. Anti?i?; F. Antinori; S. Antinori; K. Antipin; D. Anto?czyk; P. Antonioli; A. Anzo; L. Aphecetche; H. Appelshäuser; S. Arcelli; R. Arceo; A. Arend; N. Armesto; R. Arnaldi; T. Aronsson; I. C. Arsene; A. Asryan; A. Augustinus; R. Averbeck; T. C. Awes; J. Äystö; M. D. Azmi; S. Bablok; M. Bach; A. Badalŕ; Y. W. Baek; S. Bagnasco; R. Bailhache; R. Bala; A. Baldisseri; A. Baldit; J. Bán; R. Barbera; G. G. Barnaföldi; L. Barnby; V. Barret; J. Bartke; F. Barile; M. Basile; V. Basmanov; N. Bastid; B. Bathen; G. Batigne; B. Batyunya; C. Bombonati; I. G. Bearden; B. Becker; I. Belikov; R. Bellwied; E. Belmont-Moreno; A. Belogianni; L. Benhabib; S. Beole; I. Berceanu; A. Bercuci; E. Berdermann; Y. Berdnikov; L. Betev; A. Bhasin; A. K. Bhati; L. Bianchi; N. Bianchi; C. Bianchin; J. Biel?ík; J. Biel?íková; A. Bilandzic; L. Bimbot; E. Biolcati; A. Blanc; F. Blanco; D. Blau; C. Blume; M. Boccioli; N. Bock; A. Bogdanov; H. Břggild; M. Bogolyubsky; J. Bohm; L. Boldizsár; M. Bombara; M. Bondila; H. Borel; A. Borisov; C. Bortolin; S. Bose; L. Bosisio; F. Bossú; M. Botje; S. Böttger; G. Bourdaud; B. Boyer; M. Braun; P. Braun-Munzinger; L. Bravina; M. Bregant; T. Breitner; G. Bruckner; R. Brun; E. Bruna; G. E. Bruno; D. Budnikov; H. Buesching; P. Buncic; O. Busch; Z. Buthelezi; D. Caffarri; X. Cai; H. Caines; E. Camacho; P. Camerini; M. Campbell; V. Canoa Roman; G. P. Capitani; F. Carena; W. Carena; F. Carminati; M. Caselle; V. Catanescu; E. Cattaruzza; C. Cavicchioli; P. Cerello; V. Chambert; B. Chang; S. Chapeland; A. Charpy; J. L. Charvet; S. Chattopadhyay; M. Cherney; C. Cheshkov; B. Cheynis; E. Chiavassa; D. D. Chinellato; P. Chochula; K. Choi; M. Chojnacki; P. Christakoglou; C. H. Christensen; P. Christiansen; T. Chujo; F. Chuman; C. Cicalo; L. Cifarelli; F. Cindolo; J. Cleymans; O. Cobanoglu; J.-P. Coffin; S. Coli; A. Colla; E. S. Conner; P. Constantin; G. Contin; J. G. Contreras; T. M. Cormier; P. Cortese; M. R. Cosentino; F. Costa; M. E. Cotallo; E. Crescio; P. Crochet; E. Cuautle; L. Cunqueiro; J. Cussonneau; A. Dainese; H. H. Dalsgaard; A. Danu; I. Das; A. Dash; S. Dash; G. O. V. de Barros; A. De Caro; G. de Cataldo; J. de Cuveland; A. De Falco; M. De Gaspari; J. de Groot; D. De Gruttola; N. De Marco; S. De Pasquale; R. De Remigis; R. de Rooij; G. de Vaux; H. Delagrange; G. Dellacasa; A. Deloff; V. Demanov; E. Dénes; A. Deppman; G. D’Erasmo; D. Derkach; A. Devaux; M. Dialinas; L. Díaz; R. Díaz; T. Dietel; R. Diviŕ; Ř. Djuvsland; V. Dobretsov; A. Dobrin; T. Dobrowolski; B. Dönigus; I. Domínguez; D. M. M. Don; O. Dordic; A. K. Dubey; J. Dubuisson; L. Ducroux; P. Dupieux; D. Elia; D. Emschermann; A. Enokizono; B. Espagnon; M. Estienne; S. Esumi; D. Evans; S. Evrard; G. Eyyubova; C. W. Fabjan; D. Fabris; J. Faivre; D. Falchieri; A. Fantoni; M. Fasel; O. Fateev; R. Fearick; A. Fedunov; D. Fehlker; V. Fekete; D. Felea; B. Fenton-Olsen; G. Feofilov; E. G. Ferreiro; A. Ferretti; R. Ferretti; M. A. S. Figueredo; S. Filchagin; R. Fini; F. M. Fionda; E. M. Fiore; M. Floris; Z. Fodor; S. Foertsch; P. Foka; S. Fokin; F. Formenti; E. Fragiacomo; M. Fragkiadakis; U. Frankenfeld; A. Frolov; U. Fuchs; F. Furano; C. Furget; J. J. Gaardhřje; S. Gadrat; M. Gagliardi; A. Gago; M. Gallio; P. Ganoti; M. S. Ganti; C. Garabatos; J. Gebelein; R. Gemme; M. Germain; A. Gheata; M. Gheata; B. Ghidini; P. Ghosh; G. Giraudo; P. Giubellino; E. Gladysz-Dziadus; R. Glasow; P. Glässel; A. Glenn; L. H. González-Trueba; P. González-Zamora; S. Gorbunov; Y. Gorbunov; S. Gotovac; H. Gottschlag; V. Grabski; R. Grajcarek; A. Grelli; A. Grigoras; C. Grigoras; V. Grigoriev; A. Grigoryan; S. Grigoryan; B. Grinyov; N. Grion; P. Gros; J. F. Grosse-Oetringhaus; J.-Y. Grossiord; R. Grosso; F. Guber; R. Guernane; B. Guerzoni; K. Gulbrandsen; H. Gulkanyan; T. Gunji; A. Gupta; R. Gupta; H.-A. Gustafsson; H. Gutbrod; Ř. Haaland; C. Hadjidakis; M. Haiduc; H. Hamagaki; G. Hamar; J. Hamblen; B. H. Han; J. W. Harris; M. Hartig; A. Harutyunyan; D. Hasch; D. Hasegan; D. Hatzifotiadou; A. Hayrapetyan; M. Heide; M. Heinz; H. Helstrup; A. Herghelegiu; C. Hernández; N. Herrmann; K. F. Hetland; B. Hicks; A. Hiei; P. T. Hille; B. Hippolyte; T. Horaguchi; Y. Hori; P. Hristov; I. H?ivná?ová; S. Hu; M. Huang; S. Huber; T. J. Humanic; D. Hutter; D. S. Hwang; R. Ichou; R. Ilkaev; I. Ilkiv; M. Inaba; P. G. Innocenti; M. Ippolitov; M. Irfan; C. Ivan; A. Ivanov; M. Ivanov; V. Ivanov; T. Iwasaki; A. Jacho?kowski; P. Jacobs; L. Jan?urová; S. Jangal; R. Janik; C. Jena; S. Jena; L. Jirden; G. T. Jones; P. G. Jones

    2010-01-01

    The pseudorapidity density and multiplicity distribution of charged particles produced in proton–proton collisions at the\\u000a LHC, at a centre-of-mass energy  TeV, were measured in the central pseudorapidity region |?| TeV and 2.36 TeV. At  TeV, for events with at least one charged particle in |?|. This corresponds to an increase of relative to collisions at 0.9 TeV, significantly higher than calculations from commonly

  3. The eclipse of species ranges.

    PubMed

    Hemerik, Lia; Hengeveld, Rob; Lippe, Ernst

    2006-01-01

    This paper distinguishes four recognisably different geographical processes in principle causing species to die out. One of these processes, the one we dub "range eclipse", holds that one range expands at the expense of another one, thereby usurping it. Channell and Lomolino (2000a, Journal of Biogeography 27: 169-179; 2000b, Nature 403: 84-87; see also Lomolino and Channell, 1995, Journal of Mammalogy 76: 335-347) measured the course of this process in terms of the proportion of the total range remaining in its original centre, thereby essentially assuming a homogeneous distribution of animals over the range. However, part of their measure seems mistaken. By giving a general, analytical formulation of eclipsing ranges, we estimate the exact course of this process. Also, our formulation does not partition a range into two spatially equal parts, its core and its edge, but it assumes continuity. For applying this model to data on the time evolution of species, individual time series should be available for each of them. For practical purposes we give an alternative way of plotting and interpreting such time series. Our approach, being more sensitive than Channell and Lomolino's, gives a less optimistic indication of range eclipses than theirs once these have started. PMID:17318329

  4. Simultaneous X-Ray and TeV Gamma-Ray Observation of the TeV Blazar Markarian 421 during 2000 February and May

    NASA Astrophysics Data System (ADS)

    Krawczynski, H.; Sambruna, R.; Kohnle, A.; Coppi, P. S.; Aharonian, F.; Akhperjanian, A.; Barrio, J.; Bernlöhr, K.; Börst, H.; Bojahr, H.; Bolz, O.; Contreras, J.; Cortina, J.; Denninghoff, S.; Fonseca, V.; Gonzalez, J.; Götting, N.; Heinzelmann, G.; Hermann, G.; Heusler, A.; Hofmann, W.; Horns, D.; Ibarra, A.; Jung, I.; Kankanyan, R.; Kestel, M.; Kettler, J.; Konopelko, A.; Kornmeyer, H.; Kranich, D.; Lampeitl, H.; Lorenz, E.; Lucarelli, F.; Magnussen, N.; Mang, O.; Meyer, H.; Mirzoyan, R.; Moralejo, A.; Padilla, L.; Panter, M.; Plaga, R.; Plyasheshnikov, A.; Pühlhofer, G.; Rauterberg, G.; Röhring, A.; Rhode, W.; Rowell, G.; Sahakian, V.; Samorski, M.; Schilling, M.; Schröder, F.; Siems, M.; Stamm, W.; Tluczykont, M.; Völk, H. J.; Wiedner, C. A.; Wittek, W.

    2001-09-01

    We present the results of simultaneous observations of the TeV blazar Markarian 421 at X-ray and TeV gamma-ray energies with the Rossi X-Ray Timing Explorer and the stereoscopic Cerenkov telescope system of the High Energy Gamma-Ray Astronomy (HEGRA) experiment, respectively. The source was monitored from 2000 February 2 to 16 and from 2000 May 3 to 8. In both energy bands several flares with very rapid flux variability were observed. In the X-ray band, the flux increased and decreased with e-folding times as short as about 5 hr. The 3-20 keV photon index varied between values of 2.2 and 2.9. For five pointings the data show statistically significant evidence for spectral curvature. The photon index varied substantially on very short timescales: on 2000 February 11 it hardened within 1.6 hr by ??=0.18, and on February 14 it softened within 1.6 hr by ??=0.2. The TeV observations of February 7/8 showed statistically significant evidence for substantial TeV flux variability on a 30 minute timescale. The TeV energy spectrum averaged over all the observations of the campaign shows a similar steep slope as in earlier HEGRA observations: dN/dE=N0(E/1 TeV)-? with N0=(25+/-1stat)×10-12 photons cm-2 s-1 TeV-1 and ?=2.94+/-0.06stat. Within statistical errors no evidence for a curvature of the TeV energy spectrum is found. We show the results of modeling the data with a time-dependent homogeneous synchrotron self-Compton model. The X-ray and TeV gamma-ray emission strengths and energy spectra together with the rapid flux variability strongly suggest that the emission volume is approaching the observer with a Doppler factor of 50 or higher. The different flux variability timescales observed at X-rays and TeV gamma rays indicate that a more detailed analysis will require inhomogeneous models with several emission zones.

  5. do you know your RANGE?

    E-print Network

    Hoffman, Garlyn O.

    1957-01-01

    How the Grass plant Manufactures Food, 3 What Range Judging Is, 3 Why Have Range Judging, 3 Planning the Contest, 3 Training the Contestants, 4 Part I. Plant Identification, 4 Part 11. Range Condition Classification and Treatment, 5 Degree... and water on a watershed like a good cover of native grass. Grass is a product which is harvested and marketed as meat, ~uool, mohair and wildlife. When you market animals you are paid for the number of poz~nds rather than the number of head you sell...

  6. Macrodimers ultralong range Rydberg molecules

    E-print Network

    Boisseau, C; Côté, R; Boisseau, Christophe; Simbotin, Ionel; Cote, Robin

    2002-01-01

    We study long range interactions between two Rydberg atoms and predict the existence of ultralong range Rydberg dimers with equilibrium distances of many thousand Bohr radii. We calculate the dispersion coefficients $C_{5}$, $C_{6}$ and $C_{8}$ for two rubidium atoms in the same excited level $np$, and find that they scale like $n^{8}$, $n^{11}$ and $n^{15}$, respectively. We show that for certain molecular symmetries, these coefficients lead to long range potential wells that can support molecular bound levels. Such macrodimers would be very sensitive to their environment, and could probe weak interactions. We suggest experiments to detect these macrodimers.

  7. Domain and Range--Graphically!

    NSDL National Science Digital Library

    Roberts, Lila F.

    This demo is designed to help students use graphical representations of functions to determine the domain and range. A set of interactive Excel spreadsheets and animations are included and can be downloaded.

  8. Wide range magnetic electron spectrograph

    Microsoft Academic Search

    M. A. Coplan; L.-J. Wang; J. H. Moore; R. A. Hoffman

    1989-01-01

    An electron spectrograph is described that covers electron energies from 400 eV to 200 keV with an energy resolution of 10%. This overlaps the range of electrostatic deflection devices at low energy and solid state detectors at high energy. The spectrograph uses magnetic deflection of the electrons to achieve energy separation and images the full range of energies on a

  9. Range from focus-error

    Microsoft Academic Search

    M. W. Siegel; M. L. Leary

    We derive theoretically and demonstrate experimentally an approach to range-from-focus with an important improvement over all previous methods. Previous methods rely on subjective measures of sharpness to focus a selected locale of the image. Our method uses measured physical features of the optical signal to generate an objective focus-error distance map. To compute range-from-focus-error distance it is not necessary to

  10. Why Range Forage Quality Changes 

    E-print Network

    Lyons, Robert K.; Machen, Richard V.; Forbes, T. D. A.

    1999-02-15

    Range livestock and wildlife have access to a tremendous diversity of forage plants which vary in nutritional quality. Range animals get the nutri- ents (protein, energy, vitamins, and minerals) required for growth, reproduction, and milk pro..., Texas AgriLife Extension Service; Assistant Professor and Extension Livestock Specialist, Texas AgriLife Extension Service; and Associate Professor, Grazing Ecology, Texas AgriLife Experiment Station, The Texas A&M University System. E-99 As plant cells...

  11. Macrodimers: Ultralong Range Rydberg Molecules

    Microsoft Academic Search

    Christophe Boisseau; Ionel Simbotin; Robin Côté

    2002-01-01

    We study long range interactions between two Rydberg atoms and predict the existence of ultralong range Rydberg dimers with equilibrium distances of many thousands of Bohr radii. We calculate the dispersion coefficients C5, C6, and C8 for two rubidium atoms in the same excited level np and find that they scale like n8, n11, and n15, respectively. We show that

  12. A search for $t\\bar{t}$ resonances using lepton-plus-jets events in proton--proton collisions at $\\sqrt{s} = 8$ TeV with the ATLAS detector

    E-print Network

    Aad, Georges; ATLAS Collaboration; Abdallah, Jalal; Abdinov, Ovsat; Aben, Rosemarie; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Affolder, Tony; Agatonovic-Jovin, Tatjana; Aguilar-Saavedra, Juan Antonio; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Ĺkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Alkire, Steven Patrick; Allbrooke, Benedict; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; ?lvarez Piqueras, Damián; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Ĺsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Auerbach, Benjamin; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baak, Max; Baas, Alessandra; Bacci, Cesare; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Oliver Keith; Balek, Petr; Balestri, Thomas; Balli, Fabrice; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Bansil, Hardeep Singh; Barak, Liron; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarăes da Costa, Joăo; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Basalaev, Artem; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James Baker; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Maurice; Becker, Sebastian; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Janna Katharina; Belanger-Champagne, Camille; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Bernard, Clare; Bernard, Nathan Rogers; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertsche, Carolyn; Bertsche, David; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bevan, Adrian John; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet

    2015-01-01

    A search for new particles that decay into top quark pairs is reported. The search is performed with the ATLAS experiment at the LHC using an integrated luminosity of 20.3 fb$^{-1}$ of proton--proton collision data collected at a centre-of-mass energy of $\\sqrt{s}=8$ TeV. The lepton-plus-jets final state is used, where the top pair decays to $W^+bW^-\\bar{b}$, with one $W$ boson decaying leptonically and the other hadronically. The invariant mass spectrum of top quark pairs is examined for local excesses or deficits that are inconsistent with the Standard Model predictions. No evidence for a top quark pair resonance is found, and 95% confidence-level limits on the production rate are determined for massive states in benchmark models. The upper limits on the cross-section times branching ratio of a narrow $Z'$ boson decaying to top pairs range from 4.2 pb to 0.03 pb for resonance masses from 0.4 TeV to 3.0 TeV. A narrow leptophobic topcolour $Z'$ boson with mass below 1.8 TeV is excluded. Upper limits a...

  13. A search for $\\mathbf{t\\bar{t}}$ resonances using lepton plus jets events in proton-proton collisions at $\\sqrt{s} = 8$ TeV with the ATLAS detector

    E-print Network

    The ATLAS collaboration

    2015-01-01

    A search for new particles that decay into top quark pairs is reported. The search is performed with the ATLAS experiment at the LHC using an integrated luminosity of 20.3 fb$^{-1}$ of proton-proton collision data collected at the centre-of-mass energy $\\sqrt{s}=8$TeV. The lepton plus jets final state is used, where the top-pair decays as $W^+bW^-\\bar{b}$, with one $W$ boson decaying leptonically and the other hadronically. The top quark pair invariant mass spectrum is examined for local excesses that are inconsistent with the Standard Model predictions. No evidence for a top quark pair resonance is found, and 95% confidence level limits on the production rate are determined for massive states in four benchmark models. The upper limits on the cross-section times branching ratio of a narrow $Z'$ boson decaying to top pairs range from 4.2 pb to 0.03 pb for resonance masses from 0.4 TeV to 3.0 TeV. A narrow leptophobic topcolour $Z'$ boson with mass below 1.8 TeV is excluded. Upper limits are set on the cross-se...

  14. Rejection of the Hypothesis That Markarian 501 TEV Photons Are Pure Bose-Einstein Condensates

    NASA Astrophysics Data System (ADS)

    Aharonian, F.; Akhperjanian, A.; Barrio, J.; Bernlöhr, K.; Börst, H.; Bojahr, H.; Bolz, O.; Contreras, J.; Cortina, J.; Denninghoff, S.; Fonseca, V.; Gonzalez, J.; Götting, N.; Heinzelmann, G.; Hermann, G.; Heusler, A.; Hofmann, W.; Horns, D.; Ibarra, A.; Iserlohe, C.; Jung, I.; Kankanyan, R.; Kestel, M.; Kettler, J.; Kohnle, A.; Konopelko, A.; Kornmeyer, H.; Kranich, D.; Krawczynski, H.; Lampeitl, H.; Lorenz, E.; Lucarelli, F.; Magnussen, N.; Mang, O.; Meyer, H.; Mirzoyan, R.; Moralejo, A.; Padilla, L.; Panter, M.; Plaga, R.; Plyasheshnikov, A.; Prahl, J.; Pühlhofer, G.; Röhring, A.; Rhode, W.; Rowell, G.; Sahakian, V.; Samorski, M.; Schilling, M.; Schröder, F.; Siems, M.; Stamm, W.; Tluczykont, M.; Völk, H. J.; Wiedner, C. A.; Wittek, W.

    2000-11-01

    The energy spectrum of the blazar-type galaxy Markarian 501 (Mrk 501), as measured by the High-Energy Gamma-Ray Astronomy (HEGRA) air Cerenkov telescopes, extends beyond 16 TeV and constitutes the most energetic photons observed from an extragalactic object. A fraction of the emitted spectrum is possibly absorbed in interactions with low-energy photons of the diffuse extragalactic infrared radiation, which in turn offers the unique possibility to measure the diffuse infrared radiation density by exact TeV spectroscopy. The upper limit on the density of the extragalactic infrared radiation derived from the TeV observations imposes constraints on models of galaxy formation and stellar evolution. One of the recently published ideas to overcome severe absorption of TeV photons is based on the assumption that sources like Mrk 501 could produce Bose-Einstein condensates of coherent photons. The condensates would have a higher survival probability during the transport in the diffuse radiation field and could mimic TeV air shower events. The powerful stereoscopic technique of the HEGRA air Cerenkov telescopes allows us to test this hypothesis by reconstructing the penetration depths of TeV air shower events: air showers initiated by Bose-Einstein condensates are expected to reach the maximum of shower development in the atmosphere earlier than single photon events. By comparing the energy-dependent penetration depths of TeV photons from Mrk 501 with those from the TeV standard-candle Crab Nebula and simulated air shower events, we can reject the hypothesis that TeV photons from Mrk 501 are pure Bose-Einstein condensates.

  15. Measurement of forward Z ? e+e- production at TeV

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Bettler, M.-O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Bird, T.; Bizzeti, A.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borgia, A.; Borsato, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Brett, D.; Britsch, M.; Britton, T.; Brodzicka, J.; Brook, N. H.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Campana, P.; Campora Perez, D.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casanova Mohr, R.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch.; Cavallero, G.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chefdeville, M.; Chen, S.; Cheung, S.-F.; Chiapolini, N.; Chrzaszcz, M.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collazuol, G.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Counts, I.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A. C.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dalseno, J.; David, P. N. Y.; Davis, A.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Silva, W.; De Simone, P.; Dean, C.-T.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Déléage, N.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Di Ruscio, F.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Dossett, D.; Dovbnya, A.; Dreimanis, K.; Dujany, G.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Färber, C.; Farinelli, C.; Farley, N.; Farry, S.; Fay, R.; Ferguson, D.; Fernandez Albor, V.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fol, P.; Fontana, M.; Fontanelli, F.; Forty, R.; Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; García Pardińas, J.; Garofoli, J.; Garra Tico, J.; Garrido, L.; Gascon, D.; Gaspar, C.; Gastaldi, U.; Gauld, R.; Gavardi, L.; Gazzoni, G.; Geraci, A.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianelle, A.; Gianě, S.; Gibson, V.; Giubega, L.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gotti, C.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Grünberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Hampson, T.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J. A.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Humair, T.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jawahery, A.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Karodia, S.; Kelsey, M.; Kenyon, I. R.; Kenzie, M.; Ketel, T.; Khanji, B.; Khurewathanakul, C.; Klaver, S.; Klimaszewski, K.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Korolev, M.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kurek, K.; Kvaratskheliya, T.; La Thi, V. N.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lambert, R. W.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Lefčvre, R.

    2015-05-01

    A measurement of the cross-section for Z-boson production in the forward region of pp collisions at 8 TeV centre-of-mass energy is presented. The measurement is based on a sample of Z ? e+e- decays reconstructed using the LHCb detector, corresponding to an integrated luminosity of 2.0 fb-1. The acceptance is defined by the requirements 2.0 < ? < 4.5 and p T > 20 GeV for the pseudorapidities and transverse momenta of the leptons. Their invariant mass is required to lie in the range 60-120 GeV. The cross-section is determined to be where the first uncertainty is statistical and the second reflects all systematic effects apart from that arising from the luminosity, which is given as the third uncertainty. Differential cross-sections are presented as functions of the Z-boson rapidity and of the angular variable ? ?, which is related to the Z-boson transverse momentum. [Figure not available: see fulltext.

  16. Measurement of prompt J/ ? pair production in pp collisions at = 7 Tev

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez; Alderweireldt, S.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Luyckx, S.; Ochesanu, S.; Roland, B.; Rougny, R.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Daci, N.; Heracleous, N.; Keaveney, J.; Kim, T. J.; Lowette, S.; Maes, M.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Dobur, D.; Favart, L.; Gay, A. P. R.; Grebenyuk, A.; Léonard, A.; Mohammadi, A.; Pernič, L.; Reis, T.; Seva, T.; Thomas, L.; Velde, C. Vander; Vanlaer, P.; Wang, J.; Adler, V.; Beernaert, K.; Benucci, L.; Cimmino, A.; Costantini, S.; Crucy, S.; Dildick, S.; Fagot, A.; Garcia, G.; Mccartin, J.; Rios, A. A. Ocampo; Ryckbosch, D.; Diblen, S. Salva; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jez, P.; Komm, M.; Lemaitre, V.; Liao, J.; Nuttens, C.; Pagano, D.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Marono, M. Vidal; Garcia, J. M. Vizan; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Aldá, W. L.; Alves, G. A.; Martins, M. Correa; Martins, T. Dos Reis; Pol, M. E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; De Souza, S. Fonseca; Malbouisson, H.; Figueiredo, D. Matos; Mundim, L.; Nogima, H.; Da Silva, W. L. Prado; Santaolalla, J.; Santoro, A.; Sznajder, A.; Manganote, E. J. Tonelli; Pereira, A. Vilela; Bernardes, C. A.; Dias, F. A.; Tomei, T. R. Fernandez Perez; Gregores, E. M.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Aleksandrov, A.; Genchev, V.; Iaydjiev, P.; Marinov, A.; Piperov, S.; Rodozov, M.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Du, R.; Jiang, C. H.; Liang, D.; Liang, S.; Plestina, R.; Tao, J.; Wang, X.; Wang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Guo, Y.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Teng, H.; Wang, D.; Zhang, L.; Zou, W.; Avila, C.; Sierra, L. F. Chaparro; Florez, C.; Gomez, J. P.; Moreno, B. Gomez; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Mekterovic, D.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Bodlak, M.; Finger, M.; Finger, M.; Assran, Y.; Kamel, A. Ellithi; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Eerola, P.; Fedi, G.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Baffioni, S.; Beaudette, F.; Busson, P.; Charlot, C.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Filipovic, N.; Florent, A.; de Cassagnac, R. Granier; Mastrolorenzo, L.; Miné, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Veelken, C.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Chabert, E. C.; Collard, C.; Conte, E.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Beaupere, N.; Boudoul, G.; Brochet, S.; Montoya, C. A. Carrillo; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Alvarez, J. D. Ruiz; Sabes, D.; Sgandurra, L.; Sordini, V.; Donckt, M. Vander; Verdier, P.; Viret, S.; Xiao, H.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Bontenackels, M.; Edelhoff, M.

    2014-09-01

    Production of prompt J/ ? meson pairs in proton-proton collisions at = 7 TeV is measured with the CMS experiment at the LHC in a data sample corresponding to an integrated luminosity of about 4.7 fb-1. The two J/ ? mesons are fully reconstructed via their decays into ? + ? - pairs. This observation provides for the first time access to the high-transverse-momentum region of J/ ? pair production where model predictions are not yet established. The total and differential cross sections are measured in a phase space defined by the individual J/ ? transverse momentum ( p T J/ ? ) and rapidity (| y J/ ? |): | y J/ ? | < 1.2 for p {T/J/ ? } > 6.5 GeV/ c; 1.2 < | y J/ ? | < 1.43 for a p T threshold that scales linearly with | y J/ ? | from 6.5 to 4.5 GeV/ c; and 1.43 < | y J/ ? | < 2.2 for p {T/J/ ? } > 4.5 GeV/ c. The total cross section, assuming unpolarized prompt J/ ? pair production is 1.49 ą 0.07 (stat) ą0.13 (syst) nb. Different assumptions about the J/ ? polarization imply modifications to the cross section ranging from -31% to +27%. [Figure not available: see fulltext.

  17. Diffractive dijet production in p?p collisions at ?s=1.96 TeV

    DOE PAGESBeta

    Aaltonen, T.; Albrow, M.; Álvarez González, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; et al

    2012-08-01

    We report on a study of diffractive dijet production in p?p collisions at s?=1.96 TeV using the CDF II detector at the Fermilab Tevatron p?p collider. A data sample from 310 pb?š of integrated luminosity collected by triggering on a high transverse energy jet, EjetT, in coincidence with a recoil antiproton detected in a Roman pot spectrometer is used to measure the ratio of single-diffractive to inclusive-dijet event rates as a function of xp? of the interacting parton in the antiproton, the Bjorken-x, xp?Bj, and a Q˛?(EjetT)˛ in the ranges 10?łp?Bjmore ťregion of p?-momentum-loss fraction 0.03p?p?>-4 GeV˛. The tp? dependence is measured as a function of Q˛ and xp?Bj and compared with that of inclusive single diffraction dissociation. We find weak xp?Bj and Q˛ dependencies in the ratio of single diffractive to inclusive event rates, and no significant Q˛ dependence in the diffractive tp? distributions.Ť less

  18. Diffractive dijet production in p?p collisions at ?s=1.96 TeV

    SciTech Connect

    Aaltonen, T.; Albrow, M.; Álvarez González, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bisello, D.; Bizjak, I.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H. S.; Burkett, K.; Busetto, G.; Bussey, P.; Buzatu, A.; Calamba, A.; Calancha, C.; Camarda, S.; Campanelli, M.; Campbell, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Carron, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Chlebana, F.; Cho, K.; Chokheli, D.; Chung, W. H.; Chung, Y. S.; Ciocci, M. A.; Clark, A.; Clarke, C.; Compostella, G.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Crescioli, F.; Cuevas, J.; Culbertson, R.; Dagenhart, D.; d’Ascenzo, N.; Datta, M.; de Barbaro, P.; Dell’Orso, M.; Demortier, L.; Deninno, M.; Devoto, F.; d’Errico, M.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; D’Onofrio, M.; Donati, S.; Dong, P.; Dorigo, M.; Dorigo, T.; Ebina, K.; Elagin, A.; Eppig, A.; Erbacher, R.; Errede, S.; Ershaidat, N.; Eusebi, R.; Farrington, S.; Feindt, M.; Fernandez, J. P.; Field, R.; Flanagan, G.; Forrest, R.; Frank, M. J.; Franklin, M.; Freeman, J. C.; Funakoshi, Y.; Furic, I.; Gallinaro, M.; Garcia, J. E.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Giannetti, P.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Goldschmidt, N.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Grinstein, S.; Grosso-Pilcher, C.; Group, R. C.; Guimaraes da Costa, J.; Hahn, S. R.; Halkiadakis, E.; Hamaguchi, A.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, D.; Hare, M.; Harr, R. F.; Hatakeyama, K.; Hays, C.; Heck, M.; Heinrich, J.; Herndon, M.; Hewamanage, S.; Hocker, A.; Hopkins, W.; Horn, D.; Hou, S.; Hughes, R. E.; Hurwitz, M.; Husemann, U.; Hussain, N.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jindariani, S.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kamon, T.; Karchin, P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Khotilovich, V.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. B.; Kim, S. H.; Kim, Y. K.; Kim, Y. J.; Kimura, N.; Kirby, M.; Klimenko, S.; Knoepfel, K.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Krop, D.; Kruse, M.; Krutelyov, V.; Kuhr, T.; Kurata, M.; Kwang, S.; Laasanen, A. T.; Lami, S.; Lammel, S.; Lancaster, M.; Lander, R. L.; Lannon, K.; Lath, A.; Latino, G.; LeCompte, T.; Lee, E.; Lee, H. S.; Lee, J. S.; Lee, S. W.; Leo, S.; Leone, S.; Lewis, J. D.; Limosani, A.; Lin, C.-J.; Lindgren, M.; Lipeles, E.; Lister, A.; Litvintsev, D. O.; Liu, C.; Liu, H.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maeshima, K.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Margaroli, F.; Marino, C.; Martínez, M.; Mastrandrea, P.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McFarland, K. S.; McIntyre, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Mondragon, M. N.; Moon, C. S.; Moore, R.; Morello, M. J.; Morlock, J.; Movilla Fernandez, P.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Neubauer, M. S.; Nielsen, J.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagan Griso, S.; Pagliarone, C.; Palencia, E.; Papadimitriou, V.; Paramonov, A. A.; Patrick, J.; Pauletta, G.; Paulini, M.; Paus, C.; Pellett, D. E.; Penzo, A.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Prokoshin, F.; Pranko, A.; Ptohos, F.; Punzi, G.; Rahaman, A.; Ramakrishnan, V.; Ranjan, N.; Redondo, I.; Renton, P.; Rescigno, M.; Riddick, T.; Rimondi, F.; Ristori, L.; Robson, A.; Rodrigo, T.; Rodriguez, T.; Rogers, E.; Rolli, S.; Roser, R.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Safonov, A.

    2012-08-01

    We report on a study of diffractive dijet production in p?p collisions at s?=1.96 TeV using the CDF II detector at the Fermilab Tevatron p?p collider. A data sample from 310 pb?š of integrated luminosity collected by triggering on a high transverse energy jet, EjetT, in coincidence with a recoil antiproton detected in a Roman pot spectrometer is used to measure the ratio of single-diffractive to inclusive-dijet event rates as a function of xp? of the interacting parton in the antiproton, the Bjorken-x, xp?Bj, and a Q˛?(EjetT)˛ in the ranges 10?łp?Bj<10?š and 10˛p?<0.09 and a four-momentum transfer squared tp?>-4 GeV˛. The tp? dependence is measured as a function of Q˛ and xp?Bj and compared with that of inclusive single diffraction dissociation. We find weak xp?Bj and Q˛ dependencies in the ratio of single diffractive to inclusive event rates, and no significant Q˛ dependence in the diffractive tp? distributions.

  19. Measurement of prompt J/? pair production in pp collisions at ?s = 7 Tev

    DOE PAGESBeta

    Khachatryan, Vardan [Yerevan Physics Institute (Armenia)

    2014-09-01

    Production of prompt J/? meson pairs in proton-proton collisions at ?s = 7 TeV is measured with the CMS experiment at the LHC in a data sample corresponding to an integrated luminosity of about 4.7 fb?š. The two J/? mesons are fully reconstructed via their decays into ?? ?? pairs. This observation provides for the first time access to the high-transverse-momentum region of J/? pair production where model predictions are not yet established. The total and differential cross sections are measured in a phase space defined by the individual J/? transverse momentum (pTJ/?) and rapidity (|yJ/?|): |yJ/?| TJ/? > 6.5 GeV/c, 1.2 J/?| T threshold that scales linearly with |yJ/?| from 6.5 to 4.5 GeV/c, and 1.43 J/?| TJ/? > 4.5 GeV/c. The total cross section, assuming unpolarized prompt J/? pair production is 1.49 ą 0.07 (stat) ą0.13 (syst) nb. Different assumptions about the J/? polarization imply modifications to the cross section ranging from ?31% to +27%.

  20. Measurement of prompt J/? pair production in pp collisions at ?s = 7 Tev

    DOE PAGESBeta

    Khachatryan, Vardan

    2014-09-01

    Production of prompt J/? meson pairs in proton-proton collisions at ?s = 7 TeV is measured with the CMS experiment at the LHC in a data sample corresponding to an integrated luminosity of about 4.7 fb?š. The two J/? mesons are fully reconstructed via their decays into ?? ?? pairs. This observation provides for the first time access to the high-transverse-momentum region of J/? pair production where model predictions are not yet established. The total and differential cross sections are measured in a phase space defined by the individual J/? transverse momentum (pTJ/?) and rapidity (|yJ/?|): |yJ/?| more ťpTJ/? > 6.5 GeV/c, 1.2 J/?| T threshold that scales linearly with |yJ/?| from 6.5 to 4.5 GeV/c, and 1.43 J/?| TJ/? > 4.5 GeV/c. The total cross section, assuming unpolarized prompt J/? pair production is 1.49 ą 0.07 (stat) ą0.13 (syst) nb. Different assumptions about the J/? polarization imply modifications to the cross section ranging from -31% to +27%.Ť less

  1. Measurement of prompt J/? pair production in pp collisions at ?s = 7 Tev

    SciTech Connect

    Khachatryan, Vardan [Yerevan Physics Institute (Armenia)

    2014-09-01

    Production of prompt J/? meson pairs in proton-proton collisions at ?s = 7 TeV is measured with the CMS experiment at the LHC in a data sample corresponding to an integrated luminosity of about 4.7 fb?š. The two J/? mesons are fully reconstructed via their decays into ?? ?? pairs. This observation provides for the first time access to the high-transverse-momentum region of J/? pair production where model predictions are not yet established. The total and differential cross sections are measured in a phase space defined by the individual J/? transverse momentum (pTJ/?) and rapidity (|yJ/?|): |yJ/?| < 1.2 for pTJ/? > 6.5 GeV/c, 1.2 < |yJ/?| < 1.43 for a pT threshold that scales linearly with |yJ/?| from 6.5 to 4.5 GeV/c, and 1.43 < |yJ/?| < 2.2 for pTJ/? > 4.5 GeV/c. The total cross section, assuming unpolarized prompt J/? pair production is 1.49 ą 0.07 (stat) ą0.13 (syst) nb. Different assumptions about the J/? polarization imply modifications to the cross section ranging from -31% to +27%.

  2. Inclusive b-jet production in pp collisions at sqrt(s)=7 TeV

    SciTech Connect

    Chatrchyan, Serguei [Yerevan Physics Inst. (Armenia); et al.

    2012-04-01

    The inclusive b-jet production cross section in pp collisions at a center-of-mass energy of 7 TeV is measured using data collected by the CMS experiment at the LHC. The cross section is presented as a function of the jet transverse momentum in the range 18 < pT < 200 GeV for several rapidity intervals. The results are also given as the ratio of the b-jet production cross section to the inclusive jet production cross section. The measurement is performed with two different analyses, which differ in their trigger selection and b-jet identification: a jet analysis that selects events with a b jet using a sample corresponding to an integrated luminosity of 34 inverse picobarns, and a muon analysis requiring a b jet with a muon based on an integrated luminosity of 3 inverse picobarns. In both approaches the b jets are identified by requiring a secondary vertex. The results from the two methods are in agreement with each other and with next-to-leading order calculations, as well as with predictions based on the PYTHIA event generator.

  3. Diffractive dijet production in pŻp collisions at s=1.96TeV

    NASA Astrophysics Data System (ADS)

    Aaltonen, T.; Albrow, M.; Álvarez González, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bisello, D.; Bizjak, I.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H. S.; Burkett, K.; Busetto, G.; Bussey, P.; Buzatu, A.; Calamba, A.; Calancha, C.; Camarda, S.; Campanelli, M.; Campbell, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Carron, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Chlebana, F.; Cho, K.; Chokheli, D.; Chung, W. H.; Chung, Y. S.; Ciocci, M. A.; Clark, A.; Clarke, C.; Compostella, G.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Crescioli, F.; Cuevas, J.; Culbertson, R.; Dagenhart, D.; d'Ascenzo, N.; Datta, M.; de Barbaro, P.; Dell'Orso, M.; Demortier, L.; Deninno, M.; Devoto, F.; d'Errico, M.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; D'Onofrio, M.; Donati, S.; Dong, P.; Dorigo, M.; Dorigo, T.; Ebina, K.; Elagin, A.; Eppig, A.; Erbacher, R.; Errede, S.; Ershaidat, N.; Eusebi, R.; Farrington, S.; Feindt, M.; Fernandez, J. P.; Field, R.; Flanagan, G.; Forrest, R.; Frank, M. J.; Franklin, M.; Freeman, J. C.; Funakoshi, Y.; Furic, I.; Gallinaro, M.; Garcia, J. E.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Giannetti, P.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Goldschmidt, N.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Grinstein, S.; Grosso-Pilcher, C.; Group, R. C.; Guimaraes da Costa, J.; Hahn, S. R.; Halkiadakis, E.; Hamaguchi, A.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, D.; Hare, M.; Harr, R. F.; Hatakeyama, K.; Hays, C.; Heck, M.; Heinrich, J.; Herndon, M.; Hewamanage, S.; Hocker, A.; Hopkins, W.; Horn, D.; Hou, S.; Hughes, R. E.; Hurwitz, M.; Husemann, U.; Hussain, N.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jindariani, S.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kamon, T.; Karchin, P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Khotilovich, V.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. B.; Kim, S. H.; Kim, Y. K.; Kim, Y. J.; Kimura, N.; Kirby, M.; Klimenko, S.; Knoepfel, K.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Krop, D.; Kruse, M.; Krutelyov, V.; Kuhr, T.; Kurata, M.; Kwang, S.; Laasanen, A. T.; Lami, S.; Lammel, S.; Lancaster, M.; Lander, R. L.; Lannon, K.; Lath, A.; Latino, G.; LeCompte, T.; Lee, E.; Lee, H. S.; Lee, J. S.; Lee, S. W.; Leo, S.; Leone, S.; Lewis, J. D.; Limosani, A.; Lin, C.-J.; Lindgren, M.; Lipeles, E.; Lister, A.; Litvintsev, D. O.; Liu, C.; Liu, H.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maeshima, K.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Margaroli, F.; Marino, C.; Martínez, M.; Mastrandrea, P.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McFarland, K. S.; McIntyre, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Mondragon, M. N.; Moon, C. S.; Moore, R.; Morello, M. J.; Morlock, J.; Movilla Fernandez, P.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Neubauer, M. S.; Nielsen, J.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagan Griso, S.; Pagliarone, C.; Palencia, E.; Papadimitriou, V.; Paramonov, A. A.; Patrick, J.; Pauletta, G.; Paulini, M.; Paus, C.; Pellett, D. E.; Penzo, A.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Prokoshin, F.; Pranko, A.; Ptohos, F.; Punzi, G.; Rahaman, A.; Ramakrishnan, V.; Ranjan, N.; Redondo, I.; Renton, P.; Rescigno, M.; Riddick, T.; Rimondi, F.; Ristori, L.; Robson, A.; Rodrigo, T.; Rodriguez, T.; Rogers, E.; Rolli, S.; Roser, R.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Safonov, A.; Sakumoto, W. K.

    2012-08-01

    We report on a study of diffractive dijet production in pŻp collisions at s=1.96TeV using the CDF II detector at the Fermilab Tevatron pŻp collider. A data sample from 310pb-1 of integrated luminosity collected by triggering on a high transverse energy jet, ETjet, in coincidence with a recoil antiproton detected in a Roman pot spectrometer is used to measure the ratio of single-diffractive to inclusive-dijet event rates as a function of xpŻ of the interacting parton in the antiproton, the Bjorken-x, xBjpŻ, and a Q2?(ETjet)2 in the ranges 10-3-4GeV2. The tpŻ dependence is measured as a function of Q2 and xBjpŻ and compared with that of inclusive single diffraction dissociation. We find weak xBjpŻ and Q2 dependencies in the ratio of single diffractive to inclusive event rates, and no significant Q2 dependence in the diffractive tpŻ distributions.

  4. Upsilon production cross section in pp collisions at s=7TeV

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hammer, J.; Hänsel, S.; Hartl, C.; Hoch, M.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kasieczka, G.; Kiesenhofer, W.; Krammer, M.; Liko, D.; Mikulec, I.; Pernicka, M.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Teischinger, F.; Waltenberger, W.; Walzel, G.; Widl, E.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Benucci, L.; Ceard, L.; Cerny, K.; de Wolf, E. A.; Janssen, X.; Maes, T.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; van Haevermaet, H.; van Mechelen, P.; van Remortel, N.; Adler, V.; Beauceron, S.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Devroede, O.; Gonzalez Suarez, R.; Kalogeropoulos, A.; Maes, J.; Maes, M.; Tavernier, S.; van Doninck, W.; van Mulders, P.; van Onsem, G. P.; Villella, I.; Charaf, O.; Clerbaux, B.; de Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hammad, G. H.; Hreus, T.; Marage, P. E.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wickens, J.; Costantini, S.; Grunewald, M.; Klein, B.; Marinov, A.; McCartin, J.; Ryckbosch, D.; Thyssen, F.; Tytgat, M.; Vanelderen, L.; Verwilligen, P.; Walsh, S.; Zaganidis, N.; Basegmez, S.; Bruno, G.; Caudron, J.; de Favereau de Jeneret, J.; Delaere, C.; Demin, P.; Favart, D.; Giammanco, A.; Grégoire, G.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Ovyn, S.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Quertenmont, L.; Schul, N.; Beliy, N.; Caebergs, T.; Daubie, E.; Alves, G. A.; de Jesus Damiao, D.; Pol, M. E.; Souza, M. H. G.; Carvalho, W.; da Costa, E. M.; de Oliveira Martins, C.; Fonseca de Souza, S.; Mundim, L.; Nogima, H.; Oguri, V.; Prado da Silva, W. L.; Santoro, A.; Silva Do Amaral, S. M.; Sznajder, A.; Dias, F. A.; Dias, M. A. F.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Marinho, F.; Novaes, S. F.; Padula, Sandra S.; Darmenov, N.; Dimitrov, L.; Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.; Vankov, I.; Dyulendarova, M.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Marinova, E.; Mateev, M.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Wang, J.; Wang, J.; Wang, X.; Wang, Z.; Xu, M.; Yang, M.; Zang, J.; Zhang, Z.; Ban, Y.; Guo, S.; Li, W.; Mao, Y.; Qian, S. J.; Teng, H.; Zhang, L.; Zhu, B.; Cabrera, A.; Gomez Moreno, B.; Ocampo Rios, A. A.; Osorio Oliveros, A. F.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Lelas, K.; Plestina, R.; Polic, D.; Puljak, I.; Antunovic, Z.; Dzelalija, M.; Brigljevic, V.; Duric, S.; Kadija, K.; Morovic, S.; Attikis, A.; Galanti, M.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Assran, Y.; Mahmoud, M. A.; Hektor, A.; Kadastik, M.; Kannike, K.; Müntel, M.; Raidal, M.; Rebane, L.; Azzolini, V.; Eerola, P.; Czellar, S.; Härkönen, J.; Heikkinen, A.; Karimäki, V.; Kinnunen, R.; Klem, J.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.; Banzuzi, K.; Korpela, A.; Tuuva, T.; Sillou, D.; Besancon, M.; Choudhury, S.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Gentit, F. X.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Marionneau, M.; Millischer, L.; Rander, J.; Rosowsky, A.; Shreyber, I.; Titov, M.; Verrecchia, P.; Baffioni, S.; Beaudette, F.; Bianchini, L.; Bluj, M.; Broutin, C.; Busson, P.; Charlot, C.; Dahms, T.; Dobrzynski, L.; Granier de Cassagnac, R.; Haguenauer, M.; Miné, P.; Mironov, C.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Thiebaux, C.; Wyslouch, B.; Zabi, A.; Agram, J.-L.; Andrea, J.; Besson, A.; Bloch, D.; Bodin, D.; Brom, J.-M.; Cardaci, M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Ferro, C.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Greder, S.; Juillot, P.; Karim, M.; Le Bihan, A.-C.; Mikami, Y.; van Hove, P.; Fassi, F.; Mercier, D.; Baty, C.; Beaupere, N.; Bedjidian, M.; Bondu, O.; Boudoul, G.; Boumediene, D.; Brun, H.; Chanon, N.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Falkiewicz, A.; Fay, J.; Gascon, S.; Ille, B.; Kurca, T.; Le Grand, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sordini, V.; Tosi, S.; Tschudi, Y.; Verdier, P.; Xiao, H.; Roinishvili, V.; Anagnostou, G.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.; Klein, K.; Merz, J.; Mohr, N.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Weber, M.; Wittmer, B.; Ata, M.; Bender, W.; Erdmann, M.; Frangenheim, J.; Hebbeker, T.; Hinzmann, A.; Hoepfner, K.; Hof, C.; Klimkovich, T.; Klingebiel, D.

    2011-06-01

    The ?(1S), ?(2S), and ?(3S) production cross sections in proton-proton collisions at s=7TeV are measured using a data sample collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 3.1ą0.3pb-1. Integrated over the rapidity range |y|<2, we find the product of the ?(1S) production cross section and branching fraction to dimuons to be ?(pp??(1S)X)ˇB(?(1S)??+?-)=7.37ą0.13-0.42+0.61ą0.81nb, where the first uncertainty is statistical, the second is systematic, and the third is associated with the estimation of the integrated luminosity of the data sample. This cross section is obtained assuming unpolarized ?(1S) production. With the assumption of fully transverse or fully longitudinal production polarization, the measured cross section changes by about 20%. We also report the measurement of the ?(1S), ?(2S), and ?(3S) differential cross sections as a function of transverse momentum and rapidity.

  5. Ks0Ks0 correlations in pp collisions at ?{s}=7 TeV from the LHC ALICE experiment

    NASA Astrophysics Data System (ADS)

    Abelev, B.; Adam, J.; Adamová, D.; Adare, A. M.; Aggarwal, M. M.; Aglieri Rinella, G.; Agocs, A. G.; Agostinelli, A.; Aguilar Salazar, S.; Ahammed, Z.; Ahmad Masoodi, A.; Ahmad, N.; Ahn, S. A.; Ahn, S. U.; Akindinov, A.; Aleksandrov, D.; Alessandro, B.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Almaráz Avińa, E.; Alme, J.; Alt, T.; Altini, V.; Altinpinar, S.; Altsybeev, I.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Anson, C.; Anti?i?, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arbor, N.; Arcelli, S.; Arend, A.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Arslandok, M.; Asryan, A.; Augustinus, A.; Averbeck, R.; Awes, T. C.; Äystö, J.; Azmi, M. D.; Bach, M.; Badalŕ, A.; Baek, Y. W.; Bailhache, R.; Bala, R.; Baldini Ferroli, R.; Baldisseri, A.; Baldit, A.; Baltasar Dos Santos Pedrosa, F.; Bán, J.; Baral, R. C.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartke, J.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batyunya, B.; Baumann, C.; Bearden, I. G.; Beck, H.; Belikov, I.; Bellini, F.; Bellwied, R.; Belmont-Moreno, E.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bergognon, A. A. E.; Berzano, D.; Betev, L.; Bhasin, A.; Bhati, A. K.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Biel?ík, J.; Biel?íková, J.; Bilandzic, A.; Bjelogrlic, S.; Blanco, F.; Blanco, F.; Blau, D.; Blume, C.; Boccioli, M.; Bock, N.; Böttger, S.; Bogdanov, A.; Břggild, H.; Bogolyubsky, M.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Bose, S.; Bossú, F.; Botje, M.; Boyer, B.; Braidot, E.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Browning, T. A.; Broz, M.; Brun, R.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Bugaiev, K.; Busch, O.; Buthelezi, Z.; Caballero Orduna, D.; Caffarri, D.; Cai, X.; Caines, H.; Calvo Villar, E.; Camerini, P.; Canoa Roman, V.; Cara Romeo, G.; Carena, F.; Carena, W.; Carlin Filho, N.; Carminati, F.; Carrillo Montoya, C. A.; Casanova Díaz, A.; Castillo Castellanos, J.; Castillo Hernandez, J. F.; Casula, E. A. R.; Catanescu, V.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chawla, I.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Coccetti, F.; Colamaria, F.; Colella, D.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Constantin, P.; Contin, G.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortese, P.; Cortés Maldonado, I.; Cosentino, M. R.; Costa, F.; Cotallo, M. E.; Crescio, E.; Crochet, P.; Cruz Alaniz, E.; Cuautle, E.; Cunqueiro, L.; Dainese, A.; Dalsgaard, H. H.; Danu, A.; Das, D.; Das, I.; Das, K.; Dash, S.; Dash, A.; de, S.; de Barros, G. O. V.; de Caro, A.; de Cataldo, G.; de Cuveland, J.; de Falco, A.; de Gruttola, D.; Delagrange, H.; Deloff, A.; Demanov, V.; De Marco, N.; Dénes, E.; de Pasquale, S.; Deppman, A.; D Erasmo, G.; de Rooij, R.; Diaz Corchero, M. A.; di Bari, D.; Dietel, T.; di Liberto, S.; di Mauro, A.; di Nezza, P.; Diviŕ, R.; Djuvsland, Ř.; Dobrin, A.; Dobrowolski, T.; Domínguez, I.; Dönigus, B.; Dordic, O.; Driga, O.; Dubey, A. K.; Ducroux, L.; Dupieux, P.; Dutta Majumdar, M. R.; Dutta Majumdar, A. K.; Elia, D.; Emschermann, D.; Engel, H.; Erdal, H. A.; Espagnon, B.; Estienne, M.; Esumi, S.; Evans, D.; Eyyubova, G.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fearick, R.; Fedunov, A.; Fehlker, D.; Feldkamp, L.; Felea, D.; Fenton-Olsen, B.; Feofilov, G.; Fernández Téllez, A.; Ferretti, A.; Ferretti, R.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Fusco Girard, M.; Gaardhřje, J. J.; Gagliardi, M.; Gago, A.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Garabatos, C.; Garcia-Solis, E.; Garishvili, I.; Gerhard, J.; Germain, M.; Geuna, C.; Gheata, A.; Gheata, M.; Ghidini, B.; Ghosh, P.; Gianotti, P.; Girard, M. R.; Giubellino, P.; Gladysz-Dziadus, E.; Glässel, P.; Gomez, R.; Gonschior, A.; Ferreiro, E. G.; González-Trueba, L. H.; González-Zamora, P.; Gorbunov, S.; Goswami, A.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Grajcarek, R.; Grelli, A.; Grigoras, C.; Grigoras, A.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Gros, P.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerra Gutierrez, C.; Guerzoni, B.

    2012-10-01

    Identical neutral kaon pair correlations are measured in ?{s}=7 TeV pp collisions in the ALICE experiment. One-dimensional Ks0Ks0 correlation functions in terms of the invariant momentum difference of kaon pairs are formed in two multiplicity and two transverse momentum ranges. The femtoscopic parameters for the radius and correlation strength of the kaon source are extracted. The fit includes quantum statistics and final-state interactions of the a0/f0 resonance. Ks0Ks0 correlations show an increase in radius for increasing multiplicity and a slight decrease in radius for increasing transverse mass, mT, as seen in ?? correlations in pp collisions and in heavy-ion collisions. Transverse mass scaling is observed between the Ks0Ks0 and ?? radii. Also, the first observation is made of the decay of the f2?(1525) meson into the Ks0Ks0 channel in pp collisions.

  6. J/? Suppression at Forward Rapidity in Pb-Pb Collisions at sNN=2.76TeV

    NASA Astrophysics Data System (ADS)

    Abelev, B.; Adam, J.; Adamová, D.; Adare, A. M.; Aggarwal, M. M.; Aglieri Rinella, G.; Agocs, A. G.; Agostinelli, A.; Aguilar Salazar, S.; Ahammed, Z.; Ahmad Masoodi, A.; Ahmad, N.; Ahn, S. U.; Akindinov, A.; Aleksandrov, D.; Alessandro, B.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Almaráz Avińa, E.; Alme, J.; Alt, T.; Altini, V.; Altinpinar, S.; Altsybeev, I.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Anson, C.; Anti?i?, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arbor, N.; Arcelli, S.; Arend, A.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Arslandok, M.; Asryan, A.; Augustinus, A.; Averbeck, R.; Awes, T. C.; Äystö, J.; Azmi, M. D.; Bach, M.; Badalŕ, A.; Baek, Y. W.; Bailhache, R.; Bala, R.; Baldini Ferroli, R.; Baldisseri, A.; Baldit, A.; Baltasar Dos Santos Pedrosa, F.; Bán, J.; Baral, R. C.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartke, J.; Basile, M.; Bastid, N.; Bathen, B.; Batigne, G.; Batyunya, B.; Baumann, C.; Bearden, I. G.; Beck, H.; Belikov, I.; Bellini, F.; Bellwied, R.; Belmont-Moreno, E.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bergmann, C.; Berzano, D.; Betev, L.; Bhasin, A.; Bhati, A. K.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Biel?ík, J.; Biel?íková, J.; Bilandzic, A.; Bjelogrlic, S.; Blanco, F.; Blanco, F.; Blau, D.; Blume, C.; Boccioli, M.; Bock, N.; Bogdanov, A.; Břggild, H.; Bogolyubsky, M.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Bose, S.; Bossú, F.; Botje, M.; Böttger, S.; Boyer, B.; Braidot, E.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Browning, T. A.; Broz, M.; Brun, R.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Bugaiev, K.; Busch, O.; Buthelezi, Z.; Caballero Orduna, D.; Caffarri, D.; Cai, X.; Caines, H.; Calvo Villar, E.; Camerini, P.; Canoa Roman, V.; Cara Romeo, G.; Carena, W.; Carena, F.; Carlin Filho, N.; Carminati, F.; Carrillo Montoya, C. A.; Casanova Díaz, A.; Castillo Castellanos, J.; Castillo Hernandez, J. F.; Casula, E. A. R.; Catanescu, V.; Cavicchioli, C.; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chawla, I.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chiavassa, E.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Chojnacki, M.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Coccetti, F.; Colamaria, F.; Colella, D.; Conesa Balbastre, G.; Conesa del Valle, Z.; Constantin, P.; Contin, G.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortese, P.; Cortés Maldonado, I.; Cosentino, M. R.; Costa, F.; Cotallo, M. E.; Crescio, E.; Crochet, P.; Cruz Alaniz, E.; Cuautle, E.; Cunqueiro, L.; Dainese, A.; Dalsgaard, H. H.; Danu, A.; Das, K.; Das, I.; Das, D.; Dash, A.; Dash, S.; De, S.; de Barros, G. O. V.; De Caro, A.; de Cataldo, G.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; Delagrange, H.; Del Castillo Sanchez, E.; Deloff, A.; Demanov, V.; De Marco, N.; Dénes, E.; De Pasquale, S.; Deppman, A.; D'Erasmo, G.; de Rooij, R.; Diaz Corchero, M. A.; Di Bari, D.; Dietel, T.; Di Giglio, C.; Di Liberto, S.; Di Mauro, A.; Di Nezza, P.; Diviŕ, R.; Djuvsland, Ř.; Dobrin, A.; Dobrowolski, T.; Domínguez, I.; Dönigus, B.; Dordic, O.; Driga, O.; Dubey, A. K.; Ducroux, L.; Dupieux, P.; Dutta Majumdar, A. K.; Dutta Majumdar, M. R.; Elia, D.; Emschermann, D.; Engel, H.; Erdal, H. A.; Espagnon, B.; Estienne, M.; Esumi, S.; Evans, D.; Eyyubova, G.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fearick, R.; Fedunov, A.; Fehlker, D.; Feldkamp, L.; Felea, D.; Feofilov, G.; Fernández Téllez, A.; Ferretti, A.; Ferretti, R.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Fragkiadakis, M.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Fusco Girard, M.; Gaardhřje, J. J.; Gagliardi, M.; Gago, A.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Garabatos, C.; Garcia-Solis, E.; Garishvili, I.; Gerhard, J.; Germain, M.; Geuna, C.; Gheata, A.; Gheata, M.; Ghidini, B.; Ghosh, P.; Gianotti, P.; Girard, M. R.; Giubellino, P.; Gladysz-Dziadus, E.; Glässel, P.; Gomez, R.; Ferreiro, E. G.; González-Trueba, L. H.; González-Zamora, P.; Gorbunov, S.; Goswami, A.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Grajcarek, R.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Gros, P.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerra Gutierrez, C.; Guerzoni, B.; Guilbaud, M.; Gulbrandsen, K.

    2012-08-01

    The ALICE experiment has measured the inclusive J/? production in Pb-Pb collisions at sNN=2.76TeV down to zero transverse momentum in the rapidity range 2.5

  7. Measurements of the Angular Distributions of Muons from ? Decays in pp? Collisions at ?s=1.96 TeV

    DOE PAGESBeta

    Aaltonen, T.; Álvarez González, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; et al

    2012-04-01

    The angular distributions of muons from ?(1S,2S,3S)????? decays are measured using data from pp? collisions at ?s=1.96 TeV corresponding to an integrated luminosity of 6.7 fb?š and collected with the CDF II detector at the Fermilab Tevatron. This analysis is the first to report the full angular distributions as functions of transverse momentum pT for ? mesons in both the Collins-Soper and s-channel helicity frames. This is also the first measurement of the spin alignment of ?(3S) mesons. Within the kinematic range of ? rapidity |y|T up to 40 GeV/c, the angular distributions are found to be nearlymore ťisotropic.Ť less

  8. Search for TeV. gamma. rays from SN 1987A during December 1987 and January 1988

    SciTech Connect

    Bond, I.A.; Budding, E.; Conway, M.J.; Fenton, K.B.; Fujii, H.; Fujii, Z.; Fujimoto, M.; Hasegawa, H.; Hayashida, N.; Honda, M.; and others

    1988-11-14

    Very-high-energy ..gamma.. rays emitted by the supernova 1987A were searched for at the Black Birch Range in New Zealand during December 1987 and January 1988. Data obtained in 42 hours of observation time give an upper bound on the flux at the 95% confidence level of 6.1 x 10/sup -12/ cm/sup -2/s/sup -1/ for ..gamma.. rays with energies above 3 TeV. Data obtained on 14 and 15 January are found to have excess counts, above the background level, corresponding to a flux of (1.9 +- 0.5) x 10/sup -11/ cm/sup -2/s/sup -1/ and a total energy of approx.10/sup 43/ ergs.

  9. Search for. gamma. rays from the supernova 1987A at energies greater than 100 TeV

    SciTech Connect

    Bond, I.A.; Budding, E.; Conway, M.J.; Fenton, K.B.; Fujii, H.; Fujii, Z.; Hasegawa, H.; Hayashida, N.; Honda, M.; Hotta, N.

    1988-03-21

    We searched for ultrahigh-energy ..gamma.. rays emitted by the supernova 1987A with a new cosmic-ray facility installed at the Black Birch Range in New Zealand. The observations from 13 October to 3 December 1987 suggest no clear clustering of events around the direction of the supernova. We conclude that an upper limit on the flux ..gamma.. rays of energies greater than 100 TeV is 1.1 x 10/sup -12/ cm/sup -2/ s/sup -1/ (95% confidence limit) for a differential spectral index ..cap alpha.. = 2.0 and source distance d = 50 kpc. This value gives an upper bound on the ..gamma..-ray luminosity of the supernova of 5.5 x 10/sup 38/ erg s/sup -1/ for 10/sup 14/--10/sup 17/ eV

  10. Measurements of the Angular Distributions of Muons from ? Decays in pp? Collisions at ?s=1.96 TeV

    DOE PAGESBeta

    Aaltonen, T.; Álvarez González, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bisello, D.; Bizjak, I.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H. S.; Burkett, K.; Busetto, G.; Bussey, P.; Buzatu, A.; Calamba, A.; Calancha, C.; Camarda, S.; Campanelli, M.; Campbell, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Carron, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Chlebana, F.; Cho, K.; Chokheli, D.; Chung, W. H.; Chung, Y. S.; Ciocci, M. A.; Clark, A.; Clarke, C.; Compostella, G.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Crescioli, F.; Cuevas, J.; Culbertson, R.; Dagenhart, D.; d’Ascenzo, N.; Datta, M.; de Barbaro, P.; Dell’Orso, M.; Demortier, L.; Deninno, M.; Devoto, F.; d’Errico, M.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; D’Onofrio, M.; Donati, S.; Dong, P.; Dorigo, M.; Dorigo, T.; Ebina, K.; Elagin, A.; Eppig, A.; Erbacher, R.; Errede, S.; Ershaidat, N.; Eusebi, R.; Farrington, S.; Feindt, M.; Fernandez, J. P.; Field, R.; Flanagan, G.; Forrest, R.; Frank, M. J.; Franklin, M.; Freeman, J. C.; Funakoshi, Y.; Furic, I.; Gallinaro, M.; Garcia, J. E.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Giannetti, P.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Goldschmidt, N.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Grinstein, S.; Grosso-Pilcher, C.; Group, R. C.; Guimaraes da Costa, J.; Hahn, S. R.; Halkiadakis, E.; Hamaguchi, A.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, D.; Hare, M.; Harr, R. F.; Hatakeyama, K.; Hays, C.; Heck, M.; Heinrich, J.; Herndon, M.; Hewamanage, S.; Hocker, A.; Hopkins, W.; Horn, D.; Hou, S.; Hughes, R. E.; Hurwitz, M.; Husemann, U.; Hussain, N.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jindariani, S.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kamon, T.; Karchin, P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Khotilovich, V.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. B.; Kim, S. H.; Kim, Y. K.; Kim, Y. J.; Kimura, N.; Kirby, M.; Klimenko, S.; Knoepfel, K.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Krop, D.; Kruse, M.; Krutelyov, V.; Kuhr, T.; Kurata, M.; Kwang, S.; Laasanen, A. T.; Lami, S.; Lammel, S.; Lancaster, M.; Lander, R. L.; Lannon, K.; Lath, A.; Latino, G.; LeCompte, T.; Lee, E.; Lee, H. S.; Lee, J. S.; Lee, S. W.; Leo, S.; Leone, S.; Lewis, J. D.; Limosani, A.; Lin, C.-J.; Lindgren, M.; Lipeles, E.; Lister, A.; Litvintsev, D. O.; Liu, C.; Liu, H.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maeshima, K.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Margaroli, F.; Marino, C.; Martínez, M.; Mastrandrea, P.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McFarland, K. S.; McIntyre, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Mondragon, M. N.; Moon, C. S.; Moore, R.; Morello, M. J.; Morlock, J.; Movilla Fernandez, P.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Neubauer, M. S.; Nielsen, J.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagan Griso, S.; Pagliarone, C.; Palencia, E.; Papadimitriou, V.; Paramonov, A. A.; Patrick, J.; Pauletta, G.; Paulini, M.; Paus, C.; Pellett, D. E.; Penzo, A.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Prokoshin, F.; Pranko, A.; Ptohos, F.; Punzi, G.; Rahaman, A.; Ramakrishnan, V.; Ranjan, N.; Redondo, I.; Renton, P.; Rescigno, M.; Riddick, T.; Rimondi, F.; Ristori, L.; Robson, A.; Rodrigo, T.; Rodriguez, T.; Rogers, E.; Rolli, S.; Roser, R.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Safonov, A.; Sakumoto, W. K.

    2012-04-01

    The angular distributions of muons from ?(1S,2S,3S)????? decays are measured using data from pp? collisions at ?s=1.96 TeV corresponding to an integrated luminosity of 6.7 fb?š and collected with the CDF II detector at the Fermilab Tevatron. This analysis is the first to report the full angular distributions as functions of transverse momentum pT for ? mesons in both the Collins-Soper and s-channel helicity frames. This is also the first measurement of the spin alignment of ?(3S) mesons. Within the kinematic range of ? rapidity |y|T up to 40 GeV/c, the angular distributions are found to be nearly isotropic.

  11. Measurement of the inclusive differential jet cross section in pp collisions at ?{s}=2.76 TeV

    NASA Astrophysics Data System (ADS)

    Abelev, B.; Adam, J.; Adamová, D.; Adare, A. M.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agocs, A. G.; Agostinelli, A.; Ahammed, Z.; Ahmad, N.; Ahmad Masoodi, A.; Ahn, S. A.; Ahn, S. U.; Ajaz, M.; Akindinov, A.; Aleksandrov, D.; Alessandro, B.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Almaráz Avińa, E.; Alme, J.; Alt, T.; Altini, V.; Altinpinar, S.; Altsybeev, I.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Anson, C.; Anti?i?, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arbor, N.; Arcelli, S.; Arend, A.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Arslandok, M.; Asryan, A.; Augustinus, A.; Averbeck, R.; Awes, T. C.; Äystö, J.; Azmi, M. D.; Bach, M.; Badalŕ, A.; Baek, Y. W.; Bailhache, R.; Bala, R.; Baldini Ferroli, R.; Baldisseri, A.; Baltasar Dos Santos Pedrosa, F.; Bán, J.; Baral, R. C.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartke, J.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batyunya, B.; Baumann, C.; Bearden, I. G.; Beck, H.; Behera, N. K.; Belikov, I.; Bellini, F.; Bellwied, R.; Belmont-Moreno, E.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bergognon, A. A. E.; Berzano, D.; Betev, L.; Bhasin, A.; Bhati, A. K.; Bhom, J.; Bianchi, N.; Bianchi, L.; Biel?ík, J.; Biel?íková, J.; Bilandzic, A.; Bjelogrlic, S.; Blanco, F.; Blanco, F.; Blau, D.; Blume, C.; Boccioli, M.; Böttger, S.; Bogdanov, A.; Břggild, H.; Bogolyubsky, M.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Bossú, F.; Botje, M.; Botta, E.; Braidot, E.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Browning, T. A.; Broz, M.; Brun, R.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Busch, O.; Buthelezi, Z.; Caffarri, D.; Cai, X.; Caines, H.; Calvo Villar, E.; Camerini, P.; Canoa Roman, V.; Cara Romeo, G.; Carena, F.; Carena, W.; Carlin Filho, N.; Carminati, F.; Casanova Díaz, A.; Castillo Castellanos, J.; Castillo Hernandez, J. F.; Casula, E. A. R.; Catanescu, V.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chawla, I.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Coccetti, F.; Colamaria, F.; Colella, D.; Collu, A.; Conesa Balbastre, G.; Conesa del Valle, Z.; Connors, M. E.; Contin, G.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortese, P.; Cortés Maldonado, I.; Cosentino, M. R.; Costa, F.; Cotallo, M. E.; Crescio, E.; Crochet, P.; Cruz Alaniz, E.; Cuautle, E.; Cunqueiro, L.; Dainese, A.; Dalsgaard, H. H.; Danu, A.; Das, D.; Das, K.; Das, S.; Das, I.; Dash, A.; Dash, S.; De, S.; de Barros, G. O. V.; De Caro, A.; de Cataldo, G.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; Delagrange, H.; Deloff, A.; De Marco, N.; Dénes, E.; De Pasquale, S.; Deppman, A.; D Erasmo, G.; de Rooij, R.; Diaz Corchero, M. A.; Di Bari, D.; Dietel, T.; Di Giglio, C.; Di Liberto, S.; Di Mauro, A.; Di Nezza, P.; Diviŕ, R.; Djuvsland, Ř.; Dobrin, A.; Dobrowolski, T.; Dönigus, B.; Dordic, O.; Driga, O.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Dutta Majumdar, A. K.; Dutta Majumdar, M. R.; Elia, D.; Emschermann, D.; Engel, H.; Erazmus, B.; Erdal, H. A.; Espagnon, B.; Estienne, M.; Esumi, S.; Evans, D.; Eyyubova, G.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fearick, R.; Fehlker, D.; Feldkamp, L.; Felea, D.; Feliciello, A.; Fenton-Olsen, B.; Feofilov, G.; Fernández Téllez, A.; Ferretti, A.; Festanti, A.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Fusco Girard, M.; Gaardhřje, J. J.; Gagliardi, M.; Gago, A.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Garabatos, C.; Garcia-Solis, E.; Garishvili, I.; Gerhard, J.; Germain, M.; Geuna, C.; Gheata, M.; Gheata, A.; Ghosh, P.; Gianotti, P.; Girard, M. R.; Giubellino, P.; Gladysz-Dziadus, E.; Glässel, P.; Gomez, R.; Ferreiro, E. G.; González-Trueba, L. H.; González-Zamora, P.; Gorbunov, S.; Goswami, A.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Grajcarek, R.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, S.; Grigoryan, A.; Grinyov, B.; Grion, N.; Gros, P.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerra Gutierrez, C.; Guerzoni, B.; Guilbaud, M.; Gulbrandsen, K.; Gulkanyan, H.; Gunji, T.; Gupta, R.

    2013-05-01

    The ALICE Collaboration at the CERN Large Hadron Collider reports the first measurement of the inclusive differential jet cross section at mid-rapidity in pp collisions at ?{s}=2.76 TeV, with integrated luminosity of 13.6 nb-1. Jets are measured over the transverse momentum range 20 to 125 GeV/c and are corrected to the particle level. Calculations based on Next-to-Leading Order perturbative QCD are in good agreement with the measurements. The ratio of inclusive jet cross sections for jet radii R=0.2 and R=0.4 is reported, and is also well reproduced by a Next-to-Leading Order perturbative QCD calculation when hadronization effects are included.

  12. Measurements of the Angular Distributions of Muons from ? Decays in pp? Collisions at ?s=1.96 TeV

    SciTech Connect

    Aaltonen, T.; Álvarez González, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bisello, D.; Bizjak, I.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H. S.; Burkett, K.; Busetto, G.; Bussey, P.; Buzatu, A.; Calamba, A.; Calancha, C.; Camarda, S.; Campanelli, M.; Campbell, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Carron, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Chlebana, F.; Cho, K.; Chokheli, D.; Chung, W. H.; Chung, Y. S.; Ciocci, M. A.; Clark, A.; Clarke, C.; Compostella, G.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Crescioli, F.; Cuevas, J.; Culbertson, R.; Dagenhart, D.; d’Ascenzo, N.; Datta, M.; de Barbaro, P.; Dell’Orso, M.; Demortier, L.; Deninno, M.; Devoto, F.; d’Errico, M.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; D’Onofrio, M.; Donati, S.; Dong, P.; Dorigo, M.; Dorigo, T.; Ebina, K.; Elagin, A.; Eppig, A.; Erbacher, R.; Errede, S.; Ershaidat, N.; Eusebi, R.; Farrington, S.; Feindt, M.; Fernandez, J. P.; Field, R.; Flanagan, G.; Forrest, R.; Frank, M. J.; Franklin, M.; Freeman, J. C.; Funakoshi, Y.; Furic, I.; Gallinaro, M.; Garcia, J. E.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Giannetti, P.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Goldschmidt, N.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Grinstein, S.; Grosso-Pilcher, C.; Group, R. C.; Guimaraes da Costa, J.; Hahn, S. R.; Halkiadakis, E.; Hamaguchi, A.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, D.; Hare, M.; Harr, R. F.; Hatakeyama, K.; Hays, C.; Heck, M.; Heinrich, J.; Herndon, M.; Hewamanage, S.; Hocker, A.; Hopkins, W.; Horn, D.; Hou, S.; Hughes, R. E.; Hurwitz, M.; Husemann, U.; Hussain, N.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jindariani, S.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kamon, T.; Karchin, P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Khotilovich, V.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. B.; Kim, S. H.; Kim, Y. K.; Kim, Y. J.; Kimura, N.; Kirby, M.; Klimenko, S.; Knoepfel, K.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Krop, D.; Kruse, M.; Krutelyov, V.; Kuhr, T.; Kurata, M.; Kwang, S.; Laasanen, A. T.; Lami, S.; Lammel, S.; Lancaster, M.; Lander, R. L.; Lannon, K.; Lath, A.; Latino, G.; LeCompte, T.; Lee, E.; Lee, H. S.; Lee, J. S.; Lee, S. W.; Leo, S.; Leone, S.; Lewis, J. D.; Limosani, A.; Lin, C.-J.; Lindgren, M.; Lipeles, E.; Lister, A.; Litvintsev, D. O.; Liu, C.; Liu, H.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maeshima, K.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Margaroli, F.; Marino, C.; Martínez, M.; Mastrandrea, P.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McFarland, K. S.; McIntyre, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Mondragon, M. N.; Moon, C. S.; Moore, R.; Morello, M. J.; Morlock, J.; Movilla Fernandez, P.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Neubauer, M. S.; Nielsen, J.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagan Griso, S.; Pagliarone, C.; Palencia, E.; Papadimitriou, V.; Paramonov, A. A.; Patrick, J.; Pauletta, G.; Paulini, M.; Paus, C.; Pellett, D. E.; Penzo, A.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Prokoshin, F.; Pranko, A.; Ptohos, F.; Punzi, G.; Rahaman, A.; Ramakrishnan, V.; Ranjan, N.; Redondo, I.; Renton, P.; Rescigno, M.; Riddick, T.; Rimondi, F.; Ristori, L.; Robson, A.; Rodrigo, T.; Rodriguez, T.; Rogers, E.; Rolli, S.; Roser, R.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Safonov, A.; Sakumoto, W. K.

    2012-04-01

    The angular distributions of muons from ?(1S,2S,3S)????? decays are measured using data from pp? collisions at ?s=1.96 TeV corresponding to an integrated luminosity of 6.7 fb?š and collected with the CDF II detector at the Fermilab Tevatron. This analysis is the first to report the full angular distributions as functions of transverse momentum pT for ? mesons in both the Collins-Soper and s-channel helicity frames. This is also the first measurement of the spin alignment of ?(3S) mesons. Within the kinematic range of ? rapidity |y|<0.6 and pT up to 40 GeV/c, the angular distributions are found to be nearly isotropic.

  13. Measurement of B_{c}^{+} Production in Proton-Proton Collisions at sqrt[s]=8??TeV.

    PubMed

    Aaij, R; Adeva, B; Adinolfi, M; Affolder, A; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Anderson, J; Andreassen, R; Andreotti, M; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Batozskaya, V; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjřrnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Borsato, M; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; Brett, D; Britsch, M; Britton, T; Brodzicka, J; Brook, N H; Brown, H; Bursche, A; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Campana, P; Campora Perez, D; Capriotti, L; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cenci, R; Charles, M; Charpentier, Ph; Chefdeville, M; Chen, S; Cheung, S-F; Chiapolini, N; Chrzaszcz, M; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collazuol, G; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Corvo, M; Counts, I; Couturier, B; Cowan, G A; Craik, D C; Crocombe, A C; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Dalseno, J; David, P; David, P N Y; Davis, A; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Dean, C-T; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dijkstra, H; Donleavy, S; Dordei, F; Dorigo, M; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dreimanis, K; Dujany, G; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Ely, S; Esen, S; Evans, H-M; Evans, T; Falabella, A; Färber, C; Farinelli, C; Farley, N; Farry, S; Fay, R; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fol, P; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Fu, J; Furfaro, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; García Pardińas, J; Garofoli, J; Garra Tico, J; Garrido, L; Gascon, D; Gaspar, C; Gauld, R; Gavardi, L; Gazzoni, G; Geraci, A; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianelle, A; Gianě, S; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grillo, L; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hoballah, M; Hombach, C; Hulsbergen, W; Hunt, P; Hussain, N; Hutchcroft, D; Hynds, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jaton, P; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Karodia, S; Kelsey, M; Kenyon, I R; Ketel, T; Khanji, B; Khurewathanakul, C; Klaver, S; Klimaszewski, K; Kochebina, O; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kurek, K; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanfranchi, G; Langenbruch, C; Langhans, B; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefčvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Likhomanenko, T; Liles, M; Lindner, R; Linn, C; Lionetto, F; Liu, B; Lohn, S; Longstaff, I; Lopes, J H; Lopez-March, N; Lowdon, P; Lucchesi, D; Luo, H; Lupato, A; Luppi, E; Lupton, O; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Malinin, A; Manca, G; Mancinelli, G; Mapelli, A; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marino, P; Märki, R; Marks, J

    2015-04-01

    Production of B_{c}^{+} mesons in proton-proton collisions at a center-of-mass energy of 8 TeV is studied with data corresponding to an integrated luminosity of 2.0??fb^{-1} recorded by the LHCb experiment. The ratio of production cross sections times branching fractions between the B_{c}^{+}?J/??^{+} and B^{+}?J/?K^{+} decays is measured as a function of transverse momentum and rapidity in the regions 0range is measured to be (0.683ą0.018ą0.009)%, where the first uncertainty is statistical and the second systematic. PMID:25884121

  14. Search for three-jet resonances in pp collisions at square root(s)=7??TeV.

    PubMed

    Chatrchyan, S; Khachatryan, V; Sirunyan, A M; Tumasyan, A; Adam, W; Bergauer, T; Dragicevic, M; Erö, J; Fabjan, C; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hänsel, S; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kiesenhofer, W; Krammer, M; Liko, D; Mikulec, I; Pernicka, M; Rahbaran, B; Rohringer, H; Schöfbeck, R; Strauss, J; Taurok, A; Teischinger, F; Wagner, P; Waltenberger, W; Walzel, G; Widl, E; Wulz, C-E; Mossolov, V; Shumeiko, N; Suarez Gonzalez, J; Bansal, S; Benucci, L; De Wolf, E A; Janssen, X; Maes, T; Mucibello, L; Ochesanu, S; Roland, B; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Blekman, F; Blyweert, S; D'Hondt, J; Devroede, O; Gonzalez Suarez, R; Kalogeropoulos, A; Maes, M; Van Doninck, W; Van Mulders, P; Van Onsem, G P; Villella, I; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Gay, A P R; Hammad, G H; Hreus, T; Marage, P E; Raval, A; Thomas, L; Vander Velde, C; Vanlaer, P; Adler, V; Cimmino, A; Costantini, S; Grunewald, M; Klein, B; Lellouch, J; Marinov, A; McCartin, J; Ryckbosch, D; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Walsh, S; Zaganidis, N; Basegmez, S; Bruno, G; Caudron, J; Ceard, L; Cortina Gil, E; De Jeneret, J De Favereau; Delaere, C; Favart, D; Giammanco, A; Grégoire, G; Hollar, J; Lemaitre, V; Liao, J; Militaru, O; Nuttens, C; Ovyn, S; Pagano, D; Pin, A; Piotrzkowski, K; Schul, N; Beliy, N; Caebergs, T; Daubie, E; Alves, G A; Brito, L; Damiao, D De Jesus; Pol, M E; Souza, M H G; Aldá Júnior, W L; Carvalho, W; Da Costa, E M; Martins, C De Oliveira; De Souza, S Fonseca; Mundim, L; Nogima, H; Oguri, V; Da Silva, W L Prado; Santoro, A; Do Amaral, S M Silva; Sznajder, A; Bernardes, C A; Dias, F A; Costa, T Dos Anjos; Tomei, T R Fernandez Perez; Gregores, E M; Lagana, C; Marinho, F; Mercadante, P G; Novaes, S F; Padula, Sandra S; Darmenov, N; Genchev, V; Iaydjiev, P; Piperov, S; Rodozov, M; Stoykova, S; Sultanov, G; Tcholakov, V; Trayanov, R; Dimitrov, A; Hadjiiska, R; Karadzhinova, A; Kozhuharov, V; Litov, L; Mateev, M; Pavlov, B; Petkov, P; Bian, J G; Chen, G M; Chen, H S; Jiang, C H; Liang, D; Liang, S; Meng, X; Tao, J; Wang, J; Wang, J; Wang, X; Wang, Z; Xiao, H; Xu, M; Zang, J; Zhang, Z; Ban, Y; Guo, S; Guo, Y; Li, W; Mao, Y; Qian, S J; Teng, H; Zhu, B; Zou, W; Cabrera, A; Gomez Moreno, B; Ocampo Rios, A A; Osorio Oliveros, A F; Sanabria, J C; Godinovic, N; Lelas, D; Lelas, K; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Brigljevic, V; Duric, S; Kadija, K; Morovic, S; Attikis, A; Galanti, M; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Finger, M; Finger, M; Assran, Y; Kamel, A Ellithi; Khalil, S; Mahmoud, M A; Hektor, A; Kadastik, M; Müntel, M; Raidal, M; Rebane, L; Tiko, A; Azzolini, V; Eerola, P; Fedi, G; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Tuominen, E; Tuominiemi, J; Tuovinen, E; Ungaro, D; Wendland, L; Banzuzi, K; Karjalainen, A; Korpela, A; Tuuva, T; Sillou, D; Besancon, M; Choudhury, S; Dejardin, M; Denegri, D; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Gentit, F X; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Shreyber, I; Titov, M; Verrecchia, P; Baffioni, S; Beaudette, F; Benhabib, L; Bianchini, L; Bluj, M; Broutin, C; Busson, P; Charlot, C; Dahms, T; Dobrzynski, L; Elgammal, S; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Mironov, C; Ochando, C; Paganini, P; Sabes, D; Salerno, R; Sirois, Y; Thiebaux, C; Wyslouch, B; Zabi, A; Agram, J-L; Andrea, J; Bloch, D; Bodin, D; Brom, J-M; Cardaci, M; Chabert, E C; Collard, C; Conte, E; Drouhin, F; Ferro, C; Fontaine, J-C; Gelé, D; Goerlach, U; Greder, S; Juillot, P; Karim, M; Le Bihan, A-C; Mikami, Y; Van Hove, P; Fassi, F; Mercier, D; Baty, C; Beauceron, S; Beaupere, N; Bedjidian, M; Bondu, O; Boudoul, G; Boumediene, D; Brun, H; Chasserat, J; Chierici, R; Contardo, D; Depasse, P; El Mamouni, H; Fay, J; Gascon, S; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Mirabito, L; Perries, S; Sordini, V; Tosi, S; Tschudi, Y; Verdier, P; Lomidze, D; Anagnostou, G; Beranek, S; Edelhoff, M; Feld, L; Heracleous, N; Hindrichs, O; Jussen, R; Klein, K; Merz, J; Mohr, N; Ostapchuk, A; Perieanu, A; Raupach, F; Sammet, J; Schael, S; Sprenger, D; Weber, H; Weber, M; Wittmer, B; Ata, M; Dietz-Laursonn, E; Erdmann, M; Hebbeker, T; Heidemann, C; Hinzmann, A; Hoepfner, K; Klimkovich, T; Klingebiel, D; Kreuzer, P; Lanske, D; Lingemann, J; Magass, C; Merschmeyer, M; Meyer, A; Papacz, P; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Steggemann, J; Teyssier, D; Bontenackels, M; Davids, M; Duda, M; Flügge, G; Geenen, H; Giffels, M; Haj Ahmad, W; Heydhausen, D; Hoehle, F; Kargoll, B; Kress, T; Kuessel, Y; Linn, A

    2011-09-01

    A search for three-jet hadronic resonance production in pp collisions at a center-of-mass energy of 7 TeV has been conducted by the CMS Collaboration at the LHC, using a data sample corresponding to an integrated luminosity of 35??pb(-1). Events with high jet multiplicity and a large scalar sum of jet transverse momenta are analyzed using a signature-based approach. The number of expected standard model background events is found to be in good agreement with the observed events. Limits on the cross section times branching ratio are set in a model of gluino pair production with an R-parity-violating decay to three quarks, and the data rule out such particles within the mass range of 200 to 280??GeV/c2. PMID:21981492

  15. Measurement of J\\/psi and psi\\\\(2S\\\\) Polarization in ppŻ Collisions at &surd;s = 1.8 TeV

    Microsoft Academic Search

    T. Affolder; H. Akimoto; A. Akopian; M. G. Albrow; P. Amaral; S. R. Amendolia; D. Amidei; K. Anikeev; J. Antos; G. Apollinari; T. Arisawa; T. Asakawa; W. Ashmanskas; M. Atac; F. Azfar; P. Azzi-Bacchetta; N. Bacchetta; M. W. Bailey; S. Bailey; P. de Barbaro; A. Barbaro-Galtieri; V. E. Barnes; B. A. Barnett; M. Barone; G. Bauer; F. Bedeschi; S. Belforte; G. Bellettini; J. Bellinger; D. Benjamin; J. Bensinger; A. Beretvas; J. P. Berge; J. Berryhill; B. Bevensee; A. Bhatti; M. Binkley; D. Bisello; R. E. Blair; C. Blocker; K. Bloom; B. Blumenfeld; S. R. Blusk; A. Bocci; A. Bodek; W. Bokhari; G. Bolla; Y. Bonushkin; D. Bortoletto; J. Boudreau; A. Brandl; S. van den Brink; C. Bromberg; M. Brozovic; N. Bruner; E. Buckley-Geer; J. Budagov; H. S. Budd; K. Burkett; G. Busetto; A. Byon-Wagner; K. L. Byrum; P. Calafiura; M. Campbell; W. Carithers; J. Carlson; D. Carlsmith; J. Cassada; A. Castro; D. Cauz; A. Cerri; A. W. Chan; P. S. Chang; P. T. Chang; J. Chapman; C. Chen; Y. C. Chen; M.-T. Cheng; M. Chertok; G. Chiarelli; I. Chirikov-Zorin; G. Chlachidze; F. Chlebana; L. Christofek; M. L. Chu; C. I. Ciobanu; A. G. Clark; A. Connolly; J. Conway; J. Cooper; M. Cordelli; J. Cranshaw; D. Cronin-Hennessy; R. Cropp; R. Culbertson; D. Dagenhart; F. Dejongh; S. dell'Agnello; M. dell'Orso; R. Demina; L. Demortier; M. Deninno; P. F. Derwent; T. Devlin; J. R. Dittmann; S. Donati; J. Done; T. Dorigo; N. Eddy; K. Einsweiler; J. E. Elias; E. Engels; W. Erdmann; D. Errede; S. Errede; Q. Fan; R. G. Feild; C. Ferretti; R. D. Field; I. Fiori; B. Flaugher; G. W. Foster; M. Franklin; J. Freeman; J. Friedman; Y. Fukui; I. Furic; S. Galeotti; M. Gallinaro; T. Gao; M. Garcia-Sciveres; A. F. Garfinkel; P. Gatti; C. Gay; S. Geer; D. W. Gerdes; P. Giannetti; P. Giromini; V. Glagolev; M. Gold; J. Goldstein; A. Gordon; A. T. Goshaw; Y. Gotra; K. Goulianos; C. Green; L. Groer; C. Grosso-Pilcher; M. Guenther; G. Guillian; J. Guimaraes da Costa; R. S. Guo; R. M. Haas; C. Haber; E. Hafen; S. R. Hahn; C. Hall; T. Handa; R. Handler; W. Hao; F. Happacher; K. Hara; A. D. Hardman; R. M. Harris; F. Hartmann; K. Hatakeyama; J. Hauser; J. Heinrich; A. Heiss; M. Herndon; B. Hinrichsen; K. D. Hoffman; C. Holck; R. Hollebeek; L. Holloway; R. Hughes; J. Huston; J. Huth; H. Ikeda; J. Incandela; G. Introzzi; J. Iwai; Y. Iwata; E. James; H. Jensen; M. Jones; U. Joshi; H. Kambara; T. Kamon; T. Kaneko; K. Karr; H. Kasha; Y. Kato; T. A. Keaffaber; K. Kelley; M. Kelly; R. D. Kennedy; R. Kephart; D. Khazins; T. Kikuchi; B. Kilminster; M. Kirby; M. Kirk; B. J. Kim; D. H. Kim; H. S. Kim; M. J. Kim; S. H. Kim; Y. K. Kim; L. Kirsch; S. Klimenko; P. Koehn; A. Köngeter; K. Kondo; J. Konigsberg; K. Kordas; A. Korn; A. Korytov; E. Kovacs; J. Kroll; M. Kruse; S. E. Kuhlmann; K. Kurino; T. Kuwabara; A. T. Laasanen; N. Lai; S. Lami; S. Lammel; J. I. Lamoureux; M. Lancaster; G. Latino; T. Lecompte; A. M. Lee; K. Lee; S. Leone; J. D. Lewis; M. Lindgren; T. M. Liss; J. B. Liu; Y. C. Liu; N. Lockyer; J. Loken; M. Loreti; D. Lucchesi; P. Lukens; S. Lusin; L. Lyons; J. Lys; R. Madrak; K. Maeshima; P. Maksimovic; L. Malferrari; M. Mangano; M. Mariotti; G. Martignon; A. Martin; J. A. Matthews; J. Mayer; P. Mazzanti; K. S. McFarland; P. McIntyre; E. McKigney; M. Menguzzato; A. Menzione; C. Mesropian; T. Miao; R. Miller; J. S. Miller; H. Minato; S. Miscetti; M. Mishina; G. Mitselmakher; N. Moggi; E. Moore; R. Moore; Y. Morita; M. Mulhearn; A. Mukherjee; T. Muller; A. Munar; P. Murat; S. Murgia; M. Musy; J. Nachtman; S. Nahn; H. Nakada; T. Nakaya; I. Nakano; C. Nelson; D. Neuberger; C. Newman-Holmes; C.-Y. P. Ngan; P. Nicolaidi; H. Niu; L. Nodulman; A. Nomerotski; S. H. Oh; T. Ohmoto; T. Ohsugi; R. Oishi; T. Okusawa; J. Olsen; W. Orejudos; C. Pagliarone; F. Palmonari; R. Paoletti; V. Papadimitriou; S. P. Pappas; D. Partos; J. Patrick; G. Pauletta; M. Paulini; C. Paus; L. Pescara; T. J. Phillips; G. Piacentino; K. T. Pitts; R. Plunkett; A. Pompos; L. Pondrom; G. Pope; M. Popovic; F. Prokoshin; J. Proudfoot; F. Ptohos; O. Pukhov; G. Punzi; K. Ragan; A. Rakitine; D. Reher; A. Reichold; W. Riegler; A. Ribon; F. Rimondi; L. Ristori; W. J. Robertson; A. Robinson; T. Rodrigo; S. Rolli; L. Rosenson; R. Roser; R. Rossin; A. Safonov; W. K. Sakumoto; D. Saltzberg; A. Sansoni; L. Santi; H. Sato; P. Savard; P. Schlabach; E. E. Schmidt; M. P. Schmidt; M. Schmitt; L. Scodellaro; A. Scott; A. Scribano; S. Segler; S. Seidel; Y. Seiya; A. Semenov; F. Semeria; T. Shah; M. D. Shapiro; P. F. Shepard; T. Shibayama; M. Shimojima; M. Shochet; J. Siegrist; G. Signorelli; A. Sill; P. Sinervo; P. Singh; A. J. Slaughter; K. Sliwa; C. Smith; F. D. Snider; A. Solodsky; J. Spalding; T. Speer; P. Sphicas; F. Spinella; M. Spiropulu; L. Spiegel; J. Steele; A. Stefanini; J. Strologas; F. Strumia; D. Stuart; K. Sumorok; T. Suzuki; T. Takano; R. Takashima; K. Takikawa; P. Tamburello; M. Tanaka; B. Tannenbaum

    2000-01-01

    We have measured the polarization of J\\/psi and psi\\\\(2S\\\\) mesons produced in ppŻ collisions at s = 1.8 TeV, using data collected at the Collider Detector at Fermilab during 1992-1995. The polarization of promptly produced J\\/psi [psi\\\\(2S\\\\)] mesons is isolated from those produced in B-hadron decay, and measured over the kinematic range 4 [5.5]~12

  16. Measurement of the inclusive isolated prompt photon cross section in pp collisions at ?s=7 TeV with the ATLAS detector

    DOE PAGESBeta

    Aad, G.; Abbott, B.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; et al

    2011-03-01

    A measurement of the cross section for the inclusive production of isolated prompt photons in pp collisions at a center-of-mass energy ?s=7 TeV is presented. The measurement covers the pseudorapidity ranges |??|?|?T-1, collected with the ATLAS detector at the Large Hadron Collider. Photon candidates are identified by combining information from the calorimeters and from the inner tracker. Residual background in the selected sample is estimated from data based on the observed distribution of the transverse isolation energy in a narrowmore ťcone around the photon candidate. The results are compared to predictions from next-to-leading-order perturbative QCD calculations.Ť less

  17. Measurement of electrons from semileptonic heavy-flavor hadron decays in pp collisions at $\\sqrt{s} = 2.76$ TeV

    E-print Network

    The ALICE Collaboration

    2014-05-16

    The $p_{\\rm T}$-differential production cross section of electrons from semileptonic decays of heavy-flavor hadrons has been measured at mid-rapidity in proton-proton collisions at $\\sqrt{s} = 2.76$ TeV in the transverse momentum range 0.5 < $p_{\\rm T}$ < 12 GeV/$c$ with the ALICE detector at the LHC. The analysis was performed using minimum bias events and events triggered by the electromagnetic calorimeter. Predictions from perturbative QCD calculations agree with the data within the theoretical and experimental uncertainties.

  18. Measurement of the forward-backward asymmetry in ?b0 and ?Żb0 baryon production in p p Ż collisions at ?{s }=1.96 TeV

    NASA Astrophysics Data System (ADS)

    Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Agnew, J. P.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Askew, A.; Atkins, S.; Augsten, K.; Avila, C.; Badaud, F.; Bagby, L.; Baldin, B.; Bandurin, D. V.; Banerjee, S.; Barberis, E.; Baringer, P.; Bartlett, J. F.; Bassler, U.; Bazterra, V.; Bean, A.; Begalli, M.; Bellantoni, L.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besançon, M.; Beuselinck, R.; Bhat, P. C.; Bhatia, S.; Bhatnagar, V.; Blazey, G.; Blessing, S.; Bloom, K.; Boehnlein, A.; Boline, D.; Boos, E. E.; Borissov, G.; Borysova, M.; Brandt, A.; Brandt, O.; Brock, R.; Bross, A.; Brown, D.; Bu, X. B.; Buehler, M.; Buescher, V.; Bunichev, V.; Burdin, S.; Buszello, C. P.; Camacho-Pérez, E.; Casey, B. C. K.; Castilla-Valdez, H.; Caughron, S.; Chakrabarti, S.; Chan, K. M.; Chandra, A.; Chapon, E.; Chen, G.; Cho, S. W.; Choi, S.; Choudhary, B.; Cihangir, S.; Claes, D.; Clutter, J.; Cooke, M.; Cooper, W. E.; Corcoran, M.; Couderc, F.; Cousinou, M.-C.; Cutts, D.; Das, A.; Davies, G.; de Jong, S. J.; De La Cruz-Burelo, E.; Déliot, F.; Demina, R.; Denisov, D.; Denisov, S. P.; Desai, S.; Deterre, C.; DeVaughan, K.; Diehl, H. T.; Diesburg, M.; Ding, P. F.; Dominguez, A.; Dubey, A.; Dudko, L. V.; Duperrin, A.; Dutt, S.; Eads, M.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Enari, Y.; Evans, H.; Evdokimov, A.; Evdokimov, V. N.; Fauré, A.; Feng, L.; Ferbel, T.; Fiedler, F.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Fortner, M.; Fox, H.; Fuess, S.; Garbincius, P. H.; Garcia-Bellido, A.; García-González, J. A.; Gavrilov, V.; Geng, W.; Gerber, C. E.; Gershtein, Y.; Ginther, G.; Gogota, O.; Golovanov, G.; Grannis, P. D.; Greder, S.; Greenlee, H.; Grenier, G.; Gris, Ph.; Grivaz, J.-F.; Grohsjean, A.; Grünendahl, S.; Grünewald, M. W.; Guillemin, T.; Gutierrez, G.; Gutierrez, P.; Haley, J.; Han, L.; Harder, K.; Harel, A.; Hauptman, J. M.; Hays, J.; Head, T.; Hebbeker, T.; Hedin, D.; Hegab, H.; Heinson, A. P.; Heintz, U.; Hensel, C.; Heredia-De La Cruz, I.; Herner, K.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hoang, T.; Hobbs, J. D.; Hoeneisen, B.; Hogan, J.; Hohlfeld, M.; Holzbauer, J. L.; Howley, I.; Hubacek, Z.; Hynek, V.; Iashvili, I.; Ilchenko, Y.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Jaffré, M.; Jayasinghe, A.; Jeong, M. S.; Jesik, R.; Jiang, P.; Johns, K.; Johnson, E.; Johnson, M.; Jonckheere, A.; Jonsson, P.; Joshi, J.; Jung, A. W.; Juste, A.; Kajfasz, E.; Karmanov, D.; Katsanos, I.; Kaur, M.; Kehoe, R.; Kermiche, S.; Khalatyan, N.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. N.; Kiselevich, I.; Kohli, J. M.; Kozelov, A. V.; Kraus, J.; Kumar, A.; Kupco, A.; Kur?a, T.; Kuzmin, V. A.; Lammers, S.; Lebrun, P.; Lee, H. S.; Lee, S. W.; Lee, W. M.; Lei, X.; Lellouch, J.; Li, D.; Li, H.; Li, L.; Li, Q. Z.; Lim, J. K.; Lincoln, D.; Linnemann, J.; Lipaev, V. V.; Lipton, R.; Liu, H.; Liu, Y.; Lobodenko, A.; Lokajicek, M.; Lopes de Sa, R.; Luna-Garcia, R.; Lyon, A. L.; Maciel, A. K. A.; Madar, R.; Magańa-Villalba, R.; Malik, S.; Malyshev, V. L.; Mansour, J.; Martínez-Ortega, J.; McCarthy, R.; McGivern, C. L.; Meijer, M. M.; Melnitchouk, A.; Menezes, D.; Mercadante, P. G.; Merkin, M.; Meyer, A.; Meyer, J.; Miconi, F.; Mondal, N. K.; Mulhearn, M.; Nagy, E.; Narain, M.; Nayyar, R.; Neal, H. A.; Negret, J. P.; Neustroev, P.; Nguyen, H. T.; Nunnemann, T.; Orduna, J.; Osman, N.; Osta, J.; Pal, A.; Parashar, N.; Parihar, V.; Park, S. K.; Partridge, R.; Parua, N.; Patwa, A.; Penning, B.; Perfilov, M.; Peters, Y.; Petridis, K.; Petrillo, G.; Pétroff, P.; Pleier, M.-A.; Podstavkov, V. M.; Popov, A. V.; Prewitt, M.; Price, D.; Prokopenko, N.; Qian, J.; Quadt, A.; Quinn, B.; Ratoff, P. N.; Razumov, I.; Ripp-Baudot, I.; Rizatdinova, F.; Rominsky, M.; Ross, A.; Royon, C.; Rubinov, P.; Ruchti, R.; Sajot, G.; Sánchez-Hernández, A.; Sanders, M. P.; Santos, A. S.; Savage, G.; Savitskyi, M.; Sawyer, L.; Scanlon, T.; Schamberger, R. D.; Scheglov, Y.; Schellman, H.; Schwanenberger, C.; Schwienhorst, R.; Sekaric, J.; Severini, H.; Shabalina, E.; Shary, V.; Shaw, S.; Shchukin, A. A.; Simak, V.; Skubic, P.; Slattery, P.; Smirnov, D.; Snow, G. R.; Snow, J.; Snyder, S.; Söldner-Rembold, S.; Sonnenschein, L.; Soustruznik, K.; Stark, J.; Stoyanova, D. A.; Strauss, M.; Suter, L.; Svoisky, P.; Titov, M.; Tokmenin, V. V.; Tsai, Y.-T.; Tsybychev, D.; Tuchming, B.; Tully, C.; Uvarov, L.; Uvarov, S.; Uzunyan, S.; Van Kooten, R.; van Leeuwen, W. M.; Varelas, N.; Varnes, E. W.; Vasilyev, I. A.; Verkheev, A. Y.; Vertogradov, L. S.; Verzocchi, M.; Vesterinen, M.; Vilanova, D.; Vokac, P.; Wahl, H. D.; Wang, M. H. L. S.; Warchol, J.; Watts, G.; Wayne, M.; Weichert, J.; Welty-Rieger, L.; Williams, M. R. J.; Wilson, G. W.; Wobisch, M.; Wood, D. R.; Wyatt, T. R.; Xie, Y.; Yamada, R.; Yang, S.; Yasuda, T.; Yatsunenko, Y. A.; Ye, W.

    2015-04-01

    We measure the forward-backward asymmetry in the production of ?b0 and ?Żb0 baryons as a function of rapidity in p p Ż collisions at ?{s }=1.96 TeV using 10.4 fb-1 of data collected with the D0 detector at the Fermilab Tevatron collider. The asymmetry is determined by the preference of ?b0 or ?Żb0 particles to be produced in the direction of the beam protons or antiprotons, respectively. The measured asymmetry integrated over rapidity y in the range 0.1 <|y |<2.0 is A =0.04 ą0.07 (stat)ą0.02 (syst).

  19. Measurement of the Inclusive Jet Cross Section in ppbar Interactions at sqrt{s}=1.96 TeV Using a Cone-based Jet Algorithm

    E-print Network

    CDF Collaboration

    2006-10-29

    We present a measurement of the inclusive jet cross section in ppbar interactions at sqrt{s}=1.96 TeV using 385 pb^{-1} of data collected with the CDF II detector at the Fermilab Tevatron. The results are obtained using an improved cone-based jet algorithm (Midpoint). The data cover the jet transverse momentum range from 61 to 620 GeV/c, extending the reach by almost 150 GeV/c compared with previous measurements at the Tevatron. The results are in good agreement with next-to-leading order perturbative QCD predictions using the CTEQ6.1M parton distribution functions.

  20. Measurement of the production cross-section of ?(2S) ? J/?(? ? + ? - ) ? + ? - in pp collisions at = 7 TeV at ATLAS

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdel Khalek, S.; Abdinov, O.; Aben, R.; Abi, B.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Agatonovic-Jovin, T.; Aguilar-Saavedra, J. A.; Agustoni, M.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Ĺkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Alimonti, G.; Alio, L.; Alison, J.; Allbrooke, B. M. M.; Allison, L. J.; Allport, P. P.; Almond, J.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Altheimer, A.; Alvarez Gonzalez, B.; Alviggi, M. G.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Anduaga, X. S.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnal, V.; Arnold, H.; Arslan, O.; Artamonov, A.; Artoni, G.; Asai, S.; Asbah, N.; Ashkenazi, A.; Ĺsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Auerbach, B.; Augsten, K.; Aurousseau, M.; Avolio, G.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Bacci, C.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Backus Mayes, J.; Badescu, E.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, S.; Balek, P.; Balli, F.; Banas, E.; Banerjee, Sw.; Bangert, A.; Bannoura, A. A. E.; Bansal, V.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarăes da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Bartsch, V.; Bassalat, A.; Basye, A.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battistin, M.; Bauer, F.; Bawa, H. S.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, S.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, K.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernard, C.; Bernat, P.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertolucci, F.; Bertsche, D.; Besana, M. I.; Besjes, G. J.; Bessidskaia, O.; Bessner, M. F.; Besson, N.; Betancourt, C.; Bethke, S.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Bierwagen, K.; Biesiada, J.; Biglietti, M.; Bilbao De Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Boddy, C. R.; Boehler, M.; Boek, J.; Boek, T. T.; Bogaerts, J. A.; Bogdanchikov, A. G.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Borri, M.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boutouil, S.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozovic-Jelisavcic, I.; Bracinik, J.; Branchini, P.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brazzale, S. F.; Brelier, B.; Brendlinger, K.; Brennan, A. J.; Brenner, R.; Bressler, S.; Bristow, K.; Bristow, T. M.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Bromberg, C.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Brown, G.; Brown, J.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Bryngemark, L.; Buanes, T.

    2014-09-01

    The prompt and non-prompt production cross-sections for ?(2S) mesons are measured using 2.1 fb-1 of pp collision data at a centre-of-mass energy of 7 TeV recorded by the ATLAS experiment at the LHC. The measurement exploits the ?(2S) ? J/?(? ? + ? - ) ? + ? - decay mode, and probes ?(2S) mesons with transverse momenta in the range 10 ? p T < 100 GeV and rapidity | y| < 2 .0. The results are compared to other measurements of ?(2S) production at the LHC and to various theoretical models for prompt and non-prompt quarkonium production. [Figure not available: see fulltext.

  1. J/Psi Elliptic Flow in Pb-Pb Collisions at $\\sqrt{s_{\\rm NN}}$ = 2.76 TeV

    E-print Network

    ALICE Collaboration

    2014-09-13

    We report on the first measurement of inclusive J/$\\psi$ elliptic flow, $v_2$, in heavy-ion collisions at the LHC. The measurement is performed with the ALICE detector in Pb-Pb collisions at $\\sqrt{s_{\\rm NN}} = 2.76$ TeV in the rapidity range $2.5 elliptic flow measurement complements the previously reported ALICE results on the inclusive J/$\\psi$ nuclear modification factor and favors the scenario of a significant fraction of J/$\\psi$ production from charm quarks in a deconfined partonic phase.

  2. Search for the Higgs boson in the H->WW(*)->lvlv decay channel in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    E-print Network

    ATLAS Collaboration

    2012-03-21

    A search for the Higgs boson has been performed in the H->WW->lvlv channel (l=e/mu) with an integrated luminosity of 2.05/fb of pp collisions at sqrt(s) = 7 TeV collected with the ATLAS detector at the Large Hadron Collider. No significant excess of events over the expected background is observed and limits on the Higgs boson production cross section are derived for a Higgs boson mass in the range 110Higgs boson with a mass 145

  3. Measurement of the B0s. Production Cross Section withB0s?J/?? Decays in pp Collisions at ?s=7 TeV

    DOE PAGESBeta

    Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; et al

    2011-09-01

    The B0s differential production cross section is measured as functions of the transverse momentum and rapidity in pp collisions at ?s=7 TeV, using the B0s?J/?? decay, and compared with predictions based on perturbative QCD calculations at next-to-leading order. The data sample, collected by the CMS experiment at the LHC, corresponds to an integrated luminosity of 40 pb?š. The B0s is reconstructed from the decays J/?????? and ??K?K?. The integrated B0s cross section times B0s?J/?? branching fraction in the range 8BT more ťsystematic.Ť less

  4. Production of leading charged particles and leading charged-particle jets at small transverse momenta in pp collisions at sqrt(s)=8 TeV

    E-print Network

    CMS Collaboration

    2015-07-01

    The per-event yield of the highest transverse momentum charged particle and charged-particle jet, integrated above a given pt(min) threshold starting at pt(min)=0.8 and 1 GeV, respectively, is studied in pp collisions at sqrt(s)=8 TeV. The particles and the jets are measured in the pseudorapidity ranges abs(eta)proton, to multiple partonic interactions, and other key aspects of the transition between the soft and hard QCD regimes in hadronic collisions.

  5. Inclusive dimuon and b-quark production cross sections in p{bar p} collisions at {radical}s = 1.8 TeV

    SciTech Connect

    Abachi, S.; Abbott, B.; Abolins, M. [and others

    1995-07-01

    We report on a preliminary measurement of the inclusive dimuon cross section in p{bar p} collisions at {radical}s = 1.8 TeV using the D0 detector at the Fermilab Tevatron. From these results, we extract the inclusive b-quark production cross section for the kinematic range {vert_bar}y{sup b}{vert_bar} < 1.0 and 9 GeV/c < p{sub T}{sup b min} < 25 GeV/c. The difference in azimuthal angle in the transverse plane for dimuon pairs from b{bar b} production is also shown.

  6. Suppression of high transverse momentum D mesons in central Pb--Pb collisions at $\\\\sqrt{s_{NN}}=2.76$ TeV

    Microsoft Academic Search

    Betty Abelev; Jaroslav Adam; Dagmar Adamova; Andrew Marshall Adare; Madan Aggarwal; Gianluca Aglieri Rinella; Andras Gabor Agocs; Andrea Agostinelli; Saul Aguilar Salazar; Zubayer Ahammed; Arshad Ahmad; Nazeer Ahmad; Sang Un Ahn; Alexander Akindinov; Dmitry Aleksandrov; Bruno Alessandro; Jose Ruben Alfaro Molina; Andrea Alici; Anton Alkin; Erick Jonathan Almaraz Avina; Johan Alme; Torsten Alt; Valerio Altini; Sedat Altinpinar; Igor Altsybeev; Cristian Andrei; Anton Andronic; Venelin Anguelov; Jonas Anielski; Tome Anticic; Federico Antinori; Pietro Antonioli; Laurent Bernard Aphecetche; Harald Appelshauser; Nicolas Arbor; Silvia Arcelli; Andreas Arend; Nestor Armesto; Roberta Arnaldi; Tomas Robert Aronsson; Ionut Cristian Arsene; Mesut Arslandok; Andre Augustinus; Ralf Peter Averbeck; Terry Awes; Juha Heikki Aysto; Mohd Danish Azmi; Matthias Jakob Bach; Angela Badala; Yong Wook Baek; Raphaelle Marie Bailhache; Renu Bala; Rinaldo Baldini Ferroli; Alberto Baldisseri; Alain Baldit; Fernando Baltasar Dos Santos Pedrosa; Jaroslav Ban; Rama Chandra Baral; Roberto Barbera; Francesco Barile; Gergely Gabor Barnafoldi; Lee Stuart Barnby; Valerie Barret; Jerzy Gustaw Bartke; Maurizio Basile; Nicole Bastid; Sumit Basu; Bastian Bathen; Guillaume Batigne; Boris Batyunya; Christoph Heinrich Baumann; Ian Gardner Bearden; Hans Beck; Iouri Belikov; Francesca Bellini; Rene Bellwied; Ernesto Belmont-Moreno; Gyula Bencedi; Stefania Beole; Ionela Berceanu; Alexandru Bercuci; Yaroslav Berdnikov; Daniel Berenyi; Dario Berzano; Latchezar Betev; Anju Bhasin; Ashok Kumar Bhati; Jihyun Bhom; Livio Bianchi; Nicola Bianchi; Chiara Bianchin; Jaroslav Bielcik; Jana Bielcikova; Ante Bilandzic; Sandro Bjelogrlic; F Blanco; Dmitry Blau; Christoph Blume; Nicolas Bock; Alexey Bogdanov; Hans Boggild; Mikhail Bogolyubsky; Laszlo Boldizsar; Marek Bombara; Herve Borel; Alexander Borissov; Suvendu Nath Bose; Francesco Bossu; Michiel Botje; Stefan Bottger; Bruno Alexandre Boyer; Ermes Braidot; Peter Braun-Munzinger; Marco Bregant; Timo Gunther Breitner; Tyler Allen Browning; Michal Broz; Rene Brun; Elena Bruna; Giuseppe Eugenio Bruno; Dmitry Budnikov; Henner Buesching; Stefania Bufalino; Kyrylo Bugaiev; Oliver Busch; Edith Zinhle Buthelezi; Diego Caballero Orduna; Davide Caffarri; Xu Cai; Helen Louise Caines; Ernesto Calvo Villar; Paolo Camerini; Veronica Canoa Roman; Giovanni Cara Romeo; Francesco Carena; Wisla Carena; Federico Carminati; Amaya Ofelia Casanova Diaz; Javier Ernesto Castillo Castellanos; Ester Anna Rita Casula; Vasile Catanescu; Costanza Cavicchioli; Cesar Ceballos Sanchez; Jan Cepila; Piergiorgio Cerello; Beomsu Chang; Sylvain Chapeland; Jean-Luc Fernand Charvet; Sukalyan Chattopadhyay; Subhasis Chattopadhyay; Isha Chawla; Michael Gerard Cherney; Cvetan Cheshkov; Brigitte Cheynis; Emilio Chiavassa; Vasco Miguel Chibante Barroso; David Chinellato; Peter Chochula; Marek Chojnacki; Subikash Choudhury; Panagiotis Christakoglou; Christian Holm Christensen; Peter Christiansen; Tatsuya Chujo; Suh-Urk Chung; Corrado Cicalo; Luisa Cifarelli; Federico Cindolo; Jean Willy Andre Cleymans; Fabrizio Coccetti; Fabio Colamaria; Domenico Colella; Gustavo Conesa Balbastre; Zaida Conesa del Valle; Paul Constantin; Giacomo Contin; Jesus Guillermo Contreras; Thomas Michael Cormier; Yasser Corrales Morales; Ismael Cortes Maldonado; Pietro Cortese; Mauro Rogerio Cosentino; Filippo Costa; Manuel Enrique Cotallo; Philippe Crochet; Emilia Cruz Alaniz; Eleazar Cuautle; Leticia Cunqueiro; Ginevra D'Erasmo; Andrea Dainese; Hans Hjersing Dalsgaard; Andrea Danu; Debasish Das; Indranil Das; Kushal Das; Ajay Kumar Dash; Sadhana Dash; Sudipan De; Gabriel de Barros; Annalisa De Caro; Giacinto de Cataldo; Jan de Cuveland; Alessandro De Falco; Daniele De Gruttola; Nora De Marco; Salvatore De Pasquale; Raoul Stefan de Rooij; Eduardo Del Castillo Sanchez; Hugues Delagrange; Andrzej Deloff; Vyacheslav Demanov; Ervin Denes; Airton Deppman; Domenico Di Bari; Carmelo Di Giglio; Sergio Di Liberto; Antonio Di Mauro; Pasquale Di Nezza; Miguel Angel Diaz Corchero; Thomas Dietel; Roberto Divia; Oeystein Djuvsland; Alexandru Florin Dobrin; Tadeusz Antoni Dobrowolski; Isabel Dominguez; Benjamin Donigus; Olja Dordic; Olga Driga; Anand Kumar Dubey; Laurent Ducroux; Pascal Dupieux; AK Dutta Majumdar; Mihir Ranjan Dutta Majumdar; Domenico Elia; David Philip Emschermann; Heiko Engel; Hege Austrheim Erdal; Bruno Espagnon; Magali Danielle Estienne; Shinichi Esumi; David Evans; Gyulnara Eyyubova; Daniela Fabris; Julien Faivre; Davide Falchieri; Alessandra Fantoni; Markus Fasel

    2012-01-01

    The production of the prompt charm mesons $D^0$, $D^+$, $D^{*+}$, and their antiparticles, was measured with the ALICE detector in Pb-Pb collisions at the LHC, at a centre-of-mass energy $\\\\sqrt{s_{NN}}=2.76$ TeV per nucleon--nucleon collision. The $p_t$-differential production yields in the range $2

  7. D$_s^+$ meson production at central rapidity in proton-proton collisions at $\\\\sqrt{s}$ = 7 TeV

    Microsoft Academic Search

    Betty Abelev; Jaroslav Adam; Dagmar Adamova; Andrew Marshall Adare; Madan Aggarwal; Gianluca Aglieri Rinella; Andras Gabor Agocs; Andrea Agostinelli; Saul Aguilar Salazar; Zubayer Ahammed; Nazeer Ahmad; Arshad Ahmad; Sul-Ah Ahn; Sang Un Ahn; Alexander Akindinov; Dmitry Aleksandrov; Bruno Alessandro; Jose Ruben Alfaro Molina; Andrea Alici; Anton Alkin; Erick Jonathan Almaraz Avina; Johan Alme; Torsten Alt; Valerio Altini; Sedat Altinpinar; Igor Altsybeev; Cristian Andrei; Anton Andronic; Venelin Anguelov; Jonas Anielski; Christopher Daniel Anson; Tome Anticic; Federico Antinori; Pietro Antonioli; Laurent Bernard Aphecetche; Harald Appelshauser; Nicolas Arbor; Silvia Arcelli; Andreas Arend; Nestor Armesto; Roberta Arnaldi; Tomas Robert Aronsson; Ionut Cristian Arsene; Mesut Arslandok; Andzhey Asryan; Andre Augustinus; Ralf Peter Averbeck; Terry Awes; Juha Heikki Aysto; Mohd Danish Azmi; Matthias Jakob Bach; Angela Badala; Yong Wook Baek; Raphaelle Marie Bailhache; Renu Bala; Rinaldo Baldini Ferroli; Alberto Baldisseri; Alain Baldit; Fernando Baltasar Dos Santos Pedrosa; Jaroslav Ban; Rama Chandra Baral; Roberto Barbera; Francesco Barile; Gergely Gabor Barnafoldi; Lee Stuart Barnby; Valerie Barret; Jerzy Gustaw Bartke; Maurizio Basile; Nicole Bastid; Sumit Basu; Bastian Bathen; Guillaume Batigne; Boris Batyunya; Christoph Heinrich Baumann; Ian Gardner Bearden; Hans Beck; Nirbhay Kumar Behera; Iouri Belikov; Francesca Bellini; Rene Bellwied; Ernesto Belmont-Moreno; Gyula Bencedi; Stefania Beole; Ionela Berceanu; Alexandru Bercuci; Yaroslav Berdnikov; Daniel Berenyi; Anais Annick Erica Bergognon; Dario Berzano; Latchezar Betev; Anju Bhasin; Ashok Kumar Bhati; Jihyun Bhom; Livio Bianchi; Nicola Bianchi; Chiara Bianchin; Jaroslav Bielcik; Jana Bielcikova; Ante Bilandzic; Sandro Bjelogrlic; F Blanco; Dmitry Blau; Christoph Blume; Marco Boccioli; Nicolas Bock; Stefan Boettger; Alexey Bogdanov; Hans Boggild; Mikhail Bogolyubsky; Laszlo Boldizsar; Marek Bombara; Herve Borel; Alexander Borissov; Suvendu Nath Bose; Francesco Bossu; Michiel Botje; Elena Botta; Bruno Alexandre Boyer; Ermes Braidot; Peter Braun-Munzinger; Marco Bregant; Timo Gunther Breitner; Tyler Allen Browning; Michal Broz; Rene Brun; Elena Bruna; Giuseppe Eugenio Bruno; Dmitry Budnikov; Henner Buesching; Stefania Bufalino; Oliver Busch; Edith Zinhle Buthelezi; Diego Caballero Orduna; Davide Caffarri; Xu Cai; Helen Louise Caines; Ernesto Calvo Villar; Paolo Camerini; Veronica Canoa Roman; Giovanni Cara Romeo; Francesco Carena; Wisla Carena; Nelson Carlin Filho; Federico Carminati; Amaya Ofelia Casanova Diaz; Javier Ernesto Castillo Castellanos; Juan Francisco Castillo Hernandez; Ester Anna Rita Casula; Vasile Catanescu; Costanza Cavicchioli; Cesar Ceballos Sanchez; Jan Cepila; Piergiorgio Cerello; Beomsu Chang; Sylvain Chapeland; Jean-Luc Fernand Charvet; Subhasis Chattopadhyay; Sukalyan Chattopadhyay; Isha Chawla; Michael Gerard Cherney; Cvetan Cheshkov; Brigitte Cheynis; Vasco Miguel Chibante Barroso; David Chinellato; Peter Chochula; Marek Chojnacki; Subikash Choudhury; Panagiotis Christakoglou; Christian Holm Christensen; Peter Christiansen; Tatsuya Chujo; Suh-Urk Chung; Corrado Cicalo; Luisa Cifarelli; Federico Cindolo; Jean Willy Andre Cleymans; Fabrizio Coccetti; Fabio Colamaria; Domenico Colella; Gustavo Conesa Balbastre; Zaida Conesa del Valle; Paul Constantin; Giacomo Contin; Jesus Guillermo Contreras; Thomas Michael Cormier; Yasser Corrales Morales; Pietro Cortese; Ismael Cortes Maldonado; Mauro Rogerio Cosentino; Filippo Costa; Manuel Enrique Cotallo; Elisabetta Crescio; Philippe Crochet; Emilia Cruz Alaniz; Eleazar Cuautle; Leticia Cunqueiro; Andrea Dainese; Hans Hjersing Dalsgaard; Andrea Danu; Indranil Das; Debasish Das; Kushal Das; Sadhana Dash; Ajay Kumar Dash; Sudipan De; Gabriel de Barros; Annalisa De Caro; Giacinto de Cataldo; Jan de Cuveland; Alessandro De Falco; Daniele De Gruttola; Hugues Delagrange; Andrzej Deloff; Vyacheslav Demanov; Nora De Marco; Ervin Denes; Salvatore De Pasquale; Airton Deppman; Ginevra D'Erasmo; Raoul Stefan de Rooij; Miguel Angel Diaz Corchero; Domenico Di Bari; Thomas Dietel; Carmelo Di Giglio; Sergio Di Liberto; Antonio Di Mauro; Pasquale Di Nezza; Roberto Divia; Oeystein Djuvsland; Alexandru Florin Dobrin; Tadeusz Antoni Dobrowolski; Isabel Dominguez; Benjamin Donigus; Olja Dordic; Olga Driga; Anand Kumar Dubey; Andrea Dubla; Laurent Ducroux; Pascal Dupieux; AK Dutta Majumdar; Mihir Ranjan Dutta Majumdar; Domenico Elia; David Philip Emschermann; Heiko Engel; Barbara Erazmus; Hege Austrheim Erdal

    2012-01-01

    The pt-differential inclusive production cross section of the prompt charm-strange meson D$_s^+$ in the rapidity range |y|<0.5 was measured in proton--proton collisions at $\\\\sqrt{s}$=7 TeV at the LHC using the ALICE detector. The analysis was performed on a data sample of 2.98 10$^8$ events collected with a minimum-bias trigger. The corresponding integrated luminosity is $L_{int}=4.8 nb^{-1}$. Reconstructing the decay $D_s^+

  8. Search for heavy long-lived multi-charged particles in $pp$ collisions at $\\sqrt{s}$ = 8 TeV using the ATLAS detector

    E-print Network

    ATLAS Collaboration

    2015-04-16

    A search for heavy long-lived multi-charged particles is performed using the ATLAS detector at the LHC. Data collected in 2012 at $\\sqrt{s}$ = 8 TeV from $pp$ collisions corresponding to an integrated luminosity of $20.3$ fb$^{-1}$ are examined. Particles producing anomalously high ionisation, consistent with long-lived massive particles with electric charges from $|q|=2e$ to $|q|=6e$ are searched for. No signal candidate events are observed, and 95 % confidence level cross-section upper limits are interpreted as lower mass limits for a Drell-Yan production model. The mass limits range between 660 and 785 GeV.

  9. Measurement of the W+b-jet and W+c-jet differential production cross sections in ppŻ collisions at ?s=1.96 TeV

    DOE PAGESBeta

    Abazov, Victor M. [Joint Institute for Nuclear Research, Moscow (Russia)

    2015-04-01

    We present a measurement of the cross sections for the associated production of a W boson with at least one heavy quark jet, b or c, in proton-antiproton collisions. Data corresponding to an integrated luminosity of 8.7 fb?š recorded with the D0 detector at the Fermilab Tevatron ppŻ Collider at ?s=1.96$ TeV are used to measure the cross sections differentially as a function of the jet transverse momenta in the range 20 to 150 GeV. These results are compared to calculations of perturbative QCD theory as well as predictions from Monte Carlo generators.

  10. Search for Higgs boson production in oppositely charged dilepton and missing energy events in pp? collisions at ?s=1.96 TeV

    DOE PAGESBeta

    Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Alverson, G.; Askew, A.; Atkins, S.; Augsten, K.; Avila, C.; Badaud, F.; Bagby, L.; Baldin, B.; Bandurin, D. V.; Banerjee, S.; Barberis, E.; Baringer, P.; Bartlett, J. F.; Bassler, U.; Bazterra, V.; Bean, A.; Begalli, M.; Bellantoni, L.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besançon, M.; Beuselinck, R.; Bhat, P. C.; Bhatia, S.; Bhatnagar, V.; Blazey, G.; Blessing, S.; Bloom, K.; Boehnlein, A.; Boline, D.; Boos, E. E.; Borissov, G.; Bose, T.; Brandt, A.; Brandt, O.; Brock, R.; Bross, A.; Brown, D.; Brown, J.; Bu, X. B.; Buehler, M.; Buescher, V.; Bunichev, V.; Burdin, S.; Buszello, C. P.; Camacho-Pérez, E.; Casey, B. C. K.; Castilla-Valdez, H.; Caughron, S.; Chakrabarti, S.; Chakraborty, D.; Chan, K. M.; Chandra, A.; Chapon, E.; Chen, G.; Chevalier-Théry, S.; Cho, D. K.; Cho, S. W.; Choi, S.; Choudhary, B.; Cihangir, S.; Claes, D.; Clutter, J.; Cooke, M.; Cooper, W. E.; Corcoran, M.; Couderc, F.; Cousinou, M.-C.; Croc, A.; Cutts, D.; Das, A.; Davies, G.; de Jong, S. J.; De La Cruz-Burelo, E.; Déliot, F.; Demina, R.; Denisov, D.; Denisov, S. P.; Desai, S.; Deterre, C.; DeVaughan, K.; Diehl, H. T.; Diesburg, M.; Ding, P. F.; Dominguez, A.; Dubey, A.; Dudko, L. V.; Duggan, D.; Duperrin, A.; Dutt, S.; Dyshkant, A.; Eads, M.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Enari, Y.; Evans, H.; Evdokimov, A.; Evdokimov, V. N.; Facini, G.; Fauré, A.; Feng, L.; Ferbel, T.; Fiedler, F.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Fortner, M.; Fox, H.; Fuess, S.; Garcia-Bellido, A.; García-González, J. A.; García-Guerra, G. A.; Gavrilov, V.; Gay, P.; Geng, W.; Gerbaudo, D.; Gerber, C. E.; Gershtein, Y.; Ginther, G.; Golovanov, G.; Goussiou, A.; Grannis, P. D.; Greder, S.; Greenlee, H.; Grenier, G.; Gris, Ph.; Grivaz, J.-F.; Grohsjean, A.; Grünendahl, S.; Grünewald, M. W.; Guillemin, T.; Gutierrez, G.; Gutierrez, P.; Hagopian, S.; Haley, J.; Han, L.; Harder, K.; Harel, A.; Hauptman, J. M.; Hays, J.; Head, T.; Hebbeker, T.; Hedin, D.; Hegab, H.; Heinson, A. P.; Heintz, U.; Hensel, C.; Heredia-De La Cruz, I.; Herner, K.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hoang, T.; Hobbs, J. D.; Hoeneisen, B.; Hogan, J.; Hohlfeld, M.; Howley, I.; Hubacek, Z.; Hynek, V.; Iashvili, I.; Ilchenko, Y.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Jaffré, M.; Jayasinghe, A.; Jeong, M. S.; Jesik, R.; Johns, K.; Johnson, E.; Johnson, M.; Jonckheere, A.; Jonsson, P.; Joshi, J.; Jung, A. W.; Juste, A.; Kaadze, K.; Kajfasz, E.; Karmanov, D.; Kasper, P. A.; Katsanos, I.; Kehoe, R.; Kermiche, S.; Khalatyan, N.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. N.; Kiselevich, I.; Kohli, J. M.; Kozelov, A. V.; Kraus, J.; Kulikov, S.; Kumar, A.; Kupco, A.; Kur?a, T.; Kuzmin, V. A.; Lammers, S.; Landsberg, G.; Lebrun, P.; Lee, H. S.; Lee, S. W.; Lee, W. M.; Lei, X.; Lellouch, J.; Li, H.; Li, L.; Li, Q. Z.; Lim, J. K.; Lincoln, D.; Linnemann, J.; Lipaev, V. V.; Lipton, R.; Liu, H.; Liu, Y.; Lobodenko, A.; Lokajicek, M.; Lopes de Sa, R.; Lubatti, H. J.; Luna-Garcia, R.; Lyon, A. L.; Maciel, A. K. A.; Madar, R.; Magańa-Villalba, R.; Malik, S.; Malyshev, V. L.; Maravin, Y.; Martínez-Ortega, J.; McCarthy, R.; McGivern, C. L.; Meijer, M. M.; Melnitchouk, A.; Menezes, D.; Mercadante, P. G.; Merkin, M.; Meyer, A.; Meyer, J.; Miconi, F.; Mondal, N. K.; Mulhearn, M.; Nagy, E.; Naimuddin, M.; Narain, M.; Nayyar, R.; Neal, H. A.; Negret, J. P.; Neustroev, P.; Nunnemann, T.; Orduna, J.; Osman, N.; Osta, J.; Padilla, M.; Pal, A.; Parashar, N.; Parihar, V.; Park, S. K.; Partridge, R.; Parua, N.; Patwa, A.; Penning, B.; Perfilov, M.; Peters, Y.; Petridis, K.; Petrillo, G.; Pétroff, P.; Pleier, M.-A.; Podesta-Lerma, P. L. M.; Podstavkov, V. M.; Popov, A. V.; Prewitt, M.; Price, D.; Prokopenko, N.; Qian, J.; Quadt, A.; Quinn, B.; Rangel, M. S.; Ranjan, K.; Ratoff, P. N.; Razumov, I.; Renkel, P.; Ripp-Baudot, I.; Rizatdinova, F.; Rominsky, M.; Ross, A.; Royon, C.; Rubinov, P.; Ruchti, R.; Sajot, G.; Salcido, P.; Sánchez-Hernández, A.; Sanders, M. P.; Santos, A. S.; Savage, G.; Sawyer, L.; Scanlon, T.; Schamberger, R. D.; Scheglov, Y.; Schellman, H.; Schlobohm, S.; Schwanenberger, C.; Schwienhorst, R.; Sekaric, J.; Severini, H.; Shabalina, E.; Shary, V.; Shaw, S.; Shchukin, A. A.; Shivpuri, R. K.; Simak, V.; Skubic, P.; Slattery, P.; Smirnov, D.; Smith, K. J.; Snow, G. R.; Snow, J.; Snyder, S.; Söldner-Rembold, S.; Sonnenschein, L.; Soustruznik, K.; Stark, J.; Stoyanova, D. A.; Strauss, M.; Suter, L.; Svoisky, P.; Takahashi, M.; Titov, M.; Tokmenin, V. V.; Tsai, Y.-T.; Tschann-Grimm, K.; Tsybychev, D.; Tuchming, B.; Tully, C.; Uvarov, L.; Uvarov, S.; Uzunyan, S.; Van Kooten, R.; van Leeuwen, W. M.; Varelas, N.; Varnes, E. W.; Vasilyev, I. A.

    2012-08-01

    We present a search for the standard model Higgs boson using events with two oppositely charged leptons and large missing transverse energy as expected in H?WW decays. The events are selected from data corresponding to 8.6 fb?š of integrated luminosity in pp? collisions at ?s=1.96 TeV collected with the D0 detector at the Fermilab Tevatron Collider. No significant excess above the standard model background expectation in the Higgs boson mass range this search is sensitive to is observed, and upper limits on the Higgs boson production cross section are derived.

  11. Measurement of the inclusive isolated prompt photon cross section in pp collisions at ?s=7 TeV with the ATLAS detector

    DOE PAGESBeta

    Aad, G. [Albert-Ludwigs-Universitat, Freiburg (Germany). Fakultat fur Mathematik und Physik; Abbott, B. [Univ. of Oklahoma, Norman, OK (United States). Homer L. Dodge Dept. of Physics and Astronomy; Abdallah, J. [Universitat Autonoma de Barcelona and ICREA, Barcelona (Spain). Institut de Fisica d' Altes Energies; Abdelalim, A. A. [Universite de Geneve, Geneva (Switzerland). Section de Physique; Abdesselam, A. [Oxford Univ., Oxford (United Kingdom). Dept. of Physics; Abdinov, O. [Academy of Sciences, Baku (Azerbaijan). Institute of Physics; Abi, B. [Oklahoma State Univ., Stillwater, OK (United States). Dept. of Physics; Abolins, M. [Michigan State Univ., East Lansing, MI (United States). Dept. of Physics and Astronomy; Abramowicz, H. [Tel Aviv Univ., Tel Aviv (Israel). Raymond and Beverly Sackler School of Physics and Astronomy; Abreu, H. [Univ. Paris-Sud, Orsay (France). LAL; Acerbi, E. [Universita di Milano, Milano (Italy). Dipartimento di Fisica; INFN Sezione di Milano, Milano (Italy); Acharya, B. S. [Collegato di Udine (Italy). INFN Gruppo; ICTP, Trieste (Italy); Adams, D. L. [Brookhaven National Lab. (BNL), Upton, NY (United States). Physics Dept.; Addy, T. N. [Hampton Univ., Hampton, VA (United States); Dept. of Physics; Adelman, J. [Yale Univ., New Haven, CT (United States). Dept. of Physics; Aderholz, M. [Werner-Heisenberg-Institut, Muchen (Germany). Max-Planck-Institut fur Physik; Adomeit, S. [Ludwig Maximilian Univ., Munich (Germany). Fakultat fur Physik; Adragna, P. [Queen Mary Univ. of London, London (United Kingdom). Dept. of Physics; Adye, T. [Rutherford Appleton Laboratory, Didcot (United Kingdom). Particle Physics Dept.; Aefsky, S. [Brandeis Univ., Waltham, MA (United States). Dept. of Physics; Aguilar-Saavedra, J A. [Universidad de Granada, Granada (Spain). Departamento de Fisica Teorica y del Cosmos and CAFPE; Siegrist, James L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2011-03-01

    A measurement of the cross section for the inclusive production of isolated prompt photons in pp collisions at a center-of-mass energy ?s=7 TeV is presented. The measurement covers the pseudorapidity ranges |??|?|?T-1, collected with the ATLAS detector at the Large Hadron Collider. Photon candidates are identified by combining information from the calorimeters and from the inner tracker. Residual background in the selected sample is estimated from data based on the observed distribution of the transverse isolation energy in a narrow cone around the photon candidate. The results are compared to predictions from next-to-leading-order perturbative QCD calculations.

  12. Measurement of electrons from semileptonic heavy-flavor hadron decays in p p collisions at ?{s }=2.76 TeV

    NASA Astrophysics Data System (ADS)

    Abelev, B.; Adam, J.; Adamová, D.; Aggarwal, M. M.; Agnello, M.; Agostinelli, A.; Agrawal, N.; Ahammed, Z.; Ahmad, N.; Ahmed, I.; Ahn, S. U.; Ahn, S. A.; Aimo, I.; Aiola, S.; Ajaz, M.; Akindinov, A.; Alam, S. N.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Anti?i?, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arbor, N.; Arcelli, S.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Arslandok, M.; Augustinus, A.; Averbeck, R.; Awes, T. C.; Azmi, M. D.; Bach, M.; Badalŕ, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Baltasar Dos Santos Pedrosa, F.; Baral, R. C.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartke, J.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batyunya, B.; Batzing, P. C.; Baumann, C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bellwied, R.; Belmont-Moreno, E.; Belmont, R.; Belyaev, V.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Berger, M. E.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Biel?ík, J.; Biel?íková, J.; Bilandzic, A.; Bjelogrlic, S.; Blanco, F.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Břggild, H.; Bogolyubsky, M.; Böhmer, F. V.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Bossú, F.; Botje, M.; Botta, E.; Böttger, S.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Caffarri, D.; Cai, X.; Caines, H.; Calero Diaz, L.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Castillo Castellanos, J.; Casula, E. A. R.; Catanescu, V.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortese, P.; Cortés Maldonado, I.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dainese, A.; Dang, R.; Danu, A.; Das, D.; Das, I.; Das, K.; Das, S.; Dash, A.; Dash, S.; de, S.; Delagrange, H.; Deloff, A.; Dénes, E.; D'Erasmo, G.; de Caro, A.; de Cataldo, G.; de Cuveland, J.; de Falco, A.; de Gruttola, D.; De Marco, N.; de Pasquale, S.; de Rooij, R.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Diviŕ, R.; di Bari, D.; di Liberto, S.; di Mauro, A.; di Nezza, P.; Djuvsland, Ř.; Dobrin, A.; Dobrowolski, T.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Dřrheim, S.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Dutta Majumdar, A. K.; Ehlers, R. J.; Elia, D.; Engel, H.; Erazmus, B.; Erdal, H. A.; Eschweiler, D.; Espagnon, B.; Esposito, M.; Estienne, M.; Esumi, S.; Evans, D.; Evdokimov, S.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fehlker, D.; Feldkamp, L.; Felea, D.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floratos, E.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Fusco Girard, M.; Gaardhřje, J. J.; Gagliardi, M.; Gago, A. M.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Garishvili, I.; Gerhard, J.; Germain, M.; Gheata, A.; Gheata, M.; Ghidini, B.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Gladysz-Dziadus, E.; Glässel, P.; Gomez Ramirez, A.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Graczykowski, L. K.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Guilbaud, M.; Gulbrandsen, K.; Gulkanyan, H.; Gumbo, M.; Gunji, T.; Gupta, A.; Gupta, R.; Khan, K. H.; Haake, R.; Haaland, Ř.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hanratty, L. D.; Hansen, A.; Harris, J. W.; Hartmann, H.; Harton, A.

    2015-01-01

    The pT -differential production cross section of electrons from semileptonic decays of heavy-flavor hadrons has been measured at midrapidity in proton-proton collisions at ?{s }=2.76 TeV in the transverse momentum range 0.5

  13. Measurement of the nuclear modification factor of electrons from heavy-flavour hadron decays in Pb-Pb collisions at {\\surd}sNN = 2.76 TeV with ALICE at the LHC

    E-print Network

    Markus Fasel; for the ALICE Collaboration

    2012-02-29

    We present a measurement of the nuclear modification factor of electrons from heavy- flavour hadron decays at midrapidity in Pb-Pb collisions at {\\surd}sNN = 2.76 TeV. Electrons are identified in the pt range 1.5 GeV/c < pt < 6 GeV/c. A suppression is seen for pt larger than 3.5 GeV/c in the most central collisions.

  14. Anisotropic flow of charged hadrons, pions and (anti-)protons measured at high transverse momentum in Pb-Pb collisions at $\\\\sqrt{s_{NN}}$=2.76 TeV

    Microsoft Academic Search

    Betty Abelev; Jaroslav Adam; Dagmar Adamova; Andrew Marshall Adare; Madan Aggarwal; Gianluca Aglieri Rinella; Andras Gabor Agocs; Andrea Agostinelli; Saul Aguilar Salazar; Zubayer Ahammed; Arshad Ahmad; Nazeer Ahmad; Sang Un Ahn; Alexander Akindinov; Dmitry Aleksandrov; Bruno Alessandro; Jose Ruben Alfaro Molina; Andrea Alici; Anton Alkin; Erick Jonathan Almaraz Avina; Johan Alme; Torsten Alt; Valerio Altini; Sedat Altinpinar; Igor Altsybeev; Cristian Andrei; Anton Andronic; Venelin Anguelov; Jonas Anielski; Tome Anticic; Federico Antinori; Pietro Antonioli; Laurent Bernard Aphecetche; Harald Appelshauser; Nicolas Arbor; Silvia Arcelli; Nestor Armesto; Roberta Arnaldi; Tomas Robert Aronsson; Ionut Cristian Arsene; Mesut Arslandok; Andre Augustinus; Ralf Peter Averbeck; Terry Awes; Juha Heikki Aysto; Mohd Danish Azmi; Matthias Jakob Bach; Angela Badala; Yong Wook Baek; Raphaelle Marie Bailhache; Renu Bala; Rinaldo Baldini Ferroli; Alberto Baldisseri; Alain Baldit; Fernando Baltasar Dos Santos Pedrosa; Jaroslav Ban; Rama Chandra Baral; Roberto Barbera; Francesco Barile; Gergely Gabor Barnafoldi; Lee Stuart Barnby; Valerie Barret; Jerzy Gustaw Bartke; Maurizio Basile; Nicole Bastid; Sumit Basu; Bastian Bathen; Guillaume Batigne; Boris Batyunya; Christoph Heinrich Baumann; Ian Gardner Bearden; Hans Beck; Nirbhay Kumar Behera; Iouri Belikov; Francesca Bellini; Rene Bellwied; Ernesto Belmont-Moreno; Gyula Bencedi; Stefania Beole; Ionela Berceanu; Alexandru Bercuci; Yaroslav Berdnikov; Daniel Berenyi; Anais Annick Erica Bergognon; Dario Berzano; Latchezar Betev; Anju Bhasin; Ashok Kumar Bhati; Jihyun Bhom; Livio Bianchi; Nicola Bianchi; Chiara Bianchin; Jaroslav Bielcik; Jana Bielcikova; Ante Bilandzic; Sandro Bjelogrlic; F Blanco; Dmitry Blau; Christoph Blume; Nicolas Bock; Stefan Boettger; Alexey Bogdanov; Hans Boggild; Mikhail Bogolyubsky; Laszlo Boldizsar; Marek Bombara; Herve Borel; Alexander Borissov; Suvendu Nath Bose; Francesco Bossu; Michiel Botje; Bruno Alexandre Boyer; Ermes Braidot; Peter Braun-Munzinger; Marco Bregant; Timo Gunther Breitner; Tyler Allen Browning; Michal Broz; Rene Brun; Elena Bruna; Giuseppe Eugenio Bruno; Dmitry Budnikov; Henner Buesching; Stefania Bufalino; Kyrylo Bugaiev; Oliver Busch; Edith Zinhle Buthelezi; Davide Caffarri; Xu Cai; Helen Louise Caines; Ernesto Calvo Villar; Paolo Camerini; Veronica Canoa Roman; Giovanni Cara Romeo; Francesco Carena; Wisla Carena; Federico Carminati; Amaya Ofelia Casanova Diaz; Javier Ernesto Castillo Castellanos; Ester Anna Rita Casula; Vasile Catanescu; Costanza Cavicchioli; Cesar Ceballos Sanchez; Jan Cepila; Piergiorgio Cerello; Beomsu Chang; Sylvain Chapeland; Jean-Luc Fernand Charvet; Sukalyan Chattopadhyay; Subhasis Chattopadhyay; Isha Chawla; Michael Gerard Cherney; Cvetan Cheshkov; Brigitte Cheynis; Emilio Chiavassa; Vasco Miguel Chibante Barroso; David Chinellato; Peter Chochula; Marek Chojnacki; Subikash Choudhury; Panagiotis Christakoglou; Christian Holm Christensen; Peter Christiansen; Tatsuya Chujo; Suh-Urk Chung; Corrado Cicalo; Luisa Cifarelli; Federico Cindolo; Jean Willy Andre Cleymans; Fabrizio Coccetti; Fabio Colamaria; Domenico Colella; Gustavo Conesa Balbastre; Zaida Conesa del Valle; Paul Constantin; Giacomo Contin; Jesus Guillermo Contreras; Thomas Michael Cormier; Yasser Corrales Morales; Ismael Cortes Maldonado; Pietro Cortese; Mauro Rogerio Cosentino; Filippo Costa; Manuel Enrique Cotallo; Philippe Crochet; Emilia Cruz Alaniz; Eleazar Cuautle; Leticia Cunqueiro; Ginevra D'Erasmo; Andrea Dainese; Hans Hjersing Dalsgaard; Andrea Danu; Debasish Das; Indranil Das; Kushal Das; Ajay Kumar Dash; Sadhana Dash; Sudipan De; Gabriel de Barros; Annalisa De Caro; Giacinto de Cataldo; Jan de Cuveland; Alessandro De Falco; Daniele De Gruttola; Nora De Marco; Salvatore De Pasquale; Raoul Stefan de Rooij; Hugues Delagrange; Andrzej Deloff; Vyacheslav Demanov; Ervin Denes; Airton Deppman; Domenico Di Bari; Carmelo Di Giglio; Sergio Di Liberto; Antonio Di Mauro; Pasquale Di Nezza; Miguel Angel Diaz Corchero; Thomas Dietel; Roberto Divia; Oeystein Djuvsland; Alexandru Florin Dobrin; Tadeusz Antoni Dobrowolski; Isabel Dominguez; Benjamin Donigus; Olja Dordic; Olga Driga; Anand Kumar Dubey; Laurent Ducroux; Pascal Dupieux; AK Dutta Majumdar; Mihir Ranjan Dutta Majumdar; Domenico Elia; David Philip Emschermann; Heiko Engel; Hege Austrheim Erdal; Bruno Espagnon; Magali Danielle Estienne; Shinichi Esumi; David Evans; Gyulnara Eyyubova; Daniela Fabris; Julien Faivre; Davide Falchieri; Alessandra Fantoni; Markus Fasel; Roger Worsley Fearick

    2012-01-01

    The elliptic, $v_2$, triangular, $v_3$, and quadrangular, $v_4$, flow coefficients are measured for unidentified charged particles, pions and (anti-)protons in Pb-Pb collisions at $\\\\sqrt{s_{NN}}$ = 2.76 TeV with the ALICE detector at the Large Hadron Collider. Results obtained with the event plane and four-particle correlation methods are reported for the pseudo-rapidity range $|\\\\eta|<0.8$ at different collision centralities and as a

  15. TeV Neutrinos from Galactic Microquasar Jets

    E-print Network

    D. Guetta; C. Distefano; A. Levinson; E. Waxman

    2002-07-17

    We discuss the possibility that microquasar jets may be powerful emitters of TeV neutrinos. We estimate the neutrino fluxes produced by photopion production in the jets of a sample of identified microquasars and microquasar candidates, for which available data enables rough determination of the jet parameters. We demonstrate that in several of the sources considered, the neutrino flux at Earth, produced in events similar to those observed, can exceed the detection threshold of a km^2 neutrino detector. Sources with bulk Lorentz factors larger than those characteristic of the sample considered here, directed along our line of sight may be very difficult to resolve at radio wavelengths and hence may be difficult to identify as microqusar candidates. However these sources can be identified through their neutrino and gamma-ray emission.

  16. Particle-acceleration timescales in TeV blazar flares

    E-print Network

    Joni Tammi; Peter Duffy

    2008-12-01

    Observations of minute-scale flares in TeV Blazars place constraints on particle acceleration mechanisms in those objects. The implications for a variety of radiation mechanisms have been addressed in the literature; in this paper we compare four different acceleration mechanisms: diffusive shock acceleration, second-order Fermi, shear acceleration and the converter mechanism. When the acceleration timescales and radiative losses are taken into account, we can exclude shear acceleration and the neutron-based converted mechanism as possible acceleration processes in these systems. The first-order Fermi process and the converter mechanism working via SSC photons are still practically instantaneous, however, provided sufficient turbulence is generated on the timescale of seconds. We propose stochastic acceleration as a promising candidate for the energy-dependent time delays in recent gamma-ray flares of Markarian 501.

  17. The TeV emitter structure in LS 5039

    E-print Network

    Valenti Bosch-Ramon; Dmitry Khangulyan; Felix Aharonian

    2008-10-24

    LS 5039 is an X-ray binary detected at very high energies. Along the orbit, there is a significant detection even during the superior conjunction of the compact object, when very large gamma-ray opacities are expected. Electromagnetic cascades, which may make the system more transparent to gamma-rays, are hardly efficient for reasonable magnetic fields in the massive star surroundings. A jet-like flow could transport energy to regions where the photon-photon absorption is much lower and the TeV radiation is not so severely absorbed. Otherwise, in the standard pulsar scenario for LS 5039, the emitter would be located between the star and the compact object, which would imply the violation of the observational constraints at X-rays.

  18. Search for $W' \\rightarrow tb \\rightarrow qqbb$ Decays in pp Collisions at $\\sqrt{s}$ = 8 TeV with the ATLAS Detector

    E-print Network

    ATLAS Collaboration

    2015-04-30

    A search for a massive $W'$ gauge boson decaying to a top quark and a bottom quark is performed with the ATLAS detector in $pp$ collisions at the LHC. The dataset was taken at a centre-of-mass energy of $\\sqrt{s} = 8$ TeV and corresponds to 20.3 fb$^{-1}$ of integrated luminosity. This analysis is done in the hadronic decay mode of the top quark, where novel jet substructure techniques are used to identify jets from high-momentum top quarks. This allows for a search for high-mass $W'$ bosons in the range $1.5 - 3.0$ TeV. $b$-tagging is used to identify jets originating from $b$-quarks. The data are consistent with Standard Model background-only expectations, and upper limits at 95% confidence level are set on the $W' \\rightarrow tb$ cross section times branching ratio ranging from $0.16$ pb to $0.33$ pb for left-handed $W'$ bosons, and ranging from $0.10$ pb to $0.21$ pb for $W'$ bosons with purely right-handed couplings. Upper limits at 95% confidence level are set on the $W'$-boson coupling to $tb$ as a function of the $W'$ mass using an effective field theory approach, which is independent of details of particular models predicting a $W'$ boson.

  19. Multiwavelength Observations of The TeV Binary LS I +61 303 with VERITAS, Fermi-LAT and Swift-XRT During a TeV Outburst

    E-print Network

    Aliu, E; Behera, B; Berger, K; Beilicke, M; Benbow, W; Bird, R; Bouvier, A; Bugaev, V; Cerruti, M; Chen, X; Ciupik, L; Connolly, M P; Cui, W; Dumm, J; Falcone, A; Federici, S; Feng, Q; Finley, J P; Fortin, P; Fortson, L; Furniss, A; Galante, N; Gillanders, G H; Griffin, S; Griffiths, S T; Grube, J; Gyuk, G; Hanna, D; Holder, J; Hughes, G; Humensky, T B; Kaaret, P; Kertzman, M; Khassen, Y; Kieda, D; Krennrich, F; Lang, M J; Maier, G; Majumdar, P; McArthur, S; McCann, A; Moriarty, P; Mukherjee, R; de Bhroithe, A O'Faolain; Ong, R A; Otte, A N; Park, N; Perkins, J S; Pohl, M; Popkow, A; Prokoph, H; Quinn, J; Ragan, K; Rajotte, J; Ratliff, G; Reynolds, P T; Richards, G T; Roache, E; Sembroski, G H; Sheidaei, F; Skole, C; Smith, A W; Staszak, D; Telezhinsky, I; Tyler, J; Varlotta, A; Vincent, S; Wakely, S P; Weekes, T C; Weinstein, A; Welsing, R; Zajczyk, A; Zitzer, B

    2013-01-01

    We present the results of a multiwavelength observational campaign on the TeV binary system LS I +61 303 with the VERITAS telescope array (>200 GeV), Fermi-LAT (0.3-300 GeV), and Swift-XRT (2-10 keV). The data were taken from December 2011 through January 2012 and show a strong detection in all three wavebands. During this period VERITAS obtained 24.9 hours of quality selected livetime data in which LS I +61 303 was detected at a statistical sig- nificance of 11.9 sigma. These TeV observations show evidence for nightly variability in the TeV regime at a post-trial significance of 3.6 sigma. The combination of the simultaneously obtained TeV and X-ray fluxes do not demonstrate any evidence for a correlation between emission in the two bands. For the first time since the launch of the Fermi satellite in 2008, this TeV detection allows the construction of a detailed MeV-TeV spectral energy distribution from LS I +61 303. This spectrum shows a distinct cutoff in emission near 4 GeV, with emission seen by the VERI...

  20. Detection of X-Ray Emission from the Unidentified TeV Gamma-Ray Source TeV J2032+4130

    E-print Network

    Murakami, Hiroshi; Kawachi, Akiko; Nakamori, Takeshi

    2011-01-01

    We observed the first unidentified TeV gamma-ray source TeV J2032+4130 with Suzaku. Owing to Suzaku's high sensitivity for detection of diffuse X-ray emission, we found two small structures in the TeV emitting region. One of them is coincident with a gamma-ray pulsar PSR J2032+4127, which was discovered by the Fermi Gamma-ray Space Telescope. By subtracting contribution of point sources estimated by Chandra data, we obtained diffuse X-ray spectrum. The X-ray spectrum can be reproduced by a power-law model with a photon index of about 2, and an X-ray flux of 2x10^{-13} erg s^-1 cm^-2. The ratio of the gamma-ray flux to the X-ray flux is about 10. If the origin of the TeV gamma-ray is inverse Compton scattering of microwave background by high energy electrons, the ratio corresponds to the magnetic field strength of ~1 microG. However, the smaller size of the X-ray emission than that of the TeV emission suggests that energy loss of the electrons can explain the large ratio of the gamma-ray flux with a reasonable...

  1. Laser system of extended range

    NASA Technical Reports Server (NTRS)

    Lehr, C. G.

    1972-01-01

    A pulsed laser system was developed for range measurements from the earth to retroreflecting satellites at distances up to that of the moon. The system has a transportable transmitter unit that can be moved from one location to another. This unit consists of a 0.2 m coude refractor and a high radiance, neodymium-glass, frequency doubled laser that operates in a single transverse mode. It can be used for lunar or distant satellite ranging at any observatory that has a telescope with an aperture diameter of about 1.5 m for the detection of the laser return pulses. This telescope is utilized in the same manner customarily employed for the observation of celestial objects. A special photometric package and the associated electronics are provided for laser ranging.

  2. NASA Satellite Laser Ranging Network

    NASA Technical Reports Server (NTRS)

    Carter, David L.

    2004-01-01

    I will be participating in the International Workshop on Laser Ranging. I will be presenting to the International Laser Ranging Service (ILRS) general body meeting on the recent accomplishments and status of the NASA Satellite Laser Ranging (SLR) Network. The recent accomplishments and NASA's future plans will be outlined and the benefits to the scientific community will be addressed. I am member of the ILRS governing board, the Missions working group, and the Networks & Engineering working group. I am the chairman of the Missions Working and will be hosting a meeting during the week of the workshop. I will also represent the NASA SLR program at the ILRS governing board and other working group meetings.

  3. Laser Ranging to Vulnerable Targets

    NASA Astrophysics Data System (ADS)

    Shelus, P. J.; Schutz, B. E.; Webb, C. E.; Ricklefs, R. L.; Rim, H. J.; Yoon, S. P.; Ries, J. G.

    2005-05-01

    Entering a new century, we also enter a new phase of laser ranging. There are now a number of satellites that fire laser pulses toward the surface of the object about which they orbit. These are satellites like MOLA, orbiting Mars, and Earth-orbiting satellites, like ICESat and ADEOS. Like other satellites, they require precision tracking and some tracking comes from the laser ranging network. However, with sensitive downward looking detectors, instrumentation could be harmed by incoming radiation. Also, with some missions, target specific restrictions become an important issue for routine laser ranging. For example, precision orbit determination (POD) for ICESat is performed using GPS data from on-board instrumentation. But, SLR observations provide a verification of GPS-based results. We use ICESat, under carefully managed SLR operations, to test logistics for target-specific restrictions. Several stations, MLRS, Zimmerwald, Graz, and the NASA MOBLAS's, have automatic elevation-initiated laser cut-off. They observe ICESat under the restriction that ranging not be performed when ICESat has an elevation greater than 70 degrees. Further, ICESat performs active off-nadir pointing. Even though ICESat may be at an elevation less than 70 degrees as seen from a station, it might still be possible for a station to shoot up the barrel. Communications must exist between ICESat operations and cooperating SLR stations to assure that ranging is not performed when ICESat may be pointed at that station. Finally, because of the spottiness of SLR data for ICESat, with operational outages and the fact that only a sub-set of the SLR network is used for ICESat ranging, predictions based only upon SLR data might not satisfy tracking requirements. For that, we prepare SLR predicts using data from ICESat's on-board GPS navigation files. Here, we expand upon these points, present the pit-falls encountered, review the SLR data obtained, and assess the successes. We acknowledge NASA support.

  4. Radar test range design considerations

    NASA Astrophysics Data System (ADS)

    Sofianos, D.

    1980-04-01

    This report presents considerations for and the preliminary design of a synthetic aperture RADAR (SAR) test range. The purpose is to present a methodology and conceptual design for a Flexible Test Bed (FTB) digital processor operational test. The objectives of this operational test are to: (1) determine whether the processor modifications improved image quality, (2) establish a processor performance baseline, and (3) determine whether the system will attain desired levels of probability of detection. It is assumed that SAI would develop a test design while GAC will fabricate and install the required radar test range.

  5. Evidence for TeV gamma ray emission from Cassiopeia A

    NASA Astrophysics Data System (ADS)

    Aharonian, F.; Akhperjanian, A.; Barrio, J.; Bernlöhr, K.; Börst, H.; Bojahr, H.; Bolz, O.; Contreras, J.; Cortina, J.; Denninghoff, S.; Fonseca, V.; Gonzalez, J.; Götting, N.; Heinzelmann, G.; Hermann, G.; Heusler, A.; Hofmann, W.; Horns, D.; Ibarra, A.; Iserlohe, C.; Jung, I.; Kankanyan, R.; Kestel, M.; Kettler, J.; Kohnle, A.; Konopelko, A.; Kornmeyer, H.; Kranich, D.; Krawczynski, H.; Lampeitl, H.; Lopez, M.; Lorenz, E.; Lucarelli, F.; Magnussen, N.; Mang, O.; Meyer, H.; Mirzoyan, R.; Moralejo, A.; Ona, E.; Padilla, L.; Panter, M.; Plaga, R.; Plyasheshnikov, A.; Prahl, J.; Pühlhofer, G.; Rauterberg, G.; Röhring, A.; Rhode, W.; Rowell, G. P.; Sahakian, V.; Samorski, M.; Schilling, M.; Schröder, F.; Siems, M.; Stamm, W.; Tluczykont, M.; Völk, H. J.; Wiedner, C. A.; Wittek, W.

    2001-04-01

    232 hours of data were accumulated from 1997 to 1999, using the HEGRA Stereoscopic Cherenkov Telescope System to observe the supernova remnant Cassiopeia A. TeV gamma -ray emission was detected at the 5 sigma level, and a flux of (5.8 +/- 1.2stat +/- 1.2syst) 10-9 ph m-2 s-1 above 1 TeV was derived. The spectral distribution is consistent with a power law with a differential spectral index of -2.5 +/- 0.4stat +/- 0.1syst between 1 and 10 TeV. As this is the first report of the detection of a TeV gamma -ray source on the ``centi-Crab'' scale, we present the analysis in some detail. Implications for the acceleration of cosmic rays depend on the details of the source modeling. We discuss some important aspects in this paper.

  6. Phase-resolved TeV gamma-ray characteristics of the Crab and Geminga pulsars

    NASA Astrophysics Data System (ADS)

    Aharonian, F.; Akhperjanian, A. G.; Barrio, J. A.; Bernlöhr, K.; Bojahr, H.; Contreras, J. L.; Cortina, J.; Daum, A.; Deckers, T.; Denninghoff, S.; Fonseca, V.; Gonzalez, J. C.; Heinzelmann, G.; Hemberger, M.; Hermann, G.; Heß, M.; Heusler, A.; Hofmann, W.; Hohl, H.; Horns, D.; Ibarra, A.; Kankanyan, R.; Kestel, M.; Kirstein, O.; Köhler, C.; Konopelko, A.; Kornmeyer, H.; Kranich, D.; Krawczynski, H.; Lampeitl, H.; Lindner, A.; Lorenz, E.; Magnussen, N.; Meyer, H.; Mirzoyan, R.; Moralejo, A.; Padilla, L.; Panter, M.; Petry, D.; Plaga, R.; Plyasheshnikov, A.; Prahl, J.; Pühlhofer, G.; Rauterberg, G.; Renault, C.; Rhode, W.; Röhring, A.; Sahakian, V.; Samorski, M.; Schmele, D.; Schröder, F.; Stamm, W.; Völk, H.; Wiebel-Sooth, B.; Wiedner, C.; Willmer, M.; Wirth, H.

    1999-06-01

    The Crab and Geminga pulsars were observed with the HEGRA stereoscopic IACT-System. A search for phase-resolved time structure of TeV gamma emission was carried out for both pulsars. No evidence for pulsed emission was observed. Geminga shows up as a TeV quiet object in our data. Upper limits were derived in units of the observed DC TeV Crab flux. The 3sigma upper limit on DC TeV emission of Geminga is 13.0% of the Crab flux. Upper limits on pulsed emission were derived for the phase intervals which revealed pulsed emission in the EGRET 30 MeV - 10 GeV data. The 3sigma upper limits on pulsed emission in these phase intervals are <2.3% and <7.2% of the Crab DC flux for the Crab and Geminga pulsars, respectively.

  7. Collimation and Radiative Deceleration of Jets in TeV AGNs

    E-print Network

    Amir Levinson; Omer Bromberg

    2007-12-17

    We consider some implications of the rapid X-ray and TeV variability observed in M87 and the TeV blazars. We outline a model for jet focusing and demonstrate that modest radiative cooling can lead to recollimation of a relativistic jet in a nozzle having a very small cross-sectional radius. Such a configuration can produce rapid variability at large distances from the central engine and may explain recent observations of the HST-1 knot in M87. Possible applications of this model to TeV blazars are discussed. We also discuss a scenario for the very rapid TeV flares observed with HESS and MAGIC in some blazars, that accommodates the relatively small Doppler factors inferred from radio observations.

  8. IPA Extensions Range: 025002AF

    E-print Network

    Erjavec, Toma?

    IPA Extensions Range: 0250­02AF This file contains an excerpt from the character code tables implementation. Fonts The shapes of the reference glyphs used in these code charts are not prescriptive. Considerable variation is to be expected in actual fonts. The particular fonts used in these charts were

  9. Back Home on the Range.

    ERIC Educational Resources Information Center

    Breining, Greg

    1992-01-01

    Presents the history of the buffalo's demise and reemergence in the United States and Canada. Discusses the problems facing herds today caused by a small genetic pool, disease, range concerns, lack of predation, and culling. Points out the benefits of buffalo raising as compared to cattle raising, including the marketing advantages. (MCO)

  10. Halogeton poisoning in range cattle.

    PubMed

    Lincoln, S D; Black, B

    1980-04-15

    Acute Halogeton glomeratus poisoning occurred in 16 of 680 range cattle during and following a trail drive. Signs of toxicosis included posterior ataxia, recumbency, coma, and death. Histopathologically, abundant, refractile calcium oxalate crystals were seen in renal tubules. Inasmuch as the plant is generally unpalatable for cattle, poisoning in this case was enhanced by a preceding period of food deprivation. PMID:7410153

  11. Mobile Lunar Laser Ranging Station

    ERIC Educational Resources Information Center

    Intellect, 1977

    1977-01-01

    Harlan Smith, chairman of the University of Texas's Astronomy Department, discusses a mobile lunar laser ranging station which could help determine the exact rates of movement between continents and help geophysicists understand earthquakes. He also discusses its application for studying fundamental concepts of cosmology and physics. (Editor/RK)

  12. The International Laser Ranging Service

    Microsoft Academic Search

    M. R. Pearlman; J. J. Degnan; J. M. Bosworth

    2002-01-01

    The International Laser Ranging Service (ILRS) was established in September 1998 to support programs in geodetic, geophysical, and lunar research activities and to provide the International Earth Rotation Service (IERS) with products important to the maintenance of an accurate International Terrestrial Reference Frame (ITRF). Now in operation for nearly two years, the ILRS develops (1) the standards and specifications necessary

  13. Host range of Frankia endophytes

    Microsoft Academic Search

    Huang Jiabin; Zhao Zheying; Chen Guanxiong; Liu Huichang

    1985-01-01

    Cross-inoculation experiments with 10 pure cultured strains and 17 host species were carried out. The 10 strains were isolated from the root nodules on actinorhizal trees ranging in 9 species, 5 genera and 4 families. The host species belong to 5 genera. The pure cultured strains fromAlnus are of strong ability to infect different species of the same genus. The

  14. Laser Ranging to Vulnerable Targets

    Microsoft Academic Search

    P. J. Shelus; B. E. Schutz; C. E. Webb; R. L. Ricklefs; H. J. Rim; S. P. Yoon; J. G. Ries

    2005-01-01

    Entering a new century, we also enter a new phase of laser ranging. There are now a number of satellites that fire laser pulses toward the surface of the object about which they orbit. These are satellites like MOLA, orbiting Mars, and Earth-orbiting satellites, like ICESat and ADEOS. Like other satellites, they require precision tracking and some tracking comes from

  15. Anatomy of a Mountain Range.

    ERIC Educational Resources Information Center

    Chew, Berkeley

    1993-01-01

    Provides written tour of Colorado Rockies along San Juan Skyway in which the geological features and formation of the mountain range is explored. Discusses evidence of geologic forces and products such as plate tectonic movement and the Ancestral Rockies; subduction and the Laramide Orogeny; volcanism and calderas; erosion, faulting, land…

  16. PSR J1907+0602: A RADIO-FAINT GAMMA-RAY PULSAR POWERING A BRIGHT TeV PULSAR WIND NEBULA

    SciTech Connect

    Abdo, A. A. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Ballet, J. [Laboratoire AIM, CEA-IRFU/CNRS/Universite Paris Diderot, Service d'Astrophysique, CEA Saclay, 91191 Gif sur Yvette (France); Barbiellini, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Bastieri, D. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy); Baughman, B. M. [Department of Physics, Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, OH 43210 (United States); Bonamente, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, I-06123 Perugia (Italy); Brigida, M. [Dipartimento di Fisica ''M. Merlin' dell'Universita e del Politecnico di Bari, I-70126 Bari (Italy); Bruel, P. [Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Palaiseau (France); Burnett, T. H., E-mail: aous.abdo@nrl.navy.mi, E-mail: malloryr@gmail.co, E-mail: Kent.Wood@nrl.navy.mi, E-mail: pablo@scipp.ucsc.ed [Department of Physics, University of Washington, Seattle, WA 98195-1560 (United States)

    2010-03-01

    We present multiwavelength studies of the 106.6 ms gamma-ray pulsar PSR J1907+06 near the TeV source MGRO J1908+06. Timing observations with Fermi result in a precise position determination for the pulsar of R.A. = 19{sup h}07{sup m}54.{sup s}7(2), decl. = +06{sup 0}02'16(2)'' placing the pulsar firmly within the TeV source extent, suggesting the TeV source is the pulsar wind nebula of PSR J1907+0602. Pulsed gamma-ray emission is clearly visible at energies from 100 MeV to above 10 GeV. The phase-averaged power-law index in the energy range E > 0.1 GeV is GAMMA = 1.76 +- 0.05 with an exponential cutoff energy E{sub c} = 3.6 +- 0.5 GeV. We present the energy-dependent gamma-ray pulsed light curve as well as limits on off-pulse emission associated with the TeV source. We also report the detection of very faint (flux density of {approx_equal} 3.4 {mu}Jy) radio pulsations with the Arecibo telescope at 1.5 GHz having a dispersion measure DM = 82.1 +- 1.1 cm{sup -3} pc. This indicates a distance of 3.2 +- 0.6 kpc and a pseudo-luminosity of L{sub 1400} {approx_equal} = 0.035 mJy kpc{sup 2}. A Chandra ACIS observation revealed an absorbed, possibly extended, compact ({approx}<4'') X-ray source with significant nonthermal emission at R.A. = 19{sup h}07{sup m}54.{sup s}76, decl. = +06{sup 0}02'14.''6 with a flux of 2.3{sup +0.6}{sub -1.4} x 10{sup -14} erg cm{sup -2} s{sup -1}. From archival ASCA observations, we place upper limits on any arcminute scale 2-10 keV X-ray emission of {approx}1 x 10{sup -13} erg cm{sup -2} s{sup -1}. The implied distance to the pulsar is compatible with that of the supernova remnant G40.5 - 0.5, located on the far side of the TeV nebula from PSR J1907+0602, and the S74 molecular cloud on the nearer side which we discuss as potential birth sites.

  17. Observation of Gamma Rays Greater than 10 TeV from Markarian 421

    Microsoft Academic Search

    K. Okumura; A. Asahara; G. V. Bicknell; P. G. Edwards; R. Enomoto; S. Gunji; S. Hara; T. Hara; S. Hayashi; C. Itoh; S. Kabuki; F. Kajino; H. Katagiri; J. Kataoka; A. Kawachi; T. Kifune; H. Kubo; J. Kushida; S. Maeda; A. Maeshiro; Y. Matsubara; Y. Mizumoto; M. Mori; M. Moriya; H. Muraishi; Y. Muraki; T. Naito; T. Nakase; K. Nishijima; M. Ohishi; J. R. Patterson; K. Sakurazawa; R. Suzuki; D. L. Swaby; K. Takano; T. Takano; T. Tanimori; F. Tokanai; K. Tsuchiya; H. Tsunoo; K. Uruma; A. Watanabe; S. Yanagita; T. Yoshida; T. Yoshikoshi

    2002-01-01

    We have observed Markarian 421 in 2001 January and March with the CANGAROO-II imaging Cerenkov telescope during an extraordinarily high state at TeV energies. From 14 hr of observations at very large zenith angles, ~70°, a signal of 298+\\/-52 gamma-ray-like events (5.7 sigma) was detected at E>10 TeV, where a higher sensitivity is achieved than those of usual observations near

  18. Detection of TeV photons from the active galaxy Markarian 421

    Microsoft Academic Search

    M. Punch; C. W. Akerlof; M. F. Cawley; M. Chantell; D. J. Fegan; S. Fennell; J. A. Gaidos; J. Hagan; A. M. Hillas; Y. Jiang; A. D. Kerrick; R. C. Lamb; M. A. Lawrence; D. A. Lewis; D. I. Meyer; G. Mohanty; K. S. O'Flaherty; P. T. Reynolds; A. C. Rovero; M. S. Schubnell; G. Sembroski; T. C. Weekes; C. Wilson

    1992-01-01

    The detection of TeV energy photons from the giant elliptical galaxy Markarian 421 using the Whipple Observatory gamma-ray telescope is reported. The signal has a statistical significance of 6 sigma above background and the flux above 0.5 TeV is 0.3 of that from the Crab Nebula. The source location agrees with the position of Mk 421 within the angular uncertainty

  19. Milagro: A TeV Gamma-Ray Monitor of the Northern Hemisphere Sky

    E-print Network

    California at Santa Cruz, University of

    Milagro: A TeV Gamma-Ray Monitor of the Northern Hemisphere Sky B.L. Dingus 1 , R. Atkins 1 , W type of very high energy (> a few 100 GeV) gamma-ray observatory, Milagro, has been built with a large OBSERVATORY Several active galactic nuclei and supernova remnants have now been observed to emit TeV gamma-rays

  20. TeV and Multi-wavelength Observations of Mrk 421 in 2006-2008

    Microsoft Academic Search

    V. A. Acciari; E. Aliu; T. Arlen; M. Beilicke; W. Benbow; D. Boltuch; S. M. Bradbury; J. H. Buckley; V. Bugaev; K. Byrum; A. Cannon; A. Cesarini; L. Ciupik; W. Cui; R. Dickherber; C. Duke; A. Falcone; J. P. Finley; G. Finnegan; L. Fortson; A. Furniss; N. Galante; D. Gall; G. H. Gillanders; S. Godambe; J. Grube; R. Guenette; G. Gyuk; D. Hanna; J. Holder; C. M. Hui; T. B. Humensky; A. Imran; P. Kaaret; N. Karlsson; M. Kertzman; D. Kieda; A. Konopelko; H. Krawczynski; F. Krennrich; M. J. Lang; G. Maier; S. McArthur; M. McCutcheon; P. Moriarty; R. A. Ong; A. N. Otte; M. Ouellette; D. Pandel; J. S. Perkins; A. Pichel; M. Pohl; J. Quinn; K. Ragan; L. C. Reyes; P. T. Reynolds; E. Roache; H. J. Rose; A. C. Rovero; M. Schroedter; G. H. Sembroski; G. Demet Senturk; D. Steele; S. P. Swordy; M. Theiling; S. Thibadeau; A. Varlotta; V. V. Vassiliev; S. Vincent; R. G. Wagner; S. P. Wakely; J. E. Ward; T. C. Weekes; A. Weinstein; T. Weisgarber; D. A. Williams; S. Wissel; M. Wood; B. Zitzer; A. Garson III; K. Lee; A. C. Sadun; M. Carini; D. Barnaby; K. Cook; J. Maune; A. Pease; S. Smith; R. Walters; A. Berdyugin; E. Lindfors; K. Nilsson; M. Pasanen; J. Sainio; A. Sillanpaa; L. O. Takalo; C. Villforth; T. Montaruli; M. Baker; A. Lahteenmaki; M. Tornikoski; T. Hovatta; E. Nieppola; H. D. Aller; M. F. Aller

    2011-01-01

    We report on TeV gamma-ray observations of the blazar Mrk 421 (redshift of 0.031) with the VERITAS observatory and the Whipple 10 m Cherenkov telescope. The excellent sensitivity of VERITAS allowed us to sample the TeV gamma-ray fluxes and energy spectra with unprecedented accuracy where Mrk 421 was detected in each of the pointings. A total of 47.3 hr of

  1. Galactic TeV Gamma-Ray Sources and Cosmic-Ray Origin

    NASA Astrophysics Data System (ADS)

    Tanimori, T.

    CANGAROO group has observed TeV gamma-ray sources in the southern hemisphere since 1992 at Woomera in South Australia [M.~Mori, Prog.~Theor.~Phys.~Suppl.~No.~151 (2003), 85]. The southern hemisphere provides us a good chance of the observation for lots of galactic objects. Here we present a brief summary about established TeV gamma-ray galactic sources, Supernova Remnants and pulsar nebulae based on our results.

  2. An ep collider with Ecm=1 TeV in a VLHC booster tunnel

    Microsoft Academic Search

    Malcolm Derrick; H. Friedsam; A S Gorsky; S. Hanuska; J M Jagger; D A Krakauer; J. Norem; E R Rotela; S. Sharma; L. Teng; K. Thompson; T. Sen; E. Chojnacki; D. P. Barber

    1999-01-01

    The low field option for the VLHC includes a 3 TeV proton booster with a circumference of 34 km. We are studying the option of an electron ring to fit in this tunnel which can produce ep collisions with a luminosity of 1 fb-1\\/yr with a center of mass energy of 1 TeV. The machine would utilize superconducting RF and

  3. Weak Depolarizing Resonances in the 3-TeV VLHC Booster

    Microsoft Academic Search

    Vladimir Anferov

    1999-01-01

    The possibility of polarized-proton-beam acceleration in the proposed low-field 3-TeV VLHC booster is considered. We find that the low-field combined function magnets in the booster`s long FODO cells cause an inadvertent cancellation of most depolarizing fields due to a mechanism suggested earlier by Chao and Derbenev [Part.thinspthinspAccel.thinspthinsp{bold 36}, 25 (1991)]. The strongest spin-depolarizing resonances in the 3-TeV booster seem to

  4. Weak Depolarizing Resonances in the 3-TeV VLHC Booster

    Microsoft Academic Search

    Vladimir A. Anferov

    1999-01-01

    The possibility of polarized-proton-beam acceleration in the proposed low-field 3-TeV VLHC booster is considered. We find that the low-field combined function magnets in the booster's long FODO cells cause an inadvertent cancellation of most depolarizing fields due to a mechanism suggested earlier by Chao and Derbenev [Part. Accel. 36, 25 (1991)]. The strongest spin-depolarizing resonances in the 3-TeV booster seem

  5. Multiwavelength observations of the TeV binary LS I +61° 303 with Veritas, Fermi-LAT, and Swift/xrt during a TeV outburst

    SciTech Connect

    Aliu, E. [Physics Department, Columbia University, New York, NY 10027 (United States); Archambault, S. [Physics Department, McGill University, Montreal, QC H3A 2T8 (Canada); Behera, B.; Chen, X.; Federici, S. [DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Berger, K. [Department of Physics and Astronomy and the Bartol Research Institute, University of Delaware, Newark, DE 19716 (United States); Beilicke, M.; Bugaev, V. [Department of Physics, Washington University, St. Louis, MO 63130 (United States); Benbow, W.; Cerruti, M.; Fortin, P. [Fred Lawrence Whipple Observatory, Harvard-Smithsonian Center for Astrophysics, Amado, AZ 85645 (United States); Bird, R. [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Bouvier, A. [Santa Cruz Institute for Particle Physics and Department of Physics, University of California, Santa Cruz, CA 95064 (United States); Ciupik, L. [Astronomy Department, Adler Planetarium and Astronomy Museum, Chicago, IL 60605 (United States); Connolly, M. P. [School of Physics, National University of Ireland Galway, University Road, Galway (Ireland); Cui, W.; Feng, Q.; Finley, J. P. [Department of Physics, Purdue University, West Lafayette, IN 47907 (United States); Dumm, J. [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Falcone, A., E-mail: aw.smith@utah.edu, E-mail: sheidaei@physics.utah.edu [Department of Astronomy and Astrophysics, 525 Davey Lab, Pennsylvania State University, University Park, PA 16802 (United States); and others

    2013-12-10

    We present the results of a multiwavelength observational campaign on the TeV binary system LS I +61° 303 with the VERITAS telescope array (>200 GeV), Fermi-LAT (0.3-300 GeV), and Swift/XRT (2-10 keV). The data were taken from 2011 December through 2012 January and show a strong detection in all three wavebands. During this period VERITAS obtained 24.9 hr of quality selected livetime data in which LS I +61° 303 was detected at a statistical significance of 11.9?. These TeV observations show evidence for nightly variability in the TeV regime at a post-trial significance of 3.6?. The combination of the simultaneously obtained TeV and X-ray fluxes do not demonstrate any evidence for a correlation between emission in the two bands. For the first time since the launch of the Fermi satellite in 2008, this TeV detection allows the construction of a detailed MeV-TeV spectral energy distribution from LS I +61° 303. This spectrum shows a distinct cutoff in emission near 4 GeV, with emission seen by the VERITAS observations following a simple power-law above 200 GeV. This feature in the spectrum of LS I +61° 303, obtained from overlapping observations with Fermi-LAT and VERITAS, may indicate that there are two distinct populations of accelerated particles producing the GeV and TeV emission.

  6. Long-Lived Sleptons at the LHC and a 100 TeV Proton Collider

    E-print Network

    Jonathan L. Feng; Sho Iwamoto; Yael Shadmi; Shlomit Tarem

    2015-05-12

    We study the prospects for long-lived charged particle (LLCP) searches at current and future LHC runs and at a 100 TeV pp collider, using Drell-Yan slepton pair production as an example. Because momentum measurements become more challenging for very energetic particles, we carefully treat the expected momentum resolution. At the same time, a novel feature of 100 TeV collisions is the significant energy loss of energetic muons in detectors. We use this to help discriminate between muons and LLCPs. We find that the 14 TeV LHC with an integrated luminosity of 3 ab$^{-1}$ can probe LLCP slepton masses up to 1.2 TeV, and a 100 TeV pp collider with 3 ab$^{-1}$ can probe LLCP slepton masses up to 4 TeV, using time-of-flight measurements. These searches will have striking implications for dark matter, with the LHC definitively testing the possibility of slepton-neutralino co-annihilating WIMP dark matter, and with the LHC and future hadron colliders having a strong potential for discovering LLCPs in models with superWIMP dark matter.

  7. Long-Lived Sleptons at the LHC and a 100 TeV Proton Collider

    E-print Network

    Feng, Jonathan L; Shadmi, Yael; Tarem, Shlomit

    2015-01-01

    We study the prospects for long-lived charged particle (LLCP) searches at current and future LHC runs and at a 100 TeV pp collider, using Drell-Yan slepton pair production as an example. Because momentum measurements become more challenging for very energetic particles, we carefully treat the expected momentum resolution. At the same time, a novel feature of 100 TeV collisions is the significant energy loss of energetic muons in detectors. We use this to help discriminate between muons and LLCPs. We find that the 14 TeV LHC with an integrated luminosity of 3 ab$^{-1}$ can probe LLCP slepton masses up to 1.2 TeV, and a 100 TeV pp collider with 3 ab$^{-1}$ can probe LLCP slepton masses up to 4 TeV, using time-of-flight measurements. These searches will have striking implications for dark matter, with the LHC definitively testing the possibility of slepton-neutralino co-annihilating WIMP dark matter, and with the LHC and future hadron colliders having a strong potential for discovering LLCPs in models with super...

  8. TeV AND MULTI-WAVELENGTH OBSERVATIONS OF Mrk 421 IN 2006-2008

    SciTech Connect

    Acciari, V. A.; Benbow, W. [Fred Lawrence Whipple Observatory, Harvard-Smithsonian Center for Astrophysics, Amado, AZ 85645 (United States); Aliu, E. [Department of Physics and Astronomy, Barnard College, Columbia University, NY 10027 (United States); Arlen, T. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Aune, T. [Santa Cruz Institute for Particle Physics and Department of Physics, University of California, Santa Cruz, CA 95064 (United States); Beilicke, M.; Buckley, J. H.; Bugaev, V.; Dickherber, R. [Department of Physics, Washington University, St. Louis, MO 63130 (United States); Boltuch, D. [Department of Physics and Astronomy and Bartol Research Institute, University of Delaware, Newark, DE 19716 (United States); Bradbury, S. M. [School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom); Byrum, K. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Cannon, A. [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Cesarini, A. [School of Physics, National University of Ireland Galway, University Road, Galway (Ireland); Ciupik, L. [Astronomy Department, Adler Planetarium and Astronomy Museum, Chicago, IL 60605 (United States); Cui, W.; Finley, J. P. [Department of Physics, Purdue University, West Lafayette, IN 47907 (United States); Duke, C. [Department of Physics, Grinnell College, Grinnell, IA 50112-1690 (United States); Falcone, A. [Department of Astronomy and Astrophysics, 525 Davey Lab, Pennsylvania State University, University Park, PA 16802 (United States); Finnegan, G., E-mail: beilicke@physics.wustl.edu [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States)

    2011-09-01

    We report on TeV {gamma}-ray observations of the blazar Mrk 421 (redshift of 0.031) with the VERITAS observatory and the Whipple 10 m Cherenkov telescope. The excellent sensitivity of VERITAS allowed us to sample the TeV {gamma}-ray fluxes and energy spectra with unprecedented accuracy where Mrk 421 was detected in each of the pointings. A total of 47.3 hr of VERITAS and 96 hr of Whipple 10 m data were acquired between 2006 January and 2008 June. We present the results of a study of the TeV {gamma}-ray energy spectra as a function of time and for different flux levels. On 2008 May 2 and 3, bright TeV {gamma}-ray flares were detected with fluxes reaching the level of 10 Crab. The TeV {gamma}-ray data were complemented with radio, optical, and X-ray observations, with flux variability found in all bands except for the radio wave band. The combination of the Rossi X-ray Timing Explorer and Swift X-ray data reveal spectral hardening with increasing flux levels, often correlated with an increase of the source activity in TeV {gamma}-rays. Contemporaneous spectral energy distributions were generated for 18 nights, each of which are reasonably described by a one-zone synchrotron self-Compton model.

  9. DISCOVERY OF A NEW TeV GAMMA-RAY SOURCE: VER J0521+211

    SciTech Connect

    Archambault, S. [Physics Department, McGill University, Montreal, QC H3A 2T8 (Canada); Arlen, T.; Aune, T. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Behera, B.; Federici, S. [DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Beilicke, M.; Buckley, J. H.; Bugaev, V. [Department of Physics, Washington University, St. Louis, MO 63130 (United States); Benbow, W. [Fred Lawrence Whipple Observatory, Harvard-Smithsonian Center for Astrophysics, Amado, AZ 85645 (United States); Bird, R. [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Bouvier, A. [Santa Cruz Institute for Particle Physics and Department of Physics, University of California, Santa Cruz, CA 95064 (United States); Byrum, K. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Cesarini, A.; Connolly, M. P. [School of Physics, National University of Ireland Galway, University Road, Galway (Ireland); Ciupik, L. [Astronomy Department, Adler Planetarium and Astronomy Museum, Chicago, IL 60605 (United States); Cui, W.; Feng, Q.; Finley, J. P. [Department of Physics, Purdue University, West Lafayette, IN 47907 (United States); Errando, M. [Department of Physics and Astronomy, Barnard College, Columbia University, NY 10027 (United States); Falcone, A., E-mail: fortin@veritas.sao.arizona.edu, E-mail: errando@astro.columbia.edu, E-mail: jholder@physics.udel.edu, E-mail: sfegan@llr.in2p3.fr [Department of Astronomy and Astrophysics, 525 Davey Lab, Pennsylvania State University, University Park, PA 16802 (United States); Collaboration: VERITAS Collaboration; and others

    2013-10-20

    We report the detection of a new TeV gamma-ray source, VER J0521+211, based on observations made with the VERITAS imaging atmospheric Cherenkov Telescope Array. These observations were motivated by the discovery of a cluster of >30 GeV photons in the first year of Fermi Large Area Telescope observations. VER J0521+211 is relatively bright at TeV energies, with a mean photon flux of (1.93 ą 0.13{sub stat} ą 0.78{sub sys}) × 10{sup –11} cm{sup –2} s{sup –1} above 0.2 TeV during the period of the VERITAS observations. The source is strongly variable on a daily timescale across all wavebands, from optical to TeV, with a peak flux corresponding to ?0.3 times the steady Crab Nebula flux at TeV energies. Follow-up observations in the optical and X-ray bands classify the newly discovered TeV source as a BL Lac-type blazar with uncertain redshift, although recent measurements suggest z = 0.108. VER J0521+211 exhibits all the defining properties of blazars in radio, optical, X-ray, and gamma-ray wavelengths.

  10. Long-range LFC transport

    NASA Technical Reports Server (NTRS)

    Pfenninger, Werner

    1987-01-01

    M = 0.83 Laminar Flow Control (LFC) transports, carrying large percentage payloads over a range of 20000 kilometers at cruise L/D's of 39 appear feasible with large space externally braced wings, external fuel pods, active controls, and 70 percent laminar flow on wing and tail surfaces, engine nacelles and struts, and a turbulent fuselage. A combination of a swept-forward inboard and a swept-back outer wing appears superior overall, especially for laminar flow and eliminating leading edge contamination probably caused by flyspecks and ice crystals. Wing divergence appears controllable by a combination of various methods. Wind-mounted superfans with extensive laminar flow on their nacelles appear practical. Their dominant tone noise is below the frequency range of the most strongly amplified TS-waves.

  11. Mode equalization at megameter ranges

    Microsoft Academic Search

    Tarun K. Chandrayadula; Kathleen E. Wage

    2005-01-01

    Low frequency underwater sound propagation over ranges of 3.5 megameters or more has a complicated multipath arrival structure with early steep angle-arrivals, followed by an energetic finale composed of the lower order acoustic modes. Internal waves produce time-varying multipath and induce frequency-selective fading in the received signals. The low mode arrivals are strongly affected by internal waves, making it difficult

  12. do you know your RANGE

    E-print Network

    Hoffman, Garlyn O.

    1957-01-01

    threeawn Wright threeawn Texas wintergrass Purple threeawn Italian ryegrass A. Rhodesgrass B. Tumble windmillgrass C. Hooded windmillgrass D. Hairy grama E. Texas eupgrass F. .................................. Little barley Plains bristlegrass... when range plants first come up. 1 Control noxious weeds. Deferred grazing in fall for seed Distribute water or salt for more uni- 1 production. form livestock use. 1 Apply cactus eradication. u Apply brush control. / i-[~l ~'rotrct from burning...

  13. Normal Growth of Range Cattle. 

    E-print Network

    Lush, Jay L. (Jay Laurence)

    1930-01-01

    of pasture weights of cattle during the 1 grazing season from about June 1st to about October 1st on summer range at the Salina Station in Utah. No records were kept for the remainder of the year. The animals were mostly loaned from the neigh- boring... .................... Width at hooks .................. Width at pelvis or thurls .......... Width at pin bones ............... Length of pelvis .................. Muzzle circumference ............. Cannon circumference ............. Paunch girth...

  14. High range gamma radiation meter

    SciTech Connect

    Baird, W.; Bjarke, D.; Eisen, Y.

    1986-02-01

    A low power meter has been constructed and tested to measure gamma fields from .1 R/h to 1500 R/h over the energy range of 60 keV to 1.2 MeV. The portable, battery-powered meter consists of a local display unit and remote probe. The display unit indicates gamma intensities via a 4-1/2 digit liquid crystal display (LCD) and a 50-segment bargraph LCD.

  15. High range gamma radiation meter

    SciTech Connect

    Baird, W.; Bjarke, G.O.; Eisen, Y.

    1985-01-01

    A low power meter has been constructed and tested to measure gamma fields from .1 R/hr to 1500 R/hr over the energy range of 60 keV to 1.2 MeV. The portable, battery-powered meter consists of a local display unit and remote probe. The display unit indicates gamma intensities via a 4-1/2 digit liquid crystal display (LCD) and a 50-segment bargraph LCD.

  16. The International Laser Ranging Service

    NASA Astrophysics Data System (ADS)

    Pearlman, M. R.; Degnan, J. J.; Bosworth, J. M.

    2002-07-01

    The International Laser Ranging Service (ILRS) was established in September 1998 to support programs in geodetic, geophysical, and lunar research activities and to provide the International Earth Rotation Service (IERS) with products important to the maintenance of an accurate International Terrestrial Reference Frame (ITRF). Now in operation for nearly two years, the ILRS develops (1) the standards and specifications necessary for product consistency, and (2) the priorities and tracking strategies required to maximize network efficiency. The Service collects, merges, analyzes, archives and distributes satellite and lunar laser ranging data to satisfy a variety of scientific, engineering, and operational needs and encourages the application of new technologies to enhance the quality, quantity, and cost effectiveness of its data products. The ILRS works with (1) new satellite missions in the design and building of retroreflector targets to maximize data quality and quantity, and (2) science programs to optimize scientific data yield. The ILRS is organized into permanent components: (1) a Governing Board, (2) a Central Bureau, (3) Tracking Stations and Subnetworks, (4) Operations Centers, (5) Global and Regional Data Centers, and (6) Analysis, Lunar Analysis, and Associate Analysis Centers. The Governing Board, with broad representation from the international Satellite Laser Ranging (SLR) and Lunar Laser Ranging (LLR) community, provides overall guidance and defines service policies, while the Central Bureau oversees and coordinates the daily service activities, maintains scientific and technological data bases, and facilitates communications. Active Working Groups in (1) Missions, (2) Networks and Engineering, (3) Data Formats and Procedures, (4) Analysis, and (5) Signal Processing provide key operational and technical expertise to better exploit current capabilities and to challenge the ILRS participants to keep pace with evolving user needs. The ILRS currently includes more than 40 SLR stations, routinely tracking about 20 retroreflector-equipped satellites and the Moon in support of user needs.

  17. Coastal and Continental Temperature Ranges

    NSDL National Science Digital Library

    Becky Remis

    Climographs, graphic plots of monthly temperature and precipitation, allow students to see how differences in insolation at various locations affect rates of heating and cooling. In this activity, students use climographs to plot locations using latitude and longitude, calculate annual temperature ranges, and relate unequal rates of heating and cooling to climate variations. They will also construct climographs for two locations in New York, analyze them, and answer questions about their observations.

  18. Wide range magnetic electron spectrograph

    SciTech Connect

    Coplan, M. A.; Wang, L.; Moore, J. H.; Hoffman, R. A.

    1989-07-01

    An electron spectrograph is described that covers electron energies from 400 eV to 200 keV with an energy resolution of 10%. This overlaps the range of electrostatic deflection devices at low energy and solid state detectors at high energy. The spectrograph uses magnetic deflection of the electrons to achieve energy separation and images the full range of energies on a single plane. The magnetic circuit uses the fringing field of two axially located magnets to attain the large energy range. Six separate electron beams can be dispersed in the field, each entering the circuit from a different angle. This is a particular advantage when measuring plasma electron three-dimensional velocity distributions. The angular response of the instrument is particularly favorable and the stray magnetic field is sufficiently low to meet spacecraft requirements. Compared with electrostatic deflection devices, the spectrograph is particularly advantageous for measuring high energy electron plasma velocity distribution functions with fast time resolution at modest energy resolution.

  19. Range gated strip proximity sensor

    DOEpatents

    McEwan, Thomas E. (Livermore, CA)

    1996-01-01

    A range gated strip proximity sensor uses one set of sensor electronics and a distributed antenna or strip which extends along the perimeter to be sensed. A micro-power RF transmitter is coupled to the first end of the strip and transmits a sequence of RF pulses on the strip to produce a sensor field along the strip. A receiver is coupled to the second end of the strip, and generates a field reference signal in response to the sequence of pulse on the line combined with received electromagnetic energy from reflections in the field. The sensor signals comprise pulses of radio frequency signals having a duration of less than 10 nanoseconds, and a pulse repetition rate on the order of 1 to 10 MegaHertz or less. The duration of the radio frequency pulses is adjusted to control the range of the sensor. An RF detector feeds a filter capacitor in response to received pulses on the strip line to produce a field reference signal representing the average amplitude of the received pulses. When a received pulse is mixed with a received echo, the mixing causes a fluctuation in the amplitude of the field reference signal, providing a range-limited Doppler type signature of a field disturbance.

  20. Range gated strip proximity sensor

    DOEpatents

    McEwan, T.E.

    1996-12-03

    A range gated strip proximity sensor uses one set of sensor electronics and a distributed antenna or strip which extends along the perimeter to be sensed. A micro-power RF transmitter is coupled to the first end of the strip and transmits a sequence of RF pulses on the strip to produce a sensor field along the strip. A receiver is coupled to the second end of the strip, and generates a field reference signal in response to the sequence of pulse on the line combined with received electromagnetic energy from reflections in the field. The sensor signals comprise pulses of radio frequency signals having a duration of less than 10 nanoseconds, and a pulse repetition rate on the order of 1 to 10 MegaHertz or less. The duration of the radio frequency pulses is adjusted to control the range of the sensor. An RF detector feeds a filter capacitor in response to received pulses on the strip line to produce a field reference signal representing the average amplitude of the received pulses. When a received pulse is mixed with a received echo, the mixing causes a fluctuation in the amplitude of the field reference signal, providing a range-limited Doppler type signature of a field disturbance. 6 figs.

  1. 1992 AGU Front Range Meeting

    NASA Astrophysics Data System (ADS)

    Rush, Sandra

    The AGU Front Range Branch held its annual meeting on February 10, 1992, at the National Center for Atmospheric Research in Boulder, Colo. The theme of the meeting was “Our Changing Environment,” with specific emphasis on the Rocky Mountains, the Front Range, the High Plains, and the Great Basin environments.The all-day meeting featured twenty oral presentations and five poster presentations. Most of the topics presented were related to environmental issues such as ozone depletion, emergency response applications at the Rocky Flats Plant, climatic forcing, and hydrogeology. Other papers of interest included a geophysical study of the Sand Dunes National Monument in Colorado, a paper on the impact of the 1988 forest fires on the chemistry of nonthermal groundwater at Yellowstone National Park, and a poster on the soil-gas flux of carbon dioxide from nonventing areas of the Kilauea Summit in Hawaii. A poster and an oral presentation centered on the vulnerability of transportation and energy supply networks in the central United States to earthquakes in the New Madrid seismic zone. The field of space science was represented by two posters on recent geomagnetic behaviors and magnetospheric convection and an oral presentation on plasma density in the Earth's magnetosphere. Three Front Range Branch awards were given to students to recognize excellent presentations.

  2. Dual range infinitely variable transmission

    SciTech Connect

    Eichenberger, P.

    1989-10-31

    This patent describes in a transaxle assembly comprising an infinitely variably belt and sheave assembly driving sheave portions and driven sheave portions, a housing assembly enclosing the sheave portions. It includes a torque input shaft coaxially disposed with respect to the driving sheave portions, means for drivably connecting the driving sheave portions and the input shaft; a secondary shaft having an axis in spaced parallel relationship with respect to the torque input shaft. The driven sheave portions being mounted for rotation on the axis of the secondary shaft; a flexible drive member driveable connected to the input sheave portions and the output sheave portions. The flexible drive member engaging the input and output sheave portions at an effective pitch diameter for each sheave portion; fluid pressure servo means for adjustable positioning the sheave portions to effect variations in the effective pitch diameters of the driving sheave portions and the driven sheave portions; a countershaft mounted in spaced parallel dispositions with respect to the secondary shaft, a bearing assembly means for journalling the countershaft in the housing assembly, a high speed range gear train connecting the secondary shaft with the countershaft; fluid pressure operated clutch means for activating and deactivating selectively the high speed range gear train and the low speed range gear train; and planetary forward and reverse means disposed concentrically with respect to the countershaft including clutch means.

  3. Long-Range Electron Tunneling

    PubMed Central

    2015-01-01

    Electrons have so little mass that in less than a second they can tunnel through potential energy barriers that are several electron-volts high and several nanometers wide. Electron tunneling is a critical functional element in a broad spectrum of applications, ranging from semiconductor diodes to the photosynthetic and respiratory charge transport chains. Prior to the 1970s, chemists generally believed that reactants had to collide in order to effect a transformation. Experimental demonstrations that electrons can transfer between reactants separated by several nanometers led to a revision of the chemical reaction paradigm. Experimental investigations of electron exchange between redox partners separated by molecular bridges have elucidated many fundamental properties of these reactions, particularly the variation of rate constants with distance. Theoretical work has provided critical insights into the superexchange mechanism of electronic coupling between distant redox centers. Kinetics measurements have shown that electrons can tunnel about 2.5 nm through proteins on biologically relevant time scales. Longer-distance biological charge flow requires multiple electron tunneling steps through chains of redox cofactors. The range of phenomena that depends on long-range electron tunneling continues to expand, providing new challenges for both theory and experiment. PMID:24499470

  4. New experimental limits on non-Newtonian forces in the micrometer-range

    E-print Network

    A. O. Sushkov; W. J. Kim; D. A. R. Dalvit; S. K. Lamoreaux

    2011-08-12

    We report measurements of the short-range forces between two macroscopic gold-coated plates using a torsion pendulum. The force is measured for separations between 0.7 $\\mu$m and 7 $\\mu$m, and is well described by a combination of the Casimir force, including the finite-temperature correction, and an electrostatic force due to patch potentials on the plate surfaces. We use our data to place constraints on the Yukawa-type "new" forces predicted by theories with extra dimensions. We establish a new best bound for force ranges 0.4 $\\mu$m to 4 $\\mu$m, and, for forces mediated by gauge bosons propagating in $(4+n)$ dimensions and coupling to the baryon number, extract a $(4+n)$-dimensional Planck scale lower limit of $M_*>70$ TeV.

  5. Ds+ meson production at central rapidity in proton-proton collisions at ?{s}=7 TeV

    NASA Astrophysics Data System (ADS)

    Abelev, B.; Adam, J.; Adamová, D.; Adare, A. M.; Aggarwal, M. M.; Aglieri Rinella, G.; Agocs, A. G.; Agostinelli, A.; Aguilar Salazar, S.; Ahammed, Z.; Ahmad, N.; Ahmad Masoodi, A.; Ahn, S. A.; Ahn, S. U.; Akindinov, A.; Aleksandrov, D.; Alessandro, B.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Almaráz Avińa, E.; Alme, J.; Alt, T.; Altini, V.; Altinpinar, S.; Altsybeev, I.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Anson, C.; Anti?i?, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arbor, N.; Arcelli, S.; Arend, A.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Arslandok, M.; Asryan, A.; Augustinus, A.; Averbeck, R.; Awes, T. C.; Äystö, J.; Azmi, M. D.; Bach, M.; Badalŕ, A.; Baek, Y. W.; Bailhache, R.; Bala, R.; Baldini Ferroli, R.; Baldisseri, A.; Baldit, A.; Baltasar Dos Santos Pedrosa, F.; Bán, J.; Baral, R. C.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartke, J.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batyunya, B.; Baumann, C.; Bearden, I. G.; Beck, H.; Belikov, I.; Bellini, F.; Bellwied, R.; Belmont-Moreno, E.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bergognon, A. A. E.; Berzano, D.; Betev, L.; Bhasin, A.; Bhati, A. K.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Biel?ík, J.; Biel?íková, J.; Bilandzic, A.; Bjelogrlic, S.; Blanco, F.; Blanco, F.; Blau, D.; Blume, C.; Boccioli, M.; Bock, N.; Böttger, S.; Bogdanov, A.; Břggild, H.; Bogolyubsky, M.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Bose, S.; Bossú, F.; Botje, M.; Botta, E.; Boyer, B.; Braidot, E.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Browning, T. A.; Broz, M.; Brun, R.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Busch, O.; Buthelezi, Z.; Caballero Orduna, D.; Caffarri, D.; Cai, X.; Caines, H.; Calvo Villar, E.; Camerini, P.; Canoa Roman, V.; Cara Romeo, G.; Carena, F.; Carena, W.; Carlin Filho, N.; Carminati, F.; Casanova Díaz, A.; Castillo Castellanos, J.; Castillo Hernandez, J. F.; Casula, E. A. R.; Catanescu, V.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chawla, I.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Coccetti, F.; Colamaria, F.; Colella, D.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Constantin, P.; Contin, G.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortese, P.; Cortés Maldonado, I.; Cosentino, M. R.; Costa, F.; Cotallo, M. E.; Crescio, E.; Crochet, P.; Cruz Alaniz, E.; Cuautle, E.; Cunqueiro, L.; Dainese, A.; Dalsgaard, H. H.; Danu, A.; Das, I.; Das, D.; Das, K.; Dash, S.; Dash, A.; de, S.; de Barros, G. O. V.; de Caro, A.; de Cataldo, G.; de Cuveland, J.; de Falco, A.; de Gruttola, D.; Delagrange, H.; Deloff, A.; Demanov, V.; De Marco, N.; Dénes, E.; de Pasquale, S.; Deppman, A.; D Erasmo, G.; de Rooij, R.; Diaz Corchero, M. A.; di Bari, D.; Dietel, T.; di Giglio, C.; di Liberto, S.; di Mauro, A.; di Nezza, P.; Diviŕ, R.; Djuvsland, Ř.; Dobrin, A.; Dobrowolski, T.; Domínguez, I.; Dönigus, B.; Dordic, O.; Driga, O.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Dutta Majumdar, A. K.; Dutta Majumdar, M. R.; Elia, D.; Emschermann, D.; Engel, H.; Erazmus, B.; Erdal, H. A.; Espagnon, B.; Estienne, M.; Esumi, S.; Evans, D.; Eyyubova, G.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fearick, R.; Fedunov, A.; Fehlker, D.; Feldkamp, L.; Felea, D.; Fenton-Olsen, B.; Feofilov, G.; Fernández Téllez, A.; Ferretti, A.; Ferretti, R.; Festanti, A.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Fusco Girard, M.; Gaardhřje, J. J.; Gagliardi, M.; Gago, A.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Garabatos, C.; Garcia-Solis, E.; Garishvili, I.; Gerhard, J.; Germain, M.; Geuna, C.; Gheata, M.; Gheata, A.; Ghidini, B.; Ghosh, P.; Gianotti, P.; Girard, M. R.; Giubellino, P.; Gladysz-Dziadus, E.; Glässel, P.; Gomez, R.; Ferreiro, E. G.; González-Trueba, L. H.; González-Zamora, P.; Gorbunov, S.; Goswami, A.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Grajcarek, R.; Grelli, A.; Grigoras, C.; Grigoras, A.; Grigoriev, V.; Grigoryan, S.; Grigoryan, A.; Grinyov, B.; Grion, N.; Gros, P.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.

    2012-12-01

    The pT-differential inclusive production cross section of the prompt charm-strange meson Ds+ in the rapidity range |y|<0.5 was measured in proton-proton collisions at ?{s}=7 TeV at the LHC using the ALICE detector. The analysis was performed on a data sample of 2.98×108 events collected with a minimum-bias trigger. The corresponding integrated luminosity is Lint=4.8 nb. Reconstructing the decay Ds+???+, with ??K-K+, and its charge conjugate, about 480 Dsą mesons were counted, after selection cuts, in the transverse momentum range 2range, together with the strangeness suppression factor in charm fragmentation. The obtained values are found to be compatible within uncertainties with those measured by other experiments in e+e-, ep and pp interactions at various centre-of-mass energies.

  6. Discovery of TeV Gamma Rays from SN 1006: Further Evidence for the Supernova Remnant Origin of Cosmic Rays

    Microsoft Academic Search

    T. Tanimori; Y. Hayami; S. Kamei; S. A. Dazeley; P. G. Edwards; S. Gunji; S. Hara; T. Hara; J. Holder; A. Kawachi; T. Kifune; R. Kita; T. Konishi; A. Masaike; Y. Matsubara; T. Matsuoka; Y. Mizumoto; M. Mori; M. Moriya; H. Muraishi; Y. Muraki; T. Naito; K. Nishijima; S. Oda; S. Ogio; J. R. Patterson; M. D. Roberts; G. P. Rowell; K. Sakurazawa; T. Sako; Y. Sato; R. Susukita; A. Suzuki; R. Suzuki; T. Tamura; G. J. Thornton; S. Yanagita; T. Yoshida; T. Yoshikoshi

    1998-01-01

    In this Letter we report the discovery of TeV gamma-ray emission from a supernova remnant made with the CANGAROO 3.8 m telescope. TeV gamma rays were detected at the sky position and extension coincident with the northeast rim of shell-type supernova remnant (SNR) SN 1006 (Type Ia). SN 1006 has been a most likely candidate for an extended TeV gamma-ray

  7. VLA and XMM-Newton observations of the SNR W41/TeV Gamma-ray source HESS J1834-087

    E-print Network

    W. W. Tian; Z. Li; D. A. Leahy; Q. D. Wang

    2007-01-05

    The recently discovered extended TeV source HESS J1834-087 is associated with both a diffuse X-ray enhancement and a molecular cloud, projected at the center of an old radio supernova remnant G23.3-0.3 (SNR W41). New HI observations from the VLA Galactic Plane Survey (VGPS) show unambiguous structures associated with W41 in the radial velocity range of 53 to 63 km/s, so we obtain for W41 a distance of 4+-0.2 kpc. A new higher sensitivity VGPS continuum image of W41 at 1420 MHz shows faint emission in its eastern part not detected by previous observations, so we give a new angular size of 36'x30' in b-l direction (average radius of 19 pc). We estimate for W41 a Sedov age of ~10e5 yr. New XMM-Newton observation reveals diffuse X-ray emission within the HESS source and suggests an association between the X-ray and Gamma-ray emission. The high-resolution ^{13}CO images of W41 further reveal a giant molecular cloud (GMC) located at the center of W41, likely associated with W41 in the the radial velocity range of 61 to 66 km/s. Altogether, the new observations can be interpreted as providing the first evidence that an old SNR encounters a GMC to emit TeV gamma-rays in the cloud material.

  8. Observation of long-range, near-side angular correlations in proton-proton collisions at the LHC

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hammer, J.; Hänsel, S.; Hartl, C.; Hoch, M.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kasieczka, G.; Kiesenhofer, W.; Krammer, M.; Liko, D.; Mikulec, I.; Pernicka, M.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Teischinger, F.; Waltenberger, W.; Walzel, G.; Widl, E.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Benucci, L.; Ceard, L.; de Wolf, E. A.; Janssen, X.; Maes, T.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; van Haevermaet, H.; van Mechelen, P.; van Remortel, N.; Adler, V.; Beauceron, S.; Blyweert, S.; D'Hondt, J.; Devroede, O.; Kalogeropoulos, A.; Maes, J.; Maes, M.; Tavernier, S.; van Doninck, W.; van Mulders, P.; Villella, I.; Chabert, E. C.; Charaf, O.; Clerbaux, B.; de Lentdecker, G.; Dero, V.; Gay, A. P. R.; Ham-Mad, G. H.; Hreus, T.; Marage, P. E.; Vander Velde, C.; Vanlaer, P.; Wickens, J.; Costantini, S.; Grunewald, M.; Klein, B.; Marinov, A.; Ryckbosch, D.; Thyssen, F.; Tytgat, M.; Vanelderen, L.; Verwilligen, P.; Walsh, S.; Zaganidis, N.; Basegmez, S.; Bruno, G.; Caudron, J.; de Favereau de Jeneret, J.; Delaere, C.; Demin, P.; Favart, D.; Giammanco, A.; Grégoire, G.; Hollar, J.; Lemaitre, V.; Militaru, O.; Ovyn, S.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Quertenmont, L.; Schul, N.; Beliy, N.; Caebergs, T.; Daubie, E.; Alves, G. A.; de Jesus Damiao, D.; Pol, M. E.; Souza, M. H. G.; Carvalho, W.; da Costa, E. M.; de Oliveira Martins, C.; de Souza, S. Fonseca; Mundim, L.; Nogima, H.; Oguri, V.; Otalora Goicochea, J. M.; da Silva, W. L. Prado; Santoro, A.; Silva Do Amaral, S. M.; Sznajder, A.; Torres da Silva de Araujo, F.; Dias, F. A.; Dias, M. A. F.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Marinho, F.; Novaes, S. F.; Padula, Sandra S.; Darmenov, N.; Dimitrov, L.; Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.; Vankov, I.; Dyulendarova, M.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Marinova, E.; Mateev, M.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Wang, J.; Wang, J.; Wang, X.; Wang, Z.; Yang, M.; Zang, J.; Zhang, Z.; Ban, Y.; Guo, S.; Hu, Z.; Li, W.; Mao, Y.; Qian, S. J.; Teng, H.; Zhu, B.; Cabrera, A.; Gomez Moreno, B.; Ocampo Rios, A. A.; Osorio Oliveros, A. F.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Lelas, K.; Plestina, R.; Polic, D.; Puljak, I.; Antunovic, Z.; Dzelalija, M.; Brigljevic, V.; Duric, S.; Kadija, K.; Morovic, S.; Attikis, A.; Fereos, R.; Galanti, M.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Assran, Y.; Mahmoud, M. A.; Hektor, A.; Kadastik, M.; Kannike, K.; Müntel, M.; Raidal, M.; Rebane, L.; Azzolini, V.; Eerola, P.; Czellar, S.; Härkönen, J.; Heikkinen, A.; Karimäki, V.; Kinnunen, R.; Klem, J.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.; Banzuzi, K.; Korpela, A.; Tuuva, T.; Sillou, D.; Besancon, M.; Dejardin, M.; Denegri, D.; Descamps, J.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Gentit, F. X.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Malcles, J.; Marionneau, M.; Millischer, L.; Rander, J.; Rosowsky, A.; Rousseau, D.; Titov, M.; Verrecchia, P.; Baffioni, S.; Bianchini, L.; Bluj, M.; Broutin, C.; Busson, P.; Charlot, C.; Dobrzynski, L.; de Cassagnac, R. Granier; Haguenauer, M.; Miné, P.; Mironov, C.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Thiebaux, C.; Zabi, A.; Agram, J.-L.; Besson, A.; Bloch, D.; Bodin, D.; Brom, J.-M.; Cardaci, M.; Conte, E.; Drouhin, F.; Ferro, C.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Greder, S.; Juillot, P.; Karim, M.; Le Bihan, A.-C.; Mikami, Y.; van Hove, P.; Fassi, F.; Mercier, D.; Baty, C.; Beaupere, N.; Bedjidian, M.; Bondu, O.; Boudoul, G.; Boumediene, D.; Brun, H.; Chanon, N.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Falkiewicz, A.; Fay, J.; Gascon, S.; Ille, B.; Kurca, T.; Le Grand, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sordini, V.; Tosi, S.; Tschudi, Y.; Verdier, P.; Xiao, H.; Roinishvili, V.; Anagnostou, G.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.; Klein, K.; Merz, J.; Mohr, N.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Weber, M.; Wittmer, B.; Ata, M.; Bender, W.; Erdmann, M.; Frangenheim, J.; Hebbeker, T.; Hinzmann, A.; Hoepfner, K.; Hof, C.; Klimkovich, T.; Klingebiel, D.; Kreuzer, P.; Lanske, D.; Magass, C.; Masetti, G.; Merschmeyer, M.; Meyer, A.; Papacz, P.; Pieta, H.

    2010-09-01

    Results on two-particle angular correlations for charged particles emitted in proton-proton collisions at center-of-mass energies of 0.9, 2.36, and 7 TeV are presented, using data collected with the CMS detector over a broad range of pseudorapidity ( ?) and azimuthal angle ( ?). Short-range correlations in ? ?, which are studied in minimum bias events, are characterized using a simple "independent cluster" parametrization in order to quantify their strength (cluster size) and their extent in ? (cluster decay width). Long-range azimuthal correlations are studied differentially as a function of charged particle multiplicity and particle transverse momentum using a 980 nb-1 data set at 7 TeV. In high multiplicity events, a pronounced structure emerges in the two-dimensional correlation function for particle pairs with intermediate p T of 1-3 GeV/ c, 2.0 < |? ?| < 4 .8 and ? ? ? 0. This is the first observation of such a long-range, near-side feature in two-particle correlation functions in pp or poverline p collisions.

  9. Coordinate systems in lunar ranging

    NASA Technical Reports Server (NTRS)

    Mulholland, J. D.

    1975-01-01

    Three distinct coordinate systems are required in the interpretation of the lunar range observations: a celestial frame and two-body-fixed frames. However, there is no coordinate system that is uniquely, or even preferentially, related to the observations themselves. Effectively, one specifies the coordinate systems by the procedures used in data reduction and parameter improvement. Each of the three systems affects the others in some way, and internal inconsistencies are quite possible. The discussion examines some of the more important aspects of this problem.

  10. Extended-range tiltable micromirror

    DOEpatents

    Allen, James J. (Albuquerque, NM); Wiens, Gloria J. (Newberry, FL); Bronson, Jessica R. (Gainesville, FL)

    2009-05-05

    A tiltable micromirror device is disclosed in which a micromirror is suspended by a progressive linkage with an electrostatic actuator (e.g. a vertical comb actuator or a capacitive plate electrostatic actuator) being located beneath the micromirror. The progressive linkage includes a pair of torsion springs which are connected together to operate similar to a four-bar linkage with spring joints. The progressive linkage provides a non-linear spring constant which can allow the micromirror to be tilted at any angle within its range substantially free from any electrostatic instability or hysteretic behavior.

  11. BENTON RANGE ROADLESS AREA, CALIFORNIA.

    USGS Publications Warehouse

    McKee, Edwin H.; Rains, Richard L.

    1984-01-01

    On the basis of a mineral survey, two parts of the Benton Range Roadless Area, California are considered to have mineral-resource potential. The central and southern part of the roadless area, near several nonoperating mines, has a probable potential for tungsten and gold-silver mineralization in tactite zones. The central part of the area has a substantiated resource potential for gold and silver in quartz veins. Detailed mapping and geochemical sampling for tungsten, gold, and silver in the central and southern part of the roadless area might indicate targets for shallow drilling exploration.

  12. High Precision Laser Range Sensor

    NASA Technical Reports Server (NTRS)

    Dubovitsky, Serge (Inventor); Lay, Oliver P. (Inventor)

    2003-01-01

    The present invention is an improved distance measuring interferometer that includes high speed phase modulators and additional phase meters to generate and analyze multiple heterodyne signal pairs with distinct frequencies. Modulation sidebands with large frequency separation are generated by the high speed electro-optic phase modulators, requiring only a single frequency stable laser source and eliminating the need for a fist laser to be tuned or stabilized relative to a second laser. The combination of signals produced by the modulated sidebands is separated and processed to give the target distance. The resulting metrology apparatus enables a sensor with submicron accuracy or better over a multi- kilometer ambiguity range.

  13. Creep-Feeding Range Calves

    E-print Network

    Jones, J. M. (John McKinley); Jones, John H.

    1932-01-01

    , it has been found profitable to supply rain to calves during their suckling period. This may be done y what is known as creep feeding. Creeps are enclosures in nrhich the calves are fed an3 the entrances, of which are of such size that the calves can... enter but the cows cannot. A test on the Callaghan Ranch in Webb county during 1931-1932 took account of the results of creep-feeding 69 head of spring calves in com- arison with 49 calves on a similar range but not creep-fed. The creep-fed calves...

  14. Exploring alternative symmetry breaking mechanisms at the LHC with 7, 8 and 10 TeV total energy

    E-print Network

    Alessandro Ballestrero; Diogo Buarque Franzosi; Ezio Maina

    2012-03-13

    In view of the annnouncement that in 2012 the LHC will run at 8 TeV, we study the possibility of detecting signals of alternative mechanisms of ElectroWeak Symmetry Breaking, described phenomenologically by unitarized models, at energies lower than 14 TeV. A complete calculation with six fermions in the final state is performed using the PHANTOM event generator. Our results indicate that at 8 TeV some of the scenarios with TeV scale resonances are likely to be identified while models with no resonances or with very heavy ones will be inaccessible, unless the available luminosity will be much higher than expected.

  15. A search for TeV emission from active galaxies using the Milagro Observatory

    NASA Astrophysics Data System (ADS)

    Hays, Elizabeth A.

    Milagro is a unique instrument that observes very high energy gamma rays (100 GeV to 100 TeV) using the water- ?erenkov technique. The instrument has a large field of view, which covers the entire overhead sky (˜2 sr). Located in northern New Mexico, Milagro observes most of the Northern Hemisphere over the course of a day. The high duty cycle (>90%) permits searches for TeV sources over a variety of time exposures. This thesis presents the results of two separate searches of the Milagro data for TeV emission. A real-time search of the entire field of view has been running since 2002. The real-time search provides early notification of significant transient behavior for time integrations from two hours to one month. No new gamma-ray sources have been found although two known sources are detected at significant levels. A longer and more refined search is conducted of archived data to monitor a set of active galaxies selected as TeV candidates. Active galaxies have been observed to be highly variable at TeV energies. To test for episodic emission, a data set is constructed using observations taken from December 2000 through September 2003 and divided into six sets of shorter time integrations. No significant emission is detected, and upper limits are set on the maximum time-averaged flux from each object for each time integration. The flux limits are also calculated to include the effects of absorption of TeV gamma rays by extragalactic background light. Predictions for the spectrum are used to set flux limits that can be compared to predictions for the flux from each source. The Milagro flux l